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A B S T R A C T

An exhaustible supply of mental resources necessitate that we are selective for what
we attend to. Attention prioritizes what ought to be processed and what ignored, allo-
cating valuable resources to selected information at the cost of unattended information
elsewhere. For this purpose it is necessary to know the conditions that help the brain
decide when attention should be paid, where to and to what information.

The question that is central to this dissertation is how auditory cues can support the
management of limited attentional resources based on auditory characteristics. Audi-
tory cues can (1) increase the overall alertness, (2) orient attention to unattended infor-
mation, or (3) manage attentional resources by informing of an upcoming task-switch
and, therefore, indicate when to pay attention to which task.

The first study of this dissertation investigated whether different population groups
might process auditory cues differently, thus resulting in different levels of alertness
(1). Study two examined more specifically whether the type of auditory cue (verbal
command or auditory icon) used as in-vehicle notifications can influence the level of
alertness (1). Studies three and four investigated the use of a special auditory cue char-
acteristic, the looming intensity profile, for directing attention to regions of interest (2).
Here, attention orienting to peripheral events was tested within a dual-task paradigm
which required attention shifts between the two tasks (3).

Throughout the studies, I show that electroencephalography (EEG) is an indispens-
able tool for evaluating auditory cues and their influence on crossmodal attention. By
using EEG measurements, I was able to demonstrate that auditory cues evoked the
same level of alertness across different populations and that differences in behavioral
responses are not due to subjective differences of cue processing (Chapter 2). More
importantly, I was able to show that verbal commands and auditory cues can be func-
tionally discriminated by the brain. While both sounds are alerting they ought to be
used complementary, depending on the intended goal (Chapter 3). The studies that
employed the looming sound to redirect spatial attention to an unattended visual target
showed a robust benefit in response times at longer cue-target intervals (Chapter 4 and
5). The looming benefit in processing visual targets is also apparent as enhanced neural
activity in the right posterior hemisphere 280ms after target onset. Source-estimation
results suggest that a preferential activation of frontal and parietal areas, which are
involved in attention orienting, give rise to this looming benefit (Chapter 5). Finally,
auditory cues improved performance for unattended targets but might also benefit the
central visuo-motor task by only directing attention to the periphery without moving
the eyes away from the visuo-motor task. This demonstrates that auditory cues also
help in managing attention by preparing for task switches such that covert attention is
allocated to the respective task when this task has to be performed.

Overall this dissertation demonstrates that the careful selection of auditory cues can
go a long way in supporting attention management.
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1
I N T R O D U C T I O N

1.1 why auditory cues are useful for attention management

Managing our attentional resources is a non-trivial task. When should one pay how

much attention to which information or where to? This fundamental concern has con-

sistently motivated the formalization of attention. Colloquially speaking, it might be

true that “everyone knows what attention is” (James, 1890). For current purposes, I

adopt the definition that refers to attention as conscious information processing and is,

therefore, “the mechanism that turns looking into seeing” (Carrasco, 2011).

Attention is characterized by its selectivity. In other words, attention determines

which information is being actively processed and which is less prioritized. This is nec-

essary due to a limited capacity of attentional resources (Posner and Boies, 1971; Chun

et al., 2011). The selective nature of attention has been described as a “spotlight” (Pos-

ner, 1980). This spotlight, or focus of attention, can be directed at objects (or features),

but also to a location in space (Carrasco, 2011). As the expression itself implies, paying

attention comes at the cost of allocating more attentional resources to attended than

unattended locations. While signal enhancement and external noise reduction can en-

hance information processing at the attended location (Lu et al., 2009; Carrasco, 2011),

information at unattended locations can be concurrently neglected.

Auditory cues can exert a crossmodal influence of drawing unattended information

into the focus of visual attention. Audition extends the attentional range of a restricted

field-of-view into a 360 ◦ surround system. This supports the detection of unseen things

that would otherwise go unnoticed. Without the sound of a car approaching from be-

hind, we would not turn our head around. This is one example that demonstrates how

audition can direct visual attention to neglected locations in space. The integration of

auditory information reduces the load of visually monitoring all possible locations and,

thus, helps us to focus on relevant information. Besides orienting the visual system,

audition has also been claimed to function as a change detector (Gaver, 1989; Ferri et al.,

2015). The visual system exists “in space [...] over time” (Gaver, 1989, p.71) and is,
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therefore, optimal at extracting spatial but not temporal information of static objects. In

contrast, the auditory system exists “in time [...] over space” (Gaver, 1989, p.71) and is

sensitive to temporal aspects (Bregman, 1990). For these reasons, the auditory system

complements and interacts with our visual system to provide a ‘complete’ representa-

tion of the environment.

Neurophysiological techniques, such as electroencephalography (EEG), have often

been employed to understand how vision and audition interact in terms of brain re-

sponses. While behavioral studies can allow us to infer user behavior from the response

to an event, in terms of response times (RTs) and accuracy, EEG records the electrical

activity in the brain while the event itself is processed for information. The approach

of evaluating event-related potentials (ERP) seeks to emphasize event-specific activity

while removing unrelated activity. It achieves this through averaging over repeated tri-

als that are time-locked to the event of interest (Luck, 2005). The ERP waveform that is

obtained from this process reveals various component peak deflections that are named

for their polarity and position in the waveform (e.g., P3 refers to the third positive peak

deflection). Crudely speaking, the early ERP components are likely to reflect sensory

processing, while later ERP components reflect higher level cognitive processing that

is not modality specific (Picton et al., 1976). Hence, the EEG/ERP method can lend

insights into the different processing stages that lead up to a single discrete response.

Experimental manipulations have demonstrated that these ERP components can be

linked to cognitive processes. For example, we can infer how strong the cognitive pro-

cessing of the event is from the ERP amplitude. Take for instance the P3 component

which has been linked to target processing. Its amplitude is thought to correlate with

the allocation of attentional resources. When one is required to “divide” attentional

resources to perform two tasks simultaneously, fewer resources are available to process

the secondary task target which can result in smaller P3 amplitudes (e.g., Wickens et al.,

1983). Moreover, larger P3 amplitudes to a primary target might indicate that more at-

tentional resources are invested in the primary task.
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The central question of this dissertation is how auditory cues can support the man-

agement of limited attentional resources based on their characteristics. For this purpose,

this dissertation examines how different auditory cue characteristics can heighten our

overall sensitivity to detect events, also known as alerting, and influence the orienting

of attention. The chapters address these aspects from experimental lab studies to real-

istic scenarios. First, Chapter 2 shows that different target populations do not process

auditory cues differently and, therefore, result in comparable levels of alertness. Subse-

quently, Chapter 3 demonstrates how two distinct auditory cue types that convey the

same meaning can be used complementary to capture attention for different task-goals.

Together, Chapter 4 and 5 address an auditory cue characteristic with high potential for

shifting spatial attention, i.e. rising-intensity (looming), in terms of temporal efficiency

and the neural mechanisms that it preferentially recruits. Table 2 provides an overview

of the different attentional components addressed in the subsequent chapters and the

auditory cues employed to investigate them.

The following sections of this chapter will review studies that investigated auditory

cue characteristics (Section 1.2) and introduce the reader to basic concepts of crossmodal

visuo-spatial attention (Section 1.3). The final section of this chapter (Section 1.4) will

give an overview and discussion of the experiments presented in this dissertation.

Chapters 2-3 Chapters 4-6

A
tt

en
ti

on
co

m
po

ne
nt

s

Alerting X
Attention orienting X
Task-switching X

A
ud

it
or

y
cu

es Verbal commands X
Auditory icons X
Looming X

Table 2: Overview of topics addressed in subsequent chapters. The work presented
in this dissertation investigated different concepts of attention while employing three
types of auditory cues. This table displays which concept of attention is addressed in
which chapter of this dissertation and which auditory cue was used in which chapter to
investigate these components of attention.
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1.2 auditory cue characteristics

In this dissertation, I address how auditory cues can help to manage attention. For this,

it is necessary to understand how we attend to auditory events and which factors (i.e.,

physical characteristics, sound type) influence perception. This understanding can help

in evaluating different auditory events for their ability to alert or direct attention.

The manipulation of physical parameters can create a completely different auditory

event. Besides pitch and intensity, changes in the profile dynamics, rhythm, duration,

repetitiveness, and the type of on-/offset can modify the perception of an auditory event

substantially. Haas and Schmidt (1995) and Haas and Edworthy (1996) demonstrated

that high pitch, short presentation rates, and high intensity sounds can increase the

perceived urgency to act, which results in faster response times. Nevertheless, we do

not usually analyze the pitch, rhythm, or intensity when hearing a sound but instead,

try to identify its source or location intuitively (Gaver, 1989). For this reason, I will not

focus on low-level auditory parameters. Instead, the following section will address the

extent to which different sound types can support cognition to refer to objects, events,

and concepts.

1.2.1 Auditory cue types

Auditory events can be categorized into speech and non-speech sounds. Generally

speaking, non-speech can be grouped into two discriminable groups: auditory icons and

earcons (e.g., Graham, 1999; Keller and Stevens, 2004; Nees and Walker, 2005). Earcons

are abstract, synthetically generated, tonal sequences that have no intuitive relationship

with the event that they refer to. Auditory icons are environmental sounds that are

representative of an object or event and, therefore, intrinsically bear an ecological rela-

tionship.

speech Auditory events can be masked in noisy environments. Nevertheless, cer-

tain parts of unattended speech can capture attention even in noisy environments. Cherry
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(1953) demonstrated that meaningful messages such as our own name can be detected

out of many concurrent conversations at a party. Does this suggest that it is hard to

ignore speech? Does it follow that speech is a potentially good notification?

Speech notifications are easy to comprehend and do not require, or only very little,

learning (Leung et al., 1997; Dingler et al., 2008). This is because speech is understood

automatically after acquiring proficiency in a language (usually at a young age). Even

when messages are complex, speech is still informative since it can be interpreted un-

ambigously (Graham, 1999; Selcon et al., 1995). This leads to fewer errors compared to

non-verbal sounds (Saygin et al., 2005; Graham, 1999). For these reasons, speech notifi-

cations are believed to be particularly useful when quick responses are necessary (i.e.,

safety-critical situations; Noyes et al., 2006).

Nonetheless, verbal notifications run the risk of being masked and/or confused with

concurrent speech from neighboring conversations or radio announcements (Hakkinen

and Williges, 1984). To circumvent this problem, a verbal notification can be made

more discriminable from real speech by changing its pitch. Pilots have been shown

to easily discriminate between real and synthesized speech (Simpson and Marchionda-

Frost, 1984). They judged a voice with a pitch of 90-120Hz as especially alerting. This

resulted in faster responses for synthesized speech warnings (Simpson and Williams,

1980; Simpson and Marchionda-Frost, 1984).

Another shortcoming of speech notifications is that long messages take time to com-

municate and might be misinterpreted if participants do not process the entire message

(Simpson and Marchionda-Frost, 1984). This problem could be resolved in two ways.

First, the message could be shortened by removing redundant information (Simpson,

1976) or by speeding up the message (Simpson and Marchionda-Frost, 1984; Dingler

et al., 2008). The second solution to make speech messages shorter is to use single

words such as ‘left’, ‘right’, ‘front’, or ‘back’ (Hunt and Kingstone, 2003; Ho and Spence,

2005, 2006). When doing so, studies that investigated the intelligibility of words suggest

that longer words (i.e., words with more syllables) are preferable because they result

in enhanced recognition compared to shorter words (Hirsh et al., 1954; Van Coile et al.,

1997).
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auditory icons As an alternative to speech, auditory icons have also been pro-

posed as a means to communicate a message intuitively. Auditory icons are defined

by the stereotypical meaning of objects or actions that create the sound. For this rea-

son, they are easily understood and help in creating an internal representation of the

world. For instance, the sound of a shutting car door informs of the door being closed

without having to see it closing. Research has shown that sound recognition is largely

influenced by everyday experience and the frequency of occurrence (Ballas and Howard,

1987; Ballas, 1993). Being more familiar with the sound affords faster recognition and

reduces cognitive processing, compared to abstract sounds (Belz et al., 1999). However,

recognition also depends on the current context since a different context can give rise to

different interpretations (McKeown, 2005). This might be because a single auditory icon

can be recognized as the involved object, action, or both. Take, for instance, the sound

of water drops. This sound could signal rain if the sky is dark. If there is blue sky, it

could also indicate that something is leaking. Thus one sound can give rise to more than

one interpretation and result in ambiguity (Graham, 1999). Unlike in vision, confusion

can also arise because sounds are not always uniquely discriminable as different objects.

While we can easily differentiate a peacock from an ostrich when seeing a picture, we

might have more difficulty in differentiating their calls (Fabiani et al., 1996).

Hence, the utility of auditory icons as notifications depends highly on their identi-

fiability as well as how well they can be mapped to the event they indicate (Mynatt,

1994; Fabiani et al., 1996). Lucas (1994) demonstrated that additional information on the

design of auditory notifications improved recognition accuracy but not response times.

Taken together, non-speech sounds are able to convey an intended message effectively.

earcons In contrast to the previously mentioned sound types, earcons are abstract

musical tones generated artificially without any relation to the event that they refer to.

These abstract sounds can be designed by changing physical parameters, such as the

rhythm or pitch, to signal a certain level of urgency (e.g., Edworthy and Hellier, 2006).

Tuning a tonal sequence to convey a certain level of urgency is an advantage of earcons.

In comparison, it is not as feasible to convey different levels of urgency through speech
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(McKeown, 2005). Also, earcons do not resemble speech or environmental sounds and

might, therefore, not be confused with real world occurrences.

In spite of these advantages of earcons, their association to events is difficult and

time consuming to learn (Leung et al., 1997; Dingler et al., 2008; Salces and Vickers, 2003).

The learned association for earcons might not be preserved as readily as for auditory

icons and speech. When participants had to recall the association between earcons and

events a week later, their performance was significantly worse than for auditory icons or

speech (Leung et al., 1997). These difficulties typically result in less accuracy and slower

response times with earcons than speech or iconic warnings (Leung et al., 1997; Graham,

1999; Belz et al., 1999; Ulfvengren, 2003; McKeown, 2005).

Earcon-icon hybrid: looming

A sound that not only alerts but might also effectively orient attention is an auditory

looming event. This looming sound can be considered an earcon-icon hybrid because

it combines ecologically valid information, intrinsic to auditory icons, with synthesized

sounds. This way, beneficial characteristics of both auditory cue types are combined.

More specifically, looming refers to dynamically rising intensity over time that typically

signals an approaching sound source. Given that ecologically valid characteristics are in-

terpreted intuitively (Brewer, 2000), listeners should automatically understand looming

sounds as approaching objects. For this, observers naturally extract information about

speed and distance from the auditory signal to perceive the approaching motion.

The optical expansion of a visual stimulus creates not only the sensation of an ap-

proaching object but also provides time-to-contact (TTC) information (Lee, 1976, 2009).

This is useful in everyday life, for example, when playing sports or when estimating

whether there is enough time to cross the street before an approaching car arrives. It

is valuable that auditory looming can also communicate TTC, especially when visual

information is unavailable. In audition, TTC is mainly specified by the increasing inten-

sity rate that is interpreted as the object’s approaching velocity (Rosenblum et al., 1987;

Shaw et al., 1991; Middlebrooks and Green, 1991; Bach et al., 2008). By these means,

looming sounds communicate the trajectory of an approaching sound source.
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Since approaching objects could pose a potential threat, looming sounds are thought

to be particularly salient. This saliency is reflected in the perception of looming sounds.

Looming sounds are perceived as changing faster in intensity and, therefore, approach

faster than their receding counterpart (perceived to leave; Neuhoff, 1998, 2001; Olsen

and Stevens, 2010; Seifritz et al., 2002; Neuhoff, 2016). Studies that asked participants to

judge the arrival of an auditory object demonstrated that participants perceived the ob-

ject to be closer than it actually was. Conforming to the perception of faster approaches,

participants consistently underestimated the time of arrival of looming sounds (Neuhoff

et al., 2009, 2012; Riskind et al., 2014; Rosenblum et al., 1987, 1993; Schiff and Oldak, 1990;

Ashmead et al., 1995). Erring on the side of caution provides more time to prepare a

response to the approaching object. For this reason, it has been suggested that the antic-

ipatory error reflects the extended margin of safety around the body (Noel et al., 2015;

Ferri et al., 2015). Accordingly, approaching objects enter the margin of safety earlier

than if the boundary was closer to the body and, therefore, afford more preparation

time to confront or avoid the approaching object.

The looming bias to err on the safe side has been shown to be even stronger for

physically or mentally vulnerable individuals (Neuhoff et al., 2012; Riskind et al., 2014;

McGuire et al., 2016). Listeners that had to judge the time of arrival of the looming

sounds responded sooner if they were in poor physical fitness compared to individuals

that were in better physical shape (Neuhoff et al., 2012) or were suffering from anxiety

(Riskind et al., 2014). This suggests that weaker individuals (subconsciously or con-

sciously) considered themselves in need of more time to prepare for the object’s arrival

and, hence, in need of a larger margin of safety. This might also apply to the gender

differences observed for the looming bias. Females were found to underestimate the

TTC for looming sounds more than men (Schiff and Oldak, 1990; Neuhoff et al., 2009)

which could be due to the fact that men are, on average, physically stronger than women

(Janssen et al., 2010).

The saliency of looming sounds has also been shown to bias visual perception (Leo

et al., 2011; Cecere et al., 2014; Sutherland et al., 2014; Schouten et al., 2011). When

participants were asked to judge whether depth-ambiguous visual objects faced towards

or away from the observer, an accompanying looming sound biased perception to the

8



former (Schouten et al., 2011). This suggests that the spatial information, intrinsic to

looming sounds, exerts a crossmodal influence on vision such that ambiguous visual

stimuli are perceived as approaching.

Neurophysiological studies on humans and non-human primates also suggest that

there is a preferential bias for processing looming sounds. Lu et al. (2001) as well as

Maier and Ghazanfar (2007) found larger activity in the auditory cortex for looming

compared to receding sounds, but also the amygdala (Maier et al., 2008) and temporo-

parietal areas (Seifritz et al., 2002; Bach et al., 2008, 2015) are more activated for looming

than comparable sounds. The preferential activation of areas involved in space recog-

nition and auditory motion perception mirrors the looming sound’s ability to convey

spatial information.

In summary, looming sounds initiate a series of protective, physiological, cognitive,

and behavioral responses that do not occur in response to other auditory objects that

move in any other direction than approaching. Due to the preferential neural and be-

havioral response to approaching spatial information, looming sounds might be good

auditory cues to direct attention to relevant locations.

1.2.2 Neural correlates for auditory cue processing

To understand which sounds are more effective for which type of attention manage-

ment (i.e., alerting, orienting, task-switching), it might be profitable to understand how

the brain processes theses sounds. Chapter 2 and 3 of this dissertation investigated

the interchangeability of different types of auditory notifications for alerting and task-

management using ERP analysis.

Auditory events that remind someone to do something (i.e., notifications or cues)

can occur unexpectedly. To understand how unexpected auditory notifications are pro-

cessed, we rely on an experimental paradigm widely used by cognitive neuroscientists.

In what is termed the oddball paradigm, a standard sound is presented repeatedly (e.g.,

90-80%) while a deviant target sound is presented infrequently (e.g., 10-20%). The au-

ditory event that occurs repeatedly is believed to be coded into a representative model
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that predicts the next event (e.g., Schröger et al., 2015). The violation of expectations

by the unexpected event can be observed in its influence on various ERP components,

which I will address in the following paragraphs.

Independent of whether the sound is a standard or deviant event, the early ERP

components, such as the N1 and vertex-potential (N1-P2 complex), are said to reflect

physical stimulus properties, such as pitch and stimulus intensity (Crowley and Colrain,

2004; Woods, 1995; Näätänen and Picton, 1987). More precisely, an enhanced ampli-

tude of the vertex-potential was found to reflect increasing stimulus intensity (Rapin

et al., 1966). When the deviant sound violates the observer’s expectations because it

was louder or in a different pitch than expected, an early negative difference waveform

called the mismatch negativity (MMN; Näätänen et al., 1978) can be observed. It is ob-

tained by subtracting activity to the standard event from activity to the deviant event.

Since the MMN occurs independent of whether attention is paid or not (Näätänen et al.,

1978; Picton, 2011), it is thought to represent an automatic detection of physical changes

in the environment.

The P2 component, typically evoked by auditory events, was found to be larger if

the auditory event contained features of the deviant target (Luck, 2005). This fits previ-

ous claims that the P2 reflects object discrimination (Novak et al., 1992; Garcı́a-Larrea

et al., 1992), as observed in various studies. For example, Tremblay et al. (2001, 2009)

found enhanced P2 amplitudes after their participants were able to discriminate events

that they had previously perceived as indistinguishable. Pursuant to these findings,

Shahin et al. (2003) found enhanced P2 amplitudes for musical notes compared to pure

tones especially in musicians. This might reflect the increased ability of musicians to

discriminate between musical notes. Considering that a larger P2 amplitude for targets

in an oddball paradigm represents target identification, this classification is necessary

to initiate further higher-order processing of information (e.g., P3b).

Until now, I have described ERP components that are considered to be sensitive to

the physical characteristics of a stimulus. The following components are said to reflect

the cognitive processing of stimuli. In particular, the late positive component P3 has

been considered to contain various subcomponents such as the P3a and P3b (Picton,

1992; Comerchero and Polich, 1999; Polich, 2007). The P3a occurs earlier than the P3b
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(also referred to as P3 or P300) at fronto-central areas while the P3b is maximal at

posterior-parietal regions (Dien et al., 2004; Picton, 2011).

The P3a is thought to reflect an automatic orienting response to rare events because

its occurrence is not dependent on attending to the event (Escera et al., 2000; Polich,

2007; Squires et al., 1975; Snyder and Hillyard, 1976; Riggins and Polich, 2002; Knight,

1984). That is, rare events can evoke a P3a even when observers do not pay attention

to them and even if they are task-irrelevant. Therefore, the P3a is thought to arise

when a mismatch to standard events is detected, which elicits a shift of attention (Escera

et al., 2000; Friedman et al., 2001). Given that the P3a is often observed directly after

the MMN (Squires et al., 1975), these two ERP components can be considered as the

physical difference detection (MMN) and the cognitive orienting response (P3a) to rare

stimuli that are not necessarily attended.

In contrast, the P3b is associated with the active processing of rare task-relevant

sounds. A P3b is evoked only if targets are attended, otherwise the P3b amplitude is re-

duced or even absent (Picton and Hillyard, 1974). In line with this, the P3b amplitude is

enhanced if the sounds are more meaningful for the participant, for example, when they

have to count or respond to deviant target sounds instead of processing them passively

(Hillyard et al., 1973; Picton, 2011). To detect the rare targets in an oddball paradigm,

every sound has to be compared to the template of the standard sound. Hence, the

P3b has been associated with stimulus categorization (Dien et al., 2004) and context-

updating that is necessary when unexpected events occur (Donchin, 1981; Donchin and

Coles, 1988; Polich, 2003; Fabiani et al., 1986). The enhanced P3b amplitude for rare

targets might then, for example, reflect the necessary context updating of event proba-

bilities.

One ERP component that deserves mentioning, although research here does not ad-

dress it, is the N400. It is defined by a negative amplitude around 400 ms post-stimulus

onset. This component is not evoked by rare sounds in the oddball paradigm but is

thought to reflect semantic processing. For this reason, it has mainly been investigated

in language processing studies. In this context, N400 amplitudes were shown to be

larger if the word did not relate to the previous word and smaller if it did relate seman-
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tically to the previous words (Bentin et al., 1985; Kutas and Hillyard, 1989; Kotz, 2014).

Given that auditory icons also convey semantic information, the N400 has been used

to investigate possible conceptual relations between words and auditory icons (Van Pet-

ten and Rheinfelder, 1995; Orgs et al., 2006). For this purpose, auditory icons preceded

words or vice versa with their relationship being related or unrelated. For both types,

the N400 amplitude was smaller in semantically related compared to unrelated trials,

independent of which sound preceded the other.

The similarity between these two sounds is also supported by the fact that they

recruit largely overlapping neural networks for processing (Cummings et al., 2006; Dick

et al., 2007; Maeder et al., 2001; Adams and Janata, 2002; Dick et al., 2002) without

exhibiting hemispheric asymmetries between words and auditory icons (Molfese, 1983;

Hansen et al., 1983). Patients suffering from brain damage in language related areas

are not only impaired in word but also in environmental sound recognition (Saygin

et al., 2003). Together with the ERP findings, this suggests that both sounds rely on a

common semantic processing network, which results in deficits in the verbal and non-

verbal domain when impaired.

1.2.3 Summary

This chapter introduced the reader to the different types of auditory cues (i.e., speech,

auditory icons, looming sounds) that can be employed to manage limited attentional

resources. In addition, I highlighted the purpose of neuroimaging, specifically ERP

analysis. Based on previous work, ERP components are thought to represent differ-

ent processing steps which make an effective tool to evaluate sounds for the purposes

of alerting, orienting attention, and conveying meaning, thus, task-management. This

background knowledge is relevant for the studies presented in Chapter 2 and 3. These

studies evaluated the use of auditory icons and verbal commands as in-vehicle notifica-

tions.
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1.3 spatial attention

Unlike Chapter 2 and 3, Chapter 4 – 6 address the topic of spatial attention. Namely,

whether auditory cues can have an influence on orienting spatial attention.

Constantly monitoring all possible locations around us is an inefficient use of our at-

tentional resources since most locations do not contain relevant information. To admin-

ister attentional resources efficiently, attention is selectively oriented towards a targeted

location in space, also referred to as spatial attention. By attending a particular location

in space, performance at this location is optimized as observed in faster response times

and higher accuracy to visual targets. This has been shown for the visual modality

(Posner, 1980; Müller and Rabbitt, 1989) as well as the auditory modality (Spence and

Driver, 1994; Mondor and Zatorre, 1995; Schröger and Eimer, 1997). More recent work

has investigated whether auditory cues can direct visuo-spatial attention crossmodally.

This is not a given since the visual and auditory modality encode space in their own way.

Vision creates a one-to-one mapping of external space onto the retina but is limited to

the visual field-of-view. In addition, visual acuity decreases with increasing eccentricity

(Rosenholtz, 2011). In contrast, audition creates a coarse 360 ◦ map of the external space

by integrating interaural level and time differences of sounds (Popper and Fay, 1997). If

spatial information from different modalities is integrated to form a supramodal repre-

sentation of space, the complementary qualities of audition could guide the restricted

vision to regions of interest (Arnott and Alain, 2011). The following sections of this chap-

ter will focus specifically on directing spatial attention crossmodally (i.e., audio-visual).

1.3.1 Crossmodal vs. multisensory integration

To appreciate the benefits that auditory cues can have on managing visuo-spatial at-

tention resources, it is important that crossmodal attention is not confused with multi-

sensory integration. For this reason, this section is devoted to the differences between

multisensory integration and crossmodal attention.
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Auditory and visual sensory information can be bound together (Ernst and Bülthoff,

2004) if perceived as coming from the same external object. We can, for example, se-

lectively attend to a speaker’s voice but, in a noisy environment, it might be just as

important to attend to the speaker’s lip movements. Attending to auditory and visual in-

formation jointly reduces noise and allows us to separate target events (i.e., single voice

stream) more easily from non-target background noise. Perceiving different sensory

information as belonging to the same object is referred to as multisensory integration.

Multisensory integration is different from crossmodal attention (McDonald et al.,

2001). To begin, their spatial and temporal constraints for binding sensory events differ.

While multisensory integration only occurs if two events co-occur in time and space,

crossmodal attention does not have such strict constraints. That is, multisensory inte-

gration is maximal when two stimuli are temporally aligned, allowing for deviations up

to 100 ms (Meredith et al., 1987). On the other hand, crossmodal attention, where one

stimulus (cue) precedes another (target), operates differently. Unlike multisensory inte-

gration, cuing benefits manifest with more time between cue and target due to prepara-

tory effects (Näätänen et al., 1974; Lu et al., 2009). In addition, crossmodal cuing effects

appear even when the cue does not indicate the exact, but only approximate, target lo-

cation (Stein et al., 1996; Lee and Spence, 2015). Furthermore, multisensory integration

and crossmodal attention rely on separate neural regions. While multisensory integra-

tion has been observed to activate the superior colliculus (Meredith et al., 1987), cross-

modal spatial attention primarily involves frontal and parietal regions (Macaluso, 2010;

Petersen and Posner, 2012).

Nevertheless, crossmodal attention and multisensory integration might interact. At-

tention can, for example, widen the temporal window for multisensory integration such

that two sensory stimuli do not need to be exactly aligned (Donohue et al., 2015). Also,

multisensory integration can influence attention depending on whether it occurs at pre-

or post-attentive levels (Koelewijn, 2009). Although these two processes might influence

each other, the current work focuses on crossmodal spatial attention.
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1.3.2 Directing covert visual spatial attention crossmodally

Much research has focused on orienting spatial attention within the visual modality.

This research has shown that spatial attention can be allocated overtly, by moving the

eyes to focus on a location, or covertly, by attending to a location in space without

moving the eyes. In this dissertation I focus on the covert orienting of attention that

does not involve eye movements.

Traditional spatial attention studies employ the Posner paradigm (Posner, 1980). In

these experiments, a cue that precedes the target directs attention to a location in space.

If the cue indicates the target’s location (valid), response times are faster than if the cue

indicates a location that is different from the target (invalid; Posner, 1980). Depending

on the type of cue employed, two different attention systems might be recruited. If

a salient cue is presented at the peripheral location where the subsequent target will

appear, attention is captured involuntarily. This is termed exogenous. When the cue

itself is positioned neutrally in space but symbolically indicates the subsequent target

location, attention is oriented voluntarily because of the spatial expectation through the

cue. This is termed endogenous. Voluntary attention is also referred to as sustained at-

tention because it takes about 300ms to deploy but can be sustained at the endogenously

cued location as long as necessary. In contrast, the capture of involuntary attention is

also referred to as transient attention because it peaks early (≈ 120ms) and declines

subsequently. At long cue-target intervals, the benefit of exogenously cued attention

reverses such that response times might be slower for targets at the previously cued lo-

cation than other locations. This effect is known as inhibition of return (IOR; Posner and

Cohen, 1984; Posner et al., 1985; Klein, 2000). Posner and Cohen (1984) hypothesized

that an exogenous cue draws attention to the indicated location and afterwards moves

to another location with a bias against returning to the attended location to optimize

visual search. While this phenomenon was first shown for the visual modality, it has

also been shown to occur for crossmodal capture of attention (Spence and Driver, 1998;

Spence et al., 1998; Tassinari and Campara, 1996).
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crossmodal links in endogenously cued spatial attention The type

of cue, exogenous or endogenous, might influence whether attention is directed cross-

modally to a location in space or not. Given that endogenous cues create an internal

spatial expectancy, this expectancy might overarch different modalities. In other words,

a supramodal system might govern the endogenous directing of attention. Spence and

Driver (1996) induced such a spatial expectancy within one modality (primary modality)

and investigated whether the cuing effects typically found for this modality would also

extend to other modalities (secondary modality). As expected, their results showed a

target advantage for the primary modality (e.g., vision), which was due to directing at-

tention voluntarily to the expected location. However, they also found an advantage for

targets in the secondary modality (e.g., audition). This suggests that inducing a strong

spatial expectancy in one modality also shifts spatial attention to this location in other

modalities. Although the effects in the secondary modality were smaller than in the pri-

mary modality, these findings put forth the idea of a supramodal system for sustaining

spatial attention voluntarily.

crossmodal links in exogenously cued spatial attention Since exoge-

nous cues do not evoke top-down spatial expectations (c.f., endogenous cues), the di-

rection of spatial attention by exogenous cues might not be governed by a supramodal

system. Thus, can salient external events also capture spatial attention crossmodally?

Several studies have addressed the question of whether involuntary spatial attention is

governed by a modality-specific or supramodal system (e.g., Schmitt et al., 2000; Spence

and Driver, 1997; Ward, 1994; McDonald et al., 2000).

Early findings showing crossmodal exogenous cuing effects could be accounted for

by eye-movements (e.g., Ward, 1994) or response facilitation (e.g., Simon and Craft, 1970).

For these reasons, Spence and Driver (1997) conducted a study that controlled for these

two possible confounds. To investigate whether spatial attention can be captured cross-

modally, their spatial cues did not convey information about the correct response but

only indicated the target location. Their results demonstrated that crossmodal links also

exist in involuntary attention. Exogenous auditory cues were able to improve target

performance at the cued location not only for auditory but also visual targets. After
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reviewing the existing literature on crossmodally cued spatial attention, Spence (2010)

concluded that not only endogenous but also exogenous shifts of spatial attention are

governed by a supramodal spatial attention system. He claimed that the occasional fail-

ures to show crossmodal links for exogenously cued attention are only artifacts due to

specific experimental paradigms.

1.3.3 Neural correlates of crossmodal spatial attention

In Chapter 5 I demonstrate how a network of brain regions underlies task management

in a dual-task paradigm. This task management involves the crossmodal shifting of

spatial attention from the center to a peripheral location. The benefit of cuing this

shift of attention can be observed in the ERP response to the stimulus presented in the

periphery (see Chapter 5.4.2). Here, I will give an overview of the existing literature

on ERP components for crossmodal spatial attention shifting as well as link these to

previously proposed neural networks involved in spatial orienting.

To begin, ERPs have been used to study the influence of crossmodal attention on

target processing. The effect of captured spatial attention is reflected in an ERP com-

ponent called negative difference (Nd). It is obtained by subtracting the ERP activity

for invalid cued targets from the ERP activity of valid cued targets (McDonald et al.,

2000). The larger negativity for valid compared to invalid cued targets has been shown

within the visual modality (Mangun and Hillyard, 1991; Eimer, 1993, 1994), within the

auditory modality (Schröger, 1993, 1994; Schröger and Eimer, 1997), but also across

modalities in which auditory cues were able to capture visuo-spatial attention (Eimer

and Schröger, 1998; McDonald et al., 2000; Hillyard and Münte, 1984; Teder-Sälejärvi

et al., 1999). Given that ERP effects of shifting spatial attention were similar across

modalities, it confirms the previous proposition that a supramodal space representation

mediates shifts of spatial attention (Eimer and Driver, 2001; Green and McDonald, 2006).

To investigate the process of orienting covert spatial attention itself, several stud-

ies have examined the ERP activity present in the cue-target interval. These studies

revealed that endogenous cues elicit two ERP components: (1) Anterior Direction At-
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tention Negativity (ADAN), and (2) Late Direction Attention Positivity (LDAP) at con-

tralateral posterior electrodes (Harter et al., 1989; Mangun, 1994; Nobre et al., 2000b;

Green et al., 2005). The ADAN has been associated with the visual, rather than the

supramodal, control processes of spatial attention because audio-spatial attention shifts

did not generate ADAN (Eimer et al., 2003). However, auditory cues evoked ADAN

if the target was in the visual modality. This suggests that ADAN might only be gen-

erated if visuo-spatial attention is involved (Green et al., 2005). In contrast, the LDAP

component was replicated consistently for visual, auditory, as well as crossmodal spa-

tial attention shifts. The LDAP is, therefore, considered to be independent of modality

and reflect supramodal processes for shifting attention voluntarily in space (Green et al.,

2005; Green and McDonald, 2006; Eimer and Driver, 2001; Eimer et al., 2002). Together,

the frontal ADAN and the parietal LDAP could reflect control mechanisms for shifting

visuo-spatial attention crossmodally.

Indeed, these ERP components coincide with the fronto-parietal (FP) network for

orienting attention proposed by Posner and Petersen (1990; 2012). In this network they

considered parietal areas to play a key role in spatial attention. Patients with parietal

lesions demonstrated a reduced ability to shift attention to cued targets, especially if

they were cued at an invalid location (Petersen et al., 1989; Posner and Cohen, 1984).

Furthermore, research with healthy individuals consistently confirmed the involvement

of parietal areas in spatial attention (Farah et al., 1989; Gitelman et al., 1999; Nobre et al.,

2000a; Davidson and Marrocco, 2000). Orienting attention to cued targets increased

activity in parietal regions. This might be because an internal space representation, sit-

uated in the parietal lobe, enables the shifting of attention to specific locations in space

(Mesulam, 1999). Indeed, converging evidence from neuroimaging studies suggests that

the shifting of spatial attention is coordinated based on a supramodal space representa-

tion in the parietal lobe (Farah et al., 1989; Macaluso, 2010; Yang and Mayer, 2014).

The frontal areas that are involved in spatial attention shifting are thought to function

as executive control (Petersen and Posner, 2012). That is, the activation of frontal regions

in the FP network for spatial attention regulate the switching of attention to another

location to initiate a new task (Dosenbach et al., 2008). Hence, frontal executive control

is necessary to coordinate multitasking, or rather task switching.
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1.3.4 Different simultaneous tasks compete for attention

Attention management is especially important when two concurrent tasks compete for

resources. Often, these tasks are separated by different locations. For this reason, exper-

iments in Chapter 4, 5, and 6 investigated spatial attention orienting within a dual-task

paradigm. To be able to appreciate the findings of these experimental paradigms, this

section will introduce prominent theories that account for how attentional resources are

managed to support dual-task performance.

Our daily life often requires us to do more than one task at the same time. While it

is possible to read a book and, in parallel, listen to music, it is more difficult to drink

coffee and type an email at the same time. The difficulty in performing certain tasks

simultaneously arises from our limited capacities for task-relevant resources. Various

attention theories have tried to explain the attentional limitations that restrict our ability

to do more than one thing at the same time.

The model by Broadbent (1957) suggests that all sensory information is first per-

ceived in parallel but only some information is selected for higher cognitive processing

based on stimulus properties. This results in a sequential processing of information on

a higher cognitive level (Broadbent, 1957, 1971; Welford, 1952, 1967). Nevertheless, all

early selection theories do not account for phenomena such as being able to read a book

and listen to music at the same time. According to this approach, one would have to

alternate between reading and listening which, according to our personal experience,

we do not do.

Other models focus on explaining the extent to which two simultaneous tasks in-

terfere in terms of their competition for similar/dissimilar attentional resources. Such

models are based on the assumption that information processing consumes attentional

resources, which reduce total available capacity. While some assume that there is only

one attentional resource that is shared across all tasks (Kahneman, 1973; Moray, 1967),

others advocate the idea that there are several distinct pools of attentional resources

that, together, make up the overall capacity (Wickens, 1976; Kantowitz and Knight, 1976;

Navon and Gopher, 1979; Wickens, 1980, 2002). These models are also referred to as
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multiple resource models and differ in that two concurrent tasks need not necessarily

compete for the same attentional resources. Indeed, experimental evidence has shown

that the competition for attentional resources depends on the similarity between concur-

rent tasks. If, for example, both tasks require a motor output they will interfere more

than if one of the tasks requires a vocal response (e.g., Wickens, 1976; McLeod, 1977).

For this reason, the difficulty in drinking coffee and typing an email in parallel might

be caused by the competition for manual resources. In contrary, listening to music and

reading a book target separate auditory and visual resources and, hence, do not compete.

Multiple resource theories are better suited in accounting for a wider range of ecological

activities. However, it raises a fundamental question: When and how do tasks conflict

for their demands for which resources?

Switching tasks to perform dual-tasks

Attention management is not only determining where to pay attention to while per-

forming two tasks but also when attentional resources need to be allocated to a specific

location. Capacity limitations may prevent the parallel processing of information and,

therefore, lead to serial processing. In the case of writing an email and drinking coffee,

the writer stops to write in order to pick up the cup of coffee, take a sip, and then puts

the cup back down before he returns to typing. This kind of dual-tasking can also be

considered as task switching. The switching between tasks requires the redirection of

attention from one task to another one. To do so, we need to disengage from the pri-

mary task to attend to a secondary task and back again to the primary task. Research

has shown that task switching comes at a cost. This “switch cost” is manifested in ei-

ther slower responses and/or more errors to the task that one switches to (Pashler, 2000;

Monsell, 2003; Kiesel et al., 2010). One reason for this cost could be the necessary task

set reconfiguration (Monsell, 1996) that defines the goal of the task. Initiating this recon-

figuration in advance helps in preparing to perform a task (Fagot, 1994). This suggests

that switch costs can be effectively mitigated by using a cue to indicate an upcoming

task which allows task-set reconfiguration prior to the task switch.
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Manual control task instead of fixation cross

In the context of dual-tasking it is arguable whether fixating a central cross can be

considered a task. The fixation might not motivate a task switch and/or shift of attention

to another task and back again. That is, covert attention does not need to be deployed

to the center while fixating it. In contrast, participants need to pay covert attention

when performing a challenging cognitive task in the center. The shift of attention while

switching tasks is associated with a cost for central task performance.

Previous dual-task experiments have used a rapid serial visual presentation task to

maintain focused attention in the center. These tasks require the semantic processing of

letters or numbers that change quickly. Each stimulus appearance can function as an

exogenous cue to reorient attention back to the central task (Spence, 2010). In contrast, a

visuo-motor tracking task requires participants to track a random-appearing continuous

signal. That is, by knowing the desired location and visually perceiving the actual

location of a cursor, the discrepancy can be transformed into the required manual input

to correct for the deviance. Hence, the visuo-motor tracking task covers a range of

cognitive functions and is a suitable continuous task to occupy attention on various

levels without acting as an exogenous cue to repeatedly redirect attention to the center.

1.3.5 Summary

The current section showed that auditory cues can orient visuo-spatial attention cross-

modally. For both, voluntary and involuntary attention, this orienting is thought to be

coordinated via a supramodal space representation. In the FP network for orienting

attention, parietal brain areas seem responsible for the spatial component of orienting

attention. In turn, frontal brain areas are thought to take on executive functions such

as controlling the switching of attention between different locations and tasks. This is

especially important when two tasks have to be performed concurrently. Chapters 4-6

address the use of auditory cues for redirecting visuo-spatial attention from a continu-

ous central task to occasional peripheral visual targets. In this context, auditory cues
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might not only be helpful in orienting attention to a location of interest but also in

determining when to switch attention from one to another task.

1.4 thesis overview and discussion

To recap, this dissertation investigated how auditory cues can benefit attention manage-

ment such that attention is payed to locations and information when necessary. Imagine

driving a car in the city center where a lot of advertisements are flashing on bill-boards.

To avoid these distractions, we have to focus our attention on the street in front of us.

This selective processing of our surrounding might result in the neglect of information

outside the current focus. Auditory cues can heightening our overall sensitivity to detect

events and direct attention to unnoticed events such as a nearing pedestrian.

In this final section, I discuss the current findings according to the contributions to

the three different aspects of attention management: alerting, orienting of attention, and

task-management. For this purpose, I will first discuss how different types of auditory

cues can increase alertness. To continue, I will now address the question whether specific

auditory cue characteristics (i.e., looming) can lead to preferential orienting of attention.

Finally, I will focus on how auditory cues are useful in managing attention deployment

to different tasks. Besides addressing these aspects of attention management, this section

is organized in terms of questions that were answered in this dissertation.

1.4.1 Auditory cues for alerting (Chapter 2-3)

Auditory cues alert listeners by mobilizing attentional resources subsequent to spatially-

unspecific cues. In the context of in-vehicle notifications, verbal commands and audi-

tory icons have been evaluated for their effectiveness in alerting drivers by comparing

response times and response accuracy to these auditory cues. Previous findings of these

studies have been mixed. While some prefer verbal commands for their faster RTs (Lu-

cas, 1994; Ho and Spence, 2005; Fagerlönn et al., 2015), others demonstrated faster RTs
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for auditory icons (Graham, 1999; Saygin et al., 2005). In addition, there are also studies

that have found no difference between the two cue types (McKeown, 2005; Ulfvengren,

2003).

can verbal commands and auditory icons be used interchangeably as

notifications? In Chapter 3, I used EEG measures to evaluate verbal commands

and auditory icons as in-vehicle notifications based on the neural processing instead of

behavioral performance only. In line with previous work that investigated the process-

ing of auditory events, both my cues, auditory icons and verbal commands, elicited the

typical N1-P2-N2-P3 ERP waveform (Crowley and Colrain, 2004; Kraus and Nicol, 2009;

Picton, 2011, see also Chapter 3, Figure 5 and Figure 6). While little work has compared

ERPs to words and auditory icons for the use as cues, there are studies that focused

on their semantic processing (i.e., ERP component N400). For example, Van Petten and

Rheinfelder (1995) had semantically related or unrelated words precede auditory icons

and vice versa to show that the two share a conceptual relationship. Although they fo-

cused on analyzing the N400, their early ERP components for auditory icons and verbal

commands are in congruence with our findings. Both waveforms had more negative N1

amplitudes for auditory icons than words and more positive P2 amplitudes for words

than auditory icons (compare Figure 5 and 6 of Chapter 3 with Figure 1 from Van Petten

and Rheinfelder, 1995). Given that a larger P2 amplitude indicates better discriminabil-

ity (Garcı́a-Larrea et al., 1992; Novak et al., 1992), their data supports our finding of

verbal commands being discriminated better than auditory icons against background

noise.

Due to the examination of the N400 component, previous studies that compared

auditory icons and verbal commands did not allow for the elicitation of P3b. Contrary

to these experimental designs, Chapter 3 employed the oddball paradigm which did

give rise to P3b. The results demonstrated that the P3b amplitude increased for audi-

tory icons. This suggests that auditory icons update contextual working memory less

effortful than verbal commands. Together with the fact that verbal commands are dis-

criminated better, the results show that auditory icons and verbal commands can be

functionally discriminated by the brain. That is, while auditory icons and verbal com-
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mands are both alerting they might serve different functions and should not be used

interchangeably. The analysis of the neurophysiological data suggests that verbal com-

mands might be especially useful in stressful or urgent situations where notifications

need to be discriminated easily. Edman (1982) and Graham (1999) previously proposed

this application based on the assumption that speech is familiar and processed auto-

matically. Also, our proposition to use auditory icons to inform of changing driving

conditions, due to their less effortful updating of contextual working memory, is in line

with previous recommendations. Adcock and Barrass (2004) and Kazem et al. (2003)

endorsed the use of auditory icons to enhance situational awareness by using them to

notify of less urgent environmental circumstances (Edworthy and Hards, 1999; Keller

and Stevens, 2004).

do different population groups in different experimental settings nec-

essarily result in different auditory cue processing? To answer this

question, I evaluated the verbal and iconic auditory notifications on naı̈ve university

students under controlled experimental settings as well as on professional truck drivers

in a high fidelity vehicle simulator (see Chapter 2). Since these auditory notifications

were designed for in-vehicle task-management, is it plausible that truck drivers attribute

more relevance to these notifications than students? Does this relevance result in differ-

ent processing of auditory cues? Although these notifications had no real-life meaning

for the students, I did not find support for this supposition. Indeed, I found comparable

brain activity with regards to the processing of auditory notifications, in spite of dif-

ferences in age, professional expertise, and experimental conditions. This suggests that

well-controlled experimental work is transferable to more realistic settings and, more

importantly, that auditory cues have a robust effect on the cognitive processing.

In summary, while it has been previously shown that verbal commands and audi-

tory icons are semantically equivalent (Van Petten and Rheinfelder, 1995; Cummings

et al., 2006), the current results demonstrated that both auditory cues can alert users

and evoke equally fast response times. This was independent of the experimental set-

tings (controlled laboratory vs. realistic driving simulator). However, they ought to
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be employed differently depending on the intended goal. For this reason, the question

whether to use verbal commands or auditory icons to alert drivers and capture their

attention can be replaced by questioning what the intention of the cue is and use both

types accordingly to alert drivers.

1.4.2 Auditory cues for orienting attention (Chapter 4-6)

To be able to process relevant information from our surrounding, we need to attend

the locations where this information is presented. A considerable amount of research

has investigated spatial attention and the crossmodal orienting of attention to regions

of interest (see Section 1.3). These studies typically employ paradigms where the target

location is cued validly (at target location) or invalidly (different than target location).

Their results have repeatedly shown a valid cue benefit and an invalid cue cost. Leo

et al. (2011) also used this paradigm to demonstrate that looming sounds orient visuo-

spatial attention more efficiently than comparable sounds. They found higher accuracies

for visual target identification when the visual target was accompanied with a looming

sound. Presenting the looming sound together with the visual target does, however,

not provide insights in the looming sound’s functionality as a cue. Thus, the question

remains whether looming sounds also enhance the direction of visuo-spatial attention

when preceding the visual target.

Given that spatial attention has repeatedly been shown to be oriented to validly cued

locations with greater success, the experimental design in Chapter 4, 5, and 6 only cued

at target locations. Instead of investigating the benefit of cuing targets at the correct

location, I investigated the benefit of looming cues on orienting attention to validly

cued visual targets.

can looming cues sustain involuntary spatial attention? Contrary

to previous work that used looming sounds as cues (Bach et al., 2009; Burton, 2011;

Ho et al., 2013; Gray, 2011), I employed looming sounds to direct spatial attention to

locations of interest. Typically, exogenous cues have their largest benefit at short CTOAs
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(see Müller and Rabbitt, 1989). In agreement, the findings of Chapter 4 show that all

my auditory cues were able to orient attention at short cue-target intervals (i.e., 250 ms

CTOA). More importantly, the auditory looming cue was also able to orient attention

even at later time points (i.e., 500 ms CTOA, see Chapter 4 and 5). This orienting of

attention is, however, transient and not sustained voluntarily. Introducing a 500 ms

gap after the sound offset such that the visual target is presented at 1000 ms CTOA

eliminated the looming cue benefit (see Chapter 6). If the looming benefit at 500 ms

CTOAs would reflect the voluntary orienting of attention, introducing a gap between

cue and target should not have effected the looming cue benefit.

Given that only the looming cue was able to improve performance at 250 ms CTOA

as well as 500 ms CTOA (see Chapter 4), it is suggestive that transient attention captured

by looming sounds can be sustained. The remaining question is for how long transient

attention might be sustained. To recap, I did not find faster responses to targets pre-

sented 500 ms after the auditory cue at 1000 ms CTOA. Nevertheless, it might still be

possible to observe a looming cue benefit at 1000 ms CTOA if the auditory cue is 1000

ms instead of 500 ms long. Burton (2011) was able to observe a looming cue benefit

at 1000 ms CTOA with a sound that was 1000 ms long. Together with my results, this

suggests that the strongest looming benefit can be observed at the sound offset. As long

as the object is relevant because it is approaching, attention is sustained for the duration

of the looming sound. The offset of this looming sound might signal that the object

has reached the observer. If there is no demand for attention at the cued location at the

sound offset (i.e., no target), attention is withdrawn from the cued location. Especially

when involved in another task, it is costly to sustain attention. Thus, it is reasonable to

withdraw attention from the cued location and focus on the other task if the cued loca-

tion becomes irrelevant. Future research should investigate more specifically whether

auditory looming cues can sustain transient spatial attention until the sound offset due

to the TTC information conveyed by the looming cue.

does overall intensity influence the auditory looming cue benefit?

The preferential orienting of attention at the sound offset of a looming cue might not

be surprising given that it is the point of highest intensity. Thus, auditory looming cues
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cannot be discussed without taking sound intensity into consideration. Most studies

employing auditory looming stimuli, including the experiments featured in this disserta-

tion, rely on the increasing intensity profile to convey the approaching auditory motion

(e.g., Shaw et al., 1991; Middlebrooks and Green, 1991; Bach et al., 2008, Chapters 4-6). It

has recently been confirmed that the looming bias observed when using rising-intensity

stimuli actually reflects a bias towards approaching motion and is not due to physical

changes in intensity (Baumgartner et al., 2017). Nevertheless, the overall intensity has

been shown to influence the perception of intensity change (Olsen and Stevens, 2010;

Olsen, 2014; Teghtsoonian et al., 2005). That is, loud looming sounds were judged as ris-

ing faster most likely due to higher end-intensities (Susini et al., 2002, 2010). In contrast

to these findings, my results suggest that the overall intensity of auditory looming cues

did not show an end-intensity bias in processing visual targets.

Unlike static cues, overall intensity does not influence the cuing effect of looming

sounds. I only observed an effect of overall intensity in the first experimental session of

Chapter 5 which showed to disappear with adaptation. In the second session of Chapter

5’s experiment as well as in Experiment 2 of Chapter 4, I did not find an influence of in-

tensity on the looming cue. This was also reflected in the ERP amplitude of the auditory

cue benefit (at 280 ms). The amplitude for looming sounds was larger than for static

sounds, independent of the cues’ overall intensity (Chapter 5, Figure 17). Nevertheless,

static cues were able to decrease response times with increasing intensity (Chapter 4,

Experiment 2; Chapter 5, Session 1). This effect of intensity is unsurprising but might

also reverse into startling listeners (e.g., Ludewig et al., 2003). Nonetheless, I was able

to show that static cues are also prone to intensity adaptation. These factors render the

use of high intensity levels for improved performance impractical. Throughout this dis-

sertation, the looming sound proofed to be a more robust auditory cue than the static

sound because neither intensity differences nor training effects influenced the looming

cue benefit.

what are the neural correlates for the auditory looming cue benefit

in shifting visuo-spatial attention? Previous research has investigated the

multisensory integration of looming sounds. These findings have shown repeatedly that
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looming sounds bias visual processing (Romei et al., 2009; Leo et al., 2011; Schouten

et al., 2011; Sutherland et al., 2014). In addition, neurophysiological studies have iden-

tified neural regions that are enhanced by the multisensory integration of the looming

property (Cappe et al., 2012). Surprisingly, less work has been performed with attention

cuing, specifically spatial attention, independently of multisensory integration. Given

that multisensory integration and spatial attention orienting are different (although not

exclusive) processes, I anticipated the involvement of different neural regions when us-

ing the looming sound as a cue.

Indeed, multisensory integration and crossmodal spatial attention cuing activate dif-

ferent neural networks. While the multisensory integration of the looming property ac-

tivated the right claustrum/insula, amygdala, and bilateral occipital areas (Cappe et al.,

2012), the auditory looming cue for shifting visuo-spatial attention activated frontal and

parietal areas (see Chapter 5, Figure 18). Previous work has demonstrated a fronto-

parietal network for shifting visuo-spatial attention (Corbetta and Shulman, 2002; Thiel

et al., 2004; Corbetta et al., 2008). The parietal activation is presumably due to the fact

that these areas are involved in establishing spatial awareness. Localizing objects in

space (Bushara et al., 1999; Zatorre et al., 2002) and orienting spatial attention to loca-

tions in space activates parietal cortices (Sturm and Willmes, 2001; Farah et al., 1989;

Gitelman et al., 1999). In addition, the frontal areas presumably take the role of control-

ling when to shift attention to locations of interest (Miller and Cohen, 2001).

Previous work has shown a preferential activation of the temporo-parietal junction

(TPJ) for looming sounds (Seifritz et al., 2002; Neuhoff et al., 2002; Bach et al., 2008, 2015).

However, the source estimation analysis for the looming cue benefit (see Chapter 5, Fig-

ure 18) did not show activity in the TPJ, but in the precuneus of the superior parietal

lobe (SPL) instead. This is unsurprising given that I investigated the crossmodal cuing

effect on visual processing and not the processing of the sound itself. Nevertheless, both

parietal areas feature in the FP spatial attention network. This is because there are two

distinct FP attention networks: a ventral and a dorsal system as illustrated in Figure 1

(Corbetta and Shulman, 2002; Corbetta et al., 2008; Macaluso, 2010). The ventral system

represents the involuntary capture of attention through behaviorally relevant stimuli.

It typically activates a network of ventral frontal cortex and TPJ when salient stimuli,
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Figure 1: Schematic illustration of the fronto-parietal (FP) attention networks. This
simplified schematic is adapted from Corbetta et al. (2008) and explains the interaction
of the dorsal and ventral FP attention network. Frontal areas of the dorsal system control
which stimuli can capture attention involuntarily, reflected by parietal activity in the
temporo-parietal junction (TPJ). This information is communicated through frontal areas
to the dorsal network which reorients attention voluntarily, reflected by parietal activity
in the superior parietal lobe (SPL).

which are outside the current focus, capture attention. The dorsal system controls at-

tention in a goal-driven way and activates a network of frontal eye field (FEF) and SPL.

Both FP networks interact to reorient spatial attention. The preferential TPJ activation

for looming sounds suggests stronger exogenous capture of attention for looming than

comparable sounds. The activation of medial frontal gyrus (MFG) for the involuntary

and voluntary attention might reflect the ventral system communicating the region of

interest, where attention was captured involuntarily, to the dorsal system. The dorsal

system then shifts attention voluntarily to this region of interest which manifests in SPL

activation. Hence, the increased SPL activation for the looming cue benefit that I found

may reflect the increased urge to shift attention to the cued location.

The activation of fronto-parietal areas gave rise to the auditory looming cue benefit

for processing visual targets. This benefit in shifting spatial attention can be observed

in the ERP response to the visual target. It manifests around 280 ms post visual target

onset as a positive peak for the cue benefit (see Chapter 5, Figure 17). If activity related
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to visual processing is not removed by subtraction, the cue benefit appears as a positive

plateau in the rise of the P3b. Interestingly, previous ERP work on crossmodal spatial

attention shifting also illustrates this plateau in endogenously cued visual stimulus pro-

cessing (Eimer, 2001, top of Fig. 2 and Fig. 4). This suggests that the peak identified

in Chapter 5 (rP280), in fact, represents the benefit of shifting visuo-spatial attention.

Given that this peak was larger for looming sounds, auditory looming cues might shift

spatial attention more efficiently to peripheral visual targets, which is also reflected in

faster response times to looming cued targets.

1.4.3 Strategic allocation of attention through auditory cues (Chapter 4-6)

Auditory cues are not only able to alert and orient attention to locations of interest but

are also a helpful tool in scheduling tasks. That is, they can indicate when attentional

resources should be dedicated to which task. Chapters 4, 5, and 6 of this dissertation

address this functionality of auditory cues within a dual-task paradigm. Dual-tasking,

especially when one task is continuous, requires timely switching between two tasks

which is controlled by the executive system (Petersen and Posner, 2012; Dosenbach

et al., 2008; Miller and Cohen, 2001). By setting out a goal at the beginning of a task,

attention is devoted voluntarily to its best performance. In the case of Chapter 4-6’s

experiments, the participants’ goal was to achieve their optimal visuo-motor tracking

performance. Nevertheless, they were also required to identify occasional peripheral

targets that could be preceded by an auditory cue at the target location. These tran-

sient signals (c.f., cues) captured attention involuntarily and indicated a necessary task

switch. Hence, voluntary sustained attention for performing the continuous tracking

task, as well as involuntary transient attention to direct attention to the periphery are

required to interact to perform both tasks. The interaction of these two systems is con-

trolled in a top-down fashion by the executive system that determines whether attention

can be captured exogenously and schedules the switching between tasks.

Both, voluntary and involuntary attentional processes compete for the same limited

attentional resources. It has been shown that attentional manipulations, such as the

30



introduction of a central task, which requires attentional resources for processing, can

eliminate exogenous spatial cuing effects (Santangelo and Spence, 2007). This could

be due to attentional resources being devoted voluntarily to a task which reduces the

amount of resources that auditory cues can capture exogenously. Increasing the demand

of voluntary attention required to perform a task (e.g., by increasing task difficulty) has

been shown to decrease the processing of auditory events (e.g., Wickens et al., 1983;

Scheer, 2017). However, the relevance attributed to auditory events can also influence

their processing (e.g., Dehais et al., 2014; Scheer, 2017). That is, Scheer (2017) found that

sounds were processed more when they were relevant compared to when they were

irrelevant to the task. A possible explanation for this might be that more attentional re-

sources were made available for auditory processing in situations where auditory events

were relevant (Talsma et al., 2006; Keitel et al., 2013).

can task-relevant auditory cues support task-management? In this

dissertation, auditory cues employed to capture attention exogenously were relevant to

the task performance since they could be indicating a visual target. Hence, the executive

system was required to balance the use of attentional resources for the voluntary atten-

tion task in the center and to ensure sufficient remaining attentional resources to enable

involuntary attention capture in the periphery. Instead of investigating the processing

of auditory cues in a dual-task paradigm (see, for example, Scheer, 2017), I was inter-

ested in how well these cues were able to draw attention away from the ongoing central

task to occasionally perform the peripheral task. Interestingly, my auditory cues not

only improved performance in the peripheral task, but also allowed participants to keep

their eyes on the central task instead of looking at the visual targets. This suggests that

auditory cues can help to shift visuo-spatial attention to the periphery, as well as make

task switching more efficient. The cue prepares for the arrival of a target, frees atten-

tional resources temporarily, directs attention covertly to the prospective target location,

and as soon as this ‘interrupting’ task is performed, switches back to the ongoing task.

In contrast, an uncued peripheral target is surprising and since no covert attention can

be directed to the target location in advance, overt attention is directed to the peripheral
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task to compensate for not attending. This can decrease central task performance given

that the eyes are not directed towards this task.

Overall this has significant practical implications in that auditory cues are not only

helping in detecting unnoticed visual targets but also in managing the strategic alloca-

tion of attention such that both, central and peripheral, tasks can be performed as best

as possible. In the context of driving, this would suggest that driving performance is

better when external events are cued compared to having the drivers detect them on

their own, possibly at a later point in time, because they might have to take their eyes

off the road.

1.4.4 Conclusions and outlook

In this dissertation, I have been able to show that auditory cues are useful for managing

attention. More specifically, I have demonstrated that auditory cues such as verbal

commands and auditory icons can alert by mobilizing attentional resources. However,

the findings suggest that these two types of cues should be employed complementary

depending on the intended goal. Based on the brain responses to these auditory cues,

verbal commands seem to be more appropriate for urgent notifications while auditory

icons should be used for updating of changing environment conditions.

Furthermore, I showed that auditory looming cues improve orienting of visuo-spatial

attention to relevant locations while performing another cognitive demanding task. This

benefit was especially apparent at the looming sound’s offset that signals the arrival of

an approaching object. The improved performance to looming cued visual targets was

mirrored by the neural response of the cue benefit, ERP component rP280. A network

of frontal and parietal brain regions, involved in spatial reorienting, seems to underlie

this preferential processing of looming cued targets.

The third aspect involved in managing attentional resources is the scheduling of

task switches. Here, I found auditory cues to be helpful in indicating an upcoming task

switch. Auditory cues allowed participants to shift attention in advanced to the periph-

ery without moving the eyes. Moving the eyes away from the central task might come
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at the cost of decreased central task performance. Taken together, auditory cues are an

efficient tool to manage the limited attentional resources available by alerting, directing

attention to unnoticed information, and by managing the strategic allocation of attention

between different tasks.

Although the work of this dissertation expanded the state of the art on the use of

auditory cues for attention management, many questions remain to be answered.

Future work employing EEG can, for instance, investigate the preference of seman-

tically comparable verbal commands such as fuel and tank for notifying the driver to

get gas. In addition, future work can also examine how auditory icons are processed if

they do not match the environmental circumstances by evaluating the brain responses

to these auditory notifications.

The beneficial use of auditory looming cues for orienting visuo-spatial attention

opens a new area of research. Future work making use of looming sounds as orient-

ing cues can, for example, investigate how long transient attention can be sustained by

varying the duration of the auditory looming cue. Furthermore, future studies can in-

vestigate the connectivity of frontal and parietal areas, identified here, to address how

these regions might influence each other to give rise to the looming cue benefit.
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2
I N D I V I D U A L D I F F E R E N C E S I N R E S P O N D I N G T O A U D I T O RY

C U E S

This chapter has been reproduced from an article published at Automotive’UI 2017:

Chuang, L. L., Glatz, C., and Krupenia, S. S. (2017). Using EEG to understand why be-

havior to auditory in-vehicle notifications differs across test environments. In Proceed-

ings of the 9th International Conference on Automotive User Interfaces and Interactive

Vehicular Applications, pp. 123-133. ACM, New York, NY, USA.

2.1 abstract

In this study, we employ EEG methods to clarify why auditory notifications, which

were designed for task management in highly automated trucks, resulted in different

performance behavior, when deployed in two different test settings: (a) student volun-

teers in a lab environment, (b) professional truck drivers in a realistic vehicle simulator.

Behavioral data showed that professional drivers were slower and less sensitive in iden-

tifying notifications compared to their counterparts. Such differences can be difficult

to interpret and frustrates the deployment of implementations from the laboratory to

more realistic settings. Our EEG recordings of brain activity reveal that these differ-

ences were not due to differences in the detection and recognition of the notifications.

Instead, it was due to differences in EEG activity associated with response generation.

Thus, we show how measuring brain activity can deliver insights into how notifications

are processed, at a finer granularity than can be afforded by behavior alone.

2.2 introduction

Notifications are a fixture of in-vehicle environments. They are designed to direct users,

who would be engaged otherwise, to aspects of the environment that require a response

(e.g., fuel indicator lights). Recent advances in automated driving will increase the
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importance of notifications, especially when the duties of the human operator transi-

tion from vehicle control to vehicle supervision (Bainbridge, 1983; Casner et al., 2016).

Indeed, research on the design of in-vehicle interactions have rapidly shifted, in recent

years, towards addressing the anticipated user requirements of automated vehicles (Kun

et al., 2016). Given the rapid pace of innovation in technology and design, it is surpris-

ing that we continue to have few tools at our disposal that allow us to truly appreciate

how users process and act upon in-vehicle notifications. Here, we combine the anal-

ysis of behavioral responses with electroencephalography (EEG) recordings to better

understand how auditory notifications were processed for information and responded

to across different test environments and participant groups.

The design space of notifications is large. This gives rise to infinite variations of how

in-vehicle notifications ought to be designed and for which purpose. While guidelines

have been proposed for the design of in-vehicle displays (e.g., Green et al., 1995; Ross

et al., 1996; Stevens et al., 2002), they tend to be based on studies with a focus on critical-

safety behavior. Ultimately, notifications are implemented according to whether or not

they will be effective in safely eliciting the desired responses, in the environment for

which they were designed for. Unfortunately, evaluating notifications by performance

measures alone can only reveal whether a given implementation is better or worse than

its control comparison. In order to understand why a given notification results in better

or worse performance than originally anticipated, it is necessary to evaluate the extent

to which the notification is perceived, processed, and elicits a response. For this, it is

necessary to inspect how the brain responds to notifications.

Methods for neuroimaging are becoming more accessible. Recent developments in

neuroimaging technology, especially with regards to EEG, have focused on the ease of

application and user mobility (Gramann et al., 2014). In spite of this, valid concerns per-

sist with regards to their suitability for use in realistic test environments, especially since

the presence of electronic devices can introduce substantial noise into EEG recordings.

On a more practical note, EEG measurements are often expected to impose implemen-

tational costs on the researcher that might be deemed unnecessary, especially when

behavioral and self-report measures are expected to suffice.
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Nonetheless, the time-varying EEG signal offers a detailed inspection of how infor-

mation is processed by the human user, which cannot be achieved with performance

measurements alone. With regards to the evaluation of notifications, EEG measure-

ments can reveal how the brain automatically detects and consciously identifies notifi-

cations. They can also indicate how the brain prepares itself to generate an appropriate

response, pending the identification of the notification. Performance measurements

implicitly treat the human operator as a single stimulus-response unit and do not, in

themselves, distinguish between perception, cognition, and action.

Our research aim was to demonstrate that employing EEG methods can allow us

to account for why behavioral responses to auditory notifications might differ across

different instances of testing. Specifically, between professional drivers tested in a high

fidelity driving simulator and students tested in a psychophysical laboratory. This is

an experience that is common to many researchers when evaluating novel designs of

notification interfaces for deployment in the “real world”. Often, interfaces are first pro-

totyped and evaluated under highly controlled conditions before they are deployed in

more realistic environments and tested with their intended users. When the behavioral

results of a highly controlled test do not generalize to a more realistic one, it is often

difficult to establish the reasons that might have caused this.

Here, we show that EEG measurements can complement behavioral results to pro-

vide a better resolution for understanding how notifications are processed by users

across different settings. Unlike behavioral performances, the appropriate application

of EEG measurements allows the researcher to discriminate how notifications are pro-

cessed by the brain across at least three different stages of information processing,

namely perceptual, cognitive, and response stages (Wickens, 2002, 2008). In this regard,

it offers researchers the ability to investigate the outcome of information processing

at the various stages that lie in between the presentation of a stimulus (i.e., auditory

notification) and a behavioral response (i.e., keypress).

We report two experiments that presented participants with identical tasks but un-

der two different test environments. All of our participants were required to respond

to auditory notifications, which were previously designed to direct the attention of com-

mercial truck drivers to the occurrence of task requirements during a long distance,
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automated vehicle mission (Fagerlönn et al., 2015). They were also presented irrelevant

distractor sounds, which they had to ignore, and a dynamic visual scene, which varied

in its realism according to the test environment. The first experiment was performed as

a highly-controlled psychophysical experiment (N=15), with low mission fidelity, and

on young and untrained student participants. The second experiment was performed

on professional truck drivers in a high-fidelity driving simulator (N=14). Our findings

are as follows:

1. professional drivers in a high fidelity simulator were slower and less sensitive in

discriminating target notifications from distractor sounds

2. the EEG activity for notification detection and identification did not discriminate

between the two test environments

3. the EEG activity for correct responses to the notifications (i.e., Bereitschaftspoten-

tial; BP) discriminated between the two test environments

4. thus, we attributed observed behavioral differences to differences in the sample

demographic and not to differences in the test environment.

2.3 related work

In-vehicle notifications are often designed to shift user attention from the primary task

of engagement (e.g. driving) to a critical event (e.g. low fuel). With advances in vehicle

sensing, notifications can also be designed to direct a user’s attention to safety-critical

aspects of the driving task (e.g. pedestrian detection; Tsimhoni and Flannagan, 2006;

Zhang et al., 2016) or to support decision making (e.g. lane-changing; Löcken et al., 2015).

With the increased adoption of automated vehicles, we expect the role of notifications to

grow in prominence. Besides takeover notifications that prompt users to resume vehicle

handling (e.g. Borojeni et al., 2016; Politis et al., 2015), we also expect task-management

notifications to pervade the in-vehicle environment as the scope of permissible in-vehicle

activities grows (Paul et al., 2015). In particular, commercial vehicles (i.e., trucks) will

stand to benefit from the effective introduction of task-management notifications. This
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is because commercial drivers might be expected to assume additional responsibilities

such as delivery logistics, as their responsibility for vehicle diminishes with increasing

handling automation.

2.3.1 Auditory notifications

Auditory displays tend to be a favored delivery medium for notifications, given that they

are not in direct conflict with the visuo-motor demands of vehicle handling (Nees and

Walker, 2011). Auditory information that is presented during driving has been claimed

to be more deeply processed than visual information, given that it is more likely to

be recalled post testing (Mollenhauer et al., 1994). However, it can also be perceived

as being more distracting. In any case, auditory notifications inhabit a large design

space with manipulable parameters, which include their formant, duration, interpulse

interval, onset/offset latency and more. This allows them to be flexibly tuned in order

to communicate information, such as urgency (Edworthy et al., 1991), even whilst being

moderated for undesirable side-effects, such as perceived annoyance (Marshall et al.,

2007).

Some sounds are more effective than others, particular when operational concerns

are taken into consideration. For example, a driving simulator study compared different

auditory warnings for signaling potential headway collision and found that the sound of

a car horn and a tone with a looming time-to-contact intensity resulted in the best brak-

ing latencies (Gray, 2011). Nonetheless, the sound of a car horn also resulted in more

unnecessary braking responses than the looming tone. A separate study compared four

classes of auditory notifications—namely, abstract sounds, auditory icons, nonspecific

environment sounds, and speech messages—for their efficacy in cuing for driving situ-

ations such as low tire pressure, low oil level, engaged handbrake whilst driving, and

others (McKeown and Isherwood, 2007). This study found that speech messages and

auditory icons generated faster and more accurate responses than either environment

sounds or abstract sounds.
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In these mentioned examples, auditory displays were often evaluated on the basis

of behavioral responses—namely, accuracy and response latencies. Although brain re-

sponses offer a finer granularity of information processing, they are rarely employed in

the evaluation of auditory notifications.

2.3.2 Event-related potentials (ERPs)

EEG refers to the measured electrical activity of surface electrodes placed on the human

scalp (typically in the range of 10–100µV), which can be attributed (in part) to brain ac-

tivity (Schomer and Da Silva, 2012). Event-related potentials (ERPs) are changes within

a pre-specified time window of EEG activity that are generated after or prior to a known

event. In this work, we focus on two physical events: (i) the presentation of a target noti-

fication, (ii) the participants’ self-generated response to target notifications. Respectively,

this allows to first understand how our participants’ brains detect and recognize the pre-

sented notification and, next, decide to generate a behavioral response relative to their

self-generated responses. This corresponds to three stages of information processing

that lie between presenting a notification and generating a response.

Figure 2: Left: A student participant in a psychophysical laboratory (Department for
Human Perception, Cognition, and Action, MPI for Biological Cybernetics, Tübingen,
Germany). Right: A professional commercial driver in a truck driving simulator (Styling
and Vehicle Ergonomics, Scania CV AB, Södertälje, Sweden)
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Stimulus ERPs for auditory events

Auditory stimuli are frequently employed in ERP studies as they elicit waveforms with

identifiable components that are associated with cognitive mechanisms. Of current inter-

est are the slow transient responses that arise from the auditory and associated cortices

(i.e., 50 msec after sound onset). A popular paradigm (i.e., oddball paradigm) presents

two discriminable sounds, one more frequently than the other (e.g., 80% to 20%). Partic-

ipants are only required to respond to the infrequent sound, which are termed targets.

This corresponds to a real-world scenario where auditory notifications have to be de-

tected and identified against an auditory background of distractors. Subtracting the

EEG activity generated by the frequent distractor sounds from that generated by targets

results in a difference waveform with two interpretable components. First, the mismatch

negativity (MMN), which is an early negative deflection with a typical latency of about

140 msec. The MMN is associated with an automatic process that responds in propor-

tion to the perceived deviance of the targets from the distractors. It is generated even

when there is no task involved. Second, the P3 ,which is a positive late deflection with

a latency between 450–600 msec. The P3 is only generated if the subject is attending

to the stimuli in a way that demands a response (but, see Scheer et al., 2016). Working

memory processes that underlie context updating are claimed to be represented by the

P3 component (Donchin and Coles, 1988). Indeed, fMRI studies have localized brain

regions, which are typically implicated with conscious effort and working memory pro-

cesses (i.e., insular cortex, inferior parietal and frontal lobes), as generators of the P3 (e.g.

Linden et al., 1999). In the current study, we evaluated MMN and P3 responses to target

auditory notifications in order to determine whether behavioral differences across differ-

ent test environments reflected changes in their automatic detection and/or voluntary

identification.

Response ERPs for motoric responses

Brain responses can also be measured prior to response actuation. When EEG activity

are temporally aligned to the generated responses of measured individuals, it is possible

to observe a slow change in potentiation, leading up to the response onset. This obser-
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vation was first reported in 1964 and was termed the Bereitschatpotential (i.e., readiness

potential; BP; Kornhuber and Deecke, 1964; Shibasaki and Hallett, 2006).

The BP is maximal at the midline centro-parietal area (i.e., CPz). The adoption of

a common average reference, such as in the current work, means that it is observed

as a positive potential shift in the parietal and occipital electrodes and as a negative

potential shift in the frontal electrodes. In an interesting series of experiments, recorded

participants were asked to report the time when they decided to generate volitional

keypress responses (Libet, 1985). Here, the BP was found to be initiated approximately

350 msec prior the participants’ reported times, which raised philosophical doubts on

the nature of free will. Putting such existentialist concerns aside, most researchers agree

that the initiation of BP has its physiological origins in the supplementary motor area

(SMA), a brain region that is implicated in the generation of motor responses, at least

in the case of hand movements (Praamstra et al., 1996). Thus, BP could be regarded

as a cortical decision to initiate a motor action (prior to the conscious realization of the

decision itself!). More recently, it has been claimed that this cortical decision can be

volitionally cancelled up till a point (i.e., 200 msec prior to response), after which the

generation of a motor response inevitable (Schultze-Kraft et al., 2016). For our current

purposes, we treat BP as an indicator for the cortical decision to respond, which is

initiated earlier than the recorded response itself. This allows us to determine the latency

between the cortical decision and the actuated response, as well as the amplitude of the

cortical decision itself which is not evident in a binary key- or button-press response.

2.4 study

This study was a between groups design that compared behavioral performance and

brain responses to auditory notifications across two different experimental settings: (i)

a highly controlled psychophysical laboratory, (ii) a high fidelity driving simulator en-

vironment. The whole experiment took approximately 2.5 hours to complete, including

preparation time and debriefing.
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2.4.1 Participants

Thirty participants—that is, fifteen undergraduate students (mean age(std)=26.1(4.0) years;

9 males) from the University of Tübingen, Germany, and fifteen professional commercial

drivers (mean age(std)=41.4(12.1) years; 13 males) who were employees of Scania CV AB,

Sweden —performed the task reported here. The data of one professional driver, from

the driving simulator testing, had to be excluded from further analysis because only one

response was recorded throughout the entire experiment. Besides demographic differ-

ences, the primary difference between these two groups was the test environment that

they experienced (see 2.4.2). All participants reported no known hearing defects and

provided signed informed consent.

2.4.2 Apparatus and Stimuli

Psychophysics laboratory

The psychophysics laboratory had black walls, was insulated for external sounds, and

had an ambient sound level of approximately 40 dB (Figure 2, left). Visual stimuli were

presented on a desktop display (60◦ field-of-view; 45 cm distance to fixed chin-rest).

The visualization was rendered by customized software written in Matlab R2013b (The

Mathworks, Natick, MA). The visualization consisted of a cursor that drifted horizon-

tally between two vertical lines, which represented a vehicle’s position in a single lane.

Participant responses were collected via keypresses on a standard USB keyboard. Sound

presentation was controlled by an ASIO 2.0 compatible sound card (SoundBlaster ZxR;

Creative Labs) and displayed via stereo speakers, each placed on either side of the dis-

play.

High fidelity driving simulator

The driving simulator was designed to simulate the operation of commercial truck ve-

hicles. Participants sat in a realistic cabin interior, based on an existing truck seating

buck that consisted of a pneumatic seat, a steering column complete with wheel and

45



shaft, instrument cluster, and the remaining dashboard (Figure 2, right). Visualization

was presented on a front-projection three wall display (approx. 150◦ field-of-view; 450

cm distance to head), and via two pairs of 2 vertically-aligned displays each, attached

to either side of the cabin, that simulated side rear-view mirrors. The visualization was

rendered by a customized graphical engine (i.e., VISIR) that created 3D environments

from OpenDrive8 road network files (xodr) and from additional landscape description

file (xml). Here, we presented a highway scene from Linköping and Norrköping, with

two lanes for congruent traffic and two lanes for opposing traffic. The participant inhab-

ited the far-right lane. The highway was populated with low traffic density, including

the occasional headway vehicle. Experimental responses were collected via dedicated

buttons that were located on the steering wheel. Sound presentation was controlled by

an ASIO 2.0 compatible sound card (RME HDSP 9632; RME Intelligent Audio Solutions)

and displayed via a 5.1 surround sound system, installed around the driver’s seat.

Experimental Stimuli

Twelve target and ninety distractor sounds were used in this experiment. These were

modified from sounds that were designed as part of a project (MODAS: Methods for

Designing Future Autonomous Systems) to cue truck drivers to attend to possible non-

driving tasks (Fagerlönn et al., 2015; Krupenia et al., 2014). All sounds had a duration

of 500 msec.

There were two notifications for each of six non-driving tasks. They were a verbal

command in Swedish and an auditory icon (in brackets): (i) system (synthetic tone),

(ii) convoy (train whistle), (iii) driver (human whistle), (iv) weather (raindrop), (v) road

(rumbling), (vi) traffic (car horn). The distractor sounds were random permutations of

four sounds, two verbal commands and two auditory icons, played simultaneously in

reverse.

EEG recording

EEG was recorded on a dedicated PC using a 59-channel active electrode array that was

affixed to the scalp using an elastic whole head cap, which specified for pre-determined

sites including those corresponding to the international 10-20 system (ActiCap System,
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Figure 3: Six examples of clusters of dipoles (blue) and their mean position (red), their
projected scalp activity, and power spectral density (inset: left to right), derived from
EEG recordings in the driving simulator. First row: Cortical dipoles that are likely
to be associated with auditory processing (left) and motor response generation (right)
respectively. Second row: Non-cortical dipoles that are associated with muscle activity
(left) and eye-movements and -blinks (right). Third row: Non-cortical dipoles that are
due to electrical line noise (left) and unresolved variance in EEG recording (right).

Brain Products GmbH, Munich, Germany). The horizontal and vertical electrooculo-

gram (HEOG/VEOG) were recorded with four electrodes attached to the right and left

canthi as well as above and below the left eye. FCz was used as an online reference for all

channels. Prior to testing, electrode gel was applied to ensure that electrode impedance

was < 20kΩ for each channel. EEG signals were digitized at a rate of 1000 Hz. EEG

recordings were synchronized with experimental events via a parallel port connection

to the experimental PC.

2.4.3 Task

All participants performed the same task, regardless of the experiment setting. They

were required to attend to the visual scene throughout the experiment. Participants were

informed that this was a stimulated automated driving scenario and that no steering

was necessary. Whenever they heard a sound, they were required to respond if it was a
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target notification and to ignore it if it was a distractor sound. The inter-stimulus interval

was randomly selected from a uniform distribution across 1800-2000 msec. Participants

could respond within 2000 msec of the onset of the target notification. Failures to do

so were considered misses. Responses to distractor sounds were treated as false alarms.

Each experiment presented approximately 980 sounds in total. Of these, 20% were target

notifications.

2.4.4 Results: Behavioral performance

Our participants’ performance were assessed in terms of the median of their correct re-

sponse times (RT) and discriminability index (i.e., d’). The discriminability index is cal-

culated as the difference between the z-scores of hit and false-alarm rates, whereby hits

and false-alarms were responses to target and distractor sounds respectively (Macmillan

and Creelman, 1991). Welch’s t-tests for independent samples were performed to com-

pare behavioral performance in the high fidelity driving simulator and the psychophys-

ical laboratory (Delacre et al., 2017). The adopted criteria for statistical significance was

α = 0.05.

Participants in the high fidelity driving simulator were slower (mean=1262 msec;

std.=120 msec) in their correct responses than those in the psychophysics laboratory

(mean=1062 msec; std.=139 msec). This difference (mean=200 msec) is statistically sig-

nificant (t(26.8)=4.18, p < 0.001, Cohen’s d=1.54) and has a 95% confidence interval from

102 to 299 msec.

Participants in the high fidelity driving simulator were less sensitive (mean=4.37;

std.=1.03) in discriminating the auditory target notifications from their distractor coun-

terparts, than those in the psychophysics laboratory (mean=5.25; std.=0.60). This differ-

ence (mean=0.88) is statistically significant (t(20.6)=2.81, p < 0.05, Cohen’s d=1.06) and

has a 95% confidence interval from 0.23 to 1.54.

To summarize, behavioral results indicated slower and less discrimination sensitiv-

ity for auditory notifications in the driving simulator, compared to the psychophysics

laboratory.
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Figure 4: Left: Stimulus ERPs are illustrated by and labelled in three difference wave-
forms that depict averaged EEG activity of electrode groups from anterior, central, and
posterior regions. Right: MUA results plot statistically significant t-values between the
two participant groups for every electrode and time-point. The analysis reveals that
there are no statistically significant electrode-time regions that proceed the auditory no-
tification.

2.4.5 Results: EEG/ERP responses

Data collection, signal processing, and statistical analysis

Data pre-processing and analysis was performed offline with Matlab (The Mathworks,

Natick, MA) scripts based on EEGLAB v.14
1, an open source environment for process-

ing electrophysiological data (Delorme and Makeig, 2004). The following steps were

performed on EEG data prior to analyzing the ERPs of stimuli and responses (Bigdely-

Shamlo et al., 2015). First, the data was downsampled to 250 Hz to reduce computational

costs. Next, a high-pass filter (cut-off=0.5 Hz) was applied to remove slow drifts, 50 Hz

electrical line noise from the environment was removed using the CleanLine algorithm,

and bad channels were removed using the ASR algorithm. Next, all electrodes were

re-referenced to their common average, and each participants dataset was separately

submitted to an Adaptive Mixture ICA to decompose the continuous data into source-

resolved activity (Delorme et al., 2012). On these learned independent components (IC),

1 https://sccn.ucsd.edu/eeglab/
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equivalent current dipole model estimation was performed by using an MNI Boundary

Element Method head model to fit an equivalent dipole to the scalp projection pattern

of each independent component. ICs whose dipoles were located outside the brain were

excluded as well as those that had a residual variance of over 15%. Within each par-

ticipant group, ICs were clustered into 30 clusters using k-means based on their mean

power spectra, topography, and equivalent dipole location.

Figure 3 provides examples of dipole clusters with either cortical (first row) or non-

cortical origins (e.g., muscle and eye activity (second row), electrical activity from en-

vironment sources (third row)). Non-cortical components were identified on the ba-

sis of their power spectral density, scalp topology, and location in a volumetric brain

model (Jung et al., 2000). As might be expected, there were more non-cortical dipole

components found in participants who performed the experiment in the driving sim-

ulator (N=15) than those from the psychophysical experiment (N=14). In other words,

EEG recordings were contaminated by the activity of more non-cortical components in

the driving simulator environment than in the psychophysical laboratory. Non-cortical

dipole clusters were removed from the EEG recording and the remaining EEG activity

was subjected to comparative analysis for the two participant groups.

Specifically, we derived a stimulus and a response ERP for each participant. This was

achieved by mean-averaging the EEG activity of a time-window (also termed an epoch;

1000 msec after/before the relevant trigger event, baselined to 500 msec before/after the

stimulus/response), across all epochs. Stimuli ERPs were defined by the differences in

EEG responses to target notifications and distractor sounds, prominent components are

MMN and P3, which are respectively associated with the information processing aspects

of notification detection and identification (Picton, 2011). Response ERPs were defined

by EEG activity prior to the registration of our participants’ responses. It is defined by a

single component, which manifests itself as a single peak that changes from negative to

positive polarity, from the anterior to posterior electrodes. The left panels of Figures 4

and 5 illustrate the averaged activity of anterior (Fz, F1, F3, F5, F2, F4, F6, FC1, FC3, FC5,

FC2, FC4, FC6), central (Cz, C1, C3, C5, C2, C4, C6), and posterior (Pz, POz, Oz, P1, P3,

P5, P2, P4, P6, PO3, PO7, PO4, PO8, O1, O2) electrodes for stimulus and response ERPs
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Figure 5: Left: Stimulus ERPs are illustrated by three waveforms that depict averaged
EEG activity of electrode groups from anterior, central, and posterior regions. The BP
peaks are indicated by arrows. Right: MUA results reveal statistically significant dif-
ferences between driving simulator and laboratory recordings in two time periods (i.e.,
600-430 and 220-0 msec before responses).

respectively. The profile of the derived waveforms were consistent with our expectations

for both test environments.

To evaluate our EEG recordings for differences across the two test settings, we per-

formed separate mass-univariate analyses (MUA) for the stimuli and response ERPs

(Groppe et al., 2011). This allowed us to determine the time points of individual elec-

trodes that were statistically significant for waveform differences between the EEG ac-

tivity recorded across the two test environments. False discovery rate control was ap-

plied (i.e., FDR-BH; Benjamini and Hochberg, 1995). We illustrate MUA results as raster

plots of electrode channels across time (see Figures 4 and 5, right), whereby statisti-

cally significant t-values are represented by color intensity. The raster plots consist of

three panels whereby the top and bottom panels indicate right- and left-hemispheric

electrodes respectively, and the middle panel indicate mid-line electrodes. Within each

panel, electrodes are vertically ordered from anterior to central to posterior electrodes.
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Stimulus ERPs

The MUA results (Figure 4, right) reveal no statistically significant differences between

the difference waveforms (Figure 4, left) of participants from the laboratory (–) and driv-

ing simulator (–) test settings. This suggests that the notifications elicited equivalent

brain responses for detection and identification in both groups of participants, regard-

less of their test environments.

Response ERPs

The MUA results (Figure 5, right) reveal statistically significant differences, particular

in the frontal (e.g., Fpz, Fz) and posterior (e.g., Pz, POz, Oz) electrodes. To understand

these differences, the reader should recall from the behavioral results that truck drivers

in the driving simulator generated slower responses than students in the psychophysical

laboratory, of about 200 msec. We note that the time periods of significantly different

EEG activity are of similar duration (i.e., 600-430 and 220-0 msec before the response

event). This means that the time that it took for truck drivers in the driving simula-

tor to generate a behavioral response after the initiation of corresponding brain activity

(i.e., BP) was approximately 220 to 230 msec longer than it took for the undergradu-

ate students in the psychophysical laboratory. In addition, the peak amplitudes of the

BP in the frontal and posterior electrodes were smaller in the truck drivers than the

undergraduate students (Figure 5, left).

2.5 discussion

What inferences can we draw when auditory notifications, which were designed in the

confines of a well-controlled laboratory, elicit different behavioral responses in more

realistic settings? The current study demonstrates that EEG measurements can provide

some clarity when the explanatory power of behavioral responses are limited.

In this work, we found statistically significant behavioral differences across two test

settings. Professional drivers were slower and less sensitive in detecting target notifica-

tions in a high fidelity driving simulator compared to student participants tested in a
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psychophysical laboratory. To begin, this is surprising for at least two reasons. First, the

verbal commands were in the native language of the professional drivers. Second, the

professional drivers understood what these notifications represented in the context of

their jobs. Thus, we might have assumed that professional drivers to have responded

faster and more accurately. Although the professional drivers were slower than our

student volunteers by approximately 200 msecs. They continued to respond in an ac-

ceptable time range (i.e., less than 2 secs, the recommended time headway for preventing

rear-end collisions). From this, the current auditory notifications might be considered

to be suitable for fulfilling their intended function of task management.

Based on behavioral data alone, the worse performance of the professional drivers

could be attributed to several reasons. For example, the driving simulator could have

provided a more immersive environment that reduced the perceptual saliency of the

notifications. Alternatively, it could have been due to age or motivational differences be-

tween the professional drivers and student participants. Last, but not least, performance

differences could have resulted from technical differences in the auditory displays or in-

put devices. This host of plausible interpretations often plague comparative user studies

that rely solely on behavioral measurements.

With EEG measurements, we were able to infer that the behavioral differences that

we observed were due to differences between the professional drivers and the student

participants. Specifically, in how their brains prepare themselves prior to responding.

Our reasoning is as follows. First, notifications were unlikely to have been detected

or identified differently, given that the brain responses associated with these processing

stages (i.e., MMN and P3 respectively) were similar across the two participant groups. In

other words, the auditory notifications were robustly perceived across the two different

test settings. Next, differences were found in the response ERPs. More specifically, the

response ERPs for professional drivers had a longer latency than student participants be-

tween the BP peak and the recorded response. In other words, more time elapsed for the

professional drivers between cortical decision-making to respond and the response itself.

This difference in the latencies from BP initation to the motor response was about 220

msec, and gave rise to the statistical differences that the MUA analysis revealed. This

difference in EEG activity between the two groups converges with the difference that
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we found with behavioral response times (i.e., 200 msec). Finally, the ERPs for response

generation in professional drivers had smaller peak amplitudes than in student partici-

pants. This suggests that reduced cortical activity observed in the professional drivers

prior to responding could have resulted in later responses. This possibility rules out

alternative reasons for slow responding, such as the sub-optimal physical ergonomics

of the truck cabin or the physical layout of the input device.

Taken together, the combination of EEG and behavioral measurements show that

the current auditory notifications were sufficiently salient and robust across different

test environments. Although professional drivers exhibited slower and less sensitive

discrimination performance, it was not likely to be due to the notification design or the

physical environment. Instead, it was due to differences in the sample demographics.

Thus, subsequent effort in this scenario ought to be invested in understanding and

mitigating for human factor limitations, rather than in further refinements in the design

of notifications or the physical interface.

The current work is restricted to the presentation of auditory notifications. There

are other channels of notification delivery that remain to be considered, such tactile

notifications (e.g., vibrations) which have been claimed to be more easily discriminable

and less interfering with the task of driving compared to auditory notifications (Cao

et al., 2010).

To reiterate our main point, comparisons between different types of notifications

and across different deployment settings can result in conflicting evidence, across in-

dependent studies and even within the same study. For example, while (Cao et al.,

2010) reported that auditory notifications elicited shorter response times, a meta-analysis

showed that tactile notifications elicited faster responses, at least for low-urgency mes-

sages (Lu et al., 2013). The same meta-analysis emphasized that moderating factors

play a critical role in determining the suitability notification delivery and design. For

example, tactile notifications might be more discriminable, but only if they have low-

complexity (cf., Cao et al., 2010); responses to auditory notifications are more accurate

for high-complexity information such as in the current study. This variability of empiri-

cal evidence across the diverse design and deployment space means that it is insufficient

to simply focus on behavioral responses to user interfaces.
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2.6 conclusion and outlook

The current paper contributes by demonstrating how EEG methods could allow us, as

researchers, to identify the stage of information processing that results in differences in

behavior. Such an approach will allow us to target the limitations of our designs for

user interfaces more selectively and emphasize the aspects that are more deserving of

our attention.

While EEG measurement is not a panacea, the current work shows that it can pro-

vide insight into how information is processed, at a finer granularity than behavioral

responses alone. Furthermore, it can help to deliver insight when the deployment set-

tings of our designs change across test phases. Here, it assured us that the designed

notifications were sufficiently robust to be processed by the brains of their users, regard-

less of differences in the test environments.

This level of understanding, namely of how the information communicated by noti-

fication interfaces is processed by the brain, will be increasingly important especially as

we attempt to increase the design space and functional diversity of notifications. Nowa-

days, notifications are designed, not only to capture the user’s attention at all costs but,

to be sensitive to the user’s goals and requirements (McCrickard and Chewar, 2003).

Ambient notifications represent a particular class of notifications that will be difficult to

evaluate if behavioral measurements are all that we have to rely on. This is because

ambient notifications are, by definition, designed to inform the user without eliciting be-

havior that would interrupt existing activity (Löcken et al., 2017; Pousman and Stasko,

2006). With such notifications, responses from the brain could be measured instead of

behavioral responses.

The current work relied on high density EEG recording equipment. While the use

of medical grade equipment can be feasibly implemented in a real car, and even for the

actuation of emergency braking (Haufe et al., 2014), doing so might not be expedient for

many researchers. A recent evaluation suggest that simpler and more convenient EEG

setups, for example those that use dry electrodes, could be implemented in a vehicle

environment at a reasonable signal to noise ratio (Zander et al., 2017). Innovations in
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electrode designs, such as an around-the-ear EEG placement (Bleichner et al., 2016),

could further allow for brain responses to be measured without imposing on users the

inconvenience of donning an unsightly EEG cap.

As we continue to innovate in-vehicle interfaces to keep up with the demands of

user expectations, it is only appropriate that we also innovate our means for evaluating

these interfaces to keep up with the demands of inferential rigor. The current work

demonstrates the viability of one approach that should be employed more often than it

currently is.
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3
B R A I N R E S P O N S E S T O S E M A N T I C A L LY E Q U I VA L E N T

A U D I T O RY C U E S

This chapter has been reproduced from an article published at CHI 2018: Glatz, C.,

Krupenia, S. S., Bülthoff, and H. H., Chuang, L. L. (2018). Use the right sound for the

right job: Verbal commands and auditory icons for a task-management system favor

different information processes in the brain. In Proceedings of the 2018 CHI Conference

on Human Factors in Computing Systems. ACM, New York, NY, USA.

3.1 abstract

Design recommendations for notifications are typically based on user performance and

subjective feedback. In comparison, there has been surprisingly little research on how

designed notifications might be processed by the brain for the information they con-

vey. The current study uses EEG/ERP methods to evaluate auditory notifications that

were designed to cue long-distance truck drivers for task-management and driving con-

ditions, particularly for automated driving scenarios. Two experiments separately eval-

uated naı̈ve students and professional truck drivers for their behavioral and brain re-

sponses to auditory notifications, which were either auditory icons or verbal commands.

Our EEG/ERP results suggest that verbal commands were more readily recognized by

the brain as relevant targets, but that auditory icons were more likely to update contex-

tual working memory. Both classes of notifications did not differ on behavioral measures.

This suggests that auditory icons ought to be employed for communicating contextual

information and verbal commands, for urgent requests.
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3.2 introduction

Auditory notifications are used extensively by in-vehicle interfaces to inform the user of

important events. Whilst parking, for example, decreasing beep intervals could commu-

nicate the nearing distance between a driver and an obstacle. This raises the question:

How should auditory notifications be designed? Should they be verbal notifications that

communicate instructions explicitly or should they be recognizable auditory icons that

denote a critical scenario?

Previous researchers have generally agreed on the essential design guidelines for au-

ditory notifications (Nees and Walker, 2011). Auditory notifications need to be: (1) eas-

ily detectable (Graham, 1999; Mynatt, 1994; Edworthy, 1994), (2) readily discriminable

against background noise (Nykänen, 2008; Liljedahl and Fagerlönn, 2010), (3) capture at-

tention (Ho and Spence, 2005, 2006), and, after all these requirements have been fulfilled

(4) easily interpretable (Mynatt, 1994; Edworthy and Hellier, 2006; Ulfvengren, 2003).

However, there are many ways in which auditory notifications can be designed to com-

ply with these criteria. Preference between different designs is often determined by user

studies that evaluate performance or subjective feedback. Unfortunately, such measures

can often contradict from one study to another or fail to discriminate between different

designs.

Verbal commands and auditory icons represent two general classes of auditory noti-

fications that are commonly employed. They are favored over synthetic sounds (Leung

et al., 1997; Dingler et al., 2008) because they are based on prior user experiences. Hence,

they are easily learned in novel use settings for their intended meanings. Nonetheless,

no clear consensus has been established for preferring either verbal commands or audi-

tory icons.

Besides performance and subjective measurements, brain responses to notifications

can also serve as a way to evaluate auditory notifications. Surprisingly, this approach

is rarely employed (although, see Lee et al., 2014). In particular, electroencephalogra-

phy (EEG) reveals how the brain processes information – namely, the extent to which

notifications capture attention and are interpreted – regardless of how this eventually in-
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fluences observable performance or subjective feedback. In other words, EEG provides

a higher functional resolution of the processes that take place between stimulus presen-

tation and the elicited response. Therefore, we can evaluate auditory notifications based

on how user brains respond to them, and not merely on how users respond to them.

The understanding that we can gain from the additional information provided by EEG

can contribute towards the design of more appropriate and effective notifications that

are easy to use.

The increasing reliance on automation to perform tasks is transforming the role of

notifications. While notifications used to be prized for their effectiveness as a ‘call to ac-

tion’, they are increasingly used to update and inform users on the current situation, or

to assist users in supervising automation. This trend is especially prevalent in the con-

text of automated vehicles, whereby auditory notifications have been specially designed

to update drivers of automated trucks on prevailing road conditions and to remind them

to supervise logistical tasks. Arguably, such notifications might not be readily evaluated

by behavioral responses alone, but by how they are processed by the brain for conveyed

information.

In the current work, we answer the following four research questions (RQ1-RQ4)

using EEG analysis. RQ1: Are auditory icons or verbal commands more easily detected?

RQ2: Are auditory icons or verbal commands more discriminable? RQ3: Do auditory

icons or verbal commands capture more attention? RQ4: Do auditory icons or verbal

commands result in more context-updating of what has to be done next?

To summarize, this paper makes the following contributions:

1. EEG demonstrates that both types of notifications are equally detectable and orient

attention to the same extent or rather more in an applied context.

2. By using EEG, we are able to show that verbal commands are discriminated more

easily than auditory icons, but that auditory icons are more likely to update con-

textual working memory.

3. Evaluating brain responses reveals that auditory notifications should follow a

purpose-oriented design. That is, verbal commands seem more suitable for ur-

gent requests while auditory icons should be used to communicate less pressing
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contextual information. Unlike behavioral measures, EEG gives insight in different

stages of processing a notification. Notably, these insights are obtained in a passive

and unobtrusive way and cannot be gained through behavioral results only.

4. The results of this study demonstrate that laboratory findings of auditory EEG

studies can be extended to more realistic environments, such as driving simulators.

Qualitative comparisons suggest that results scale with experience and that the

effect of notifications on brain responses increase with increasing relevance.

3.3 related work

3.3.1 Challenges for Designing In-vehicle Auditory Displays

Sound design is a challenging task not only technically but even more so regarding hu-

man perception. Human’s auditory perception is influenced by a variety of factors such

as emotions, memories, cognition, environment, previous experience, and the ability to

understand speech (O’Callaghan, 2009). In the design of auditory displays, sounds that

communicate information to the user, factors like these are relied upon (McGookin and

Brewster, 2004). When not using words to communicate information but sounds, we

talk about sonification (Walker and Nees, 2011). In this regard, sound designers have to

consider the important aspect of making sounds recognizable and identifiable for what

they were designed. At the same time, auditory notifications need to convey the level of

urgency without annoying the user (Marshall et al., 2007). Especially for in-vehicle noti-

fications, auditory displays whose meaning is ambiguous can have a negative influence

(i.e. higher perceived workload, slower response times; Wiese and Lee, 2007). Hence au-

ditory notifications should be evaluated, for example, based on their detectability, their

position of presentation, their identifiability, and their conveyed meaning (Tuuri et al.,

2007).

To optimize the design of auditory notifications, a two-stage pipeline has been pro-

posed (Liljedahl and Fagerlönn, 2010). At an early first stage, designers consult with

the user audience about the designed sound which feeds back into the design process.
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The second stage is an evaluation of the auditory display in a greater auditory context,

simulating the use of the sound in its intended environment. While this is a step in

the right direction for optimizing the design of effective auditory notifications, it relies

on subjective user feedback, as well as performance measures, and does not reveal the

actual influence auditory notifications have on the processing by the human brain.

3.3.2 Auditory Notifications

Auditory notifications can be categorized into two main groups, speech and non-speech.

We differentiate non-speech sounds into auditory icons (representative sounds) and

earcons (abstract synthesized sounds; Graham, 1999; Keller and Stevens, 2004). Un-

like earcons, verbal commands and auditory icons are readily recognizable and do not

require learning, which typically translates to faster responses (McKeown, 2005).

Verbal Commands

We often rely on speech to communicate our intentions to each another. Once proficiency

is acquired in a given language, verbal commands can be relied on to communicate

complex messages that can be unambiguously interpreted (Leung et al., 1997; Dingler

et al., 2008). Thus, it is natural for humans to prefer speech notifications (McKeown,

2005).

Nonetheless, verbal notifications face the risk of being masked by or confused with

real conversations (Oh and Lutfi, 1999). To circumvent this problem, contrivances could

be introduced to make verbal notifications less human-like and more discriminable from

real speech. This could be achieved by manipulating the pitch or other spectral prop-

erties of verbal commands. Pilots were found to discriminate easily between natural

speech and synthesized speech (Simpson and Marchionda-Frost, 1984). Thus, present-

ing notifications in synthesized speech could prevent verbal commands from being con-

fused with real conversations in our environment.

Another shortcoming of speech is that it is harder to spatially localize than other

sounds, presumably because of its smaller bandwidth (Tran et al., 2000). However, this
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can easily be compensated by being interpreted unambiguously when it is used appro-

priately. Verbal commands can present unambiguous spatial information through their

semantic context. For instance, presenting the word ‘front’ from a front speaker results

in fast response times to potential head-on collisions (Ho and Spence, 2005). However,

if not used appropriately, speech can attract attention to the extent that it could interfere

with other tasks such as driving (Spence and Read, 2003).

Auditory Icons

Auditory icons are sounds that represent real world events. These are sounds with

stereotypical associations with the object or event/action that created the sound. For

example, the sound of a car horn could indicate a safety critical situation that requires

immediate attention and action. Being familiar sounds, auditory icons are easily learned

for their intended function.

An advantage of auditory icons is that they are not easily masked by background

speech (Leung et al., 1997; Strayer and Johnston, 2001; Ho and Spence, 2006). For in-

stance, auditory icons are unlikely to be confused with a radio jockey’s monologues.

Nonetheless, auditory icons, like skidding tires or the car horn, can still be confused

with real environmental occurrences. Also, auditory icons have been shown to be more

likely in generating false alarms than abstract notifications (Gray, 2011). This is most

likely due to the fact that humans might have overlearned certain cues (e.g., car horn).

Given that background experiences are likely to be different across different users, audi-

tory icons might be challenging to calibrate for their conveyed urgency.

Auditory icons are susceptible to misinterpretation because a single sound can rep-

resent more than one meaning (Graham, 1999; Mynatt, 1994). Depending on previous

experience and the use-context, auditory icons can be recognized as an object (that gen-

erates the sound) or as the action that generated the sound (Mynatt, 1994; Gaver, 1989;

McKeown, 2005). For example, the sound of screeching tires can be interpreted either

as a proximal collision vehicle or as a command for braking. In complex operations,

auditory icons might not be the appropriate notification (Graham et al., 1995; Haas and

Schmidt, 1995). However, Belz et al. (1999) used skidding tires and a car horn honk in

highly safety critical situations, namely to signal impending collisions. The successful
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use of auditory icons in this case might be due to the straight-forward association of

meaning. In establishing guidelines for designing auditory icons, Mynatt (1994) sug-

gests that auditory icons usability is highly affected by their identifiability. Nonetheless,

the recognition accuracy for auditory icons, but not response times, can be significantly

improved if users are aware of the icons’ design (Lucas, 1994). This suggests that audi-

tory icons should use mappings that do not have multiple interpretations and can be

easily associated with the events they are representing.

Verbal Commands versus Auditory Icons

Auditory notifications can be evaluated on two different performance measures. First,

effective notifications are believed to elicit faster reaction times. Second, effective noti-

fications are more accurately detected from background noise and discriminated from

other notifications. Previous research has compared the effectiveness of verbal com-

mands and auditory icons across different scenarios and has generally found mixed

support for either sound type.

To begin, while some studies have found faster responses for verbal notification (Lu-

cas, 1994; Ho and Spence, 2005; Fagerlönn et al., 2015), others found faster responses

for auditory icons (Graham, 1999; Saygin et al., 2005). Other studies have found a re-

sponse time preference for neither auditory icons nor verbal notifications (McKeown,

2005; Ulfvengren, 2003). Overall, this would suggest that the processing for both sounds

is not different. Some reasons for these mixed findings could be the context in which

they were presented as well as the type of task participants were asked to do. Some

studies, for example, took place in a simulated driving context and asked participants

to avoid collisions by breaking while others required participants to match a presented

sound to a description of the object/action generating this sound on a desktop PC.

Similarly, measures for response accuracy also provide mixed support for either

verbal commands or auditory icons. Cummings et al. (2006) found that people were

more accurate at matching auditory icons to visual context than words. This could be

due to a trade-off between response times and discrimination sensitivity since reaction

times were faster for nouns than auditory icons in this study. In contrast, Saygin et al.

(2003); Orgs et al. (2006) found higher accuracy when cuing with verbal commands than
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with auditory icons. Leung et al. (1997), on the other hand, found no difference in

accuracy for verbal commands compared to auditory icons. These different findings

could be due to the different experimental tasks participants were asked to complete.

On the other hand it could also depend on the type of auditory notifications employed.

If time was not stressed, participants could respond when they had fully evaluated the

auditory stimulus, even if the auditory icon was not readily interpretable at first.

Given that there will always be background noise, including meaningful sounds; it is

worthwhile to use prominent and highly discriminable auditory notifications. Previous

research has shown that distractor sounds have a larger negative impact on masking au-

ditory icons than verbal commands (Saygin et al., 2005). That is, distractors were more

likely to interrupt the processing of auditory icons than verbal commands. This sug-

gests that non-verbal processing is more likely to be affected by increases in processing

workload, often present in stressful and urgent situations.

3.3.3 Event-Related EEG Potentials

Brain responses can be used to evaluate auditory notifications, especially in terms of how

they are processed for information. One prominent EEG measure is the event-related

potential (ERP) that represents brain activity that proceeds from the presentation of a

given stimuli. An ERP is an average waveform of negative and positive voltage deflec-

tions, which can be functionally related to different stages of information processing of

the presented stimuli (Luck, 2005). Auditory stimuli characteristically elicit a series of

evoked potentials, namely N1, P2, P3a, and P3b components which are associated with

how the presented sound is processed (Crowley and Colrain, 2004; Picton, 2011; Kraus

and Nicol, 2009). Thus, amplitudes of these potentials can provide insight into how the

brain processes a given sound.

N1

The N1 is the first negative deflection of the ERP waveform (e.g., Luck, 2005; Picton, 2011;

Woods, 1995). It reflects early involuntary sensory processing and is highly sensitive to a
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sound’s physical properties (e.g., pitch, intensity; Luck, 2005; Steinschneider and Dunn,

2002). It is a reliable indicator to the perceptual detection of a sound’s presentation

(Winkler et al., 2013; Kotz, 2014; Picton, 2011).

P2

The P2 is the second positive deflection, prominent at frontal and central electrode sites.

It is often reported as part of the N1-P2 complex, also called ‘vertex-potential’ (Crowley

and Colrain, 2004; Picton, 2011). In the current context, we interpret the P2 component

as a measure for discriminability. It is elicited by attended and not attended stimuli

(Crowley and Colrain, 2004; Picton, 2014). This means that it is evoked involuntarily by

both, target and non-target stimuli of an oddball paradigm. The difference between the

P2 of target and non-target stimuli is that the P2 amplitude is larger for stimuli contain-

ing target features (Luck, 2005). This fits the theory of P2 reflecting object discrimination

(Novak et al., 1992; Garcı́a-Larrea et al., 1992). P2 amplitudes are larger after one learns

to discriminate a stimulus from other target stimulus (Alain, 2007). In this respect, a

larger P2 amplitude reflects target identification and only subsequently a P3 is elicited.

Once this classification has taken place, the resolved information can be transmitted to

higher cortical areas to be evaluated further (Picton, 2011). If the stimulus being pro-

cessed does not contain target features, no P3 is elicited and, hence, further cognitive

evaluation of the stimulus is stopped.

P3a

The P3a refers to the third positive peak that is observed at frontal areas. It is evoked

by unexpected stimuli regardless and decreases in amplitude to a surprising stimulus

if it is presented repeatedly (Riggins and Polich, 2002). It is sometimes referred to as

the novelty P3 and is believed to reflect an automatic orienting response to interesting

information (Lee et al., 2014; Escera et al., 2000; Polich, 2007).

P3b

The P3b refers to the third positive peak that is observed at centro-parietal regions. It

is sensitive to the presentation of task-relevant stimuli, especially those that occur infre-
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quently (Duncan-Johnson and Donchin, 1977; Picton and Hillyard, 1974). In the current

context, P3b is treated as a measure for context-updating, a process that underlies how

we update our situational understanding when unexpected events occur (Donchin and

Coles, 1988; Fabiani et al., 1986; Polich, 2007). When an interesting stimulus is recog-

nized, which is different from the standard background, our brains update our mental

representations of the environment. This updating process is reflected by larger P3b

amplitudes for target stimuli than standard stimuli. Furthermore, P3b amplitudes are

also treated as an index for working memory load, whereby larger P3bs are associated

with less mental effort (Brouwer et al., 2012).

To date, little research has been conducted to investigate how verbal commands

might be processed differently by the brain, compared to auditory icons. Behavioral

studies have mixed results given that they tend to differ depending on the experimental

task and context. The notifications that are used here were designed for an auditory

display of a highly automated truck environment (Krupenia et al., 2014), for which

verbal commands have been claimed to deliver faster responses than auditory icons

(Fagerlönn et al., 2015). However, the underlying reason for this has been unclear. The

current study was designed to look specifically at how the brain might process these

auditory notifications differently, depending on whether they were verbal commands

or equivalent auditory icons. For this purpose, we measured the EEG activity of naı̈ve

participants (Experiment 1) and professional truck drivers (Experiment 2). The current

EEG dataset has been previously analyzed for differences between the two participant

groups and have shown that both groups respond to these notifications similarly as

a whole (Chuang et al., 2017). While professional truck drivers responded slower in

general, this was not due to fundamental differences in brain responses to the auditory

notifications. In fact, the current analyses show similar EEG/ERP waveforms between

the two participant groups. In contrast to previous work, this current work focuses

specifically on how verbal commands and auditory icons are processed differently in the

brain. Although both types of auditory notifications produce similar brain responses,

significant differences exist in specific ERP components, which suggests that they should

be employed for different purposes.
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3.4 study methods

This study compared auditory icons to verbal commands in a controlled experimental

laboratory environment. It was a within-subject design that used separable EEG/ERP

components to evaluate these notifications for how well they were detected (N1), dis-

criminated for against other sounds (P2), captured attention (P3a), and updated contex-

tual working memory (P3b). The whole experiment lasted 2.5 hours, which included

training, preparation time, and debriefing. The experimental procedure was approved

by the Ethics Council at the University Hospital Tübingen.

Two experiments comprised this study. Experiment 1 was performed on university

students (N=15; mean age=26.1± 4.0 years; 9 males) and a follow-up experiment 2, on

professional truck drivers (N=15; mean age= 41.4± 12.1 years; 13 males). Experiment

1 was conducted in a psychophysical laboratory setting and experiment 2, in a high

perceptual fidelity fixed-based truck simulator.

3.4.1 Participants

All participants reported no known hearing deficits, normal (or corrected-to-normal) vi-

sion, and no history of neurological problems. They provided signed consent to written

instructions, and were remunerated for their voluntary participation.

3.4.2 Stimuli and apparatus

Auditory notifications

The auditory notifications (duration: 500 ms) were adapted from target sounds that were

originally designed for the in-vehicle interface of an autonomous truck cabin (Fagerlönn

et al., 2015; Krupenia et al., 2014). There were 12 notifications in total, 6 verbal com-

mands and 6 auditory icons that were complements of each other. They were designed

to remind truck drivers to perform certain tasks and of driving conditions at the ap-

propriate times. These verbal commands (auditory icons) were “system” (synthetic tone),

67



“convoy” (train whistle), “driver” (human whistle), “weather” (raindrop), “road” (ground

rumbling), and “traffic” (car horn). Verbal commands were in Swedish, which was the

mother tongue of the professional drivers in Experiment 2 but not the student volun-

teers of Experiment 1. However, the student volunteers were extensively briefed on the

auditory stimuli and practiced discriminating them until they were 80% accurate, prior

to testing.

Ninety distractor sounds were created. Each distractor was a simultaneous presen-

tation of 2 verbal commands and 2 auditory icons, played in reverse and their loudness

adjusted to be comparable to the notification targets.

Experiment 1: Psychophysics laboratory

The experimental laboratory was a dark room which was insulated against external

sounds. The visualization was presented on a desktop screen (ViewPixx Screen, 60.5

x 36.3 resolution; 120 Hz) at a fixed distance of 45 cm from the participant who was

in a chin-rest. The experiment was controlled with customized software (MATLAB

8.2.0.701, R2013b) and Psychophysics Toolbox 3.0.12 (Brainard, 1997; Pelli, 1997; Kleiner

et al., 2007). An ASIO 2.0 compatible sound card was used to control sound presenta-

tion (SoundBlaster ZxR; Creative Labs). The auditory stimuli were presented via stereo

speakers, one paced on the left the other on the right side of the desktop display.

Experiment 2: High fidelity truck simulator

Professional truck drivers sat in a driving simulator that consisted of a realistic truck

cabin. This contained a steering wheel, dashboard with instruments, and a pneumatic

seat. The visualization consisted of an automated drive on the highway from Linköping

to Norrköping with minimal traffic. The highway had two lanes, one for each antago-

nistic traffic direction. A three wall display (approx. 150 deg field-of-view) presented

the frontal visualization (450 cm distance to head). Two vertically-aligned displays were

attached to the outside of the cabin, to simulate side mirrors for displaying the rear traf-

fic scene. Using OpenDrive8 road network files (xodr) and an additional file describing

the landscape (xml), a customized graphical engine (i.e., VISIR) rendered the presented

visualization. Buttons located on the left and right on the steering wheel collected the
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participants’ behavioral responses. An ASIO 2.0 compatible sound card (RME HDSP

9632; RME Intelligent Audio Solutions) controlled the presentation of auditory notifica-

tions. A 5.1 surround sound system, installed in the truck cabin, was used to display

the sounds.

3.4.3 Task and Procedure

During testing all participants observed an automated driving scene that was visually

presented. They had to respond to auditory notifications whenever one was presented,

with a button press using either their left or right index fingers. Six notifications (i.e.,

3 complementary pairs of verbal commands and auditory icons) were pre-assigned to

a left index-finger press and the remaining six, to a right index-finger press. In other

words, each button corresponded to three events, which were represented by a verbal

command as well as an auditory icon. Button press assignment was randomized across

participants. Prior to testing, all participants practiced until they were able to achieve

accuracy levels of at least 80% in this task.

Approximately 980 sounds were presented throughout the experiment testing. All

sound presentations were separated by a time-interval randomly selected from a uni-

form range of 2300− 2700 ms. Twenty percent of these were target notifications and

eighty percent were distractors. No button presses were necessary when distractors

were presented. Target notifications were evenly divided for verbal commands and au-

ditory icons. Participants had 2000 ms to respond after each auditory notification was

presented.

3.4.4 EEG recording

The EEG was recorded using 59 active electrodes mounted to the scalp using an elastic

cap according to the international 10-20 system (ActiCap System, Brain Products GmbH,

Munich, Germany). Four additional electrodes were used to record the vertical and

horizontal electrooculogram from the right and left canthi as well as above and below
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the left eye. All signals were recorded with the online reference FCz and AFz as the

ground. EEG signals were digitized with a sampling rate of 1000 Hz. Electrode gel

was applied to each electrode to ensure an impedance below 20 kΩ. A parallel port

connection between recording PC and experimental PC synchronized the EEG recording

with the experimental events, such as the sound onset and button press.

3.4.5 EEG data processing and analysis

To analyze the EEG data, MATLAB (8.2.0.701, R2013b) and EEGLAB v.14.0.0 1, an open

source software to analyze electrophysiological data, was used (Delorme and Makeig,

2004). Before analyzing the ERP to the auditory stimuli, the data was preprocessed for

every subject according to the following steps. To reduce the computational costs, the

data recorded at 1000Hz was downsampled to 250 Hz. To remove any slow drifts, a

high-pass filter (cut-off = 0.5 Hz) was applied subsequently to the data. Using Clean-

Line, a plugin in EEGLAB, 50 Hz electrical noise picked up from the environment when

recording electrical brain activity was removed. Then, bad channels, e.g. channels with

flat lines, are removed using artifact subspace reconstruction. Following these cleaning

steps, the data is re-referenced offline to the common average reference and then sub-

mitted to the Adaptive Mixture ICA (AMICA; Delorme et al., 2012). This algorithm de-

composes the electrical activity recorded at sensor level (electrodes) into source-resolved

activity, also called independent components (ICs). These ICs were subject to equivalent

dipole estimation. A MNI Boundary Element Method head model was used to fit an

equivalent dipole to the ICs (Piazza et al., 2016). IC dipoles with location outside the

brain, as well as, ICs with a residual variance larger than 15% were excluded. Next,

the ICs of all participants were grouped into 30 clusters using k-means based on their

power spectrum. These clusters were then inspected for non-cortical electrical activity

such as eye-related activity, muscle-related activity, line noise, and unresolved compo-

nents. Clusters, containing such non-cortical activity, were determined based on their

power spectrum, their scalp topography, and their dipole location in a volumetric brain

model. These non-cortical activity clusters, present across the group of participants,
1 https://sccn.ucsd.edu/eeglab/
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were removed from the EEG data (for examples, see Chuang et al., 2017). Finally, this

EEG data for cortical activity was backprojected to the sensor level, and analyzed for

potential differences between verbal commands and auditory icons.

ERPs were computed for each participant, and for every electrode, by extracting an

epoch of EEG activity around the notification presentation. The presentation onset of

the notifications was the trigger event for an epoch that consisted of 500 ms of baseline

activity pre-trigger and 1000 ms of brain response post-trigger. All epochs that belonged

to either verbal commands or auditory icons were mean-averaged for each electrode. We

further grouped the frontal and parietal electrodes into two separate groups for visual-

ization (see Figures 6 and 7, right). These group averaged waveforms depict distinct

ERP components (i.e., N1, P2, P3a, and P3b) that serve as established neural correlates

for perceptual and cognitive mechanisms. With regards to auditory information pro-

cessing, they relate to detection (N1), discrimination (P2), attentional capture (P3a), and

context-updating (P3b).

We performed mass-univariate analysis (MUA) to statistically evaluate EEG differ-

ences between verbal commands and auditory icons (Groppe et al., 2011). Simply put,

this method compares the two conditions at every electrode and time-point and per-

forms a t-test for significant differences. A false discovery rate procedure (i.e., FDR-BH;

Benjamini and Hochberg, 1995) was applied to control for multiple comparisons.

3.5 results

3.5.1 Behavioral performance

Behavior performance was evaluated in terms of discrimination sensitivity and correct

response times. All scores were submitted to a within-subjects t-test and the Bayes

Factor (BF01) was calculated for the likelihood of the null-hypothesis relative to the

alternative-hypothesis. The behavioral data of one participant from Experiment 2 had

to be excluded due to missing button presses.
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Figure 6: Experiment 1’s ERP responses (left) with scalp topography plots (right) of
statistically significant differences across time and electrodes respectively. Left: ERP
waveforms are averaged across the frontal (pink) and parietal (green) electrodes and de-
flections are labeled for N1, P2, P3a, and P3b. The shaded areas between the two wave-
forms indicate time-regions that are significantly different. Right: The scalp topogra-
phies show the EEG activity to verbal commands and auditory icons at time-ranges A
and B. Electrodes that are significantly different are represented by white dots.

Discrimination sensitivity (d′) was computed for each participant as the difference

between the z-score of correct recognition and false recognition. In Experiment 1, d′

scores were not significantly different for verbal icons and auditory icons (t14 = 0.17, p =

0.87, Cohen′s d = 0.04), respectively 3.82 ± 1.15 and 3.78 ± 1.10. The null-hypothesis

was favored by a Bayes Factor of 3.7. In Experiment 2, d′ scores were not significantly

different for verbal icons and auditory icons (t13 = 1.53, p = 0.15, Cohen′s d = 0.41),

respectively 2.45± 1.44 and 2.17± 1.12. The null-hypothesis was marginally favored by

a Bayes Factor of 1.4.

Response times were calculated for all correct responses that occurred within 2500

ms of notification onset, for each participant. In Experiment 1, participants were not

significantly faster in responding to verbal commands compared to auditory icons (t14 =

0.68, p = 0.51, Cohen′s d = 0.18), respectively 1070± 131 and 1094± 182 ms. The null-

hypothesis was favored by a Bayes Factor of 3.1. In Experiment 2, participants were

not significantly faster in responding to verbal commands compared to auditory icons
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(t13 = 0.46, p = 0.65, Cohen′s d = 0.12), respectively 1236± 101 and 1251± 156 ms. The

null-hypothesis was favored by a Bayes Factor of 3.3.

To summarize, the current behavioral results do not argue in favor of either verbal

commands or auditory icons.

3.5.2 EEG/ERP responses

The EEG/ERP activity elicited by verbal commands and auditory icons were similar in

general morphology, latency, and scalp distribution in the anterior-posterior dimension

for both Experiments 1 and 2 (Figs. 6 and 7). Statistically significant differences were

revealed in the EEG/ERP activity generated by auditory icons and verbal commands in

the frontal as well as parietal electrodes2. The frontal group of electrodes are: F5, F3, F1,

Fz, F2, F4, F6, FC5, FC3, FC1, FC2, FC4, FC6. The parietal group of electrodes are: P5, P3,

P1, Pz, P2, P4, P6, CP5, CP3, CP1, CPz, CP2, CP4, CP6.

In Experiment 1, student participants showed significant differences in their EEG/ERP

responses to these notifications, even though the verbal commands were not presented

in their native language nor did they have contextual meaning. Specifically, the ampli-

tude of the P2 component (236− 304 ms; frontal electrodes) was significantly larger for

verbal commands than for auditory icons. This suggests that verbal commands were

more discriminable than auditory icons from presented sounds. The P3b amplitude

(512− 640 ms; parietal electrodes) was significantly larger for auditory icons than for

verbal commands. This suggests that auditory icons induced more context updating

than verbal commands did.

In Experiment 2, the professional truck drivers generated similar results as the naı̈ve

participants of Experiment 1. Similarly, verbal commands generated larger P2 compo-

nent deflections (212 − 352 ms; frontal electrodes) than auditory icons, and auditory

icons generated larger P3b deflections (412 − 624 ms) than verbal commands. How-

ever, EEG/ERP activity in the frontal electrodes revealed that auditory icons generated

larger N1 deflections (160− 212 ms) than verbal commands, and that verbal commands

generated larger P3a deflections (352− 468 ms) than auditory icons. Differences in N1

2 Electrode labels are in italics to distinguish them from ERP component labels.
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deflections suggest that auditory icons were more likely to be detected against the gen-

eral auditory background. Differences in P3a deflections suggest that verbal commands

were more likely than auditory icons to capture observer attention.

Figure 7: Experiment 2’s ERP responses (left) with scalp topography plots (right) of
statistically significant differences across time and electrodes respectively. Left: ERP
waveforms are averaged across the frontal (pink) and parietal (green) electrodes and de-
flections are labeled for N1, P2, P3a, and P3b. The shaded areas between the two wave-
forms indicate time-regions that are significantly different. Right: The scalp topogra-
phies show the EEG activity to verbal commands and auditory icons at time-ranges A
and B. Electrodes that are significantly different are represented by white dots.

3.6 discussion

The design of auditory displays faces the challenges of in-cooperating human percep-

tion to make notifications effective for their designed purpose (see Sect. 3.2 and 3.3).

Behavioral performance measures are limited in discriminating between notifications

for the various purposes that they might be designed for. Some notifications might be

designed for the purposes of being highly detectable while others might be designed to

communicate a given context or scenario. Performance measures, e.g., response times or

accuracy, do not discriminate for how the brain processes notifications for information.

To summarize, we evaluated verbal commands and auditory icons that were espe-

cially designed for in-vehicle information displays related to aspects of task management
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and context-updating in highly automated trucks (Fagerlönn et al., 2015; Krupenia et al.,

2014). We were motivated to do so according to the guidelines for auditory displays

(Nees and Walker, 2011), which states that auditory displays ought to be highly de-

tectable in terms of their physical properties (N1), support learned discrimination from

other target notifications (P2), have the potential for capturing attention (P3a), and com-

municate for its intended purpose (e.g., updating contextual working memory; P3b).

Experiment 1 tested naı̈ve students, as is often the case during design and prototyping

phases, and Experiment 2 tested professional truck drivers, as is often the case when

performing an evaluation and validation. Both types of notifications were effective and

did not significantly differ in terms of response times or accuracy. However, verbal

commands are more easily discriminable from other target notifications at an early per-

ceptual stage (i.e., larger P2 component), and auditory icons are more likely to update

contextual working memory (i.e., larger P3b). This is consistently true regardless of

testing environment or participant groups. In fact, discriminable and significant trends

in EEG/ERP waveforms are amplified in professional truck drivers. Professional truck

drivers also show a neural preference for verbal commands with regards to their de-

tection (N1) and attentional capture properties (P3a), which is presumably driven by a

familiarity with the given language.

Therefore, we advocate the use of both verbal commands and auditory icons. How-

ever, they should be employed according to the job that they are intended for. We

suggest that verbal commands should be employed in critical situations that require

immediate action while auditory icons seem more appropriate to notify the user of

non-urgent environmental updates. In the context of highly automated vehicles, verbal

commands should be used for time-critical situations that cannot afford ambiguity, such

as ‘low fuel’, while auditory icons might be better employed in indicating that driving

conditions are changing, such as the sound of a thunderstorm for inclement weather.
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3.6.1 Justification for the Current Interpretation

Our recommendations for using verbal commands and auditory icons for different pur-

poses are based on the following reasons, based on the EEG/ERP responses to these

auditory notifications. We do not address the performance results given that they are

shown to be equally effective in terms of discriminability and correct response times.

To begin, we do not emphasize the detectability of either notification types (in terms

of their physical properties). This is because the timing of N1s were identical in both

Experiments 1 and 2. Interestingly, the amplitude of N1 was larger for auditory icons in

Experiment 2. We believe that this reflects the larger variability of the spectral properties

of auditory icons relative to verbal commands, which renders it more detectable against

a richer (i.e., noisier) background. While this could be treated in favor of auditory icons,

we believe that the consistently larger amplitudes in P2 components for learned notifi-

cation discriminability across both experiments compensates for this minor advantage.

Next, the frontal P2 component is larger for verbal commands than for auditory

icons. P2 is believed to reflect learned object discrimination (Crowley and Colrain, 2004;

Novak et al., 1992; Garcı́a-Larrea et al., 1992). In this regard, P2’s amplitude indicates

the efficiency in recognizing the associated notification as a discriminable target, relative

to other target notifications. Trained discriminability is known to have an effect on P2

amplitude. For example, musicians who are trained to discriminate sounds for pitch and

timbre generate larger P2s than non-musicians, especially for musical sounds (Shahin

et al., 2003). In a similar fashion, most of us are highly trained to discriminate between

different verbal sounds for their intended meanings and associations. This reflects the

natural advantage rendered by the use of verbal commands over auditory icons. The

current findings suggest that even if certain auditory icons are determined by sound

designers as being highly discriminable and recognizable as targets, they should be

matched to the standards of verbal commands, which is quantitatively measurable in

terms of P2 component amplitude.

Thirdly, we believe that verbal commands capture attention more readily than au-

ditory icons. P3a amplitudes are indicative of an involuntary orienting response to
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surprising and novel events (Polich, 2007). While the larger P3a amplitude for verbal

commands was not significant in Experiment 1 (Figure 6), it was for the participants

of Experiment 2. We believe that this was because the professional truck drivers un-

derstood the verbal commands and their operational implications more readily, which

increased the potential of verbal commands’s in capturing attention (Figure 7).

Last, but not least, the P3b component reflects the updating of one’s mental repre-

sentation of relevant information (Donchin and Coles, 1988). P3b amplitudes are larger

when a task-relevant event occurs that is different from one’s expectation. For this

reason, it is believed to underlie context-updating (Polich, 2007). Related to this, P3b

amplitudes have also been used to evaluate for working memory load or mental work-

load (Brouwer et al., 2012). Larger P3b are associated with low mental workload and

smaller P3b, with high mental workload. In the current context, this would suggest that

auditory icons are more memorable and result in stronger context-updating than verbal

commands, in a way that requires significantly less mental effort.

Auditory displays are designed to capture attention and to clearly communicate

events. On the one hand, notifications that are readily recognized as task-relevant tar-

gets and capture attention are necessary for urgent events. On the other hand, noti-

fications to indicate changing circumstances are also required to assist in updating a

user’s situational awareness. The current EEG/ERP results indicate that verbal com-

mands are more discriminable and better at capturing attention than auditory icons.

This suggests that verbal commands should be used in critical situations where quick

action is required. Previous research based on behavioral results are in agreement with

our conclusion. For example, verbal notifications are claimed to be especially effective

in stressful situations because speech is processed automatically (Graham, 1999). The

current EEG/ERP results also suggest that auditory icons result in less effortful context-

updating than verbal commands. Hence, auditory icons appear to be more suitable in

communicating environmental circumstances that are less urgent. Edworthy and Hards

(1999); Keller and Stevens (2004) have suggested using auditory icons as notifications

that inform and advise about background events. Their recommendation based on be-

havioral results agrees with our current findings. It is worth noting that auditory icons

are also believed to produce higher compliance levels than verbal commands, if they
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are understood in the first place (Edworthy, 1994). In conclusion, our results advocate

that different types of notification should be designed in accordance to their intended

purpose. This agrees with previous findings that, until now, have been mixed due to the

imprecision of behavioral results in discriminating for how these notifications might be

processed by the brain.

3.6.2 Limitations of the Current Study

One might argue that we only observe the changes in the ERPs because the neural

origins of auditory icons and verbal commands are possibly oriented differently. This

is a known limitation of ERP analysis, namely that it has limited spatial resolution for

localizing brain regions that give rise to detected activity. However, this line of argument

is unlikely. Previous work that relied on neuroimaging with better spatial resolution (i.e.,

fMRI) have demonstrated that words and object sounds involve the same neural region

for processing information content (Dick et al., 2007). In addition, verbal commands and

auditory icons produce equivalent scalp topographies (Cummings et al., 2006), which

we have also observed in the current experimental paradigm. Therefore, it is unlikely

that we observed the current results because verbal commands and auditory icons were

not processed by identical neural regions.

The differences between the participant groups of Experiments 1 and 2 were in-

tended to reflect the different stages of notification development, namely design and

prototyping (Experiment 1) and validation (Experiment 2). Nonetheless, some differ-

ences between the participant groups might be of concern. In particular, the student

volunteers in Experiment 1 were not proficient in the verbal commands. In spite of this,

we note that their brain responses to verbal commands and auditory icons replicated

in Experiment 2, which employed truck drivers. One reason is that the native language

of Experiment 1’s participants was highly similar to Experiment 2’s participants. An-

other reason is that the current task focused on the participants’ ability to recognize

notifications and to respond appropriately, regardless of the extent to which they under-

stood the implications of the notifications. Professional truck drivers who understood
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the language and the implications of the notifications showed stronger neural discrimi-

nations between verbal commands and auditory icons. Nonetheless, we can argue that

the trends observed in Experiment 1 are likely to be generalizable trends while those in

Experiment 2 are cultural and profession specific. The current study does not directly

compare the two participant groups for their discrimination ability of the given sounds.

Therefore, we do not make any inferences concerning either group’s proficiency in dis-

criminating the notifications from one another. The focus of this work is in evaluating

how verbal commands and auditory icons are responded to at the level of information

processing (i.e., brain responses).

3.7 conclusion and future work

Taken together, the current work contributes by showing that auditory notifications can

be evaluated and functionally discriminated for how they are processed by the brain

for information. This has implications for the operational context as well as design.

Choices for which notifications to use for which purpose can be based not only in terms

of response times and discrimination accuracy, which is not necessarily the operational

objective, but in terms of how the notifications are: (1) detected against the auditory

scene, (2) discriminated against other notification targets, (3) likely to capture attention,

and (4) capable of updating contextual working memory.

To date, most studies have questioned whether verbal commands or auditory icons

serve better as notifications, namely in terms of how well they elicit a speeded and accu-

rate response. The current findings suggest that this question, while well-intentioned, is

misplaced. Our results demonstrate that verbal commands and auditory icons have dif-

ferent qualities. While verbal commands are better discriminated against other notifica-

tions, auditory icons can update contextual working memory with less effort. Practically

speaking, this suggests that verbal icons are ideally used for time-critical information

where there is no leeway for ambiguity, e.g., collision warnings. Meanwhile, auditory

icons are likely to be more effective in communicating contextual information, such as

entry into a poorly maintained road section or changing weather conditions. In other
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words, verbal commands and auditory icons should be used as complementary (and not

competing) notifications.

Previous research has recommended using auditory icons to notify users of environ-

mental events (Edworthy and Hards, 1999; Keller and Stevens, 2004). More specifically,

auditory icons have been suggested to enhance situational awareness (Adcock and Bar-

rass, 2004; Kazem et al., 2003). For example, a walking sound can more effectively

indicate a nearing pedestrian. In addition, auditory icons might be favored because it

is believed that they can be processed in parallel to other auditory events (Adcock and

Barrass, 2004). These findings so far converge with our current results and interpreta-

tion. Nonetheless, there are works that do not. For example, contrary to our current

believe, that verbal commands capture attention, some work have shown that certain

auditory icons (i.e., car horn) result in significantly faster response times (e.g., Graham,

1999). We might account for this by the fact that some auditory icons are overlearned to

indicate danger. It should be noted that verbal processing is known to differ for differ-

ent word classes (i.e., verbs, nouns; Pulvermüller, 1999; Szekely et al., 2005). The current

study only uses nouns for verbal commands and, thus, future studies should verify

whether verbal commands attract attention preferentially for all word classes, relative to

auditory icons. In this work, we present EEG/ERP evidence that discriminates for how

auditory icons and verbal commands are processed by the brain. Nonetheless, we do

not doubt that nuances in how auditory notifications are engineered could ultimately

render an auditory icon attention-grabbing and/or a verbal command more suited for

communicating context. Our current results contribute by providing a starting point for

understanding what type of sounds ought to be employed for which purposes, bearing

in mind the brain’s likely response to them.

The participants in Experiment 1 possessed neither a language proficiency for the

verbal commands nor an expert understanding of the operational tasks that the noti-

fications indicated. Therefore, the EEG/ERP differences (i.e., P2, P3b) found between

verbal commands and auditory icons can be considered as general differences between

the two notification classes. In contrast, Experiment 2 was performed on professional

truck drivers in a highly realistic test environment. A comparison between the two

experiments reveals that these differences in brain responses scale with realism and
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user proficiency. Thus, the current approach of evaluating notification designs on the

basis of brain responses is robust, even when behavioral responses do not differ. No-

tifications that are first designed in sterile lab environments could also be evaluated

for the EEG/ERP responses that they elicit. This would narrow down the candidates

for deployment and validation in high fidelity simulation environments or field-testing.

Besides this, EEG/ERP methods could also be used to discriminate between different

instantiation of the same target notification. One example would be to determine the

preferability of semantically comparable verbal commands, such as tank or fuel.

To conclude, the current work suggests that verbal commands and auditory icons

serve different purposes, at least from the standpoint of how they are processed by the

brain. Thus, evaluations that directly compare them in terms of performance measures

might not be appropriate. This might also explain the mixed evidence from previous

studies in support of either auditory notifications. The growing accessibility of brain

recording methods (i.e., EEG) mean that the current approach can be used to support

finer functional discriminations for notifications and can be effectively deployed, even

in challenging deployment scenarios such as high fidelity truck simulators.
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4
T E M P O R A L D Y N A M I C S O F A U D I T O RY L O O M I N G C U E S

This chapter has been reproduced from an article that was submitted for publication:

Glatz, C. and Chuang, L. L. (2018). The time course of auditory looming cues in redi-

recting visuo-spatial attention.

4.1 abstract

By orienting attention, auditory cues can improve the discrimination of spatially congru-

ent visual targets. Looming sounds that increase in intensity are processed preferentially

by the brain. Thus, we investigated whether auditory looming cues can orient visuo-

spatial attention more effectively than static and receding sounds. Specifically, different

auditory cues could redirect attention away from a continuous central visuo-motor track-

ing task to peripheral visual targets that appeared occasionally. To investigate the time

course of crossmodal cuing, Experiment 1 presented visual targets at different time-

points across a 500 ms auditory cues presentation. No benefits were found for simul-

taneous audio-visual cue-target presentation. The largest crossmodal benefit occurred

at early cue-target asynchrony onsets (i.e., CTOA=250 ms), regardless of auditory cue

type, which diminished at CTOA=500 ms for static and receding cues. However, au-

ditory looming cues showed a sustained cuing benefit at CTOA=500 ms. Experiment 2

showed that this late auditory looming cue benefit was independent of the cues intensity

when the visual target appeared. Thus, we conclude that the sustained benefit through-

out an auditory looming cues presentation is due to its increasing intensity profile. The

neural basis for this benefit and its ecological implications are discussed.
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4.2 introduction

In the real world, we rarely perform a single task without being interrupted. For exam-

ple, driving a car requires us to concentrate on the road ahead while remaining alert to

events in our visual periphery, such as the sudden appearance of a jaywalking pedes-

trian. Cues can orient our attention to the spatial location of a congruent target that

appears thereafter, resulting in a cuing benefit in terms of more accurate target discrim-

ination and/or faster correct response times (Müller and Rabbitt, 1989; Posner et al.,

1980; Posner, 1980; Eriksen and Hoffman, 1972; Egly and Homa, 1991; Henderson and

Macquistan, 1993). Cuing benefits can be intramodal (i.e., visual cues and visual targets;

Posner, 1978; Egeth and Yantis, 1997; Pashler, 1998) as well as crossmodal — for exam-

ple, but not exclusive, to spatially congruent auditory cues and visual targets (Driver

and Spence, 1998; Spence and Driver, 2004). It is well-established that auditory cues

can orient attention so as to enhance processing of spatially congruent visual targets

(McDonald et al., 2000; Lee and Spence, 2015; Ho and Spence, 2005). In this study, we

investigated whether an auditory cue that increases with intensity over time (i.e., an

auditory looming cue) induced cuing benefits to visuo-spatial attention, superior to a

static auditory cue. We report that auditory looming cues are especially effective in

redirecting spatial attention from a continuous central manual tracking task to an occa-

sionally occurring peripheral discrimination task. Interestingly, we find that this benefit

only manifests itself at later cue-target onset asynchronies (CTOA; i.e., 500 ms). This

introduction focuses on the motivation to investigate auditory looming cues’ influence

on visual spatial attention.

Objects appear to approach us when they expand visually or when they get louder

with time. Such objects, termed looming, are claimed to be especially salient because they

could signal imminent threats. For example, visual looming objects induced involun-

tary fear and avoidance responses in mice (Yilmaz and Meister, 2013), rhesus monkeys

(Schiff et al., 1962), and human infants (Ball and Tronick, 1971), which suggests reflex-

ive mechanism to looming stimuli. The auditory equivalent, namely looming sounds

with rising intensities, have also been associated with preferential processing and alert-
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ing responses. Looming sounds with rising intensities are often perceived as changing

more compared to equivalent receding sounds with falling intensities (Neuhoff, 1998;

Bach et al., 2008; Neuhoff, 2001). Also, looming sounds elicit larger skin conductance

responses (Bach et al., 2009) and amygdala activity (Bach et al., 2008) than receding

sounds. Finally, looming sounds are associated with greater activity in the auditory

cortex, as well as in neural networks related to attention and spatial processing (Seifritz

et al., 2002; Maier and Ghazanfar, 2007; Bach et al., 2015). Taken together, it is generally

agreed that looming sounds are salient auditory stimuli that increase phasic alertness,

presumably because they communicate approaching threats (Neuhoff, 2001).

The saliency of looming sounds could also influence visual perception. For exam-

ple, static visual targets are perceived as larger or brighter than they really are, when

accompanied by looming sounds (Sutherland et al., 2014). In a more realistic setting,

drivers braked earlier if a potential head-on collision was accompanied with a looming

sound, relative to a static auditory warning (Gray, 2011). More interestingly, auditory

looming stimuli can induce excitation in visual cortical regions for low-level processing

(Romei et al., 2009; Cappe et al., 2012). These interactions are often discussed in terms of

multisensory integration (Cappe et al., 2012, 2009). Nonetheless, there is some evidence

that looming sounds can also exert a preferential bias on visual spatial attention. When

presented in only one ear, a looming sound can increase tilt discrimination sensitivity

in the congruent visual hemifield relative to the opposing hemifield, for an object that is

presented simultaneously (Leo et al., 2011). This raises the question: What is the role (if

any) of a looming sound in reorienting visual spatial attention?

Salient events (e.g., abrupt onsets; Yantis and Jonides, 1990) can attract the rapid re-

deployment of spatial attention to themselves. For example, targets in a visual search

array benefit from faster responses if they shared the same location as a preceding visual

looming cue that increased in size, compared to if the cue decreased in size (Franconeri

and Simons, 2003). Interestingly, the reorienting of attention by salient cues is extremely

difficult to ignore (Cheal et al., 1991; Jonides, 1981; Giordano et al., 2009; Nakayama

and Mackeben, 1989; Yantis and Jonides, 1990). Furthermore, this involuntary shift of

attention can occur even when doing so impairs performance (Yeshurun and Carrasco,

1998; Yeshurun and Levy, 2003). Although salient events result in early spatial atten-
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tion reorienting, this shift is transient and decays rapidly (Cheal et al., 1991; Müller and

Rabbitt, 1989; Nakayama and Mackeben, 1989). In fact, the cuing benefit of transient at-

tention reverses at long CTOAs, whereby RTs become longer at the previously attended

location compared to unattended locations—an effect termed Inhibition of Return (IOR;

Posner and Cohen, 1984; Posner et al., 1985) that is postulated to prevent re-inspection of

previously explored locations and, hence, optimize visual search (Klein, 2000; Lupianez

et al., 2006). Transient attention can be cued crossmodally, whereby auditory (Spence

and Driver, 1994) and tactile (Spence and McGlone, 2001) cues can bias spatial attention

toward spatially congruent regions of the visual field (see reviews Spence et al., 2004;

Driver and Spence, 1998). Given the established saliency of looming sounds, it is highly

plausible that looming sounds can serve as transient cues, which could have given rise

to the effects reported by Leo and colleagues (Leo et al., 2011).

To sum up, looming objects are salient events that are preferentially processed by the

perceptual system. Multisensory research suggests that looming sounds can enhance the

perception of visual targets by exciting activity in the visual cortex, presumably because

they signal relevance or threat (Romei et al., 2009). In agreement, peripherally presented

looming sounds have been reported to enhance visual processing in the corresponding

hemifield, relative to the opposite hemifield (Leo et al., 2011). Given these findings, it

is surprising that auditory looming cues are rarely considered in terms of their ability

to capture and reorient visual spatial attention. The current study investigates whether

auditory looming cues might induce a crossmodal cuing benefit for spatial orienting that

is different from equivalent auditory cues (i.e., static and receding intensity sounds). If

salient looming sounds exert a strong influence on reorienting transient attention, cuing

benefits ought to be larger at short CTOAs (i.e., 250 ms) and be smaller at long CTOAs

(i.e., 500 ms) compared to other equivalent cues. Besides this, simultaneously presented

auditory looming sounds at 0 ms CTOAs could enhance visual processing, independent

of cuing benefits, given that they are known to influence early visual processing (Romei

et al., 2009; Cappe et al., 2012). The results of this study indicate that neither predictions

are true.

Experiment 1 varied the CTOAs between different auditory cues and the visual target

of a peripheral tilt-discrimination task. It demonstrated large and comparable cuing
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benefits at 250 ms regardless of auditory cues, which greatly decreased with larger

CTOAs of 500 ms for static and receding cues but less so for looming cues. Given that

this could have resulted from the intensity differences between the auditory cues at 500

ms, Experiment 2 manipulated the final intensity levels of static and looming cues and

compared their cuing benefits at a fixed CTOA of 500 ms. Experiment 2 verified that the

cuing benefit of auditory looming cues, unlike auditory static cues, was independent of

their intensity when the visual target appeared. Two key aspects set the current study

apart from previous research. Unlike most studies on spatial orienting, we employed a

dual-task paradigm that required participants to perform a central manual tracking task

at all times. In other words, a sustained diversion of spatial attention away from the

central location comes at a cost, which is presumably larger than if participants were

merely requested to maintain central fixation. These differences between the current

study and previous studies on looming sounds are discussed to appreciate the role of

looming sounds on redirecting visuo-spatial attention.

4.3 experiment 1 : do auditory looming sounds enhance peripheral tilt-

discrimination performance across its presented duration?

4.3.1 Results and Discussion

Performance in the peripheral tilt-discrimination task was operationalized in terms of

the time that a participant took to respond correctly from the time of target appearance

(RTs). To compensate for positive skews in RT measures (Ratcliff, 1993), medians RTs

were calculated for each experimental condition. This data is presented in Figure 8.

There is a general pattern of cuing benefits, irrespective of auditory cue types, that peaks

for visual targets that appear 250 ms after the onset of the auditory cue and diminish for

those that appear 500 ms after cue onset. Interestingly, there appears to be no benefit for

the discrimination of visual targets that appear simultaneously with the auditory cues.

The median RTs were submitted to repeated-measure ANOVAs (JASP Team, 2018,

see Supplementary Material) for the factors of Auditory Cue (none, looming, receding,
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static) and CTOA (0, 250, 500 ms). There was significant interaction between the fac-

tors of Auditory Cue and CTOA (F(6, 84) = 13.383, p < 0.001, ω2 = 0.449) as well as

for both main effects (Auditory Cue: F(3, 42) = 20.553, p < 0.001, ω2 = 0.560; CTOA:

F(1.374, 19.242) = 9.155, p = 0.004, ω2 = 0.345). To interpret the interaction, we per-

formed separate one-way ANOVAs for the factor of CTOA for each auditory cue con-

dition. With the exception of the ‘none’ condition, all conditions returned a significant

main effect for CTOA. For auditory static cues, significantly faster RTs were found at a

CTOA of 250 ms, compared to 0 ms (t(14) = 4.746, pbon f < 0.001, d = 1.226) and 500

ms (t(14) = 2.798, pbon f = 0.028, d = 0.722). Auditory receding cues showed a similar

pattern of faster RTs at a CTOA of 250 ms, compared to 0 ms (t(14) = 5.152, pbon f <

0.001, d = 1.330) and 500 ms (t(14) = 4.354, pbon f < 0.001, d = 1.124). The RTs be-

tween CTOAs of 0 ms and 500 ms neither differed for auditory static cues (t(14) =

1.949, pbon f = 0.184, d = 0.503) nor auditory receding cues (t(14) = 0.798, pbon f =

1.000, d = 0.206). In contrast, auditory looming cues showed a different pattern of

RTs across CTOA levels. Compared to a CTOA of 0 ms, RTs were significantly faster

at both CTOAs of 250 ms (t(14) = 4.471, pbon f < 0.001, d = 1.154) and 500 ms (t(14) =

2.971, pbon f = 0.018, d = 0.767). Interestingly, RTs did not differ significantly between

CTOAs of 250 ms and 500 ms (t(14) = 1.500, pbon f = 0.434, d = 0.387).

Discrimination sensitivity (d′; Macmillan and Creelman, 1991) were submitted to the

same repeated measures ANOVA to determine if there were speed-accuracy tradeoffs

across the cued conditions. There were no significant main effects for Auditory Cue

(F(3, 42) = 0.304, p = 0.823, ω2 = 0.000) and CTOA (F(2, 28) = 1.023, p = 0.372, ω2 =

0.002). There was also no significant interaction for Auditory Cue and CTOA (F(6, 84) =

0.739, p = 0.620, ω2 = 0.000).

The root-mean-squared-error (RMSE) of manual tracking during auditory cue pre-

sentation was also evaluated to determine if the cues impaired central task perfor-

mance. There was no significant main effects of Auditory Cue (F(3, 42) = 0.938, p =

0.431, ω2 = 0.000), CTOA (F(2, 28) = 0.533, p = 0.593, ω2 = 0.000), or their interaction

(F(6, 84) = 1.393, p = 0.227, ω2 = 0.025).

The results of Experiment 1 reveal that auditory cues can induce a crossmodal reori-

enting of spatial attention that result in faster tilt-discriminations of peripheral targets.
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Figure 8: Interaction of Auditory Cue and CTOA. Cued reaction times were fastest for the
CTOA level of 250 ms, relative to the simultaneous presentation (0 ms) of cue and target.
This reaction time benefit decreases at 500 ms, particularly for static and receding cues.
Error bars represent 95% confidence intervals.

In a dual-task paradigm with a central task that demands attention continuously, this

manifests itself as a response time benefit, with no influence on discrimination sensi-

tivity and at no noticeable cost to central task performance. Generally, this crossmodal

benefit is transient. It peaks when the visual targets appear shortly after auditory cue

onset at a CTOA of 250 ms and diminishes with extended cue presentation at CTOA 500

ms. Contrary to our expectations, auditory looming cues did not exhibit cuing benefits

that were stronger to either the static or receding cue. However, the cuing benefits of

auditory looming cues do not diminish as quickly as static and receding cues. There

continued to be a cuing benefit for auditory looming cues at a CTOA of 500 ms that did

not significantly differ from the benefit observed at a CTOA of 250 ms. This persistent

benefit could be due to the larger intensity of the auditory looming cue when the visual

target appears. To investigate this, we performed a follow-up experiment that controlled

for intensity levels.
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4.4 experiment 2 : can the sustained performance benefit of an audi-

tory looming sound at late ctoas be attributed to its high inten-

sity when the visual target appears?

In Experiment 1, auditory looming cues demonstrated a cuing benefit that was apparent

even at the end of their presentation. In contrast, the cuing benefit of auditory static and

receding cues is significantly diminished at the same time point. One reason for this

difference could have been the higher intensity level of the auditory looming cue when

the visual target appeared. To control for intensity levels, we introduced two additional

auditory cues in Experiment 2. A loud-static cue that had the same intensity through

its presentation as the offset intensity of the original looming cue and a soft-looming cue

that had the same offset intensity of the original static cue. The original sounds were

labeled loud-looming and soft-static in Experiment 2.

4.4.1 Results and Discussion

To begin, we performed one-tailed paired samples t-tests (α = 0.05) and confirmed that

all auditory cues induced a cuing benefit on visual targets (range of means=664–688 ms),

compared to instances when targets were not preceded by an auditory cue (mean=736

ms; SE=79). Figure 9 summarizes the RTs across the conditions that presented an audi-

tory cue. Auditory looming cues appear to induce a cuing benefit that does not change

with intensity levels, while a loud-static cue induces a larger cuing benefit than a soft-

static cue.

The median RTs of Experiment 2 (Figure 9) were submitted to a repeated-measures

ANOVA for the factors of Auditory Cue (static, looming) and Intensity (soft, loud). There

were no significant main effects of Auditory Cue (F(1, 14) = 0.230, p = 0.639, ω2 = 0.000)

and Intensity (F(1, 14) = 1.486, p = 0.243, ω2 = 0.029). More importantly, this analysis

revealed a significant interaction (F(1, 14) = 7.305, p = 0.017, ω2 = 0.283), confirming

our interpretation of the cuing benefits of the different auditory cues.
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The soft-static cues and loud-looming cues were respectively equivalent to the static

and looming cues employed in Experiment 1. With two-tailed paired samples t-tests, we

found a significant difference between the cuing benefits of soft-static and soft-looming

(t(14) = 2.220, p = 0.043, d = 0.573), and no significant difference between loud-looming

and loud-static cues (t(14) = 1.156, p = 0.267, d = 0.298). From this, we inferred that

auditory looming cues with a lower intensity would have continued to generate the

sustained cuing benefit across different CTOAs, as observed in Experiment 1. In contrast,

the cuing benefit of static cues at a CTOA of 500 ms can only be increased by raising

their intensity levels.

The same analyses were performed on d′ scores. Paired samples t-tests confirmed

that none of the auditory cues improved discrimination sensitivity (range of means=1.680–

1.781) relative to uncued trials (mean=1.653, SE=0.206). The ANOVA revealed no signif-

icant main effects and interactions for the factors of Auditory Cue and Intensity.

Similarly, we analyzed the RMSE on the visuo-motor tracking task to check for inter-

ference from auditory cues. Paired samples t-tests confirmed that none of the auditory

cues significantly reduced central task performance (range of means=1.374–1.438), rel-

ative to comparable periods when no cue was presented (mean=1.407, SE=0.082). The

ANOVA revealed no significant main effects and interactions for the factors of Auditory

Cue and Intensity.
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Figure 9: Interaction of Auditory Cue and Intensity. Median RTs of looming cues do not
vary with Intensity levels. In contrast, loud static cues induce faster RTs than soft static
cues. Error bars represent 95% confidence intervals.
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To summarize, we found that auditory looming cues were equally effective regard-

less of their intensity levels at a late CTOA of 500 ms. Thus, the pattern of cuing benefit

observed in Experiment 1 is unlikely to have resulted from the cue’s intensity when the

visual target appeared.

4.5 discussion

Looming sounds are believed to be intrinsically salient (Neuhoff, 1998; Bach et al., 2009;

Neuhoff, 2001). From this, we might expect them to operate optimally as transient cues,

which involuntary capture attention to themselves and improve the discrimination of

spatially congruent targets. Specifically, we expected a reflexive pattern of cuing benefit

that is transient and diminishes with time (Müller and Rabbitt, 1989; Hein et al., 2006;

Cheal et al., 1991; Nakayama and Mackeben, 1989). This pattern is verified with all

auditory cues, regardless of sound type. We observed a general crossmodal benefit

of all auditory cues, which hasten the accurate discrimination of a spatially congruent

target that subsequently follows (i.e., 250 ms). However, we also found that auditory

looming cues exert a stronger crossmodal influence on visual attention reorienting than

static or receding cues, which only manifested at a later CTOA (i.e., 500 ms). We found

that an auditory looming cue distinguishes itself by sustaining a large cuing benefit

throughout its duration. In contrast, the crossmodal benefit of auditory receding and

static cues is substantially diminished towards the end of their presentation (i.e., 500

ms CTOA). The follow-up experiment confirmed that this characteristic of an auditory

looming cue’s influence could not be directly attributed to the looming cue’s intensity

when the visual target appears; a soft looming cue sustained a cuing benefit for its entire

duration as well as a loud looming cue.

This study was motivated to examine visual attention reorienting throughout the

time course of an auditory cue. To do so, we investigated performance benefits at differ-

ent time-points of the auditory cue’s presentation as well as ensured that participants

were continuously occupied with a central visuo-motor tracking task. In this regard,

our experiment design differs from previous work that have similarly addressed the
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crossmodal influence of looming sounds on visual processing. To begin, previous stud-

ies have typically presented a visual target simultaneously with the onset of a looming

sound (Leo et al., 2011; Cappe et al., 2009, 2012; Maier et al., 2004; Tyll et al., 2013) or

after a looming sound has been presented (Bach et al., 2009, 2008). The former paradigm

typically addressed supramodal influences of looming sounds on multisensory integra-

tion and the latter, aspects related to phasic alerting. Few studies (Leo et al., 2011) have

directly investigated how looming sounds could serve as crossmodal cues in reorient-

ing visual spatial attention. The current study is the first to outline the time course of

this influence. Looming sounds exert a sustained reorienting benefit throughout their

presentation while the crossmodal influence of comparable auditory cues wane with

time.

At first glance, our results might appear to differ from those reported by Leo and

colleagues (Leo et al., 2011). To recap, they reported that monoaural auditory looming

cues induce preferential bias in tilt-discrimination sensitivity of the visual hemifield that

is spatially congruent to the presentation ear, relative to the hemifield that is incongruent.

We only found response time benefits when the auditory cues preceded visual targets

and did not find a crossmodal benefit when auditory cues appeared simultaneously

with the visual targets (i.e., 0 ms CTOA). Several differences exist between the current

experiments and theirs. Critically, we sought to investigate how a crossmodal influence

of auditory cues on spatially congruent visual targets might operate throughout their

presentation. Therefore, we varied the CTOAs of auditory cues and peripheral visual

targets, without varying spatial congruency. In contrast, Leo et al. (2011) evaluated

the crossmodal influence of non-predictive sounds on simultaneously presented visual

targets, which were either spatially congruent or incongruent. It should be noted that

Leo et al. (2011) reported a significant interaction of sound type and spatial congruency,

but not a main effect of either factors. In other words, their results were similar to our

findings at 0 ms CTOA, namely that a looming sound or a spatially congruent sound

does not in itself facilitate responses to a simultaneously presented visual target in the

periphery—that is, not unless it is contrasted to performance in the opponent hemifield.

Therefore, our findings are consistent with those of Leo and colleagues (Leo et al., 2011).
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It was unexpected that we did not observe larger cuing benefits for looming sounds

at the early CTOA levels of 0 and 250 ms. This was predicted given the known saliency

of looming sounds. As mentioned previously, looming sounds induce larger skin con-

ductance responses (Bach et al., 2009), are responded to faster (Cappe et al., 2009; Mc-

Carthy and Olsen, 2017; Skarratt et al., 2009), preferentially activate the amygdala (Bach

et al., 2008) and the auditory cortex (Maier and Ghazanfar, 2007), and are subjectively

rated as being more arousing (Bach et al., 2009). This could result in a crossmodal

facilitation of visual processing, especially to stimuli that are spatially congruent and

simultaneously presented, as has been noted in research on multisensory integration

(Leo et al., 2011; Cappe et al., 2009, 2012; Maier et al., 2004; Tyll et al., 2013). One reason

for this could be that our visual targets were tuned to a high discrimination threshold

(i.e., 70%). Nonetheless, Leo and colleagues employed comparably tuned stimuli (i.e.,

75%) and even reported that discrimination sensitivity were further increased during

testing by the concurrent presentation of a spatially congruent looming sound. Thus,

we do not believe that our results reflect ceiling effects. Leo and colleagues (Leo et al.,

2011) explicitly emphasized response accuracy over speed (p. 196). Therefore, the per-

formance benefits that they reported could have been influenced by looming sounds at

any time-point after the onset of the accompanying sound, early or late. In contrast, our

experiment required participants to continuously perform a central visuo-motor track-

ing task that introduced a time cost to attending to a peripheral location. This implicitly

motivated participants to reorient their attention as quickly as possible but discouraged

sustaining attention away from the central task for too long.

We believe that the cuing benefits of auditory looming cues reflect their sustained in-

fluence on reorienting spatial attention. Auditory looming cues oblige the visual system

to continue paying attention to a region of the visual periphery that would otherwise

remain neglected, especially when attentional resources are demanded elsewhere. As

long as a sound increases in intensity, it is suggestive of an approaching object that

will soon appear even if it is not yet apparent. While intensity is a salient property of

sensory stimuli, its influence on attention is transient if it stays unchanged over time.

Electrophysiological research in non-human primates have shown that looming sounds

not only affect the primary auditory cortex, but also those areas that are involved in
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space recognition, auditory motion perception, as well as attention (Lu et al., 2001;

Maier and Ghazanfar, 2007). Similarly, fMRI studies have also implicated a network

of regions that are selective to looming sounds that are involved in the evaluation of

complex object motion (i.e., superior and middle temporal sulcus; Seifritz et al., 2002;

Bach et al., 2008). More recently, an MEG study have shown sustained neural activity in

the right temporo-occipito-parietal junction and bilateral inferior temporal gyrus, which

tracked the increasing intensity of looming sounds with long durations (i.e., 1600 ms).

This resulted in significant differences against the neural activity generated by falling

intensities of receding sounds, particularly at late periods (i.e., 900–1400 ms) after sound

onsets. More interesting, this regions are not considered to be part of the auditory cortex,

hence suggesting a supramodal influence of looming sounds on attention (Bach et al.,

2015). Sustained activity in these regions suggest that looming sounds exert a continu-

ous bottom-up influence on attention, as long as they continue to increase in intensity

and indicate the potential approach of a relevant object.

In conclusion, the current study reports that auditory looming cues exert a cross-

modal benefit on visual spatial attention that is sustained for its presentation duration.

This is achieved even though spatial attention is constantly in demand by a central man-

ual tracking task. The current results are believed to reflect a sustained vigilance during

the looming sound’s presentation and are potentially independent of its multisensory

facilitation of visual processing per se. This benefit is founded on the rising intensity of

the auditory looming cue and is independent of low-level characteristics (i.e., intensity)

that can also influence an involuntary but transient influence on spatial attention. After

all, the gentle prowl of a tiger can be as deadly as the clumsy stampede of cattle, but

only when they near us.
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4.6 methods

4.6.1 Participants

Thirty healthy volunteers participated in the current study (Experiment 1: 7 males, 8

females; mean age=26.67 years ± 4.78 s.d.; Experiment 2: 5 males, 10 females; mean

age=24.67 years ± 3.79 s.d.). All participants reported normal hearing, normal (or

corrected-to-normal) vision, and no history of neurological problems. They received

written instructions, gave informed signed consent, and were remunerated 8 Euros/hour

for their voluntary participation. The experimental procedure was approved by the

Ethics Council at the University Hospital Tuebingen and carried out in accordance with

their specified guidelines and regulations (see DOI 10.17605/OSF.IO/4WYGJ).

4.6.2 Design

Experiments 1 and 2 employed a full factorial repeated measures design. Experiment 1

had two independent variables with three levels each: (1) CTOA between an auditory

cue and the peripheral visual target (either 0, 250, or 500 ms), (2) the intensity profile

of the Auditory Cue (static, looming, and receding). Experiment 2 had two independent

variables with two levels each: (1) intensity profile of the Auditory Cue (static, looming),

(2) Intensity of the auditory cue (low, high). The CTOA in Experiment 2 was fixed at 500

ms. The primary dependent variable was the mean of the reciprocal response time for

correct responses to the peripheral target.

Every session consisted of several 4.5 mins blocks of continuous manual tracking

with 60 trials of a single-stimulus forced-choice (1AFC) peripheral tilt-discrimination

task. Experiment 1 consisted of three sessions (15 blocks each) performed over consec-

utive days. CTOA was fixed for each block and the presentation order of CTOA was

counterbalanced within sessions and across participants. Experiment 2 was conducted

in one session (i.e., 20 blocks) on a single day.
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4.6.3 Stimuli

For Experiment 1, the auditory cues were 400 Hz tones with triangular waveforms, cre-

ated using the MATLAB sawtooth function sampled at 44.1 kHz. Their duration was 500

ms and their intensity over time were shaped to assume one of three profiles: looming,

receding, or static. The looming sound was characterized by a dynamic increase from 30

to 75 dB SPL, as measured at the participants approximate head position. This change

in intensity could be described as an audio object that approaches at the speed of 29

m/s towards the observer, with a time-to-contact of 500 ms (Gray, 2011). The receding

sound was created by reversing the looming sound in time. The static sound had a

non-changing intensity that was the mean intensity level of the looming (and receding)

sound, i.e. 65 dB. To avoid clicking noise at sound on- and offsets, all sounds were

convolved with a trapezoid grating such that they had 5 ms ramps at the sound on- and

offset.

For Experiment 2, the static and looming sounds were modified to create versions

that ended with comparable low and high intensities. In Experiment 2, the original

looming sound was regarded as the loud-looming cue and the original static sound as

the soft-static cue. Accordingly, loud-static cue was the static sound with an adjusted in-

tensity that matched the loud-looming cue’s end-intensity of 75 dB, while a soft-looming

cue was a looming sound that ended with an intensity of the original static sound 65

dB. These intensity profiles are visualized in Figure 10B. All auditory stimuli can be

accessed at DOI 10.17605/OSF.IO/4WYGJ.

In both experiments, the peripheral visual targets were Gabor patches of 2 degrees

visual angle in diameter, with a spatial frequency of 3.1 cycles/degree and a contrast of

50% (background gray = 20.3 cd/m2, Gabor patch black = 1.3 cd/m2, Gabor patch white

38.3 cd/m2). They were always presented 9◦ to the left or right of the manually tracked

crosshair for 250 ms. A pre-testing adaptive procedure tuned the orientation tilts to

be 70% orientation discrimination threshold of each participant (mean threshold and

standard error for the left hemifield: 1.74◦ ± 0.27, and the right hemifield: 1.70◦ ± 0.21;

Levitt, 1971).
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A compensatory visuo-motor tracking task, presented in the center, had to be per-

formed continuously. A crosshair cursor comprising a vertical and horizontal line (0.70◦

long) was continuously and vertically displaced from a dotted horizontal reference line

(5.43◦ long), along the vertical screen center. Participants rejected this cursor displace-

ment to stabilize this cursor by deflecting a joystick forwards and backwards, which

controlled the cursors vertical velocity and acceleration with equal weighting. In the ab-

sence of manual inputs, the cursor displacement was controlled by a quasi-random refer-

ence signal that was a sinusoidal function comprised of a sum of ten, non-harmonically

related sine waves. This function had a variance of 1.62◦ (Nieuwenhuizen et al., 2013).

4.6.4 Apparatus

The experiment was controlled with custom-written software in MATLAB 8.2.0.701 (R2013b)

and Psychophysics Toolbox 3.0.12 (Brainard, 1997; Pelli, 1997; Kleiner et al., 2007). A

ViewPixx Screen (60.5 x 36.3 resolution; 120 Hz) presented all visual stimuli, at a fixed

distance of 45 cm from chin-rest. Sound presentation was controlled by an ASIO compat-

ible sound card (SoundBlaster ZxR; Creative Labs) and presented monophically through

either the left or right speaker of a pair of headphones (MDR-CD380; Sony). The right

and left arrow inputs of a standardized keyboard were used for collecting left and right

tilt discrimination responses respectively. A right-handed control stick (Hotas Warthog

Flight Stick) was used for the central manual tracking task.

4.6.5 Procedure

Prior to testing and after experiment briefing, participants performed five practice blocks

of manual tracking only, followed by an adaptive procedure on a 1AFC tilt-discrimination

task on peripheral visual targets (Levitt, 1971). The adaptive procedure determined the

tilt that corresponded to the participant’s 70% orientation discrimination threshold. Par-

ticipants fixated a static central cross through this adaptive procedure. To determine

individual thresholds, we employed a 1-up-2-down staircase procedure with six inter-
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leaved staircases, evenly divided for the left and right hemifields. The vertical tilt of

the Gabor stimuli had starting values of 0.0◦, 2.5◦, and 5.0◦ for three staircases per hemi-

field. Each staircase allowed for a maximum of 100 trials or terminated after 19 reversals,

whichever came first. The first four reversals had the respective step sizes of 1.0◦, 0.5◦,

0.25◦, and 0.1◦, which then remained constant for the rest of the adaptive procedure.

This was always performed in the first experimental session.

Upon completion, participants were allowed to perform the test blocks (Experiment

1: n=45; Experiment 2: n=20). Participants were required to perform two concurrent

tasks on every test block: (1) a compensatory manual tracking task on a central crosshair,

(2) a 1AFC tilt-discrimination task on peripheral visual targets. Mandatory 1.5 min rest

breaks were provided between blocks.

Figure 10: Experiment procedure and stimuli. (A) Four instances of trials of equal
probability that could require participants to perform tilt-discrimination on a peripheral
visual target (not drawn to scale for visibility). (B) Auditory cues used in Experiment
2, whereby the soft-static cue and loud-looming cue were the static and looming cue of
Experiment 1. (C) Visual targets could appear at the onset of the auditory cue or after
the onset.

In the compensatory tracking task, participants deflected the right-handed joystick

in either the forwards or backwards direction to their body in order to counteract

movements of the crosshair in either the upwards or downward direction respectively.
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The goal was to stabilize a central crosshair on a horizontal dotted line. In the tilt-

discrimination task, participants had to determine the tilt of peripheral targets when

they appeared on either the left or right side of the crosshair. They responded by using

their left index or ring finger to respectively indicate a left or right diagonal tilt. Partici-

pants were instructed to maintain fixation of the central crosshair of the manual tracking

task throughout the experiment.

Trials occurred every 2000 ms ± 1000 ms (uniform distribution) and presented either

an auditory cue only (A-X), a peripheral visual target only (X-V), an auditory cue fol-

lowed by a peripheral visual target (A-V), or neither cue nor target (X-X). This ensured

that the auditory cue was non-predictive of target appearance. When an auditory cue

was presented, they were always presented via the headphone (i.e., right/left) that was

on the same side as the upcoming visual target. When visual targets were presented,

they appeared equally often on the left and the right of the central visuo-motor tracking

task. In Experiment 1, they could occur at the onset of an auditory cue (if any), or 250

ms or 500 ms after the cue onset (see Figure 10C). In Experiment 2, visual targets always

appeared 500 ms after the auditory onset. A fixed duration of 2000 ms for keypress

responses always took place after a visual target was supposed to be presented. The

timelines of these four possible trials are illustrated in Figure 10A.

After completing the required number of test blocks, participants were debriefed on

the purpose of the experiment.
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5
N E U R A L C O R R E L AT E S F O R T H E A U D I T O RY C U E B E N E F I T

This chapter has been reproduced from an article that is in preparation for publication:

Glatz, C., Miyakoshi M., Bülthoff, H. H., and Chuang, L. L. (2018). rP280: An ERP

marker for the looming cue benefit and its underlying neural networks.

5.1 abstract

Previous work has demonstrated preferential processing of looming sounds in terms of

behavior as well as neural activity. While these results favor looming sounds as auditory

cues, surprisingly little work on the utility of auditory looming cues in shifting visuo-

spatial attention in dual-tasking has been done.

The current study used auditory looming and static cues to shift attention from a

central ongoing task to an occasional peripheral target. We found that auditory looming

cues bring about faster correct discrimination of peripheral visual targets than static cues.

Additionally, we identified an electrophysiological marker for this looming cue benefit

in shifting visuo-spatial attention, the rP280. Through source estimation analysis we

identified two neural networks that gave rise to the looming cue benefit. The posterior

network responded more to looming than static cues which was further amplified by

reduced inhibition for looming cues in the coexisting frontal network.

In summary, the current results suggest that the looming saliency extends from pref-

erential processing to auditory looming cue benefits. Looming sounds that precede a

target might be better cues than, for example, static sounds for shifting attention away

from an ongoing attention-capturing task.
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5.2 introduction

In the animal kingdom, it is often vital to one’s survival to be distracted. The appear-

ance of certain sensory information can readily indicate the approach of a predator (or

prey) that demand a time-critical disengagement from current activity (Tinbergen, 1951).

Some sensory events are more salient than others. In particular, it is well-established that

looming stimuli, namely visual or auditory events that increase in size or intensity, ben-

efit from preferential processing in a way that is evident in both behavior (e.g., Neuhoff,

1998; Leo et al., 2011; Schouten et al., 2011; Sutherland et al., 2014; Cecere et al., 2014) as

well as brain activity (e.g., Maier and Ghazanfar, 2007; Romei et al., 2009). Previously,

we reported that looming sounds distinguish themselves from other sounds, not by redi-

recting attention away from an ongoing central activity but by sustaining this redirected

attention for the duration of its presentation (Glatz and Chuang, 2018, under review).

In contrast, other comparable sounds redirected attention that diminished rapidly even

while they were still present. In this paper, we investigate the neural mechanisms that

could underlie this cuing benefit of auditory looming cues.

Looming sounds are perceived as especially salient because the rising intensity over

time signals an approaching object (Middlebrooks and Green, 1991; Guski, 1992) that

could pose a threat. For example, looming sounds are perceived as moving faster (i.e.,

change more in intensity) than receding sounds (departing object; Neuhoff, 1998, 2001;

Olsen and Stevens, 2010; Seifritz et al., 2002; Neuhoff, 2016). This bias in perception

results in the consistent underestimation of the time of arrival for looming sound sources

(Neuhoff et al., 2009, 2012; Riskind et al., 2014; Rosenblum et al., 1987, 1993; Schiff

and Oldak, 1990; Ashmead et al., 1995). That is, listeners perceive the looming sound

source closer than it actually is and, hence, anticipate an earlier than actual arrival. The

advantage of this anticipatory behavior has a potentially large gain, giving more time

than expected to prepare a confrontation or avoidance of the approaching object. Erring

on the side of caution and providing more preparation time also provides a margin

of safety. Interestingly, vulnerable individuals show a stronger looming bias, plausibly
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because they consider themselves in need of a larger margin of safety (Neuhoff et al.,

2012; Riskind et al., 2014; McGuire et al., 2016).

The simultaneous presentation of looming sounds with visual stimuli has been

shown to influence the visual processing (Leo et al., 2011; Schouten et al., 2011; Suther-

land et al., 2014). On a behavioral level, looming sounds were found to bias visual

stimuli such that static visual stimuli were judged as brighter and larger while depth-

ambiguous visual stimuli were perceived as facing the viewer (Sutherland et al., 2014;

Schouten et al., 2011). This could be because the approaching motion conveyed by the

looming sound might be remapped onto visual coordinates and, therefore, alter the

visual perception. On a neural level, looming sounds were found to enhanced visual

cortex excitability (Romei et al., 2009) but also preferentially activate neural regions for

multisensory integration of the looming property (Cappe et al., 2012).

In contrast, surprisingly little work has investigated looming sounds as cues to indi-

cate an approaching (visual) target. The beneficial effect for presenting visuals together

with looming sounds cannot be attributed to the looming property alone but might be

confounded by a multisensory benefit. Studies that presented a looming sound to cue

a visual stimulus have consistently found faster response times to the visual stimulus

when cued by an approaching compared to receding or static sound (Bach et al., 2009;

Burton, 2011; Ho et al., 2013; Glatz and Chuang, 2018, under review). The faster response

times to looming cued visual targets could be due to increased phasic arousal. However,

previous work has shown that looming sounds enhance attention that is location spe-

cific (Leo et al., 2011). This might be due to the fact that looming sounds communicate

the object’s approaching trajectory (Middlebrooks and Green, 1991; Guski, 1992). For

this reason, looming sounds might be especially well suited in directing visuo-spatial

attention to neglected locations in space. Directing attention in advance to the target’s

location might result in enhanced neural processing and, thus, improved performance.

All this evidence favors the looming sound as an auditory cue for directing visuo-

spatial attention. Previous work that supports this finding has focused on single task

effects. Although, these might not generalize to dual-task paradigms. Santangelo and

Spence (2007) demonstrated that increasing the demands of a primary task could elim-

inate spatial cuing effects in a secondary task. This suggests that the auditory looming
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cue benefit for visual targets cannot readily be transfered to dual-tasking, since it has

mainly been investigated in isolation without any distracting tasks. Research on visual

looming in dual-tasking has shown that looming objects capture and direct attention

away from an ongoing task to the visual looming objects (King et al., 1992; Franconeri

and Simons, 2003; Terry et al., 2008). If we assume that looming objects capture atten-

tion automatically in a stimulus-driven way, the responses to such approaching objects

should not be affected by cognitive load (Engström et al., 2017). Indeed, looming sounds

have been used effectively to indicate an impending frontal collision while driving. Gray

(2011)’s findings showed that participants braked significantly earlier when presented

a looming sound compared to comparable auditory warnings. Another instance that

supports the looming sound’s effectiveness in dual-task scenarios tested whether the

auditory looming bias in estimating arrival time was affected by the cognitive load im-

posed by another tasks (McGuire et al., 2016). Their results showed an even larger loom-

ing bias under high load, underestimating the time of arrival even more, than under

low cognitive load. This suggests that auditory looming cues can efficiently disengage

listeners from their current task and direct their attention to the looming object without

much effort. Despite these encouraging results, suggesting an auditory looming benefit

in dual-task, neither of the two experiments required a shift of spatial attention.

In the present study, we will demonstrate that a looming sound is an effective cross-

modal cue for reorienting visuo-spatial attention from a central ongoing task to an oc-

casional peripheral target. Furthermore, we identify the neural network that underlies

this looming benefit. Our experimental paradigm was explicitly designed to address

the two aforementioned research gaps. To begin, we ensured that participants’ attention

was always engaged in a central visuo-motor tracking task, as opposed to mere central

fixation. Peripheral visual targets were occasionally presented for identification that

could be preceded, not accompanied, by an auditory sound of static or looming inten-

sity. Thus, any benefit of looming sounds was due to crossmodal attentional cuing and

not multisensory salience. We recorded participants’ response times to identify visual

targets and expected faster responses when cued by a looming sound. Control analyses

were performed to ensure that facilitation in response times were not accompanied with
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eye-movements. We also analyzed the ERP response to visual stimuli and, from this,

identified the neural regions that could underlie this crossmodal looming cue benefit.

5.3 methods

This study compared looming and static auditory cues with different intensities for their

effectiveness in orienting attention to peripheral visual stimuli. The experiment was a

within-subject repeated measures design with the independent variables of Sound Type

(static, looming) and Intensity (soft, loud). The dependent variables used to evaluate the

auditory cues were response times, discrimination sensitivity, and ERP components.

5.3.1 Participants

Twenty healthy volunteers (mean age = 25.10 ± 3.81; 7 males) were recruited from a

subject data base. All participants reported normal or (corrected-to-normal) vision, no

known hearing deficits, and no known history of neurological problems. All participants

gave signed consent to written instructions and were remunerated 12 Euros/hour for

their voluntary participation. The experimental procedure was approved by the ethics

council of the University Hospital Tuebingen.

5.3.2 Stimuli

Central task

To ensure that participants’ attention was always engaged in the center, they had to

continuously perform a visuo-motor control task. For this, participants counteracted

the cursor displacement by deflecting the joystick forward and backward to stabilize the

cursor in the display’s center. The cursor for this compensatory manual tracking task

was 0.7◦ long and moved vertically about the display’s center which was depicted by a

dotted horizontal reference line (5.43◦ long). The manual manipulation of the joystick

controlled the cursor’s vertical velocity and acceleration with equal weighting. Without
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manual input, the cursor’s vertical position was determined by a quasi-random refer-

ence signal, which was comprised by a sum of ten non-harmonically related sinusoids.

The disturbance function had a variance of 1.62◦ and was adapted from Nieuwenhuizen

et al. (2013). The amplitude A(j), frequency ω(j), and phase φ(j) of these 10 sinusoids

are provided in Table 3. This task was presented on every block and lasted 4.5 min.

j 1 2 3 4 5 6 7 8 9 10

A(j) in deg 1.34 1.03 0.51 0.26 0.16 0.10 0.06 0.04 0.04 0.03

ω(j) in rad/s 0.39 0.83 1.75 2.83 3.94 5.43 7.73 10.52 13.12 17.33

φ(j) in rad 0.15 2.07 1.02 5.58 0.99 0.63 3.45 5.40 5.44 3.38

Table 3: Amplitude, frequency, and phase for 10 sinusoids constituting the reference
signal

Peripheral task

The auditory cues (duration: 500 ms) used were 400 Hz triangular waveforms, sampled

at 44.1 kHz. These sounds were presented with either a static or looming intensity

profile over time, at two levels of intensity (see Table 4). The loud looming sound had a

exponentially rising intensity profile (30-75 dB), signaling the time-to-contact, according

to Gray (2011). Two static intensity sounds were created to control for (1) the average

intensity of the loud looming sound (static soft, 65 dB) and (2) the end intensity of the

loud looming sound (static loud, 75 dB). The soft looming sound (20-65 dB) had the same

intensity profile as the loud looming sound but ended in the intensity of the soft static

sound. The sound pressure levels were measured with an audiometer at participants’

approximate head position. To avoid clicking noise at sound on- and offsets, all sounds

were multiplied by a trapezoid grating such that they had 5 ms ramps at the on- and

offset.

static looming
soft 65 - 65 20 - 65

loud 75 - 75 30 - 75

Table 4: Intensity in dB for the static and looming sounds with two intensity levels.

The visual stimuli were tilted Gabor patches of 2 degree visual angle in diameter,

with a spatial frequency of 3.1 cycles/degree and a contrast of 50% (background gray

= 20.3cd/m2, Gabor patch black = 1.3cd/m2, Gabor patch white 38.3cd/m2). They
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were presented at an eccentricity of 9 degrees visual angle for 250 ms. The tilt of the

Gabor patch was tuned individually to 70% orientation discrimination threshold of each

participant (see Section 5.3.4).

5.3.3 Apparatus

The experiment was conducted in a dark room which was insulated against external

sounds. A desktop display (ViewPixx Screen, 60.5 x 36.3 resolution; 120 Hz) was used

to present the visualization at a fixed distance of 45 cm from the participant, who was

in a chin-rest. Customized software (MATLAB 8.2.0.701, R2013b) and Psychophysics

Toolbox 3.0.12 (Brainard, 1997; Pelli, 1997; Kleiner et al., 2007) controlled the experiment

and data collection. Sound presentation was controlled by an ASIO 2.0 compatible

sound card (SoundBlaster ZxR; Creative Labs). The auditory stimuli were presented

via stereo headphones (MDR-CD380; Sony). Participants used a USB control side stick

(Hotas Warthog Flight Stick; Thrustmaster) for visuo-motor tracking task. Participants

used the left and right arrow keys of a standardized USB keyboard to indicate the Gabor

patch’s tilt.

5.3.4 Procedure

The experiment consisted of two sessions, conducted on separate days. The first ses-

sion included two additional parts. First, participants familiarized themselves with the

visuo-motor tracking task in 5 practice trials prior to data collection. Subsequently, par-

ticipants’ individual 70% correct orientation discrimination threshold was determined

by an adaptive 1-up-2-down staircase procedure (see Glatz and Chuang, 2018, under

review, for more details). The result of this visual-orientation threshold procedure deter-

mined the tilt of the Gabor patches for every participant individually (mean threshold

left hemifield: 1.62◦± 0.82 , right hemifield: 1.73◦± 0.76).

In both sessions, participants performed the same experiment that involved a con-

tinuous tracking task and an intermittent tilt discrimination task. To bring the cursor
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to the designated center of the screen, participants had to continuously move a joystick

forward and backward with their right hand. In the tilt discrimination task, participants

had to indicate the tilt direction of peripheral visual targets (i.e. Gabor patches) as fast

and accurately as possible, whenever they appeared. To respond, they had to press the

left arrow (left ring finger) for the anti-clockwise (left) tilt and the right arrow (left index

finger) for the clockwise (right) tilt, without moving their eyes from the cursor.

Each session consisted of 15 experimental blocks (4.5 min per block) separated by

mandatory 1.5 min breaks. Each block, contained 60 trials of the discrimination. One

of four equally probable trial types could be presented (see Figure 11): (1) trials that

presented an auditory cue were followed by a visual stimulus (AV), (2) trials presented

an auditory cue but no visual stimulus (AX), (3) trials presented a visual stimulus with-

out a preceding auditory cue (XV), (4) trials that presented neither auditory cue nor

visual stimulus (XX). Independent of the type, each trial was followed by a 2000 ms

response interval and trials were separated by an inter-trial-interval (ITI), randomly

sampled from a uniform time range of 1000-3000 ms. It is worth mentioning that having

these four conditions, the auditory cues were never predictive of a visual stimulus ap-

pearing. Nonetheless, in AV conditions the auditory cue (A) and the visual stimulus (V)

were always presented from the same side. Hence, A’s location was always predictive

of V’s location.

Following aspects were controlled: An equal number of auditory cues was presented

on AV and AX trials in random order. The visual stimulus’ tilt and position were pseudo-

randomized. That is, 50% of the visual stimuli were presented in the right periphery

of which 50% had a right and the other 50% a left tilt. The same applied to the 50%

presented in the left periphery.

5.3.5 EEG recording

Electroencephalography (EEG) recording were obtained from 59 active electrodes mounted

to the scalp using an elastic cap according to the international 10-20 system (ActiCap

System, Brain Products GmbH, Gilching, Germany). Horizontal and vertical electroocu-
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Figure 11: The trial sequence according to the condition. Trials were separated by an ITI
of 1000-3000 ms which was followed by a 500 ms interval where an auditory cue could
be presented. In the subsequent 250 ms a visual stimulus could be presented. Finally,
participants had 2000 ms to respond to a presented visual stimulus. The auditory and
visual stimulus were always presented from a congruent location. The presentation loca-
tion, as well as the tilt direction, were counterbalanced such that a left sound preceded
a left visual with left tilt as often as a left visual with a right tilt. Similarly, a right sound
preceded a right visual with left tilt as often as a right visual with a right tilt.

logram recordings were obtained from four additional electrodes placed at the right

and left canthi as well as above and below the left eye. All signals were recorded at a

sampling rate of 1000 Hz, online referenced to FCz and grounded to AFz. By applying

electrode gel to each electrode, we were able to ensure an impedance below 20 kOhm.

Each participant’s individual electrode positions were digitized using the CapTrak scan-

ner (Brain Products GmbH, Gilching, Germany). Experimental events, such as the visual

stimulus onset, were synchronized between EEG recording PC and experimental PC via

a parallel connection.
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5.3.6 EEG signal processing

Processing of the EEG signal was performed with EEGLAB v.14.0.0 (Delorme and Makeig,

2004) and ERPLAB v.6.1.3 (Lopez-Calderon and Luck, 2014) using MATLAB (8.2.0.701,

R2013b). First, every data set was preprocessed according to the following steps. The

data was downsampled to 250 Hz to reduce computational costs. Then, a high-pass

filter (cut-off = 0.5 Hz) was applied to the data to remove any slow drifts. 50 Hz electri-

cal noise from the environment contaminating the electrical brain activity was removed

using CleanLine, a plugin in EEGLAB. Using artifact subspace reconstruction, bad chan-

nels, such as channels with flat lines, were removed. After cleaning the data, offline

re-referencing to the common average reference was performed. Subsequently, the data

was submitted to the Adaptive Mixture Independent Component Analysis (AMICA, De-

lorme et al., 2012) which decomposes the electrical activity recorded at electrodes into

activity of independent components (ICs). Using a MNI Boundary Element Method

head model, ICs were fit to equivalent dipoles (Piazza et al., 2016). IC dipoles with a

residual variance larger than 15% and dipoles located outside the brain were excluded.

Based on the power spectrum, the remaining ICs of all participants were grouped into

30 clusters using k-means. These clusters were then inspected for non-cortical electri-

cal activity (e.g. eye-related activity, muscle-related activity, line noise) and unresolved

components. Non-cortical activity was identified based on the clusters’ power spectrum,

their dipole location, and their scalp topography. After removing this non-cortical ac-

tivity from the EEG data (see Chuang et al., 2017, for examples), the remaining cortical

activity was backprojected to the sensor level (electrodes). Finally, the data was epoched

by extracting time-windows (-500:1000 ms) around events (e.g., visual stimulus onset

and auditory cue offset), baselined to the 500 ms before the event and averaged across

all epochs for each specified condition.
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5.4 results

5.4.1 Behavioral performance

Participants’ performance in the discrimination was assessed by response times to cor-

rectly identified visual stimuli (RT) and discrimination sensitivity for visual stimuli (d′).

To calculate the discrimination sensitivity for visual stimuli, hits and false alarms for

the different conditions were assessed (Macmillan and Creelman, 1991). Tracking per-

formance was assessed by calculating the root-mean-squared-error (RMSE) between the

cursor’s deviation from the designated center across 250 ms during visual stimulus pre-

sentation.

The analysis of the behavioral data consists of two steps. First, we analyzed whether

cuing a visual target influenced the participants’ performance in one of the three mea-

sures. In a second step, we submitted the respective measurement data to a 2 x 2 x

2 repeated measurements analysis of variance (ANOVA) with the factors Sound Type

(static, looming), Intensity (soft, loud), and Session (1, 2).

influence of cuing First, we inspected whether the auditory cues improved dis-

crimination sensitivity and response times by comparing the trials where an auditory

cue preceded the visual stimulus to those were it did not. We found no significant dif-

ference for d′ across the two conditions (1-tailed, paired-sample t-test; t(19) = −.73, p =

.24, d = −.16) or tracking performance (1-tailed, paired-sample t-test; t(19) = .60, p =

.28, d = .13). However, participants responded significantly faster to the visual stimulus

when cued by a sound (1-tailed, paired-sample t-test; t(19) = 11.01, p < .001, d = 2.46).

To summarize, participants responded significantly faster to the visual discrimina-

tion task when there was a cue compared to when there was no auditory cue.

performance on cued trials We performed a separate 2 x 2 x 2 ANOVA for

each of the three metrics (RT, d′, RMSE).
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Figure 12: Behavioral performance for visual targets with and without a cue. The left
shows the statistically not significant difference for discrimination sensitivity after not
cued and cued visual targets. The middle shows the significantly faster correct response
times for cued vs. not cued visual targets. The right shows the tracking performance
during cued vs. not cued visual targets. Error bars display the 95% confidence intervals
of the effect.

For d′, we found no main effect of Sound Type (F(1, 19) = .26, p = .62, ω2 = .00)

and Session (F(1, 19) = 1.74, p = .20, ω2 = .03), but for Intensity (F(1, 19) = 16.17, p <

.001, ω2 = .42). Post-hoc analysis showed that discrimination sensitivity was improved

for loud auditory cues (t(19) = −4.02, p < .001). There were no significant interactions

[Sound Type x Intensity (F(1, 19) = .32, p = .58, ω2 = .00); Sound Type x Session (F(1, 19) =

.09, p = .77, ω2 = .00); Intensity x Session (F(1, 19) = 1.71, p = .21, ω2 = .03); Sound Type

x Intensity x Session (F(1, 19) = .65, p = .43, ω2 = .00)].

For RT, we found a main effect of Sound Type (F(1, 19) = 6.61, p = .02, ω2 = .21).

Post-hoc analysis showed that looming cues resulted in faster response times than

static cues (t(19) = 2.57, p = .02). There was no main effect of Intensity (F(1, 19) =

2.16, p = .16, ω2 = .05), but a main effect of Session (F(1, 19) = 9.37, p = .01, ω2 =

.29). Post-hoc analysis indicated that participants were faster in the second session

(t(19) = 3.06, p = .01). The only significant interaction was Intensity x Session (F(1, 19) =

5.19, p = .04, ω2 = .17). Post-hoc analysis showed that there was an effect of intensity

in the first session (t(19) = 2.38, p = .03, d = .53) but not in the second session (t(19) =

−.77, p = .45, d = −.17). No other interaction was significant [Sound Type x Intensity
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Figure 13: The influence of intensity on target discrimination sensitivity. Participants
were identified visual targets significantly better that were cued by loud sounds. Error
bars display the 95% confidence intervals of the main effect of intensity.

(F(1, 19) = .34, p = .57, ω2 = .00); Sound Type x Session (F(1, 19) = .03, p = .86, ω2 = .00);

Sound Type x Intensity x Session (F(1, 19) = .17, p = .68, ω2 = .00)].

For RMSE, we found no main effect of Sound Type (F(1, 19) = .11, p = .75, ω2 = .00)

or Intensity (F(1, 19) = .13, p = .73, ω2 = .00), but a main effect of Session (F(1, 19) =

2.16, p < .001, ω2 = .47). Post-hoc analysis showed that participants were better in the

manual control task in the second session than in the first (t(19) = 4.42, p < .001). Only

the three-way interaction (Sound Type x Intensity x Session) was significant (F(1, 19) =

7.01, p = .02, ω2 = .22). No other interaction was significant [Sound Type x Intensity

(F(1, 19) = .95, p = .34, ω2 = .00); Sound Type x Session (F(1, 19) = 1.00, p = .33, ω2 =

.00); Intensity x Session (F(1, 19) = .84, p = .37, ω2 = .00)].

To summarize, despite the fact that cues did not improve discrimination sensitivity,

comparing different cues’ effectiveness, d′ improved only with increased sound intensity.

Also tracking performance was not affected by sound type, however, it improved with

time. Response times were significantly faster to visual stimuli cued by a looming sound

independent of intensity. In addition, participants improved in the discrimination over
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Figure 14: Correct response times to visual targets. The results demonstrate the main
effect Sound Type and Session, as well as the interaction of Intensity x Session. Participants
were significantly faster for looming sounds and improved with experience. Louder
intensity initially also evoked faster response times but this effect diminished with time.
Error bars display the 95% confidence intervals of the interaction effect.

time which interacted with intensity such that loud sounds sped up response times in

the first session but not in the second session.

eye movements To ensure that participants only shifted covert and not over atten-

tion, we analyzed whether they moved their eyes to the visual target or the auditory

cue. We found that there was a main effect of Stimulus (auditory cue, visual target)

(F(1, 19) = 9.57, p = .01, ω2 = .29), a main effect of Sound Type (noSound, Constant Soft,

Constant Loud, Looming Soft, Looming Loud) (F(4, 76) = 4.98, p = .001, ω2 = .16), and

a significant interaction Sound Type x Stimulus (F(4, 76) = 3.67, p = .01, ω2 = .12). This

significant interaction can be explained by the fact that all visual targets preceded by

an auditory cue generated fewer eye movements than those visual stimuli that were not

cued by a sound, post hoc Tukey HSD comparisons confirm this (see Figure 15).
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In summary, participants made more eye movements to the visual target when it

was not cued compared to cued visual targets or auditory stimuli.
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Figure 15: Mean eye movements according to condition. Participants made almost no
eye movements to auditory cue onset or cued visual target onset. Only when visuals
were not cued by a sound, participants made significantly more eye movements. The no
Sound condition for sound onset reflects random eye movements while performing only
the visuo-motor tracking task. Error bars display the 95% confidence intervals of the
interaction effect of Sound Type x Stimulus.

5.4.2 EEG/ERP responses

eeg analysis We adopted a three stage approach to analyze the influence of au-

ditory cues on the visual ERP. First, we examined the topography of the cued visual

ERP, especially at posterior electrodes. Since we noticed a hemispheric difference, we

identified the left and right parietal/occipital electrodes as regions of interest. Second,

we statistically analyzed the cue benefit for different auditory cues. That is, the process-

ing that is due to having a cuing effect on a target without the processing of the cue

or target. For the statistical analysis, a time window was determined by the peak in
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the grand average across all four auditory cue conditions, 280 ± 30 ms (based on the

midline electrodes Pz, POz and Oz). Mean amplitudes for the different conditions and

regions were submitted to a 2 x 2 x 2 ANOVA with the factors Sound Type (static, loom-

ing), Intensity (soft, loud), and Hemisphere (left, right). The third and last analysis step

estimated the brain regions that gave rise to this ERP difference by performing a source

localization analysis. For this purpose, the ICs of the stimulus-aligned (epoched) data

were grouped into 15 clusters based on their dipole locations using k-means. Using the

EEGLAB plugin std erpStudio, we were able to determine the clusters that contributed

to the observed difference and, therefore, estimate the cortical areas that gave rise to the

effect. This was tested statistically by using a permutation test that provides the p-value,

as well as, the number of unique subjects and ICs contributing to this cluster.

topography Since all conditions contain equivalent numbers of epochs, our de-

sign allowed us to subtract ERP activity from the AX condition from ERP activity from

the AV condition. By subtracting activity related to the processing of the auditory cue

from activity generated by the combined presentation of auditory cue and visual stim-

ulus, we can investigate the visual stimulus processing only. In other words, by means

of this subtraction (AV-AX), we are able to analyze the effect auditory cues had on the

processing of the visual stimulus, without mingling it with activity associated to sound

processing. The ERPs displayed in Figure 16 are waveforms for cued visual stimuli

(AV-AX; in black) and uncued visual stimuli (XV; in gray). When comparing these two

conditions, the cued visual stimulus processing differs from the uncued visual stimulus

processing in that its maximum peak appears earlier than for uncued visual stimulus

processing (see Glatz et al., 2016). Also, it is noteworthy that there is a hemispheric differ-

ence at posterior electrodes for the cued visual stimulus processing which we, therefore,

included into the statistical analysis.
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erp analysis of variance To investigate the benefit auditory cues had on the

visual processing, we subtracted the activity related to auditory processing only (AX)

and the activity related to uncued visual stimulus processing (XV) from the activity

associated with the combined processing (AV-AX-XV). Figure 17 A and B show the

ERP waveform for the auditory cue benefit for the four different sounds. The analy-

sis of the ERP activity around 280 ±30 ms (rP280) resulted in a main effect of Sound

Type (F(1, 19) = 6.18, p = .02, ω2 = .20). Post-hoc analysis showed that looming cues

resulted in larger mean amplitudes than static cues (t(19) = 2.48, p = .02). There

was no main effect of Intensity (F(1, 19) = .28, p = .60, ω2 = .00) and no main ef-

fect of Hemisphere (F(1, 19) = .16, p = .69, ω2 = .00). The only significant interac-

tion was Sound Type x Hemisphere (F(1, 19) = 7.99, p = .01, ω2 = .25). Post-hoc anal-

ysis showed that there was no significant difference of Sound Type in the left hemi-

sphere (t(19) = −1.39, p = .09, d = −.31) but a significant difference of Sound Type

in the right hemisphere (t(19) = −3.25, p < .01, d = −.73). No other interaction

was significant [Sound Type x Intensity (F(1, 19) = .37, p = .55, ω2 = .00); Intensity

x Hemisphere (F(1, 19) = .53, p = .48, ω2 = .00); Sound Type x Intensity x Hemisphere

(F(1, 19) = .89, p = .36, ω2 = .00)].

source localization To see which source(s) might have given rise to the loom-

ing cue benefit, we estimated the dipoles that contributed to the looming rP280 benefit.

Since ICs from different datasets cannot be combined, the analysis considered 2 x 20

subject datasets as 40 subjects. In the time interval 280 ± 30 ms, six dipole clusters

showed a significant difference between looming and static cues (see Figure 18).

The three clusters that showed more activity for the looming than the static cue are lo-

cated in posterior brain regions. These regions are posterior cingulate cortex (PCC; Brod-

mann area (BA) 23), extrastriate cortex (BA 19), and right precuneus (BA 7). The dipole

cluster localized in the PCC consisted of 45 ICs from 28 unique subjects. The permuta-

tion test on the mean amplitude showed that there was a significant difference in process-

ing the visual stimulus cued by a looming versus static sound (F(1, 44) = 4.40, p = .03).

The dipole cluster localized in the extrastriate cortex consisted of 84 ICs from 38 unique
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Figure 17: The ERP component for the looming cue benefit: rP280. The two waveforms
on the left demonstrate the cue benefit in processing a target after subtracting audi-
tory and visual processing (AV-AX-XV) for electrodes on the left hemisphere (A) and
right hemisphere (B). C shows the statistical analysis of the average voltage amplitude
(280 ±30 ms) for static and looming auditory cues in the left and right hemisphere.
The results show a general looming cue benefit over the static cue that is more pro-
nounced/driven by increased activity in the right hemisphere after a looming compared
to a static auditory cue. The error bars display the 95% confidence intervals of the Sound
Type x Hemisphere interaction effect.

subjects. The permutation test on the mean amplitude showed that there was a signifi-

cant difference in processing the visual stimulus cued by a looming versus static sound

(F(1, 83) = 6.02, p = .02). The dipole cluster localized in the precuneus consisted of 67

ICs from 38 unique subjects. The permutation test on the mean amplitude showed that

there was a significant difference in processing the visual stimulus cued by a looming

versus static sound (F(1, 66) = 20.40, p < .001).

We found the opposite, namely less activity for looming than static cues, in three

dipole clusters located in frontal brain regions. These regions are right medial frontal

cortex (MFC; BA 8), right inferior frontal cortex (rIFC; BA 45), and left medial frontal

cortex (BA 10). The dipole cluster localized in the right MFC consisted of 82 ICs from 37

unique subjects. The permutation test on the mean amplitude showed that there was a

significant difference in processing the visual stimulus cued by a looming versus static

sound (F(1, 81) = 5.15, p = .02). The dipole cluster localized in the rIFC consisted of 44

ICs from 29 unique subjects. The permutation test on the mean amplitude showed that

there was a significant difference in processing the visual stimulus cued by a looming

versus static sound (F(1, 43) = 4.14, p = .05). The dipole cluster localized in the left
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MFC consisted of 36 ICs from 27 unique subjects. The permutation test on the mean am-

plitude showed that there was a significant difference in processing the visual stimulus

cued by a looming versus static sound (F(1, 35) = 6.37, p = .01).

To summarize, we identified an ERP component for the looming cue benefit, rP280.

This looming cue benefit was stronger for the right posterior electrodes. Source estima-

tion analysis identified two networks that might have given rise to this rP280 looming

benefit. A posterior network consisting of PCC, extrastriate cortex, and precuneus that

showed more activity for looming cues. In addition, there was activity in a frontal net-

work consisting of bilateral MFC and rIFC that was less active for looming than static in

the same time interval (280 ± 30 ms).

5.5 discussion

The current study shows that auditory looming cues bring about faster correct discrimi-

nation of peripheral visual targets than auditory static cues. In other words, we found a

persistent benefit of looming sounds in cuing crossmodal attention reorienting. Louder

cues can also speed up correct discriminations, but this benefit diminishes with time.

Previous studies have demonstrated preferential processing of looming sounds, in

terms of behavior (Leo et al., 2011; Schouten et al., 2011; Sutherland et al., 2014; Cecere

et al., 2014) as well as neural activity (Maier and Ghazanfar, 2007; Romei et al., 2009). To

the best of our knowledge, we are the first to have identified an ERP correlate (rP280) for

a looming benefit, specifically related to spatial attention cuing. To examine the cue ben-

efit itself, we assumed an auditory and visual processing additivity. Subtracting activity

caused by auditory or visual processing from the auditory-cued visual target processing

leaves activity that can only be explained by the cue-target interaction. This revealed

a right-hemispheric positive component, 280 ms after visual target onset, which was

selectively larger for looming cues. Source estimation analysis identified two coexisting

networks of neural regions that were likely to have given rise to the looming cue benefit.

The posterior network was more active for looming than static cues which might have
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posterior network (looming > static)

frontal network  (looming < static)

PCC (BA 23)

Talairach 
coordinates 
(-8, -27, 21), 
45 ICs from
28 unique subjects

MFC (BA 8)

Talairach 
coordinates 
(7, 19, 43), 
82 ICs from
37 unique subjects

Extrastriate Cortex (BA 19)

Talairach 
coordinates 
(10, -79, 33), 
84 ICs from
38 unique subjects

Precuneus (BA 7)

Talairach 
coordinates 
(31, -43, 41), 
67 ICs from
38 unique subjects

IFC (BA 45)

Talairach 
coordinates 
(34, 29, 9), 
44 ICs from
29 unique subjects

MFC (BA10)

Talairach 
coordinates 
(-1, 53, -10), 
36 ICs from
27 unique subjects

Figure 18: Brain regions active for rP280. Source estimation analysis identified 6 com-
ponent cluster for 40 (2x20) subjects, grouped into a posterior and a frontal network of
neural regions. The posterior network shows significantly higher activity for looming
than static cues in PCC, extrastriate cortex, and right precuneus. In contrast the frontal
network shows significantly less activity for looming than static cues in bilateral MFC
and right IFC. Each blue dot represents a single IC, the red dot is the average position
of all blue dots belonging to this dipole cluster.
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been propelled by decreased inhibition due to less frontal network activity for looming

than static cues. We discuss these networks and their neural regions in more detail in

the following sub-sections.

5.5.1 Right hemispheric bias in ERP marker

Auditory looming cues selectively induced a larger positive deflection at 280 ms (rP280)

after a peripheral visual target appeared. The key characteristic of the rP280 is its right

hemispheric lateralization in posterior electrodes. What might give rise to this bias?

Broadly speaking, the right parietal cortex is believed to underlie spatial awareness and

is implicated in tasks that involve orienting spatial attention (Sturm and Willmes, 2001;

Farah et al., 1989; Gitelman et al., 1999), localizing objects in space (Bushara et al., 1999;

Zatorre et al., 2002; Sestieri et al., 2006; Arnott and Alain, 2011), and motion processing

(Griffiths et al., 1998; Baumgart et al., 1999; Griffiths et al., 2000; Battelli et al., 2007). In

contrast, the left parietal cortex is typically involved in linguistic processing (Geschwind,

1970; Cantalupo and Hopkins, 2001; Brownsett and Wise, 2010).

Consistent with this functional separation of the parietal lobe regions, looming sounds

that signal an approaching object’s location have been found to activate the right temporo-

parietal junction (TPJ; Seifritz et al., 2002; Neuhoff et al., 2002; Bach et al., 2015). This

preferential activity in the right parietal cortex is likely to reflect neural processing of the

spatial information inherent to looming sounds. However, no previous work has inves-

tigated the neural activity underlying the looming cue benefit. Here, we show that the

looming cue benefit (rP280) is also observed in right parietal areas. This lateralization

underlying reorienting of spatial attention might be related to the spatial information

processing fundamental to the parietal lobe.

5.5.2 The role of auditory looming cues in reorienting spatial attention

Source estimation for the looming cue benefit showed preferential activation of frontal

and parietal areas that underlie the reorienting of attention. Previous work has shown
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two distinct fronto-parietal (FP) networks for reorienting attention. A dorsal FP network

that controls attention voluntarily in a goal-driven manner and a ventral FP network that

is activated involuntarily through behaviorally relevant stimuli (Corbetta and Shulman,

2002; Corbetta et al., 2008; Corbetta and Shulman, 2011). This functional differentiation

of the two networks is also apparent from the involvement of brain regions. While

the dorsal attention system recruits parietal areas such as the superior parietal lobe

(SPL) and inferior parietal sulcus (IPS), the ventral system typically involves the TPJ.

Nevertheless, the recruitment of frontal areas for the two networks overlaps, which

enables the necessary interaction of the dorsal and ventral system to reorient spatial

attention.

Previous work reported that looming sounds preferentially activate a parietal area

that belongs to the ventral FP attention network, namely the TPJ (Seifritz et al., 2002;

Neuhoff et al., 2002; Bach et al., 2008, 2015). Unlike this work, we did not find in-

creased TPJ activity given that we investigated the sustained cuing response to looming

sounds and not the looming sound itself. The enhanced TPJ activity for processing loom-

ing sounds might reflect the increased capture of attention by looming sounds prior to

preferential visual processing of the attended location. Through the connecting frontal

regions, the location of relevance might be communicated from the ventral system, that

detected the stimulus, to the dorsal system, which is responsible to shift attention vol-

untarily.

Our results demonstrate that looming cues preferentially activate the dorsal atten-

tion network. The increased SPL activity for the looming cue benefit might reflect the

enhanced voluntary reorienting of spatial attention to visual targets. More precisely, the

estimated dipole’s localization lies in the precuneus which is believed to take part in the

voluntary orienting of spatial attention (Culham et al., 1998; Le et al., 1998; Simon et al.,

2002; Cavanna and Trimble, 2006). The activity in the dorsal FP network for orienting

attention voluntarily can also extend to visual cortices. Previous work has shown that

the activity from the dorsal FP network also increases activity in the extrastriate cortex

(Kastner et al., 1999; Hopfinger et al., 2000). Thus, our increased extrastriate activation

for looming cues might reflect the top-down bias to preferentially sustain attention to

the cued location after a looming sound, in spite of the demands of the central task. In
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other words, the increased activity for posterior areas of the dorsal attention network

could reflect the increased urge to reorient attention voluntarily away from the central

visuo-motor tracking task to perform the peripheral discrimination task.

The preferential deactivation of frontal areas for the looming cue benefit supports

the (stronger) reorienting of spatial attention. The prefrontal cortex is generally known

to be involved in executive functions such as controlling the reorienting of attention to

switch tasks (Miller and Cohen, 2001). In this context, the MFC plays a major role in

transferring information (i.e., location of relevant information) from the ventral system

to the dorsal system in order to know where attention should be reorient towards (Fox

et al., 2006). Our source estimation analysis showed that the bilateral MFC (BA 8 and

BA 10) but also the rIFC (BA 45) contributed to the looming cue benefit. The rIFC is

believed to control the reorienting of attention by inhibiting the reorientation of attention

for irrelevant information (see Aron et al., 2004, 2014, for reviews). Thus, less activity

for looming cues suggests less inhibition to shift attention. In other words, looming cues

increased attention shifting compared to static cues.

Additionally, decreased frontal activity for auditory looming cues may also support

the maintenance of attention at the reoriented location. The FEF, which is part of the

right MFC, is thought to produce inhibition of return (IOR; Ro et al., 2003). IOR removes

attention from an attended location and inhibits the reorienting to this previously at-

tended location. We found less right MFC activity, thus less FEF activity for the looming

than for the static cue benefit. The decreased FEF activity suggests less production of

IOR for looming cued targets. This activity pattern might explain why the exogenous

looming cue, unlike other auditory cues, allowed sustained attention until the sound

offset in a previous study (Glatz and Chuang, 2018, under review).

Besides the cortical areas that identified with regions from the FP networks, we also

found preferential activity in the PCC, a subcortical region that is part of the limbic sys-

tem. Two potential reasons can account for the preferential activation of the PCC for the

auditory looming cue benefit. First, it could reflect the increased emotional processing

(Maddock et al., 2003) due to the attributed threat to looming stimuli. In line with this,

previous work found preferential activation of the amygdala for looming sounds (Bach

et al., 2008). The alternative, and preferred, explanation is that PCC activity influences
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attentional focus. In task-switching paradigms, such as our experiment, increased PCC

activity is thought to reflect the ability to quickly change from one cognitive state to

another (Leech and Sharp, 2014). Hence, the preferential PCC activity related to the

looming cue benefit could reflect the increased readiness to shift attention away from

the visuo-motor tracking task to the discrimination task.

In summary, our results support the activation of the FP networks for shifting spatial

attention. In addition, we were able to show that these networks responded preferen-

tially to looming cues. The top-down control of frontal regions on parietal regions is

in favor of the looming cue. It could allow the ventral network to detect the relevant

looming cue better which favors the subsequent voluntary orienting of attention for

looming cues despite the required central focus and might sustain this attention as long

as necessary, that is, until the sound offset.

5.5.3 Why do looming cues favor spatial attention reorienting?

Auditory looming cues provide information about object motion in egocentric space.

When objects enter the immediate space surrounding the body, also known as periper-

sonal space (PPS), they can pose a potential threat to the body. Hence, approaching

sounds that signal these objects receive more attention when entering the PPS than

when approaching at further distance (Canzoneri et al., 2012). To preserve a margin

of safety around the body, the PPS boundaries are extended for looming objects (Noel

et al., 2015; Ferri et al., 2015). This means that objects enter the PPS earlier and, therefore,

receive attention earlier. This sensitivity to looming objects gives individuals additional

time to prepare for the object’s arrival. In contrast, if the PPS boundaries were closer

to the body, approaching objects would cross the margin of safety later and, therefore,

afford less time to prepare for the object’s arrival. This shaping of the PPS boundaries is

presumably achieved by preferential activation of intraparietal cortices, which represent

the PPS, for looming over receding objects (Graziano and Cooke, 2006; Clery et al., 2015;

di Pellegrino and Làdavas, 2015).
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Taken together, the virtue of auditory looming cues in reorienting visuo-spatial at-

tention crossmodally might be due to its ability to continuously communicate spatial

information. An object’s location in space can be extracted from an approaching sound

and, subsequently, be integrated into a supramodal space representation. Visuo-spatial

attention can benefit from this internal map by shifting attention to the location of in-

terest, specified by the auditory looming cue. The preferential activation of supramodal

parietal areas for looming might reflect the increased spatial information processing of

relevant locations. In combination with the reduced frontal activity for the looming cue

benefit, it might reflect the enhanced spatial attention reorienting. This can be observed

in the improved behavioral performance (i.e., faster RTs) for looming cued targets.

5.5.4 Future directions

To date, surprisingly little work has been performed on the utility of auditory looming

cues in shifting visuo-spatial attention. Hence, many questions remain to be answered

in this new area of research. Future studies could, for example, investigate the influence

of different cue-target onset asynchronies (CTOA) between auditory looming cues and

visual targets, different looming cue durations, or manipulate the velocity of looming

cues. Here, we determined the CTOA to exclude any multisensory effect by present-

ing the auditory cue and visual target separately without any overlap. Nevertheless,

future studies can consider the use of multisensory looming cues to investigate how

multisensory stimulation interacts with the looming cuing benefit.

Given the limitations of source estimation, future research on looming cues should

employ neuroimaging techniques with a higher spatial resolution (e.g., fMRI) to val-

idate the networks of regions identified here. This work might also investigate the

connectivity between these regions. Based on previously shown fronto-parietal atten-

tion networks (Corbetta and Shulman, 2002; Thiel et al., 2004; Gitelman et al., 1999),

the inhibitory frontal network we identified might interact with the posterior network.

More specifically, previous work proposes the PCC as mediator between the frontal and

parietal areas (Leech and Sharp, 2014). In this role, the PCC receives input from the
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prefrontal cortex that determines its level of activity. This PCC activity was found to

correlated positively with activations of parietal cortices involved in spatial attention

(Mohanty et al., 2008).

5.6 conclusion

To the best of our knowledge, this is the first work that demonstrates an electrophysio-

logical marker, rP280, for the auditory looming cue benefit in reorienting visuo-spatial

attention to peripheral tasks. This looming cue benefit is also observed behaviorally,

in faster peripheral target discrimination. In addition, we identified two networks of

neural regions that gave rise to the looming cue benefit. One prominent region from the

posterior network is the parietal lobe where spatial attention is administered. Spatial

information, that is an inherent property of looming sounds, is most likely integrated

crossmodally in parietal regions. The coexistent frontal network might further amplify

this selective activation by auditory looming through reduced inhibition for shifting at-

tention. In summary, auditory looming cues might be especially efficient in reorienting

visuo-spatial attention due to their valuable spatial information content in constructing

an environmental representation relevant to the body.
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6
A P P E N D I X : T H E P E R S I S T E N C E O F T H E A U D I T O RY L O O M I N G

C U E B E N E F I T P O S T C U E P R E S E N TAT I O N

6.1 introduction

Chapter 4 demonstrated that the auditory looming cue benefit can be observed after

the approaching auditory motion has unfolded, at the sound offset but not earlier (i.e.,

CTOA 0 ms and 250 ms). This suggests that auditory looming cues function as an

exogenous cues but also exert an endogenous influence on visuo-spatial attention. If the

auditory looming cue indeed reflects some endogenous properties, how long can spatial

attention be voluntarily sustained at the cued location? To investigate this question, the

gap between sound and target can be manipulated.

Previous work employing auditory looming cues suggest increased alertness even

after the sound offset. Bach et al. (2009) introduced a gap of 100 ms between the auditory

cue offset and target onset and were still able to observe increased alertness for looming

sounds. In a subsequent experiment, Bach et al. (2015) investigated the time-course

of visual phasic alertness more specifically by introducing 200, 400, and 600 ms gaps

between the cue offset and the visual target onset. Interestingly, their results revealed

a looming cue benefit for visual targets presented 400 ms after the sound offset but not

200 ms earlier or later (i.e., 200 ms or 600 ms gap). Taken together, the results of these

two studies suggest that a looming cue benefit can continue to exist after the sound

offset even though the exact time-course is unknown.

The above studies demonstrated increased phasic alertness after a gap that resulted

in cue-target benefits. However, the introduction of a concurrent task that competes

for attentional resources (see Chapter 1.3.4) could negate such a cue benefit. In a dual-

task paradigm, sustaining attention to one task comes at the cost of the other task’s

performance. My previous studies (Chapter 4 and 5) demonstrated an auditory looming

cue benefit in shifting spatial attention immediately after its offset during dual-tasking.
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Here, I examined whether this benefit continues to persist at 500 ms after cue offset. This

was evaluated based on performance measures (d′, RT, RMSE) and neural responses

(ERP) to the visual target.

6.2 methods

If the following sections do not state otherwise, the methods used for this study were

the same as reported for the study in Chapter 5.3.

6.2.1 Participants

Twenty healthy volunteers (mean age = 25.45 ± 3.15; 8 males) participated in the current

experiment. All participants reported normal (or corrected-to-normal) vision, normal

hearing, and no known history of neurological problems. All participants received writ-

ten instructions, gave their signed consent, and were remunerated 12 Euros/hour for

their voluntary participation. The experimental procedure was approved by the ethics

council of the University Hospital Tübingen.

6.2.2 Stimuli

In this experiment I used different auditory cues than in Chapter 5.3.2 to precede the

visual target. The auditory cues were also 400 Hz triangular waveforms, sampled at 44.1

kHz, of 500 ms duration. However, their intensity profile was either looming, receding

(the inverse of the looming), or static. I used the same looming sound as in Chapter

5.3.2 (loud, 30− 75 dB), a receding sound to control for the profile dynamics (75− 30

dB), and a static sound (65 dB) to control for the average intensity of these two sounds.

Sound pressure levels were measured at participants’ approximate head position. All

sounds had 5 ms ramps at the on- and offset to avoid clicking noise at the beginning

and end of sound presentation. These ramps were achieved by convolving the sound

with a trapezoid grating.
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6.2.3 Procedure

In contrast to Chapter 5.3.4, this study consisted of one session only. This session con-

tained 20 experimental blocks (4.5 min per block) that were separated by mandatory 1.5

min breaks.

Again, participants were asked to continuously perform the central visuo-motor

tracking task and occasionally discriminate peripheral visual targets. While the vi-

sual target immediately followed the auditory cue in the AV condition in Chapter 5.3.4

(CTOA 500 ms), it now appeared 500 ms after the auditory cue offset such that the visual

target was presented at a CTOA of 1000 ms.

6.3 results and discussion

6.3.1 Behavioral performance

Participants’ performance in the peripheral tilt discrimination task was assessed by cal-

culating the discrimination sensitivity (d′) and the correctly identified response times

(RT) to visual targets. The discrimination sensitivity for the visual targets was calculated

through the hits and false alarms for the different conditions (Macmillan and Creelman,

1991).

The performance in the continuous tracking task was assessed as the root-mean-

squared-error (RMSE) by calculating the deviation between the cursor’s position and

the designated center during the 250 ms visual target presentation.

influence of cuing First, I analyzed whether cuing a visual target influences the

performance for the three performance measures (cue vs. no-cue). I found a significant

difference for d′ (1-tailed, paired-sample t-test; t(19) = −2.94, p < .01, d = −.66), as well

as for RT (1-tailed, paired-sample t-test; t(19) = 5.06, p < .001, d = 1.13), but not for

RMSE (1-tailed, paired-sample t-test; t(19) = 1.08, p = .15, d = .24).
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This suggest that auditory cues, regardless of sound type, can benefit the secondary

task by improving target discrimination and, at the same time, speed responses to the

visual targets. The smaller error in the tracking performance during cued trials was not

statistically significant.
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Figure 19: Behavioral performance to visual targets that could be cued by a sound
or not. The left shows the significantly better discrimination sensitivity when cued
compared to no-cued targets. The middle shows the significantly faster response times
when the visual target was preceded by an auditory cues. The right shows the tracking
performance during the sound. Error bars display the 95% confidence intervals of the
effect.

performance on cued trials In a second step, I submitted the respective mea-

surement data (d′, RT, RMSE) to a repeated measurements analysis of variance (ANOVA)

with the factor Sound Type (static, receding, looming).

There was no effect of Sound Type for any of the three performance measures; d′

(F(2, 38) = 3.14, p = .06, ω2 = .10), RT (F(2, 38) = .44, p = .65, ω2 = .00), and RMSE

(F(2, 38) = .41, p = .67, ω2 = .00).

This suggests that while auditory cues still improve performance for the visual tar-

gets even after introducing a 500 ms gap at the sound offset, the type of sound used

to cue the visual target does not influence the response accuracy or speed. That is, the

looming benefit that was observed in faster response times at the sound offset did not

hold until 500 ms later.
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erp results Even though I did not observe a behavioral benefit for looming cued

visual targets, the brain might still respond preferentially to them. To investigate whether

the auditory looming cue benefit in visual processing was still present 500 ms later, I

subtracted, as in Chapter 5.4.2, the activity related to auditory processing (AX) and

the activity related to uncued visual target processing (XV) from the activity associated

with the combined cued visual processing (AV-AX-XV). Therefore, the remaining activ-

ity reflects the advantage in visual processing of peripheral targets due to an auditory

cue.
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Figure 20: The two waveforms demonstrate the auditory cue benefit at posterior elec-
tordes in processing a target that appeared 500 ms after the sound ended. For this,
auditory and visual processing was subtracted from the audio-visual processing (AV-
AX-XV) for electrodes on the left and right posterior hemispheres. After introducing the
500 ms gap between sound offset and visual onset, no sound-specific cue benefit can be
observed at 820 ms after the sound offset.

The ERP waveforms for the auditory cue benefit according to the three different

sounds are displayed in Figure 20. These results are in congruence with the behavioral

findings. That is, while there is still an auditory cue benefit as reflected at approximately

820 ms, this benefit does not differ across auditory cue types. Hence, looming sounds
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did not cue attention better than comparable sounds after introducing a 500 ms gap

which was also mirrored in not significantly different response times.

Nevertheless, a hemispheric difference for the spatial cue benefit through sounds

is observable. As in Chapter 5.4.2, the cue benefit is more pronounced on the right

than the left hemisphere. I could have found stronger activation of the right posterior

hemisphere (i.e., right parietal brain regions) because the current task required shifting

of spatial attention; this is believed to originate from right parietal regions (Sturm and

Willmes, 2001; Farah et al., 1989; Gitelman et al., 1999).

These results suggest that the auditory looming cue captures transient attention

rather than voluntarily sustaining attention at the cued location. If the looming sound

would function as an endogenous cue, one would expect the participants to sustain at-

tention at the cued location. This would then, even after a 500 ms gap, result in faster

responses, especially since participants were aware of the 500 ms gap.

Alternatively, it could be that the implicit meaning of the looming sound, namely

of an approaching object, precludes sustaining attention longer than the duration of the

sound itself. When a looming sound stops, it can either indicate that the object has

arrived or that it is no longer relevant. The results by Burton (2011) are in agreement.

He demonstrated that task-irrelevant looming sounds were able to facilitate movements

in response to visual targets. His experiments showed, in congruence with the findings

of Chapter 5.4 and Chapter 4.3.1, that the looming benefit was largest at the sound offset.

Like here, Burton (2011) did not observe the movement facilitation for looming sounds

anymore when introducing a 500 ms gap after the 1000 ms looming sound (i.e., CTOA

1500 ms).

Taken together, the findings by Burton (2011), Chapter 4, and this experiment suggest

that looming sounds are especially useful at the sound offset when they have conveyed

all their information, that is when the object has arrived. In this regard, the duration of

the looming sound might not necessarily effect the looming benefit. Romei et al. (2009)

found increased visual cortex excitability at the end of looming sounds independent of

their duration (250, 500, 1000 ms). Nevertheless, future work might investigate if and

how the duration of an auditory looming cue influences the response to (peripheral

visual) targets.
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Bach, D. R., Schächinger, H., Neuhoff, J. G., Esposito, F., Di Salle, F., Lehmann, C.,
Herdener, M., Scheffler, K., and Seifritz, E. (2008). Rising sound intensity: An intrinsic
warning cue activating the amygdala. Cerebral Cortex, 18(1):145–50.

Bainbridge, L. (1983). Ironies of automation. Automatica, 19(6):775–779.
Ball, W. and Tronick, E. (1971). Infant responses to impending collision: Optical and real.

Science, 171:818–820.
Ballas, J. A. (1993). Common factors in the identification of an assortment of brief ev-

eryday sounds. Journal of Experimental Psychology: Human Perception and Performance,
19(2):250–267.

Ballas, J. A. and Howard, J. H. (1987). Interpreting the language of environmental
sounds. Environment and behavior, 19(1):91–114.

Battelli, L., Pascual-Leone, A., and Cavanagh, P. (2007). The ‘when’ pathway of the right
parietal lobe. Trends in Cognitive Sciences, 11(5):204–210.

Baumgart, F., Gaschler-Markefski, B., Woldorff, M. G., Heinze, H.-J., and Scheich, H.
(1999). A movement-sensitive area in auditory cortex. Nature, 400:724–726.
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Cummings, A., Čeponiene, R., Koyama, A., Saygin, A. P., Townsend, J., and Dick, F.
(2006). Auditory semantic networks for words and natural sounds. Brain Research,
1115(1):92–107.

Davidson, M. C. and Marrocco, R. T. (2000). Local infusion of scopolamine into intra-
parietal cortex slows covert orienting in rhesus monkeys. Journal of Neurophysiology,
83:1536–1549.

Dehais, F., Causse, M., Vachon, F., Régis, N., Menant, E., and Tremblay, S. (2014). Failure
to detect critical auditory alerts in the cockpit: Evidence for inattentional deafness.
Human Factors, 56(4):631–644.

Delacre, M., Lakens, D., and Leys, C. (2017). Why psychologists should by default use
Welch’s t -test instead of Student’s t -test. International Review of Social Psychology,
30(1):92.

Delorme, A. and Makeig, S. (2004). EEGLAB: an open sorce toolbox for analysis of single-
trail EEG dynamics including independent component anlaysis. Journal of Neuroscience
Methods, 134:9–21.

137



Delorme, A., Palmer, J., Onton, J., Oostenveld, R., and Makeig, S. (2012). Independent
EEG sources are dipolar. PLoS ONE, 7(2).
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Löcken, A., Heuten, W., and Boll, S. (2015). Supporting lane change decisions with
ambient light. In Automotive User Interfaces ’15, pages 204–211.

Lopez-Calderon, J. and Luck, S. J. (2014). ERPLAB: An open-source toolbox for the
analysis of event-related potentials. Frontiers in human neuroscience, 8(213):1–14.

Lu, S. A., Wickens, C. D., Prinet, J. C., Hutchins, S. D., Sarter, N., and Sebok, A. (2013).
Supporting interruption management and multimodal interface design: Three meta-
analyses of task performance as a function of interrupting task modality. Human
Factors: The Journal of the Human Factors and Ergonomics Society, 55(4):697–724.

Lu, T., Liang, L., Wang, X., Mitchell, J. F., Reynolds, J. H., Miller, C. T., and Liang, L. I.
(2001). Neural representations of temporally asymmetric stimuli in the auditory cortex
of awake primates. Journal of Neurophysiology, 85:2364–2380.

Lu, Z. L., Tse, H. C. H., Dosher, B. A., Lesmes, L. A., Posner, C., and Chu, W. (2009). Intra-
and cross-modal cuing of spatial attention: Time courses and mechanisms. Vision
Research, 49(10):1081–1096.

Lucas, P. A. (1994). An evaluation of the communicative ability of auditory icons and
earcons. In Accepted for publication in the proceedings of ICAD. Georgia Institute of
Technology.

Luck, S. J. (2005). An introduction to the event-relatedpotential technique. A Bradford Book.
Ludewig, K., Ludewig, S., Seitz, A., Obrist, M., Geyer, M. A., and Vollenweider, F. X.

(2003). The acoustic startle reflex and its modulation: Effects of age and gender in
humans. Biological Psychology, 63(3):311–323.

Lupianez, J., Klein, R. M., and Bartolomeo, P. (2006). Inhibition of return: Twenty years
after. Cognitive neuropsychology, 23(7):1003–14.

Macaluso, E. (2010). Orienting of spatial attention and the interplay between the senses.
Cortex, 46(3):282–297.

Macmillan, N. A. and Creelman, C. D. (1991). Detection theory: A user’s guide. Lawrence
Erlbaum Associates, Inc Hillsdale, NJ, New Yersey, 1st edition.

143



Maddock, R. J., Garrett, A. S., and Buonocore, M. H. (2003). Posterior cingulate cortex
activation by emotional words: fMRI evidence from a valence decision task. Human
Brain Mapping, 18(1):30–41.

Maeder, P. P., Meuli, R. A., Adriani, M., Bellmann, A., Fornari, E., Thiran, J. P., Pit-
tet, A., and Clarke, S. (2001). Distinct pathways involved in sound recognition and
localization: A human fMRI study. NeuroImage, 14(4):802–816.

Maier, J. X., Chandrasekaran, C., and Ghazanfar, A. A. (2008). Integration of bimodal
looming signals through neuronal coherence in the temporal lobe. Current Biology,
18(13):963–8.

Maier, J. X. and Ghazanfar, A. A. (2007). Looming biases in monkey auditory cortex. The
Journal of Neuroscience, 27(15):4093–4100.

Maier, J. X., Neuhoff, J. G., Logothetis, N. K., and Ghazanfar, A. A. (2004). Multisensory
integration of looming signals by rhesus monkeys. Neuron, 43:177–181.

Mangun, G. R. (1994). Orienting attention in the visual fields: An electrophysiological
analysis. In Heinze, H.-J., Münte, T. F., and Mangun, G. R., editors, Cognitive Electro-
physiology, pages 81–101. Birkhäuser, Boston, MA.
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Schröger, E., Marzecová, A., and Sanmiguel, I. (2015). Attention and prediction in hu-
man audition: A lesson from cognitive psychophysiology. European Journal of Neuro-
science, 41(5):641–664.

Schultze-Kraft, M., Birman, D., Rusconi, M., Allefeld, C., Görgen, K., Dähne, S.,
Blankertz, B., and Haynes, J.-D. (2016). The point of no return in vetoing self-initiated
movements. Proceedings of the National Academy of Sciences, 113(4):1080–1085.

Seifritz, E., Neuhoff, J. G., Bilecen, D., Scheffler, K., Mustovic, H., Schächinger, H., Ele-
fante, R., and Di Salle, F. (2002). Neural processing of auditory looming in the human
brain. Current Biology, 12(24):2147–51.

Selcon, S. J., Taylor, R. M., and McKenna, F. P. (1995). Integrating multiple information
sources: Using redundancy in the design of warnings. Ergonomics, 38(11):2362–2370.

Sestieri, C., Di Matteo, R., Ferretti, A., Del Gratta, C., Caulo, M., Tartaro, A., Olivetti
Belardinelli, M., and Romani, G. L. (2006). “What” versus “Where” in the audiovisual
domain: An fMRI study. NeuroImage, 33(2):672–680.

Shahin, A., Bosnyak, D. J., Trainor, L. J., and Roberts, L. E. (2003). Enhancement of neu-
roplastic P2 and N1c auditory evoked potentials in musicians. Journal of Neuroscience,
23(13):5545–5552.

Shaw, B. K., McGowan, R. S., and Turvey, M. T. (1991). An acoustic variable specifying
time-to-contact. Ecolgocial Psychology, 3(3):253–261.

Shibasaki, H. and Hallett, M. (2006). What is the Bereitschaftspotential? Clinical Neuro-
physiology, 117(11):2341–2356.

Simon, J. R. and Craft, J. L. (1970). Effects of an irrelevant auditory stimulus on visual
choice reaction time. Journal of Experimental Psychology, 86(2):272–274.

Simon, O., Mangin, J. F., Cohen, L., Le Bihan, D., and Dehaene, S. (2002). Topographical
layout of hand, eye, calculation, and language-related areas in the human parietal
lobe. Neuron, 33(3):475–487.

Simpson, C. A. (1976). Effects of linguistic redundancy on pilot’s comprehension of
synthesized speech. In Twelfth Annual Conference on Manual Control, pages 294–308.

Simpson, C. A. and Marchionda-Frost, K. (1984). Synthesized speech rate and pitch
effects on intelligibility of warning messages for pilots. Human factors, 26(5):509–517.

Simpson, C. A. and Williams, D. H. (1980). Response time effects of alerting tone and
semantic context for synthesized voice cockpit warnings. Human Factors: The Journal
of the Human Factors and Ergonomics Society, 22(3):319–330.

Skarratt, P. A., Cole, G. G., and Gellatly, A. R. H. (2009). Prioritization of looming
and receding objects: Equal slopes, different intercepts. Attention, Perception, and Psy-
chophysics, 71(4):964–970.

Snyder, E. and Hillyard, S. A. (1976). Long-latency evoked potentials to irrelevant, de-
viant stimuli. Behavioral Biology, 16(3):319–331.

Spence, C. (2010). Crossmodal spatial attention. Annals of the New York Academy of
Sciences, 1191:182–200.

Spence, C. and Driver, J. (1994). Covert spatial orienting in audition: Exogenous and
endogenous mechanisms. Journal of Experimental Psychology: Human Perception and

149



Performance, 20(3):555–574.
Spence, C. and Driver, J. (1996). Audiovisual links in endogenous covert spatial attention.

Journal of Experimental Psychology: Human Perception and Performance, 22(4):1005–1030.
Spence, C. and Driver, J. (1997). Audiovisual links in exogenous covert spatial orienting.

Perception and Psychophysics, 59(1):1–22.
Spence, C. and Driver, J. (1998). Auditory and audiovisual inhibition of return. Perception

and Psychophysics, 60(1):125–139.
Spence, C. and Driver, J. (2004). Crossmodal space and crossmodal attention. Oxford Univer-

sity Press.
Spence, C., McDonald, J., and Driver, J. (2004). Exogenous spatial cuing studies of

human crossmodal attention and multisensory integration. In Crossmodal space and
crossmodal attention, pages 277–320.

Spence, C. and McGlone, F. P. (2001). Reflexive spatial orienting of tactile attention.
Experimental Brain Research, 141(3):324–330.

Spence, C., Nicholls, M. E., Gillespie, N., and Driver, J. (1998). Cross-modal links in
exogenous covert spatial orienting between touch, audition, and vision. Perception and
Psychophysics, 60(4):544–557.

Spence, C. and Read, L. (2003). Speech shadowing while driving: On the difficulty of
splitting attention between eye and ear. Psychological Science, 14(3):251–256.

Squires, N. K., Squires, K. C., and Hillyard, S. A. (1975). Two varieties of long-latency
positive waves evoked by unpredictable auditory stimuli in man. Electroencephalogra-
phy and clinical neurophysiology, 38:387–401.

Stein, B. E., London, N., Wilkinson, L. K., and Price, D. D. (1996). Enhancement of
perceived visual intensity by auditory stimuli: A psychophysical analysis. Journal of
Cognitive Neuroscience, 8(6):497–506.

Steinschneider, M. and Dunn, M. (2002). Electrophysiology in developmental neuropsy-
chology. Handbook of Neuropsychology, 8(1):91–146.

Stevens, A., Quimby, A., Board, A., Kersloot, T., and Burns, P. (2002). Design guidelines
for safety of in-vehicle information systems. Department of Transport, Local Government
and the Regions, pages 1–55.

Strayer, D. L. and Johnston, W. A. (2001). Driven to distraction: Dual-task studies of sim-
ulated driving and conversing on a cellular telephone. Psychological Science, 12(6):462–
466.

Sturm, W. and Willmes, K. (2001). On the functional neuroanatomy of intrinsic and
phasic alertness. NeuroImage, 14(1 II):76–84.

Susini, P., McAdams, S., and Smith, B. K. (2002). Global and continuous loudness esti-
mation of time-varying levels. Acta Acustica united with Acustica, 88:536–548.

Susini, P., Meunier, S., Trapeau, R., and Chatron, J. (2010). End level bias on direct
loudness ratings of increasing sounds. The Journal of the Acoustical Society of America,
128(4):163–168.

Sutherland, C. A. M., Thut, G., and Romei, V. (2014). Hearing brighter: Changing in-
depth visual perception through looming sounds. Cognition, 132(3):312–323.

Szekely, A., D’Amico, S., Devescovi, A., Federmeier, K., Herron, D., Iyer, G., Jacobsen,
T., Anal’a, L. A., Vargha, A., and Bates, E. (2005). Timed action and object naming.
Cortex, 41(1):7–25.

Talsma, D., Doty, T. J., Strowd, R., and Woldorff, M. G. (2006). Attentional capacity
for processing concurrent stimuli is larger across sensory modalities than within a
modality. Psychophysiology, 43(6):541–549.

150



Tassinari, G. and Campara, D. (1996). Consequences of covert orienting to non-
informative stimuli of different modalities: A unitary mechanism? Neuropsychologia,
34(3):235–245.
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