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1 INTRODUCTION 

1.1 Rehabilitation of patients with facial disfigurements 

Rehabilitation of patients with disfiguring facial injuries heads to restore the volume of 

the lost tissue, its function as well as the physical appearance of the face [67]. 

With regard to auricular prostheses two objectives of rehabilitations have to be taken 

into account [65]: 

·  Aesthetically: to conceal the mutilation and make the prostheses 

mostly invisible 

·  Functionally: to provide a better hearing. 

For decades various surgical techniques have been attempted to master auricular 

disfigurements including tissue engineering [76, 77]. However, the unpredictability of 

the aesthetical outcome was always considered as a main limitation of the surgical 

approach [34, 43]. The rehabilitation of facial disfigurements by means of prosthetic 

appliances has been reported as advantageous to surgical reconstruction using 

autogenous flaps [34, 38, 83]. Such prosthetic solutions can be applied as “auricular 

prostheses” to patients having their pinna totally or partially lost.  

1.2 Prosthetic approach 

Conventionally, the prosthetic approach of treating patients, missing any part of the face 

includes a few fundamental stages, [6, 67, 69, 72, 80],  
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namely: 

·  impression taking of the afflicted area 

·  wax up and its try-in on the patient together with determination of the primary 

colour of the skin 

·  fabrication of the mold 

·  processing of the prosthesis material and its final coloration. 

Due to advancements in the medical field some stages of the conventional method were 

described as being easily superseded by means of computer technologies. A 

considerable number of new prosthetic approaches referring to computer-aided design 

(CAD) and computer-aided manufacturing (CAM) were presented, and reproduction of 

all facial parts by means of new computerized method was reported in a row of studies 

[20, 29, 33, 39, 57, 66, 79]. 

The standard protocol of computerized methods of facial prostheses manufacturing 

includes the following steps: 

·  3D imaging of a defect and opposite organ if present 

·  designing a 3D model of the future prosthesis form 

·  try-in of the form on the patient 

·  mold making and production of silicone prosthesis in the same way as the 

analogue production way described above. 

 

A better precision, efficiency and decreased production time of prostheses 

manufacturing due to the use of CAD/CAM technologies have been reported [28, 57]. 

However, some authors [63] found this novel approach demanding in terms of high-cost 

equipment. Detailed description of digital prostheses manufacturing approach is easier 

to be given, when going through all stages of the production chain. 
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1.3     Digital data acquisition. Methods of 3D imaging 

Whichever a method of facial prostheses production is chosen, the first stage is to gather 

the information about the defect and morphology of the afflicted area. For decades 

alginate, hydrocolloid, and silicone materials have been successfully used. However, the 

pressure of the material to the wound implied for a patient plenty discomfort and 

resulted in distortions of the impression [22, 52, 53, 55].  

The digital data acquisition has been reported as an alternative to the traditional 

impression taking [13, 42, 70, 73]. The images obtained either by computer tomography 

(CT) and magnetic resonance imaging (MRI), or by 3D-stereophotography and surface 

scanning can be uploaded to special software for the virtual formation of the prosthesis 

and a 3D reconstruction of the face. The fact that the scanning process is contact-free 

allows to avoid any pressure on soft tissues, this way providing better accuracy of the 

surface topography. This is particularly important, when working with areas without 

any bone support [47, 70]. 

Traditionally methods of computer tomography (CT) and magnetic resonance imaging 

(MRI) have been used for digital data acquisition. However, the radiation exposure in 

case of CT and the need of additional software to convert the data from the DICOM 

(digital imaging and communication in medicine) format into STL were recognized as 

their main disadvantages [68].  

Surface scanning has also been applied to maxillofacial prosthetics. To this group of 

imaging methods belong laser scanning, structured light scanning, and 

stereophotogrammetry. Such methods provide the virtual image in the STL format 

directly, which is advantageous to CT and MRI. 

The main limitation of surface scanning methods is the fact, that a light or laser beam as 

such is practically just a straight line, which is not able to trace a complex anatomy and 

therefore to provide data about regions, that are obscured from the light of sight, 

anatomical cavities for instance. Thus, surface imaging techniques are not able to 

capture the intricate details of the auricle [59]. To overcome this limitation, the medical 

crew has to move the scanner over the whole area of interest from different angles so, 
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that the light or laser beam follows the whole geometry of the object and attains its 

undercuts. This may be either challenging or unfeasible at all and implies for the patient 

to be seated and remain motionless for a sustained period (approximately 15-30 min). 

Additionally, the hair cover was described as a potential hindrance for a good surface 

imaging [32].  

1.4  Modelling of prosthesis construction 

Conventionally, after the information about the defect morphology is gathered, the wax-

up of the future prosthesis is carried out by a dental technician manually. It is 

considered to be a time-consuming and a challenging task [27, 50, 60, 79]. The 

produced prosthesis form must match normally the contralateral side in terms of shape, 

size, and position. It is highly dependent on the artistry and skills of the maxillofacial 

technician. As the use of 3D scanners allows covering much more extended area, 

providing the data about the topography of the contralateral side, the so-called mirror 

imaging technique can be opted. The construction of the prosthesis is simply adopted 

from the opposite facial part and matched to the affected area. The mirror-imaging 

technique decreases the time of prosthesis construction and allows achieving potentially 

a better aesthetical outcome [14, 20, 50, 82]. This technique is particularly applicable 

when dealing with ear defects [1].  

Modelling and formation of the future prosthesis construction by means of CAD has 

been reported as advantageous to the conventional approach in terms of reducing 

production time, cost and was recognized to cause less discomfort for the patient [89]. 

As far as the process of the virtual modelling is accomplished, the prosthesis must be 

somehow transferred from the CAD-software into real live. Traditionally a three-part 

stone mold is constructed based upon the wax prototype, into which a silicone is later 

loaded for the casting of the future prosthesis. 

Nowadays there are some alternative methods to manufacture the definitive prosthesis, 

based on its virtual forerunner. The so-called additive manufacturing (AM) was 

incorporated into the digital workflow of facial prostheses manufacturing [41]. 
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1.5 Additive manufacturing and rapid prototyping 

AM is recognized as a relatively new technology to produce physical models utilizing 

the CAD data sources by means of selective solidification of horizontal layers 

simultaneously with stepwise submergence along the vertical axis [41]. 

A relatively rapid turnaround time as well as low production costs of the intended 

product, particularly compared to the conventional manufacturing process have been 

reported as main advantages to accept the AM as the technology of choice in the 

medical field [75]. Various approaches of AM utilization have been introduced 

including “Rapid Manufacturing”, “Rapid Tooling” and finally “Rapid Prototyping” 

[37, 41]. 

Utilization of AM was an important step on the way to make treatment planning more 

precise, subsequently making the final outcomes more predictable.  

Technological and industrial advancements contributed to the development of multiple 

AM techniques, exploiting various materials that are suitable for layered object 

formation, ranging from liquids and powder to resin filaments, paper, polymers and 

metals. These materials are in their turn solidified by means of glue, laser or light beam. 

Such layer-wise and additive method of building up allows to produce models 

regardless to the complexity of their geometry, taking therefore into consideration all 

intrinsic anatomical features [5]. 

Nowadays a big range of AM techniques have been introduced. All of them according 

to classification of Gebhardt [37, 41] can be divided into five main groups, which is 

based on various combinations of materials and curing methods. It is not the intension 

here to speak about the technical features and characteristics of each method. Still three 

of them that have been frequently employed in maxillofacial prosthetics and for this 

reason used in this study are worth mentioning. 

1.5.1 Stereolithography 

Stereolithography (SL) is the oldest AM system [48]. It builds models through layer-

wise solidifying of a photosensitive resin, which is stored in a special bath [44]. SL 
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provides the highest geometrical accuracy and the best surface quality among any other 

AM methods existing today [54]. However, the build-up process may contain layers that 

greatly overhang the layers below, thus demanding the supporting structures to be 

applied [64, 85]. With regards to maxillofacial prosthetics SL has been also widely 

employed, namely for production of prosthesis replicas and surgical guides for implants 

placing [1, 66]. 

1.5.2 Fused deposition modelling  

Fused deposition modelling (FDM) is based on the same layer-wise principle of 

additive manufacturing as SL, utilizing plastic filaments instead of a photosensible 

liquid. Filaments made of acrylonitrile butadiene styrene (ABS) or polylactic acid 

(PLA) are first molten and then extruded from a fine nozzle [37, 41, 44]. The method of 

FDM requires supporting structures. Its resolution is known to be relatively poor, 

compared to SL [54]. 

1.5.3 Selective laser sintering 

Selective laser sintering (SLS) technique utilizes the laser beam for the computer driven 

solidification of a heat-fusible powder [37, 41]. The fact that SLS doesn’t require any 

supporting structures, as the upcoming layer is sustained by the underlying unsintered 

powder is the main advantage of SLS compared to other AM methods [5]. Still some 

post processing is required. It implies the cleaning of the model from the excesses of the 

unsintered powder, which might be challenging, when getting it out from the undercuts 

and anatomical cavities. 

1.6 Production of a definitive prosthesis 

As it was mentioned before, the crucial moment in production of facial prostheses by 

means of CAD/CAM is to transfer the data from the CAD software to the hardware of 

CAM machines to provide it with a physical form. A big number of manufacturing 

protocols have been introduced to deliver a definitive product based on its three-

dimensional prototype (Figure 1). 
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Figure 1 Conventional and digital workflows of facial prostheses manufacturing. Various approaches of AM utilization.
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In general, these protocols constitute two main groups: direct printing from silicone, and 

production of the negative mold, to which a silicone is later on added. The first 

technique is also known as “Rapid manufacturing” [41] and intends a direct fabrication 

of the final product without dealing with any prototypes or forerunners. Such approach 

of AM-methods utilization is beneficial for the production of any objects in industry – 

[61]. Also in the medical field the “bioprinting” was reported as rapidly developing and 

promising technology on the way to restore the tissue portions and meeting the 

functional requirements for transplantation. However little was published about the 

rapid manufacturing of definitive facial prostheses – the printable maxillofacial silicone 

is still being developed [51]. 

With regards to the second group, namely the production of the mold, two approaches 

can be herein considered, featuring direct and indirect mold making. The first one is 

also recognized in the technical field as “Rapid tooling”, intending hereby the 

production of the negative form from the CAD data source for the further multiple 

fabrication of the final product [41]. 

In the maxillofacial field this approach implies the direct mold manufacturing by means 

of AM from CAD data obtained by CT, MRI or surface scanning. The three-

dimensional model of the mold can be modelled virtually, being based on the positive 

form of the primarily constructed prosthesis itself. This approach of direct mold 

fabrication was pioneered by Cheah in 2003 [12]. Later on a row of authors applied this 

protocol into clinical practice [19, 29, 57, 81, 89]. The use of various both subtractive 

[81] and additive manufacturing methods was attempted for the direct mold production. 

Thus, such AM methods, as SL [66], FDM [17, 18, 29, 46] and 3D-printing [16, 57, 89] 

have been employed. The mentioned studies revealed the benefits of the introduced 

protocol that namely are the easiness of mold production, compared to the conventional 

workflow, and a significantly reduced time for the patient to be present in the clinic, as 

now try-in of the prosthesis forerunner is intended. The absence of this step means that 

no alignment of the prosthesis margins to the adjacent tissue and further refinement of 

its position and shape are performed.  
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The protocol utilizing AM for the indirect mold making (also known under the 

widespread definition of “Rapid Prototyping”) implies some additional steps, namely 

the production of the prosthesis replica (prototype) and its further try-in on the patient. 

Slight adjustment of the replica in terms of shape, size, matching the contralateral side 

as well as the alignment of the prosthesis margins to the adjacent tissues are conducted 

to attain better aesthetics and wearing comfort. These replicas serve afterwards as a 

positive pattern to produce the negative mold to which the silicone material will be 

subsequently added. The mold as such is usually produced via silicone rubber molding. 

The following AM methods have been commonly used for production of prostheses 

replicas, ranging from SL [1], FDM [73, 78] and SLS [21, 60, 82, 88] to 3D-printing 

technology [11, 13, 20, 39, 63, 79, 84]. The use of CNC (computerized numerical 

control milling) has been also attempted [14]. 

The study of Cheah et al. [13] compared these two approaches, direct vs indirect mold 

making, and ascertained their both limitations and advantages. Although the direct mold 

production was acknowledged as a quicker approach, it leads potentially to higher 

manufacturing costs. The materials to produce a mold by means of AM are much more 

expensive compared to silicone in case of silicone rubber molding. However, the fact 

that the pattern can be refined clinically prior to definitive manufacturing yields 

potentially in a better aesthetical and functional outcome of rehabilitation. 

1.7 Investigation of AM methods employed for facial prostheses manufacturing 

Since the AM have been applied to the medicine, various aspects of its use have been 

analysed. Herein the dimensional accuracy was always considered to be the major 

concern and was investigated in a row of studies [4, 15, 58]. 

Literature analysis revealed that the protocol of indirect mold production (RP) has been 

more frequently used [21, 39, 60, 63, 73]. The literature is mostly comprised of single 

case studies, just stressing the common benefits of using AM-process for production of 

facial prosthesis in general, thereby lacking critical evaluation and comparison of each 

method. No clearness is set, which AM method would rather aid to achieve gains in 
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efficacy and efficiency in production of facial prostheses, and consequently suits better 

to be integrated into every day practice. 

Nowadays as a result of improvements in soft- and hardware in the field of medical 

technologies all the main AM processes introduced on the market show a considerably 

high resolution, which allows manufacturing products with relatively high accuracy. So, 

the maximal resolution that can be achieved by the method of SL is 0.05 mm, followed 

by the SLS method with also significantly high resolution of 0.01 mm. The highest 

resolution of FDM is known to be limited by 0.1 mm [54].  

Although the resolution of most AM machines is predetermined and described by the 

manufacturer, still there are some other error sources that influence the geometrical 

accuracy. The complexity of anatomy, for instance, must also be considered. The 

anatomical structures of a human ear have such a complex anatomy - consisting of stiff 

and flexible areas forming the typical shapes. Reproduction of those parts by means of 

AM processes might be associated with considerable difficulties, as far as 

reconstruction of the whole anatomy is concerned. Residual polymerization, creation 

and removal of supporting structures, laser diameter and surface finishing are among 

those technical factors, mentioned by Choi (2002), that contribute to model accuracy 

[15]. Some authors reported, that errors may manifest themselves at any stages of the 

production workflow, regardless to the AM-technique employed [49, 62]. It means that 

the initially given resolution of an AM machine might not be the only factor that 

contributes to the overall production accuracy. 

The other issue to be pursued, concerning the application of CAD and AM in 

maxillofacial prosthetics, is the skin texture reproduction. In the following studies the 

level of textures detailing that can be recognized visually was ascertained [7, 33]. It was 

assumed that the minimum detailing level to be reproduced must be 0.1 mm, according 

to the rating scale of Lemperle [56]. The accuracy of the scanning method used in these 

studies was reported to be insufficient to reproduce texture details on that level. It must 

be investigated, whether they in combination with other surface scanning methods 

might have yielded a better reproduction of the skin texture. 
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1.8 Main goals and hypotheses of the study: 

The objective of the present research is to identify the superior AM method in terms of 

dimensional accuracy and level of the skin texture reproduction to produce auricular 

prostheses replicas (APRs), using thereby the structured light scanning and rapid 

prototyping approach.  

Therefore following hypotheses have been formulated: 

 

i. There exists no difference in the dimensional reproduction of auricular prosthesis 

replicas made using the three different AM methods (SL, SLS, FDM) compared to 

the natural ear. 

ii.  There exists no difference in the dimensional reproduction of auricular prosthesis 

replicas made using the three different AM methods (SL, SLS, FDM) compared to 

the 3D images of the human ears, the replicas are based on. 

iii.  The SL, SLS and FDM methods in combination with a structured light surface 

scanner used, enable the successful reproduction of the human ears skin texture on a 

visually convincing level [56] where the wrinkles starting of the order of 0.1 mm 

can be visible. 

iv. Combining the outcomes of hypotheses i-iii  as well as pricing, a best-in-practice 

AM method can be identified. 
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2  MATERIALS AND METHODS 

2.1 Design of the study & participants 

This study was designed as anonymous case series with in-vivo measurements 

(anthropometry) and digital acquisition of one ear with structured light scanning, 

followed by CAD-modelling, CAD-measurement, APR-production and APR-

measurement. Furthermore, one participant was invited to get a silicon impression of 

one auricle to produce a gold standard gypsum model for qualitative comparison via 

stereomicroscopy and profilometry. 

2.1.1 Calculation of sample size (number of participants) 

According to the previous researches on this topic [26, 42], a sample size of at least 17 

participants was calculated with “OpenEpi” software [30] to detect a difference of 

1.5 %, using an alpha of 5 % and 80 % power (see supplement 1.). 

Besides, exceeding 2 mm of difference between APRs and situation in vivo is regarded 

as clinically relevant difference – [25].  

2.1.2 Ethical approval and recruiting 

The study protocol, subjects’ information and informed consent sheets were approved 

by the Ethics Commission of the University Hospital (387/2014BO2) and registered to 

the German Registry for Clinical Trials (DRKS00007184). All subjects were recruited 

via a notice and group mail. Thirty volunteers (9 women, 21 men) aged from 18 to 60 

years (mean age 37.8 years) were enrolled in the study.  

After informed consent and scheduling for the study the participants were assigned with 

an ID# functioning as a pseudonym: “EpiRP-##”. All datasets were assigned with this 

ID. 

One participant volunteered for the analysis of the surface texture reproduction and 

consented to impression taking and publication of his documentation/photographs. 



MATERIALS AND METHODS 

 

21 

The inclusion criteria for all participants were: 

·  Absence of any ear abnormalities  

·  Age over 18 y.o. 

2.2 Brief overview to the study measures: in vivo and in vitro 

First, all participants underwent the procedure of the ear anthropometry including the  

in vivo measurement of each distance, three times with a digital calliper (see chapter 2.3 

on page 23). All study measures including anthropometry and structured light scanning 

have been performed on the left subjects’ auricles. 

Secondly, the auricular area, including the pinna was scanned for the digital data 

acquisition with the use of a portable surface scanner (Artec 3D Spider, Artec Group, 

Luxembourg, Luxembourg), utilizing the structured light scanning method. After the 

gathered data was post-processed and converted into OBJ (object) format, it has been 

transferred to AM machines to produce APRs. The distances of the anthropometrical 

landmarks were measured within the Software ARTEC Studio, version 9, three times 

with the “digital lineal”. 

Thirdly, the distances between the landmarks on each produced APR were measure 

three times with the digital calliper. 

All the gathered values were statistically evaluated with JMP (Version 11.1, SAS 

Institute Inc., Cary, NC, USA). 

 The measurements were compared towards measurement bias and the mean differences 

between in vivo as well as CAD measurements were calculated using the Bland-

Altman-Plot [9] (see chapter “Quantitative Analysis of dimensional accuracy” on page 

34.  

Figure 2 (see below) summarizes the study protocol. 
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Figure 2. Overview of the study measures. 7 digitalizations resulted in inferior quality which 
hinders evaluation process and further additive manufacturing. Thus, the corresponding 7 datasets 
of ear anthropometry were excluded. 
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2.3 Anthropometry and digitalization 

2.3.1 Anthropometry & measurements in vivo 

The standard anthropometric landmarks by Farkas [35] and three additional landmarks 

defined by Coward et al. [23, 26] have been used in the present study (Figure 3 on page 

24; Table 1 on page 25). 

The subjects were prepared for anthropometry and scanning as follows: first, the 

auricular area was isolated from the hair, which was covered with a medical cap, which 

in its turn was secured with an adhesive strip on to the skin in order to prevent 

dislodging during the measurement procedure (Figure 4 on page 24). Secondly, the skin 

of the ear was defatted with ethanol 80 %. 

Thereafter the landmarks were marked manually on the ear surface, using black 

permanent marker with 0.78 mm thickness (MULTIMARK 1523 permanent, Faber-

Castell, Hamburg, Germany) (Figure 5 on page 26). The distances between the measure 

points (see Table 2 on page 26) were taken three times with a digital calliper in such 

way, that the operator never saw the outcome on the display of the calliper, when 

placing the calliper tips on top of the measuring points. All measurements were 

performed according to the recommendations for metrology [10]. After completing the 

analogue measurements metal balls with a diameter of 1 mm +/- 0,05 mm were glued 

onto the skin using a cosmetic glue (Mastix Spirit Gum, Metamorph GmbH, Berlin, 

Germany) at exactly the same spots marked with the pencil. Those balls served as 

reference points for the following light-scanning and digitalization procedures, as they 

provided the landmarks with volume (Figure 5 on page 26). 
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Figure 3. Localization of the landmarks with accordance to the selected anthropometrical approach 
used (see Tables 1, 2 on pages 25,26) 

Figure 4. Landmarks pointed out on the ear surface with accordance to the anthropometrical 
approach used 
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Landmarks Abbreviation Localization of the landmark 

Supra-aurale sa Highest point of the free margin of auricle 

Sub-aurale sba Lowest point on the free margin of the 

earlobe 

Pre-aurale pra The most anterior point of the ear located 

just in front of the helix attachment 

Post-aurale pa The most posterior point of the free margin 

of the ear 

Otobasion superior obs Point of attachment of the helix in the 

temporal region; determines the upper 

border of ear insertion 

Otobasion inferior obi Point of attachment of the earlobe to the 

cheek; determines the lower border of the 

ear insertion 

Tragus tra The most vertically outstanding point on the 

tragus 

Antihelix ah The most vertically outstanding point on the 

antihelix 

temporal reference 

of supra-aurale 

sa’ Point on side of the head (os temporale) 

orthogonal from the supra-aurale (sa) 

temporal reference 

of post-aurale 

pa’ Point on side of the head (os temporale) 

orthogonal from the post-aurale (pa) 

temporal reference 

of sub-aurale 

sba’ Point on side of the head (os temporale) 

orthogonal from the sub-aurale (sba) 

Table 1. Anatomical landmarks, their abbreviations, and localizations with accordance to the 
anthropometrical approach 
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Section of 
measurement 

Letter Description Classified as 

sa-sba a Length of the ear long distances 

obs-obi c Insertion length of ear  

pa-pra b Width of the ear medium distances 

tra-ah g Tragus to antihelix  

sa-sa’ d Clearance between the top of ear and 

the skin of the os temporale  

short distances 

 

pa-pa’ e Clearance between the most posterior 

point on the helix and the skin of the os 

temporale 

 

sba-sba’ f Clearance between the lowest point on 

the free margin of lobe and the skin of 

the os temporale 

 

Table 2. Sections of measurements used in the selected anthropometrical approach 

 

 

Figure 5. Attaching the metal balls of 1 mm in diameter on their places according to the 
anthropometrical approach used 
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2.3.2 Structured light scanning, postprocessing, and digital measuring  

As soon as all metal balls were attached to the marked spots, each participant underwent 

a scanning process, which was performed with the use of Artec Spider scanner (Artec 

Group Comp., Luxembourg, Luxembourg). Three recordings of the auricular area 

including pinna were performed (Figure 6 on page 27). The author followed the 

recommendations of the manufacturer for Artec scanners after receiving special 1-day 

training (RSI Technology, Oberursel, Germany).  

 

 

Figure 6. The process of structured light scanning with the hand-held Artec Spider scanner. The 
scanner is moved around the area of interest under constant control of the software  
depicting the acquisition in real-life format (also see Figure 7 on page 28).  
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The author, holding the scanner performed several movements around the area of 

interest in a certain sequence, as follows from the Figure 7 (see below). The scanning 

process was not stopped before the full geometry of the auricle and their adjacent tissues 

have been captured. This approach avoids two major sources of error: first, acquisition 

of multiple datasets (images) which have to be aligned manually with the software and 

second, distortions due to the superimposing of the images. 

 

Figure 7. Pathway of the scanning process: A to B (left) to scan the posterior inner pinna (red areas); 
continuously moving from B to C (middle) to scan the Helix and anterior inner pinna; and from C to D 
(right) to scan the rear part of the outer ear. This scanning process was performed 3 times to create 3 data 
sets. 

The best image was chosen out of the three gathered renderings in the preview mode in 

the software (ARTEC Studio, ver. 9). The following exclusion criteria were considered: 

·  presence of any areas of missing data (mostly in undercuts) 

·  presence of any visible shifting of the anatomical structures (i.e the auricle 

concha to the tragus area) 

·  insufficient amount of adjacent tissues captured (around the auricle). 

21 review scans of 7 subjects (EpiRP #1, #2, #3, #7, #8, #9, #12) did not meet these 

requirements and therefore had to be excluded. Thus, datasets of the remaining 23 

subjects were used for evaluation and further study measures. The best preview out of 
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the three gathered images of the remaining 23 subjects underwent the subsequent three 

stages of post-processing (Figure 9 on page 30). 

First, “Global registration”: this stage resulted in a mesh (point of clouds), which in its 

turn had to be further processed on the screen by means of the computer software.  

Secondly, “Sharp fusion”; “Small object filter”; and “Mesh simplification” have been 

applied. This resulted in the images in STL format. Thereafter the textures were applied 

and aligned with the existing image and the final 3D image was saved in the OBJ 

format (Figure 8 – see below). All digital tools applied for the post processing were 

reported and recommended by the official reseller of Artec products - not hindering/ 

influencing the dimensional accuracy of investigated objects. 

 

Figure 8 3D-images of the participant’s auricle in OBJ format in Artec Studio software
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Figure 9. Post-processing chain including the settings for each of the 23 enrolled EpiRP cases to obtain 
images in OBJ format 
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2.3.3 Distance measurements in the CAD software  

Section measurements (see Table 2/distances on page 26) were evaluated with the tool 

“digital lineal” (Artec Studio, Artec Group) (Figure 10 on page Fehler! Textmarke 

nicht definiert. ). All distances were measured three times. As the distance was 

continuously displayed on the measurement line, the operator concentrated on the 

landmarks without noticing the displayed value.  

 

 

Figure 10 Distance measurement in the CAD software with the "digital lineal" tool 

2.3.4 CAD Modelling  

This step implied the surface inspection to reveal, if the models were “waterproof” and 

ready for the further additive manufacturing process. Each 3D model was provided with 

a basis at the temporal site to make it possible to stand on a plain surface (Figure 11, see 

below). 
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Figure 11. 3D model of the ear APR after being edited in the CAD-software and ready for the further 
AM-process 

2.3.5 Additive manufacturing 

Gathered digital files in OBJ format were used to produce the APRs by means of the 

AM methods: SLS, FDM, and SL (Figure 12 – see below; Table 3 on page 33). Due to 

the limited financial budget of the study and because producing SL patterns is so costly 

the AM production of ARPs with this method was limited to the first 11 EpiRP cases. 

 
Figure 12. APRs manufactured respectively with SLS, SL, and FDM methods 
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AM 

methods 
Production description 

Firm AM machine Production time Production cost Material used Layer thickness 

SLS Jomatik GmbH 
(Tübingen, 
Germany) 

SPro 60 HD (3D 
Systems, Rock Hill, 

USA) 

11 hours 65 Euros Polyamide powder 0.08 mm 

FDM Rioprinto 
(Stuttgart, Germany) 

The Makerbot 2 
(MakerBot 

Industries, New 
York, USA) 

3 hours 
27 minutes 

25 Euros PLA 0.1 mm 

SL 3D-Store 
(Moscow, Russian 

Federation) 

ProJet SD 7000 (3D 
Systems, Rock Hill, 

USA) 

16 hours 120 Euros Polycarbonate 0.025 mm 

Table 3. Features of AM methods utilization
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2.4 Quantitative Analysis of dimensional accuracy 

2.4.1 Definition of data sets and data groups 

Each participant forms a data set, containing five following data groups. 

 “in vivo”:  values of the analogue measurements from the participants natural ears:  

                 �  “reference measurement” 

“CAD”: values of the digital measurements from the CAD software (Artec Studio, 

Artec Group). 

“SLS”, “FDM”, and “SL”:  values of the measurements from the APRs, produced 

respectively with SLS, FDM, and SL methods:                                                                  

                  �  “replica measurement”. 

·  The “in vivo” measurement served as first reference (gold standard) for 

comparison with the subsequent measurements from CAD and APRs. 

Comparison between those two measurements represented the accuracy of the 

whole digital work flow starting from the scanning process and ending in the 

manufacturing of an auricular prosthesis replica.  

·  The “CAD” measurements were used as the second reference for comparison 

with measurements from APRs. Thus, they represented the accuracy of the 

different AM methods used in this study to manufacture an auricular 

prosthesis replica.  

·  Each data group consists of seven distances. Each distance was repeatedly 

measured three times. 

2.4.2 Preparing the Datasets 

All measured values were written down into a table of the statistical package JMP 

(Version 11.1, SAS Institute Inc., Cary, NC, USA). 
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A dataset is qualified by the pseudonym number EpiRP-## as “ID” of the participant 

followed by the measurements (groups, sections). 

Data entry was cross checked for plausibility and missing data by distributions as 

described by Altman [2]. 

2.4.3 Calculation of the measurement error  

The measurement error of each sections of measurement is calculated for each data 

group. Therefore the measurements in each data group are calculated according to 

Bland and Altman – [8]. Repeatability can be determined by multiplying the 

measurement error (ME) with 2.77 (=1.96*Ö2) and interpreted as follows [8]. The 

difference between two measurements under same conditions, here measurements of a 

specific section of a specific data group, is at least ME*2.77. This assertion, however, 

will be expected for 95 % of pairs of measurements for each section of measurement 

within each data group. Using 0.3 mm as an upper bound of ME in the situation 

described in this article, repeatability is computed as 0.8 mm. This is found to be 

clinically acceptable for the detection of 1.5 % or 2 mm deviation. 

2.4.4 Comparing data groups  

The data groups are compared using the approach of differences in matched pairs and 

mean of means, known as Bland-Altman-Plot [9]. 

Additionally relative differences between the data groups are calculated using the 

following formula [62, 74]: 

��������	��
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2.5 Qualitative analysis of skin texture reproduction 

To investigate the skin texture reproduction of APRs manufactured respectively with 

SL, SLS, FDM a gold standard is needed. This was found in a “classic” gypsum cast 

made from a conventional silicon impression. This impression was made additionally to 

all other study measures from participant #17, using an addition-curing silicone 

(Multisil Epithetik, Bredent, Neu-Ulm, Germany). The stone cast was poured with 

dental stone class IV (VelMix Stone, Kavo-Kerr, Rastatt, Germany). 

2.5.1 Reference areas for analysis  

Several reference areas on the stone cast have been defined – “Helix” and “Lobula”. 

These areas were used for the analysis with a stereomicroscope. Additionally, two 

biggest skin wrinkles, which were easily recognized – “Lobula basis” and “Lobula 

corpus”, and also one wrinkle called “Helix” have been set as a minimum level of skin 

texture reproduction for the AM methods in combination with a structured light scanner 

(Figure 14 on page 37). 

Figure 13. Stone cast of one of the probands to measure the surface 
roughness 
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2.5.2 Stereomicroscopy 

The areas “Helix” and “Lobula” were thoroughly examined with the use of 

stereomicroscope (WILD 400, Heebrugg, Switzerland). Four photographs of each APR 

and the gypsum model with tenfold and sixteen fold enlargement have been taken and 

afterwards compared visually to each other.  It was referred to the initial CAD image 

that all the AM machines have used in order to check, on which production stage the 

deviations from the original anatomy occur. 

2.5.3 Profilometry 

Profilometry was used to measure the roughness of the skin texture, which can be 

reproduced by the different AM methods compared to the gypsum replica.  

(Perthometer S6P, Mahr, Göttingen, Germany). A little stand was made from silicone 

material to ensure the same position of each of the 3 APRs. Each wrinkle of “Helix”, 

“Lobula basis” and “Lobula corpus” on each APR and referent stone cast was analysed 

(Figure 14 – see below). Four single profiles for each wrinkle across 3 mm distance 

were recorded. The profile depth (Pt parameter) was measured with the special software 

(MountainsMap Digital Surf). The mean profile depth was calculated for each wrinkle. 

 

Figure 14. Location of the wrinkles to be examined with the use of profilometry 
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3 RESULTS 

3.1 Participants and measurements 

3.1.1 Missing measurements 

The short distances (sa-sa’, pa-pa’ and sba-sba’) turned out to be measured with 

difficulties, as some areas posterior to the auricle were unattainable for the digital 

calliper (Figure 3 on page 24 and Table 1 on page 25). Moreover landmarks, such as 

“sba”, didn’t have any bony or cartilaginous support. Others (sa’, pa’) were located in 

the haired area which needed to be covered by the cap. This provided the landmarks 

with a certain degree of pliability, especially sa’, which reduced reproducibility in vivo. 

In five datasets the sa-sa’ distance was unfeasible to be measured at all and was 

neglected in the further analysis. In other cases the measurement of all short distances 

showed the poor repeatability might have been error-prone. 

For this reason the mean relative difference between the groups of measurements has 

been calculated in two ways: first, using all distances and second, neglecting the “short 

distances” (sa-sa’; pa-pa’; sba-sba’). 

The surface structure analysis yielded, that the wrinkle “Helix” was not able to be 

reproduced on AM-manufactured APRs. For this reason the profilometry of this wrinkle 

was unfeasible.  
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3.1.2 Calculation of measurement error 

Table 4 (see below) shows the number of measurements and measurement error (ME) 

of the single measurements derived from 23 in vivo, CAD, SLS, FDM APRs as well as 

11 SL APRs.  

Measurement 
sections 

Data groups of measurements 

IN VIVO CAD SLS FDM SL 

sa-sba n=69 
66.52; 6.52  

0.253 

n=69 
66.84; 6.71 

0.228 

n=69 
67.08; 6.71 

0.178 

n=69 
66.68; 6.66 

0.351 

n=33 
64.93; 6.06 

0.2 
obs-obi n=68 

46.41; 5.73 
0.328 

n=69 
46.56; 5.67 

0.155 

n=69 
46.75; 5.63 

0.295 

n=69 
46.61; 5.7 

0.230 

n=33 
45.82; 6.48 

0.277 
pa-pra n=69 

40.1; 4.01 
0.274 

n=69 
40.31; 4.09 

0.164 

n=69 
40.17;4.1 

0.295 

n=69 
40.15;4.1 

0.206 

n=33 
38.46; 3.16 

0.164 
tra-ah n=69 

23.83; 3.14 
0.236 

n=69 
23.64; 3.15 

0.210 

n=69 
23.74; 3.17 

0.184 

n=69 
23.62; 3.17 

0.260 

n=33 
22.42; 4.0 

0.211 
sa-sa’ n=50 

10.74; 3.96 
0.366 

n=52 
10.89; 4.11 

0.143 

n=51 
11.2; 4.02 

0.180 

n=54 
11.14; 4.04 

0.171 

n=18 
9.02; 2.94 

0.145 
pa-pa’ n=67 

18.41; 4.45 
0.262 

n=69 
18.63;4.48 

0.250 

n=69 
18.75; 4.52 

0.248 

n=68 
18.75; 4.45 

0.189 

n=32 
18.43; 5.31 

0.161 
sba-sba’ n=67 

12.56; 4.59 
0.256 

n=69 
12.3; 4.76 

0.285 

n=60 
12.18; 4.53 

0.247 

n=60 
12.21; 4.55 

0.265 

n=27 
12.91; 5.71 

0.210 
Mean of  ME 0.282 0.205 0.232 0.239 0.195 

Table 4. Measurement error (ME) within the data groups. The cells contain the number (n, 
first row) of measurements available within one data group for each section of measurement. The 
second row in each cell shows the calculated value of mean measurements and the SD. The third 
row contains the measurement error of the single measurements. The last row of the table contains 
the mean value of the measurement error within the data group. 

 

The MEs were comparable across all data groups. Thus, the single measurements were 

averaged by the arithmetic mean for further calculations of the mean differences. 
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3.1.3 Mean differences towards the reference 

Table 5 (see below) contains the mean differences between in vivo, CAD, FDM, SLS 

and SLS data groups, gathered respectively from participants, CAD software, APRs 

produced by FDM, SLS and SL. 

Data 

groups 
 

Measurement sections (mm) 

Short distances   Medium distances  Long distances 

sa-sa’ 
d 

pa-pa’ 
e 

sba-sba’ 
f  

pa-pra 
b 

tra-ah 
g  

sa-sba       obs-obi
      a      c 

In-vivo/ 

CAD 
 

n=18 

0.15 
(-0.12, 
0.43) 
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Table 5. Mean differences (Biases) of in vivo and CAD measurements compared towards 
measurements on the 23 SLS, 23 FDM, and 11 SL APRs. A cell contains the number of mean 
measurements (n), the mean difference towards the CAD measurement followed by the minimum and 
maximum value of bias. 
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Measurements of the SL or especially FDM APRs showed the smallest deviations from 

the respective ones in vivo. The lowest biases were identified four times in FDM (sba-

sba’, pa-pra, sa-sba, obs-obi), three times in SL-APRs (sa-sa’, pa-pa’ and tra-ah), and 

not once in SLS. 

The graphic below depicts the overall situation (Figure 15). On this graphic the colored 

lines represent each AM method. The black solid line represents the absolute zero (in 

vivo measurements). The grey field represents the threshold of the clinical relevance, 

which is 1 mm in each direction from the zero line (in sum 2 mm) [25]. According to 

the way, how the other lines relate to each other and how far they are situated to the 

zero-line (black), the ratio between the mean differences of in vivo measurements to 

each AM-method can be ascertained. It can be clearly seen, that none of the lines 

exceed the grey field of optical clinical relevance. Still, the green line, representing the 

FDM method is placed closer to the absolute zero in most sides of the graphic. Thus, it 

can be assumed, that the methods of FDM showed a superior dimensional accuracy, 

than others.  

Data in the table 5 (page 42) indicates that measurements performed on SLS and SL 

models had two times the smallest bias towards the CAD reference. In contrast, FDM-

produced models had three times the lowest difference to the CAD reference. On Figure 

16 (page 43) it can be seen that the green line representing the FDM method lies closer 

to the black one (on this graphic – CAD reference), than the others. Thus, the FDM can 

be regarded as the best towards dimensional accuracy.  
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Figure 15. Mean absolute differences (Bland and Altman plot) of in vivo measurements compared 
towards measurements of 23 SLS, 23 FDM and 11 SL APRs and towards CAD measurements. Each 
colour of the line represents respectively the groups of measurements listed in table 5 on page 40. The 
shaded area around the black reference line (0) indicated the 2 mm deviation of clinical relevance. 
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Figure 16. Mean absolute differences (Bland and Altman plot) of CAD measurements compared 
towards measurements of 23 SLS, 23 FDM and 11 SL APRs. Each colour of the line represents 
respectively the groups of measurements listed in table 6. The shaded area around the black reference line 
(0) indicated the 2 mm. deviation of clinical relevance. 

 

Table 6 (see below) shows the relative differences between the in vivo and CAD groups 

towards measurements made for each group of AM methods. 

Initially, the best method compared to in vivo measurements was SL; compared to CAD 

data group – FDM. When short distances were neglected, as they were considered to 

initiate the most of discrepancies between the groups of measurement, the FDM method 

showed the best accuracy compared to both in vivo and CAD data groups (Figure 17 on 

page 45, Figure 18 on page 46). 
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Measures Mean relative differences between AM methods used (%) 

SLS  FDM  SL 
In vivo CAD  In vivo CAD  In vivo CAD 

sa-sba 0.84 0.36  0.24   �0.24  0.49 0.31 

obs-obi 0.75 0.41  0.43 0.11  1.07 0.59 

pa-pra 0.17   �0.35  0.15   �0.37  0.47  �0.23 

tra-ah   �0.38 0.42       �0.88   �0.08  0.31 0.31 

sa-sa’ 1.08 0.09  0.63   �0.45    �0.67  �0.33 

pa-pa’ 1.84 0.64  1.85 0.64    �0.11 0.22 

sba-sba’   �1.69  0.33    �1.46 0.57    �1.68  1.73 

         

Total mean 
(all) 

0.96 0.37  0.81 0.35  0.69 0.53 

 
Total mean  
(w/o short 
distances) 

 
 

0.54 

 
 

0.39 

  
 

0.43 

 
 

0.20 

  
 

0.59 

 
 

0.36 

Table 6. Mean relative differences of AM methods compared to in vivo and CAD measurements.  
The highest values are marked with the red colour, the lowest with – green. Total mean is calculated with 
(all) and without (w/o) short distances due to the measurement bias/missing values of short distances.  
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Figure 17. Mean relative differences (Bland and Altman plot) of in vivo measurements compared 
towards measurements of 23 SLS, 23 FDM and 11 SL APRs. Each colour of the line represents 
respectively the groups of measurements. The shaded area around the black reference line (0) indicated 
the 1.5% deviation of statistical relevance. 

The comparative analysis showed that the hypothesis i can be accepted (see page 19). 

The comparison of the absolute mean differences of AM replicas to in vivo did not 

reveal any clinically relevant deviation exceeding 2 mm. However, the analysis of 

relative mean differences detected discrepancies up to 1.85 %.  
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Figure 18. Mean relative differences (Bland and Altman plot) of in vivo measurements compared 
towards measurements of 23 SLS, 23 FDM and 11 SL APRs. Each colour of the line represents 
respectively the groups of measurements. The shaded area around the black reference line (0) indicated 
the 1.5 % deviation of statistical relevance 

 

The comparative analysis showed the hypothesis ii  can be accepted. The comparison of 

the absolute mean differences of AM replicas to CAD did not reveal any clinically 

relevant deviation. The analysis of relative mean differences detected a deviation from 

the in vivo data group in only one case of SL, which exceeded the threshold of clinical 

relevance. 
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3.2 Skin surface analysis 

3.2.1 Visual analysis of the surface 

The visual comparison of the stereomicroscopic pictures revealed that none of the AM 

methods used in combination with a structured light scanner was able to reproduce truly 

the skin structure. The wrinkle “Helix” was completely missing on each APR (see page 

36). The wrinkles “Lobula basis” and “Lobula corpus” could be reproduced, using a 

digital approach of prostheses manufacturing on each APR (Figure 20 – see below). 

With regards to the surface structure it must be said that it deviated considerably from 

the original anatomy (gypsum model). Thus, the texture of the FDM-produced APR was 

comprised of PLA filaments, which were still recognizable even after the layers were 

solidified with each other. The surface of the SLS-produced model was mostly 

comprised of the little powder particles and has also failed to describe the original 

surface structure. The APR made by means of SL showed a very smooth surface with 

absolute absence of staircase effect. However, all the skin structure details were 

completely missing. 

It must be also stressed that on each APR the wrinkles “Lobula basis” and “Lobula 

corpus” were even more pronounced (compared visually), than on the stone cast. 

The “Helix” wrinkle could not been described on any of APRs (Figure 19 – see below). 

The examination of the three-dimensional image (Figure 21 on page 49) disclosed that 

the “Helix” wrinkle has not been longer displayed yet in the CAD software. Compared 

to the 3D image of the “Helix” area, the FDM-produced APR showed the best 

resemblance, followed by SLS-produced APRs (compared visually).  
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Figure 19. Stereomicroscopy of three FDM-, SLS-, SL-produced APRs and one stone cast with the 
16x enlargement 

 

 

Figure 20. Stereomicroscopy of three FDM-, SLS-, SL-produced APRs  and one stone cast in 
"Lobula" area with the 10x enlargement.  1- “Lobula basis”; 2 – “Lobula corpus”. 
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Figure 21 “Helix” area on the three-dimensional image, AM methods have addressed to. The 
wrinkle "Helix" is not captured. 

3.2.2 Profilometry  

The Table 7 represents the mean value of each winkle depth. The profilometrical 

analysis of the “Helix” wrinkle was neglected, as it was not recognizable on any of 

APRs.

APR Wrinkles location and their Pt (µm) 

Helix Lobula basis Lobula corpus 

Gypsum 94 192 220 

SLS - 235 265 

FDM - 209 229 

SL - 156 214 

Table 7. Mean (Pt) values of the reference wrinkles 

 

The average depth of the “Helix” wrinkle on the reference gypsum model was 94 µ. It 

has failed to be reproduced by means of digital approach used in the study. The “Lobula 

basis” wrinkle on the reference gypsum model was 192 µ deep, which let it to be 

recognized and captured fully by a structured light scanner. The same was with the 

“Lobula corpus” with its depth of 220 µ. 
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The following graphic (Figure 22 – see below) additionally provided for “Lobula basis” 

wrinkle displays the differences in the wrinkles geometry. The profile of FDM-

produced APR is comprised of the wave-like line, which represents the PLA filaments. 

This wave-effect impairs the overall semblance of the APR surface. The profile line of 

APR made by SLS is quite similar to the stone model, but still deviates from it. As far 

as the surface of SL-made APR was slightly smoothed, the depth on the wrinkle was as 

well reduced and profile line appeared to be relatively straight. Thus, none of the AM 

methods was able to reproduce the skin surface texture entirely.  

 

Figure 22. Profile graphics of the three "Lobula basis" wrinkle of gypsum model (black line), SLS-
produced APR (orange line), FDM-produced APR (green line) and SL-produced APR (blue line). 
None of the lines is similar to the referent black one.  

 

All the results contradict the hypothesis number iii . The assumed statement that the 

surface structured light scanner in combination with the AM-methods used in this study 

enables to reproduce the skin surface texture with the detailing level of 0,1 mm was 

disproved. Only partial reproduction might be feasible, where the skin details exceed 

192 µm of depth.  
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3.3 Production costs and time 

Each APR manufactured by means of SLS has cost about 65 Euros. The average 

production time was 16 hours. The production of 11 APRs by means of SL method 

lasted 11 hours and has cost 120 Euro pro each APR. It was not possible to calculate the 

production time for each APR, as they were made simultaneously. In case of FDM each 

APR costs 25 Euros and the production time per one case was 2-3 hours. 

Comparing the outcomes according to the last question (hypothesis iv) FDM was 

identified at this point of time as the “best-in-practice” method. 
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4  DISCUSSION 

4.1 Discussion of applied methods 

4.1.1 Probands and recruiting 

For this study the RP approach was chosen, as the literature analysis revealed that it has 

been frequently used, but only as case reports [82, 84, 88]. Far no study aimed a 

systematic analysis of the accuracy of the digital work flow in reproducing an artificial 

ear. 

In order to investigate the accuracy of AM methods employed for fabrication of APRs, 

it is not obligatory to perform the scans on real patients suffering from a kind of facial 

disfigurement. Enrolment of healthy subjects, having their both ears present was 

beneficial in terms of easier carry out of the study. It has not afflicted negatively the 

objectiveness of the study in terms of proper application of the selected approach (RP - 

indirect mold making). The current trial replicated the same ear, which was scanned. 

This allows a direct compatibility of the acquired data between in vivo and the derived 

data groups of CAD and AM.  

The cohort is aged in mean 37.8 years. Subjects under the 18 y.o. might be impatient 

and not able to stay still for a long period, while performing the anthropometry and 

scanning.  

4.1.2 Data acquisition/ scanning of ears/ digitalisation 

Digital capturing of the whole ear anatomy may be challenging due to the big number of 

undercuts.  

Some other authors have utilized the approach, where the traditional impression of the 

auricle is first taken [1, 20, 45]. The obtained stone cast is later on scanned with a 

stationary laser scanner, such as 3Shape R700 (3Shape, Denmark) [84]. This kind of 
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stationary scanners is cheaper to work with. However, the additional step of impression 

taking makes the study measures error-prone. 

The use of medical imaging systems such as CT and MRI allows to capture the whole 

ear anatomy with its numerous undercuts. However, it can be very difficult to justify 

performing of a CT scan just for scientific purposes without any clinical need.  

For this reason we used the structured light scanning (Artec Spider Scanner). This 

system allowed to capture the complete ear anatomy within a reasonable time, as it is 

handheld and thereby allowed to perform the scanning from different angles in order to 

attain the areas, that were obscured from the line of sight. 

In the studies to the topic some other scanners have been employed. A stationary laser 

scanner (Desktop 3D Scanner; NextEngine, Santa Monica, USA), for instance, was used 

by Ciocca [17, 21]. The fact, that the scanner must remain still significantly 

compromises the overall quality of the obtained images and from our point of view 

would not be applicable in our study. 

Comparable portable systems, such as Breuckmann Opto TOP-HE [33, 79] and 

Polhemus FastScan [11] have been used in the mentioned studies. The scanning 

accuracy of these systems was reported to be 45 µ and 18 µ respectively, which is 

comparable to the system we have used in the study with its accuracy in the order of 50 

µ. It has been reported in the study of Cheah (2003) that the scanning accuracy up to 0.5 

mm is sufficient for facial prostheses manufacturing [13]. Thus, the resolution of the 

scanner used in the present study was assumed to be also sufficient. 

4.1.3 Measurements and measurement error 

The major concern of the scientific researches was always to find out whereupon the 

persisting errors of AM process depend [49, 74]. Data acquisition process and the 

reliability of the measurements are recognized as the main limiting factors, when 

investigating the dimensional accuracy of AM methods [24, 25, 74, 86].  

Some landmarks are commonly not easy to be located and recognized on different 

stages of the study. Such discrepant identification of the landmarks impairs 
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considerably the repeatability of the measurements [36]. It may be overcome by using 

the fiducial markers [40, 87]. In the present study each landmark was previously pointed 

out on the ear surface with accordance to the anthropometrical protocol chosen and 

provided with volume, so that they were recognizable on other stages throughout the 

study. 

Distortions may be also caused due to a contact of a measuring instrument to the soft 

tissues [36]. The pressure that is caused by each measurement cannot be monitored and 

equilibrated. As far as all tissues are differently pliable, mostly those of them that do not 

have any bony support, fiducial landmarks are occasionally shifting. The measurement 

values are this way error-prone. That’s why in the present study the measuring process 

follows the recommendations for metrology [10]. The measurement error within all 

groups of measurements was calculated between 0.20 mm and 0.29 mm (see Table 4 on 

page 39). Thus, the measurement errors are comparable and not dependent on a model. 

This implies a high reproducibility of the measurements. 

The objectivity of dimensional accuracy investigation may also correspond to a study 

design. Most of the common researches establish ideal conditions, where the reference 

object is fixed and unanimated, as being just a model [62, 73, 78]. This way any 

movements and tissue pull would not be apparent. Such conditions vary extremely from 

those that we have in a daily medical practice, as patients do produce slight mimic 

motions such as blinking or corrugating the forehead. For this reason we performed our 

study on the healthy subjects. 

4.1.4 Manufacturing methods 

The literature analysis revealed that the AM methods used in this study, namely SLS, 

SL and FDM were most frequently used in other clinical case studies and scientific 

researches on the topic of maxillofacial prosthetics [21, 39, 60, 63, 73]. The only 

exception in those terms was the method of 3D-printing, a widely applied method in 

facial prostheses production [57, 78]. Nevertheless, we have neglected this method, as it 

usually deals with a completely different kind of material namely wax. This method can 
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be potentially employed in further studies, concerning a comparison between wax and 

plastic for producing of prostheses replicas. 

4.2 Results: dimensional accuracy 

4.2.1 Comparison of in vivo data group to AM measurements: clinical relevance 

Compared to the in vivo FDM and SL APRs showed the highest dimensional accuracy. 

To judge about the clinical relevance of the persisted discrepancies certain criteria must 

be formulated to set the threshold of their visual recognizability. According to Farkas 

[35] the difference of 5-mm in length and 3- to 4-mm in width are not visible for the 

human eye and are unlikely to have any clinical impact. Furthermore, as stated by 

Coward et al. [25] 2 mm difference seems to be clinically undetectable. Based on this 

information it can be assumed that inaccuracies up to 0.56 mm, as encountered in the 

present study, might not affect the general semblance of the replica and would not lead 

to a visible mismatch of the definitive prosthesis to the facial anatomy in general. 

The maximum relative differences on FDM -, SLS- and SL-manufactured APRs to in 

vivo were 1.85 % (pa-pa’), -1.69 % (sba-sba’) and -1.68 % (sba-sba’) respectively, 

which exceed the threshold of 1.5 %. No comparative studies dealing with facial 

prostheses of their replicas were found. In the following research [3] the relative mean 

difference of 2 % to original coronoid process of the human mandible anatomy was 

concerned to be clinically not relevant. For this reason the single discrepancies in the 

order of �  1,85 % seem not to influence the overall semblance of the definitive facial 

prostheses, although they exceed the relevant threshold set in the present study. 

4.2.2 Comparison of CAD dataset to AM measurements 

The comparison between measurements carried out on APRs and the CAD data group 

indicates the pure accuracy of the AM methods used in this study. Even though there 

would be any errors, affecting the quality of the initial virtual image, they might not be 

relevant for the further comparative analysis of AM methods, as far as AM-machines 

address to the same data source to boot up the intended 3D image. The mean relative 
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differences between CAD measurements and measurements of FDM-, SLS- and SL-

produced APRs were 0.35 % 0.37 % and 0.69 % respectively, which is nearly two times 

less, as compared to in vivo measurements. These results indicate clearly that the stage 

of data gathering may affect the overall accuracy of the digital workflow of prostheses 

manufacturing, rather than the AM process. 

In the Table 6 (page 44) groups of total relative mean differences of measurements are 

presented. The first one is calculated for all groups of distances – short, medium and 

long, whereas in the second group short distances are excluded. The reason to do this 

manifested itself during the process of auricular anthropometry, where the short 

distances sa-sa’, pa-pa’ and sba-sba’ turned out very difficult to be measured just 

because some areas posterior of the auricle were simply unattainable for digital 

callipers. Moreover, the mentioned landmarks fell sometimes on places, which either 

didn’t have any bony or cartilaginous support, such as “sba”. Some were simply located 

in the haired area and must be attached to the cap, which provided the landmark with a 

certain degree of pliability – sa’ for instance. This restricted the repeatability of the 

measurement. As far as it was thought that such limiting conditions might have 

contributed to the overall measurement accuracy, the second group of total mean 

differences has been calculated, neglecting thereby the short distances. Significantly 

lower differences up to two times between the measurements groups were found. Even 

so the main tendency that FDM showed the best accuracy remained unchanged. 

Notwithstanding the process of data acquisition and anthropometrical measuring 

protocol have affected the overall accuracy of digital production workflow, the maximal 

mean relative difference of all AM methods to in vivo group was 0.96 %. This result is 

considered to be fully acceptable for the clinical application, since these dimensional 

changes were within the set threshold of 1,5 %. Even greater relative mean differences 

between AM produced models and original anatomy of the order of 2 % were thought 

not to have any clinical impact [3].  
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4.2.3 Similar studies to the topic 

In the topical literature only few studies have been found that investigated the 

dimensional accuracy of AM methods employed for APRs manufacturing. Most of 

them have been dealing either with cadaver skulls or dry mandibles (Table 8 – see 

below). It must be furthermore emphasized that all of these studies dealt with bony 

structures. Such circumstances differ from that ones, when investigating the 

reproduction accuracy of facial soft tissue parts. 

Authors Comparison Mean differences 

Absolute 

(mm) 

Relative 

(%) 

Choi et al (2002) SL � CT 0.57 0.56 

 SL � skull 0.62 0.82 

Subburaj et al (2007) FDM – CT * 0.84 2.82 

Silva et al (2008) SLS � skull 0.89 2.10 

Ibrahim et al (2009) SLS � mandible 0.90 1.79 

Murugesan et al (2012) FDM � mandible � 1.73 

Shah et al (2013) FDM � CT* 0.45 1.78 

The present study Ear patterns    

 SLS � CAD** 0.12 0.37 

 SLS � human ear 0.25 0.96 

 FDM � CAD** 0.09 0.35 

 FDM � human ear 0.17 0.81 

 SL � CAD** 0.13 0.53 

 SL � human ear 0.19 0.69 

Table 8. Summary of other studies on the topic of dimensional accuracy of AM methods 

* CT image of the human ear 

** Data acquired by means of structured light scanning 

 

Within the last years an ongoing improvement of FDM relative dimensional accuracy 

can be shown with results from 2007 reporting a relative mean difference of 2.82 % 

between the FDM produced APR [78], followed by 1.79 % in 2012 [62] and 1.78 % in 

2013 [73]. In contrast, the present study with structured light scanning yielded 0.35 %. 

It must be stressed that each study mentioned above has utilized only single clinical 
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case. The present study covered this shortcoming with the enrolment of more 

participants and production of a bigger number of APRs. 

The method of SLS has been also employed in a row of studies to reproduce various 

anatomical parts such as cadaver skulls and dry mandibles, but not ears. Some authors 

reported a significantly poor geometrical accuracy with mean relative differences to the 

original anatomy of 2.10 % and 1.79 % [49, 74]. These studies utilized CT as a source 

of virtual data. In the present study the mean relative difference of SLS method to in 

vivo measurements has been also calculated and was 0.96 %. The layer thickness used 

in the mentioned studies was reported to be 0.25 mm. Since 2008/09, however, the 

resolution of SLS method has greatly improved to more than the power of 10. The layer 

thickness of the machine used in the present study was 0.01 mm. This fact might have 

contributed also to the higher accuracy yielded in our study. No scientific researchers 

have been found dealing directly with the dimensional accuracy of SLS for the auricular 

prostheses manufacturing. 

As far as the SL method is concerned, its utilization in the field of medical prototyping 

was also highlighted [15]. The mean relative difference of the order of 0.82 % compared 

to the original anatomy of human bony structure (skull) was reported, followed by only 

0.56 %, when compared to the CT image. This correlates with results showed in the 

present study, with relative mean differences of 0.69 % and 0.53 % by in vivo and CAD 

measurements respectively. 

4.3 Results: surface structure 

According to the study of Lemperle et al. [56], facial wrinkles are 0.1 to 0.8 mm in 

depth. It means that the digital technologies must be capable to obtain the skin details 

starting from 0.1 mm. Traditionally CT scans have been used to obtain virtual images of 

the facial anatomy. As described in some studies [7, 31], the standard clinical scanning 

protocol produces the voxel size of 0.488 mm, which is clearly not enough to capture 

the details in the order of 0.1 mm. Although extending the scanning time or increasing 

the x-ray dosage may help to achieve a greater resolution of 3D images, such changes in 

the scanning protocol might be difficult to justify clinically. In the present study the 
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structured light scanner has been employed with the resolution of 0.1 mm, which was 

assumed to be sufficient to adequately describe the skin texture and wrinkles in the 

same order of 0.1 mm.  

The examination of the three-dimensional image disclosed that the anatomy of the 

“Helix” wrinkle was no longer displayed in the CAD software, despite the resolution of 

the scanner was 0.1 mm, which matches the depth of a referent wrinkle with a depth of 

94 µ. The unfeasibility to make the patient stay motionless during the scanning process 

may be responsible for this, as slight movements do restrict the accuracy of data 

capture.  

The wrinkles “Lobula basis” and “Lobula corpus” were well visible on each APR. 

Visually these wrinkles were much more pronounced on the three-dimensional image, 

than on the stone cast. Moreover their depth, as revealed by means of the profilometrical 

analysis, has increased up to 45 µm compared to the stone cast. It must be emphasized, 

that the depth of these wrinkles measured on the stone cast may not objectively reflect 

their real profile, as distortion might have occurred during the impression taking 

through the pressure caused by the silicone material [53, 55, 71]. The pliable ear-lobe 

could have been stretched, thereby smoothing up the referent wrinkles. Surface scanner 

in its turn, as being a non-contact technique, causes no pressure to the soft tissue. 

Therefore the anatomy of these wrinkles may be originally reproduced on the CAD-

image. Unfortunately it was unfeasible to measure its depth faithfully in the CAD 

software. 

Even though the method of FDM showed a sufficient level of skin details reproduction 

(compared to initial 3D image), the visibility of the PLA filaments may tremendously 

affect the overall aesthetics of the future definitive prosthesis. This problematic was 

highlighted in the following study –  [46]. The chemical polishing was used to eliminate 

the staircase effect in order to acquire the smooth surface of the prosthesis. This way not 

only the undesired PLA filaments, but also potentially skin surface details are removed. 

The absolutely smooth and shiny surface varies from the characteristics of the natural 

skin, and therefore is questionable towards clinical acceptance. 
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The study of Eggbeer et al. [33] showed that the step of AM might not be a setback of 

the digital approach, but the stage of data acquisition. Even the accuracy of 0.02 mm 

was not sufficient to describe all the skin features, which ranged from 0.1 to 0.8 mm. 

The fact that the “Helix” wrinkle was failed to be completely reproduced on APRs can 

be explained rather with the scanning conditions, than with the insufficient resolution of 

the scanning source (0.1 in the present study). The movements of the patient caused 

during the scanning process and the postprocessing of the gathered data, where the gaps 

and errors have been filled and filtered, are responsible for the poor level of texture 

detailing. 

4.4 The potential objectives for further investigations to the topic 

The outcomes of the current trial must be applied to the clinical practice. The major 

concern herein would be the try-in and subsequent adjustment of the APR to the 

afflicted facial area. The margins of APRs must be aligned to the adjacent tissue. 

Difficulties may be expected, as the APRs are not made of the wax, as by the traditional 

approach, but of various hard materials. Their fitting may imply some trimming by 

means of milling tools, which may be challenging. This issue must be pursued in the 

further studies. 
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5  CONCLUSION 

The differences between the AM-produced APRs and situation in vivo revealed in the 

present study are unlikely to be visually recognizable and therefore seem not to affect 

negatively the match of the prostheses to the adjacent tissue. In terms of dimensional 

accuracy all three AM methods used showed satisfactory results and are equally suitable 

for facial prostheses fabrication. Still the method of FDM showed the best dimensional 

accuracy. 

The stage of data acquisition is still likely to affect the accuracy of the produced 

prostheses replicas rather than the accuracy of AM methods themselves. The 

improvement of the scanning protocol to minimize facial movements of the subjects 

during the scanning process is rather likely to aid the efficacy of digital prostheses 

manufacturing approach, than a higher resolution of the scanning device. 

The complete reproduction of the skin structure details utilizing the combination of 

surface scanning and AM methods used in the present study was accompanied by 

shortcomings. Reproduction of partial surface structures was only feasible to describe 

the wrinkles of exceeding 192 µm in depth. The step of data acquisition was then again 

responsible for this. 

As far as production costs are concerned, it must be mentioned that FDM-produced 

APRs were much cheaper as those made by SLS and SL – quite interestingly, as it 

revealed the highest geometrical accuracy despite of its inferior resolution. Thus, the 

method of FDM showed the best trade-off between dimensional accuracy, level of 

texture details and pricing and can be for this reason recommended for rapid and 

efficient manufacturing of auricular prostheses replicas. 
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6 SUMMARY 

In the current literature to the topic only little was published on the geometrical 

accuracy and resemblance of AM-produced prostheses replicas. 

Therefore the main objective of the present study was to identify the superior AM 

method from FDM, SLS and SL in terms of dimensional accuracy, skin details 

reproduction and efficiency to produce APRs using thereby the rapid prototyping 

approach. 

Twenty three subjects underwent a clinical study procedure encompassing ear 

anthropometry, followed by structured light scanning of patients’ left auricles. The 

auricular area including the pinna was scanned with a portable surface scanner (Artec 

3D Spider, Artec Group, Luxembourg, Luxembourg), utilizing the structured light 

scanning method. The distances of the anthropometrical landmarks were measured 

within the Software (ARTEC Studio, version 9), three times blinded with the “digital 

lineal”. After the gathered data was post-processed and converted into OBJ format, it 

has been transferred to AM machines to produce 57 APRs by means of FDM (n=23), 

SLS (n=23) and SL (n=11) methods. The manufactured APRs were measured blinded 

three times each distance between the landmarks with the digital calipers. 

Measurements gathered from APRs have been compared to the In-vivo and CAD data 

groups. Results have been statistically evaluated. 

Additionally, the surface analysis of APRs utilizing stereomicroscopy and profilometry 

was conducted to ascertain what level of skin details reproduction is achievable. 

Production costs and time were calculated. 

The analysis of dimensional accuracy revealed difference up to 0.56 mm. This was 

found clinically acceptable, as not exceeding the threshold of 2 mm (see on page 20), 

which was set as a threshold ( However, the comparison of relative mean differences 

disclosed the bias of up to 1.85 % between the in vivo data group and AM-produced 

APRs, which was higher than 1.5 %, as assumed in the present study. The comparison 

of relative mean differences between CAD data group and APRs did not reveal any 
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discrepancies that may be clinically recognizable. As far as pure accuracy of AM 

methods is concerned, the FDM showed the best result. 

The reproduction of skin surface structure was only feasible where the skin details 

exceed 192 µm of depth. The reference wrinkles “Lobula basis” and “Lobula corpus” 

were visible on each APR. However, the wrinkle “Helix” was not reproducible by any 

of the employed AM methods. The FDM showed the most detailed reproduction of the 

tissue portion captured by means of structured light scanning. The staircase effect 

remains the main limiting factor of this AM method. 

The disclosed differences were found to be clinically acceptable, although in 5 of 42 

comparisons the mean relative differences between in vivo and APRs exceeded slightly 

the threshold of clinical relevance set in the present study. The step of digital data 

acquisition was obviously more responsible for the revealed dimensional errors than the 

AM methods themselves. 

The method of FDM showed the best trade-off between dimensional accuracy, level of 

texture details and pricing. Thus FDM can be recommended for rapid and efficient 

manufacturing of prostheses replicas. 
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7 SUPPLEMENT 

7.1 Attachement 1. Sample size for comparing the AM methods 

Case 1. 
 
Confidence Interval (2-sided) 95%  
Power 80%  
Ratio of sample size (Group 2/Group 1) 1  
Group 1 – Stereolithography 
Group 2 – Fused deposition modeling 
______________________________________________________________ 
  
                         Group 1  Group 2  Difference* 
Mean                          65.95                66.07                            -0.12 
Standard deviation   0.1                 0.12  
Variance               0.01                 0.014  
 
Sample size of Group 1                     14 
Sample size of Group 2                     14 
Total sample size                               28 
_______________________________________________________________ 
 
*Difference between the means 
 
 
Case 2. 
 
Confidence Interval (2-sided) 95%  
Power 80%  
Ratio of sample size (Group 2/Group 1) 1  
Group 1 – Stereolithography 
Group 2 – Selective laser sintering 
______________________________________________________________ 
  
                         Group 1  Group 2  Difference* 
Mean                          65.95                65.23                 -0.28 
Standard deviation   0.1                 0.2  
Variance               0.01                 0.04  
 
Sample size of Group 1                      6 
Sample size of Group 2                      6 
Total sample size                        12 
_______________________________________________________________ 
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*Difference between the means 
 
Case 3. 
 
Confidence Interval (2-sided) 95%  
Power 80%  
Ratio of sample size (Group 2/Group 1) 1  
Group 1 – Fused deposition modeling 
Group 2 – Selective laser sintering 
______________________________________________________________ 
  
                         Group 1  Group 2  Difference* 
Mean                          65.07                65.23                 -0.16 
Standard deviation   0.12                 0.2  
Variance               0.014                 0.04  
 
Sample size of Group 1                      17 
Sample size of Group 2                      17 
Total sample size                                34 
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8 ZUSAMMENFASSUNG 

8.1 Einleitung 

Erworbene und angeborene Gesichtsdefekte können mit plastischer Chirurgie häufig 

nicht oder nicht vollständig rekonstruiert werden.  Verbleibende „Defekte“ schränken 

Patienten psychosozial erheblich ein. Daher werden fehlende Gesichtsanteile schon seit 

Jahrhunderten abgedeckt oder bestmöglich ersetzt. Heutzutage obliegt die 

Wiederherstellung einem Team aus chirurgischen Fächern (vor allem Mund-, Kiefer- 

Gesichtschirurgie, Hals-Nasen-Ohrenheilkunde) und entsprechend geschulten Personen, 

häufig Zahntechnikern, – sog. Epithetikern. Die so genannte Epithetik begleitet 

teilweise die chirurgische Rehabilitation oder steht nach dieser als abschließende 

Behandlung des Patienten an. 

Hergestellt werden die sog. Epithesen zum Ersatz von Ohren, Nasen und  Augen oder 

auch umfangreicheren Gesichtsversehrungen zurzeit überwiegend auf „konventionelle 

Art“: Das bedeutet, dass mit Hilfe einer Abformung des Defekts (anhand von 

irreversiblen, elastischen Abformassen) ein 1:1 Modell aus Gips angefertigt wird. Auf 

diesem modelliert der Epithetiker eine Rekonstruktion  aus Wachs, welche nach der 

Einprobe beim Patienten durch Presstechnik überführt wird in hautähnliches Silikon.  

Zwei Punkte sind hier als schwierig herauszuheben: 

·  Die Abformung des Defekts mittels Abformmassen kann etwa durch 

offenliegende Schleimhäute und Körperhöhlen schmerzhaft bzw. 

reizend sein. Weiter besteht eine körperliche und psychische 

Belastung der Betroffenen, da erst „flüssiges Material“ auf und in den 

Körper einfließt und danach erstarrtes Material von und aus dem 

Körper entfernt werden muss. Bei diesem Vorgang besteht gleichwohl 

die Gefahr, dass die Abformung beschädigt (Abrisse von Material) 

und wiederholt werden muss. Darüber hinaus können die 

Abformmassen zu Deformierungen von weichem Gewebe bei der 
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Abformung führen und somit kein originalgetreues Modell als 

Grundlage für die Modellation der Epithese liefern. 

·  Die Gestaltung der Rekonstruktion erfolgt „frei Hand“ durch den 

erfahrenen Epithetiker mit Hilfe von 2D-enface Aufnahmen des 

Patienten (frontal, seitlich, halbseitlich). Die dreidimensionale 

Passung und Harmonie im Gesicht kann erst bei der Ein-/Anprobe der 

Wachskonstruktion erfolgen und muss dann im Beisein des Patienten 

nötigenfalls geändert und gar gänzlich neu angefertigt werden. 

Durch die Entwicklung von CAD/CAM Systemen ist es möglich geworden, Defekte 

berührungslos „virtuell“ über Laser oder Streifenlicht abzuformen bzw. aufzuzeichnen. 

Im Nachgang können die Defekte mittels 3D-Software im virtuellen Modell konstruiert 

werden. Dies ist im Computer-Assisted Design (CAD) einfach durch spiegeln und 

„matchen“ gesunder Areale für die Rekonstruktion möglich.  

Solche 3D Modelle können mithilfe von additiven Fertigungsmethoden (AM) dem 

sogenannten Rapid Prototyping (RP) auf verschiedenen Wegen materialisiert werden. 

8.1.1 Genauigkeit der AM Methoden 

Die additiven (auch generativen) Fertigungsverfahren (GVF oder Additive 

Manufacturing – AM) überführen 3D Modelle in Kunststoffe oder Kunstwachse. Ein 

„Generatives Fertigungsverfahren“ ist ein automatischer Prozess zur Herstellung 

maßstäblicher dreidimensionaler physischer Objekte unmittelbar aus einem 3D-CAD-

Datensatz. Realisiert wird dies im „Schichtbauprinzip“: Dabei werden dreidimensionale 

Bauteile aus formlosem Stoff schichtweise gemäß der Kontouren des CAD-Modelles 

aufgebaut. Derzeit gibt es eine Vielzahl von derartigen AM-Prozessen auf dem Markt. 

GVF hat mehrere Anwendungsebenen, wobei solche als „Rapid Manufacturing“ (RP) 

und „Rapid Tooling“ (RT) im epithetischen Bereich eingesetzt werden können.  

Mit RP werden die Bauteile angefertigt, um deren allgemeine Erscheinung und 

Proportion beurteilen zu können. Im Falle der Epithetik werden sog. Prototypen 

(Schablonen) hergestellt, um diese am Patienten anzuprobieren. Zu den häufig dafür 
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verwendeten RP-Verfahren gehören das Stereolithographische Verfahren (SL), das 

Selektive Lasersintern (SLS) und das Fused Deposit Modelling (FDM).  

Die technische Genauigkeit von den oben genannten Methoden ist in der Literatur 

bereits gut beschrieben. Jedoch wurde bis jetzt nicht untersucht, welches dieser 

Verfahren für die Herstellung von Gesichtsprothesen im Sinn der Präzision und 

Reproduzierbarkeit von anthropometrischen Formen und Ankerpunkten am besten 

geeignet ist. Das Ohr ist die komplexeste 3D-Struktur des menschlichen Gesichts. 

Gleichzeitig bietet das Ohr den Vorteil, sich mimisch/muskulär unwillkürlich nicht oder 

nur sehr bedingt zu bewegen. Weiter liegen in der Literatur bereits anthropometrische 

Landmarks bei Ohren vor, welche als Referenzpunkte zu Vermessung herangezogen 

werden können. In dieser Studie haben wir das anthropometrische Protokoll nach 

Farkas benutzt, wobei noch zwei zusätzliche Messpunkte von Coward hinzugefügt 

wurden.  

Es bleibt also fraglich, in welcher Genauigkeit die Umsetzung komplexer anatomischer 

Strukturen mittels CAD/CAM und RP Systemen möglich ist. 

8.1.2 Reproduzierbarkeit der Hautstruktur 

Um die Epithese möglichst unauffällig zu gestalten, muss diese nicht nur von den 

Dimensionen her genau sein, sondern auch eine ähnliche/ gleiche Struktur des 

ursprünglichen und angrenzenden Gewebes aufweisen. Die Erfassung aller Details der 

Hautoberfläche mittels 3D-Scanner ist heutzutage bedingt möglich. Die Auflösung der 

meisten Scangeräte beträgt 0.1 mm. Diese Genauigkeit müsste ausreichend sein, um die 

Faltenanatomie von 0.1 mm in der Tiefe aufzunehmen. Die Falten, die mit dem Auge 

erkennbar sind, liegen im Bereich von 0.1 bis 0.8 mm [56]. Obgleich moderne 

Bildgebungsmethoden in der Lage sind, ein gutes 3D Bild von dem zu ersetzenden 

Organ zu liefern, können bereits Bewegungen des Patienten oder auch die Übertragung 

mit AM zu Qualitätsverlust führen. Es ist also noch unklar, inwieweit Erfassung und 

AM in der Lage sind Hautstrukturen zu reproduzieren. 
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8.1.3 Zweck der Studie 

Erforschung der Dimensions- und Reproduziergenauigkeit von drei AM-Verfahren zur 

Herstellung von Gesichtsprothesen am Beispiel von menschlichen Ohren 

8.1.4 Ziel der Studie 

Die Erkenntnisse sollen helfen, ein geeignetes System für die Anfertigung von 

epithetischen Rekonstruktionen empfehlen zu können. Die Ergebnisse helfen den 

Stellenwert digitaler Abform- und Herstellungsmethoden in der Epithetik zu umreißen 

und geben eine Aussicht auf die mögliche Entlastung des Patienten (Abformung), des 

Epithetikers (Herstellungsprozess) sowie langfristig der Krankenkassen 

(Herstellungskosten).  

8.1.5 Wissenschaftliche Hypothesen 

1. Es gibt keine klinisch relevanten Unterschiede zwischen in vivo Datensatz und 

Messungen von FDM- SLS- und SL-hergestellten Ohrschablonen 

2. Es gibt keine klinisch relevanten Unterschiede zwischen CAD Datensatz und 

Messungen von FDM- SLS- und SL-hergestellten Ohrschablonen 

3. Die in dieser Studie eingesetzten AM-Methoden in Kombination mit dem 

Streifenlichtscanner lassen die Hautstruktur auf den angefertigten 

Ohrschablonen vollkommen reproduzieren (Falten ab 0.1 mm in der Tiefe sind 

reproduzierbar). 

4. Anhand von Abwägung von Kosten, Genauigkeit und 

Oberflächenbeschaffenheit ist es möglich, die „best-in-practice“ AM Methode 

zu identifizieren 

8.2 Probanden, Materialen und Methoden 

Alle eingesetzten Geräte und Materialien sind zur Verwendung am Menschen 

zugelassen. Der Prüfplan sowie die Aufklärung und Einverständnisunterlagen für 
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Probanden wurden von der Ethikkommission des Universitätsklinikums Tübingen 

beraten und genehmigt (#387/2014BO2). 

8.2.1 Rekrutierung und Erfassung von Probanden (in vivo) 

Es wurden 23 unversehrte Ohren von 23 rekrutierten, gesunden Probanden (Alter 18-60 

Jahre) mittels Lichtscanner (Strukturlicht) sowie analoger Vermessung anonymisiert 

erfasst. Für die Untersuchung wurden die Ohren an jeweils elf Referenzpunkten mit 1 

mm großen Kügelchen markiert werden. Die Fixierung der Kügelchen erfolgte durch 

handelsüblichen Hautkleber, welcher einfach wieder abgewaschen werden kann. Die 

Abstände der Referenzpunkte wurden mittels digitalen Messschiebers am Ohr des 

Patienten vermessen. Jede Messung wurde zur Bestimmung des Messfehlers dreimal 

verblindet durchgeführt. Im Anschluss erfasste der Artec Scanner Spider der Firma 

Artec Group mit 3D-Strukturlicht das Ohr des Patienten. 

8.2.2 Produktionsphase 

Die virtuellen Daten wurden am PC so bearbeitet (Artec Studio), dass diese mit allen 

RP-Verfahren (STL, SLS, FDM) alio loco angefertigt werden konnten.  

8.2.3 Referenzmessung (CAD, STL, FDM, SL) 

Die Referenzpunkte bleiben im 3-D Datensätzen sowie auf den RP Modellen erhalten. 

In der Software erfolgte die Vermessung ebenso dreimal verblindet mit dem integrierten 

Messtool. Die AM Modelle wurden analog zur in vivo Messung mittels digitalem 

Messchieber je Messpunkt dreimal verblindet vermessen.  

8.2.4 Statistische Methode 

Die alle Messdatensätze von CAD und Modellen wurden mit in-vivo Datensätzen 

verglichen. Dazu erfolgt die Berechnung des Messfehlers aller Erhebungen. Bei 

vergleichbaren Messfehlern wurden die Abweichungen zwischen den Messreihen (in-

vivo, CAD, STL, SL, FDM) mittels Bland-Altman-Plot berechnet.  



ZUSAMMENFASSUNG 

71 

Eine Abweichung der Genauigkeit von 1.5 % in Bezug auf den Goldstandard (in-vivo-

Messung) in einer Ebene wurde als klinisch relevant angenommen. Die Bewertung 

„best in practice“ erfolgt aus dem Scoring von maximaler Abweichung 

(Primärparameter), Qualitativer Oberflächenuntersuchung (Sekundärparameter) und 

Herstellungskosten. 

8.2.5 Hautstruktur 

Um die Reproduktion der Hautstruktur der AM-methoden und 3D-Scanner beurteilen 

zu können, wurde ein Stereomikroskopietest (WILD 400, Heebrugg, Schweiz) und 

Profilometrie (Perthometer S6P, Mahr, Goettingen, Deutschland) durchgeführt. Die 

zwei Referenzzonen wurden ausgewählt („Helix“ und „Lobula“), die anschließend 

durch das Mikroskop geprüft wurden. Für den profilometrischen Test sind drei Falten 

auf der Ohroberfläche ausgesucht worden („Helix“, „Lobula basis“, „Lobula corpus“), 

deren Tiefe gemessen wurde. Als Goldstandard wurde das Gipsmodell eines 

individuellen Ohres (erhalten durch Abformung) verwendet. 

8.3 Ergebnisse 

Die Genauigkeitsanalyse der verwendeten AM-Methoden hat die Hypothese 1 und 2 

angenommen. Die mittlere prozentuale Abweichung von FDM, SLS und SL zu in vivo 

war jeweils 0.81, 0.96 und 0.69 %. Wenn man aber von den kurzen Distanzen absieht, 

die die meisten Messfehler erzeugt haben, so weist die FDM Methode die beste 

Genauigkeit auf mit der prozentualen Abweichung von 0.43 %, gefolgt von SLS 

(0.54 %) und SL (0.59 %). Die mittlere Abweichung der Messstrecken von CAD zu 

FDM, SLS und SL war 0.35 %, 0.37 % und 0.53 %. Die FDM Methode zeigte die beste 

Dimensionswiedergabe. 

Es muss berücksichtigt werden, dass bei Messung der kurzen Strecken (Ohrabstand 

vom Kopf) vergleichsweise erhöhte Ungenauigkeiten (Messfehler) vorlagen. Ohne die 

kurzen Strecken zeigt das FDM-Verfahren die beste Dimensionswiedergabe verglichen 

sowohl mit in vivo als auch mit CAD. 
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Die Hypothese 3 wurde widerlegt. Obwohl die Stereomikroskopie ähnliche Oberflächen 

liefert wie das Gipsmodell war, ergab die Profilometrie, dass die Falten von 0.1 mm in 

der Tiefe nicht von dem 3D-Scanner erfasst und ebenso nicht von den verwendeten 

AM-Methoden reproduziert werden konnten. 

Abschließend war es möglich in Abwägung von Kosten, Genauigkeit und 

Oberflächenbeschaffenheit, die FDM Methode als „best-in-practice“ zu identifizieren. 
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9 PUBLICATIONS 

On the 1st June 2016 the manuscript of the paper with the results of the present study 

was submitted by the Nature Scientific Reports journal (SREP-16-19861). 

The results of the study were presented within the 40th European Prosthodontic 

Association (EPA) and 65th German Society for Prosthetic Dentistry and Biomaterials 

(DGPro) on the 17th of September and will be published in the abstract book.  
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