MULTIPLE WIRKWEISEN DES KONSTITUTIV EXPRIMIERTEN
HUMANEN ANTIMIKROBIELLEN PEPTIDS (hBD1)

Dissertation
der Mathematisch-Naturwissenschaftlichen Fakultät
der Eberhard Karls Universität Tübingen
zur Erlangung des Grades eines
Doktors der Naturwissenschaften
(Dr. rer. nat.)

vorgelegt von
Judith Raschig
aus Nördlingen

Tübingen
2016
Inhaltsverzeichnis

INHALTSVERZEICHNIS .. I

ABKÜRZUNGEN .. IV

SUMMARY .. V

ZUSAMMENFASSUNG .. V

1 EINLEITUNG ... 1

1.1. MIKROBIOTA IM HUMANEN ORGANISMUS ... 1
 1.1.1. Mikrobiota im Gastrointestinaltrakt .. 1
 1.1.2. Intestinale Barriere .. 3

1.2. HUMANE ABWEHRSTRATEGIEN .. 4
 1.2.1. Erworbenes Immunsystem .. 4
 1.2.2. Angeborenes Immunsystem .. 5

1.3. ANTIMIKROBIELLE PEPTIDE ... 6
 1.3.1. Defensine .. 6
 1.3.1.1. HBD1 und dessen Wirkspektrum ... 8

1.4. SPEZIELLE EIGENSCHAFTEN VON BAKTERIEN 9
 1.4.1. Gram-positive Bakterien .. 10
 1.4.2. Gram-negative Bakterien .. 11
 1.4.2.1. Proteinfaltung in Gram-negativen Bakterien 12
 1.4.2.2. Oxidativer Reaktionsweg mit Oxidoreduktasen DsbA und DsbB .. 14
 1.4.2.3. Isomerisierungs-Weg mit DsbC und DsbD 15

1.5. ANTIBIOTIKA RESISTENZEN .. 15

1.6. ZIEL DER ARBEIT .. 17

2 MATERIAL UND METHODEN ... 18

2.1. MATERIAL .. 18
 2.1.1. Geräte ... 18
 2.1.2. Verbrauchsmaterialien ... 19
 2.1.3. Chemikalien, Antikörper und Kits .. 19
 2.1.3.1. Chemikalien .. 19
 2.1.3.2. Antikörper .. 19
 2.1.4. Medien und Puffer .. 20
 2.1.4.1. Zellanzucht ... 20
 2.1.4.2. Sonstiges .. 20
 2.1.5. Peptide ... 22
 2.1.6. Verwendete Bakterien .. 22
2.2. MIKROBIOLOGISCHE METHODEN .. 24
 2.2.1. Bestimmung der antimikrobiellen Aktivität .. 24
 2.2.1.1. Radial Diffusions Assay .. 24
 2.2.1.2. Luciferase Reporter Gen Assay .. 25
 2.2.1.3. Trübungssassay .. 26
 2.2.1.4. Inaktivierung von hBD1 durch bakterielle Proteasen 26
 2.2.1.5. Durchflusszytometrie (FACS) ... 27
 2.2.1.6. Membran Permeabilitäts Assay .. 27
 2.2.1.7. Transmigrationsassay ... 27
 2.2.2. Der Einfluss von bakteriellen Membran-assozierten Proteinen auf die antimikrobielle Aktivität ... 28
 2.2.3. Das Redoxsystem DsbA/DsbB beeinflusst die hBD1ox Aktivität 29
 3.2.3.1. Charakterisierung der bakteriellen Targets der hBD1 Redoxformen 30
 3.2.3.2. Transmissionselektronenmikroskopie 30
 3.2.3.3. Rasterelektronenmikroskopie ... 30
 2.2.4. Durchflusszytometrie (FACS) .. 31
 2.2.5. Inaktivierung von hBD1 durch bakterielle Proteasen 32
 2.2.6. Trübungs- und Durchflusszytometrischer Assay 33
 2.2.7. Analyse der netzartigen Struktur der Proteinfragmente 34
 2.2.8. Transmissionselektronenmikroskopie ... 35
 2.3. WIRKMECHANISMUS VON HBD1OX AUF BAKTERIEN 38
 3.3.1. TEM- Analyse von hBD1 behandelten Bakterien 39
 3.3.2. Analyse der netzartigen Struktur von hBD1red 40
 3.3.3. Strukturanalyse der netzartigen Struktur durch hBD1red 41
 3.3.3.1. Eigenschaften von hBD1red_Abu .. 41
 3.4. INAKTIVIERUNG VON HBD1RED DURCH BAKTERIELLE PROTEASEN 58
 3.4.1. In vivo Nachweis von hBD1red Fragmenten 58
 3.4.1.1. Antimikrobielle Eigenschaften von hBD1red_AS1-29 58
 3.4.1.2. HBD1red_AS1-29 zeigt Netzbildung mit Bakterien 59
 3.4.2. Einfluss der bakteriellen Proteasen auf hBD1 60
3.5. FUNKTIONELLER NACHWEIS DER NETZSTRUKTUR ... 64
 3.5.1. Etablierung eines Transmigrationsassays ... 64
 3.5.1.1. K. pneumoniae als resistentes Bakterium gegen hBD1 65
 3.5.2. HBD1 Netze verhindern bakterielle Diffusion .. 66
4 DISKUSSION .. 67

4.1. ANTIMIKROBIELLE PEPTIDE ALS ALTERNATIVE ANTIBIOTIKA 67

4.1.1. hBD1- ein unterschätztes Defensin ... 68

4.2. EIN ANTIMIKROBIELLES PEPTID MIT MULTIPLEN WIRKMECHANISMEN 69

4.2.1. Die antimikrobielle Strategie von hBD1ox ... 71
 4.2.1.1. Das Redoxsystem ist essentiell für die Aktivität von hBD1ox 71
 4.2.1.2. Lokalisierung von hBD1ox in E. coli ... 73
 4.2.1.3. Ein möglicher Wirkmechanismus von hBD1ox .. 74

4.2.2. Aktivität von hBD1red ... 76
 4.2.2.1. HBD1red attackiert die bakterielle Membran .. 76

4.3. ABWEHRMECHANISMUS VON BAKTERIEN AUF HBD1 78

4.4. FUNKTIONELLER NACHWEIS DER NETZE .. 79

4.5. SCHLUSSFOLGERUNG UND AUSBlick ... 80

LITERATUR ... 82
DANKSAGUNG .. 93
Abkürzungen

AMP Antimikrobielles Peptid
APS Ammoniumperoxodisulfat
CFU *colony forming units*
DiBAC₄(3) Bis-1,3-Dibutylbarbituric Acid-Trimethine-Oxonol
DTT Dithiothreitol
FACS Durchflusszytometrie
GIT Gastrointestinaltrakt
h Stunden
HBD Humanes Beta Defensin
HD Humanes Alpha Defensin
IPTG *Isopropyl-β-D-thiogalactopyranosid*
kDA Kilodalton
min Minuten
MRGN multiresistente Gram-negative
ns nicht signifikant
OD Optische Dichte
Q8 *Decylubiquinone*
RDA Radial Diffusion Assay
REM Rasterelektronenmikroskop
sek. sekundär
SEM *standard error of the mean*
ssp. Subspezies
TEM Transmembranelektronenmikroskopie
TRX Thioredoxin
TSB *Tryptic soy broth*
u. a. unter anderem
vs versus
WT Wildtyp
X-Gal 5-Brom-4-chlor-3-indoxyl-β-D-galactopyranosid
z. B. zum Beispiel
The human body is continuously exposed to an enormous amount of microorganisms, such as bacteria, fungi and viruses. Besides an efficient layer of mucus, antimicrobial peptides (AMPs) are an essential part of the epithelial barrier. Human β-defensin 1 (hBD1) is one important antimicrobial peptide, which is continuously produced by human epithelia. After reduction of its three disulfide bridges, however, it becomes a potent antimicrobial agent against anaerobic and aerobic bacteria, while oxidized hBD1 (hBD1ox) shows a specific activity against Gram-negative bacteria. Due to increasing number of multi resistant microorganisms, here we studied the mechanism of both redox forms of hBD1 to find new strategies for antimicrobial molecules. We found that two redoxproteins, DsbA and DsbB, in the periplasmic space of Gram-negative bacteria are involved in the antimicrobial activity of hBD1ox. In contrast, other bacterial proteins in the outer membrane, cytosol or in the flagellum system did not impact the toxicity of hBD1ox. A complementation of the redoxsystem by expressing DsbA and DsbB in trans fully restored the sensitivity to oxidized hBD1. In contrast to the Wildtyp, bacteria without DsbA and DsbB show a lower stress reaction after a treatment with hBD1ox, which displayed a decreased amount of membrane vesicles at the bacterial surface. Using immunogold labeling and electron microscopy, we visually showed the localization of hBD1ox in the periplasmic space and partly in the outer membrane of E. coli. However, in mutants lacking DsbA and DsbB, hBD1ox was detected mainly in the cytosol of bacteria. In summary hBD1ox can interact with DsbA and DsbB and are indispensable for the antimicrobial activity of hBD1ox. This leads to hypothesis that hBD1ox can concentrate in the periplasmic space, which finally induce bacterial cell lysis. We identified the bacterial membrane as a target of hBD1red and that its act by disrupting the cell membrane. Surprisingly, using electron microscopy we detected a so far unknown net-like structure surrounding bacteria, which were treated with the reduced but not oxidized form of hBD1. A newly established transmigration assay demonstrated that hBD1-derived nets capture bacteria and inhibit bacterial transmigration in addition of bacterial killing. In contrast to other defensins, e.g. HD6, cysteins in the sequence of hBD1red are necessary for net formation, shown by a prevented net formation after exchange of amino acids. Additional we also identified a bacterial defense strategy. We showed that bacterial proteases are able to degrade hBD1red in an inactive fragment. Nonetheless we detected a stable net-formation and inhibition of bacterial diffusion by the fragmented hBD1red. While reduced and oxidized hBD1 have distinct antimicrobial profiles and functions, the reduced form provides an additional host protection by entrapping bacteria in extracellular net structures preventing bacterial invasion in reduced environments. A better understanding of the modes of action of endogenous host peptides will help to find new antimicrobial strategies against multi resistant bacteria.
Zusammenfassung

Mikroorganismen, wie Bakterien, Pilze und Viren, besiedeln kontinuierlich den menschlichen Organismus. Neben einer effektiven Barriere durch die Epithelschichten und teilweise mit Mukusschichten spielen in der Verteidigung antimikrobielle Peptide (AMPs) eine zentrale Rolle. Ein wichtiges AMP ist das humane β-Defensin 1, welches im Gegensatz zu einigen anderen Defensinen, ubiquitär von allen Epithelien produziert wird. Nach Reduktion der drei Disulfidbrücken erzielt das Peptid gegen viele anaeroben, aber auch gegen aerobe Bakterien eine toxische Wirkung. Die oxidierte Form (hBD1ox) zeigte eine spezifischere Aktivität auf Gram-negative Bakterien, darunter *Escherichia coli* (*E. coli*). Aufgrund der immer größer werdenden Anzahl an multiresistenten Keimen und dem daraus resultierendem Bedarf an neue Strategien für neue antimikrobiell aktive Substanzen, wurde hier der Wirkmechanismus beider Redoxformen genauer untersucht. In dieser Arbeit konnten zwei Redoxproteine DsbA und DsbB im bakteriellen Periplasma identifiziert werden, welche essentiell für die Aktivität von hBD1ox sind. Dagegen wurde der Einfluss weiterer Proteine in der Außenmembran, Cytosol, sowie im Flagellum für die hBD1ox Aktivität ausgeschlossen. Ein weiterer Nachweis der Abhängigkeit des Redoxkomplex zeigte die Verwendung einer „Rescue“-Mutante, welche beide Redoxproteine auf einem externen Plasmid enthält, wodurch die Sensitivität auf hBD1 hergestellt wurde. Dies bestätigt, dass das DsbA/DsbB System eine notwendige Komponente für die antimikrobielle Aktivität von hBD1ox darstellt. Zusätzlich zeigten Bakterien ohne DsbA/DsbB System, im Gegensatz zum Wildtyp, eine geringere Anzahl an Membranvesikeln auf der bakteriellen Oberfläche, was mit einer niedrigeren Stressreaktion assoziiert ist. Durch eine Immunogold Färbung wurde hBD1ox in *E. coli* WT spezifisch im Periplasma lokalisiert. Dagegen konnte hBD1ox in der Mutante auch im Cytosol diffundieren. Es konnte somit gezeigt werden, dass hBD1ox mit DsbA und DsbB interagieren kann. Dies lässt die Hypothese zu, dass sich hBD1ox im Periplasma ansammelt und zusammenlagert, was schließlich die Zellyse induziert.

Darüber hinaus konnte hier gezeigt werden, dass nur die reduzierte Form (hBD1red) Membranschäden an Bakterien verursacht. Überraschenderweise zeigte die Rasterelektronenmikroskopie nach der Behandlung mit hBD1red eine bisher noch unbekannte Netzstruktur, welche die Bakterien umgibt. Ein hier etablierter Transmigrationsassay zeigte, dass diese Netzstruktur die Diffusion und Verbreitung der Bakterien zusätzlich zu der antimikrobiellen Aktivität verhindern kann. Im Gegenteil zu anderen Defensinen, wie z.B HD6, ist die Aminosäure Cystein in der hBD1-Sequenz für die antimikrobielle Aktivität nötig und für die Netzbildung essentiell. Dies konnte durch einen Austausch mit einem Cystein-Analogon, welcher die Netzbildung verhindert, gezeigt werden. Zusätzlich wurde ein bakterieller Abwehrmechanismus von hBD1 identifiziert, bei diesem bakterielle Proteasen in der Lage sind das hBD1red zu fragmentieren.
1 Einleitung

1.1. Mikrobiota im humanen Organismus

Der humane Organismus ist ständig großen Mengen an Mikroorganismen wie Bakterien, Pilzen und Viren ausgesetzt. Schätzungen zufolge findet man ca. 10^{13} Bakterien und eine gleiche Anzahl an humanen Zellen im gesamten Gastrointestinaltrakt (Sender et al., 2016). Während nur ein kleiner Anteil der Mikrobiota auf Körperoberflächen, wie etwa auf der Haut, beobachtet wurde, zeigt sich der größte Anteil der Mikrobiota im Gastrointestinaltrakt (Savage, 1977; Garrett et al., 2010). Im Gegensatz zu den im Gastrointestinaltrakt angesiedelten Bakterien lässt sich die bakterielle Zusammensetzung der Haut nicht exakt bestimmen (Grice et al., 2008). Je nach Körperregion, pH-Wert und Temperatur weist die Haut eine spezielle, für jeden Menschen einzigartige Zusammensetzung von Mikroorganismen auf. Zusätzlich beeinflussen Feuchtigkeit auf der Haut und das Vorhandensein von Talgdrüsen in der Haut diese Zusammensetzung (Shuster, 1965; Kearney et al., 1984; Grice et al., 2008). Verschiedene humane Hautproben zeigten einen Hauptanteil von 49 % Proteobakterien, 28 % Actinobakterien, 9,7 % Bacteroidetes und 12 % Firmicutes (Grice et al., 2008). Auf der Haut kann eine veränderte Zusammensetzung der Mikroorganismen oder ein Überfluss an Pathogenen ein Auslöser für verschiedene Krankheiten sein (Grice et al., 2008). Einige Studien zeigten, dass die Zusammensetzung der Haut-Mikrobiota bei Psoriasis, Akne, Rosazea, aber auch bei verschiedenen Ekzemerkrankungen eine Rolle spielt (Holland et al., 1977; Thomsen et al., 1980; Till et al., 2000; Paulino et al., 2006; Grice et al., 2008).

Der humane Organismus ist vor der Geburt noch weitestgehend steril (Ley et al., 2006a). Erst während der pränatalen Phase und vor allem während der Geburt werden die Körperoberflächen und der Gastrointestinaltrakt durch maternale Mikroben besiedelt und die Zusammensetzung dadurch für jeden einzelnen Organismus spezifisch (Grice & Segre, 2011; Lozupone et al., 2012). Bei Neugeborenen sind hauptsächlich Actinobacteria ssp. und Firmicutes ssp. vorhanden, ab ca. drei Jahren beginnt bei Kindern die Besiedlung mit Bacteroidetes ssp. und Firmicutes ssp., welche die Actinobacteria ssp. verdrängen (Voreades et al., 2014).

1.1.1. Mikrobiota im Gastrointestinaltrakt

Für die Resorption von Nährstoffen und Flüssigkeiten, aber auch für die Abgabe unverdaulicher Bestandteile und von Stoffwechselprodukten ist der Gastrointestinaltrakt (GIT) zuständig. Da sich aus den verschiedenen Funktionen andere Anforderungen ergeben, unterscheidet sich jeder Abschnitt im GIT in der Struktur und Anforderungen an die Mikroorganismen. Als erstes wird

Die Zusammensetzung der Mikrobiota kann aber im Laufe des Lebens stark durch die Ernährung, Umweltfaktoren, aber auch durch Medikamenteneinnahme beeinflusst und verändert werden (Voreades et al., 2014; David et al., 2014; Goodrich et al., 2014, Aidy et al., 2015). Je nach Dünndarmabschnitt ändern sich der pH-Wert und die Sauerstoffverfügbarkeit. Der pH-Wert steigt von sehr sauren Bedingungen im Magen (pH < 2) zum Duodenum (pH 5,7-6,4) weiter auf pH 7,3-7,7 im Ileum (Wilson, 2005).

Möglicherweise spielt die Zusammensetzung der Mikrobiota eine Rolle bei der Entstehung von einigen Erkrankungen wie Krebs, Fettleibigkeit, Autismus oder bei chronischen entzündlichen Darmerkrankungen (Ley et al., 2006b; Uronis et al., 2009; Sekirov et al., 2010). Bei Patienten mit chronischen Darmentzündungen beobachtete man zusätzlich einen Anstieg von Proteobakterien und einen gleichzeitigen Abfall von Firmicutes (Matsuoka & Kanai, 2015). Wissenschaftliche Untersuchungen zeigen, dass Veränderungen im Zusammenspiel zwischen Wirt und Mikrobiota ebenfalls eine große Rolle bei entzündlichen Darmerkrankungen spielen können, indem die bestehende Mikrobiota aus dem Gleichgewicht gerät (Gophna et al., 2006; Frank et al., 2007; Wehkamp & Stange, 2010; Walker et al., 2011). Ein Gleichgewicht der Mikrobiota...
Intestinale Barriere

Die Panethzelle stellt durch die Bildung einiger antimikrobieller Peptide einen großen Einfluss auf die Aufrechterhaltung der intestinalen Barriere dar. Deshalb ist es nicht verwunderlich, dass eine Fehlregulation zu diesen genannten entzündlichen Darmerkrankungen führen kann (Wehkamp & Stange, 2010). Es wurde gezeigt, dass der Wnt-Signalweg eine große Rolle bei der Reifung der Panethzellen spielt und eine Korrelation zwischen fehlregulierten Bestandteilen des Wnt-Signalwegs und Morbus Chron vorliegt (van Es et al., 2005; Koslowski et al., 2009, 2012).
Neueste Erkenntnisse zeigen allerdings, dass bei Morbus Chron Patienten der Defekt nicht primär in der Epithelschicht sitzt und die Panethzelle eine normale Expression von Defensinen aufweisen können, sondern die peripheren Immunzellen zeigen einen Defekt in ihrer Funktion. Dadurch kann die antimikrobielle Barriere nicht richtig aufgebaut werden und eine bakterielle Infektion nicht mehr ausreichend verhindert werden (Courth et al, 2015).

1.2. Humane Abwehrstrategien

1.2.1. Erworbenes Immunsystem

Die Abwehrreaktion des erworbenen Immunsystems ist sehr spezifisch und benötigt daher eine gewisse Anlaufzeit. Hinzu kommt die Ausbildung eines immunologischen Gedächtnisses, welches bei jeder Neuerkennung ausgebildet wird, sodass erneut auftretende Infektionen schneller und effektiver bekämpft werden können und es dadurch seltener zum Ausbruch einer Krankheit kommt (Bonilla & Oettgen, 2010).

1.2.2. Angeborenes Immunsystem

Im Gegensatz zum erworbenen Immunsystem wirkt das angeborene Immunsystem unspezifisch gegen Bakterien. Das angeborene Immunsystem besteht aus verschiedenen zellulären Bestandteilen wie Granulozyten, Makrophagen oder natürlichen Killerzellen. Ebenso besitzt es eine humorale Komponente aus Proteinen oder Peptiden mit antimikrobieller Aktivität.

Zusätzlich neben den beschriebenen Mechanismen werden von vielen Zelltypen kleine antibiotische Moleküle sekretiert, welche in der Lage sind Mikroorganismen im Wachstum einzuschränken oder sogar abzutöten. Im nächsten Kapitel werden diese kleinen Moleküle, welche eine zentrale Rolle im angeborenen Immunsystem einnehmen, genauer beschrieben.
1.3. Antimikrobielle Peptide

Neben der Barriere durch das angeborene oder adaptive Immunsystem werden weitere Moleküle wie Peptide oder kleine Proteine (≥ 100 Aminosäuren) sekretiert, um das Wachstum von Bakterien, Viren oder Pilzen einzuschränken (Kühler et al, 2006).

1.3.1. Defensine

Deutlich mehr Informationen gibt es über humane β-Defensine. Das am meisten untersuchte Defensin ist das humane β-Defensin 3 (hBD3), welches - wie hBD2 - erst nach Stimulation durch Entzündungsfaktoren exprimiert wird. HBD2 zeigt eine starke bakterizide Aktivität gegenüber Gram-negativen Bakterien wie E. coli und P. aeruginosa, aber auch Gram-positive Bakterien wie S. aureus gehören zu dem breiten Wirkspuktrum von HBD2 (Harder et al, 1997). Wie hBD2 weist auch hBD3 ein breites, Salz-unempfindliches Wirkspuktrum auf. Es wirkt ebenfalls gegen potentiell pathogene Mikroorganismen wie S. aureus und den Vancomycin-resistenten E. faecium stark bakterizid. Aber auch gegen anaerobe Bakterien der humanen Darmmikrobiota wie B. vulgatus oder L. johnsonii wurde bereits eine antimikrobielle Aktivität beschrieben (Bals et al, 1998; Harder et al, 2001; Wehkamp et al, 2008; Nuding et al, 2009; Ostaff et al, 2013; Lee et al, 2016). Während hBD2 und hBD3 nur nach entzündlichen oder bakteriellen Stimulus exprimiert werden und die Expression von HD5 und HD6 auf die Panethzellen im Dünndarm beschränkt ist, wird das humane β-Defensin 1 (hBD1) kontinuierlich von allen Epithelschichten produziert, was auf eine
wichtige Rolle in der angeborenen Immunabwehr hinweist (Zhao et al., 1996; McCray & Bentley, 1997; Tollin et al., 2003).

1.3.1.1. HBD1 und dessen Wirkspектrum

Durch die Arbeit von Björn Schroeder wurde bekannt, dass eine reduzierende Bedingung das Wirkspектrum von hBD1 gegen einige anaerobe Bakterien der Gattung Bifidobakterien oder Lactobacillen deutlich erhöht (Schroeder et al., 2011b).

Nach der Inkubation mit reduzierter hBD1 zeigt B. adolescentis deutliche Schäden im Cytosol. Im Gegensatz dazu zeigt die oxidierte Form (hBD1ox) gegen die meisten Mikroorganismen keinerlei antibiotische Wirkung. Auch keine Depolarisierung der Membran konnte in Schroeder,

1.4. Spezielle Eigenschaften von Bakterien

Es ist bekannt, dass viele antimikrobielle Peptide, unter anderem hBD3, die bakterielle Zellwand als Zieltarget verwenden. Dieses AMP kann sich in die Zellwand von S. aureus einlagern, was die Elektronentransportkette und die Lipidbiosynthese stört und schlussendlich zur Lyse der Bakterien führt (Sass et al, 2010).

1.4.1. Gram-positive Bakterien

1.4.2. Gram-negative Bakterien

Einige Transportproteine Gram-negativer Bakterien, aber auch cytosolische Proteine sind in dem schematischen Modell (Abbildung 3) dargestellt. Diese wurden auf ihre Notwendigkeit hin bei der antimikrobiellen Aktivität von hBD1 näher untersucht. Im folgenden Abschnitt wird näher auf spezielle Redoxproteine aus dieser Grafik eingegangen und deren Funktion genauer erläutert.
1.4.2.1. Proteinfaltung in Gram-negativen Bakterien

![Abbildung 3: Essentielle Proteine in verschiedenen Membranschichten von Gram-negativen Bakterien](image)
dation, bei dieser zwischen zwei Thiolgruppen eine kovalente Bindung (Schwefelbrücken/Disulfidbrücken) ausgebildet wird und dabei Wasserstoffmoleküle und Elektronen frei werden (Abbildung 4).

\[
\text{R--SH} \quad \xrightarrow{\text{Oxidation}} \quad \text{R--S--R} + 2\text{H}^+ + 2\text{e}^-
\]

Abbildung 4: Schematische Darstellung der Ausbildung einer Disulfidbrücken durch Oxidation

Gram-positive Bakterien besitzen in deren Zellhülle oder im Cytosol alternative Systeme für den Einbau von Disulfidbrücken (Heras et al., 2009; Reardon-Robinson & Ton-That, 2016). Die Oxidation von Disulfidbrücken in Gram-positiven Bakterien ist, im Gegensatz zu der Oxidation in Gram-negativen Bakterien, noch nicht vollständig aufgeklärt und noch vieles nicht verstanden (Reardon-Robinson & Ton-That, 2016). Trotzdem wurde in verschiedenen Gram-positiven Bakterien Proteine mit mehreren Cysteinresten entdeckt, bei diesen aber die Disulfidbrücken nicht ausgebildet waren. Zusätzlich wurden in einigen *Firmicutes*, wie z. B. in *Bacillus subtilis*, Dsb-ähnliche Proteine identifiziert. Unter anderem besitzt *Bacillus subtilis* zwei Oxidoreduktasen, BdbA und BdbB, welche als Analoga zu der Oxidoreduktase DsbA aus *E. coli* identifiziert wurden und ebenfalls Disulfidbrücken in ungefalteten Proteinen einbauen können (Ishihara et al., 1995; Meima et al., 2002; Dorenbos et al., 2002). Auch in *S. aureus* konnten analoge Proteine zu DsbA gefunden werden. Hier wurde ein membrangebundenes Lipoprotein (SaDsbA) iden-

1.4.2.2. Oxidativer Reaktionsweg mit Oxidoreduktasen DsbA und DsbB

1.4.2.3. Isomerisierungs- Weg mit DsbC und DsbD

Wie zuvor beschrieben ist DsbA ein sehr reaktives Protein, welches sehr schnell mit ungefalteten Proteinen reagiert. Jedoch ist DsbA sehr spezifisch und kann nur Disulfidbrücken in nicht-gefalteten Proteinen einbauen (Collet & Bardwell, 2002). Um Proteine mit inkorrekteten Disulfidbrücken vor einem Abbau zu schützen, besitzt E. coli das Isomerisierungssystem mit der Disulfidisomerase DsbC und einem weiteren Membranprotein DsbD. DsbC besteht aus zwei Untereinheiten mit jeweils 23,3 kDa und vier Cysteinresten. Im Gegenteil zu DsbA, welches überwiegend oxidiert im Periplasma vorzufinden ist, liegt DsbC in einer reduzierten Form vor (Arredondo et al., 2009). Trotz der Isomeraseaktivität von DsbC zeigt es vergleichbare Aktivitäten eines Chaperons.

In Gram-negativen Bakterien ist das Redoxsystem, bestehend aus dem oxidativen Reaktionsweg und dem Isomerisierungs Weg, einer der wichtigsten Bestandteile, um durch den Einbau von Disulfidbrücken die Stabilität, Aktivität und die Protease-Resistenz der Proteinen zu gewährleisten (Heras et al., 2009).

1.5. Antibiotika Resistenzen

Der Kampf gegen multiresistente Mikroben ist heutzutage eine der größten Herausforderungen der Medizin. Aufgrund des Missbrauchs von Antibiotika im Menschen und der Verwendung dieser antimikrobiellen Substanzen in der immer größer werdenden industriellen Viehzucht und Landwirtschaft, wird die Bildung von Resistenzen begünstigt und antimikrobielle Medikamente werden zunehmend ineffektiv (Kunin, 1993; Blair et al., 2015; WHO | Antimicrobial resistance). Studien zufolge erleiden zwei Millionen Menschen jedes Jahr in den USA eine Infektion mit resistenten Bakterien und ca. 23 000 Menschen sterben als direkte Folge von bakteriellen Infektionen mit Antibiotika-resistenten Keimen (Davies & Davies, 2010; Blair et al., 2015).

Viele der sogenannten pathogenen Bakterien werden mit Krankheiten in Verbindung gebracht und haben sich im Laufe der Jahre zu multiresistenten Keimen entwickelt. Eines der ältesten pathogenen Keime ist das Mycobacterium tuberculosis, welches für die gleichnamige Krankheit Tuberkulose verantwortlich ist (Davies & Davies, 2010). Nach einer Studie, welche
von der Weltgesundheitsorganisation (WHO), *Global tuberculosis Report*, veröffentlicht wurde, starben im Jahr 2014 ca. 1,5 Millionen Menschen auf der Welt an Tuberkulose durch das multi-
scherichia coli, Salmonella typhimurium, und Klebsiella pneumoniae*, welche heutzutage oft mit
diesen Antibiotika-behandelten Krankheiten assoziiert werden (Davies & Davies, 2010).

Diese Bakterien haben sich eine Abwehrstrategie gegen die oft eingesetzten Penicillin-
Abkömmlinge, β-Lactam-Antibiotika, angeeignet. Sie sind in der Lage diese β-Lactam-Antibiotika
durch das Enzym β-Lactamase zu hydrolisieren und zu inaktivieren (Davies & Davies, 2010). Es
zeigt sich oft ein starker Zusammenhang zwischen dem Gebrauch von Antibiotika bei Behand-
lungen und der Entstehung von Antibiotikaresistenzen. Gerade auch bei Patienten mit Cystischer
Fibrose ist oftmals eine Infektion mit *Pseudomonas aeruginosa* ein zusätzliches Problem. Cysti-
sche Fibrose ist eine autosomal-rezessiv vererbte Stoffwechselkrankheit mit einer Fehlfunktion
von Chloridkanälen, wodurch die Zusammensetzung aller Sekrete verändert ist. Die Sekrete
werden durch diese falsche Zusammensetzung zähflüssiger, sodass diese ein ideales Milieu für
Bakterien darstellen und es leicht zu bakteriellen Infektionen kommt (de Koff et al, 2016). Der
stark pathogene Keim, *Pseudomonas aeruginosa*, kann sich zusätzlich zu seiner hohen Antibio-
tikaresistenz stark persistierend in diesem Sekret verhalten und die humane Abwehrreaktion
somit umgehen (Horrevorts et al, 1990). Einen Zusammenhang zu der Resistenzbildung von
Seiten der Bakterien sieht man hier in der Anwendung von Langzeitantibiotika in der Behan-
dlung bei diesen Patienten mit Cystischer Fibrose und der *Pseudomonas aeruginosa* Infektion (de
Koff et al, 2016).

Der Gebrauch von Antibiotika führt immer zu einer leichten Resistenzentwicklung in
Bakterien. Erythromycin wurde in den 50iger Jahren gegen *S. aureus* als Alternative zu Penicillin
verwendet. Jedoch waren innerhalb eines Jahres mehr als 70 % der *S. aureus* Isolate gegen
Erythromycin resistent. Das selbe Phänomen sah man mit Chlorotetrazyklin, Chloramphenicol
und vielen anderen Antibiotika (Finland, 1979). Internationale Gesundheitsgruppen wie die
WHO, zeigen mögliche Ansätze auf, um das Resistenzproblem mit Bakterien zu verbessern oder
dazu verringern. Zum einen muss der Gebrauch von Antibiotika genauer und vor allem einen spezi-
fischeren Einsatz durch Ärzte verordnet werden. Es sollte keine Verschreibung von Antibiotika
bei viralen Infektionen oder viraler Grippe erfolgen. Dies setzt jedoch eine genauere Abklärung
des Krankheitsbildes voraus, sowie der Kauf von Antibiotika nur durch ein ärztlich-ausgestelltes
Rezept (Davies & Davies, 2010).

Die letzte Entdeckung einer neuen Antibiotikaklasse war im Jahre 1980 (Silver, 2011). Es ist
dringend nötig neue Strategien für die Bekämpfung von Bakterien zu finden. Für mögliche neue
Ansätze im Kampf gegen bakterielle Infektionen könnten die natürlichen Abwehrstrategien im

1.6. Ziel der Arbeit

Die Aufklärung der antimikrobiellen Mechanismen körpereigener bakterizider Moleküle ist essentiell, um neue Antibiotikastrategien zu entwickeln. In dieser Arbeit liegt der Fokus auf Defensinen, welche eine prominente Gruppe humaner antimikrobieller Peptide darstellen.

2 Material und Methoden

2.1. Material

Alle Geräte, Verbrauchsmaterialien oder Chemikalien, welche nicht in den Tabellen aufgeführt wurden, gehören zur Standardausstattung von Laboren.

2.1.1. Geräte

<table>
<thead>
<tr>
<th>Geräte</th>
<th>Hersteller</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rollemischer RS-TR05</td>
<td>Phoenix Instruments, Deutschland</td>
</tr>
<tr>
<td>Anaerojar</td>
<td>Oxoid Limited, UK</td>
</tr>
<tr>
<td>BioTek® Plate reader Synergy HT</td>
<td>Biotek, USA</td>
</tr>
<tr>
<td>Jenway 7300 Spectrophotometer</td>
<td>Jenway, USA</td>
</tr>
<tr>
<td>Imaging System Chemi-Doc MP</td>
<td>BioRad, USA</td>
</tr>
<tr>
<td>Intas Science Imaging</td>
<td>Intas Science Imaging, Deutschland</td>
</tr>
<tr>
<td>FACSCalibur™</td>
<td>BD Biosciences, Deutschland</td>
</tr>
<tr>
<td>Luciferase Gerät</td>
<td>Tecan Group, USA</td>
</tr>
<tr>
<td>6540 UHD Accurate-Mass QTOF LC/MS</td>
<td>Agilent Technologies, USA</td>
</tr>
<tr>
<td>System</td>
<td></td>
</tr>
<tr>
<td>HPLC-System: 1200 Series</td>
<td></td>
</tr>
</tbody>
</table>

2.1.2. Verbrauchsmaterialien

<table>
<thead>
<tr>
<th>Materialien</th>
<th>Hersteller</th>
</tr>
</thead>
<tbody>
<tr>
<td>Columbia Agar Platten mit 5 % Schafblut</td>
<td>Becton Dickinson, USA</td>
</tr>
<tr>
<td>Küvetten</td>
<td>Sarstedt, Deutschland</td>
</tr>
<tr>
<td>96 well Plate, pp, F-Boden</td>
<td>Greiner, Österreich</td>
</tr>
<tr>
<td>96 well Plate, pp, F-Boden, weiß</td>
<td>Greiner, Österreich</td>
</tr>
<tr>
<td>Anaero Gen, Oxoid Beutel</td>
<td>Thermo Scientific, USA</td>
</tr>
<tr>
<td>Membranfilter, PET Membran, 3 µm Porengröße</td>
<td>Corning, USA</td>
</tr>
<tr>
<td>Filterpapier</td>
<td>Whatman, UK</td>
</tr>
<tr>
<td>Transfermembran</td>
<td>VWR, USA</td>
</tr>
</tbody>
</table>
2.1.3. Chemikalien, Antikörper und Kits

2.1.3.1. Chemikalien

<table>
<thead>
<tr>
<th>Chemikalien / Reagenzien</th>
<th>Hersteller</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agarose low EEO</td>
<td>AppliChem, Deutschland</td>
</tr>
<tr>
<td>Bacto Agar</td>
<td>Becton Dickinson, USA</td>
</tr>
<tr>
<td>Bacto<sup>TM</sup> Tryptic Soy Broth</td>
<td>Becton Dickinson, USA</td>
</tr>
<tr>
<td>BBL Schaedler Broth</td>
<td>Becton Dickinson, USA</td>
</tr>
<tr>
<td>DiBAC<sub>4</sub>(3)</td>
<td>Invitrogen, USA</td>
</tr>
<tr>
<td>BDC<sup>TM</sup> Lactobacilli MRS Broth</td>
<td>Becton Dickinson, USA</td>
</tr>
<tr>
<td>Difco<sup>TM</sup> Luria Bertani Broth</td>
<td>Becton Dickinson, USA</td>
</tr>
<tr>
<td>Difco<sup>TM</sup> Reinforced Clostridial Medium</td>
<td>Becton Dickinson, USA</td>
</tr>
<tr>
<td>D-Luciferin</td>
<td>Iris Biotech, Deutschland</td>
</tr>
<tr>
<td>L- Arabinose</td>
<td>Carl Roth, Österreich</td>
</tr>
<tr>
<td>IPTG</td>
<td>Carl Roth, Österreich</td>
</tr>
<tr>
<td>BSA</td>
<td>Sigma-Aldrich, UK</td>
</tr>
<tr>
<td>Bacterial Protease Arrest ™</td>
<td>Bioscience, USA</td>
</tr>
<tr>
<td>0,5 M EDTA</td>
<td>Bioscience, USA</td>
</tr>
<tr>
<td>NADPH</td>
<td>Bimol, Deutschland</td>
</tr>
<tr>
<td>Thioredoxin Reduktase</td>
<td>IMCO, Schweden</td>
</tr>
<tr>
<td>humanes Thioredoxin</td>
<td>Sigma Aldrich, UK</td>
</tr>
<tr>
<td>Decylubiquinone (Q8)</td>
<td>Sigma Aldrich, UK</td>
</tr>
</tbody>
</table>

2.1.3.2. Antikörper

<table>
<thead>
<tr>
<th>Antikörper</th>
<th>Hersteller</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anti-hBD1ox</td>
<td>cell concepts, Deutschland</td>
</tr>
<tr>
<td>Anti-hBD1red</td>
<td>Uniklinikum Schleswig Holstein, Deutschland, bereitgestellt von Jens Schröder (Schroeder et al., 2011b)</td>
</tr>
<tr>
<td>Anti-dsbA</td>
<td>De Duve Institute, Université catholique de Louvain, Brüssel, Belgien</td>
</tr>
<tr>
<td>Ziege anti Kaninchen</td>
<td>Jackson ImmunoResearch Laboratories, Deutschland</td>
</tr>
</tbody>
</table>
2.1.4. Medien und Puffer

2.1.4.1. Zellanzucht

<table>
<thead>
<tr>
<th>TSB Medium (1x)</th>
<th>TSB Medium (2x)</th>
<th>LB Medium</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bacto®-Tryptic Soy Broth</td>
<td>Bacto®-Tryptic Soy Broth</td>
<td>Difco® Luria Bertani Broth</td>
</tr>
<tr>
<td>30 g</td>
<td>60 g</td>
<td>25 g</td>
</tr>
<tr>
<td>H₂O</td>
<td>H₂O</td>
<td>H₂O</td>
</tr>
<tr>
<td>ad 1 L</td>
<td>ad 1 L</td>
<td>250 ml</td>
</tr>
</tbody>
</table>

2.1.4.2. Sonstiges

Tris/Tricine Laufpuffer (10x) pH 8,3

<table>
<thead>
<tr>
<th>Komponente</th>
<th>Konzentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tris</td>
<td>1M</td>
</tr>
<tr>
<td>Tricine</td>
<td>1M</td>
</tr>
<tr>
<td>SDS</td>
<td>1%</td>
</tr>
<tr>
<td>H₂O</td>
<td>ad 1 L</td>
</tr>
</tbody>
</table>

Elektrophoresepuffer (5x)

<table>
<thead>
<tr>
<th>Komponente</th>
<th>Konzentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tris</td>
<td>15 g</td>
</tr>
<tr>
<td>Glycin</td>
<td>72 g</td>
</tr>
<tr>
<td>10 % SDS</td>
<td>50 ml</td>
</tr>
<tr>
<td>H₂O</td>
<td>ad 1 L</td>
</tr>
</tbody>
</table>

PBS (10x)

<table>
<thead>
<tr>
<th>Komponente</th>
<th>Konzentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>NaCl</td>
<td>80 g</td>
</tr>
<tr>
<td>KCl</td>
<td>2 g</td>
</tr>
<tr>
<td>Na₂HPO₄</td>
<td>17,7 g</td>
</tr>
<tr>
<td>KH₂PO₄</td>
<td>2,4 g</td>
</tr>
<tr>
<td>H₂O</td>
<td>ad 1 L</td>
</tr>
</tbody>
</table>

SDS-Puffer (2x)

<table>
<thead>
<tr>
<th>Komponente</th>
<th>Konzentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,5 M Tris-HCl (pH 6,8)</td>
<td>2,5 ml</td>
</tr>
<tr>
<td>Glycerol</td>
<td>2 ml</td>
</tr>
<tr>
<td>10 % (w/v) SDS</td>
<td>4 ml</td>
</tr>
<tr>
<td>0,1 % Bromphenol Blau</td>
<td>0,5 ml</td>
</tr>
<tr>
<td>H₂O</td>
<td>ad 10 ml</td>
</tr>
</tbody>
</table>

200 mM Na₂HPO₄

<table>
<thead>
<tr>
<th>Komponente</th>
<th>Konzentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>NaH₂PO₄</td>
<td>27,6 g</td>
</tr>
<tr>
<td>H₂O</td>
<td>ad 1 L</td>
</tr>
</tbody>
</table>

200 mM Na₂HPO₄

<table>
<thead>
<tr>
<th>Komponente</th>
<th>Konzentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>NaH₂PO₄</td>
<td>35,6 g</td>
</tr>
<tr>
<td>H₂O</td>
<td>ad 1 L</td>
</tr>
</tbody>
</table>

100 mM Na-Phosphatbuffer (pH 7.4)

<table>
<thead>
<tr>
<th>Komponente</th>
<th>Konzentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>NaH₂PO₄</td>
<td>47,5 ml</td>
</tr>
<tr>
<td>Na₂HPO₄</td>
<td>202,5 ml</td>
</tr>
<tr>
<td>H₂O</td>
<td>250 ml</td>
</tr>
</tbody>
</table>

200 mM NaH₂PO₄

<table>
<thead>
<tr>
<th>Komponente</th>
<th>Konzentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>NaH₂PO₄</td>
<td>27,6 g</td>
</tr>
<tr>
<td>H₂O</td>
<td>ad 1 L</td>
</tr>
</tbody>
</table>
Material und Methoden

<table>
<thead>
<tr>
<th>Lösung</th>
<th>Komponenten</th>
<th>Menge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Karnovskylösung</td>
<td>0,2 M Na-Cacodylat</td>
<td>30 ml</td>
</tr>
<tr>
<td>7,5 % Paraformaldehyd</td>
<td>40 ml</td>
<td></td>
</tr>
<tr>
<td>CaCl₂</td>
<td>50 mg</td>
<td></td>
</tr>
<tr>
<td>Lösung A</td>
<td>Tris</td>
<td>29 g</td>
</tr>
<tr>
<td>Glycine</td>
<td>14,6 g</td>
<td></td>
</tr>
<tr>
<td>20 % SDS</td>
<td>9,25 ml</td>
<td></td>
</tr>
<tr>
<td>Methanol</td>
<td>1 L</td>
<td></td>
</tr>
<tr>
<td>H₂O</td>
<td>ad 5 L</td>
<td></td>
</tr>
<tr>
<td>Lösung B</td>
<td>0,1 M Tris (pH 8,0)</td>
<td>60,5 mg</td>
</tr>
<tr>
<td>Saccharose</td>
<td>20 %</td>
<td></td>
</tr>
<tr>
<td>1 mM EDTA</td>
<td>14,61 mg</td>
<td></td>
</tr>
<tr>
<td>H₂O</td>
<td>ad 50 ml</td>
<td></td>
</tr>
<tr>
<td>Transferpuffer</td>
<td>H₂O</td>
<td>ad 5 L</td>
</tr>
<tr>
<td>TBS (10x) (pH 7,4)</td>
<td>NaCl</td>
<td>400 g</td>
</tr>
<tr>
<td>KCl</td>
<td>10 g</td>
<td></td>
</tr>
<tr>
<td>Tris</td>
<td>150 g</td>
<td></td>
</tr>
<tr>
<td>H₂O</td>
<td>ad 5 L</td>
<td></td>
</tr>
<tr>
<td>TBST</td>
<td>10 x TBST</td>
<td>500 ml</td>
</tr>
<tr>
<td>50 % Tween</td>
<td>10 ml</td>
<td></td>
</tr>
<tr>
<td>H₂O</td>
<td>ad 5 L</td>
<td></td>
</tr>
<tr>
<td>1,5 M Tris-HCl (pH 8,8)</td>
<td>Tris</td>
<td>90,85 g</td>
</tr>
<tr>
<td>H₂O</td>
<td>ad 500 ml</td>
<td></td>
</tr>
<tr>
<td>0,5 M Tris-HCl (pH 6,8)</td>
<td>Tris</td>
<td>30 g</td>
</tr>
<tr>
<td>H₂O</td>
<td>ad 500 ml</td>
<td></td>
</tr>
</tbody>
</table>
2.1.5. Peptide

Alle hier aufgeführten Peptide wurden von der Firma EMC microcollections (Tübingen, Deutschland) mit einer Reinheit ≥ 90 % synthetisch hergestellt. Peptide in oxidierter Form (ox) wurden über die Firma PeptaNova (Sandhausen, Deutschland) bezogen.

Tabelle 1: Aminosäuresequenz der verwendeten Peptide

<table>
<thead>
<tr>
<th>Peptid</th>
<th>Sequenz</th>
<th>Abkürzung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Humanes β-Defensin (hBD)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>hBD1 [Volllängenpeptid]</td>
<td>DHYNCVSGGCGCLSAPFTKIQGTCYRGKAKCCK</td>
<td>hBD1ox</td>
</tr>
<tr>
<td>hBD1 [Volllängenpeptid]</td>
<td>DHYNCVSGGCGCLSAPFTKIQGTCYRGKAKCCK</td>
<td>hBD1red</td>
</tr>
<tr>
<td>hBD1 [AS 1-29]</td>
<td>DHYNCVSGGCGCLSAPFTKIQGTCYR</td>
<td>hBD1red_AS1-29</td>
</tr>
<tr>
<td>hBD1 [AS 29-36]</td>
<td>GAKKCCK</td>
<td>Heptapeptid</td>
</tr>
<tr>
<td>hBD1 [AS 1-36]</td>
<td>DHYNCVSGGCGCLSAPFTKIQGTCYRGKAKCCK</td>
<td>hBD1red_Abu</td>
</tr>
<tr>
<td>hBD3 [Volllängenpeptid]</td>
<td>GIINTLQKYCRVGGRCAVLSLPEEQIGKCSTRGRKCCRRK</td>
<td>hBD3ox</td>
</tr>
<tr>
<td>Humanes α-Defensin (HD)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HD6 (Volllängenpeptid)</td>
<td>AFTCHCRSCYSTEYSYGCTVMGIGINHRFCCCL</td>
<td>HD6ox</td>
</tr>
</tbody>
</table>

2.1.6. Verwendete Bakterien

Tabelle 2: Verwendete Bakterienstämme

<table>
<thead>
<tr>
<th>Stamm</th>
<th>Serotyp</th>
<th>Charakteristik</th>
<th>Quelle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acinetobacter baumanii (DSM 30007)</td>
<td></td>
<td>Referenzstamm</td>
<td>DSMZ</td>
</tr>
<tr>
<td>Bacillus subtilis</td>
<td>168 trpC2</td>
<td></td>
<td>IMIT</td>
</tr>
<tr>
<td>Bacillus subtilis</td>
<td>1S34 pS07</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Escherichia coli (EPEC) (DSM 8695)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Escherichia coli JM83</td>
<td>O6:K5:H1</td>
<td>Referenzstamm</td>
<td>MMH</td>
</tr>
<tr>
<td>Escherichia coli MC1000</td>
<td></td>
<td>Referenzstamm</td>
<td>JFC</td>
</tr>
<tr>
<td>Escherichia coli Nissle 1917</td>
<td></td>
<td>Klinisches Isolat</td>
<td>IMIB</td>
</tr>
<tr>
<td>Escherichia coli O1:K1:H7 (UPEC) (DSM 10729)</td>
<td>3-MRGN</td>
<td>Klinisches Isolat</td>
<td>RBK</td>
</tr>
<tr>
<td>Klebsiella pneumoniae</td>
<td>ATCC 25923</td>
<td>Klinisches Isolat</td>
<td>RBK</td>
</tr>
<tr>
<td>Salmonella enteritidis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Staphylococcus aureus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Staphylococcus epidermidis (DSM 30883)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ACS: Ardeyppharm Collection of strains, Pharma-Zentrale GmbH, Deutschland
DSMZ: Deutsche Sammlung von Mikroorganismen und Zellkultur GmbH, Deutschland
ATCC: American Type Culture Collection, USA
MRGN: Multiresistente Gram-negative
RBK: Robert-Bosch-Krankenhaus, Stuttgart, Deutschland
UCL: De Duve Institute, Université catholique de Louvain (UCL), Brüssel, Belgien
IMIT: Institut für Mikrobiologie und Infektionsmedizin, Tübingen, Deutschland
IMIB: Institut für Molekulare Infektionsbiologie, Würzburg, Deutschland
MMH: Institut für medizinische Mikrobiologie und Hygiene, Tübingen, Deutschland

Tabelle 3: Verwendete Bakterien-Knockout Stämme

<table>
<thead>
<tr>
<th>Stamm</th>
<th>Deletion</th>
<th>Erläuterung der Proteine</th>
<th>Antibiotikaresistenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Escherichia coli</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MC1000</td>
<td>(\Delta \text{dsbA} \Delta \text{dsbB})</td>
<td>---</td>
<td>Kanamycin</td>
</tr>
<tr>
<td></td>
<td>(\Delta \text{dsbA})</td>
<td>Thioldisulfidioxidoreduktase</td>
<td>Kanamycin</td>
</tr>
<tr>
<td></td>
<td>(\Delta \text{dsbB})</td>
<td>Disulfidebindungserformationprotein</td>
<td>Kanamycin</td>
</tr>
<tr>
<td></td>
<td>(\Delta \text{ompA})</td>
<td>Außenmembranprotein</td>
<td>Kanamycin</td>
</tr>
<tr>
<td></td>
<td>(\Delta \text{lamB})</td>
<td>Maltoporin</td>
<td>Kanamycin</td>
</tr>
<tr>
<td></td>
<td>(\Delta \text{ompW})</td>
<td>Außenmembranprotein</td>
<td>Kanamycin</td>
</tr>
<tr>
<td></td>
<td>(\Delta \text{ompF})</td>
<td>Außenmembranprotein</td>
<td>Kanamycin</td>
</tr>
<tr>
<td></td>
<td>(\Delta \text{circA})</td>
<td>Außenmembranrezeptor</td>
<td>Kanamycin</td>
</tr>
<tr>
<td></td>
<td>(\Delta \text{dsbC})</td>
<td>Proteindisulfidisomerase</td>
<td>Chloramphenicol</td>
</tr>
<tr>
<td></td>
<td>(\Delta \text{dsbD})</td>
<td>Disulfidioxidoreduktase</td>
<td>Kanamycin</td>
</tr>
<tr>
<td></td>
<td>(\Delta \text{dsbC} \Delta \text{dsbG})</td>
<td>---</td>
<td>Kanamycin</td>
</tr>
<tr>
<td></td>
<td>(\Delta \text{trxC})</td>
<td>Thioredoxin C</td>
<td>Kanamycin</td>
</tr>
<tr>
<td></td>
<td>(\Delta \text{gshA})</td>
<td>Glutamatcysteinligase</td>
<td>Kanamycin</td>
</tr>
<tr>
<td></td>
<td>(\Delta \text{gor})</td>
<td>Glutathionreduktase</td>
<td>Kanamycin</td>
</tr>
<tr>
<td></td>
<td>(\Delta \text{trxA})</td>
<td>Thioredoxin A</td>
<td>Kanamycin</td>
</tr>
<tr>
<td></td>
<td>(\Delta \text{dsbA} \Delta \text{dsbB} + \text{pBAD33}:\text{dsbA} + \text{pQE60}:\text{dsbB})</td>
<td>---</td>
<td>Chloramphenicol</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ampicillin</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Kanamycin</td>
</tr>
<tr>
<td>Nissle 1917</td>
<td>(\Delta \text{flgE})</td>
<td>Flagellar Hook Protein</td>
<td>Chloramphenicol</td>
</tr>
<tr>
<td></td>
<td>(\Delta \text{fliA})</td>
<td>RNA Polymerase Sigma Factor</td>
<td>Chloramphenicol</td>
</tr>
<tr>
<td></td>
<td>(\Delta \text{fliC})</td>
<td>Flagellin</td>
<td>Chloramphenicol</td>
</tr>
<tr>
<td>JM83</td>
<td>(\Delta \text{htrB})</td>
<td>htrB Acyltransferase</td>
<td>Ampicillin</td>
</tr>
<tr>
<td></td>
<td>(\Delta \text{htrB} + \text{htrB(Pg)})</td>
<td>htrB Acyltransferase</td>
<td>Ampicillin</td>
</tr>
</tbody>
</table>
2.1.7. Software

<table>
<thead>
<tr>
<th>Programm</th>
<th>Hersteller</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gen5 2.00</td>
<td>Biotek, USA</td>
</tr>
<tr>
<td>Image Lab 5.1</td>
<td>BioRad, USA</td>
</tr>
<tr>
<td>GraphPad Prism Version 6.04</td>
<td>GraphPad Software, Inc., USA</td>
</tr>
<tr>
<td>Intas GDS</td>
<td>Intas Science Imaging, Deutschland</td>
</tr>
<tr>
<td>Bioconfirm Software</td>
<td>Agililent Technologies, USA</td>
</tr>
<tr>
<td>i-control™ – Microplate Reader Software</td>
<td>Tecan Group, Schweiz</td>
</tr>
<tr>
<td>BD Cell Quest Software</td>
<td>BD, Deutschland</td>
</tr>
</tbody>
</table>

2.2. Mikrobiologische Methoden

2.2.1. Bestimmung der antimikrobiellen Aktivität

2.2.1.1. Radial Diffusions Assay

Die antimikrobielle Aktivität von verschiedenen Peptiden wurde mittels einer etablierten Methode (Lehrer et al, 1991), dem Radial Diffusions Assay (RDA) getestet. Für die Messung wurden Bakterien für 16 h in flüssigem TSB-Medium bei 37 °C unter Schütteln angezogen. Für die Anzucht von anaeroben Bakterien wurde eine anaerobe Kammer mit AnaerobGen-Beutel verwendet. An Tag 2 wurden die Log-Phase Bakterien zweimal in 10 mM Natriumphosphatpuffer (pH = 7,4) gewaschen und anschließend 4 x 10^6 CFU/ ml Bakterien für den Assay verwendet. Die Inkubation der Bakterien mit verschiedenen Peptiden erfolgte in einem Gel aus 10 ml Natriumphosphatpuffer (pH = 7,4), welcher 0,3 mg/ ml TSB-Pulver, sowie 1 % w/v von EEO-Agarose (Overlaygel) enthält. In die zuvor ausgestanzten Löcher wurden dann die synthetisierten Peptide (1-4 µg) gegeben und alles für 3 h bei 37 °C inkubiert. Nach Ablauf der Inkubationszeit wurden 10 ml eines nährstoffreichen Gels (Overlaygel) aufgetragen, welches als Zusätze 6 % TSB-Pulver, 1 % EEO-Agarose und 10 mM Natriumphosphatpuffer enthält. Nach weiteren 16 h bei 37 °C konnten dann die Hemmhöfe um die Ausstanzlöcher ausgemessen werden. Anhand der Größe kann die Stärke der antimikrobiellen Aktivität bestimmt werden. Die Experimente wurden mindestens dreimal wiederholt. Angegeben sind die Werte mit +/- SEM.

<table>
<thead>
<tr>
<th>Antibiotika</th>
<th>Stammkonzentration</th>
<th>Arbeitskonzentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chloramphenicol</td>
<td>25 mg/ ml</td>
<td>25 µg/ ml</td>
</tr>
<tr>
<td>Kanamycin</td>
<td>50 mg/ ml</td>
<td>50 µg/ ml</td>
</tr>
</tbody>
</table>
Plasmid-Induktions Experiment mittels RDA

Der Bakterienstamm *E. coli* MC1000 ΔdsbAΔdsbB pQE60::dsbB + pBAD33::dsbA, bei welchem die Proteine DsbA und DsbB im Genom deletiert, aber auf einem sekundären Plasmid mit einem Promotor enthalten sind, wurde in RDA mit speziellen Zusätzen (Arabinose, IPTG) getestet. Die Bakterien wurden wie gewohnt auf OD₆₀₀ = 0,01 überimpft und 2,5 h bei 37 °C, schüttelnd inkubiert. Während dieser Inkubationszeit wurde alle 30 min 0,4 % L-Arabinose für das Plasmid pBAD33 und 2 mM IPTG für das Plasmid pQE60 zur Promotoraktivierung hinzugefügt. Anschließend wurde der RDA wie im Standardprotokoll weiter ausgeführt und die Zusätze L-Arabinose und IPTG, sowie Antibiotika (Tabelle 5) zur Selektion in das Overlaygel pipettiert.

Tabelle 5: Verwendete Antibiotika bei den Rescue-Mutanten

<table>
<thead>
<tr>
<th>Antibiotika</th>
<th>Plasmid</th>
<th>Stammkonzentration</th>
<th>Arbeitskonzentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chloramphenicol</td>
<td>(pBAD33)</td>
<td>25 mg/ ml</td>
<td>25 µg/ ml</td>
</tr>
<tr>
<td>Ampicillin</td>
<td>(pQE60)</td>
<td>50 mg/ ml</td>
<td>200 µg/ ml</td>
</tr>
</tbody>
</table>

2.2.1.2. Luciferase Reporter Gen Assay

Tabelle 6: Verwendete Antibiotika im Luciferase Reporter Gene Assay

<table>
<thead>
<tr>
<th>Antibiotika</th>
<th>Stammkonzentration</th>
<th>Arbeitskonzentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vancomycin</td>
<td>10 mg/ ml</td>
<td>25 µg/ ml</td>
</tr>
<tr>
<td>Erythromycin</td>
<td>10 mg/ ml</td>
<td>5 µg/ ml</td>
</tr>
</tbody>
</table>
2.2.1.3. Trübungsassay

Zusätzlich wurde für den Nachweis der antimikrobiellen Aktivität ein weiterer Assay durchgeführt, welcher auf Wachstumshemmung basiert und mittels optischer Dichte die Flüssigkultur bestimmt wird (Wiegand et al, 2008). Die zu verwendeten Bakterien wurden über Nacht in 1 x TSB angezogen und am nächsten Tag auf OD_{600} = 0,01 überimpft. Die Log-Phase Bakterien wurden dann zweimal mit 10 mM Natriumphosphat Puffer (pH = 7,4) mit 1 % TSB (AMA-Puffer) gewaschen und die OD bestimmt. Für den Trübungsassay wurden 5 x 10^5 CFU/ml Bakterien eingesetzt und mit einer Peptidmenge von 0,97 – 125 µmol in einem finalen Volumen von 100 µl AMA-Puffer vermischt. Nach einer Inkubation von 2 h, schüttelnd bei 37 °C wurden 6 % TSB dazugegeben und die OD_{600} gemessen. Das bakterielle Wachstum wurde 18 h, schüttelnd bei 37 °C beobachtet und grafisch dargestellt. Die Experimente wurden mindestens dreimal wiederholt. Angegeben sind die Werte +/- SEM.

2.2.1.4. Inaktivierung von hBD1 durch bakterielle Proteasen

Für die Fragestellung, ob eine Inaktivierung von bakteriellen Proteasen das Volllängenpeptid hBD1 stabilisiert und somit die Aktivität verstärkt, wurde das Trübungsassay-Protokoll neu etabliert. Hierzu wurde eine Übernachtkultur E. coli MC1000 frisch in TSB überimpft und bis zur Log-Phase bei 37 °C geschüttelt. Im Anschluss wurden die Bakterien zweimal mit AMA-Puffer gewaschen und eine Bakterienmenge von 6 x 10^6 CFU berechnet. Das Bakterienpellet wurde anschließend in 156,8 µl AMA-Puffer resuspendiert. Es wurden 2 µl der jeweils vor verdünnten Proteinaseinhibitormenge (Tabelle 7) und 2 µl EDTA zugegeben und 10 min bei 37 °C schüttelnd inkubierte. Auf den Bakterien – Proteaseinhibitor-Mix wurden nun 50,9 µM hBD1 red oder 0,01 % Essigsäure, welche als Positivkontrolle dient, pipettiert. Es folgte wieder ein Inkubationsschritt für 30 min bei 37 °C. Danach wurde in eine 96-Well-Platte jeweils 10 µl Bakterien – Proteaseinhibitor-Mix zu 190 µl 1 x TSB gegeben und über Nacht das Wachstum bei OD_{600} verfolgt.

<table>
<thead>
<tr>
<th>Tabelle 7: Zusammensetzung der bakteriellen Proteinase-Inhibitormenge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bakterien</td>
</tr>
<tr>
<td>-----------------</td>
</tr>
<tr>
<td>0,01 x</td>
</tr>
<tr>
<td>0,005 x</td>
</tr>
<tr>
<td>0,0025 x</td>
</tr>
<tr>
<td>0,00125 x</td>
</tr>
<tr>
<td>0,0006125 x</td>
</tr>
</tbody>
</table>

Die einzelnen Proteinaseinhibitormengen wurden mit H₂O verdünnt und in einem finalen Volumen von 10 µl eingesetzt. Als Positivkontrolle diente H₂O.
2.2.1.5. Durchflusszytometrie (FACS)

Um Hinweise auf Zellwandschäden an Bakterien zu untersuchen, wurde ein Assay, welcher auf Durchflusszytometrie basiert, verwendet (Nuding et al., 2006). Der zu verwendende Farbstoff DiBAC_{4}(3) ist ein membranpotentialsensitiver Farbstoff, welcher sich bei einer defekten Bakterienmembran einlagern kann. Somit können Bakterien mit Membranschäden oder mit depolarisierter Membran von lebenden Bakterien unterschieden werden. Hierzu wurden ca. $1,5 \times 10^8$ Bakterien mit AMA-Puffer verdünnt (1:10) und davon 95 µl Bakterienlösung für den Assay verwendet. Die Bakterienlösung wurde mit 10 µl Peptidlösung 1 h bei 37 °C, schüttelnd inkubiert, im Anschluss 2 µl DiBAC_{4}(3) (Gebrauchslösung: 1:20 mit H_{2}O) zugegeben und weitere 10 min bei RT inkubiert. Es folgte ein Zentrifugationsschritt bei 7000 rpm, 5 min bei 4 °C. Das Pellet wurde in 300 µl 1 x PBS aufgenommen und per Durchflusszytometer (FACSCalibur™) pro Probe 10 000 Events gemessen. Die Daten wurden mit Hilfe der Cell Quest Software analysiert.

2.2.1.6. Membran Permeabilitäts Assay

Um die Durchlässigkeit von Peptiden in den Membranen zu testen, wurde ein Membran Permeabilitäts Assay in Kooperation mit Adam Strömstedt (Uppsala, Schweden) durchgeführt. Der Versuch wurde, wie in Strömstedt et al., 2016 beschrieben, durchgeführt.

2.2.1.7. Transmigrationsassay

Für den Nachweis von Netzen und deren Funktion wurde ein Transwell Membran Assay etabliert. Hierfür wurden Bakterien in 1 x TSB bei 37 °C, über Nacht angeimpft. Am Tag 2 wurden die Log-Phase Bakterien zweimal in AMA-Puffer gewaschen und eine Bakterienmenge von 1×10^7 CFU berechnet. Die berechnete Bakteriensuspension wurde bei 7000 rpm, 5 min zentrifugiert und in 50 µl AMA-Puffer aufgenommen. Zuvor wurden die Filter mit PET Membran und einer Porengröße von 3 µm mit 62,5 µmol Peptid in einem finalen Volumen von 50 µl AMA-Puffer für 1 h bei 37 °C vorinkubiert, um die Netzbildung zu ermöglichen. Im Anschluss wurden jeweils 50 µl Bakteriensuspension vorsichtig auf die Peptidlösung in den Filter gegeben und in eine 24-Well Platte mit vorgelegtem 400 µl 1 x TSB Medium für 1 h bei 37 °C, leicht schüttelnd gestellt. Nach der Inkubationszeit wurde aus dem Filter und 1 x TSB Medium eine definierte Menge entnommen und ausplattiert. Zusätzlich wurde das Bakterienwachstum in dem restlichen 1 x TSB Medium über 12 h bei 37 °C und leichtem Schütteln beobachtet und grafisch dargestellt. Die Experimente wurden mindestens dreimal wiederholt. Angegeben sind die Werte +/- SEM.
2.3. Protein Methoden

2.3.1. Massenspektrometrische Analysen

2.3.1.1. In vitro Oxidation von hBD1

HBD1red oder hBD1ox wurden zu 30 µM DsbA, 150 nM DsbB und 30 mM Coenzym Q8 in 0,1 M Kaliumphosphat (2 mM EDTA, pH 7,0) gegeben und der Ansatz für 30 min bei 37 °C inkubiert. Im Anschluss wurden die Proben mit 0,5 % (v/v) Ameisensäure und 10 % Acetonitril versetzt und mittels 6540 UHD Accurate-Mass Q-TOF LC/MS analysiert. Zusätzlich wurde zur Chromatographie ein „1200 series HPLC System“ und „AdvanceBio Peptide Map Säule“ (2,1 x 150 mm, 2,7 µm) verwendet. Der Gradient startete mit 2 % Lösung B (Acetonitril + 0,1 % Ameisensäure) für 4 min, anschließend folgte eine Erhöhung auf 45 % Lösung A (H2O + 0,1 % Ameisensäure) innerhalb 35 min bei 55 °C und einer Fließgeschwindigkeit von 0,4 ml/min.

2.3.1.2. In vitro Reduktion von hBD1

Für die in vitro Reduktion wurden alle Substanzen, welche in Tabelle 8 aufgeführt sind, zusammengegeben und für 30 min bei 37 °C inkubiert. Im Anschluss wurde der Thioredoxin-Mix (Tabelle 8) für weitere Versuche auf Bakterien in der Log-Phase gegeben.

Tabelle 8: Zusammensetzung für die in vitro Reduktion von hBD1

<table>
<thead>
<tr>
<th>Zusammensetzung</th>
<th>Menge</th>
<th>Volumen</th>
</tr>
</thead>
<tbody>
<tr>
<td>hBD1ox</td>
<td>50 µM</td>
<td>39,28 µl</td>
</tr>
<tr>
<td>NADPH</td>
<td>0,8 mM</td>
<td>16 µl</td>
</tr>
<tr>
<td>TRX Reduktase</td>
<td>200 nM</td>
<td>4 µl</td>
</tr>
<tr>
<td>Kaliumphosphatpuffer mit 2 mM EDTA, pH 7,0</td>
<td>100 mM</td>
<td>72,72 µl</td>
</tr>
</tbody>
</table>

5 min bei RT stehen lassen

Humanes Thioredoxin | 3 µM | 60 µl |
2.3.2. Proteinnachweis mittels Westernblot

Tabelle 9: Verwendete Antikörper im Westernblot

<table>
<thead>
<tr>
<th>Antikörper</th>
<th>Stammkonzentration</th>
<th>Verdünnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>anti - DsbA</td>
<td>unbekannt</td>
<td>1:50</td>
</tr>
<tr>
<td>Goat-anti-rabbit Meerrettich IgG Peroxidase-konjugiert</td>
<td>0,8 mg/ml</td>
<td>1:5000</td>
</tr>
</tbody>
</table>
Tabelle 10: Zusammensetzung der Acrylamidgele für Westernblot

<table>
<thead>
<tr>
<th>Acrylamidgele</th>
<th>14 % Trenngel [3-100 kDa]</th>
<th>Sammelgel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acrylamid</td>
<td>17,55 ml</td>
<td>2,7 ml</td>
</tr>
<tr>
<td>H_2O</td>
<td>9,9 ml</td>
<td>12,2 ml</td>
</tr>
<tr>
<td>1,5 M Tris (pH 8,8)</td>
<td>9,33 ml</td>
<td>---</td>
</tr>
<tr>
<td>0,5 M Tris (pH 6,8)</td>
<td>---</td>
<td>5 ml</td>
</tr>
<tr>
<td>10 % SDS</td>
<td>375 µl</td>
<td>200 µl</td>
</tr>
<tr>
<td>TEMED</td>
<td>37,5 µl</td>
<td>20 µl</td>
</tr>
<tr>
<td>10 % APS</td>
<td>375 µl</td>
<td>200 µl</td>
</tr>
</tbody>
</table>

2.3.3. Elektronenmikroskopische Bildgebung

2.3.3.1. Rasterelektronenmikroskopie

Für die Rasterelektronenmikroskopie (REM) wurde das Protokoll von Björn Schröder (Schröder et al., 2014) verwendet. Hier wurden ca. 6×10^8 CFU *E. coli* oder 2×10^8 CFU *K. pneumoniae* mit 200 µg/ml Peptid bei 37 °C für 2 h schüttelnd inkubiert. Im Anschluss wurden die Bakterien bei 7000 rpm für 5 min abzentrifugiert und das Bakterienpellet in Karnovsky’s Reagenz fixiert. Anschließend wurden die Bakterien in 1 x PBS gewaschen und ein weiteres Mal mit 1 % O₃S₄ in Wasser fixiert. Es folgte die Zugabe von 100 % Ethanol und die Trocknung. Die Auswertung erfolgte in Kooperation mit Jürgen Berger (Max-Planck Institut für Entwicklungsbiologie, Tübingen) und die finale Analyse der Bakterienoberflächen (n=10 Bakterien) von vier unabhängigen Experten.

2.3.3.2. Transmissionselektronenmikroskopie

Für eine weitere Methode zur Strukturanalysen in Bakterien wurde die Transmissionselektronenmikroskopie (TEM) verwendet. Hierzu wurden 6×10^8 CFU *E. coli* mit 200 µg/ml Peptid 2 h bei 37 °C, schüttelnd inkubiert. Behandelte Bakterien wurden anschließend mit Karnovsky Lösung fixiert und in 3,5 % Agarose bei 37 °C eingebettet, bei Raumtemperatur ausgehärret und danach wiederholt in Karnovsky Lösung fixiert. Eine Nachfixierung der Proben erfolgte in 1 % O₃S₄ für 1 h. Zusätzliche Waschschritte wurden mit destilliertem Wasser durchgeführt, sowie eine weitere Probenbehandlung mit 1 % Uranylacetat (2 % in dH₂O). Vor der Anfei-
tigung von Semi-Dünnschnitten wurden die Proben noch einer Alkoholreihe (schrittweise von 30-96 %) und Polypropylenoxid, sowie der Einbettung in Glycidether unterzogen. Die Analyse erfolgte an der Hautklinik Tübingen am Zeiss LIBRA 120 Transmissionselektronenmikroskop (Carl Zeiss, Oberkochen, Deutschland) bei 120 kV.

2.3.3.3. Immunogold-Färbung
Um hBD1 in Bakterien zu lokalisieren wurde eine Immuno-Gold-Färbung etabliert. 6 x 10^8 CFU *E. coli* wurden mit 200 μg/ ml Peptid 2 h bei 37 °C, schüttelnd inkubiert und anschließend in 3 % Paraformaldehyd und 0,01 % Glutaraldehyd fixiert. Es folgte eine Einbettung in 4 % Agarose bei 37 °C und eine weitere Einbettung in Lowicryl K4M (Polysciences, Deutschland). Die Blöcke wurden dann am Ultracromotom (Ultracut, Reichert, Wien, Österreich) in 30 nm Schnitte verarbeitet. Die Schnitte wurden anschließend mit rabbit-anti-hBD1ox (cell concepts, Deutschland) oder rabbit-anti-hBD1red (Schroeder et al, 2011b), behandelt. Zuletzt wurden die Proben mit einem Sekundärantikörper goat-anti-rabbit IgG (Jackson ImmunoResearch Laboratories, Deutschland), welcher mit einem 6 nm großen Goldkorn gekoppelt ist, inkubiert. Es erfolgte wieder eine Analyse der Bilder mit Zeiss LIBRA 120 Transmissions Elektronenmikroskop (Carl Zeiss, Oberkochen, Deutschland) bei 120 kV.

Für die Lokalisierung und Bestimmung der Menge an hBD1 (n= 14 Bakterien) wurden drei unabhängige Experten zur Bestimmung herangezogen. 0 = keine Detektion, 1 = wenig Detektion, 3 starke Detektion.

2.4. Statistische Auswertung
Für die statistischen Analysen zwischen verschiedenen Gruppen wurden entsprechende Tests mittels der GraphPad Prism Software durchgeführt. Für die Evaluierung von Unterschieden zwischen zwei Gruppen wurde ein nicht parametrischer Test verwendet, dagegen für Daten, welche nicht normal verteilt waren, der „Mann-Whitney-Test“. In den einzelnen Graphen werden die Signifikanzwerte durch Sterne gekennzeichnet: p>0.05 = nicht signifikant (ns); p≤0.05 =*; p≤0.01 =**; p≤0.001 =***; p<0.0001 =****.
3 Ergebnisse

3.1. Analyse der antimikrobiellen Aktivität von hBD1

Erst kürzlich wurde durch Bjoern O Schroeder, Wu, et al., 2011 bekannt, dass hBD1 erst eine starke antimikrobielle Aktivität entwickelt, nachdem die Disulfidbrücken des Peptids reduziert werden. Die resultierende reduzierte Form von hBD1 (hBD1red) zeigt starke antimikrobielle Aktivität gegen eine große Anzahl an Bakterienspezies. In den bisher publizierten Versuchen wurde hBD1 mittels Reduktionsmittels wie z. B. 1,4-Dithiothreitol (DTT) reduziert (Schroeder et al., 2011b). In dieser Arbeit wurde ein synthetisch produziertes hBD1red verwendet, weshalb zunächst die antimikrobielle Aktivität, mittels einem Radial Diffusion Assay (RDA), gegen verschiedene Bakterienstämme noch einmal getestet wurde. Dabei werden die Bakterien in einem nährstoffarmen Gel mit hBD1ox oder hBD1red 3 h inkubiert und dessen antimikrobielle Aktivität nach Zugabe eines nährstoffreichen Gels anhand der Größe der entstandenen Hemmhöfe gemessen und als Balkendiagramm dargestellt (Abbildung 5).

In Übereinstimmung mit publizierten Daten, zeigte auch hier das synthetisch hergestellte hBD1red gegen alle getesteten Bakterienstämme eine antimikrobielle Aktivität (Abbildung 5) (Schroeder et al., 2011b). Auffällig war, dass die oxidierte Redoxform von hBD1 (hBD1ox) nur gegen *E. coli* und *S. enteritidis*, welche Gram-negativ sind, antimikrobiell aktiv war. Dahingegen wurde keine antimikrobielle Aktivität gegen Gram-positive Stämme, wie *B. subtilis*, *S. epidermidis* und *S. aureus* detektiert. Der RDA enthält immobilisierte Bakterien, daher ist es nicht möglich zwischen bakterizider und bakteriostatischer Wirkung zu unterscheiden. In dem nebenstehenden RDA-Ausschnitt (Abbildung 5) sind die Hemmhöfe, entstanden durch hBD1ox und hBD1red, abgebildet. Ein Probenloch von 2,5 mm für jedes verwendete Peptid entsteht immer durch die Verwendung der Stanze. Es ist deutlich zu erkennen, dass der Hemmhof durch hBD1red sehr abgegrenzt und klar wirkt. Der durch hBD1ox induzierte Hemmhof erscheint dagegen sehr unregelmäßig und mit vielen einzelnen Kolonien bewachsen. Auch eine doppelte Konzentration von 4 µg ließ den Hemmhof nicht deutlich klarer werden. Stattdessen wirkte der Hemmhof noch diffuser und teils war er mit mehr Kolonien überwachsen.
Abbildung 5: HBD1 Redoxformen zeigen unterschiedlich starke Aktivität gegen Bakterien

Bakterien wurden mit 2 µg hBD1ox oder hBD1red inkubiert und die antimikrobielle Aktivität mittels RDA durch Ausmessen der Hemmhöfe bestimmt. Das Probenloch besitzt einen Durchmesser von 2,5 mm (gestrichelte Linie) und wird nicht als antimikrobielle Aktivität gewertet. Dargestellt sind die Ergebnisse mit +/- SEM aus drei unabhängigen Experimenten. Nebenstehend ein repräsentativer Ausschnitt mit *E. coli* MC1000.

Da sich die Aktivität der zwei unterschiedlichen Redoxformen sehr stark unterscheidet wurde vermutet, dass es sich hier um zwei unterschiedliche Wirkmechanismen handelt. Für weitere Abklärung der antimikrobiellen Aktivität von hBD1ox und hBD1red wurde eine sensitivere Methode, ein Trübungsassay, gewählt.

Im Trübungsassay wurde *E. coli* MC1000 entweder mit 62,5 µmol (A) oder mit 125 µmol (B) Peptid inkubiert und das Wachstum nach Zugabe von 6 % TSB über 18 h bei einer optischen Dichte (OD) von 600 nm beobachtet und in Prozent zum Wachstum der Positivkontrolle (unbehandelte Bakterien) dargestellt (Abbildung 6). Über diesen Zeitraum ist es möglich eine antibakterielle Wirkung eines Peptids zu detektieren. Nach Inkubation mit hBD1red war kein bakterielles Wachstum mehr zu erkennen, was auf eine sehr starke bakterizide Wirkung hinweist (Abbildung 6A+B). In Abbildung 6A ist zudem das Wachstum von *E. coli* MC1000 mit einer Inkubation von 62,5 µmol hBD1ox gezeigt, was zu einem Wachstumsversatz von ca. 4 h im Vergleich zur Kontrolle führte. Nach 4,5 h wurde schon 10 % Wachstum detektiert. Auch eine Verdopplung der Konzentration auf 125 µmol führte zu keiner stärkeren bakteriziden Wirkung. Die höhere Konzentration zeigte lediglich eine Wachstumsverzögerung von 5,5 h, sowie ein 10 %iges Wachstum nach 6 h und 80 % Wachstum nach ca. 8 h in Relation zur Kontrolle. Zusammenfassend kann eine Verdopplung der Konzentration keinen großen Unterschied in der Wirkungsstärke von hBD1ox bewirken. Möglicherweise ist die antimikrobielle Aktivität schwächer bakterizid oder andere Mechanismen wie eine bakte-
riostatische Eigenschaft von hBD1ox können hier durch diesen Assay nicht ausgeschlossen werden.

Abbildung 6: Redoxformen zeigen eine unterschiedlich starke Aktivität im sensitiveren Trübungsassay
Das Wachstum von *E. coli* MC1000 mit (A) 62,5 µmol und (B) 125 µmol Peptid wurde in einem Trübungsassay mittels optischer Dichte verfolgt und in % zur Positivkontrolle, nach Zugabe von 6 % TSB dargestellt. Dargestellt sind die Werte in % mit +/- SEM aus drei unabhängigen Experimenten.

3.1.1. Charakterisierung der bakteriellen Targets der hBD1 Redoxformen

Es ist bekannt, dass einige antimikrobielle Peptide die bakterielle Zellhülle als Target verwenden (Zasloff, 2002; Brogden, 2005). Häufig werden Membranen durchlöchert oder das Membranpotential verändert was zu einem Zusammenbruch des Potentials und schließlich zum Zelltod führt (Brogden, 2005). Um zu überprüfen, ob hBD1ox und hBD1red ebenfalls auf die Zellmembran einwirken können, wurde ein *Luciferase Reportergen Assay* verwendet (Abbildung 7). Hierzu wurde ein *B. subtilis* Reporterstamm verwendet, welcher einen *ypuA*-Promotor mit fusionierterm Luciferasegen enthält. Es ist bekannt, dass dieser *ypuA*-Promotor sensitiv auf Membran-assoziierten und Zellhüllen-assoziierten Stress reagiert (Urban et al, 2007). In diesem Assay wurde nach Inkubation mit Peptiden die Luciferaseaktivität gemessen. Für die Anwendung mit Peptiden wurde das Protokoll von Wenzel et al, 2014 verwendet und für die Testung humaner Defensine modifiziert (siehe 2.2.1.2). Eine hohe Luciferaseaktivität entspricht somit einer starken *ypuA*-Promotor Aktivität und ist mit hoher Zellhüllenschädigung gleichzusetzen. *B. subtilis* ypuA wurde zunächst in LB-Vollmedium angezogen und mit verschiedenen Konzentrationen von hBD1red (Abbildung 7A) oder hBD1ox (Abbildung 7B) inkubiert. HBD3ox (Abbildung 7C) wurde in diesem Fall als Positivkontrolle in einer niedrigeren Konzentration verwendet, da die antimikrobielle Aktivität deutlich stärker ist als die von hBD1. In Abbildung 7 ist die Höhe der Aktivität von *ypuA* Promotor, normalisiert auf die Eigenlumineszenz der Bakterien, aufgetragen. Dabei ist deutlich zu erkennen, dass hBD1red, im Gegensatz zu hBD1ox, eine starke Erhöhung der Promotoraktivität auslöst (zweifach erhöht bei

Abbildung 7: ypUA Promotoraktivität nach hBD1 Behandlung als Marker für Zellhüllenstress

* B. subtilis ypUA wurde mit einer Konzentrationsreihe von 0,04 – 80 µmol hBD1red (A) oder hBD1ox (B) 1 h inkubiert und im Anschluss die Promotoraktivität von ypUA gekoppelt an ein Luciferase Reportergen, gemessen. Als Positivkontrolle diente hier hBD3ox (C) in einer Konzentrationsreihe von 0,0006 – 1,25 µmol und Vancomycin (D) in einer Konzentration von 0,008 – 16,8 µmol. Die Darstellungen enthalten die Mittelwerte mit +/- SEM von zwei unabhängigen durchgeführten Experimenten.
Da hBD1ox im RDA keine Aktivität gegen *B. subtilis* 168 (trpC2) gezeigt hat (Abbildung 5) und somit der verwendete Luciferase Reporter Gen Assay mit dem *Bacillus*-Promotorstamm für hBD1ox nur eine limitierte Aussagekraft hat, wurden weitere Methoden mit Gram-negativen Bakterien etabliert und verwendet. Wie in Abbildung 5 zu sehen ist, sind beide Redoxformen im RDA gegen *E. coli* MC1000 antimikrobiell aktiv. Um das Zieltarget von hBD1ox genauer zu lokalisieren, wurde ein Membran Permeabilitäts Assay mit künstlich hergestellten Liposomen und einem humanen Liposomenmodell (Popc) mit Cholesterol (Popccho) verwendet. Für den Versuch wurden Liposomen hergestellt, welche aus *E. coli* Lipidextrakten gewonnen wurden oder ein Membranmodell, was die humane Cytoplasmamembran imitiert. Die Permeabilisation der hergestellten Membranmodelle wurde durch den Austritt von Carboxyfluorescein nach hBD1red oder hBD1ox Inkubation gemessen.

In Abbildung 8 sind die Ergebnisse des humanen Liposomenmembranmodells (gestrichelte Linie) und der *E. coli* Membran (durchgezogene Linie) dargestellt. Durch hBD1ox konnte nach 45 min bei der höchsten Konzentration von 10 µM nur ein Ausfluss von ca. 8 % aus den bakteriellen Liposomen festgestellt werden. Dagegen konnte kein Austritt aus den humanen Liposomen detektiert werden. Nach hBD1red Zugabe konnte ein Austritt von 8 % Carboxyfluorescein schon bei einer Konzentration von 0,6 µM und ein EC₅₀ bei 10 µM in den Liposomen mit bakteriellem Ursprung nach bereits 10 min detektiert werden. EC₅₀ steht für die mittlere effektive Konzentration, bei der ein halbmaximaler Effekt beobachtet wird. Auf das humane Membranmodell Popc/cho verursachte hBD1red eine Durchlässigkeit von nur 6 % bei einer Konzentration von 10 µM nach 45 min Inkubation, was somit eine toxische Reaktion von hBD1red auf humane Membranschichten ausschließen lässt. Gegen das *E. coli* Lipidmembranmodell zeigte sich jedoch nach 45 min Inkubation, bei der höchsten eingesetzten Menge an hBD1red, eine Durchlässigkeit von 50 %. Dieses Ergebnis bestätigt nochmals die Daten des Reporter Gen Assays mit *B. subtilis*. Es wird deutlich, dass hBD1 abhängig vom Redoxstatus unterschiedliche Wirkmechanismen aufweist und die reduzierte Form von hBD1red stark auf die bakterielle Zellmembran wirken kann. Im Gegensatz dazu, zeigt hBD1ox nur sehr geringen Einfluss auf Liposomen und auf die bakterielle Zellmembran.
Um den Wirkmechanismus noch detaillierter zu verstehen, wurde ein dritter Assay etabliert. Dieser Assay detektiert eine Depolarisierung des bakteriellen Membranpotentials durch Durchflusszytometrie (FACS) und es ist möglich Effekte von hBD1red und hBD1ox auf die cytoplasmatische Membran zu untersuchen. Im Gegensatz zu dem Membran Permeabilitäts Assay wird hier, sowie in den nachfolgenden Experimenten, kein bakterielles Membranmodell verwendet, sondern E. coli MC1000. Als Vorlage diente hier das Protokoll aus Nuding et al, 2006, welches an die hBD1 Anwendung hier angepasst wurde (siehe Kapitel 2.2.1.5). Dabei wird der Fluoreszenzfarbstoff DiBAC_4(3) zu den mit hBD1 inkubierten Bakterien gegeben. Dieser Farbstoff kann dann in depolarisierte Zellen eindringen und an intrazelluläre Proteine oder an die cytosolische Membran binden. Das Fluoreszenzsignal im FACS entspricht somit dem Anteil an depolarisierten Bakterien.

E. coli MC1000 wurde mit unterschiedlichen Konzentrationen an hBD1ox und hBD1red für 1 h inkubiert. Als Positivkontrolle diente in diesem Assay 50 µg/ml hBD3ox, da dieses Peptid nachweislich Membranschäden verursacht (Böhling et al, 2006; Sass et al, 2010). Bei einer Inkubation mit hBD1red wurde festgestellt, dass 80 % der behandelten Bakterien eine Depolarisierung aufweisen. Nach Zugabe von hBD1ox waren jedoch nur ca. 25 % der Bakterien depolarisiert. Zugabe von 0,01 % Essigsäure diente als Negativkontrolle, wobei hier 7 % der Bakterien eine depolarisierte Membran zeigten (Abbildung 9).

Abbildung 8: Effekt von hBD1 Redoxformen auf die Lipidmembran
Für die Messung der Durchlässigkeit von Lipidschichten wurde ein humanes Membranmodell Popc/cho (moleares Verhältnis 3:2) oder ein polares Lipidextrakt aus E. coli verwendet und der Austritt von Carboxyfluorescein aus den hergestellten Lipo- somen nach Inkubation mit hBD1ox oder hBD1red gemessen. Dargestellt ist die Durchlässigkeit in % nach 45 min Inkubation mit einer Standardabweichung (+/- SEM) aus drei Triplikaten. Produziert durch Adam Strömstedt (2.2.1.6).
Abbildung 9: HBD1red beeinflusst bakterielles Membranpotential

E. coli MC1000 wurde mit hBD1ox oder hBD1red in unterschiedlichen Konzentrationen 1 h inkubiert und ein membranpotential-sensitiver Farbstoff (DiBAC₄(3)) hinzugegeben und anschließend die Fluoreszenz mittels Durchflusszytometrie (FACs) gemessen. Als Kontrollen wurden Bakterien mit 50 µg/ml hBD3ox (+) oder mit 0,01 % Essigsäure (-) inkubiert. Die Anzahl an depolarisierten Bakterien wurde in Prozent mit +/-SEM aus drei unabhängigen Messungen angegeben.

Zusammenfassend zeigten drei unabhängige Methoden mit zum Teil unterschiedlichen Bakterien, dass hBD1red die bakterielle Membran als Target nutzt. Dagegen konnte bei hBD1ox nur eine Aktivität gegenüber Gram-negativen Bakterien nachgewiesen werden. Diese antimikrobielle Aktivität ist jedoch nicht mit Schäden an der Zellhülle oder der Membran assoziiert. Somit lässt sich schlussfolgern, dass hBD1 je nach Umgebungsbedingungen verschiedene Strategien für die antimikrobielle Wirkung gegen Bakterien besitzt.

3.2. Wirkmechanismus von hBD1ox auf Bakterien

In diesem Abschnitt wurde der Wirkmechanismus der oxidierten Form von hBD1 genauer untersucht. Anhand der antimikrobiellen Aktivitätstests, wie in 3.1 (Abbildung 5) beschrieben, wurden schon erste Anhaltspunkte für die Aktivität von hBD1ox beobachtet. Es stellte sich heraus, dass gerade Gram-negative Bakterien sehr sensitiv auf hBD1ox reagieren. Hierzu wurde dieser Effekt nun systematisch untersucht. Die Bakterien wurden entweder aerob oder anaerob (*E. coli* und *S. enteritidis*, Abbildung 10C) angezogen und der RDA unter den jeweiligen Wachstumsbedingungen durchgeführt. *E. coli* MC1000 und *S. enteritidis* waren als einzige Bakterien auch in der Lage unter anaeroben Bedingungen zu wachsen, sodass die Aktivität von hBD1ox unter diesen Bedingungen getestet werden konnte.
Es zeigte sich nochmals sehr deutlich, dass das reduzierte Peptid gegen alle getesteten Gram-positiven und Gram-negativen Bakterien antimikrobiell wirksam war (siehe Abbildung 10, vgl. Abbildung 5). Interessanterweise zeigten die getesteten Umgebungsbedingungen keinen Einfluss auf hBD1red.

Dahingegen ist die antimikrobielle Aktivität von hBD1ox sehr spezifisch. Wie oben erwähnt, ist hBD1ox nur gegen Gram-negative Bakterien antimikrobiell aktiv. Zudem zeigt sich, dass *E. coli* MC1000 und *S. enteritidis* unter anaerobe Bedingungen gegen hBD1ox völlig resistent sind (Abbildung 10C). HBD1ox ist somit spezifisch gegen Gram-negative Bakterien und nur unter aeroben Bedingungen aktiv.

Abbildung 10: Antimikrobielle Aktivität gegen Gram-positive vs. Gram-negative Bakterien

HBD1ox und hBD1red wurden gegen Gram-positive(A) und Gram-negative Bakterien(B) mittels RDA getestet. In (A) und (B) wurden Bakterien unter aeroben Bedingungen getestet und in (C) wurde der RDA mit *E. coli* MC1000 und *S. enteritidis* unter anaeroben Bedingungen durchgeführt. Die antimikrobielle Aktivität von 4 µg hBD1ox und hBD1red wurde durch Ausmessen der Hemmhöfe bestimmt. Das Probenloch besitzt einen Durchmesser von 2,5 mm (gestrichelte Linie) und wird nicht als antimikrobielle Aktivität gewertet. Gezeigt sind die Mittelwerte aus drei unabhängigen Experimenten mit +/- SEM.

Gram-positive und Gram-negative Bakterien unterscheiden sich vor allem in der Zusammensetzung der Zellwand und der Membran. Das Redoxsystem ist eine weitere spezielle Komponente, welche vor allem in Gram-negativen Bakterien vorkommt. *E. coli* besitzt ein spezielles Redoxsystem mit vielen beteiligten Proteinen in der cytosolischen Membran und dem angrenzenden periplasmatischen Raum. Aufgrund der Tatsache das hBD1ox gerade in Gram-negativen Bakterien, im Speziellen in *E. coli*, aktiv ist wurden in folgenden Experimenten *E. coli* Stämme mit Protein-knockouts in verschiedenen bakteriellen Kompartimenten verwendet.
3.2.1. Der Einfluss von bakteriellen Membran-assoziierten Proteinen auf die antimikrobielle Aktivität

Um den Einfluss bestimmter Gram-negativ-spezifischer Proteine auf die antimikrobielle Aktivität von hBD1 zu untersuchen, wurden in Kooperation mit Prof. Jean-Francois Collet (Brüssel) verschiedene bakterielle Knockoutstämme hergestellt. Die in dieser Arbeit verwendeten Knockout-Stämme weisen Deletionen in Porinen oder Kanalproteinen in der Außenmembran auf, welche eine mögliche Relevanz für den Eintritt von hBD1ox darstellen könnten. In weiteren Stämmen wurden noch Redoxproteine im Periplasma oder im Cytosol ausgeschaltet, da diese eine mögliche Veränderung des Redoxstatus von hBD1 bewirken könnten. Genauere Angaben zu diesen einzelnen Proteinen befinden sich im Material und Methodenteil (2.1.6).

Für die Untersuchung der Relevanz dieser Proteine (siehe Abbildung 3, schematisches Modell) wurden alle Proteinknockoutstämme mit hBD1ox oder mit hBD1red inkubiert und mittels RDA die antimikrobielle Aktivität der zwei hBD1 Redoxformen bestimmt. In Abbildung 11 sind die Ergebnisse aufgetrennt nach Lokalisation der Knockouts im Bakterium (A= Außenmembran, B = Cytosol, C= Periplasma) dargestellt. Auffällig war, dass die Aktivität von hBD1red in allen Knockoutstämmen keinen großen Unterschied zum Wildtyp zeigte. Auch durch hBD1ox waren keine starken Veränderungen der Aktivität bei Proteinknockouts in der Außenmembran und im Cytosol zu erkennen. Dennoch zeigte sich eine geringere Aktivität gegen E. coli mit Proteinknockouts im Periplasma. Auffällig war das Ergebnis bei E. coli ohne DsbA, welches ein Hauptbestandteil des bakteriellen Redoxsystems ist. Bakterien ohne DsbA scheinen fast komplett resistent gegen hBD1ox zu sein. Zusätzlich konnte beobachtet werden, dass Bakterien ohne DsbB deutlich weniger sensitiv auf hBD1ox reagierten, als der E. coli Wildtyp. Jedoch war es keine vergleichbare Resistenz wie bei Bakterien ohne DsbA. Um diesen Mechanismus im Detail zu untersuchen, wurde im nächsten Schritt zusätzlich mit Doppelknockout Stämme gearbeitet (Abbildung 12).
Abbildung 11: Einfluss von Membran-assoziierten Proteinen auf die antimikrobielle Aktivität von hBD1ox

E. coli MC1000 mit Proteinknockouts in der Außenmembran (A), Cytoplasma (B) oder Periplasma (C) wurden mit 2 µg hBD1ox oder hBD1red inkubiert und die antimikrobielle Aktivität durch Ausmessen der Hemmhöfe mittels RDA bestimmt. Das Probenloch besitzt einen Durchmesser von 2,5 mm (gestrichelte Linie) und wird nicht als antimikrobielle Aktivität gewertet. Dargestellt sind die Mittelwerte aus drei unabhängigen Experimenten mit +/- SEM.

3.2.2. Das Redoxsystem DsbA/DsbB beeinflusst die hBD1ox Aktivität

Um den Mechanismus von oxidiertem hBD1 noch genauer zu untersuchen wurde *E. coli* MC1000 mit Doppelknockout verwendet. Die ausgeschalteten Proteine sind Bestandteile im Redoxsystem und bauen Disulfidbrücken in ungefaltete (durch DsbA, DsbB) oder in falsch gefaltete (durch DsbC, DsbG) Proteine ein.

Im nachfolgenden RDA wurden die neuen Doppelknockoutstämme auf Sensitivität gegen hBD1ox getestet. Die deletierten Proteine haben keinen Einfluss auf die hBD1red Wirkweise, da die antimikrobielle Aktivität zwischen Mutante und Wildtyp keinen Unterschied aufwies. Bei Fehlen von DsbC und DsbG zeigt hBD1ox jedoch immer noch antimikrobielle Aktivität und es gab keinen Unterschied zu der Kontrolle (WT) (Abbildung 11). Es zeigte sich, dass DsbA und DsbB einen deutlichen Einfluss auf die antimikrobielle Aktivität von hBD1ox haben. Interessanterweise zeigte sich, dass Bakterien ohne DsbA und DsbB eine komplette Resistenz gegen hBD1ox aufweisen (roter Balken) und nicht mehr sensitiv auf hBD1ox reagieren. Im RDA konnte kein Hemmhof bei einer Inkubation mit hBD1ox mehr festgestellt werden, sodass nur noch das Stanzloch von 2,5 mm ausgemessen werden konnte.
Dazu ist ein repräsentativer Ausschnitt aus dem durchgeführten Experiment abgebildet. Dieser Ausschnitt zeigt deutlich den Unterschied zwischen Wildtyp und ΔdsbAΔdsbB. Zusätzlich sind die Hemmhöfe nach der hBD1red Inkubation zu sehen, dessen Wirkung unabhängig von DsbA/B ist.

Abbildung 12: Redoxproteine beeinflussen antimikrobielle Aktivität von hBD1ox
Es wurden 2 µg hBD1ox oder hBD1red gegen *E. coli* MC1000 WT, ΔdsbCΔdsbD und ΔdsbAΔdsbB eingesetzt und die Aktivität im RDA ermittelt. Dargestellt sind die Durchmesser der Hemmhöfe mit +/- SEM aus drei unabhängigen Experimenten. Das Probenloch besitzt einen Durchmesser von 2,5 mm (gestrichelte Linie) und wird nicht als antimikrobielle Aktivität gewertet. Ein repräsentativer RDA-Ausschnitt ist abgebildet.

In Spalte 1 ist sichtbar, dass aus dem Überstand von *E. coli* MC1000 ΔdsbAΔdsbB ein großer Anteil eines Proteins mit ca. 23 kDa isoliert wurde. Aus dem Pellet von *E. coli* MC1000 ΔdsbAΔdsbB pQE60::dsbB und pBAD33::dsbA wurde nach der Plasmidinduktion kein DsbA detektiert, was auf eine saubere Trennung von Überstand und Pellet schließen lässt (Spalte 2). In Spalte 3 ist eine leichte Detektion von DsbA zu erkennen. Diese Probe beinhaltet den Überstand

Abbildung 13: Nachweis von DsbA in bakteriellen Zellüberständen nach Plasmidinduktion
Westernblotanalyse mit 14 %igen Acrylamidgel von dem gesamten Zellextrakt aus E. coli MC1000 ΔdsbAΔdsbB pQE60::dsbB und pBAD33::dsbA (Spalte 1 = Überstand, Spalte 2 = Pellet) nach Plasmidinduktion mit 0,4 % Arabinose und 2 mM IPTG und dem Überstand aus E. coli MC1000 WT (Spalte 3). Als Positivkontrolle wurde das aufgereinigte Protein DsbA in Spalte 4 aufgetragen.

Wie in Abbildung 14 dargestellt, wurde die Aktivität von hBD1ox gegen die Doppelmutante ΔdsbAΔdsbB (-) und gegen die Doppelmutante mit den Plasmiden pQE60::dsbB und pBAD33::dsbA (+) nach Induktion durch 0,4 % Arabinose und 2 mM IPTG getestet. Ohne Plasmid (-) wurde keine Aktivität mit hBD1ox festgestellt. Der repräsentative Ausschnitt zeigt deutlich, dass kein Hemmhof zu sehen ist, was die Ergebnisse aus Abbildung 12 bestätigt. Nach Induktion der Plasmide wurde wieder ein Hemmhof beobachtet und somit die bakterielle Sensitivität gegen hBD1ox durch die DsbA/DsbB Proteine wiederhergestellt (Hemmhof im nebenstehenden RDA-Ausschnitt). Hier wurde somit nochmals gezeigt, dass der DsbA/DsbB Komplex für die Aktivität von hBD1ox essentiell ist.
Um zu überprüfen, ob der DsbA/DsbB Komplex hBD1 in vitro als Substrat erkennt, wurde hBD1red mit den beiden Oxidoreduktasen DsbA und DsbB in Anwesenheit von Coenzym Q8 inkubiert und mittels Massenspektrometrie die oxidierte Redoxform von hBD1 versucht zu detektiert.

Wie in Abbildung 15 dargestellt, wurde nach ca. 22 min das reduzierte hBD1 (10 µM) im verwendeten Kaliumphosphatpuffer detektiert. Die Zugabe von DsbA und Coenzym Q8 (Abbildung 15B) bewirkte eine Konversion zu der oxidierten Redoxform von hBD1, womit gezeigt wird, dass hBD1red ein Substrat von DsbA ist. DsbA führt zum Einbau von Disulfidbrücken in die reduzierte Redoxform von hBD1 und die resultierende oxidierte Version wurde über das QTOF detektiert. HBD1red konnte aber nicht vollständig umgesetzt werden, wodurch ebenfalls noch die oxidierte Form mit hoher Intensität detektiert wurde. Eine nahezu 100 %ige Umsetzung von reduziertem zu oxidiertem hBD1 erfolgte durch Zugabe von 150 nM DsbB. DsbB führt zu einer Re-Oxidation von DsbA und weitere Zyklen von Disulfidbrückeneinbau können durchgeführt werden. Die Intensität von reduziertem hBD1 war nur noch sehr gering (a.u. = 1,25 x 10^7). Dieser Versuch zeigt, dass hBD1 über den DsbA und DsbB oxidiert werden kann und somit kann dieser Komplex das humane Defensin als Substrat verwenden.
Abbildung 15: In vitro Oxidation von hBD1red durch bakterielle Periplasmaproteine
Reduziertes hBD1 (A) wurde mit Oxidoreduktasen DsbA (B) und zusätzlich mit DsbB (C) unter Anwesenheit von Coenzymen (Q8) inkubiert und die entstehenden Peptide mittels Massenspektrometer "Quadrupole time-of-flight mass spectrometer" (QTOF) analysiert. Ein repräsentativer Ausschnitt ist abgebildet.

3.2.2.1. Einschränkungen in der Motilität und LPS-Struktur sind nicht für die Resistenz verantwortlich

Die DsbA/DsbB Mutante weist zusätzlich eine deutlich reduzierte Beweglichkeit auf (Bardwell et al., 1991; Vertommen et al., 2008). Um mögliche Nebeneffekte auszuschließen, welche durch eine verringerte Motilität, aufgrund des Proteinknockouts von DsbA und DsbB, in den Bakterien entstehen könnten, wurden Bakterien mit defekten Flagellen Komponenten (Seo et al., 2012; Troge et al., 2012), sowie Bakterien mit einer veränderten LPS Struktur (Bainbridge et al., 2006; Gronbach et al., 2014) im RDA getestet.

Um einen möglichen Zusammenhang von DsbA mit dem Aufbau von Lipidmembranen und somit eine veränderten Zellhülle auszuschließen, wurden Bakterien verwendet, die eine Veränderung in der Lipid A Struktur aufweisen. In Abbildung 16C sind die Unterschiede der Fettsäuren und der daraus resultierenden Struktur des LPS dargestellt. *E. coli* mit einer Veränderung der htrB Expression besitzen ein chimäres LPS mit einer modifizierten Lipid A Struktur. Im Vergleich zur Lipid A Struktur aus dem *E. coli* Wildtyp enthält die Mutante JM83 (htrB- htrB_{PDC}+) ein Palmitat aus 16 Kohlenstoffen, dagegen fehlt dieses Palmitat vollständig bei JM83 htrB-. In Abbildung 16B und D sind die Ergebnisse aus dem RDA aufgezeigt. Jedoch wurde kein Unterschied in der antimikrobiellen Aktivität von hBD1ox und hBD1red zwischen Wildtyp und den einzelnen Mutanten entdeckt, wodurch auf einen LPS-unabhängigen Wirkmechanismus geschlossen werden kann. Eine eingeschränkte Beweglichkeit oder eine Veränderung der Außenmembran durch LPS Varianten beeinflussen die antibiotische Wirksamkeit von hBD1ox und hBD1red nicht, sodass hier detailliert gezeigt werden konnte, dass der DsbA/DsbB Komplex eine essentielle Notwendigkeit für die Wirksamkeit von hBD1ox darstellt.

Abbildung 16: Kein Einfluss der Aktivität von hBD1 auf weitere Bakterien mit Proteinknockouts

Verschiedene Flagellum- oder Lipid A Proteinknockout Stämme von *E. coli* Nissle (B) und *E. coli* JM83 (D) wurde mit 2 µg hBD1ox und 2 µg hBD1red inkubiert und die antimikrobielle Aktivität mittels RDA bestimmt. Das Stanzloch besitzt einen Durchmesser von 2,5 mm (gestrichelte Linie). Abgebildet sind drei unabhängige Experimente mit +/- SEM. Schematische Darstellung der deletierten Proteine im Flagellum (A) und der verwendeten Lipid A Strukturen (B), aus Bainbridge *et al*, 2006, mit Genehmigung von *Cellular Microbiology*.
3.2.2.2. Vergleich der Membranzusammensetzung von WT vs ΔdsbAΔdsbB

Im vorherigen Abschnitt wurde mit *E. coli* Nissle oder *E. coli* JM83 gearbeitet, um Nebeneffekte durch Motilität oder LPS-Komposition bei der Aktivität von hBD1ox auszuschließen. Die Doppelknockoutmutante besitzt jedoch den gleichen Hintergrund MC1000 wie der WT. In einem weiteren Versuch wurde der Einfluss von hBD1 auf die Membran untersucht, um sicherzugehen, dass durch die Deletion auch bei gleichem genetischem Hintergrund keine Änderung in der Membranzusammensetzung entstanden ist. Um einen Unterschied in der Membranzusammensetzung auszuschließen, wurde mit der Doppelknockoutmutante *E. coli* MC1000 ΔdsbAΔdsbB gearbeitet und als Vergleich der *E. coli* MC1000 Wildtypstamm (WT) aus Abbildung 9 nochmals aufgezeigt. Dafür wurde das Membranpotential nach Zugabe von Peptid analysiert und mit den Ergebnissen von *E. coli* MC1000 WT verglichen (Abbildung 9, Abbildung 17B). Erwartet wurde, dass das Membranpotential nach Zugabe von hBD1ox im Wildtyp ähnlich oder gleich ist wie in der Doppelknockoutmutante.

Die Doppelknockoutmutante wurde mit unterschiedlichen Konzentrationen an hBD1ox und hBD1red inkubiert und nach der Zugabe des Fluoreszenzfarbstoffes DiBAC₄(3) die Depolarisierung der Membran bestimmt. Als Positivkontrolle dienten 50 µg/ml hBD3ox. Die Ergebnisse zeigen hier deutlich, dass hBD1ox nur eine leichte Depolarisierung der cytosolischen Membran auslösen kann und etwa ca. 25 % der Bakterien dadurch depolarisiert sind (Abbildung 17A). Es wurde auch ein Unterschied der Depolarisation bei ansteigender hBD1ox Konzentration beobachtet. Die Negativkontrolle (behandelt mit 0,01% Essigsäure) zeigte eine ca. 20 %ige Depolarisierung. Jedoch zeigte hBD1red, wie auch im Wildtyp, eine stärkere Depolarisation von ca. 80 % abgetöteten Bakterien, somit konnte eine Änderung der Membranzusammensetzung bei genetischen Veränderungen ausgeschlossen werden.

Abbildung 17: Detektion von Zellmembranschäden durch Einlagerung eines Fluoreszenzfarbstoffes

E. coli MC1000 ΔdsbAΔdsbB wurde mit hBD1ox oder hBD1red in unterschiedlichen Konzentrationen inkubiert und ein membranpotential-sensitiver Farbstoff (DiBAC₄(3)) hinzugegeben und die Fluoreszenz mittels Durchflusszytometrie gemessen. Als Positivkontrolle diente 50 µg/ml hBD3ox. Die Höhe an depolarisierten Bakterien wurde in Prozent mit +/- SEM aus drei unabhängigen Experimenten angegeben.
HBD1ox hat somit keinen Einfluss auf das Membranpotential in der Doppelknockoutmutante und im Wildtyp. Es konnten durch diesen Assay keine Änderungen und keine Unterschiede in der Außenmembran von WT und Mutante detektiert werden. Deshalb wurde im nächsten Abschnitt mittels Elektronenmikroskop die Außenmembran der beiden \textit{E. coli} Stämme analysiert, um mögliche Unterschiede nach der Inkubation mit hBD1ox festzustellen.

3.2.3. Analyse der Morphologie mittels Elektronenmikroskopie

Für die Elektronenmikroskopie wurden die Bakterien für 2 h mit hBD1ox inkubiert, anschließend in Karnovsky-Lösung fixiert und die Strukturen an der Bakterienoberfläche mittels REM analysiert. Nach der Behandlung mit hBD1ox konnten Membranvesikel auf der Oberfläche der Bakterien detektiert werden. Im Vergleich zum Wildtyp zeigte die Mutante optisch weniger Vesikel als der Wildtyp (Abbildung 18).

Um eine genauere Auswertung der Anzahl der Membranvesikel auf der bakteriellen Oberfläche zu bekommen, wurde die Anzahl der Vesikel durch vier unabhängige Experten visuell ausgezählt und statistisch bestimmt (Abbildung 19). Nach der Auszählung zeigte sich, dass die Mutante im

![Abbildung 18: Analyse mittels REM nach hBD1ox Inkubation](image-url)

\textit{E. coli} MC1000 WT und \textit{E. coli} MC1000 dsbA\textit{dsbB} wurde mit hBD1ox oder 0,01 \% Essigsäure als Kontrolle für 2 h inkubierte. Im Anschluss folgte die Fixierung der Proben mit Karnovsky Reagenz und die Analyse der Oberflächenstruktur durch REM. Repräsentative Ausschnitte sind abgebildet.
Vergleich zum Wildtyp eine signifikant niedrigere Anzahl an Membranvesikeln hat, was auch mit einer niedrigeren Stressreaktion durch hBD1ox übereinstimmt. Durch die verringerte Anzahl an Membranvesikel bei der Mutante kann eine niedrigere Stressreaktion durch hBD1ox angenommen werden, welche auch durch die Resistenz gegenüber hBD1ox deutlich wird. Durch die Resistenz gegen hBD1ox könnte in der Mutante die Stressreaktion erniedrigt sein, was sich in einer verringerten Anzahl an Membranvesikel wiederspiegelt. Als Kontrolle wurden die Bakterienstämme mit 0,01 % Essigsäure behandelt, wodurch die Vesikelbildung minimal war (Abbildung 18).

Abbildung 19: Visuelle Auswertung der Membranvesikel
Die Anzahl an Membranvesikel durch hBD1ox wurde bei zehn Bakterien durch vier verschiedene Experten visuell bestimmt. Für die statistische Auswertung wurde ein „Student’s t-test“ verwendet. **p = 0,0031.
3.2.4. Lokalisierung von hBD1ox in bakteriellen Kompartimenten

Aufgrund der veränderten Membranvesikelanzahl wurde die Lokalisation von hBD1ox im Wildtyp und der Doppelmutante untersucht, um mögliche Unterschiede zwischen den Bakterien zu identifizieren.

Dafür wurden der Wildtyp und die Doppelmutante mit hBD1ox für 2 h bei 37 °C inkubiert und die Proben anschließend fixiert. Diese Proben wurden zunächst mit einem spezifischen Antikörper gegen hBD1ox inkubiert und danach mit einem sekundären Antikörper, welcher an einen 6 nm großen Goldpartikel gekoppelt ist, inkubiert. HBD1ox konnte somit in den bakteriellen Kompartimenten mittels Elektronenmikroskop nachgewiesen werden. Das oxidierte hBD1 wurde in allen Proben nachgewiesen und durch schwarze Punkte und Pfeile in Abbildung 20 markiert. Beim Wildtyp ist hBD1ox nur an der Außenmembran und im Periplasma in geringen Mengen detektiert worden. Im Cytosol konnte hingegen kein hBD1ox durch Antikörper detektiert werden. Im Vergleich dazu zeigt die Doppelmutante einen intakten Phänotyp und die Lokalisation von hBD1ox unterscheidet sich deutlich zum Wildtyp. In der Mutante wurde ebenfalls hBD1ox an der Außenmembran und im Periplasma detektiert, aber zusätzlich wurde eine große Menge des antimikrobiellen Peptids auch im Cytosol lokalisiert.

Abbildung 20: Immunogoldlabeling von hBD1ox zur Lokalisation in bakteriellen Kompartimenten

Bakterien wurden mit hBD1ox für 2 h inkubiert und anschließend fixiert (3 % Paraformaldehyd und 0,01 % Glutaraldehyd) und mit spezifischen Antikörpern gegen hBD1ox inkubiert. Die sekundären Antikörper wurden mit Goldpartikeln (6 nm) gekoppelt (schwarze Punkte) und die Bilder über Elektronenmikroskopie ausgewertet. Repräsentative Ausschnitte sind abgebildet. Vergrößerungsmaßstab = 2 µm.
Zusätzlich zu den objektiven Bildern aus der Immunogoldfärbung wurde insgesamt in 14 Bakterien visuell die Lokalisation von hBD1ox durch unabhängige Experten und nach Kriterien, welche im Material & Methodenteil beschrieben wurde, bestimmt (Abbildung 21). In der Mutante konnte eine hohe Anzahl an hBD1ox im Cytosol bestimmt werden. Zwischen Mutante und Wildtyp wurde im Periplasma kein großer Unterschied beobachtet.

Abbildung 21: Visuelle Auswertung der hBD1ox Lokalisation in Cytosol und Periplasma

Die Lokalisation und Menge des detektierten hBD1ox, durch spezifische Antikörper, welche mit Goldpartikel gekoppelt sind, wurde visuell von 14 Bakterien und durch drei unterschiedliche Experten bestimmt. Gezeigt wird hier eine statistische Auswertung mit Verwendung des „Student’s t-test“. *p < 0,05.

Aufgrund der Daten wird vermutet, dass hBD1ox sich länger im Periplasmaraum aufhalten kann wenn ein funktionsfähiges DsbA/DsbB System vorhanden ist und der Eintritt dadurch in das Cytosol blockiert wird. Da hBD1ox nur bei vorhandenem DsbA/DsbB System antimikrobiell aktiv ist, ist die Aktivität womöglich an eine hohe lokale Konzentration des Peptids im Periplasma gekoppelt.
3.3. Wirkmechanismus von hBD1red auf Bakterien

Detailliert wurde in Abschnitt 3.2 beschrieben, dass die Redoxformen von hBD1 nicht den gleichen Wirkmechanismus aufweisen und hBD1ox bestimmte periplasmatische Redoxproteine benötigt, um in Gram-negativen Bakterien antimikrobiell aktiv sein zu können. Um die unterschiedlichen Wirkmechanismen von hBD1ox und hBD1red noch genauer zu untersuchen, wurde in diesem Abschnitt der Fokus auf die reduzierte Form von hBD1 gelegt. Die dargestellten Ergebnisse aus Abschnitt 3.1 zeigen, dass hBD1 die Zellmembran zerstört und die Bakterien ein stark depolarisiertes Membranpotential aufweisen. Daher wurde hier zunächst durch Elektronenmikroskopie die Morphologie der Bakterien nach hBD1 Inkubation untersucht.

3.3.1. TEM- Analyse von hBD1 behandelten Bakterien

Für die Analyse der Morphologie wurde *E. coli* MC1000 WT mit hBD1ox (Abbildung 22) oder hBD1red (Abbildung 23) für 2 h bei 37 °C inkubiert, anschließend fixiert und mittels Elektronenmikroskop die Morphologie der einzelnen Bakterien analysiert. Übereinstimmend mit den vorherigen Versuchen (Kapitel 3.2) zeigte hBD1ox weder sichtbare Schäden auf die Zellwand oder Zellmembran, noch auf das Cytosol im Wildtyp (Abbildung 22). Auch mittels der Transmissionselektronenmikroskopie sind im Wildtyp Membranvesikel unterschiedlicher Größe zu erkennen (schwarze Pfeile), welche auch in Abbildung 18 schon visuell bestimmt und analysiert wurden.

![Abbildung 22: Analyse der Morphologie nach hBD1ox Inkubation](image)

Deutlichere Schäden wurden nach einer Behandlung mit hBD1red an der Außenmembran sichtbar (Abbildung 23). Es scheint, als würde sich zuerst die Außenmembran von der restlichen Zellwand ablösen, bevor es dann zu weiteren Ablösungen der Innenmembran kommt (siehe Vergrößerung und Pfeile, Abbildung 23A). Die Wirkung von hBD1red scheint viel stärker mit einer deutlichere Membranschädigung, was sich im RDA durch den klar abgegrenzten Hemmhof bei hBD1red zeigte. Im Vergleich zu hBD1ox, welches hauptsächlich im Periplasma lokalisiert ist, induziert hBD1red keine Bildung von Membranvesikel. Dies ist ein weiterer Hinweis auf unterschiedliche Mechanismen eines Peptids. Interessanterweise wurde um die Bakterien herum eine kompakte Struktur entdeckt (Abbildung 23, markiert durch Pfeile). Diese netzartige Struktur wurde jeweils in der Nähe der Außenmembran detektiert, wobei Teile der Außenmembran auch in die Struktur verwickelt sind (Abbildung 23C+D, markiert durch Pfeile).

Abbildung 23: Analyse der Morphologie nach hBD1red Inkubation
Nach einer Inkubation mit hBD1red für 2 h wurden die Bakterien mit Karnovsky-Reagens fixiert und die Zellhüllenschäden mittels TEM analysiert. Vergrößerungsmaßstab = 2 µm.
3.3.2. Analyse der netzartigen Struktur von hBD1red

Um weitere Hinweise über die unbekannte Struktur durch hBD1red zu erhalten, welche die Bakterien umgibt, wurde eine mögliche Ko-Lokalisation mit hBD1red durch spezifische Antikörper mittels Immunogoldfärbung nachgewiesen. Nach Inkubation mit hBD1red und spezifischen Primärantikörpern konnte durch zusätzliche Sekundärantikörper, gekoppelt mit 6 nm Goldpartikeln, die genaue Lokalisation von hBD1red bestimmt werden (Abbildung 24).

Es wurde eine hohe Menge an hBD1red außerhalb der Bakterien, sowie einen geringeren Anteil im Cytosol detektiert (rote Punkte). Die externe Struktur, welche die Bakterien umgibt, scheint mit der Lokalisation von hBD1red zu korrelieren, was vermuten lässt, dass hBD1red selbst diese Struktur bilden kann.

Hierfür wurden Proteine A gekoppelte Beads mit hBD1red (Abbildung 25C) oder hBD1red allei-
ne in TSB Medium (Abbildung 25D) inkubiert und auf Netzbildung untersucht. Es ist deutlich
sichtbar, dass hBD1red sowohl mit Protein A gekoppelte Beads, aber auch ohne jegliche bakteri-
ellen Komponenten ein Netzwerk bilden kann. Wie in Abbildung 18 zu sehen ist, ist die oxidierte
Form von hBD1 nicht in der Lage Netze zu bilden.

Der zusätzliche Mechanismus der Netzbildung durch die reduzierte Form von hBD1 zeigt ein
äußerst vielfältiges Strategiespektrum. HBD1 besitzt hierdurch unterschiedliche und voneinan-
der unabhängige Mechanismen gegen Bakterien. Im nächsten Schritt wurde die Netzstruktur
noch detaillierter charakterisiert.
3.3.3. Strukturanalyse der netzartigen Struktur durch hBD1red

Um zu überprüfen, ob in hBD1red ebenfalls ein Austausch an Aminosäuren die Netzbildung oder die antimikrobielle Aktivität verändert oder beeinflusst werden kann, wurde in folgenden Experimenten ebenfalls ein Aminosäureaustausch vorgenommen.

3.3.3.1. Eigenschaften von hBD1red_Abu

Um den Einfluss von Cysteinen in der Funktion von hBD1red zu überprüfen wurden alle Cysteine durch das sterische Analogon α-Aminobuttersäure ausgetauscht und das neu modifizierte hBD1red (hBD1red_Abu) auf Aktivität und Netzbildung überprüft. In Abbildung 26 ist die ursprüngliche Sequenz, sowie die modifizierte Version gezeigt. In dieser Arbeit wird die modifizierte Version als hBD1red_Abu deklariert. Durch das Analogon α-Aminobuttersäure ist hBD1 nicht mehr in der Lage Disulfidbrücken auszubilden.

![Abbildung 26: Schematische Darstellung der modifizierten Sequenz von hBD1red_Abu](image-url)
Mit Hilfe der modifizierten Version, hBD1red_Abu, wurde zuerst überprüft, ob Cysteine in hBD1red eine Rolle bei der antimikrobiellen Aktivität gegen *E. coli* MC1000 spielen. Dazu wurde *E. coli* MC1000 mit hBD1red oder mit hBD1red_Abu inkubiert und mittels RDA die antimikrobielle Aktivität getestet. Nach der Auswertung zeigte sich deutlich, dass hBD1red ohne Cysteine eine verringerte Aktivität besitzt (Abbildung 27).

![Abbildung 27: Antimikrobielle Aktivität von hBD1red_Abu](image)

E. coli MC1000 WT wurde mit 2 µg hBD1red oder mit hBD1red_Abu inkubiert und die antimikrobielle Aktivität mittels RDA bestimmt. Das Stanzloch besitzt einen Durchmesser von 2,5 mm (gestrichelte Linie). Abgebildet ist der Mittelwert aus drei unabhängigen Experimenten mit +/- SEM.

Für die Aktivität scheint es wichtig zu sein, dass Cysteine sich in der Sequenz befinden, um mögliche Disulfidbrücken zu knüpfen. Im nächsten Schritt wurde deshalb die Netzbildung überprüft. Dafür wurde *E. coli* MC1000 und Protein A gebundene Beads mit hBD1red_Abu inkubiert und im Rasterelektronenmikroskop auf Netzbildung untersucht.

Wie in Abbildung 28 gezeigt, sind nach Behandlung mit hBD1red_Abu Bakterien nur vereinzelt zu finden und es ist keine Netzbildung zu erkennen. Auch nach der Inkubation mit Beads wurde keine Netzbildung durch hBD1red_Abu beobachtet. Diese Versuche beweisen, dass Cysteine essentiell für die Aktivität und für die Netzbildung von hBD1red sind.

![Abbildung 28: Rasterelektronenmikroskopie von E. coli nach Behandlung mit hBD1red_Abu](image)

E. coli MC1000 WT oder Protein A - Beads wurden mit hBD1red_Abu für 2 h inkubiert. Im Anschluss folgte die Fixierung der Proben mit Karnovsky Reagenz. Es ist jeweils ein repräsentativer Ausschnitt abgebildet.
3.4. Inaktivierung von hBD1red durch bakterielle Proteasen

3.4.1. \textit{In vivo} Nachweis von hBD1red Fragmenten

Da die bisherigen Versuche \textit{in vitro} durchgeführt wurden, wurde hier mittels Massenspektrometrie (QTOF) überprüft, ob diese hBD1- Fragmente auch in bakteriellen Überständen und somit \textit{in vivo} entstehen könnten und ob bakterielle Proteasen in der Lage sind die gleichen Fragmente wie humanes Trypsin zu bilden.

Zunächst wurde \textit{E. coli} MC1000 mit dem Volllängen Peptid hBD1red für 2 h inkubiert und der Überstand nach dem Zentrifugationsschritt mittels Massenspektrometrie auf hBD1 Fragmente untersucht (Abbildung 29A). Um mögliche Artefakte mit dem synthetischen hBD1red auszuschließen, wurde eine \textit{in vitro} Reduktion durch das Thioredoxinsystem (200 nM Thioredoxinreduktase und 3 µM Thioredoxin in 100 mM Kaliumphosphatpuffer) durchgeführt, anschließend mit Bakterien inkubiert und der gewonnene Überstand im QTOF auf hBD1- Fragmente überprüft (Abbildung 29B). Es wurde jeweils aus den Überständen in (A) und (B) ein Peak mit einer hohen Intensität detektiert. Dieser stellte sich in beiden Fällen als das verkürzte Fragment hBD1red\textsubscript{AS1-29} heraus, welches potentiell \textit{in vivo} durch bakterielle Proteasen entstehen könnte.
Abbildung 29: Detektion von verkürztem hBD1red – Fragment

Im Überstand von *E. coli* wurde nach 2 h Inkubation mit hBD1red (A) und mit in 100 mM Kaliumphosphatpuffer *in vitro* reduziertem hBD1 und Thioredoxin-Mix (B) das verkürzte Fragment hBD1red_AS1-29 detektiert. Hierfür wurde in (B) 50,9 µM hBD1ox mit 200 nM Thioredoxinreduktase und 3 µM Thioredoxin reduziert und anschließend mit Bakterien inkubiert.
3.4.1.1. Antimikrobielle Eigenschaften von hBD1red_AS1-29

Bekannt wurde schon aus Bjoern O Schroeder, Wu, et al., 2011, dass das hBD1red_AS1-29 keine Aktivität gegen anaerobe Bakterien zeigt. Hier wurde nun die Aktivität von hBD1red_AS1-29 und von dessen restlichen Fragment, dem sogenannten Heptapeptid, auf verschiedenen Bakterien spezies, unter anderem gegen E. coli MC1000 im RDA getestet (Abbildung 30). Überraschenderweise zeigte sich, dass hBD1red_AS1-29 und das Heptapeptid gegen alle hier getesteten Bakterien keinerlei antimikrobielle Aktivität aufwies.

Abbildung 30: Aktivitätsmessung von hBD1 und dessen Fragmenten auf Bakterien

E. coli MC1000 WT, S. aureus und B. subtilis 168 trpC2 wurden mit 127,05 µM (~ 2 µg hBD1red) hBD1red Fragmenten inkubiert und die antimikrobielle Aktivität mittels RDA bestimmt. Das Stanzloch besitzt einen Durchmesser von 2,5 mm (gestrichelte Linie). Abgebildet ist der Mittelwert aus drei unabhängigen Experimenten mit +/- SEM.

Da keine Aktivität von hBD1red_AS1-29 und Heptapeptid gegen die drei getesteten Stämme zu erkennen war, wurde nochmals mittels des sensitiveren Luciferase Assay ein möglicher Einfluss auf die Zellwand durch die inaktiven Fragmenten überprüft (Abbildung 31). Jedoch wurde auch hier keine Aktivität in Form von Zellhüllenstress durch verschiedene Konzentrationen (0,04 – 80 µM) an hBD1red_AS1-29 (A) und dem dazugehörigen Heptapeptid (B) ausgelöst. Lediglich eine minimale Aktivität des Promotors konnte durch hBD1red_AS1-29 festgestellt werden. Diese Ergebnisse stimmen mit den Beobachtungen aus dem RDA überein und zeigen, dass die getesteten Fragmente von hBD1 keine antibiotische Wirkung, auf die hier getesteten Bakterien, aufweisen.
3.4.1.2. HBD1red_AS1-29 zeigt Netzbildung mit Bakterien

Aus den zuvor dargestellten Versuchen zeigte sich, dass die im Überstand detektierten Fragmente hBD1red_AS1-29 und dessen restliches Heptapeptid vollständig inaktiv sind und keinerlei antibiotische Wirkung mehr aufweisen. Um weitere Details über den Wirkmechanismus von hBD1red zu erfahren, wurde überprüft, ob eine Spaltung zu hBD1red_AS1-29 und dem Heptapeptid auch die Netzbildung beeinträchtigt oder sogar die Netzbildung vollständig inhibiert werden kann. Bakterien wurden dafür mit hBD1red_AS1-29 oder mit Heptapeptid inkubiert und nach der Fixierung mittels REM auf Netzbildung analysiert (Abbildung 32). Erstaunlicherweise zeigte sich eine deutliche Netzbildung bei hBD1red_AS1-29, wohingegen der restliche Teil, das Heptapeptid, keine Netzstrukturen ausgebildet hat.

Abbildung 32: Nachweis von Netzstrukturen von hBD1 Fragmenten mittels REM

E. coli MC1000 wurde mit hBD1red_AS1-29 oder mit dem kurzen Fragment Heptapeptid für 2 h inkubierte. Im Anschluss folgte die Fixierung der Proben mit dem Karnovsky Reagenz. Es ist jeweils ein repräsentativer Ausschnitt abgebildet.
Zusammenfassend zeigen die Ergebnisse, dass das Volllängenpeptid hBD1red zur Bildung von netzartigen Strukturen in der Lage ist. Darüber hinaus besitzt dieses Peptid auch antimikrobielle Eigenschaften. Interessanterweise benötigt hBD1 seine Cysteine, sowohl für die antibiotische Aktivität, als auch für die Netzbildung. Des Weiteren konnte im Überstand von, mit hBD1red behandelten, *E. coli* MC1000 das vollständige Peptid nicht mehr detektiert werden. Stattdessen wurde nur eine, um sieben C-terminale Aminosäuren verkürzte Version (hBD1red_AS1-29) gefunden.

3.4.2. Einfluss der bakteriellen Proteasen auf hBD1

Um einen Nachweis zu erhalten, ob bakterielle Proteasen an der Fragmentierung von hBD1red beteiligt sind (Abbildung 33), wurden im nächsten Versuch die bakteriellen Proteasen durch einen Inhibitormix geblockt und anschließend die Bildung von Fragmenten untersucht.

![Abbildung 33: Schematische Darstellung der möglichen hBD1 Fragmentierung durch bakterielle Proteasen](image)

E. coli MC1000 wurde mit verschiedenen Verdünnungen des Proteaseinhibitormixes vorinkubiert und anschließend hBD1red dazu gegeben (Abbildung 34). Als Kontrolle wurde anstelle von hBD1red 0,01 % Essigsäure zu den Bakterien gegeben, um eine potentiell toxische Wirkung des eingesetzten Proteaseinhibitors auszuschließen. Nach einer Inkubation von 30 min wurde das bakterielle Wachstum nach 6 h bei OD$_{600}$ gemessen und in Abbildung 34 dargestellt.

Es war zu erwarten, dass die bakteriellen Proteasen durch den Inhibitormix gehemmt werden. Hierdurch sollte eine Spaltung des aktiven hBD1red in die inaktiven Fragmente, hBD1red_AS1-29 und Heptapeptid, verhindert werden. Nach dieser Hypothese sollte daher hBD1red länger in seiner aktiven Form vorliegen und das bakterielle Wachstum über einen größeren Zeitraum inhibieren. Die Kontrolle zeigt ein konstantes Wachstum bei allen eingesetzten Inhibitormengen, sodass eine toxische Wirkung alleine durch den Proteaseinhibitormix ausgeschlossen werden kann. Dies lässt darauf schließen, dass bakterielle Proteasen hBD1red in die Fragmente
hBD1red_AS1-29 zerteilen können und das antimikrobielle Peptid somit inaktiviert werden kann. Durch die Inhibierung dieser Proteasen und den somit verhinderten Abbau von hBD1 ist die toxische Wirkung auf die Bakterien länger und stärker.

Abbildung 34: Einfluss von Protease-inhibitoren auf die hBD1red Aktivität

E. coli wurde mit unterschiedlichen Mengen an bakteriellen Proteaseinhibitoren-Mix inkubiert und anschließend hBD1red (schwarz) oder 0,01 % Essigsäure als Kontrolle (grau) zugegeben. Mittels OD_{600} wurde eine Wachstumsgerade nach 6 h erstellt. Mit Zunahme der Inhibitormenge wird das bakterielle Wachstum weniger. Zu sehen ist der Mittelwert von drei voneinander unabhängige Experimente mit +/- SEM.

Die Ergebnisse zeigen, dass Bakterien einen Abwehrmechanismus entwickelt haben, indem sie durch die Produktion von Proteasen hBD1 zerteilen können (Abbildung 34). Die entstehenden Fragmente verfügen über keine antibiotische Wirkung mehr. Dennoch ist das Hauptfragment (Aminosäure 1-29) in der Lage die Bakterien in einer Netzstruktur einzuschließen.

Im nächsten Kapitel wurde die Funktionalität der Netze überprüft und analysiert, inwiefern diese Netze Bakterien lokalisiert festhalten können und somit eine mögliche Verbreitung von Bakterien *in vivo* verhindert werden kann.
3.5. Funktioneller Nachweis der Netzstruktur

Um die Funktion der hBD1-Netze zu untersuchen, wurde überprüft, ob diese Netze die Translokation von Bakterien verhindern können. Dafür wurde ein Transmigrationsassay etabliert, bei diesem die Migration der Bakterien über ein Filter-Transwell System gemessen wurde.

3.5.1. Etablierung eines Transmigrationsassays

Abbildung 35: Schematisches Modell des Transwell Membran Assays

Bakterien welche durch das Netz gefangen wurden sind nicht mehr in der Lage durch die Membran in das TSB Medium zu diffundieren. Sobald keine Netzbildung zustande kommt können die Bakterien die Membran durchqueren und im unteren Abschnitt kann die optische Dichte nach 1 h gemessen werden.
3.5.1.1. *K. pneumoniae* als resistentes Bakterium gegen hBD1

Um falsch-positive Ergebnisse durch eine antibiotische Wirkung von hBD1red auszuschließen, musste ein resistentes Bakterium gegen die zu testenden Peptide eingesetzt werden. Durch Vordaten wurde bekannt, dass *K. pneumoniae* eine komplette Resistenz gegen hBD1ox und hBD1red im RDA aufweist. Um dies zu bestätigen, wurde ein Trübungsassay durchgeführt, um durch die sensitivere Methode genauere Erkenntnisse über die Aktivität der zu testenden Substanzen gegen *K. pneumoniae* zu gewinnen.

Abbildung 36: Aktivitätsmessung gegen *K. pneumoniae* mittels Trübungsassay

Die Wachstumshemmung nach 12 h wurde in einem Trübungsassay verfolgt und das Wachstum nach verschiedener Zugaben von Peptiden in % zur Positivkontrolle mit +/- SEM aus drei unabhängigen Experimenten dargestellt. Die Positivkontrolle wurde mit 0,01 % Essigsäure behandelt.
3.5.2. HBD1 Netze verhindern bakterielle Diffusion

Für den funktionellen Nachweis von hBD1red und der damit verbundenen Diffusionsbarriere von Bakterien wurde das resistentete Bakterium *K. pneumoniae* verwendet. Aus den vorherigen Daten zeigte sich, dass hBD1ox und hBD1red_Abu sich als Negativkontrolle eignen, da diese Peptide keine Netzstruktur ausbilden. Dagegen sollte hBD1red, sowie hBD1red_AS1-29 eine Diffusionsbarriere darstellen. Chu et al., 2012; Schroeder et al., 2014 zeigten, dass HD6ox und HD6red ebenfalls in der Lage sind Netze auszubilden. In diesem Versuch konnten diese Peptide somit als Positivkontrolle dienen. Nachdem die Membran mit dem jeweiligen Peptid vorinkubiert wurde und die Suspension aus *K. pneumoniae* zugegeben wurde, konnte nach 2 h das bakterielle Wachstum detektiert werden. Dargestellt wurde das bakterielle Wachstum in % zur Positivkontrolle (Abbildung 37). Bei einer Inkubation mit hBD1ox und hBD1red_Abu konnte eine hohe Menge an bakteriellem Wachstum im unteren Well detektiert werden. Dies zeigt, dass Bakterien nicht zurückgehalten werden und durch den Filter und dessen Membran diffundieren können.

Diese Daten gleichen sich zu den Ergebnissen aus dem REM, welche keine Netzbildung der Peptide mit Bakterien zeigen. Jedoch, wenn der Filter mit hBD1red, HD6ox, oder hBD1red_AS1-29 inkubiert wurde, konnte kein bakterielles Wachstum im TSB Medium detektiert werden. Aus diesem Assay lässt sich schlussfolgern, dass hBD1red funktionelle Netze ausbilden kann, welche die Bakterien einfängt und zurückhält und somit eine bakterielle Verbreitung stoppt ohne das eine zwingende antimikrobielle Wirkung vorhanden sein muss.

![Abbildung 37: Transmigrationsassay mit *K. pneumoniae*](image)

Nach zwei Stunden wurde das bakterielle Wachstums von *K. pneumoniae* im unteren Well gemessen und % zur Kontrolle (behandelt mit hBD1ox) aufgetragen. Keine signifikante Anzahl an Bakterien wurde bei Peptiden mit Netzbindung detektiert (hBD1red, hBD1red_AS1-29, HD6ox). Ohne Netzbildung wurde eine hohe Anzahl an Bakterien gemessen (hBD1ox, hBD1red_Abu). Dargestellt sind drei unabhängigen Experimenten mit +/- SEM.
4 Diskussion

Im Rahmen dieser Arbeit konnten neue Daten zu der antimikrobiellen Aktivität von verschiedenen Redoxformen von hBD1 erhoben werden. Neben der Analyse des Aktivitätspektrums wurde das Zieltarget von hBD1 untersucht. Es konnte hier zum ersten Mal gezeigt werden, dass ein antimikrobielles Peptid mehrere Strategien aufweisen und Bakterien auf unterschiedliche Weise im Wachstum hemmen oder zerstören kann. Hierbei spielen die Umgebungsbedingungen eine entscheidende Rolle, da diese verantwortlich für die unterschiedlichen Wirkungsvarianten von hBD1 sind. Im letzten Kapitel wurden die Strategien der Bakterien untersucht, die es ihnen ermöglicht, sich vor dem Angriff von hBD1 zu schützen. Dabei zeigte sich, dass bakterielle Proteasen in der Lage sind hBD1red zu spalten und somit dessen Wirkung abzuschwächen. Im Folgenden werden einige verwendete Methoden und erzielte Ergebnisse diskutiert und eine resultierende Hypothese über den in vivo Wirkmechanismus von den unterschiedlichen hBD1 Redoxformen ausgearbeitet.

4.1. Antimikrobielle Peptide als alternative Antibiotika

Dennoch wird immer wieder diskutiert, warum seit der Entstehung dieser antimikrobiellen Moleküle kaum eine Resistenz bei Bakterien gebildet wurde.

4.1.1. hBD1- ein unterschätztes Defensin

Erste Daten mit den unterschiedlichen Redoxformen zeigten, dass das Wirkspektrum sich deutlich von hBD1red zu hBD1ox unterscheidet (Abbildung 5). HBD1ox zeigte nur eine antimikrobielle Aktivität gegen die getesteten Gram-negativen Bakterien, dagegen war die reduzierte Form deutlich toxischer und zeigte keine Spezifität auf einen Gramstatus. HBD1red zeigte in Gram-negativen, aber auch in Gram-positiven Bakterien eine starke bakterizide Wirkung (Abbildung 5). Aufgrund der deutlichen Unterschiede in den einzelnen Wirkspetren wurden die Wirkmechanismen der einzelnen Redoxformen von hBD1 genauer untersucht.

4.2. Ein antimikrobielles Peptid mit multiplen Wirkmechanismen

In dieser Arbeit wurden die Unterschiede der beiden Redoxformen von hBD1 herausgearbeitet und deren Zieltargets charakterisiert und lokalisiert.

Im RDA wies hBD1ox antimikrobielle Aktivität ausschließlich gegen Gram-negative Bakterien auf, während hBD1red starke bakterizide Eigenschaften sowohl gegen Gram-positive als auch Gram-negative Bakterien in den RDAs zeigte. Die Durchmesser der Hemmhöfe bei *E. coli* waren von HBD1ox und hBD1red nahezu identisch. Die unterschiedlichen Redoxformen von hBD1 führen zu verschiedenen Tertiärstrukturen, welche sich in ihrer Diffusionsfähigkeit unterscheiden können. Daher ist der Durchmesser der Hemmhöfe nur ein Anhaltspunkt auf die antimikrobielle Wirksamkeit der beiden Varianten. Deshalb kann daraus keine Stärke der Aktivität ermittelt werden. Um die bakterizide Eigenschaft beider Formen zu vergleichen, wurde ein Trübungsassay durchgeführt. Anders als erwartet, konnte nur hBD1red die bakterielle Kultur von *E. coli* im Trübungsassay sterilisieren. Der sensitivere Trübungsassay zeigte, im Gegensatz zu der ähnlichen Aktivität beider Redoxformen im RDA, eine verringerte Aktivität von hBD1ox gegen *E. coli*. Dies kann entweder auf eine schwache bakterizide Wirkung von hBD1ox hinweisen, da nach einiger Zeit hBD1ox behandelte Bakterien nahezu die gleiche Wachstumskurve zeigten wie die Kontrolle. Möglicherweise ist auch ein indirekter Mechanismus von hBD1ox, wie das Auslösen von Autolyse im Inneren der Bakterien denkbar. Spätere Aufnahmen mittels REM zeig-
ten zudem deutliche Membranvesikel auf der Zelloberfläche. Die Bildung von Membranvesikel korreliert oft mit erhöhtem Zellstress und induzierter Zelllyse (Brogden, 2005; Chileveru et al., 2015). Diese generierten Daten zeigten, dass ein humanes Peptid je nach Umgebungsbedingung unterschiedliche Strategien für die antimikrobielle Aktivität besitzen kann.

Hier löste das reduzierte hBD1 Zellhüllenstress bei den verwendeten B. subtilis Reporterstämme aus. Allerdings konnte nach einer Inkubation mit oxidiertem hBD1 keine Stressreaktion der Zellhülle bei den Bakterien detektiert werden. Der angewendete Luciferase-Assay ist in diesem Kontext in seiner Aussage sehr limitierend, da hBD1ox gegen B. subtilis im RDA ohnehin kaum bis gar keine antimikrobielle Aktivität zeigte. Aus diesem Grund wurden zwei weitere Membranaktivitätsassays durchgeführt, um genauere Aussagen über die möglichen unterschiedlichen Strategien der einzelnen Redoxformen von hBD1 zu bekommen. In zwei weiteren Assays (FACS, Membranpermeabilitätsassay) wurde wiederum die Zellhülle als Target von hBD1red nachgewiesen (Abbildung 8, Abbildung 9). In den einzelnen Versuchen wurde meist hBD3 als Positivkontrolle verwendet, da dieses ebenfalls Zellstress auslösen kann, indem es die Membran durch Porenbildung schädigt (Böhling et al., 2006; Yount & Yeaman, 2013). Beide Methoden zeigten den Verlust von Membranstabilität (Abbildung 7, Abbildung 8) und sogar einen kompletten Zusammenbruch des bakteriellen Membranpotentials (Abbildung 9). HBD1ox zeigte in diesen neuen Setups mit E. coli MC1000 ebenfalls keine Auswirkungen auf die Zellmembran, obwohl im RDA eine gleichstarke antimikrobielle Aktivität im Vergleich zu hBD1red detektiert werden konnte. Diese Daten zeigen, dass hBD1red eine Membranzerstörung als direkten antimikrobiellen Mechanismus aufweist. Dies waren die ersten Hinweise, dass hBD1ox und hBD1red definitiv unterschiedliche Wirkmechanismen besitzen. Zudem weisen die Daten darauf hin, dass dieselbe Aminosäureabfolge mehrere Strategien gegen Mikroorganismen besitzen kann, wobei die Struktur des Peptids direkt von seiner Umgebung in vivo abhängig ist. Diese Tatsache wurde bisher noch nicht beschrieben. Die meisten Peptide zeigen keine unterschiedlichen Mechanismen innerhalb ihrer Redoxformen (Chu et al., 2012; Schroeder et al., 2014). Die Auswirkungen von hBD1red auf die Membran wurden in Kapitel 0 genauer diskutiert. Jedoch resultiert daraus die Frage, welche Angriffspunkte hBD1ox verwendet, um die Bakterien in ihrem Wachstum zu beeinträchtigen. Die Daten aus dem Trübungssassays zeigten ein deutlich verzögertes Wachstum.
Zusätzlich waren die Hemmhöfe in den RDAs relativ groß, was auf eine bakterizide Wirkung des Peptids hinweist. Um die einzelnen Strategien für den Wirkeffekt genauer zu charakterisieren, wurde im Folgenden jede Redoxform separat untersucht. Hierbei wurden die Lokalisations- und die bakterielle Morphologie betrachtet, um Rückschlüsse auf mögliche Zieltargets zu finden. Anschließend wurde mit entsprechenden Assays der mögliche Mechanismus genauer überprüft. Es wurde nach möglichen Interaktionspartnern von hBD1ox in den einzelnen bakteriellen Membranschichten in Gram-negativen Bakterien gesucht.

4.2.1. Die antimikrobielle Strategie von hBD1ox

Die antimikrobielle Aktivität von oxidiertem hBD1 zeigte hier deutlich eine Spezifität gegen Gram-negative Bakterien unter aeroben Bedingungen. Zudem ist die bakterizide Wirkung von hBD1ox in Versuchen mit Flüssigmedium deutlich schwächer als die reduzierende Redoxform von hBD1. Das natürliche Vorkommen von hBD1ox ist eher in Körperregionen mit Sauerstoffanwesenheit, wo infolgedessen Bakterien vorkommen, welche eine aerobe Lebensweise bevorzugen.

Einige Gram-negative Bakterien wie A. baumannii konnten in dem anaeroben Setup der hier durchgeführten Versuche nicht überleben, sodass nur E. coli und S. enteriditis unter anaeroben Bedingungen getestet wurde. Gerade Gram-negative Bakterien unterscheiden sich zu anderen Bakterien im Aufbau der Zellhülle, sowie dem Vorhandensein eines speziellen Redoxsystems im Periplasma, welches vor allem in aeroben Bedingungen aktiv ist (Messens & Collet, 2006; Heras et al., 2009; Paxman et al., 2009). Das Redoxsystem wurde in E. coli schon sehr detailliert untersucht, sodass es mit den Mechanismen von anderen Gram-negativen Bakterien verglichen werden kann (Heras et al., 2009). Die Hauptbestandteile dieses Redoxsystems sind zwei Oxidoreduktasen DsbA und DsbB, deren Bedeutung im nächsten Abschnitt ausführlicher diskutiert wird. Durch einen Vergleich des Gens von DsbA aus E. coli, mit verschiedenen anderen Bakterien, konnte z. B. eine 85,6 %ige Übereinstimmung mit einem Gen aus Gram-negativen S. enteriditis entdeckt werden (Heras et al., 2009). Da hBD1ox nur eine antimikrobielle Aktivität gegen Gram-negative Bakterien zeigt, wird möglicherweise das Redoxsystem indirekt oder direkt von hBD1ox zur Ausübung der antimikrobiellen Aktivität verwendet.

4.2.1.1. Das Redoxsystem ist essentiell für die Aktivität von hBD1ox

Die Untersuchung der antimikrobiellen Wirkung von hBD1ox auf verschiedene Bakterienmutanten mit Proteinknockout in bakteriellen Kompartimenten wie Außenmembran, Cytosol oder in dem oben genannten Redoxsystem (Abbildung 11) zeigt deutlich, dass die Oxidoreduktasen DsbA und DsbB eine essentielle Rolle bei der Aktivität von hBD1ox darstellen. Die Bakterien, welche kein DsbA oder DsbB mehr enthalten, weisen eine erhöhte Resistenz gegen hBD1ox auf.
Bakterien mit einem Doppelknockout von DsbA und DsbB werden komplett resistent gegen die oxidierte Form des Defensins. HBD1red hat trotz der Proteinknockouts eine unveränderte antimikrobielle Wirkung gegen die getesteten Mutanten. Dies verdeutlicht nochmals, dass diese Redoxform des Peptids einen anderen Wirkmechanismus besitzt, als die oxidierte Form.

Aufgrund der fehlenden Periplasmaschicht und der verdickten Peptidglykanschicht in Gram-positiven Bakterien müssen Peptide diese Membran erst überwinden oder zu einer Porenbildung fähig sein, um Bakterien angreifen oder schädigen zu können. Die durchgeführten Assays bestätigten, dass hBD1ox keine Membranschäden oder Depolarisierung der Membran verursacht (Abbildung 7, Abbildung 8, Abbildung 9).

Zusätzlich zeigen die bisherigen generierten Daten aber, dass hBD1ox durch die Außenmembran diffundiert und sich im Periplasma Gram-negativer Bakterien ansammelt. In diesem Kompartiment konnte hBD1ox mit dem dort lokalisierten Redoxsystem Gram-negativer Bakterien interagieren. Um die Vermutung zu bekräftigen, wurde im nächsten Schritt DsbA und DsbB auf zwei unterschiedlichen Plasmiden in den Doppelknockoutstamm konditionell exprimiert. Nach erfolgreicher Plasmidexpression, welche zuvor mittels Westernblot überprüft wurde, konnte die Sensitivität gegenüber hBD1ox wieder hergestellt werden. Diese Ergebnisse beweisen, dass eben diese Proteine, DsbA und DsbB, eine entscheidende Rolle bei der Aktivität von hBD1ox spielen. Dennoch ist immer noch nicht genau bekannt, an welcher Stelle des antimikrobiellen Prozesses DsbA und DsbB beteiligt sind und wie diese Proteine mit hBD1ox interagieren.

Es können ca. 300 Proteine, darunter 40 % Zellhüllenproteine und Proteine aus dem Fortbewegungsapparat als Substrat von DsbA zugeordnet werden (Bardwell et al, 1991; Vertommen et al, 2008; Dutton et al, 2008). Die beschriebenen Substrate von DsbA sind fast ausschließlich größere Proteine, weshalb hier überprüft wurde, ob kleine Peptide, wie das reduzierte hBD1,
Diskussion

Zusammenfassend zeigen die Daten, dass DsbA und DsbB eine Schlüsselrolle in der antimikrobiellen Aktivität von hBD1ox in E. coli spielen. Dies ist eine bisher unbeschriebene Strategie, was neue Einblicke in die Mechanismen der noch teils unerforschten Defensine bringt. Es konnte jedoch mittels massenspektrometrischer Methode, sowie weiteren Versuchen mit bakteriellen Knockoutmutanten nicht ausgeschlossen werden, dass das Redoxsystem mit DsbA und DsbB nur als ein sekundärer Faktor in der Aktivität von hBD1ox dient. Auf der Basis, dass die Doppelmutante eine unerwartete Resistenz gegen hBD1ox zeigte, wurde in den nächsten Versuchen diese Mutante im Vergleich zu E. coli Wildtyp untersucht, um die Ursachen der Resistenz zu untersuchen.

4.2.1.2. Lokalisierung von hBD1ox in E. coli

Um kleine Peptide, wie Defensine, in Bakterien nachweisen zu können und deren bakterielles Zieltarget zu identifizieren wurde hier eine spezielle Technik verwendet. Oft werden kleine Peptide von weniger als 6 kDa mit einem Fluoreszenzmarker versehen, um die Lokalisation untersuchen zu können (Sochacki et al., 2011; Chileveru et al., 2015). Es kann jedoch nicht ausgeschlossen werden, dass durch diese Fluoreszenzmarkierung die Struktur der Peptide und damit ihre Eigenschaften verändert werden. So wird möglicherweise das natürliche Ziel im Bakterium nicht erreicht, da das Fluorophor meist deutlich größer ist als das Peptid selbst. Zudem ist die Aktivität dieser antimikrobiellen Moleküle oft von ihrer Konformation abhängig (Schroeder et al., 2011; Chu et al., 2012; Schroeder et al., 2014). Wie schon erwähnt führt eine Konformationsänderung von hBD1 zu seiner reduzierten Form zu einem starken Anstieg der antimikrobiellen Aktivität. Zusätzlich wird das Wirksspektrum von hBD1 mit offenen Disulfidbrücken deutlich erhöht, sodass auch Gram-positive Bakterien sensitiv auf hBD1red reagieren (Abbildung 10). Aus den genannten Gründen wurde für die Untersuchung der Lokalisation von hBD1 keine Fluoreszenzmarkierung verwendet. Anstelle einer Veränderung des nativen Peptides wurde hier eine Immunogoldfärbung angewendet.

Dafür wurden Bakterien erst jeweils mit den unterschiedlichen hBD1 Redoxformen inkubiert, anschließend fixiert und im Anschluss daran mit Hilfe von hBD1 spezifischen Antikörpern und Gold-gekoppelten Sekundärantikörpern die Lokalisation von hBD1 in den bakteriellen
Kompartimenten bestimmt. So kann die in vivo Lokalisation ohne Veränderung des Peptids und ohne potentielle Änderung auf dessen Eigenschaften spezifisch untersucht werden.

Die Aufnahmen zeigten deutlich, dass hBD1ox durch die Außenmembran diffundiert und in das Periplasma gelangt. Die Menge an hBD1ox war jedoch im Wildtyp deutlich geringer als in der Doppelknockoutmutante. Aufgrund der niedrigen Detektion von Goldpartikeln im Wildtyp bei gleicher Konzentration in der Doppelknockoutmutante wird von einer Zusammenlagerung von hBD1ox im Periplasma ausgegangen. Eine quantitative Aussage über die Menge an hBD1 in den einzelnen Bakterien ist somit noch nicht möglich, da nicht immer ein Goldpartikel ein Peptidmolekül repräsentiert. Es ist auch möglich, dass ein Goldpartikel eine undefinierte Menge an zusammen gelagerten Molekülen binden kann. Diese Technik gehört zu einer sehr spezifischen Nachweismethode ohne die Peptide in ihrer antimikrobiellen Aktivität einzuschränken oder zu verändern, die noch nicht oft eine Anwendung in der Wissenschaft gefunden hat (Brogden, 2005). Hierfür werden spezifische Antikörper für das Peptid benötigt, was oft eine große Herausforderung ist, da zu diesen kleinen Peptiden selten Antikörper zur Verfügung stehen. In dieser Arbeit wurden polyklonale Antikörper verwendet. Möglicherweise könnten monoklonale Antikörper ein noch exakteres Ergebnis liefern. Jedoch kann mittels dieser Methode keine Aussage über die Menge an Peptid in den unterschiedlichen Kompartimenten gemacht werden. Es bedarf hierfür weitere Techniken und Analysen mittels sensitiveren Methoden wie z. B. Elisa, HPLC oder Massenspektrometrie (QTOF), um die exakte Menge an hBD1ox in verschiedenen bakteriellen Komponenten nachzuweisen und zu bestimmen.

4.2.1.3. Ein möglicher Wirkmechanismus von hBD1ox

Bilder aus dieser Arbeit mittels REM zeigten, dass die Behandlung mit oxidiertem hBD1 zu einer großen Anzahl von Membranvesikeln auf der bakteriellen Oberfläche führt. Die Entstehung solcher Vesikeln an der bakteriellen Oberfläche als Nebeneffekt der Anlagerung von antimikrobiellen Peptiden im Periplasma ist in der Literatur beschrieben und wird zusätzlich mit Zellstress assoziiert (Brogden, 2005; Chileveru et al., 2015). Eine visuelle Auswertung der Vesikel zeigte, dass eine Behandlung mit 0,01 % Essigsäure (Kontrolle) oder eine Behandlung der resistenten Doppelknockoutmutante mit hBD1ox eine geringere Vesikelanzahl hervorruft, als die Behandlung des Wildtyps mit hBD1ox. Dabei zeigt die resistente Doppelmutante im Vergleich signifikant weniger Membranvesikel. Die erhobenen Daten über die Lokalisation von hBD1ox zeigten anschaulich, dass hBD1ox sich in Gram-negativen Bakterien vor allem im Periplasma befindet, aber zugleich fand man in der resistenten Doppelmutante einen höheren Anteil von hBD1ox im Cytosol. Es wurde in einer schematischen Skizze ein hypothetischer Wirkmechanismus von hBD1ox aufgestellt (Abbildung 38).

Durch eine mögliche Peptidzusammenlagerung von hBD1ox könnte im Wildtyp die antimikrobielle Aktivität ausgelöst werden. Diese Hypothese der Peptidzusammenlagerung wird aufgrund der geringeren Anzahl an Goldpartikeln im Periplasma des Wildtyps bestärkt.

Ein nicht vorhandenes Redoxsystem mit DsbA und DsbB in Bakterien könnte eine Diffusion von einzelnen hBD1ox Molekülen in das Cytosol der resistenten Bakterien veranlassen, wo es dann vermutlich aufgrund der Verteilung von hBD1ox nicht zur Autolyse der Bakterien und zum Abbau von hBD1ox kommt. Eine hohe Konzentration an hBD1ox im Periplasma ist möglich, wie im Gegensatz zu hBD1red für dessen antimikrobielle Aktivität notwendig. Weitere Experimente sind jedoch noch nötig, um den genauen Transfer in das Cytosol zu verstehen. Zusätzlich muss die Frage, ob DsbA und DsbB direkt oder indirekt mit hBD1ox Molekülen agieren kann, vollständig geklärt werden.

Dennoch wurden DsbA und DsbB als notwendige Komponenten erstmalig in dieser Arbeit identifiziert, wodurch neue Erkenntnisse über die verschiedenen Strategien der Defensine und neue Anhaltspunkte für neue antimikrobielle Substanzen aufgezeigt wurden.

Abbildung 38: Hypothetisches Modell für den Wirkmechanismus von hBD1ox

(A) hBD1ox kann in das Periplasma diffundieren, wo es mit DsbA und DsbB interagiert. Daraufhin kommt es zu einer Ansammlung und Zusammenlagerung von hBD1ox im Periplasma, wodurch es zum einen zur Bildung von Membranvesikeln kommt und anschließend zur Induktion der bakteriellen Zelllyse. (B) In resistenten Bakterien ohne das DsbA/DsbB Redoxsystem kann das hBD1ox bis in das Cytosol diffundieren. Aufgrund der Verteilung an hBD1ox im Cytosol kommt es zu keiner Zusammenlagerung, sodass keine bakterizide Wirkung gegen das Bakterium erzielt werden kann.
4.2.2. Aktivität von hBD1red

Im Gegensatz zu hBD1ox, welches nur strikt gegen Gram-negative Bakterien aktiv ist und abhängig von der Anwesenheit der beiden Redoxproteinen DsbA und DsbB ist, zeigt hBD1red starke bakterizide Eigenschaften gegen Gram-negative als auch gegen Gram-positive Bakterien. Zusammenfassend ist das Wirkspetrum von hBD1red um ein Vielfaches größer. Hinzu kommt, dass hBD1red deutlich toxischer ist als seine oxidierte Form (hBD1ox) (Abbildung 6). HBD1ox benötigt jedoch eine starke reduzierende Umgebung oder eine enzymatische Umwandlung um in hBD1red konvertiert werden zu können. In vivo ist es abhängig von der Körperregion, ob reduzierende oder oxidierende Bedingungen vorherrschen. Daten aus der Arbeitsgruppe zeigen, dass in der Mukusschicht des Dickdarms, parallel zum Thioredoxin-System, reduziertes hBD1 vorkommt (Jaeger et al, 2013). Es stellte sich die Frage, welche Eigenschaften hBD1red besitzt, um ein breiteres Wirkspetrum und eine stärkere antimikrobielle Aktivität, im Gegensatz zu hBD1ox, zu erzielen. Die Aktivität von hBD1ox ist, wie zuvor erwähnt, abhängig von bestimmten bakteriellen Komponenten in Gram-negativen Bakterien. Deshalb wurde eine Aktivität von hBD1ox auf Gram-positive Bakterien noch nicht beobachtet.

Doch welche veränderten antimikrobiellen Mechanismen besitzt hBD1red, die ein solches, auf Gram-positive Bakterien ausgedehntes Spektrum seiner bakteriziden Wirkung möglich machen?

4.2.2.1. HBD1red attackiert die bakterielle Membran

HBD1 führt wiederum zu anderen Schäden in den Bakterien. Wie in dieser Arbeit gezeigt, weisen Bakterien nach einer hBD1red Inkubation deutliche Membranverletzungen auf. Dies veranschaulicht nochmals die unterschiedlichen Wirkmechanismen von hBD1ox und hBD1red. Nur nach hBD1red Inkubation lösten sich ganze Membranstücke der Außenmembran komplett von der Innenmembran ab, was zu einem Absterben der Bakterien führte (Abbildung 23). Diese Aufnahmen bestätigten noch einmal die starke bakterizide Wirkung von hBD1red aus dem RDA, sowie den detektierten Membranschäden aus den Luciferase Assays, Membran-

Um genauere Angaben über die Lokalisation und die Eigenschaften von hBD1red zu erlangen, wurde die gleiche Technik wie bei der hBD1ox Lokalisation verwendet. HBD1red konnte in großen Mengen entlang der bakteriellen Außenmembran und teilweise an einzelnen abgelösten Membranstücken detektiert werden (Abbildung 24). Eine Analyse der Oberflächenstruktur mittels Rasterelektronenmikroskop zeigte überraschenderweise eine deutliche netzartige Struktur, welche die Bakterien umhüllt. Um diese Netzstruktur genauer zu untersuchen, wurde diese zunächst auf die Eigenschaften des HD6-Netzes untersucht. Die Netzbildung dieses α-Defensins ist aber stark abhängig von der Anwesenheit bakterieller Komponenten wie z. B. Flagellen der Salmonellen. Allerdings zeigte die Analyse mit Protein A-gebundenen Beads, sowie mit hBD1red alleine, dass hBD1red keine weiteren externen Faktoren benötigt, um eine netzartige Struktur auszubilden. Erstaunlicherweise zeigte hBD1ox keine Netzbildung, was die unterschiedlichen Eigenschaften der Redoxformen nochmals unterstreicht. Eine weitere Charakterisierung zeigte auch, dass die Cysteine wichtige Bestandteile in der Netzbildung darstellen. Ein Aminosäureaustausch durch ein Cysteinanalogan verhinderte die Netzbildung von HD6 nicht (Schroeder et al., 2014). HBD1 besitzt sechs Cysteine, welche sich in der oxidierten Redoxform zu drei Disufidbrücken verzweigen können. In der reduzierten Form sind alle Disufidbrücken geöffnet, sodass freie Schwefelbrücken für eine tertiäre intramolekulare Verknüpfung frei sind. Damit könnte ein Netzwerk aus den einzelnen Molekülen gebildet werden. Um diese Hypothese zu testen, wurden alle Cysteine durch ein Aminosäureanalogan, α-Aminobuttersäure (hBD1red_Abu) ersetzt. Im REM zeigte sich deutlich, dass hBD1red_Abu nicht mehr in der Lage war diese Netzstruktur auszubilden. Somit wurde deutlich, dass Cysteine essentiell sind und diese Netzbildung verursachen indem sich womöglich zwischen den Cysteinen der einzelnen Molekülen Wechselwirkungen ergeben und eine mögliche Verbindung über diese Aminosäuren entsteht. Dies wird auch an der verminderten Aktivität von hBD1red_Abu deutlich. Die starke bakterizide Wirkung von hBD1red lässt sich nur durch den zusätzlichen Mechanismus, das Einfangen von Bakterien mittels eines Netzes, erklären. Diese Beobachtungen zeigen nochmals deutlich, dass es sich hier um ein Peptid mit unterschiedlichen Strategien für die antimikrobielle Aktivität handelt und das Wirksspektrum durch diese multiplen Eigenschaften deutlich erweitert.
4.3. Abwehrmechanismus von Bakterien auf hBD1

Das aus dem bakteriellen Überstand gefundene, verkürzte Fragment von hBD1red (hBD1red_AS1-29) wurde auf seine antimikrobielle Aktivität gegen *E. coli*, *B. subtilis* und *S. aureus* getestet (Abbildung 30). Erstaunlicherweise zeigte dieses Peptid und seine 7 restlichen Aminosäuren keinerlei Wirkung auf die getesteten Bakterien, unabhängig von ihrem Gram-status. Allerdings zeigte hBD1red_AS1-29 gegen *B. subtilis* einen leichten Zellhüllenstress, weshalb auch hier die bakterielle Oberfläche überprüft wurde. Interessanterweise zeigt das verkürzte Fragment, hBD1red_AS1-29, trotz der fehlenden antimikrobiellen Aktivität die identische Eigenschaft der Netzbildung wie das Volllängenpeptid. Die Fähigkeit zur Netzbildung des verkürzten Defensins verhindert damit im humanen Organismus trotzdem eine Verbreitung von Bakterien. Wie bereits erwähnt, sind humane Proteasen *ex vivo* in der Lage hBD1 zu fragmentieren. Um herauszufinden, ob auch bakterielle Proteasen für die Herstellung dieser verkürzten Version von hBD1red verantwortlich sind, wurden bakterielle Proteaseinhibitoren verwendet.

Diese Arbeit zeigt erste Anhaltspunkte, dass auch Bakterien in der Lage sind die toxischen Strategien dieser antimikrobiellen Moleküle zu umgehen, indem durch bakterielle Proteasen eine verkürzte ineffektive Version von hBD1red entsteht. Diese Proteasen können hBD1 jedoch nicht komplett inaktivieren und so die Netzbildung nicht unterdrücken. Die Verbreitung der Bakterien wird durch die Ausbildung des Netzes somit verhindert. Um die verantwortlichen Proteasen zu identifizieren müssten in weiteren Assays unterschiedliche Inhibitorencocktails getestet werden. Da Serinproteasen häufig eine Peptidinhibierung auslösen können, wie unter anderem bei LL-37, wäre eine Inhibierung von Serinproteasen ein nächster Versuchsansatz, um mehr Details über die hBD1red Fragmentierung zu erhalten (Sørensen et al, 2001; Schmidtchen et al, 2002).

4.4. Funktioneller Nachweis der Netze

Um die mögliche Funktion der Netze in vivo zu untersuchen, wurde in dieser Arbeit ein spezieller Assay entwickelt. Mit Hilfe dieses funktionellen Nachweises sollte ermittelt werden, ob die Netze Bakterien tatsächlich an einer Translokation hindern können. Dazu wurde ein Assay etabliert, bei diesem hBD1 auf einem Membranfilter gegeben und die Menge an diffundierenden Bakterien gemessen wurde. Für diesen Versuch musste ein gegen hBD1 resisterter Keim gefunden werden, damit die Anzahl an diffundierten Bakterien nicht durch die antimikrobielle Aktivität verfälscht wird.

4.5. Schlussfolgerung und Ausblick

In dieser Arbeit wurde zum ersten Mal gezeigt, dass ein Peptid mehrere Strategien besitzen kann um gegen Bakterien antimikrobiell wirksam zu sein. In dieser Arbeit wurden die speziellen Eigenschaften von den einzelnen Redoxformen von hBD1 untersucht, sowie dessen Wirkmechanismen genauer charakterisiert. Die reduzierte Form ist in der Lage die Bakterien in eine Netzstruktur einzuwickeln. Damit ist die Translokation durch das Epithel erschwert, was eine weitere Verbreitung der Bakterien verhindert (schematisches Modell, siehe Abbildung 39).

Die Arbeit zeigte wesentliche bakterielle Proteine, welche für die Aktivität von hBD1:ox notwendig sind. Es konnten zwei Oxidoreduktasen, DsbA und DsbB, als essentielle Faktoren für diese Wirksamkeit identifiziert werden. Die Mechanismen der einzelnen Redoxvarianten sind noch nicht vollständig aufgeklärt, dennoch könnten diese Ansätze wichtig sein, um neue therapeutische Strategien gegen Bakterien zu entwickeln. Die Vielfältigen Strategien der einzelnen Peptide zeigen deutlich, warum es seit Millionen Jahren den Mikroorganismen nicht möglich war, die Abwehrreaktionen des Immunsystems zu überwinden oder Resistenzen gegen diese
antimikrobiell aktiven Moleküle zu erlangen (Peschel & Sahl, 2006). Die vorliegende Arbeit demonstriert, dass es ebenso wichtig ist zu den einzelnen Peptiden auch die vorkommenden Umgebungsbedingungen individuell zu beachten, anstatt einen generellen Mechanismus für die Peptide zu suchen.

Abbildung 39: Grafische Darstellung der unterschiedlichen Strategien von hBD1

Literatur

Kamio Y & Nikaido H (1976) Outer membrane of Salmonella typhimurium: accessibility of phospholipid head groups to phospholipase c and cyanogen bromide activated dextran in the external medium. *Biochemistry (Mosc.)* **15**: 2561–2570

Schroeder BO, Stange EF & Wehkamp J (2012) [Human beta-Defensin 1: From Defence to Offence.]. *Z. Gastroenterol.* **50:** 1171–1175

strain Nissle 1917 is the major adhesin mediating binding to human mucus. *Int. J. Med. Microbiol.* **302**: 304–314

Danksagung

An dieser Stelle möchte ich mich bei allen Personen bedanken, die zum Gelingen meiner Dissertation beigetragen haben.

Zunächst möchte ich mich bei Prof. Jan Wehkamp für die Betreuung der Arbeit und die gute PhD-Zeit bedanken. Seine optimistische Art hat mich oft motiviert mein Projekt fokussiert zu verfolgen und sein Vertrauen ermöglichte es mir unabhängig und selbständig zu arbeiten. Sein gutes Auge für die Darstellung der Daten hat mich zusätzlich unterstützt, um den roten Faden der Arbeit zu behalten und diese erfolgreich abzuschließen.

Mein besonderer Dank gilt ebenso Dr. Lioba Courth. Sie hat mir immer mit Rat und Tat bei allen meinen Fragen zur Seite gestanden. Vor allem für die gute fachliche Betreuung meiner Dissertation, die vielen Anregungen und Hilfestellungen und ein großes Lob für das Korrekturlesen meiner Veröffentlichungen. Du warst mir wirklich eine sehr große Hilfe.

Bei Marion Strauss und Jutta Bader möchte ich mich ebenfalls ganz herzlich für die kompetente Hilfe im Laboralltag und die aufmunternden Worte im Labor bedanken. Sowie für die Verpflegung durch Schokolade, die sehr zum Wohlbefinden beigetragen hat.

Ein besonderer Dank gilt auch meinem Kollegen Dirk Ehmann, der mir bei allen Fragen zur Seite stand- von Datenauswertung bis hin zu grundsätzlichen methodischen und wissenschaftlichen Fragen. Es war mir immer eine Freude mit dir auf Kongresse zu gehen und das L2-Labor zu rocken.

Ich bedanke mich auch bei Louis Königer und allen anderen Arbeitsgruppenmitgliedern der AG Wehkamp für die angenehme und konstruktive Arbeitsatmosphäre, die guten Tipps und Diskussionen. Alle Ideen und Vorschläge haben zum Gelingen der Arbeit beigetragen. Dank euch war es eine sehr schöne Zeit.