Zusammenhang zwischen dem KIR-Rezeptorprofil und dem Auftreten akuter lymphoblastischer Leukämien im Kindesalter

Inaugural-Dissertation zur Erlangung des Doktorgrades der Medizin

der Medizinischen Fakultät der Eberhard Karls Universität zu Tübingen

vorgelegt von

Firnkorn, Matthias

2018
Dekan: Professor Dr. I. B. Autenrieth

1. Berichterstatter: Professor Dr. R. Handgretinger
2. Berichterstatter: Privatdozent Dr. M. Schittenhelm

Tag der Disputation: 26.01.2018
Inhaltsverzeichnis

Abkürzungsverzeichnis .. 3
1 Einleitung .. 4
 1.1 Epidemiologische Grundlagen .. 4
 1.2 NK-Zellen ... 4
 1.2.1 Toleranz gegen körpereigene Zellen ... 4
 1.2.2 Zytotoxische Funktionsweise der NK-Zellen 5
 1.2.3 Aktivitätssteuerung der NK-Zellen ... 5
 1.2.4 Definition der KIR ... 6
 1.2.5 Nomenklatur der KIR .. 6
 1.2.6 KIR-Protein-Aufbau und Signalvermittlung 9
 1.2.7 KIR2DS4 ... 9
 1.2.8 KIR und ihre Liganden ... 10
 1.2.9 Haplotyp A/B .. 11
 1.2.10 B-Content Score .. 11
 1.3 Stammzelltransplantation ... 13
 1.3.1 Match/Mismatch ... 13
 1.3.2 Einfluss des KIR-Rezeptorprofils auf das Krankheitsgeschehen
 verschiedener Erkrankungen .. 14
 1.4 KIR-Rezeptorprofil und das Auftreten einer ALL 14
2 Material und Methoden .. 16
 2.1 Material .. 16
 2.1.1 Geräte .. 16
 2.1.2 Verbrauchsmaterialien ... 17
 2.1.3 Chemikalien, Reagenzien und Kits 17
 2.1.4 Primer .. 18
 2.1.5 DNA-Proben ... 19
 2.2 Methoden .. 20
 2.2.1 DNA-Aufbereitung .. 20
 2.2.2 Mastermix-Herstellung ... 20
 2.2.3 Herstellung des Ausgangsreagenz 20
 2.2.4 Quantitative Real-Time PCR ... 21
 2.2.5 PCR für KIR2DS4 .. 21
 2.2.6 Konventionelle PCR ... 22
 2.2.7 Agarose-Gelelektrophorese .. 23
 2.2.8 Software und Statistik ... 24
3 Ergebnisse ... 25
 3.1 Wahl der Methode und resultierende Probandenzahl 25
 3.2 Patientencharakteristika ... 25
 3.3 Durchführung der Experimente .. 27
 3.3.1 PCR .. 27
 3.3.2 Erfassung der Daten .. 28
 3.3.3 Deletionsnachweis von KIR2DS4 28
 3.4 Statistische Auswertung ... 29
 3.5 Analysemodell ... 32
 3.5.1 Univariate logistische Regression 32
 3.6 KIR-Genotypen der verschiedenen Risikogruppen 34
 3.7 Rezeptorprofile der Risikogruppen .. 36
 3.7.1 KIR2DS5/KIR3DS1, KIR2DS2, KIR2DS3/KIR2DS4 36
 3.7.2 Sonderfall KIR2DS1 ... 38
3.8 Beobachtete KIR-Kombinationen innerhalb der verschiedenen Risikogruppen

3.8.1 Anzahl aktivierender KIRs und Auftreten einer ALL

4 Diskussion

4.1 KIR-Profil und kindliche ALL

4.2 Kritische Beurteilung der angewandten Studiendesigns

4.3 Einordnung der Patientendaten in die Literatur

4.4 Auswertungskonzept

4.5 Die Bedeutung von KIR2DS1 für die kindliche Leukämie

4.6 Die klinische Relevanz des KIR-Liganden-Modells

4.7 Ausblick

5 Zusammenfassung

6 Literaturverzeichnis

7 Erklärung zum Eigenanteil

Danksagung
Abkürzungsverzeichnis

<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALL</td>
<td>Akute lymphoblastische Leukämie</td>
</tr>
<tr>
<td>AML</td>
<td>Akute myeloische Leukämie</td>
</tr>
<tr>
<td>BC</td>
<td>B-Content</td>
</tr>
<tr>
<td>bp</td>
<td>Basenpaar</td>
</tr>
<tr>
<td>CCD</td>
<td>charge-coupled device</td>
</tr>
<tr>
<td>CD</td>
<td>Cluster of differentiation</td>
</tr>
<tr>
<td>CML</td>
<td>Chronisch myeloische Leukämie</td>
</tr>
<tr>
<td>DNA</td>
<td>Desoxyribonukleinsäure</td>
</tr>
<tr>
<td>EFÜ</td>
<td>Ereignisfreies Überleben</td>
</tr>
<tr>
<td>GvHD</td>
<td>Graft-versus-Host Disease</td>
</tr>
<tr>
<td>GvL</td>
<td>Graft-versus-Leukemia</td>
</tr>
<tr>
<td>HLA</td>
<td>Humanes Leukozyten Antigen</td>
</tr>
<tr>
<td>H₂O</td>
<td>Wasser</td>
</tr>
<tr>
<td>HSZT</td>
<td>Haploidente Stammzelltransplantation</td>
</tr>
<tr>
<td>IG</td>
<td>Immunglobulin</td>
</tr>
<tr>
<td>IPD</td>
<td>Immuno Polymorphism Database</td>
</tr>
<tr>
<td>KI</td>
<td>Konfidenzintervall</td>
</tr>
<tr>
<td>KIR</td>
<td>Killer-Zell-Immunglobulin-ähnlicher Rezeptor</td>
</tr>
<tr>
<td>LRK</td>
<td>Leukozyten-Rezeptor-Komplex</td>
</tr>
<tr>
<td>mRNA</td>
<td>Messenger RNA</td>
</tr>
<tr>
<td>µl</td>
<td>Mikroliter</td>
</tr>
<tr>
<td>ml</td>
<td>Milliliter</td>
</tr>
<tr>
<td>NK-Zellen</td>
<td>Natürliche Killerzellen</td>
</tr>
<tr>
<td>OR</td>
<td>Odds Ratio</td>
</tr>
<tr>
<td>PCR</td>
<td>Polymerase Chain Reaction</td>
</tr>
<tr>
<td>RNA</td>
<td>Ribonukleinsäure</td>
</tr>
<tr>
<td>SZT</td>
<td>Stammzelltransplantation</td>
</tr>
<tr>
<td>TBE</td>
<td>TRIS-Borat-EDTA</td>
</tr>
<tr>
<td>Tel</td>
<td>Telomer</td>
</tr>
<tr>
<td>Zen</td>
<td>Zentromer</td>
</tr>
<tr>
<td>ZNS</td>
<td>Zentrales Nervensystem</td>
</tr>
</tbody>
</table>
1 Einleitung

1.1 Epidemiologische Grundlagen

Leukämien machen knapp ein Drittel der bösartigen Erkrankungen im Kindesalter in Deutschland aus (30,6 % lt. Jahresbericht des Deutschen Kinderkrebsregisters, http://www.kinderkrebsregister.de/typo3temp/secure_downloads/29942/0/f474d594c6b5a8805c4e629db249872e05d69dddb/jb2015_s.pdf). Leukämien im Kindesalter teilen sich zum allergrößten Teil – mit ca. 80 % – in ALL (akute lymphoblastische Leukämie) und mit ca. 20 % in AML (akute myeloische Leukämie) auf. Der Häufigkeitsgipfel liegt zwischen zwei und fünf Lebensjahren, im Median bei 4,7 Jahren, Jungen sind etwas häufiger betroffen als Mädchen. Im Rahmen der Therapie der ALL findet eine Differenzierung des Krankheitsgrades anhand bestimmter Merkmalsausprägungen (Risikogruppen Low/Medium/High) statt.

1.2 NK-Zellen

Die NK-Zellen (Natürliche Killerzellen) gehören zum angeborenen Immunsystem. Sie sind eine Subpopulation (ca. 10 %) der Leukozyten und für die Vernichtung entarteter und infizierter Zellen zuständig (French and Yokoyama, 2003; Moretta et al., 2002; Robertson and Ritz, 1990; Yokoyama and Scalzo, 2002). Dabei ist hervorzuheben, dass ihre Funktion unabhängig vom Antigen ist (Trinchieri, 1989). Zusätzlich schütten die NK-Zellen immunregulatorische Zytokine aus, die das spezifische Immunsystem auf den Plan rufen (Azzoni et al., 2002; Cooper et al., 2001; Nguyen et al., 2002). Auf den NK-Zellen befindet sich eine Vielzahl an Oberflächenstrukturen. Dazu gehören Killer-Zell-Immunoglobulin-ähnliche Rezeptoren (KIR), NKG-Rezeptoren, Adhäsionsmoleküle und Fc-Rezeptoren. Diese Oberflächenmerkmale kommunizieren mit bestimmten NK-Zell-Rezeptoren auf ihren Zielzellen.

1.2.1 Toleranz gegen körpereigene Zellen

1.2.2 Zytotoxische Funktionsweise der NK-Zellen

Zur Zerstörung der als fremd erkannten Zielzelle kommt es über mehrere Mechanismen:

- mittels einer Exozytose von mit Granzymen und Perforinen gefüllten Granula (Trapani and Smith, 2002). Dabei schafft das Perforin ein ringförmiges Polymer und zerstört damit die Membranintegrität. Über diesen Zugang gelangen die Granzyme in die Zielzelle und leiten dort die Apoptose ein (Smyth, Kelly et al., 2001).
- mittels Bindung eines Fas-Liganden der NK-Zelle an ein CD95-Molekül der Zielzelle. Dabei wird eine endogene proteolytische Enzymkaskade ausgelöst und es kommt zur Apoptose (Enari, Talanian et al., 1996).
- mittels eines FCγ-Rezeptors III, der IG G-Antikörper bindet und zur Zielzelllyse führt.

1.2.3 Aktivitätssteuerung der NK-Zellen

Die Steuerung der Aktivität der NK-Zellen hängt von dem hemmenden und aktivierenden Zusammenspiel zwischen den auf der Target-Zelle exprimierten Liganden und der Rezeptorausprägung der NK-Zellen ab. Einen wichtigen Bestandteil dieses Regulationsmechanismus stellen die KIR auf den NK-Zellen dar (Lanier, 2005; Raulet et al., 2001; Moretta et al., 2001). Die Partner der KIR auf den Target-Zellen gehören häufig zu den HLA-Molekülen (vgl. Abschnitt 1.2.8). Abbildung 1 zeigt die Steuerung.
INLEITUNG

1.2.4 Definition der KIR

1.2.5 Nomenklatur der KIR

Tabelle 1: Nomenklatur der KIR. Angelehnt an Marsh et al., 2003.

<table>
<thead>
<tr>
<th>KIR-Bezeichnung</th>
<th>Struktur</th>
<th>CD-Klassifikation</th>
</tr>
</thead>
<tbody>
<tr>
<td>KIR2DL1</td>
<td>2 Domänen, langer zytoplasmatischer Schwanz, Nummer 1</td>
<td>CD158a</td>
</tr>
<tr>
<td>KIR2DL2</td>
<td>2 Domänen, langer zytoplasmatischer Schwanz, Nummer 3</td>
<td>CD158b1</td>
</tr>
<tr>
<td>KIR2DL3</td>
<td>2 Domänen, langer zytoplasmatischer Schwanz, Nummer 3</td>
<td>CD158b2</td>
</tr>
<tr>
<td>KIR2DL4</td>
<td>2 Domänen, langer zytoplasmatischer Schwanz, Nummer 4</td>
<td>CD158d</td>
</tr>
<tr>
<td>KIR2DL5</td>
<td>2 Domänen, langer zytoplasmatischer Schwanz, Nummer 5</td>
<td>CD158f</td>
</tr>
<tr>
<td>KIR3DL1</td>
<td>3 Domänen, langer zytoplasmatischer Schwanz, Nummer 1</td>
<td>CD158e1</td>
</tr>
<tr>
<td>KIR3DL2</td>
<td>3 Domänen, langer zytoplasmatischer Schwanz, Nummer 2</td>
<td>CD158k</td>
</tr>
<tr>
<td>KIR3DL3</td>
<td>3 Domänen, langer zytoplasmatischer Schwanz, Nummer 3</td>
<td>CD158z</td>
</tr>
<tr>
<td>KIR2DS1</td>
<td>2 Domänen, kurzer zytoplasmatischer Schwanz, Nummer 1</td>
<td>CD158h</td>
</tr>
<tr>
<td>KIR2DS2</td>
<td>2 Domänen, kurzer zytoplasmatischer Schwanz, Nummer 2</td>
<td>CD158j</td>
</tr>
<tr>
<td>KIR2DS3</td>
<td>2 Domänen, kurzer zytoplasmatischer Schwanz, Nummer 3</td>
<td>keine CD-Bezeichnung</td>
</tr>
<tr>
<td>KIR2DS4</td>
<td>2 Domänen, kurzer zytoplasmatischer Schwanz, Nummer 4</td>
<td>CD158i</td>
</tr>
<tr>
<td>KIR2DS5</td>
<td>2 Domänen, kurzer zytoplasmatischer Schwanz, Nummer 5</td>
<td>CD158g</td>
</tr>
<tr>
<td>KIR3DS1</td>
<td>3 Domänen, kurzer zytoplasmatischer Schwanz, Nummer 1</td>
<td>CD158e2</td>
</tr>
<tr>
<td>KIR2DP1</td>
<td>2 Domänen, Pseudogen, Nummer 1</td>
<td>keine CD-Bezeichnung</td>
</tr>
<tr>
<td>KIR3DP1</td>
<td>3 Domänen, Pseudogen, Nummer 1</td>
<td>CD158c</td>
</tr>
</tbody>
</table>
1.2.6 KIR-Protein-Aufbau und Signalvermittlung

Die Basis der meisten KIR-Proteine ist ein 21 Aminosäuren langes Peptid. Insgesamt variiert die Größe der KIR-Proteine zwischen 306 und 456 Aminosäuren (Selvakumar et al., 1996).

Strukturgebende Elemente der KIR sind die IG-ähnlichen Domänen (KIR2D oder KIR3D), die extrazellulär liegen, die Länge des zytoplasmatischen Anteils (KIRxDS (short) oder KIRxDL (long)) und der transmembranäre Bereich. An die IG-ähnlichen Domänen binden unter anderem HLA-Moleküle der Klasse I (vgl. Abschnitt 1.2.8). Die IG-ähnlichen Domänen sind mit dem transmembranären Teil des KIR-Proteins verbunden und wesentlicher Bestandteil der Signalvermittlung der NK-Zellen.

1.2.7 KIR2DS4

Es gibt eine Ausnahme unter den KIR-Proteinen in Bezug auf den Zusammenhang zwischen langem zytoplasmatischem Teil und einer Signalvermittlung, die die NK-Zellen in ihrer zytolytischen Funktion hemmt. KIR2DS4 vermittelt nicht über den DAP-12-Kanal, sondern über ein ITAM-Adaptermolekül. Dieses Adaptermolekül hat aktivierende Eigenschaften auf die NK-Zelle. Struktur und Funktionsmechanismus aller KIR inklusive KIR2DS4 sind in Abbildung 2 zusammenfassend dargestellt.
1.2.8 KIR und ihre Liganden

1.2.9 Haplotyp A/B

Gibt es lediglich zwei aktivierende KIR (KIR2DS4 und KIR2DL4), handelt es sich um Haplotyp A. Sind weitere aktivierende KIR (KIR2DL2, KIR2DL5, KIR2DS1, KIR2DS2, KIR2DS3, KIR2DS5, KIR3DS1) vorhanden, handelt es sich um Haplotyp B. Typ B kommt mit einer Häufigkeit von ca. 70 %, Typ A mit 30 % vor (Marsh et al., 2003; Hsu et al., 2002).

Diese Einteilung in Haplotyp A/B folgt funktionellen Aspekten und führt zum B-Content-Score.

1.2.10 B-Content Score

Der BC-Score (B-Content Score) geht von 0 bis 4, wobei 0 Punkte Haplotyp A bedeuten. 1 bis 4 Punkte bedeuten ein Genmotiv eines Haplotyp B. Der Score errechnet sich aus Addition der vorhandenen B-Genmotive. Je höher die Nummer, desto mehr aktivierende KIR sind vorhanden. In Tabelle 3 wird dies systematisch dargestellt.
Diese Einteilung hat Bedeutung, weil sie hilft Risiken für die erkrankten Kinder zu stratifizieren und die Tauglichkeit von Stammzellspendern zu beurteilen. Sie beruht auf der Zuordnung der einzelnen Genmotive der KIR-Haplotypen zu den telomerischen oder zentromerischen Regionen innerhalb eines Chromosoms. Dabei können mehrere Kombinationen aus telomerischer und zentromerischer Genmotivverteilung zu demselben Score führen, dargestellt in Tabelle 4.

Die Scores werden bewertet: Neutral = Score 0, Better = Score 1 und 2, Best = 3 und 4 (Robinson et al., 2005; Cooley et al., 2010).

Tabelle 4: Darstellung der Telomer-/Zentromer-Genmotive. Tabelle nach Cooley et al., 2010.
1.3 Stammzelltransplantation

Die SZT gehört inzwischen zur hämatologischen Praxis (Rubnitz et al., 2015)

1.3.1 Match/Mismatch

Erfolgt die allogene SZT in den wichtigen immunologischen Markern wie zum Beispiel HLA oder KIR ident, besteht ein sogenanntes Match. Gibt es keine Übereinstimmung, liegt ein Mismatch vor. Seit es möglich ist, durch Immunmodulation und Konditionierung auch allogen zu transplantieren, konnte der Spenderpool auf die

| Zentromer-Genmotive (KIR2DS2, KIR2DL2, KIR2DL3) |
|-----------------|-----------------|
| Zen-A/A | KIR2DL3 |
| Zen-A/B | KIR2DL3 mit 2DS2 und/oder 2DL2 |
| Zen-B/B | KIR2DS2 und/oder 2DL3; kein 2DL3 |

Zentrometer (Genmotive: KIR2DS2, KIR2DL2, KIR2DL3)
Eltern als haploidente Spender erweitert werden. Das Gleichgewicht aus positiver immunologischer Wirkung eines neuen Immunsystems und dem Abstoßungspotential ist von sehr vielen Faktoren wie zum Beispiel Alter, Geschlecht, Art der Erkrankung oder KIR-Profil abhängig. Es muss für jede einzelne Erkrankung separat erforscht und festgelegt werden (Leung et al., 2005; Oevermann et al., 2014).

Es wird versucht Algorithmen zu entwickeln, um ein möglichst günstiges Spender- und Empfängerprofil etablieren zu können (Ruggeri et al., 2002; Wang et al., 2014; Handgretinger, 2014).

1.3.2 Einfluss des KIR-Rezeptorprofils auf das Krankheitsgeschehen verschiedener Erkrankungen

Es konnte gezeigt werden, dass es einen Zusammenhang zwischen dem Outcome einer Leukämierkrankung und der nach NK-Zell-Rezeptoren getroffenen Spenderauswahl gibt (Cooley et al., 2010). So zeigt eine HLA-idente Spende bei einer akuten myeloischen Leukämie (AML) mit dem Genmotiv Haplotyp B ein signifikant höheres Überleben (Cooley et al., 2010). Es konnte ferner nachgewiesen werden, dass eine alloreaktive haploidente Stammzelltransplantation (HSZT) bei Patienten mit einer AML einen Vorteil für das Krankheitsgeschehen hat (Ruggeri et al., 2007).

Um einen Score für die Behandlung der Leukämien unter Berücksichtigung des KIR-Profils zu berechnen, wurde ein Donor B-content group Calculator eingerichtet: (http://www.ebi.ac.uk./ipd/kir/donor_b_content.html).

Für einige Erkrankungen konnte ein Zusammenhang zwischen KIR-Profil und anderen Erkrankungen nachgewiesen werden, so etwa für die Präeklampsie (Hiby et al., 2004; Varla-Leftherioti et al., 2005), die Psoriasis-Arthritis (Martin et al., 2002b), die Rheumatoide Arthritis (Warrington et al., 2001), die Hepatitis C (Khakoo et al., 2004), die HIV-Erkrankung (Martin et al., 2002a) und für das Multiple Myelom nach einer Stammzelltransplantation (Kroger et al., 2011).

1.4 KIR-Rezeptorprofil und das Auftreten einer ALL

In diese zum Teil noch offene Forschungslage hinein veröffentlichte Almalte die Ergebnisse seiner Forschung und formulierte einen statistischen Zusammenhang zwischen einem KIR-Rezeptorprofil mit vielen aktivierenden KIR und einer geringeren Wahrscheinlichkeit, an einer kindlichen akuten lymphatischen Leukämie (ALL) zu
erkranken. Weil dieser Zusammenhang erhebliche Folgen beispielsweise für die Auswahl der Stammzellspender hätte, verdient Almaltes Forschungsergebnis nachfolgend eine vertiefende Überprüfung.
Sie besteht zum einen in einer eigenen Erfassung der molekularbiologischen Daten auf einer größeren Probandenzahl, zum anderen in der Überprüfung eines eventuellen statistischen Zusammenhangs zwischen der KIR Ausprägung und dem Auftreten einer ALL im Kindesalter beziehungsweise der Interpretation der statistischen Ergebnisse.
2 Material und Methoden

2.1 Material

2.1.1 Geräte

Tabelle 5: Auflistung der verwendeten Geräte.

<table>
<thead>
<tr>
<th>Gerät</th>
<th>Hersteller</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gefrierschrank (-20 °C)</td>
<td>Liebherr</td>
</tr>
<tr>
<td>Gel-Elektrophorese, Submarine Agarose-GEL Unit HE33</td>
<td>Hoefer</td>
</tr>
<tr>
<td>Gel-Photodokumentationssystem</td>
<td>raytest</td>
</tr>
<tr>
<td>Kühlschrank (4 °C)</td>
<td>Liebherr</td>
</tr>
<tr>
<td>Mikrowelle, Perfecto MW 311</td>
<td>DéLonghi</td>
</tr>
<tr>
<td>PCR-Cycler, CFX96TM Real-Time System</td>
<td>Bio-Rad</td>
</tr>
<tr>
<td>Pipetten</td>
<td>Abimed, Discovery Comfort, Gilson, Pipetman, Eppendorf</td>
</tr>
<tr>
<td>Stromquelle, Power Pac 200</td>
<td>Bio-Rad</td>
</tr>
<tr>
<td>Tiefkühlkasten (-80 °C)</td>
<td>Fisher Scientific</td>
</tr>
<tr>
<td>Vortexer: REAX 2000</td>
<td>Heidolph</td>
</tr>
<tr>
<td>MS1 Minishaker</td>
<td>JK</td>
</tr>
<tr>
<td>Wasserfilteranlage, Milli-Q</td>
<td>Milipore</td>
</tr>
<tr>
<td>Zentrifuge: Mini Centrifuge 5415C</td>
<td>Eppendorf</td>
</tr>
<tr>
<td>Rotina 420R</td>
<td>Hettich</td>
</tr>
</tbody>
</table>
2.1.2 Verbrauchsmaterialien

Tabelle 6: Auflistung der verwendeten Verbrauchsmaterialien.

<table>
<thead>
<tr>
<th>Labormaterial</th>
<th>Hersteller</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reaktionsgefäße, Low Tube Strip</td>
<td>Bio-Rad</td>
</tr>
<tr>
<td>Deckel, Flat Cap Strips Optically clear</td>
<td>Bio-Rad</td>
</tr>
<tr>
<td>Eppendorfröhrchen, 1,5 ml</td>
<td>Eppendorf</td>
</tr>
<tr>
<td>Parafilm</td>
<td>Pechiney</td>
</tr>
<tr>
<td>Pipettenspitzen: blau</td>
<td>Greiner</td>
</tr>
<tr>
<td>gelb</td>
<td>Mediware Servoprax</td>
</tr>
<tr>
<td>weiß</td>
<td>Abimed</td>
</tr>
<tr>
<td>Ultra Micro Pipette Tips</td>
<td>Biozym</td>
</tr>
</tbody>
</table>

2.1.3 Chemikalien, Reagenzien und Kits

Tabelle 7: Auflistung der verwendeten Chemikalien, Reagenzien und Kits.

<table>
<thead>
<tr>
<th>Reagenz</th>
<th>Hersteller</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agarose-Tablets, SeaKem^R LE</td>
<td>Bioline</td>
</tr>
<tr>
<td>GEL-Red Nucleic Acid Stain</td>
<td>Biotium</td>
</tr>
<tr>
<td>Ladepuffer, Orange G</td>
<td>Invitrogen</td>
</tr>
<tr>
<td>Primer, 100 ng/µl</td>
<td>eurofinsmwg</td>
</tr>
<tr>
<td>SybrGreen, KAPA Sybr Fast qPCR Universal Reaktionsmix</td>
<td>PeqLab</td>
</tr>
<tr>
<td>TBE-Puffer pH 8,0</td>
<td>1000 ml enthalten: 108,0 g Tris</td>
</tr>
<tr>
<td></td>
<td>70,9 g Borsäure</td>
</tr>
<tr>
<td></td>
<td>7,44 g EDTA-di-Natrium-dihydrat</td>
</tr>
<tr>
<td>Wasser</td>
<td>peqGOLD RNase free Water</td>
</tr>
</tbody>
</table>
2.1.4 Primer

Die Primersequenzen, die verwendet wurden, stammen aus den Arbeiten von Vilches et al. und Alves et al. (Alves et al., 2009, Vilches et al., 2007) und sind in Tabelle 8 aufgelistet.

Tabelle 8: Auflistung der verwendeten KIR-Primer.

<table>
<thead>
<tr>
<th>Rezeptor</th>
<th>Forward</th>
<th>Reverse</th>
<th>Schmelzpunkt</th>
<th>Amplifikat</th>
</tr>
</thead>
<tbody>
<tr>
<td>2DL1</td>
<td>GTT GGT CAG ATG TCA TGT TTG AA</td>
<td>CCT GCC AGG TCT TGC G</td>
<td>81,94 °C</td>
<td>142 bp</td>
</tr>
<tr>
<td>2DL2</td>
<td>AAA CCT TCT CTC TCA GCC CA</td>
<td>GCC CTG CAG AGA ACC TAC A</td>
<td>84,52 °C</td>
<td>142 bp</td>
</tr>
<tr>
<td>2DL3</td>
<td>AGA CCC TCA GGA GGT GA</td>
<td>CAG GAG ACA ACT TTG GAT CA</td>
<td>81,44 °C</td>
<td>156 bp</td>
</tr>
<tr>
<td>2DL4</td>
<td>TCA GGA CAA GCC CTG C</td>
<td>GGA CAG GGA CCC CAT CTT TC</td>
<td>84,32 °C</td>
<td>131 bp</td>
</tr>
<tr>
<td>2DL5</td>
<td>ATC TAT CCA GGG AGG GGA G</td>
<td>CAT AGG GTG AGT CAT GGA G</td>
<td>85,46 °C</td>
<td>147 bp</td>
</tr>
<tr>
<td>3DL1</td>
<td>CCA TYG GTC CCA TGA TCC ATC GGT CCC ATG TGG T</td>
<td>CCA CGA TGT CCA GGG GA</td>
<td>81,58 °C</td>
<td>108 bp</td>
</tr>
<tr>
<td>3DL2</td>
<td>CAT GAA CGT AGG CTC CG</td>
<td>GAC CAC ACG CAG GGC AG</td>
<td>85,27 °C</td>
<td>131 bp</td>
</tr>
<tr>
<td>3DL3</td>
<td>AAT GTT GGT CAG ATG TCA G</td>
<td>GCG YAC AAC TCA TAG GGT A</td>
<td>83,87 °C</td>
<td>196 bp</td>
</tr>
<tr>
<td>2DS1</td>
<td>TCT CCA TCA GTC GCA TGA G</td>
<td>GGT CAC TGG GAG CTG AC</td>
<td>81,44 °C</td>
<td>96 bp</td>
</tr>
<tr>
<td>2DS2</td>
<td>TGC ACA GAG AGG GGA AGT A</td>
<td>CCC TGC AAG GTC TTT CA</td>
<td>81,42 °C</td>
<td>96 bp</td>
</tr>
<tr>
<td>2DS3</td>
<td>CTT GTC CTG CAG CTC CT [2]</td>
<td>CCC TGC AAG GTC TTT CA</td>
<td>84,60 °C</td>
<td>110 bp</td>
</tr>
<tr>
<td>2DS4</td>
<td>GGT TCA GGC AGG AGA GAA T</td>
<td>CTG GAA TGT TCC GTK GAT G</td>
<td>83,25 °C</td>
<td>157 bp</td>
</tr>
<tr>
<td>2DS5</td>
<td>AGA GAG GGG ACG TTT AAC C</td>
<td>CTG ATA GGG GGA GTG AGT</td>
<td>82,92 °C</td>
<td>147 bp</td>
</tr>
</tbody>
</table>
2.1.5 DNA-Proben

2.2 Methoden

2.2.1 DNA-Aufbereitung

Die DNA-Proben lagen in flüssiger Form je 50 ng/µl bei einem Volumen von 10 µl in 96-Well-Platten vor. Die Proben wurden bei -20 °C im Tiefkühlschrank gelagert, nach dem Auftauen bei 8 °C im Kühlschrank. Zunächst wurde die DNA von 10 µl auf 100 µl mit RNase freiem Wasser verdünnt. Durch Mischen mit der Pipette wurde eine gründliche Vermengung der Flüssigkeiten herbeigeführt.

2.2.2 Mastermix-Herstellung

Da jede DNA-Probe in 24 Einzeluntersuchungen amplifiziert wurde, konnte ein Mastermix aus SybrGreen, DNA und H₂O für jede Einzelprobe hergestellt werden.

Tabelle 9: Übersicht des Mastermixes.

<table>
<thead>
<tr>
<th>Reagenz</th>
<th>Volumen</th>
<th>Endkonzentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>SybrGreen</td>
<td>110 µl</td>
<td>-</td>
</tr>
<tr>
<td>DNA</td>
<td>44 µl</td>
<td>5 ng/µl</td>
</tr>
<tr>
<td>H₂O</td>
<td>44 µl</td>
<td>-</td>
</tr>
<tr>
<td>Primer</td>
<td>0 µl</td>
<td>-</td>
</tr>
</tbody>
</table>

2.2.3 Herstellung des Ausgangsreagens

Zur Herstellung des Ausgangsreagens wurden je 9 µl des Mastermixes in ein Low Tube Strip pipettiert und anschließend je 1 µl KIR-spezifischer Primermix (0,5 µl Forward-Primer + 0,5 µl Reverse-Primer) der Reaktion ebenfalls mit der Pipette hinzugefügt. Anschließend wurden die Bestandteile vorsichtig vermischt. Danach wurde jedes Low Tube Stripe mit einem Deckel gründlich verschlossen, durch das Vortex-Gerät vermischt, zentrifugiert und anschließend in den PCR-Cycler gestellt. Für jede DNA-Probe wurde neben den 17 KIR-Genen H₂O als Negativkontrolle sowie Necdin und GALC als Positivkontrolle mitgeführt.
2.2.4 Quantitative Real-Time PCR

Für die PCR zur KIR-Genotypisierung wurde dasselbe PCR-Protokoll sowie dasselbe Reaktionsgemisch verwendet, das später auch in der konventionellen PCR verwendet wurde (siehe 2.2.6).

Zusätzlich wurde nach jedem PCR-Schritt die Signalstärke gemessen. Nach dem letzten PCR-Zyklus erfolgte eine Schmelzkurvenanalyse, indem von 75 °C beginnend die Temperatur in 0,1 °C-Schritten pro Sekunde bis 90 °C erhöht und nach jeder Erhöhung die Signalstärke gemessen wurde.

Das Protokoll für die PCR zur Bestimmung der KIR-Genotypisierung wurde von Dr. med. Dr. rer. nat. Markus Mezger im Laborbereich der Universitätsklinik für Kinder- und Jugendmedizin Tübingen etabliert.

Tabelle 10: Übersicht des Real-Time PCR-Protokolls.

<table>
<thead>
<tr>
<th>Schritt</th>
<th>Zyklen</th>
<th>Temperatur</th>
<th>Zeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Denaturierung</td>
<td>1</td>
<td>95 °C</td>
<td>3 min</td>
</tr>
<tr>
<td>Amplifikation</td>
<td>32</td>
<td>95 °C</td>
<td>3 s</td>
</tr>
<tr>
<td></td>
<td></td>
<td>64 °C</td>
<td>20 s</td>
</tr>
<tr>
<td>Schmelzkurve</td>
<td>1</td>
<td>75 °C</td>
<td>1 s</td>
</tr>
<tr>
<td></td>
<td></td>
<td>90 °C</td>
<td>0,1 °C/s</td>
</tr>
<tr>
<td>Kühlen</td>
<td>1</td>
<td>25 °C</td>
<td>HOLD</td>
</tr>
</tbody>
</table>

Eine vorhandene Schmelzkurve in entsprechender Amplifikatlänge entsprach dem Vorhandensein des KIR-Gens. Wenn die Schmelzkurve entweder nicht vorhanden oder unspezifisch war, wurde das Gen als nicht vorhanden interpretiert.
2.2.5 PCR für KIR2DS4

Für den Rezeptor KIR2DS4 stellte die PCR eine Besonderheit dar. Um das um 22 Basenpaare (bp) verkürzte Amplifikat zu differenzieren, musste das Amplifikat auf ein Agarosegel aufgetragen werden, da über die Schmelzkurvenanalyse keine Unterscheidung möglich war. Damit die DNA-Banden bei der Gelelektrophorese stark genug waren, wurde das PCR-Protokoll gegenüber dem Real-Time PCR-Protokoll modifiziert, die Anzahl der PCR-Zyklen betrug insgesamt 38 statt 32 bei der Real-Time PCR.

Tabelle 11: Übersicht für das PCR-Protokoll für KIR2DS4.

<table>
<thead>
<tr>
<th>Schritt</th>
<th>Zyklen</th>
<th>Temperatur</th>
<th>Zeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Denaturierung</td>
<td>1</td>
<td>95 °C</td>
<td>3 min</td>
</tr>
<tr>
<td>Amplifikation</td>
<td>38</td>
<td>95 °C</td>
<td>3 s</td>
</tr>
<tr>
<td></td>
<td></td>
<td>64 °C</td>
<td>20 s</td>
</tr>
<tr>
<td>Schmelzkurve</td>
<td>1</td>
<td>75 °C</td>
<td>1 s</td>
</tr>
<tr>
<td></td>
<td></td>
<td>90 °C</td>
<td>0,1 °C/s</td>
</tr>
<tr>
<td>Kühlen</td>
<td>1</td>
<td>25 °C</td>
<td>HOLD</td>
</tr>
</tbody>
</table>

2.2.6 Konventionelle PCR

Für die PCR wurde das in 2.2.4 beschriebene Ausgangsreagenz verwendet, in dem alle für die PCR benötigten Reagenzien enthalten sind. Jede PCR-Reaktion wurde nach folgendem Schema pipettiert:
Tabelle 12: Übersicht über eine PCR-Reaktion.

<table>
<thead>
<tr>
<th>Reagenz</th>
<th>Volumen</th>
<th>Endkonzentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>SybrGreen</td>
<td>5 µl</td>
<td>-</td>
</tr>
<tr>
<td>DNA</td>
<td>2 µl</td>
<td>5 ng/µl</td>
</tr>
<tr>
<td>H₂O</td>
<td>2 µl</td>
<td>-</td>
</tr>
<tr>
<td>Primer</td>
<td>1 µl</td>
<td>2,5 pmol</td>
</tr>
</tbody>
</table>

Das PCR-Protokoll sah folgendermaßen aus:

Tabelle 13: Übersicht über das PCR-Protokoll der konventionellen PCR.

<table>
<thead>
<tr>
<th>Schritt</th>
<th>Zyklen</th>
<th>Temperatur</th>
<th>Zeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Denaturierung</td>
<td>1</td>
<td>95 °C</td>
<td>3 min</td>
</tr>
<tr>
<td>Amplifikation</td>
<td>32</td>
<td>95 °C, 64 °C</td>
<td>3 s 20 s</td>
</tr>
<tr>
<td>Kühlen</td>
<td>1</td>
<td>25 °C</td>
<td>HOLD</td>
</tr>
</tbody>
</table>

2.2.7 Agarose-Gelelektrophorese

Elektrophoreseapparatur mit dem dazugehörigen Deckel und es wurde eine Stromquelle mit einer konstanten Spannung von 100 Volt angelegt. Nachdem das Amplifikat die gewünschte Trennstrecke von 100 bis 300 bp erreicht hatte, konnte das Gel in eine CCD-Kamera-Apparatur gelegt, fotografiert und archiviert werden.

2.2.8 Software und Statistik

3 Ergebnisse

3.1 Wahl der Methode und resultierende Probandenzahl

3.2 Patientencharakteristika

Die Einteilung und Verteilung der Proben der Kinder mit einer ALL ist in Tabelle 14 dargestellt.

<table>
<thead>
<tr>
<th>Charakteristika</th>
<th>Verteilung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alter</td>
<td></td>
</tr>
<tr>
<td>1-10 Jahre</td>
<td>243</td>
</tr>
<tr>
<td>über 10 Jahre</td>
<td>85</td>
</tr>
<tr>
<td>Geschlecht</td>
<td></td>
</tr>
<tr>
<td>Männlich</td>
<td>203</td>
</tr>
<tr>
<td>Weiblich</td>
<td>125</td>
</tr>
<tr>
<td>Diagnose</td>
<td></td>
</tr>
<tr>
<td>Pro B-ALL</td>
<td>12</td>
</tr>
<tr>
<td>Pre B-ALL</td>
<td>74</td>
</tr>
<tr>
<td>c-ALL</td>
<td>179</td>
</tr>
<tr>
<td>T-ALL</td>
<td>62</td>
</tr>
<tr>
<td>unbekannt</td>
<td>1</td>
</tr>
<tr>
<td>Chromosomenveränderung</td>
<td></td>
</tr>
<tr>
<td>TelAml</td>
<td>64</td>
</tr>
<tr>
<td>Bcr-abl</td>
<td>9</td>
</tr>
<tr>
<td>Leukämie-Risiko</td>
<td></td>
</tr>
<tr>
<td>niedrig</td>
<td>116</td>
</tr>
<tr>
<td>mittel</td>
<td>151</td>
</tr>
<tr>
<td>hoch</td>
<td>61</td>
</tr>
<tr>
<td>ZNS-Beteiligung</td>
<td></td>
</tr>
<tr>
<td>nein</td>
<td>301</td>
</tr>
<tr>
<td>ja</td>
<td>13</td>
</tr>
<tr>
<td>unbekannt</td>
<td>14</td>
</tr>
<tr>
<td>DNA-Index</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>173</td>
</tr>
<tr>
<td>über 1</td>
<td>49</td>
</tr>
<tr>
<td>unbekannt</td>
<td>106</td>
</tr>
</tbody>
</table>
3.3 Durchführung der Experimente

3.3.1 PCR

Abbildung 3: Vollständiges Rezeptorprofil einer ALL-Probe (Haplotyp B) einschließlich Positiv- und Negativkontrolle (negativ an der letzten Position, positiv an den beiden davorliegenden), gewonnen mittels Real-Time-PCR. Es ist die Temperatur gegen die log-Darstellung der Cyclerrunden dargestellt.
Um eine PCR zur KIR-Genotypisierung durchführen zu können, musste eine Aufbereitung der Proben nach dem Protokoll aus Abschnitt 2.2.1–2.2.3 erfolgen. In der PCR (Protokoll vgl. 2.2.4–2.2.6) entstand für jede Probe ein individuelles Rezeptorprofil aus Schmelzkurven. Abbildung 3 zeigt ein komplettes Rezeptorprofil eines Kindes mit ALL und einem KIR-Haplotyp B. Die letzte Kurve zeigt das Ergebnis von Wasser als Negativkontrolle, die beiden davor zeigen die Positivkontrollen mit Necdin und GALC.

3.3.2 Erfassung der Daten

Die Daten aus der Real-Time PCR wurden in einer Microsoft Excel-Tabelle erfasst (Daten nicht gezeigt). Aus den Daten in dieser Tabelle wurde für jede Probe der BC-Score und Haplotyp A/B errechnet. Es wurde die zugehörige Region (Telomer/Zentromer) für die Haplotypen erfasst (Daten nicht gezeigt).

3.3.3 Deletionsnachweis von KIR2DS4

Abbildung 4: Darstellung von KIR2DS4 für elf Proben mittels Gel-Elektrophorese. Durch eine Deletion um 22 Basen-Paare im KIR2DS4-allel kommt es zu Ausprägungen mit 133 (MU10, FB32) oder 111 (G24, S32, A22, BS1, LU6) Basen-Paaren. Bei Vorliegen einer Doppelbande (G6, F24, HS8, MD4) zeigen sich beide Ausprägungen. Links ist eine 100 Basen-Paare-Vergleichsprobe zu sehen.

3.4 Statistische Auswertung

Der Vergleich der KIR-Gene mit dem KIR Haplotyp zwischen den beiden Gruppen Krank und Kontrolle erfolgte mit einer univariaten Regressionsanalyse.

Der Vergleich der beiden Gruppen Krank/Kontrolle hinsichtlich BC-Score erfolgte mittels des Cochrane-Armitage-Tests.

Die Faktoren, die untersucht wurden, waren die Zielgröße Leukämiepatient/kein Leukämiepatient mit den Einflussgrößen BC-Score, KIR-Genotyp und Risiko. Unter den KIR-Genen wurden diejenigen in die erweiterte statistische Auswertung einbezogen, von deren Vorhanden- beziehungsweise Nicht-Vorhandensein eine Krankheitsausprägung abhängen kann, also die KIR mit einem aktivierenden
zytoplasmatischen Anteil: KIR2DS1, KIR2DS2, KIR2DS3, KIR2DS4, KIR2DS5 und KIR2DS1. Die übrigen neun KIR-Gene und zwei Pseudogene wurden einmalig erfasst und ausgewertet.

Die Zielgröße war für alle Patienten bekannt, bei den Einflussgrößen traten nie mehr als sechs (0,01 %) fehlende Werte für einen Faktor auf. Bei zwei Proben war die Auswertung nicht eindeutig und es wurden Korrekturen durchgeführt. Bei Probe A20 wurde KIR2DS2=0 gewertet und der BC-Score auf 0 gesetzt, bei Probe HV64 wurde der BC-Score als nicht vorhanden gewertet.

Tabelle 15 gibt einen Überblick über die Verteilung der oben angeführten Einflussgrößen für die Zielgrößen. Graphische Darstellungen verdeutlichen nachfolgend ausgewählte Ergebnisse.

Tabelle 15: Verteilung der einzelnen KIRs, der KIR-Haplotypen und des B-Content-Scores zwischen der Leukämiegruppe und der Kontrollgruppe. Dargestellt in absoluten Zahlen sowie in Prozent. Für jede Einflussgröße sind Odds Ratio (OR) mit einem Kl von 95 % und p-Wert angegeben.
<table>
<thead>
<tr>
<th>Einflussgröße</th>
<th>Leukämie</th>
<th>Kontrolle</th>
<th>OR (95 % KI)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>KIR2DS1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ja</td>
<td>112 (34.1 %)</td>
<td>127 (37.5 %)</td>
<td>1,15 (0.842-1.885)</td>
<td>0.372</td>
</tr>
<tr>
<td>nein</td>
<td>216 (65.9 %)</td>
<td>212 (62.5 %)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KIR2DS2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ja</td>
<td>172 (52.4 %)</td>
<td>180 (53.1 %)</td>
<td>1.02 (0.758-1.392)</td>
<td>0.865</td>
</tr>
<tr>
<td>nein</td>
<td>156 (47.7 %)</td>
<td>159 (46.9 %)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KIR2DS3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ja</td>
<td>107 (32.6 %)</td>
<td>93 (27.4 %)</td>
<td>0.78 (0.560-1.088)</td>
<td>0.143</td>
</tr>
<tr>
<td>nein</td>
<td>221 (67.4 %)</td>
<td>246 (72.6 %)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KIR2DS4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ja</td>
<td>310 (94.5 %)</td>
<td>318 (93.8 %)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>nein</td>
<td>16 (5.5 %)</td>
<td>21 (6.2 %)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KIR2DS5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ja</td>
<td>103 (31.4 %)</td>
<td>103 (30.4 %)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>nein</td>
<td>225 (68.6 %)</td>
<td>236 (69.6 %)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KIR3DS1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ja</td>
<td>122 (37.2 %)</td>
<td>126 (37.2 %)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>nein</td>
<td>206 (62.8 %)</td>
<td>213 (62.8 %)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KIR-Haplo.typ</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>88 (26.8 %)</td>
<td>103 (30.4 %)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>240 (73.2 %)</td>
<td>236 (69.6 %)</td>
<td>0.84 (0.600-1.176)</td>
<td>0.3103</td>
</tr>
<tr>
<td>B-Content Score</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>96 (29.3 %)</td>
<td>103 (30.4 %)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>128 (39.0 %)</td>
<td>134 (39.5 %)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>81 (24.7 %)</td>
<td>79 (23.3 %)</td>
<td>0.313</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>21 (6.4 %)</td>
<td>19 (5.8 %)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>2 (0.6 %)</td>
<td>4 (1.2 %)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KIR2DL1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ja</td>
<td>313 (95.4 %)</td>
<td>333 (98.2 %)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>nein</td>
<td>15 (4.6 %)</td>
<td>6 (1.8 %)</td>
<td>24.13 (1.018-6.941)</td>
<td>0.046</td>
</tr>
<tr>
<td>KIR2DL2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ja</td>
<td>176 (53.7 %)</td>
<td>178 (52.5 %)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>nein</td>
<td>152 (46.3 %)</td>
<td>161 (47.5 %)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KIR2DL3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ja</td>
<td>287 (87.5 %)</td>
<td>303 (89.4 %)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>nein</td>
<td>41 (12.5 %)</td>
<td>36 (10.6 %)</td>
<td>1.20 (0.746-1.934)</td>
<td>0.448</td>
</tr>
<tr>
<td>KIR2DL4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ja</td>
<td>328 (100 %)</td>
<td>339 (100 %)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>nein</td>
<td>0 (0 %)</td>
<td>0 (0 %)</td>
<td>1.03 (0.02-52.241)</td>
<td>0.987</td>
</tr>
<tr>
<td>KIR2DL5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ja</td>
<td>183 (55.8 %)</td>
<td>176 (51.9 %)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>nein</td>
<td>145 (44.2 %)</td>
<td>163 (48.1 %)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KIR3DL1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ja</td>
<td>312 (95.1 %)</td>
<td>323 (95.2 %)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>nein</td>
<td>16 (4.9 %)</td>
<td>16 (4.7 %)</td>
<td>0.74 (0.363-1.518)</td>
<td>0.416</td>
</tr>
<tr>
<td>KIR3DL2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ja</td>
<td>328 (100 %)</td>
<td>338 (99.7 %)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>nein</td>
<td>0 (0 %)</td>
<td>1 (0.3 %)</td>
<td>0.34 (0.014-8.463)</td>
<td>0.512</td>
</tr>
<tr>
<td>KIR3DL3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ja</td>
<td>313 (95.4 %)</td>
<td>328 (96.8 %)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>nein</td>
<td>15 (4.6 %)</td>
<td>11 (3.2 %)</td>
<td>1.43 (0.645-3.158)</td>
<td>0.378</td>
</tr>
<tr>
<td>KIR2DP1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ja</td>
<td>320 (97.6 %)</td>
<td>337 (99.4 %)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>nein</td>
<td>8 (2.4 %)</td>
<td>2 (0.6 %)</td>
<td>4.21 (0.888-19.988)</td>
<td>0.070</td>
</tr>
<tr>
<td>KIR3DLP1f1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ja</td>
<td>105 (32.01 %)</td>
<td>115 (33.9 %)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>nein</td>
<td>223 (67.99 %)</td>
<td>224 (66.08 %)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KIR3DLP1f2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ja</td>
<td>305 (93 %)</td>
<td>324 (95.5 %)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>nein</td>
<td>23 (7 %)</td>
<td>15 (4.4 %)</td>
<td>1.62 (0.833-3.180)</td>
<td>0.153</td>
</tr>
</tbody>
</table>
3.5 Analysemöddell

Da mehr als eine Einflussgröße untersucht wurde, kam von vornherein eine univariate logistische Regression zur Anwendung, bei der jeweils eine dichotome Einflussgröße gegen die Ausprägung der Zielgröße untersucht wurde. Dabei wurden die Odds Ratio und der p-Wert berechnet. Die Nullhypothese lautete „kein Zusammenhang zwischen der jeweiligen Einflussgröße und dem Auftreten einer akuten lymphpatischen Leukämie.“

3.5.1 Univariate logistische Regression

Es zeigte sich für die Einflussgröße KIR-Genotyp die in Abbildung 5 dargestellte Verteilung.

Abbildung 5: KIR-Genotypen B/A von Leukämiepatienten (weiß) und Kontrollgruppe (grau) in Prozent.

Es konnte kein signifikanter Unterschied zwischen den Zielgrößen Leukämiepatient/Kontrolle in Bezug auf die Merkmalsausprägung KIR-Genotyp A/B festgestellt werden. Die Odds Ratio wurde mit 0,8401 berechnet bei einem 95 %-Konfidenzintervall von 0,600-1,176. Der p-Wert lag bei 0,3103.
Für die Einflussgröße KIR2DS1 ist in Abbildung 6 exemplarisch die Verteilung dargestellt.

![Abbildung 6: KIR2DS1-Ausprägung von Leukämiepatienten (weiß) und Kontrollgruppe (grau) in Prozent.](image)

Es konnte kein signifikanter Unterschied zwischen den Zielgrößen Leukämiepatient/Kontrolle in Bezug auf die Merkmalsausprägung KIR2DS1 ja/nein festgestellt werden. Die Odds Ratio wurde mit 1,154 berechnet bei einem 95 %-Konfidenzintervall von 0,842-1,585. Der p-Wert lag bei 0,372.

Für die weiteren Einflussgrößen KIR2DS2, KIR2DS3, KIR2DS4, KIR2DS5, KIR3DS1 zeigten sich ebenfalls nicht signifikant unterschiedliche Ergebnisse. Deshalb wurde auf die Darstellung im Einzelnen verzichtet.

Für die Einflussgröße BC-Score zeigte sich die in Abbildung 7 dargestellte Verteilung.
Es konnte kein signifikanter Unterschied zwischen den Zielgrößen Leukämiepatient/Kontrolle in Bezug auf die Merkmalsausprägung BC-Score 0-4 festgestellt werden. Der p-Wert lag bei 0,313.

In die multivariate Auswertung flossen die kolinearen Einflussgrößen auf die Zielgröße Leukämie ein, da aber in den univariaten Analysen keiner der Faktoren eine Signifikanz zeigte, kam es bei der multivariaten Auswertung erwartungsgemäß ebenfalls zu keinem signifikantem Ergebnis.

3.6 KIR-Genotypen der verschiedenen Risikogruppen

Bei der Verteilung der KIR-Genotypen wurde untersucht, ob ein Zusammenhang zwischen dem KIR-Genotyp der Kontrollgruppe und der Leukämiegruppe, aufgeteilt in ihre einzelnen Risikogruppen Low/Medium/High (vgl. 1.1), besteht. Methodisch wurden die Prozentwerte der einzelnen Gruppen miteinander verglichen.

Abbildung 8: KIR-Genotyp A – alle KIR-Genotyp A-Proben, aufgeteilt in Kontrollgruppe und in der Leukämiegruppe in die einzelnen Risikogruppen Low/Medium/High, dargestellt in Prozent.

Abbildung 9: KIR-Genotyp B – alle KIR-Genotyp B-Proben, aufgeteilt in Kontrollgruppe und in der Leukämiegruppe in die einzelnen Risikogruppen Low/Medium/High, dargestellt in Prozent.
3.7 Rezeptorprofile der Risikogruppen

Es wurde die Verteilung der einzelnen KIR, die in die Auswertung einbezogen wurden (vgl. Abschnitt 3.4), in Bezug auf die Risikogruppen auf einen statistischen Zusammenhang hin untersucht.

3.7.1 KIR2DS5/KIR3DS1, KIR2DS2, KIR2DS3/KIR2DS4

Abbildung 10: Im Vergleich der Risikogruppen untereinander zeigt sich ein Trend hinsichtlich der prozentualen Verteilung der Rezeptorausprägung für KIR3DS1: Der Anteil derjenigen, die den Receptor haben, nimmt von Risikogruppe Low zu High ab. Der Anteil der Kontrollgruppe liegt jedoch dazwischen.
Gleiches gilt für KIR2DS2 (vgl. Abbildung 11), wobei hier der Trend in die umgekehrte Richtung geht und das Vorhandensein des Receptors mit der Einteilung in eine höhere Risikogruppe einhergeht.

Abbildung 11: Im Vergleich der Risikogruppen untereinander zeigt sich ein Trend hinsichtlich der prozentualen Verteilung der Rezeptorausprägung für KIR2DS2: Der Anteil derjenigen, die den Rezeptor haben, nimmt von Risikogruppe Low zu High zu. Der Anteil der Kontrollgruppe liegt jedoch dazwischen.

Bei KIR2DS3 und KIR2DS4 kam es in keiner Ausprägung zu einem in einer Reihe darstellbaren Ergebnis, wie Abbildung 12 am Beispiel von KIR2DS3 zeigt.
3.7.2 Sonderfall KIR2DS1

Die Besonderheit von KIR2DS1 bestand in der Abnahme des Prozentanteils des Rezeptors bei Gesunden (Kontrollgruppe) über Risikogruppe Low und Medium zu High. Damit stützt der Trend für dieses Rezeptorprofil die These, dass ein Zusammenhang zwischen der KIR-Ausprägung und dem Risiko für das Auftreten einer ALL besteht. KIR2DS1 ist das einzige der Rezeptorprofile, das in dieser Art und Weise dargestellt werden konnte (vgl. Abbildung 13). Es ist jedoch zu beachten, dass es sich hier lediglich um einen Trend ohne statistische Signifikanz handelt.
Abbildung 13: Im Vergleich der Risikogruppen untereinander zeigt sich ein statistisch nicht signifikanter Trend hinsichtlich der prozentualen Verteilung der Rezeptorausprägung für KIR2DS1: Der Anteil derjenigen, die den Rezeptor haben, nimmt von Kontrollgruppe über Risikogruppe Low zu High ab.

3.8 Beobachtete KIR-Kombinationen innerhalb der verschiedenen Risikogruppen

Um zu prüfen, ob bestimmte KIR-Kombinationen für die verschiedenen Risikogruppen charakteristisch sind, wurden die häufigsten vier Rezeptor-Kombinationen in den verschiedenen Gruppen zusammengestellt und miteinander verglichen (Daten nicht gezeigt).

Dabei konnte kein Zusammenhang der Kombinationen innerhalb der einzelnen Risikogruppen und auch in Bezug auf die Kontrollgruppe festgestellt werden.

3.8.1 Anzahl aktivierender KIRs und Auftreten einer ALL

Um zu prüfen, ob zwischen der reinen Anzahl aktivierender KIRs und dem Auftreten einer ALL ein Zusammenhang besteht, wurden die Daten von Kontroll- und Probandengruppe gegenübergestellt.

Wie Tabelle 16 zeigt, konnte kein entsprechender Zusammenhang festgestellt werden. Dieses Ergebnis untermauert die zuvor dargestellten Ergebnisse.

<table>
<thead>
<tr>
<th>Zahl der aktivierenden KIR</th>
<th>Leukämie</th>
<th>Keine Leukämie</th>
<th>Gesamt</th>
<th>OR (95 % CI)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>kleiner = 1</td>
<td>101</td>
<td>104</td>
<td>205</td>
<td>1,0054 (0,7235-1,3971)</td>
<td>0,9745</td>
</tr>
<tr>
<td>2 bis 3</td>
<td>113</td>
<td>114</td>
<td>227</td>
<td>1,0373 (0,7530-1,4291)</td>
<td>0,8226</td>
</tr>
<tr>
<td>über/= 4</td>
<td>114</td>
<td>121</td>
<td>235</td>
<td>0,9598 (0,6984-1,3189)</td>
<td>0,8000</td>
</tr>
<tr>
<td>Gesamt</td>
<td>328</td>
<td>339</td>
<td>667</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
4 Diskussion

4.1 KIR-Profil und kindliche ALL

Dass eine Kombination aus dem Vorhandensein eines KIR und eines bestimmten Liganden mit dem Auftreten von Leukämien im Erwachsenenalter assoziiert ist, wurde bereits von verschiedenen Arbeitsgruppen nachgewiesen (Giebel et al.; 2008; Verneris et al.; 2014; Cooley et al., 2014). Dass ferner der Polymorphismus der KIR eine Rolle bei der Entstehung der chronisch myeloischen Leukämie (CML) und der ALL des Erwachsenen spielen kann, legt eine Arbeit von Zhang nahe (Zhang et al., 2010).

Für die kindliche B-ALL hat Babor eine Korrelation zwischen dem Auftreten einer Erkrankung und dem Vorhandensein von KIR2DL1 und dem Ligand HLAC2 festgestellt. Auch die Rückfallrate bei vorhandenem HLAC2 schien höher zu sein (Babor et al., 2014).

Durch derartige Erkenntnisse können neue Therapien entwickelt oder bestehende angepasst werden, so dass es zu einem besseren Outcome für die Patienten nach einer Krankheitsmanifestation und einer angepassten Behandlung kommt. Oevermann konnte an Kindern mit einer ALL zeigen, dass eine KIR-Haplotyp-B-selektierte Spenderauswahl bei der SZT einen positiven Einfluss auf das EFÜ und das Risiko eines Rückfalls hat (Oevermann et al., 2014). Für die AML des Erwachsenen konnten seit der Anpassung der Therapien bereits bessere Ergebnisse nachgewiesen werden (Cooley et al., 2009; Cooley et al., 2010). Dabei gilt es allerdings zu beachten, dass es sich sowohl bei Oevermann, als auch bei Cooley um Kinder handelte die bereits eine SZT erhalten hatten. Für das Multiple Myelom (Kroger et al., 2011) und nochmals für die ALL und die AML des Erwachsenen (Zhou et al., 2014) wurden ebenfalls von bessern Therapieergebnissen nach einer KIRangepassten SZT berichtet.
In der vorliegenden Arbeit konnte jedoch gezeigt werden, dass es keinen Zusammenhang zwischen dem KIR-Profil und einer höheren Wahrscheinlichkeit für das Auftreten einer ALL im Kindesalter gibt.

4.2 Kritische Beurteilung der angewandten Studiendesigns

Almalte stellte einen statistischen Zusammenhang zwischen einer höheren Zahl an aktivierenden KIR, insbesondere KIR2DS2, und einem geringeren Risiko für das Auftreten einer ALL fest (Almalte et al., 2011). Babor hingegen kam zu dem Schluss, dass kein Zusammenhang zwischen der KIR-Ausprägung und dem Risiko für das Auftreten einer ALL besteht (Babor et al., 2012). Babor verwendete zwar eine ähnlich große Zahl an Probanden (B-ALL n = 185; T-ALL n = 33) wie Almalte (B-ALL n = 145; T-ALL n = 30), er rechnete allerdings mit einer anderen Methode und bezog nicht nur die sechs aktivierenden KIR in die statistische Auswertung mit ein, sondern das gesamte KIR-Profil. Es scheint einleuchtend, dass eine andere statistische Methodik ein anderes Ergebnis liefert. Auch kann das Miteinbeziehen des gesamten KIR-Profils zu einer veränderten Auswertung geführt haben.

Da es sich bei der Untersuchung von mehreren Faktoren über einen statistischen Zusammenhangs um eine multivariate Auswertung handelt, wurde in der vorliegenden Arbeit die Testgröße entsprechend angepasst und lag damit deutlich und ausreichend höher als in der Untersuchung von Almalte.

4.3 Einordnung der Patientendaten in die Literatur

In der vorliegenden Arbeit erfolgte keine Differenzierung nach der Ethnie. Das könnte bei dieser Untersuchung dann eine Rolle spielen, wenn sehr viele Kinder in der

Auch das Patientenmerkmal, ob schon ein Rückfall bestanden hat oder nicht, wurde in die vorliegende Arbeit nicht einbezogen. Dieses Merkmal ist zwar für das Outcome einer ALL im Kindesalter ein wesentlicher Faktor, auf die Pathogenese der ALL in Bezug auf das KIR-Profil kann es aber logischerweise keinen Einfluss haben.

4.4 Auswertungskonzept

In die Auswertung einbezogen wurden als Einflussgrößen der BC-Score, der KIR-Genotyp, die sechs aktivierenden KIRs und die Risikogruppe. Da es dringende Hinweise darauf gibt, dass lediglich die sechs aktivierenden KIRs und nicht alle 17 KIRs Einfluss auf die Immunreaktion des Körpers auf Tumorzellen haben, wurden auch nur diese mit in die statistische Auswertung aufgenommen. Zusätzlich war durch das ähnliche Merkmalsprofil wie in Almaltes Arbeit die Vergleichbarkeit der Ergebnisse sichergestellt. Schon in der univariaten Auswertung zeigte sich kein signifikanter Zusammenhang zwischen dem KIR-Profil und dem Auftreten einer kindlichen ALL. In der multivariaten Auswertung konnte kein statistischer Zusammenhang hergestellt werden.

Auch spielen Polymorphismen bei der Expression eine Rolle. So ist davon auszugehen, dass ca. 15 % der Untersuchten einen Polymorphismus für KIR3DL1
haben. Leung konnte für diesen Anteil der Untersuchten den Receptor auf DNA-Ebene nachweisen, nicht jedoch als messenger Ribonukleinsäure (mRNA) (Leung et al., 2005). Der Polymorphismus gilt als eine mögliche Ursache für die höchst unterschiedliche phänotypische Receptorausprägung (Babor et al., 2013). In der vorliegenden Arbeit spielte KIR3DL1 allerdings keine Rolle, da es sich um einen inhibierenden Receptor handelt, dem bei der Pathogenese der kindlichen ALL keine entscheidende Rolle zugeschrieben wird. Daher floss er nicht mit in die Auswertung mit ein.

4.5 Die Bedeutung von KIR2DS1 für die kindliche Leukämie

Eine mögliche Erklärung für diesen Trend, der bisher nur bei der kindlichen ALL nachgewiesen wurde, ist die Tatsache, dass kindliche Leukämieblastes eine andere Expression von KIR-Liganden haben als die von Erwachsenen.

Es gibt inzwischen Arbeiten darüber, dass es nicht nur das KIR-Profil ist, das mit dem Auftreten bestimmter Erkrankungen assoziiert ist, sondern vielmehr die Kombination aus vorhandenen KIR und ihren Liganden (Babor et al., 2014; Cooley et al., 2014). So könnte es auch bei dieser Receptorausprägung sein, dass das alleinige Beobachten der KIR-Ausprägung ein zu einfaches Vorgehen ist.

Es geht aber aus einer anderen Untersuchung hervor, dass KIR2DS1 durchaus eine spezifische Rolle spielt. So konnte Venstrom für einen KIR2DS1-positiven Patientenstatus verminderte Rückfallquoten bei der AML des Erwachsenen aufzeigen. Er untersuchte AML-Patienten, die eine allogene Transplantation von KIR2DS1-positiven Spendern erhalten hatten. Dabei konnte nachgewiesen werden, dass diese Patienten eine geringere Rückfallrate im Vergleich zu KIR2DS1-negativen Spendern hatten (Venstrom et al., 2012).
4.6 Die klinische Relevanz des KIR-Liganden-Modells

Es gibt inzwischen für verschiedene Erkrankungen den Nachweis, dass entweder ihr Auftreten von einem bestimmten KIR-Profil oder aber das Outcome nach einer Therapie von dem vorhandenen oder zur Therapie verwendeten KIR-Profil abhängt. Beispiele mit einem Zusammenhang zwischen KIR-Profil und einer höheren Wahrscheinlichkeit einer Krankheitsmanifestation sind die Präeklampsie (Hiby et al., 2004; Varla-Leftherioti et al., 2005), die Psoriasis-Arthritis (Martin et al., 2002b), die Rheumatoide Arthritis (Warrington et al., 2001), die Hepatitis C (Khakoo et al., 2004), die HIV-Erkrankung (Martin et al., 2002a).

Beispiele für ein besseres Outcome nach einer KIR-Haplotyp B selektierten Stammzelltransplantation sind das Multiple Myelom des Erwachsenen (Kroger et al., 2011; Zhou et al., 2014) oder die AML des Erwachsenen (Cooley et al., 2009; Cooley et al., 2010; Cooley et al., 2014).

Bei den Untersuchungen zu den KIR wurde deutlich, dass die Funktionsweise komplex ist und viele Einflussfaktoren beim Auftreten einer ALL im Kindesalter eine Rolle spielen. Zum Beispiel zeigte sich, dass es für die gleiche Erkrankung durchaus einen Unterschied macht, ob es sich um Kinder oder Erwachsene handelt. Die KIR-Expression scheint sich im Laufe des Lebens zu verändern. Das Outcome nach einer allogenilen SZT mit dem KIR-Haplotyp B verbessert sich bei Kindern (Michaelis, 2015), für Erwachsene dagegen konnte kein Einfluss nachgewiesen werden (Cooley et al., 2010).

Ruggeri hat ein Modell entwickelt, um die Alloreakтивität vorhersagen zu können (Ruggeri et al., 2002). Aufgrund des komplexen Zusammenspiels zwischen KIR und ihren Liganden ist dieses Modell allerdings nur sehr bedingt für eine Vorhersage geeignet. Cooley entwickelte ein praktikables Modell. Dabei werden den aktivierenden KIR bessere alloreaktive NK-Zell-Effekte zugeschrieben (Cooley et al., 2010).

Die Relevanz der Forschung an den KIR kann man auch am derzeitigen Procedere der Stammzellsendung bei der DKMS sehen. So ist es inzwischen üblich, nach der
ersten Typisierung bei positivem HLA-Match eine weitere Typisierung hinsichtlich des KIR-Profils vorzunehmen.

4.7 Ausblick

Die Pathogenese der kindlichen ALL zu kennen, bedeutet einen erheblichen Vorteil für die Behandlung der kindlichen ALL. Die Heilungschancen steigen und die Therapien können schonender angewandt werden. Die Klärung der Pathogenese der kindlichen ALL hat aber auch Vorteile für die gesamte Gesundheitsversorgung: so sind die Kinder unter einer der intensiven Therapien sehr häufig immunsupprimiert. Dies führt sehr häufig zu sehr langen antibiotischen Therapien. Diese stellen ein hohes Risiko für die Resistenzbildung von Keimen dar, die dann nicht nur die kleinen ALL-Patienten bedrohen (Manns, 2016). Es ist also nicht nur im Interesse des Kindes und der Familie, eine möglichst zielgerichtete Therapie anbieten zu können, sondern auch im Interesse der Allgemeinheit.

In der vorliegenden Arbeit wurde für eine ausreichend große Kohorte gezeigt, dass es kein bestimmtes KIR-Profil gibt, das ein Auftreten einer ALL im Kindesalter wahrscheinlicher macht. Die aktuellen Forschungen an KIR zeigen jedoch, dass die KIR mit dem Auftreten der kindlichen ALL trotzdem zu tun haben könnten, nur eben nicht alleine. Deshalb sollte man sich in weiteren Forschungen auf die Liganden der KIR, deren Ausprägung und die Wechselwirkung mit den KIR konzentrieren.
5 Zusammenfassung

Zu den Faktoren, die möglicherweise die Ergebnisse der vorliegenden Arbeit beeinflussen, gehört die Vergleichbarkeit der Proben von Kindern und Erwachsenen aufgrund der unterschiedlichen Leukämieblastenausstattung sowie die epigenetische Zusammensetzung der Stichprobe. Es erscheint sinnvoll, diese Aspekte in künftigen Arbeiten weiter zu klären.

C1, and HLA-C mismatch enhance the clinical benefit of unrelated transplantation for acute myelogenous leukemia. *J Immunol.*, 192: 4592-600.

Olcese, L., Cambiaggi, A., Semenzato, G., Bottino, C., Moretta, A. & Vivier, E. 1997. Human killer cell activatory receptors for MHC class I molecules are included in a

7 Erklärung zum Eigenanteil

Die Arbeit wurde an der Universitätsklinik für Kinder- und Jugendmedizin der Universität Tübingen, Abteilung I, Allgemeinpaedriatrie, Hämatologie und Onkologie unter Betreuung von Prof. Dr. med. Rupert Handgretinger durchgeführt.

Die Konzeption der Studie erfolgte durch Prof. Dr. med. Rupert Handgretinger, Ärztlicher Direktor der Universitätsklinik für Kinder- und Jugendmedizin der Universität Tübingen, Dr. rer. nat. Dr. med. Markus Mezger, Leiter des Chimärismuslabors an der Universitätsklinik für Kinder- und Jugendmedizin der Universität Tübingen und Dr. med. Lena Oevermann, Assistenzärztin an der Universitätsklinik für Kinder- und Jugendmedizin der Universität Tübingen und mir.

Die Versuche zur KIR-Genotypisierung der ALL-Gruppen wurden nach Einarbeitung durch Labormitglieder (Dr. rer. nat. Dr. med. Markus Mezger und Dr. med. Sebastian Michaelis) von mir durchgeführt.

Die Darstellung der Tabelle 2 ist angelehnt an die aus der Dissertation von Dr. med. Sebastian Ulrich Michaelis. Auch ist auf S. 45 aus seiner Dissertation zitiert.

Die Versuche zur KIR-Genotypisierung der Kontrollgruppe wurden von Daniela Koendgen, MTA, durchgeführt.

Die statistische Auswertung erfolgte zum einen Teil selbständig durch mich und zum anderen Teil nach Beratung durch Dr. biol. hum. Corinna Engel am Institut für Biometrie durch mich.

Ich versichere, das Manuskript selbständig verfasst zu haben und keine weiteren als die von mir angegebenen Quellen verwendet zu haben.
Danksagung

Ich bedanke mich bei Herrn Prof. Dr. med. Rupert Handgretinger für die Überlassung des Themas und die angenehme Unterstützung bei der Arbeit.

Bei Dr. rer. nat. Dr. med. Markus Mezger, Dr. Sebastian Michaelis sowie Dr. med. Lena Oevermann bedanke ich mich für die fachliche Betreuung, für die guten Ratschläge und für themenaktuelle wissenschaftliche Diskussionen.

Bei Daniela Koendgen bedanke ich mich für die Durchführung der KIR-Genotypisierung der Kontrollgruppe, bei den Mitarbeiterinnen und Mitarbeitern des Chimärismuslabors bedanke ich mich für die nette Zusammenarbeit.

Bei Herrn Prof. Dr. med. Matthias Schwab und bei Herrn Prof. Dr. med. Martin Schrappe bedanke ich mich für die Bereitstellung der Proben.

Bei Dr. biol. hum. Corinna Engel bedanke ich mich für die Beratung zur statistischen Auswertung.
