Präklinische Untersuchung am Großtiermodell zur Verbesserung der Diagnose von Harninkontinenz

Inaugural-Dissertation
zur Erlangung des Doktorgrades
der Medizin

der Medizinischen Fakultät
der Eberhard Karls Universität
zu Tübingen

vorgelegt von

Albrecht, Anika

2018
Dekan: Professor Dr. I. B. Autenrieth

1. Berichterstatter: Professor Dr. A. Stenzl
2. Berichterstatter: Professor Dr. C. Reisenauer

Tag der Disputation: 17.04.2018
Für meine Eltern und Matthias –
In tiefster Liebe und großer Dankbarkeit
Inhaltsverzeichnis

Inhaltsverzeichnis..IV

Abbildungsverzeichnis..VI

Abkürzungsverzeichnis ...X

1 Einleitung..1

2 Material und Methoden..4

2.1 Material ..4

2.1.1 Geräte ...4

2.1.1.1 Laborgerätschaften ..4

2.1.1.2 Gerätschaften im Operationssaal ...4

2.1.2 Verbrauchsmaterialien ..4

2.1.2.1 Materialien im Labor ..4

2.1.2.2 Materialien im Operationssaal bzw. zur Operationsvorbereitung5

2.1.2.3 Materialien zur Inkontinenztestung ..5

2.1.3 Substanzen ..6

2.1.3.1 Medikamente ..6

2.1.3.2 Chemikalien ...6

2.1.4 Software ..7

2.1.5 Versuchstiere ...7

2.2 Methoden ..9

2.2.1 Studienstruktur ..9

2.2.2 Inkontinenztestung ..9

2.2.3 Operationsmethoden ...12

2.2.4 Profilometrie ..15

2.2.5 Materialgewinnung ...16

2.2.6 Urinstatusanalysen ...16

2.2.7 Gefrierschnitte ...16

2.2.8 Histologische Färbung nach AZAN ...19

2.2.9 Mikroskopieren ..19

2.2.10 Ergebnisauswertung ..19

3 Ergebnisse ...21
<table>
<thead>
<tr>
<th>Kapitel</th>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1 Übersicht</td>
<td>21</td>
</tr>
<tr>
<td>3.2 Inkontinenztest</td>
<td>21</td>
</tr>
<tr>
<td>3.3 Harnröhrendruck</td>
<td>36</td>
</tr>
<tr>
<td>3.3.1 Profilometrie</td>
<td>36</td>
</tr>
<tr>
<td>3.3.2 Maximaldruckmessung</td>
<td>42</td>
</tr>
<tr>
<td>3.3.3 „Area under the Curve“(AUC)</td>
<td>47</td>
</tr>
<tr>
<td>3.4 Histologie</td>
<td>52</td>
</tr>
<tr>
<td>3.5 Zusammenfassende Darstellung der Ergebnisse</td>
<td>57</td>
</tr>
<tr>
<td>4 Diskussion</td>
<td>59</td>
</tr>
<tr>
<td>4.1 Material und Methoden</td>
<td>60</td>
</tr>
<tr>
<td>4.1.1 Versuchstiere</td>
<td>60</td>
</tr>
<tr>
<td>4.1.2 Kohortengröße</td>
<td>63</td>
</tr>
<tr>
<td>4.1.3 Operationsmethoden</td>
<td>63</td>
</tr>
<tr>
<td>4.2 Inkontinenztest</td>
<td>65</td>
</tr>
<tr>
<td>4.3 Profilometrie</td>
<td>67</td>
</tr>
<tr>
<td>4.3.1 Bedeutung der Harnröhrendruckmessung</td>
<td>67</td>
</tr>
<tr>
<td>4.3.2 Einfluss durch Medikamente</td>
<td>71</td>
</tr>
<tr>
<td>4.3.3 Vergleich mit der HD-UPP-Methode</td>
<td>72</td>
</tr>
<tr>
<td>4.4 Histologie</td>
<td>85</td>
</tr>
<tr>
<td>4.5 Schlussfolgerung</td>
<td>89</td>
</tr>
<tr>
<td>5 Zusammenfassung</td>
<td>91</td>
</tr>
<tr>
<td>6 Literaturverzeichnis</td>
<td>93</td>
</tr>
<tr>
<td>7 Erklärung zum Eigenanteil der Dissertationsschrift</td>
<td>96</td>
</tr>
<tr>
<td>8 Danksagung</td>
<td>97</td>
</tr>
</tbody>
</table>
Abbildungsverzeichnis

Die Beschreibung der Abbildungen erfolgt nach dem jeweiligen Kapitel, in dem sie abgebildet sind und anschließend fortlaufender Nummerierung.

Diagramm 2-1: Körpergewicht der Schweine im Verlauf .. 8
Diagramm 2-2: Studienstruktur .. 9
Bild 2-1: Schweinegruppe 3 mit Windeln ... 11
Bild 2-2: Schwein 3521 beim Urinieren mit Windel .. 12
Bild 2-3: Dilatationskatheter ... 14
Bild 2-4: Elektrokauter ... 15
Bild 2-5: Harnröhre von Schwein 3529 vor und nach Teilung in einzelne Abschnitte .. 18
Diagramm 3-1: Inkontinenztest der Schweinegruppe 1 am 5. präoperativen Tag ... 22
Diagramm 3-2: Inkontinenztest der Schweinegruppe 1 am 4. präoperativen Tag ... 22
Diagramm 3-3: Inkontinenztest der Schweinegruppe 2 am 5. präoperativen Tag ... 23
Diagramm 3-4: Inkontinenztest der Schweinegruppe 2 am 4. präoperativen Tag ... 23
Diagramm 3-5: Inkontinenztest der Schweinegruppe 3 am 5. präoperativen Tag ... 24
Diagramm 3-6: Inkontinenztest der Schweinegruppe 3 am 4. präoperativen Tag ... 24
Diagramm 3-7: Inkontinenztest von Schwein 3526 der Schweinegruppe 1 25
Diagramm 3-8: Inkontinenztest von Schwein 3529 der Schweinegruppe 1 26
Diagramm 3-9: Inkontinenztest von Schwein 3530 der Schweinegruppe 1 26
Diagramm 3-10: Inkontinenztest von Schwein 3523 der Schweinegruppe 2 27
Diagramm 3-11: Inkontinenztest von Schwein 3524 der Schweinegruppe 2 27
Diagramm 3-12: Inkontinenztest von Schwein 3525 der Schweinegruppe 2 28
Diagramm 3-13: Inkontinenztest von Schwein 3520 der Schweinegruppe 3 28
Diagramm 3-14: Inkontinenztest von Schwein 3521 der Schweinegruppe 3 29
Diagramm 3-15: Inkontinenztest von Schwein 3522 der Schweinegruppe 3 29
Diagramm 3-16: Zeiten zwischen den Urinabgaben bei der Schweinegruppe 1
...31
Diagramm 3-17: Zeiten zwischen den Urinabgaben bei der Schweinegruppe 2
...32
Diagramm 3-18: Zeiten zwischen den Urinabgaben bei der Schweinegruppe 3
...33
Diagramm 3-19: Inkontinenztest der Schweinegruppe 3 am 1. postoperativen Tag
...34
Diagramm 3-20: Zeiten zwischen den Urinabgaben bei der Schweinegruppe 3
inklusive des 1. postoperativen Tages ..35
Diagramm 3-21: Urethradruckprofil von Schwein 3526 der Schweinegruppe 1 ...
...37
Diagramm 3-22: Urethradruckprofil von Schwein 3529 der Schweinegruppe 1 ...
...37
Diagramm 3-23: Urethradruckprofil von Schwein 3530 der Schweinegruppe 1 ...
...38
Diagramm 3-24: Urethradruckprofil von Schwein 3523 der Schweinegruppe 2 ...
...39
Diagramm 3-25: Urethradruckprofil von Schwein 3524 der Schweinegruppe 2 ...
...39
Diagramm 3-26: Urethradruckprofil von Schwein 3525 der Schweinegruppe 2 ...
...40
Diagramm 3-27: Urethradruckprofil von Schwein 3520 der Schweinegruppe 3 ...
...41
Diagramm 3-28: Urethradruckprofil von Schwein 3521 der Schweinegruppe 3 ...
...41
Diagramm 3-29: Urethradruckprofil von Schwein 3522 der Schweinegruppe 3 ...
...42
Diagramm 3-30: Mittelwert des maximalen Drucks präoperativ am Operationstag
...43
Diagramm 3-31: Mittelwert des maximalen Drucks postoperativ am Operationstag
...44
Diagramm 3-32: Mittelwert des maximalen Drucks am 21. postoperativen Tag ... 45
Diagramm 3-33: Einfaktorielle Analyse der Druckdifferenzen des Maximaldrucks ... 46
Tabelle 3-1: Vergleich der Druckdifferenzen der Maximaldruckwerte mit Signifikanz .. 47
Diagramm 3-34: Mittelwert der AUC präoperativ am Operationstag 48
Diagramm 3-35: Mittelwert der AUC postoperativ am Operationstag 49
Diagramm 3-36: Mittelwert der AUC am 21. postoperativen Tag 50
Diagramm 3-37: Einfaktorielle Analyse der Differenzen der AUC 51
Tabelle 3-2: Vergleich der Differenzen der AUCs mit Signifikanz 52
Bild 3-1: Histologie des Kontrolltiers ... 53
Bild 3-2: Histologischer Vergleich zwischen Dilatation und Kontrolle 54
Bild 3-3: Histologischer Vergleich zwischen proximaler Kauterisierung und Kontrolle ... 55
Bild 3-4: Histologischer Vergleich zwischen Dilatation & distaler Kauterisierung und Kontrolle ... 56
Bild 4-1: Darstellung des weiblichen und männlichen Beckens (Sagittalschnitt) .. 61
Bild 4-2: Schematische Darstellung der Beckenorgane des weiblichen Schweins ... 61
Bild 4-3: Urethradruckprofil .. 69
Bild 4-4: Urethraruheprofil der Frau und des Mannes 69
Bild 4-5: Harnröhrendruckprofil bei einer jüngeren und einer 84-jährigen Frau .. 70
Diagramm 4-6: Herkömmliche Profilometrie und HD-UPP von Schwein 3526 ... 74
Diagramm 4-7: Herkömmliche Profilometrie und HD-UPP von Schwein 3529 ... 75
Diagramm 4-8: Herkömmliche Profilometrie und HD-UPP von Schwein 3530 ... 76
Diagramm 4-9: Herkömmliche Profilometrie und HD-UPP von Schwein 3523.....
...78
Diagramm 4-10: Herkömmliche Profilometrie und HD-UPP von Schwein 3524...
...79
Diagramm 4-11: Herkömmliche Profilometrie und HD-UPP von Schwein 3525...
...80
Diagramm 4-12: Herkömmliche Profilometrie und HD-UPP von Schwein 3520...
...82
Diagramm 4-13: Herkömmliche Profilometrie und HD-UPP von Schwein 3521...
...83
Diagramm 4-14: Herkömmliche Profilometrie und HD-UPP von Schwein 3522...
...84
Bild 4-6: Externer Harnröhrensphinkter und interner Harnröhrensphinkter eines
weiblichen Fötus (18. Schwangerschaftswoche) ..86
Bild 4-7: Externer Sphinkter und Musculus levator ani bei der adulten Frau 87
Bild 4-8: Vergleich der histologischen Färbungen nach AZAN, Desmin und fast-
Myosin bei Schwein 3530 Abschnitt H4 ...88
Abkürzungsverzeichnis

AUC: Area under the Curve (Fläche unter der Kurve)
cm: Zentimeter (Längeneinheit)
cmH2O: Zentimeter Wassersäule (Druckeinheit)
HD-UPP: hochauflösendes Urethradruckprofil (high-definition urethral pressure profile)
i. m.: intramuskulär
gkg: Kilogramm (Gewichtseinheit)
mg: Milligramm (Gewichtseinheit)
VE-Wasser: Vollentsalztes auch demineralisiertes oder deionisiertes Wasser
1 Einleitung

Harninkontinenz ist ein häufiges und in großen Teilen der Bevölkerung weit verbreitetes Problem. Im Durchschnitt leiden 27,6% der Frauen und 10,5% der Männer weltweit an Inkontinenz, wobei sich der Anteil mit zunehmendem Alter erhöht. 10 bis 22% der betroffenen Personen beklagen eine mittlere bis schwere Einschränkung ihrer Lebensqualität aufgrund der Harninkontinenz (vgl. Minassian et al. 2003).

Die Ursachen für die Entstehung von Belastungsinkontinenz sind vielfältig. „Es werden konstitutionelle und urogynäkologische Risikofaktoren der Belastungsinkontinenz unterschieden. Zu den konstitutionellen Faktoren zählen Bindegewebschwäche, Adipositas, weiße Rasse und das Alter. An urogynäkologischen

Bei Männern sind die Ursachen einer Belastungsinkontinenz nahezu ausschließlich traumatisch bedingt. So entwickeln 3-5% der Männer nach radikaler Prostatektomie eine Inkontinenz aufgrund der Schließmuskelsinsuffizienz (vgl. Füsgen und Melchior 1997, S. 31).

Die grundsätzlichen therapeutischen Möglichkeiten umfassen zunächst eine Änderung des Lebensstils und Elimination von Risikofaktoren z. B. eine Reduktion des Körpergewichts oder konservative Maßnahmen z. B. Beckenbodentraining zur Stärkung der Muskulatur oder eine Veränderung des Verhaltens z. B. „die Anwendung spezieller Atemtechnik beim Heben schwerer Lasten“ (ebd.).

2 Material und Methoden

2.1 Material

2.1.1 Geräte

2.1.1.1 Laborgerätschaften

Gefrierschrank: Green Line -86°, Skadi Europe BV
Gefrierschrank: VIP Series -86°, Sanyo Denki K.K.
Kamera: AxioCam HRc, Carl Zeiss Microscopy GmbH
Kryostat: Leica CM1860 UV, Leica Mikrosysteme Vertrieb GmbH
Mikroskop: Axiovert 200M, Carl Zeiss Microscopy GmbH

2.1.1.2 Gerätschaften im Operationssaal

Beatmungsgerät: Siemens SC9000XL, Siemens-Elema AB
Elektrokauter: M743650, Erbe Elektromedizin GmbH
Elektrokauter: ZW-ZW, Erbe Elektromedizin GmbH
Hochfrequenzchirurgiegerät: VIO 300 D, Erbe Elektromedizin GmbH
OP-Tisch: Jupiter, Trumpf Kreuzer Medizin Systeme GmbH & Co. KG
Profilometrie-System: Aquarius TT, Laborie
Zystoskop: 27005 AA, Karl Storz GmbH & Co. KG

2.1.2 Verbrauchsmaterialien

2.1.2.1 Materialien im Labor

Einbettmedium: Tissue Freezing Medium, Leica Biosystems GmbH
Eindeckmedium: VectaMount Permanent Mounting Medium, Vector Laboratories
Deckgläser: Deckgläser 24 x 50 mm (Glasdicke 0,08 - 0,12), R. Langenbrinck
Entsorgungsbeutel: Entsorgungsbeutel PP, Brand
Handschuhe: Purple Nitrile Powder Free Exam Gloves S, Halyard Health Inc.
Objekttträger: SuperFrost Plus, R. Langenbrinck
Zellstoff-Unterlage: Molinea Plus Krankenunterlage mit Zellstoff-Flocken, Paul Hartmann AG
2.1.2.2 Materialien im Operationssaal bzw. zur Operationsvorbereitung

Abdecktuch: Foliodrape selbstklebendes Abdecktuch comfort 75 cm x 90 cm, Paul Hartmann AG

Dilatationskatheter: AA6118 Folysil Nelaton 18 Charr., Coloplast A/S

Dreiegehahn: Discofix Dreiegehahn, B. Braun Melsungen AG

Gesichtsmaske: Surgical Plus OP-Gesichtsmaske Typ IIR acct. DIN EN 14683 blau, Farstar Medical GmbH

Handschuhe (steril): Sempermed supreme Operationshandschuhe 6,5, Sem-perit Technische Produkte Ges.m.b.H.

Handschuhe (unsteril): Peha-soft nitrile White S 6-7, Paul Hartmann AG

Infusionsgerät: Intrafix Primeline Unfusionsgerät, B. Braun Melsungen AG

Infusionsset: Butterfly Winged Infusion Set 19G x 3/4" 1,1 x 19 mm, Hospira UK Limited

Infusionsset: Safety-Multify-Set, Sarstedt Aktiengesellschaft & Co.

Injektionskanüle: Sterican Einmal-Injektionskanüle, B. Braun Melsungen AG

Instrumentiertischbezug: Instrumentiertischbezug, Medline International France SAS

Operationshaube: Einmal-Haube Barettform Bouffant Cap grün, Farstar Medical GmbH

Operationsmantel: OP-Mantel XL, Medline International France SAS

Profilmometrie-Katheter: T-DOC 7Fr DualSensor/Radiopaque Catheter, T-DOC Company, LLC

Skalpell: Carbon Steel Einmalskalpell #15, B. Braun Aesculap AG

Spritze: BD Perfusion 50ml Syringe, Becton, Dickinson and Company Limited

Spritze: Infect 5 ml Einmalspritze, B. Braun Melsungen AG

Spritze: Infect 10 ml Einmalspritze, B. Braun Melsungen AG

Urinteststreifen: Combur 10 Test M, Roche Diagnostics GmbH

Venovenverweilkanüle: Vasofix Safety Sicherheitsvenenverweilkanüle mit Injektionsport, B. Braun Melsungen AG

2.1.2.3 Materialien zur Inkontinenztestung

Pflaster: Leukoplast 5 m x 5 cm, BSN medical GmbH
Pflaster: Leukosilk 5 m x 5 cm, BSN medical GmbH
Windeln: Pampers Baby-Dry Gr. 6, Procter & Gamble Germany GmbH & Co Operations oHG

2.1.3 Substanzen
2.1.3.1 Medikamente
Analgetikum: Fentanyl-ratiopharm (50 Mikrogramm/ml) Injektionslösung
Fentanylcitrat, ratiopharm GmbH
Analgetikum: Midazolam-ratiopharm 90 mg/18 ml, ratiopharm GmbH
Anticholinergikum: Atropinsulfat 0,5 mg/ml, B. Braun Melsungen AG
Euthanatikum: T61 Injektionslösung Tetracainhydrochlorid (5 mg/ml) Mebezoniumiodid (50 mg/ml) Embutramid (200 mg/ml), Intervet Deutschland GmbH (Zulassungsinhaber) MSD animal Health
Narkotikum: Isofluran CP (1 ml/ml), CP-Pharma
Narkotikum: Ketamin 10 % (100 ml/ml), bela-pharm GmbH & Co. KG (Zulassungsinhaber), Wirtschaftsgenossenschaft deutscher Tierärzte eG (Mitvertrieb)
Narkotikum: Propofol 1 % (10 mg/ml) MCT, Fresenius Kabi Deutschland GmbH
Sedativum: Elanco Stresnil (40 mg/ml) Injektionslösung für Schweine Azaperon, Lilly Deutschland GmbH

2.1.3.2 Chemikalien
Chemikalie zur AZAN-Färbung: Anilinblau-OrangeG-Gebrauchslösung, Morphisto Evolutionsforschung und Anwendung GmbH
Chemikalie zur AZAN-Färbung: Kernechtrot 0,1 %, Morphisto Evolutionsforschung und Anwendung GmbH
Chemikalie zur AZAN-Färbung: Phosphorwolframsäure 5 %, Morphisto Evolutionsforschung und Anwendung GmbH
Hautdesinfektionsmittel: Braunoderm nachgefärbt 1000 ml, B. Braun Melsungen AG
Gefriermittel: Stickstoff flüssig
Kochsalzlösung: NaCl 0,9 % Isotonische Kochsalzlösung 1000 ml Infusionslösung, Fresenius Kabi Deutschland GmbH
2.1.4 Software

Bildbearbeitung: AutoStitch v2.2, Matthew Brown and David Lowe - University of British Columbia

Bildbearbeitung: Paint V6.0, Microsoft Corporation

Mikroskop-Software: AxioVision40 V4.8.1.0, Carl Zeiss Imaging Solutions GmbH

Quellenangaben: Citavi 5.3, Swiss Academic Software GmbH

Statistische Analysen: JMP 12.2.0, SAS Institute Inc.

Textbearbeitung: Microsoft Office Word 2007, Microsoft Corporation

2.1.5 Versuchstiere

Die Nummerierung der Schweine entspricht der Nummerierung, welche die Tiere bereits beim Züchter erhalten hatten. Dies wurde bei den nachfolgenden Schweinen fortgesetzt.

Die Schweinegruppe 3 umfasste die Tiere 3520, 3521 und 3522. Hier wurde eine kombinierte Operation angewendet, indem sowohl eine Dilatation als auch eine distale Kauterisierung stattfand (s. Diagramm 2-2).

Des Weiteren wurde von einem urologisch nicht behandelten weiblichen Schwein der Deutschen Landrasse mit einem ähnlichen Versuchsendgewicht

2.2 Methoden

2.2.1 Studienstruktur

Diagramm 2-2: Studienstruktur

2.2.2 Inkontinenztestung

Bei den Versuchstieren erfolgte die Testung nicht mittels Vorlagen sondern aufgrund der anatomischen Gegebenheiten durch Windelhöschen. Diese waren handelsübliche Kleinkindwindeln, wurden jedoch auf die Erfordernisse der Tiere insofern angepasst, dass ein Loch in die Windel geschnitten wurde (s. Bild 2-1) um den Tieren die Möglichkeit zu geben, ihre Schwänze ihren natürlichen Bedürfnissen entsprechend zu bewegen.

An den entsprechenden Testtagen erfolgte in einem Zeitraum von ca. 6 Stunden der Wechsel der Windeln im 30-minütigen Abstand. Zusätzlich wurden die Windeln bei augenscheinlichem Einkoten oder Einnässen der Tiere (s. Bild 2-2) gewechselt, um ihre gewohnte Körperhygiene möglichst beizubehalten.

Jede Windel wurde sowohl vor als auch nach dem Gebrauch gewogen, die Gewichtsdifferenz, der Zeitpunkt des Wechsels und die erkennbare Ausscheidung wurden vermerkt.
Aufgrund der anatomischen Gegebenheiten mussten die Windeln für den Inkontinenztest an die Bedürfnisse der Schweine angepasst werden. Vor allem das vorherige Präparieren der Windel mit einem Durchtrittsloch für die Schwänze führte zur schnelleren Toleranz der Fremdkörper. Hier zu sehen sind die Tiere 3520, 3521 und 3522 der Schweinegruppe 3 vor der Operation während der ersten Anpassungstage mit den Windeln.

Bild 2-1: Schweinegruppe 3 mit Windeln
Alle Schweine wurden nach ca. 2 Wochen der Eingewöhnung in der experimentellen Tierhaltung operiert. Hierbei wurden die Tiere zunächst mittels Atropin 0,05 mg/kg i. m. und Azaperon 4 mg/kg i. m. sediert. Zur Narkoseeinleitung erhielten die Tiere anschließend Midazolam 2 mg/kg i. m. und Ketamin 14 mg/kg i. m. Bei den Schweinegruppen 1 und 2 erfolgte dann die Gabe von 60-100 mg Propofol und nach Intubation die Allgemeinanästhesie mittels Isofluran. Nachdem sich das angewandte Operationsverfahren bei den Tieren als sehr gut verträglich und wenig schmerzhaft zeigte, wurde bei der Schweinegruppe 3 auf eine Intubation verzichtet und die Erhaltungsnarkose durch die Gabe von Ketamin gewährleistet.

Nach erfolgter urodynamischer Messung wurde am narkotisierten Tier unter endoskopischer Kontrolle ein Ballonkatheter bzw. ein Elektrokauter eingeführt.

Bild 2-2: Schwein 3521 beim Urinieren mit Windel

2.2.3 Operationsmethoden

Bei der Schweinegruppe 1 erfolgte mittels des Katheters (s. Bild 2-3) eine Dilata-
tation über die gesamte Länge der Harnröhre. Hierbei wurde der Katheterballon
im Bereich der Urethra positioniert, mit 20 ml Flüssigkeit gefüllt, verblieb fünf
Minuten im proximalen Harnröhrenbereich und wurde dann ohne die Flüssigkeit
abzulassen durch die gesamte Harnröhre gezogen. Es konnte ein maximales
Füllungsvolumen von 20 ml erreicht werden, da bei weiterer Füllung der Kathe-
terballon nicht mehr durch die Harnröhre gezogen werden konnte und sogar
platzte.

Die Schweinegruppe 2 erhielt eine Elektrokauterisierung in der proximalen Zone
der Urethra. Unter endoskopischer Sichtkontrolle wurde hierbei ca. 1-2 cm distal
des Blasenauslasses bei kreisförmig an fünf Stellen in die Harnröhrenschei-
haut und –muskulatur mit dem Elektrokauter (s. Bild 2-4) eingegangen und ko-
aguliert. Hierbei wurde die Einstellung Effekt 8 und 16 Watt des Hochfrequenz-
chirurgiegerätes für die Nadelelektrode verwendet bei einer Applikationsdauer
von jeweils 10 Sekunden mit der Schneideeinstellung (precise cut) und an-
schließend der Koagulationseinstellung (precise coag).

Bei der Schweinegruppe 3 wurde diese Elektrokauterisierung im distalen Be-
reich der Harnröhre durchgeführt. Ebenfalls unter endoskopischer Sichtkontrolle
erfolgte ca. 4-5 cm distal des Blasenauslasses bei 3, 6, 9 und 12 Uhr die Ko-
agulation der Harnröhre für jeweils 10 Sekunden zunächst mit der Einstellung
zum Schneiden (precise cut, Effekt 4, 10 Watt) und anschließend mit der Ko-
agulationseinstellung (precise coag, Effekt 8, 16 Watt). Des Weiteren wurde bei
dieser Versuchsgruppe eine Dilatation, wie bei der Schweinegruppe 1 bereits
beschrieben, durchgeführt.

Während der Operation erfolgte die analgetische Behandlung der Tiere mit
Fentanyl 30-110 µg/kg/h.
2.2.4 Profilometrie

2.2.5 Materialgewinnung
Am 21. postoperativen Tag wurden die Tiere analog zur Operation zunächst mit Atropin 0,05 mg/kg i. m. und Azaperon 4 mg/kg i. m. sediert und anschließend mit Midazolam 2 mg/kg i. m. und Ketamin 14 mg/kg i. m. narkotisiert.
Während der profilometrischen Messung erfolgte die Narkotisierung weiterhin mit Ketamin.
Im Anschluss an die Untersuchung wurden die Tiere durch Verabreichung von T61 getötet, mittels medianer Laparotomie wurde der Unterbauch eröffnet und die Harnblase mitsamt Harnröhre entfernt und sofort auf Eis gelegt.

2.2.6 Urinstatusanalysen

2.2.7 Gefrierschnitte
Die entnommenen Harnröhren wurden ein bis zwei Stunden nach der Entfernung von überschüssigem Gewebe (z. B. Fettpartien) befreit, in einzelne ca. 1 cm lange Abschnitte geschnitten (s. Bild 2-5) und mittels Einbettmedium und flüssigem Stickstoff eingefroren. Die Bezeichnung der Abschnitte erfolgte nach dem Schema der fortlaufenden Nummerierung. Hierbei wurde das Harnröhrenstück, das sich am nächsten zur Harnblase befand mit H1 bezeichnet, das darauffolgende mit H2 etc.
Die Aufbewahrung der Proben erfolgte bei -80°C Celsius.
Zur Gewinnung der histologischen Präparate wurde das gefrorene Gewebe am Kryostat in 7 µm breite Schnitte geschnitten. Jeweils zwei Schnitte wurden ne-
beneinander auf einen Objektträger aufgebracht und anschließend max. 24 Stunden bei Raumtemperatur getrocknet. Die weitere Aufbewahrung erfolgte erneut bei -80°C Celcius.
Die entnommene Harnröhre – wie im oberen Bild gezeigt – wurde vermessen und – wie im unteren Bild gezeigt – in jeweils 1 cm lange Abschnitte zerteilt, die beginnend mit dem sich an die Harnblase anschließenden Abschnitt fortlaufend mit H1, H2, H3 etc. bezeichnet wurden. Bei Schwein 3529 ergaben sich so aufgrund der Harnröhrenlänge die Abschnitte H1, H2, H3, H4 und H5. Des Weiteren sind in dieser Abbildung die in die Harnblase mündenden Enden der Harnleiter zu erkennen.
2.2.8 Histologische Färbung nach AZAN

Für die bereits angefertigten und in einer ersten Sichtkontrolle für verwendbar angesehenen Schnitte wurde nach einem bereits etablierten Protokoll die Färbung vorgenommen. Hierfür wurden die Objektträger mit den betreffenden Schnitten für 30 Minuten bei 40°C Celsius erwärmt, um die weitere Haftung der Schnitte auf den Objektträgern zu gewährleisten. Anschließend wurden die Objektträger für weitere 30 Minuten in Kernechtrot 0,1% getaucht und anschließend mittels vollentsalzten Wassers (VE-Wasser) abgewaschen. Nachfolgend wurden die Objektträger für 5 Minuten mit Phosphorwolframsäure 5% bedeckt und hiernach erneut mit VE-Wasser abgewaschen. Dann erfolgte die Färbung mittels Anilinblau-OrangeG für 30-40 Sekunden und die erneute Waschung mit VE-Wasser.

Nach dem Trocknen wurde Eindeckmedium auf die gefärbten Objektträger aufgetragen und die Schnitte wurden durch das Aufbringen von Deckgläsern vor weiteren Einflüssen geschützt.

2.2.9 Mikroskopieren

Die gefärbten und eingedeckten Objektträger wurden mittels Mikroskop und bei einer 2,5fachen Vergrößerung aufgenommen. Hierbei wurde im Hellfeld ohne Phasenkontrast mikroskopiert.

2.2.10 Ergebnisauswertung

Die statistische Auswertung erfolgte nach Beratung durch Prof. Dr. rer. nat. M. Eichner, Mitarbeiter im Institut für Klinische Epidemiologie und angewandte Biometrie.
3 Ergebnisse

3.1 Übersicht

3.2 Inkontinenztest

Diagramm 3-1: Inkontinenztest der Schweinegruppe 1 am 5. präoperativen Tag
Der Inkontinenztest mittels Windeln wurde am 5. präoperativen Tag an den Tieren der Schweinegruppe 1, die am Operationstag durch Dilatation behandelt wurden, durchgeführt. Die einzelnen Messwerte geben sowohl die Menge an Urin als auch den Zeitpunkt ab Beginn der Messung wieder. Die Messwerte sind den drei Schweinen dieser Gruppe mit den Nummern 3526, 3529 und 3530 zugeordnet.

Diagramm 3-2: Inkontinenztest der Schweinegruppe 1 am 4. präoperativen Tag
Diagramm 3-3: Inkontinenztest der Schweinegruppe 2 am 5. präoperativen Tag
Gezeigt werden die gemessenen Urinmengen korrelierend mit den jeweiligen Zeiten der Messung ab Messbeginn am 5. präoperativen Tag. Die Daten sind den jeweiligen Tieren der Versuchsgruppe 2 proximale Kauterisierung zugeordnet.

Diagramm 3-4: Inkontinenztest der Schweinegruppe 2 am 4. präoperativen Tag
Am 4. Tag vor der Operation wurde bei den Schweinen 3523, 3524 und 3525 der Gruppe 2, die mittels der proximalen Kauterisierung behandelt wurden, der Zeitpunkt und die Menge der Urinabgabe gemessen.
Diagramm 3-5: Inkontinenztest der Schweinegruppe 3 am 5. präoperativen Tag

Diagramm 3-6: Inkontinenztest der Schweinegruppe 3 am 4. präoperativen Tag

Am 4. präoperativen Tag wurden die Urinabgaben der Versuchstiere der Schweinegruppe 3, die mit Dilatation und distaler Kauterisierung behandelt wurden, gemessen und geordnet nach den einzelnen Tieren mit den Nummern 3520, 3521 und 3522 sowie nach der jeweiligen Menge und dem Zeitpunkt der Abgabe in das Diagramm eingetragen.
In Diagramm 3-1 bis Diagramm 3-6 zeigen sich sortiert nach den Versuchstiergruppen und den einzelnen präoperativen Versuchstagen die Urinabgaben, eingeordnet nach Urinmenge und dem Zeitpunkt der Abgabe nach Beginn der Messung. Im Vergleich aller Tiere schwankten die jeweils abgegebenen Urinmengen an den präoperativen Tagen zwischen 35 und 220 g. Ebenso unterschiedlich zeigten sich auch die Zeiten zwischen den einzelnen Urinabgaben mit Werten zwischen 50 und 215 Minuten. Somit ist bereits in diesen Kleingruppen eine große Individualität gegeben.

Diagramm 3-7: Inkontinenztest von Schwein 3526 der Schweinegruppe 1
Diagramm 3-8: Inkontinenztest von Schwein 3529 der Schweinegruppe 1
Bei Schwein 3529 der Schweinegruppe 1 Dilatation sind die Werte der einzelnen Messtage in das Diagramm eingezeichnet. Dabei ist die Urinmenge über dem Zeitpunkt der Urinabgabe aufgetragen.

Diagramm 3-9: Inkontinenztest von Schwein 3530 der Schweinegruppe 1
Bei Schwein 3530 wurden an den bereits beschriebenen Versuchstagen ebenfalls die Urinmenge und der Zeitpunkt der jeweiligen Urinabgabe gemessen.
Diagramm 3-10: Inkontinentiztest von Schwein 3523 der Schweinegruppe 2
Für Schwein 3523 aus der Schweinegruppe 2 proximale Kauterisierung wurden die Mengen und die Zeitpunkte der Urinabgaben farbig nach den jeweiligen Versuchstagen dargestellt.

Diagramm 3-11: Inkontinentiztest von Schwein 3524 der Schweinegruppe 2
Bei Schwein 3524 der Schweinegruppe 2 wurde der Inkontinentiztest an zwei präoperativen und vier postoperativen Tagen durchgeführt. Die Mengen und Zeiten der Urinabgaben an den jeweiligen Tagen lassen sich anhand der verschiedenen Farben aus dem Diagramm entnehmen.
Schwein 3525 gab an den bekannten Messtagen Urin in unterschiedlicher Menge und zu unterschiedlichen Zeitpunkten ab Versuchsbeginn ab. Diese sind farblich den einzelnen Versuchstagen zugeordnet.

Die Abgabe der Urinmenge erfolgte bei Schwein 3520 aus der Schweinegruppe 3 an den bekannten Versuchstagen. Die Messwerte lassen sich sowohl nach Urinmenge und Zeitpunkt als auch anhand der farbigen Markierungen den jeweiligen Messtagen zuordnen.
Diagramm 3-14: Inkontinenztest von Schwein 3521 der Schweinegruppe 3
Bei Schwein 3521 aus der Schweinegruppe 3 Dilatation und distale Kauterisierung zeigen sich sehr unterschiedliche Messwerte im Bezug auf die Menge der Urinabgabe und deren Zeitpunkt.

Diagramm 3-15: Inkontinenztest von Schwein 3522 der Schweinegruppe 3

Bezüglich der Zeiten zwischen den einzelnen Urinabgaben geben Diagramm 3-16 bis Diagramm 3-18 graphischen Aufschluss. Hierbei wurden die Tiere ihren einzelnen Versuchsgruppen und die Werte den Versuchstagen im Bezug zum Operationszeitpunkt zugeordnet. Es wurden die Zeitabstände zwischen den einzelnen Urinabgaben gemessen und aus den Tieren einer Gruppe der Median, das Maximum, das Minimum, das obere und das untere Quartil aufgetragen.

Diagramm 3-16: Zeiten zwischen den Urinabgaben bei der Schweinegruppe 1

Diagramm 3-17: Zeiten zwischen den Urinabgaben bei der Schweinegruppe 2

Diagramm 3-18: Zeiten zwischen den Urinabgaben bei der Schweinegruppe 3

Somit zeigt sich in der Analyse des Verlaufs sowohl bei den Urinmengen als auch bei den Zeiten zwischen dem Urinieren bei allen Versuchstieren kein Trend.

Eine Ausnahme bietet der 1. postoperative Tag, an dem lediglich an den Schweinen der letzten Operationsgruppe der Inkontinenztest durchgeführt wurde. Hierbei wurde ein geringerer Messzeitraum von ca. 3 Stunden gewählt, um den postoperativen Stress für die Versuchstiere so gering wie möglich zu halten.

Diagramm 3-19: Inkontinenztest der Schweinegruppe 3 am 1. postoperativen Tag

Im Vergleich zu den weiteren Versuchstagen ist im Diagramm 3-20 zu ersehen, dass die Messung am 1. postoperativen Messtag bei den Tieren der letzten Versuchsgruppe einen Trend andeutete, jedoch war dieser an den weiteren postoperativen Messtagen bereits nicht mehr nachweisbar.

Diagramm 3-20: Zeiten zwischen den Urinabgaben bei der Schweinegruppe 3 inklusive des 1. postoperativen Tages

3.3 Harnröhrendruck

3.3.1 Profilometrie

Jedoch zeigt sich bei den Tieren der Versuchsgruppe 1, die mit Dilatation behandelt wurden und den Tieren der Schweinegruppe 2, die eine proximale Kauterisierung erhielten, eine Regeneration der Druckverhältnisse. So waren die Druckkurven am 21. postoperativen Tag nicht nur deutlich höher als bei der postoperativen Messung an Tag 0 sondern auch als die präoperativen Druckprofile (s. Diagramm 3-21 bis Diagramm 3-26).

Des Weiteren zeigte sich bei einigen Tieren eine Verschiebung des Druckplateaus nach distal, so bei Nummer 3526 (s. Diagramm 3-21), 3529 (s. Diagramm 3-22) und 3530 (s. Diagramm 3-23) aus der Versuchstiergruppe 1 und aus der Gruppe 2 bei Schwein 3525 (s. Diagramm 3-26).
Diagramm 3-21: Urethradruckprofil von Schwein 3526 der Schweinegruppe 1

Diagramm 3-22: Urethradruckprofil von Schwein 3529 der Schweinegruppe 1
Bei dem Tier mit der Nummer 3529 aus der Schweinegruppe 1 Dilatation erfolgte an den bekannten Mess- tagen die Messung des Drucks in der Harnröhre. Durch die farbige Unterscheidung lassen sich die Werte der präoperativen Messung sowie den postoperativen Messungen am Tag 0 und Tag 21 zuordnen.
Eine weitere Auffälligkeit ist bei den Tieren der Schweinegruppe 2, die mit proximaler Kauterisierung behandelt wurden, die Veränderung des Druckprofils im Bereich des Maximaldrucks. Sie ist nicht wie bei den anderen Tieren oder in den präoperativen Messung eingipflig oder plateauartig sondern zeigt sich mehrgipflig mit deutlichen Messtälern bei den Tieren 3523 (s. Diagramm 3-24), 3524 (s. Diagramm 3-25) und 3525 (s. Diagramm 3-26).

Diagramm 3-23: Urethradruckprofil von Schwein 3530 der Schweinegruppe 1
Die Messung des Harnröhrendruckprofils erfolgte bei Schwein 3530 aus der Versuchstiergruppe 1 Dilatation ebenfalls am Tag 0 vor und nach der Operation sowie an Tag 21 nach dem Eingriff.
Bei Schwein 3523 aus der Versuchsgruppe 2 proximale Kauterisierung wurden die Messungen des Urethradruckprofils am Tag 0 vor und nach der Operation sowie am 21. postoperativen Tag durchgeführt.

Die Messung des Drucks in cmH₂O innerhalb des Harnröhrenverlaufs erfolgte bei Schwein 3524 der Schweinegruppe 2 proximale Kauterisierung an den bereits bekannten Messtagen. Aufgrund der farbigen Unterscheidung lassen sich die Profilometrien zuordnen.
Diagramm 3-27: Urethradruckprofil von Schwein 3520 der Schweinegruppe 3
Die Messungen der Harnröhrenprofilometrien wurden bei Schwein 3520 aus der Schweinegruppe 3 Dilatation und distale Kauterisierung präoperativ, direkt im Anschluss an die Operation und am 21. postoperativen Tag durchgeführt.

Diagramm 3-28: Urethradruckprofil von Schwein 3521 der Schweinegruppe 3
Bei dem Versuchstier 3521 der Schweinegruppe 3 Dilatation und distale Kauterisierung wurden die Druckverlaufsprofile in der Harnröhre am Tag der Operation prä- und postoperativ sowie am 21. postoperativen Tag durchgeführt.
3.3.2 Maximaldruckmessung

Im Zuge der Harnröhrendruckmessungen wurde bei allen Tieren ebenfalls der Maximaldruck in der Harnröhre gemessen. Die Mittelwerte für die präoperativen Messungen sind in Diagramm 3-30 zu sehen, als Vergleichswert wurde der Mittelwert aller präoperativen Maximaldrücke angegeben. Die Mittelwerte der drei Versuchsgruppen lagen sehr nah beieinander.

Bei den Tieren der drei Versuchsgruppen wurden die maximalen Druckwerte in der Harnröhre vor der Operation gemessen. Aus diesen Drücken wurden die Mittelwerte für die jeweiligen Gruppen und für die Gesamtheit aller Versuchstiere gebildet.
Am 21. postoperativen Tag wurde der Maximaldruck in der Harnröhre erneut gemessen. Wie in Diagramm 3-32 zu sehen, stiegen die Werte der Versuchsgruppe 1 Dilatation und der Schweinegruppe 2 proximale Kauterisierung deutlich über den Wert sowohl der postoperativen als auch der präoperativen Messungen am Operationstag.

Lediglich der Mittelwert des Maximaldrucks für die Schweinegruppe 3 distale Kauterisierung und Dilatation blieb unter dem präoperativen Ausgangswert.
Um eine Aussage über die Signifikanz dieser Ergebnisse zu erhalten, wurde eine einfaktorielle Varianzanalyse zum Vergleich der Mittelwerte mit dem Tukey-Kramer-Test durchgeführt (s. Diagramm 3-33 und Tabelle 3-1). Hierbei wurden die Differenzen aus dem Maximaldruck am 21. postoperativen Tag und dem Maximaldruck der präoperativen Ausgangsmessung für jedes Tier gebildet und diese dann den jeweiligen Versuchsgruppen zugeordnet (s. Diagramm 3-33).

Diagramm 3-33: Einfaktorielle Analyse der Druckdifferenzen des Maximaldrucks

Zwischen den Tieren der Versuchsgruppe 1 Dilatation und der Versuchsgruppe 2 proximale Kauterisierung besteht keinerlei signifikanter Unterschied bei einem p-Wert von 0,6945.

Vergleich der Druckdifferenzen der Maximaldruckwerte nach den Versuchsgruppen mit Signifikanz

<table>
<thead>
<tr>
<th>Versuchsgruppe</th>
<th>Zu vergleichende Versuchsgruppe</th>
<th>Differenz</th>
<th>Std.-Fehlerdiff.</th>
<th>p-Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schweinegruppe 2 proximale Kauterisierung</td>
<td>Schweinegruppe 3 distale Kauterisierung & Dilatation</td>
<td>95,66667</td>
<td>25,81845</td>
<td>0,0234*</td>
</tr>
<tr>
<td>Schweinegruppe 1 Dilatation</td>
<td>Schweinegruppe 3 distale Kauterisierung & Dilatation</td>
<td>74,00000</td>
<td>25,81845</td>
<td>0,0643</td>
</tr>
<tr>
<td>Schweinegruppe 2 proximale Kauterisierung</td>
<td>Schweinegruppe 1 Dilatation</td>
<td>21,66667</td>
<td>25,81845</td>
<td>0,6945</td>
</tr>
</tbody>
</table>

Tabelle 3-1: Vergleich der Druckdifferenzen der Maximaldruckwerte mit Signifikanz

Die Varianzanalyse mittels Tukey-Kramer-Test hat die Druckdifferenzen der Maximaldruckwerte der einzelnen Versuchsgruppen miteinander verglichen. In jeder Tabellenzeile wird der Vergleich zwischen zwei Versuchsgruppen mit der Differenz, der Standardfehlerdifferenz und dem p-Wert angegeben. Ein p-Wert unter 0,05 zeigt eine eindeutige Signifikanz, ein Wert unter 0,10 einen Trend. Ein signifikanter Wert wird rot angezeigt und mit einem Stern markiert.

3.3.3 „Area under the Curve“ (AUC)

Neben den Druckprofilen und den maximalen Druckwerten wurde bei den Versuchstieren an den bekannten Messtagen ebenfalls die „Area under the Curve“ und somit der in der Harnröhre herrschende Gesamtdruck gemessen.

Diagramm 3-34 zeigt die Mittelwerte der AUCs in den präoperativen Messungen sortiert nach den einzelnen Versuchsgruppen. Als Referenzwert ist der Mittelwert aus allen präoperativen AUCs eingetragen.

Bei allen Versuchsgruppen reduzierte sich der Mittelwert der AUC im Anschluss an die Operation deutlich (s. Diagramm 3-35).
Bei der Messung am 21. postoperativen Tag lagen die Mittelwerte der AUCs der Schweinegruppe 1 Dilatation und der Schweinegruppe 2 proximale Kauterisierung deutlich über dem ersten postoperativen und dem präoperativen Wert. Der Mittelwert der Schweinegruppe 3 distale Kauterisierung und Dilatation erhöhte sich im Gegensatz zur postoperativen Messung am Operationstag, blieb jedoch deutlich unter dem präoperativen Ausgangswert zurück (s. Diagramm 3-36).
Die Mittelwerte der AUC der Harnröhrendruckprofile wurden für die jeweiligen Tiergruppen direkt im Anschluss an die Operation gemessen und farbig sortiert in die Graphik eingetragen. Als Vergleichswert dient der Mittelwert der AUC bei den präoperativen Messungen aller Tiere.
Um die Signifikanz dieser Werte zu überprüfen wurde eine einfaktorielle Analyse der Differenzen der AUCs zwischen dem 21. postoperativen Tag und der präoperativen Ausgangsmessung durchgeführt. In Diagramm 3-37 wurden die Differenzen der einzelnen Versuchstiere den jeweiligen Operationsgruppen zugeordnet.

Diagramm 3-36: Mittelwert der AUC am 21. postoperativen Tag

Bei den drei Versuchsgruppen wurden die Mittelwerte der AUC der Urethraprofilometrien am 21. Tag nach der Operation ebenso wie der Mittelwert aus allen AUCs der präoperativen Messungen gebildet.
Vergleich der Differenzen der AUCs nach den Versuchsgruppen mit Signifikanz

<table>
<thead>
<tr>
<th>Versuchsgruppe</th>
<th>Zu vergleichende Versuchsgruppe</th>
<th>Differenz</th>
<th>Std.-Fehlerdiff.</th>
<th>p-Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schweinegruppe 2 proximale Kauterisierung</td>
<td>Schweinegruppe 3 distale Kauterisierung & Dilatation</td>
<td>2288,667</td>
<td>813,7134</td>
<td>0,0687</td>
</tr>
<tr>
<td>Schweinegruppe 1 Dilatation</td>
<td>Schweinegruppe 3 distale Kauterisierung & Dilatation</td>
<td>2140,667</td>
<td>813,7134</td>
<td>0,0864</td>
</tr>
<tr>
<td>Schweinegruppe 2 proximale Kauterisierung</td>
<td>Schweinegruppe 1 Dilatation</td>
<td>148,000</td>
<td>813,7134</td>
<td>0,9820</td>
</tr>
</tbody>
</table>

Tabelle 3-2: Vergleich der Differenzen der AUCs mit Signifikanz

Die Varianzanalyse mittels Tukey-Kramer-Test hat die Differenzen der AUCs des Harnröhrendrucks der einzelnen Versuchsgruppen miteinander verglichen. In jeder Tabellenzeile wird der Vergleich zwischen zwei Versuchsgruppen mit der Differenz, der Standardfehlerdifferenz und dem p-Wert angegeben. Ein p-Wert unter 0,05 zeigt eine eindeutige Signifikanz, ein Wert unter 0,10 einen Trend.

3.4 Histologie

Für die feingewebliche Untersuchung wurde allen Versuchstieren sowie einem Kontrolltiers mit ähnlichen körperlichen Merkmalen (Größe, Gewicht, Alter) im Anschluss an die Sakrifizierung die Harnblase mit Harnröhre entnommen. Zur weiteren Verarbeitung wurde die Harnröhre in einzelne Abschnitte zerteilt. Hierbei wurde der Abschnitt, der sich der Harnblase unmittelbar anschloss, mit H1 bezeichnet und jedes weitere Teilstück durchnummeriert. Die Schnittpräparate wurden mittels der AZAN-Technik gefärbt, um die Muskulatur möglichst genau vom Bindegewebe unterscheiden zu können. Hierbei färbt sich das Bindegewebe blau, wohingegen sich Muskulatur und die zentral gelegene Schleimhaut (Zellkerne und Zytoplasma) rot färben. Um die jeweiligen histologischen Abbilder bestmöglich zu vergleichen, wurde für jede Versuchsgruppe ein Tier ausgewählt, dessen Histologie möglichst repräsentativ ist. Hierbei wurde darauf geachtet, dass die Schnittbilder die Be-
sonderheiten aufweisen, die für die jeweilige Versuchstiergruppe spezifisch sind. Für dieses repräsentative Versuchstier ebenso wie für das Kontrolltier, wurden für jeden Harnröhrenabschnitt jeweils ein Querschnitt und ein ebenfalls besonders aussagekräftiger Ausschnitt daraus gewählt, um eine kontinuierliche histologische Abbildung zu erstellen.

Bild 3-1 zeigt die Histologie des Kontrolltiers. Im Abschnitt H1 zeigt sich ein kompakter Muskelschlauch ohne besonders aufgelockerte Bereiche. In H2 und H3 ist die Muskulatur bereits dicker und kompakter, des Weiteren breitet sie sich mehr ins subkutane Bindegewebe aus als in H1. Dies nimmt in den Abschnitten H4 und H5 kontinuierlich zu bis in Abschnitt H6 nur noch sehr wenig Bindegewebe und überwiegend Muskulatur zu erkennen ist.

Bild 3-1: Histologie des Kontrolltiers

In Bild 3-2 sind die Histologien von Schwein 3530 als repräsentativem Tier der Versuchsgruppe 1 Dilatation und des Kontrollschweins abgebildet. Wie bei dem Kontrollschwein zeigt sich bei dem Versuchstier eine Zunahme der Muskeldicke und der Ausbreitung der Muskulatur ins Bindegewebe im Verlauf der Harnröhre. Auffällig ist jedoch, dass die Muskulatur im Abschnitt H1 nicht völlig kompakt sondern mit mehr Bindegewebe durchzogen ist als bei dem urologisch unbehandelten Kontrolltier. Dies deutet auf die Behandlung durch Dilatation hin, bei der der Muskel überdehnt wurde. Des Weiteren ist im Abschnitt H4 und teilweise H5 eine deutlich dünnsere Stelle im Muskelschlauch zu sehen.

Bild 3-3: Histologischer Vergleich zwischen proximaler Kauterisierung und Kontrolle

Für die Harnröhrenabschnitte H1 bis H6 wurden vom Kontrolltier und von Schwein 3524 der Versuchsgruppe proximale Kauterisierung jeweils ein Gesamtquerschnitt und von diesem ein Ausschnitt zur vergleichenden Darstellung der Histologien verwendet. In den Ausschnitten zeigen die Maßstabsbalken jeweils 500 µm und in den Querschnitten 1000 µm.
Bild 3-4: Histologischer Vergleich zwischen Dilatation & distaler Kauterisierung und Kontrolle

Von Schwein 3521 der Versuchsgruppe 3 distale Kauterisierung und Dilatation und von dem Kontrolltier wurden histologische Querschnittsbilder und aus diesen Ausschnitte unter dem Mikroskop aufgenommen. Die Maßstabsbalken in den Ausschnitten zeigen jeweils 500 µm und in den Querschnitten 1000 µm. Die Nummerierung der Abschnitte beginnt mit H1 als dem Harnröhrenabschnitt, der sich direkt an die Harnblase anschloss und endet mit H6, welcher am distalsten von der Blase gelegen ist.

Insgesamt wird die Muskulatur im Verlauf der Harnröhre von H1 bis H5 im Tier der Versuchsgruppe 3 dicker und breitet sich vermehrt ins Bindegewebe aus ähnlich wie bei dem unbehandelten Kontrolltier.

3.5 Zusammenfassende Darstellung der Ergebnisse

In allen drei Versuchsgruppen konnte in Bezug auf die Mengen und die Zeitabstände zwischen den einzelnen Urinabgaben im Inkontinenztest kein eindeutiger Trend zwischen den präoperativen und postoperativen Messzeiträumen festgestellt werden. Lediglich der 1. postoperative Tag in der Schweinegruppe 3 distale Kauterisierung und Dilatation zeigte sowohl durch den augenscheinlichen unwillkürlichen Urinverlust, als auch durch die geringeren Zeitabstände zwischen den Urinabgaben einen Trend. Dieser ließ sich in den anschließenden postoperativen Versuchstagen jedoch nicht bestätigen.

Insbesondere die Druckmessungen der Tiere der Versuchsgruppe 1 zeigen eine Verschiebung der Druckmaxima nach distal und alle Tiere der 2. Versuchsgruppe zeigen eine Veränderung des Druckverlaufs innerhalb der Maximaldruckwerte von einem eingipfligen oder plateauförmigen Maximaldruck hin zu einem mehrgipfligen Druckmaximum.

In Bezug auf die maximalen Druckwerte gibt es einen signifikanten Unterschied zwischen der Versuchsgruppe 3 und der Versuchsgruppe 2. Zwischen der Versuchsgruppe 3 und der Versuchsgruppe 1 zeigt sich ein Trend mit einem p-Wert knapp über dem Signifikanzniveau.
Im Vergleich der AUC zwischen der Versuchsgruppe 3 und den beiden anderen Schweinegruppen zeigen sich die p-Werte ebenfalls knapp über dem Signifikanzniveau von 0,05 und geben somit einen Trend jedoch keine Signifikanz an. Die Versuchsgruppen 1 und 2 weisen weder bei den Maximaldrücken noch bei den AUCs einen signifikanten Unterschied auf.

Die histologischen Schnittpäparate zeigen im Vergleich zwischen Tier 3530 aus der Versuchsgruppe 1 Dilatation mit dem Kontrolltier eine insbesondere proximal gelegene Vermehrung des Bindegewebes, dies korreliert mit der Überdehnung des Muskels aufgrund der Dilatation.

Tier 3524 aus der Versuchsgruppe 2 proximale Kauterisierung zeigt im Gegen- satz zu dem Kontrolltier eine auffällige Einkerbung im sonst sehr parallel angeordneten Muskelschlauch im proximalsten Harnröhrenabschnitt. Dies deutet auf die sichtbaren Auswirkungen der proximalen Elektrokauterisierung hin.

Im Vergleich zwischen dem Schwein 3521 aus der Versuchsgruppe 3 Dilatation und distale Kauterisierung und dem urologisch unbehandelten Kontrolltier erweist sich die Muskulatur in den Abschnitten H1 bis H2 von Tier 3521 dicker und teilweise mit Bindegewebe durchsetzt. Die geringere Kompaktheit und vermehrte Durchsetzung mit Bindegewebe korreliert mit dem Effekt der Dilatation der Harnröhrenmuskulatur. Es zeigt sich außerdem ein auffällig dunkler Bereich mit Blasenbildung, um den herum die Muskelfasern nicht nebeneinander angeordnet sind, sondern scheinbar miteinander verschmelzen. Das deutet auf die Auswirkungen der distalen Elektrokauterisierung hin.

Alle histologischen Präparate der Versuchs- und des Kontrolltiers weisen grundsätzlich eine Zunahme der Muskeldicke und eine Abnahme des bindegewebigen Anteils im Verlauf der Harnröhre von proximal nach distal auf.
4 Diskussion

Die Versuche, die dieser Arbeit zugrunde liegen, sind im Rahmen einer Machbarkeitsstudie zur Etablierung eines Großtiermodells für Harninkontinenz durchgeführt worden. Zum einen sollte die Wirksamkeit verschiedener Operationsmethoden auf den Schließmuskel der Harnröhre getestet werden. Zum anderen sollte die Möglichkeit der kontinuierlichen Inkontinenztestung ohne Einsatz von Narkotika etc. erprobt werden. Im Rahmen dieser Studie erfolgte eine profunde Auswertung hinsichtlich der profilometrisch als auch klinisch nachweisbaren Inkontinenz bei verschiedenen Operationsmethoden, um bereits in externen Vorstudien gezeigte Forschungsergebnisse zu verifizieren und weitere Erkenntnisse zu erlangen.

Die Etablierung eines reproduzierbaren Großtiermodells ist essentiell, um im Zuge weiterer Forschungen die Wirksamkeiten unterschiedlicher regenerativer Therapien zur Behandlung der Harninkontinenz zu testen.

Um die Effektivität der einzelnen Operationsmethoden zu überprüfen, wurden die Ergebnisse der Inkontinenztests, der Profilometrien und der Histologien verglichen.

4.1 Material und Methoden

4.1.1 Versuchstiere

Bild 4-1: Darstellung des weiblichen und männlichen Beckens (Sagittalschnitt)
In der Abbildung ist links ein Schnitt durch das weibliche Becken mit den entsprechenden Beckenorganen zu sehen. Die rechte Seite zeigt den gleichen Ausschnitt eines männlichen Beckens.
(Quelle: modifiziert Gray und Lewis 2000)

Bild 4-2: Schematische Darstellung der Beckenorgane des weiblichen Schweins
In der vorliegenden Abbildung sind die Harn- und Geschlechtsorgane eines weiblichen Schweins dargestellt.

4.1.2 Kohortengröße

4.1.3 Operationsmethoden

Die für diese Studie verwendeten Operationsmethoden orientierten sich an bereits etablierten bzw. zuvor beschriebenen Verfahren zur Destruktion des Harnröhrensphinkters. Hierbei gibt es viele verschiedene Modelle wie die vaginale

Die Entscheidung, die Kauterisierung im vorliegenden Versuch sowohl in der proximalen als auch in der distalen Harnröhre durchzuführen, ließ sich auf die Diskrepanz des Druckmaximums beim Menschen und beim Schwein zurückführen. Bei Schweinen scheint die Zone des maximalen Drucks in der distalen Harnröhre zu liegen, wohingegen bisherige Therapieansätze beim Menschen üblicherweise auf die proximale Harnröhre konzentriert waren (vgl. ebd.).

4.2 Inkontinenztest

In einer Studie an Ratten wurde an den Versuchstieren eine Woche nach einer vaginalen Entbindung und zusätzlicher vaginaler Dilatation mittels Katheterballons ein einmaliger Pad-Test durchgeführt. Hierfür wurden die Tiere narkotisiert und ihnen wurde eine vorher abgewogene Mullkompresse auf die periurethrale Haut genäht. Nach dem Aufwachen aus der Narkose wurden die Blase der Tiere standardisiert aufgefüllt und nach einer Stunde freier Aktivität wurde das Gewicht der Mullkompresse erneut gewogen und somit ein Urinverlust gemessen (vgl. Wang et al. 2015).

Ein wiederholter Pad-Test ohne operativen Eingriff zur kontinuierlichen Inkontinenzmessung ist im Rahmen der vorliegenden Arbeit erstmalig durchgeführt worden.

Das Fehlen von signifikanten Verlaufsergebnissen nach den Operationen ist wahrscheinlich einer Kombination von mehreren Faktoren geschuldet. Hierbei
spielen die bereits erwähnten Diskussionspunkte junger Alter der Tiere und die damit einhergehende hohe Regenerationsrate sowie die fehlenden Vorschäden der Beckenbodenmuskulatur durch Bindegewebschwäche oder Geburtstraumata ansonstenminderweise eine wichtige Rolle.

4.3 Profilometrie

4.3.1 Bedeutung der Harnröhrendruckmessung

Eine weitere Möglichkeit um einen unwillkürlichen Harnverlust zu provozieren ist das maximale Auffüllen der Harnblase. Hierbei würde man den Druck in der Harnröhre zum Zeitpunkt des Urinabgangs als maximalen Verschlussdruck an-

Bild 4-3: Urethradruckprofil
In dieser Abbildung ist der schematische Aufbau eines Harnröhrendruckprofils zu sehen. (Quelle: Jonas et al. 1998, S. 56.)

Bild 4-4: Urethraruheprofil der Frau und des Mannes
Die Abbildungen zeigen im oberen Abschnitt das Harnröhrendruckprofil in Ruhe und im unteren Abschnitt die korrespondierende Anatomie. Abbildung a zeigt das Ruheprofil und den anatomischen Aufbau der Harnröhre bei der Frau und Abbildung b zeigt dies beim Mann. (Quelle: Jonas et al. 1998, S. 57)

Bild 4-5: Harnröhrendruckprofil bei einer jüngeren und einer 84-jährigen Frau

(Quelle: modifiziert Abrams 1997, S. 106-108)

Bild 4-5 zeigt den Vergleich des Urethradruckprofils im Normalbefund und bei einer älteren Frau, dabei ist das Druckniveau bei der älteren Frau deutlich niedriger. Dieses Druckprofil lässt sich gut mit den Profilometrien unserer Versuchstiere der Schweinegruppe 3 am 21. postoperativen Tag (s. Diagramm 3-27 bis
Diagramm 3-29) vergleichen. Hier zeigen sich ebenfalls die deutlich niedrigeren Druckverläufe bei sonst physiologischem Kurvenverlauf.

4.3.2 Einfluss durch Medikamente

Das Neuroleptikum Azaperon wird und wurde bei Menschen nicht eingesetzt, sodass die Literatur keine Erkenntnisse zur Wirkung an der menschlichen Muskulatur hat. Jedoch zeigt sich im Einsatz dieses Medikamentes an Tieren insbe-
sondere an Schweinen kein Einfluss auf die Muskulatur, die Harnröhrendruck-
verhältnisse und insbesondere auf den Harnröhrenspinkter
(vgl. Löscher 2006b, S. 90f.).
Fentanyl ist ein Opioid, das u. a. als Agonist an den \(\mu \)-Opiodrezeptoren wirkt
(vgl. Höllt und Allgaier 2013, S. 221–225). „Nach Aktivierung von \(\mu \)-
Opiodrezeptoren kommt es zu einem Spasmus des Harnblasenschließmuskels
und zu einer Hemmung des Miktionsreflexes. Dies führt zur Harnverhaltung mit
der Gefahr einer Blasenruptur“ (ebd., S. 222). In einer Doppelblindstudie, die
die urodynamischen Veränderungen durch den Einsatz von Opioiden unter-
suchte, veränderten sich die Parameter einer urodynamischen Messung wie
das Empfinden der Harnblasenfüllung und der Drang zu Urinieren nach dem
Einsatz von Fentanyl und anderen Opioiden, ebenso wie es bei manchen Ver-
suchspersonen zum Verlust der Miktionsfähigkeit und einer verringerten
Detrusoraktivität kam. Jedoch zeigte sich hierbei keine Änderung im Harnröh-
rendruckprofil und im Maximaldruck der Harnröhre vor und nach Einsatz von
Fentanyl am Menschen (vgl. Malinovsky et al. 1998).
Somit ist ein Einfluss der verwendeten Medikamente auf die Harnröhrenprofilo-
metrien der Versuchstiere nach aktuellem Stand nicht nachweisbar. Des Weite-
ren kann ebenfalls ausgeschlossen werden, dass die besagten Medikamente
die Druckprofile einer menschlichen Harnröhre verändert hätten.

4.3.3 Vergleich mit der HD-UPP-Methode
In Diagramm 4-1 bis Diagramm 4-9 sind neben den herkömmlich gemessenen
Profilometrien die hochauflösenden Harnröhrendruckprofile (high-definition
urethral pressure profile, HD-UPP) der Versuchstiere zu sehen. Diese sind mitt-
tels einer neuentwickelten 8-Kanalsonde (Entwicklungsmuster der Universität
Stuttgart, ISYS, Prof. Sawodny) gemessen worden, wobei eine zweidimensio-
nale Druckdarstellung des gesamten Harnröhrenlumens erstellt wurde
(vgl. Klünder et al. 2014). Diese Methodik ist bereits in vorherigen Studien mit
der konventionellen Messmethode mittels eines handelsüblichen Luftkatheters
an Schweinen verglichen worden (vgl. Klünder et al. 2015).

In Diagramm 4-1 bis Diagramm 4-3 sind die erhobenen Daten der Tiere der Versuchsgruppe 1 Dilatation zu sehen. Beide Methoden zeigen in der postoperativen Messung direkt im Anschluss an die Operation eine deutliche Drucksenkung in der Harnröhre, wohingegen sich am 21. postoperativen Tag eine Regeneration der Druckverhältnisse in der Urethra nachweisen lässt. In Diagramm 4-1 zeigen die Druckmessungen der HD-UPP-Messung von Schwein 3526, dass insbesondere die Druckverteilung gleichförmiger geworden ist und die starken Druckabsenkungen bei 0° und 100° in den direkt postoperativen erhobenen Daten nicht mehr vorhanden sind. Bei Schwein 3529 (s. Diagramm 4-2) ist das Druckniveau am 21. postoperativen Tag wieder bei dem Niveau, das präoperativ vorhanden war. Jedoch ist die Druckverteilung in der Harnröhre schmaler geworden. Die Daten von Schwein 3530 (s. Diagramm 4-3) zeigen ebenfalls eine Erholung des Harnröhrendrucks, dieses Mal sogar über dem präoperativen Ausgangswert mit einer ähnlichen Druckverteilung.
Diagramm 4-1: Herkömmliche Profilometrie und HD-UPP von Schwein 3526

Die Abbildung zeigt auf der linken Seite die Druckmessung mit dem herkömmlichen Katheter und auf der rechten Seite die HD-UPP. Die obere Zeile zeigt die Daten der präoperativen Messung, die mittlere Zeile die Daten im direkten Anschluss an die Operation und die untere Zeile zeigt die Messung des 21. postoperativen Tags. Links sind die Druckverlaufskurven innerhalb der Harnröhre dargestellt, hierbei bezeichnet die blaue Kurve mit \(P_{\text{ves}} \) den Druck in der Harnblase, die rote Kurve \(P_{\text{clo}} \) den Harnröhrenverschlussdruck und die grüne Kurve \(P_{\text{ura}} \) den Urethradruck. Die Abbildungen (b), (d) und (f) zeigen eine 2-dimensionale Darstellung der Druckverhältnisse in der Harnröhre. Hierbei ist auf der \(\gamma \)-Achse das Harnröhrenlumen (\(-180^\circ \) bis \(+180^\circ \)) und auf der \(x \)-Achse die Druckhöhe aufgetragen.

(Quelle: Klünder 2016)
Diagramm 4-2: Herkömmliche Profilometrie und HD-UPP von Schwein 3529

Die Abbildungen (a), (c) und (e) zeigen die Druckmessungen mit dem herkömmlichen Katheter, die blaue Kurve P_{ves} zeigt den Druck in der Harnblase, die rote Kurve P_{clo} den Harnröhrenverschlussdruck und die grüne Kurve P_{ura} den Urethradruck. Die Abbildungen (b), (d), und (f) zeigen die HD-UPP. Hierbei ist auf der y-Achse das Harnröhrenlumen (-180° bis +180°) und auf der x-Achse die Druckhöhe aufgetragen. Die obere Zeile zeigt die Daten der präoperativen Messung, die mittlere Zeile die Daten im direkten Anschluss an die Operation und die untere Zeile zeigt die Messung des 21. postoperativen Tags. (Quelle: ebd.)
Diagramm 4-3: Herkömmliche Profilometrie und HD-UPP von Schwein 3530

Auf der linken Seite sind die Druckmessungen mit dem herkömmlichen Katheter zu sehen, die blaue Kurve \(P_{ves}\) ist der Druck in der Harnblase, die rote Kurve \(P_{clo}\) der Harnröhrenverschlussdruck und die grüne Kurve \(P_{ura}\) der Urethradruck. Auf der rechten Seite sind die HD-UPP-Messungen zu sehen. Hierbei zeigt die \(y\)-Achse das Harnröhrenlumen (-180° bis +180°) und die \(x\)-Achse die Druckhöhe. Die Abbildungen (a) und (b) zeigen die Daten der präoperativen Messung, (c) und (d) die Daten im direkten Anschluss an die Operation und (e) sowie (f) die Messung des 21. postoperativen Tags.

(Quelle: ebd.)
Diagramm 4-4 bis Diagramm 4-6 zeigen die Messvergleiche für die Schweinegruppe 2 proximale Kauterisierung. Auch hier zeigt sich mit beiden Messmethoden ein deutlicher Rückgang des Druckniveaus in den postoperativen Messungen am Tag 0. Des Weiteren zeigen alle drei Tiere eine Erholung des Druckprofils in der abschließenden Messung, wobei der Druck über dem Niveau der präoperativen Ausgangsmessung liegt. Jedoch ist die Druckverteilung in beiden Messmethoden verändert.

Auffällig ist ein Druckgipfel bei 180° in den Messungen im direkten Anschluss an die Operation. Dieser ist bei allen drei Tieren zu erkennen, sehr deutlich bei Schwein 3523 (s. Diagramm 4-4), mäßig bei Schwein 3525 (s. Diagramm 4-6) und wenig bei Schwein 3524 (s. Diagramm 4-5). Eine mögliche Erklärung dafür, ist ein falsch hohes Drucksignal aufgrund eines mechanischen Hindernisses wie z.B. eines Gewebestückes, das sich nach der Kauterisierung noch in der Harnröhre befand und vom Sensor erfasst wurde.
Diagramm 4-4: Herkömmliche Profilometrie und HD-UPP von Schwein 3523

Die Abbildungen (a), (c) und (e) zeigen die herkömmliche Profilometrie, wobei die blaue Kurve P_{ves} den Druck in der Harnblase, die rote Kurve P_{clo} den Harnröhrenverschlussdruck und die grüne Kurve P_{ura} den Urethradruck darstellt. Die Abbildungen (b), (d), und (f) zeigen die HD-UPP. Hierbei ist auf der y-Achse das Harnröhrenlumen (-180° bis +180°) und auf der x-Achse die Druckhöhe aufgetragen.

Die obere Zeile zeigt die Daten der präoperativen Messung, die mittlere Zeile die Daten im direkten Anschluss an die Operation und die untere Zeile zeigt die Messung des 21. postoperativen Tags.

(Quelle: ebd.)
Diagramm 4-5: Herkömmliche Profilometrie und HD-UPP von Schwein 3524

Die linke Seite zeigt die Druckmessungen mit dem herkömmlichen Katheter, die blaue Kurve \(P_{\text{ves}} \) ist der Druck in der Harnblase, die rote Kurve \(P_{\text{clo}} \) der Harnröhrenverschlussdruck und die grüne Kurve \(P_{\text{ura}} \) der Urethradruck. Die rechte Seite zeigt die HD-UPP-Messungen. Hierbei ist auf die \(y \)-Achse das Harnröhrenlumen (-180° bis +180°) und auf die \(x \)-Achse die Druckhöhe aufgetragen. In den Abbildungen (a) und (b) sind die Daten der praoperativen Messungen, in (c) und (d) die Daten im direkten Anschluss an die Operation und in (e) sowie (f) die Messungen des 21. postoperativen Tags zu sehen.

(Quelle: ebd.)
Diagramm 4-6: Herkömmliche Profilometrie und HD-UPP von Schwein 3525

Die obere Zeile zeigt die präoperativen Messungen, die mittlere Zeile die Daten im direkten Anschluss an die Operation und die untere Zeile zeigt die Druckprofile am 21. postoperativen Tag.

In den Abbildungen (a), (c) und (e) sind die Druckmessungen mit dem herkömmlichen Katheter zu sehen, die blaue Kurve \(P_{\text{ves}} \) zeigt den Druck in der Harnblase, die rote Kurve \(P_{\text{clo}} \) den Harnröhrenverschlussdruck und die grüne Kurve \(P_{\text{ura}} \) den Urethradruck. In den Abbildungen (b), (d), und (f) sind die HD-UPP dargestellt. Hierbei ist auf der y-Achse das Harnröhrenlumen (-180° bis +180°) und auf der x-Achse die Druckhöhe aufgetragen.

(Quelle: ebd.)
Die Messungen der Schweine der 3. Versuchsgruppe, die mit Dilatation und distaler Kauterisierung behandelt wurden, sind in Diagramm 4-7 bis Diagramm 4-9 zu sehen. Die drei Tiere zeigen eine deutliche postoperative Reduzierung des Druckprofils in beiden Messungen. Auch im Vergleich mit den beiden vorherigen Schweinegruppen zeigt sich eine massive Reduktion, bei denen die Druckverläufe im gesamten Harnröhrenlumen nahezu bei 0 cmH$_2$O angetan sind. In den Messungen am 21. postoperativen Tag zeigen sich bei Schwein 3520 (s. Diagramm 4-7) und Schwein 3521 (s. Diagramm 4-8) eine leichte Regeneration, jedoch bleiben die Druckniveaus deutlich unter denen der Ausgangsmessungen. Schwein 3522 (s. Diagramm 4-9) zeigt eine höhere Druckkurve als die beiden anderen Tiere, jedoch bleibt das Druckniveau auch hier deutlich unter dem präoperativen Wert und die Druckverteilung ist deutlich schmaler als am Tag 0 vor der Operation.
Diagramm 4-7: Herkömmliche Profilometrie und HD-UPP von Schwein 3520

Die Abbildungen (a) und (b) zeigen die Daten der präoperativen Messung, (c) und (d) die Daten im direkten Anschluss an die Operation und (e) sowie (f) die Messung am 21. postoperativen Tag. Auf der linken Seite sind die Druckmessungen mit dem herkömmlichen Katheter abgebildet, dieblaue Kurve P_{ves} zeigt den Druck in der Harnblase, die rote Kurve P_{clo} den Harnröhrenverschlußdruck und die grüne Kurve P_{ura} den Urethradruck. Auf der rechten Seite sind die HD-UPP-Messungen zu sehen. Hierbei zeigt die y-Achse das Harnröhrenlumen (-180° bis +180°) und die x-Achse die Druckhöhe.

(Quelle: ebd.)
Diagramm 4-8: Herkömmliche Profilometrie und HD-UPP von Schwein 3521

In den Abbildungen (a), (c) und (e) sind die Druckmessungen mit dem herkömmlichen Katheter dargestellt, die blaue Kurve P_{ves} zeigt den Druck in der Harnblase, die rote Kurve P_{clo} den Harnröhrenverschlussdruck und die grüne Kurve P_{ura} den Urethradruck. In den Abbildungen (b), (d), und (f) sind die HD-UPP zu sehen. Hierbei zeigt die y-Achse das Harnröhrenlumen (-180° bis $+180^\circ$) und die x-Achse die Druckhöhe.

Die obere Zeile zeigt die präoperativen Messungen, die mittlere Zeile die Daten im direkten Anschluss an die Operation und die untere Zeile zeigt die Druckprofile am 21. postoperativen Tag.

(Quelle: ebd.)
Diagramm 4-9: Herkömmliche Profilometrie und HD-UPP von Schwein 3522

In den Abbildungen (a) und (b) sind die Daten der präoperativen Messungen, in (c) und (d) die Daten im direkten Anschluss an die Operation und in (e) sowie (f) die Messungen des 21. postoperativen Tags zu sehen. Die linke Seite zeigt die Druckmessungen mit dem herkömmlichen Katheter, die blaue Kurve P_{ves} ist der Druck in der Harnblase, die rote Kurve P_{clo} der Harnröhrenverschlussdruck und die grüne Kurve P_{ura} der Urethradruck. Die rechte Seite zeigt die HD-UPP-Messungen. Hierbei ist auf die y-Achse das Harnröhrenlumen (-180° bis +180°) und auf die x-Achse die Druckhöhe aufgetragen.

(Quelle: ebd.)
Der Vergleich mit den Messungen der HD-UPP bestätigt die Ergebnisse der Profilometrie mit dem konventionellen Katheter, der in dieser Studie verwendet wurde.

4.4 Histologie

Bild 4-6: Externer Harnröhrensphinkter und interner Harnröhrensphinkter eines weiblichen Fötus (18. Schwangerschaftswoche)

(Quelle: modifiziert Wallner et al. 2009)

Bild 4-7: Externer Sphinkter und Musculus levator ani bei der adulten Frau

Bild 4-8: Vergleich der histologischen Färbungen nach AZAN, Desmin und fast-Myosin bei Schwein 3530 Abschnitt H4

In der Abbildung ist in Bild A die histologische Färbung eines Harnröhrenschnitts aus dem Abschnitt H4 nach AZAN zu sehen. Bild B zeigt den gleichen Abschnitt, jedoch wurde hierbei Desmin gefärbt. Im Bild C erfolgte die Färbung von fast-Myosin.

(Quelle: Kelp 2016)

4.5 Schlussfolgerung

Während der klinische Nachweis nicht erfolgversprechend ist, wäre zum Beispiel eine Optimierung des Inkontinenzmodells für zukünftige Studien interessant. So könnte eine Variation in der Eindringtiefe oder eine längere Einwirkzeit
der Kauterisierung getestet werden. Die Wiederholung der operativen Behandlung ist ebenso eine mögliche Modifikation, um eventuell auch langfristige Ergebnisse zu erzielen.
Zur eindeutigen Identifizierung der histologischen Auffälligkeiten und Differenzierung der Schädigung in der Muskulatur der Versuchstiere sollten zusätzliche Färbungen erfolgen.
5 Zusammenfassung

Grundlage der vorliegenden Arbeit war eine Machbarkeitsstudie zur Etablierung eines Großtiermodells für Harninkontinenz. Hierbei sollte die Wirksamkeit verschiedener Operationsmethoden getestet werden, um die am besten geeignete Methode zur Simulation eines Schließmuskeldefekts zu finden. Des Weiteren sollte die Möglichkeit einer kontinuierlichen Inkontinenztestung am nicht-sedierten Tier erprobt werden.

Die Versuche wurden an neun Schweinen der Deutschen Landrasse durchgeführt. Die Tiere wurden in drei Versuchsgruppen aufgeteilt und jeweils einer anderen Operationsmethode (Dilatation, proximale Kauterisierung und Dilatation plus distale Kauterisierung) zugeführt. Die Auswertungen umfassten Inkontinenztestungen mittels Windeltests, die Messung der Harnröhrendruckprofile und die histologische Aufarbeitung der Harnröhrenpräparate.

Die histologischen Auswertungen zeigen bei den Tieren der Versuchsgruppe 1 und 3, die beide mittels Dilatation behandelt wurden, eine Vermehrung des Bin-
degewebes. Die Histologien der Versuchsgruppen 2 und 3, bei denen eine Elektrokauterisierung der Harnröhre durchgeführt wurde, weisen auffällige Bereiche in der Harnröhrenmuskulatur, die als Korrelate der Kauterisierung gedeutet werden können, auf.

6 Literaturverzeichnis

Bourdainska, Anna; Crayton, Robert; Dybowski, Bartosz; Koperski, Lukasz; Idzik, Marta; Fabisiak, Michal; Paczek, Leszek & Radziszewski, Piotr (2012): *Urethral distension as a novel method to simulate sphincter insufficiency in the porcine animal model*. International Journal of Urology 19 (7): 676–682.

Klünder, Mario; Amend, Bastian; Vaegler, Martin; Kelp, Alexandra; Feuer, Ronny; Sievert, Karl-Dietrich; Stenzl, Arnulf; Sawodny, Oliver & Ederer, Michael (2015): *High definition urethral pressure profilometry: Evaluating a novel microtip catheter*. Neurourology and urodynamics 35 (8): 888–894.

Klünder, Mario; Sawodny, Oliver; Feuer, Ronny; Stenzl, Arnulf; Sievert, Karl-Dietrich; Amend, Bastian; Vaegler, Martin & Ederer, Michael (2014): *Sampling lattice and signal reconstruction in urodynamics*: 1790–1796. In: *ICSP* (Hg.): 2014 12th International Conference on Signal Processing.

Li, Yanhui; Wen, Yan; Wang, Zhe; Wei, Yi; Wani, Prachi; Green, Morgaine; Swaminathan, Ganesh; Ramamurthi, Anand; Pera, Renee Reijo & Chen, Bertha (2016): *Smooth muscle progenitor cells derived from human pluripotent stem cells induce histologic changes in injured urethral sphincter*. Stem cells translational medicine (Online-Publikation).

Zini, Laurent; Lecoeur, Constant; Swieb, Salem; Combrisson, Helene; Delmas, Vincent; Gherardi, Romain; Abbou, Claude; Chopin, Dominique & Yiou, Rene (2006): *The striated urethral sphincter of the pig shows morphological and functional characteristics essential for the evaluation of treatments for sphincter insufficiency*. The Journal of Urology 176 (6 Pt. 1): 2729–2735.
7 Erklärung zum Eigenanteil der Dissertationsschrift

Die Arbeit wurde im Forschungslabor der Universitätsklinik für Urologie Tübingen unter Betreuung von Prof. Dr. med. A. Stenzl, Ärztlicher Direktor der Universitätsklinik für Urologie Tübingen, durchgeführt.

Aufbauend auf den Vorarbeiten des Labors wurde die Studie von Prof. Dr. med. A. Stenzl, Prof. Dr. rer. nat. W. K. Aicher, Leiter des Forschungslabors; Dr. rer. nat. A. Kelp, Postdoktorandin im Forschungslabor und Dr. med. B. Amend, Oberarzt der Universitätsklinik für Urologie, konzipiert. Nach den ersten Machbarkeitstests wurde das Konzept gemeinsam mit mir überarbeitet.

Die operativen Eingriffe an den Versuchstieren wurden unter der Aufsicht von Prof. Dr. med. Stenzl durchgeführt. Ich habe bei den Eingriffen assistiert und die urodynamischen Messungen durchgeführt.

Sämtliche andere Untersuchungen wurden nach Einarbeitung durch Dr. rer. nat. A. Kelp oder Dr. med. B. Amend von mir eigenständig durchgeführt und ausgewertet.

Die statistische Auswertung erfolgte nach Beratung durch Prof. Dr. rer. nat. M. Eichner, Mitarbeiter im Institut für Klinische Epidemiologie und angewandte Biometrie durch mich.

Ich versichere, das Manuskript selbstständig verfasst zu haben und keine weiteren als die von mir angegebenen Quellen verwendet zu haben.

Tübingen, den 11.05.2018
8 Danksagung

Mein Dank gilt zunächst Herrn Prof. Dr. med. A. Stenzl, Ärztlicher Direktor der Universitätsklinik für Urologie Tübingen, für seine Betreuung dieser Dissertati-
on.

Des Weiteren möchte ich mich herzlich bei Prof. Dr. rer. nat. W. K. Aicher, Lei-
ter der Forschergruppe der Universitätsklinik für Urologie, für seine stete Be-
treuung und Hilfe in allen Fragen des wissenschaftlichen Arbeitens bedanken. Auch Dr. rer. nat. A. Kelp gebührt mein besonderer Dank, sie stand mir stets zur Seite und hatte jederzeit ein offenes Ohr und eine passende Antwort für meine Fragen.

Dr. med. B. Amend danke ich für seine Hilfe, insbesondere in Bezug auf die Realisierung der profilometrischen Auswertungen und dafür, dass er mein handwerkliches Geschick förderte.

Ebenfalls danke ich Herrn Dr.-Ing. Mario Klünder vom Institut für Systemdynamik (ISYS) der Universität Stuttgart für die Möglichkeit, seine Auswertungen zur Diskussion heranzuziehen.

Der Firma Erbe Elektromedizin GmbH Tübingen danke ich für die Bereitstellung der Gerätschaften für die Kauterisierung der Versuchstiere.

Mein ganz persönlicher Dank gilt meiner Großmutter Waltraud, die mir für die Zeit der Doktorarbeit nicht nur ein Zimmer und einen Arbeitsplatz zur Verfügung gestellt hat, sondern die sich auch ganz nebenbei all meine Probleme angehört und immer auch noch für eine warme Mahlzeit gesorgt hat.