
Virtualized Research Environments on the
bwForCluster NEMO

Michael Janczyk, Bernd Wiebelt, and Dirk von Suchodoletz
eScience Department, Computer Center, University of Freiburg, Freiburg, Germany

{michael.janczyk, bernd.wiebelt, dirk.von.suchodoletz}@rz.uni-freiburg.de

Abstract—The bwForCluster NEMO offers high performance
computing resources to three quite different scientific com-
munities (Elementary Particle Physics, Neuroscience and Mi-
crosystems Engineering) encompassing more than 200 individual
researchers. To provide a broad range of software packages and
deal with the individual requirements, the NEMO operators seek
novel approaches to cluster operation [1]. Virtualized Research
Environments (VREs) can help to both separate different soft-
ware environments as well as the responsibilities for maintaining
the software stack. Research groups become more independent
from the base software environment defined by the cluster
operators. Operating VREs brings advantages like scientific
reproducibility, but may introduce caveats like lost cycles or the
need for layered job scheduling. VREs might open advanced
possibilities as e.g. job migration or checkpointing.

Index Terms—Virtualized Research Environments, VRE, HPC,
Virtualization, ViCE, bwHPC, bwHPC-C5

I. VIRTUALIZED RESEARCH ENVIRONMENTS

The author of [3] defines Virtual Research Environments
to “[...] comprise digital infrastructure and services which
enable research to take place. [...] A VRE is best viewed as
a framework into which tools, services and resources can be
plugged. VREs are part of infrastructure, albeit in digital form,
rather than a free-standing product.” While this more than
a decade old paper emphasizes the general shared electronic
infrastructure aspect, the term Virtualized Research Environ-
ment shifts the focus more to the technological viewpoint.
Virtualization became a mainstream technology over the last
decade as it allows the operators to host more than one
operating system on a single server and to strictly separate
users of software environments. While widespread in computer
center operation, virtualization is still seen skeptically in the
field of scientific computing and thus seldom applied in HPC.

The filesystem of a VRE is a container presented as a
single file (or a couple of files linked together to present
the container). From the operator’s perspective this container
is seen as a black box requiring no involvement or efforts
like updates of the operating system or the provisioning of
software packages of a certain version. From the researcher’s
perspective the VRE is an individual (virtual) node where
everything from the hardware level – at least to a certain degree
like CPU or RAM – up to the operating system, applications
and configurations can be controlled solely by the research
groups. Individual research groups become independent of the
software and update strategy of the cluster operator. The caveat
is that the old HPC performance mantra “every cycle counts”

has to be sacrificed to a certain extent [5]. However, the
advantages of this approach makes HPC attractive for broader
scientific communities in the first place.

A. Reproducible Science

Digital research data management requires the conservation
and publication of raw data as well as computed results.
However, this is only half the story. It is equally important to
preserve the computational tool chain used in the acquisition
of new scientific insights. In the classic HPC approach, digital
research environments are tightly coupled to the hardware and
base operating system and therefore no longer usable when
the HPC system is decommissioned. Instead, a lot of effort
has to be put into reestablishing similar research environments
on the successor system. By applying well-known techniques
used in Cloud computing to HPC, deploying digital software
environments to new HPC systems becomes a straightforward,
simple and reproducible procedure. Even better, these virtual-
ized digital research environments can be conserved in the
state they were in when the actual scientific research was
conducted. Establishing such certified research environments
(CREs) – tested, certified and immutable software stacks –
could be the next logical step. A CRE could thus help to
complement electronic lab books.

B. ViCE Project on VREs

The eResearch initiative on Virtualized Research Environ-
ments (VREs) sponsored by the state of Baden-Württemberg
provided the perfect framework to bring together both the
infrastructure providers like the computer center of the Uni-
versity of Freiburg and research communities (e.g. Elementary
Particle Physics from Karlsruhe and Freiburg) in the ViCE
project. The research groups have various demands for com-
puting in scientific workflows which are tightly coupled to
well defined software environments. The project helped the in-
volved parties to understand each others requirements to utilize
virtualization and containerization technologies and to separate
the software-hardware stack to foster more independence and
flexibility for both of the parties. In daily operations, VREs
help to disentangle the responsibilities regarding the digital
research environment required for a certain task. The computer
center focuses on the provisioning of a scalable hardware base
including all necessary components to run virtualization and
containerization technologies like OpenStack or Singularity.

37

bwHPC Symposium 2017, Tübingen, October 4th 2017

II. VISIONS AND GOALS

In the classic HPC approach, research environments are
meticulously handcrafted to squeeze out every last cycle count
of the compute resources. How this is achieved is often hidden
deep inside software module definitions created by software
administrators or hidden inside source code modifications done
by the user. It is easy to lose track of all these changes,
especially in case there has been no agreed upon standard
procedure put into place to record and conserve them.

When we look at software deployment on individual work-
stations or notebooks, the situation becomes even more inextri-
cable. Hardware and software installation merge and converge
into a monolithic masterpiece, fully understood solely by its
creator – if at all. In any case, once the creator loses interest,
his creation is doomed.

In contrast, a successful strategy in Cloud computing has
been the orchestration of software environment deployment.
The scientists create or modify recipes to generate Virtualized
Research Environments tailored to their scientific workflows.
These can be shared and improved upon by co-workers
and collaborators. To this end, software packages (source
or binary) are requested from well-defined and permanent
repositories. VRE images (templates) get built on dedicated
VRE build hosts. These VRE build hosts can be run as virtual
machines on the user’s workstation or in a Cloud service. After
that, VRE instances can be deployed in the needed number on
the Cloud system. This workflow is demonstrated in Fig. 1.

Ideally, these VRE instances should be agnostic of the
environment they are started in. So they should be runnable in
either Cloud or HPC environments. In the case of HPC, VRE
instances should be considered as “just another job”.

...

VRE Build Host

VRE Recipe Repository VRE Software Repository

VRE Image

VRE Instance VRE Instance VRE Instance VRE Instance

Fig. 1. Recipe and software repositories for automatic building of reproducible
VREs.

III. RUNNING VRE INSTANCES ON NEMO

On a HPC cluster users don’t start their computations on the
worker nodes themselves. This is done by the scheduler, who
decides which job to put on which worker node. It can employ
different strategies to do so and can take priorities and different
fairness strategies into account. Compute Clouds use schedul-
ing as well. Usually a set of system flavors – pre-configured
virtual hardware sets – is given, which describes the resources
one can get in the Cloud. In HPC it is custom that users get
exactly the resources they asked for. If requirements can not
be satisfied instantly, the job will have to wait in a queue.
In Clouds the hardware resources usually are overbooked so
that queues are processed within minutes and waiting time
is minimized to the start of a machine. Commercial Clouds
additionally steer their queues by monetary incentives.

Given these two system variants, HPC scheduling on the
one side and Cloud scheduling on the other, competing for
hardware resources in the cluster it is necessary to orchestrate
both systems through a mediator. This mediator is called
VRE service. It runs as a service daemon and waits for
requests from users and administrators and translates it to
the OpenStack API. In this hybrid approach one needs to
define a primary scheduler who controls which jobs should
run on which worker node and instruct the other scheduler
to run within the boundaries of the other scheduler, especially
respecting the scheduling decision of the other. The problem is,
that neither the HPC scheduler, in our case the combination of
the workload manager Moab and the resource manager Torque,
nor the Cloud scheduler are aware of each other and no APIs
exist on both sides to integrate a different scheduler. Since we
provide a hybrid Cloud use case on a HPC cluster and users
are familiar with submitting jobs from the console and Moab
has the more sophisticated scheduling features compared to
OpenStack we define Moab as the default scheduler. The
OpenStack scheduler is still running but is told where to start
its virtual machines. This way we do not need to integrate
the Moab scheduler into OpenStack and that way this should
work with every HPC / HTC scheduler on the market.

Starting virtual machines through the OpenStack dashboard
is still allowed but only in a special service environment which
does not interfere with the worker nodes of the HPC cluster.
The VRE service is monitoring all virtual machines started and
destroys every machine which is started outside of the service
environment when no corresponding Moab job ist found.

Starting Virtualized Research Environments on the worker
nodes is done through the Moab scheduler by submitting
special tags as variables. The scheduler queues and routes this
VRE job as a standard HPC job respecting policies like fair-
share, usage limits and the requested resources like memory,
CPU and wall-time. Once the job is started on the node the
torque client (mother superior) filters it for the special VRE
tags and submits this request to the VRE service. The VRE
service then translates this information to the corresponding
tuple of OpenStack project, VRE name, flavor for resources
and binds it to the corresponding node. This information is

38

bwHPC Symposium 2017, Tübingen, October 4th 2017

then send to the OpenStack service which then starts the VRE
(a virtual machine) on the pre-selected worker node. If the
Moab job ends or is canceled by the system or user the
mother superior sends this information to the VRE service
which then destroys the instance. During the lifetime of the
job the VRE service is monitoring the virtual machine and
reports back utilization when requested by users or services.
No direct interaction with the OpenStack service is necessary
by users or administrators. The principle can be seen in Fig. 2.

HPC worker nodes HPC VRE

VRE Service Cloud Framework

Control and Monitor
Virtual Machines

Control and Monitor
HPC Jobs

Hybrid HPC Cluster

Scheduler / Resource Manager

Queue

Perform Cloud TasksPerform HPC Tasks

(Moab / Torque) (HPC / Cloud Broker) (OpenStack)

VREs:
 * Start
 * Stop
 * Pause
* Resume

 * Migrate

Fig. 2. VRE service acts as broker between the two schedulers.

The helper tool cloud-init, which is used to customize
virtual machine images on boot, is used to inject scripts to
execute within the VRE, if provided. The job description
file, which defines the resources needed and the commands
to execute during the job’s run-time, and usually is used on
compute clusters is replaced by a simple wait script to ensure
that the HPC job is not ended before the VRE job has finished.

The VRE service is developed in a cooperation between the
HPC team in Freiburg and Adaptive Computing, the company
behind Moab. The concept is still in development, so future
results can differ from this description. The following lines
show an example for submitting VREs on NEMO:

msub -l nodes=1:ppn=20 \
-l pmem=6GB \
-l walltime=1:00:00:00 \
-l var=vmscript:$script+vmimage: ←↩

$image+vmproject:$project+ ←↩
vmsshkeyname:$key \

job_dummy.sh

IV. BIOINFORMATICS AND HIGH ENERGY PHYSICS VRES
ON NEMO

A typical concern for many scientific workflows, especially
in (geographically) distributed large projects, is the strict
requirement for the software stack involved [1].

Therefore the huge CERN projects like ATLAS and CMS
usually are very conservative with changes in their environ-
ment and usually test future environments over months or even
years. When this paper was written the ATLAS and CMS
project still used Scientific Linux 6.x as operating system
while the bwForCluster NEMO used the newer operating
system CentOS 7.4. The complete software and service stack
of the High Energy Physics (HEP) is tailored around this
Scientific Linux 6. Driven by the fact that Elementary Particle
Physics is one of the research fields on the bwForCluster
NEMO (the others being Neuroscience and Microsystems
Engineering) a solution was needed to provide the HEP
research environments on the cluster. By using VREs ATLAS
and CMS [6] users have now the possibility to run their jobs in
their standard HEP research environments and it is guaranteed,
that the operating system and the software stack is compatible
with the HEP environments used on bare-metal clusters.

The Bioinformatics department uses the the Galaxy Portal
for their computations. To support this environment on NEMO
a VRE including Galaxy has been created and the integration
into the NEMO cluster is in development currently.

V. ADVANCED CONCEPTS

Using virtualization inside a HPC system opens up possi-
bilities for several interesting features. While their implemen-
tation requires tighter integration between HPC scheduler and
virtualization framework as shown in Fig. 2, they could solve
several classic problems with HPC systems, especially those
designated for novice HPC users.

Using the virtualization features “snapshot and migration”
for a virtualized cluster like e.g. described in [4], [5], would
enable operators and users to stop running processes and move
them to a different node in the cluster where they could be
resumed. For an HPC system, this would be practical for two
use cases. The first one concerns long running monolithic jobs.
These are, for very practical reasons, non-favored jobs in HPC
environments, assuming they are permitted in the first place.
However, the costs to adapt a particular workflow based on
such monolithic tasks to a HPC system, e.g. by paralleliz-
ing and partitioning it manually, may sometimes exceed the
practical use of the resulting solution. If the monolithic job
could automatically be stopped, check-pointed and resumed
at regular intervals, this might very well constitute a more
economic procedure. In the second use case, if there is a
mix of pleasingly parallel high throughput jobs (using only
single cores or nodes) and massively parallel high performance
jobs (using several nodes), the second class of jobs should be
concentrated on nodes that share optimal high performance
network communication paths. Typically this is accomplished
by high investments in the network topology or sophisticated
tuning of the job queue. However, if jobs could be moved
around the physical machines (i.e. “de-fragmented”), optimal
high performance network communication paths can be guar-
anteed by concentrating massively parallel jobs on the same
or adjacent high performance network switches.

39

bwHPC Symposium 2017, Tübingen, October 4th 2017

VI. OUTLOOK

There still exist a couple of limitations on the presented
concepts and workflows. The use cases considered feature
embarrassingly parallelized workloads which do not require
interaction between individual cluster nodes. This simplifies
the setup and operation of virtual machines as the high
bandwidth node interconnect could be ignored in this scenario.
Singularity might overcome that limitation in the future but
would make the application of the advanced concepts more
complex as explained in [4]. A further challenge arises from
the provisioning of the data in the form of parallelized high
performance storage. If users become root in their VREs than
the traditional means of privilege separation will not work any
more. A similar issue arises from the heightened mobility of
VREs. While in static cluster configurations IP based security
with its limitations made sense, this becomes more challenging
when VREs get involved. Depending on the way virtualization
or containerization is implemented, the HPC scheduling setup
has to be aware of the more dynamic nature of resources.

Pre- and post-processing in many workflows often profit
from interactive intervention instead of batch-driven automatic
processing. Here, VREs could help to use the same working
environment for Cloud (pre- and post-processing) and HPC
systems (main computational task). Beside the organizational
and administrative benefits VREs might allow to gain more
flexibility through e.g. job checkpoint-restart or job migration.
Because of the containerization of VREs these could get
extended to Certified Research Environments in the future.

ACKNOWLEDGMENT

The authors acknowledge support by the state of Baden-
Württemberg through bwHPC and the ViCE project as well
as support by the German Research Foundation (DFG) through
grant no INST 39/963-1 FUGG.

REFERENCES

[1] K. Meier, G. Fleig, T. Hauth, M. Janczyk, G. Quast, D. von Suchodoletz,
and B. Wiebelt, “Dynamic provisioning of a HEP computing infras-
tructure on a shared hybrid HPC system,” 17th International Workshop
on Advanced Computing and Analysis Techniques in Physics Research
(ACAT 2016), Valparaiso Chile, Proceedings, p. 18–22, January 2016

[2] D. von Suchodoletz, B. Wiebelt, K. Meier, and M. Janczyk, “Flex-
ible HPC: bwForCluster NEMO,” Proceedings of the 3rd bwHPC-
Symposium: Heidelberg 2016, editors: S. Richling, M. Baumann, and
V. Heuveline, doi: 10.11588/heibooks.308.418, heiBOOKS, 2017

[3] M. Fraser, “Virtual research environments: overview and activity,” num.
44, url: http://www.ariadne.ac.uk/issue44/fraser, Ariadne, 2005

[4] P. Anedda, S. Leo, S. Manca, M. Gaggero, and G. Zanetti, “Suspend-
ing, migrating and resuming HPC virtual clusters,” Future Generation
Computer Systems, vol. 26, num. 8, p. 1063–1072, Elsevier, 2010

[5] A. Younge, R. Henschel, J. Brown, G. von Laszewski, J. Qiu, and G.
Fox, “Analysis of virtualization technologies for high performance com-
puting environments,” 2011 IEEE International Conference on Cloud
Computing (CLOUD), p. 9–16, IEEE, 2011

[6] T. Hauth, G. Quast, M. Kunze, V. Büge, A. Scheurer, and C. Baun,
“Dynamic extensions of batch systems with cloud resources,” Journal of
Physics: Conference Series, vol. 331, num. 6, p. 062034, IOP Publishing,
2011

40

	Proceedings_bwHPC2017
	conference_071817
	bwhpc_gorska_camera_ready
	bwHPC_martin_camera_ready
	schaefer_bwhpc2017_cameraready
	bwhpc_bartusch_camera_ready
	bwhpc_witte_cameraready
	bwhpc_kratzke_cameraready
	bwHPC_rabbertz_camera_ready
	bwhpc_baumann_cameraready
	bwhpc_janczyk_cameraready
	bwhpc_renze_cameraready
	kley_bwhpc2017_cameraready

