Der Einfluss des löslichen Junctional Adhesion Molecule A auf die Thrombozytenfunktion

Inaugural-Dissertation
zur Erlangung des Doktorgrades der Medizin
der Medizinischen Fakultät
der Eberhard Karls Universität
zu Tübingen

vorgelegt von
Schwartz, Jessica Katharina
(geb.: Schwanz)

2017
Dekan: Professor Dr. I. B. Autenrieth

1. Berichterstatter: Professor Dr. M. Gawaz

2. Berichterstatter: Professor Dr. H. Salih

Tag der Disputation: 12.12.2017
Inhaltsverzeichnis

1 Einleitung und Fragestellung ... 1
 1.1 Hämostase ... 1
 1.2 Physiologie der Thrombozyten und Thrombusbildung 2
 1.2.1 Grundlagen ... 2
 1.2.2 Initiierung ... 3
 1.2.3 Extension .. 3
 1.2.4 Stabilisierung ... 5
 1.3 Pathogenese der Atherosklerose ... 6
 1.4 Das Junctional Adhesion Molecule A (Jam-A) 8
 1.5 Fragestellung ... 10
 1.6 Grundlagen zu den durchgeführten Versuchen 10
 1.6.1 Nachweis von Thrombozytenaktivierung & -degranulation mittels Anti-CD62P und Anti-PAC-1 ... 10
 1.6.2 Der Thrombozyten-Agonist ADP ... 12
 1.6.3 Thrombozytenspreizung .. 12
 1.6.4 Apoptose .. 14
 1.6.5 Annexin V – Ein Detektor für frühe Apoptoseaktivität 15
 1.6.6 TMRE (Tetramethylrhodaminmethylester) – Ein Marker für intaktes mitochondriales Membranpotenzial .. 16
 1.6.7 Der Thrombozyten-Agonist TRAP ... 16
 1.6.8 Thrombozyten-Monozyten-Aggregate .. 17

2 Material und Methoden .. 19
 2.1 Herstellung von plättchenreichem (PRP) und plättchenarmem Plasma (PPP) aus Vollblut ... 19
 2.1.1 Benötigte Materialien .. 19
 2.1.2 Durchführung .. 19
 2.2 Thrombozytenisolation aus humanem Vollblut / Herstellung gewaschener Plättchen ... 20
 2.2.1 Benötigte Materialien .. 20
2.2.2 Zusammensetzung der selbst hergestellten Pufferlösungen 21
2.2.3 Vorbereitung .. 21
2.2.4 Durchführung ... 22
2.3 Monozytenisolation ... 23
 2.3.1 Benötigte Materialien ... 23
 2.3.2 Zusammensetzung des selbst hergestellten Monozytenmediums 23
 2.3.3 Durchführung ... 24
2.4 Durchflusszytometrie (FACS): Aktivierung & Degranulation von
 Thrombozyten .. 25
 2.4.1 Benötigte Materialien ... 25
 2.4.2 Versuchsdurchführung ... 25
2.5 Aggregometrie: Optische Messung der Thrombozytenaggregation ... 26
 2.5.1 Benötigte Materialien ... 26
 2.5.2 Versuchsdurchführung ... 27
2.6 Flusskammer: Thrombusbildung unter arteriellen Flussbedingungen ... 29
 2.6.1 Benötigte Materialien ... 29
 2.6.2 Technik der Flusskammer .. 30
 2.6.3 Vorbereitung der Deckgläser .. 30
 2.6.4 Durchführung des Flusskammersversuches 31
2.7 Konfokalmikroskopie / Fluoreszenzmessung: Thrombozytenspreizung
 ... 33
 2.7.1 Benötigte Materialien ... 33
 2.7.2 Zusammensetzung des selbst hergestellten Puffers 35
 2.7.3 Vorbereitung ... 35
 2.7.4 Durchführung für die Auswertung durch Konfokalmikroskopie 36
2.8 FACS-Analyse: Apoptosenachweis mittels Annexin V und TMRE
 (Tetramethylrhodaminmethylester) .. 37
 2.8.1 Benötigte Materialien ... 37
 2.8.2 Durchführung ... 38
2.9 Flusskammer: Interaktionen zwischen Thrombozyten und Endothelzellen 39
 2.9.1 Benötigte Materialien ... 39
 2.9.2 Vorbereitung: Anlegen einer Endothelzellkultur (ECV-Zellen) 41
 2.9.3 Beschichtung von Deckgläsern mit ECV-Zellen 42
2.9.4 Aktivierung der ECV-Zellen durch Tumornekrosefaktor α (TNFα) 50 ng/ml und Interferon γ (IFN γ) 20 ng/ml ...42
2.9.5 Durchführung des Flusskammerversuches ..43
2.9.6 Flusskammerdurchläufe ...44
2.10 FACS-Analyse: Nachweis von Thrombozyten-Monozyten-Aggregaten mit Hilfe von Anti-CD42b und Anti-CD14 ...44
2.10.1 Benötigte Materialien ..44
2.10.2 Gewinnung von Monozyten aus einer Monozytenkultur46
2.10.3 Durchführung ...47
2.11 Zellkultur: Monozyten-Makrophagen-Differenzierung48
2.11.1 Benötigte Materialien ..48
2.11.2 Durchführung ..49
2.12 Statistik...49

3 Ergebnisse ...51

3.1 Der Effekt von Jam-A auf die Aktivierung und Degranulation von
Thrombozyten ...51
3.2 Der Einfluss von Jam-A in Kombination mit ADP auf die
Thrombozytenaggregation ...52
3.2.1 Aggregation unter der Hinzugabe von ADP ..52
3.2.2 Aggregation ohne Hinzugabe von Agonisten ..54
3.3 Die Auswirkung von Jam-A auf die Thrombenbildung unter arteriellen
Flussbedingungen ..59
3.4 Der Einfluss von Jam-A auf die Thrombozytenspreizung63
3.5 Die Wirkung von Jam-A auf die Phosphatidylexpression von Thrombozyten
sowie das mitochondriale Membranpotenzial als Marker für
Apoptosevorgänge ...65
3.5.1 Ergebnisse für Annexin V ..65
3.5.2 Ergebnisse für TMRE ..66
3.6 Der Effekt von Jam-A in Kombination mit ADP auf die
Thrombozytenadhäsion auf Endothelzellen ..68
3.7 Der Einfluss von Jam-A in Kombination mit TRAP auf die Bildung von
Thrombozyten-Monozyten-Aggregaten ...71
3.8 Die Auswirkung von löslichem Jam-A auf die Monozyten-Makrophagen-
Differenzierung..75

4 Diskussion..77
4.1 Die Auswirkungen von löslichem Jam-A auf die Thrombozytenfunktion und
Thrombose ...77
 4.1.1 Aktivierung und Degranulation von Thrombozyten ..77
 4.1.2 Thrombozyten-Spreizung ..78
 4.1.3 Thrombozytenaggregation in Kombination mit ADP ...79
 4.1.4 Thrombenbildung unter arteriellen Flussbedingungen80
4.2 Der Einfluss von löslichem Jam-A auf die Thrombozyteninteraktion mit
Monozyten ...81
 4.2.1 Thrombozyten-Monozyten-Aggregate ...81
 4.2.2 Monozyten-Makrophagen-Differenzierung ..82
4.3 Der Effekt von löslichem Jam-A auf die Thrombozyteninteraktion mit
Endothelzellen..83
4.4 Mögliche Bedeutung des löslichen Jam-A für die Pathophysiologie der
Thrombose und Inflammation ..85
4.5 Mögliche Konsequenzen für Diagnostik und Therapie ...86
4.6 Limitationen der dargestellten Ergebnisse ...86
4.7 Schlussfolgerung ..87

5 Zusammenfassung...89

6 Danksagung..91

Literaturverzeichnis..92

Abbildungsverzeichnis ..102

Abkürzungsverzeichnis ..104

Erklärung zum Eigenanteil der Dissertationsschrift ...106
1 Einleitung und Fragestellung

1.1 Hämostase

Die Hämostase ist ein physiologischer Vorgang, der der Gefäßabdichtung bei Verletzungen dient, um Blutverluste zu vermeiden. Sie wird in drei fließend ineinandergeschachtelte Prozesse unterteilt.

Während der ein- bis dreiminütigen Blutstillung, die auch primäre Hämostase genannt wird, wird aus vielen sich zusammenlagernden Thrombozyten ein so genannter weißer Thrombus gebildet, der die Wunde abdichtet. Die Thrombozyten setzen weiterhin Substanzen frei, die zu einer Vasokonstriktion der Gefäße führen, wodurch die Durchblutung vermindert wird. Auf diesen Abschnitt der Hämostase wird im folgenden Kapitel näher eingegangen.

Die sich anschließende Blutgerinnung oder sekundäre Hämostase gewährleistet durch die Bildung eines Fibrinnetzes einen stabilen Wundverschluss. Infolge der Einlagerung von Erythrozyten entsteht ein roter Thrombus [1], [2], [3], [4].

Im letzten Schritt erfolgt die Fibrinolyse, in der sich das Gerinnsel wieder auflösen kann [5]. Eine gute Balance zwischen prothrombotischen und antithrombotischen Faktoren ist für einen physiologischen Ablauf der Hämostase unerlässlich.

Läuft die streng regulierte Hämostase jedoch in unkontrollierter Weise ab, kann es zur Bildung pathologischer Thromben kommen, die Durchblutungsstörungen verursachen können.

Der stärkste Auslöser für den Ablauf der Gerinnungskaskade ist eine Endothelläsion, die, bedingt durch ein Trauma oder eine Plaqueruptur, zur Freilegung extrazellulärer Matrix führt [6].
1.2 Physiologie der Thrombozyten und Thrombusbildung

1.2.1 Grundlagen

Thrombozyten sind kernlose, bikonkave Scheiben, die mit einem Durchmesser von 2 - 4 µm die kleinsten korpuskulären Bestandteile des menschlichen Blutes darstellen [1], [2]. Gebildet werden sie durch Abschnürung von Zellfragmenten aus Megakaryozyten, die sich im Knochenmark befinden [7]. Eine wichtige Rolle als Wachstumsfaktoren spielen dabei unter anderem IL-6, IL-11 und ganz besonders das Thrombopoietin [8]. Die normale Anzahl an Thrombozyten liegt zwischen 150.000 - 350.000 pro µl Blut. Pro Tag werden etwa 100 Milliarden Thrombozyten neu produziert [9]. Auf ihrer Zelloberfläche sind sie mit einer Vielzahl von Rezeptoren ausgestattet. Etwa ein Drittel der Thrombozyten wird in der Milz gespeichert. Nach einer mittleren Lebensdauer von etwa 10 Tagen werden sie vom mononukleären Phagozytensystem in der Milz abgebaut [1], [9].

Thrombozyten besitzen ein charakteristisches, Oberflächenverbundenes Membransystem (SCS = „surface connected system“) aus verzweigten Kanälen, was auch „open canalicular system“ genannt wird [10]. Es dient vor allem als Membranreserve.

1.2.2 Initiierung

Im Rahmen einer Verletzung wird ein Kontakt von Thrombozyten mit der extrazellulären Matrix möglich, welche sich normalerweise sicher abgeschirmt unter den Endothelzellen, die die Gefäßinnenwand bilden, befindet. Besonders relevant für die Thrombozytenadhäsion sind freiliegende Typ I- und III-Collagenfasern des Gefäßsubendothels [12], [13]. An diese Collagenfasern bindet rasch der von-Willebrand-Faktor (vWF), der mit dem GPIb des GPIb-IX-V-
Einleitung und Fragestellung

Die Collagenbindung an den GPVI/FcRγ-Rezeptor (Collagenrezeptor) [17] löst die primäre Aktivierung des Thrombozyten aus, was über verschiedene Signalkaskaden zum Anstieg des intrazellulären Calciums führt.

Diese intrazellulären Signalprozesse aktivieren Integrin αIIβ1 (Collagenrezeptor) und Integrin αIβ3 (Fibrinogenrezeptor / GPIIb-IIIa) [18]. Dies gewährleistet eine feste Bindung der noch scheibenförmigen (diskoiden) Thrombozyten in Form eines Thrombozytenmonolayers an das Subendothel [11].

1.2.3 Extension

Nach dieser initialen Adhäsion wird im nächsten Schritt der Thrombozytenaktivierung ein thrombozytenreicher Thrombus erstellt. Dies gelingt durch Rekrutierung weiterer Thrombozyten sowie die Thrombozytenaggregation durch Aktivierung des Integrins αIβ3, welches über die Bindung von Fibrinogen und des vWF zu einer irreversiblen Quervernetzung der Thrombozyten führt [19].

Die zuvor beschriebene Adhäsion der Thrombozyten stellt eine Voraktivierung dar, welche die Freisetzung granulärer Inhaltsstoffe wie Adenosindiphosphat (ADP), Thrombin oder Thromboxan A2 (TxA2) und die irreversible Aktivierung der Thrombozyten nach sich zieht. Alle diese Mediatoren binden an G-Protein-
Einleitung und Fragestellung

gekoppelte Rezeptoren, was eine erhebliche Signalverstärkung während der intrazellulären Signalkaskade zur Folge hat [11].

Einen guten Überblick über die Mechanismen der Thrombusformation bietet die Abbildung 1.

Abbildung 1: Mechanismen der Thrombozytenaktivierung im Bereich einer Endothelläsion. ADP = Adenosindiphosphat, EZM = extrazelluläre Matrix, Fg = Fibrinogen, GP = Glykoprotein, TXA2 = Thromboxan A2, vWf = von-Willebrand-Faktor (Pötzsch et al., 2010)

Thrombozyten enthalten drei Arten von Granula, deren Inhaltsstoffe entweder auf die umgebenden Gefäßzellen, weitere Thrombozyten (parakrin) oder auf die Thrombozyten selbst wirken (autokrin).

Zuerst werden die sogenannten dichten Granula, auch δ-Granula genannt, ausgeschüttet. Von ihnen befinden sich circa drei bis neun Stück in einem Thrombozyten [11]. Sie enthalten unter anderem Serotonin, das zur Gefäßkonstriktion sowie zu einer weiteren Aktivierung der Thrombozyten führt. Das in den dichten Granula enthaltene Calcium stellt unter anderem für die sich anschließende Blutgerinnung eine unverzichtbare Voraussetzung dar. Das freigesetzte ADP wirkt auto- sowie parakrin und bindet an die auf der Thrombozytenoberfläche lokalisierten ADP-Rezeptoren. Das Thromboxan A2, welches ebenfalls eine
wichtige Rolle bei Gefäßkonstriktion und der weiteren Thrombozytenaktivierung spielt, wird außerhalb der Granula im Cytosol der Thrombozyten gebildet.

Den dichten Granula folgen die α-Granula, die für die Adhäsion und Aggregatio der Thrombozyten wichtig sind [8]. Enthalten sind zahlreiche Proteine wie Fibrinogen, weitere Gerinnungsfaktoren sowie der vWF [7], aber auch Wachstumsfaktoren, Membranproteine, antimikrobielle Peptide und Immunmodulatoren, Chemokine sowie antikoagulatorische Faktoren. Die α-Granula sind mit etwa 80 Stück pro Thrombozyt die zahlreichsten und größten sekretorischen Organellen [11]. Sie sind von einem eigenen F-Aktin-Zyto skeletonmantel umgeben, der die hochaktiven Granulainhaltsstoffe vor einem ungewollten Freiwerden schützen soll [20].

Durch Aktin-Myosin-Interaktionen bilden sich mehrere Mikrometer lange Zellausläufer, die Pseudopodien, mit denen die Thrombozyten die Wunde durch eine verbesserte Haftung an sich selbst und am Endothel verschließen können [12], [13]. Im Kapitel 1.6.3 wird detailliert auf diese Formveränderung des Thrombozyten, den „Shape Change“, beziehungsweise das Spreizen der Thrombozyten eingegangen.

Darüber hinaus werden gerinnungsaktive Phospholipide wie das negativ gela dene Phosphatidylserin von der Membraninnenseite auf die Außenseite transfe riert, was ein wichtiger Cofaktor für die sich anschließende Gerinnungskaskade der sekundären Hämostase ist [12], [13].

1.2.4 Stabilisierung

Die Fibrinogenbindung an Integrin α_{IIb}β_3 führt zu einer Konformationsänderung des Receptors, was eine wichtige Rolle bei der Stabilisierung des Thrombus spielt. Insbesondere die dadurch ausgelöste Tyrosinphosphorylierung der β_3-

1.3 Pathogenese der Atherosklerose

Entsprechend der Zusammensetzung der Plaques werden das Atherom (hoher Fettanteil) vom fibrösen Plaque (hoher Bindegewebsanteil) und dem ausgegli- chenen zusammengesetzten Fibroatherom unterschieden [24].

Eine Mikrovaskularisierung kann eine Einblutung in die Plaques herbeiführen. Größere Plaques lagern mit der Zeit Calcium ein [24].

Bedingt durch die Atherosklerose entwickelt sich eine endotheliale Dysfunktion, so dass es zu einer verminderten endothelialen Vasodilatation mit paradoxer Vasokonstriktion kommt [24].
Bei einer Plaqueruptur, bei der das geschädigte Endothel aufreißt oder der Fett kern bis zum Gefäßlumen durchbricht, wird das Gerinnungssystem aktiviert, was bis zu einem Verschluss des bereits zuvor verengten Gefäßes führen kann [25], [26], [27]. Gefördert wird die Gefahr einer Plaqueruptur durch die von den Monozyten sezernierten matrixdegenerierenden Enzyme, die die fibröse Kappe zunehmend ausdünnen. Die Plaques werden somit instabil [24].

Der Begriff Atherosklerose wird häufig synonym zur Arteriosklerose verwendet. Atherosklerose weist sprachlich auf das Atherom in der geschädigten Gefäß wand hin, wohingegen Arteriosklerose auf die Versteifung der gesamten arteriellen Gefäße verweist, die unter anderem durch die Atherosklerose verursacht wird [24].
Einleitung und Fragestellung

1.4 Das Junctional Adhesion Molecule A (Jam-A)

Abbildung 2: Struktur einer abgewandelten Jam-A-Form mit nur einer Domäne (Jam-A D1) (Prof. Dr. Thilo Stehle, Interfakultäres Institut für Biochemie Tübingen)

Jam-A kann in Form eines Rezeptors als Transmembranprotein [34] oder in löslicher Form vorliegen. Woher die lösliche Form stammt, ist bisher noch nicht bekannt [35]. Die Jam-Gruppe umfasst neben Jam-A noch zwei ähnlich gebaute Proteine, das Jam-B und das Jam-C. Eine JAM-Untergruppe bilden die Proteine „Coxsackie- und Adenovirusrezepator“ (CAR), „endothelselektives Adhäsionsmolekül“ (ESAM), JAM-4 und JAML [36].

Jam-A hat Einfluss auf die Adhäsion [28], [37], [38], Aggregation [38], [39], [40], [41] und Sekretion von Thrombozyten [38], [39], [40].Exprimiert werden kann
Einleitung und Fragestellung

Jam-A stellt eine Transmembrankomponente der „tight-junctions“ zwischen Endothelzellen [32], [46], [47], [48] beziehungsweise Epithelzellen dar [48], [49], [50]. Die Bildung von Homodimeren [33], [48] innerhalb der „tight-junctions“ scheint wichtig für die Barrierefunktion der Epithelzellen zu sein [51]. In Epithelzellen scheint Jam-A eine wichtige Rolle bei der Entwicklung der apikal-basalen Polarität zu spielen [49].

Jam-A scheint eine entscheidende Rolle bei der Entstehung von Thrombosen und Arteriosklerose zu spielen [41], [52]. Eine beeinträchtigte Jam-A-Expression in Endothelzellen reduziert mononukleäre Zellrekrutierung in die Arterienwand und begrenzt die Entstehung von Arteriosklerose [53], [54]. Lösliches Jam-A scheint die mononukleäre Zellrekrutierung auf entzündetes oder arteriosklerotisch verändertes Endothel zu vermindern [54].

Endotheliales membranständiges Jam-A führt zu festen Verbindungen zwischen Thrombozyten und aktivierten, beziehungsweise entzündeten Endothelzellen [35], [37], [41]. In den Thrombozyten werden durch diese Vernetzung Aktin-Filament-Baugruppen aktiviert, die eine Umwandlung der ruhenden, diskoiden Blutplättchen in ihre aktivierte Form auslösen. Des Weiteren kommt es zur Bildung von Blutplättchenaggregaten. In arteriosklerotischen Plaques konnte sowohl bei Mäusen als auch beim Menschen eine Überexpression von Jam-A nachgewiesen werden [29], [35], [41]. Ferner führt eine solche Aktivierung zu einer Erhöhung der Menge an freiem intrazellulärem Calcium. Bei gleichzeitiger Anwesenheit von Jam-A und Agonisten der Thrombozytenaggregation wird diese verstärkt [55].
Auch bei der Kontrolle der Gefäßdurchlässigkeit und der Transmigration von Leukozyten [43] und Monozyten [56] durch Endothelzellen scheint Jam-A eine wichtige Rolle zu spielen [44], [50], [53].

Weiterhin vermittelt Jam-A die Differenzierung von CD34-positiven Zellen und Endothelzellen, womit die Reendothelialisierung erleichtert wird [42].

Außerdem spielt Jam-A eine wichtige Rolle bei der FGF2-induzierten Angiogenese (FGF2 = „Fibroblast Growth Factor“ = Fibroblasten-Wachstumsfaktor 2) [32], [57].

1.5 Fragestellung

Von besonderem Interesse sind in diesem Zusammenhang der Einfluss auf die Aktivierung und Degranulation der Thrombozyten, die Aggregation, die Thrombusbildung unter arteriellen Flussbedingungen, das Überleben der Thrombozyten sowie Interaktionen der Thrombozyten mit Monozyten oder dem Endothel.

Außerdem soll der Einfluss von löslichem Jam-A auf die Thrombozytenspreizung ermittelt werden.

1.6 Grundlagen zu den durchgeführten Versuchen

1.6.1 Nachweis von Thrombozytenaktivierung & -degranulation mittels Anti-CD62P und Anti-PAC-1

Das Antigen CD62P ist auch als P-Selektin oder Immunglobulin-Selektin bekannt. CD62P ist ein Indikator und der Goldstandard für die Aktivierung von
Thrombozyten [59] und für die Ausschüttung von α-Granula [7]. Im aktivierten Zustand werden die Rezeptoren an die Oberfläche der Thrombozyten transportiert, woran der spezifische Antikörper (Anti-CD62P-FITC) binden kann (siehe Abbildung 4) [60].

![Abbildung 4: Schematische Übersicht über die Wirkung von CD62P (P-Selektin) (eigene Darstellung)](image)

Es vermittelt die Interaktion von aktivierten Thrombozyten mit neutrophilen Granulozyten sowie Monozyten. Weiterhin ist das CD62P-Antigen verantwortlich für die rollende Bindung von Neutrophilen an aktiviertem Endothel [61].

Einen sehr wichtigen Stellenwert nimmt dabei das P-Selektin-abhängig freigesetzte Zytokin RANTES („regulated on activation, normal T cell expressed and secreted“) ein, welches auch unter dem Namen CCL5 („CC-chemokine ligand 5“) zu finden ist. Freigesetzt von aktivierten Thrombozyten wird es auf der Oberfläche von Endothelzellen präsentiert und führt unter anderem zur Rekrutierung von Monozyten [62], [63], was einen wichtigen Beitrag zur Pathogenese der Arteriosklerose leistet.

PAC-1 ist ein Indikator für den Integrin αIIbβ3-Rezeptor auf aktivierten Thrombozyten [64]. Er ist auch unter den Namen Glykoprotein IIb/IIIa-Rezeptor, CD41, beziehungsweise CD61 bekannt, bindet Fibrinogen und ist an der Blutgerinnung beteiligt [13] (siehe Abbildung 5).
1.6.2 Der Thrombozyten-Agonist ADP

ADP stammt vor allem aus den δ-Granula der Thrombozyten. Über die Bindung an seine Rezeptoren P2Y₁ und P2Y₁₂, die auf der Thrombozytenoberfläche lokalisiert sind, kommt es zu einer weiteren Verstärkung der Thrombozytenaktivierung. Diese Rezeptoren sind außerdem von großer Wichtigkeit für die ADP-gesteuerte Thrombozytenaggregation. Beides sind G-Protein-gekoppelte Rezeptoren, so dass es durch die sich anschließende Signalkaskade zu einer Verstärkung des Eingangssignals kommt. Ein klinisch häufig eingesetzter Thrombozytenaggregationshemmer ist das Clopidogrel, ein irreversibler Blocker des P2Y₁₂-Rezeptors [65], [66].

1.6.3 Thrombozyten-spreizung

Zum besseren Verständnis der Thrombozyten-spreizung („spreading“) werden im Folgenden einige grundlegende Informationen zum thrombozytären Zytoskelett aufgeführt.

Grundsätzlich besteht das Zytoskelett aus drei Komponenten, aus Aktinfilamenten, Spektrin und Mikrotubuli [11], [67].
Einleitung und Fragestellung

Das Spektrin formiert mit ungefähr 2000 Molekülen pro Thrombozyt ein zweidimensionales Membranskelett und bindet direkt an die darüber liegende Plasmamembran [70].

Einleitung und Fragestellung

Zum Erreichen der Kugelform müssen sowohl die Mikrotubuli-Spule als auch das starre Aktinnetzwerk remodelliert werden [68]. Dazu werden die langen Aktinfilamente durch das Protein Gelsolin, welches für die Aktivierung eine hohe intrazelluläre Ca$^{2+}$-Konzentration benötigt, in viele kurze Filamente zerlegt. Für das Spreizen der Thrombozyten werden die kurzen, randständigen Aktinfilamente durch Anlagerung von Aktinmonomeren, welche in einem Komplex mit β4-Thymosin vorliegen, wieder verlängert. So kommt es zur Bildung der Filopodien [67].

1.6.4 Apoptose

Die Apoptose, die auch als programmiertes Zelltod bezeichnet wird, kann von den Zellen selbst oder von außen eingeleitet werden und spielt eine wichtige Rolle bei mehrzelligen Organismen. Beide Wege führen zu einer Aktivierung einer ganzen Kette von so genannten Caspasen. Ihren Namen haben diese Enzyme daher, dass es sich dabei um Cystein-Proteasen handelt, die hinter Aspartat schneiden [75].

Anders als bei der Nekrose kommt es dabei nicht zu einer ausgeprägten Immunreaktion.

Eine Schlüsselstellung bei den Apoptosevorgängen besitzen die Mitochondrien. Gelangt das Cytochrom c, ein Elektronentransporter der Atmungskette, der auf der Außenseite der inneren Mitochondrienmembran lokalisiert ist, ins Zytosol, wird die Apoptosekaskade eingeleitet [13], [76]. In gesunden Zellen inhibiert die Bcl-2-Proteingruppe die pro-apoptotischen Proteine Bak und Bax, die den Austritt des Cytochrom c einleiten [77], [78]. Es wird nach dem „molekularen Uhr-Modell“ vermutet, dass aufgrund einer kürzeren Halbwertszeit der Bcl-2-Gruppe gegenüber den pro-apoptotischen Proteinen die Menge nach 10 Tagen nicht mehr ausreicht, um diese zu inhibieren, so dass die Apoptose eingeleitet wird [79], [80]. Besonders entscheidend für das thromboytäre Überleben scheint Bak zu sein. Bei Bak-defizienten Mäusen konnte das Thrombozytenüberleben verdoppelt und eine Thrombozytose festgestellt werden [9], [79].
Die Apoptose zieht mehrere morphologische Veränderungen der Zelle nach sich. Die untergehende Zelle löst sich aus dem Zellverbund, Zellkern und Zytoplasma kondensieren, das heißt sie verklumpen und schrumpfen [81]. Außerdem stülpt sich die Zellmembran aus, so dass sich kleine Vesikel, die Apoptosekörper, bilden, die gut von Makrophagen phagozytiert werden können [13]. Des Weiteren wird das stark negativ geladene Phosphatidylserin auf die Zelloberfläche verlagert [76], [81], [82]. Das Auslagern des Phosphatidylserins wird allerdings auch durch einige Agonisten der Thrombozytenaggregation ausgelöst [9], [83], [84]. Dieses wird von Rezeptoren auf den Makrophagen erkannt und fördert die Phagozytose der sich bildenden Apoptosekörper.

Murphy et al. stellten das „multiple-hit model“ auf, mit welchem sie sich das Thrombozytenüberleben erklärten. Demnach sei die Lebensspanne der Thrombozyten abhängig von der Anzahl der erlittenen Schädigungen und ihrer Fähigkeit, Schädigungen zu widerstehen [85], [86], [87].

1.6.5 Annexin V – Ein Detektor für frühe Apoptoseaktivität

1.6.6 TMRE (Tetramethylrhodaminethylester) – Ein Marker für intaktes mitochondriales Membranpotenzial

1.6.7 Der Thrombozyten-Agonist TRAP

Beim TRAP („thrombin receptor-activating peptide“), einem synthetisch hergestellten Protein, welches an den Thrombinrezeptor PAR-1 (protease-aktivierter Rezeptor) der Thrombozyten bindet, handelt es sich um einen äußerst wirksamen Thrombozytenaktivator [91], [92], [93], [94]. Es kann anstelle von Thrombin eingesetzt werden, was sich aufgrund der höheren Stabilität von TRAP anbietet. Durch Medikamente wie Aspirin oder Clopidogrel wird seine Wirkung nicht beeinträchtigt. TRAP kann diagnostisch zur Wirkungserfassung von GPIIb/IIIa-Antagonisten eingesetzt werden (z. B. Reopro, Aggrastat oder Integrillin).
Einleitung und Fragestellung

1.6.8 Thrombozyten-Monozyten-Aggregate

Die Monozytenadhäsion an entzündetes Endothel stellt einen sehr wichtigen Faktor für die Entwicklung von Arteriosklerose dar [26], [95], [96], [97]. Dabei wurde für Thrombozyten-Monozyten-Aggregate eine verstärkte Adhäsion an Endothelzellen festgestellt, was zu einem erhöhten atherogenen Potenzial führen könnte [98]. Verantwortlich für die erste Bindung zwischen aktivierten Thrombozyten und Monozyten ist die Interaktion von P-Selektin und dem „P-Selektin-Glykoproteinligand-1“ (PSGL-1). Dieser Ligand ist sowohl auf Thrombozyten als auch auf die meisten Leukozyten, wie auch Monozyten lokalisiert [99]. Diese Interaktionen spielen auch bei der Haftung der Komplexe an arteriosklerotischen Thromben eine Rolle [100]. Die nachgeschaltete Bindung des CD40-Liganden auf Thrombozyten mit dem CD40 auf Monozyten führt zu einer Aktivierung des Monozyten sowie zu einer Ausschüttung entzündungsfördernder Zytokine [101], [102].

CD42b („Cluster of differentiation“) ist ein Synonym für das Glykoprotein Ib, welches auf Thrombozyten als Rezeptor für den von-Willebrand-Faktor im Rahmen der Hämostase dient [13]. Daher kann ein Antikörper dagegen als Marker für Thrombozyten eingesetzt werden. Durch eine Fluoreszenzmarkierung mit dem roten Farbstoff Phycoerythrin (PE) werden die Thrombozyten im FACS erfassbar.

CD14 ist ein Glykoprotein, welches vor allem auf der Oberfläche von Monozyten und Makrophagen gebildet wird [103]. Es hat die Aufgabe der Opsonierung
von bakteriellen Fettsäuren und Peptidoglykanen [104]. Es markiert also Fremdkörper und ermöglicht die Phagozytose durch beispielsweise Granulozyten oder Makrophagen. FITC ist ein gelbgrüner Fluoreszenzfarbstoff, der im FACS registriert werden kann.

Abbildung 6: Schematische Darstellung der Bildung von Thrombozyten-Monozyten-Aggregaten (eigene Darstellung)

2 Material und Methoden

2.1 Herstellung von plättchenreichem (PRP) und plättchenarmem Plasma (PPP) aus Vollblut

2.1.1 Benötigte Materialien

Geräte
Sysmex (Zellzählautomat) Sysmex Deutschland GmbH, Norderstedt, Deutschland
Tischzentrifuge: Heraeus Multifuge 3S+ Centrifuge Thermo Fisher Scientific, Waltham, Massachusetts, USA

Proben
PRP („platelet rich plasma“ / thrombozytenreiches Plasma) aus venösem CPDA-Blut (Citrat-Phosphat-Dextrose-Adenin)
PPP („platelet poor plasma“ / thrombozytenarmes Plasma) aus venösem CPDA-Blut
gesunde humane Spender

2.1.2 Durchführung
Vorgeschrieben ist diese Herangehensweise in [105]. Von gesunden Spendern werden vier CPDA-Röhrchen venöses Vollblut abgenommen und bei 209 g für 20 min. ohne Bremse bei Raumtemperatur zentrifugiert. Im Überstand befindet sich thrombozytenreiches Plasma („platelet rich plasma“ = PRP). Dieses wird bis auf einen Rest mit einer Pasteurpipette in 15 ml Falcons überführt. 100 µl des PRPs werden am Sysmex, einem automatischen Zellzählautomaten, analysiert, um die Anzahl der Thrombozyten zu bestimmen.

Um das plättchenarme Plasma („platelet poor plasma“ = PPP) zu erhalten, werden die CPDA-Röhrchen ein weiteres Mal zentrifugiert und zwar bei 2000 g für
10 min. mit Bremse bei Raumtemperatur. Das PPP, welches sich im Überstand befindet, wird ebenfalls mit einer Transferpipette in ein 15 ml Falcon überführt.

2.2 Thrombozytenisolation aus humanem Vollblut / Herstellung gewaschener Plättchen

2.2.1 Benötigte Materialien

Geräte
- pH-Meter: HI 9025 microcomputer, Hanna Instruments, Woonsocket, Rhode Island, USA
- Präzisionswaage, Denver Instrument / Sartorius, Bohemia, New York
- Rührgerät mit Rührfischchen: IKA-MAG® RCT, IKA® Labortechnik, Staufen, Deutschland
- Sterilbank Heraeus®, Thermo Electron Corporation, Langen selbold, Deutschland
- Sysmex (Zellzählautomat), Sysmex Deutschland GmbH, Norderstedt, Deutschland
- Tischzentrifuge: Heraeus Multifuge 3S+ Centrifuge, Thermo Fisher Scientific, Waltham, Massachusetts, USA

Reagenzien
- 1 N Salzsäure (HCl), Sigma-Aldrich, St. Louis, Missouri, USA
- Bovines Serumalbumin Fraktion V (pH 7,0), AppliChem Panreac ITW Companies, Chicago, Illinois, USA
- D(+) Glucose, Sigma-Aldrich, St. Louis, Missouri, USA
- N-2-Hydroxyethylpiperazin-N´-2-Ethansulfonsäure (HEPES), Roth, Karlsruhe, Deutschland

Puffer
- steriler ACD-Puffer (Zitronensäure- eigene Herstellung
Material und Methoden

Material und Methoden

Citrat-Dextrose-Puffer)
Tyrodes 10x
Tyrodes-Puffer pH 6,5
eigene Herstellung
eigene Herstellung

Probe

ACD-Vollblut
gesunde humane Spender

2.2.2 Zusammensetzung der selbst hergestellten Pufferlösungen

ACD-Puffer:
12,5 g Natriumcitrat
6,82 g Zitronensäure
10 g Glukose
Aqua dest. ad 500 ml und mit NaOH auf pH 4,6 einstellen

Tyrodes-Puffer (10x):
80 g Natriumchlorid
10,15 g Natriumhydrogencarbonat
1,95 g Kaliumchlorid
Aqua dest. ad 1000 ml

Tyrodes-Gebrauchslösung:
20 ml Tyrodes-Puffer (10x)
0,2 g BSA
0,2 g Glukose
Aqua dest. ad 200 ml

2.2.3 Vorbereitung

Vor der Blutentnahme müssen ein bis zwei 20 ml-Spritzen mit 4 ml sterilem ACD-Puffer (Zitronensäure-Citrate-Dextrose-Puffer), der bei 4 °C für einige Tage im Kühlshrank gelagert werden kann, gefüllt werden. Um eine vorzeitige Gerinnung des abgenommenen Blutes zu verhindern, sollten die so präparier-
ten Spritzen einige Minuten bei 37 °C im Brutschrank angewärmt werden. Verschlossen werden die Spritzen mit einem Membranadapter.

2.2.4 Durchführung

Zuvor beschrieben ist diese Methode in [106]. Je 10 ml des abgenommenen Blutes werden direkt aus der Spritze sehr langsam in ein schräg gehaltenes 15 ml Falcon gegeben, so dass das Blut die Wand herabrinnen kann. Die Falcons werden jetzt bei 209 g für 20 min. bei Raumtemperatur und ohne Bremse zentrifugiert.

Der benötigte pH-Wert des Tyrodes-Puffers von 6,5 wird mit 1N HCl eingestellt. Der nun fertig angemischte Puffer muss zum Abschluss unter der Sterilbank sterilfiltriert werden.

Durch die Zentrifugation hat sich plättchenreiches Plasma (PRP) abgesetzt, welches vorsichtig mit einer Transferpipette abgenommen und in ein 50 ml-Falcon umgefüllt wird, welches zuvor bereits mit 25 ml Tyrodes pH 6,5 vorgefüllt wurde. Es dürfen maximal 10 ml PRP in ein 50 ml-Falcon gegeben werden, so dass ein Gesamtvolumen von 35 ml entsteht.

Es folgt ein weiterer Zentrifugationsschritt mit 920 g für 10 min. bei Raumtemperatur mit Bremse. Der Überstand wird abgegossen. Das Pellet wird mit 1 ml PBS + Ca^{2+} resuspendiert. Die abschließende Thrombozytenzählung erfolgt in einer 1:10-Verdünnung in einem Eppendorf-Cup am Sysmex.
2.3 Monozytenisolation

2.3.1 Benötigte Materialien

Geräte
Brutschrank: incu-safe
Biochrom AG, Berlin, Deutschland
Pipettierhilfe für sterile Einmalpipetten, accu-jet® pro
Brand, Wertheim, Deutschland
Sterilbank Heraeus®
Thermo Electron Corporation, Langen selbold, Deutschland
Tischzentrifuge: Heraeus Multifuge
Thermo Fisher Scientific, Waltham, Massachusetts, USA

Reagenzien
Dulbeccos Phosphat Buffered Saline (ohne Calcium)
Sigma-Aldrich, St. Louis, Missouri, USA
Ficoll-Paque™ PLUS
GE Healthcare Bio-Sciences AB, Uppsala, Schweden

Medien
VLE RPMI 1640 Medium + 10 % FCS + 1 % Penicillin & Streptomycin
Biochrom AG, Berlin, Deutschland

Probe
Blutkegel aus der Transfusionsmedizin
gesunde humane Spender

2.3.2 Zusammensetzung des selbst hergestellten Monozytenmediums

Monozyten-Medium:
450 ml VLE RPMI 1640
50 ml Fetales Kälberserum (10 %)
2.3.3 Durchführung

Bereits beschrieben ist diese Methodik in [107]. Die Transfusionsmedizin stellt Leukozyten-Kegel zur Verfügung, die als Nebenprodukt bei der Blutspende entstehen.

Die Monozytenisolation erfolgt unter der Sterilbank. Um das Vollblut aus dem Kegel in ein 50 ml-Falcon umfüllen zu können, wird zuerst der Schlauch an der Spitze des Kegels aufgeschnitten und der Kegel auf das Falcon gestellt. Mit dem Eröffnen des anderen Schlauches läuft das Blut in das Falcon. Anschließend wird das Falcon auf eine Gesamtfüllmenge von 50 ml mit PBS (ohne Calcium) gebracht.

Für jeden Kegel mit Vollblut werden zwei weitere 50 ml-Falcons mit je 20 ml Ficoll befüllt. Diese Chemikalie erzeugt nach dem Zentrifugieren einen Dichtegradienten, der es ermöglicht, die Monozyten zu separieren.

Sehr langsам werden nun 25 ml des zuvor verdünnten Blutes mit einer Pipette in das schräg gehaltene Falcon laufen gelassen und im Anschluss bei 920 g für 20 min. ohne Bremse zentrifugiert.

Die sich mittig befindende weiße Monozytenphase wird mit einer Transferpipette aufgenommen und in ein neues 50 ml-Falcon gegeben, welches nachfolgend mit PBS (ohne Calcium) auf 50 ml aufgefüllt wird. Der zweite Zentrifugationsschritt erfolgt bei 535 g für 10 min. mit Bremse.

Der sich bildende Überstand wird verworfen. Das Monozytenpellet wird mit 6 ml Monozytenmedium RPMI 1640 resuspendiert. Je 2 ml dieser Monozytensuspension werden nun in eine rote Zellkulturflasche pipettiert, die zuvor mit je 23 ml Monozytenmedium befüllt wurde.

Über Nacht werden die drei Zellkulturflaschen bei 37 °C im Brutschrank inkubiert.
2.4 Durchflusszytometrie (FACS): Aktivierung & Degranulation von Thrombozyten

2.4.1 Benötigte Materialien

Geräte
Durchflusszytometer FACS Calibur BD Biosciences, Franklin Lakes, New Jersey, USA

Reagenzien
ADP 10 µM Sigma-Aldrich, St. Louis, Missouri, USA
Formaldehyd (PFA) Sigma-Aldrich, St. Louis, Missouri, USA
PBS („Phosphate buffered saline“ /Phosphat-gepufferte Salzlösung) + Ca²⁺ Sigma-Aldrich, St. Louis, Missouri, USA

Proteine
Jam-A D1 10 µg/ml Interfakultäres Institut für Biochemie Tübingen, Prof. Thilo Stehle

Antikörper
CD42b-PE Beckman Coulter, Brea, Kalifornien, USA
CD62P-FITC Beckman Coulter, Brea, Kalifornien, USA
PAC-I FITC Beckman Coulter, Brea, Kalifornien, USA

Probe
CPDA-Blut gesunde humane Spender

2.4.2 Versuchsdurchführung

Die Technik der Durchflusszytometrie wird in [108], [109], [105], [110] beschrieben.

Kurz gefasst werden in der FACS-Analyse („fluorescence-activated cell sorting“) fluoreszenz-markierte Zellen, die an einem Laserstrahl in hohem Tempo vorbei-
fließen, in unterschiedliche Reagenzgefäße sortiert. Dadurch erfolgt eine Analyse der Eigenschaften der Zellen.

In diesem Versuch werden 20 µl Vollblut mit 980 µl PBS + Ca²⁺ 1:50 verdünnt. Es werden zwei verschiedene Versuchssets mit jeweils doppelter Ausführung angelegt. In alle Röhrchen werden 5 µl des CD42b PE-Antikörpers gegeben, womit die Thrombozyten markiert werden.

Set 1 wird mit je 5 µl CD62P FITC-Antikörper versehen.

Set 2 wird mit je 5 µl des PAC-1 FITC-Antikörpers markiert.

Jedes Set besteht aus folgenden Versuchsansätzen, wobei sich in allen Röhrchen jeweils 5 µl CD42b PE und 5 µl des spezifischen Antikörpers für das jeweilige Set sowie 35 µl verdünntes Vollblut befinden.

Versuchsansätze:
- Leerwert
- ADP 10 µM
- ADP 10 µM + Jam-A D1 10 µg/ml

Alle Versuchsansätze werden für 30 min. im Dunkeln bei Raumtemperatur inkubiert. Mit 300 µl 0,5 % Formaldehyd (PFA) werden alle Proben fixiert.

Die Proben werden nun im Durchflusszytometer analysiert.

2.5 Aggregometrie: Optische Messung der Thrombozyten-aggregation

2.5.1 Benötigte Materialien

Geräte

<table>
<thead>
<tr>
<th>Aggregometer</th>
<th>Chrono-Log Corporation, Havertown, Pennsylvania</th>
</tr>
</thead>
<tbody>
<tr>
<td>Software: Aggrolink Version 5.2.1</td>
<td>Chrono-Log Corporation, Havertown, Pennsylvania</td>
</tr>
<tr>
<td>Sysmex (Zellzählautomat)</td>
<td>Sysmex Deutschland GmbH, Nor-</td>
</tr>
</tbody>
</table>

(Continued on next page)
Material und Methoden

derstedt, Deutschland

Tischzentrifuge: Heraeus Multifuge 3S+ Centrifuge

Thermo Fisher Scientific, Waltham, Massachusetts, USA

Thrombozyten-Agonisten

ADP 10 µM

Sigma-Aldrich, St. Louis, Missouri, USA

Proteine

Car D1 10 µg/ml (Kontrolle)

Interfakultäres Institut für Biochemie Tübingen, Prof. Thilo Stehle

Jam-A D1 mit 0,5, 1, 2, 5, 10 µg/ml

Interfakultäres Institut für Biochemie Tübingen, Prof. Thilo Stehle

Jam-A D1/D2 mit 0,5, 1, 2, 5, 10, 15, 20, 25, 30 µg/ml

Interfakultäres Institut für Biochemie Tübingen, Prof. Thilo Stehle

Proben

PRP aus CPDA-Blut (Citrat-Phosphat-Dextrose-Adenin)

gesunde humane Spender

PPP aus CPDA-Blut

identischer gesunder humane Spender wie für das PRP

2.5.2 Versuchsdurchführung

Vorbeschrieben ist die Aggregometrie in den Quellen [105], [111], [112]. Kurz gefasst handelt es sich bei der Aggregometrie um ein photometrisches Messverfahren. Der Grad der Thrombozytenaggregation wird als Änderung der optischen Dichte in einem zu bestimmenden Thrombozytenmedium in Form einer Kurve aufgezeichnet. Als Referenzwert dient eine zweite Küvette mit plättchenarmem Plasma (PPP).

PRP und PPP werden, wie in Kapitel 2.1.2 beschrieben, hergestellt. Für den Versuch ist es wichtig, dass das PRP nicht mehr als 200.000 Thrombozyten pro µl enthält, um vergleichbare Messwerte zu erhalten. Im Zweifelsfall muss das PRP mit PPP verdünnt werden.
Material und Methoden

Beispiel: \(237 \times 10^3/\mu l\) gemessene Thrombozyten im PRP

\[
\frac{237}{200} = 1,185 \\
1 : 1,185 \\
1 + 0,185 \\
1000 \mu l \text{ PRP} + 185 \mu l \text{ PPP} \rightarrow \text{PRP mit }200 \times 10^3/\mu l \text{ Thrombozyten}
\]

Während der Zentrifugationsschritte werden alle Reagenzien in den benötigten Konzentrationen in Eppendorf-Cups vorbereitet. Das Jam-A sowie die Negativkontrolle in Form des Car D1 werden auf Eis gelagert.

Am Computer wird das Programm „AGGROLINK“ geöffnet. Nach der Kalibrierung der jeweiligen Probe folgt eine zweiminütige Anwärmphase des PRP auf 37 °C. Nach den zwei Minuten werden rasch hintereinander alle Reagenzien zum PRP hinzugefügt und nach fünfminütiger Messung die Amplitude berechnet und der Kurvenverlauf der Aggregation beurteilt. Um die Kurven leichter vergleichen zu können, werden die Daten in Excel importiert und eine Sammelgrafik erstellt.

Versuchsdurchläufe:

- Leerwert
- ADP 10 µM
- ADP 10 µM + Jam-A D1 10 µg/ml
- ADP 10 µM + Jam-A D1/D2 30 µg/ml
- ADP 10 µM + Car D1 10 µg/ml
- Jam-A D1 10 µg/ml
Material und Methoden

- Jam-A D1 als Konzentrationsstudie mit 0,5, 1, 2, 5, 10 µg/ml
- Jam-A D1/D2 30 µg/ml
- Jam-A D1/D2 als Konzentrationsstudie mit 0,5, 1, 2, 5, 10, 15, 20, 25, 30 µg/ml
- Car D1 10 µg/ml

2.6 Flusskammer: Thrombusbildung unter arteriellen Flussbedingungen

2.6.1 Benötigte Materialien

Geräte

Lichtmikroskop: Axiovert 200
Kamera: Axio Cam MR
Software: Axio Vision (AxioVS40 V 4.8.2.0)
Flusskammer
Perfusor
Tischzentrifuge: Heraeus Multifuge 3S+ Centrifuge

Geräte Hersteller
Carl Zeiss, Oberkochen, Deutschland
Carl Zeiss, Oberkochen, Deutschland
Carl Zeiss, Oberkochen, Deutschland
Sonderanfertigung
kd Scientific, Holliston, Massachusetts, USA
Thermo Fisher Scientific, Waltham, Massachusetts, USA

Reagenzien

70%iges Ethanol
ADP 100 µM
Bovines Serumalbumin Fraktion V (pH 7,0)
Dulbeccos Phosphat Buffered Saline (ohne Calcium)
Collagenreagens Horm®
SKF-Lösung zum Verdünnen

Reagenzien Hersteller
Sigma-Aldrich, St. Louis, Missouri, USA
Sigma-Aldrich, St. Louis, Missouri, USA
AppliChem Panreac ITW Companies, Chicago, Illinois, USA
Sigma-Aldrich, St. Louis, Missouri, USA
Takeda Austria GmbH, Linz, Österreich
kd Scientific, Holliston, Massachusetts, USA

29
Material und Methoden

Proteine
- Car D1 10 µg/ml
 - Interfakultäres Institut für Biochemie Tübingen, Prof. Thilo Stehle
- Jam-A D1 10 µg/ml
 - Interfakultäres Institut für Biochemie Tübingen, Prof. Thilo Stehle
- Jam-A D1/D2 30 µg/ml
 - Interfakultäres Institut für Biochemie Tübingen, Prof. Thilo Stehle

Probe
- CPDA-Vollblut
 - gesunde humane Spender

2.6.2 Technik der Flusskammer

Die Methodik der Flusskammer ist in den Quellen [110], [112] dargestellt.

In einer Flusskammer können unter dynamischen Flussbedingungen, wie sie beispielsweise im arteriellen Stromgebiet herrschen, durch kontinuierliche Perfusion der Kammer in vitro ähnliche Voraussetzungen wie in vivo hergestellt werden. Dies ermöglicht die realitätsnahe Untersuchung zellulärer Interaktionen.

2.6.3 Vorbereitung der Deckgläser

Die Collagenlösung für die Beschichtung der Deckgläser, welche in diesem Versuch als stabile Phase / Matrix dient, wird unter einer Sterilbank angefertigt. Dafür wird das Collagenreagens, welches bei 4 °C im Kühlschrank gelagert wird, 1:10 mit der beiliegenden SKF-Lösung, einer Glucoselösung, verdünnt, so dass eine Konzentration von 100 µg/ml entsteht.
Jeweils 100 µl der angefertigten Collagenlösung werden nun auf jedes Deckgläschchen pipettiert und mit der Pipettenspitze gleichmäßig im zuvor markierten Bereich verteilt. Die fertig präparierten Deckgläser werden über Nacht in der feuchten Kammer bei 4 °C gelagert.

2.6.4 Durchführung des Flusskammerversuches

Die Methodik dieses Versuchs ist bereits in [105], [108], [110] beschrieben. Von den am Vortag vorbereiteten und bei 4 °C in der feuchten Kammer gelagerten Deckgläsern wird vorsichtig der Überstand abgegossen und mit der mit Collagen beschichteten Seite auf die Flusskammer gelegt. Überflüssiges PBS+ Ca\(^{2+}\) sollte mit einem Tuch abgesaugt werden, um eine sichere Lage des Deckgläschens zu gewährleisten. Die Blockung erfolgt mit 1 % BSA für eine Stunde bei Raumtemperatur.

Am Phasenkontrastmikroskop Axiovert 200 von Zeiss wird das 20er-Objektiv eingestellt.

An der Flusskammer wird ein möglichst kurzer zuführender Schlauch, um die Wartezeit bei der Perfusion zu verkürzen, und ein abführender Schlauch befestigt. Nun wird die Flusskammer mit dem eingeschliffenen Bereich nach oben hingezogen und mittels einer 10 ml-Spritze mit der Spüllösung PBS + Ca\(^{2+}\) gefüllt bis sich im zuführenden Schlauch keine Luftblasen mehr befinden und der eingeschliffene Bereich vollständig gefüllt ist. Eines der mit Collagen beschichteten Deckgläser wird mit der beschichteten Seite nach unten auf die Flusskammer gelegt. Beides zusammen wird mit dem Deckgläschchen nach unten in den Metallrahmen der Flusskammer eingefügt, so dass sich der markierte Bereich des Deckgläschens genau im ausgesparten Bereich des Metallrahmens befindet. Mit den beiden Verschlussstopfen wird beides gründlich festgeschraubt, so dass die Dichtigkeit der Kammer gewährleistet ist. Bei der Kontrol-
Material und Methoden

le des Flussbereichs werden bei Bedarf letzte Luftbläschen durch Spülen der Kammer entfernt.

Die fertig vorbereitete Flusskammer wird nun auf dem Deckel einer Petrischale mittig unter dem 20er-Objektiv des Mikroskops positioniert.

An den zuführenden Schlauch zur Flusskammer wird eine 1 ml-Spritze ange- schlossen und anschließend in den Perfusor eingespannt. Die Spritze ist mit 1 ml Vollblut sowie den jeweiligen Testsubstanzen versehen:

- ADP 100 µM
- ADP 100 µM + Jam-A D1 10 µg/ml
- ADP 100 µM + Jam-A D1/D2 30 µg/ml
- ADP 100 µM + Car D1 10 µg/ml
- Jam-A D1 10 µg/ml
- Jam-A D1/D2 30 µg/ml
- Car D1 10 µg/ml

Das Jam-A, beziehungsweise die Negativkontrolle Car D1, werden 5 min. bei Raumtemperatur im Blut vorinkubiert bevor das ADP hinzugegeben und die Perfusion gestartet wird. Das Vollblut wird über die collagenbeschichtete Oberfläche mit einer arteriellen Scherrate von 1700 s⁻¹ (12,86 ml/h) perfundiert (siehe Abbildung 8).

Abbildung 8: Schematische Darstellung der Versuchsdurchführung des Flusskammerversuchs zur Thrombenbildung unter arteriellen Flussbedingungen (eigene Darstellung)
Material und Methoden

Kurz bevor die Spritze leer gelaufen ist, wird die Perfusion gestoppt, der Schlauch abgeklemmt und gegen eine Spritze mit Spülfüssigkeit getauscht. Dies spült die Erythrozyten und die nicht gebundenen Thrombozyten aus der Flusskammer.

Sobald die Flusskammer ausreichend gespült ist und der Blick auf die Thromben frei wird, werden mindestens vier Fotos für die Dokumentation aus zufälligen optischen Bereichen der Kammer gemacht.

Abgespeichert werden die Fotos unter dem Originalformat „.zvi“ in der AxioVision-Software, damit die Größeninformationen für die spätere Auswertung erhalten bleiben.

2.7 Konfokalmikroskopie / Fluoreszenzmessung: Thrombozytenspreizung

2.7.1 Benötigte Materialien

Geräte

- Brutschrank: incu-safe
 Biochrom AG, Berlin, Deutschland
- Konfokales Mikroskop: Axioplan 2, LSM 510 Meta
 Carl Zeiss, Oberkochen, Deutschland
- pH-Meter: HI 9025 Microcomputer
 Hanna Instruments, Woonsocket, Rhode Island, USA
- Präzisionswaage
 Denver Instrument / Sartorius, Bohemia, New York
- Rührgerät mit Rührfischchen: IKA-MAG® RCT
 IKA® Labortechnik, Staufen, Deutschland
- Tischzentrifuge: Heraeus Multifuge 3S+ Centrifuge
 Thermo Fisher Scientific, Waltham, Massachusetts, USA
- ZEN lite (Analyse-Software für Bilder des Konfokalmikroskops)
 Version 2012, Carl Zeiss, Oberkochen, Deutschland
Material und Methoden

Reagenzien

<table>
<thead>
<tr>
<th>Reagenz</th>
<th>Hersteller</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 mM CaCl₂</td>
<td>Sigma-Aldrich, St. Louis, Missouri, USA</td>
</tr>
<tr>
<td>10 mM EGTA (Ethylenglyktetrasäure)</td>
<td>Sigma-Aldrich, St. Louis, Missouri, USA</td>
</tr>
<tr>
<td>1N NaOH (Natriumhydroxid)</td>
<td>Sigma-Aldrich, St. Louis, Missouri, USA</td>
</tr>
<tr>
<td>20 mM Magnesiumchlorid (MgCl₂)-Hexahydrat</td>
<td>Sigma-Aldrich, St. Louis, Missouri, USA</td>
</tr>
<tr>
<td>70%iges Ethanol</td>
<td>Sigma-Aldrich, St. Louis, Missouri, USA</td>
</tr>
<tr>
<td>Bovines Serumalbumin Faktion V (pH 7,0)</td>
<td>AppliChem Panreac ITW Companies, Chicago, Illinois, USA</td>
</tr>
<tr>
<td>Dako Fluorescent Mounting Medium</td>
<td>Dako, Glostrup, Dänemark</td>
</tr>
<tr>
<td>Dulbeccos Phosphat Buffered Saline (ohne Calcium)</td>
<td>Sigma-Aldrich, St. Louis, Missouri, USA</td>
</tr>
<tr>
<td>Collagenreagens Horm®</td>
<td>Takeda Austria GmbH, Linz, Österreich</td>
</tr>
<tr>
<td>N-2-Hydroxyethylpiperazin-N’-2-Ethansulfonsäure (HEPES)</td>
<td>Roth, Karlsruhe, Deutschland</td>
</tr>
<tr>
<td>PBS+ Ca²⁺</td>
<td>Sigma-Aldrich, St. Louis, Missouri, USA</td>
</tr>
<tr>
<td>PHEM-Puffer</td>
<td>eigene Herstellung</td>
</tr>
<tr>
<td>PIPES (Piperazin-N, N'-bis (2-ethansulfonsäure))</td>
<td>Sigma-Aldrich, St. Louis, Missouri, USA</td>
</tr>
<tr>
<td>SKF-Lösung zum Verdünnen</td>
<td>Nycomed, Opfikon, Schweiz</td>
</tr>
<tr>
<td>Waschpuffer (PBS 0,3 % Treiton + 0,1 % Tween 20)</td>
<td>Sigma-Aldrich, St. Louis, Missouri, USA</td>
</tr>
</tbody>
</table>

Proteine

<table>
<thead>
<tr>
<th>Proteine</th>
<th>Hersteller</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jam-A D1 10 µg/ml</td>
<td>Interfakultäres Institut für Biochemie Tübingen, Prof. Thilo Stehle</td>
</tr>
<tr>
<td>Jam-A D1/D2 30 µg/ml</td>
<td>Interfakultäres Institut für Biochemie Tübingen, Prof. Thilo Stehle</td>
</tr>
</tbody>
</table>

Antikörper

<table>
<thead>
<tr>
<th>Antikörper</th>
<th>Hersteller</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phallaidin-Alexa Fluor 488</td>
<td>Invitrogen / Life Technologies, Carlsbad, Kalifornien, USA</td>
</tr>
</tbody>
</table>
Material und Methoden

Probe
gewaschene Thrombozyten aus mit gesunde humane Spender
ACD-antikoaguliertem venösem Blut

2.7.2 Zusammensetzung des selbst hergestellten Puffers

PHEM-Puffer:
3 g PIPES in 20 ml H₂O lösen
NaOH hinzugeben bis die Lösung klar ist
0,124 g HEPES
0,3 g EGTA
0,19 g MgCl₂
mit NaOH (1N) auf pH 6,9 einstellen und mit H₂O auf 100 ml bringen

2.7.3 Vorbereitung

Die Methodik der Thrombozytenspreizung ist in den Quellen [110], [113] vorbe-

schrieben.

Als „spreading“ wird der Zustand aktiverer Thrombozyten bezeichnet, in dem sie ihre Form verändern, sich über einer thrombogenen Oberfläche (zum Bei-
spiel Fibrinogen, Fibronectin, Laminin) ausbreiten und an andere Thrombozyten
binden können. Dieser Vorgang kann durch einen Antikörper, der gegen einen
Teil des Zytoskeletts gerichtet ist, unter einem Konfokalmikroskop sichtbar ge-
macht werden, was eine qualitative Analyse der Thrombozytenspreizung er-
möglicht.

24 Deckgläschen werden mittels 70%-igem Ethanol gesäubert und je eines in
die Kammer einer 24-Näpfchen-Kulturplatte gelegt. Jeweils sechs der Kam-
mern werden nun mit 200 µl Jam-A D1 10 µg/ml, Jam-A D1/D2 30 µg/ml,
2%-igem Bovinem Serumalbumin (BSA) als Negativkontrolle oder HORM-
Collagen 100 µg/ml als Positivkontrolle befüllt.

In einer feuchten Kammer erfolgt eine Inkubation über Nacht bei 4 °C.
Material und Methoden

2.7.4 Durchführung für die Auswertung durch Konfokalmikroskopie

Wie ausführlich in Kapitel 2.2.4 beschrieben, werden gewaschene Thrombozyten hergestellt.

Aus der am Vortag vorbereiteten 24-Näpfchen-Kulturplatte werden alle Flüssigkeiten abpipettiert und verworfen. Es folgen drei Waschdurchgänge, in denen die Kammern jeweils mit 500 µl PBS ohne Calcium gespült, 5 min. bei Raumtemperatur inkubiert sowie am Ende entfernt werden.

Die vorbereiteten gewaschenen Thrombozyten werden mit PBS + Ca²⁺ soweit verdünnt, dass sich in 100-200 µl am Ende 10⁶ Thrombozyten befinden. Diese Suspension wird in alle Kammern gegeben und für mindestens eine Stunde bei 37 °C im Brutschrank inkubiert. Nach dieser Zeit werden die Thrombozyten entfernt und alle Kammern mit 500 µl PBS unter schwenkenden Bewegungen gewaschen.

Die Fixierung und Permeabilisierung des Sets erfolgt mit 150 µl des zuvor hergestellten PHEM-Puffers. Das Set wird für 10 min. bei 4 °C inkubiert. Es folgen zwei weitere Waschschritte mit PBS.

100 µl 1 %iges BSA, welche in jedes Nüpfchen pipettiert werden, blocken den Versuch. Das Set wird nun 30 min. bei Raumtemperatur inkubiert und anschließend erneut mit PBS gewaschen.

Zu allen Kammern werden 150 µl des Phalladin-Alexa Fluor 488, das gegen Aktin gerichtet ist, gegeben. Der Antikörper wurde zuvor 1:300 mit PBS + Ca²⁺ verdünnnt. Das Set wird nun mindestens eine Stunde im Dunkeln bei Raumtemperatur inkubiert.

Mit 500 µl eines speziellen Waschpuffers, der aus PBS 0,3 % Treiton und 0,1 % Tween 20 (Polysorbat 20) besteht, werden alle Kammern mit je 5 min. Inkubationszeit dreimal hintereinander gewaschen.

Die Deckgläsen werden auf sauberen Objektträgern mit Dako Fluorescent Mounting Medium beschichtet. In einer Mappe einsortiert, werden die fertigen Objektträger im Dunkeln bei 4 °C gelagert. Über Nacht trocknen sie. In diesem Zustand können die Objektträger etwa einen Monat aufgehoben werden.

2.8 FACS-Analyse: Apoptosenachweis mittels Annexin V und TMRE (Tetramethylrhodaminemethylester)

2.8.1 Benötigte Materialien

Geräte
- Software: BD CellQuest™ Pro Version 0.3.7 fbb ©1994-2005
- Sysmex (Zellzählautomat)
- Tischzentrifuge: Heraeus Multifuge 3S+ Centrifuge

Reagenzien
- Annexin V FITC
- FCCP 25 µg/ml (Positivkontrolle)
- Ionomycin 10 µM (Positivkontrolle)
- PBS + Ca²⁺
- TMRE (tetramethylrhodamine, ethyl ester perchlorate) 25 µM
- Trap 25 µM, TRAPtest

Proteine
- Jam-A D1 10 µg/ml

BD CellQuest™, Franklin Lakes, New Jersey, USA
Sysmex Deutschland GmbH, Norderstedt, Deutschland
Thermo Fisher Scientific, Waltham, Massachusetts, USA
ImmunoTools GmbH, Friesoythe, Deutschland
Abcam, Cambridge, England
Calbiochem, Billerica, Massachusetts, USA
Sigma-Aldrich, St. Louis, Missouri, USA
Invitrogen / Life Technologies, Carlsbad, Kalifornien, USA
Cobas® / Roche Diagnostics International AG, Rotkreuz, Schweiz
Interfakultäres Institut für Biochemie Tübingen, Prof. Thilo Stehle
Material und Methoden

Jam-A D1/D2 30 µg/ml
Interfakultäres Institut für Biochemie Tübingen, Prof. Thilo Stehle

Zellen
PRP aus CPDA-Blut
gesunde humane Spender
(10^6 Thrombozyten pro Probe)

2.8.2 Durchführung

Die Technik der Durchflusszytometrie wird in [109], [110], [114] beschrieben. Vorbeschrieben ist der Nachweis der Apoptose in [106].

Zur PRP-Gewinnung wird frisch abgenommenes CPDA-Blut (Citrat-Phosphat-Dextrose-Adenin) für 20 min. bei 209 g ohne Bremse zentrifugiert. Dabei hemmt das Citrat die Gerinnung während das Phosphat-Dextrose-Adenin den Blutzellen als Energielieferant dient und sie so am Leben erhält, so dass sie weiterhin zu Stoffwechselprozessen in der Lage sind. Am Sysmex wird die Thrombozytenzahl ermittelt. Zu jedem Versuchsansatz sollen 1 Mio. Thrombozyten hinzugefügt werden.

Die Versuchsansätze, jeweils in doppelter Ausführung, für Annexin V lauten wie folgt:

- Leerwert
- Jam-A D1 10 µg/ml
- Jam-A D1/D2 30 µg/ml
- TRAP 25 µM
- TRAP 25 µM + Jam-A D1 10 µg/ml
- TRAP 25 µM + Jam-A D1/D2 30 µg/ml
- Ionomycin 10 µM als Positivkontrolle

Den 1 h-Ansätzen werden nach 30 min. jeweils 4 µl Annexin V hinzugefügt und im Dunkeln für 30 min. inkubiert. Am Ende der Inkubationszeit werden 300 µl PBS + Ca^{2+} hinzugefügt. Die Proben werden direkt im Anschluss im FACS gemessen.
Die Versuchsansätze für TMRE entsprechen denen von Annexin V. Jedoch gibt es eine andere Positivkontrolle:

- FCCP (Carbonylzyanid 4-(trifluoromethoxy)phenylhydrazon) 25 µg/ml als Positivkontrolle

Die Versuchsdurchführung läuft analog zu der mit Annexin V. Hinzugefügt werden dieses Mal jedoch 5 µl TMRE 25 µM.

Alle gesammelten Daten der Durchflusszytometrie werden mit der Software „CellQuest“ analysiert.

2.9 Flusskammer: Interaktionen zwischen Thrombozyten und Endothelzellen

2.9.1 Benötigte Materialien

Material für die Endothelzellkultur

Geräte

- Brutschrank: incu-safe Biochrom AG, Berlin, Deutschland
- Mikroskop: Axiovert 200 Carl Zeiss, Oberkochen, Deutschland
- Pipettierhilfe für sterile Einmalpipetten, accu-jet® pro Brand, Wertheim, Deutschland
- Sterilbank Heraeus® Thermo Electron Corporation, Langenselbold, Deutschland
- Tischzentrifuge: Heraeus Multifuge Thermo Fisher Scientific, Waltham, Massachusetts, USA
- 3S+ Centrifuge

Reagenzien

- Dulbeccos Phosphat Buffered Saline Sigma-Aldrich, St. Louis, Missouri, USA
 (Phosphat-gepufferte Salzlösung)
- Gelatine Sigma-Aldrich, St. Louis, Missouri, USA
- PBS + Ca²⁺ Sigma-Aldrich, St. Louis, Missouri, USA
Material und Methoden

Puffer & Zellmedien

Medium 199 + 10 % FCS + 1 % Penicillin & Streptomycin + 1,9 ml L-Glutamin zu 500 ml Medium

PAA, Pasching, Österreich / Gibco® Life Technologies, Carlsbad, Kalifornien / Sigma-Aldrich, St. Louis, Missouri, USA

Proteine

IFNγ 20 ng/ml

Pepro Tech, Rocky Hill, New York, USA

TNFα 50 ng/ml

Tebu-bio GmbH, Offenbach, Deutschland

Trypsin (Ablösen der Zellen)

PAA, Pasching, Österreich

Proben

ECV-Zellen 304, 3 × 10⁶

Promocell, Heidelberg, Deutschland
gewaschene Plättchen aus mit ACD antikoaguliertem venösem Blut
gesunde humane Spender

Material für den Flusskammerversuch

Geräte

Lichtmikroskop: Axiovert 200

Carl Zeiss, Oberkochen, Deutschland

Axio Cam MRc5

Carl Zeiss, Oberkochen, Deutschland

Flusskammer

Sonderanfertigung

Perfusor

kd Scientific, Holliston, Massachusetts, USA

Tischzentrifuge: Heraeus Multifuge

Thermo Fisher Scientific, Waltham, Massachusetts, USA

3S+ Centrifuge

Video disk recorder

kd Scientific, Holliston, Massachusetts, USA

Reagenzien

ADP 10 µM

Sigma-Aldrich, St. Louis, Missouri, USA

Dulbeccos Phosphat Buffered Saline

Sigma-Aldrich, St. Louis, Missouri, USA
Material und Methoden

Gelatine
Sigma-Aldrich, St. Louis, Missouri, USA

PBS + Ca^{2+}
Sigma-Aldrich, St. Louis, Missouri, USA

Proteine

Jam-A D1 10 µg/ml
Interfakultäres Institut für Biochemie Tübingen, Prof. Thilo Stehle

Jam-A D1/D2 30 µg/ml
Interfakultäres Institut für Biochemie Tübingen, Prof. Thilo Stehle

Probe

PRP aus CPDA-Blut
gesunde humane Spender

2.9.2 Vorbereitung: Anlegen einer Endothelzellkultur (ECV-Zellen)

Unter sterilen Bedingungen wird als Erstes eine Zellkulturflasche T175 mit einer 0,2 %igen Gelatinebeschichtung vorbereitet. 5 ml dieser 0,2 %igen Gelatinelösung werden in die liegende Zellkulturflasche gefüllt und dort durch leichtes Schwenken gleichmäßig auf dem Boden verteilt. Die Flasche wird für 10 min. im Brutschrank bei 37 °C inkubiert, bevor die restliche Gelatine abpipettiert wird.

Die tiefgefrorenen ECV-Zellen werden in einem Falcon mit 10 ml Medium 199 suspendiert und für 5 min. bei 301 g bei Raumtemperatur mit Bremse zentrifugiert. Der Überstand wird verworfen. Die Zellen werden mittels 5 ml frischem Medium resuspendiert. In die zuvor vorbereitete rote Zellkulturflasche werden 25 ml Medium 199 gegeben bevor die 5 ml ECV-Suspension ergänzt werden.

2.9.3 Beschichtung von Deckgläsen mit ECV-Zellen

Unter der Sterilbank wird auf 12 Deckgläsen mit den Abmessungen 24 x 60 mm mit einem Fettstift der spätere Flussbereich für die Flusskammer markiert.

Aus der zwei Tage alten ECV-Zellkulturflasche wird das Nährmedium abpipettiert und die Flasche gründlich mit PBS gespült. 5 ml Trypsin führen nach einer Inkubation von 5 min. im Brutschrank bei 37 °C zu einem Ablösen der ECV-Zellen vom Gelatineuntergrund. Dies wird unter einem Mikroskop kontrolliert bevor fortgefahren wird.

Die ECV-Zellen werden mit 20 ml Medium 199 + Zusätzen aus der Kulturflasche aufgenommen und in ein 50 ml-Falcon umgefüllt. Das Falcon wird für 5 min. bei 470 g bei Raumtemperatur mit Bremse zentrifugiert. Der Überstand wird verworfen. Das Pellet wird mit 1 ml Medium resuspendiert.

In den Rand der Petrischalen wird PBS pipettiert, um ein feuchtes Milieu herzustellen. Nach zwei Tagen Inkubation im Brutschrank bei 37 °C sollten die ECV-Zellen konfluent sein. Gegebenenfalls muss zwischendurch das Medium gewechselt werden.

2.9.4 Aktivierung der ECV-Zellen durch Tumornekrosefaktor α (TNFα) 50 ng/ml und Interferon γ (IFNγ) 20 ng/ml

Unter einem Mikroskop wird kontrolliert, ob die ECV-Zellen auf den Deckgläsern konfluent sind. Ist dies der Fall, wird unter der Sterilbank das Medium entfernt und die Deckgläsern mit PBS gespült. Auf jedes Deckgläschen werden nun 100 µl des Mediums mit TNFα 50 ng/ml und IFNγ 20 ng/ml gegeben. Dabei ist auf eine gleichmäßige Bedeckung des kompletten markierten Bereiches zu achten. In den Rand der Petrischalen wird erneut PBS pipettiert, um ein feuchtes Milieu herzustellen. Anschließend werden die Petrischalen zurück in den Brutschrank mit 37 °C gestellt.
2.9.5 Durchführung des Flusskammerversuches

Von den Deckgläsen mit konfluentem Endothelzellrasen wird das Nährmedium abgekippt und mit PBS gespült.

Die Durchführung des Flusskammerversuches entspricht im Wesentlichen der ausführlichen Beschreibung in Kapitel 2.6.4. Die Versuchsmethodik ist bereits vorbeschrieben in [115].

In diesem Versuch erfolgt die Perfusion der Kammer allerdings mit PRP.

Abbildung 9 gibt einen Überblick über den Versuchsablauf.

Abbildung 9: Flusskammer: Schematische Darstellung des Versuchsablaufs zur Thrombozytenadhäsion an aktivierten Endothelzellen unter arteriellen Flussbedingungen (eigene Darstellung)

Beim Spülen der Flusskammer vor Beginn der Perfusion zum Entfernen letzter Luftbläschen ist auf einen geringen Druck zu achten, da sonst Endothelzellen vom Deckgläsen weggespült werden können.

Nach Abschluss der Perfusion und anschließender Spüling der Flusskammer, um nicht gebundene Thrombozyten zu entfernen, werden mindestens vier Fotos für die Dokumentation aus zufälligen optischen Bereichen der Kammer gemacht.
2.9.6 Flusskammerdurchläufe

Die dynamische Phase der Flusskammer, mit der die Flusskammer perfundiert wird, besteht aus 1 ml PRP (mindestens 200 x 10³/µl Thrombozyten), welches zur Hälfte mit PBS + Ca²⁺ verdünnt ist. Weiterhin befinden sich darin die entsprechenden Zusätze der Versuchsdurchläufe

- Leerwert
- Jam-A D1 10 µg/ml
- Jam-A D1/D2 30 µg/ml
- ADP 100 µM
- ADP 100 µM + Jam-A D1 10 µg/ml
- ADP 100 µM + Jam-A D1/D2 30 µg/ml

Bei den Kombinationsansätzen mit ADP und Jam-A erfolgt eine fünfminütige Vorinkubation des PRP mit Jam-A bevor das ADP hinzugefügt und die Perfusion begonnen wird.

Das PRP wird über die mit Endothelzellen beschichtete Oberfläche mit einer arteriellen Scherrate von 1700 s⁻¹ (12,86 ml/h) perfundiert.

2.10 FACS-Analyse: Nachweis von Thrombozyten-Monozyten-Aggregaten mit Hilfe von Anti-CD42b und Anti-CD14

2.10.1 Benötigte Materialien

Material für die Monozytenkultur

Geräte

Brutschrank: incu-safe
Mikroskop: Axiovert 200
Sterilbank Heraeus®
Tischzentrifuge: Heraeus Multifuge
3S+ Centrifuge

Biochrom AG, Berlin, Deutschland
Carl Zeiss, Oberkochen, Deutschland
Thermo Electron Corporation, Langenselbold, Deutschland
Thermo Fisher Scientific, Waltham, Massachusetts, USA
Material und Methoden

Reagenzien
Dulbeccos Phosphat Buffered Saline
Sigma-Aldrich, St. Louis, Missouri, USA

Puffer & Zellmedien
RPMI 1640 Medium + 10 % FCS + 1 % Penicillin & Streptomycin
Biochrom AG, Berlin, Deutschland

Proteine
Trypsin
PAA, Pasching, Österreich

Proben
isolierte Monozyten aus venösem Blut
gesunde humane Spender

Material für die FACS-Analyse

Geräte
Durchflusszytometer FACSCalibur
BD Biosciences, Franklin Lakes, New Jersey, USA

Reagenzien
Trap 25 µM, TRAPtest
Cobas® / Roche Diagnostics International AG, Rotkreuz, Schweiz

Formaldehyd (PFA)
Sigma-Aldrich, St. Louis, Missouri, USA

PBS + Ca$^{2+}$
Sigma-Aldrich, St. Louis, Missouri, USA

Proteine
Jam-A D1 mit 2,5, 5, 10 µg/ml
Interfakultäres Institut für Biochemie Tübingen, Prof. Thilo Stehle

Jam-A D1/D2 mit 7,5, 15, 30 µg/ml
Interfakultäres Institut für Biochemie Tübingen, Prof. Thilo Stehle
Material und Methoden

Antikörper
Mouse Anti-Human CD14 (FITC) BD Biosciences, Franklin Lakes, New Jersey, USA
Mouse Anti-Human CD42b (PE) Beckman Coulter, Brea, Kalifornien, USA
Isotyp-Kontrolle FITC: purified rabbit IgG: FITC AbD Serotec, Kidlington, Großbritannien
Isotyp-Kontrolle PE: purified rabbit IgG: PE AbD Serotec, Kidlington, Großbritannien

Proben
gewaschene Thrombozyten gesunde humane Spender
isolierte Monozyten aus peripherem Blut gesunde humane Spender

2.10.2 Gewinnung von Monozyten aus einer Monozytenkultur

Wie im Kapitel 2.3.3 ausführlich beschrieben, wurde am Vortag eine Monozytenkultur angelegt und über Nacht im Brutschrank bei 37 °C inkubiert.

Als Erstes wird das Monozytenmedium RPMI 1640 im Wasserbad auf 37 °C erwärmt. Unter einem Mikroskop werden die Zellkulturflaschen bezüglich der Menge der adhäsanten Monozyten kontrolliert. Wenn die Zahl ausreichend erscheint, kann die Arbeit fortgesetzt werden.

Die folgenden Arbeitsschritte werden unter der Sterilbank ausgeführt. Alle nicht adhäsanten Zellen werden abpipettiert. Nun wird die Zellkulturflasche T175 gründlich mit PBS gespült, bevor 5 ml Trypsin in jede Kulturlasche gegeben werden und eine fünfminütige Inkubation bei 37 °C im Brutschrank erfolgt. In dieser Zeit sollten sich die Monozyten vom Untergrund gelöst haben, was unter einem Mikroskop zu kontrollieren ist. Im Zweifelsfall muss die Inkubationszeit verlängert werden. War die Ablösung erfolgreich, werden je 25 ml angewärmtes Monozytenmedium in die Zellkulturflaschen gefüllt und anschließend alles in ein 50 ml-Falcon umgefüllt. Die Falcons werden für 5 min. bei 836 g bei Raumtemperatur mit Bremse zentrifugiert. Der Überstand wird verworfen. Das Pellet, welches die Monozyten darstellt, wird mit 1 ml Monozytenmedium resuspen-
diert. Die Zellzählung erfolgt in einer 1:10-Verdünnung in einem Eppendorf-Cup mit dem Sysmex sowie manuell durch ein Hämozytometer.

2.10.3 Durchführung

Vorbeschrieben ist diese Methodik in [107]. Zu Beginn werden Monozyten und gewaschene Thrombozyten gewonnen. Eine ausführliche Beschreibung dieser Arbeitsschritte ist in den Kapiteln 2.3.3 sowie 2.2.4 zu finden.

Alle Versuchsansätze für die Durchflusszytometrie werden generell in doppelter Ausfertigung hergestellt. Das Endvolumen der Ansätze beträgt 50 µl.

Alle Röhrchen werden mit 35 µl PBS + Ca²⁺ befüllt. Hinzugegeben werden 5 µl gewaschene Thrombozyten (1 Mio.) sowie 5 µl Monozyten (30.000). Dabei sollten sich mindestens zehnmal mehr Thrombozyten als Monozyten im Versuchsansatz befinden. Die oben genannte Zusammenstellung gilt als Leerwert und Ausgangspunkt für alle folgenden Versuchsansätze.

Die einfachen Versuchsansätze umfassen je zwei Ansätze mit dem alleinigen Zusatz von Trap 25 µM, Jam-A D1 mit 2,5, 5 und 10 µg/ml, Jam-A D1/D2 mit 7,5, 15 und 30 µg/ml, einer Isotypen-FITC-Kontrolle und einer Isotypen-PE-Kontrolle.

Die Kombinationsansätze bestehen aus Trap 25 µM mit Jam-A D1, beziehungsweise mit Jam-A D1/D2 jeweils mit den oben genannten Konzentrationen. Alle angegebenen Konzentrationen entsprechen den Endkonzentrationen.

Nach einer 60-minütigen Inkubation bei Raumtemperatur werden zu allen Röhrchen außer zu den Iso-Kontrollen je 5 µl Anti-CD42b für die Thrombozytenmarkierung sowie 5 µl Anti-CD14 für die Monozytenmarkierung hinzupipettiert.

Es folgt eine weitere 30-minütige Inkubation im Dunkeln. Die Fixierung des gesamten Versuchssets erfolgt mit je 300 µl PFA 0,5 %. Der Versuchsansatz ist nun bereit zur Erfassung mittels FACS.
2.11 Zellkultur: Monozyten-Makrophagen-Differenzierung

2.11.1 Benötigte Materialien

Geräte
Brutschrank: incu-safe Biochrom AG, Berlin, Deutschland
Kamera: Axio Cam MR Carl Zeiss, Oberkochen, Deutschland
Lichtmikroskop: Axiovert 200 Carl Zeiss, Oberkochen, Deutschland
PC-Programm: Axio Vision Carl Zeiss, Oberkochen, Deutschland
(AxioVS40 V 4.8.2.0)
PC-Programm zur Zellauszählung: National Institutes of Health, USA
ImageJ 1.47v
Sterilbank Heraeus® Thermo Electron Corporation, Langen-
Tischzentrifuge: Heraeus Multifuge selbold, Deutschland
3S+ Centrifuge Thermo Fisher Scientific, Waltham, Mas-

Reagenzien
Dulbeccos Phosphat Buffered Saline (ohne Calcium) Sigma-Aldrich, St. Louis, Missouri, USA
Trypsin PAA, Pasching, Österreich

Zellmedien
VLE RPMI 1640 Medium + 10 % Biochrom AG, Berlin, Deutschland
FCS + 1 % Penicillin & Streptomycin

Proteine
Jam-A D1 10 µg/ml Interfakultäres Institut für Biochemie Tü-
Jam-A D1/D2 30 µg/ml bingen, Prof. Thilo Stehle
Interfakultäres Institut für Biochemie Tü-
bingen, Prof. Thilo Stehle
Zellen
gewaschene Thrombozyten gesunde humane Spender
isolierte Monozyten aus peripherem Blut gesunde humane Spender

2.11.2 Durchführung

Im Vorfeld dieses Versuches werden Monozyten und gewaschene Thrombozyten aus humanem Vollblut gewonnen. Eine ausführliche Beschreibung dieser Arbeitsschritte ist in den Kapiteln 2.3.3 sowie 2.2.4 zu finden.

In alle Näpfchen werden etwa 3 x 10⁴ Monozyten sowie 6 x 10⁶ Thrombozyten pipettiert, so dass sich ein Verhältnis von 1:200 ergibt. Das Jam-A D1 hat eine Endkonzentration von 10 µg/ml und das Jam-A D1/D2 eine Endkonzentration von 30 µg/ml. Dieses Set wird für 10 Tage bei 37 ºC im Brutschrank inkubiert. Das Set sollte in dieser Zeit täglich kontrolliert werden und bei Verfärbung des Monozytenmediums jeweils um 200 µl Medium ergänzt werden.

2.12 Statistik

Die statistische Auswertung wurde mit der Software Prism (GraphPad Prism®, Version 4.03) unter der Verwendung der „Einfaktoriellen ANOVA“ mit der Student-Newman-Keuls-Methode vorgenommen. Angegeben werden Mittelwert
Material und Methoden

und Standardfehler (Mittelwert ± SEM; SEM bedeutet „standard error of the mean“ / Standardfehler des Mittelwertes). P < 0,05 wurde als statistisch signifikant in einem 95 % Konfidenzintervall betrachtet und in den Grafiken mit einem Stern (*) markiert. Zwei Sterne (**) entsprechen einem p < 0,01. Drei Sterne (***) entsprechen einem p < 0,001.
3 Ergebnisse

3.1 Der Effekt von Jam-A auf die Aktivierung und Degranulation von Thrombozyten

Die FACS-Analyse mit CD62P ist in Abbildung 10 dargestellt. Gemessen wurden gegen einen Leerwert ADP allein und ADP mit Jam-A D1 in Kombination.

Abbildung 10: Thrombozytäre Degranulation – durchflusszytometrische Erfassung durch Anti-CD62P bei ADP 10 µM, dessen Kombinationen mit Jam-A D1 10 µg/ml und einem Leerwert (n = 3).

Es zeigt sich ein hoch signifikanter Anstieg (***p < 0,001) der Thrombozytenaktivität gegenüber dem Leerwert (Mittelwert ± SEM) von 5,6 ± 0,3 mittlerer Fluoreszenzintensität (MFI) bei Hinzugabe von ADP auf 26,2 ± 1,5 MFI. Weiterhin kann mit hoher Signifikanz von **p < 0,01 ein Anstieg von ADP in Kombination mit Jam-A D1 auf 40,0 ± 3,8 MFI im Vergleich zu ADP allein (26,2 ± 1,5 MFI) nachgewiesen werden.
Die FACS-Analyse mit PAC-1 ist in Abbildung 11 dargestellt. Gemessen wurden ADP allein und ADP mit Jam-A D1 in Kombination gegen einen Leerwert.

Abbildung 11: Thrombozytäre Aktivierung – durchflusszytometrische Erfassung durch Anti-PAC-1 bei ADP 10 μM, dessen Kombinationen mit Jam-A D1 10 μg/ml und einem Leerwert. In der Kombination zeigt sich ein signifikanter Anstieg (n = 3).

Der Leerwert (Mittelwert ± SEM) zeigt eine geringe Grundaktivierung der Thrombozyten von 18,5 ± 0,7 MFI an. Unter der Hinzugabe von ADP steigt die thrombozytäre Aktivierung auf 93,7 ± 28,1 MFI. Ein weiterer Anstieg lässt sich bei der Kombination von ADP mit Jam-A D1 auf 162,1 ± 53,4 MFI ablesen. Dennoch kann nur im Gegensatz zum Leerwert eine Signifikanz von *p < 0,05 erreicht werden.

3.2 Der Einfluss von Jam-A in Kombination mit ADP auf die Thrombozytenaggregation

3.2.1 Aggregation unter der Hinzugabe von ADP

Dieser Versuch sollte den Einfluss von löslichem Jam-A in Kombination mit dem Thrombozyten-Agonisten ADP auf die Thrombozytenaggregation zeigen. Bestimmt wurde jeweils die Amplitude der Kurve, die die Thrombozytenaggregation in Prozent angibt.
Abbildung 12 und Abbildung 13 stellen die Thrombozytenaggregation unter Hinzugabe von ADP 10 µM sowie dessen Kombination mit Jam-A D1 10 µg/ml, Jam-A D1/D2 30 µg/ml und der Negativkontrolle, dem Car D1 10 µg/ml dar.

Abbildung 12: Thrombozytenaggregation in Prozent bei der Hinzugabe von ADP 10 µM und dessen Kombinationen mit Jam-A D1 10 µg/ml, Jam-A D1/D2 30 µg/ml und Car D1 10 µg/ml. Die Kombination von ADP und Jam-A D1 zeigt eine signifikante Steigerung der Thrombozytenaggregation von **p < 0.01 gegenüber ADP. Die Kombination von ADP und Jam-A D1/D2 verzeichnet eine weniger ausgeprägte, aber signifikante Steigerung von *p < 0.05. Die Kombination von ADP und Car D1 unterscheidet sich nicht signifikant von ADP (n = 6).

Die Kombination von ADP und Jam-A D1 zeigt eine signifikante Steigerung der Thrombozytenaggregation (Mittelwert ± SEM) auf 71,2 ± 3,9 % (**p < 0,01) gegenüber ADP 10 µM mit 47,5 ± 4,5 %. Bei der Kombination von ADP und Jam-A D1/D2 ist die Steigerung auf 63,3 ± 3,0 % weniger ausgeprägt, aber mit *p < 0,05 signifikant. Die Kombination von ADP und Car D1 unterscheidet sich mit 50,8 ± 6,6 % nicht signifikant von ADP.

Abbildung 13 stellt beispielhaft den Kurvenverlauf der Thrombozytenaggregation von ADP im Vergleich zu dessen Kombinationen mit Jam-A D1, Jam-A D1/D2 und der Negativkontrolle Car D1 dar.
Ergebnisse

Abbildung 13: Beispiel für den Kurvenverlauf der Thrombozytenaggregati-
on bei der Hinzugabe von ADP 10 µM und dessen Kombinationen mit Jam-A D1 10 µg/ml, Jam-A D1/D2 30 µg/ml und Car D1 10 µg/ml.

Es ist gut erkennbar, dass sowohl Jam-A D1 als auch Jam-A D1/D2 nach dem ersten Anstieg der Kurve einen zweiten Anstieg verzeichnen. Dabei liegt die Kurve von ADP mit Jam-A D1/D2 stets leicht unterhalb der von ADP mit Jam-A D1. Die Kurven von ADP und ADP mit Car D1 zeigen einen ebenfalls sehr ähn-

3.2.2 Aggregation ohne Hinzugabe von Agonisten

Abbildung 14 und Abbildung 15 stellen die Thrombozytenaggregation beim Leerwert sowie unter Beimischung von Jam-A D1 10 µg/ml, Jam-A D1/D2 30 µg/ml und der Negativkontrolle, dem Car D1 10 µg/ml dar.
Ergebnisse

Abbildung 14: Thrombozytenaggregation in Prozent bei der Hinzugabe von Jam-A D1 10 µg/ml, Jam-A D1/D2 30 µg/ml und Car D1 10 µg/ml. Gemessen wurde gegen einen Leerwert. Es bestehen keine signifikanten Unterschiede (n = 5).

Bezüglich der prozentualen Aggregation zeigen sich zwischen dem Leerwert (Mittelwert ± SEM) mit 6,4 ± 0,6 %, Jam-A D1 mit 5,7 ± 0,4 %, Jam-A D1/D2 mit 6,4 ± 0,4 % sowie Car D1 mit 5,2 ± 0,5 % keine signifikanten Unterschiede.

Abbildung 15: Beispiel für den Kurvenverlauf der Thrombozytenaggregation bei der Hinzugabe von Jam-A D1 10 µg/ml, Jam-A D1/D2 30 µg/ml und Car D1 10 µg/ml allein ohne Hinzugabe eines Thrombozytenaktivators. Gemessen wurde gegen einen Leerwert.

Die Aggregationskurven vom Leerwert, Jam-A D1, Jam-A D1/D2 sowie Car D1 haben einen identischen Verlauf und liegen praktisch direkt übereinander. Es sind keine Unterschiede sichtbar.
Abbildung 16 und Abbildung 17 repräsentieren die Thrombozytenaggregation beim Leerwert sowie unter Beimischung von Jam-A D1 mit 10, 5, 2, 1, 0,5 µg/ml.

Abbildung 16: Konzentrationsstudie der Thrombozytenaggregation in Prozent von Jam-A D1 mit 10, 5, 2, 1 und 0,5 µg/ml. Gemessen wurde gegen einen Leerwert (n = 1).

Die Messungen der prozentualen Thrombozytenaggregation von Jam-A D1 mit 10, 5, 2, 1, und 0,5 µg/ml liegen gemeinsam mit dem Leerwert zwischen 3 % und 5 %. Jam-A D1 10 µg/ml erreicht mit 5 % den höchsten Wert. Es sind insgesamt keine signifikanten Unterschiede bezüglich der Thrombozytenaggregation feststellbar.
Ergebnisse

Abbildung 17: Beispiel für den Kurvenverlauf der Thrombozytenaggregation bei der Hinzugabe von Jam-A D1 mit 10, 5, 2, 1 und 0,5 µg/ml.

Der beispielhafte Kurvenverlauf der Thrombozytenaggregation bei der Hinzugabe von Jam-A D1 mit 10, 5, 2, 1 und 0,5 µg/ml zeigt keine sichtbaren Unterschiede. Alle Kurven liegen praktisch direkt übereinander.

Abbildung 18 und Abbildung 19 beleuchten die Thrombozytenaggregation beim Leerwert sowie unter Hinzugabe von Jam-A D1/D2 mit 30, 25, 20, 15, 10, 5, 2, 1 und 0,5 µg/ml.
Ergebnisse

Abbildung 18: Konzentrationsstudie der Thrombozytenaggregation in Prozent von Jam-A D1/D2 mit 30, 25, 20, 15, 10, 5, 2, 1 und 0,5 µg/ml. Gemessen wurde gegen einen Leerwert (n = 1).

Jam-A D1/D2 liefert in den Konzentrationen zwischen 30 µg/ml und 0,5 µg/ml ebenso wie der Leerwert eine prozentuale Thrombozytenaggregation zwischen 7 % und 9 %. Es können keine signifikanten Unterschiede festgestellt werden.

Abbildung 19: Beispiel für den Kurvenverlauf der Thrombozytenaggregation bei Jam-A D1/D2 mit 30, 25, 20, 15, 10, 5, 2, 1 und 0,5 µg/ml.
Ergebnisse

Der beispielhafte Kurvenverlauf der Thrombozytenaggregation der Konzentrationssstudie von Jam-A D1/D2 mit 30, 25, 20, 15, 10, 5, 2, 1 sowie 0,5 µg/ml zeigt keine sichtbaren Unterschiede. Alle Kurven liegen praktisch direkt übereinander.

Zusammenfassend lässt sich bezüglich der Thrombozytenaggregation feststellen, dass sowohl Jam-A D1 10 µg/ml als auch Jam-A D1/D2 30 µg/ml in Kombination mit dem Agonisten der Thrombozytenaggregation ADP die Aggregation deutlich fördern. Dabei zeigt Jam-A D1 eine stärkere Wirkung als Jam-A D1/D2. Die Negativkontrolle Car D1 führt in Kombination mit ADP zu keiner Steigerung der Aggregation.

Allein zeigen Jam-A D1 und Jam-A D1/D2, gleich welcher Konzentration, sowie Car D1 keine aktivierende Wirkung auf die Thrombozytenaggregation. Ihre Werte entsprechen denen des Leerwertes.

3.3 Die Auswirkung von Jam-A auf die Thrombenbildung unter arteriellen Flussbedingungen

Bei diesem Experiment ging es um die Klärung der Auswirkungen von löslichem Jam-A mit beziehungsweise ohne den Einfluss des Thrombozyten-Agonisten ADP auf die Thrombenbildung unter arteriellen Flussbedingungen.

Ausgewertet wurden dabei die Fläche der sich bildenden Thromben in Quadratmikrometer (Abbildung 20) sowie die Anzahl der Thromben (Abbildung 21).

Hierzu wurden die Wirkung von ADP, in Kombination mit Jam-A D1, Jam-A D1/D2 und der Negativkontrolle, dem Protein Car D1, erfasst. Weiterhin wurden auch alle Einzelsubstanzen – ADP, Jam-A D1, Jam-A D1/D2 und Car D1 – bezüglich ihrer Wirkung auf die Thrombenbildung analysiert.
Ergebnisse

Abbildung 20: Fläche in Quadratmikrometer der sich in der Flusskammer unter arteriellen Flussbedingungen bildenden Thromben. Die Kombinationen von ADP 100 µM mit Jam-A D1 10 µg/ml und Jam-A D1/D2 30 µg/ml zeigen eine signifikante Steigerung der Größe der sich bildenden Thromben (**p < 0,01) im Gegensatz zu ADP 100 µM allein (n = 4).

Bei der Ermittlung der Thrombenfläche (Mittelwert ± SEM) zeigt sich ein deutlich signifikanter Größenzuwachs von **p < 0,01 unter der Hinzugabe von ADP und Jam-A D1 mit 3199 ± 501,2 µm² sowie ADP und Jam-A D1/D2 mit 3179 ± 400 µm² im Vergleich zu ADP allein mit 994,3 ± 183,1 µm². Die Negativkontrolle Car D1 hingegen unterscheidet sich in Kombination mit ADP mit 1235 ± 264 µm² nicht signifikant von ADP allein. Die Proteine Jam-A D1 (304 ± 22,6 µm²), Jam-A D1/D2 (375,4 ± 38,7 µm²) sowie Car D1 (328,9 ± 39,5 µm²) führen zu etwa gleichgroßen Thromben mit nur sehr geringem Standardfehler unterhalb des Levels von ADP.
Abbildung 21: Anzahl der sich in der Flusskammer unter arteriellen Flussbedingungen bildenden Thromben. Jam-A D1 10 µg/ml, Jam-A D1/D2 30 µg/ml sowie Car D1 10 µg/ml zeigen alle eine höchst signifikante Steigerung der Zahl der Thromben gegenüber ADP 100 µM beziehungsweise allen Kombinationen mit ADP (**p < 0,001) (n = 4).

Bei der Analyse der Thrombenanzahl (Mittelwert ± SEM) stellt sich heraus, dass sich ADP (24,1 ± 2,5 Thromben/Sichtfeld) und alle ADP-Kombinationen auf niedrigem Niveau nicht signifikant unterscheiden. Dahingegen führen sowohl Jam-A D1 mit 111,7 ± 4,9 Thromben/Sichtfeld, Jam-A D1/D2 mit 112,9 ± 5,1 Thromben/Sichtfeld als auch das Kontrollprotein Car D1 zu einem höchst signifikanten Anstieg der Anzahl von ***p < 0,001 der sich bildenden Thromben auf gut das Vierfache.

Die oben beschriebenen Veränderungen, die die Substanzen in der Flusskammer auf die Thrombenbildungen haben, lassen sich auch auf den repräsentativen mikroskopischen Bildern (Abbildung 22) sofort erkennen.
Abbildung 22: Repräsentative Beispielphotos für die sich in der Flusskammer unter arteriellen Flussbedingungen bildenden Thromben (Vergrößerung 200-fach) (n = 4).
Weiterhin ließ sich unter dem Mikroskop beobachten, dass die Thromben, die sich unter den Kombinationen mit ADP bildeten, ein überproportional höheres Volumen aufwiesen. Sie konnten in sehr vielen Schnittebenen erfasst werden. Die kleinen Thromben, die sich unter den Einzelsubstanzen Jam-A D1, Jam-A D1/D2 oder Car D1 bildeten, zeigten eine nur nahezu flächige, zweidimensionale Ausdehnung und waren weniger stabil. Beide Beobachtungen wurden bei diesem Versuch jedoch nicht objektiv erfasst.

3.4 Der Einfluss von Jam-A auf die Thrombozytenspreizung

In diesem Versuch sollte geklärt werden, welchen Einfluss immobilisiertes lösliches Jam-A auf die Thrombozytenspreizung besitzt. Es wurde das Spreizungsverhalten der Thrombozyten auf den Untergründen Collagen, Jam-A D1 und Jam-A D1/D2 mit Hilfe eines Konfokalmikroskops qualitativ untersucht. Repräsentative Bilder sind in Abbildung 23 dargestellt.

Ergebnisse

3.5 Die Wirkung von Jam-A auf die Phosphatidylexpression von Thrombozyten sowie das mitochondriale Membranpotenzial als Marker für Apoptosevorgänge

Der Einfluss von löslichem Jam-A auf die Apoptose und das Zellüberleben wurde in diesem Versuch mit Hilfe der Durchflusszytometrie (FACS) und den Markern Annexin V und TMRE untersucht.

3.5.1 Ergebnisse für Annexin V

Die Auswertung des Annexin V-Gehalts auf den Thrombozyten erfolgte nach einstündiger Inkubation (Abbildung 24).

Nach einstündiger Inkubation der Versuchsansätze mit Annexin V ist ein signifikanter Anstieg des Annexin V-Levels (Mittelwert ± SEM) bei TRAP auf 49 ± 3,2 MFI (**p < 0,01) und seinen Kombinationen mit Jam-A D1 auf 52,3 ± 3,8 MFI (***p < 0,001) beziehungsweise mit Jam-A D1/D2 auf 53,3 ± 2,8 MFI (***p < 0,001) gegenüber dem Leerwert mit 35,8 ± 2,1 MFI zu beobachten.
Weiterhin lässt sich ein signifikanter Anstieg (*p < 0,05) an Annexin V von TRAP mit Jam-A D1 gegenüber Jam-A D1 allein mit 42,6 ± 1,9 MFI nachweisen. Ebenso verzeichnet die Kombination von TRAP mit Jam-A D1/D2 einen signifikanten Anstieg (**p < 0,001) gegenüber Jam-A D1/D2 allein mit 34,8 ± 1 MFI.

Jam-A D1 sowie Jam-A D1/D2 allein unterscheiden sich nicht signifikant vom Leerwert. Bei Ionomycin handelt es sich um die Isotypenkontrolle.

Abbildung 25 enthält Beispiele für die Originalmesskurven der FACS-Analyse mit Annexin V nach einer Stunde Inkubationszeit.

Abbildung 25: Beispiele für Originalkurven der FACS-Analyse mit Annexin V nach einer Stunde Inkubationszeit. Deutlich sichtbar ist die Rechtsverschiebung der Kurve durch Jam-A D1 und Jam-A D1/D2 mit Zunahme der Fluoreszenz, was auf einen Anstieg der Apoptoseaktivität der Thrombozyten hinweist. (Grafik erstellt durch Dr. rer. nat. M. Chatterjee)

3.5.2 Ergebnisse für TMRE

Die Auswertung des TMRE-Gehalts der Thrombozyten erfolgte ebenfalls nach einer Stunde (Abbildung 26).
Abbildung 26: Durchflusszytometrische Erfassung des TMRE nach einer Stunde Inkubationszeit. Zu sehen ist für die Kombination von TRAP 25 µM mit Jam-A D1 10 µg/ml gegenüber TRAP allein eine deutliche Abnahme der Fluoreszenzintensität. Dies entspricht einer Zunahme der Apoptose, da in diesem Fall kein intaktes Membranpotenzial der Mitochondrien mehr vorliegt und somit das TMRE nicht mehr gebunden werden kann (n = 5).

Nach einstündiger Inkubationszeit geht ein hoch signifikanter Rückgang (*** p < 0,001) des TMRE (Mittelwert ± SEM) aus der Kombination von TRAP und Jam-A D1 mit 357,5 ± 93 MFI gegenüber dem Leerwert mit 772,8 ± 46,2 MFI beziehungsweise Jam-A D1 allein mit 747,7 ± 64,1 MFI hervor. Auch im Vergleich mit TRAP allein mit 656,8 ± 41,6 MFI besteht ein signifikanter Rückgang des TMRE von **p < 0,01.

Bei der Kombination von TRAP mit Jam-A D1/D2 mit 549,9 ± 51,5 MFI kann ebenfalls ein signifikanter Rückgang (*p < 0,05) gegenüber dem Leerwert und Jam-A D1/D2 allein mit 777,1 ± 51,3 MFI beobachtet werden. Dieser ist allerdings weniger ausgeprägt als bei TRAP mit Jam-A D1. Verglichen mit TRAP allein kann hier keine Signifikanz erreicht werden.

Abbildung 27 enthält Beispiele für die Originalmesskurven der FACS-Analyse mit TMRE nach einer Stunde Inkubationszeit.
Ergebnisse

3.6 Der Effekt von Jam-A in Kombination mit ADP auf die Thrombozytenadhäsion auf Endothelzellen

In diesem Versuch wurde mittels einer Flusskammer unter arteriellen Flussbedingungen die Thrombozyten-Adhäsion auf aktivierte Endothelzellen untersucht. Beurteilt wurden die Unterschiede zwischen Jam-A D1 beziehungsweise Jam-A D1/D2 allein gegenüber der Kombination mit dem Thrombozytenaktivator ADP. Die Ergebnisse dieses Versuches sind in Abbildung 28 dargestellt.
Ergebnisse

Abbildung 28: Anzahl der unter arteriellen Flussbedingungen auf ECV-Zellen adhärenten Thrombozyten. Gezeigt sind Jam-A D1 10 µg/ml und Jam-A D1/D2 30 µg/ml allein, sowie in Kombination mit ADP 10 µM. Es zeigt sich ein höchst signifikanter Anstieg der adhärenten Thrombozyten bei der Kombination von ADP mit Jam-A gegenüber ADP allein. Aber auch Jam-A allein verzeichnet bereits eine leichte Zunahme (n = 3).

Jam-A D1 und Jam-A D1/D2 zeigen gegenüber dem Leerwert (Mittelwert ± SEM) von 803,8 ± 45,7 Thrombozyten/Sichtfeld beide einen signifikanten Anstieg der auf Endothelzellen adhärenten Thrombozyten. Dies sind 1163 ± 67 Thrombozyten/Sichtfeld (*p < 0,05) bei Jam-A D1 und 1119 ± 51,9 Thrombozyten/Sichtfeld (**p < 0,01) bei Jam-A D1/D2.

ADP allein erreicht einen höchst signifikanten Anstieg von ***p < 0,001 mit 1462 ± 51,3 Thrombozyten/Sichtfeld gegenüber dem Leerwert. Jam-A D1 führt in Kombination mit ADP zu einer weiteren drastischen Steigerung der adhärenten Thrombozyten auf 2892 ± 102,1 Thrombozyten/Sichtfeld, was einem ***p < 0,001 entspricht. Die Kombination von Jam-A D1/D2 mit ADP bewirkt ebenfalls eine deutliche Steigerung auf 2544 ± 71,6 Thrombozyten/Sichtfeld mit ***p < 0,001. Diese ist jedoch etwas schwächer und unterscheidet sich signifikant mit ***p < 0,001 von ADP mit Jam-A D1.

In Abbildung 29 sind repräsentative Beispielbilder des Flusskammerversuchs zur Thrombozytenadhäsion an aktivierten Endothelzellen unter arteriellen Flussbedingungen dargestellt.
3.7 Der Einfluss von Jam-A in Kombination mit TRAP auf die Bildung von Thrombozyten-Monozyten-Aggregaten

Ergebnisse

Weder Jam-A D1 allein noch Jam-A D1/D2 allein kann in einer seiner Konzentrationen einen signifikanten prozentualen Anstieg der Zahl der Thrombozyten-Monozyten-Aggregate (Mittelwert ± SEM) gegenüber dem Leerwert von 23,7 ± 3,7 % erreichen. Dennoch fällt auf, dass die höchsten Konzentrationen auch die größte Anzahl von Thrombozyten-Monozyten-Aggregaten nach sich ziehen. Jam-A D1 10 µg/ml allein liegt bei 28,3 ± 1,5 %, Jam-A D1/D2 30 µg/ml bei 27,8 ± 1,6 %.

signifikante Anstiege bei der Bildung von Thrombozyten-Monozyten-Aggregaten beobachtet werden (n = 4).

Einen hoch signifikanten Zuwachs (***p < 0,001) an Thrombozyten-Monozyten-Aggregaten können die Kombinationen von TRAP und Jam-A D1 2,5 µg/ml (38,5 ± 1,6 %) und 5 µg/ml (39,3 ± 1,3 %) sowie TRAP mit Jam-A D1/D2 7,5 µg/ml (38,8 ± 1,6 %) und 15 µg/ml (42,2 ± 2,3 %) gegenüber dem Leerwert verzeichnen. TRAP in Kombination mit Jam-A D1/D2 15 µg/ml erlangt alleinig auch im Vergleich zu TRAP allein (31,8 ± 3,3 %) eine signifikante Zunahme (*p < 0,05) der Thrombozyten-Monozyten-Aggregate.

TRAP in Verbindung mit Jam-A D1 10 µg/ml (36,8 ± 1,2 %) beziehungsweise mit Jam-A D1/D2 30 µg/ml (36,4 ± 1,8 %) erzielt zwar eine erhebliche Steigerung gegenüber dem Leerwert, doch reicht es für keinen Signifikanzgrad.
3.8 Die Auswirkung von löslichem Jam-A auf die Monozyten-Makrophagen-Differenzierung

Es zeigt sich eine hohe Signifikanz von **p < 0,01 bei der Betrachtung der Makrophagenanzahl im Vergleich des unbehandelten Ansatzes (11,4 ± 2,1 Makrophagen/Sichtfeld) mit der Kombination von Jam-A D1 (28,2 ± 0,96 Makrophagen/Sichtfeld)) beziehungsweise mit Jam-A D1/D2 (28,3 ± 5,3 Makrophagen/Sichtfeld).

In Abbildung 34 sind repräsentative Beispielbilder zusammengefasst. Darauf bestätigt sich deutlich der Anstieg der Makrophagenanzahl durch Jam-A.
4 Diskussion

4.1 Die Auswirkungen von löslichem Jam-A auf die Thrombozytenfunktion und Thrombose

4.1.1 Aktivierung und Degranulation von Thrombozyten

Mittels Durchflusszytometrie [105], [108], [109], [110] und der Markierung der Thrombozyten mit CD62P konnte gezeigt werden, dass Jam-A D1 zu einer signifikanten Steigerung der thrombozytären Degranulation gegenüber dem Agonisten ADP allein führt.

PAC-1, als Marker für die Aktivierung der Thrombozyten, konnte zwar einen signifikanten Anstieg der Thrombozytenaktivierung der Kombination von Jam-A D1 und ADP nachweisen, jedoch nur gegenüber dem Leerwert und nicht gegenüber ADP allein. Es ist nichtsdestotrotz ein deutlicher Unterschied zwischen beiden Messwerten erkennbar.

Dass Jam-A einen positiven Einfluss auf die Aktivierung und Sekretion von Thrombozyten hat, berichteten auch Kornecki et al. [39], Wang et al. [40] sowie Naik et al. [38]. Kornecki et al. verzeichneten eine verstärkte Freisetzung von ATP sowie Serotonin nach Bindung des stimulierenden Jam-A-Antikörpers m.Ab.F11 an Thrombozyten [39]. Wang et al. nutzten für den Nachweis der Thrombozytenaktivierung durch den stimulierenden Antikörper m.Ab.F11 die direkte Messung des Proteinkinase C-Spiegels [40], eines „second messenger“, der eine zentrale Rolle bei der Signaltransduktion spielt. Der Anstieg der Proteinkinase C ist unverzichtbar für die sich anschließende Sekretion der Thrombozyten und ein sicheres Zeichen für die Thrombozytenaktivierung. Durch den Einsatz eines blockierenden Antikörpers gegen den Integrin αIIbβ3-Rezeptor sowie den FcγRIIA-Rezeptor konnte nachgewiesen werden, dass beide für die Thrombozytenaktivierung benötigt werden [40]. Obwohl Naik et al. eine Hyperaggregation bei Thrombozyten aus Jam-A-Knockout-Mäusen nachweisen konnten, verzeichneten sie eine gleichbleibend starke Thrombozytenaktivierung im
Gegensatz zu Thrombozyten aus Jam-A-Wildtyp-Mäusen. Sie ermittelten dafür sowohl die P-Selektin-Expression als Marker für die Thrombozytenaktivierung als auch die ATP-Freisetzung als Zeichen der Sekretion und Freisetzung von α-Granula [38].

Da Jam-A auch in vivo auf das ADP der Thrombozyten trifft, könnte es aufschlussreich sein, die Degranulation in vivo messen zu können, um zu schauen, ob sich die Ergebnisse bestätigen. Ebenso könnte eine weitere Versuchsdurchführung in vitro in Begleitung des Kontrollproteins Car D1 hilfreich sein, um etwaige unerkannte Effekte auszuschließen, die nicht auf das Jam-A D1 selbst zurückzuführen sind. Weiterhin wäre eine Analyse der Effekte des natürlich vorkommenden Jam-A D1/D2 von Nutzen.

4.1.2 Thrombozytenspreizung

Es hat sich bei der vergleichenden Untersuchung des Verhaltens von gewaschenen Thrombozyten auf den Untergründen Collagen, Jam-A D1 und Jam-A D1/D2 herausgestellt, dass alle Substanzen zu einer Konformitätsänderung der Thrombozyten im Sinne einer Thrombozytenspreizung führen. Bei Jam-A D1 sowie Jam-A D1/D2 ließ sich zusätzlich die Formierung eines Ringes am Rande der Thrombozyten beobachten.

4.1.3 Thrombozytenaggregation in Kombination mit ADP

Den positiven Effekt von Jam-A auf die Thrombozytenaggregation bestätigen auch Kornecki et al. [39], Wang et al. [40] sowie Naik et al. [38]. Kornecki et al. wiesen Thrombozytenaggregation nach, die durch membranständiges Jam-A auf Thrombozyten ausgelöst wurde, welches mit Hilfe eines aktivierenden F11-Antikörpers stimuliert wurde [39]. Wang et al. ergänzten den obigen Versuch nach eigener Durchführung durch die Hinzugabe von Antikörpern gegen den Integrin αIIbβ3-Rezeptor sowie den FcγRIIA-Rezeptor wodurch es zu keiner Aggregation mehr kam. Dies belegte einen wichtigen Beitrag beider Rezeptoren an der Thrombozytenaggregation [40]. Naik et al. setzten ebenfalls den stimulierenden Antikörper gegen membranständiges Jam-A auf Thrombozyten ein und bestätigten sowohl die durch Jam-A ausgelöste Aggregation als auch die
Inhibition durch einen Antikörper gegen den FcγRIIA-Rezeptor [38]. Babinska et al. erforschten erstmals die Wirkung der löslichen Form des Jam-A in Form eines rekombinanten Proteins. Dabei entdeckten sie eine inhibitorische Wirkung auf die Thrombozytenaggregation. Sie erklärten dies damit, dass das lösliche Jam-A die homophilen Interaktionen des membranständigen Jam-A auf Thrombozyten verhindern würde [41].

Da Jam-A die Thrombozytenaggregation mit ADP, welches während der Hämostase ganz natürlich von den Thrombozyten ausgeschüttet wird, fördert, könnte es möglicherweise klinisch interessant sein, die Interaktion von Jam-A mit ADP zum Beispiel durch einen Antagonisten zu unterbinden wie es auch weitere Autoren bereits vorgeschlagen haben [29], [37], [55]. Erste Versuche dazu waren mit „Peptid 4D“ im Mausmodell bereits erfolgreich [41].

4.1.4 Thrombenbildung unter arteriellen Flussbedingungen

In der vorliegenden Arbeit hat sich mit Hilfe der Flusskammer unter arteriellen Flussbedingungen herausgestellt, dass ADP in Kombination mit löslichem Jam-A zur Bildung von großen, stabilen, voluminösen Thromben führt. Jam-A allein hingegen zeigt keine diesbezügliche Wirkung. Wie auch beim Kontrollprotein Car D1 bildeten sich bedingt durch die Collagenbeschichtung der Deckgläschen (was eine thrombogene Oberfläche darstellt) eine große Anzahl sehr kleiner, flacher Thromben, die gleichmäßig über das gesamte Deckgläschen verteilt waren.

Es wurde für die Durchführung des Versuches die Flusskammer mit arteriellen Flussbedingungen sowie eine Deckgläsernbeschichtung mit Collagen gewählt, um die in vivo-Bedingungen möglichst realistisch darzustellen. In diesem Zusammenhang stellt die Flusskammer eine sehr etablierte Methode dar [110], [112].

Ein vergleichbarer Versuch wurde bisher noch nicht durchgeführt, doch Babinska et al. untersuchten die Adhäsion von Thrombozyten an immobilisiertes lösliches Jam-A. Eine Aktivierung der Thrombozyten durch Agonisten wie ADP oder Collagen führte zu einer verstärkten Adhäsion [37]. Naik et al. verzeichneten

4.2 Der Einfluss von löslichem Jam-A auf die Thrombozyten-interaktion mit Monozyten

4.2.1 Thrombozyten-Monozyten-Aggregate

Durchflusszytometrisch wurden die Thrombozyten-Monozyten-Aggregate in Form von CD42b-CD14-doppelt positiven Zellen im Quadranten UR erfasst. Gemessen wurden Jam-A D1 mit 2,5, 5 und 10 µg/ml, Jam-A D1/D2 mit 7,5, 15 und 30 µg/ml und TRAP 25 µM allein, sowie alle Jam-A-Kombinationen mit TRAP.

Keine der Einzelsubstanzen führte zu einem signifikanten Anstieg der Thrombozyten-Monozyten-Aggregate. Hingegen konnten die Kombinationen von TRAP mit Jam-A D1 mit 2,5 und 5 µg/ml sowie mit Jam-A D1/D2 mit 7,5 und 15 µg/ml die Aggregatbildung signifikant gegenüber dem Leerwert steigern. TRAP und Jam-A D1/D2 7,5 µg/ml erzielte sogar eine signifikante Steigerung gegenüber TRAP allein. Interessanterweise konnte weder Jam-A D1 10 µg/ml, welches in den anderen Versuchen immer sehr aktiv war, noch Jam-A D1/D2 gemeinsam mit TRAP einen signifikanten Unterschied zum Leerwert nachweisen.

Zum Nachweis von Zellaggregaten erschien die Durchflusszytometrie aufgrund der Möglichkeit der Fluoreszenzmarkierung der Zellen als gut geeignet. Da es sich um ein Standardverfahren für diesen Zweck handelt, ist von aussagekräftigen Ergebnissen auszugehen.

Zur Auswirkung von Thrombozyten-Monozyten-Aggregaten wurde in der Literatur schon zahlreich Stellung bezogen, jedoch noch nicht im Hinblick auf den

4.2.2 Monozyten-Makrophagen-Differenzierung

Durch die kombinierte Zellkultur von Monozyten, Thrombozyten sowie dem Zusatz von Jam-A D1 und Jam-A D1/D2 konnte nachgewiesen werden, dass lösliches Jam-A die Monozyten-Makrophagen-Differenzierung fördert.

Zerneckes et al. beobachteten bei Jam-A-defizienten Mäusen ebenfalls eine signifikante Reduktion der arteriosklerotischen Veränderungen durch eine geringere Makrophagenbeteiligung. Dafür machten sie auch eine Jam-A abhängige Ausschüttung des Zytokins RANTES [62], [63], [95] verantwortlich, welches einen großen Einfluss auf die Monozytenrekrutierung besitzt [52].

Ostermann et al. beschrieben eine durch lösliches Jam-A verminderte Monozytenrekrutierung auf entzündetes oder arteriosklerotisch verändertes Endothel. Dies erklärten sie durch eine Interferenz mit den heterologen Interaktionen zwischen Monozyt und Endothel. Den Einfluss des endothelialen Jam-A auf die monozytäre Rekrutierung bestätigte die Forschergruppe hingegen [54].

4.3 Der Effekt von löslichem Jam-A auf die Thrombozyteninteraktion mit Endothelzellen

Der Flusskammerversuch gehört zu einem etablierten Versuchsrepertoire und ist bereits in [110], [112], [115] vorbeschrieben. Durch den kontinuierlichen Fluss mit einer arteriellen Scherrate können die Bedingungen in vivo gut simuliert werden, was die Aussagekraft des Versuches und die Übertragbarkeit erhöht.

Bedeutung von Jam-A an der Interaktion zwischen Thrombozyten und aktiviertem Endothel spricht.

4.4 Mögliche Bedeutung des löslichen Jam-A für die Pathophysiologie der Thrombose und Inflammation

In den in dieser Arbeit vorgestellten Versuchen ließ sich in vitro der Einfluss von Jam-A auf einzelne Aspekte nachweisen, die zusammen genommen zu einer Förderung atherosklerotischer Prozesse beitragen können.

Bei in vivo-Versuchen anderer Forschergruppen konnte in arteriosklerotischen Plaques sowohl bei Mäusen als auch beim Menschen eine Überexpression von Jam-A nachgewiesen werden [29], [35], [41], was die Relevanz der in vitro-Beobachtungen bestätigt.

Babinska et al. sowie Zernecke et al. weisen darauf hin, dass Jam-A eine entscheidende Rolle bei der Entstehung von Thrombosen und Arteriosklerose zu spielen scheint [41], [52]. Eine beeinträchtigte Jam-A-Expression in Endothelzellen reduziert mononukleäre Zellrekrutierung in die Arterienwand und begrenzt die Entstehung von Arteriosklerose [53], [54]. Dem entgegengesetzt scheint lösliches Jam-A die mononukleäre Zellrekrutierung auf entzündetes oder arteriosklerotisch verändertes Endothel zu vermindern [54].

Endotheliales membranständiges Jam-A führt zu festen Verbindungen zwischen Thrombozyten und aktivierten, beziehungsweise entzündeten Endothelzellen [35], [37], [41]. Dabei zeigte sich, dass Endothelzellen, die mit oxidiertem LDL behandelt wurden, vermehrt Jam-A auf ihrer Oberfläche präsentieren [53]. Diesem Effekt konnte mit Statinen entgegengewirkt werden [34].

Es existiert jedoch seitens Naik et al. auch die gegenteilige Behauptung, dass zelleigenes Jam-A in ruhenden Thrombozyten durch Unterdrückung der Integrin α<sub>IIbβ₃—Aktivität als endogener Inhibitor für die Thrombozytenfunktion dienen und somit vor der Entstehung einer Thrombose oder Arteriosklerose schützen könnte. Jam-A-defiziente Mäuse zeigten einen prothrombotischen Phänotyp, waren grundsätzlich gesund und fertile, jedoch waren die Spermienbeweglichkeit, die
epitheliale Morphologie der Cornea sowie die FGF2-induzierte Angiogenese gestört [32].

4.5 Mögliche Konsequenzen für Diagnostik und Therapie

Aufgrund der oben geschilderten Erkenntnisse liegt die Ansicht nahe, dass Arzneimittel, die die Funktion von Jam-A antagonisieren, ein neues Mittel zur Prophylaxe und Behandlung von Arteriosklerose, Herzinfarkt und Schlaganfall sein könnten [29], [35], [37], [41], [55]. Erste in vivo-Versuche an Mäusen mit dem „Peptid 4D“ erwiesen sich als erfolgversprechend. Es zeigten sich starke und spezifische Bindungen zwischen dem „Peptid 4D“ und Jam-A, woraufhin die Thrombozytenaggregation sowie die Thrombozytenadhäsion auf entzündeten Endothelzellen blockiert wurde [41]. Daher werden nun Testungen am Menschen empfohlen.

4.6 Limitationen der dargestellten Ergebnisse

Bei den verwendeten Blutproben handelte es sich immer jeweils nur um eine kleine Stichprobe von gesunden humanen Spendern, deren Blut mit extern syn-
Diskussion

thesisiertem löslichem Jam-A versetzt wurde, um die im jeweiligen Fokus stehenden Effekte zu untersuchen. Es handelt sich in der vorliegenden Arbeit ausschließlich um in vitro-Versuche. Trotz signifikanter Ergebnisse kann daher noch nicht davon ausgegangen werden, dass die Ergebnisse verallgemeinert werden können.

Leider war es nicht möglich, in allen Versuchen das Kontrollprotein Car D1 mitzuführen, da es nicht ständig verfügbar war. Ein gewünschter Ersatz durch ein anderes Kontrollprotein zur Erhöhung der Ergebnisqualität war nicht möglich, da bei keinem anderen verfügbaren Protein ungewollte Nebenwirkungen auf die Versuchsergebnisse ausgeschlossen werden konnten.

Durch die gegebene in vitro-Situation ist zudem zu beachten, dass einige Versuchsergebnisse stark zeitsensibel sind, wie beispielsweise die Aggregationsversuche. Die Verwendbarkeit des eingesetzten Blutes limitierte sich von allein, da mit der Zeit ein starkes Nachlassen der Aggregation zu beobachten war. Ähnliches zeigte sich auch bei den Flusskammerversuchen.

Durch die vorgegebene geringe Anzahl an durchgeführten Versuchsdurchläufen kamen interindividuelle Unterschiede bei den Blutspendern zum Teil so stark zum Tragen, dass keine Signifikanz bei der Zusammenfassung der Versuchsdurchläufe erreicht werden konnte. Und dies, obwohl in den Einzelversuchen die Effekte eindeutig zu beobachten waren, wie beispielsweise bei der Bildung von Thrombozyten-Monozyten-Aggregaten.

Es lässt sich somit zusammenfassen, dass zur Sicherung der Relevanz von löslichem Jam-A in Therapie und Diagnostik in vivo-Versuche benötigt werden, um eine Übertragbarkeit der gewonnenen Ergebnisse auf den lebenden menschlichen Organismus beweisen zu können.

4.7 Schlussfolgerung

Zusammenfassend lässt sich feststellen, dass lösliches Jam-A in vitro zu einer Förderung atherogener Prozesse führt. Dazu gehören sowohl primär thrombozytäre Vorgänge wie deren Aktivierung und Degranulation, die Thrombo-
zytenaggregation, die Thrombusformation sowie die Thrombozytenspreizung als auch Interaktionen mit anderen Zellen wie Endothelzellen oder Monozyten.

Die proapoptotische Wirkung des löslichen Jam-A könnte so interpretiert werden, dass damit regenerative Prozesse unterbunden werden. Im ausgeprägten Fall könnte es zu einer Thrombozytopenie kommen. Außerdem könnte es durch die Apoptose bedingten prothrombotischen Effekte zur Ausbildung großer Thromben kommen.

Daher ist zu überlegen, ob sich das Blocken des Jam-A hemmend auf das Voranschreiten der Arteriosklerose auswirken könnte. Ähnliche Vorschläge unterbreiteten Babinska et al. [29], [37], Cavusoglu et al. [35] und Sobocka et al. [55]. Das „Peptid 4D“ stellte sich im Mausmodell dafür als möglicherweise geeigneter Kandidat heraus [41].

Es ist jedoch festzuhalten, dass in vivo keine pauschale Aussage über die Jam-A-Wirkung zu treffen ist, da sich je nach Lokalisation auf unterschiedlichen Zellarten unterschiedliche, zum Teil sogar entgegengesetzte Effekte ergeben.
5 Zusammenfassung

Die vorliegende Arbeit soll zu einem besseren Verständnis des Einflusses des löslichen Proteins Jam-A auf die Funktion der Thrombozyten führen. Dazu wurden sowohl das natürlich vorkommende Jam-A D1/D2 als auch das künstlich geschaffene Protein mit nur einer Domäne, das Jam-A D1, untersucht. Es wurde im Vorfeld vermutet, dass sich Anhaltspunkte finden würden, die bestätigen, dass Jam-A die Entstehung und das Fortschreiten der Arteriosklerose steigern würde. Damit wäre Jam-A ein möglicher Angriffspunkt zur Therapie des größten Risikofaktors kardiovaskulärer Erkrankungen, die die häufigste Todesursache in Deutschland ausmachen.

Die vorliegenden Ergebnisse wurden mittels Aggregometrie, Durchflusszytometrie, Flusskammer, Lichtmikroskopie, Konfokalmikroskopie und Zellkultur gewonnen.

In Kombination mit TRAP steigerte Jam-A die Bildung von Thrombozyten-Monozyten-Aggregaten.

Jam-A D1 verstärkte überdies die Aktivierung und Degranulation von Thrombozyten.

Förderlich auf die Apoptose wirkte sich vor allem die Kombination von TRAP und Jam-A D1 aus.
Zusammenfassung

Jam-A löste eine vergleichbare Thrombozytenspreizung aus wie die Positivkontrolle Collagen.

Zusammenfassend lässt sich feststellen, dass die Einzelergebnisse dafür sprechen, dass lösliches Jam-A die Entstehung und das Voranschreiten der Arteriosklerose unterstützt. Daher könnte es sinnvoll sein, in-vivo-Versuche anzuschließen, die die Übertragbarkeit auf den lebenden Organismus prüfen und gegebenenfalls die Wirksamkeit eines blockierenden Antikörpers gegen Jam-A zu überprüfen.
6 Danksagung

Ich danke Herrn Prof. Meinrad Gawaz für die Bereitstellung dieses interessanten Themas und das zur Verfügung stellen der Forschungseinrichtung.

Frau Dr. rer. nat. Madhumita Chatterjee bin ich für die wirklich tolle, kompetente und engagierte Betreuung sehr dankbar.

Herrn Prof. Dr. Thilo Stehle danke ich für die Bereitstellung von Jam-A D1, Jam-A D1/D2 und Car D1.

Der ehemaligen Bachelorstudentin Stefanie Müller danke ich für das Isolieren und Heranzüchten von Monozytenkulturen.

Mein weiterer Dank gilt den Mitarbeiterinnen des Labors Christina Hackelsperger, Klaudia Posavec und Lydia Laptev für die Unterstützung bei labortechnischen Fragen und die Gabe von hilfreichen Tipps sowie die angenehme Atmosphäre im Labor.

Herzlich danke ich auch meinem Mann, Tobias Schwartz, für seine IT-Unterstützung sowie meiner Mutter, Gabriele Schwanz, für die grammatikalische Prüfung meiner Dissertation.
Literaturverzeichnis

Abbildungsverzeichnis

Abbildung 1: Mechanismen der Thrombozytenaktivierung im Bereich einer Endothelläsion .. 4
Abbildung 2: Struktur einer abgewandelten Jam-A-Form mit nur einer Domäne (Jam-A D1) .. 8
Abbildung 3: Struktur des natürlich vorkommenden Moleküls Jam-A D1/D2 mit zwei Domänen ... 8
Abbildung 4: Schematische Übersicht über die Wirkung von CD62P (P-Selektin) .. 11
Abbildung 5: Schematische Übersicht zum Einsatzgebiet von PAC-1 12
Abbildung 6: Schematische Darstellung der Bildung von Thrombozyten-Monozyten-Aggregaten 18
Abbildung 7: Illustrierung des Quadranten UR (upper right) in der Durchflusszytometrie mit doppelt-positiven Zellen 18
Abbildung 8: Schematische Darstellung der Versuchs durchführung des Flusskammers ver suchs zur Thrombenbildung unter arteriellen Flussbedingungen .. 32
Abbildung 9: Flusskammer: Schematische Darstellung des Versuchsablaufs zur Thrombozytenadhäsion an aktivierten Endothelzellen unter arteriellen Flussbedingungen (eigene Darstellung) 43
Abbildung 10: Thrombozytäre Degranelulation ... 51
Abbildung 11: Thrombozytäre Aktivierung .. 52
Abbildung 12: Thrombozytenaggregation in Prozent bei der Zugabe von ADP 10 µM und dessen Kombinationen mit Jam-A D1 10 µg/ml, Jam-A D1/D2 30 µg/ml und Car D1 10 µg/ml........ 53
Abbildung 13: Beispiel für den Kurvenverlauf der Thrombozytenaggregation bei der Zugabe von ADP 10 µM und dessen Kombinationen mit Jam-A D1 10 µg/ml, Jam-A D1/D2 30 µg/ml und Car D1 10 µg/ml.................................... 54
Abbildung 14: Thrombozytenaggregation in Prozent bei der Hinzugabe von Jam-A D1 10 µg/ml, Jam-A D1/D2 30 µg/ml und Car D1 10 µg/ml .. 55
Abbildung 15: Beispiel für den Kurvenverlauf der Thrombozytenaggregation bei der Hinzugabe von Jam-A D1 10 µg/ml, Jam-A D1/D2 30 µg/ml und Car D1 10 µg/ml allein ohne Hinzugabe eines Thrombozytenaktivators........ 55
Abbildung 16: Konzentrationsstudie der Thrombozytenaggregation in Prozent von Jam-A D1 mit 10, 5, 2, 1 und 0,5 µg/ml.......... 56
Abbildung 17: Beispiel für den Kurvenverlauf der Thrombozytenaggregation bei der Hinzugabe von Jam-A D1 mit 10, 5, 2 und 1 µg/ml.. 57
Abbildung 18: Konzentrationsstudie der Thrombozytenaggregation in Prozent von Jam-A D1/D2 mit 30, 25, 20, 15, 10, 5, 2, 1 und 0,5 µg/ml... 58
Abbildung 19: Beispiel für den Kurvenverlauf der Thrombozytenaggregation bei Jam-A D1/D2 mit 30, 25, 20, 15, 10, 5, 2, 1 und 0.5 µg/ml. ... 58
Abbildung 20: Fläche in Quadratmikrometer der sich in der Flusskammer unter arteriellen Flussbedingungen bildenden Thromben. 60
Abbildung 21: Anzahl der sich in der Flusskammer unter arteriellen Flussbedingungen bildenden Thromben. 61
Abbildung 22: Repräsentative Beispielfotos für die sich in der Flusskammer unter arteriellen Flussbedingungen bildenden Thromben. .. 62
Abbildung 23: Repräsentative Beispielbilder für die Thrombozytenspreizung auf Collagen 10 µg/ml als Positivkontrolle, Jam-A D1 10 µg/ml sowie Jam-A D1/D2 30 µg/ml ... 64
Abbildung 24: Durchflusszytometrische Erfassung des Annexin V nach einer Stunde Inkubationszeit. .. 65
Abbildung 25: Beispiele für Originalkurven der FACS-Analyse mit Annexin V nach einer Stunde Inkubationszeit. 66
Abbildung 26: Durchflusszytometrische Erfassung des TMRE nach einer Stunde Inkubationszeit. ... 67
Abbildung 27: Beispiele für Originalkurven der FACS-Analyse mit TMRE nach einer Stunde Inkubationszeit. 68
Abbildung 28: Anzahl der unter arteriellen Flussbedingungen auf ECV-Zellen adhärenten Thrombozyten. 69
Abbildung 29: Repräsentative Beispielbilder zur Interaktion zwischen Thrombozyten und aktivierten Endothelzellen in 200-facher Vergrößerung. ... 70
Abbildung 30: Auswirkung von Jam-A D1 und Jam-A D1/D2 allein auf die Bildung von Thrombozyten-Monozyten-Aggregaten. 71
Abbildung 31: Auswirkung von Jam-A D1 und Jam-A D1/D2 in Kombination mit dem Thrombozytenaktivator TRAP 25 µM auf die Bildung von Thrombozyten-Monozyten-Aggregaten. ... 72
Abbildung 32: Repräsentative Punktwolkendiagramme zur Bildung von Thrombozyten-Monozyten-Aggregaten in der Durchflusszytometrie. ... 74
Abbildung 33: Monozyten-Makrophagen-Differenzierung: Anzahl der Makrophagen in der Zellkultur pro Bild. 75
Abbildung 34: Monozyten-Makrophagen-Differenzierung: Repräsentative Beispielbilder in 200-facher Vergrößerung. 76
<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Deutscher Begriff</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACD-Puffer</td>
<td>Zitronensäure-Citrat-Dextrose-Puffer</td>
</tr>
<tr>
<td>ADP</td>
<td>Adenosindiphosphat</td>
</tr>
<tr>
<td>ATP</td>
<td>Adenosintriphosphat</td>
</tr>
<tr>
<td>AK</td>
<td>Antikörper</td>
</tr>
<tr>
<td>AUC</td>
<td>„Area under the curve“</td>
</tr>
<tr>
<td>Bak</td>
<td>proapoptotisches Protein</td>
</tr>
<tr>
<td>Bax</td>
<td>Co-Faktor des Tumorsuppressor-Proteins p53, proapoptotisch</td>
</tr>
<tr>
<td>Bcl-2</td>
<td>„B-cell lymphoma 2“, Proteinfamilie, welche auf die Apoptose einwirkt, antiapoptotisch</td>
</tr>
<tr>
<td>BSA</td>
<td>Bovines Serumalbumin</td>
</tr>
<tr>
<td>CaCl₂</td>
<td>Calciumchlorid</td>
</tr>
<tr>
<td>Car</td>
<td>Coxsackie- und Adenovirusrezeptor</td>
</tr>
<tr>
<td>CD</td>
<td>„Cluster of Differentiation“</td>
</tr>
<tr>
<td>CPDA</td>
<td>Citrat-Phosphat-Dextrose-Adenin</td>
</tr>
<tr>
<td>CRP</td>
<td>„Collagen Related Peptide“</td>
</tr>
<tr>
<td>ECV-Zellen</td>
<td>Endothelzellen</td>
</tr>
<tr>
<td>EGTA</td>
<td>Ethylenglykoltetrasäure</td>
</tr>
<tr>
<td>ESAM</td>
<td>endothelselektives Adhäsionsmolekül</td>
</tr>
<tr>
<td>Fab-Fragment</td>
<td>Antigen-bindendes Fragment eines Antikörpers</td>
</tr>
<tr>
<td>FACS</td>
<td>Durchflusszytometrie, („fluorescence-activated cell sorting“)</td>
</tr>
<tr>
<td>FCCP</td>
<td>Carbonylzyanid 4-(trifluoromethoxy)phenylhydrazon</td>
</tr>
<tr>
<td>FGF2</td>
<td>„Fibroblast Growth Factor“, Fibroblasten-Wachstumsfaktor 2</td>
</tr>
<tr>
<td>FITC</td>
<td>Fluorescein-Isothiocyanat</td>
</tr>
<tr>
<td>GP</td>
<td>Glykoprotein</td>
</tr>
<tr>
<td>HCl</td>
<td>Salzsäure</td>
</tr>
<tr>
<td>HEPES</td>
<td>2-(4-(2-Hydroxyethyl)-1-piperazinyl)-ethansulfonsäure, eine Puffersubstanz</td>
</tr>
<tr>
<td>HUVEC</td>
<td>„Human Umbilical Vein Endothelial Cells“</td>
</tr>
<tr>
<td>IFNγ</td>
<td>Interferon gamma</td>
</tr>
</tbody>
</table>
Jam-A „Junctional Adhesion Molecule A“
LDL „Low Density Lipoprotein“
MFI „Mean Fluorescence Intensity“
NaOH Natriumhydroxid
PAR-1 Protease-aktivierter Rezeptor, Thrombinrezeptor
PE Phycoerythrin
PFA Formaldehyd
PIVES Piperazin-N, N'-bis (2-Ethansulfonsäure)
PPP thrombozytenarmes Plasma („platelet poor plasma“)
PRP thrombozytenreiches Plasma („platelet rich plasma“)
PSGL-1 P-Selektin-Glykoproteinligand-1
RANTES „regulated on activation, normal T cell expressed and secreted“, Synonym: CCL5
SCF Stammzellfaktor
SCS „surface connected system“
SEM „Standard Error of the Mean“ / Standardfehler des Mittelwertes
TMRE Tetramethylrhodaminethylester
TNFα Tumornekrosefaktor alpha
TRAP „Thrombin Receptor-Activating Peptide“
TXA2 Thromboxan A2
UR Quadrant „upper right“ / oben rechts bei der Durchflusszytometrie, Ort der doppelt-positiven Zellen
vWF von-Willebrand-Faktor
Erklärung zum Eigenanteil der Dissertationsschrift

Die Arbeit wurde in der Medizinischen Universitätsklinik und Poliklinik Tübingen unter Betreuung von Prof. Dr. Meinrad Gawaz durchgeführt.

Die Konzeption der Studie erfolgte in Zusammenarbeit mit Frau Dr. rer. nat. Madhumita Chatterjee, Teilprojektleiterin DGK TP-1 KFO-274, Deutsche Forschungsgemeinschaft, Klinische Forschergruppe.

Die statistische Auswertung erfolgte eigenständig nach Einweisung von Dr. rer. nat. M. Chatterjee in das gewünschte Statistikprogramm Prism.

Ich versichere, das Manuskript selbständig mit etwas Layout-Unterstützung durch meinen Mann, Tobias Schwartz, verfasst zu haben und keine weiteren als die von mir angegebenen Quellen verwendet zu haben.

Jessica Schwartz, Magstadt den 22.05.2017