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aus Ulm

2017



Gedruckt mit Genehmigung der Philosophischen Fakultät
der Eberhard Karls Universität Tübingen
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Abstract

This dissertation investigates the context-dependence of the quantity words few and
many and the interaction between their linguistic meaning and rich statistical world
knowledge. Concretely, one theory by Fernando and Kamp (1996) is explored which
makes precise predictions about how contextual information might be integrated in
the semantics. This theory assumes that the “surprise reading” of few and many
expresses that a number or a proportion is lower or higher than expected. Context-
dependent prior expectations about a relevant quantity are formalized as probability
distributions PE over cardinalities and the cardinalities which count as few or many
are determined by applying fixed, context-independent thresholds θfew and θmany

to the cumulative density mass of these distributions. In other words, few and
many comprise a stable core meaning, which explains why speakers and listeners
manage to successfully communicate with these context-dependent expressions and
how children can acquire proficiency in their use.

Fernando and Kamp’s (1996) theory is tested by couching it in a probabilistic
model of language use in which the threshold parameters are treated as latent pa-
rameters. Their values cannot be directly observed, but are estimated based on
experimental data by applying Bayesian inference. In several series of experiments
prior expectations are elicited and the production and interpretation of sentences
with few and many are measured. In particular, the cardinal and the proportional
reading of the quantity words is examined as well as the effect of overtly marking
surprise with adverbs like surprisingly or compared to constructions.

Keywords: context-dependence, few, many, prior expectations, computational mod-
eling, Bayesian inference
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Zusammenfassung

Diese Dissertation untersucht die Kontextabhängigkeit der Wörter few (‘wenige’)
und many (‘viele’) und die Interaktion zwischen deren linguistischer Bedeutung
und statistischem Weltwissen. Konkret wird eine Theorie von Fernando und Kamp
(1996) vorgestellt, die präzise Vorhersagen darüber macht, wie die Informationen
aus dem Kontexts in the Semantik integriert werden. Diese Theorie nimmt an, dass
die sogenannte “Überraschungs-Lesart” von few und many ausdrückt, dass eine
Zahl oder Proportion kleiner oder größer ist als erwartet. A priori Erwartungen im
jeweiligen Kontext werden als Wahrscheinlichkeitsverteilungen PE über natürliche
Zahlen oder Proportionen formalisiert. Welche Zahlenwerte als few oder many gel-
ten, wird bestimmt indem feste, kontextunabhängige Grenzwerte θfew and θmany auf
die kumulierten Wahrscheinlichkeiten dieser Verteilungen angewendet werden. Mit
anderen Worten, few und many enthalten eine feste Kernbedeutung, die erklären
kann, warum Sprecher und Hörer so erfolgreich mit diesen kontextabhängigen Be-
griffen kommunizieren und wie Kinder ihre Verwendung erlernen können.

Fernando und Kamps (1996) Theorie wird getestet indem sie in ein probabilistis-
ches Modell übersetzt wird, welches die Grenzwerte als latente Parameter betrachtet.
Deren Werte können nicht gemessen werden, sondern sie werden mit Bayesianischer
Inferenz basierend auf experimentellen Daten geschätzt. In mehreren Versuchsrei-
hen werden a priori Wahrscheinlichkeiten im jeweiligen Kontext und die Produktion
und Interpretation von Sätzen mit few und many gemessen. Insbesondere wird die
kardinale und die proportionale Lesart betrachtet, sowie die Modifikation von few
und many mit surprisingly (‘überraschend’) und compared to (‘im Vergleich zu’)
Konstruktionen, die die “Überraschungs-Lesart” explizit markieren.

Schlagwörter: Kontext-Abhängigkeit, few, many, a priori Erwartungen, probabilis-
tische Modelle, Bayesianische Inferenz
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100km Staffeln, Kirnbergläufe, X-Bar Trips, Hochzeiten, Promotionsfeiern, Tipp-
spiele, Weihnachtssingen, Mittagessen in Mensa und Park and many many more
fantastic events. I hope for many more to come.

1Quiz: How many uses of many can you spot on these two pages? Find the solution in the
introductory chapter!

v



vi

This dissertation profited greatly from the infrastructure and support of the SFB
833 and the Priority Program XPrag.de. I had the pleasure of becoming a member
of a great community of linguists and could participate in retreats and conference
trips to Bad Urach, Barcelona, Berlin, Göttingen, Heiligkreuztal, London, Stanford,
Utrecht and Wroclaw. In particular, I want to thank the project ProComPrag with
Fabian Dablander, Judith Degen, Michael Franke, Gerhard Jäger and Michele Herb-
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Chapter 1

Introduction

1.1 The Context-Dependence of few and many

Context-dependence is a key feature of the quantity words few and many. How

many counts as “many” and how few counts as “few” can vary extremely across

contexts. This is why “describing context-dependence can (needless to say) be a

tricky matter” (Fernando and Kamp, 1996, 64). This is exemplified in the following

sentences:

(1) a. Ben has many siblings.

b. Chris’ team scored many points in the last basketball match.

(2) a. Melanie owns few pairs of shoes.

b. Few people watched the Olympics this time.

The number of Ben’s siblings needed to make (1a) true is much lower than the

number of points that are needed to make (1b) true. Similarly, the number of shoes

Melanie needs to own for (2a) to be true is much lower than the number of viewers in

(2b). Indeed, precise truth conditions seem to be impossible to determine. For this

reason, it is a challenge for linguistic theory to explain how speakers and listeners

successfully communicate with expressions so context-dependent and vague and how

children can acquire proficiency in their use.

In this respect few and many share the properties of gradable adjectives like

short and tall or cheap and expensive, which can be equally context-dependent in

their positive form (Kennedy and McNally, 2005; von Stechow, 2009). What sets the

quantity words apart from gradable adjectives, however, is their syntactic flexibility

and broad distribution. They can occur in positions that are usually occupied by

quantifiers (few/many people like punting), adjectives (the few/many bars were

crowded), or numerals (many/few more punts participated), as pointed out by Solt

(2009, 2015). Their occurrence in positions that could be called quantificational,

predicative, attributive, and differential is exemplified below.

1
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(3) a. quantificational: Many/few people in Tübingen like to go punting on

the Neckar.

b. predicative: Josh’s friends are many/few.

c. attributive: The many/few bars in Tübingen were crowded on Satur-

day night.

d. differential: Many more/few more/many fewer than 60 punts partici-

pated in the last punting race on the Neckar.

Another contrast between quantity words and gradable adjectives is that few and

many exhibit several readings. The two most prominent readings are the cardinal

and the proportional reading.

(4) Cardinal reading

a. Joe ate many burgers.

b. Sue has many friends on Facebook.

c. Andy drank few cups of coffee last week.

d. There are few Trump supporters in California.

(5) Proportional reading

a. Many women out of the 1000 participants who tested the new contra-

ceptive method became pregnant.

b. Many of Mr. Smith’s students passed the exam.

c. Few people voted for Trump in D.C. last year.

d. Few of Mr. Smith’s students passed the exam.

The cardinal reading of few and many in (1), (2) and (4) describes a number as

small or large whereas their proportional reading in (5) expresses that a proportion

is small or large (Partee, 1989).

Both readings are equally context-dependent. The examples in (4) and (5) show

that very different numbers or proportions can count as few or many depending on

the context. (4a) is probably true if Joe ate more than four burgers, whereas Sue

in (4b) needs to have more than, say, 700 friends on Facebook to make the sentence

true. For cardinal few, (4d) can be truthfully uttered even though there are several

million Trump supporters in California, but (4c) is only true if Andy drank less

than, say, five cups of coffee last week. Similarly, the proportional reading of many

in (5a) can describe a proportion as little as five per cent as being large, but in (5b)

probably more than half of the students need to have passed the exam to count as

many. Sentence (5c), on the other hand, is true for a proportion of, say, less than

twenty per cent, but in a sentence like (5d) proportions up to sixty or seventy per

cent could count as few.
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Examples (5b) and (5d) show few and many ’s context-dependence particularly

clearly since - in adequate contexts - the same proportion can truthfully be described

as both few and many.

(6) a. Context: Mr. Smith’s class had to take a very difficult exam, which

usually only a very small percentage of participants passes. Contrary to

his expectations, 60% of his students passed the exam.

b. Statement: Many of Mr.Smith’s students passed the exam.

 More students of Mr. Smith’s than expected passed the exam.

(7) a. Context: Mr. Smith’s students had to take an exam, for which they

were very well prepared. Mr. Smith had expected all of his students to

pass, but only 60% of the students passed the exam.

b. Statement: Few of Mr.Smith’s students passed the exam.

 Fewer students of Mr. Smith’s than expected passed the exam.

In both contexts in (6a) and (7a), the proportion of students who passed the exam

is 60%. But the statement in (6b) describes this proportion as many whereas in

(7b) it is described as few.

As pointed out above, an unsolved puzzle of the field of linguistics and cogni-

tive science is how exactly context-dependent expressions receive their meaning in

context. Numerous attempts have been made at assigning few and many a fixed

semantic contribution, but, given their extreme vagueness and context-dependence,

this undertaking turns out to be very difficult. At this point, semantic accounts

tend to shift the load of determining the quantity words’ concrete denotation to

pragmatic theories and have some notion of context fix of what counts as “few” or

“many” (more on this in the discussion of the semantics of positive form adjectives

and quantity words in Section 2.2). In this dissertation we investigate an analysis of

few and many that goes beyond simply assuming that a context simply outputs few

and many ’s meaning and makes more concrete predictions about the integration of

the context.

The examples in (6) and (7) bring to light a concept that we assume to be a

key factor determining the use of the quantity words few and many : quantitative

expectations about events or cardinalities in the context. Following Clark (1991)

and Fernando and Kamp (1996), we take it that the so-called “surprise reading”

of few and many expresses that a cardinality or proportion is lower or higher than

expected in the respective context. The idea of employing these prior expectations

in the semantics of few and many seems particularly promising because it describes

their relationship with the context using the mathematical concept of probabilities.

Probabilities apply well to describe subtle differences in judgments and noisy em-

pirical data, and have turned out to be fruitful in other domains of cognitive science
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as well. Probabilistic models can formalize the underlying processes of coming to

understand the world, for example in learning concepts, acquiring language, and

grasping causal relations (Xu and Tenenbaum, 2007; Frank et al., 2009; Tenenbaum

et al., 2011). Moreover, neural nets are used in deep learning algorithms, a branch

of machine learning and artificial intelligence research, to simulate the human brain

(Schulz, 2017). But also in semantics and pragmatics the role of probabilities is at-

tracting increasing attention (see Goodman and Lassiter (2015), Franke and Jäger

(2016) and references therein), as will become evident in the course of this disserta-

tion.

One theory that makes concrete predictions about how the denotation of few and

many ’s surprise reading is determined in the context was first suggested by Clark

(1991) and formally worked out by Fernando and Kamp (1996). These authors try

to identify a stable core meaning of these expressions: a complex yet systematic

function from contexts to precise denotations. According to this approach, a sen-

tence of the form “Many As are B” is true if the actual number of n = |A ∩B | is

surprisingly high. More precisely, “Many As are B” is true if the actual cardinality

n = |A ∩B | exceeds a fixed threshold θmany on a measure of surprise, which is de-

rived from a contextually supplied measure of a priori expectations PE about likely

values of n. Even with a fixed and contextually-stable threshold for what counts as

sufficiently surprising, whether a certain n counts as surprisingly high can still vary

dramatically for numbers of siblings and points scored during a basketball match,

because we may have dramatically different prior expectations PE. This provides

an explanation for the fact that context-dependence and vagueness can be possible

despite a systematic, calculable and learnable stable core meaning.

While such a surprise-based semantics may seem like an appealing idea, it also

raises methodological concerns. It becomes exceedingly hard to test the predictions

of such an account because the precise nature of what counts as surprising is hard

to assess based on solitary introspection. In this thesis, we set out to test Clark’s

(1991) and Fernando and Kamp’s (1996) theory with modern methodology. Since

neither prior expectations nor threshold values can be estimated based on intro-

spection alone, data about the population’s statistical world knowledge are elicited

experimentally and the production and interpretation behavior of a large group of

subjects will be measured. Based on these data, we seek to demonstrate how data-

driven computational modeling can be a helpful addition to the linguist’s toolbox,

exactly where solitary introspection fails and the theory under scrutiny concerns

latent parameters that are not directly observable, like a threshold θmany on a mea-

sure of surprise. By Bayesian inference, we will estimate plausible values of latent

parameters in probabilistic models. We will show how the semantic theories we want

to test can be couched in a computational model and explore whether they make the
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correct predictions to explain the context-dependence of few and many in its various

uses. In particular, we make use of the models to investigate the cardinal and the

proportional reading. Furthermore, we examine whether speaker behavior changes

when prior expectations are overtly marked, either by the adverb surprisingly or by

a compared to construction.

As well as learning about the production and interpretation of sentences with

few and many, their semantics and in particular their compositional analysis will

be discussed in detail. Based on Romero (2015, 2017), we discuss how a sentence’s

comparison class can be derived from the available semantic and pragmatic compo-

nents.

1.2 The Structure of this Dissertation

The focus of this dissertation is on three series of experiments that were conducted

to investigate the context-dependence of few and many and to test Fernando and

Kamp’s (1996) semantic theory. Before we delve into the details, however, an

overview of previous linguistic and psychological work as well as an introduction

into the applied methodology is provided. The structure of this dissertation is as

follows.

Chapter 2 presents an overview of the many readings of few and many and dis-

cusses factors governing their availability. It presents three semantic analyses which

reflect the variety of positions the quantity words can occupy, as exemplified in (3):

few and many are treated on par with quantifiers (Romero, 2015), with adjectives

(Romero, 2017) or as degree modifiers (Solt, 2009). After a brief discussion of the

differences between few and many, the surprise-based semantics by Fernando and

Kamp (1996) is introduced, which is to be tested experimentally in the following

chapters. Before doing so, we present an attempt to derive the quantity words’ “sur-

prise reading” and comparison classes compositionally and propose an intensional

version of the positive degree operator POS. To do so, we are building on Romero’s

(2015) semantic analysis and Fernando and Kamp’s (1996) probabilistic approach

to few and many ’s “surprise reading”.

Chapter 3 follows up on the linguistic background by presenting relevant psycho-

logical studies and experiments on the context-dependence of many and few. Clark

(1991) proposes the use of probabilities to describe language. He suggests represent-

ing prior expectations as a probability distribution on which few and many impose a

threshold. An extensive series of experimental studies was produced by Moxey and

Sanford (2000) and Sanford et al. (1994), which also identifies prior expectations of

the contexts as a factor which influences the use and interpretation of few and many.

Finally, Newstead and Coventry (2000) and Coventry et al. (2005, 2010) investigate
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the influence of visual cues on the use of few and many. One of their experiments

will be replicated in Chapter 5 to investigate the role of prior expectations in a

visually displayed context.

In Chapter 4, relevant terminology and concepts of computational modeling and

Bayesian inference will be explained. In the subsequent chapters, we demonstrate

how Bayesian inference in connection with data-driven computational modeling can

be a helpful tool for learning about theories which are hard to grasp by solitary

introspection and which concern latent parameters that are not directly observable.

Chapter 5 focuses on the cardinal reading of few and many. It sets off with a

replication of Newstead and Coventry’s (2000) experiment to investigate the influ-

ence of various visual factors on the use of the quantity words. We test whether

these effects of visual presentation can be reduced to an explanation in terms of ex-

pectations. Next, we show how Fernando and Kamp’s (1996) theory can be couched

in a probabilistic, computational model. This demonstration builds on the proceed-

ings paper by Schöller and Franke (2015) and was elaborated by Schöller and Franke

(2017a). In three experiments we gather data on participants’ prior expectations and

their production and interpretation behavior of few and many in 14 contexts. This

series of experiments was also presented in Schöller and Franke (2016) and Schöller

and Franke (2017a). We demonstrate how the computational model and Bayesian

inference can be applied to test the theory, which assumes as the semantic meaning

of few and many a fixed pair of threshold values on a distribution representing prior

expectations of the context.

Chapter 6 follows up on Chapter 5 by investigating constructions which mark

the “cardinal surprise reading” of few and many overtly. We explore the role of

the adverb surprisingly in combination with the quantity words and test whether

it functions as an intensifier or just marks that surprise is expressed. Surprisingly

is compared with the intensifying adverb incredibly and a compared to construction

which openly addresses expectations. A judgment task is conducted and a variant of

the computational model from the previous chapter is used to analyze the data. This

chapter builds on a proceedings paper by Schöller and Franke (2017b). Additionally,

we present an interpretation task as a follow-up experiment and complement the

analysis of the data with further Bayesian methods.

The proportional reading of few and many is the subject of Chapter 7. An inter-

pretation experiment tests whether proportional few and many can be accounted for

by a fixed, context-independent threshold on proportions and finds that this is not

the case. The proportional reading is influenced by expectations of the context, too.

These findings go back to a proceedings paper by Schöller and Franke (2016). To

further investigate this reading, a series of experiments in both real-world and very

abstract contexts is conducted to collect information on prior expectations about
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cardinalities and production data. We find that the proportional reading can both

express that a proportion is numerically small or large or surprisingly small or large.

We propose a computational model which is an extension of the model incorporating

Fernando and Kamp’s (1996) theory from Chapter 5. This model assumes that the

contextual contribution required for the proportional reading is two-fold. The first

is an uninformed, uniform belief about proportions and the second are informed

prior expectations about likely proportions based on world knowledge. We propose

a linear combination model which incorporates the assumption that the amount of

world knowledge employed depends on its salience in the context. We test again

whether a fixed pair of threshold values on prior expectations can explain the use

of few and many.

In the final chapter, Chapter 8, the dissertation’s main findings are summarized

and we will discuss what they contribute to a theory of context-dependence. We

conclude with open questions and interesting issues for future work.
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Chapter 2

Linguistic Background of Quantity

Words

The goal of this thesis is to explain the interaction between context-dependent ex-

pressions like few and many and the context. Before we start delving into the

details of this undertaking, it is wise to get an overview of the general properties

of the object of interest. A vast body of semantic literature on few and many has

evolved which describes and explores the available readings of sentences with few

and many, their semantic properties as well as their context-dependence. Building

on the findings of previous research is inevitable because we can only learn about

the pragmatics of few and many, how they are produced and interpreted across

contexts, when we understand their semantic and syntactic properties.

Section 2.1 provides an overview of the many readings which a sentence with

few and many can express and discusses the factors which allow or prevent their

availability. The lexical semantics of few and many is discussed in Section 2.2.

We will see that there is controversy in the literature about how to classify them.

They have been claimed to share the semantic properties of quantifiers (Westerst̊ahl,

1985; Partee, 1989), parametrized determiners (Hackl, 2000; Romero, 2015) and

adjectives (Hackl, 2009; Dobrovie-Sorin, 2013) and also to be semantically empty

gradable quantifiers over degrees (Rett, 2008; Solt, 2009). To avoid terminology

which commits to one of the theories, few and many will be labeled “quantity

words” from now on (cf. Rett, 2008). Sections 2.2.1, 2.2.2 and 2.2.3 introduce

the approaches we consider to be most insightful, show how truth-conditions can

be derived compositionally in the respective semantics and discuss strengths and

weaknesses of each theory. Section 2.2.4 describes characteristics of few.

One issue that is left out in the cold by all of the competing semantic analyses

from Section 2.2 is how exactly few and many interact with the context. Fernando

and Kamp (1996) address this open issue and spell out a semantic theory which

makes the truth conditions of few and many dependent on prior expectations. Their

9
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approach is presented in Section 2.3 and will be tested experimentally and extended

in Chapters 5, 6 and 7. A related open issue of the semantics of context-dependent

expressions is how to derive their context-dependence, more concretely their com-

parison classes and the related prior expectations, compositionally. The difficulties

of this undertaking and first steps towards a solution of the problem are presented

in Section 2.4.

2.1 The Many Readings of few and many

Sentences with few and many can be ambiguous between different readings. In

this section we introduce three readings which received a lot of attention in the

linguistic literature. Section 2.1.1 discuses the cardinal and proportional reading

of few and many, Section 2.1.2 the reverse proportional reading and Section 2.1.3

presents factors which influence which of the readings is dominant.

2.1.1 The Cardinal and the Proportional Reading

The most prominent readings were famously distinguished by Partee (1989) (and

a long tradition thereafter) and labeled the cardinal and the proportional reading.

They are exemplified in (8) and (10).

(8) a. There are few nightclubs in Tübingen.

b. Joe ate many burgers at the barbecue.

The sentences in (8) exhibit cardinal readings. (8a) expresses that only a small

number of nightclubs exists in Tübingen. (8b), on the other hand, asserts that the

number of burgers eaten by Joe is considered large.

Partee (1989) suggests that many ’s cardinal reading has a meaning “like that of

the cardinal numbers, at least [xmin], with the vagueness located in the unspecified

choice of [xmin], it being part of the meaning of many that the value of [xmin] must

be one that counts as large in the given context. The cardinal reading of few is

similar except that it means at most [xmax], and [xmax] is generally understood to

be small” (Partee, 1989, 383)1. Simple truth conditions for a sentence of the form

“Few/Many A are B” under a cardinal reading are given in (9) (Partee, 1989, 383).

(9) Cardinal reading

a. Few : |A ∩B | ≤ xmax

b. Many : |A ∩B | ≥ xmin

1Partee (1989) labels both threshold values as n. For consistency with the theory proposed in
Section 2.3 we use xmax and xmin instead.
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Under a semantics as in (9a), sentence (8a) is true if the number of nightclubs in

Tübingen is smaller than xmax. (8b) is true if the number of burgers eaten by Joe

is larger than xmin.

An example of the proportional reading of few and many is given in (10).

(10) a. Few children like spinach.

b. Many of my students passed the exam.

Sentence (10a) states that the proportion of children who like spinach is low whereas

(10b) expresses that the proportion of the speaker’s students who passed the exam

is large.

Partee (1989) describes the threshold of the proportional reading “as a frac-

tion between 0 and 1 or as a percentage” (Partee, 1989, 384). Truth conditions of

“Few/Many A are B” under a proportional reading could look as in (11).

(11) Proportional reading

a. Few : |A ∩B | : |A | ≤ kmax

b. Many : |A ∩B | : |A | ≥ kmin

For few, sentence (10a) is true if the proportion of children who like spinach is not

greater than kmax. The sentence in (10b) is true if the proportion of the speaker’s

students who passed the exam is at least kmin.

Partee (1989) suggested that the cardinal and proportional reading correspond

to two lexically distinct meanings of few and many. The lexical ambiguity theory is

supported by a scenario as in (12a) and sentences (12b) and (12c), where we find a

truth-conditional difference between the readings (cf. Partee, 1989; Romero, 2015).

(12) a. Scenario: All the faculty children attended the 1980 picnic, but there

were few faculty children back then. Almost all faculty children had a

good time.

b. Few faculty children attended the 1980 faculty picnic.

c. Many (of the) faculty children had a good time.

In this scenario, (12b) expresses that the number of faculty children who were present

at the picnic is small, regardless of the fact that all children attended. The sentence

is true under a cardinal but not under a proportional reading because proportional

few “certainly never means ‘all’... The cardinal reading, on the other hand, is quite

compatible with few being all, since it asserts the number of [children] that satisfy

the predicate is small without saying anything about what proportion of the set

of [children] that is” (Partee, 1989, 391). Partee’s (1989) line of reasoning can be

made clearer when spelling out the truth conditions of the sentences in terms of

the semantics of few in (9) and (11). The cardinal reading of few predicts the
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sentence to be true if the number of kids attending is smaller than a contextually

provided threshold xmax: | faculty kids at picnic | ≤ xmax. According to the context

in (12a), these truth conditions are fulfilled, rendering the sentence true under a

cardinal reading. For the proportional reading of few, however, the proportion of

kids attending must be smaller than a certain threshold kmax. But the proportion of

attending faculty kids of all faculty kids does certainly not fulfill this condition, since

all faculty kids attended; | faculty kids at picnic | : | faculty kids | = 1. Consequently,

sentence (12b) is not true under a proportional reading of few, but true under

a cardinal reading. Partee (1989) concludes that these different truth conditions

require two distinct lexical entries. In contrast, (12c) is true under a proportional but

not under a cardinal reading because even though a large proportion of the children

had fun, their overall number was small. The truth-conditional difference between

the cardinal and the proportional reading in this scenario supports Partee’s (1989)

ambiguity hypothesis of few and many, which is advocated also by Westerst̊ahl

(1985); Cohen (2001) and Krasikova (2011). Further factors which differentiate

between a cardinal and proportional interpretation of few and many are presented

in Section 2.1.3.

2.1.2 The Reverse Proportional Reading

Besides the cardinal and proportional readings, Westerst̊ahl (1985) claims that there

is an additional reading of few and many, the reverse proportional reading.

(13) a. Scenario: 14 out of a total of 81 winners of the Nobel Prize in literature

come from Scandinavia.

b. Many Scandinavians have won the Nobel Prize in literature.

c. Paraphrase: Many winners of the Nobel Prize in literature are Scandi-

navians.

Westerst̊ahl (1985) suggests that sentence (13b) has a reading paraphrasable as

(13c). This reading is not accounted for by the proportional semantics of many in

(11b) because 14 Scandinavians are not enough to constitute a large proportion of

the roughly 15 million Scandinavians. Many ’s arguments need to be reversed to

arrive at the desired truth conditions.

The same argument has been made for few by Herburger (1997) and Cohen

(2001). Herburger (1997) makes the strong claim that for a scenario as in (14a),

both a proportional reading and a cardinal reading are ruled out, because neither

the total number of applicants nor the total number of cooks nor the total number

of cooks who applied is known.
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(14) a. Scenario: “The fellowship committee is sorting through the applications

for travel funding to Paris. Without knowing how many applicants there

are, at an early point during the review process they observe that on

average only every twentieth application was sent in by a cook, which is

a much lower percentage than they had anticipated.” (Herburger, 1997,

61f)

b. Few cooks applied.

c. Paraphrase: Few applicants were cooks.

Truth conditions which account for the reverse proportional are given below:

(15) Reverse proportional reading

a. Few : |A ∩B | : |B | ≤ kmax

b. Many : |A ∩B | : |B | ≥ kmin

This third reading is problematic for semantic theory no matter whether few

and many are classified as a quantifier or as an adjective (Romero, 2017). These

problems and a solution proposed by Romero (2015, 2017) are discussed in more

detail in Sections 2.2.1 and 2.2.2, which present the respective semantic theories.

2.1.3 Factors Influencing the Availability of the Readings

Before we move on to review the competing semantic analyses, we want to inspect

the factors which influence the availability of the readings of few and many. From

a pragmatic point of view, the context has to provide enough information about

the cardinalities which few and many are meant to describe. What marks the

proportional reading off from the cardinal reading is a difference in scale structure.

The key characteristic of the proportional reading is the existence of an upper bound

on |A | or |B |.
In terms of the semantic environment, Partee (1989) and Herburger (1997) fol-

low Milsark (1977) in relating cardinal and proportional few and many to general

properties of the distribution of determiners. “Milsark argues that some restrictions

normally posed in terms of definiteness could be better explained on the basis of

a classification of determiners as ‘weak’ or ‘strong’ ” (Partee, 1989, 387). Weak

determiners include the indefinite determiner a, unstressed some, cardinal numbers,

a few, and no and fulfill the symmetry property (see below). Strong determiners in-

clude the definite determiner the, all, most, and neither (Barwise and Cooper, 1981;

Partee, 1989). In contrast to other determiners, few and many can be attributed

to both determiner classes, depending on their reading. Cardinal few and many are

classified as weak determiners whereas proportional few and many count as strong.

Only weak determiners can occur in there-existentials.
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(16) a. weak: There are few/many/some2/no children in the garden.

b. strong: *There is/are few (of the)/many (of the)/every/each/all chil-

dren/child in the garden3.

Furthermore, when few and many are used in explicitly adjectival positions, in

which they are preceded by the definite determiner, for example, only the cardinal

reading is available (Partee, 1989). Cardinal many, for example, can be taken to

mean “large in number” and rather patterns with an adjective (compare (17b) and

(17c)). It characterizes the NP, but it does not contribute quantificational force

(Herburger, 1997).

(17) a. The few women at the party had lots of fun.

b. The many children in the park enjoyed the sunshine.

c. The numerous children in the park enjoyed the sunshine.

d. *The few/many of the guests are from Bavaria.

Strong DPs pattern with definites in that they denote a small percentage of the

NP (Herburger, 1997, 55). The denotation of strong DPs is quantificational and

not adjectival because they do not express an intersective property. Instead, they

contribute how two sets are combined with each other. This can be exemplified with

the symmetry property, as spelled out by Solt (2009, 7) (first formally, then more

intuitively).

(18) a. A determiner Det is symmetric iff for all A,B : B ∈ Det(A) iff A ∈
Det(B).

b. DetAs are B iff DetBs are A.

This property holds for weak, cardinal few and many and also for number words as

in (19a) and (19b) but not for strong, proportional few and many or for all as in

(19c) and (19d).

(19) a. Manycard women were at the party. ⇔ Manycard guests at the party were

women.

b. Five women were at the party. ⇔ Five guests at the party were women.

c. Fewprop women are great-grandmothers. < Fewprop great-grandmothers

are women.

d. All great-grandmothers are women. < All women are great-grandmothers.

Strong determiners are not symmetrical since their semantics specifies exactly how

the two sets they quantify over are related with each other. Proportional few and

many are thus classified as strong.

2the weak, unstressed version of some.
3Ungrammatical or marked sentences are marked with * or ??.
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individual level predicate stage level predicate
example Few Chinese have blue eyes. Few students were hungry for lunch.

permanent temporary
reading proportional proportional and cardinal

Table 2.1: Readings of few and many with ILPs and SLPs

In terms of the types of predicates few and many combine with, only the pro-

portional reading is available when few and many occur in the subject position of

individual level predicates (ILP), as in (20).

(20) a. Many of my friends are smokers.

b. Few Chinese have blue eyes.

(20a) exemplifies another property of proportional few and many : they can be

accompanied by the partitive construction of the which makes the subset-superset

relation overt. The subject position of a stage-level predicate (SLP) allows both

readings.

(21) Few kids were hungry for lunch because of the big breakfast they had.

Table 2.1 presents a brief overview. For a more formal characterization of weak

and strong determiners, I refer the reader to Barwise and Cooper (1981) or Partee

(1989).

Which reading is available is also influenced by information structure. Focus

influences the comparison class in relation to which few and many receive their

meaning. A comparison class is a set of objects that are similar in some way to

whatever is being discussed. “In many cases, the comparison class is just the set of

things that the participants in a conversation happen to be talking about at a given

time. In formal terms, a comparison class is a subset of the universe of discourse

which is picked out relative to a context of use” (Klein, 1980, 13). In (22a), focus on

Joe has the effect that the number of burgers consumed by Joe is compared to the

number of burgers eaten by other relevant people, like other guests at the barbecue.

In contrast, (22b) expresses that the number of burgers consumed by Joe is large

as compared to other food that he might have eaten, like hot dogs, sandwiches or

muffins.

(22) a. JOE ate many burgers at the barbecue.

b. Joe ate many BURGERS at the barbecue.

For our purposes, focus is used to mark a constituent off from relevant alternatives

(Schwarzschild, 1997). The next section introduces how focus marking is analyzed

semantically. In the compositional analyses we will treat focus marking on par

with contrastive topic marking. Partee (2010) illustrates these two concepts with
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an example and points out that not everything with “intonational prominence” is

focus.

(23) a. Where do your sons live?

b. Well, [my oldest son]CT lives in [Massachusetts]F, [my middle son]CT lives

in [Alaska]F, and [my youngest son]CT lives in [Salt Lake City, Utah]F.

The answer’s topic is ‘my sons’, and the subject of each clause is a contrastive

topic, because different answers are necessary for different sons. If they all lived in

Massachusetts, the answer could begin with ‘My sons live...’, using a simple topic

phrase with no intonational prominence (Partee, 2010, 4).

Moreover, Herburger (1997) claims that the reverse proportional reading is only

available if the quantity word’s first argument is focused. She calls these readings

”focus-affected” because she claims that in cases like (24) it is focus rather than syn-

tax that determines the order in which the quantity word applied to its arguments.

(24) a. Many SCANDINAVIANS have won the Nobel Prize in literature.

b. Few COOKS applied.

Finally, another linguistic construction that influences the readings of few and

many and especially their comparison class are frame setters like for - and compared

to-phrases. These phrases are called frame setters because they “set the frame”

for the matrix clause and contribute its comparison class. They denote comparison

classes which ”affect the standard involved in the semantics of positive forms of

gradable adjectives” (Bylinina, 2014, 143) and they presuppose that the subject of

the gradable predicate (a gradable adjective or a quantity word) is included in the

comparison class set (Kennedy, 2007; Schwarz, 2010). 4

(25) a. There are few cars in the car park for a Monday evening.

b. Compared to the other kids, Jimmy ate many muffins.

c. *For a small dog, our cat Billy catches many mice.

The for -phrase in (25a) evokes a comparison between the number of cars on today’s

Monday evening and the number of cars typically present on Monday evenings. Fur-

thermore, it has the effect that the sentence can be uttered meaningfully only on

a Monday evening, otherwise we run into a presupposition failure. Similarly, (25b)

triggers a comparison with a group of relevant kids. (25c) exemplifies a presupposi-

tion failure because the cat Billy is not a member of the comparison class consisting

of small dogs. In the experiments presented in Chapters 5, 6 and 7, frame setters

will be used to make sure that participants produce and interpret the experimental

4A gradable adjective is an adjective that occurs in comparison constructions (for example tall,
taller, tallest). It is semantically treated as making reference to degrees on a scale of a particular
dimension like height, weight, beauty or cardinality (cf. Beck, 2011).
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test sentences with respect to the same comparison class. In particular Chapter 6

will compare for - and compared to-phrases.

2.2 The Semantics of few and many

As already pointed out in the introduction to this chapter, there is controversy about

how to classify few and many semantically. There are by now three prominent

semantic treatments. Few and many have been attributed to share the semantic

properties of a

• quantifier (Barwise and Cooper, 1981; Westerst̊ahl, 1985; Partee, 1989; Her-

burger, 1997; Heim and Kratzer, 1998; Hackl, 2000; Romero, 2015)

• adjective (Partee, 1989; Hackl, 2009; Krasikova, 2011; Dobrovie-Sorin, 2013;

Romero, 2017)

• semantically empty degree quantifier (Rett, 2008, 2016; Solt, 2009, 2015)

These accounts and their characteristic features will be summarized in the following

sections. We will show that each of them generates the desired truth conditions, but

comes with different problems, as pointed out above. Furthermore, we will see that

none of them commits to how the standard of comparison or threshold is determined

in relation to the context. To anticipate the remainder of this chapter, Romero’s

(2015) quantifier semantic account in Section 2.2.1 (which is formally very similar

in spirit to Romero’s (2017) adjectival semantics in Section 2.2.2) will be picked up

again in Section 2.4 in which we risk a first attempt to systematically derive prior

expectations and to formalize their interaction with the sentence’s comparison class.

Solt’s (2009) is introduced to present an account which can uniformly account for the

quantity words’ many occurrences and positions, as pointed out in the introduction

of this thesis and repeated in Section 2.2.3.

What all of the competing analyses share, however, is the essential meaning

contribution: few expresses a small cardinality, many a large cardinality. A degree-

semantic framework has been developed to formalize the intuition that cardinalities

come about by counting, can be compared with each other and therefore be ordered

on a scale. In what Beck (2011) calls the “standard theory” of comparison construc-

tions, gradable adjectives like tall are taken to relate individuals to degrees on a

scale (more on scales below).

(26) JtallK: x is tall to degree d

The simplified semantics of tall in (26) then expresses that an individual has the

property of reaching a certain degree on a height scale. This degree can be compared
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to other degrees on the scale, for example with the comparative operator -er (Beck,

2011, 5).

(27) a. Andy is taller than Anthea.

b. J-erK: the degree matrix clause > the degree than-clause

 Andy’s height > Anthea’s height

The degree semantics literature assumes that not only comparatives are com-

posed of a gradable predicate and a comparison operator -er, but that also other

comparison constructions are made up of a gradable predicate and a comparison

operator (von Stechow, 1984; Heim, 1999; Beck, 2011). For example, superlatives

decompose into a gradable predicate and the superlative operator -est and equatives

come with the equative operator as...as. Interestingly, these comparison operators

do not always have to be overt. The frequently used positive form of the adjective

does not immediately suggest that a comparison is made at all.

(28) a. Andy is tall.

b. Michael’s friends are many.

Nevertheless, even in cases as in (28), the height described by tall or the cardinality

described by many are related to other relevant degrees in the context and compared

to what counts as normal in this case. For example, (28a) is interpreted to express

that Andy’s height is taller than the average height and (28b) expresses that Michael

has more friends than other people. This comparison to a “standard value” on

the scale is assumed to be contributed by a null morpheme POS which binds the

gradable predicate’s degree argument and makes reference to a neutral interval on

the respective scale (von Stechow, 1984). A scale S, in turn, is a triplet 〈D,<,DIM〉
consisting of a set of degrees D, an ordering relation on that set < and a dimension

of measurement DIM . Dimensions include cardinality, length, height, duration,

volume, and weight, for example (Solt, 2015, 231f).

(29) JPOS K = λC〈dt, t〉.λD〈dt, t〉.L〈〈dt, t〉, 〈d, t〉〉(C) ⊆ D

The POS operator is a quantifier over degrees. The variant used here (cf. Romero,

2015) takes as its first argument a set of sets of degrees C which corresponds to

the comparison class. The comparison class contains the sets of degrees of fo-

cus/contrastive topic alternatives which are evaluated by the ∼ operator (more

below). These alternatives are also called the focus/contrastive topic associates of

POS. For our purposes it does not make a difference which kind of marking the

constituent carries (see Romero, 2015). C is input to the function L which returns

the so-called neutral interval Ns = L(JCK) of the comparison class. For a sentence

as in (28a) and focus on Andy, the comparison class contains the heights of other

relevant people, say men in Germany. The neutral interval returned by L would
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then contain those degrees on the height scale which count as neither tall nor short.

Andy’s height formalized as a set of degrees as well (not as a single degree); it is the

set of all degrees below his actual, maximal height. The idea is illustrated in the

example below.

(30) . 1.93m (Andy’s height)

◦−−−−−−−−−−−−−|−−−−−−−|︸ ︷︷ ︸−−−−−•
. Ns

◦−−−−−−−−−−−−−
︷ ︸︸ ︷
|−−−−−−−|−−−−−−−−−−−−−−→ HEIGHT

. 1.70m 1.85m

The relevant scale is the height scale and the corresponding degrees are indicated

in meters and centimeters. The height scale is illustrated by the bottom line in the

graphic. Let’s assume for the sake of the example that the neutral interval of the

heights of adult men in Germany is [1.70, 1.85]. Sentence (28a) is mapped to true if

Andy’s height is greater than those heights which count as neutral (or which are the

endpoints of the interval), that means when the neutral interval is fully contained

in the interval of Andy’s heights (the top line). In other words, Andy can be called

“tall” in this context if he is at least 1.86m tall. Since Andy’s height is 1.93m, the

sentence can be truthfully uttered in this context. See Beck (2011), von Stechow

(2009), Kennedy (2007) and references therein for a more thorough introduction

into degree semantics and the at times elusive semantics of the positive operator.

The decomposition of the positive form of gradable adjectives into their stem

and the degree operator POS is transferred to few and many (Solt, 2009; Hackl,

2009; Romero, 2015, 2017):

(31) a. few = few + POS

b. many = many + POS

POS is responsible for the quantity words’ interaction with the context and will be

central to the compositional analysis in all three semantic theories of few and many.

We mentioned above that few and many are evaluated relative to a comparison

class. The comparison class contains the sets of degrees of focus/contrastive topic

alternatives which are evaluated by the ∼ operator. This idea goes back to the

theory of focus by Rooth (1992) and neatly summarized by Beck (2006). In the

two examples below, focus is used to mark contrast. Contrastive focus can occur in

a discourse in which one speaker objects the other. Semantically, focus introduces

alternatives. We will assume the same for constituent marked as a contrastive topic.

(32) a. Hayley invited Ross.

b. RYANF invited Ross.

(33) a. Ryan invited Harriet.
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b. Ryan invited ROSSF .

Sentences (32b) and (33b) are associated with the structures in (34a) and (34b).

According to Rooth (1992), an operator ∼ (the squiggle operator) and a variable Ci

adjoin to the structure labeled α. Ci is called the focus anaphor and will eventually

contain the relevant focus alternatives. In the following sections, this variable will

be the semantic representation of the sentence’s comparison class.

(34) a. [[α [F RYAN] invited ROSS] ∼C1]

b. [[α Ryan invited [FROSS]] ∼C2]

Rooth (1992) associates two different semantic objects with α, its ordinary semantic

value JαK0 and its focus semantic values JαKf . Note that the sentences (32b) and

(33b) have the same ordinary semantic value, but differ in their focus semantic value,

due to the different focus marking (Beck, 2006).

(35) a. [[α [F RYAN] invited Ross] ∼C1].

b.

JαK0 = λw. Ryan invited Ross in w.

= that Ryan invited Ross.

JαKf = λw. x invited Ross in w | x ∈ D

= {that Ryan invited Ross, that Hayley invited Ross, ...}

(36) a. [[α Ryan invited [FROSS]] ∼C2].

b.

JαK0 = λw. Ryan invited Ross in w.

= that Ryan invited Ross.

JαKf = λw. Ryan invited y in w | y ∈ D

= {that Ryan invited Ross, that Ryan invited Harriet, ...}

The ∼ operator introduces a presupposition requiring that the context provides

at least one proper focus alternative to the proposition that is asserted, ie. an

element differing from the ordinary semantic value of the focused phrase with respect

to the accented item (Umbach, 2001). The ∼ operator “does not determine the

interpretation of the variable Ci uniquely, but it does constrain it. It basically says

that whenever you have a sentence with something focused in it, its presupposed

that there is some relevant set of alternatives in the context” (Partee, 2010).

(37) J [α ∼ Ci]Kg0 is only defined if JCiK ⊆ JαKgf & JCiK 6= JαKg0.

If defined, J [α ∼ Ci]Kg0 = JαKg0

For the examples in (34a) and (34b), C1 and C2 differ in whether the relevant

alternatives are inviters or invitees.

In the following three sections, three standard semantic treatments of few and

many are introduced under the decomposition assumption in (31). The lexical
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entries as well as positive and negative features of each account are summarized

in Table 2.2. We assume the compositional rules of Functional Application (FA),

Predicate Modification (PM) and Predicate Abstraction (PA) by Heim and Kratzer

(1998). Where additional rules are necessary, we point them out explicitly. Sec-

tion 2.2.4 will briefly review previous work on the negativity of few. Section 2.3

introduces the surprise-based semantics of Fernando and Kamp (1996), which makes

a concrete proposal of how to calculate the neutral interval across contexts. The

challenge of a formal integration of prior expectations and comparison classes into

the compositional analysis is subject to Section 2.4.

2.2.1 Quantifier Semantics

The quantifier account is probably the most common analysis of few and many.

The quantificational analysis in its most standard form goes back to the Generalized

Quantifier Theory by Barwise and Cooper (1981). Few and many are treated as

“quantifying determiners” that express relationships between two sets of individuals

(type 〈et, 〈et, t〉〉), similar to some, lots of and all. They specify “that the cardinality

of their intersection exceeds (many) or falls short of (few) some standard determined

by the context” (Solt, 2015, 225). Following Partee (1989) as in the previous section,

the semantics of few and many look as in (38) and (39).

(38) Cardinal reading

a. JfewK〈et, 〈et, t〉〉 = λP〈e, t〉.λQ〈e, t〉. |P ∩Q | ≤ xmax

b. JmanyK〈et, 〈et, t〉〉 = λP〈e, t〉.λQ〈e, t〉. |P ∩Q | ≥ xmin

(39) Proportional reading

a. JfewK〈et, 〈et, t〉〉 = λP〈e, t〉.λQ〈e, t〉. |P ∩Q | : |P | ≤ kmax

b. JmanyK〈et, 〈et, t〉〉 = λP〈e, t〉.λQ〈e, t〉. |P ∩Q | : |P | ≥ kmin

In the previous section, we already pointed out that there is a third attested

reading of few and many. The “reverse proportional reading” reverses the order of

the arguments of the quantity words.

(40) Reverse proportional reading

a. JfewK〈et, 〈et, t〉〉 = λP〈e, t〉.λQ〈e, t〉. |P ∩Q | : |Q | ≤ kmax

b. JmanyK〈et, 〈et, t〉〉 = λP〈e, t〉.λQ〈e, t〉. |P ∩Q | : |Q | ≥ kmin

The reverse proportional reading poses a problem for semantic theory because

it violates a universal property that the Generalized Quantifier Theory ascribes to

all quantifiers: reverse proportional few and many with a semantics as in (40) are

not conservative. Conservativity is defined in (2.2.1) (Barwise and Cooper, 1981;

Keenan and Stavi, 1986).
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(41) A function f ∈ D〈et, 〈et, t〉〉 is conservative iff for any P and Q ∈ D〈e, t〉:
f(P )(Q) = 1 iff f(P )(P ∩Q) = 1

For example, some is a conservative quantifier because “some books are new” iff

“some books are new books”. This does not hold for reverse proportional few and

many as exemplified in (14) and (13). It is not the case that “Few cooks applied” in

(14) (in the sense that few applicants are cooks) iff “Few cooks are applying cooks”.

Equally, it is not true that ”Many Scandinavians won a Nobel Prize in Literature”

in (13) (with the reverse proportional reading that many winners of a Nobel Prize

in literature are Scandinavian) iff ”Many Scandinavians are Nobel Prize winning

Scandinavians”.

A solution for the problem is brought forward by Romero (2015), who builds

on Hackl (2000), Heim (1999) and Schwarz (2010). She analyzes few and many as

parametrized determiners (type 〈d, 〈et, 〈et, t〉〉〉), which have a degree argument and

decompose into the stem and POS (as illustrated in example (44) below). This

semantics allows her to derive the truth conditions of all three readings in a compo-

sitional way while preserving conservativity. There is only one proportional lexical

entry and the difference between the regular proportional and the reverse propor-

tional reading is due to a scopally-mobile POS which can associate with material ex-

ternal or internal to the original host NP (cf. Heim, 1999; Schwarz, 2010). Romero’s

(2015) lexical entries for few and many are defined as follows:

(42) Romero’s (2015) cardinal reading

a. JfewcardK〈d, 〈et, 〈et, t〉〉〉 = λdd.λP〈e, t〉.λQ〈e, t〉. |P ∩Q | ≤ d

b. JmanycardK〈d, 〈et, 〈et, t〉〉〉 = λdd.λP〈e, t〉.λQ〈e, t〉. |P ∩Q | ≥ d

(43) Romero’s (2015) proportional reading

a. JfewpropK〈d, 〈et, 〈et, t〉〉〉 = λdd.λP〈e, t〉.λQ〈e, t〉. |P ∩Q | : |P | ≤ d

b. JmanypropK〈d, 〈et, 〈et, t〉〉〉 = λdd.λP〈e, t〉.λQ〈e, t〉. |P ∩Q | : |P | ≥ d

The relationship between many and the context is established by having the

positive operator POS bind many ’s degree argument. We assume here that the

associate of POS bears focal stress or functions as a contrastive topic. POS can

associate with a constituent internal or external to the host NP, thereby deriving the

different readings (cf. Romero, 2015). An external associate results in the regular

reading, an internal associate in the reverse reading.

To demonstrate these semantics at work, a compositional analysis of each reading

is carried out with the semantics of many from above. An LF for each sentence as

well as the most important steps in the calculation are provided. First, the analysis

of the cardinal reading of many is demonstrated. Too keep the analysis concise,

only the most important composition steps are spelled out. The respective nodes
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are marked with a circled number in the tree and their denotations are provided in

the list underneath the tree.

Focus/topic-marking on Joe results in a comparison between Joe and other rel-

evant people (other guests at the barbecue, for example). Plural individuals are

marked with by the * operator (see Hackl, 2001). The variable’s domain is only given

explicitly where considered necessary (for example, λx. ... instead of λx ∈ De. ...)

(44) JoeF/CT ate many burgers.

〈t〉 5

POS

〈〈dt, t〉, 〈dt, t〉〉
C

〈dt, t〉

〈d, t〉 4

∼C 〈d, t〉 3

λd1 〈t〉

〈et, t〉 2

many

〈d, 〈et, 〈et, t〉〉〉
d1

〈d〉

burgers

〈e, t〉

〈e, t〉 1

λt2

JoeF/CT

〈e〉 ate

〈e, 〈e, t〉〉
t2

〈e〉

(45) a. 1 = λx. Joe ate x

b. JmanycardK = λdd.λP〈e, t〉.λQ〈e, t〉. |P ∩Q | ≥ d

c. 2 = λQ〈e, t〉. | {x : *burgers(x)} ∩Q | ≥ d1

d. 3 = λd. | {x : *burgers(x)} ∩ {x : Joe ate x} | ≥ d

e. 4 is defined iff JCK ⊆ {λd′. | {x : *burgers(x)} ∩ {x : Joe ate x} | ≥ d′,

. λd′. | {x : *burgers(x)} ∩ {x : Max ate x} | ≥ d′,

. λd′. | {x : *burgers(x)} ∩ {x : Sue ate x} | ≥ d′, ...}
f. JPOS K = λC<dt,t>.λD<d,t>.L〈〈dt, t〉, 〈d, t〉〉(C) ⊆ D

g. 5 = 1 iff L(JCK) ⊆ λd. | {x : *burgers(x)} ∩ {x : Joe ate x} | ≥ d

Sentence (44) is true if Joe ate many burgers, where many is evaluated relative to

the number of burgers that other people ate.

Second, the truth conditions of the regular proportional reading are derived.

Romero (2015) analyzes this reading as a result of POS associating with an element

external to the host NP. In sentence (46), “pizza”, many ’s second argument, is

focus-marked and triggers the alternatives contained in C.
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(46) Many (of the) kids like pizzaF/CT .

〈t〉 5

POS

〈〈dt, t〉, 〈dt, t〉〉
C

〈dt, t〉

〈d, t〉 4

∼C 〈d, t〉 3

λd1 〈t〉

〈et, t〉 2

many

〈d, 〈et, 〈et, t〉〉〉
d1

〈d〉

kids

〈e, t〉

〈e, t〉 1

like

〈e, 〈e, t〉〉
pizzaF/CT

〈e〉

(47) a. 1 = λx. x like pizza

b. JmanypropK = λdd.λP〈e, t〉.λQ〈e, t〉. |P ∩Q | : |P | ≥ d

c. 2 = λQ〈e, t〉. | {x : *kids(x)} ∩Q | : | {x : *kids(x)} | ≥ d1

d. 3 = λd. | {x : *kids(x)} ∩ {x : x like pizza} | : | {x : *kids(x)} | ≥ d

e. 4 is defined iff

JCK ⊆ {λd′. | {x : *kids(x)} ∩ {x : x like pizza} | : | {x : *kids(x)} | ≥ d′,

. λd′. | {x : *kids(x)} ∩ {x : x like spinach} | : | {x : *kids(x)} | ≥ d′,

. λd′. | {x : *kids(x)} ∩ {x : x like cherries} | : | {x : *kids(x)} | ≥ d′, ...}
f. JPOS K = λC<dt,t>.λD<d,t>.L〈〈dt, t〉, 〈d, t〉〉(C) ⊆ D

g. 5 = 1 iff

L(JCK) ⊆ λd. | {x : *kids(x)} ∩ {x : x like pizza} | : | {x : *kids(x)} | ≥ d

Sentence (46) is true if many kids like pizza, where many is evaluated relative to the

proportion of kids who like other kinds of food.

Third, we address the reverse proportional reading. Romero’s (2015) achieve-

ment is that she can derive the truth conditions of this reading with only one pro-

portional determiner manyprop and fewprop, which are both conservative. The reverse

proportional reading is obtained when POS is associated with an element internal

to the host NP. In example (48), repeated from above, Scandinavians, many ’s first

argument, is focused which triggers the reversed reading that many winners of a No-

bel Prize in literature are Scandinavians (cf. Herburger, 1997). See Romero (2015)

for a more thorough discussion of the truth conditions of the reverse proportional

reading and its comparison class. Note that in the calculation “the Nobel Prize in

literature” will be abbreviated to “NP” of type 〈e〉.
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(48) Many ScandinaviansF/CT have won the Nobel Prize in literature.

〈t〉 5

POS

〈〈dt, t〉, 〈dt, t〉〉
C

〈dt, t〉

〈d, t〉 4

∼C 〈d, t〉 3

λd1 〈t〉

〈et, t〉 2

many

〈d, 〈et, 〈et, t〉〉〉
d1

〈d〉

ScandinaviansF/CT

〈e, t〉

〈e, t〉 1

have won

〈e, 〈e, t〉〉
NP

〈e〉

(49) a. 1 = λx.x have won NP

b. JmanypropK = λdd.λP〈e, t〉.λQ〈e, t〉. |P ∩Q | : |P | ≥ d

c. 2 = λQ〈e, t〉. | {x : *Scand(x)} ∩Q | : | {x : *Scand(x)} | ≥ d1

d. 3 = λd. | {x : *Scand(x)} ∩ {x : NP-winner(x)} | : | {x : *Scand(x)} |
≥ d

e. 4 is defined iff JCK ⊆
{λd′. | {x : *Scand(x)} ∩ {x : NP-winner(x)} | : | {x : *Scand(x)} | ≥ d′,

. λd′. | {x : Mediterr*(x)} ∩ {x : NP-winner(x)} | : | {x : Med*(x)} | ≥ d′,

λd′. | {x : M.East*(x)} ∩ {x : NP-winner(x)} | : | {x : M.East*(x)} | ≥ d′,

...}
f. JPOS K = λC<dt,t>.λD<d,t>.L〈〈dt, t〉, 〈d, t〉〉(CC) ⊆ D

g. 5 = 1 iff L(JCK) ⊆
λd. | {x : *Scand(x)} ∩ {x : NP-winner(x)} | : | {x : *Scand(x)} | ≥ d

Sentence (48) is true under a reverse proportional reading if “the proportion of

Scandinavians that have won the Nobel Prize in literature is large compared to a

threshold based on the proportions of inhabitants of other world regions that have

won the Nobel Prize in literature” (Romero, 2015, 23).

After having seen the cardinal reading, the regular proportional and the reverse

proportional reading, the question might arise whether there is also such a thing as

a “reverse cardinal” reading. This is actually possible when cardinal many ’s first

argument is focused as in
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(50) Joe ate many burgersF/CT .

Focus on “burgers” triggers the comparison class of other things Joe might have

eaten and the sentence is true if Joe ate more burgers than, say, sandwiches, hot

dogs and muffins. Since the cardinal reading is symmetrical anyway, this reading is

not considered particularly interesting or problematic. We leave it to the reader to

derive this reading compositionally.

In a nutshell, we see the strength of the quantificational approach in its sim-

plicity. It does not need further covert semantic machinery and its application is

straightforward. Moreover, it fits the proportional reading well by intersecting two

sets of individuals. We have shown that even the reverse proportional reading can

be captured by a single proportional lexical entry while preserving the conserva-

tivity feature (Cohen, 2001; Romero, 2015). On the downside, the quantificational

account does not capture adjectival uses in which few and many are preceded by

the definite determiner. Quantifiers and the definite determiner are supposed to be

in complimentary distribution and thus the quantificational analysis would rule out

this well-attested use. Such a case is better accounted for by an adjectival semantics.

2.2.2 Adjectival Semantics

Few and many ’s similarity to gradable adjectives has led to the development of an

adjectival semantics similar to cardinality predicates like numerous, which expresses

the property “small/large in number relative to the average number in the given con-

text” (cf. Partee, 1989; Hackl, 2009; Krasikova, 2011; Dobrovie-Sorin, 2013; Romero,

2017). Arguments for treating few and many on par with adjectives come from their

parallel behavior in comparative constructions. Both quantity words and gradable

adjectives are available in the positive, comparative and superlative form:

(51) a. many, more, most

b. few, fewer, fewest

c. tall, taller, tallest

The standard semantic analysis of these three comparison constructions is to decom-

pose them into a stem and functional operators (cf. von Stechow, 1984; Kennedy

and McNally, 2005; Beck, 2011). This analysis has also been applied to quantity

words.

(52) a. tall = tall + POS

taller = tall + -er

tallest = tall + -est
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b. many = many + POS (Romero, 2015, 2017)

more = many + -er (Hackl, 2000)

most = many + -est (Hackl, 2009)

Furthermore, only adjectives, but not quantifiers, can occur in explicitly adjectival

positions and be preceded by the definite determiner, similar to example (17) above.

(53) a. The many construction sites brought the traffic to a standstill.

b. The few shops that were still open didn’t sell the shoes I wanted.

c. The *some/*no/*all students were late.

An adjectival semantics of few and many can be straightforwardly transferred

from gradable adjectives. The cardinal semantics in (54) provides two lexical entries,

depending on whether the quantity word appears as an intersective adjective or com-

bines directly with a plural individual whose atoms are counted. The intersective

version of type 〈e, t〉 would combine with its plural noun sister via Predicate Modi-

fication and thereby pattern with other adjectives, whereas the entry in the second

line takes its sister as an argument via applying Functional Application (Heim and

Kratzer, 1998).

(54) Cardinal reading

a. JfewK〈e, t〉 = λx〈e〉. |x | ≤ xmax

JfewK〈et, 〈e, t〉〉 = λP〈e, t〉.λx〈e〉.P (x) ∧ |x | ≤ xmax

b. JmanyK〈e, t〉 = λx〈e〉. |x | ≥ xmin

JmanyK〈et, 〈e, t〉〉 = λP〈e, t〉.λx〈e〉.P (x) ∧ |x | ≥ xmin

(55) Proportional reading

a. JfewK〈et, 〈e, t〉〉 = λP〈e, t〉.λx〈e〉.P (x) ∧ |x | : |P | ≤ kmax

b. JmanyK〈et, 〈e, t〉〉 = λP〈e, t〉.λx〈e〉.P (x) ∧ |x | : |P | ≥ kmin

The cardinal and the proportional reading again seem unproblematic, but once

we turn to the reverse proportional reading, we run into a compositionality problem.

(56) Reverse proportional reading

a. JfewK〈et, 〈e, t〉〉 = λP〈e, t〉.λx〈e〉.P (x) ∧ |x | : |Q | ≤ kmax

b. JmanyK〈et, 〈e, t〉〉 = λP〈e, t〉.λx〈e〉.P (x) ∧ |x | : |Q | ≥ kmin

It is a property of adjectives that they only “see” their sister in the tree, be it an

individual or a noun. They cannot, however, raise out of the NP they are contained

in and take higher scope. This is why a semantics for the reverse proportional

reading as in (56) is not compositional. The quantity word needs to calculate a

proportion over |Q |, but does not have a λQ-argument (Romero, 2017).

Romero (2017) sets out to solve the compositionality problem. Regular and

reverse proportional few and many are again fused into one lexical entry, which
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however, does not only look at its 〈e, t〉 complement as a whole but also at its

atomic subparts. Both the cardinal and the proportional variant receive a degree

argument which is bound by the null morpheme POS. POS once more associates

with a focus- or contrastive topic-marked constituent. Associates external to the

host DP trigger the regular reading, internal associates a reverse reading.

(57) Romero’s (2017) cardinal reading

a. JfewcardK〈d, 〈e, t〉〉 = λd〈d〉.λx〈e〉. |x | ≤ d

JfewcardK〈d, 〈et, 〈e, t〉〉〉 = λd〈d〉.λP〈e, t〉.λx〈e〉.P (x) ∧ |x | ≤ d

b. JmanycardK〈d, 〈e, t〉〉 = λd〈d〉.λx〈e〉. |x | ≥ d

JmanycardK〈d, 〈et, 〈e, t〉〉〉 = λd〈d〉.λP〈e, t〉.λx〈e〉.P (x) ∧ |x | ≥ d

(58) Romero’s (2017) proportional reading

a. JfewpropK〈d, 〈et, 〈e, t〉〉〉 = λd〈d〉.λP〈e, t〉.λx〈e〉.P (x) ∧ |x | : |PAtomic | ≤ d

b. JmanypropK〈d, 〈et, 〈e, t〉〉〉 = λd〈d〉.λP〈e, t〉.λx〈e〉.P (x) ∧ |x | : |PAtomic | ≥ d

The adjectival semantics is now to be applied to the sentences from the previous

section. A necessary assumption for the composition to work, however, is that

many ’s type 〈e〉 argument is existentially bound by the covert operator existential

closure ∃ if no overt determiner is present. Furthermore, many ’s host NP and the

VP will be combined via Predicate Modification, not by Functional Application as

above. We will see that the result of the compositional analysis will be the same

as for a quantifier analysis of few and many. The cardinal reading of many of the

example sentence repeated from above is presented first.

(44) JoeF/CT ate many burgers.

〈t〉 6

POS

〈〈dt, t〉, 〈dt, t〉〉
C

〈dt, t〉

〈d, t〉 5

∼C 〈d, t〉 4

λd1 〈t〉

∃e 〈e, t〉 3

〈e, t〉 2

many

〈d, 〈et, 〈e, t〉〉〉
d1

〈d〉

burgers

〈e, t〉

〈e, t〉 1

λt2

JoeF/CT

〈e〉 ate

〈e, 〈e, t〉〉
t2

〈e〉
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(59) a. 1 = λx. Joe ate x

b. JmanycardK = λd〈d〉.λP〈e, t〉.λx〈e〉.P (x) ∧ |x | ≥ d

c. 2 = λx〈e〉. *burgers(x) ∧ |x | ≥ d1

d. 3 = λx〈e〉.*burgers(x) ∧ |x | ≥ d1 ∧ ate(x)(Joe)

e. 4 = λd.∃x[*burgers(x) ∧ |x | ≥ d ∧ ate(x)(Joe)]

f. 5 is defined iff JCK ⊆ {λd′.∃x[*burgers(x) ∧ |x | ≥ d′ ∧ ate(x)(Joe)],

. λd′.∃x[*burgers(x) ∧ |x | ≥ d′ ∧ ate(x)(Max)],

. λd′.∃x[*burgers(x)∧|x | ≥ d′∧ate(x)(Sue)], ...}
g. JPOS K = λC<dt,t>.λD<d,t>.L〈〈dt, t〉, 〈d, t〉〉(C) ⊆ D

h. 6 = 1 iff L(JCK) ⊆ λd.∃x[*burgers(x) ∧ |x | ≥ d ∧ ate(x)(Joe)]

Sentence (44) is true if Joe ate many burgers, where many is evaluated relative to

the number of burgers that other people ate.

Next, the regular proportional reading is analyzed. Again, this reading arises if

the focused constituent is external to the host NP, see the repeated example.

(46) Many (of the) kids like pizzaF/CT .

〈t〉 5

POS

〈〈dt, t〉, 〈dt, t〉〉
C

〈dt, t〉

〈d, t〉 4

∼C 〈d, t〉 3

λd1 〈t〉

∃e 〈e, t〉

〈e, t〉 2

many

〈d, 〈et, 〈e, t〉〉〉
d1

〈d〉

kids

〈e, t〉

〈e, t〉 1

like

〈e, 〈e, t〉〉
pizzaF/CT

〈e〉

(60) a. 1 = λx.x like pizza

b. JmanypropK = λd〈d〉.λP〈e, t〉.λx〈e〉.P (x) ∧ |x | : |PAtomic | ≥ d

c. 2 = λx〈e〉. *kids(x) ∧ |x | : | {z : *kids(z)} | ≥ d1

d. 3 = λd.∃x[*kids(x) ∧ |x | : | {z : *kids(z)} | ≥ d ∧ like(pizza)(x)]

e. 4 is defined iff

JCK ⊆ {λd′.∃x[*kids(x) ∧ |x | : | {z : *kids(z)} | ≥ d′ ∧ like(pizza)(x)],
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. λd′.∃x[*kids(x)∧ |x | : | {z : *kids(z)} | ≥ d′ ∧ like(spinach)(x)],

. λd′.∃x[*kids(x)∧|x | : | {z : *kids(z)} | ≥ d′∧like(cherries)(x)], ...}
f. JPOS K = λC<dt,t>.λD<d,t>.L〈〈dt, t〉, 〈d, t〉〉(C) ⊆ D

g. 5 = 1 iff

L(JCK) ⊆ λd.∃x[*kids(x) ∧ |x | : | {z : *kids(z)} | ≥ d ∧ like(pizza)(x)]

Sentence (46) is true if many kids like pizza, where many is evaluated relative to the

proportion of kids who like other kinds of food.

The last compositional analysis to be presented is of the reverse proportional

reading. Again, the definite description “the Nobel Prize in literature” is abbreviated

by “NP”.

(48) Many ScandinaviansF/CT have won the Nobel Prize in literature.

〈t〉 5

POS

〈〈dt, t〉, 〈dt, t〉〉
C

〈dt, t〉

〈d, t〉 4

∼C 〈d, t〉 3

λd1 〈t〉

∃e 〈e, t〉

〈e, t〉 2

many

〈d, 〈et, 〈e, t〉〉〉
d1

〈d〉

ScandinaviansF/CT

〈e, t〉

〈e, t〉 1

have won

〈e, 〈e, t〉〉
NP

〈e〉

(61) a. 1 = λx.x have won NP

b. JmanypropK = λd〈d〉.λP〈e, t〉.λx〈e〉.P (x) ∧ |x | : |PAtomic | ≥ d

c. 2 = λx〈e〉.*Scand(x) ∧ |x | : | {z : *Scand(z)} | ≥ d1

d. 3 = λd.∃x[*Scand(x) ∧ |x | : | {z : *Scand(z)} | ≥ d ∧ NP-winner(x)]

e. 4 is defined iff

JCK ⊆ {λd′.∃x[*Scand(x)∧|x | : | {z : *Scand(z)} | ≥ d′∧NP-winner(x)],

. λd′.∃x[*Mediterr(x)∧|x | : | {z : *Mediterr(z)} | ≥ d′∧NP-winner(x)],

. λd′.∃x[*M.Eastern(x)∧|x | : | {z : *M.Eastern(z)} | ≥ d′∧NP-winner(x)],

. ...}
f. JPOS K = λC<dt,t>.λD<d,t>.L〈〈dt, t〉, 〈d, t〉〉(C) ⊆ D
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g. 5 = 1 iff

L(JCK) ⊆ λd.∃x[*Scand(x)∧|x | : | {z : *Scand(z)} | ≥ d∧NP-winner(x)]

Sentence (48) is true under a reverse proportional reading if “the proportion of

Scandinavians that have won the Nobel Prize in literature is large compared to a

threshold based on the proportions of inhabitants of other world regions that have

won the Nobel Prize in literature” (Romero, 2015, 23).

In sum, we find that the adjectival account can derive the same truth conditions

under the assumption that the degree variable is bound by POS whose associates are

prosodically marked. In contrast to a quantifier semantics, the adjective semantics

needs an additional silent operator ∃ to bind the pronoun of type 〈e〉. The adjectival

account is particularly elegant to derive cardinal readings and quantity words in

combination with the definite determiner.

2.2.3 Degree Quantifier

A third account was proposed by Solt (2009, 2015) and Rett (2008, 2016). They

analyze few and many as a semantically empty, gradable quantifier over degrees.

Further semantic machinery, like a measure function, is contributed by covert se-

mantic operators. This summary focuses on Solt’s work, who treats few and many in

parallel with little and much and aims to account not only for their quantificational

and adjectival uses, but also for differential uses in a unified semantics.

(62) Solt (2015, 222)

a. quantificational: Many/few students attended the lecture.

b. predicative: John’s friends are many/few.

c. attributive: The many/few students who attended enjoyed the lecture.

d. differential: Many more/few more/many fewer than 100 students at-

tended the lecture.

Instead of treating few and many as quantifiers like every or adjectives like tall

Solt (2009, 2015) suggests that they are gradable predicates of intervals (sets of

degrees) on some dimension of measurement. She claims that only such a semantics

can capture all of the various uses exemplified in (62). In her decompositional

account she strips few, many, little and much of most of their semantics content

which is instead contributed by a series of null functional elements (see Solt, 2009,

Chapter 3). In a compositional analysis of a sentence with quantificational few or

many, the truth conditions are the same as under a quantificational semantics in

which all of these operators are already contained in the semantics of many. This is

why her proposal looks unnecessarily complicated, at least for quantificational few

and many. Solt, however, claims that her reduced semantics is necessary to account
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for the various uses of quantity words in a unified way. The syntactic form she

assumes and the lexical entries she proposes are given below.

(63) a. JmanyK = λdd.λI# ∈ D〈d, t〉.d ∈ I
b. JfewK = λdd.λI# ∈ D〈d, t〉.d /∈ I
c. JMeasK = λxe.λdd.µDIM(x) ≥ d

d. ∃ (Existential Closure)

e. JPOSK = λI〈d, t〉.∀d ∈ Ns[d ∈ I]

DP

MeasP

QP

DegP

-er

POS

Q

many

few

little

much

MeasP’

Meas NP

burgers

According to Solt’s theory, the only semantic contribution of many and few is to

check whether a degree is contained in an interval. The remainder of their meaning

is contributed by Meas and POS. In terms of the LF, Solt (2009, 2015) proposes that

the quantity words are located in the specifier position of a DP-internal functional

head Meas, which introduces a degree argument. Then, they undergo Quantifier

Raising (Heim and Kratzer, 1998) and take sentential scope. They take as their

argument a set of degrees (see the LF structure below). Consequently, the quantity

words are not assumed to combine with their NP restrictor directly. They are taken

to be embedded in a measure phrase MeasP. Note that ”Meas does not encode

a specific dimension. Rather, the dimension in question is ‘filled in’ on the basis

of the NP denotation, the nature of the degree expression that it combines with,

and the context of interpretation” (Solt, 2009, p. 105). The scale’s dimension is

underspecified in the semantics of Meas because Solt (2009, 2015) aims to apply

the operator to few and many as well as to much and little. In contrast to much

and little, which are more free in the choice of their scale and can operate on scales

of volume, weight etc., many and few require that the interval is of dimension

cardinality. The degrees on the cardinality scale must be countable (indicated by

the # subscript). A last remarkable feature of Solt’s (2009) proposal is that instead

of attributing quantificational force over individuals to Q-adjectives themselves, she

opts for existential closure in order to be able to also account for their predicative

uses.

In the positive form, the degree argument of many is bound by the null morpheme

POS. POS establishes a comparison with a neutral interval provided by the context.

In the following, the three example sentences from above are analyzed. We start out

again with the cardinal reading of many in its quantificational use. An LF structure

and a compositional analysis are presented. Note that it seems inconvenient to apply

Quantifier Raising three times and Existential Closure only in order to avoid type
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mismatches. Furthermore, the measure function cannot be included via Function

Application but needs an own composition rule. The rule Variable Identification is

based on Kratzer’s (1996) Event Identification rule and combines the Meas Node

with its nominal complement. Note that in contrast to Romero (2015, 2017), the

POS operator used here, does not take the comparison class as its argument and

thus does not build on focus/contrastive topic alternatives.

(44) Joe ate many burgers.

6

POS<dt,t>

〈d, t〉 5

λd3 〈t〉

4

d3 many2

〈d, 〈dt, t〉〉

〈d, t〉 3

λd2 〈t〉

∃

d2 〈d, 〈e, t〉〉 2

Meas

〈e, dt〉
burgers

〈e, t〉

〈e, t〉 1

λt1
Joe

ate t1

(64) a. 1 = λx. Joe ate x

b. JMeasK = λx.λd.µDIM(x) ≥ d

c. 2 = λd.λx.*burgers(x) ∧ µDIM(x) ≥ d

d. 3 = λd.∃x[*burgers(x) ∧ µDIM(x) ≥ d ∧ ate(x)(Joe)]

e. JmanyK = λdd.λI# ∈ D<d,t>.d ∈ I
f. 4 = λI# ∈ D<d,t>.d3 ∈ I
g. 5 = λd.∃x[*burgers(x) ∧ µ#(x) ≥ d ∧ ate(x)(Joe)]

h. JPOSK = λI<d,t>.∀d ∈ Ns[d ∈ I]

i. 6 = 1 iff ∀d ∈ Ns ∃x[*burgers(x) ∧ µ#(x) ≥ d ∧ ate(x)(Joe)]

Sentence (44) is true if Joe ate many burgers, where many is evaluated relative to

the neutral interval on the cardinality scale.

For the proportional reading, Solt (2009) takes a different path than the ap-

proaches in the previous sections. Instead of a lexical ambiguity, she claims that the

ambiguity is caused by a difference in scale structure. “The proportional reading

arises when an upper bound to the scale is assumed, whereas the cardinal reading
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arises when there is no salient upper bound” (Solt, 2009, p.209). Two environments

force a proportional reading: the subject position of an individual-level predicate and

the partitive construction of the. Solt (2009) suggests that they share the “totaliz-

ing” property. The concepts of totalizing and individualizing can be explained with

the determiners every and each. Every is totalizing whereas each is individualizing.

(65) a. Every cake is tasty.

b. Each cake is tasty.

“The totalizing effect comes not from the [quantity word] itself but from the con-

struction in which it occurs... Totalizing has a consequence for measurement, in

that the measurement scale introduced by the functional head Meas is restricted to

measuring the extent of that totality” (Solt, 2009, p.218). A plural NP in the sub-

ject position of an individual-level predicate ”is interpreted by first pulling aside the

totality of individuals in its extension, and then subjecting them to the predicate”

(Solt, 2009, p.222). Based on these observations, Solt (2009) adjusts the semantics

of the NP itself by adding a supremum operator. Find my interpretation of her

analysis applied to example (46) below.

(46) Many (of the) kids like pizzaF/CT .

6

POS<dt,t>

〈d, t〉 5

λd2 〈t〉

4

d2 many1

〈d, 〈dt, t〉〉

〈d, t〉 3

λd1 〈t〉

∃

d1 〈d, 〈e, t〉〉 2

Meas

〈e, dt〉
kids

〈e, t〉

〈e, t〉 1

like pizza

(66) a. 1 = λx. x like pizza

b. JkidsK〈e〉 = sup(λx. *kids(x))

⇒ shift from group to set type, PSP as domain restriction on Meas

JkidsK〈e, t〉 = λy : y ⊆sup(λx. *kids(x)). *kids(y)

c. JMeasK = λx.λd.µDIM(x) ≥ d
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d. 2 = λd : d ≤ µDIM(sup(λx. *kids(x))).λy : y ⊆ sup(λx. *kids(x)).

*kids(y) ∧ µDIM(y) ≥ d

⇒ scale is bounded on the upper end

e. 3 = λd : d ≤ µDIM(sup(λx. *kids(x))).∃y [ *kids(y) ∧
µDIM(y) ≥ d ∧ like(pizza)(y)]

3 is defined iff y ⊆ sup(λx. *kids(x)) and d1 ≤ µDIM(sup(λx. *kids(x)))

f. JmanyK = λdd.λI# ∈ D<d,t>.d ∈ I
g. 4 = λI# ∈ D<d,t>.d3 ∈ I
h. 5 = λd : d ≤ µ#(sup(λx. *kids(x))).∃y [ *kids(y) ∧ µ#(y) ≥ d ∧

like(pizza)(y)]

i. JPOSK = λI<d,t>.∀d ∈ Ns[d ∈ I]

j. 6 = 1 iff ∀d ∈ Ns ∃y [ *kids(y) ∧ µ#(y) ≥ d ∧ like(pizza)(y)]

where the domain of degrees d is restricted to d ≤ µ#(sup(λx. *kids(x)))

Sentence (46) is predicted to be true if many kids like pizza where the number

denoted by “many” is bounded by the totality of kids.

We see that it is possible to derive the truth conditions of the proportional

reading with Solt’s (2009) decompositional account. The question that arises and

remains unanswered, however, is what in the semantics triggers the totalizing ef-

fect and restricts the scale. Following Solt (2009), this should be triggered by the

semantics of an individual-level predicate or the partitive construction, but Solt

(2009) does not show how this should work in the composition. An even more

obvious question is how Solt (2009) would account for the proportional reading of

stage-level predicates. Sentences containing few and many and a stage-level pred-

icate can be interpreted both proportionally or cardinally. The only explanation

offered by Solt (2009) is that discourse cues either impose a boundary (resulting in

a proportional) reading or they do not (resulting in a cardinal reading). The lexical

ambiguity theory assumed in the quantificational and adjectival account is by far

more straightforward in this respect. Moreover, it is not clear how Solt’s (2009)

account of the proportional reading should be extended to the reverse proportional

reading. For a sentence like (48), the scale would have to be restricted by the VP,

with which Meas does not combine directly. Whether restricting the scale and the

totalizing effect can take place randomly, detached from syntactic and semantic

properties, is questionable.

All in all, Solt’s (2009) theory is a well-motivated attempt to give a unified

semantics of the various uses of few and many. This attempt works out well com-

positionally for the cardinal reading in a quantificational position. Nevertheless, the

semantics is blown up by a number of covert operators and, at least for the quantifi-

cational use, the same result can be achieved with a simpler (be it quantificational
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or adjectival) semantics. The derivation of the proportional reading is equally com-

plicated and leaves the reader with several open questions. For the remainder of

this thesis we will therefore adhere to the former two accounts.

2.2.4 The Semantics of few

After having intensively discussed the semantics of many, we notice that most theo-

ries put few in second place. This might be due to the complex issue of the semantics

of antonyms. In this section we only provide a brief overview over the semantics

of few. Further, non-semantic properties of few, like referents it prefers bring into

focus, are also discussed in the next chapter, where psychological work is introduced.

The difference between few and many is picked up again in Chapter 6 and especially

in Section 6.7, where unexpected results of the interaction between surprisingly and

few are discussed.

The literature agrees in that the negative member of an adjective pair like short

- long, young - old, slow - fast, few - many involves negation. There is a debate,

however, whether the negation is lexicalized as in (67a) or whether the antonym is

split in the syntax into a negation operator little and the positive adjective as in (67b)

(Kennedy and McNally, 2005; Heim, 2006, 2008; Beck, 2011). See an illustration of

the two theories below:

(67) a. JfewK = λ A. λ B. |A ∪ B | ≤ xmax

b. JfewK = JlittleK (JmanyK)

A lexicalized negation is what we have assumed in the previous sections for the

sake of simplicity. It is just intuitive that few, which expresses that a cardinality is

small, denotes the smaller than relation ≤ between a cardinality and a degree. The

example sentences (44), (46) and (48) originally containing many can be analyzed

with few in a straightforward way. We exemplify the cardinal reading under a

quantifier semantics.

(68) JoeF/CT ate few burgers.
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〈t〉 5

POS

〈〈dt, t〉, 〈dt, t〉〉
C

〈dt, t〉

〈d, t〉 4

∼C 〈d, t〉 3

λd1 〈t〉

〈et, t〉 2

few

〈d, 〈et, 〈et, t〉〉〉
d1

〈d〉

burgers

〈e, t〉

〈e, t〉 1

λt2

JoeF/CT

〈e〉 ate

〈e, 〈e, t〉〉
t2

〈e〉

(69) a. 1 = λx. Joe ate x

b. JfewcardK = λdd.λP〈e, t〉.λQ〈e, t〉. |P ∩Q | ≤ d

c. 2 = λQ〈e, t〉. | {x : *burgers(x)} ∩Q | ≤ d1

d. 3 = λd. | {x : *burgers(x)} ∩ {x : Joe ate x} | ≤ d

e. 4 is defined iff JCK ⊆ {λd′. | {x : *burgers(x)} ∩ {x : Joe ate x} | ≤ d′,

. λd′. | {x : *burgers(x)} ∩ {x : Max ate x} | ≤ d′,

. λd′. | {x : *burgers(x)} ∩ {x : Sue ate x} | ≤ d′, ...}
f. JPOS K = λC<dt,t>.λD<d,t>.L〈〈dt, t〉, 〈d, t〉〉(C) ⊆ D

g. 5 = 1 iff L(JCK) ⊆ λd. | {x : *burgers(x)} ∩ {x : Joe ate x} | ≤ d

(70) . 3 (# of burgers NOT eaten by Joe)

. •−−−|−−−−−−−|︸ ︷︷ ︸−−−−−−−−−−−−−−→

. Ns

◦−−−−−−−−−
︷ ︸︸ ︷
|−−−−−−−|−−−−−−−−−−−−−−→ BURGERS EATEN

. 4 6

The truth conditions are illustrated in the graphic in (70). Node 3 in (2.2.4)

denotes the set of degrees such that the number of burgers eaten by Joe is smaller.

This is equivalent to the interval of the numbers of burger that Joe did not eat. If

Joe ate, say, only 2 burgers, 3 would denote the interval [3 ,∞]. Further assuming

that the neutral interval Ns = L(JCK) = [4 , 6], 3 is fully contained in the number

of burgers not eaten by Joe. This results in the number of burgers eaten by Joe,

namely 2, counting as few in this context. The truth conditions in 5 are met.
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We see that a lexicalized analysis of the negation contained in few is easily

derived compositionally. However, since there is only one lexical item, this analysis

cannot account for the ambiguity that sentences with few exhibit, but not sentences

with many (Heim, 2006, 2008; Solt, 2009). That sentences with few carry one more

scope-taking element than sentences with many can be observed in the following

example from Solt (2009, 45f.). The difference is explained with the claim that

sentences with few can be ambiguous because the negation contributed by few can

take variable scope, either above or below the modal can (♦). The differences in

truth conditions are exemplified by the mutually exclusive continuations. Sentences

with many are not ambiguous.

(71) The students can take few advanced classes...

a. ‘... because not many courses are offered.’

 little > ♦ > many

It is not possible for students to take a large number of classes.

b. ‘... and still get their degree.’

 ♦ > little > many

It is possible for students to not take a large number of classes.

(72) The students can take many advanced classes.

It is possible for students to take a large number of classes.

To account for the ambiguity, Heim (2006, 2008) and Büring (2007a,b) suggest a

decomposition of the negative antonym into little and the positive antonym. Little

contributes (adjectival) negation and is scopally mobile. Büring (2007b) suggests

the following semantics:

(73) for any gradable adjective A, Jlittle AK = λd〈d〉.λx〈e〉.¬[JAK(d)(x)]

This adjectival negation is immediately compatible with the adjectival version of

many in (57).

However, the decomposition analysis is not an uncontroversial approach to the

semantics of antonyms. Heim (2008) points out that there is evidence for and against

it, and “the dilemma that results defies a simple solution”. I refer the reader to Heim

(2006, 2008), Büring (2007a,b) and Beck (2012) for a more thorough introduction

into the elusive semantics of antonyms and little in particular as well as a discussion

of the restrictions on the scope positions of the negation. The decomposition account

of few as well as the apparent difference between few and many will be brought up

again in Sections 6.7 and 7.7.
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2.3 A Surprise-Based Semantics for few and many

In the last section, we have seen three semantic theories of few and many. Even

though they differ in the semantic properties they ascribe to the quantity words, the

predicted truth conditions of sentences with few and many are essentially the same:

for a sentence with few, the described cardinality needs to be smaller than a certain

threshold value (i.e. the respective boundary of the neutral interval), for many it

needs to be greater. And these conditions lead directly to the open issue that all

three theories leave unanswered. None commits to how these threshold values are

derived for the respective comparison class. Romero (2015, 2017) derives at least

the superset of the comparison class in a compositional way, but she does not specify

how the function L determines the boundaries of the neutral intervals Ns. A more

fine-grained variant to set the standard of comparison is suggested in Solt (2011a),

where the neutral interval, or standard range RStd, is constructed around the median

of the comparison class. “The standard range RStd can be defined as a central range

whose width is dependent on the degree of dispersion in the comparison class” (Solt,

2011a, 194).

(74) JFred is short for a jockeyK = 1 iff HEIGHT(Fred) < RStd,

where RStd = medianx:jockey(x)(HEIGHT(x)) ± n; for some value n.

The proposal is, however, only spelled out for sentences in which the comparison

class is made overt by a for -phrase and a compositional analysis is not presented.

This is why it is not clear how and in which form the contextual information is

integrated on the basis of which the standard of comparison (i.e. the threshold

value) is derived. And even though the derivation of the standard is here described

in more detail than in other approaches, Solt (2011a) does not further specify how

the deviation n from the median is to be determined for each comparison class.

And exactly this is an aspect of Solt’s (2011a) proposal that could turn out to

be problematic: it commits to an equal distance n below and above the median.

Especially in contexts in which the value’s distribution is very left- or right-skewed,

the equal distance from the median makes wrong predictions. For example, in

a comparison class of jockeys, the left-skewed distribution of heights shows a very

small dispersion at the left end of the scale, but a larger degree of dispersion towards

the upper end. See Figure 2.1 for an illustration. Let’s assume that the distribution’s

median is 153cm. In such a comparison class, a jockey does not need to be much

shorter than the median to count as short, say 149cm and below counts as short.

This would result in a value of n = 3cm. An upper bound of RStd of 153cm + 3cm

= 156cm would be too low, however, since a significant group of jockeys is tall up

to at least 160cm. Given this example, we suggest to drop the standard range’s
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Figure 2.1: Sample distribution for jockey’s heights

symmetry assumption. For a definite verdict, the proposal would have to be tested

experimentally though.

A further complication in the undertaking of deriving few and many ’s threshold

values is that in many cases extensional alternatives as in the compositional analyses

(45), (47) or (49) are not sufficient. With a well-known example Keenan and Stavi

(1986) demonstrate the variance in many ’s denotation and how to derive it. The

use of many cannot even be predicted in a reliable manner when it refers to the

same group of individuals. Nouwen (2010) sums up their example:

(75) a. Imagine a conference of lawyers and policemen where normally 60 lawyers

and 40 policemen attend. Also, on average, only 10 attendants are

women. This year, there are only 20 lawyers, but a staggering 80 po-

licemen. Strikingly, all the lawyers happen to be women and all the

policemen are men. (Nouwen, 2010, 238)

b. Many lawyers attend the meeting this year.

c. Many women attended the meeting this year.

Given the context in (75a), (75b) is probably judged false whereas (75c) tends to be

accepted even though the set of lawyers and the set of women is exactly the same!

“This shows that if the context and the number of relevant individuals are both

fixed, many still gives rise to different meanings” (Nouwen, 2010, 238). Building on

the example above Keenan and Stavi (1986) and Lappin (2000) conclude that few

and many cannot be treated extensionally, because the context, alternatives, and

expectations and desires about them play a crucial role. Bastiaanse (2014) arrives

at the same conclusion and suggests an intensional treatment, too, but bases his

argumentation on Barwise and Cooper’s (1981) Generalized Quantifier Theory.
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One theory that sets out to resolve the open issue of the derivation of threshold

values while allowing for intensionality is the surprise-based semantics proposed

by Fernando and Kamp (1996). The intensionality that Keenan and Stavi (1986),

Lappin (2000), and Bastiaanse (2014) demand can be accounted for by a systematic

incorporation of a measure of expectations into the semantics. In the case of few

and many, prior expectations capture which cardinalities a speaker considers likely

or unlikely in a certain context. For example, given the scenario in (75a), a speaker

might expect that between 8 and 12 women attend the conference, whereas numbers

of women of 7 and lower or of 13 and higher are considered increasingly unlikely.

On the other hand, the speaker might consider it likely that roughly between 50

and 70 lawyers attend the conference, but higher or lower numbers are ascribed

an increasingly lower possibility. For this reason the same number can count as

many when compared to expectations about women but not when compared to

expectations about lawyers.

Examples like (75) bring up the idea that sentences with few and many exhibit

what we will call “surprise readings”. The cardinality described by the quantity

word is compared with cardinalities that are considered likely in the situation. Let

us for now have a look at a simpler example. The sentence in (76) would then

express that the number of cups of coffee drunk by Andy is lower or higher than

expected.

(76) Andy drank few / many cups of coffee last week.

 Andy drank less / more cups of coffee than expected.

In the context of coffee consumption, the contextual contribution based on which

few and many receive their meaning would be expectations about the number of cups

of coffee that Andy or people with Andy’s coffee drinking habits might have drunk

last week. Some cardinalities might obviously be considered more likely than others

in this context. For example, numbers higher than 40 are probably negligible. The

possibilities a speaker ascribes to each cardinality can be formalized in a probability

distribution PE and then be the contextual input for the semantics.

The idea that probability distributions play a role in the semantics of vague and

context-dependent expressions has already been brought forward by Clark (1991),

who builds on early work by Hörmann (1983). Clark’s (1991) account of Hörmann’s

(1983) observation that context-depence is closely related with expectations is dis-

cussed in more detail in Section 3.1 and only briefly summarized here. Clark suggests

that few could rather be taken to denote “the 25th percentile (range: 10th to 40th

percentile) on the distribution of items inferred possible in [the current] situation”

(Clark, 1991, 271). This approach explains the “cardinal surprise reading” of few

and many in sentences like (76) as intensional, comparing the actual number of
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cups of coffee that Andy drank last week to a probabilistic belief PE which captures

our expectations about the number of cups of coffee that Andy drank. This pro-

posal was formally worked out by Fernando and Kamp (1996). We will call it the

Clark-Fernando-Kamp (CFK) semantics.

The core idea of the CFK semantics is that few and many ’s lexical meaning

is a stable, context-independent function which contains a fixed threshold value θ.

This complex yet systematic function maps contextual input to precise denotations

by taking as input the cumulative density mass of PE and cutting it off at a fixed

percentage θ. Cardinalities higher than the cut-off would then count as many,

for example. Here, we focus on the extent to which this approach can explain in

particular unstressed cardinal readings as in example (76) (see Section 5.6 for further

discussion).

Coming back to the example in (76), the prior expectation PE is highly context-

dependent. It assigns a measure of relative probability to each number n, or more

precisely, to each proposition ‘Andy drank n cups of coffee last week’. If Andy is a

close friend, expectations could be very specific about Andy and his coffee drinking

habits. If Andy is a complete stranger, expectations are more likely very general

and derive from what one would normally expect from a person like Andy (with

fuzziness in what counts as relevantly being like Andy). In both cases, we may

think of PE as reflecting the relevant properties of a comparison class in a, perhaps,

loose sense of the term. Explicit lexical material or intonational and contextual cues

may guide the inference of the relevant PE. Usually, some uncertainty about the

exact properties that form the relevant comparison class will remain.

In contrast to the elusive parameter PE, there is also a context-independent

lexical meaning of few and many, namely a pair of fixed thresholds θfew and θmany

on the cumulative distribution of PE. Truth conditions of the CFK semantics for

sentences as in (76) are given in (77)5.

(77) CFK Semantics

a. JFew As are BK = 1 iff |A ∩ B | ≤ xmax

where xmax = max {n ∈ N | PE(|A ∩ B | ≤ n) < θfew}

b. JMany As are BK = 1 iff |A ∩ B | ≥ xmin

where xmin = min {n ∈ N | PE(|A ∩ B | ≤ n) > θmany}

From (77b), the sentence “Many As are B” is true if the number n = |A ∩ B | is

no smaller than xmin. In turn, xmin is specified as the lowest number for which the

5Fernando and Kamp (1996) spell out their semantics in terms of possible worlds. To illustrate
the basic idea we opt for a simpler extensional version here, also because we do not find a contra-
diction to the expectation-based comparison classes we assume. An intensional semantics will be
discussed in more detail in the next section.
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Figure 2.2: Illustration of the CFK-semantics

cumulative density mass of our prior expectation PE about the number of As with

property B is higher than the semantically fixed threshold θmany. As a result, “Many

As are B” is true if the actual number of As with property B is sufficiently surprising,

where surprise is relative to contextually-variable PE and what is sufficient surprise

is encoded in contextually-stable θmany.

To illustrate, consider the example in Figure 2.2 for the many-sentence in (76).

Prior expectations PE could look like in Figure 2.2a: they would assign a probability

to any natural number n, indicating how likely we think it is that Andy drank n cups

of coffee last week. Figure 2.2b shows the cumulative distribution of the distribution

in Figure 2.2a. If θmany was fixed to, say, 0.8, then the CFK-semantics would identify

xmin to be 8. Accordingly, for this PE, the many-sentence in (76) would be false for

any n < 8 and true for any n ≥ 8.

While such a surprise-based semantics may seem like an appealing idea, it also

raises methodological concerns. Since the precise nature of what counts as surprising

is hard to assess based on solitary introspection, it becomes exceedingly hard to

test the predictions of such an account. The main contribution of Chapter 5 is

therefore methodological. We seek to demonstrate how data-driven computational

modeling can be a helpful addition to the linguists’ toolbox, exactly where solitary

introspection fails and the theory under scrutiny concerns latent parameters that are

not directly observable, like a threshold on a measure of surprise. In other words,

we argue here, by means of a case study on the meaning of many and few, for the

usefulness of a particular approach to theoretically inspired statistical modeling of

empirical data.

2.4 Comparison Classes and Prior Expectations

Throughout this chapter we have seen various semantic accounts of few and many.

All of them formulate their truth conditions in terms of threshold values, which
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determine the applicability of the quantity words. These threshold values in turn

are dependent on a comparison class which “in some way serves to provide a frame

of reference or standard of comparison” (Solt, 2011a, 190). The comparison class

is closely linked to prior expectations, because it determines which information is

taken into account when speaker or listener reason about the prior distribution

PE they have in mind. To our knowledge, how a sentence’s semantic meaning

and comparison classes constrain reasonable prior expectations has not yet been

formalized. For example, Fara (2000), Kennedy (2007), Solt (2011a), or Bylinina

(2014) make reference to comparison classes, but do not further formalize or formally

integrate expectations. We set out to discuss the interesting relationship between the

speaker’s and listener’s epistemic state, their prior expectations and the sentence’s

semantics.

In the following, we will propose a “moderately radical pragmatic” account of

prior expectations, which in concert with a formal semantic analysis of the sentence’s

contribution explains how speaker and listener arrive at few or many ’s denotation

in context. This approach is “radical” because it allows for a lot of freedom in how

to obtain PE. But it is “moderate” in the sense that it requires PE to be natural and

inferable. It is also “moderate” in that it allows the linguistic material to inform

the inference of PE. The pragmatic proposal will be complemented by a formal

semantic analysis of sentences containing few or many and a formalization of prior

expectations. Instead of simply assuming that PE is magically fixed at some point

to be able to proceed with the semantic analysis, we will formally derive it from

the semantic and pragmatic contributions of the utterance. We propose a modified

version of the positive operator POS, an intensional degree operator POSsurp, to

compositionally derive the truth conditions of the surprise reading of few and many.

2.4.1 A “Moderately Radical Account” of Prior Expecta-

tions

PE is treated as a contextually free variable in the sense that the speaker has a

concrete PE in mind when uttering a sentence with a context-dependent expression,

but the listener may have to infer it in order to interpret the utterance. Let us

expand on this by assuming that a speaker wants to express with (44) from above

that Joe ate more burgers than she had expected him to eat.

(44) JoeF/CT ate many burgers.

What the speaker does is compare the actual number n of burgers eaten by Joe with

her probabilistic belief PE about the number of consumed burgers. To be clear, the

distribution PE provides the prior probability of Joe eating a certain number of
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Figure 2.3: This figure depicts the reasoning process of speaker and listener when an
utterance U expressing a surprise reading is made. On the basis of her underlying
epistemic state ti, the speaker forms prior expectations PE about the number of burg-
ers Joe might eat. The speaker then reasons whether to produce U as a description
of n, the actual number of burgers eaten by Joe, or to remain silent: P (U | n, ti).
Upon hearing U, the listener needs to jointly infer n and ti: P (n, ti | U). From U, a
comparison class can be derived, which constrains the inference of PE via a measure
function µ and thus ultimately also the inference of ti.
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burgers at this event, and this probability was determined before learning about the

actual number n of burgers consumed by Joe.

The shape of the prior expectations PE, and ultimately the decision to make

an utterance U , are influenced by the speaker’s epistemic state ti, as illustrated by

Figure 2.3 and the conditional production probability P (U | n, ti). This formula

expresses the speaker’s probability of producing utterance U given a cardinality n

and an epistemic state ti, see also in Section 5.3. The same shape of the distribution

PE can be triggered by different epistemic states ti. But different epistemic states

can also lead to different PEs. Furthermore, epistemic states may include more or

less concrete world knowledge. For example, the speaker can be aware that Joe

is a man from the US, that Joe is a man from the US who attended a barbecue,

that Joe is a US male who attended a barbecue on Saturday together with certain

other guests, and maybe other things. An open question is which bits and pieces

of information could or should inform the estimate expressed in a single PE for the

speaker. The information that goes into an estimate could be almost trivial (Joe

is a human being, so he cannot eat more than, say, 50 burgers at the most), but it

could also be quite elaborate (Joe is a meatlover, likes burgers especially, was not

particularly hungry that day... ).

Whereas a speaker’s PE is only dependent on her individual epistemic state,

the listener’s task in a talk exchange is more elaborate. PE as inferred by the

listener is influenced by the utterance (see more below), and by the listener’s world

knowledge. However, successful communication is only possible if the listener’s prior

expectations are sufficiently similar to the speaker’s. The challenge for the listener

is that the comparison class often goes unsaid. Consequently, we see the listener’s

role as inferring not only a cardinality upon hearing an utterance U , but also the

speaker’s epistemic state based on which she formed her PE when uttering U (cf.

Tessler et al., 2017). The formula P (n, ti | U) expresses the listener’s probability

of inferring a cardinality n and the epistemic state ti given utterance U . Find this

illustrated in Figure 2.3, which depicts a listener reasoning both about an utterance

and about the speaker and her epistemic state.

The speaker can provide guidance about his epistemic state by explicitly men-

tioning the sentence’s comparison class. Comparison classes can be made overt in

the sentence by a for -phrase (Kennedy, 2007; Schwarzschild, 2013; Bylinina, 2014)

or a compared to construction, for example.

(78) a. For a skinny man Joe ate many burgers at the barbecue.

b. Compared to his brother, Joe ate many burgers at the barbecue.

In most cases though, the comparison class is underspecified by the sentence

meaning. This leaves the listener with a gap between the information provided by
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the lexical material and information necessary to infer the exact epistemic state

based on which expectations are formed. Have a look at the example uttered by the

speaker in Figure 2.3.

(79) Joe ate many burgers at the barbecue.

The lexical meaning of this sentence only expresses that the number of burgers con-

sumed by Joe at the barbecue is large. It does, however, not restrict the comparison

class any further and only gives few hints on the speaker’s epistemic state. We do

not know from the lexical material whether the number is large for Joe, the vege-

tarian, or Joe, the meat-lover, for example. Moreover, the sentence itself does not

state whether Joe is compared to other guests at the party ( he ate more than

most other guests) or whether the recent barbecue is compared to previous events

( he ate more than at most earlier times). What sentence (79) expresses, however,

is that the speaker knows that Joe participated in a barbecue, excluding at least

those epistemic states from Figure 2.3 in which Joe went to a burger restaurant, for

example.

Furthermore, the listener’s inference of the speaker’s epistemic state can be in-

fluenced by the information structure of the sentence, as exemplified by the contrast

between (44) and (50) (repeated from above, see Sections 2.1.3, 2.2.1 and 2.2.2),

suggesting that the associate of POS can be focus/contrastive topic-marked.

(44) JoeF/CT ate few burgers.

(50) Joe ate many burgersF/CT .

In these examples, the speaker gives a hint of what exactly she compares the number

of burgers eaten by Joe with, by focus/contrastive topic marking a constituent. Did

she compare Joe to other guests, or burgers to other types of food? Note, however,

that prosodic information is only a weak cue because it is easy to misperceive (if

spoken). The same intonational contour can mark different focus/contrastive topic

structures and focus/contrastive topic marking can have reasons other than signaling

PE. For example,

(80) a. Few of the faculty children had a good time.

b. No! Few of the faculty children had a badF time.

Another option, which we want to pursue for now, is that the speaker com-

pares the number of burgers actually eaten by Joe to the number of burgers Joe

is or could have been expected to eat. Such an intensional comparison class sug-

gests itself to explain surprise readings, which compare the degrees described by a

gradable predicate with expectations about the degree. A comparison between the
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number of burgers eaten by Joe in (79) and prior expectations about his burger con-

sumption can be formalized as comparing the probability of sets of possible worlds.

Further evidence for an intensional comparison class comes from examples like the

lawyers-women scenario in (75) (repeated from above), for which a comparison class

containing individuals does not provide the correct truth conditions.

(75) a. Imagine a conference of lawyers and policemen where normally 60 lawyers

and 40 policemen attend. Also, on average, only 10 attendants are

women. This year, there are only 20 lawyers, but a staggering 80 po-

licemen. Strikingly, all the lawyers happen to be women and all the

policemen are men. (Nouwen, 2010, 238)

b. Many lawyers attend the meeting this year.

c. Many women attended the meeting this year.

All of these cues in the linguistic material can influence how the listener infers

the speaker’s epistemic state. In the following, we want to dive further into the

semantics. Even though we have seen that the information present in the sentence

is not sufficient to identify a single candidate for the contextually free variable PE,

it certainly restricts the set of candidates. This is why we consider a compositional

derivation of intensional comparison classes an important next step in bridging the

gap between a compositional semantic analysis of the sentence and prior expec-

tations, which are essential input for Fernando and Kamp’s (1996) derivation of

threshold values.

2.4.2 Compositional Derivation of Comparison Classes and

Formalization of PE

Even though PE might not be fully specified by the sentence, the set of candidates is

considerably restricted by the linguistic material. For example, the topic of sentence

(79) is the consumption of burgers and it is far off to compare the number of burgers

eaten by Joe with the number of books in the library. For this reason, the composi-

tional analysis of a sentence with a context-dependent expression is a good starting

point when its comparison class is to be determined. The biggest challenge will be

to formally derive prior expectations while taking the sentence’s comparison classes

into account. To be clear about the terminology, we will use comparison class to

refer to the set of focus/contrastive topic alternatives as proposed by Romero (2015,

2017). This set as we understand it here does not immediately fix threshold values,

in contrast to e.g. Solt’s (2011a) use of the term.

As demonstrated in Sections 2.2.1 and 2.2.2, focus-marking on Joe can be inter-

preted to derive an extensional comparison class over alternative individuals.
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(44) JoeF/CT ate many burgers.

(81) JCK ⊆ {λd. | {x : *burgers(x)} ∩ {x : Joe ate x} | ≥ d,

. λd. | {x : *burgers(x)} ∩ {x : Max ate x} | ≥ d,

. λd. | {x : *burgers(x)} ∩ {x : Sue ate x} | ≥ d, ...}

This comparison class triggers intuitive truth conditions requiring that Joe ate more

burgers than most other relevant individuals. Note, however, that input into the

CFK-semantics is a probability distribution over cardinalities. A distribution which

can be calculated directly from an extensional comparison class is a frequency distri-

bution, resulting from summing up those individuals whose set of degrees in JCK has

the same maximal degree. This distribution is then normalized to sum up to 1 to

become a probability distribution. In the burger example, the probability assigned

to a degree (i.e. cardinality) is just the normalized count (i.e. the proportion) of

guests who have eaten this cardinality of burgers. Thus obtaining a probability

distribution from a comparison class in (81) is mathematically possible and could

provide the correct truth conditions for a case in which the speaker knows the num-

ber of burgers eaten by every guest at the party. This comparison class, cannot,

however, account for subjective beliefs and expectations. Moreover, if extensional

focus alternatives were all that matters for the inference of PE, we would run into

problems especially in the case where there are very few alternatives. If there were

only two alternatives to Joe (i.e. two other people at the barbecue), we only ever get

three cardinalities. The construction of PE as a frequency distribution would give

us equal probability for these three cardinalities and zero probability for all others.

For three guests at the barbecue and θmany > 0.67 the sentence “JoeF ate many

burgers” would be true if Joe ate most of all, independent of what this number may

be. This does not always have to be the case.

If (79) (for now without overt focus) is interpreted as comparing Joe’s burger

consumption to beliefs about his individual burger eating habits or to beliefs about

burger consumption in the overall population, the comparison class in (81) is not

sufficient; an intensional one is necessary, as already pointed out by Romero (2017).

We assume (and will show experimentally in the following chapters) that the most

salient reading of few and many in sentences like (79) is the surprise reading, which

interacts closely with subjective prior beliefs about the context. For this reason, we

suggest to employ alternative possible worlds in the formalization of every surprise

reading of few and many, independently of overt focus marking as in (44).

To achieve our goal of formalizing beliefs with an intensional semantic account

of the sentence and to formalize the inference of PE, some more effort has to be

put into modifying the positive operator POS, which will be given more semantic

and pragmatic power. Traditionally, POS serves to infer a value assignment for the
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ti
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Figure 2.4: Visualization of the semantic (rectangles) and pragmatic (circles) com-
ponents of the intensional degree operator POSsurp in (87)

free degree variable introduced by a gradable adjective or, in our case, a quantity

word (Schwarz, 2010; Hohaus, 2015). We build on this role assigned to POS and

expand its influence. So far, the version in (29) does not specify how exactly PE

or the neutral interval interact with the sentence meaning. POS takes as its first

argument a comparison class C, which is input to the function L. L returns the so-

called neutral interval Ns = L(JCK) of the comparison class. But in which way C is

influenced by prior expectations and how exactly the neutral interval is determined

is not spelled out in (29).

(29) JPOSK = λC〈dt, t〉.λD〈dt, t〉.L〈〈dt, t〉, 〈d, t〉〉(C) ⊆ D

In the following, we propose an intensional degree operator POSsurp with a dox-

astic modal base. In this respect, POSsurp has interesting parallels with Meier’s

(2003) semantic proposal for too and enough. In order to connect our proposal for

a “surprise-reading version” of POS with the discussion in the previous section and

with Figure 2.3, let us start at the pragmatic level. The epistemic state ti held

by the speaker and inferred by the listener is a rich representation of beliefs about

the world which incorporates all sorts of causal and epistemic dependencies. In a

conversation, however, we are only concerned with those aspects of the world which

are relevant for the evaluation of the recent utterance. These relevant aspects are

focused by the question under discussion (QUD) (Roberts, 1996). We take it that

the QUD is represented by an intensional comparison class W brought forward by

the compositional analysis of the sentence. POSsurp introduces alternative possible

worlds to the world variable w0 in the intensionalized set of degrees which it takes

as its argument, parallel to the Romero-style extensional comparison classes. This

intensional comparison class W, is a set of properties of degrees which are linked to

worlds compatible with Doxti(w0), the beliefs held in the epistemic state ti. W is the

minimal semantic contribution necessary to derive PE. In order to now systemati-

cally derive PE from ti while taking W into account, we introduce a free pragmatic
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variable into POSsurp, the measure function µ. µ measures our beliefs given ti,

by assigning the worlds in Doxti(w0) a probability, resulting in PE. While being a

representation of ti, µ is more coarse-grained since it only takes into account those

aspects of ti which are specified by W. The listener will infer µ and possibly ti from

the utterance, but once she has done this, PE is fully determined by µ and W. From

PE, POSsurp calculates xmax and xmin via θfew and θmany. Find the components of

POSsurp visualized in Figure 2.4.

In the following, our proposal will be explained in detail by deriving the surprise

reading of the sentence

(82) Joe ate many burgers.

The logical form for this sentence looks as follows6:

〈s, t〉 4

λw0 〈t〉

POSsurp

〈s, 〈〈s, 〈d, t〉〉, t〉〉
w0

〈s〉

〈s, 〈d, t〉〉 3

λw2 〈d, t〉

λd1 〈t〉

〈et, t〉 2

many

〈d, 〈et, 〈et, t〉〉〉
d1

〈d〉

burgers

〈e, t〉

〈e, t〉 1

λt3

Joe

〈e〉
ate

〈s, 〈e, 〈e, t〉〉〉
w2

〈s〉

t3

〈e〉

The first steps of the compositional analysis are given below:

(83) a. 1 = λx. Joe ate x in w2

b. JmanycardK = λdd.λP〈e, t〉.λQ〈e, t〉. |P ∩Q | ≥ d

c. 2 = λQ〈e, t〉. | {x : *burgers(x)} ∩Q | ≥ d1

d. 3 = λw.λd. | {x : x are burgers & Joe ate x in w} | ≥ d (=: D)

On the semantic side, the role of POS will be extended to derive the sentence’s

intensional comparison class W. W can be thought of as a QUD and determines

6We continue with POSsurp of a different type from (29) (〈s, 〈〈s, 〈d, t〉〉, t〉〉), see (87).
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what goes into PE. To derive W, POSsurp takes as its argument an intensionalized

set of degrees D and a world variable w0. In the present example, D contains the

intensionalized set of degrees corresponding to cardinalities of burgers eaten by Joe

in some world, as given in 3 in the LF and spelled out in (83d). The version of

POS we assume for the surprise reading then creates a set of sets of degrees by

applying D to the doxastic alternatives of the evaluation world w0. The result is

the sentence’s intensional comparison class W.

(84) W := {D(w) : w ∈ Doxti(w0)}
. = {λd′. | {x : x are burgers & Joe ate x in w} | ≥ d′ : w ∈ Doxti(w0)}

The introduction of intensions via POSsurp proceeds in a similar way to the introduc-

tion of extensional alternatives proposed by Romero (2015, 2017), and triggers a set

of alternative worlds. This set of alternative worlds is restricted by a conversational

background Doxti(w0), which is compatible with the speaker’s or listener’s beliefs in

the actual world w0 given their epistemic state ti. For several reasons, we assign the

introduction of alternative worlds to POSsurp and do not assume focus-marking on

the world variable, which would be even more parallel to the extensional case. First,

we believe that every surprise reading requires an intensional component to enable

the inference of prior beliefs. Second, a surprise reading can also be available when

overt focus marking as in (44) is present. Overt focus marking will be analyzed

“traditionally” in the composition. Below, we will elaborate on how the extensional

and the intensional alternatives interact to influence the derivation of PE. Third,

the association with prior expectations is not only driven by semantic, but rather by

pragmatic mechanisms. These are contributed by POSsurp as will be demonstrated

presently.

Once POSsurp has determined the intensional comparison class W, the next step

towards a probability distribution over cardinalities assumed to be performed by

POSsurp is to employ a probabilistic measure function µ to the worlds in Doxti(w0)

which are also linked to the properties made relevant by the QUD, as specified by W.

The proposal in (85) is a formalization of the reasoning process from an epistemic

state ti and an utterance triggering W to a probability distribution PE.

Note that it is crucially the intensional properties of degrees in W, see (84)

for an example, which determines what goes into PE. Among other things, W

greatly influences the probability distribution’s domain. As pointed out before, if

W contains sets of degrees related to burger eating, PE cannot express expectations

about the number of girlfriends Joe had before he got married7.

7For this reason, it is essential that W contains properties of degrees and not abstract degrees
(i.e. numbers).
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(85) µ : Doxti(w0) → [0, 1]

and PE(m) =
∑

w∈Sm
µ(w)

where Sm = {w : w ∈ Doxti(w0) & max(D(w)) = m} and m ∈ N

The measure function µ assigns each world in Doxti(w0) a probability between 0 and

1, resulting in the probability distribution PE. µ is constrained by the utterance,

however, in that its domain is restricted to those worlds which are linked to a

property of degrees as specified by W. The prior probability of a cardinality m

under PE is then the sum of µ applied to all doxastic alternatives to w0 whose

maximal degree in W is m. In our example, Joe would have eaten five burgers in

every world contained in S5. The prior probability of Joe eating five burgers, PE(5),

would be calculated by applying µ to all w ∈ Doxti(w0) which fulfill

(86) max(λd. | {x : x are burgers & Joe ate x in w} | ≥ d) = 5

and summing up their values. For simplicity we assume that the set Doxti(w0) is

finite8.

The final step in the derivation of the truth conditions is to determine the neutral

interval NS = [xmax, xmin] from the resulting PE following the CFK semantics in

(77). The context-independent threshold values θfew and θmany are applied to the

cumulative density mass of PE to determine xmax and xmin. If the sister of POSsurp,

the intensional set of degrees D as given in 3 , fully contains NS, the sentence is

predicted to be true. For the hypothetical prior distribution in PE in Figure 2.3

and a hypothetical value of θmany = 0.7, the sentence “Joe ate many burgers at the

barbecue” would be true if he ate four burgers or more.

In the following, we want to integrate all of these individual components into one

covert operator POSsurp, which can derive the surprise reading of few and many.

After that, we present the entire compositional analysis of our example sentence and

move on to apply the proposed version of POSsurp to a sentence with overt focus

marking.

(87) JPOSsurp
µ,ti K = λw0. λD〈s, 〈d, t〉〉 : NS = [xmax, xmin] and

. xmax = max{n :
∑n

m=0 PE(m) ≤ θfew} and

. xmin = min{n :
∑n

m=0 PE(m) ≥ θmany}
. for PE(m) =

∑
w∈Sm

µ(w) and m ∈ N
. and Sm = {w : w ∈ Doxti(w0) & max(D(w)) = m}
. NS ⊆ D(w0)

POSsurp predicts a sentence to be true iff the neutral interval NS is fully con-

tained in the set of degrees D denoted by the sentence. In the case of quantity

8Nothing hinges on this. For the infinite case, take a (Lebesgue-)integral instead of a sum and
require that µ satisfies the necessary properties for (Lebesgue-) integration.
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words, the boundaries of NS, xmax and xmin, are defined as the highest or lowest

number for which the cumulative density mass of the speaker’s prior expectations is

lower or higher than the threshold value θfew or θmany. Prior expectations, in turn,

are inferred via applying a measure function µ to the doxastic alternatives of w0

compatible with D, relative to ti
9. The result of applying µ to Doxti(w0) is the

probability distribution PE. µ and PE are constrained by the sentence’s intensional

comparison class W because µ’s domain is restricted to those worlds which are linked

to a property of degrees specified by W. The probability of a single cardinality m

is the sum of µ applied to all doxastic alternatives to w0 in Sm, those worlds whose

maximal degree in W = {D(w) : w ∈ Doxti(w0)} is m.

Taking all this together, we modified the positive operator to account for surprise

readings, to systematically calculate the neutral interval and to formally derive prior

expectations which are compatible with the sentence’s semantic contribution.

The compositional analysis of our example sentence “Joe ate many burgers” is

given below:

(88) a. 1 = λx. Joe ate x in w0

b. JmanycardK = λdd.λP〈e, t〉.λQ〈e, t〉. |P ∩Q | ≥ d

c. 2 = λQ〈e, t〉. | {x : *burgers(x)} ∩Q | ≥ d1

d. 3 = λw.λd. | {x : x are burgers & Joe ate x in w} | ≥ d =: D

e. W := {D(w) : w ∈ Doxti(w0)}
W : = {λd. | {x : x are burgers & Joe ate x in w} | ≥ d : w ∈ Doxti(w0)}

f. 4 = λw0. NS = [xmax, xmin] ⊆
. λd. | {x : x are burgers&Joe ate x in w0} | ≥ d

4 is only defined iff NS can be calculated from PE for the contextually

given, inferred or assumed µ

Next, we want to apply the developed account for surprise readings to sentences

with overt focus. In contrast to Romero’s (2015) purely extensional analysis, we

demonstrate how prior expectations can be systematically derived from both an

intensional and an extensional comparison class. Remember that one reason for

outsourcing the introduction of alternative worlds to POSsurp was to keep open the

possibility of having overt focus in the sentence, which can then be analyzed “conven-

tionally” with a semantics of focus interpretation, as we have seen in Section 2.2.1.

We assume the following LF for the sentence

(44) JoeF/CT ate many burgers.

9We add the subscripts µ and ti to POSsurp to indicate their status as free variables.
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〈s, t〉 5

λw0

POSsurp,F

〈s, 〈〈〈s, dt〉, t〉, 〈〈s, dt〉, t〉〉〉

w0

C

〈〈s, dt〉, t〉

〈s, 〈d, t〉〉 4

∼C 〈s, 〈d, t〉〉 3

λw2

λd1

〈et, t〉 2

many d1

burgers

〈e, t〉 1

λt3

JoeF

ate w2
t3

To be able to account for the surprise reading of (44), to systematically derive

PE and NS and to include an extensional comparison class C, we employ a version

of surprise-POS which has an argument slot for C: the focus-sensitive, intensional

degree modifier POSsurp,F .

(89) JPOSsurp,F
µ,ti K = λw0. λC〈〈s, dt〉, t〉. λD〈s, 〈d, t〉〉 : NS = [xmax, xmin] and

. xmax = max{n :
∑n

m=0 PE(m) ≤ θfew} and

. xmin = min{n :
∑n

m=0 PE(m) ≥ θmany}
. for PE(m) =

∑
w∈Sm

µ(w) and C(w0) ∼ PE and m ∈ N
. and Sm = {w : w ∈ Doxti(w0) & max(D(w)) = m}
. NS ⊆ D(w0)

The lexical entry for surprise-POS in a sentence carrying focus, POSsurp,F, is nearly

identical to (87)10 with the exception of taking as its first argument the covert

variable C (cf. Schwarz, 2010; Hohaus, 2015). C(w0) represents the sentence’s ex-

tensional comparison class and contains the sets of degrees corresponding to the

alternatives of the focus/topic-marked constituent in the sentence. The constraint

on PE introduced by C is that C(w0) has to be a likely sample of PE. C(w0) ∼ PE

is a mild pragmatic constraint for the listener’s inference of µ/ti. This means that

the underlying epistemic state ti requires PE to be compatible with the sentence’s

extensional comparison class triggered by focus/topic-marking. Focus-marking on

10The subscripts µ and ti are also added to POSsurp,F to indicate their status as free variables.
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Joe suggests a comparison between Joe and other guests at the barbecue and indi-

cates that a priori Joe was not considered to be different from the other guests in

terms of his burger eating habits. Consequently, PE is once more the link between

the hints in the linguistic material and the underlying epistemic state ti.

Find a compositional analysis of sentence (44) below:

(90) a. 1 = λx. Joe ate x in w0

b. JmanycardK = λdd.λP〈e, t〉.λQ〈e, t〉. |P ∩Q | ≥ d

c. 2 = λQ〈e, t〉. | {x : *burgers(x)} ∩Q | ≥ d1

d. 3 = λw.λd. | {x : x are burgers & Joe ate x in w} | ≥ d =: D

e. W := {D(w) : w ∈ Doxti(w0)}
W : = {λd. | {x : x are burgers & Joe ate x in w} | ≥ d : w ∈ Doxti(w0)}

f. 4 is defined iff

JCK ⊆ {λw.λd. | {x : x are burgers & Joe ate x in w} | ≥ d,

. λw.λd. | {x : x are burgers & Max ate x in w} | ≥ d,

. λw.λd. | {x : x are burgers & Sue ate x in w} | ≥ d, ...}
g. 5 = λw0. NS = [xmax, xmin] ⊆

. λd. | {x : x are burgers & Joe ate x in w0} | ≥ d

5 is only defined iff NS can be calculated from PE for the contextually

given, inferred or assumed µ

This formal semantic account of the concept of prior expectations takes the sen-

tence’s extensional comparison class C as input, but allows for a “moderately radi-

cal” influence of the pragmatics by including subjective beliefs via an independent,

intensional comparison class W, which functions like a QUD.

2.4.3 Discussion

In this section, we proposed a modified version of the positive operator POS. With

POSsurp we are able to account for surprise readings of few and many. This operator

derives prior expectations which are compatible with the sentence’s semantic contri-

bution in a systematic way and calculates the neutral interval from them. However,

there are several issues with the presented modification of POSsurp that still need

to be addressed. Not all of them can be answered in detail in the scope of this

dissertation though.

The first is how exactly the reasoning process of speaker and listener really takes

place when producing or interpreting utterances based on prior expectations PE.

Which information is taken into account and how do we get from an epistemic state

to the prior distribution PE? And how much of this is part of the semantics? This

is directly related to the question of which aspects influence the inference of the
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measure function, the free variable µ. Moreover, what happens if several epistemic

states are equally likely given the listener’s inference and world knowledge? We

have sketched a rough idea here, but future work with contributions from cognitive

science, philosophy of mind and psycholinguistics is required to test the presented

idea and factors influencing expectations in general.

Second, the surprise version of POS in (87) assumes that POSsurp takes as its

argument its sister D of type 〈s, 〈d, t〉〉. We intensionalized the property of degrees

to be also able to account for sentences which contain more than one world variable.

It would be prudent to investigate more closely in future work whether we run into

compositional problems when dealing with sentences containing other intensional

operators like modals or too. An example of a sentence containing a modal would

be

(91) Many people want to go to Paris.

λw0

POSsurp w0

λw2

λd1

many d1

people

want w2
λw3

PRO
go-to-Paris w3

As far as we can tell now, constructing the intensional comparison class via argument

insertion into D should prevent problems with different scope configurations. This

should be confirmed with more data though.

Third, the version of POS in (87) is inspired by the idea of the CFK semantics

that few and many can express surprise readings, comparing the actual degree to ex-

pected degrees. A question that suggests itself is whether this assumption transfers

to gradable adjectives as well. At first thought, it is not implausible that gradable

adjectives draw on prior expectations. Nevertheless, to what extent gradable adjec-

tives express surprise should be investigated more carefully. This also brings up the

open questions of why there are different versions of POS and how they are related.

Similarly, it is not clear whether all readings of few and many are surprise readings.

An area of future research should be to investigate if there are cases which are not

dependent on prior expectations and how to account for them. Barker (2002) claims
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that gradable expressions can have more than descriptive uses. He suggests that a

sentence like “Feynman is tall” can also have a metalinguistic use giving “guidance

concerning what the prevailing relevant standard for tallness happens to be in our

community” (Barker, 2002, 2). Whether this use of gradable adjectives really cannot

be analyzed on the basis of prior expectations requires a more thorough reflection.

Another comment in relation to POSsurp is whether the mechanism of restricting

the context relative to the speaker’s or listener’s epistemic state is not also applied

elsewhere. It would only be economical if language transferred the strategy of deal-

ing with context-dependence to other phenomena. An example would be nominal

genericity. The domain of the universal quantifier every needs to be restricted to

match the context of the utterance11.

(92) Every student managed to explain the semantics of the definite determiner.

This sentence probably does not express that every student in our universe has some

knowledge in formal semantics. Instead, the sentence would rather be interpreted

as conveying that every student in some relevant course managed to explain the

semantics of the definite determiner, even though this is not explicitly stated in the

sentence. It would be interesting to further investigate possible parallels between

POSsurp and the universal quantifier.

Last, Fernando and Kamp’s (1996) theory is not the only one making predictions

about the calculation of threshold values. Lassiter and Goodman (2015) defend a

pragmatic approach whereas Qing and Franke (2014a) opt for an explanation based

on evolutionary linguistics and optimal language use. The presented semantics of

POSsurp in (87) only incorporates the CFK semantics and does not take into account

competing theories. Which theory eventually makes the correct predictions of how

speakers and listeners use context-dependent adjectives and quantity words will

have to be tested experimentally. In the following chapters, we make a start on this

undertaking by investigating the predictions of the CFK semantics for the surprise

reading of cardinal and proportional few and many.

11Thanks to Vera Hohaus for pointing this out to me.
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Chapter 3

Psychological Studies on few and

many

In the previous chapter, an overview over the many readings of few and many was

provided, accompanied by several semantic theories of how to account for them.

After this rather theoretical introduction, we now want to make use of the concepts

and terminology presented above and delve into experimental data about how few

and many are used.

Section 2.3 introduced semantic theory by Fernando and Kamp (1996), which

connects the meaning of few and many with expectations of the context. We called

it the CFK semantics and a main part of this dissertation sets out to experimentally

test its predictions. Before we start this venture, however, it is wise to be famil-

iar with previous experiments on the context-dependence of few and many and,

in particular, on their interaction with prior expectations. This chapter presents

representative psychological work in this area.

Section 3.1 introduces a hypothesis by Clark (1991), which suggests to represent

prior expectations as a probability distribution on which few and many impose

a threshold. This idea was then picked up by Fernando and Kamp (1996), who

develop it into a formal semantic account as described in the previous chapter. A

large body of work produced by Moxey and Sanford is summarized in Section 3.2.

They also identify prior expectations of the contexts as a factor which influences

the use and interpretation of few and many. Newstead and Coventry (2000) and

Coventry et al. (2005, 2010) point out expectations as a possible source of variation

in the use of quantity words, too, but they explain subjects’ behavior in terms of

other factors such as visual cues. Their experiments on few and many are presented

in Section 3.3. In Section 5.1 we replicate one of their experiments and show that

the various visual factors with which they explain their findings can be summarized

into the single factor prior expectations.
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3.1 Early Work on the Context-Dependence of

few and many

Early work on quantity words1 at the interface of psychology and linguistics was

conducted by Hörmann (1983) and Clark (1991). Both investigate the effects of

the context on context-dependent expressions. Clark (1991) tentatively suggests an

intuitive semantics for few and many. Clark, citing Hörmann (1983), argues that

it is impossible to provide a dictionary theory for few and many. A dictionary the-

ory would assume that the meaning of a word can be listed as a “a brief, partial

description of some aspect of the world... every word has a lexical entry in memory

that pairs a phonological shape, like ’dog’, with a conventional meaning, like ’canine

animal” (Clark, 1991, 264). For the meanings of few and many, Clark (1991) argues,

it is impossible to come up with a short or even a finite list of denotations because

conditions of use and interpretations vary highly between different situations. Vari-

ation is, for example, triggered by the physical size of the discussed objects which

clearly influences how people judge possible amounts and estimate corresponding

numbers (Hörmann, 1983). For example, “many people in front of the city hall” is

interpreted as a larger cardinality than “many people in front of a hut” and “many

bread crumbs” is interpreted to be more than “many mountains”. This is the first

time that the concept of prior expectations was mentioned in connection with few

and many. Another problematic issue of a dictionary theory is that the numeri-

cal denotations of few and many are not “really fixed for each item on the list”

(Clark, 1991, 270). As an alternative to a dictionary theory, Clark suggests that,

e.g., few could rather be taken to denote “the 25th percentile (range: 10th to 40th

percentile) on the distribution of items inferred possible in [the current] situation”

(Clark, 1991, 271). The idea that a quantity word can be understood as denoting a

simple function which takes a context-dependent value was taken up and formally

spelled out by Fernando and Kamp (1996), see Section 2.3. The semantic account

will be tested experimentally in the following chapters.

3.2 Influence of the Context and Expectations

A vast body of research on the use of few and many has been produced by Moxey and

Sanford. They have not only investigated whether the meanings of quantifiers can be

1Chapter 2 introduces the linguistic background of few and many and discusses the controversy
of how to classify them semantically. To remain non-committal, few and many are labeled “quan-
tity words” in the remainder of this dissertation. In this chapter, though, the term “quantifier”
will be used occasionally for consistency with the literature discussed. “Quantifier” is the common
label of few and many in the psychological literature and they are often examined on par with
other quantifiers like a few, several or lots of.
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mapped onto a scale but also which extralinguistic knowledge they communicate. A

word-to-scale mapping account of quantifier meaning assumes that “a mapping will

hold between a distribution of numbers and a natural language quantifier” (Moxey

and Sanford, 2000, 239-240). Even though this idea might seem appealing and

intuitive at first sight, Moxey and Sanford (2000) argue against a rigid quantifier-

to-number mapping and point out several problems. First, it is not possible to

map the large number of quantity expressions onto a scale in a distinct way. In

a study of ten quantifiers, Moxey and Sanford (1993) asked participants in a one-

shot experiment to assign a number to a single quantifier chosen randomly from

the data set. “Several quantifiers were simply not distinguishable from one another

(a few, only a few, not many, few, and very few)”. Second, there is convincing

evidence against a stable, context-independent linking function between quantifier

meaning and the cardinality scale since “values assigned by participants depend

upon context” (Moxey and Sanford, 2000, 241). Plenty of examples of few and

many ’s context-dependence are given in the course of this dissertation.

Furthermore, a quantifier-to-number mapping account cannot capture that few

and many express more than just a reference to a number or an interval on a scale.

One core finding of Sanford et al. (1994) is that “quantifiers may be differentiated in

terms of the patterns of focus which they produce”2 (Sanford et al., 1994, 153). The

example below shows that even when a few and few make reference to the same num-

ber, the difference in focus means that the sentence endings are not interchangeable

(cf. Moxey, 2006, 423).

(93) Context: 5 out of 60 passengers were killed in an accident.

a. A few of the passengers were killed in the accident, which is awful.

b. Few of the passengers were killed in the accident, which is good news.

Many and a few, being “positive quantifier”, typically make reference to the set

whose cardinality is described and made reference to. This set is calles the reference

set.

(94) Many of the football fans went to the match. They cheered loudly when the

player scored.

Here, the pronoun they describes the reference set, the fans present at the match.

The reference set is made salient by many.

Few, however, behaves differently from many being a “negative quantifier”. Few

expresses negation (cf. Heim, 2006) and thus is downward monotone and licenses

negative polarity items (cf. Sanford et al., 1994, 157). Another interesting property

2The term “focus” is used here to mark the set that is made salient by the utterance, not in the
sense of a prosodically marked constituent which triggers semantic alternatives (cf. Rooth, 1985).
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that Sanford et al. (1994) investigate is that negative quantifiers can activate the

complement set (compset) of the cardinality they describe.

(95) Few of the football fans went to the match. They watched the match at

home instead.

They does not refer to the entities quantified over by few, the football fans present at

the match. Instead, their complement set is activated: the fans who are not present.

Moxey and Sanford (1987) confirm these observations experimentally. They asked

participants in an experiment to continue sentences like

(96) Few of the football fans were at the match. They...

Negative quantifiers like not all, not very many, not many, few, very few, hardly

any turned out to be complement set licensing in most cases. This means that

they “can put focus on those As which are not Bs” (Sanford et al., 1994, 158). In

the study, participants used to make reference to the set of fans who were not at

the match and gave reasons for their absence, for example. Positive quantifiers like

nearly all, many, some, a few rather make reference to the reference set, those As

which are Bs. These interesting findings are further investigated by Moxey (2006),

see below. We will pick up these results in Section 6.7 where we discuss the effect

which surprisingly has on many but not on few.

Another study presented by Moxey and Sanford (1993) examined whether the

choice of a positive or a negative quantifier expresses more than just the quantity

and the reference set. Instead, few “might signal that the speaker’s prior beliefs

were to the effect that he expected more to be the case” (Sanford et al., 1994,

162). Subjects were presented with a quantified statement in a dialogue and were

asked about the beliefs of the speaker and the listener. The experiment showed that

negative quantifiers like very few, few, not many were associated with the listener

believing that the speaker had expected more than turned out to be the case. In

contrast, for the positive quantifier a few this did not hold. Moxey and Sanford

take away from their studies that “quantifiers may convey information about the

speaker’s beliefs as well as about the current situation” (Sanford et al., 1994, 164).

These experimental results constitute evidence for making the semantics of few and

many dependent on prior expectations, as suggested in Section 2.3.

Moxey (2006) follows up on Moxey and Sanford (1993) and Sanford et al. (1994)

and ascribes an even bigger role to prior expectations. Even though few and many

are lexically different in terms of whether they express negation and are thus down-

ward monotone, this is not the reason why few is complement set licensing and

many is not. The claim is that complement set licensing is not a general lexical fea-

ture of negative quantifiers but triggered by unfulfilled expectations. Moxey (2006)

proposes that negative quantity words like few “indicate an amount while at the
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same time denying that this amount is as large as a supposed amount” (Moxey,

2006, 424). The difference between what was expected and what is fact is called

the shortfall. Complement set focus occurs when there is a shortfall between the

cardinality that was expected and the actual cardinality. “Focus on the shortfall

leads to compset reference, and in fact this defines the complement set” (Moxey,

2006, 424). In a continuation task similar to the one presented in (96), participants’

expectations were manipulated by describing that a character expected that a prop-

erty holds for none or all objects or people in the context. The actual amount was

described by several quantity expressions, for example few and a few. Then it was

analyzed what the sentence continuation made reference to.

(97) Jill expected [none | all] of the glasses to be washed.

[Few | a few] of them were clean.

They...

The experiment confirms the hypothesis that complement set reference occurs when

there is a shortfall. Few does not always refer to the complement set, only when

the expressed cardinality is lower than expected. Moreover, positive quantifiers like

a few can refer to the complement set when it is salient enough in the context.

We interpret these experiments to show that complement set focus occurs when

the described cardinality is lower than expected whereas reference set focus is fa-

cilitated when the described quantity is higher than expected. However, it is not

easy to draw further conclusions about few or many and their interaction with prior

expectations from these results. First of all, many was not tested experimentally.

Next, the expectations triggered by contexts like (97) affect the referents of other

quantity expressions like less than three just as much, even though these quantifiers

are not attributed to express surprise readings. Furthermore, although few does

not make reference to the complement set in every case, this result does not speak

against the CFK semantics. We argue against concluding that reference to the refer-

ence set for few suggests that it might express “more than expected” or that it does

not relate to expectations at all. In contrast, we rather think, that few in Moxey’s

(2006) test sentences sounds at least marked which triggered the reference set and

that participants used repair strategy. An example sentence from Moxey’s (2006)

data set is given below:

(98) Mrs. Smith expected none of the children to finish the essay.

Few of them completed the work.

They...

We think that a few would be a much more natural choice than few in such a context

and that participants might have accommodated the sentence by replacing few with

a better alternative. This suspicion would have to be confirmed experimentally.
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(a) small balls, large container (b) large balls, large container

(c) large balls, small container
(d) large balls, small tilted container

Figure 3.1: Stimuli from the replication of Newstead and Coventry’s (2000) Super-
bowl study

To sum up, while investigating interesting properties of few and many, Moxey

and Sanford identify prior expectations as a crucial factor for the meaning and use of

few and many. That expectations play a role in linguistic experiments also supports

the main objective of this dissertation: that it is worthwhile to experimentally test

a theory like the CFK semantics, which is based on elusive concepts like prior ex-

pectations. Recent experimental methodology and a computational model as tools

to approach this challenging task are presented in Chapter 5. Moreover, Moxey

and Sanford’s experiments also show that expectations can be manipulated experi-

mentally. This methodology will be employed in Section 5.1 to challenge the claims

made by Newstead and Coventry (2000) about the influence of visual clues (see next

section) and in Chapter 7 in order to test the context-dependence of proportional

few and many.

3.3 Subtle Effects of Visual Presentation

A series of studies on the influence of contextual and visual factors on the accept-

ability of vague quantifiers was conducted by Newstead and Coventry (2000) and

Coventry et al. (2005, 2010). They found that the size and number of the objects

described, the size of their container, position of the container, grouping and spacing

of the objects as well as the number and properties of distracting objects influence

how context-dependent quantifiers are rated in a judgment tast. They suggest that

not only the actual number of objects matters but also their expected frequency.

The goal of Newstead and Coventry (2000) is to investigate the role of the phys-

ical properties size and functionality in the interpretation of the quantifiers a few,

few, several, many and lots of. Few and a few are labeled as low magnitude quan-

tifiers, many and lots of as high magnitude quantifiers. Participants saw images
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of balls of varying size and number in a bowl of varying size and position as in

Figure 3.1. The participants were then presented with sentences of the form “There

are [quantifier] balls in the bowl” and asked to rate on a 7-point scale whether the

statement is a good description of the image. The rating scale ranged from 1 (to-

tally inappropriate) to 7 (totally appropriate). Newstead and Coventry (2000) found

that, as expected, the number of balls had a significant effect on the ratings but that

also their size had an effect: “Identical numbers of balls were given different ratings

depending on ball size” (Newstead and Coventry, 2000, 243). Furthermore, the con-

tainer made a difference. Small balls appear relative large in a small container and

consequently the low magnitude quantifiers a few and few were rated lower. The

authors suggest that this is due to the relative size of the balls. “What matters is

how much space they take up of the container in which they are held” (Newstead

and Coventry, 2000, 255).

Interestingly, even the position of the bowl has an effect. When a bowl which is

filled with a high number of large balls, so many that they reach above the bowl’s

edge, was tilted, high magnitude quantifiers are rated higher than when the bowl

is in its normal position. This is the case despite the fact that the balls look as

though they should be falling out of the tilted bowl, see Figure 5.1d. The authors

ascribe the higher ratings in this case to the fact that such a tilted bowl must be a

“Superbowl” because the balls do not fall out. The authors conclude that this list of

context effects indicates that quantifiers “carry little specific meaning in themselves

but instead derive their meaning from the context in which they occur” (Newstead

and Coventry, 2000, 243).

What we take to be the most striking explanation of all of these effects but

what the authors do not pursue any further is whether “functionality reduces to

the same thing as expected frequency” (Newstead and Coventry, 2000, 256). They

suggest, just as we will do in Section 5.1, that the size of the bowl, its position and

the size of the balls raises expectations about how many balls the bowl can hold.

This is also how the surprise-based semantics by Fernando and Kamp (1996) (see

Section 2.3) would explain these effects, but Newstead and Coventry (2000) dismiss

the idea because it is “not entirely clear which way these expectations would work.

For example, does the fact that a bowl is overflowing but the balls are still intact

lead to a higher or lower expected frequency” (Newstead and Coventry, 2000, 256).

In Section 5.1 we will explicitly address the relationship between expectations

and subjects’ ratings in an experimental setup as in Figure 3.1 and replicate New-

stead and Coventry’s (2000) experiment.

Other effects of visually presented material are investigated by Coventry et al.

(2005, 2010). Visual stimuli containing varying numbers of striped and white fish

are presented by Coventry et al. (2005). The fish are either grouped or mixed and
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Figure 3.2: Example images from Coventry et al. (2005) with varying numbers of
striped and white fish, varied spacing and grouping

the numbers of both striped and white fish differ. After having seen the image,

participants are asked to rate sentences of the form

(99) There are [quantifier] striped/white fish.

with the quantifiers a few, few, several, many and lots of and a random choice of the

color of the fish on a scale from 1 (totally inappropriate) to 7 (totally appropriate).

As expected, the number of fish on the display is a significant predictor of the

appropriateness ratings. Additionally, the authors claim to have uncovered “three

new effects on both quantifier rating and number judgements” (Coventry et al.,

2005, 510). Both spacing and grouping of the objects in the scene affect quantifier

ratings and number judgement, but “only when the number of focus objects rises

above the subitizing region” (Coventry et al., 2005, 511). The subitizing region is

the number of visually displayed objects that humans can immediately recognize

without having to count them. Usually humans are able to subitize sets of the size

of up to four (cf. Dehaene, 2011). In the mixed scenes (i.e. when striped and white

fish are not grouped together), low magnitude quantifiers are rated higher and high

magnitude quantifiers are rated lower. This suggests that participants estimated

the reference set to be smaller when the grouping was mixed (see Figure 3.2), which

was confirmed by the number estimation task. Also the factor spacing interacted
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Figure 3.3: Example images from Coventry et al. (2010) with varying numbers of
men and distractor objects. Distractors were manipulated in terms of form and
function.

with the ratings of the quantifiers, but mainly for high magnitude quantifiers and

at least nine objects in the display.

The authors interpret these results as a “correspondence between estimates of

numbers of objects in a scene and context effects for quantifiers” (Coventry et al.,

2005, 511). We are in line with the authors here that “knowing how many objects

are in a set affects the likelihood that a certain number of objects from that set is

present”. What the authors do not discuss, however, is that the number of distrac-

tor objects (white fish if the quantified statement describes striped fish) is a main

factor when the listener interprets the quantifiers proportionally. Even though the

statements in (99) use the quantifiers cardinally, a proportional reading is plausible

when the set size is explicitly fixed by the number of focused and distracting objects.

Consequently, the effect of the total number of fish should be obvious.

Coventry et al. (2010) further investigate the influence of distractor objects in a

visual display on the ratings of the quantifiers a few, few, several, many and lots of.

In their experiment images of a varying number of men playing golf are presented.

Coventry et al. (2010) manipulate whether the men are presented in isolation or

whether a number of other objects is shown in the same display. The numbers of

both focus and distractor objects are chosen from the set {3,6,9,12,15,18}. The

distractor objects are of the same or a different species (women vs. crocodiles) and

of the same or a different function (playing gold vs. not playing golf). Sample
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stimuli are displayed in Figure (3.3). The images are described by sentences of the

form

(100) There are [a few | few | several | many | lots of] men playing golf.

Participants were asked to rate how appropriate a description of each of the

five sentences is (each with one of the five quantifiers) on a scale from 1 (totally

inappropriate) to 7 (totally appropriate). The authors claim that “the number of

objects in a scene impacts upon quantifiers judgments even when those objects are

in a different category to the focus objects” (Coventry et al., 2010, 221). They link

their findings to the mapping between approximate number system and language.

However, the authors do not mention the possibility of a proportional interpretation

of the quantifiers. We claim that presenting the objects as a group makes it natural

to focus on their entirety. This, in turn, makes a proportional reading salient,

although the quantifiers are presented in there-existentials. In this case, it is not

surprising that the total number of objects in the display has an effect.

In their experiment, Coventry et al. found a main effect of quantifier and a signif-

icant interaction between quantifier and number, just as expected. Consistent with

results in Coventry et al. (2005), the quantifier also interacted with the number of

distractor objects. “Low magnitude quantifiers are rated as being more appropriate

in the presence of larger numbers of other objects, and vice versa for high magnitude

quantifiers” (Coventry et al., 2010, 231). Interaction with species and function did

not reach significance.

Again, we argue against ascribing too much importance to visual cues since their

influence can be subsumed under a smaller number of more general factors. Further-

more, we once more point out that Coventry et al.’s (2005) results indicate that the

subjects interpreted the quantifiers proportionally. Even though the quantifiers are

presented in there-existentials, the display makes the total amount of objects salient.

This set size can be used as a standard of comparison for the cardinal reading but

it certainly also facilitates a proportional interpretation. Speakers make use of this

salient information and are likely to have interpreted the quantifiers proportionally.

Coventry et al. (2010) once more do not draw this conclusion.

The possibility of a proportional reading brings up plans for follow-up studies.

The test sentences could be phrased to make this reading salient by using a partitive

construction.

(101) [A few | few | several | many | lots] of the men are playing golf.

Note that the quantifier lots of was used with this construction already in the orig-

inal study, further strengthening our suspicions. When the factor number (the total

number of objects as well as the number of distractor objects) influences the ratings
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to the same extent, this would constitute evidence that also the there-existentials

were interpreted proportionally. This result would be particularly interesting be-

cause it has been claimed that there-existentials force cardinal readings (Partee,

1989). Future studies on how the context can overcome this requirement and enable

proportional reading anyway are therefore recommended. Apart from visual cues,

we suggest that the focus structure of the sentence can help facilitate the shift in

readings. Focusing a constituent that points out a difference between the described

objects (men vs. crocodiles, playing golf vs. not playing) marks the comparison class

and relevant alternatives. How the focus structure affects comparison classes was

demonstrated in the last chapter when presenting two analyses by Romero (2015,

2017).
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Chapter 4

Computational Modeling and

Bayesian Inference

In Section 2.3 the surprise-based CFK semantics was introduced. The CFK seman-

tics suggests that the lexical meaning of few and many comprises a function which

takes as input prior expectations of the context and cuts off their cumulative density

mass at a fixed percentage θfew or θmany. We have already pointed out the appeal

of this account: it makes concrete predictions of how to derive the threshold values

xmax and xmin in context and further proposes in which form contextual information

is integrated.

Nevertheless, it poses empirical problems. How should such a fixed threshold

theory and the predictions it makes be tested and verified or falsified, given that

few and many are inherently vague and context-dependent? A first complication is

that the theory is based on measures of surprise and prior expectations of contexts

which are not fully specified by the sentence. Consequently, there is uncertainty

about the exact comparison class and, depending on the speaker’s knowledge, also

uncertainty about its statistical properties. Prior expectations constitute subjective

beliefs and are not frequency distributions of objective facts. For this reason, we opt

to measure them experimentally and do not use objective statistics. Further detail

of the experimental procedure are given in Sections 5.4, 7.2 and 7.3.

Another issue that complicates testing the CFK semantics is how to investi-

gate the context-independent threshold parameters θfew and θmany. θfew and θmany

are parameters which operate on representations of subjective prior expectations

and thus determine threshold values xmax and xmin on a cardinality scale. It is ex-

ceedingly hard if not impossible to estimate the values of θfew and θmany based on

solitary introspection. And even if we did, how should these estimates be verified

in turn? Their values cannot be directly observed or measured in an experiment.

We suggest to treat θfew and θmany as latent parameters in a computational model

instead. Drawing conclusions from empirical data about values of latent variables
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in a computational model is relatively straightforward for probabilistic models in

concert with a Bayesian analysis. This is the path we trod here, as well. The basics

of Bayesian inference and computational modeling will be explained in this chapter,

mainly based on Kruschke (2011, 2014) and Lee and Wagenmakers (2013).

4.1 Terminology and Methods

Before we explain how the CFK semantics will be turned into a probabilistic model

of language use which predicts the production and interpretation of few and many

in Section 5.3, we take a step back and start by introducing relevant terminology

and concepts with simpler examples. In general, we are interested in empirical data

and the underlying processes which created and influenced it. Consider the following

example by Lee and Wagenmakers (2013): Assume that a student, Anna, is sitting a

test and has to answer 10 questions of equal difficulty. We want to estimate Anna’s

ability, which we define as the rate θ with which she answers questions correctly. θ

is not directly observable. We can only observe Anna’s score on the test (Lee and

Wagenmakers, 2013, 3). To establish a relationship between observation (the score

on the test) and its cause (the ability θ) we spell out a model. The term “model”

is used here as a mathematical description, typically involving probabilities. The

model formalizes the assumptions about exactly how the score on the test relates to

the unobservable ability. For example, we can assume that we are prepared equally

well for each question because all of them are about the same topic. P (D | θ) is

thus the probability that the observed data could be generated by the model with

parameter values θ.

So far we have not thought much about θ itself. Even though we do not know

Anna’s ability, we have some beliefs about it. First of all, θ can range from 0 to

1. We could believe that Anna is very smart and assign higher values of θ a high

probability. If we believe that she does not know much about the test’s topic, we

would find lower values more credible. But we could also not know anything about

Anna’s familiarity with the topic or about the difficulty level of the questions. In this

case “a reasonable ‘prior distribution’, denoted by P (θ), is one that assigns equal

probability to every value of θ between 0 and 1” (Lee and Wagenmakers, 2013, 3).

This uniform distribution which represents P (θ) is shown by the dotted horizontal

line in Figure 4.1.

Once the likelihood of the observed data given the model and parameter values

is specified as well as prior expectations of the parameter values, we can return to

our real objective: learn about which values of θ are credible given our observations.

After observing Anna’s score on the test we have modified beliefs. These so-called

posterior beliefs are computed after taking into account a particular set of observa-
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Figure 4.1: Example of a Bayesian parameter estimation from Lee and Wagenmakers
(2013): The curve shows the posterior belief in Anna’s ability θ, after observing 9
out of 10 correct responses. “The mode of the posterior distribution for θ is 0.9,
equal to the maximum likelihood estimate (MLE), and the 95% credible interval
extends from 0.59 to 0.98” (Lee and Wagenmakers, 2013, 3).

tions. The prior is simply the belief we hold by excluding a particular set of data,

whereas the posterior is the belief we hold by including the dataset (Kruschke, 2011,

13).

Bayesian inference is what gets us from prior to posterior beliefs. A mathematical

law called Bayes’ rule specifies how to combine the information from the data - the

likelihood P (D | θ) - with the information from the prior distribution P (θ) to arrive

at the updated, posterior distribution P (θ | D) (Lee and Wagenmakers, 2013, 3).

P (θ | D) =
P (D | θ) · P (θ)

P (D)
(4.1)

The equation is often verbalized as

posterior =
likelihood · prior

evidence
(4.2)

Bayes’ rule is a quite simple mathematical law that helps us to ‘reason back-

wards’. Since we cannot measure the values of latent parameters, we infer them

from the data they trigger. Via Bayesian inference, three goals can be obtained:
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Figure 4.2: Examples of 95% highest density intervals (HDI) from Kruschke (2014):
For each example, all the x values inside the interval have higher density than any
x value outside the interval, and the total mass of the points inside the interval is
95%. The 95% area includes the zone below the horizontal arrow and is shaded
in grey. The horizontal arrow indicates the width of the 95% HDI. The horizon-
tal arrow’s height marks the minimal density exceeded by all x values inside HDI
(Kruschke, 2014, 88).

first, we can estimate parameter values to learn about Anna’s ability or threshold

values in the lexical semantics of few and many. Second, we may want to predict

the probability of future data values, or, third, compare models which make dis-

tinct predictions about the same data generating process. Just as for parameter

estimation, we will employ Bayesian inference to compare several model variants in

Chapters 5 and 7.

Crucially, the posterior inferred via Bayes’ rule does not deliver one ‘true’ value

but another probability distribution over the parameter space. Since the prior dis-

tribution has been informed by the data, it is more peaked over the interval of

parameter values which increase the data’s likelihood. This is exemplified in Fig-

ure 4.1. To see more clearly which parameter values are most likely to have created

the data, the posterior distributions’ highest density interval (HDI) is easily calcu-
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lated. The HDI is a way of summarizing a belief distribution. It indicates which

points of a distribution we believe in most strongly. The HDI specifies an interval

which covers most of the distribution’s probability mass, for example 95% of it,

such that every point inside has a higher probability than any point outside the

interval (Kruschke, 2011). For an illustration look at Figure 4.2. Note that the

HDI does not necessarily have to be one connected interval, it can also consist of

several disjunct intervals, as can be seen in the bottom row of Figure 4.2. As a last

remark, uncertainty of beliefs can be measured by the width of the HDI. “If the

HDI is wide, then beliefs are uncertain. If the HDI is narrow, then beliefs are fairly

certain” (Kruschke, 2011). The HDI’s width and, correspondingly, the certainty of

our posterior beliefs P (θ | D) in a parameter value θ can also be dependent on the

size of the data set D with which we update the prior distribution P (θ). This point

will be taken up in another example below. In the present example, a 95% credible

interval of [0.75; 1.0] for the mean rating of Anna’s ability given that she answered

9 questions correctly would tell us that the model with its most likely parameters

predicts Anna’s test score to fall into this interval. The posterior’s 95% credible

interval is also marked in Figure 4.1.

Even though Bayes’ rule is quite simple and easy to prove, it poses practical

challenges. First of all, we need to specify our prior beliefs of the parameter values,

a reasonable prior probability distribution P (θ). “Bayesian analysis tells us how

much we should change our beliefs relative to our prior beliefs. Bayesian analysis

does not tell us what our prior beliefs should be” (Kruschke, 2011, 224). Sceptics

might argue that subjective beliefs manipulate the outcome of the data analysis to

a too large extent. But we do not see this as a problem if the prior beliefs are

made overt, are explicitly debated and consensual. The analysis will only convince

its audience, if it uses priors that the audience finds palatable (cf. Kruschke, 2011).

Often uniform prior distributions as in the exam example are employed.

Another practical problem is the exact mathematical calculation of the poste-

rior. This does not only involve spelling out a model which predicts the data’s

likelihood and specifying prior beliefs in the parameter values, but also determining

the denominator of Bayes’ formula. The evidence, P (D) is the “probability of the

data according to the model, determined by summing across all possible parameter

values weighted by the strength of the belief in those parameters” (Kruschke, 2011,

48).

P (D) =

∫
P (D | θ) · P (θ) dθ (4.3)
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The evidence P (D) is independent of θ and is a single number which normalizes the

posterior distribution to ensure that the area under its curve equals 1. Calculating

the value of the denominator in Equation 4.1 usually means computing a difficult

integral. This undertaking requires pure, analytical mathematics and can be difficult

to achieve even with the help of modern computers and algorithms which numerically

approximate the integral.

The analytical intractabilities have limited the scope of Bayesian parameter ob-

servation considerably, but they have now been overcome. The practicability of

Bayesian statistics has changed dramatically with the evolution and refinement of

computer-driven sampling methodology generally known as Markov Chain Monte

Carlo (MCMC). MCMC techniques estimate the posterior distribution by randomly

generating a high number of values from it. The approach is called a Monte Carlo

method by analogy to the random events occurring when gambling in a casino. All

that is required by this method is that for a specific value for a parameter θ, the

value of P (θ) is easily calculated, especially by a computer. The same must hold

for the likelihood P (D | θ) for any value of D and θ and the product of prior and

likelihood. “What the method produces for us is an approximation of the poste-

rior distribution P (θ | D), in the form of a large number of θ values sampled from

that distribution” (Kruschke, 2011, 98). This means that the posterior distribution

can be approximated without having to calculate the difficult integral which con-

stitutes the evidence P (D). Based on this large sample of parameter values, useful

characteristics of the posterior distribution, like its mean or credible region, can be

estimated. Samples of the posterior distribution are generated by taking a random

walk through the parameter space. A proposal distribution suggests a value for the

next sample of θ, which is accepted with a probability α which is in turn dependent

of whether the product of prior and likelihood is higher than for the previous sample

(Kruschke, 2011; Lee and Wagenmakers, 2013).

“Each individual sample depends only on the one that immediately preceded it,

and this is why the entire sequence of samples is called a chain. In more complex

models, it may take some time before a chain converges from its starting value to

what is called its stationary distribution” (Lee and Wagenmakers, 2013, 8f.). To

speed up the process and to not have a too fuzzy beginning of the chain, it is

common practice to run multiple chains, to discard the first samples (the burn-in

samples) from each chain and to not record every sample, but only every second or

third, for example. This is known as thinning (Lee and Wagenmakers, 2013).

With the processing power of computers constantly increasing, the “current

adage is that Bayesian models are limited only by the user’s imaginations” (Lee

and Wagenmakers, 2013, 7). This quote shows the community’s enthusiasm for

MCMC sampling, which is implemented user-friendly in JAGS (Plummer, 2003),
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Figure 4.3: Comparing the HDIs of PPC samples with actual data

for example, allowing Bayesian statistics to gain practical use. JAGS is a general

and versatile programing language for the specification of probabilistic models. It

delivers a sequence of MCMC samples from the posterior P (θ | D).

After having approximated a posterior distribution, it is wise to not simply

accept the model’s predictions, but to check that the model, with its most credible

parameter values, actually mimics the data reasonably well. This sanity check is

called a “posterior predictive check” (PPC) (Kruschke, 2014). The idea of this test

is to compare data predicted by the model with the actual data. Credible values

of the parameters θ are plugged into the model to randomly generate sample data

Dsample. This can be done particularly easy when using MCMC methods because

in every link in the chain, the just sampled value for θ can be used to predict what

data would look like according to the model. The results of this chain of simulations

Dsample can then be summarized by once more calculating the 95% most credible

predicted data values. Next, the predicted intervals are compared against the actual

data.

As a simple demonstration of how to evaluate a PPC, imagine that we want to

predict from a person’s age her proportional increase in body height per year. After

having specified a model (leaving aside the details for now) and having performed a

PPC, we compare the HDIs of the PPC samples Dsample with the actual data (pair

of age and proportional increase in body height). The hypothesized results of the
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simulations are presented in Figure 4.3. The dots in the figure are the (hypothesized)

actual data points. The vertical bars show the HDIs of the sampled data. Note that

even within the same data set, the length of these intervals can vary quite a lot (for

example, first vs. second vertical bar). By visual inspection of the graph, we can see

that the decreasing tendency in the actual data seems to be well described by the

predicted data and consequently by the model. However, two data points lie outside

the PPC’s HDIs, indicated by the red color of the vertical bars. Overall, the model

manages to predict 75% of the data correctly. This suggests that it would be wise

to contemplate alternative descriptive models. For example, the actual data might

have a nonlinear trend or be better predicted by a different family of distributions

(Kruschke, 2014).

This point leads us to the concept of Bayesian model comparison. It is often

the case that several competing theories make predictions about how a certain data

set was generated. And as we have seen in Figure 4.3, not every theory fits the

data well. To discriminate between two or more theories, we can turn them into

probabilistic models which predict the data generation process. By systematically

comparing how well each model fits the data set at hand, we can draw conclusions

about the validity of the theories. As a first measure we introduced the posterior

predictive check. Another measure of the model’s fit to the data which is easy

to compute based on the output of our MCMC sampling results is the so-called

deviance information criterion (DIC) (Spiegelhalter et al., 2002; Plummer, 2008).

The DIC may be conceived of as a Bayesian cousin of classical model-choice criteria,

in particular Akaike’s information criterion (AIC). Like the AIC, the DIC weighs

goodness of fit against the model’s complexity. Where the AIC looks at a maximum

likelihood fit for the model’s free parameters, the DIC considers the full posterior

distribution over these, given the data. A high value of the DIC indicates a lot of

deviance of the model’s predictions from the data it is applied to. This is undesirable,

of course. At the same time, the model should stay as concise as possible and not

include unnecessary parameters. This is measured by the pD, the number of effective

free parameters, a measure of model complexity. Higher values of pD suggest higher

model complexity.

4.2 Example: Estimating the Bias in a Coin

In the following, we present a simple example of Bayesian inference by Kruschke

(2014, 108ff.) to see the just introduced concepts and methods at work. The example

demonstrates how to infer latent parameter values from a sample of observed data.

From the number of heads we observe when flipping a coin several times, we set out

to estimate its underlying bias θ, i.e. the underlying probability of the coin coming
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up heads. Note that we know that θ’s value is between 0 and 1, but all we can

observe is the proportion of heads coming up in a sequence of coin flips, not the bias

θ itself.

As a first step in Bayesian data analysis, we identify the data at hand. In the

present example, the data consist of heads and tails. The number of heads coming

up will be referred to as z, the total number of coin flips as N, and, consequently,

the number of tails will be N - z in a dataset called D. In a next step, Kruschke

(2014) describes the likelihood of observing z heads in N coin flips with a simple,

descriptive model containing a bias parameter θ. When the outcome of the ith flip

of a coin with bias θ is denoted as yi and the set of outcomes as {yi}, the probability

of observing a set of outcomes given bias θ is the multiplicative production of the

probabilities of the individual outcomes:

p({yi} | θ) = θz(1− θ)N−z (4.4)

After having defined a likelihood function in Equation 4.4, we specify a prior

distribution over the values of the parameter θ. The prior formalizes what we

believe about the factory’s production of coins. Kruschke (2014) decides to use

an unrealistic but illustrative prior distribution, and assume that “there are only a

few discrete values of the parameter θ”, namely the values θ = 0.0, θ = 0.1, θ = 0.2

and so forth up to θ = 1.0. “You can think of this as meaning that there is a factory

that manufactures coins, and the factory generates coins of only those 11 types”

(Kruschke, 2014, 110). Furthermore, Kruschke (2014) supposes that the factory

tends to produce fair coins, with θ near 0.5, and assigns lower prior credibility for

biases far above or below θ = 0.5. This prior distribution is shown in the top panel

of Figure 4.4.

Collecting data and applying Bayes’ rule to update our beliefs in the possible

parameter values is the next step. For a simple example, Kruschke (2014) assumes

that we flip the coin only once and observe heads (i.e. z = 1, N = 1). For these data,

the likelihood function becomes p(D | θ) = θ, as illustrated by the linear function

in the middle panel of Figure 4.4. The lower panel shows the posterior distribution,

which is computed by multiplying prior and likelihood for each possible value of θ,

divided by P (D). We can observe that the posterior distribution is different from

the prior distribution. Because the coin showed a head, our belief in higher values

of θ increases. However, the prior’s effect shows because even though we observed

100% heads, the posterior probability of high θ values is still low. “This illustrates a

general phenomenon of Bayesian inference: The posterior is a compromise between



82 CHAPTER 4. COMPUTATIONAL MODELS & BAYESIAN INFERENCE

Figure 4.4: Bayes rule is applied to estimating the bias θ of a coin when flipping the
coin only once and observing one head. There are discrete candidate values of θ and
the posterior is computed by multiplying prior and likelihood for each θ, normalized
(Kruschke, 2014, 111).

Figure 4.5: The two columns show the influence of different sample sizes, while
keeping the proportion of heads constant. The prior is the same in both columns
but plotted on a different vertical scale. The prior’s influence is overwhelmed by
larger samples (right column), resulting in the posterior’s peak being closer to the
peak of the likelihood function. Moreover, the posterior HDI is narrower for the
larger sample (Kruschke, 2014, 113).
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the prior distribution and the likelihood function”, or, in other words, between the

prior and the data (Kruschke, 2014, 112).

The previous example has shown that the influence of the prior can be large

especially when the sample size is small. In the following we want to expand on

the influence of the sample size on the posterior. To do so, Kruschke (2014) fills

in candidate values of θ with 1,001 options, from 0.000, 0.001, 0.002, up to 1.000,

resulting in a still discrete but more dense distribution in the top row of Figure 4.5.

In the left column of the figure, the data is a small sample of N = 4 coin flips with

25% heads. In the right column, the proportion of heads is still 25%, but for a

larger sample of N = 40 coin flips. Whereas both likelihood functions (as given in

the middle row of Figure 4.5) have the same mode (peak), the posterior distributions

differ in this respect, among other things. For the small sample size, the posterior’s

mode is at θ = 0.40, which is closer to the prior’s mode than to the likelihood’s

mode. For the large sample size, we observe the opposite. With the mode of the

posterior being at θ = 0.268, it is closer to the mode of the likelihood. From this

example, we can learn that the influence of the posterior rises with a larger sample

size. This shows also in the highest density interval. Even though both samples

contained the same proportion of heads, the HDI is smaller for the larger sample

size. In general, the more data is available, the more precise is the model’s estimate

of the parameters (Kruschke, 2014).

To finalize the Bayesian data analysis, we would next conduct a PPC to test

whether the model manages to predict the data well enough. If there was another

model available which explained the data generating process differently, we would

compute each model’s DIC and pD to compare their fit to the data relative to the

model’s complexity.

With this introduction into Bayesian inference and computational modeling in

mind, we can now move on to our ultimate goal, testing the CFK semantics. In the

next chapter, the predictions of the CFK semantics are transformed into a compu-

tational model of production and interpretation behavior. We will use experimental

data and MCMC sampling to infer a posterior distribution about θfew and θmany and

to compare several models which make predictions about the same set of data.
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Chapter 5

Cardinal few and many

In this chapter we explore the cardinal reading of few and many. The general prop-

erties of this reading have been introduced in Section 2.1. This chapter’s main goal

is to test the surprise-based semantics by Fernando and Kamp (1996). They stip-

ulate that the lexical meaning of cardinal few and many comprises fixed threshold

values θfew and θmany which operate on prior expectations of the context.

Section 5.1 presents a pre-study which tests whether prior expectations really

comprise sufficient contextual information to predict the acceptability of quantifiers

across contexts. We do so by replicating the “Superbowl” study by Newstead and

Coventry (2000) and investigate whether the factor prior expectations has as much

explanatory power as the various visual cues they propose. Section 5.2 once more

presents Fernando and Kamp’s (1996) fixed threshold semantics which is translated

into testable predictions and embedded in a computational model in Section 5.3.

Section 5.4 introduces the behavioral experiments to elicit representations of a priori

expectations, as well as production and comprehension behavior of cardinal few and

many. Section 5.5 describes how we employ Bayesian inference to learn about latent

parameters and the use of Bayesian model comparison to assess the plausibility of the

hypothesis that a context-independent threshold parameter governs the production

and comprehension of few and many. The results of the model evaluation and their

implications are discussed in Section 5.6.

5.1 Pre-study: The Superbowl

As a starting point into our investigations of the cardinal reading of few and many,

this section presents a replication of the study conducted by Newstead and Coventry

(2000). We investigate the influence of the context, in this case of visual cues, on the

use of the vague and context-dependent quantifiers a few, few, several, many and

lots of. Newstead and Coventry (2000) present participants with images of bowls of

varying size and position which contain balls of varying size and number. Depend-

85
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ing on the number of balls in the bowl, the bowl turned into what Newstead and

Coventry (2000) labeled a “Superbowl” because even if the balls reached over the

edge of the bowl, they did not fall out. A sample of the images we used in our repli-

cation is provided in Figure 5.1. The number of balls is described by sentences which

include one of the quantifiers and participants are asked to rate the acceptability

of the statements. Our goal is to show that the variance in acceptability ratings

which Newstead and Coventry (2000) explain by the factors ball size, bowl size

and bowl position can be summarized by one other factor: the number of balls

that are expected to additionally fit into the bowl, on top of the ones which are

already in the bowl (capacity). This would constitute first experimental evidence

supporting Fernando and Kamp’s (1996) semantics which assumes that the truth

conditions of cardinal few and many are dependent on expected cardinalities in the

respective context.

Newstead and Coventry (2000) themselves point out that expected frequency is

probably a key factor, but they do not follow up on their suspicion. “It is possible

that all these effects reduce to expected frequency but we believe the picture is

more complicated than this. The concept of expected frequency is currently too

vague to make specific predictions, and hence more detailed studies of the factors

involved are necessary before any overarching theories can be adopted.” (Newstead

and Coventry, 2000, 258). We agree that expectations come with a certain vagueness

but we do not necessarily share the worry that expectations can only be elicited

in elaborate studies. For this reason, we additionally asked participants for their

best guess of the number of balls which still fit into the bowl. If this measure

turned out to not produce informative data, it is still possible to turn to more

elaborate elicitation methods. Recently, progress has been made in the methodology

of measuring expectations and their validation (see Kao et al. (2014) and Franke

et al. (2016) and the experiments presented in this and the following chapters).

In the following, we spell out a number of hypotheses and present a replication of

Newstead and Coventry’s (2000) experiment to test them.

5.1.1 Hypotheses

Uncontroversially, we predict the ratings of the quantified statements to differ by

quantifier and number of the balls in the bowl. Few and a few are expected to be

rated higher for small numbers whereas many and lots of are rated higher for higher

numbers of balls in the bowl. Furthermore, we predict that few and a few are a good

description of scenarios in which a high number of balls is expected to additionally fit

into the bowl, when the capacity of the bowl is large. capacity is defined as the

difference between the maximal expected number of balls that can fit in the bowl
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(a) small balls, large container (b) large balls, large container

(c) large balls, small container (d) large balls, small tilted container

Figure 5.1: Stimuli of the superbowl replication

scenarios of which quantifiers are a good description

quantifier number capacity
= expected number - number

few, a few small small
many, lots of large large

Table 5.1: Hypotheses of Superbowl replication

in total and the number of balls that is already in the bowl. For the sample of images

in Figure 5.1, the bowl in Figure 5.1a would have the largest capacity, Figure 5.1b a

medium capacity and Figure 5.1c and Figure 5.1d a small capacity. We take it that

the empirically measured capacity is an approximation of prior expectations, for

example in the form of a flat distribution over the interval [0, expected number].

A higher expected number would imply a lower probability for each i <expected

number. Many and lots of, on the other hand, are applicable in scenarios in which

the capacity is small and the bowl is nearly full, when the difference between the

expected number and the actual number is small. We predict that it does not

make a difference which visual cues are available to estimate the maximal number

of balls the bowl can hold.The hypotheses tested in this experiment are summarized

in Table 5.1.

Newstead and Coventry (2000) utter concerns about including expectations as

a factor because of their inherent vagueness. Even though they suggest that ”func-

tionality reduces to the same thing as expected frequency”, they dismiss the idea

because it is ”not entirely clear which way these expectations would work. For ex-

ample, does the fact that a bowl is overflowing but the balls are still intact lead

to a higher or lower expected frequency” (Newstead and Coventry, 2000, 256). We

do not see this uncertainty as a problem for our predictions though. First, whether

people are really uncertain about overflowing balls could be tested experimentally

if necessary. Second, we do not see a problem in whether balls can reach above the
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bowl’s edge or not, since this is directly related to the way the capacity is deter-

mined. If a subject expects that the balls can flow out of the bowl, this results in a

higher estimate of the balls the bowl can hold in total and consequently in a higher

capacity than for the case in which the balls are expected to not be able to reach

above the bowl’s edge. In this case, the estimated maximum and also the bowl’s

capacity decrease accordingly.

5.1.2 Experiment

This judgment task is a replication of Newstead and Coventry’s (2000) “Superbowl”

experiment. It investigates the influence of visual cues and related prior expectations

on the acceptability of context-dependent quantifiers.

Design. Participants saw one picture of a bowl varying in size and position filled

with balls of varying size and number. The balls were either small or large, just

as the bowl was either small or large. The position of the bowl was either normal

or tilted. The number of balls in the bowl was 6, 12, 18 or 24. At this point we

diverge from Newstead and Coventry’s (2000) design who included more number

conditions. When the bowl was tilted and contained a large number of balls, the

balls reached over the edge of the bowl. But instead of falling out of the bowl, the

balls sticked somewhat unnaturally together and remained in the bowl, turning the

bowl into a “Superbowl”. A sample of the stimuli depicting 12 balls is presented in

Figure 5.1. The picture participants saw was chosen randomly. Participants were

asked to look at the picture and then read five sentences as in (102). The sentences

each contained one of the quantifiers a few, few, several, many and lots of and were

presented in a random order underneath each other. Participants were then asked

to rate on a horizontal 7-point scale whether the sentence is a good description of

the picture. The value 1 was labeled “very bad”, the value 7 was labeled “very

good”. Each sentence contained a different quantifier and all quantified statements

were presented at once. The there-existential construction made a cardinal reading

of the sentences salient, as discussed in Section 2.1.3.

(102) There are [few | a few | several | many | lots of] balls in the bowl.

Additionally, participants estimated the maximal number of balls that fit in the

bowl. Note that there is uncertainty of whether the balls should be able to fit into the

bowl or whether they can reach above its edge, as was indicated in some comments.

We intensionally left the decision to the participants since it is accounted for in the

statistical analysis. A smaller maximal expected number (when the balls cannot

reach above the bowl’s edge) is directly coarrelated with a smaller capacity.
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Figure 5.2: Mean ratings of the Superbowl replication

Participants. 126 subjects were recruited via Amazon’s Mechanical Turk with

US-IP addresses. Each subject participated only once.

Materials & Procedure. After initial instructions that explained the task, each

subject saw one image and five quantified statements presented in a random order.

In addition to the rating task and the estimation of the bowl’s capacity, we asked

participants for the color of the balls. Participants could choose between the answers

green and black. This tested whether participants paid minimal attention to the

task. The correct answer was black because only black balls were presented.

Results. Since every subject answered the question for the balls’ color correctly,

no data had to be excluded. The mean rating of each quantifier per condition is

visualized in Figure 5.2. A high mean rating corresponds to a high acceptability of

the sentence.

To analyze the data, we specified a linear mixed effects regression model pre-

dicting acceptability ratings. During a guided search through the model space, we

started out with a model containing only the random effect participant and added

fixed effects if this significantly increased the model’s fit to the data (measured by

AIC). The final model includes the fixed effect quantifier (levels few, a few, sev-

eral, many, lots of ) and its interaction with the number of balls presented and the

expected capacity of balls that the bowl can additionally hold. The capacity
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(a) Interaction between quantifier and
number

(b) Interaction between quantifier and
capacity

Figure 5.3: Interactions with quantifier in the Superbowl replication

was calculated as the difference between the maximal expected number of balls

the bowl can hold and the number of balls in the bowl.

Participants gave the lowest ratings for the quantifier few (β = 2.39, SE =

1.59, p < 0.001). The ratings for a few are not significantly different (β = 0.42, SE =

0.281, p = 0.066), but the quantifiers several (β = 2.60, SE = 0.23, p < 0.001), many

(β = 2.90, SE = 0.23, p < 0.001) and lots of (β = 2.90, SE = 0.23, p < 0.001) were

rated significantly higher than few. This effect is modulated by an interaction be-

tween quantifier and number of balls and quantifier and capacity. The in-

teraction of quantifier and number of balls reaches significance for the difference

between few and the high magnitude quantifiers many (β = 0.22, SE = 0.03, p <

0.001) and lots of (β = 0.26, SE = 0.03, p < 0.001). For higher numbers of balls, few

and a few were rated lower, whereas the ratings for lots of and many increased. The

interaction is visualized in Figure 5.3a. In comparison to few, the quantifiers several

(β = −0.03, SE = 0.01, p < 0.001), many (β = −0.04, SE = 0.01, p < 0.001) and

lots of (β = −0.05, SE = 0.01, p < 0.001) were rated significantly lower for a larger

capacity of the bowl. For a few the difference is not significant, see Figure 5.3b.

The fixed effects ball size, bowl size and bowl position do not significantly

increase the model’s fit to the data.

5.1.3 Discussion

The data support the hypotheses from Section 5.1.1, as summarized in Table 5.2.

Few and a few are applicable to small cardinalities whereas many and lots of describe

large cardinalities. Several seems to sojourn in the middle. This is confirmed by the

interaction between quantifier and number. Further support is provided for the
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scenarios of which quantifiers are a good description

quantifier number results capacity results

few, a few small X small X
many, lots of large X large X

Table 5.2: Results of Superbowl replication

hypothesis that vague quantifiers express expectations towards a cardinality: low

magnitude quantifiers can be interpreted to express that a number is lower than

expected, whereas high magnitude quantifiers state that a number is higher than

expected. This is predicted by the factor capacity, the difference between the

estimated maximum of balls the bowl can hold and the actual number of balls in

the bowl. Many and lots were rated higher when the bowl was expected to not be

able to hold more balls. Few and a few ’s acceptability increased when the bowl’s

capacity was high.

These two factors, number and capacity manage to account for the variance

in the data. The predictors ball size, bowl size and bowl position did not

reach significance when the factors number and capacity were included in the

model. This supports the hypothesis that these visual cues can be subsumed in

the predictor expectations. The size and position of the presented objects naturally

influence prior expectations, but it is not necessary to include each of them as a

separate predictor or to ascribe the tilted bowl the magical properties of a “super-

container” (Fernando and Kamp, 1996, 254). This role is better filled by the more

general factor prior expectations.

Prior expectations are also a major factor in the surprise based semantics pro-

posed by Clark (1991) and Fernando and Kamp (1996). In the following sections

we investigate prior expectations in real-world contexts and learn how context-

dependent expressions are assigned meaning based on them. The ultimate goal is

to quantitatively predict the production and interpretation of few and many based

on experimentally measured prior expectations of the respective context.

5.2 The CFK Semantics and How To Test It

In Chapter 2, we noted an omission in the semantic literature, which does not

specify how the threshold values which determine the use of few and many are

calculated. One theory that makes concrete predictions for sentences exhibiting a

cardinal surprise reading, however, is the surprise-based semantics by Clark (1991)

and Fernando and Kamp (1996). The CFK semantics was introduced in Section 2.3

and will be briefly summarized in the following. This theory stipulates that few and



92 CHAPTER 5. CARDINAL FEW AND MANY

many comprise fixed threshold values θfew and θmany operating on prior expectations

of the context. According to this approach, a sentence of the form “Many As are

B” is true if the actual cardinality n = |A ∩B | exceeds a fixed threshold θmany on

a measure of surprise, which is derived from a a priori expectations PE about likely

values of n provided by the context. In simpler terms, “Many As are B” is true if

the actual number of n = |A ∩B | is surprisingly high, higher than xmin. The truth

conditions are repeated from above:

(77) CFK Semantics

a. JFew As are BK = 1 iff |A ∩ B | ≤ xmax

where xmax = max {n ∈ N | PE(|A ∩ B | ≤ n) < θfew}

b. JMany As are BK = 1 iff |A ∩ B | ≥ xmin

where xmin = min {n ∈ N | PE(|A ∩ B | ≤ n) > θmany}

Even with a fixed and contextually-stable threshold for what counts as sufficiently

surprising, whether a certain n counts as surprisingly high can still vary dramatically

with the context. For example, for numbers of children a family has and points

scored in a basketball match, we may have dramatically different prior expectations

PE. For this reason context-dependence and vagueness can be possible despite a

systematic, calculable and learnable stable core meaning.

To assess whether the CFK semantics in (77) is on the right track is a challenge to

classical methods from theoretical linguistics because they require intuitions about

truth, entailment and the like as input. This is because, in almost all cases, a

precise conception of what we consider to be “likely” is hard to get hold of. Still,

it could be the case that (77) captures speakers’ non-introspective use of many and

few well enough. What can we do? Certainly, we can probe intuitions (be it our

own, or those of informants in a controlled experiment) about applicability and

interpretation of relevant sentences in laboratory conditions that provide perfect or

near-perfect information. This approach poses practical problems that may or may

not be solvable by clever design.

But there is also an alternative that is worth exploring: data-oriented computa-

tional modeling, introduced in the previous chapter. Focusing for now on few and

many and the CFK semantics for their cardinal surprise uses, our main goal here

is to give one constructive example of how data-oriented computational modeling

could be useful for formal semantic theory. For one, we demonstrate how recent ex-

perimental methodology (e.g., Kao et al., 2014; Franke et al., 2016) can help obtain

approximate empirical measures of introspectively inaccessible “prior expectations.”

For another, we show how the core semantics in (77) can be turned into probabilistic
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models of speaker production and listener interpretation behavior. Finally, feeding

empirically measured prior expectations into production and interpretation models,

we show that production and interpretation data from suitable experimental tasks

can be used to infer plausible values of θmany and θfew.

We will propose a relatively simple computational model in the next section. For

instance, we will not consider genuine pragmatic competition between alternative

expressions. Other models are conceivable and may or may not give rise to similar

conclusions about the tenability of a CFK semantics. We believe that this is normal:

testing an abstract hypothesis (like the CFK semantics) alongside empirical data will

require auxiliary assumptions about how the hypothesis relates to data observations

(e.g., Quine, 1951). Yet, given data and a model about how latent variables generate

possible observations, we can then draw inferences about the unobservable latent

variables of interest.

In the following pages we want to test the CFK semantics by contrasting two

competing hypotheses. Hypothesis 1 assumes one fixed, context-independent pair of

threshold values θfew and θmany, which apply to probability distributions representing

prior expectations about the respective context. This is what the CFK semantics

predicts. Hypothesis 2 assumes that the thresholds θfew,i and θmany,i vary for each

context i. There is no deeper theoretical motivation for this hypothesis except

that it is the negation of the fixed-threshold hypothesis. Since thresholds on prior

expectations cannot be directly observed, we use computational modeling to infer

their most credible values. We will spell out one model for each hypothesis and

compare their fit to an experimentally-gathered data set. But not only the fit to

the data is a crucial factor for discriminating between two models, their complexity

matters, too. A model with less free parameters (in our case less threshold values

which need to be inferred) is less complex and therefore ceteris paribus preferable.

5.3 Computational Model: The Fixed Thresholds

Model

Evaluating the CFK semantics in (77) is a challenge for standard methods from

theoretical linguistics insofar as they rely on intuitions about truth, entailment and

the like. This is because, in almost all real-world cases, a precise enough determina-

tion of prior expectations PE seems to elude solitary introspection. To test a CFK

semantics, we therefore turn to data-driven computational modeling.

This approach effectively considers the contextually stable thresholds θmany and

θfew as latent parameters : their values cannot be directly observed but must instead

be reconstructed from observable behavior. Bayesian inference is one way to do
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so. Given values for latent parameters, a probabilistic model makes predictions

about how likely certain observable choices in production and comprehension of

relevant sentences are. In technical terms, the model specifies a likelihood function

P (observation | θmany, θfew) mapping values of latent parameters onto a probability

of seeing a particular choice in a suitable experiment. We will use data from a

production and a comprehension task to infer, via Bayes rule, which values of the

latent parameters are credible, given the likelihood function and some prior over

latent parameters:1

P (θmany, θfew | observation) ∝ P (θmany, θfew) P (observation | θmany, θfew) (5.1)

Our goal, then, is to see whether a single pair of threshold values θmany and θfew

explains our empirical data well enough. We focus on many in the exposition, but

the case for few is parallel.

Our computational model consists of a production and a comprehension rule,

both probabilistic. A probabilistic production rule is a function that assigns a prob-

ability distribution over expressions or utterances to any given meaning, while a

probabilistic comprehension rule is the same in reverse, assigning a probability dis-

tribution over meanings or interpretations for each possible utterance that needs

to be interpreted (e.g., Franke and Jäger, 2016; Goodman and Frank, 2016). Here,

a production rule should give us the probability PS(“many” | n, PE) with which a

speaker, or speakers in general, would find the sentence “Many As are B” applicable

to n = |A ∩B | under prior expectation PE. A comprehension rule should give us

the probability PL(n | “many”, PE) with which a listener, or listeners in general,

would believe in interpretation n when they hear the relevant statement with many

in a context where PE captures the relevant statistical properties of the assumed

comparison class.

A production rule that implements the CFK semantics in (77) is straightforward:

PS(“many” | n, PE ; θmany) = 1 if n ≥ xmin and otherwise 0, where xmin is derived

from PE, as in (77), based on θmany, which is a free parameter for this rule (indi-

cated by writing it after a semicolon). This probabilistic production rule is only a

degenerate probabilistic rule: it only assigns the extreme values 0 and 1; it does

not allow for slack, mistakes or other trembles. As such, it would not apply well

1The notation “∝” for “proportional to” says that the expression on the right must yet be

normalized. So, P (x) ∝ f(x) for some function f is short for P (x) = f(x)∑
x′ f(x′) .
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(b) Comprehension rule examples

Figure 5.4: Illustration of production and comprehension rules for the example from
Figure 2.2

to noisy empirical data. So, instead of a step-function we look at a parameterized,

smoothed-out version.

PS(“many” | n, PE ; θmany, σ) =
n∑

k=0

∫ k+0.5

k−0.5

N (y;xmin, σ)dy (5.2)

PS: the probability of producing “many” to describe a cardinality n given

PE, θmany, σ is a smoothed-out version of a step function with a step at xmin

Here, σ is another free model parameter that regulates the steepness of the curve,

and N (y;xmin, σ) is the probability density of y under a normal distribution with

mean xmin and standard deviation σ. Essentially, this gives us a noisy implemen-

tation of speaker behavior under a CFK semantics where the amount of noise is

controlled by σ. Illustrations of this probabilistic production rule are shown in Fig-

ure 5.4a for the example started in Figure 2.2. The degenerate, non-noisy production

rule is the case of σ = 0.

The idea behind Equation (5.2) is this. Assume that a hypothetically true value

of θmany exists. Then, given a prior expectation PE over the contextually relevant

domain, the CFK semantics in (77) gives a clear cutoff for the minimum number xmin

of, say, cups of coffee that some particular Andy must minimally drink per week to

license applicability of many in a sentence like (76). We should assume that speakers

do not know for sure the actual xmin that is entailed by θmany and PE, most likely

because they do not know PE for certain, but that speakers nonetheless approximate

it2. More concretely, we assume that when a speaker decides whether some n licenses

many, she “samples”, so to speak, a noise-perturbed “subjective threshold” x′min

2For most contexts, speakers do not know the exact statistical properties, but nevertheless they
are able to approximate them (Griffiths and Tenenbaum, 2006). How much knowledge we have
and how certain we are of it is very domain-specific. Estimating can be facilitated by asking for
measurements which are often stated explicitly, relevant in daily life and in restricted domains with
little variation. For example, it is easier to estimate the length of a radio song than the size in acres
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from a Gaussian distribution whose mean is xmin and whose standard deviation σ

is a free model parameter that captures speaker uncertainty (about θmany, PE, and

perhaps other things). If the sampled value is below n, the speaker finds many

applicable to cardinality n; otherwise, she does not. This gives us a probabilistic

prediction of how likely a speaker would, on occasion, find many applicable to n as

a probabilistic function of θmany, PE and noise parameter σ.

A derivation of a reasonable probabilistic comprehension rule follows suit:

PL(n | “many”, PE ; θmany, σ) ∝ PE(n) · PS(“many” | n, PE ; θmany, σ) . (5.3)

PL: the probability of choosing a cardinality n as the interpretation of “many”

given PE, θmany and σ is the prior probability PE(n) of n weighted by PS

(probability of producing ”many” to describe n)

This rule, which is illustrated in Figure 5.4b, can be motivated in two conceptu-

ally distinct ways that yield the same mathematical result. For one, we can think

of Equation (5.3) as an application of Bayes’ rule. Under this interpretation, the

listener tries to infer likely world states based on a model of reverse production by

taking into account how likely each world state is and how likely the speaker would

use the observed many-statement in these states. But since the production rule

in Equation (5.2) is just encoding “noisy truth-conditions” (rather than a genuine

pragmatic choice of which out of several alternatives to use), the formulation in

(5.3) also follows from the same considerations that motivated the production rule

in (5.2): the formula in (5.3) captures interpretation based on the CFK semantics,

given (Gaussian) uncertainty about threshold xmin.

5.4 Experiments

To test the CFK semantics through the lens of the computational model from the

previous section we need two types of empirical data. First, we need estimates

of subjects’ prior expectations PE. Second, we need data on how sentences with

few and many are used and interpreted. This section presents three experiments

aimed to give us such data. All three experiments use the same 14 contexts about

everyday events, objects or people which all involve a quantity of some sort (see

Appendix 5.A for the full list of test items). Test items were designed so as to make

a cardinal reading salient by choosing sentences with stage-level or existential pred-

icates (Partee, 1989; Solt, 2009) and by not providing contexts in which an upper

bound could be inferred. Test items are aimed to tap into general expectations of

of a park in the US. Uncertainty about a distribution could, for example, also reflect uncertainty
about potential mechanisms which generate the distribution beyond mere noise.
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common, every-day situations, not specific expectations about some possibly ab-

normal or non-stereotypical individual. We did not include fillers and no subject

participated in more than one experiment.

5.4.1 Elicitation of Prior Expectations

Design. To get an empirical estimate of participants’ prior expectations, we used

the binned histogram task of Kao et al. (2014). Participants saw descriptions of a

context as in (103a) and a question as in (103b). Subjects were presented with 15

intervals per item and rated the likelihood that the true value lies in each interval,

by adjusting a slider labeled from “extremely unlikely” to “extremely likely”. The

intervals’ ranges were determined by a pre-test. For each context, the pre-test asked

20 participants for the most likely, the lowest and the highest possible cardinality.

Based on their answers, we determined a range of plausible values which we divided

into 15 equally spaced intervals. For example, they would adjust a slider each for

the probability that Andy drank 0–1, 2–3, . . . , 26–27 or more than 28 cups of coffee

last week.

(103) Prior elicitation example

a. Background: Andy is a man from the US.

b. Question: How many cups of coffee do you think Andy drank last

week?

Participants. 80 subjects were recruited via Amazon’s Mechanical Turk with US-

IP addresses.

Materials & Procedure. After initial instructions that explained the task, each

subject saw all of the 14 contexts from Appendix 5.A one after another. For each

context, the 15 intervals were presented horizontally on the screen in ascending order

from left to right. On top of each interval was a vertical slider. Participants had to

adjust or at least click on each slider before being able to proceed.

Results. We excluded one participant for not being a self-reported native speaker

of English. Another participant was excluded for blatantly uncooperative behav-

ior because she had not adjusted any slider. To convert likelihood judgments into

probability distributions, participants’ ratings for each item were normalized and

these normalized ratings were then averaged across participants and once more nor-

malized. The outcome is visualized in Figure 5.5. These probability distributions

can be conceived of as approximations to the central tendencies of the beliefs held
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Figure 5.5: Empirically measured prior expectations. Error bars are estimated 95%
confidence intervals.

within the population of participants (Franke et al., 2016). This average measure of

PE from Figure 5.5 will be input to the model.

5.4.2 Production Study: Judgment Task

Design. In a binary judgment task we measured participants’ production behavior

of few and many. Participants were presented with a context which introduced a

situation and an interval as in (104a). The interval was randomly chosen from 8 of

the 15 intervals from the prior elicitation task, for example 10-12; see Appendix 5.A.

We presented only every other interval to avoid too large a number of combinations.

The context was described by a statement as in (104b) which contained either few or

many. Participants were asked to rate whether the statement is a good description

of the context by clicking on true or false.

(104) Production study example

a. Context: Andy is a man from the US who drank [2–3 | 6–7 | . . . |
26–27] cups of coffee last week.

b. Statement: Compared to other men from the US, Andy drank [few |
many] cups of coffee.

c. Question: Is this statement a good description of the context?

Participants. We recruited 301 participants with US-IP addresses via Amazon’s

Mechanical Turk.
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Figure 5.6: Proportion of true answers from Experiment 2

Materials & Procedure. After reading a short explanation of the task, each

subject saw all of the 14 contexts from Appendix 5.A one after another. For each

context, one of 8 intervals and few or many were assigned randomly. Participants

had to click on one of two radio buttons labeled with true or false before being

able to proceed to the next item.

Results. Data was excluded of nine participants who reported not to be native

speakers of English. Figure 5.6 shows the proportion of true answers. We want

the production rule PS in Equation (5.2) to predict the data from this experiment.

The decision to produce few or many to describe a certain number in the respective

context is binary. Our production rule from Equation (5.2) tries to capture exactly

this: the probability of whether few or many fit a given context.

5.4.3 Interpretation Study

Design. To measure how participants interpret few and many in different con-

texts, we used a forced-choice task. Participants saw descriptions of a context con-

taining one of the quantifiers as in (105a) and a question as in (105b). They were

presented with all 15 intervals for the given context and were asked to choose the

interval that they thought is most likely given the background information.

(105) Comprehension task example

a. Background: Andy is a man from the US who drank [few | many]

cups of coffee last week.
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Figure 5.7: Proportions of interval choices from Experiment 3

b. Question: How many cups of coffee do you think Andy drank last

week?

c. Intervals: 0-1, 2-3, 4-5, 6-7, 8-9, 10-11, 12-13, 14-15, 16-17, 18-19,

20-21, 22-23, 24-25, 26-27, 28 or more

Participants. 200 subjects were recruited via Amazon’s Mechanical Turk with

US-IP addresses.

Materials & Procedure. First participants read a short introduction that ex-

plained the task. Then each subject saw all of the 14 contexts in a random order.

For each context, the quantifier was selected randomly and the 15 intervals were pre-

sented horizontally on the screen in ascending order from left to right. Participants

had to select one interval before being able to proceed.

Results. Data from two subjects who did not identify themselves as native speak-

ers of English was excluded. Figure 5.7 shows the proportions of interval choices.

The comprehension rule PL in Equation (5.3) is to predict the data from this exper-

iment.
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5.5 Model Evaluation

As explained in Section 5.3, our goal is to learn about θmany and θfew from the

observed experimental data. To this end, we feed the empirically measured prior

expectations PEi
for each item i (see Figure 5.5) into the production and compre-

hension rules in (5.2) and (5.3). This gives us likelihood functions for the production

and comprehension data, which are visualized in the graphical model in Figure 5.8

and described presently. We only explicitly cover the case of many wherever that

for few is analogous.

Let Opm
ij be the number of true answers for item i and interval j in production

experiments for many and let Ocm
ij be the number of times interval j has been selected

as the interpretation for the relevant many-statement about item i in comprehension

experiments. Let Npm
ij be the number of participants that saw a production trial for

many, item i and interval j. Likewise, N cm
i is the number of participants that saw

a comprehension trial for many and item i. O
pf
ij , O

cf
ij , N

pf
ij and N

cf
i hold the same

information for conditions involving few. Finally, let Iij be the jth interval of numeric

values for item i. Let | Iij | be the length of interval Iij. The probabilistic rules from

Section 5.3 then give us (parameterized) likelihood functions for observable data.

P (Opm
ij | θmanyi

, σi) = Binomial


Opm

ij , N
pm
ij ,

∑

n∈Iij

PS(“many” | n, PEi
; θmanyi

, σi)

| Iij |




P (Ocm
ij | θmanyi

, σi) = Binomial


Ocm

ij , N
cm
i ,

∑

n∈Iij

PL(n | “many”, PEi
; θmanyi

, σi)




Here, Binomial(k, n, p) is the probability of observing k instances of a coin coming

up heads out of n coin tosses when each toss has an (independent) chance p of

coming up heads.

Using Bayes rule, we can therefore make inferences about credible parameter

values given the data that we observed.

P (θmanyi
, θfewi

, σi | Opm , Ocm , Opf , Ocf ) ∝ P (θmanyi
, θfewi

, σi) · (5.4)
∏

j

P (Opm
ij | θmanyi

, σi) · P (Ocm
ji | θmanyi

, σi) · P (O
pf
ij | θfewi

, σi) · P (O
cf
ji | θfewi

, σi)

Two remarks. Firstly, we assume here that each item has its own σi, but that

σi is the same for production and comprehension, as well as for many and few.

This is because we think of σi (and the vagueness it brings) as mainly affected

by uncertainty about the contextual distribution PEi
. Secondly, the formula above

contains as a factor the joint prior probability P (θmanyi
, θfewi

, σi) of parameter values
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Figure 5.9: Model Predictions

θmanyi
, θfewi

and σi for each item i. Here, we simply assume that θmanyi
, θfewi

and σi

are independent of each other and that they have uniform priors over a large-enough

interval of a priori plausible values.

P (θmanyi
, θfewi

, σi) = Uniform[0;1](θmanyi
) · Uniform[0;1](θfewi

) · Uniform[0;10](σi)

To approximate the joint posterior distribution defined in (5.4), we used MCMC

sampling, as implemented in JAGS (Plummer, 2003). We collected 10,000 sam-

ples from 2 MCMC chains after a burn-in of 10,000. This ensured convergence, as

measured by R̂ (Gelman and Rubin, 1992). Figure 5.9a shows the estimated 95%

credible intervals for the marginalized posteriors over θmanyi
and θfewi

for all items.3

3A 95% credible interval is, intuitively put, an interval of values that are sufficiently plausible
to warrant belief in (see Kruschke, 2014), see Section 4.1. For example, a 95% credible interval for
θmanyi

of [0.6; 0.8] for some item i would tell us that, given the data used to condition the inference,
we should be reasonably certain that the true value of θmanyi

is in [0.6; 0.8].
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If for all i the credible intervals for θmanyi
in Figure 5.9a overlapped, and likewise

for θfewi
, then this would very clearly speak in favor of a CFK semantics. Such clear

evidence is not forthcoming. For many, 13 of the 14 items’ credible intervals overlap

in [0.687 , 0.699]. For few, 12 of the 14 items’ credible intervals overlap in [0.148 ,

0.151]. This is close to uniformity, but there are exceptions: “movies watched per

year” for many as well as “students in class” and “facebook friends” for few. In

effect, we do not see clear evidence in favor of a uniform CFK semantics, but we

also do not see clear evidence against it.

Another possibility of assessing the idea of a uniform CFK semantics is to com-

pare different models. The approach in (5.4) assumes that each item i has its own

semantic threshold values θmanyi
and θfewi

. Let us call it the Individual Threshold

Model (ITM). It incorporates what we called hypothesis 2 at the end of Section 5.2.

We can compare the ITM with the outcome of a model that allows for only one

θmany and one θfew, call this the General Threshold Model (GTM). GTM represents

hypothesis 1. Its posterior is defined as follows:

P (θmany, θfew, σi | Opm , Ocm , Opf , Ocf ) ∝ P (θmany, θfew, σi) ·∏

j

P (Opm
ij | θmany, σi) · P (Ocm

ji | θmany, σi) · P (O
pf
ij | θfew, σi) · P (O

cf
ji | θfew, σi) .

It is also possible to use information from either only the production or the com-

prehension data to make inferences about latent thresholds. We will make use of

that possibility too in order to see whether a uniform CFK semantics might work

well for production or comprehension only. For example, an inference about likely

item-specific thresholds based on production data only would use the posterior dis-

tribution given by:

P (θmanyi
, θfewi

, σi | Opm , Opf ) ∝ P (θmany, θfew, σi) · (5.5)
∏

j

P (Opm
ij | θmany, σi) · P (O

pf
ij | θfew, σi) .

The question we are interested in is then: which model is better suited to explain

the data? This question can be addressed by statistical model comparison. There are

different measures for model comparison, all based on different purposes and reasons

for preferring one model over another (Vehtari and Ojanen, 2012). Given our modest

theoretical purposes here, we use an approach that is easy to compute based on the

output of our MCMC sampling results, the so-called deviance information criterion

(DIC) (see Chapter 4). The DIC weighs goodness of fit (here: the likelihood of the

data given the model “trained” on the data) against the model’s complexity (here:

the number of its effective free parameters). A high value of the DIC indicates
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data used

model production interpretation both

GTM DIC = 4191.6, pD = 16 DIC = 2239.6, pD = 17 DIC = 6546.7, pD = 17
ITM DIC = 4196.0, pD = 40 DIC = 2182.4, pD = 46 DIC = 6529.5, pD = 40

Table 5.3: Estimated DIC values and effective free parameters

a lot of deviance of the model’s predictions from the data it is applied to. This

is undesirable, of course. At the same time, the model should stay as concise as

possible and not include unnecessary parameters. This is measured by the pD, the

number of effective free parameters, a measure of model complexity. Higher values

of pD suggest higher model complexity.

Table 5.3 gives estimated DICs for the GTM and the ITM, based only on pro-

duction data, based only on comprehension data and based on both data sets at

once. We see that the GTM is roughly equal to, if not better than the ITM based

on the production data only. It is a bit worse based on interpretation data and

both data sets combined. Still, both models are clearly in the same ballpark. What

the GTM misses in terms of goodness of fit, it makes up in terms of reduced model

complexity. Based on our data alone, there is no clear reason to prefer either model

in terms of DICs. That means that there is no reason, provided by our data, to

reject the “null assumption” that a single θmany and a single θfew governs the use of

many and few. The alternative model ITM did not do any better.

What is more, the ITM allows no possibility to generalize beyond the 14 items

used here. Put differently, the ITM would assume that θmany would be anywhere

between 0 and 1 (its prior) for a context which was not part of the data used to

condition it on. The GTM would be able to use its posterior distribution for θmany.

The utter lack of generalizability in ITM speaks, at least conceptually, in favor of

GTM. Whether this is an empirical advantage would have to be tested. Given the

data at hand and the fact that the ITM is not obviously better for this data set,

there is no good reason to dismiss the hypothesis that a single pair of fixed thresholds

θmany and θfew may have generated the production and interpretation data that we

have seen.

Figure 5.9b shows the correlation between the GTM’s predictions and the ob-

served data. For production task, the correlation between predicted and observed

data is 0.89 for many and 0.92 for few. For the interpretation task, we find a corre-

lation of 0.54 for many and 0.73 for few. The GTM’s predictions are less accurate

for the interpretation data because in this task participants had much more free-

dom. They could choose between 15 intervals, whereas in the production task, only

two options (true and false) were available. The posterior values of the noise

parameters σi for each item i are given in Table 5.4. They express the steepness of
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the production probability’s curve formalized as the standard deviation of a normal

distribution. σi ranges over the 15 intervals, whose length is dependent on the item

(see Section 5.4.1).

5.6 Discussion

This chapter tried to make a methodological contribution, exemplifying a potential

use of data-driven computational modeling in formal semantics/pragmatics. By

measuring subjects’ prior expectations about real-world events experimentally, we

set out to test a proposal for a semantics of few and many that is hard to assess

introspectively. We showed how to couch the CFK semantics for few and many in a

probabilistic model for production and comprehension. With the help of this model,

we inferred a posteriori credible values for latent threshold parameters θmany and

θfew from experimental data that aimed to measure production and comprehension

behavior. Posterior credible values of individual threshold parameters θmanyi
and

θfewi
for different experimental items i are very similar, with overlap in the 95% HDIs

of almost all items. Moreover, statistical model comparison in terms of DICs does

not favor a model with individual thresholds for each item over a more parsimonious

model that assumes only one fixed threshold for many and one for few. The model

comparison based on fit to the data and model complexity supports Hypothesis 1.

Consequently, the question whether a fixed threshold CFK semantics is plausible can

be answered positively, at least for the data set at hand. This finding is especially

credible in the light of language acquisition because it is not a plausible assumption

that the meaning of few and many would have to be learned anew for each context.

Factors that might be responsible for the observed finding that not all credible

intervals do fully overlap could be a methodological issue in the elicitation of priors,

too much uncertainty about the threshold or that not all speakers shared the same

comparison classes. For now, we are not able to solve all of these factors. Instead,

we want to point out some of them as questions for further investigation.

The benefits of theoretically informed statistical modeling of this kind are many.

The computational model makes explicit all modeling assumptions including any

linking hypotheses regarding how theoretical notions relate to each other in produc-

ing the observable data (e.g. Chemla and Singh, 2014; Franke, 2016). The model
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Table 5.4: Mean of GTM’s posterior distribution of σ per item
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considered here, for instance, assumes that the production and comprehension data

are only driven by considerations of truth. In other words, this quite simple seman-

tic model assumes that participants in, say, Experiment 3 would not reason about

what other expressions a speaker may have used other than many or other than

few. However, alternative utterances containing a few, lots of or surprisingly few

are very likely also taken into account during the speaker’s precision process.

Furthermore, some experimental items from Schöller and Franke (2015) revealed

other relevant factors which can influence the use of few and many and might want

to be included in a more elaborate model. The first is the grammatical number

feature which requires that the quantity words combine with a plural noun. This

constraint turned out to be a stronger factor than participants’ prior expectations.

(106) John is a man from the US who has few children.

How many children do you think John has?

Even though the prior elicitation task confirmed that participants consider it very

likely that an American man has 0 or 1 children, few was nevertheless not interpreted

as describing a singular noun. This issue is also related to a pragmatic competition

of few with the quantifiers none and one.

Another observation from Schöller and Franke (2015) is that participants do not

only employ their expectations of the statistical properties in some contexts, but

also their moral standards of which cardinalities are considered too low or too high.

For the context of a smoker’s cigarette consumption, the model’s inferred threshold

values differed to a large extent from those of the remaining items

(107) Margaret is a woman from the US who smokes few/many cigarettes a day.

How many cigarettes do you think Margaret smokes a day?

Participants’ answers were very low, compared to the prior expectations measured.

Most people judged a sentence with few true only for the lowest presented interval

and true for a sentence with many for all of the other intervals. Maybe participants

did not use the prior expectations as they did for the other context. Since smoking

has fallen in disrepute in the US, people might not only use their plain “statistical”

prior expectations when they form a judgment about “few or many cigarettes.”

They might factor in their “moral expectations” as well (cf. Égré and Cova, 2014).

In principle, a CFK semantics is compatible with this idea. The prior expectations

PE would not only have to be sensitive to statistical beliefs about, in this case,

actual number of cigarettes smoked, but also to a deontic dimension about how

many cigarettes should be smoked.

A last issue directly related to the model is the role of the noise parameters σi.

We introduced them as capturing uncertainty about PE “and perhaps other things”.

What these other things might be is not answered by the model and should also



108 CHAPTER 5. CARDINAL FEW AND MANY

receive more attention since the values of σ given in Table 5.4 are quite large. The

posterior distribution predict a standard deviation of roughly five intervals, which

makes up one third of the quantity word’s scale in the experiment. If σ really

turned out to capture uncertainty about PE, this uncertainty could be reduced by

backing away from population-level expectations. The prior expectations which

are input into the model were obtained by measuring the subjective beliefs of 80

subjects and then averaging across the (normalized) observed slider ratings. These

representations might not be adequate for the individual subject carrying out a

production or interpretation task resulting in a worse fit to the data and maybe

even wrong model predictions. One way to address this problem is to replicate the

experiments from the Section 5.4 as a within-subjects design and have the same

individual complete all three tasks: give her expectations and subsequently produce

and interpret few and many. This way, the CFK semantics could be tested based

on individual expectations and not on average beliefs held within a sample of the

population. If σ, however, accounts for uncertainty about other factors as well,

say the threshold values or alternative utterances, the noise parameter could be

split up and made explicit in the model to help us learn about the vagueness and

context-dependence of few and many

Taken together, we see that the model presented here is a stark simplification.

Nevertheless, it fits the data surprisingly well given its simplicity and contributes

to our understanding of few and many. The benefit of probabilistic modeling is not

only in bringing these assumptions and simplification to the fore, but in providing

direct means of testing whether they are correct or, by means of model comparison,

which linking hypotheses may actually be better suited to explain the data. An

interesting next step is therefore to develop further model variants which include

pragmatic, grammatical or moral considerations and compare their predictions.

Besides considerations of how to further develop and improve the present model,

the methodological approach introduced here opens even more interesting venues

for future research. Firstly, inference of latent thresholds could naturally be applied

beyond our example case of few and many. Context-dependent threshold values are

also assumed to form part of the semantics of gradable adjectives (Kennedy and

McNally, 2005; Kennedy, 2007) and of other vague quantifiers like most (Hackl,

2009). Computational models in combination with experimental data put them-

selves forward as a promising method to investigate these phenomena within a uni-

form framework.

Secondly, we can use probabilistic modeling to compare the CFK semantics

against alternatives. For example, a different account for the meaning of few and

many was proposed by Solt (2011b). Here, the threshold is derived as a positive or

negative deviation from the median of the comparison class. This theory can just as
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well be couched in a probabilistic model and its predictions can then be compared

against the CFK semantics, using statistical model comparison.

Thirdly, it is an open issue whether a CFK semantics, as formulated here, can

also account for other readings of many and few. Fernando and Kamp (1996) ap-

ply a similar idea to proportional readings. The key feature of the proportional

reading is the existence of an upper bound on the scale few and many operate on.

Consequently, also the prior expectations PE are a distribution on a bounded inter-

val. In contrast to the cardinal reading, this opens the possibility of employing an

uninformed, uniformly distributed prior expectation which captures whether the de-

scribed proportion is small or large. This idea is linked to the question whether the

proportional reading expresses a fixed proportion. We set out to address this ques-

tion in Chapter 7. But there may be even more potential readings of few and many,

such as the inverse proportional reading, as already discussed in detail in Chapter 2.

This reading makes sentence (108) true if the proportion of Scandinavians among

Nobel prize winners was bigger than the proportion of people from other contextu-

ally salient alternative world regions who won a Nobel prize (c.f. Westerst̊ahl, 1985;

Eckardt, 1999; Cohen, 2001; Romero, 2015).

(108) Many SCANDINAVIANS won the Nobel prize.

(109) Inverse proportional reading of “Few/Many As are B”

a. Few : |A∩B||A| ≤
|
⋃
Alt(A)∩B|
|
⋃
Alt(A)| b. Many : |A∩B||A| ≥

|
⋃
Alt(A)∩B|
|
⋃
Alt(A)|

It could be hypothesized that it is just a matter of specifying the right PE to ac-

count for these cases as well within a CFK-approach. For the inverse proportional

reading of (108) in (109) we would need to consult the cumulative probability of

the actual number of Scandinavians with a Nobel prize to an expectation PE that

takes, presumably, the average number of Nobel laureates in the set of all relevant

world regions. It would need to be seen how far the CFK-approach can be pushed

in this direction (c.f. Fernando and Kamp, 1996). Still, data-driven computational

modeling seems like just the right tool to help in this investigation.

Finally, it would be interesting to not only infer plausible threshold values but

to try to explain why we see the threshold values that we apparently see. Focus-

ing on the case of gradable adjectives, Lassiter and Goodman (2015) give a model

that suggests that threshold values are the result of pragmatic inferences; another

approach tries to explain why particular threshold values are evolutionarily optimal

for successful communication (Franke, 2012; Qing and Franke, 2014a). Testing these

theoretical accounts with data-driven inferences of credible thresholds and applying

statistical model comparison would be a natural next step.
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5.A Experimental material

1. book — A friend’s favorite book has been published only recently (and

has few/many pages). — How many pages do you think the book has? —

intervals: 0-40, 41-80, 81-120, 121-160, 161-200, 201-240, 241-280, 281-320,

321-360, 361-400, 401-440, 441-480, 481-520, 521-560, 560 or more

2. bus — Vehicle No. 102 is a school bus (which has seats for few/many pas-

sengers). — How many passengers do you think can sit in Vehicle No. 102?

— intervals: 0-4, 5-9, 10-14, 15-19, 20-24, 25-29, 30-34, 35-39, 40-44, 45-49,

50-54, 55-59, 60-64, 65-69, 70 or more

3. calls — Lisa is a woman from the US (who made few/many phone calls

last week). — How many phone calls do you think Lisa made last week? —

intervals: 0-4, 5-9, 10-14, 15-19, 20-24, 25-29, 30-34, 35-39, 40-44, 45-49, 50-54,

55-59, 60-64, 65-69, 70 or more

4. class — Erin is a first grade student in primary school. (There are few/many

children in Erins class.) — How many children do you think are in Erin’s

class? — intervals: 0-2, 3-5, 6-8, 9-11, 12-14, 15-17, 18-20, 21-23, 24-26,

27-29, 30-32, 33-35, 36-38, 39-41, 42 or more

5. coffee — Andy is man from the US (who drank few/many cups of coffee last

week). — How many cups of coffee do you think Andy drank last week? —

intervals: 0-1, 2-3, 4-5, 6-7, 8-9, 10-11, 12-13, 14-15, 16-17, 18-19, 20-21, 22-23,

24-25, 26-27, 28 or more

6. cook — Tony is a man from the US (who cooked himself few/many meals

at home last month). — How many meals do you think Tony cooked himself

at home last month? — intervals: 0-3, 4-7, 8-11, 12-15, 16-19, 20-23, 24-27,

28-31, 32-35, 36-39, 40-43, 44-47, 48-51, 52-55, 56 or more

7. facebook — Judith is a woman from the US (who has few/many Facebook

friends). — How many Facebook friends do you think Judith has? — intervals:

0-69, 70-139, 140-209, 210-279, 280-349, 350-419, 420-489, 490-559, 560-629,

630-699, 700-769, 770-839, 840-909, 910-979, 980 or more

8. friends — Lelia is a woman from the US (who has few/many friends). —

How many friends do you think Lelia has? — intervals: 0-1, 2-3, 4-5, 6-7,

8-9, 10-11, 12-13, 14-15, 16-17, 18-19, 20-21, 22-23, 24-25, 26-27, 28 or more

9. hair — Betty is a woman from the US (who washed her hair few/many times

last month). — How many times do you think Betty washed her hair last

month? — intervals: 0-2, 3-5, 6-8, 9-11, 12-14, 15-17, 18-20, 21-23, 24-26,

27-29, 30-32, 33-35, 36-38, 39-41, 42 or more



5.A. EXPERIMENTAL MATERIAL 111

10. movie — Nick is a man from the US (who saw few/many movies last year).

— How many movies do you think Nick saw last year? — intervals: 0-2, 3-5,

6-8, 9-11, 12-14, 15-17, 18-20, 21-23, 24-26, 27-29, 30-32, 33-35, 36-38, 39-41,

42 or more

11. poem — A friend wants to read you her favorite poem (which has few/many

lines). — How many lines do you think the poem has? — intervals: 0-3,

4-7, 8-11, 12-15, 16-19, 20-23, 24-27, 28-31, 32-35, 36-39, 40-43, 44-47, 48-51,

52-55, 56 or more

12. restaurants — Sarah is a woman from the US (who went to few/many

restaurants last year). — To how many restaurants do you think Sarah went

last year? — intervals: 0-3, 4-7, 8-11, 12-15, 16-19, 20-23, 24-27, 28-31, 32-35,

36-39, 40-43, 44-47, 48-51, 52-55, 56 or more

13. shoes — Melanie is a woman from the US (who owns few/many pairs of

shoes). — How many pairs of shoes do you think Melanie owns? — intervals:

0-2, 3-5, 6-8, 9-11, 12-14, 15-17, 18-20, 21-23, 24-26, 27-29, 30-32, 33-35, 36-38,

39-41, 42 or more

14. tshirts — Liam is a man from the US (who has few/many T-shirts). — How

many T-shirts do you think Liam has? — intervals: 0-2, 3-5, 6-8, 9-11, 12-14,

15-17, 18-20, 21-23, 24-26, 27-29, 30-32, 33-35, 36-38, 39-41, 42 or more
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Chapter 6

Surprise Readings

The previous chapter demonstrated how the CFK semantics can be tested, a theory

which makes concrete predictions about the calculation of the threshold values for

the applicability of few and many in context. The computational modeling approach

supports the idea that speaker and listener behavior can be explained by a fixed pair

of thresholds θmany and θfew which apply to a probability distribution representing

prior expectations of the context.

We have claimed that such a semantics is able to account for the so-called “car-

dinal surprise reading”. This reading of cardinal few and many in a sentence like

(110) compares the cardinality described by the quantity word with quantitative

expectations about cardinalities in the respective context, as exemplified below, and

thus makes few and many dependent on prior expectations. This assumption is in

line with a long tradition in psychology which has acknowledged the role of prior

expectations in the use of vague and context-dependent expressions like tall, heavy,

few and many (e.g. Clark, 1991; Sanford et al., 1994; Lassiter and Goodman, 2013;

Qing and Franke, 2014b).

(110) For a man from the US, Chris saw few/many movies last year.

 Chris saw less/more movies than expected for a US male.

Apart from the question of how to test the semantic account of surprise readings,

the theory brings up further interesting questions: So far the assumption that few

and many receive a surprise reading has not been challenged. In Section 6.1, we

discuss how the surprise reading can be made salient by a compared to-phrase (111).

(111) Compared to what you would expect for a man from the US, Chris saw few

/ many movies last year.

One question arises: if sentences with few and many express that a cardinality is

surprising anyway, are they different from sentences in which the surprise element

is overtly marked?

113
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In Section 6.2, few and many are modified by surprisingly as in (112).

(112) For a man from the US, Chris saw surprisingly few / many movies last year.

Whether this adverb functions as a marker of surprise or as an intensifier and whether

the surprise reading is the most salient reading of few and many is tested with an

experiment and a computational model in Sections 6.3 and 6.4. The computational

model is essentially the same as in the previous chapter. It incorporates the CFK

semantics and infers plausible threshold values on a cumulative probability distribu-

tion of contextual expectations. After an interim summary in Section 6.5, we present

a follow up experiment in Section 6.6 and discuss the findings and in particular the

semantics of few in Section 6.7.

6.1 Making Surprise Readings Overt

As briefly mentioned above, language has several means of making the surprise

element overt that we assume to be part of the reading of few and many. In this

chapter, some options are introduced, in particular the compared to construction

and the adverb surprisingly. The ultimate goal of this chapter is to learn about the

meaning contribution of surprise and to test whether the surprise reading is really

the salient reading of few and many. We will do so by contrasting unmodified few

and many with constructions in which surprise is explicitly made salient.

The first construction which can mark surprise is the frame setter compared to.

The compared to-phrase “serves to indirectly (contextually) fix the intended value

for the comparison standard” (Beck, 2009) and its function is to “set the context

for the following sentence” (Beck et al., 2004).

(111) Compared to what you would expect for a man from the US, Chris saw few

/ many movies last year.

Loosely following Hohaus (2015), (111) (repeated from above) is true iff the car-

dinality of movies seen by Chris is lower/higher than some contextually provided

standard and only defined for situations in which comparison is with expectations

about men in the US. I refer the reader to Hohaus (2015) for an in-depth introduction

into the semantics of compared to constructions.

Under the assumption of a surprise reading of few and many, the meaning of

sentence (111) should be very similar if not identical to sentence (110) in which

the comparison class, namely US men, is marked by a for -phrase but the surprise

component is contributed by the quantity word. For -phrases denote comparison

classes which affect the standard involved in the semantics of positive forms of

gradable adjectives and they presuppose that the subject of the gradable predicate

is included in the comparison class set (Klein, 1980; Kennedy, 2007).
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hypothesis

intensifier marker of surprise salient surprise reading

predictions
many ≤ surprisingly many
few ≥ surprisingly few
surprisingly = incredibly

many = surprisingly many
few = surprisingly few

surprisingly = compared to

many = compared to... many
few = compared to... few

Table 6.1: Hypotheses for sentences expressing surprise readings

(110) For a man from the US, Chris saw few / many movies last year.

This sentence is defined iff Chris is a man from the US and true iff the number

of movies seen by Chris is lower/higher than the standard number of movies an

American man is expected to watch.

In a nutshell, when assuming that few and many express a surprise reading and

make reference to expectations, sentences like (110) are predicted to have very similar

truth conditions to sentences in which expectations are overtly marked by a compared

to-phrase as in (111). For this reason, we expect no difference in a judgment task

when either (110) or (111) is used to describe the same cardinality. In the following

we spell out this claim in terms of its predictions about the threshold values θfew

and θmany as assumed by Fernando and Kamp (1996). A first hypothesis about the

influence of a compared to phrase marking surprise in sentences with few and many

is given below (salient surprise reading). In the next section, hypotheses of the

interaction between surprisingly and the quantity words are developed (marker

of surprise, intensifier). The hypotheses are tested with a computational model

which infers these threshold values on the basis of experimental data in the remainder

of this chapter and are summarized in Table 6.1.

Salient surprise reading. We cannot exclude that few and many may also de-

note a small or large cardinality, independent of prior expectations. Nevertheless,

we assume that the most salient readings of our experimental test sentences (see

Appendix 6.A) are cardinal surprise readings given the comparison class for which

we measure information about subjects’ prior expectations (see below). To test this

assumption, we contrast sentences with bare few and many with sentences modified

by the compared to phrase in (111) which makes the relevant expectations overt.

It is necessary to test this because if few and many did not have the intended

surprise reading, differences between few/many and surprisingly few/many could

be due to different readings and possibly different threshold values associated with

them. Alongside few and many ’s intrinsic surprise reading, we test another related

assumption: the for - phrase used to mark the comparison class triggers the same

prior expectations PE as the compared to phrase which openly addresses expecta-

tions, see (111) and (112).
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6.2 Surprisingly : Marker of Surprise Readings or

Intensifier

Another way of marking surprise in sentences with few and many is by adding the

adverb surprisingly. Surprisingly can appear in two positions in the sentence.

(113) a. Surprisingly, Chris saw few / many movies last year.

 It is surprising that Chris saw few/many movies last year.

b. Chris saw surprisingly few / many movies last year.

 The number of movies which Chris saw last year is surprisingly

low/high.

In a sentence initial position, surprisingly takes over the role of a sentence adverbial,

as we can see in example (113a). It marks the entire proposition as being surprising.

When uttering (113a), the speaker expresses his surprise about the fact that Chris

watched few/many movies. Which number of movies counts as few or many is

determined independently of the adverb. For this reason, the second occurence is

more interesting in the scope of this dissertation. When surprisingly precedes the

quantity word, it functions as a degree modifier as in (113b). In its most salient

reading (113b) expresses that the number of movies watched by Chris is surprisingly

low or high.

With respect to our assumption that few and many express a surprise reading,

two views are prima facie plausible for the meaning contribution of the adverb

surprisingly. Note that our hypotheses for surprisingly apply to sentences with

a salient cardinal surprise reading and a restricted comparison class. On the one

hand, surprisingly can be taken to intensify the meaning of few and many just like

other intensifiers like incredibly or very do. As a result, surprisingly many might be

associated with a threshold θsurpr. many higher than θmany. The contrasting view is to

classify surprisingly as a marker of the surprise reading, which overtly marks that

truth-conditions must draw on a threshold on a measure of surprise. In this view,

the threshold of surprisingly few/many should not be different from unmodified

few/many under a surprise reading. The later view is supported by the semantic

literature.

Katz (2005) and Nouwen (2011) discuss the relation between a gradable adjective

modified by surprisingly and its unmodified positive form.

(114) a. Jasper is surprisingly tall.

b. Jasper is tall.

For the relation between the sentences (114a) and (114b), Nouwen (2011) suggests

that “being surprisingly tall comes to mean taller than expected”. Crucial to his
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proposal is the role of inferences and the assumption that gradable predicates are

monotone. If Jasper is surprisingly tall, this means that there exists a degree to

which Jasper is tall that is surprising (for someone like Jasper). Had Jasper been

taller, he would also have been tall to a surprising degree (by monotonicity). So we

infer that had Jasper been taller, he would also be called surprisingly tall. ”This is

why we can only use [surprisingly tall ] to refer to someone who is taller than (what

is considered) [expected]” (Nouwen, 2011, 154). Note that statements about degrees

actually license downward directed inferences, but adverbs like surprisingly reverse

such inferences and license upward directed inferences. If Andy is tall to degree d,

then he is also tall do any degree lower than d. For surprisingly tall, the opposite

holds. If Andy is surprisingly tall, his height would still be surprising if he were

taller, but not necessarily if he were shorter.

Furthermore, Katz (2005) and Nouwen (2011) agree that sentences with surpris-

ingly do not entail the positive form of the same gradable predicate. Sentence (114a)

does not entail (114b), since even though Jasper may be surprisingly tall (given

that his parents are very short, for example) he is not necessarily tall for general

standards. Note that this argument can be misunderstood as evidence against the

intensifier hypothesis. However, the entailment relation between (114a) and (114b)

only fails, when the comparison class is changed, for example from people with short

parents to people in general. For this reason, Katz’s (2005) and Nouwen’s (2011)

observation does not constitute evidence for or against the intensifier hypothesis.

Semantically, the degree modifier surprisingly is analyzed as a propositional mod-

ifier of type 〈st, st〉 or 〈st, t〉 (Nouwen, 2011; De Vries, 2012), which expresses the

speaker’s surprise about the information she is conveying. A sample denotation by

Nouwen (2011) is given below:

(115) Nouwen (2011)

a. JsurprisinglyK = λp.λw.p(w)& surprisingw(p)

 via type-shift and existential closure

b. Jsurprisingly tallK = λx.λw.∃d[tallw(x, d)& surprisingw(λw′.tallw′(x, d))]

c. JAnn is surprisingly tallK(w) = 1

iff ∃d[tallw(A, d)&surprisingw(λw′.tallw′(A, d))]

Nouwen (2011) predicts (115c) to be true if there exists a degree d such that Ann

is d-tall and it is surprising that Ann is d-tall. In other words, the sentece is true

if Ann is taller than expected. Surprisingly in (115b) functions like POS by being

type-shifted to be able to apply the modifier semantics in (115a) to gradable predi-

cates. The adjective’s degree variable is existentially bound before combining with

the subject. Since the standard of comparison is only inferred on the basis of the

monotonicity assumption described above, there is no explicit prediction of how the
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expected degrees are determined in the respective context. I take it that POS and

(115b) function in a parallel way by defining which degrees count as significantly

higher than the contextual standard.1 Sentences like (113a) in which surprisingly

functions as a sentence adverbial can be accounted for by applying (115a) to the

entire sentence. De Vries’s (2012) and Piñón’s (2005) proposals are similar in spirit:

surprisingly is a modifier of propositions and expresses that the proposition (that

the gradable predicate holds for a certain degree) is surprising. All in all, the three

accounts (Piñón, 2005; Nouwen, 2011; De Vries, 2012) derive essentially the same

result. Suprisingly is semantically a modifier of propositions and expresses that

the proposition is surprising. We do not find predictions about its influence on the

threshold of a gradable predicate; it is not explicitly classified as an intensifier which

raises the threshold of applicability. The semantic literature can be interpreted to

predict that surprisingly only marks the surprise reading, just like the compared to

phrase in (111) is expected to do.

At the same time, the suspicion that surprisingly functions as an intensifier

cannot be ruled out. It behaves parallel to other intensifiers like incredibly, extremely

or very which also modify gradable predicates and with which surprisingly is in

complimentary distribution. Note that the following linguistic test does not only

apply to few, but also to many and other gradable predicates like tall.

(116) a. Liam has surprisingly few T-shirts.

b. Liam has incredibly few T-shirts.

c. ?? Liam has surprisingly incredibly few T-shirts.

d. ?? Liam has surprisingly very few T-shirts.

e. ?? Liam has incredibly very few T-shirts.

The following two paragraphs develop an intensifier semantics for surprisingly

which can only account for its degree modifier variant. The sentence adverbial can-

not be explained with this lexical entry.

Even though the semantics does not make explicit predictions about the influence

of surprisingly on the threshold of the gradable predicate it modifies, there is an

interesting parallel to the semantics of intensifiers. Heim (2006) and von Stechow

(2006) both assume that very also takes over the role of POS with which it stands

in complimentary distribution. Very raises the boundaries of the neutral interval.

“The very interval must be a superinterval of the neutral interval of N(S) that sym-

1Nouwen (2011) does not further comment on the consequences of assuming that surprisingly
takes over the role of POS. He does not spell out whether the same scope interaction that we see
for surprisingly in (113a) and (113b) would also be predicted for POS. It is not elaborated on what
exactly triggers the type shift and the binding of the degree argument when surprisingly combines
with a gradable adjective.
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metrically includes both bounds or N(S)” (von Stechow, 2006, 7) and it is possible

to iterate the very-operation (for example, in very very many).

(117) von Stechow (2006)

JveryN,SKc = λD〈d, t〉 : c specifies an Interval I that symmetrically includes

. N(S) and is considerably bigger than N(S). (∀d ∈ I)D(d)

I understand a symmetrical inclusion to mean that the distance from the lower

bound of I to the lower bound of N(S) must be the same as from the upper bound

of N(S) to the upper bound of I.

The semantics for very can be extended to surprisingly to form an intensifier

which functions like POS and is compatible with surprise readings and the CFK

semantics, see our proposal for POSsurp in (87) in Section 2.4.

(118) JsurprisinglyK = λD〈s, 〈d, t〉〉.λw0 : I symmetrically includes NS = [xmax, xmin],

. xmax = max{n :
∑n

m=0 PE(m) ≤ θfew} and

. xmin = min{n :
∑n

m=0 PE(m) ≥ θmany}
. for PE(m) =

∑
w∈Sm

µ(w) and m ∈ N
. and Sm = {w : w ∈ Doxti(w0) & max(D(w)) = m}
. I ⊆ D(w0)

The neutral interval N(S) is the result of determining the cut-off points xmax

and xmin based on prior expectations PE, θfew and θmany. Surprisingly would then

impose a superinterval I on N(S), just like von Stechow’s (2006) very does. This way

we don’t contradict the stable core meaning hypothesis since θfew and θmany as the

lexical meaning of few and many can remain unchanged. Surprisingly only modifies

the already determined N(S) to intensify the meaning of few or many. What remains

to be tested is whether surprisingly keeps up the symmetrical inclusion requirement

from (117). This is why for now we only tentatively suggest the semantics in (118).2

From a pragmatic point of view, an intensifying effect of surprisingly is plausible

since a speaker makes the effort of uttering a longer and thus more costly sentence

when she could also only have used unmodified few or many. Consequently, a

speaker who adds surprisingly can be taken to assume that this utterance is more

informative. For example, surprisingly would rise the threshold of many and make

it thus applicable to a smaller range of cardinalities, which results in a stronger

statement than the alternative with bare many. This is in line with work about the

pragmatic effects of intensifiers.

The intensifier hypothesis is further supported by a pragmatic theory by Bennett

and Goodman (2015). They explain the strength of an intensifying degree adverb

2Note that this preliminary lexical entry only captures occurrences of surprisingly as a degree
modifier.
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as “pragmatic inference based on differing cost [(their length and frequency)] rather

than differing semantics” (p. 1). Bennett and Goodman (2015) test 40 intensifiers,

like amazingly, terribly or seriously, which have a high frequency in the Google

Web 1 T 5grams corpus and do not signal affect (like depressingly would). Each

intensifier was paired with the adjective expensive to describe three categories of

objects (laptop, watch and coffee maker). In a free production task, 30 participants

on Amazon’s Mechanical Turk were asked to give their estimate of the prize of

the objects as described by “[intensifier] expensive”. Bennett and Goodman (2015)

find a linear relationship between the meaning of intensifiers and their length and

frequency. The adverb surprisingly is not part of their set of intensifiers though.

From the adverbs tested by Bennett and Goodman (2015), incredibly comes closest

to surprisingly, as they have the same number of syllables and the most similar

frequency in an updated version of the corpus Bennett and Goodman (2015) used,

the Google Web 1 T 5grams corpus (4,987,059 occurrences of incredibly as compared

to 4,373,670 occurrences of surprisingly).

To discriminate between the two views on surprisingly, we deduce two experi-

mentally testable hypotheses. Another auxiliary hypothesis of incredibly is tested

alongside to complement our understanding of modified few and many, see Table

6.1. In what follows, we again spell out these general hypotheses in terms of their

predictions about the threshold values θfew and θmany. We run a judgment task to

gather experimental data, which will be input to a theory-driven, computational

model.

Marker of surprise. If the function of surprisingly is to mark a cardinal surprise

reading, thresholds are the same as for unmodified few/many, where these cardinal

surprise readings are most salient anyway (see above). Furthermore, sentences with

surprisingly should not be different from sentences with compared to, as in (111).

Intensifier. Modification by surprisingly raises the threshold of many and makes

it applicable to a smaller range of cardinalities, resulting in a stronger statement

than the alternative with bare many. Few ’s threshold decreases.

Bennett & Goodman. The intensifier hypothesis is in line with work by Bennett

and Goodman (2015) who explain the strength of an intensifying degree adverb as

“pragmatic inference based on differing cost [(their length and frequency)] rather

than differing semantics” (p. 1). Following Bennett and Goodman (2015), we hy-

pothesize that the thresholds of surprisingly few/many are roughly the same as for

incredibly few/many.
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6.3 Experiments

To test the hypotheses in Table 6.1, two experiments were conducted to gather

acceptability ratings of sentences with (modified) few and many and to measure

representations of participants’ prior expectations. The prior expectations task and

its results are the same as in Section 5.4.1. It is summarized briefly. Prior expecta-

tions will be input to the computational model from 5.3, which is presented again

briefly in the next section.

6.3.1 Elicitation of Prior Expectations

Design. To get an empirical estimate of participants’ prior expectations, we used

a binned histogram task. A sentence as in (119a) introduced a comparison class

and a question as in (119b) asked about typical cardinalities of every-day situations.

Subjects rated the likelihood that the true value lies in the 15 intervals, by adjusting

a slider each labeled from “extremely unlikely” to “extremely likely.”

(119) Prior elicitation example

a. Background: Chris is a man from the US.

b. Question: How many movies do you think he saw last year?

Participants. 80 subjects were recruited via Amazon’s Mechanical Turk with US-

IP addresses.

Materials & Procedure. Materials and procedures were the same as in Sec-

tion 5.4.1, see Appendix 5.A.

Results. For each item, each participant’s ratings were normalized and these nor-

malized ratings were then averaged across participants. The results displayed in

Figure 6.1 were already reported in Section 5.4.1.

6.3.2 Production Study: Judgment Task

Design. In a binary judgment task we measured acceptance of sentences with few

and many with and without modifiers (surprisingly, incredibly or compared to). Par-

ticipants were presented with a context which introduced a situation and an interval

as in (120a). The interval was randomly chosen from 8 of the 15 intervals from the

prior elicitation task (see Appendix 6.A). We presented only four low intervals for

few and four high intervals for many to avoid a large number of combinations. The

context was described by a statement as in (120b) which contained either few or
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Figure 6.1: Empirically measured prior expectations from Section 5.4.1. Error bars
are estimated 95% confidence intervals.

many. We elicited data of four groups of participants which each saw a different

modifier.

(120) Production study example

a. Context: Chris is a man from the US who saw [0–2 | 6–8 | . . . | 42 or

more] movies last year.

b. Statement: [For | Compared to what you would expect for] a man

from the US, Chris saw [- | surprisingly | incredibly] [few | many] movies

last year.

Materials & Procedure. Each participant was randomly assigned to one modi-

fier condition (unmodified, compared to construction, surprisingly, incredibly). After

reading a short explanation of the task, each subject saw all of the 14 contexts from

Appendix 6.A one after another in random order. Sentences with unmodified few

and many or incredibly or surprisingly were introduced by a for -phrase which made

the intended comparison class overt. The fourth group saw a compared to phrase

which additionally made expectations salient. For each context, a quantity word

and one of its four associated intervals were assigned randomly. Participants had to

click on one of two radio buttons labeled with true or false before being able to

proceed to the next item.

Participants. We recruited 787 participants with US-IP addresses via Amazon’s

Mechanical Turk, among them 301 participants in the unmodified condition and 162

participants each in the other three conditions. The unmodified condition had more



6.3. EXPERIMENTS 123

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

● ● ●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●
● ●

●

●

●

●

●
●

book bus calls class coffee cook facebook

friends hair movie poem restaurants shoes tshirts

0.25

0.50

0.75

0.25

0.50

0.75

1.00

0.25

0.50

0.75

0.25

0.50

0.75

1.00

0.25

0.50

0.75

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.25

0.50

0.75

1.00

0.25

0.50

0.75

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

3 6 9 12 15 3 6 9 12 15 3 6 9 12 15 3 6 9 12 15 3 6 9 12 15 3 6 9 12 15 3 6 9 12 15

3 6 9 12 15 3 6 9 12 15 3 6 9 12 15 3 6 9 12 15 3 6 9 12 15 3 6 9 12 15 3 6 9 12 15
interval

T
R

U
E

 r
at

in
gs

modifier
● compared

incredibly

surprisingly

unmodified

●

●

few

many

Figure 6.2: Proportion of true answers per modifier condition

participants because it was part of the production experiment from Section 5.4.2 in

which we presented 8 of 15 intervals for both few and many. For the analysis only

data from those intervals presented in the other three conditions was used.

Results. Data was excluded of 25 participants who reported not to be native

speakers of English or to not have understood the task. Figure 6.2 shows the pro-

portion of true answers.

For each of the quantity words few and many we specified a linear mixed effects

regression model predicting the proportional acceptance of statements as in (104b).

During a guided search through the model space, we started out with a model

containing only the random effect item and added fixed effects if this significantly

increased the model’s fit to the data (measured by AIC).

For many, the final model includes the fixed effects interval and modifier

and their interaction. Significantly more participants accepted the statements for

higher intervals (β = 0.02, SE = 0.007, p < 0.01). The modification of many by

surprisingly leads to a lower acceptance (β = −0.59, SE = 0.12, p < 0.001) than

of sentences with unmodified many. This suggests that surprisingly intensifies the

meaning of many. The same is the case for sentences with incredibly, which were

also rated lower than unmodified many (β = −0.53, SE = 0.12, p < 0.001). There

is no difference between sentences with a compared to phrase and unmodified many

(β = −0.17, SE = 0.12, p < 0.15), which suggests that many receives a surprise

reading in both cases. Surprisingly and compared to are rated significantly different

(β = −0.42, SE = 0.12, p < 0.001), but there is no difference between surprisingly

and incredibly. Furthermore, there is a significant interaction between interval

and modifier for surprisingly (β = 0.03, SE = 0.01, p < 0.001) and incredibly

(β = 0.02, SE = 0.01, p < 0.01).
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For few, the final model, obtained by the same procedure, includes the fixed ef-

fects interval and modifier. The proportion of participants accepting the state-

ment is significantly lower for higher numbers (β = −0.12, SE = 0.004, p < 0.001).

Among the modifiers only incredibly is significantly different from bare few (β =

−0.05, SE = 0.02, p < 0.05); for surprisingly and compared to this is not the case.

No significant difference between surprisingly and compared to is found, but incred-

ibly is rated significantly lower than surprisingly (β = −0.05, SE = 0.02, p < 0.05).

These results are expected under the “salient surprise reading” hypothesis. While

surprisingly seems to behave like an intensifier for many, it seems to redundantly

mark surprise for few.

6.4 Computational Model and Model Evaluation

The regression models reported above include a random effect for items, but do not

constrain these to reflect prior expectations. Moreover, regression models do not pre-

dict judgments as a function of thresholds on expectations. It is therefore insightful

to complement regression modeling with an explicit theory-driven model of a possible

data-generating process. We use the computational model of Section 5.3 for this pur-

pose. The model takes empirically measured prior expectations as input and treats

θ[i]few and θ[i]many for each modifier condition i (unmodified, surprisingly, incredibly,

compared to) as latent parameters, whose values will be estimated from experimen-

tal data. The model specifies a likelihood function P (Observation | θ[i]many, θ[i]few)

which assigns to values of latent parameters a probability of seeing a particular ex-

perimental observation. Bayesian inference is one way to infer plausible threshold

values, given the likelihood function and a prior distribution on parameter values:

P (θ[i]many, θ[i]few | O) ∝ P (θ[i]many, θ[i]few) · P (O | θ[i]many, θ[i]few) (6.1)

Our goal, then, is to see for each modifier which pairs of threshold values θ[i]many

and θ[i]few are likely given the data. We estimate the a posteriori credible threshold

values and compare how similar they are across conditions. We focus on many in

the exposition, but the case for few is parallel.

(77) CFK Semantics

a. JFew As are BK = 1 iff |A ∩ B | ≤ xmax

where xmax = max {n ∈ N | PE(|A ∩ B | ≤ n) < θfew}

b. JMany As are BK = 1 iff |A ∩ B | ≥ xmin

where xmin = min {n ∈ N | PE(|A ∩ B | ≤ n) > θmany}
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few many

unmodified

compared

surprisingly

incredibly

0.00 0.05 0.10 0.15 0.65 0.70 0.75 0.80 0.85 0.90
HDI of thresholds

few many
incredibly [0.000 , 0.047] [0.866 , 0.897]
surprisingly [0.001 , 0.115] [0.863 , 0.903]
compared to [0.005 , 0.186] [0.675 , 0.768]
unmodified [0.085 , 0.187] [0.657 , 0.701]

Figure 6.3: Estimated 95% credible intervals for θfew,i & θmany,i

Straightforwardly, the CFK semantics repeated from (77) translates into a prob-

abilistic rule P (“[modifier i ] many” | n, PE ; θ[i]many) = δn≥xmin,i
, where xmin,i is

derived from PE, as in (77), based on θ[i]many. This is a degenerate probabilistic rule

because it maps the applicability of “many” to 0 and 1 only. To allow for noise, we

look at a parameterized, smoothed-out version.

P (“[i ] many” | n, PE; θ[i]many, σj) =
n∑

k=0

∫ k+ 1
2

k− 1
2

N (y;xmin,i, σj)dy (6.2)

The steepness of the curve is regulated by another free model parameter σj.

N (y;xmin,i, σj) is then the probability density of y under a normal distribution with

mean xmin,i and standard deviation σj. This rule predicts noisy acceptability ratings

under a surprise-based semantics where the amount of noise is controlled by σj, see

Figure 5.4a from the previous chapter. Noise can be caused by uncertainty about

the exact shape of PE and the amount of uncertainty differs across contexts. This is

why we allow an individual value of σj for each context j. Furthermore, we assume

that the parameter values θ[i]many, θ[i]few and σj are independent of each other and

that they have uniform priors over an interval that is large enough to accommodate

a range of plausible values without weighting them.
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hypothesis

intensifier marker of surprise salient surprise reading

predictions
many ≤ surprisingly many
few ≥ surprisingly few
surprisingly = incredibly

many = surprisingly many
few = surprisingly few

surprisingly = compared to

many = compared to... many
few = compared to... few

results few : × many: X few : X many: × few : X many: X

Table 6.2: Results for sentences expressing surprise readings

P (θ[i]many, θ[i]few, σj) =Uniform[0;1](θ[i]many) · Uniform[0;1](θ[i]few) · Uniform[0;10](σj)

(6.3)

To approximate the joint posterior distribution, we used MCMC sampling, as

implemented in JAGS (Plummer, 2003) and briefly introduced in Chapter 4. We

collected 10,000 samples from 2 MCMC chains after a burn-in of 10,000. This

ensured convergence, as measured by R̂ (Gelman and Rubin, 1992). Figure 6.3 shows

the estimated 95% credible intervals for the marginalized posteriors over thresholds

per modifier. Where intervals (clearly) do not overlap, there is reason to believe that

thresholds differ. For example, θsurpr.many ∈ [0.863, 0.903] tells us that surprisingly

many describes cardinalities which are higher than at least 86% of the cumulative

density mass of PE. This threshold is higher than bare many ’s, θmany ∈ [0.657, 0.701].

Taken together, the model predicts that surprisingly many is restricted to describe

higher cardinalities than unmodified many.

6.5 Interim Summary

Table 6.2 summarizes the results from regression and theory-driven modeling. The

data supports the “salient surprise reading” hypothesis assumed by Fernando and

Kamp (1996) and suggests that an expectation-based reading is the canonical in-

terpretation of cardinal few and many in our test sentences. There is no difference

between unmodified sentences and sentences in which expectations are made salient

by a compared to-phrase.

For surprisingly, the picture is less clear. Sentences with many provide support

for the intensifier hypothesis. Speakers prefer it for higher cardinalities than those

which render unmodified many or sentences with a compared to construction true.

Furthermore, we do not find a difference to incredibly. When combined with few,

however, surprisingly does not appear to be an intensifier. Sentences with few, sur-

prisingly few and compared to are rated equally, speaking in favor of a “marker of

surprise” hypothesis. For the comparison between surprisingly and incredibly, we get

conflicting results from the regression and the theory-driven model. The regression
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analysis finds that incredibly few is rated lower than surprisingly few, but the com-

putational model identifies an overlap in the estimated credible intervals. However,

we want to once more stress that we are here comparing conclusions based on models

which are decidedly different. Whereas the computational model is theory-driven

and includes experimentally measured prior expectations, the regression model only

looks at numerical differences in the average ratings. If we were forced to make a

decision, we would believe in the computational model.

Keeping in mind that few only applies to small cardinalities, the lack of a dif-

ference could also be due to a floor effect. In the judgment task, participants were

presented with intervals instead of single numbers and moreover, we only presented

four out of 15 intervals per quantity word. This setup might not be adequate to

reveal a potential difference between surprisingly few and few. Due to the lower

bounded scale, the difference for few is probably more subtle than the difference

between surprisingly many and many. This is where future research should tie in.

Few should be presented in contexts like book or facebook (see 6.A), in which

large cardinalities are plausible and few can operate away from 0. Additionally,

the presented intervals should be more fine-grained. We opt for a third option and

follow up on the presented judgment task with an interpretation experiment. To

investigate a possible floor effect which might conceal an intensifying effect of sur-

prisingly on few, we present the same items in a free choice interpretation task.

Such a task gives participants much more freedom in their choice. If the lack of a

difference between surprisingly few and few was due to a floor effect, we hope to be

able to reveal it with this task type. The follow-up experiment is presented in the

next section.

6.6 Follow-up study: Refining Modified few

The production task discussed in the previous sections produced puzzling results.

The adverb surprisingly seems to function like an intensifier in combination with

many, but not with few. This is very surprising under the assumption that surpris-

ingly contributes the same meaning in both cases. To learn whether the lack of a

difference between few and surprisingly few was really due to a floor effect, we run

an interpretation task as a follow-up experiment. We hope to gain more insight into

the interaction between surprisingly and few by allowing participants to choose a

single number, instead of an interval as we did in the judgment task presented in

Section 6.3.2. We expect to see more fine-grained results in this free choice interpre-

tation task which could identify a difference between surprisingly few and few that

could previously not be revealed due to a floor effect.
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6.6.1 Interpretation Task

Design. In a free choice task we measured participants’ interpretation of modified

and unmodified few and many. Participants saw the same 14 contexts as in the

production study, see Appendix 6.A. Each item was paired with either few or many

and one of the four modifier conditions (unmodified, compared to, surprisingly, in-

credibly). Participants were asked to give their interpretation of the quantifier term

by adjusting a slider on a scale. The sliders were presented on a horizontal scale on

the screen. The slider’s label on the lower end was 0, the label on the upper end

was the highest of the 15 intervals, which were already used in the prior elicitation

task (for example ‘28 or more’). The interim interval boundaries were not marked

on the scale, however and participants could select any number, not just intervals.

(121) Interpretation study example

a. Context (unmodified, surprisingly, incredibly):

Andy is a man from the US who drank [ - | surprisingly | incredibly] [few

| many] cups of coffee last week.

Context (compared to):

Andy is a man from the US. Compared to what you would expect for a

man from the US, Andy drank [few | many] cups of coffee last week.

b. Question: How many cups of coffee do you think Andy drank last

week? (0 - 28 or more)

Participants. We recruited 170 participants with US-IP addresses via Amazon’s

Mechanical Turk.

Materials & Procedure. After reading a short introduction, each subject saw

all of the 14 contexts from Appendix 6.A one after another in a random order.

Participants saw each context in the same modifier condition. For each context, few

or many were assigned randomly. Participants had to adjust the slider or at least

click on it before being able to proceed to the next item.

Results. The data of four participants were excluded because they reported not

to be native speakers of English. The interpretations per condition as well as the

median answer is plotted in Figure 6.4.

For each of the quantity words few and many we specified a linear mixed effects

regression model predicting interpretations. The model contained the random effect

item and the fixed effect modifier. Note that there were no other factors.

The modification of many by surprisingly leads to significantly higher interpre-

tations (β = 28.37, SE = 6.66, p < 0.001) than of sentences with unmodified many.
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(a) Interpretion data of few
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(b) Interpretation data of many

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

friends hair movie poem restaurants shoes tshirts

book bus calls class coffee cook facebook

comp unm surp incr comp unm surp incr comp unm surp incr comp unm surp incr comp unm surp incr comp unm surp incr comp unm surp incr

comp unm surp incr comp unm surp incr comp unm surp incr comp unm surp incr comp unm surp incr comp unm surp incr comp unm surp incr

0

250

500

750

1000

10

20

30

40

20

30

40

50

10

20

30

40

10

15

20

25

10

20

30

40

50

10

20

30

40

10

20

30

40

50

20

40

60

0

10

20

30

40

20

40

60

10

20

30

40

0

200

400

10

15

20

25

modifier

in
te

rp
re

ta
tio

n

modifier
● compared

unmodified

surprisingly

incredibly

Figure 6.4: Interpretation data of modified few and many
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This supports the production study’s finding that surprisingly intensifies the mean-

ing of many. The same is the case for sentences with incredibly, which also received

higher interpretations than unmodified many (β = 29.66, SE = 6.93, p < 0.001).

There is no significant difference between sentences with a compared to phrase and

unmodified many (β = 13.12, SE = 6.79, p = 0.06). We interpret this result as sug-

gesting that the most salient reading of many is the surprise reading. Surprisingly

and compared to are rated significantly different (β = −15.25, SE = 6.42, p < 0.05),

but there is no difference between surprisingly and incredibly.

For few, no modifier triggered a significantly different interpretation from bare

few (β = −0.05, SE = 0.02, p < 0.05). Furthermore, no significant difference be-

tween surprisingly and compared to nor between surprisingly and incredibly is found.

These results are expected under the “salient surprise reading” hypothesis. While

surprisingly seems to behave like an intensifier for many, for few it seems to redun-

dantly mark surprise.

6.6.2 Computational Model

The interpretation data was also analyzed with a theory-driven model of listener

behavior. The interpretation rule developed in Section 5.3 specifies a likelihood

function which assigns to each interval the probability of being chosen as the inter-

pretation of “[modifier] few/many”.

PL(n | “[i ] many”, PE ; θ[i]many, σj) ∝ PE(n) · PS(“[i ]many” | n, PE ; θ[i]many, σj)

(6.4)

Via Bayesian inference we again infer a pair of threshold values θ[i]many and θ[i]few

for each modifier i, which are most likely to have generated the observed data. Note

that for this purpose participants’ answers were fused into the respective intervals

to be able to relate them to the prior data from Section 6.3. The 95% highest

density intervals of the posterior distribution of θ[i]many and θ[i]few are displayed in

Figure 6.5. Unfortunately, these results do not allow us to see the picture more

clearly. For many, the findings of the production experiment could be replicated.

We do not find an overlap between θsurpr.many and θmany (even though the two HDIs

come very close), suggesting that surprisingly intensifies the meaning of many, like

incredibly does. For few, however, the HDIs of surprisingly few and few overlap,

suggesting that surprisingly does not raise few ’s threshold.

To get a more nuanced quantitative measure for the likelihood of θsurp being

more extreme than θunmodified, we used another version of the model which jointly

infers the threshold values on both production and interpretation data in these two

modifier conditions.
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few many

0.0 0.1 0.2 0.80 0.85 0.90 0.95 1.00

unmodified

compared

surprisingly

incredibly

HDI of thresholds

few many
incredibly [0.000 , 0.008] [0.986 , 1.000]
surprisingly [0.001 , 0.104] [0.919 , 0.975]
compared to [0.007 , 0.174] [0.909 , 0.969]
unmodified [0.063 , 0.270] [0.791 , 0.917]

Figure 6.5: Estimated 95% credible intervals for θfew,i & θmany,i for interpretation
data

P (θmany, θfew, θsurp.many, θsurp.few | O) ∝ (6.5)

P (θmany, θfew, θsurp.many, θsurp.few) · P (O | θmany, θfew, θsurp.many, θsurp.few)

For each sample of θmany and θsurp.many and of θfew and θsurp.few we calculate their

difference. From the posterior distribution of θsurp.many− θmany and θsurp.few− θfew we

then calculate their highest density interval. If the HDI of the differences does not

contain 0, the model supports the hypothesis that the threshold values are really

different from each other, resulting in an intensifier interpretation of surprisingly.

For many, the model once more supports the intensifier hypothesis for surpris-

ingly. The HDI of the difference between the thresholds of surprisingly many and

many, θsurp.many − θmany, does not contain 0. It is estimated to be [0.101, 0.145].

This suggests that the value of θsurp.many is credibly higher than the value of θmany.

For few, the HDI of the difference between the thresholds of surprisingly few and

few, θsurp.few − θfew, is and [-0.074, 0.022] and does contain 0. Strictly speaking, the

model does not constitute clear evidence for an intensifying effect of surprisingly

in combination with few. Nevertheless, we find that 80% of the difference’s values

which carry the highest density mass are below 0. In other words, the posterior

probability is 80% that θsurp.few is lower than θfew after all. Even though this result

cannot be taken as strong evidence for the intensifier hypothesis, it encourages us

collect more data on surprisingly few, hoping to arrive at a definite verdict.



132 CHAPTER 6. SURPRISE READINGS

6.7 Discussion

If the lack of an intensifying effect of surprisingly on few was due to a floor effect,

the free choice task could not resolve it even though it allowed for more freedom by

not restricting the choices to intervals. In contrast, even the significant difference

between incredibly few and few vanishes. Apart from this, the interpretation task’s

results replicate the production task’s findings. In both production and interpreta-

tion, there is no significant difference between sentences with bare few and many

and sentences in which expectations are made overt with a compared to-phrase as

in (121a). We conclude that the surprise reading is the most salient reading of few

and many in our test sentences. This result constitutes experimental support for an

expectation-based semantics of few and many.

For surprisingly, the interpretation task does not provide new insights. There

is no difference between surprisingly few and few, but in combination with many

the adverb still has an intensifying effect. As mentioned above, these results are

unexpected under the assumption of an unambiguous surprisingly that contributes

the same meaning in combination with both few and many.

For now, we can only speculate about possible reasons and will have to back off

from further promoting the lexical entry of an intensifier version of surprisingly, sug-

gested in (118). In contrast to von Stechow’s (2006) semantics for very, surprisingly

does not seem to maintain the symmetrical inclusion presupposition from (117). So

far the experimental data suggests that surprisingly raises the boundary for many,

but for few the evidence is not clear enough to draw the same conclusion.

A first explanation of the missing intensifying effect on few could be a decom-

positional analysis of few, as introduced in Section 2.2.4. If few decomposes into

many and a scopally mobile, negative operator little, the negation could prevent sur-

prisingly ’s intensifying effect. What exactly this might look like in a compositional

semantic analysis is not clear though. The only meaning component of surprisingly

that would have to be negated is its intensifying effect, not the entire sentence. For

example, the sentence ”Chris saw surprisingly few movies last year” still expresses

that the number is small, even though the number is maybe not very small. It is

not obvious how little could only negate the intensifying effect of surprisingly while

not affecting anything else. This technical problem may be solvable, but for now it

remains a puzzle what a compositional analysis would have to look like.

Nevertheless, the idea that the semantics of few blocks an intensifying effect of

surprisingly is supported by several observations in which few behaves differently

from many. A series of experiments by Moxey and Sanford (1987) and Sanford et al.

(1994) shows that few licenses a complement set reference whereas many makes

reference to the set whose cardinality it describes. For example, in a continuation
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task repeated from Section 3.2, participants associate the pronoun with a different

set for few than for many.

(96) Few of the football fans were at the match. They...

Participants would associate they not with the entities quantified over by few, the

football fans present at the match. Instead, the complement set is activated: the fans

who are not present. For example they would continue the sentence with “watched

the match at home instead”. For many and other positive quantifiers, like a few,

this is not the case (cf. Moxey and Sanford, 1987). Transferring these results to the

present case in a sentence like (122), surprisingly few tends to shift the attention

to, say,the students who had not passed whereas surprisingly many does not, as

exemplified by a continuation similar to Sanford et al.’s (1994) items.

(122) a. Surprisingly many students passed the test. They... had a big party to

celebrate their success.

b. Surprisingly few students passed the test. They... had underestimated

the test’s difficulty.

Surprisingly many ’s reference set is not only part of the utterance’s asserted mean-

ing, it is additionally highlighted by the cardinality word. For this reason, surpris-

ingly many might be perceived as a stronger description than surprisingly few. For

now, these speculations can only be put on the agenda for future research, however.

Furthermore, many uses of bare few are perceived as sounding marked. For

example, when presented with alternatives, many speakers prefer not many, only

few or a few to bare few. See the example below:

(123) a. Andy drank few cups of coffee.

b. Andy drank only few cups of coffee.

c. Andy drank not many cups of coffee.

d. Andy drank a few cups of coffee.

This was the feedback that we often got from participants, especially for the items

in Schöller and Franke (2015).

All of these features of few confirm the difficult undertaking of providing a se-

mantics for few. As already pointed out in Section 2.2.4, the semantics of few is

quite elusive and will have to be further investigated. The open issues in the se-

mantics of few will have to be answered on par with the more general question of

whether antonyms are really decomposed in the syntax or not, see Section 2.2.4.

When looking at the computational model’s inferred threshold values, we see that

they are in general more “extreme” in interpretation tasks than in production tasks.

For few, θ[i]few are slightly lower in the interpretation task, and for many, θ[i]many are
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higher in the interpretation task. The same could be observed in the experiments

on cardinal few and many in the previous chapter. We believe that the reason

for the difference between the tasks is the range of choices participants have. The

judgment task, on the one hand is a binary rating task in which participants only

have two options; either the quantity word is a felicitous description of the presented

cardinality or it is not. On the other hand, an interpretation task leaves participants

with a much broader range of choices. Even though the quantity word might also

have been used to describe lower cardinalities, participants seem to play it safe and

choose a higher number as many ’s interpretation (or a lower number for few). For

this reason we do not yet want to reject the floor effect hypothesis for surprisingly

few. We cannot exclude that we just have not yet found the right method to test

it. This suspicion is also fueled by the model version which estimates the difference

between θsurp.few and θfew and assigns a probability of 80% to a potential difference

of the threshold values.

Apart from the puzzle of whether surprisingly is an intensifier, another interest-

ing area of future research is to investigate which kind of knowledge is necessary

to be able to form the expectations which are required to license surprisingly. A

surprising observation is that surprisingly is felicitous in (124), but not in (125).

(124) Grandma walked into a bar. Even though she didn’t have many drinks, she

had surprisingly many.

(125) ?? A random Joe walked into a bar. Even though he didn’t have many

drinks, he had surprisingly many.

In (124), we both communicate expectations about people in general ( not many)

and about the well-known individual Grandma ( surprisingly many). But in

(125) there is not sufficient information to form special expectations about a “ran-

dom Joe”. Why a stereotypical Joe renders surprisingly infelicitous remains to be

elucidated.

6.A Experimental Material

1. book — A friend’s favorite book has been published only recently and has

[0-40, 81-120, 161-200, 241-280, 321-360, 401-440,481-520, 560 or more] pages.

— [For | Compared to what you would expect for] a recently published book,

the book has [- | surprisingly | incredibly ] [few | many] pages.

2. bus — Vehicle No. 102 is a school bus which has seats for [0-4, 10-14, 20-24,

30-34, 40-44, 50-54, 60-64, 70 or more] passengers. — [For | Compared to

what you would expect for] a school bus, Vehicle No. 102 has seats for [- |
surprisingly | incredibly ] [few | many] passengers.
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3. calls — Lisa is a woman from the US who made [0-4, 10-14, 20-24, 30-34,

40-44, 50-54, 60-64, 70 or more] phone calls last week. — [For | Compared to

what you would expect for] a woman from the US, Lisa made [- | surprisingly

| incredibly ] [few | many] phone calls last week.

4. class — Erin is a first grade student in primary school. There are [0-2, 6-8,

12-14, 18-20, 24-26, 30-32, 36-38, 42 or more] children in Erin’s class. — [For

| Compared to what you would expect for] a primary school class, there are [-

| surprisingly | incredibly ] [few | many] children in Erin’s class.

5. coffee — Andy is man from the US who drank [0-1, 4-5, 8-9, 12-13, 16-17,

20-21, 24-25, 28 or more] cups of coffee last week. — [For | Compared to

what you would expect for] a man from the US, Andy drank [- | surprisingly

| incredibly ] [few | many] cups of coffee last week.

6. cook — Tony is a man from the US who cooked himself [0-3, 8-11, 16-19,

24-27, 32-35, 40-43, 48-51, 56 or more] meals at home last month. — [For

| Compared to what you would expect for] a man from the US, Tony cooked

himself [- | surprisingly | incredibly ] [few | many] meals at home last month.

7. facebook — Judith is a woman from the US who has [0-69, 140-209, 280-349,

420-489, 560-629, 700-769, 840-909, 980 or more] Facebook friends. — [For

| Compared to what you would expect for] a woman from the US, Judith has

[- | surprisingly | incredibly ] [few | many] Facebook friends.

8. friends — Lelia is a woman from the US who has [0-1, 4-5, 8-9, 12-13, 16-17,

20-21, 24-25, 28 or more] friends. — [For | Compared to what you would

expect for] a woman from the US, Lelia has [- | surprisingly | incredibly ] [few

| many] friends.

9. hair — Betty is a woman from the US who washed her hair [0-2, 6-8, 12-14,

18-20, 24-26, 30-32, 36-38, 42 or more] times last month. — [For | Compared

to what you would expect for] a woman from the US, Betty washed her hair

[- | surprisingly | incredibly ] [few | many] times last month.

10. movie — Chris is a man from the US who saw [0-2, 6-8, 12-14, 18-20, 24-26,

30-32, 36-38, 42 or more] movies last year. — [For | Compared to what you

would expect for] a man from the US, Chris saw [- | surprisingly | incredibly ]

[few | many] movies last year.

11. poem — A friend wants to read you her favorite poem which has [0-3, 8-11,

16-19, 24-27, 32-35, 40-43, 48-51, 56 or more] lines. — [For | Compared to

what you would expect for] a poem, the poem has [- | surprisingly | incredibly

] [few | many] lines.
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12. restaurants — Sarah is a woman from the US who went to [0-3, 8-11, 16-

19, 24-27, 32-35, 40-43, 48-51, 56 or more] restaurants last year. — [For |
Compared to what you would expect for] a woman from the US, Sarah went

to [- | surprisingly | incredibly ] [few | many] restaurants last year.

13. shoes — Melanie is a woman from the US who owns [0-2, 6-8, 12-14, 18-20,

24-26, 30-32, 36-38, 42 or more] pairs of shoes. — [For | Compared to what

you would expect for] a woman from the US, Melanie owns [- | surprisingly |
incredibly ] [few | many] pairs of shoes.

14. tshirts — Liam is a man from the US who has [0-2, 6-8, 12-14, 18-20, 24-26,

30-32, 36-38, 42 or more] T-shirts. — [For | Compared to what you would

expect for] a man from the US, Liam has [- | surprisingly | incredibly ] [few |
many] T-shirts.



Chapter 7

The Proportional Reading of few

and many

The previous chapters focused on the experimental investigation of the cardinal sur-

prise reading of few and many. We found evidence for Fernando and Kamp’s (1996)

theory that the quantity words comprise stable core meanings θfew and θmany, which

operate on prior expectations of the context. To determine which cardinalities count

as few or many in the respective context, the cumulative density mass of said prior

expectations is cut off at a fixed percentage θfew or θmany, deriving thresholds on

the cardinality scale. In this chapter we turn to another very prominent reading

of few and many, the proportional reading. We investigate whether the stable core

meaning hypothesis can be transferred to this reading. To do so, we briefly sum-

marize the characteristics of the proportional reading and test whether proportional

few and many are equally context-dependent, by manipulating prior expectations

in an interpretation task in Section 7.1. Minimal pairs of sentences are compared

which introduce contrasting properties. For example, the number of muffins eaten

by hungry person vs. the number of muffins eaten by a person feeling full. Comple-

menting experiments in real-world contexts are presented in Section 7.2, eliciting the

production of proportional few and many and prior expectations of the presented

contexts. By real-world contexts we refer to contexts which deal with every-day

situations and proportions, like the proportion of all muffins on the table a person

ate or the ratio of tennis matches a player lost. Whether world knowledge is all that

matters or whether the sheer size of the described proportion has to be taken into

account as well is investigated by testing few and many in an abstract urn scenario

in Section 7.3.

Experimental findings suggest that the proportional reading can both express

that a proportion is (i) numerically high and (ii) surprisingly high. Consequently,

we assume that the contextual contribution is two-fold: the first is an uninformed,

uniform belief about proportions and the second is an informed prior expectation

137
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about likely proportions based on world knowledge. For this reason, the computa-

tional model from the previous Chapter 5.2 does not manage to predict the data in

a satisfying way. Nevertheless, we assume that few and many have a stable core

meaning. We propose a linear combination model in Section 7.5 which incorporates

that the amount of world knowledge employed depends on its saliency in the con-

text. We are interested in whether the estimated threshold values θmany and θfew are

the same as those inferred for cardinal few and many. This could provide further

evidence for a potential lexical ambiguity between the proportional and the cardinal

reading, as discussed in Section 2.1.1. The model is evaluated in Section 7.6 before

concluding with a discussion in Section 7.7.

7.1 The Proportional Reading in Context

In Section 2.1.1, the two most prominent readings of few and many were introduced:

the cardinal and the proportional reading. Whereas the cardinal reading describes

the cardinality of a set of objects, the proportional reading describes the proportion

of a set relative to its superset. This section briefly calls to mind the key semantic

properties and presents an interpretation study from Schöller and Franke (2016).

The study investigates whether the size of the proportions which count as few or

many is fixed or whether it varies with the context. If proportional few and many

turned out to express that a proportion is lower or higher than expected, a natural

next step would be to transfer the CFK semantics from the previous chapters to

this reading.

7.1.1 Proportional few and many

Since proportional few and many describe a proportion, the existence of an upper

bound on the quantity word’s scale is required for this reading to arise. This upper

bound can be implicit or it can be spelled out overtly with a partitive construction,

as exemplified below:

(126) a. Many of the 1,000 women testing the new contraceptive became preg-

nant.

b. Many Germans love bread.

(127) a. Few of Cornwall’s residents speak more than four languages.

b. Few of the 28 students passed the exam.

According to Partee (1989), sentence (126b) is true if a large proportion of the

German citizens like bread; at least k, where “[w]e may think of k either as a
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fraction between 0 and 1 or as a percentage” (Partee, 1989, 2). Truth-conditions of

“Few/Many A are B” under a proportional reading are repeated from above.

(11) Proportional reading

a. Few : |A ∩B | : |A | ≤ kmax

b. Many : |A ∩B | : |A | ≥ kmin

This simple semantics is intuitively appealing (see Chapter 2 for an extensive discus-

sion of the semantics of proportional few and many), but it leaves several questions

unanswered. How to define the size of the fraction kmin/max which determines the

use of few and many is left unspecified. Furthermore, (11) does not tell us what the

influence of the context on thresholds kmin/max is, or whether it is assumed to be a

fixed proportion. In contrast to the cardinal reading whose scale is not bounded, it

would theoretically be possible to hardwire a value for a fixed proportion kmax and

kmin in the semantics, but already the few examples in (126) suggest to dismiss this

idea as being implausible. The proportion of women needed to make (126a) true is

much lower than the proportion of Germans that are needed to make (126b) true.

Similarly, the proportion of Cornwall residents for (127a) to be true is much lower

than the proportion of students in (127b). With an interpretation experiment, we

confirm the suspicion that proportional many is dependent on expectations of the

context and that its use cannot be captured by a fixed threshold on proportions.

7.1.2 Interpretation Experiment: the Context-Dependence

of Proportional many

The objective of this interpretation experiment of sentences with proportional many

is to verify the hypothesis that also the proportional reading is influenced by ex-

pectations of the context. Furthermore, we aim to find out whether it makes a

difference to use many in the plain form (“many”) or in the partitive construction

(“many of the”) and whether the number of objects in the context influences the

interpretation.

Design A sentence introduced the context and the amount of the objects under

discussion, see (128) and (129) for sample items. Each item was randomly paired

with one of two numbers of the form [3/4N | N] (labeled as low or high number

condition below). The number in the context sentence was described by a sentence

containing either “many” or “many of the”. The sentence was randomly chosen

from two probability conditions [HP | LP], high probability or low probability.

The two conditions differed in the comparison class set in the relative clause. We set



140 CHAPTER 7. THE PROPORTIONAL READING OF FEW AND MANY

the comparison classes in a way that we expect higher answers in high probability

contexts. We made sure that the two relative clauses per item are a minimal pair.

Most of them differed only in contrasting adjectives. Participants were asked to

guess the number that they think “many” or “many of the” refers to.

(128) Context: There were [9|12] muffins on the kitchen table in Eds flat.

HP: Ed, who arrived feeling hungry, ate [many|many of the] muffins.

LP: Ed, who arrived feeling full, ate [many|many of the] muffins.

How [many|many of the] muffins do you think Ed ate?

(129) Context: When moving flat, Martha packed [15|20] big boxes.

HP: Martha, who is a strong woman, carried [many|many of the] boxes

herself.

LP: Martha, who is a weak woman, carried [many|many of the] boxes herself.

Question: How [many|many of the] boxes do you think Martha carried?

Participants The experiment was conducted via Amazon’s Mechanical Turk and

elicited data from 160 participants. Participants who are not self-reported native

speakers of English were excluded. No participant participated more than once.

Methods & Material At the beginning of the experiment, each participant was

randomly assigned to the partitive condition [-|+ partitive]. [-partitive] means,

that every sentence was presented with plain “many”, whereas in the [+partitive]

condition “many of the” was used. Every participant saw all 16 items from Ap-

pendix 7.A.1 in a random order. The probability and the number condition were

assigned randomly. Participants could only proceed to the next item after having

entered a number into a text box. In this experiment, only many is presented. The

following experiments in this chapter, however, test few as well.

Results Figure 7.1 displays the mean proportions of N that were given as the

interpretation of many. A first visual inspection of the data suggests a difference

between LP and HP condition, which supports the hypothesis that prior expec-

tations influence interpretation of proportional many. Furthermore, the difference

between low and high probability seems to be greater in the plain condition than

when the partitive is used. Whether these differences are statistically significant will

be analyzed in the following.

At first we specified a mixed linear effects regression model predicting propor-

tional interpretations for many which included the factors probability (high or

low probability sentence), number (number in context), partitive (plain or par-

titive “many”) and a 3-way interaction as well as three 2-way interactions of these
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condition mean rating

plain & low 0.55
plain & high 0.68
partitive & low 0.58
partitive & high 0.67

Figure 7.1: Mean ratings for the interpretation of many in proportions of the total
number of objects N

three predictors. In terms of random effects, the initial model had the maximal

random effects structure as justified by the design (Bates et al., 2013). We removed

redundant random effects by running a principle component analysis and arrived at

a parsimonious model (Bates et al., 2015).

The final model included both varying intercepts for participant and item, as

well as a random participant slope for probability. In terms of the fixed effects,

only probability was included as a main effect. We found that participants gave

significantly lower ratings in the low-level condition (β = −0.128, SE = 0.013, p <

0.001). The data suggests that participants interpret many as a lower proportion

of N when it is presented in a low probability context than when many occurs in a

high probability context. We can interpret the fact that the factor probability was

identified as a main effect as evidence that the context influences the interpretation

of proportional many. This effect was modulated by an interaction of probability

with partitive (β = −0.052, SE = 0.018, p < 0.005).

The linear mixed effects regression model suggests that the comparison class has

a significant effect on the interpretation of many. This contradicts a theory which

assumes one fixed value for the proportion kmax and kmin respectively. Rather, the

semantics should comprise many ’s interaction with the context. Interestingly, nei-

ther the factor number nor the factor partitive were significant main effects. This

result leaves open the possibility of a unified semantics. Cardinal many cannot be

combined with the partitive and our results show that this construction does not

lead to a significant difference in interpretations when combined with the propor-

tional use of many. Furthermore, cardinal many ’s range is not restricted by an upper

bound. An upper bound is available for the proportional reading, but its exact nu-

meric value is not decisive. It is the size of the proportion that matters. Overall,

we see that even though an upper bound as well as the partitive construction are
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only available with the proportional reading, these two factors do not disqualify a

unified semantics.

The CFK semantics postulates a stable core meaning for cardinal few and many.

For the proportional reading, this stable core meaning cannot be a fixed proportion,

as the experimental data shows. However, we do not yet want to rule out the idea of

a fixed threshold on expectations, as proposed by Fernando and Kamp (1996). As

a next step, we examine more closely how the interpretation of proportional many

is affected by the context. To do this, we measure data from people’s prior expecta-

tions of typical cardinalities in the contexts we used and also apply a computational

model to the data. Then, we set out to test whether the CFK semantics can be

transferred to the proportional reading. This undertaking might appear straight-

forward for real-world contexts as tested in the recent experiment and in another

study presented in Section 7.2. As we have discussed in the context of the Super-

bowl experiment presented in Sections 3.3 and 5.1, the proportional reading can also

appear in very abstract contexts though. To take a look at the big picture, we also

present an experiment in which draws of colored balls from an urn are described by

proportional few and many. In this abstract context, we predict that expectations

can be manipulated in a more controlled way because they are not influenced by

participants’ probably differing world knowledge. We want to learn whether also in

such a case, in which world knowledge does not play a role, prior expectations are

sufficient to capture the use of proportional few and many or whether the actual

size of the proportion needs to be taken into account.

It turns out that the computational model from the previous chapters does not

make correct predictions and conclude that the size of the described proportion

cannot be neglected. For this reason, an extension of the CFK model is proposed in

Section 7.5, which preserves the hypothesis of a stable core meaning of few and many,

but allows for two different kinds of prior expectations: an uninformed, uniform

distribution over proportions and a distribution informed by world knowledge. By

applying this model to the data, we test whether the fixed threshold hypothesis

from Chapter 5 can be confirmed also for the proportional reading. Furthermore, it

will be interesting to see whether the same values for the threshold values θmany and

θfew apply to both kinds of prior expectations. This would provide further evidence

for the CFK semantics’ fixed threshold theory. Moreover, if the cardinal and the

proportional threshold turn out to be the same, this would speak against the much

debated lexical ambiguity hypothesis of proportional and cardinal few and many

(see Partee (1989), Krasikova (2011) and references therein).
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7.2 Experiments in Real-World Contexts

These experiments on proportional few and many in real-world contexts follow up on

the interpretation experiment reported in the previous section. The interpretation

task confirmed that prior expectations matter when proportional few or many are

produced or interpreted. In a next step, we test whether the CFK semantics can

be transferred to this reading and measure PE for both probability conditions per

item. We decided to continue with a smaller set of items and chose those items from

the previous experiment whose ratings were most sensitive to the manipulation of

the probability condition. We elicit prior expectations of the contexts and set a

judgment task to measure the production of the proportional reading. Note that in

these two follow-up experiments only one total amount per item is presented and

few and many are used in a partitive construction.

7.2.1 Elicitation of Prior Expectations

This experiment gathers data about people’s prior expectations concerning the con-

texts used in the interpretation task reported above. The obtained probability

distributions will be input to a computational model being an empirical measure of

PE, see below.

Design. We used a slider-rating task to collect data about the participants’ prior

expectations about likely world states relevant for each experimental context. Par-

ticipants saw a description of a context as in (130a), which introduced the total

quantity of objects and the probability condition, and a question as in (130b).

We again manipulated the probability condition of the context by presenting one

of two statements which influenced expectations of the context. For a high prob-

ability condition we expect higher proportional answers than in a low probability

condition. For example, we expect that a strong woman carries more boxes than

a weak woman. Depending on the quantity, we presented participants with 10, 13

or 16 slider-interval pairs and asked them to rate the likelihood of each interval

by adjusting a slider labeled from “extremely unlikely” to “extremely likely”. For

example, participants would adjust a slider for the probability that Martha carried

0, 1, 2, ...15 boxes. The task was the same as before (Kao et al., 2014; Franke et al.,

2016), see Section 5.4.1.

(130) Prior elicitation example

a. Background: When moving flat, Martha packed 15 big boxes. Martha

is a [strong | weak] woman.

b. Question: How many of the boxes do you think Martha carried?
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Participants. We elicited data from 160 participants with US-IP addresses via

Amazon’s Mechanical Turk.

Materials & Procedure. After having read an explanation of the task, each

participant saw all of the 10 contexts from Appendix 7.A.2 in a random order, one

after another. For each of the contexts, the probability condition was assigned

randomly. For each context, the 10, 13 or 16 intervals were presented horizontally

on the screen in ascending order from left to right. On top of each interval was a

vertical slider. Participants had to adjust or at least click on each slider before being

able to proceed (Kao et al., 2014; Franke et al., 2016).

Results. We excluded data from one participant who reported to be a native

speaker of Russian. We normalized each subject’s rating by item and condition and

then averaged each item-condition pair over all subjects, as before in Section 5.4.1.

Figure 7.2 displays the probability distributions for each item in both conditions.

7.2.2 Production Study: Judgment Task

Design. To assess production behavior of proportional few and many in real-

world contexts we presented participants with a binary judgment task. They read a

context as in (131a) which introduced the total quantity of objects, the probability

of the context condition, and a proportion of objects. The contexts differed in

the probability condition specified in the relative clause. The relative clauses

were minimal pairs and differed in most cases only in the adjective. To make the

prior expectation salient, a statement was paired with a for -phrase, see (131b).

The quantity words were included in a partitive construction (“many/few of the”)

to hint at a proportional use. Participants rated whether the statement is a good

description of the sentence by clicking on true or false.

(131) Production study example

a. Context: When moving to a new flat, Martha packed 15 boxes. Martha

is a [strong | weak] woman. She carried [1 | 3 | 5 | 8 | 10 | 12 | 14 ] of

the boxes herself.

b. Statement: For a [strong | weak] woman, Martha carried [few | many]

of the boxes herself.

c. Question: Is this statement a good description of the context? true

/ false

Participants. On Amazon’s Mechanical Turk, we elicited data from 456 partici-

pants with US-IP addresses.
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Figure 7.2: Proportional many, prior expectations for both context conditions. Error
bars are estimated 95% confidence intervals.

Materials & Procedure. After reading instructions that explained the task,

participants saw each of the 10 contexts one by one. Few or many as well as

the probability condition and the proportion were assigned randomly for each

context. We presented only 7 proportions per context and hence not every number

in the interval from 0 to the total quantity (10, 13 or 16) to avoid too many

combinations. Participants had to rate each statement before being able to proceed.

Results. We excluded 9 participants for not being self-reported native speakers of

English. We calculated the proportion of true answers for each context-quantifier-

number-prior combination. The proportion of true answers per combination is

presented in Figure 7.3. The computational model’s production rule will have to

predict these data.
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Figure 7.3: Proportion of TRUE responses in real-world contexts. Black lines show
the high, gray lines the low prior condition.

For each of the quantifiers few and many we again specified a mixed linear effects

regression model predicting the percentage of true answers. During a guided search

through the model space, we started out with a model containing only the random

effect item and added fixed effects if this significantly increased the model’s fit to

the data (measured by AIC).

few. For few, the final model included the fixed effect proportion and

probability. We found that participants gave significantly lower ratings for a

higher proportion (β = −1.07, SE = 0.07, p < 0.001). The sentences were rated

significantly lower in the low probability condition (β = −0.21, SE = 0.03, p <

0.001). The factor quantity did not turn out to be significant main effect. The

regression suggests that few is used to describe numerically and surprisingly low

proportions.

many. For many, we found the same pattern in reverse. Participants gave sig-

nificantly higher ratings in the low probability condition (β = 0.23, SE = 0.03, p <

0.001) and for higher proportions (β = 1.10, SE = 0.07, p < 0.001). Many seems to

convey that a proportion is numerically and surprisingly high.
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7.3 Experiments in Abstract Contexts

As pointed out above, the proportional reading of few and many does not only occur

in real-world contexts, in which the world knowledge is very salient, thereby making

Fernando and Kamp’s (1996) theory plausible. We have seen in Sections 3.3 and 5.1

that the proportional reading suggests itself in abstract contexts, too, for example

when proportions of balls in a bowl are described. We propose that in such abstract

scenarios, not only statistical information about real-world events is available, but

also abstract probabilistic beliefs about pure chance processes. The latter kind of

beliefs can be better manipulated, but subjects may have trouble to get clear about

these abstract expectations.

Data of proportional few and many is elicited in an abstract scenario in which

balls are drawn from an urn. We test whether the computational model from Sec-

tion 5.2 is able to account for the proportional reading in an abstract setting in which

the sheer size of the proportion might play a greater role than world knowledge. It

turns out that prior expectations only based on world knowledge are not sufficient

to explain the proportional reading in abstract contexts. We propose an extension

of the model in Section 7.5. In the following, a judgment task using various images

and the underlying prior expectations we assume are presented.1

7.3.1 Production Study: Judgment Task

Design. In a rating task we measured participants’ production behavior of propor-

tional few and many in an abstract context. We assume that contextual information

is represented as prior expectations about which quantities are considered typical or

normal. In order to restrict the influence of real-world knowledge and correspond-

ing opinions and personal experiences, which are hard to control, we present a very

abstract setting. A sample of the material can be found in Figure 7.4. Participants

were presented with a situation in which a character draws balls from an urn of

varying content. The character describes the draw with a statement about the pro-

portion of blue balls. The statement contained either few or many, as exemplified

in (132b). Participants were then asked to rate on a 7-point scale whether the sen-

tence is a good description of the situation, see (132d). The value 1 was labeled

“disagree”, the value 7 was labeled “agree” (see Figure 7.4).

(132) Production study example

a. Context: visual display as in Figure 7.4.

1Note that no interpretation experiment has been conducted because this task would require
an extensive display of a large number of images. We leave this experiment as a follow-up study
for future research.
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Figure 7.4: Sample item in the rating task

b. Statement: For a draw from an urn with that content, [few|many] of

the balls I drew are blue.

c. Filler: For a draw from an urn with that content, this number of

[blue|red] balls is [impossible |unexpected|surprising|expected].

d. Question: Is this statement a good description of the situation?

We manipulated the factors prior expectations, proportion, and draw. To

manipulate prior expectations, picture of the urn was presented from which the

balls were drawn. The urn’s content varied. From a total of 100 balls either [25, 50,

75 or 90] balls were blue, the rest red. Depending on the proportion of blue balls

in the urn, we hypothesize that participants expect a similar proportion of blue

balls in their draw. These prior expectations can be formalized as a draw without

replacement. This is discussed in detail in Section 7.3.2. The content of the urn was

explicitly mentioned in a for -phrase to make the prior salient.

A character draws balls from the urn. We varied the size of the draw. The

character either draws [10] or [20] balls from the urn. We investigate if the quantity

of the superset has an influence on subjects’ behavior. The outcome of the draw

is presented visually and the balls are randomly placed on the screen. The charac-

ter describes the proportion of blue balls drawn [10% to 90%] with a statement

including the quantity word few or many as in (132b).
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quantity word prior expectation draw proportion of blue balls in draw

few, many
[25, 50, 75, 90] blue balls

out of 100 balls in urn
10, 20

few : [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7]
many : [0.4, 0.5, 0.6, 0.7, 0.8, 0.9]

Table 7.1: Experimental conditions in production study

Participants. 300 subjects were recruited via Amazon’s Mechanical Turk with

US-IP addresses.

Materials & Procedure. After reading a short explanation of the task, each

subject saw 16 items, one after another in a random order. Eight of them are fillers

which draw attention to expectations, the remaining eight are target items with few

or many. The arrangement of the balls in the urn and the gender and name of

the characters were chosen randomly. All items were presented with either 10 or 20

drawn balls. For each item, one of four prior expectation conditions and a statement

were assigned randomly. The statements included either few, many or one of the

fillers impossible, unexpected, surprising and expected. The quantity words few and

many were presented four times each just as the prior expectation conditions, see

(132b) and (132c). For few we presented the proportions [0.1, 0.2, 0.3, 0.4, 0.5,

0.6, 0.7] of blue balls among the drawn balls, for many [0.4, 0.5, 0.6, 0.7, 0.8, 0.9].

Participants had to click on one of the radio buttons before being able to proceed to

the next item. An overview of all experimental conditions is provided in Table 7.1.

Results. Data was excluded of 9 participants who reported not to be native speak-

ers of English. Figure 7.5 shows the mean rating of the prior-proportion pairs. We

also plot the hypothesized underlying prior distribution, as described in the next sec-

tion. Note that the scale of this graph is stretched but its shape remains unchanged.

A computational model is to account for the data from this experiment.

A first visual inspection of the mean ratings of each number-prior pair suggests

that the manipulation of the urn content makes a difference. In general, the manip-

ulation seemed to have worked out for few and many, see Figures 7.5a and 7.5b.

For each of the quantifiers few and many we specified a mixed linear effects

regression model predicting ratings for the quantified statements. During a guided

search through the model space, we started out with a model containing only the

random effect participant and added fixed effects if this significantly increased the

model’s fit to the data (measured by AIC). Possible factors which could turn out

to be a main effect are proportion of blue balls (10%-70% for few, 40%-90% for

many), prior expectations (25, 50, 75 or 90 blue balls out of 100 in the urn)

and draw (10 or 20 balls drawn from the urn).
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Figure 7.5: Mean rating of sentences with proportional few or many in the urn
scenario. Lines are the hypothesized underlying prior distributions (stretched for
presentation), bars are mean ratings of each prior-proportion pair, error bars are
estimated 95% confidence intervals.

For few, the final model included the fixed effects proportion, prior and

draw. We found that participants gave significantly lower ratings for a rising pro-

portion of balls (β = −6.80, SE = 0.34, p < 0.001). The factor draw was significant

as well (β = 0.03, SE = 0.01, p < 0.01). This suggests that proportional few is not

necessarily applicable to low numbers (see mismatch in number feature discussed in

Section 7.7) but rather to low proportions. prior expectations turned out to be
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significant, too. We found that a higher prior (say 75 or 90 blue balls in the urn)

led to higher ratings (β = 0.02, SE = 0.003, p < 0.001). This once more confirms

the idea of the surprise semantics that few applies to surprisingly low cardinalities

or proportions.

For many, the final model included the fixed effects proportion, prior, and

draw. We found that participants gave significantly higher ratings for an increasing

number of balls (β = 7.10, SE = 0.29, p < 0.001). draw did not turn out to be

significant, which suggests that in contrast to few, many applies to numbers which

count as both large quantities and large proportions. We found a significant effect

of the factor prior expectations as well. We found that a higher prior condition

led to lower ratings (β = −0.01, SE = 0.002, p < 0.001). As expected, many can

express that a cardinality is surprisingly high.

7.3.2 Prior Expectations

In order to use Bayesian inference to estimate likely threshold values, the underlying

prior expectation of the outcome of the draws is necessary. As mentioned in the

previous subsection, we chose an abstract scenario for the experiment with the goal

that the participants’ prior expectations are not influenced by real-world knowledge

or personal experiences. Consequently, we expect that there is very little variance

in the prior expectations based on which participants form their judgments. These

expectations may be formalized as a hypergeometrical probability distribution, see

below:

P (X = k) =

(
K
k

)
·
(
N−K
n−k

)
(
N
n

) (7.1)

where

(
n

k

)
=

n!

(n− k)! · k!
(7.2)

The hypergeometrical distribution is introduced in stochastics using the example

of a draw from an urn without replacement, exactly what we find in the experiment

from the previous section. n balls are drawn from an urn containing N balls, K

of them blue. The distribution states the probability of having drawn k blue balls.

Let us illustrate this by calculating the probability of Alexander’s draw from Figure

7.4. Alexander drew k=5 blue balls in a draw of n=10 balls from an urn containing

K =90 blue balls and N =100 balls in total:

P (X = 5) =

(
90
5

)
·
(

100−90
10−5

)
(

100
10

) = 0.0006 (7.3)
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The probability of this outcome is 0.06%, so it is extremely unlikely to draw

only five blue balls in a draw of 10 balls when there are 90 blue balls in the urn. If

the participants make use of these prior expectations and if many expresses that a

quantity is higher than expected, then many is not a good description of Alexander’s

draw. We expect that this item receives a low rating.

Once more, the prior expectations for each possible prior-proportion combina-

tion, which are input into the computational model, are assumed to be hypergeo-

metrically distributed. Whether this is really a valid assumption is scrutinized in

Section 7.7.3.

7.3.3 Data Evaluation with Computational Model

Before we set out to analyze both data sets (real-world and abstract context) with

a computational model, we first test whether the computational model from Sec-

tion 6.4 is applicable at all. Does this model, which assumes that the production

of few and many is dependent on prior expectations informed by world knowledge,

also make good predictions for the proportional reading in abstract contexts? Note

that this model variant is a special case of the model presented in Section 5.2 be-

cause it only predicts production data and not also interpretation data. Data from

the urn scenario is tested in isolation first because we expect that this context is a

particularly hard case for the model. The size of the proportion is not taken into

account by the model, and if it manages to capture the data anyway, this can be

taken as evidence that the proportional reading is also only dependent on world

knowledge. If the model’s predictions do not match the experimental data though,

we learn that the size of the proportion might have to be included as another factor

in the computational model.

The computational production model from Section 6.4 is applied to the urn data

from Section 7.3.1 while taking the hypothesized priors from the previous section

as input. Since the rating were given on an ordinal ratings scale and not on a

binary scale as before, we used a link function to be able to predict ordinal data

from the model’s binary predictions. This link function for ordinal data is adopted

from Kruschke (2014, Chapter 23) and Franke (2016) and explained in detail in

Section 7.6. Via Bayesian inference we test which threshold values θmany and θfew

are most likely after having seen the production data of proportional few and many.

We assumed the same priors for θmany and θfew and assumed one noise parameter σi

per urn condition (25, 50, 75 or 90 blue balls in urn). The prior over σi is uniformly

distributed over the interval [0 ; 1] because it ranges over proportions this time.

P (θmany, θfew, σi) = Uniform[0;1](θmany) · Uniform[0;1](θfew) · Uniform[0;1](σi) (7.4)
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Figure 7.6: PPC of the production model from Section 6.4 applied to the urn data.
Bars are the 95% HDIs of the model’s predicted mean ratings, points are mean
ratings as measured with the judgment task in Section 7.3.1. Bars are printed in
red if the experimentally measured mean ratings do not fall into the PPC’s HDIs.

To approximate the joint posterior distribution defined in Equation (5.4), we used

MCMC sampling, as implemented in JAGS (Plummer, 2003). We collected 10,000

samples from 2 MCMC chains after a burn-in of 10,000. This ensured convergence,

as measured by R̂ (Gelman and Rubin, 1992).

The highest density intervals predicted by the model are [0.002 , 0.003] for θfew

and [0.659 , 0.831] for θmany. For few, this model makes very implausible predictions.

If the threshold on the use of few were really this low, few could only be applied

to the lowest proportions, at most 10%. This is not what we see in the data. The

results of the judgment task visualized in Figure 7.5 show clearly that few is also

used to make reference to higher proportions. The mean correlation between the

observed data and the model’s predictions is 0.72 for few and 0.66 for many which

is lower than for the cardinal data from Section 5 (0.92 for few and 0.89 for many,

see Section 5.5). As a further sanity check of the model’s predictions, we conducted

a posterior predictive check (PPC), as introduced in Chapter 4. In each step of the

chain, we created a sample set of ratings, as predicted by the model and the sampled

parameter values. From these sampled ratings, we calculated the mean ratings and,

next, their 95% HDI. When comparing the sample mean ratings with the mean

ratings from the judgment task in Section 7.3.1, we find that the model manages to

predict 32% of the data for few correctly and 28% for many. These numbers show

clearly, that the model does not describe the experimental data well. Find the PPC’s

results visualized in Figure 7.6. The bars show the 95% HDIs of the predicted mean



154 CHAPTER 7. THE PROPORTIONAL READING OF FEW AND MANY

ratings, the points experimentally measured mean ratings. When the bar’s color is

red, we see that prediction and actual data do not match. Last also the model’s

fit to the data as measured by DIC = 1857.2 and pD = 62.1 is not convincing (in

contrast to a much better fit of DIC = 1347.5 with a mean posterior deviance of

28.1 by the linear combination model to the same data set, see Section 7.5).

7.4 Adapting the CFK Semantics to the Propor-

tional Reading

From the urn data reported in the previous sections and the predictions the com-

putational model from Section 5.3 makes, we conclude that a version of the CFK

semantics which makes its predictions only based on prior expectations informed by

world knowledge is not apt to account for the use of the proportional use in such an

abstract context. We propose that also the size of the described proportion needs to

be taken into account. As mentioned above, we therefore assume that the contex-

tual contribution for the proportional reading is two-fold: the first is an uninformed,

uniform distribution about proportions and the second is an informed prior belief

about likely proportions based on world knowledge. Consequently the proportional

reading can express that a proportion is numerically high or surprisingly high.

Prior expectations informed by world-knowledge have been employed in the pre-

vious chapters as the contextual input into the CFK semantics. Fernando and Kamp

(1996) formulate their expectation-based semantics also for the proportional reading

by adding the assumption of a bounded scale. The proportional surprise reading

of few and many expresses that a proportion is surprisingly high or low, see the

sentence below taken from the experimental material in Appendix 7.A.1.

(133) There were 12 muffins on the kitchen table in Ed’s flat. Ed, who arrived

feeling hungry, ate few / many of the muffins.

 Ed ate fewer/more muffins than expected.

To briefly summarize once more, the idea behind the CFK semantics is that, e.g.,

few could be taken to denote “the 25th percentile (range: 10th to 40th percentile)

on the distribution of items inferred possible in [the current] situation” (Clark, 1991,

271). The CFK semantics are repeated from above:

(77) CFK Semantics

a. JFew As are BK = 1 iff |A ∩B | ≤ xmax

where xmax = max {n ∈ N | PE(|A ∩B | ≤ n) < θfew}
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Figure 7.7: Illustration of the CFK-semantics

b. JMany As are BK = 1 iff |A ∩B | ≥ xmin

where xmin = min {n ∈ N | PE(|A ∩B | ≤ n) > θmany}

This approach explains the surprise reading of few and many in sentences like

above as a comparison between the actual proportion of muffins that the hungry Ed

ate and a probabilistic belief PE about the expected proportion of consumed muffins

in some contextually provided comparison class (say, hungry American males rele-

vantly similar to Ed). This prior belief PE is very individual and clearly dependent

on the speaker’s world knowledge, see Figure 7.7a for a sample distribution. A

probability is assigned to any natural number n in the interval [0,12], indicating

how likely the speaker thinks it is that hungry Ed ate n of the 12 muffins on the

table.

In addition to this context-dependent input, the CFK semantics proposed a

context-independent lexical meaning of few and many. A pair of fixed thresholds

θfew,E and θmany,E applies to the cumulative distribution of PE, see Figure 7.7. Fig-

ure 7.7b shows the cumulative distribution of the distribution in Figure 7.7a. If

θmany,E was fixed to, say, 0.8, then the CFK-semantics would identify kmin,E to be 6.

Accordingly, for this PE, the many-sentence in (133) would be false for any n < 6

and true for any n ≥ 6.

Figure 7.7 shows an example of a prior expectation which a speaker might have

in mind when talking about a real-world context in which she can make use of her

knowledge and experience. That proportional few and many are context-dependent

has been shown by the interpretation experiment in Section 7.1.2. We now set up a

way of making the underlying idea of the CFK semantics work for the proportional

use of the quantity words. We will propose that two kinds of prior expectations, PE

and PU are required as input. Note that this is just one possibility of adapting the

CFK semantics to the proportional reading. We explore this variant in the following.
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In contrast to the cardinal reading, the reasoning process about the use of pro-

portional few and many is not necessarily only dependent on surprise though; in

theory it can be completed without employing world knowledge. An uninformed,

flat prior expectation PU about the proportions of the total amount |A | could be

used as input2. This is not (easily) possible and usually quite implausible for the

cardinal reading where no upper bound on the interval exists. For mathematical rea-

sons, a uniform distribution on an unbounded interval is peculiar. Consequently, the

speaker cannot remain ignorant and must employ world knowledge when deciding

whether cardinal few or many are a true description of a certain cardinality.

Coming back to the proportional reading, we predict that in the abstract urn

scenario (Section 7.3), the sheer size of the proportion has a greater effect on the

production of few and many than prior expectations informed by world knowledge.

In these abstract contexts it seems natural that the contextual input is a uniform dis-

tribution about proportions of |A |. Just like the informed prior, this distribution

can be input into the CFK semantics, which determines the proportional thresh-

old kmax and kmin in exactly the same fashion. The context-independent threshold

θfew,U and θmany,U apply to the cumulative density mass of this distribution. For a

flat prior, it does mathematically not make a difference whether the threshold is

applied to distribution PU or directly to |A |, resulting in some proportion m
|A | . For

a total number of 12 muffins as in example (133) and an uninformed distribution

as in Figure 7.8b, the CFK semantics would predict that few can be felicitously

used to describe cardinalities up to 4, for hypothetical threshold θfew,U of 0.35 on

the cumulative density mass. Similarly, many would apply to cardinalities 10 and

higher, if θmany,U were 0.8 (note that this cut-off point is higher for PU than for PE

even though the threshold value is 0.8 in both cases). See Figure 7.8 for an illus-

tration. Such a view on the proportional reading seems to be especially appropriate

in abstract contexts in which we cannot rely on world knowledge. But also for real-

world examples like (133) there is reason to believe that the size of the described

proportion matters. Just think of example (12) from Section 2.1.1 again, for which

Partee (1989) argued that few can never mean all.

Finally, an open issue is how the proportional and the surprise-based threshold

are combined in the proportional reading. Once more, we hypothesize that when

the proportional reading is formed, two kinds of prior expectations are available: (i)

PU expresses a context-independent, flat distribution about proportions of |A | and

(ii) PE is informed by world knowledge about likely proportions in the situation.

2Note that in contrast to PE , the prior expectations PU over proportions are uniformly dis-
tributed because mathematically there is no reason to prefer one proportion over the other; the
bare proportions are independent of expectations of the context. Contextual information comes in
in the form of N , however, because the total quantity obviously determines the cardinality which
the proportion corresponds to.



7.5. LINEAR COMBINATION MODEL 157

theta_few = 0.35

k_max

0.00

0.25

0.50

0.75

1.00

0 4 8 12

n

few

(a) Few

theta_many = 0.8

k_min

0.00

0.25

0.50

0.75

1.00

0 4 8 12

n

many

(b) Many

Figure 7.8: Illustration of a fixed threshold theory

The speaker is probably uncertain about which contextual information she should

draw on. Depending on which prior the speaker makes use of, the cut-off points

kmax and kmin can differ. This is why we suggest that the proportional reading of

few and many is best described by a linear combination of both readings. The

linear combination contains a weight parameter, a contextually free variable α. α

expresses the salience of world knowledge in the respective context. When α is high,

the speaker cannot rely on his world knowledge and forms his judgment based on the

numerical size of the proportion. When α is low, world knowledge is very salient and

the proportional reading expresses that a proportion is surprisingly high or low. This

extension is not as dramatic as it might look at first sight. The computational model

from Section 5.2 is just a special case of the linear combination model proposed in

the following with α = 0. The next section explains how the idea of integrating two

kinds of contextual contribution can be translated into a computational model.

7.5 Linear Combination Model

This section shows how the idea that the proportional reading is influenced by two

kinds of prior expectations can be turned into a probabilistic, linear combination

model of speaker production behavior.

In technical terms, the model specifies a likelihood function P (observation |
parameters) mapping values of latent parameters onto a probability of seeing a

certain behavior in a suitable experiment, parallel to Section 5.3. The latent param-

eters contained in this model are the weight parameter α and contextually stable

thresholds θmany,E, θmany,U, θfew,E and θfew,U. θmany,E and θfew,E apply to the prior

distribution PE which is based on world knowledge. θmany,U and θfew,U express the

cut-off point of the uninformed, flat prior distribution PU . By applying Bayes rule,

credible values of the latent parameters will be inferred from the data from the
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judgment tasks reported above, given the likelihood function and some prior over

latent parameters.

P (α, θmany,U, θmany,E, θfew,U, θfew,E | observation) ∝ (7.5)

P (α, θmany,U, θmany,E, θfew,U, θfew,E) · P (observation | α, θmany,U, θmany,E, θfew,U, θfew,E)

In order to test the predictions of a fixed threshold semantics which takes two

distinct prior distributions as input, we once more draw on Bayesian inference.

Our goal is to see whether a quintuplet consisting of a linear combination weight

and threshold parameters for different quantity words and readings explains the

empirical data well enough. If this is the case, it would constitute experimental

evidence for the assumption that the proportional reading is a weighted combination

of thresholds based on an uninformed and an informed prior distribution and also

that proportional few and many have a stable core meaning. Moreover, we are

interested in P (θmany,E = θmany,U | observation). If the two thresholds θmany,E and

θmany,U are the same, this would speak against a lexical ambiguity theory.

The computational model consists of two probabilistic production rules, one for

few and one for many. We focus on many in the exposition, but the case for few is

parallel. Just as for the previous model, a production rule should give the probability

PS(“many” | n,N, PU , PE) with which a speaker would produce sentence “Many of

the As are B” to describe n = |A ∩B | as a proportion of N = |A | under prior

expectations PU and PE, where PU is a flat distribution over numbers n ∈ [0, N ]

and PE captures the relevant statistical properties of the assumed comparison class.

Pspeaker(”many” | n,N, PU , PE) = α · Pspeaker,U + (1− α) · Pspeaker,E (7.6)

The idea behind (7.6) is this: a speaker reasons about using many to describe n

as a proportion of N given his prior expectations PU and PE of the situation. The

production probability Pspeaker of proportional many is then the weighted sum of the

production probability Pspeaker,U of a speaker who reasons in terms of a flat prior PU

about proportions of the total quantity N and the production probability Pspeaker,E

of a speaker whose input are his informed prior expectations PE of likely proportions

in the respective context. The weight parameter α regulates the amount of world

knowledge expressed in the respective context.

Let us now have a more detailed look at the two summands of Pspeaker. The CFK

semantics in (77) is once more translated into a production rule. The production

rule Pspeaker,E implements the surprise-based CFK semantics. Pspeaker,E(”many” |
n,N, PE; θmany,E) = 1 if n ≥ kmin,E and otherwise 0, where kmin,E is derived from

PE, as in (77b). Pspeaker,U(”many” | n,N, PU ; θmany,U) is derived in a parallel fashion
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Figure 7.9: Illustration of production rule for the example from Figures 7.7 and 7.8..

but uses θmany,U, derived from a uniform prior distribution PU . Once more, Pspeaker,U

and Pspeaker,E are smoothed-out versions of a binary production rule. Both contain

a free model parameter σ that regulates the steepness of the curve.

Pspeaker,U(”many” | n,N, PU ; θmany,U, σ) =
n∑

k=0

∫ k+0.5

k−0.5

N (y; kmin,U, σ)dy (7.7)

Illustrations of the probabilistic production rule Pspeaker,U can be found in Figure 7.9a

for the example started in Figure 7.8b.

The production rule Pspeaker,E implements the surprise-based CFK semantics as

well and applies to an informed prior distribution PE.

Pspeaker,E(”many” | n, PE; θmany,E) = 1 if n ≥ kmin,E and otherwise 0, where kmin,E is

derived from PE, based on θmany,E. θmany,E is a free parameter just like the noise pa-

rameter σ, which again controls the steepness of the smoothed-out curve. Examples

of various values for σ are presented in Figure 7.9b.

Pspeaker,E(”many” | n,N, PE; θmany,E, σ) =
n∑

k=0

∫ k+0.5

k−0.5

N (y; kmin,E, σ)dy (7.8)

Equations (7.7) and (7.8) express the following idea. For Y ∈ {U,E}, assume

that a hypothetically true value of θmany,Y exists. Then, given a total number N and

prior expectations PY over the contextually relevant domain, the CFK semantics in

(77) gives a clear cutoff for the minimum number kmin,Y of, say, muffins Ed must have

eaten to license applicability of many in a sentence like (133). We should assume

that speakers do not know for sure the actual kmin,Y that is entailed by θmany,Y

and PY , most likely because they do not know PE for certain, but that speakers

nonetheless approximate it. The same holds for N , when it is not provided by the

context. More concretely, we assume that when a speaker decides whether some n
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Figure 7.10: Linear Combination of Pspeaker,U and Pspeaker,E with σ = 2

licenses many, she “samples”, so to speak, a noise-perturbed “subjective thresholds”

from a Gaussian distribution whose mean is kmin,Y and whose standard deviation σ

is a free model parameter that captures speaker uncertainty (about θmany, N , PE,

and perhaps other things). If kmin,Y is below n, the speaker finds many applicable

to proportion n under the respective reading; otherwise, she does not.

In a next step, reasoning based on proportion and world knowledge are fused,

when the general production probability Pspeaker is derived as a linear combination

of Pspeaker,U and Pspeaker,E, as in Equation (7.6) with weight parameter α capturing

the amount of world knowledge expressed. This gives us a probabilistic prediction of

how likely a speaker would, on occasion, find many applicable to n as a probabilistic

function of θmany,U, θmany,E, PU , PE and noise parameter σ. See Figure 7.10 for an

example of a linear combination of Pspeaker,U and Pspeaker,E with several α values.

When α = 1, only the production probability of many is just Pspeaker,U and world

knowledge is not employed. For α = 0, only Pspeaker,E determines the use of many

and we see that many is also applicable to lower cardinalities. For values of α

between 0 and 1, Pspeaker,U and Pspeaker,E are combined resulting in the curves in the

middle.

7.6 Model Evaluation

After having defined a computational model which makes predictions about the

production of proportional few and many, it will be used to find out to what extent

which prior expectations, flat or informed, influence the production of proportional

few and many. Furthermore, we test whether proportional few and many comprise

a fixed threshold on prior expectations as well. We do this by testing whether a
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model which incorporates the production rule in (7.6) can explain data from two

very different contextual settings, real-world situations and abstract urn scenarios.

Is one pair of threshold values, θmany and θfew, applied to PU and PE enough to

explain the two data sets? Or is it necessary to differentiate between θmany,U and

θmany,E and between θfew,U and θfew,E? In terms of the two data sets, do the model’s

predictions only differ in the salience of world knowledge represented by α? These

questions will be addressed in the course of this section.

We want to learn about α, θmany and θfew from the observed experimental data.

To do so, we feed the total quantity N , PU and the hypothesized prior expectations

P urn
Ei

for each number of blue balls i in the urn (see Figure 7.5) or respectively the

experimentally measured PRW
Ei

about real-world contexts (see Figure 7.2) into the

partitive production rules in (7.7) and (7.8) which are then combined to form the

general production rule in (7.6). This gives us likelihood functions for the production

data as described presently. We only explicitly cover the case of many wherever that

for few is analogous. Note that from this point on we will differentiate between σU

and σEi
. These noise parameters apply to the production rules in (7.7) and (7.8)

respectively. We do so because the parameters are assumed to be independent of each

other. Moreover, since σU expresses the standard deviation in proportions between

0 and 1 and σEi
in intervals 0-14 of the respective item, their prior distributions are

different. See more below.

For the real-world data, let Opm,RW
ij be the number of true answers for item i

and proportion j in production experiments for many. Let Npm,RW
ij be the number

of participants that saw a production trial for many, item i, interval j and total

number N (see Section 7.2). O
pf ,RW
ij and N

pf ,RW
ij hold the same information for

conditions involving few. The probabilistic rules from the previous section then give

a (parameterized) likelihood function for observable data. Binomial(k, n, p) gives

the likelihood of observing k true ratings among n with probability p.

P (Opm,RW
ij | θmany, σU , σEi

) = Binomial(Opm,RW
ij , Npm,RW

ij ,

PS(“many” | j, PU , PRW
Ei

; αmany, θmany, σU , σEi
))

For the urn data from Section 7.3, let ~Opm,U
ij be the vector of length 7 which

contains the number of times a rating d ∈ 1, ..., 7 has been selected for a proportion

j and a prior i in production experiments for many. Let Npm,U
ij be the number of

participants that saw a production trial for many, proportion j and prior i. The same

information is contained in
~

O
pf ,U
ij and N

pf ,U
ij in the case of few. Multinomial(~k, n, ~p)

gives the likelihood of observing a vector of counts k (here: ~Opm,U
ij ), where kd are

the number of choices of rating d ∈ 1, ..., 7, for n (here: Npm
i ) observations and ~p is

a probability vector of length 7. Remember, however, that the observations ~Opm,U
ij
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are ordinal data, whereas our production rules predict binary data, namely whether

many is true or not for a certain k. Consequently, a link function needs to transform

the binary predictions of (7.6) to the multinomial distribution which predicts ratings

on a 7-point scale.

The basic concept of this link function for ordinal data is borrowed from Kruschke

(2014, Chapter 23). Each rating d is associated with an interval Id. The boundaries

of (some of) these intervals are free model parameters. Intervals for all ratings form a

partition of the range of the scale. For the choice of a certain interval Id (i.e. rating)

for a prior-proportion pair, the binary predictor Pspeaker(”many” | n,N, PU , PE)

from the previous section is perturbed by Gaussian noise with standard deviation

σ. Finally, the rating is chosen which corresponds to the interval into which the

perturbed value falls. This means that the probability pd that rating d on the rating

scale is chosen in the experiment is the probability that the Gaussian perturbation

of Pspeaker(”many” | n,N, PU , PE) lies in Id (Franke, 2016). Via this link function

we arrive at (parameterized) likelihood functions for data from the urn experiment.

P ( ~Opm,U
ij | αmany, θmany, σU , σEi

) =

Multinomial
(

~Opm,U
ij , Npm,U

ij , ~Pspeakeri(“many” | j, PU , P urn
Ei

; αmany, θmany, σU , σEi
)
)

We can make inferences about credible parameter values given the data that we

observed by applying Bayes rule, see Equation 7.9. A graphical model version can

be found in Figure 7.11.

P (αfew, αmany, θmany, θfew, σU , σEi
| Opm,RW

ij , O
pf ,RW
ij , ~Opm,U

ij ,
~

O
pf ,U
ij ) ∝ (7.9)

P (αfew, αmany, θmany, θfew, σU , σEi
) ·

P (Opm,RW
ij | αmany, θmany, σU , σEi

) · P (O
pf ,RW
ij | αfew, θfew, σU , σEi

) ·

P ( ~Opm,U
ij | αmany, θmany, σU , σEi

) · P (
~

O
pf ,U
ij | αfew, θfew, σU , σEi

)

Several remarks about Equation 7.9. Firstly, we assume here that each summand

in Equation 7.6 has its own standard deviation, σU or σEi
, and that the surprise-

based one differs again for each prior condition i, but that the parameters are the

same for many and few. This is because we think that uncertainty about world

knowledge connected to PE is distinct from uncertainty about which proportion

counts as high or low independent of the context, as captured by PU . Secondly, the

formula above contains as a factor the joint prior probability P (αfew, αmany, θmany,prop,

θmany θfew, σU , σEi
) of parameter values αfew, αmany, θmany, θfew, σU and σEi

. Here, we
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simply assume that these parameters are independent of each other and that they

have uniform priors over a large-enough interval of a priori plausible values.

P (αfew, αmany, θmany, θfew, σU , σEi
) = (7.10)

Uniform[0;1](αfew) · Uniform[0;1](αmany) · Uniform[0;1](θmany)·
Uniform[0;1](θfew) · Uniform[0;1](σU) · Uniform[0;10](σEi

)

Thirdly, we allow for two distinct weight parameters αfew and αmany to discover

whether the influence of the two prior expectations is different for each of the quan-

tity words. Last, we want to learn about θmany and θfew and whether the fixed

threshold hypothesis holds also for the proportional reading. Can one pair account

for the data from the two very distinct experiments? Another interesting aspect is

a potential ambiguity between thresholds applying to PU or PE.

To address these questions, different model variants are compared regarding

their fit to the experimental data. The formula in (7.9) assumes that one pair of

threshold values θmany and θfew is sufficient. Let us call it the Uniform Threshold

Model (UTM). The UTM assumes the CFK semantics’ fixed threshold hypothesis of

one pair of context-independent threshold values, which apply equally to PU and PE.

The UTM can be compared with another model’s fit to the data, which allows for

one pair of thresholds per prior (θmany,U, θmany,E, θfew,U and θfew,E), the Ambiguous

Threshold Model (ATM). This model still assumes context-independent threshold

parameters but leaves open the possibility of an ambiguity. This ambiguity, however,

would not differentiate the cardinal from the proportional reading, but a judgment

based on world knowledge from an uninformed judgment based on the numerical size

of the proportion. If the thresholds on PU and PE converge to the same value, we

take this as evidence for fixed threshold semantics à la Fernando and Kamp (1996).

The ATM’s posterior is defined as follows (see Figure 7.18 in Appendix 7.B for a

graphical model version):

(7.11)

P (αfew, αmany, θmany,U, θmany,E, θfew,U, θfew,E, σU , σEi
| Opm,RW

ij , O
pf ,RW
ij , ~Opm,U

ij ,
~

O
pf ,U
ij )

∝ P (αfew, αmany, θmany,U, θmany,E, θfew,U, θfew,E, σU , σEi
) ·

P (Opm,RW
ij | αmany, θmany,U, θmany,E, σU , σEi

) · P (O
pf ,RW
ij | αfew, θfew,U, θfew,E, σU , σEi

) ·

P ( ~Opm,U
ij | αmany, θmany,U, θmany,E, σU , σEi

) · P (
~

O
pf ,U
ij | αfew, θfew,U, θfew,E, σU , σEi

)

Finally, it is also imaginable that the proportional reading cannot be captured

by a stable core meaning, contradicting the CFK semantics. In such a case the

data would be explained best by a model variant which does not only allow for a
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threshold per prior distribution but also further differentiates between the data sets.

We will call this model the Individual Threshold Model (ITM) (see Figure 7.19 in

Appendix 7.B for a graphical model version).

(7.12)

P (αfew, αmany, θ
U
many,U, θ

U
few,U, θ

RW
many,U, θ

RW
few,U, θ

U
many,E, θ

U
few,E, θ

RW
many,E, θ

RW
few,E, σU , σEi

| Opm,RW
ij , O

pf ,RW
ij , ~Opm,U

ij ,
~

O
pf ,U
ij ) ∝

P (αfew, αmany, θ
U
many,U, θ

U
few,U, θ

RW
many,U, θ

RW
few,U, θ

U
many,E, θ

U
few,E, θ

RW
many,E, θ

RW
few,E, σU , σEi

) ·
P (Opm,RW

ij | αmany, θRWmany,U, θ
RW
many,E, σU , σEi

) · P (O
pf ,RW
ij | αfew, θRWfew,U, θ

RW
few,E, σU , σEi

) ·

P ( ~Opm,U
ij | αmany, θUmany,U, θ

U
many,E, σU , σEi

) · P (
~

O
pf ,U
ij | αfew, θUfew,U, θ

U
few,E, σU , σEi

)

We see that for each model variant a higher number of free parameters needs

to be inferred. This is not theoretically motivated, rather it makes the model more

complex and is thus not desirable. We see that we are facing the same problem as in

Section 5.5, where we compared the GTM and the ITM to test the CFK semantics

for the cardinal reading.

The question we are interested in is then: which model is best suited to explain

the data? Statistical model comparison is the methodology of choice to address this

question. Different arguments for preferring one model over another make use of

different measures for model comparison (Vehtari and Ojanen, 2012). Given our

modest theoretical purposes here, we use the same approach as in Chapter 5, the

deviance information criterion (DIC) (Spiegelhalter et al., 2002; Plummer, 2008).

This measure is easy to compute based on the output of our MCMC sampling

results. The DIC weighs goodness of fit (here: the likelihood of the data given the

model “trained” on the data) against the model’s complexity (here: the number of

its effective free parameters). A high value of the DIC indicates a lot of deviance of

the model’s predictions from the data it is applied to. This is undesirable, of course.

At the same time, the model should stay as concise as possible and not include

unnecessary parameters. This is measured by the pD, the number of effective free

parameters, a measure of model complexity. Higher values of pD suggest higher

model complexity.

To approximate the joint posterior distribution defined in (7.6) and compute the

DIC, we used MCMC sampling, as implemented in JAGS (Plummer, 2003). Per

model variant, we collected 10,000 samples from 2 MCMC chains after a burn-in of

10,000. This ensured convergence, as measured by R̂ (Gelman and Rubin, 1992).

Table 7.2 gives estimated DICs for all three model variants. Given its high DIC

value, the UTM has the worst fit to the data. The two candidates that are still in

the running, ATM and ITM, are roughly equal in their DIC. The difference is less
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UTM ATM ITM

DIC = 2879.7, pD = 42.7 DIC = 2761.7, pD = 40.6 DIC = 2751.5, pD = 53.3

Table 7.2: Estimated DIC values and effective free parameters for the three variants
of the linear combination model

αurns αreal-world θU θE

few 0.687 0.383 0.374 0.046
many 0.713 0.388 0.596 0.623

Table 7.3: Estimated posteriors for weight and threshold parameters by the Am-
biguous Thresholds Model (ATM)

than 1%. What the ATM misses in terms of goodness of fit, it makes up in terms

of reduced model complexity. Consequently, there is no clear reason to prefer either

model in terms of DICs. We follow the same line of reasoning as in Section 5.5

and interpret the result as there being no reason, provided by our data, to reject the

“null assumption” that proportional many and few have a stable core meaning. The

alternative model ITM did not do any better. Parallel to the cardinal reading, the

ITM does not allow to generalize beyond the 24 contexts used here. Put differently,

the ITM would assume that θmany would be anywhere between 0 and 1 (its prior)

for a context which was not part of the data used to condition it on. In contrast,

the ATM would be able to use its posterior distribution for θmany,U and θmany,E. The

utter lack of generalizability in ITM speaks, at least conceptually, in favor of ATM.

Whether this is an empirical advantage would have to be tested. Given the data at

hand and the fact that the ITM is obviously not better for this data set, there is

no good reason to dismiss the hypothesis that also the proportional reading has a

stable core meaning. The data suggests that single quadruplet of fixed thresholds

θmany,U, θmany,E, θfew,E and θfew,U may have generated the production data that we

have seen. The posterior credible values inferred by the ATM are presented in Table

7.3.

We find that the influence of world knowledge is different for the two data sets,

but its effect is the same for both few and many. The urn data is more influenced by

the uninformed, flat prior PU with a weight α of about 0.70. In the abstract scenario,

the participants seemed to have used few and many to express that a proportion

is numerically high or low, rather than being guided by their expectations of likely

proportions (triggered by the ratio of balls in the urn). For the real-world contexts,

we find that the influence of world knowledge rises, which corresponds to a lower α

of about 0.38.

Even though we have concluded that the ATM is the model with the best data

fit, this does not necessarily mean that its predictions describe the data well. A
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sanity check of the model’s fit to the data is a Posterior Predictive Check (PPC),

see Section 4.1. A PPC tests whether the parameter values inferred in each step

of the chain manage to predict the observed production behavior. For each set of

parameter values inferred in one step of the MCMC chains, we have the likelihood

function ~Pspeaker predict a set of sampled observations. ~O
pf ,U

sample and ~Opm,U
sample are vec-

tors containing sampled counts of ratings on a 7-point scale, for the same number of

participants as in the production experiment. ~O
pf ,RW

sample and ~Opm,RW
sample contain sampled

counts of true ratings. For this chain of simulated data sets, we calculated the 95%

highest density intervals (HDI) of their mean ratings for the urn data as well as the

HDIs of the real-world data by running the function HDIofMCMC.R from Kruschke

(2014). We then check which observed mean ratings fall into the predicted HDIs.

If the model estimated the latent weight and threshold parameters well, the model

should manage to predict all of the ratings we measured in the production task. For

the urn data, 96% of the observed mean ratings fall into the predicted HDIs. For

the real-world data, the model managed to correctly predict 93% of the data.

Figures 7.12 and 7.13 show the results of the PPC. The black circles are the

participants’ mean ratings in the judgment task. The error bars represent the 95%

credible intervals of the sampled data’s mean ratings per prior-proportion pair. The

error bars are printed in black when the participants’ mean ratings fall into the

credible interval. It is printed in red when the model’s predictions do not match

the participants’ ratings. The ATM model managed to predict all but two of the

mean ratings for few and many in the urn scenario correctly. Of the real-world

contexts, the model’s predictions matched 243 out of 280 conditions. Another test

of the model’s fit to the data is to calculate the distribution of correlation coefficients

between predicted data sets and observed data. For the urn data, the mean of this

distribution was 0.84, and it was 0.92 for the real-world sentences. Next, we turn to

the most credible threshold values inferred via Bayesian inference. That the ATM

turned out to fit the data well enough supports the hypothesis that few and many

have a stable core meaning. Table 7.3 presents the mean posterior distributions’

mean values. The posterior values of θmany,U and θmany,E are very close and their

HDIs overlap in [0.572 , 0.619]. When looking at these results for many, we might

wonder why the UTM’s fit to the data did not turn out better. For many, the same

threshold seems to apply to PU and PE. However, the picture looks different for

few. The posteriors’ mean values as well as their HDIs are very different: θfew,U ∈
[0.353, 0.397] and θfew,E ∈ [0.017, 0.119]. The proportional use of few cannot be

explained with one threshold value; it is necessary to differentiate between contexts

in which world knowledge is salient and contexts in which the sheer size of the

proportion is described.
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Figure 7.12: ATM’s PPCs of real-world data. Bars are the 95% HDIs of the model’s
predictions, points are mean ratings measured experimentally (see Section 7.2.2).
Bars are printed in red if the experimental data and the model’s predictions do not
coincide
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Figure 7.13: ATM’s PPC of urn data. Bars are the 95% HDIs of the model’s
predicted mean ratings, points are mean ratings measured with in Section 7.3.1.
Red bars indicate that the experimentally measured mean ratings do not fall into
the PPC’s HDIs.

7.7 Discussion

This chapter set out to identify two sources which influence the use of few and many

when describing proportions. Furthermore, it investigated whether proportional few

and many have a stable core meaning and whether this threshold is the same for

expectations based on world knowledge and for an uninformed distribution over

proportions.

7.7.1 Contextual Factors Influencing the Proportional

Reading

The results of the model comparison support the ATM and lets us conclude that the

findings for the cardinal reading in Chapter 5 transfer to the proportional reading.

We identified a stable core meaning and showed that speaker behavior is correlated

with prior expectations. For the proportional reading, the influence of world knowl-

edge differs between contexts. The urn data is more influenced by the uninformed,

flat prior with a weight α of about 0.7. In this abstract scenario, the participants

seemed to have used few and many to mainly express that a proportion is numeri-

cally high or low, rather than being guided by their expectations of likely proportions

(triggered by the ratio of balls in the urn). For the real-world contexts, world knowl-

edge is more salient. We find that its influence rises, which corresponds to a lower
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α of about 0.38. Interestingly, the salience of world knowledge has the same effect

on few and many.

To sum up, we have seen that contextual information is employed both in the

form of pure numerical information and also as world knowledge. As an additional

sanity check of this assumption, future research might set out to test even more

extreme prior distributions. So far, we have mainly presented participants with

real-world contexts with rather left-skewed priors whereas the urn scenario used

right-skewed prior distributions. Ideal candidates for scenarios for a follow-up ex-

periments are contexts from Degen et al. (2015) in which expectations vary extremely

depending on the noun in the minimal pair.

(134) a. Context: John threw 15 [ballons | cups | marbles] into a pool.

b. Question: How many of the [ballons | cups | marbles] do you think

sank?

With these extremely left- or right-skewed priors the context-dependence of α and

the influence of a uniform prior (the numerical size of the proportion) on the pro-

portional reading could be tested further. In our experiments, world knowledge was

very influential in real-world contexts, but not in abstract scenarios. With Degen

et al.’s (2015) contexts, we could check whether it is possible anyway to have the

numerical size of the proportion described take over a greater role in real-world

contexts (i.e. a high α) or whether world knowledge always holds the upper hand.

However, also other factors might play a role. In some contexts a speaker might

choose a quantity word for reasons of politeness. He also might not know the exact

cardinality of objects or, on the other side, only ”express his value judgment at

the number [of objects in question] more or less regardless of what that number is”

(Keenan and Stavi, 1986).

7.7.2 A Possible (Lexical) Ambiguity of few and many

Next, we turn to the most credible threshold values inferred via Bayesian inference.

Even though the hypothesis of a fixed threshold on prior expectations could be con-

firmed, the posterior distributions’ mean values in Table 7.3 confront us once more

with the by now familiar difference between few and many. The posterior values

of θmany,U and θmany,E are very close and their HDIs overlap in [0.572 , 0.619]. This

suggests a fixed threshold semantics for proportional many since the same threshold

seems to apply to PU and PE. For few, the picture looks different again. The poste-

riors’ mean values as well as their HDIs are very different: θfew,U ∈ [0.353, 0.397] and

θfew,E ∈ [0.017, 0.119]. The proportional use of few cannot be explained with one

threshold value so that a fixed threshold hypothesis for proportional few needs to

be questioned. A higher threshold seems to be applied when few is used to describe
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the size of a proportion than when it compares a proportion with beliefs about its

size. A reason why the lower threshold of θfew,E is not compatible with PU is that

few likes to be applied to small proportions but not necessarily to small numbers.

We conclude this from the fact that the same proportion is rated significantly higher

if it corresponds to a larger number, see Section 7.3. For low numbers, few com-

petes with alternatives like no, a few, some and number words, especially when a

plural noun used to describe a single ball results in a number mismatch. This is

why a threshold value of about 0.05 predicts too low numbers to be applicable to

PU . Since many of the prior expectations in the real-world contexts are left-skewed

(see Figure 7.2), a low threshold on the cumulative density mass can still allow for

higher numbers.

Nevertheless, the PPC and correlation scores show that the ATM makes very

good predictions. Even though the values for θfew,U and θfew,E differ, we find that the

strategy of applying a fixed threshold to a distribution representing prior expecta-

tions seems to be employed across contexts, for both few and many in cardinal and

proportional readings. The ITM, which does not require this strategy, does not fit

the data any better. The puzzling result of the incompatible threshold parameters

for proportional few could also be due to methodological issues as discussed in the

next section.

Another interesting observation is that even though there is evidence that one

value θmany from the interval [0.572 , 0.619] can explain the production of propor-

tional many, this value is lower than the cardinal threshold which is predicted to

fall into the interval [0.687 , 0.699], see Section 5.5. Several explanations are con-

ceivable. The first would be to assume a lexical ambiguity between cardinal and

proportional many, as proposed by Partee (1989) and Krasikova (2011) among oth-

ers. It is also possible, however, that the different threshold values are not due to the

two readings but due to the data sets on the basis of which these parameters were

inferred. For the proportional reading, only production data was used whereas the

model for the cardinal case made predictions for both production and interpreta-

tion. As already discussed in Section 6.7 on surprisingly, the threshold values seem

to be more “extreme” when interpretation data is involved. In interpretation tasks,

participants seem to play it safe and choose lower numbers as the interpretation of

few and higher numbers for many than they rate to be true in a production task.

This greater freedom of choice might result in different threshold values when also

interpretation data is predicted by the model. We consider both options to be plau-

sible explanations for the discrepancy between cardinal and proportional θmany. For

now, we do not want to commit to any of them since our observations are made on

the basis of very limited data sets. We propose to further investigate the difference
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between cardinal and proportional many and few by collecting more data to validate

the models’ predictions.

7.7.3 Measuring Priors in Abstract Contexts

The attentive reader might have noticed that in the urn experiment from Section 7.3

we departed from our usual procedure. Prior expectations were not measured ex-

perimentally, but we simply assumed that participants made use of the normative

hypergeometrical distribution of blue balls in the draw, see Section 7.3.2. The rea-

soning behind this decision was that we assumed that in such an abstract context

there is less variation between the individual participants’ expectations since they

are not influenced by their world knowledge. To test this we ran a follow-up study

which elicited participants’ prior expectations of the number of blue balls in a draw

from an urn of varying content.

Design. To measure participants’ prior expectations in the abstract urn scenario

from Section 7.3 and to test whether they really employ the hypergeometrical dis-

tribution we have assumed, we again used a slider-rating task (e.g., Kao et al.,

2014; Franke et al., 2016). Participants were presented with an urn which contained

100 balls. Prior expectations were manipulated by varying the content of the urn.

[25|50|75|90] of the balls were blue, the rest red. A character then drew 10 balls

from the urn. Subjects were presented with 11 slider-interval pairs, labeled from 0

to 10, and rated the likelihood that the draw contains the respective number of blue

balls, by adjusting a slider labeled from “extremely unlikely” to “extremely likely”.

We formulated the task in a way to make the prior salient:

(135) task: For a draw from an urn with this content, please rate how likely it is

that from the 10 balls the following numbers are blue.

Participants. 25 subjects were recruited via Amazon’s Mechanical Turk with US-

IP addresses.

Materials & Procedure. After initial instructions that explained the task, each

subject saw the four prior conditions, [25|50|75|90] blue balls of 100 balls in the urn,

rest red, one after another in a random order. We used the same images of the urns

as in the production study, see Figure 7.4. For each prior condition, the 11 intervals

were presented horizontally on the screen in ascending order from left to right. On

top of each interval was a vertical slider. Participants had to adjust or at least click

on each slider before being able to proceed.
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Figure 7.14: Measured (one black line per participant) and normative (blue line)
prior expectations in the abstract urn context..

Results. Participants’ ratings per item were normalized by subject-prior-condition.

The black lines in Figure 7.14 show the individual distributions. We can see that

they show inter-subjective variance and that they appear to differ significantly from

the normative hypergeometrical distribution printed in blue.

These results pose a serious problem to our computational modeling and Bayesian

inference approach. Prior expectations are vital input for these methods and if

this input cannot be trusted to represent participants’ beliefs, the models’ predic-

tions and the inferred parameter values cannot be used to draw conclusions about

the behavior of speakers and listeners. If we choose to use the experimental pri-

ors as input for the model, predictive success of the model decreases. The model

with experimentally measured priors has a DIC of 1378.8 with pD = 16.0, which is

higher than when the normative priors were used (DIC = 1349.0 and pD = 22.0).

Furthermore, the inferred posteriors predicted for the urn data set become very

implausible. The threshold values for few are predicted to be far too high to be

realistic, θfew,U ∈ [0.608, 0.991] and θfew,E ∈ [0.328, 0.372], whereas the threshold val-

ues for many come out too low, θmany,U ∈ [0.027, 0.495] and θmany,E ∈ [0.674, 0.742].

Additionally, also the noise parameters σE of the production rule in Equation 7.8

are extremely high with values close to 1. This means that the uncertainty about
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the thresholds kmax and kmin could be so large that the standard deviation of the

Gaussian noise spans the entire interval of proportion. The result would be a very

flat production rule, which in turn makes very imprecise predictions. Given these

dubious results, we doubt that the slider task was a reliable measure to elicit rep-

resentations of participants’ prior expectations in these abstract contexts. In the

following, we want to discuss several aspects with respect to the discrepancy be-

tween the experimentally measured and the normative priors.

A first problem might have been caused by the experimental setup of the prior

elicitation task. So far the slider task asking for likelihood judgments from Kao

et al. (2014) has produced reliable results, however, and Franke et al. (2016) showed

that using averaged normalized slider ratings for binned quantities can fairly well

approximate inferred population-level beliefs. Furthermore, Herbstritt and Franke

(2016) successfully used a slider-based task to assess the mode of beliefs in even

more complex urn scenarios and the results reported do not diverge substantially

from the hypothesized normative priors. It seems that participants are (on average)

able to form judgments about the likelihood of such abstract events.

In the present case, the puzzling results might have been influenced by other

factors. It is possible that we did not make the task clear enough, given the abstract

scenario with which participants are probably not familiar. Moreover, a test round

might have been useful to familiarize participants with the material and the task of

giving likelihood judgments, especially since the experiment was very short and a

training effect cannot have ensued. In order to test whether the unexpected results

in the previous experiment were caused by a too demanding or unclear task, we

conducted an additional study. We had subjects choose the outcome of the draw

they consider most likely as well as the range of expected numbers of blue balls

in the draw, instead of asking for likelihood judgments. We checked whether their

answers are compatible with the hypergeometrical distribution we assumed.

Design. To test a possible task-effect on the discrepancy between the probability

distributions measured with the slider-task from Kao et al. (2014) above and the

normative hypergeometrical distribution, we opted for a different, probably concep-

tually easier dependent measure. Once more, participants were presented with an

urn which contained 100 balls. We manipulated prior expectations by showing urns

of varying content. [25|50|75|90] of the balls were blue, the rest red. A character

then drew 10 balls from the urn. Subjects were asked to give three judgments: the

number of blue balls they expect the character to draw, as well as the lowest and

highest number of blue balls the character might probably draw. For each answer,

subjects chose a number between 0 and 10 by adjusting a slider on a scale (see

Figure 7.15).



7.7. DISCUSSION 175

Figure 7.15: Sample item in the prior elicitation task

Participants. 50 subjects were recruited via Amazon’s Mechanical Turk with US-

IP addresses.

Materials & Procedure. Two subjects were excluded from the data analysis

because they reported not to be native speakers of English. After reading an ex-

planation, each subject was presented with the four prior conditions, [25|50|75|90]

blue balls of 100 balls in the urn, rest red, in a random order. We used the same

images of the urns as in the previous prior elicitation task. For each prior condition,

participants provided their answers by adjusting three vertical sliders on the screen,

one for the number of blue balls in the draw they consider to be most likely, and

one each for the lowest and highest number they expect. The sliders ranged from 0

to 10. We accepted only those answers in which the lowest number, the most likely

number and the highest number were identical or in ascending order. Only if an

acceptable triplet of numbers was selected, participants could proceed to the next

trial.

Results. The histogram in Figure 7.16 shows the frequency distribution of ex-

pected numbers of blue balls. The mode of the ratings coincides with the number

which the hypergeometrical distribution assigns the highest probability in all urn

conditions but one. For the urn containing 75 blue balls, the mode of the ratings is
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Figure 7.16: Frequency distribution of the expected number of blue balls in the
draw..

at seven whereas eight blue balls are most likely for a normative prior. Moreover, we

analyzed the intervals that participants considered likely outcomes of the draw. We

considered a flat distribution with equal, non-zero mass on all the numbers between

the lowest and highest expected number, assuming that the remaining numbers

are considered unlikely and therefore assigned probability 0. For example, when a

participant answered three as the lowest and seven as the highest number, all five

numbers in the interval [3, 7] were assigned probability 0.2. If the interval were [6,

9], the probability of each number in the interval would be 0.25. We then summed

up all probabilities per condition and normalized again. The resulting distributions

are presented in Figure 7.17. When comparing them to the normative hypergeomet-

rical distributions plotted as the dashed lines, we see that the difference between

the experimentally measured, average prior expectations and the normative prior is

much smaller then in the previous experiment.

We conclude that the participants in the experiment, at least on the aggregate

population-level, were able to form prior expectations about the outcome of the

draw and that these expectations are (at least on average) compatible with the

normative priors we assumed, hypergeometrical distributions. These findings are

in line with Herbstritt and Franke (2016). Nevertheless, the elicitation of prior ex-

pectations is quite a young field of study. More work is necessary to understand

the influence of the different task types on the elicitation of prior expectations as

well as the relationship between their mental representations and experimental data.

To conclude, the Bayesian analysis of the experimental data confirmed the hypoth-

esis that the use of proportional few and many is both influenced by prior beliefs
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Figure 7.17: Probabilities derived from participants’ judgments of plausible intervals
(bars) and normative hypergeometrical distribution (dashed lines) in the abstract
urn context

about likely proportions as well as the numerical size of the proportion. The salience

of world knowledge can be modeled with a linear combination of speaker probabili-

ties based on these two distributions. For many, a fixed threshold hypothesis could

be confirmed for both the cardinal and the proportional reading even though more

research needs to be conducted to draw conclusions about a potential lexical ambi-

guity. For few, the same strategy seems to be at work, applying a fixed threshold to

prior expectations. As in several other cases, however, few seems to behave differ-

ently from many and the CFK semantics can neither be confirmed nor rejected for

proportional few. As pointed out above, it is therefore worthwhile to follow up on

the presented experiments and a Bayesian analysis of the data. To avoid the problem

of normative priors or normalized, population-level priors, a follow-up experiment

could elicit a participant’s contextual expectations in a controlled lab experiment

and then have the same participant carry out a production and interpretation task

of many and few using the same contexts. This way we hope to gain further insight,

especially about a lexical ambiguity and about proportional few ’s fixed thresholds.

7.A Experimental Material: Real-World Contexts

7.A.1 Interpretation Study

1. basketball — Alex took part in a basketball competition and was allowed

9/12 shots from the three-point line. — HIGH: Alex, who is a professional

player, made many (of the) shots. — LOW: Alex, who is an amateur player,
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made many (of the) shots. — How many (of the) shots do you think Alex

made?

2. boxes — When moving to a new flat, Martha packed 15/20 boxes. — HIGH:

Martha, who is a strong woman, carried many (of the) boxes herself. — LOW:

Martha, who is a weak woman, carried many (of the) boxes herself. — How

many (of the)boxes do you think Martha carried?

3. cinema — 30/40 people attended the late-night performance in a small cin-

ema. — HIGH: At the end of the movie, which was longer than people had

expected it to be, many (of the) people had fallen asleep. — LOW: At the

end of the movie, which was shorter than people had expected it to be, many

(of the) people had fallen asleep. — How many (of the) people do you think

fell asleep?

4. math — A math teacher presented a tricky problem to the 18/24 students in

his course. — HIGH: Many (of the) students in his course, which focuses on

problem-solving strategies, could solve the problem. — LOW: Many (of the)

students in his course, which does not teach problem-solving strategies, could

solve the problem. — How many (of the) students do you think could solve

the problem?

5. memory — For a memory test 9/12 three-digit numbers were read out to

Chris. — HIGH: Chris, who has a great memory, memorized many (of the)

numbers. — LOW: Chris, who has a bad memory, memorized many (of the)

numbers. — How many (of the) numbers do you think Chris memorized?

6. muffins — There were 9/12 muffins on the kitchen table in Ed’s flat. —

HIGH: Ed, who arrived feeling hungry, ate many (of the) muffins. — LOW:

Ed, who arrived feeling full, ate many (of the) muffins. — How many (of the)

muffins do you think Ed ate?

7. raffle — Deborah bought 9/12 tickets in a raffle. — HIGH: Many (of the)

tickets bought by Deborah, who is always lucky, were winning tickets. —

LOW: Many (of the) tickets bought by Deborah, who is never lucky, were

winning tickets. — How many (of the) tickets that Deborah bought do you

think were winning tickets?

8. shoes — Melanie had to choose which among 9/12 pairs of shoes to bring on

holiday. — HIGH: Melanie, who loves fashion, packed many (of the) pairs of

shoes. — LOW: Melanie, who doesn’t care about fashion, packed many (of

the) pairs of shoes. — How many (of the) pairs of shoes do you think Melanie

packed?
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9. slats — Jimmy jumped onto grandma’s old slatted bed frame which only had

18/24 slats left. — HIGH: Jimmy, who is a fat boy, broke many (of the) slats.

— LOW: Jimmy, who is a skinny boy, broke many (of the) slats. — How

many (of the) slats do you think Jimmy broke?

10. songs — In a music quiz the beginnings of 9/12 pop songs were played. —

HIGH: Heidi, who loves pop songs, recognized many (of the) songs. — LOW:

Heidi, who hates pop songs, recognized many (of the) songs. — How many

(of the) songs do you think Heidi recognized?

11. tennis — Bruno played 12/16 tennis matches last season. — HIGH: Bruno,

who is an unathletic person, lost many (of the) matches. — LOW: Bruno,

who is a fit person, lost many (of the) matches. — How many (of the) matches

do you think Bruno lost?

12. tents — On a camping trip 15/20 tents had to be put up. — HIGH: Dave,

who loves camping, pitched many (of the) tents. — LOW: Dave, who doesn’t

like camping, pitched many (of the) tents. — How many (of the) tents do you

think Dave pitched?

13. training — A football coach named Max invited 12/16 boys to come to

practice training. — HIGH: Max, who is an easy-going coach, allowed many

(of the) boys to come back in the next week. — LOW: Max, who is a strict

coach, allowed many (of the) boys to come back in the next week. — How

many (of the) boys do you think were allowed to come back in the next week?

14. trees — Jim had 15/20 trees in his garden. — HIGH: Jim, who is a strong

man, cut down many (of the) trees. — LOW: Jim, who is a weak man, cut

down many (of the) trees. — How many (of the) trees do you think Jim cut

down?

15. vacuum cleaner — Walter is a door-to-door salesman. Yesterday he pre-

sented a vacuum cleaner in 18/24 households. — HIGH: Walter, who offered

his product at a low price, sold a vacuum cleaner to many (of the) households.

— LOW: Walter, who offered his product at a high price, sold a vacuum

cleaner to many (of the) households. — To how many (of the) households do

you think Walter sold a vacuum cleaner?

16. vouchers — Carla won 9/12 vouchers for roller coaster rides on a fair. —

HIGH: Carla, who is an adventurous person, used many (of the) vouchers. —

LOW: Carla, who is a fearful person, used many (of the) vouchers. — How

many (of the) vouchers do you think Carla used?
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7.A.2 Judgment Task

1. basketball — Alex took part in a basketball competition and was allowed 9

shots from the three-point line. Alex is a [professional |amateur] player. He

made [1 |2 |3 |4 |5 |6 |8] of the shots. — For a [professional |amateur] player,

Alex made [few |many] of the shots.

2. boxes — When moving to a new flat, Martha packed 15 boxes. Martha is a

[strong |weak] woman. She carried [1 |3 |5 |8 |10 |12 |14] of the boxes herself.

— For [strong |weak] woman, Martha carried [few |many] of the boxes herself.

3. math — A math teacher presented a tricky problem to the 24 students in

his course. The course [focuses on |does not teach] problem-solving strategies.

[2-3 |6-7 |10-11 |12-13 |14-15 |18-19 |22-23] of the students could solve the

problem. — For a course which [focuses on |does not teach] problem-solving

strategies, [few |many] students could solve the problem.

4. memory — For a memory test 9 three-digit numbers were read out to Chris.

Chris has a [great |bad] memory. He remembered [1 |2 |3 |4 |5 |6 |8] of the

numbers. — For a man with a [great |bad] memory, Chris memorized [few

|many] of the numbers.

5. muffins — There were 12 muffins on the kitchen table in Ed’s flat. Ed arrived

feeling [hungry |full]. He ate [1 |3 |5 |6 |7 |9 |11] of the muffins. — For a man

feeling [hungry |full], Ed ate [few |many] of the muffins.

6. shoes — Melanie had to choose which among 12 pairs of shoes to bring on

holiday. Melanie [loves |doesn’t care about] fashion. She packed [1 |3 |5 |6 |7
|9 |11] of the pairs of shoes. — For a woman who [loves |doesn’t care about]

fashion, Melanie packed [few |many] of the shoes.

7. songs — In a music quiz the beginnings of 9 pop songs were played. Heidi

[loves |hates] pop songs. She recognized [1 |2 |3 |4 |5 |6 |8] of the songs. —

For a pop song [lover |hater], Heidi recognized [few |many] of the songs.

8. tennis — Bruno played 12 tennis matches last season. Bruno is an [unathletic

|fit] person. He lost [1 |3 |5 |6 |7 |9 |11] of the matches. — For an [unathletic

|fit] person, Bruno lost [few |many] of the matches.

9. trees — Jim had 15 trees in his garden. Jim is a [strong |weak] man. He cut

down [1 |3 |5 |8 |10 |12 |14] of the trees. — For a [strong |weak] man, Jim cut

down many of the trees.
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10. vouchers — Carla won 12 vouchers for roller coaster rides on a fair. Carla is

an [adventurous |fearful] person. She used [1 |3 |5 |6 |7 |9 |11] of the vouchers.

— For a [adventurous |fearful] person, Carla used [few |many] of the vouchers.

7.A.3 Prior Elicitation Study

1. basketball — Alex took part in a basketball competition and was allowed 9

shots from the three-point line. — Alex is a [professional |amateur] player. —

How many of the shots do you think Alex made?

2. boxes — When moving to a new flat, Martha packed 15 boxes. — Martha

is a [strong |weak] woman. — How many of the boxes do you think Martha

carried?

3. math — A math teacher presented a tricky problem to the 24 students in his

course. — The course [focuses on |does not teach] problem-solving strategies.

— How many of the students do you think could solve the problem?

4. memory — For a memory test 9 three-digit numbers were read out to Chris.

— Chris has a [great |bad] memory. — How many of the numbers do you

think Chris memorized?

5. muffins — There were 12 muffins on the kitchen table in Ed’s flat. — Ed

arrived feeling [hungry |full]. — How many of the muffins do you think Ed

ate?

6. shoes — Melanie had to choose which among 12 pairs of shoes to bring on

holiday. — Melanie [loves |doesn’t care about] fashion. — How many of the

pairs of shoes do you think Melanie packed?

7. songs — In a music quiz the beginnings of 9 pop songs were played. —

Heidi [loves |hates] pop songs. — How many of the songs do you think Heidi

recognized?

8. tennis — Bruno played 12 tennis matches last season. — Bruno is an [unath-

letic |fit] person. — How many of the matches do you think Bruno lost?

9. trees — Jim had 15 trees in his garden. — Jim is a [strong |weak] man. —

How many of the trees do you think Jim cut down?

10. vouchers — Carla won 12 vouchers for roller coaster rides on a fair. — Carla

is an [adventurous |fearful] person. — How many of the vouchers do you think

Carla used?
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7.B Graphical models of the Ambiguous Thresh-

olds Model (ATM) and of the Individual Thresh-

olds Model (ITM)
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Chapter 8

Concluding Remarks

8.1 Summary and Conclusions

This dissertation set out to investigate how the context-dependent quantity words

few and many receive their meaning in context. Concretely, we tested a particular

formalization of one theory by Fernando and Kamp (1996) which makes precise pre-

dictions about how the contextual information might be integrated in the semantics.

We called it CFK semantics because it goes back to ideas from Clark (1991) and

Fernando and Kamp (1996). This theory assumes that the “surprise reading” of few

and many expresses that a number or a proportion is lower or higher than expected.

Prior expectations of the context are formalized as probability distributions PE over

cardinalities and the cardinalities which count as few or many are determined by

applying fixed, context-independent thresholds θfew and θmany to the cumulative den-

sity mass of these distributions. In other words, few and many comprise a stable

core meaning, which explains why speakers and listeners manage to successfully

communicate with these context-dependent expressions and how children can ac-

quire proficiency in their use. Even though the quantity words are assumed to have

a fixed meaning, their denotation can vary to an extreme degree because the con-

textual input, prior expectations PE, may be dramatically different depending on

the context.

Fernando and Kamp’s (1996) surprise-based semantics may seem intuitively ap-

pealing, but it is hard to test it with the standard methods of the field. The thresh-

old values θfew and θmany cannot be directly measured nor can their existence or

uniqueness be validated based on intuitions alone. For this reason, we treat them

as latent parameters in a probabilistic model of language use whose values are es-

timated based on experimental data by applying Bayesian inference. We measure

representations of prior expectations by applying recent experimental methodology

185
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(Kao et al., 2014; Franke et al., 2016) and conduct production and interpretation

experiments.

The cardinal surprise reading of few and many was investigated first. We showed

how Fernando and Kamp’s (1996) theory can be couched in a computational model.

The model was used to infer those values for θfew and θmany which, by taking exper-

imentally measured prior expectations as input, are most likely to have generated

the production and interpretation data we measured. To test the CFK semantics,

we compared two variants of the model. The first, the General Thresholds Model

(GTM), assumed one pair of fixed threshold values, whereas the Individual Thresh-

olds Model (ITM) allowed for an individual value per context. Given their nearly

identical fit to the data, as measured by DIC, and the fact that the ITM is not

theoretically motivated and more complex because of the higher number of free

parameters, the GTM is preferred. Consequently, the data-driven computational

modeling approach supports a cardinal surprise reading of few and many which ex-

presses that a cardinality is higher than a fixed threshold on a measure of surprise.

What is surprising is in turn dependent on the contextual contribution in the form

of prior expectations.

The existence of a cardinal surprise reading brings up another interesting topic.

Since few and many can express that a cardinality is surprisingly low or high anyway,

does it make a difference if surprise is overtly marked? To answer this question, the

quantity words were combined with the adverb surprisingly. We presented two

possible views on the influence of surprisingly. On the one hand, it could simply

function like a frame setter and mark a comparison class of expectations in respect

to which the quantity word is evaluated. If this is the case, the production of

sentences with surprisingly few/many should not be different from sentences in which

expectations are explicitly made reference to by a compared to phrase (for example,

“compared to what you would expect for a man from the US”). On the other hand,

the presence of surprisingly could have an intensifying effect on few and many, just

as Bennett and Goodman (2015) predict for the adverb incredibly. To discriminate

between the two views, we collected production data of sentences with and without

the three modifiers and applied a production model incorporating the CFK semantics

for cardinal few and many to see if the modifiers have an effect on the threshold

values.

The data from the production task was analyzed both with a linear mixed effects

regression model and the computational model, delivering conflicting and surprising

results. To start with the uncontroversial findings, there was no significant differ-

ence between ratings of sentences with unmodified quantity words and ratings of

sentences in which a compared to phrase made reference to expectations. Moreover,

their threshold values’ HDIs overlapped. We take this as support for our assumption
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that few and many ’s most salient reading is the surprise reading. When it comes

to surprisingly, though, the results are less clear. The adverb seems to intensify the

meaning of many but not of few. For many, surprisingly patterns with incredibly,

resulting in lower ratings and a higher threshold than for sentences with unmodified

few and many. For few, on the other hand, we find no difference between sentences

with unmodified few and surprisingly few. The inferred threshold’s HDI for sur-

prisingly few overlaps both with the HDIs of the thresholds for incredibly few and

unmodified few, identifying it neither as an intensifier nor contradicting this option.

That the adverb surprisingly might have a different effect on many than on few was

not expected, neither was it predicted by the semantic literature. This is not the

only time where we find a difference between few and many. An overview will be

provided below after a review of our findings for the proportional reading of the

quantity words.

The computational model used to test the CFK semantics for the cardinal reading

of few and many was extended to test whether its predictions can be transferred

to the proportional reading. We proposed this extension because an interpretation

study showed that the proportional reading is both context-dependent, excluding a

fixed threshold on proportions, and sensitive to the size of the proportion described.

From these results, we conclude that the contextual contribution for the proportional

reading is two-fold, resulting in two kinds of prior expectations. The first is an

uninformed, uniform belief about proportions PU and the second are informed prior

expectations PE about likely proportions based on world knowledge. We propose

a linear combination model which incorporates the assumption that the amount of

world knowledge employed depends on its salience in the context.

The linear combination model turned out to be a good predictor for the propor-

tional reading in both real-world contexts and in an abstract scenario in which balls

are drawn from an urn. In total, it manages to explain 95% of the data correctly.

We take this as support for the assumption of two-fold prior expectations and an

influence of the context on the saliency of world knowledge. In terms of the fixed

threshold hypothesis for many, we find that a unique threshold value applies to

both PU and PE. Nevertheless, this threshold value is lower than for the cardinal

reading and their HDIs do not overlap. However, we do not yet want to jump to

the conclusion of suggesting a lexical ambiguity between cardinal and proportional

many. For the proportional reading, the threshold values were inferred only on the

basis of production data whereas for the cardinal reading also interpretation data

were available. We find that the inclusion of interpretation data generally leads to

more extreme threshold values because of the greater range of choices in this task.

Future research could shed new light on whether the difference in threshold values



188 CHAPTER 8. CONCLUDING REMARKS

is caused by greater uncertainty in interpretation or whether the present results are

evidence for a lexical ambiguity of many.

For few, the results are once again less coherent. Even though the influence

of world knowledge is the same as for many, the model predicts widely separated

threshold values on PU and PE. Given the fact that a unique θmany could be iden-

tified, this result for few is surprising and is in line with several other aspects in

which few and many seem to differ.

8.2 Differences between few and many

In the following, the most substantial differences between few and many are sum-

marized once more. Experimental work by Sanford et al. (1994) finds that the use

of few and many differs in terms of the referents they highlight. Many tends to

make reference to the objects in the set whose size it describes (the reference set or

refset), whereas few makes reference to the objects which are not in the described

set (but in the complement set or compset). This is exemplified in the example

repeated from Section 3.2.

(136) a. Many of the football fans went to the match. They cheered loudly when

the player scored.

b. Few of the football fans went to the match. They watched the match at

home instead.

Sanford et al.’s (1994) observation might be linked with a speculation about

the semantics of the negative member in an antonym pair. Heim (2006, 2008) and

Büring (2007a,b) wonder whether “negative adjectives” like short or cheap have

negation as part of their semantic meaning by decomposing them into their positive

counterpart and a negative operator. When transferring this idea to quantity words,

few would decompose into NEG + many, with the negative operator being scopally

mobile. Even though Heim (2006, 2008) claims that this decomposition analysis

can account for ambiguous sentences with few, the theory cannot solve the puzzle

we are facing here. The difference in referents preferred by few but not by many,

as identified by Sanford et al. (1994), goes beyond the semantics of the sentence

since we are here describing an observation at the level of contextual enrichment. A

lexicalized negative operator, however, could only have an impact on the sentence’s

asserted meaning, i.e. the description of the cardinality’s size, and therefore cannot

explain why the quantity words prefer to highlight different referents. Coming back

to the modification by surprisingly, we again do not see how the surprising results

of an intensifying effect on many but not on few could be explained by the presence

or absence of a negative operator in the semantics. This negative operator in the
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semantics of few would only have to cancel the intensifying effect of surprisingly

while leaving everything else unaffected. At this point we do not see how this could

be achieved compositionally.

A last puzzling observation concerning the difference between many and few was

made when investigating their proportional reading. For many, a unique threshold

θmany applying to both PU and PE could be identified, which might also be compat-

ible with many ’s cardinal reading. We conclude that Fernando and Kamp’s (1996)

predictions for a surprise-based semantics of many could be confirmed. For few, this

is not the case, however. In sum, a major contribution of this thesis is to provide

further evidence that many and few differ in crucial respects. To complement our

findings and to naturally progress our work, we once more suggest conducting a

more extensive experiment and eliciting prior expectations as well as production

data in a within participants design to validate our findings. We expect that the

model’s predictions might be even more reliable when using individual priors instead

of normalized, population-level expectations.

Apart from testing the CFK semantics experimentally, this dissertation provided

an overview over three semantic accounts of the quantity words. Depending on the

semantic analysis, few and many are treated as quantifiers, adjectives or seman-

tically empty degree modifiers. The key features of the three accounts and their

advantages and disadvantages are summarized in Table 2.2. Building on the alter-

native semantic account of few and many by Romero (2015, 2017), we proposed a

modification of the positive operator POS in order to formally integrate subjective

beliefs into the compositional analysis of sentences containing the quantity words.

POSsurp in (87) can account for surprise readings by introducing an intensional com-

parison class and inferring compatible prior expectations. Truth conditions are then

determined by employing a particular formalization of Fernando and Kamp’s (1996)

fixed threshold theory. This analysis was extended to be able to also capture the

surprise reading of few and many in sentences with overt focus. While developing a

semantics for POSsurp, we realized that there seems to be a gap between semantic

theory and the available empirical data, even more so when it comes to the findings

brought forward by probabilistic modeling. We made an attempt to bridge this gap

and to incorporate our empirical findings into a semantics of few and many. We are

aware, however, that more work is necessary to shed light on all the details of this

complicated undertaking and to make sure that our proposal for POSsurp makes the

right predictions also in more complex constructions and contexts.

So what have we learned about the context-dependence of few and many? We can

identify three core results: first, few and many are dependent on prior expectations

of the context. Second, a compositional analysis of few and many ’s surprise reading
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can both integrate the CFK semantics and make use of the sentence’s comparison

class to infer prior expectations. Third, a data-driven computational modeling ap-

proach in concert with Bayesian inference could support the CFK semantics for both

the cardinal and the proportional reading of many. For few, we found evidence for

a fixed threshold θfew for the cardinal reading, but further work is required to test

CFK semantics’ predictions about the proportional reading of few as well as further

aspects in which few differs from many.

8.3 Perspectives for Future Research

After having summarized this dissertation’s core findings, we want to discuss inter-

esting related phenomena and perspectives for future research. So far, the computa-

tional model based on the CFK semantics was used to test the theory’s predictions

for the cardinal and proportional reading as well as modification by adverbs like

surprisingly or incredibly and compared to constructions. But the quantity words

appear in more environments, for example in combination with negation. Further

investigation and experimentation is recommended to learn whether the model man-

ages to predict the use of not many or of not few in relation to prior expectations,

as exemplified below.

(137) a. Sarah did not go to many restaurants last year.

b. Melanie does not own few pairs of shoes.

Semantically, few and many are also often treated on par with little and much. Solt

(2009, 2015) assigns them an identical semantics, with the only difference that few

and many are associated with cardinalities whereas little and much operate on other

dimensions.

(138) a. Much land burnt during last year’s bush fire season.

b. Little food was eaten at the party.

It would be interesting to see if little and much also express surprise readings and

whether the CFK semantics can be transferred to them. Moreover, a natural next

step would be to move from the investigation of the semantics of quantity words to

their pragmatics and to extend the model to also capture the fine-grained differences

between few, many and alternative utterances like a few, several or lots of.

When introducing the linguistic background of quantity words, we listed sim-

ilarities with relative and absolute gradable adjectives like tall, expensive or full.

These words are equally context-dependent and their use is also analyzed as being

governed by threshold values in the semantics (Kennedy, 2007). Several investiga-

tions using probabilistic models assumed that gradable adjectives are dependent on
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prior expectations of the context (Franke, 2012; Qing and Franke, 2014a; Lassiter

and Goodman, 2015), suggesting the availability of surprise readings. It would be

interesting to see if the our model can identify a fixed threshold on prior expecta-

tions for gradable adjectives as well and to learn whether the CFK semantics can be

transferred to other semantics objects. Furthermore, the model’s fit to experimen-

tal data on the use of adjectives could be compared with the fit of computational

models which are based on other theories. Lassiter and Goodman’s (2015) account

suggests that threshold values are the result of pragmatic inferences whereas Qing

and Franke (2014a) try to explain why particular threshold values are evolutionarily

optimal for successful communication. These models could in turn also be applied

to the presented data on few and many. By performing a statistical model compar-

ison, the three approaches could be compared in order to gain further insight into

context-dependence.

We have pointed out at several points that the CFK semantics makes predictions

for the so-called “surprise reading” which expresses that a cardinality or proportion is

lower or higher than expected. But more readings of context-dependent expressions

have been attested, which have been claimed not to express surprise. Barker (2002)

suggests that the use of gradable adjectives like tall affects shared knowledge in a

developing discourse. He claims that a sentence like

(139) Feynman is tall.

has more uses than only to convey that Feynman’s height is higher than the con-

textual standard. Instead, a metalinguistic use of this sentence would be an answer

to a question under discussion of what counts as tall in this country. In this case,

(139) would express what the prevailing relevant standard for tallness happens to

be.

The metalinguistic use as described by Barker (2002) is also available for quantity

words. The sentence

(140) Joe ate many burgers.

is a salient answer to the question under discussion of which numbers of consumed

burgers count as many. In this case, the listener knows the number n of consumed

burgers, and the prior expectations are formed about likely threshold values of which

numbers of consumed burgers count as many. This example can be related to our

discussion in Section 2.4 on the inference of the quantity word’s interpretation n and

the epistemic state underlying the prior expectations PE. In the uses of few and

many discussed during this dissertation, the quantity words are used to describe a

cardinality. There, the listener makes use of his knowledge of PE and the threshold

values θfew and θmany to learn about the actual degree n. When confronted with

the metalinguistic use, a listener would employ his knowledge n to jointly infer
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the prevailing relevant standard xmin and PE. Sentence (140) would then trigger a

context update and restrict the set of possible standard values to those which are

lower than the number of burgers eaten by Joe, similar to the interpretation rule

in Equation 5.3 and illustrated in Figure 5.4b. How exactly the CFK semantics for

few and many could be combined with Barker’s (2002) dynamic update semantics

for the metalinguistic use would be an interesting area of future research.

Another example that might be claimed to not express a surprise reading was

given by Fernando and Kamp (1996).

(141) As expected, many students arrived today.

(141) could be claimed to be paradoxical under a reading of many which describes

a number as greater than expected. However, Fernando and Kamp (1996) resolve

the contradiction by arguing that “the expectation underlying many above might

concern arrivals on days other than, or in addition, to today ; the expectation referred

to in as expected pertains specifically to today” (Fernando and Kamp, 1996, 65). This

example shows that more readings than expected at first sight can be accounted for

with the CFK semantics.

Even though the assumption of having prior expectations represent the con-

textual contribution produced good results for few and many, we have seen that

forming expectations can be much more difficult in some contexts than in others. In

real-world contexts as in the experiments in Sections 5.4 and 7.2, participants’ ex-

pectations did not vary a lot, but in abstract contexts as in Section 7.3, participants’

judgments were more diverse and some contrasted strongly with the mathematical,

normative prior (see Figure 7.14). The effect of great uncertainty about the context

on context-dependent expressions and the more psychological question of how prior

expectations are formed and can be measured under uncertainty is another aspect

worth investigating, I believe.
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Égré, P. and F. Cova (2014). Moral asymmetries and the semantics of many. to
appear.

Fara, D. G. (2000). Shifting sands: An interest-relative theory of vagueness. Philo-
sophical topics 28 (1), 45–81. Originally published under the name “Delia Graff”.

Fernando, T. and H. Kamp (1996). Expecting many. In T. Galloway and J. Spence
(Eds.), Linguistic Society of America SALT, Ithaca, NY: Cornell University, pp.
53–68.

Frank, M. C., N. D. Goodman, and J. B. Tenenbaum (2009). Using speakers’
referential intentions to model early cross-situational word learning. Psychological
Science 20 (5), 578–585.



BIBLIOGRAPHY 195

Franke, M. (2012). On scales, salience & referential language use. In M. Aloni,
F. Roelofsen, and K. Schulz (Eds.), Amsterdam Colloquium 2011, Lecture Notes
in Computer Science, Berlin, Heidelberg, pp. 311–320. Springer.

Franke, M. (2016). Task types, link functions & probabilistic modeling in experi-
mental pragmatics. In F. Salfner and U. Sauerland (Eds.), Proceedings of Trends
in Experimental Pragmatics, pp. 56–63.
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Franke, M. and G. Jäger (2016). Probabilistic pragmatics, or why Bayes’ rule is
probably important for pragmatics. Zeitschrift für Sprachwissenschaft 3 (1), 3–
44.

Gelman, A. and D. B. Rubin (1992). Inference from iterative simulation using
multiple sequences. Statistical science 7 (4), 457–472.

Goodman, N. D. and M. C. Frank (2016). Pragmatic language interpretation as
probabilistic inference. Trends in Cognitive Sciences 20 (11), 818–829.

Goodman, N. D. and D. Lassiter (2015). Probabilistic semantics and pragmatics:
Uncertainty in language and thought. In S. Lappin and C. Fox (Eds.), The Hand-
book of Contemporary Semantic Theory, 2nd Edition, Chapter 21, pp. 655–686.
Wiley-Blackwell.

Griffiths, T. L. and J. B. Tenenbaum (2006). Optimal predictions in everyday
cognition. Psychological Science 17 (9), 767–773.

Hackl, M. (2000). Comparative quantifiers. Ph. D. thesis, MIT.

Hackl, M. (2001). Comparative quantifiers and plural predication. In Proceedings
of WCCFL XX, pp. 234–247.

Hackl, M. (2009). On the grammar and processing of proportional quantifiers: Most
versus more than half. Natural Language Semantics 17 (1), 63–98.

Heim, I. (1999). Notes on superlatives. MIT lecture notes.

Heim, I. (2006). Little. In M. Gibson and J. Howell (Eds.), Proceedings of SALT,
Volume 16, pp. 35–58.

Heim, I. (2008). Decomposing antonyms. In A. Grøn (Ed.), Proceedings of Sinn und
Bedeutung, Volume 12, pp. 212–225. ILOS.

Heim, I. and A. Kratzer (1998). Semantics in generative grammar, Volume 13.
Blackwell Oxford.

Herbstritt, M. and M. Franke (2016). Definitely maybe and possibly even probably:
efficient communication of higher-order uncertainty. In Proceedings of CogSci, pp.
2639–2644.



196 BIBLIOGRAPHY

Herburger, E. (1997). Focus and weak noun phrases. Natural Language Seman-
tics 5 (1), 53–78.

Hohaus, V. (2015). Context and Composition: How Presuppositions Restrict the
Interpretation of Free Variables. Ph. D. thesis, Universität Tübingen.
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