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“There is no substitute for careful and intensive field work if one wants to find out what is 

happening in natural populations.”  

Endler, 1986 
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Zusammenfassung  

Umweltgradienten stellen eine außerordentliche Möglichkeit dar, um Adaption und Evolution 

im kleinen Maßstab zu studieren. Entlang solcher Gradienten fluktuieren abiotische und 

biotische Faktoren in Raum und Zeit, und erlauben es daher die Verbreitung von Organismen 

zu erforschen, in Bezug auf deren Toleranz und Adaption gegenüber der Umwelt. Im Vorfeld 

meiner Arbeit war nur wenig darüber bekannt wie sich innerhalb einer Art Unterschiede in 

der Ökologie entlang von Umweltgradienten auf die Variation von Paarungserfolg, 

Populations-Divergenz und physiologische Parameter, welche den Reproduktionserfolg 

bestimmen, auswirken. Diese Themen habe ich anhand von Strandgrundeln (Pomatoschistus 

microps) entlang des Salzgehaltsgradienten in der Ostsee untersucht. Zuerst habe ich die 

tatsächlichen ökologischen Unterschiede denen Strandgrundel Populationen in der Ostsee 

ausgesetzt sind erfasst. Genau genommen habe ich Habitats Untersuchungen durchgeführt 

und Daten zur Verfügbarkeit von Nestmaterial (Muschelschalen), Demographie und 

phänotypischen Unterschieden zwischen Strandgrundel Populationen entlang des 

Salzgehaltsgradienten in der Ostsee aufgenommen (Kapitel I). Ich habe herausgefunden, dass 

Salzgehalt deutlich mit Nestmaterial Qualität und Quantität, der Populationsdichte sowie der 

Körpergröße von P. microps korreliert. Daraufhin habe ich untersucht, ob es Anzeichen lokaler 

Adaption der einzelnen Populationen gibt (Kapitel II). Es gelang mir die Existenz einer klaren 

genetischen Struktur in Strandgrundeln zu zeigen, sowohl im großen als auch im kleinen 

geographischen Maßstab. Außerdem konnte ich zeigen, dass divergierende Selektion 

phänotypische Populationsunterschiede in Baltischen Strandgrundeln antreibt (Kapitel II). 

Schlussendlich habe ich das Gonaden- und Leberinvestment in Strandgrundeln entlang des 

Salzgehaltsgradienten in der Ostsee untersucht (Kapitel III). Das Investment in beide diese 

Organe ist mit der Reproduktionsleistung verbunden. Männchen die aus Habitaten mit 

niedrigem Salzgehalt stammten hatten wesentlich größere Gonaden (sprich akzessorische 

Geschlechtsdrüsen) und Lebern als Männchen aus Habitaten mit mittlerem oder hohem 

Salzgehalt. Mit meiner Arbeit konnte ich zeigen, dass Salzgehaltsunterschiede in der Ostsee 

zur plastischen Variation (Chapter I, III) in Strandgrundel Populationen führen, mit Anzeichen 

von genetisch manifestierter Differenzierung (Chapter II). 
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Summary  

Environmental gradients constitute an extraordinary opportunity to study adaptation and 

evolution on a small spatial scale. Along such gradients abiotic and biotic factors fluctuate in 

space and time and allow studying the distribution of organisms in terms of environmental 

tolerances and adaptations. Prior to my research there was little knowledge on how 

differences in the ecology across an environmental gradient influence variation in mating 

success, population divergence, and physiological parameters determining reproductive 

success within a single species. I studied these topics in common gobies (Pomatoschistus 

microps) along a salinity gradient in the Baltic Sea. I first described the actual ecological 

differences between populations of common gobies. Specifically, I conducted habitat surveys 

collecting information on nesting resources (empty mussel shells) availability and assessed 

demographic features as well as phenotypic differences between common goby populations 

along the salinity gradient in the Baltic Sea (Chapter I). I found that salinity correlated with 

nest resource quantity and quality, population density and body size of P. microps. I further 

investigated whether there is any evidence that populations are locally adapted (Chapter II). I 

demonstrated a clear population genetic structure on a coarse and fine geographic scale, likely 

driven by divergent selection. Subsequently, I assessed gonad and liver investment of common 

gobies along the salinity gradient. The investment in both of these organs is linked to the 

reproductive output. Males originating from low salinity sites had significantly larger gonads 

(specifically sperm duct glands) and livers than males from intermediate or high salinity sites 

(Chapter III). With my research I could show that differences in salinity in the Baltic Sea lead 

to plastic variation (Chapter I, III) in common goby populations, with signs of genetic 

population divergence (Chapter II). 
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Introduction 

The power of selection to produce adaptations of organisms to their environment, resulting 

in the magnificent phenotypic diversity observed in nature, continues to astonish scientists 

and non-scientists alike. Selection is usually divided into natural and sexual selection (Darwin 

1871; Andersson 1994). However, a clear categorisation is often difficult and cause for an 

ongoing debate in this field (Lyon and Montgomerie 2012). Both, natural and sexual selection 

take place in spatial heterogeneous environments. While fluctuations of environmental 

conditions in natural selection have long been considered (Endler 1986), studies examining 

environmental influences on the agents of sexual selection are still less common (Cornwallis 

and Uller 2010; Janicke et al. 2015). However, more and more evidence is found that sexual 

selection may be stronger than natural selection leading to divergent sexual selection driving 

adaptive population divergence (Svensson et al. 2006; Labonne and Hendry 2010).  

Environmental-dependent sexual selection  

Sexual selection is often assumed to be consistent. However, mounting evidence suggests that 

the strength and direction of sexual selection can fluctuate over space, time, or context 

(Cornwallis and Uller 2010; Siepielski et al. 2011). Much of the existing work on plasticity in 

sexual selection focuses on differences in social environments, such as population density and 

sex roles (CluttonBrock et al. 1997; Levitan 2004; Aronsen et al. 2013; Wacker et al. 2013). 

However, some examples demonstrate that the sexual selection regime can vary in space and 

time irrespective of demographic factors (Mobley and Jones 2009; Byers and Dunn 2012). This 

highlights the importance of including ecological factors in order to fully understand how 

sexual selection operates (see for a review Miller and Svensson 2014). One example is 

environmental context-dependent mate choice of females (i.e., plasticity in female 
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preferences). Females alter their mating decisions depending on for instance resource quality 

(Gillespie et al. 2014) or predation pressure (Godin and Briggs 1996). In addition to plasticity 

in mate preferences, sexually selected traits themselves are also expected to be 

phenotypically plastic, serving as indicators of an individual’s condition. Most approaches 

examining sexual traits, however, overlook that the evolution of sexually selected traits is 

determined by the interplay between environmental heterogeneity and phenotypic plasticity, 

which changes over time and space causing fluctuating selection on such traits (Cornwallis and 

Uller 2010; Miller and Svensson 2014).  

Generally, studies on sexual selection often do not consider ecological factors. This is most 

likely because of the difficulty to assess the complex interactions between individuals and 

environments. Thus, a clear prediction about how sexually selected phenotypes evolve is 

often difficult. However, there can be no doubt that environmental factors are major 

determinants of an individual’s reproductive performance, affecting the process and outcome 

of sexual selection (Robinson et al. 2012).  

Neutral versus adaptive evolution 

It is known that micro-evolutionary responses to spatial variation in the environment can be 

caused by adaptive- (i.e., natural- and/or sexual selection) and neutral-processes (e.g. 

mutations, genetic drift), however, their relative roles often remain unknown (but see e.g. 

Brousseau et al. 2015). Adaptive and neutral processes may interact in several different ways. 

For instance natural selection may lead to adaptive population divergence (i.e., genetically 

based phenotypic differences that improve local fitness) in different environments. The 

dispersal (i.e., gene flow) of individuals between those environments may, however, 

homogenize the gene pool and thus oppose adaptive divergence (Hendry et al. 2001; 
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Lenormand 2002; see for a review Räsänen and Hendry 2008; Servedio and Kopp 2012). 

Neutral genetic markers provide a cost effective and often used way to study population 

divergence (Gaggiotti et al. 2009). Divergence in these markers is caused by genetic drift as a 

result of reduced gene flow between populations. Gene flow can be influenced by the 

landscapes by two major processes: isolation by dispersal limitation (IBDL) resulting in a 

pattern of (1) isolation by distance (IBD; Wright 1931) and/or isolation by adaptation (IBA) 

resulting in a pattern of genetic differentiation known as (2) isolation by environment (IBE; 

Nosil 2009; Orsini et al. 2013). IBD is an evolutionary neutral process without selection acting 

on advantageous traits of individuals and genetic drift is caused by reduced gene flow due to 

great geographic distances or physical barriers (= isolation by resistance; Orsini et al. 2013) 

between populations. IBE on the other hand describes an adaptive evolutionary process, 

whereby divergent selection favours certain traits in individuals of ecologically different 

environments. Thus, reduced establishment success of immigrants may occur due to 

maladaptation. This can lead to reduced effective gene flow among populations inhabiting 

ecologically dissimilar habitats. To assess processes structuring population genetic variation 

in natural landscapes the interpretation of patterns of genetic differentiation along spatial and 

environmental gradients is highly suitable. 

Environmental gradients 

Environmental gradients are extremely valuable to study evolutionary-ecological interactions. 

Fluctuations of abiotic and biotic factors and the often continuous distribution (i.e., no 

barriers) of species along such gradients, facilitate for instance the investigation of modes of 

population divergence. Genetic and phenotypic variation as a function of environmental 

variation and adaptation can be investigated at geographically large scales along 

environmental gradients (Doyle et al. 2010; Jennings et al. 2013). The goal for understanding 
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biological variation along environmental gradients, is determining whether population 

divergences represent the outcome of phenotypic plasticity or local genetic adaptation due to 

divergent selection (Lande 2009; Storz et al. 2010; see Chapter II) and the relative role of gene 

flow in these processes (Hendry et al. 2002; Hendry and Taylor 2004; Crispo et al. 2006; Crispo 

2008). Fluctuations of abiotic and biotic factors along environmental gradients can determine 

the population genetic structure (Nanninga et al. 2014), facilitate speciation (Doebeli and 

Dieckmann 2003), cause differences in intraspecific population dynamics (Peterman and 

Semlitsch 2013), and influence species composition and diversity (Zettler et al. 2014). The 

geological and recent history is packed with examples of species that failed to adapt and went 

extinct during periods of rapid environmental change (Bell and Collins 2008; Chevin et al. 2010; 

Fakheran et al. 2010). Thus, it is surprising how little attention has been paid by evolutionary 

ecologists to the understanding and awareness of constraints and trade-offs that suppress the 

evolution of rapid adaptation. 

Environmental gradients occur in terrestrial landscapes, where latitudinal gradients together 

with temperature gradients are among the most well studied examples showing the immense 

impact that changing abiotic parameters can have on organisms (e.g. Naya et al. 2011). 

Gradients also occur in aquatic environments, such as: depth- (Ota et al. 2012), temperature- 

(Doyle et al. 2010), salinity- (Hampel et al. 2005) and food-gradients (Emlen 2008). A natural 

aquatic arena offering steep environmental gradients is the Baltic Sea. Thus, the Baltic Sea is 

highly suitable to study population divergence in marine organisms.   

The Baltic Sea  

The Baltic Sea (Fig. 1) is one of the world’s largest brackish inland seas and came into existence 

only ~ 10,000 years before present. It was completely covered by ice during the late 
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Pleistocene. After the ice sheet began to retreat, four stages are recognized during the 

postglacial progression of the Baltic basin: (1) the Baltic Ice Lake (freshwater), which drained 

to sea level creating the (2) Yolida Sea (brackish) followed by the (3) Ancylus lake, a freshwater 

lake isolated from the sea due to land uplift, and the (4) Littorina Sea, a second brackish stage 

initiated due to a dramatic sea level rise (Björck 1995). The Baltic Sea in its current stage is 

only ~ 2,000 years old. Not only its complex salinity history attracts ongoing scientific interest, 

but also its characteristic salinity gradient as it exists today; salinity ranges from 1 to 2 PSU 

(Practical Salinity Units) in the innermost parts to up to 25 PSU at the entrance (i.e., the 

Skagerrak) to the North Sea (HELCOM 1996; Fig. 1). In this species-poor and trophically simple 

ecosystem, many species currently find their distribution limits across these salinity gradients 

(Bonsdorff and Pearson 1999; Westerbom et al. 2002; Jansen et al. 2009). Populations of 

several Baltic species are genetically differentiated, often with clearly distinct northern 

marginal populations, where low salinity acts as a barrier for gene flow (Johannesson and 

Andre 2006; Holmborn et al. 2011; Olsson et al. 2012). It is thus not surprising that populations 

of some species occurring in the Baltic Sea are genetically different from populations 

inhabiting the North Sea or Atlantic (e.g. Nilsson et al. 2001; Sjoeqvist et al. 2015). The Baltic 

Sea with its young age and salinity gradient offers a suitable natural arena to investigate rapid 

evolution by examining recent population genetic events and adaptive phenotypic divergence 

between populations on a fine geographic scale. 
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Figure 1. The Baltic Sea. Shown are the six main sampling sites from Chapter I and III including 

average salinity (PSU) measured during data collection in 2012, 2013 and 2014. The dashed 

line from Falsterbo (south Sweden) to Travemünde (Germany) is marking the entrance of the 

Baltic Sea proper. See Table 1 for site abbreviations. Map modified after Forsgren et al. 1996.  

 

The common goby (Pomatoschistus microps) 

The common goby (Pomatoschistus microps) is a marine fish, which is found in shallow soft-

bottomed marine and estuarine habitats from southern Norway to Portugal, including the 

Baltic Sea (Wheeler and Du Heaume 1969). It is sexually dimorphic (see Fig. 2) and between 

3-4 cm (total length, TL) in the Baltic Sea, ~ 6 cm on British coasts and ~ 5 cm in the 

Mediterranean (Jones and Miller 1966; Bouchereau and Guelorget 1998). Due to its broad 

distribution this goby species experiences a higher degree of environmental heterogeneity 

than most of the other European Gobiidae (Wallis and Beardmore 1984). The common goby 
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has a short lifespan with a maximum of 21-26 months, but most adult fish die after their first 

breeding season with 12-20 month (Miller 1975). In the Baltic Sea common gobies migrate in 

spring (May-June) from deeper waters into very shallow, sheltered breeding habitats and 

starts reproducing (Vestergaard 1976). When water temperatures in autumn fall below 5°C, 

Baltic common gobies migrate back into deeper waters (Jones and Miller 1966; Vestergaard 

1976). Compared to the closely related sand- (P. minutus) or marbled-goby (P. marmoratus), 

common gobies seem to be better adapted to shallow inshore areas where water 

temperatures are high during summer months, as well as to highly variable salinity conditions 

(Fonds and van Buurt 1974; Rigal et al. 2008). 

 

 

 

 

 

 

 

 

 

Figure 2. Sexual dimorphic female (on top) and male common goby (Pomatoschistus microps) 

caught in a high salinity population within the Baltic Sea in 2013 (size standard = 0.5 cm).
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Study goals 

The central aim of my study was to evaluate how variation of an abiotic factor (i.e. salinity) 

along an environmental gradient influences fundamental aspects (i.e. nest availability, 

population density, body size, gonadal investment) of mating success, possibly driving 

population divergence in common gobies (Pomatoschistus microps). To do so, I conducted a 

geographically extensive field study over three consecutive years along the salinity gradient 

(West to East) in the Baltic Sea collecting data on habitat structures, demography, morphology 

and genetics of common gobies. Specifically, I studied the following topics: 

(I) Ecological variation along the salinity gradient in the 

Baltic Sea and its consequences for mating success in 

common gobies  

Little is known on how ecological consequences evoked by salinity are affecting fundamental 

aspects of the life history such as the demography, morphology as well as mating- and 

reproductive success within a species. I first assessed nesting resource (empty mussel shells) 

quantity and quality along the Baltic salinity gradient from West (high salinity) to East (low 

salinity). A nest site is the most essential prerequisite for mating success in a mussel-breeding 

fish like the common goby and therefore, mussel shell availability is a limiting factor for mating 

success. I also examined demographic factors like population density and sex ratios, which are 

known to affect the strength and direction of sexual selection. To directly assess how spatial 

variation of salinity affects the morphology of P. microps I compared body size between 

populations. Finally, to link ecological, demographic as well as morphological differences 
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between populations to modes of sexual selection I conducted a field based mating assay with 

size-standardized nests along the salinity gradient to compare variation in mating- and 

reproductive success. 

I expected low salinity sites to constitute a suboptimal habitat for mussel shells leading to 

reduced nest availability and thus mating success, which should be correlated to lower 

population density of common gobies. Furthermore, I predicted common gobies along the 

salinity gradient to show differences in body size, with individuals of low salinity to be smaller 

due to energy allocation caused by high costs for osmoregulation. 

 (II) Population divergence in common gobies: neutral or 

adaptive evolution? 

While assessing spatial ecological differences between populations is a prerequisite to better 

understand the process and outcomes of sexual selection (Chapter I), population genetic 

analyses are required to assess the role and contribution of natural selection driving 

population divergence. I aimed to investigate the genetic structure of Baltic common gobies 

and the relative roles of neutral (i.e., isolation by distance, IBD) and adaptive (i.e., isolation by 

environment, IBE) evolution driving population divergence. I did so by 1) contrasting IBD with 

IBE using neutral genetic markers and 2) by comparing phenotypic differentiation (PST) with 

neutral genetic differentiation (FST). 

I expected to find a genetic differentiation between western and eastern Baltic common goby 

populations due to adaptation to salinity resulting in a pattern of IBE. Furthermore, I expected 

to find phenotypic differentiation between western and eastern Baltic populations driven by 
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divergent selection favouring different phenotypes in different (salinity) environments (PST > 

FST). 

 (III) Gonadal investment in common gobies along the 

salinity gradient in the Baltic Sea 

After investigating population divergence in Baltic common gobies (Chapter II) I moved on to 

assess how salinity affects gonadal and liver investment, both essential processes determining 

reproductive outcomes. Variation in gonad and liver mass along the salinity gradient may 

suggest divergent selection favouring different phenotypes in different environments. I 

assessed testes mass and sperm duct gland (SDG) mass separately to assess differential 

allocation of investment into gonads depending on salinity. I also included females to compare 

possible patterns of gonadal and liver investment variation between sexes evoked by salinity. 

I expected to find differential allocation of investment into gonads and liver between high and 

low salinity sites. Specifically, with males of low salinity sites investing more in protective 

mucus producing SDGs than in testes due to low salinity bearing a higher risk of egg infection. 

Furthermore, individuals of low salinity sites investing more in livers (i.e., energy stores) due 

to high costs of osmoregulation.



 

19 
 

 

CHAPTER I 

 



 

20 
 

Ecological Variation along the Salinity Gradient in the Baltic 

Sea and its Consequences for Mating Success in Common 

Gobies  

 

I. M. Mück, K. U. Heubel 

 

 

 

 

 

 

 

Abstract 

Although it has become clear that sexual selection may shape mating systems and drive speciation, 

the potential constraints of environmental factors on processes and outcomes of sexual selection are 

largely unexplored. Here, we investigate the geographic variation of such environmental factors, more 

precisely the quality and quantity of nest resources along a salinity gradient in the Baltic Sea, and test 

whether we find any correlated morphological differences in body size between populations of 

common gobies (Pomatoschistus microps), a small marine fish with a resource based mating system. 

In a geographically extensive field study we sampled five populations of P. microps occurring along the 

salinity gradient (decreasing from West to East) in the Baltic Sea over three consecutive years. Nest 

resource quantity and quality decreased from West to East, and a correlation between mussel size and 

male body size was detected. Population density, sex ratios, reproductive success and brood 

characteristics also differed between populations but with a less clear relation to salinity. With this 

field study we shed light on geographic variation of distinct environmental parameters possibly acting 

on population differentiation. We provide insights on relevant ecological variation, and draw attention 

on its importance in the framework of environmental-dependent sexual selection. 
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Introduction 

Many aspects of an organism’s social organisation can be predicted if the limits of its 

environment are known. Environmental factors can, for example, determine to which degree 

mates and/or resources can be defended and monopolised, and such ecological constraints 

impose limits on the degree to which sexual selection can operate (Emlen and Oring 1977; 

Forsgren et al. 1996b; Gillespie et al. 2014). It is well known that sexual selection is influenced 

by environmental factors (Hill 1994; Møller 1995; Kwiatkowski and Sullivan 2002; Gamble et 

al. 2003; Cornwallis and Uller 2010; Gillespie et al. 2014) but surprisingly little attention has 

been payed to environmental-dependent sexual selection causing variation of sexual selection 

over space, time, or context (but see Almada et al. 1995; Forsgren et al. 1996b; Siepielski et 

al. 2009; Janicke et al. 2015). 

An individual’s access to mates and resources within a population depends strongly on its 

competitive ability (Parker and Sutherland 1986). Large male body size is usually selected for 

in male contest and/or by female choice, and generally increases a male’s competitive ability 

(reviewed in Andersson 1994). Both competitive ability as well as resource availability are 

shaping sex role dynamics and mating systems and are therefore strongly related to processes 

and outcomes of sexual selection (Emlen and Oring 1977; Kvarnemo and Ahnesjö 1996); the 

level of competition is determined by resource availability, and larger males are often more 

successful in monopolizing resources necessary for mating, either directly by monopolizing 

females or indirectly by nest sites. Sexual selection theory predicts strong selection for traits 

that increase reproductive success. Thus, larger males are often favoured by sexual selection 

(Bonduriansky and Rowe 2003; Bollache and Cezilly 2004; Dubey et al. 2009; Wacker et al. 

2014).
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Body size does not only vary within populations due to sexual selection favouring specific 

phenotypes but can also vary strongly among populations due to natural selection by the 

environment (Rundle et al. 2006). For example, it has been shown that body size is affected 

along latitudinal gradients and populations show either increasing (Bergmann’s rule) or 

decreasing body size with increasing latitude (converse Bergmann’s rule; Lindsey 1966; 

Murphy 1985; Blackburn et al. 1999; Stillwell et al. 2007). Body size variation among 

populations has also been found along other environmental gradients (e.g. temperature, 

precipitation, water depth; Hillebrand and Azovsky 2001; Smith and Brown 2002; Collins et al. 

2005; Liao and Lu 2011). Thus, phenotypic variation in growth or absolute size may arise as a 

consequence of environmental conditions or due to sexual selection, and the effects may 

counteract one another. The interaction between natural and sexual selection may, therefore, 

vary among populations as a function of environmental heterogeneity.  

The main objective of our study was to investigate how (1) quantity and quality of nesting 

resources, (2) demographic factors and (3) body size differ between populations of common 

gobies along a salinity gradient in the Baltic Sea and possibly affect (4) mating- and 

reproductive success. The Baltic Sea (Fig. 1) constitutes an extreme environment with a steep 

decrease in salinity from West (25 Practical Salinity Units = PSU) to East (1-2 PSU) and many 

species find their distribution limits across these salinity gradients (e.g. Jansen et al. 2009). In 

addition to spatial variation of salinity, surface water temperature along the coast of the Baltic 

Sea also shows a latitudinal and longitudinal gradient (HELCOM 1996). Hence, a seasonal 

surface water temperature gradient exists, with water temperatures rising later in the year in 

the North and East than in the South and West, which may affect for instance the duration of 
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breeding cycles, egg development (St Mary et al. 2004), and the strength of sexual selection 

itself (Monteiro and Lyons 2012). 

Habitats in the Baltic Sea can differ greatly in nesting resource availability (Forsgren et al. 

1996b), thus the cost of reproduction can differ between populations and can affect potential 

reproductive rates of both sexes (Ahnesjö et al. 2001). Salinity can not only directly act on 

fitness by affecting an organism’s metabolism and population growth rate (Evans and 

Claiborne 2008) but also indirectly by limiting resources necessary for reproduction. Blue 

mussels (Mytilus edulis) or cockles (Cerastoderma edule and C. glaucum), which are frequently 

used by common goby males as nest substrate, are less tolerant to low salinity and either 

show a significant decrease in biomass from West to East, such as the blue mussel (Westerbom 

et al. 2002), or do not even extend into waters with salinities below 10-11 PSU, such as 

Cerastoderma edule (Brock 1980).  For a better understanding of the strength and direction 

of sexual selection, it is necessary to know the degree of variation in nest availability between 

populations of Baltic common gobies. We predict a decrease in the overall nest availability 

and the occurrence of smaller, more fragile clams (Mya arenaria) with decreasing salinity from 

West to East in the Baltic Sea. This would imply consequences for the sexual selection regime 

among common goby populations along the salinity gradient, with higher competition over 

nests (i.e. intra-sexual competition) in the East than in the West and generally stronger sexual 

selection in low salinity populations. 

Not only nest availability but also demographic factors like population density and sex ratios 

influence the degree and direction of competition in a population. Thus, we estimated 

population density as well as sex ratios (adult sex ratio: ASR and operational sex ratio: OSR) 

representing the ratio of adult individuals (ASR) respectively the ratio of ready-to-mate 

individuals (OSR) in a population, in five Baltic populations. Population density is expected to 
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be highest with high/intermediate salinity, which was shown for several marine fish species 

to increase growth rate and therefore reproductive success (Boeuf and Payan 2001). The 

operational sex ratio may be strongly affected by nest availability with for instance a shortage 

of nests implying that not all males of the population will find a nest for mating, and thus be 

female biased due to few nest holding males being ready-to-mate (Forsgren et al. 2004). 

We measured body size of individuals along the salinity gradient as a possible phenotypic trait 

being directly affected by geographic variation in salinity. Due to the physiological stress of 

osmosis, we predict body size to decrease with decreasing salinity. Additionally, we conducted 

a mating assay to estimate mating- and reproductive success as well as differences in brood 

characteristics between populations. Variation in mating- and reproductive-success is 

expected to give a first assessment of differences in the sexual selection mode between 

populations. All data collected are from a field-based study conducted over several years 

(2012-2014) in order to provide new insights how geographic variation in nesting resources, 

population density, sex ratios and body size in a marine fish along an environmental gradient 

may shift fundamental aspects for mating- and reproductive-success and eventually cause 

local adaptations promoting population divergence. With the focus on linking spatially varying 

environmental factors to demographic and phenotypic differences between populations we 

aim to deliver a fundamental basis for further studies on environmental-dependent sexual 

selection. 

Methods 

Study species 

The common goby (Pomatoschistus microps; Fig. 2) is a small euryhaline, benthic, annual fish 

species with a resource-based mating system. It reproduces repeatedly during a single 
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breeding season between May and August during which males compete over nest structures 

such as mussel shells, attract females by courtship displays and provide exlusive paternal care 

for the brood after spawning (Nyman 1953; Borg et al. 2002). Common gobies have a 

promiscuous mating system where males can care for eggs from several females 

simultaneously and females spawn with different males (Miller 1975). The common goby 

occurs on a wide range of conditions due to being the most temperature and salinity tolerant 

among the sand goby group (Fonds and van Buurt 1974) and occurs along the European 

Atlantic coast, at two populations in the Mediterranean and in the Baltic Sea, where it inhabits 

marine, brackish and extremely brackish habitats that exist within a relatively small 

geographic range (Fonds and van Buurt 1974).  

Field study design 

In a combined effort of habitat surveys and population sampling of five common goby 

populations along the salinity gradient (West to East) in the Baltic Sea (Fig. 1) with repeated 

visits early and late during the breeding season (Table 1), we collected data on: (1) salinity and 

temperature of the water multiple times using a HACH multi-probe (HACH Lange GmbH; Table 

1), (2) quantity and quality of nesting resources, (3) population density and sex ratios (adult 

sex ratio (ASR) and operational sex ratio (OSR)), (4) body size of common gobies, and (5) 

variation in mating- and reproductive success as well as properties of broods.  

Habitat survey 

Populations were selected along the salinity gradient within the Baltic Sea from West to East 

(see Fig. 1). Each sampling site was visited between 2012 and 2014 two to five times both early 

and late in the breeding season (Table 1, sites marked with T). We defined the early breeding 
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season from the beginning of May to mid-June and the late breeding season from late June to 

late July. Habitat surveys were conducted by swimming two different transects during each 

visit at the five sites along a 20m lead line in shallow water (< 70 cm depth) colonized by 

common gobies. We collected data on nesting resource availability, population density and 

sex ratios within ca. 50 cm of each side of the lead line. Data collected along the two x 20m 

transects were pooled, because of very low sample sizes of variables at low salinity sites. For 

easier interpretation (in Results & Discussion) the selected sites were categorized depending 

on ICES and salinity (PSU; see Table 1) in: high (KR: 22.2), intermediate (KE: 16.8/VR: 20.0 and 

IP: 12.2) and low salinity habitats (GO: 7.2 and TV: 5.4). Nevertheless statistical analysis and 

graphical presentations are based on sites. 

Nesting resources 

The number of available nesting resources (including empty shells of Mya arenaria, Mytilus 

edulis, Cerastoderma sp.), as well as the number of natural nests occupied by males was 

counted along transects. To compare natural nest size variation between populations, we 

measured the diameter of randomly sampled M. arenaria shells used as nests (containing 

eggs). M. arenaria is the only mussel shell that occurs in low salinity and exhibits a size range 

that qualifies as potential nests for common gobies. Mussel nests were collected during the 

early breeding season, besides at IP where mussel nests were collected in the early and late 

season. Nests were collected in two consecutive years (2013-2014; exception: KE only 2014). 
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Table 1. Sampling sites in the Baltic Sea where data on habitat, population density and nest substrate were collected. Indicated are: sampling sites, 

geographic locations, ICES (International Council for the Exploration of the Sea) subdivisions, abbreviations for sites (Abb.), salinity (PSU) and salinity 

classes, mean surface water temperature (C°) pooled over three consecutive years (2012-2014) early and late during the breeding season and 

coordinates (Latitude and Longitude). Data collection of different variables vary between populations, years and seasons: T (transect data collected), 

S (body size measurements), asterisk (mating assay conducted). Blanks denote missing data.  

 

 
Sampling 
site 

Geographic location ICES  Abb. Salinity 
PSU 

Salinity class Temp. 
C° 

 
Latitude Longitude 2012 2013 2014 

        
 

  early late     early late early late early late 

Kristineberg western Sweden 23 KR 22 high 16.1 19 58°24'N 11°46'E T/S* 
 

T/S T T/S 
 

Vrinners East Jutland, Denmark 22 VR 20 intermediate     ---                 20 50°14'N 10°30'E 
 

* 
    

Kerteminde Funen, Denmark 22 KE 17 intermediate 18.1 19 55°44'N 10°65'E 
 

T/S* 
  

T/S 
 

Island Poel Bay of Mecklenburg,  
Germany 

22 IP 12 intermediate 15.1 18 53°99'N 11°48'E 
 

T/S* T/S T/S T/S T 

Gotland Gotland Basin, Sweden 28 GO 7 low 16.6 18 57°78'N 18°94'E T/S* 
 

T/S T/S S T 

Tvärminne Southern Finland 29 TV 5 low 13.5 15 59°82'N 23°14'E T/S* 
 

T/S T/S T T/S 
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Population density and sex ratios 

Our data on individual counts (population density) along transects include females of all three 

ripeness stages (R1-R3 explanation see below; Fig. 3) and free swimming males, not sitting 

inside a nest. Individual male and female count data can be used to calculate the ASR 

(calculated as the fraction of adult males to all adult individuals (Wilson et al. 2002), because 

typically only adult individuals are present from May-July. To estimate the operational sex 

ratio (OSR) males occupying a nest were categorised as males ready-to-mate and females 

were categorised into three ripeness stages (R1-R3) according to the roundness of their 

bellies. Females ripeness stages are easily distinguishable by visual inspection: R1 females do 

not show any extended bellies (no ripe eggs), R2 females show a rounded belly (some ripe 

eggs), while R3 females show often a bright orange-pinkish extremely round belly (belly filled 

with ripe eggs; see Fig. 3). To calculate the OSR (fraction of mating-ready males to all mating-

ready individuals; Kvarnemo and Ahnesjö 1996) only females of R2 and R3 were included. 

 

Figure 3. Female common gobies (Pomatoschistus microps) of three ripeness stages (R1- R3): 

R1: female does not show an extended belly (no ripe eggs), R2: female shows a rounded belly 

(some ripe eggs) and R3: female with an orange-pinkish extremely round belly (belly filled with 

ripe eggs). 

R3 

R2 

R1 
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Body size  

Fish of both sexes (Fig. 2) were caught in shallow waters near the coast at five sampling sites 

using hand trawls (always the first 25 fish caught were used for analysis) for body size 

measurements (Table 1, sites marked with S). We measured total length (TL) to the nearest 1 

mm. Whenever possible measurements of 25 individuals of each sex were used (with some 

exceptions in 2013: GO early: females: N = 20, males: N = 24, GO late: females: N = 6; TV early: 

males: N = 21 and late: N = 18). After measurements were taken, fish were released back to 

their natural habitat.  

Mating assay 

In order to gather data on (a) nest colonisation, (b) mating success, (c) reproductive success 

and (d) properties of broods, an assay with standardised nest availability, exposure (72h) and 

quality was carried out in 2012 at five different sites in the Baltic Sea (KR, VR, IP, GO and TV; 

for details see Table 1 sites marked with *). Because of logistic reasons, the field assay was 

not conducted at KE but instead at VR, a population ca. 80km further north, with similar 

ecological conditions and habitat structure but slightly higher salinity (20.0 PSU; for details see 

Table 1 and Fig. 1). Thirty ceramic tiles (4x4 cm), readily accepted as nesting resource by 

common goby males, were put out in shallow water (< 70 cm depth). After 72h we checked 

each nest for nest occupation by a resident male and collected all tiles and photographed 

broods if the male received eggs. Male reproductive success was estimated by the brood size 

(mm2), which was measured using ImageJ version 1.47 (Rasband 1997-2015; Schneider et al. 

2012). Even though it is common for males to cannibalise on eggs, due to visible residues of 

mucus it was possible to see where eggs had been attached to the tile prior to cannibalism 

(authors’ pers. obs). This method thus allowed us to measure the initial brood size, even when 
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at the time of nest retrieval some eggs had been cannibalised. To make sure that our measure 

of reproductive success was not influenced by differences of the density or size of the eggs, 

the number of eggs within a 0.5 x 0.5 cm2 square were counted as well as the size of these 

counted eggs were measured using ImageJ (number of broods: KR, VR, GO: N = 4 and IP, TV: 

N = 3). Since only one male received eggs in TV after 72h, this population was excluded from 

analyses of reproductive success. Measures of egg density and egg size for TV, however, were 

collected from two artificial nests that were exposed for 92h.  

Data analyses 

Statistical procedures 

Data on mating resources, population density, sex ratios, body size and reproductive success 

as well as brood characteristics collected over consecutive years (2012-2014) were centred 

around the yearly mean to account for differences between years. Normality of each variable 

tested was checked via visual inspection of residuals and q-q normality plots. To achieve 

normality, count data were log-transformed (log10; ‘Available nests’) and proportion data 

were ‘Arcsine’ transformed (asn; ‘Proportion of occupied nests’ and ‘Sex ratios’) using the 

‘Anscombe’ variant 

 𝑦 = arcsine √
(𝑛 𝑠𝑢𝑐𝑐𝑒𝑠𝑠+

3

8
)

(𝑛 𝑡𝑜𝑡𝑎𝑙+ 
3

4
)

  (Anscombe 1948)  

suggested by (Zar 1984) prior to centring around the yearly mean.  

We run for each variable independently a linear model (LMs) in R using R Studio version 3.03 

(R Core Team, 2012) with centred data as outcome variable and ‘populations’ set as factors 

ranked according to salinity (from West: high to East: low) as well as ‘season’ (early and late) 
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as independent variables. Model selection was conducted and non-significant interactions 

(‘population:season’) were excluded from the model. If a significant interaction with ‘season’ 

was found, the data set was divided into ‘early’ and ‘late’ and analysed for both seasons 

separately. Pairwise post-hoc comparisons between populations were conducted using a 

Bonferroni or Benjamini Hochberg method controlling for the false discovery rate (at level α).  

Male body size and M. arenaria shell length 

The mean of mussel shell length [mm TL] of Mya arenaria nests and male body size [mm TL] 

for each sampling event (N = 9) were correlated using a Spearman’s rank correlation rho (ρ) in 

R. Only mussel shells and corresponding average male size collected in the same year and 

same season were correlated. 

Mating assay 

For the binomial response variables in the mating assay on nest occupation and mating 

success after 72h of each artificial nest (N = 30) frequencies of occurrence (frequency of 

success and failure) were used. To test if observed values differed from expected values 

(based on either the average proportion of nest occupation across all populations or, for 

mating success, on the population-specific proportion of nest occupation) we used 

contingency table analyses with Pearson Chi-square (X2) and log-likelihood ratio tests with 

yates correction in SPSS version 22 (IBM SPSS, Statistics).  
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Results  

Nesting resources 

Nest quantity 

Low salinity sites (GO and TV) showed a much lower number of available nests than high (KR) 

or intermediate (KE, IP) salinity sites (Fig. 4a). The availability of natural nests (Mya arenaria, 

Mytilus edulis, Cerastoderma edule, C. glaucum) along the salinity gradient differed 

significantly between populations (but not between seasons; Table 2). 

Proportion of occupied nests 

The intermediate site IP, with the highest number of nests available, showed the overall 

lowest proportion of mussel nests taken up by males (Fig. 4b). The proportion of occupied 

natural nests at the low salinity sites (GO and TV) showed a trend to be highest, but did not 

differ significantly from the intermediate site KE (Fig. 4b). The site with the highest salinity 

(KR) showed a significantly lower proportion of occupied nests than the site with the lowest 

salinity (TV). The proportion of occupied natural nests differed significantly between 

populations (but not between seasons; Table 2). 

Quantity and quality of soft-shell clams (M. arenaria) 

The availability of M. arenaria was significantly higher in high and intermediate salinity sites 

than in low salinity sites (Table 2, Fig. 4c). The size distribution of M. arenaria showed a clear 

separation between the two highest (KR and KE, laying East of the Baltic entrance, see Fig. 1) 

and three lower salinity sites (IP, GO and TV, laying West of the Baltic entrance, see Fig. 1; 

Table 2, Fig. 4d).  



 Chapter I  

33 
 

Table 2. Results of final linear models (LMs) for all variables tested. Given are groups, the specific variables tested and if variables were transformed 

(trans. log (log10) or ans (arcsine)) to achieve normality; the variation that is explained by the model in % (adjusted R2), the fit of the final model; the 

F-statistic of the independent variables ‘population’ (pop) and ‘season’ and the F-statistic of the interaction term. Significant results are denoted in 

bold with ** (P < 0.0001) and * (P < 0.05). Non-significant results are denoted with NS, empty rows denote ‘not tested’.  

 

Group Variable   Variation 
Final 
model  pop  season  sea*pop  

    trans. adj. R2 (%) df F df F df F df F 

Mating resources Available nests log 77 5, 35 28.2** 4,35 34.9** 1, 35 1.1 NS NS 

 Proportion of occupied nests asn 46 5, 35 7.8** 4, 35 9.4** 1, 35 1.5 NS NS 

 Soft-shell clams  37 4, 36 6.9** 4, 36 6.9**      

  Size soft-shell clams   60 4, 83 33.5** 4, 83 33.5**         

Body size Female   32 5, 294 28.6** 4, 294 22.3** 1, 294 53.6** NS NS 

  Male    27 5, 294 22.8** 4, 294 28.0** 1, 294 1.9 NS NS 

Densities & Number of females  70 5, 35 20.2** 4, 35 23.5** 1, 35 6.6* NS NS 

Sex ratios Number of males  69 5, 35 18.6** 4, 35 22.4** 1, 35 3.6 NS NS 

 ASR asn 20 5, 35 3.0* 4,35 3.5* 1, 35 0.9 NS NS 

 Number of ready-to mate females  
70 5, 35 19.8** 4, 35 23.3** 1, 35 5.9* NS NS 

 Number of ready-to mate males  50 9, 31 5.5* 4, 31 9.0** 1, 31 0.9 4, 31 3.1* 

  OSR asn 37 5, 35 5.6* 4,35 6.0* 1, 35 3.9 NS NS 

Mating assay Brood size  18 4, 44 3.7* 4, 44 3.7*      

 Egg size  64 4, 761 338.1** 4, 761 338.1**      

 Egg density  42 4, 13 4.1* 4, 13 4.2*      
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Figure 4. Data collected along transects (2x20m) between 2012-2014 on a) mean number of 

available mussel-nests (free and occupied), b) the proportion of natural mussel-nests occupied 

and c) the mean number of soft-shell clams (M. arenaria) as well as their d) mean length [cm]. 

Box plots represent the medians and the first and third quartiles. Whiskers represent the most 

extreme data point ≤ 1.5 times the interquartile range from the box. Outliers are shown as 

separate data points. Letters above box plots indicate significant (P < 0.05) differences 

between populations whereby shared letters denote categories not significantly different in 

multiple comparisons. The total number of transects between populations varies, for details 

and site abbreviations see Table 1. Note that for easier interpretation, untransformed non-

standardized data is shown. Significances refer to centred (a, c, d) and transformed (a (log10), 

b (asn)) data (see also Table 2). 
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Population density 

The number of males and females counted along transects differed between populations 

(Table 2) and was highest at the intermediate sites, and especially so in KE (mean number of 

individuals ± SE: KE: males: 82.5 ± 10.9 and females: 83.3 ± 16.1 compared to males: 11.3 ± 

2.2 and females: 10.2 ± 2.8 from KE, IP, GO, TV; Fig. 5a). Season also had an effect on 

population density (Table 2), which was overall higher in the early season (males: 22.3 ± 6.0, 

females: 23.8 ± 8.3) than in the late season (males: 14.7 ± 5.4, females: 11.7 ± 4.2). We also 

found significant differences in population density within populations between seasons (for 

females in: KE: F 1, 31 = 8.3, P = 0.007 and IP: F 1, 31 = 9.3, P = 0.005; for males only in: IP: F 1, 31 

= 4.7, P = 0.038; Table 2). 

Operational sex ratio 

The OSR was significantly different between populations (Table 2). The low salinity site GO 

was significantly more male biased than all other populations except KR (Fig. 5b). The number 

of ready-to-mate males showed a significant interaction between population and season 

(variation among populations early: 53%, F4, 14 = 6.0, P = 0.005; late: 38%, F4, 17 = 4.2, P = 0.016). 

More ready-to-mate males were counted early than late in the season at the two sites with 

the highest salinity (mean number of ready-to-mate males ± SE: KR: early: 13.5 ± 8.9, late: 5.5 

± 1.4; KE: early: 33.5 ± 2.5, late: 11.0 ± 4.0), which were also the two sites showing the overall 

highest number of ready-to-mate males. At the intermediate site IP (early: 2.0 ± 1.2, late: 7.8 

± 2.5) and the low salinity site GO (early: 1.7 ± 1.2, late: 2.0 ± 1.1), however, more ready-to-

mate males were counted in late season than in early season. For ready-to-mate females no 

significant interaction between population and season was detected (Table 2). 
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Figure 5. Transect (2x20m) data (years 2012-2014) on a) female (grey boxes) and male (white 

boxes) common gobies counted (population density) and b) the operational sex ratio (OSR = 

the fraction of all ready-to mate males to all ready-to mate individuals). See Table 1 for details 

for site abbreviations and Fig. 4 for details on box plot graphs. 

 

Body size  

Males as well as females showed a significant decrease in body size with decreasing salinity 

from West to East (Table 2, Fig. 6a, b). Females of the high salinity site KR (mean body size in 

mm ± SE: KR: 39.8 ± 0.30) were 1.5 mm longer than females of the intermediate sites KE and 

IP (38.3 ± 0.27) and 3.4 mm longer than females of the low salinity sites GO and TV (36.4 ± 

0.19). Males of the high salinity site KR (39.5 ± 0.28) were 2.5 mm longer than males of the 

intermediate sites KE and IP (37.0 ± 0.27) and even 4.9 mm longer than males of the low 

salinity sites GO and TV (34.6 ± 0.20).  
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Figure 6. Mean centred body length [TL mm] for a) males and b) females measured early (grey 

boxes) and late (empty boxes) during the breeding season over three consecutive years (2012-

2014). Asterisks denote significant differences between early and late season within 

populations. See Table 1 for site abbreviations and Fig. 4 for details on box plot graphs. 

 

We found a relation between season and body size, wherein particular females were found to 

be larger late in the season (Table 2). Over all populations showing seasonal growth (for males 

only populations KR, KE, IP), females were about 3mm longer late in the season (early: 36.9 ± 

0.18, late: 39.9 ± 0.23), while males only grew 0.6 mm (early: 37.6 ± 0.27, late: 38.2 ± 0.33). 

Males of low salinity sites GO and TV did not grow over the season (Table 2, Fig. 6b). 

Male body size and size of Mya arenaria 

Mean male body size showed a strong positive correlation with the size of M. arenaria mussels 

used as nests (Spearman’s rank correlation: ρ = 0.85, P = 0.006; Fig.7). The high salinity site KR 

showed the largest M. arenarias as well as the largest males. Following the salinity gradient 

both shell and male sizes decreased. The site with the lowest salinity (TV) showed also the 

smallest mussel nests as well as males. Natural nests with M. arenaria shells as nest substrate 
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were at the high salinity site KR about 30 mm larger (mean M. arenaria length in mm ± SE: 

74.4 ± 4.7) than at the low salinity site TV (44.5 ± 1.9; Fig. 7).  

 

Figure 7. The size [mm] of mussel nests Mya arenaria (Mya) correlated with male mean body 

size [mm TL] of each site sampled in the corresponding year and season (black line indicates 

linear regression fit). Nest clams from the high salinity site KR (green), the intermediate salinity 

sites KE (orange) and IP (blue) and the low salinity sites GO (red) and TV (pink) were collected 

during the early breeding season. Mussel nests at IP were also collected late during the 

breeding season. Mussels at all sites were collected in 2013 and 2014 except IP and KE, which 

were only sampled in 2014.  

 

Mating assay  

Nest occupation 

The nest occupation rate of the 30 artificial nests after 72h experimental exposure varied 

significantly between the five populations (log-likelihood-test with Yates correction: X2 = 47.8, 
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df = 4, P < 0.0001, N = 150; Fig. 8a, grey bars). Testing against the overall average occupation 

rate across all populations, revealed that the number of occupied nests at the high (KR: X2 = 

0.5, df = 1, P = 0.487, N = 12), the intermediate site VR (X2 = 3.2, df = 1, P = 0.073, N = 9) as well 

as at the low salinity sites TV (X2 = 0.6, df = 1, P = 0.443, N = 17) did not significantly differ from 

the expected number of males occupying nests. The intermediate site IP however, showed a 

significantly lower nest occupation rate than expected (X2 = 10.6, df = 1, P = 0.001, N = 5), while 

the low salinity site GO showed a significantly higher rate of occupied nests than expected (X2 

= 26.6, df = 1, P < 0.0001, N = 29). 

Mating success 

Not all males that had taken up a nest were successful in also receiving eggs within 72h and a 

significant difference in the frequency of mated nest holders was detected between 

populations (log-likelihood-test with Yates correction: X2 = 44.5, df = 4, P < 0.0001, N = 72; Fig. 

8a, white bars). Results of chi-square tests revealed that the number of mated nest holders 

did not differ significantly from expected numbers based on nest occupation at the high 

salinity site KR (X2 = 0.04, df = 1, P = 0.852, N = 9) nor at intermediate sites (VR: X2 = 0.08, df = 

1, P = 0.775, N = 7; IP: X2 = 0.009, df = 1, P = 0.924, N = 3). For the two low salinity sites we 

found opposing results; while there were significantly more mated nest holders than expected 

at GO (X2 = 12.3, df = 1, P = 0.0005, N = 29), there were significantly less mated nest holders 

than expected at TV (X2 = 27.7, df = 1, P < 0.0001, N = 1).  

Reproductive success 

Brood size (representing male reproductive success) was significantly different between 

populations (Table 2), with males at the intermediate site IP showing significantly higher 

reproductive success (mean brood area in mm2 ± SE: 93 ± 120.8) than males of all other 
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populations (Fig. 8b). Broods of all other populations did not significantly differ in size (KR: 648 

± 66.9, VR: 597 ± 60.0, GO: 581 ± 32.6; Fig. 8b). Filial cannibalism on broods was detected in 

three out of five populations. The highest rate of filial cannibalism was detected at the high 

salinity site KR where overall eight out of nine broods showed signs of cannibalism, of which 

five broods were completely cannibalised after 72h during the mating assay. At the 

intermediate site VR three out of seven broods showed signs of cannibalism with one brood 

being completely cannibalised. At the low salinity site GO only three out of 29 broods showed 

mild signs of cannibalism. At IP (and TV: N = 1) no cannibalism was detected. 

Brood characteristics 

Egg density 

Egg density was significantly different between populations (Table 2, Fig. 8c) with males of the 

low salinity site GO having significantly fewer eggs within 0.5 x 0.5 cm (mean egg number ± 

SE: GO: 33.7 ± 1.1) than males of high and intermediate sites (KR: 43.3 ± 3.4, VR: 48.2 ± 1.9, 

IP: 48.0 ± 3.8). There was no significant difference between high, intermediate and the low 

salinity site TV (TV: 41.3 ± 0.9; Fig. 8c).  

Egg size 

Egg size data suggest males of intermediate salinity sites (VR and IP) to receive the smallest 

eggs. Egg size differed significantly between all populations, except between the high (KR) and 

the low (GO) salinity sites, where broods contained the biggest eggs (mean egg size in mm2 ± 

SE: KR: 0.465 ± 0.01, GO: 0.474 ± 0.02; Table 2; Fig. 8d). At the intermediate sites VR and IP as 

well as the low salinity site TV males received significantly smaller eggs (VR: 0.267 ± 0.01, IP: 

0.305 ± 0.01, TV: 0.396 ± 0.02; Fig. 8d).  
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Figure 8. Results of the mating assay after exposing 30 artificial nests for 72h at five different 

sites in the field. a) number of nests occupied by nest holders (grey boxes; letters indicate 

significant differences between populations) and mated nest holders (empty boxes); b) mean 

brood size (mm2) of mated nest holders; c) ‘egg density’ (number of eggs within 0.5 x 0.5 cm); 

d) ‘egg size’ (mm2). See Table 1 for site abbreviations and Fig. 4 for details on box plot graphs.
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Discussion 

We found that geographic variation influences fundamental aspects of mating success in 

common gobies, which may directly or indirectly affect the sexual selection regime of common 

goby populations along the salinity gradient in the Baltic Sea. Transect data revealed that 

quantity and quality of nesting resources (M. arenaria) generally decreased with decreasing 

salinity from West to East and so did the body size of common gobies. 

Common gobies have a resource-based mating system, where the availability of mussel shells 

is crucial for successful mating and reproduction. Because mussels are marine species, low 

salinity waters pose suboptimal habitat conditions (Kube et al. 1996). One of only few mussel 

species that occurs throughout the full salinity gradient at all five sampled sites is the soft-

shell clam (M. arenaria). At low salinity sites it is also the only one of sufficient size to serve as 

nest resource for P. microps. As expected, we found a considerable decrease in the density of 

M. arenaria in salinities of 7 PSU and lower. Interestingly, it seems that the threshold for 

growth of M. arenaria is roughly around 15 PSU (according to our measurements between 19-

13 PSU), because despite its high density at IP (12 PSU), its size was comparable to that of the 

shells measured at the low salinity sites GO (7 PSU) and TV (5 PSU). Our findings support those 

from Matthiessen (1960), who showed that M. arenaria can survive in salinities as low as 4 

PSU; however, the feeding rate was already negatively affected below 15 PSU, as the pumping 

rate is then significantly reduced. While KR and KE lay within the Kattegat, IP is just west of 

the line of Falsterbo (south Sweden) and Travemünde (Germany), marking the entrance of the 

Baltic Sea proper (see Fig. 1). Thus IP, GO and TV may represent in certain aspects the 

conditions of the Baltic Sea better than KR and KE.  

Differences in body size were already found in a previous study on the closely related sand 

goby (P. minutus), which compared the mode of sexual selection between the high nest 
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availability site (KR) and the low nest availability site (TV; Forsgren et al. 1996b). Males of KR 

(high salinity) were also found to be larger than males of TV (low salinity), however, no clear 

conclusion about male size differences was drawn and no link to differences in salinity 

between high and low nest availability sites were hypothesized as a possible explanation. With 

our extended study on common gobies, incorporating a total of five populations spanning the 

entire salinity gradient we fill the gap of knowledge on how body sizes vary between high and 

low salinity sites. Results show a linear decrease of body size in common gobies along the 

salinity gradient in the Baltic Sea from west (KR) to east (TV). The common goby is a marine 

species, which originated from the Mediterranean Sea (Simonovic 1999) and must cope with 

low salinity conditions, which likely constitutes physiological stress. Fish with high metabolic 

costs of osmoregulation often compensate energy allocation to growth with 20 to > 50% of 

the total fish energy budget being dedicated to osmoregulation (reviewed in Boeuf and Payan 

2001). This could explain a decrease in body size of P. microps with decreasing salinity and 

increasing costs for osmoregulation (Boeuf and Payan 2001; Glover et al. 2012; Passow et al. 

2015). Therefore, our findings that fish body size as well as shell size (and shell density) 

decrease with decreasing salinity could be explained by both species originating from a fully 

marine background being affected in a similar way by low salinity conditions.  

Another explanation for the habitat-specific size differences in common gobies might be the 

decrease in shell size as a result of the decrease in salinity. It is possible that small common 

goby males (as well as females) of low salinity habitats facing small nests had over time an 

evolutionary advantage by actually being able to fit inside small nests. Size-assortative nest 

choice has been shown for P. microps (Magnhagen and Vestergaard 1993) and many other 

fish species with a resource-based mating system and paternal care (Cote and Hunte 1989; 

Kvarnemo 1995; Natsumeda 1998; Lehtonen and Lindström 2004; Takegaki et al. 2008). Even 
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though there is evidence from a variety of fish species, including P. microps (Lindström 1988; 

Hastings 1992; Magnhagen and Vestergaard 1993), that larger nests generally contain more 

eggs resulting in higher reproductive success, there seems to be a trade-off between 

maximizing surface area for egg deposition and minimizing costs of nest maintenance and 

defence. For common goby males in a low salinity habitat a choice between large and small 

nests however is rare anyway. It is likely that small males are under stronger sexual selection 

in low salinity habitats leading over time to overall smaller common gobies inhabiting low 

salinity habitats compared to larger males inhabiting high salinity habitats with large nests. 

The strong positive correlation between male size and mussel size highlights the effect salinity 

can have on species metabolism and therefore growth rate, and suggests how natural 

selection and sexual selection can be linked. 

Why did common gobies at all colonize the eastern parts of the Baltic Sea if adverse conditions 

caused a decrease in nest quality and quantity, and a reduction in growth rate? One 

explanation may be that high population densities can result in lower fitness for individuals 

that settled originally in the best possible habitat (likely to be: high/intermediate salinity, 

western Baltic Sea; Boeuf and Payan 2001). Thus, if a population density would be reached at 

which expected fitness in a poorer habitat would be as high as in the best habitat, colonisation 

of the poorer habitat (low salinity, eastern Baltic Sea) may begin (Fretwell 1972). Our results 

on population density generally support this theory, showing low population densities in low 

salinity habitats (GO and TV) and the highest population densities at intermediate sites (KE 

and IP). According to this scenario, however, one would expect to find the highest population 

density at the high salinity site (KR), yet population density at KR was almost as low as at TV, 

the site with the lowest salinity. One very likely explanation for this observation are sea level 

fluctuations around KR due to deep low pressure passages over the Bothnian Bay, combined 
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with high pressure over the southern Baltic (SMHI, Swedish Meteorological and Hydrological 

Institute). During the sampling period in KR sea level was below normal (early season 

2013/2014: -29mm/-258 mm, late season 2013: -128 mm), which could have led to common 

gobies staying in deeper waters rather than start breeding in shallow, unpredictable coastal 

areas. We, therefore, recommend to treat results on population density in KR with caution, 

due to unusual meteorological and hydrological abnormalities during sampling. Alternatively, 

intermediate salinity levels might constitute optimal habitat conditions due to high nesting 

resource availability and intermediate abiotic factors indicated by high population density 

(Gilliers et al. 2006). 

Furthermore, population densities differed not only between populations but also over the 

season. Generally, more fish were counted early than late in the breeding season. Common 

gobies are annual fish and it was shown for the closely related sand goby that males facing 

intra-sexual competition died earlier than males not competing, because of increased stress 

levels and energy depletion (Lindström 2001). A drop in population size as the breeding season 

progresses might be caused by a depletion of energy reserves after reproduction leading to 

high mortality of this annual fish.  

The OSR was significantly more male biased in the low salinity site GO and showed a trend for 

a male bias for the other low salinity site TV as well as the high salinity site KR, while 

intermediate salinity sites were clearly female biased (Fig. 5b). These findings however, are 

correlated with the overall very low population density at the low and high salinity sites, 

making it more likely to count stationary males sitting in their nests (defined as ready-to-

mate), than counting free swimming ready-to mate females. No differences in the OSR were 

found between seasons. This result contrasts those of Forsgren et al. (2004), who found in a 

closely related goby species (Gobiusculus flavescens) inhabiting the high salinity sites in the 
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Baltic Sea that late in the season more females were ready-to-mate than males, and thus a 

shift in the OSR. Nevertheless, more frequent sampling could detect subtle differences 

between seasons and reflect the whole progress of one breeding season more accurately. On 

the other hand, such a clear temporal shift in the OSR may not exist in P. microps. Overall, we 

are cautious with our interpretation of OSR results because of small sample sizes (KR, GO, TV) 

and therefore larger variation between sites. 

Results of the mating assays corresponded well with data on natural nests collected along 

transects. The nest occupation rate of artificial nests mirrored natural nest availability; low 

salinity sites showed the highest artificial nest occupation rate (natural nest availability: low), 

followed by KR and KE (natural nest availability: intermediate), and IP (natural nest availability: 

high). These findings are similar to results on artificial nest occupation rate of a field study in 

KR and TV found in sand gobies were males of TV occupied more nests and did so faster than 

males of KR (Forsgren et al. 1996b; see also Borg et al. 2002). 

The frequencies of the mating success by males occupying an artificial nest were, however, 

unexpected. While all nest holding males of the low salinity site GO received eggs, this was 

true for only one of the nest holding males at the other low salinity site TV. A plausible 

explanation is lacking here, because both GO and TV showed a rather male-biased OSR. 

However, the conducted mating assay represents a single, short time frame (72h) only, during 

which abiotic factors like unstable weather conditions may cause females to reduce spawning 

(authors pers. obs.). In fact, during the period the mating assay was carried out in 2012, water 

temperatures at all sites ranged between 15°C and 20°C, but did not exceed 14°C in TV. The 

rise of water temperatures during the breeding season of P. microps starts later in the North 

and East, resulting in spatial-temporal variation in water temperature in the Baltic Sea. Water 

temperature plays a crucial role in female egg development as well as in the duration the eggs 
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need to hatch, and therefore affects the reproductive cycle of both sexes as well as the 

operational sex ratio (Pauly and Pullin 1988; Kvarnemo and Ahnesjö 1996; Ahnesjö et al. 

2001). 

The highest reproductive success (brood-size measured) was found at the intermediate 

population IP, which at the same time was also the population with the lowest artificial nest 

occupation rate. Other studies suggested that females of various fish species with paternal 

care prefer to lay eggs in nests, which already contain eggs (Ridley and Rechten 1981; 

Jamieson 1995; Forsgren et al. 1996a; Goulet 1998). This might explain why only 60% of nest 

holding males received eggs at IP, but all of these males were guarding large broods 

(suggesting clutches of two or more females). Brood-size of KR, VR and GO were similar in size. 

By definition is variation in mating- and reproductive-success determining the strength and 

direction of sexual selection within populations as well as between populations (Howard 

1983).  

Interestingly, although brood-size of males at the high salinity site KR and the low salinity site 

GO were similar, the egg density was higher at KR than at GO. Broods of intermediate sites 

(VR and IP) contained the smallest eggs at high density and broods of the low salinity site TV 

contained eggs of intermediate size and density. Our results on differences between 

populations in egg size and egg density highlight that inappropriate techniques chosen to 

estimate reproductive success can lead to false conclusions.  

Why are the eggs at GO as large as those at KR but differ in density? Generally, in marine 

teleost fish, egg size variation appears to be related to maternal effects (Chambers and Leggett 

1996), which would imply that females of KR (high salinity, large females) should produce 

larger eggs than females of GO (low salinity, small females).  On the other hand, externally 

developing eggs are in constant contact with the surrounding water, which can contain 
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pathogens like water molds (Saprolengia) affecting egg viability. High salinity decreases the 

infection rate of eggs, while high density of eggs increases infection rate (Lehtonen and 

Kvarnemo 2015a). Therefore, egg density at the low salinity sites is low (GO) to intermediate 

(TV), which might represent an evolutionarily effective strategy to reduce the egg mold 

spreading risk in low salinity habitats. Laying eggs at low density means that females cannot 

lay as many eggs in one nest as when they would lay eggs very densely. In addition, females 

of low salinity sites are smaller than those of high salinity sites, and body size is directly 

correlated to fecundity in many fish species (Koops et al. 2004). To compensate these trade-

offs it is likely that females of low salinity sites invest in egg quality (size) rather than in egg 

quantity, because large eggs imply larger new-borns, which increases their survival rate 

especially during the first critical days when larvae still nourish from their yolk sack (Tamada 

and Iwata 2005; Allen et al. 2008). 

Conclusion 

Our results suggest that low salinity sites in the Baltic Sea rather pose a suboptimal habitat 

choice for common gobies. Mussel shells necessary for reproduction decrease in quality and 

quantity, and the population density and growth rate of P. microps itself is reduced, suggesting 

that geographic variation of abiotic and biotic factors can strongly influence populations’ life 

history and prospects for mating. We demonstrated the importance of considering 

environmental parameters, such as resource availability among populations, in studies 

investigating a species’ sexual selection regime. In particular environmental gradients seem to 

promote a basis for environmental-dependent sexual selection; neglecting differences in 

abiotic factors between populations may lead to false conclusions about sex role dynamics 

and the overall outcome of sexual selection. We encourage standardized common garden 
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experiments to empirically test the effect of salinity on physiological traits such as body size, 

which would allow to evaluate the relative degree of phenotypic plasticity. To evaluate if Baltic 

common gobies are adapted to salinity due to natural selection or due to drift population 

genetic analyses are required (see Chapter II). 
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Abstract 

Population divergence at neutral genetic markers is caused by genetic drift due to reduced gene flow, 

which can arise by isolation by distance (IBD; neutral evolution) and/or isolation by environment (IBE; 

adaptive evolution). Here, we investigate the relative contribution of IBD and IBE driving population 

divergence in common gobies (Pomatoschistus microps). We used microsatellite markers to 

investigate genetic population differentiation of common gobies focusing on the Baltic Sea but 

including Mediterranean, the Atlantic and North Sea populations as benchmarks. Additionally, we 

investigated if phenotypic variation in body shape of Baltic common gobies is caused by natural 

selection or genetic drift by comparing phenotypic differentiation (PST) with neutral genetic 

differentiation (FST). We found a clear genetic separation between Mediterranean, Atlantic, North Sea 

(high salinity) and Baltic Sea populations (mid to low salinity). Furthermore, eastern Baltic populations 

(low salinity) form a monophyletic group within the Baltic cluster. Generalized Dissimilarity Models 

(GDMs) suggest IBE due to salinity to be as likely an explanation as IBD to drive population 

differentiation in common gobies. Phenotypic differentiation (PST) of body shape was found to be 

greater than neutral genetic differentiation (FST) among populations suggesting that divergent 

selection is favouring different phenotypes in P. microps in the Baltic Sea. This study demonstrates that 

both IBE and IBD are important processes driving divergence in this species. 
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Introduction 

It has become clear through theoretical (Wright 1943; Kimura 1984; Shafer and Wolf 2013; 

Sexton et al. 2014; Wang and Bradburd 2014) and empirical studies (Via et al. 2000; Pogson 

et al. 2001; Crispo et al. 2006; Cooke et al. 2012) that both neutral as well as adaptive 

evolutionary processes can lead to population divergence. However, their relative 

contribution to population differentiation is often poorly understood. Neutral evolution arises 

through genetic drift and is enhanced by limited dispersal due to isolation by distance (IBD = 

correlation between geographic and genetic distance; Wright 1943) or physical barriers 

causing a reduction of gene flow, leading to random changes in allele frequencies within a 

population, in the absence of natural selection. Selective pressures by environmental 

conditions, on the other hand, act on traits in a population, which can result in locally adapted 

populations (e.g. Burger and Lynch 1995; Kawecki and Ebert 2004). The process of local 

adaptation and the reduction of gene flow due to reduced fitness of dispersing individuals has 

been coined isolation by environment (IBE; Orsini et al. 2013). If selection pressures differ 

among populations, it will lead to adaptive genetic differentiation among populations 

enhanced by IBE. The balance between dispersal rate and the strength of selection dictates 

whether and how quickly populations become locally adapted. Even though local adaptation 

is possible in the presence of gene flow (Nosil and Crespi 2004), extensive evidence suggests 

that gene flow between environments posing divergent selection pressures on local 

populations can reduce local adaptation and instead drive adaptive phenotypic plasticity 

(theoretical: Hendry et al. 2001; Lenormand 2002; emprirical: Nosil and Crespi 2004; Hemmer-

Hansen et al. 2007; Räsänen and Hendry 2008).  

One way to study the relative importance of IBD versus IBE is to assess the correlation 

between easily obtained neutral genetic markers, such as microsatellite markers, and both 
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environmental heterogeneity and geographic distance. The premise of this approach is that a 

reduction of gene flow will lead to genetic drift in neutral markers. Gene flow can be reduced 

by either geographic distance/physical barriers (IBD/isolation by resistance, IBR) or by reduced 

fitness of dispersing individuals due to maladaptation to the new environment (IBE; Edelaar 

et al. 2012; Shafer and Wolf 2013; Wang et al. 2013; Sexton et al. 2014; Wang and Bradburd 

2014). A classic example for IBE comes from plants growing on and near main tailings, where 

adaptation to different soil types has occurred (Antonovi 1968; and see also Antonovics 2006). 

Ever since Kimura (Kimura 1984) suggested ‘the neutral theory of molecular evolution` (i.e. 

most evolutionary changes and most of the variation within and between species at the 

molecular level is not caused by natural selection but by random genetic drift) a big debate 

and a large pool of literature arose investigating population differentiation originating either 

by natural selection or by genetic drift. In this study, we investigate patterns of IBD, IBE and 

phenotypic population differentiation in a small marine fish, the common goby 

(Pomatoschistus microps) along an environmental gradient in the Baltic Sea. The lack of 

obvious barriers to gene flow in marine environments led to the general belief that the genetic 

population structure of marine organisms is homogenous (e.g. Ward et al. 1994). Over the 

past decade, however, several studies describe distinct genetic structuring for marine species 

on coarse and fine geographical scales (Pampoulie et al. 2004; Hoffman et al. 2005; Hauser 

and Carvalho 2008). Currents and climatic barriers, but also biotic and abiotic differences 

between locations, may restrict dispersal or result in local adaptations promoting genetic 

differentiation between populations.  

The Baltic Sea provides an ideal study area to investigate recent and ongoing population 

divergent processes. The Baltic Sea originated only after the last glacial period (~ 10,000 years 

before present (BP)) at the end of the Pleistocene and passed since then through different 

https://en.wikipedia.org/wiki/Evolution
https://en.wikipedia.org/wiki/DNA_sequence
https://en.wikipedia.org/wiki/Natural_selection
https://en.wikipedia.org/wiki/Random_genetic_drift
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stages from brackish (Yolida Sea ~ 10,000 years BP) to fresh water (Ancylus-Lake ~ 7,800 years 

BP) and again to a brackish stage (Littorina Sea ~ 5,000 years BP). Today it is characterised by 

a steep salinity gradient: decreasing in salinity from West (~ 20‰) to East (~ 3-4‰) and from 

South (~ 7-12‰) to North (~ 3-4‰; Stigebrandt 2001; Fig. 1). This natural gradient implies for 

marine species that only those, which could genetically adapt to low salinities or have a highly 

plastic response to salinity succeeded in colonising the Baltic Sea.  

The common goby is an annual marine fish. The species is known to be highly adaptable to 

environmental fluctuations (Dolbeth et al. 2007) and can be found in salinities ranging from 

0.5-35 ‰ in coastal waters and estuaries (Fonds and van Buurt 1974). Belonging to the 

Atlantic-Mediterranean sand goby group, its origin lies within the Mediterranean Sea where 

the oldest fossil remains have been found (Simonovic 1999; Tougard et al. 2014). There is 

evidence for a northward range expansion of common gobies ca. 10,000 years BP as well as 

for range contractions and expansions during earlier glaciations and interglacial periods 

(Gysels et al. 2004a).  

A number of studies have dealt with the phylo-geographical patterns of species of the family 

Gobiidae, including marine species of the sand goby group to which P. microps belongs (Wallis 

and Beardmore 1984; Huyse et al. 2004; Gysels et al. 2004a, b; Larmuseau et al. 2009; Tougard 

et al. 2014). Gysels et al. (2004a) investigated colonisation patterns of P. microps using 

allozyme electrophoresis (CAGE) and mitochondrial cytochrome b haplotypes. In their study, 

however, they did not include any Baltic populations, so the phylogenetic structure of P. 

microps in the Baltic Sea is still unknown. Furthermore, it is suggested that recent and ongoing 

population divergent processes are more likely to be detected when using microsatellite 

markers instead of CAGE or mtDNA (Granevitze et al. 2014).  
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The body of literature is growing  investigating the relative contribution of both neutral as well 

as adaptive evolutionary processes driving population divergence within a species (Hendry et 

al. 2002; Hendry and Taylor 2004; Nosil and Crespi 2004; Moore and Hendry 2005; Crispo et 

al. 2006; Minder and Widmer 2008; Brousseau et al. 2015; Ruiz-Gonzalez et al. 2015); far less 

studies exist doing so using a marine organism (Coscia et al. 2012; Nanninga et al. 2014; Giles 

et al. 2015; Guo et al. 2015; Tepolt and Palumbi 2015). We used eight variable microsatellite 

markers to investigate the population genetic structure of common gobies. Our main goal is it 

to assess the relative contribution of neutral versus adaptive evolutionary processes driving 

population divergence in the marine goby common goby with focus on Baltic populations.  

Specifically, we want to address (1) the genetic structure of common gobies in the Baltic Sea 

and compare it to three benchmark populations of the North, Atlantic and Mediterranean 

Seas, (2) the relative contribution of IBD versus IBE (salinity) on population divergence (using 

Mantel tests as well as Generalized Dissimilarity Models) and for Baltic populations (3) the 

roles of natural selection and genetic drift causing phenotypic population divergence by 

comparing phenotypic differentiation (PST) to genetic differentiation (FST). We expect to find 

that populations are genetically more differentiated from each other with increasing 

geographic distance (IBD), because common gobies dispersal is assumed only to occur during 

their larval stage (Jones and Miller 1966). Alternatively, if salinity poses strong selection, we 

expect to find IBE due to salinity. Furthermore, we expect to find divergence in phenotypic 

traits caused by local selection to different environments.  
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Methods 

Study species 

The common goby (Pomatoschistus microps; Fig. 2) is one of the most abundant fish species 

along the European coast (Healey 1972). The range of distribution of this small (TL 3-6 cm), 

benthic fish extends along the Atlantic coast from Morocco to central Norway including the 

Irish and British coasts as well as the North and Baltic Seas (Wheeler and Du Heaume 1969). 

The occurrence in the Mediterranean is limited to lagoons and estuaries in the Gulf of Lyon 

and Corsica (Bouchereau 1997a; Bouchereau and Guelorget 1998). Its dispersal is suggested 

to take place during the pelagic larval stage (Jones and Miller 1966) since adults are considered 

poor swimmers (Miller 1984). Gene flow between populations of the Mediterranean and 

different populations of the Atlantic appear to be restricted (Gysels et al. 2004a; Tougard et 

al. 2014). Common gobies are sexually dimorphic fish with a resource based mating system 

and paternal care (Kvarnemo et al. 1998).  

Fish collection and sampling sites 

Fish included in the genetic analyses were collected from eleven populations in the Baltic Sea 

in 2012 (population Poland (PU) collected in 2014; Table 3, Fig. 9). Adult fish were caught using 

a hand trawl (width 2 x 3m wings, funnel length 2.5 m, mesh size 4 mm in the wings and 2 mm 

in the funnel) in shallow waters near the coast. Fish were euthanized using an overdose of MS-

222 and stored in 96% ethanol in a -80°C freezer. We also included fish from the North Sea 

(BR), southern Atlantic (MI) and Mediterranean (LV; see Table 3 for details) for genetic 

analyses. For the seven populations included in morphometric analyses, fish were collected in 

2014 as explained above (see also Table 3 sites marked with *). Fish were photographed live 
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(see body shape analyses) after which all individuals were released back into their natural 

habitat. 

 

 

 

Figure 9. Fish collection sampling sites categorised based on Nei’s genetic distance 

(Neighbour-Joining consensus tree). Included are western Baltic populations (    , 7), eastern 

Baltic populations (   , 4), North Sea (   , 1), Atlantic (   , 1) and Mediterranean Sea (   , 1) 

populations, salinity values (‰) and site abbreviations (see Table 3). 
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Table 3: Summary of sampled populations of Pomatoschistus microps included in this study. Reported are: sampling sites, abbreviations for sites 

(Abb.), sample size (N), groups (WBaltic: western Baltic, EBaltic: eastern Baltic), geographic locations, mean salinity (in ‰), coordinates (Latitude, 

Longitude), dates of sampling (month-year). Asterisks denote populations included in the geometric morphometric analyses of body shape. 

 

 
Sampling  site Abb. N Group Geographic location Salinity (PSU) Latitude Longitude Dates 

Kristineberg *  KR 20 W Baltic western Sweden, Gullmarfjord 22.2 58°24'N 11°46'E           May-12 

Vrinners VR 10 W Baltic Denmark, Bay of Arhus 20.3 56°15'N 10°30'E           Jul-12 

Kerteminde* KE 19 W Baltic Denmark, Fuenen 16.8 55°44'N 10°65'E           Jul-12 

Maasholm  MA 23 W Baltic Germany, Schlei estaury 14.2 54°69'N 9°99'E             Jun-12 

Neustadt  NE 23 W Baltic Germany, Bay of Mecklenburg 13.3 54°69'N 10°80'E           Sep-13 

Island Poel*  PO 24 W Baltic Germany, Bay of Mecklenburg 12.2 53°99'N 11.48'E        Jun-12 

Puck* PU 23 W Baltic Poland, Puck Bay 7.3 54°43'N 18°24'E           May-14 

Kalmar*  KA 24 E Baltic eastern Sweden, Kalmar strait 7.4 56°66'N 16°36'E            Jun-13 

Valleviken* VA 22 E Baltic Island Gotland, Sweden 7.2 57°78'N 18°94'E            Jun-12 

Tvärminne (Henriksberg)* TH 21 E Baltic south-western Finland, Gulf of Finland 5.8 59°82'N 23°14'E           Jun-12 

Tvärminne (Vindskar) TV 17 E Baltic south-western Finland, Gulf of Finland 5.8 59°82'N 23°21'E             Jun-12 

Branst BR 24 North Sea Belgium,  Schelde estuary 29 51°61'N 4°10'E           Oct-14 

Minho  MI 15 Atlantic northern Portugal,  Minho estuary 35 41°52'N 8.51'E  na 

Lagoon Vaccarés  LV 22 Mediterranean southern France, Rhone estuary 35 43°'25N 4°55'E na 
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Genetic analyses 

Total genomic DNA was extracted from caudal fin clips of all 287 individuals in each of the 14 

sampled locations using a DNeasy® Blood & Tissue Kit (Qiagen, Hilden, Germany). Nine 

microsatellite markers previously used to characterize members of the sand goby group were 

individually labelled at the 5' end with fluorescent dye and multiplexed on 3 separate panels 

(see Table 4 for details). Locus Pmin09 was run independently due to low signal strength when 

multiplexed. Microsatellite markers were amplified using polymerase chain reaction (PCR, 

10µl final volume) carried out in an Eppendorf Mastercycler® thermocycler (Eppendorf AG, 

Hamburg, Germany). PCR conditions for each reaction using the Qiagen® Multiplex PCR kit 

were 5µl of Qiagen Master Mix (containing HotStarTaq DNA polymerase, dNTPs and 3mM 

MgCl2), 0.1 µM of each primer (forward and reverse), 2.8 µl HPLC water, and 2 µl extracted 

template DNA. The thermal cycling profile consisted of an initial denaturation for 5 min at 95°C 

followed by 30 sec of 95 °C, 60 °C reannealing temperature (90 sec), 30 cycles at 95°C, an 

extension step at 72 °C (30 sec) and a final extension at 60°C for 30 min. Fragment lengths of 

PCR products were analysed using an Applied Biosystems® (ABI, Life Technologies GmbH, 

Darmstadt, Germany) 3730 capillary sequencer and visualized using ABI GENEMAPPER v. 5.0 

software. 

Microsatellite data were analysed with GENEPOP 4.2 (Raymond and Rousset 1995) to test for 

Hardy-Weinberg (HW) equilibrium (Fisher's exact test) and for genotypic linkage 

disequilibrium for pairs of loci within populations (Fisher's exact test). Sequential Bonferroni 

corrections (Rice 1989) were carried out for both tests mentioned above. Number of alleles 

(Na) as well as observed and expected heterozygosity (HO and HE) were calculated using 

GenAlEx 6.501 (Peakall and Smouse 2006; Peakall and Smouse 2012). Allelic richness (Ar) was 
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calculated using FSTAT (Goudet 1995). We tested microsatellite loci for neutrality with the 

software LOSITAN (Antao et al. 2008) within each population. To visualize genetic 

relationships between populations, a Neighbour-Joining (NJ) tree was assembled based on 

Nei's genetic distance (DA ; Nei 1972) with 10,000 bootstrap replicates for each loci, drawn 

with the program POPTREE2 (Takezaki et al. 2010) and edited in MEGA 6.0 to create a 50% 

majority tree (Tamura et al. 2013). 

 

Table 4: Microsatellite information. Locus name, fluorescent labels at the 5' end, panel name, 

number of different alleles per locus (Na), species and the reference of the first description for 

each microsatellite locus. 

 

Locus 5' labels    Panel       Na             Species      Reference 

Pmic02 VIC 2 53 P. microps Berrebi et al. 2006 

Pmic03 NED 2 15 P. microps Berrebi et al. 2006 

Pmin04 NED 3 6 P. minutus Larmuseau et al. 2007 

Pmin05 6fam 3 20 P. minutus Jones et al. 2001 

Pmin09 VIC na 38 P. minutus Berrebi et al. 2006 

Pmin35 NED 1 20 P. minutus Larmuseau et al. 2007 

Pmin38 6fam 1 8 P. minutus Larmuseau et al. 2007 

Pmar03 6fam 3 39 P. marmoratus Berrebi et al. 2006 

Pmar05 6fam 2 32 P. marmoratus Berrebi et al. 2007 

 

 

To determine the population genetic structure using Bayesian clustering, the program 

STRUCTURE 2.3.4. (Pritchard et al. 2000) was implemented using the admixture model. 

STRUCTURE determines the most likely number of populations (K) with gene frequencies in 

HW and linkage equilibrium, using a Bayesian, model-based algorithm. Each run consisted of 

a burn-in period of 200,000 and 500,000 Markov Chain Monte Carlo (MCMC) repetitions. 

Possible numbers of clusters (K) ranged from K = 1 to K = 14 which equals the maximum 
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number of sites sampled. Each value of K had ten separate iterations. The software 

STRUCTURE HARVESTER A.2 (Earl and vonHoldt 2012) was used to determine the most likely 

value of K (at which ΔK is maximal; Evanno et al. 2005). To find the optimal alignment of the 

results from the 14 replicate cluster analyses, we used the software package CLUMPP 1.1.2b 

(Jakobsson and Rosenberg 2007). The results from STRUCTURE and CLUMPP analyses were 

summarized using the program DISTRUCT (Rosenberg 2004).  

Genetic differentiation, measured by FST, was calculated between each population pair with 

ARLEQUIN 3.5.1.2 (Excoffier and Lischer 2010). Significance of global pairwise FST was 

estimated with ARLEQUIN using 10,000 permutations. Wright’s F statistic (1943) decreases 

with increasing allelic diversity (Wright 1951; Hedrick 2005; Jost 2008; Meirmans and Hedrick 

2011); therefore we directly compare the fixation index, FST, and an index of genetic 

differentiation, Dest (Jost 2008). The pure index of genetic differentiation was calculated with 

SMOGD 1.2.5. (Crawford 2010). To test for genetic isolation by distance (IBD), pairwise FST and 

Dest estimates calculated between samples were plotted against geographical distance using a 

paired Mantel test (Mantel 1967) implemented in GenAlEx 6.501. The significance of observed 

associations was evaluated using 1,000 permutations. The Mantel test uses a non-spatial 

Island model (Wright 1931), which assumes equal migration among all populations regardless 

of their distance as well as independence of samples. To explicitly evaluate the importance of 

geographic distance between populations (IBD) and the influence of salinity (IBE) on 

population divergence in P. microps, we performed additionally a Generalized Dissimilarity 

Model (GDM) in R (Ferrier et al. 2007). GDMs take into account the influence of geographic 

distance on explaining biological variation. We ran GDMs including the response variable (FST 

or PST) to evaluate genetic dissimilarities between populations and two predictor variables: (1) 

shortest geographic distance between populations through water (overwater distance) and 
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(2) salinity as environmental variable. Additional fitted functions of population groupings 

following the hierarchical approach based on the NJ tree are reported: (1) all populations, (2) 

Atlantic, North Sea, Baltic Sea, (3) North Sea, Baltic Sea and (4) Baltic Sea. 

PST - FST comparison 

The degree of genetic population differentiation can be measured with neutral molecular 

markers using Wright’s fixation index, FST (Wright 1943). Low FST values indicate high gene flow 

between populations possibly hindering local adaptation. High FST values, on the other hand, 

can be caused by genetic drift due to limited gene flow. 

For a neutral quantitative trait that has an additive genetic basis, the analogue to FST is QST 

(Spitze 1993): 

  𝑄𝑆𝑇 =
𝑉𝐴,𝑏

𝑉𝐴,𝑏+2𝑉𝐴,𝑤
 , 

where VA, b and VA, w are the morphological additive genetic components between and within 

populations. 

QST - FST comparisons are commonly used to distinguish between natural selection and genetic 

drift as causes of population differentiation (Leinonen et al. 2013). For a quantitative trait 

under divergent selection QST > FST and different phenotypes are favoured, under convergent 

selection QST < FST and the same phenotypes are favoured in different populations. Difficulties 

in estimating within- and among-population components of genetic differentiation in 

quantitative traits made it common to replace QST with its phenotypic analogue PST (Leinonen 

et al. 2006; Brommer 2011; Leinonen et al. 2013): 

𝑃𝑆𝑇 =
𝑉𝑏

𝑉𝑏 + 2𝑉𝑤
 



 Chapter II  

63 
 

Two parameters, c (proportion of the total variance that is presumed to be due to the additive 

genetic effects across populations) and h2 (heritability, the proportion of phenotypic variance 

due to additive genetic effects), determine the accuracy of the approximation of QST by PST.  

𝑐

ℎ2
=

𝐹𝑆𝑇(𝑃𝑆𝑇 − 1)

𝑃𝑆𝑇(𝐹𝑆𝑇 − 1)
 

We followed Whitlock and Guillaume (2009) when comparing phenotypic differentiation (PST) 

to neutral molecular differentiation (FST). We adapted the R script provided as appendix in 

Whitlock and Guillaume (2009) for the use of PST instead of QST and ran 1,000 iterations to 

obtain confidence intervals for FST and PST estimates. As PST depends on the ratio between (c) 

among and within (h2) population additive genetic variation, we calculated PST (and its 

confidence interval) for values ranging from 0.05 to 1. Canonical variate scores of body shape 

analyses of males and females (see below) were used to calculate the within (Vw) and the 

between (Vb) phenotypic variance using an ANOVA.  

Geometric morphometrics were carried out on 134 female and 141 male photographs of 

common gobies of seven Baltic populations (see Table 3 sites marked with *). Photographs 

were taken with a Canon EOS 1100D digital SLR camera of live fish resting in a water filled 

photo chamber (5cm x 5cm x 1.5cm) made of black polyethylene with a glass front. Fish were 

photographed on the left side, and with a moveable glass plate gently pushed towards the 

glass front of the chamber to make sure they are aligned parallel. To analyse the body shape 

of each fish, we chose 15 landmarks (lm) following general guidelines for placement of lms 

(Klingenberg and McIntyre 1998; Fig. 10). Lm's were digitized using the software TpsDig (Rohlf 

2006). To indicate how bent or straight each fish was we calculated five angles: the angle of 

lm 4 and lm 9 as well as the angles at the midpoints between lm 5 and lm 14, lm 6 and lm 13, 

and between lm 7 and lm 12 (personal communication C. Klingenberg). These angles were 
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used as covariates in a regression on body shape coordinates after a Procrustes 

superimposition using the software MorphoJ (Klingenberg 2011). We created subsamples (N 

= 7) of each population separated by sex. To account for any level of allometric size variation 

caused by size differences of fish from different populations, we corrected the residuals of 

body size to the log centroid size. The residuals corrected for allometric size differences were 

then used in a canonical variate analyses (CVA; Albrecht 1980), which produces new variables, 

the canonical variates (CVs). To see the main patterns among groups it is often sufficient to 

display two or three CVs. Here, only CVs with an Eigenvalue greater than one are included (see 

Kaiser 1960).   

 

Figure 10. Landmark (lm) configuration (lm 1-15) on a male common goby digitised using the 

software tpsDig (Rholf, 2006) to analyse body shape. 

 

Results 

Genetic analyses 

The mean number of alleles per locus was 48.3 for western Baltic and only 18.9 for eastern 

Baltic populations (see S1 also for results on Mediterranean, Atlantic, North Sea populations). 

The observed heterozygosity (HO) showed slightly lower average values for western and 

slightly higher values for eastern Baltic populations (see S1). Average allelic richness (Ar) was 

found to be higher among western Baltic (36.5) than among eastern Baltic (14.3) populations 
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(see S1). Only one case involving deviation from HW equilibrium was observed, which could 

not be accounted for after Bonferroni correction (Pop: NE, locus: Pmar05). Significant linkage 

disequilibrium was found between Pmic02 and Pmar05, and Pmic02 and Pmin09. After 

removing Pmic02 there was no linkage disequilibrium observed after Bonferroni correction 

for multiple tests. Pmic02 was excluded from all further genetic analyses. Analyses of loci over 

all populations for neutrality with LOSITAN (Beaumont and Nichols 1996) suggest that loci are 

neutral, except locus Pmin38, which shows a signature of positive divergent selection. Pmin38 

was therefore excluded from analyses of the PST-FST comparison.  

Genetic differentiation between population pairs, estimated as pairwise FST and Dest, ranged 

from - 0.003 to 0.365 for FST and - 0.001 to 0.528 for Dest (Table 5). The highest FST/Dest values 

are found for populations pairing with the Mediterranean population (LV). For eastern Baltic 

populations, FST ranged from 0.002 to 0.061 and Dest from - 0.001 to 0.047. For western Baltic 

populations FST ranged from - 0.003 to 0.025 for FST and Dest from - 0.001 to 0.026. The average 

genetic differentiation among eastern Baltic populations (FST = 0.036 / Dest = 0.025) is higher 

than among western Baltic populations (FST = 0.003 / Dest = 0.002). The genetic differentiation 

between populations within the eastern and the western Baltic clade is generally very small 

(see also e.g. Pocwierz-Kotus et al. 2015), however, among eastern Baltic populations it is 

about an order of magnitude larger than that seen among western Baltic populations. 
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Table 5. Population pairwise global FST and pure genetic differentiation index Dest (FST/Dest below the diagonal). FST values tested by 1023 

permutations. Non-significant pairwise differences (α = 0.05) are marked with an asterisk. Overwater distance (minimum distance between sites 

through water connection in km) between sample sites above the diagonal. See Table 3 for site abbreviations.  

                 

Region                     KR          KE 
 

                     VR          MA          NE               IP                PU 

W Baltic KR          318.4    247.9        420.8 456.6 463.0 760.5 

W Baltic KE -0.004/-0.001      86.9         110.2 146.7 183.0 747.4 

W Baltic VR -0.003/0.000 -0.005/0.000          174.4 233.2 267.6 776.7 

W Baltic MA 0.000/0.004 0.000/0.001 -0.015/-0.026  110.6 182.0 659.8 

W Baltic NE 0.006/0.002 -0.004/0.000 -0.011/-0.009 0.003/0.000  75.8 646.8 

W Baltic IP 0.000/-0.001 0.002/0.000 -0.003/0.000 0.004/0.003 0.002/0.000  605.0 

W Baltic PU 0.009/0.010 0.015/0.011 0.015/0.006 0.025/0.026 0.009/0.015 0.004/0.000  

E Baltic KA 0.128/0.056 0.108/0.051 0.136/0.052 0.128/0.087 0.113/0.060 0.091/0.052 0.093/0.050 

E Baltic VA 0.086/0.042 0.055/0.043 0.077/0.033 0.077/0.052 0.060/0.025 0.062/0.055 0.086/0.087 

E Baltic TH 0.104/0.115 0.094/0.086 0.108/0.065 0.095/0.050 0.088/0.078 0.077/0.079 0.082/0.111 

E Baltic TV 0.080/0.068 0.068/0.056 0.072/0.037 0.061/0.023 0.068/0.054 0.043/0.036 0.056/0.064 

North Sea BR 0.025/0.046 0.028/0.038 0.020/0.040 0.018/0.042 0.034/0.072 0.022/0.050 0.040/0.077 

Atlantic MI 0.018/0.010 0.023/0.020 0.021/0.024 0.024/0.038 0.026/0.041 0.018/0.019 0.033/0.015 

Mediterranean LV 0.177/0.302 0.193/0.313 0.203/0.354 0.189/0.319 0.192/0.368 0.201/0.356 0.213/0.411 
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Region   KA VA TH TV BR MI LV 

W Baltic KR 571.6 834.1 1309.9 1317.2 978.8 2912.8 4886.7 

W Baltic KE 649.2 956.2 1464.8 1471.8 1222.5 2653.8 4936.4 

W Baltic VR 659.1 959.1 1461.8 1468.9 1299.7 2687.0 4996.8 

W Baltic MA 740.5 1049.9 1560.8 1567.7 1432.2 2546.3 5165.8 

W Baltic NE 677.4 987.6 1499.9 1506.6 1472.0 2585.4 5197.9 

W Baltic IP 615.5 924.7 1436.7 1443.3 1509.0 2641.6 5252.5 

W Baltic PU 390.5 467.8 798.3 803.3 2034.4 3711.2 5777.0 

E Baltic KA  310.4 822.6 829.3 2061.2 3255.7 5668.6 

E Baltic VA  0.045/0.027  512.3 519.0 2234.3 3562.1 5940.0 

E Baltic TH  0.033/0.025    0.060/0.047  7.4 2556.1 4070.7 6287.3 

E Baltic TV  0.020/0.017    0.052/0.037 0.001/-0.001  2560.1 4076.9 6292.0 

North Sea BR 0.144/0.194    0.098/0.175 
            

0.112/0.150 0.072/0.111  1733.9 3870.4 

Atlantic MI 0.140/0.148 0.078/0.067 0.127/0.221 0.085/0.113 0.024/0.015  2303.9 

Mediterranean LV 0.365/0.528 0.279/0.377 0.330/0.554 0.293/0.471 0.172/0.362   0.126/0.214   
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The neighbour-joining (NJ) tree based on Nei's genetic distance (DA; Fig. 11) confirms the 

existence of four genetically differentiated clusters: the (1) Mediterranean and the (2) Atlantic 

cluster (bootstrap support: 100%), the (3) North Sea (bootstrap support: 98%) and the (4) 

Baltic Sea cluster (bootstrap support: 86%). Interestingly, low-salinity, eastern Baltic 

populations form a monophyletic group (bootstrap support: 94%) within the Baltic cluster. 

Clusters visualised in the NJ-tree agree with the geographical origin of the particular 

populations (Table 3).  

 

Figure 11. Neighbour Joining (NJ) consensus tree with percentage of bootstrap support > 50% 

of 10,000 replicates showing the genetic relationships between populations based on Nei's 

genetic distance (DA) across all eight microsatellite loci. The tree was edited to collapse 

branches with bootstrap support < 50%. See Table 3 for site abbreviations.  

 

The results of the STRUCTURE analyses provide evidence for three genetic clusters (K = 3; Fig. 

12) corresponding to the (1) Mediterranean Sea, the (2) Atlantic/North Sea/western Baltic and 
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the (3) eastern Baltic populations. High gene flow between the Atlantic/North Sea and 

western Baltic populations as well as high gene flow between eastern and western Baltic 

populations was suggested, but only limited gene flow between the Atlantic/North Sea and 

the eastern Baltic clusters. STRUCTURE was run for all 14 sites with and without the 

Mediterranean population (K = 1-13) and separately for the Atlantic, North Sea, western Baltic 

ranges (K = 1-9), the North Sea and Baltic Sea (K = 1 – 12), as well as for the Baltic populations 

alone (K = 1-11) and for the eastern Baltic (K = 1-4) and western Baltic (K = 1-7) populations 

separately. However, additional STRUCTURE hierarchical analyses revealed no further 

clustering within the major regions (results not shown). 

 

Figure 12. Estimated genetic structure of all 14 populations included in the analysis, K = 3. 

STRUCTURE bar plots (aligned using DISTRUCT) where each individual is represented by a 

vertical line and membership of each individual to the different clusters can be deducted from 

the proportion of each colour in the bars. Populations are labelled above the figure. See Table 

3 for site abbreviations. 

 

There was a significant positive association between geographic distance and genetic distance 

(FST/Dest) shown by the Mantel test (FST: R2 = 0.690, P < 0.0001; Dest: R2 = 0.794, P < 0.0001; see 

also Table 6). The positive IBD pattern was strongly influenced by the major regions (i.e. 

Mediterranean Sea, Atlantic Ocean, North Sea, and Baltic Sea). Results of the Mantel test for 

different groupings of regions showed a positive correlation between geographic and genetic 

distance except for the western and eastern Baltic clade (see Table 6).  
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Table 6. Paired Mantel test results for correlation between genetic (FST and Dest) and 

geographic distances for different groupings of populations (group). P-values derive from 

10,000 permutations. Significant results (α = 0.05) are given in bold. See Table 3 for details 

about groups. 

 

Group  FST    Dest   

    R2 - values P-value   R2- values P-value 

All 14 populations 0.690 < 0.0001 0.794 < 0.0001 

Atlantic/North Sea/Baltic Sea 0.128 0.050  0.338 < 0.0001 

North Sea/ Baltic Sea 0.275 0.003  0.572 0.001 

Baltic populations  0.382 0.006  0.467 0.004 

W. Baltic populations  0.352 0.064 
 

0.396 0.056 

E. Baltic populations  0.367 0.161  0.255 0.152 

 

To evaluate the importance of IBD but at the same time incorporating salinity as 

environmental variable (IBE) we performed GDMs (Fig. 13) for different groupings of major 

regions (based on FST, and for Baltic populations also on PST). Including all populations (N = 14; 

Fig. 13a) in the model, IBD explained genetic dissimilarity between populations best (67.4 %). 

However, running the model without the Mediterranean population (Fig. 13b) we found that 

IBE using the selective agent ‘salinity’ explains the genetic divergence between Atlantic/North 

Sea/Baltic Sea (48.6%) best. When testing genetic dissimilarity between the sister groups, 

North Sea and Baltic Sea (Fig. 13c), we again found salinity to explain a large portion of the 

genetic divergence between these clusters (47.4%). Within the Baltic Sea (results not shown) 

however using FST/PST as response variable, neither IBD nor IBE could explain genetic 

differentiation between populations.  
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Figure 13. Fitted functions for the two predictor variables ‘water distance’ (left) and ‘salinity’ 

(right) for groupings of populations, following the suggested genetic structure of the 

Neighbour-Joining consensus tree based on Nei’s DA (see Fig. 11) for a) all populations, b) 

Atlantic/North Sea/Baltic Sea populations and c) North Sea/Baltic Sea populations. 
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PST- FST comparison 

Genetic differentiation between Baltic populations for both sexes was very low (Table 5). For 

almost all c/h2 ratios, PST was greater than FST for both sexes and all traits (Fig. 14 a-c). More 

importantly, 95% confidence intervals for PST and FST did not overlap for most values of c, 

indicating that PST values were credibly larger than FST values. We also tested if there was a 

relation between geographic distance and phenotypic differentiation of Baltic common gobies 

for males and females separately using a Mantel test (Table 6). Neither for males (PST: R2 = 

0.006, P = 0.414) nor for females (PST: R2 = 0.018, P = 0.285) was a positive association found 

between phenotypic differentiation of body shape and geographic distance. 
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Figure 14. The relationship between observed phenotypic (PST - solid lines: slope) and neutral 

genetic differentation (FST - solid lines: vertical) both with their upper and lower 95% 

confidence intervals (doted lines) as function of body shape to among-population 

differentiation (c) and within population differentiation (h2) of seven Baltic common goby 

populations for a) CV1 (females), b) CV2 (females) and c) CV1 (males). See Table 3 for details 

on populations used for geometric morphometric analyses on body shape. 

 

Discussion  

We here investigated population structure and drivers of divergence in common gobies, and 

our main findings are: First, common gobies show a clear genetic structure on both coarse 

(Mediterranean, Atlantic and North Sea) and fine (Baltic Sea) geographic scales. Second, the 

major drivers of this genetic structure are scale dependent, with IBD most important at coarse 

scales, and IBE (salinity) at finer scales. Finally, phenotypic population divergence in Baltic 

common gobies is driven by natural selection rather than genetic drift alone. In the following 

we will discuss each finding in turn. 

Genetic structure of common gobies on coarse and fine spatial scales 

Genetic clustering analyses using STRUCTURE revealed that three distinct genetic clusters are 

present (i.e., Mediterranean, Atlantic/North Sea/western Baltic, and eastern Baltic Sea), with 

high levels of admixture between the western Baltic and eastern Baltic populations as well as 

between western Baltic and Atlantic/North Sea. The admixture within the Baltic was also 

reflected in the NJ tree, where eastern Baltic populations form a monophyletic clade, however 

its position with respect to western Baltic populations’ remains unclear (i.e., unresolved nodes 

within the Baltic). With these results we add to a slowly and just recently growing pool of 

literature showing that Baltic organisms can show a genetic differentiation between western 

(high salinity) and eastern (low salinity) Baltic origin (Holmborn et al. 2011; Olsson et al. 2012). 
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In addition, the phylogenetic tree suggested the Atlantic and North Sea populations to be 

distinct from one another and from the (western) Baltic populations. These slightly different 

results could be explained by the differences in the approaches; while STRUCTURE assigns 

individuals to clusters based on individual probabilities and admixture, a NJ-tree estimates 

genetic distances between populations. High genetic similarity of Atlantic and North Sea 

populations (STRUCTURE results) suggest high levels of gene flow between these populations. 

Nevertheless, genetic differences (FST) between Atlantic and North Sea populations (NJ-tree) 

contain sufficient information to suggest that they form distinct genetic clusters, similar to 

findings of Gysels et al. (2004a). However, their results are not directly comparable to ours, 

since their use of mtDNA and allozyme markers may not be sufficient to detect recent or 

ongoing population divergence. The complete genetic separation of the Mediterranean 

cluster suggested by clustering results as well as by the NJ-tree has already been shown 

previously (Gysels et al. 2004a) and might be a result of IBD (see below) but more likely is 

caused by the Almeria-Oran Oceanic Front (AOOF), the frontal zone where Atlantic and 

Mediterranean water bodies meet, which for many species poses a barrier for Atlantic-

Mediterranean dispersal (Naciri et al. 1999). Since dispersal of P. microps is assumed to 

happen during the larval stage (Bouchereau 1997b), strong currents at the AOOF may 

therefore prevent Atlantic-Mediterranean dispersal and lead to the genetic isolation of 

Mediterranean populations.  

When following the assumed route of post-last glacial maximum population expansion of P. 

microps (see Gysels et al. 2004a; Tougard et al. 2014) from the Mediterranean Sea into the 

Baltic Sea, FST values are highest in the Mediterranean but show a general decrease 

northwards. Lowest FST values are found between western Baltic populations, while FST is 

increasing at the step from the western Baltic to eastern Baltic populations, mirroring the 
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decrease in gene flow between western and eastern Baltic Sea. All western Baltic populations 

show a higher pairwise FST with Atlantic and North Sea populations than they do with any of 

the eastern Baltic populations. Allelic richness also decreases along the northward dispersal 

route of P. microps. However, in the Mediterranean allelic richness is as low as in eastern Baltic 

populations potentially due to the restricted geographic distribution. We assume that the 

most eastern Baltic populations of P. microps have colonized the Baltic Sea most recently. The 

founder population, in this case eastern Baltic populations, normally does not carry all alleles 

of the original population and therefore often shows lower allelic richness than the original 

population (Nei et al. 1975; Templeton 1980; Dlugosch and Parker 2008). Our results might 

show such a ‘founder effect’ among eastern Baltic populations originating from western Baltic 

populations, with a lower allelic richness among eastern Baltic than among all other 

populations (besides the Mediterranean population; Table S1). Due to drift, caused or 

enhanced by IBE, some alleles common in the original population may be completely absent 

in the new populations, while others might reach high frequencies. Supporting this 

explanation is the fact that low salinity eastern Baltic populations form a monophyletic group 

within the Baltic cluster. Overall, we found a genetic pattern that is gradual in space 

supporting the assumption of a northward dispersal route of common gobies. 

Neutral versus adaptive evolutionary processes driving population divergence 

Population divergence shown by differences in FST between populations can be explained by 

IBD and/or IBE. Paired Mantel tests suggested that IBD is the most important driver for 

population divergence for different constellations of major regions. Within Baltic populations, 

however, IBD does not explain genetic differentiation. This result might be due to the 

relatively low geographic distance between the tested populations and potentially restricted 
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gene flow to other populations. Recently, the Mantel test as well as the partial Mantel test 

(results not included here)  has come under scrutiny (Meirmans 2012), because spatial 

dependency in the data is not taken into account as the null model is based on a non-spatial 

island model (Mantel 1967). Therefore, a Mantel test alone seems not to be a suitable method 

to evaluate the influence of IBD on population divergence in Baltic P. microps.  

We also investigated salinity as a driver for IBE since salinity varies greatly over the distribution 

of P. microps is affecting several other ecological factors e.g. abundance and size of mussel 

shells required as nesting resource (see Chapter I; Forsgren et al. 1996b). We, therefore, also 

performed GDMs to take into account geographic distance between populations as well as 

salinity to assess the relative contribution of IBD and IBE causing population divergence. 

Geographic distance (IBD) was suggested to be the most important driver of population 

divergence when all populations were included. Salinity (a likely driver of IBE) however, was 

found to be best correlated to population differentiation between the Atlantic, North Sea and 

Baltic populations as well as the genetic differentiation of the sister groups, North Sea and 

Baltic Sea. Results clearly showed that besides IBD, IBE also plays an important role in driving 

population divergence. Comparing GDM results with the paired Mantel test results, it 

becomes clear that the Mantel test alone is often not reliable since it does not take into 

account any ecological variables possibly affecting spatial structuring of populations.  We want 

to emphasise that GDM results represent a more reliable explanation to what extent IBD 

versus IBE are affecting population divergence of common gobies along their original dispersal 

route from the Mediterranean into the Baltic Sea. We expected within the Baltic Sea that IBE 

rather than IBD would be the main driver of population divergence due to the steep salinity 

gradient from West to East. GDM results however, reveal that within the Baltic Sea neither 

IBD nor IBE can explain population divergence. One possible explanation for that could be an 
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ecological ‘isolation by colonisation`(IBC) scenario (Orsini et al. 2013), which is neutral and 

therefore no prediction can be made for non-neutral genetic variation neither in relation to 

space nor environment.   

A selective agent such as salinity can reduce gene flow and as a result increase divergence 

between populations due to maladaptation of dispersing individuals to low respectively high 

salinity (see e.g. Fuller et al. 2007; Orsini et al. 2013). Variable water inflow from the North 

Sea into the Baltic Sea creates transition zones with fluctuating salinity (Skagerrak and 

Kattegat) which implies that selection for either high or low salinity will be absent and 

therefore no local adaptation to high/low salinities and correspondingly genetic population 

structuring is expected. However, in the eastern Baltic Sea salinity is constantly very low, 

possibly promoting local adaptation due to strong selection on low salinity reducing gene flow. 

Limited gene flow under high selection pressure is generally expected to facilitate local 

adaptation to different environments (theoretical: e.g. Hendry et al. 2001; Räsänen and 

Hendry 2008; empirical: e.g. Nosil 2009) and eastern Baltic populations forming a 

monophyletic group within the Baltic cluster might be the outcome of strong selection on low 

salinity limiting gene flow between populations leading to local adaptation of. A full-factorial 

common garden experiment with eastern and western P. microps being bred and raised in 

high and low salinity conditions could further our knowledge on how important salinity 

tolerance is for the fitness of P. microps and therefore its dispersal and gene flow between 

populations. 

Roles of natural selection versus genetic drift on phenotypic population divergence in 

Baltic common gobies: a PST – FST comparison 

GDMs (using FST as well as PST) were not successful to assess the relative importance of IBD 

versus IBE for population divergence in Baltic common gobies. We therefore decided to take 
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another approach to investigate the relative contribution of natural selection versus genetic 

drift causing population divergence in common gobies by using a PST-FST comparison. 

Comparing phenotypic differentiation (PST) using body shape as trait, to neutral genetic 

differentiation (FST) of male and female Baltic common gobies separately, we found for males 

as well as females that PST > FST is clearly larger for a wide range of between and within 

population additive genetic variances. Such strong results on higher phenotypic than genetic 

differentiation with non-overlapping 95% confidence intervals suggest that adaptive 

evolution, i.e. divergent selection on body shape occurs and favours different phenotypes in 

different Baltic populations. Our results possibly support similar evidence from studies on 

other fish species (Araujo et al. 2014)  showing that salinity can affect body size, and that it is 

therefore important to include processes governing body size changes when investigating 

phenotypic population divergence (Collin and Fumagalli 2015).  

Pitfalls of using PST as an approximation of QST are well understood and highly criticized 

(Brommer 2011). Estimating QST requires common garden experiments, which quickly become 

labour-intensive when dealing with multiple populations. Furthermore, these experiments 

require individuals to be bred and raised in the laboratory, which is very problematic (at best) 

in the common goby. Consequently, estimates of QST are often replaced by the phenotypic 

analogue, PST (Leinonen et al. 2008; Leinonen et al. 2013). However, it is generally not 

recommended to simplify QST by its phenotypic analogue PST, because it is difficult to get the 

picture of additive genetic variance right when investigating only phenotypic variance. Yet, 

Leinonen et al. (2008) reviewed several studies, which show no differences in the mean 

estimates of PST and QST. We, therefore, think that when interpreted with caution PST-FST 

comparisons can provide information about the relative influence of adaptation evolution 

(natural selection) and neutral evolution (genetic drift) as causes of population differentiation. 
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Another pitfall, which is not considered conducting a PST-FST comparison is the possibility that 

PST > FST is not caused by adaptive genetic divergence but rather by phenotypic plasticity 

(reviewed in Crispo 2008). Plastic responses (within one generation) are acting much more 

rapidly on adaptation than natural selection (across generations). However, these two ways 

of responding to local environmental conditions are not always completely independent of 

each other; on the contrary, several studies showed that plasticity may drive initial phenotypic 

divergence followed by genetic changes in the direction of the plastic response (Price et al. 

2003; Crispo 2007; Ghalambor et al. 2007). In our study we cannot disentangle if phenotypic 

divergence in body shape of Baltic P. microps is a plastic or an adaptive (genetic) response. 

Conclusion 

Understanding how and why populations diverge is a fundamental goal of evolutionary 

biology. Here, we contribute to a growing pool of literature demonstrating that limited gene 

flow and natural selection in marine environments can cause clear genetic structuring on a 

fine spatial scale. Furthermore, the relative contribution of adaptive versus neutral 

evolutionary processes driving population divergence can vary spatially; and by comparing 

phenotypic differentiation (PST) to genetic differentiation (FST) we include another approach 

on how to investigate the relative contribution of natural selection versus genetic drift in 

driving phenotypic population divergence. We find IBD as well as IBE to drive population 

divergence in common gobies, however, to really understand if salinity is the environmental 

variable responsible for reduced gene flow leading to such a clear genetic structure - especially 

in Baltic P. microps - one would need to conduct full-factorial common garden experiments. 

With such experiments on could (1) determine QST and calculate the actual difference to PST, 

and (2) investigate if common gobies are genetically adapted to salinity or just highly plastic 



 Chapter II  

80 
 

in their response, which would give further insights on their fitness related to dispersal and 

therefore gene flow between populations.   
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Supplemental data 

Table S1: Summary statistics for microsatellite data (including Pmic02) arranged by locus for 

each population. Reported are: Sample size (N), number of alleles (Na), allelic richness (Ar) as 

well as expected and observed heterozygosity (HE and HO).  See Table 3 for site 

abbreviations. 

    Pmin35 Pmin38 Pmin04 Pmin05 Pmin09 Pmar03 Pmar05 Pmic02 Pmic03 Mean 

KR N 20 20 20 20 18 19 20 20         20 19.63 
 

Na 11 4 2 4 12 12 13 14 6 8.00 
 

Ar 9.15 3.76 1.89 2.98 9.09 9.16 8.23 10.05 4.50 6.09 
 

HE 0.86 0.66 0.14 0.30 0.83 0.80 0.80 0.85 0.66 0.63 

  HO 0.85 0.75 0.15 0.30 0.61 0.79 0.70 0.80 0.853 0.59 

KE N 19 19 19 19 19 19 19 19 19 19 
 

Na 10 5 2 5 15 12 11 14 6 8.25 
 

Ar 8.30 4.51 1.53 3.62 10.33 8.37 8.19 9.64 4.58 6.18 
 

HE 0.83 0.74 0.05 0.28 0.87 0.72 0.80 0.84 0.68 0.62 

  HO 0.84 0.84 0.05 0.32 0.84 0.84 0.68 0.84 0.843 0.63 

VR N 10 10 10 10 10 10 10 10 10 10 
 

Na 6 4 2 4 6 8 8 13 6 5.50 
 

Ar 6.00 4.00 2.00 4.00 6.00 8.00 8.00 13.00 6.00 5.50 
 

HE 0.80 0.67 0.18 0.47 0.73 0.75 0.74 0.90 0.64 0.62 

  HO 0.50 0.40 0.20 0.60 0.70 0.80 0.90 0.90 0.60 0.59 

MA N 23 23 23 22 20 23 23 23 23 22.50 
 

Na 14 4 2 4 13 12 8 13 5 7.75 
 

Ar 9.81 3.69 1.91 3.73 8.78 8.04 5.25 7.9 4.25 5.68 
 

HE 0.88 0.69 0.16 0.45 0.77 0.75 0.65 0.78 0.60 0.62 

  HO 0.83 0.83 0.17 0.45 0.80 0.74 0.83 0.65 0.70 0.67 

NE N 23 23 23 23 21 23 22 19 23 22.63 
 

Na 10 4 3 10 10 14 12 16 7 8.75 
 

Ar 7.80 3.91 2.26 6.17 6.97 8.35 8.89 10.6 4.74 6.13 
 

HE 0.84 0.69 0.16 0.50 0.75 0.70 0.86 0.87 0.67 0.65 

  HO 1.00 0.70 0.17 0.52 0.71 0.57 0.68 0.84 0.74 0.64 

IP N 24 24 24 24 24 24 24 24 24 24 
 

Na 12 5 2 6 14 14 11 15 6 8.75 
 

Ar 8.77 4.36 1.81 4.14 9.26 7.86 8.15 9.77 4.22 6.07 
 

HE 0.85 0.72 0.12 0.55 0.84 0.68 0.82 0.87 0.56 0.64 
 

HO 0.79 0.88 0.13 0.54 0.83 0.58 0.83 0.75 0.63 0.65 

PU N 23 23 23 23 21 23 23 23 23 22.75 
 

Na 10 6 2 7 12 14 14 13 5 8.75 
 

Ar 7.26 4.86 1.83 4.84 8.25 9.33 9.08 7.51 3.95 6.17 
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HE 0.79 0.76 0.12 0.44 0.83 0.83 0.81 0.75 0.54 0.64 

 
HO 0.74 0.70 0.13 0.48 0.86 0.78 0.83 0.83 0.52 0.63 

KA N 24 24 24 24 23 24 24 23 24 23.88 
 

Na 7 5 2 6 7 11 5 17 5 6 
 

Ar 5.15 3.15 1.94 3.48 5.83 6.68 3.96 10.93 3.70 4.23 
 

HE 0.71 0.26 0.19 0.26 0.71 0.59 0.47 0.89 0.41 0.45 

  HO 0.58 0.25 0.13 0.29 0.65 0.58 0.50 0.87 0.46 0.43 

VA N 22 22 22 22 21 21 22 22 22 21.75 
 

Na 9 5 2 5 4 5 4 18 6 5 
 

Ar 7.33 3.60 1.98 4.07 3.46 3.65 3.70 12.36 4.36 4.02 
 

HE 0.80 0.38 0.24 0.42 0.63 0.37 0.64 0.92 0.70 0.52 
 

HO 0.73 0.41 0.27 0.45 0.76 0.33 0.73 0.95 0.64 0.54 

TH N 21 20 21 21 20 21 21 19 20 20.63 
 

Na 12 4 2 5 7 11 6 16 4 6.38 
 

Ar 9.26 3.00 2.00 3.67 5.62 6.28 4.40 10.89 3.68 4.74 
 

HE 0.86 0.45 0.36 0.30 0.69 0.58 0.37 0.87 0.45 0.51 

  HO 0.86 0.55 0.48 0.29 0.55 0.67 0.43 0.79 0.40 0.53 

TV N 17 17 17 17 17 17 17 15 17 17 
 

Na 13 5 2 6 6 9 5 15 2 6 
 

Ar 10.31 4.01 1.99 5.14 5.01 7.30 4.01 11.89 2.00 4.97 
 

HE 0.86 0.47 0.25 0.52 0.65 0.71 0.49 0.90 0.29 0.53 

  HO 0.88 0.41 0.18 0.59 0.53 0.76 0.47 0.80 0.35 0.52 

BR N 24 24 24 24 21 24 24 24 24 23.63 
 

Na 13 4 3 10 15 16 14 29 8 10.38 
 

Ar 9.26 3.98 2.33 6.37 9.93 10.57 8.83 14.92 6.22 7.19 
 

HE 0.84 0.72 0.16 0.67 0.83 0.86 0.80 0.93 0.69 0.70 

  HO 0.92 0.63 0.17 0.67 0.67 0.92 0.79 0.96 0.75 0.69 

MI N 15 15 15 15 11 15 14 15 15 14.38 
 

Na 12 4 2 10 14 11 9 18 10 9 
 

Ar 9.88 3.99 1.67 8.60 12.91 9.22 7.00 13.58 8.19 7.68 
 

HE 0.84 0.69 0.06 0.79 0.87 0.82 0.71 0.91 0.82 0.70 

  HO 0.87 0.87 0.07 0.80 1.00 0.87 0.64 0.93 0.87 0.75 

LV N 22 21 22 22 15 22 22 21 22 21 
 

Na 6 3 2 4 10 13 4 14 3 5.63 
 

Ar 4.52 2.97 1.85 3.96 7.97 7.76 3.16 10.08 2.99 4.40 
 

HE 0.51 0.58 0.13 0.71 0.81 0.76 0.53 0.88 0.62 0.58 

  HO 0.32 0.52 0.14 0.59 0.87 0.91 0.36 0.86 0.64 0.54 
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Abstract 

Gonadal investment in males using alternative reproductive tactics (ARTs) has been studied extensively 

in relation to morphological attributes of males, such as body size, as well as demographic and social 

features, such as population density and mating systems. Although theoretical models suggest a great 

impact of divergent environments on the fitness of tactics, few studies have considered the effects of 

the abiotic environment on gonadal investment. Here, we examined gonadal investment (testes and 

sperm duct gland (SDG) mass) and energy stores (liver mass) in a small marine fish (Pomatoschistus 

microps) along a salinity gradient in the Baltic Sea. Gonad and liver mass of ‘bourgeois’ males (i.e., nest 

holding males guarding nests with eggs) and males of a random population sample (RPS) were 

collected from high, intermediate and low salinity sites. A third group of males, mimicking females, 

was detected during dissection; this is the first description of female mimics in this species. We found 

that SDG- and liver mass in nest holder and RPS males was significantly higher at low salinity sites, 

while testes mass seemed to be unaffected by salinity. Female mimics showed significantly larger 

testes but smaller SDGs than nest holder and RPS males. Our results contribute valuable information 

on gonadal investment in a species facing high environmental divergence along a salinity gradient and 

highlight the importance of including environmental heterogeneity when studying gonadal investment 

and ultimately ARTs. 
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Introduction 

The influence of the abiotic environment on sexual selection in the form of sperm competition 

(= when sperm of two or more males compete for the fertilization of a single set of ova; Parker 

1970) has largely gone unexamined, and so has its influence on alternative reproductive 

tactics (ARTs; but see Emlen 2008). The concept of ARTs refers to alternative ways to obtain 

fertilization of individuals within a population and in spite of theoretical models that suggest 

a role of the abiotic environment in the evolution of ARTs (Hazel et al. 1990; Gross 1996; Hazel 

et al. 2004), few empirical studies examined the role of environmental heterogeneity in ARTs 

(Kolluru and Grether 2005; Lukasik et al. 2006; Larison 2007).  Nevertheless, many studies 

focus on demographic and social features, such as mating systems (Harcourt et al. 1981; Heske 

and Ostfeld 1990; Sachser et al. 1999; Dunn et al. 2001) and population density (Brown and 

Brown 2003; Tomkins and Brown 2004; Dziminski et al. 2010) to explain differences in mating 

tactics and the associated evolution of gonad size (but see also Jivoff 1997; Elgee et al. 2010).  

Larger males are often more successful than smaller males in monopolizing territories and 

females (reviewed in Andersson 1994). To this end, fish are exceptionally well studied. Many 

species exhibit condition-dependent ARTs, where males switch between being territorial 

(‘bourgeois’ males) and sneak mating (‘parasitic’ males) often depending on male’s body size 

(Magnhagen and Kvarnemo 1989; Rowe et al. 1991; Sato et al. 2004). ARTs are often 

associated with morphological attributes of different male morphs following different mating 

tactics (Rasotto and Mazzoldi 2002; Schütz et al. 2010; Utne-Palm et al. 2015). It often remains 

unclear, however, to what extent ARTs are not only (morphologically) condition-dependent 

but also environmental-dependent (but see Lukasik et al. 2006; Larison 2007).  

The two most energy demanding processes for fish are reproduction and growth. The 

necessary energy needed for both physiological processes is stored in the liver. Liver mass can 
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be used as a measure of spawner quality (Marshall et al. 1999) and measuring lipid content 

allows to estimate the level of energy reserves stored (but see: Lambert and Dutil 1997; Dahle 

et al. 2003; Sopinka et al. 2009). The distribution of energy reserves can vary markedly with 

gender (Casselman and Schulte-Hostedde 2004), season (Elofsson et al. 2003; Resende et al. 

2005) and food abundance (Rideout et al. 2004). A drop in energy reserves in three-spine 

sticklebacks just before the start of the breeding season suggests a possible direct effect in 

investing energy stored in the liver into gonads (Chellappa et al. 1989; but see: Chellappa et 

al. 1995; Malavasi et al. 2004; see for Gobiidae: Fiorin et al. 2007). Reproductive investment 

and energy reserve storage as well as replenishment can vary markedly among individuals 

(Fiorin et al. 2007) and whether an individual reproduces depends mostly on body size and 

condition (Rowe et al. 1991; Simpson 1992; Adams and Huntingford 1997; Hutchings et al. 

1999). Overall, body size in fish is strongly correlated with a male’s mating tactic, the size of 

its gonads, and the level of energy reserves it has stored in the liver. Thus, differences in body 

size need to be considered when investigating gonadal and liver investment among 

populations (Tomkins and Simmons 2002; Stoltz et al. 2005).  

Generally, independent of environmental aspects, reproductive resource-controlling males 

face a lower risk of sperm competition compared to sneak mating opportunistic males (Parker 

et al. 1997). In the bluegill sunfish (Lepomis macrochirus), for example, bourgeois males 

experience sperm competition in about 10% of their mating events, while sneaker males 

always experience sperm competition, because the bourgeois males are always present (Neff 

et al. 2003; Ota and Kohda 2006). Therefore, one would expect a trade-off between male types 

and their reproductive investment in for instance mate attraction, intra-sexual competition 

(bourgeois males), or just predominately in gonads (sneaker males; Immler et al. 2004). 

Sneaker males are expected to have larger testes producing a higher ejaculate volume than 
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bourgeois males (Kvarnemo et al. 2010); conversely, the opposite is expected for their sperm-

duct glands (SDGs) due to a trade-off with testes investment. SDGs (also referred to as 

accessory glands or seminal vesicles, e.g. Fishelson 1991) are specialized accessory organs 

near the testes producing sperm-containing mucus (sperm-trails), which nest-holding males 

use to cover the inner surface of their nest to possibly enhance egg survival (Giacomello et al. 

2006). 

Research on gonadal investment has tended to focus on morphologically different male 

morphs using ARTs. There is a lack of knowledge on how the abiotic environment influences 

the fitness of tactics and the risk and intensity of sperm competition, which in turn affects 

gonadal investment and ultimately the fitness consequences of ARTs. The goal of this study 

was to relate gonadal investment and energy storage in fish using ARTs to an abiotic 

environmental factor that strongly varies among populations. More precisely, we examined 

how salinity in the Baltic Sea (decreasing from West to East) co-varies with gonad- and liver 

mass of the common goby (Pomatoschistus microps). In an earlier study (Chapter I) we 

investigated the geographic variation of abiotic and biotic parameters of common goby 

populations throughout the Baltic Sea. Results showed that salinity influences the whole 

common goby-system in the Baltic Sea - both directly (body size, population densities, brood 

characteristics) and indirectly (nest quantity and quality). We collected a random population 

sample (RPS) of common goby males and females of high, intermediate and low salinity sites, 

as well as specifically nest holding (NH) males guarding eggs. Nest holding males are the 

‘bourgeois’ males of the population (Magnhagen 1994), and we only make predictions for this 

male category. We expected to find the largest testes in NH males of intermediate salinity 

sites as a result of larger population densities at these sites (see Chapter I; Brown and Brown 

2003), increasing the intensity of sperm competition. We predict to find the largest SDGs in 
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NH of low salinity sites. Low salinity was shown to bear a higher risk of egg infection (Lehtonen 

and Kvarnemo 2015a) and possibly decreases sperm motility (Elofsson et al. 2003), thus large 

SDGs producing large amounts of protective mucus are advantageous. Energy storage 

estimated as liver mass, should generally be lower in bourgeois males (i.e., NH males) due to 

reproductive investment and defending and caring for eggs (Malavasi et al. 2004). In addition, 

we expected higher liver mass in bourgeois males at low salinity sites than at high salinity sites, 

because living in low-salinity conditions may cause high costs of osmoregulation requiring 

large energy stores (i.e., liver mass) for a marine species as the common goby (Tseng and 

Hwang 2008) . 

Although we mainly focused on males, we also analysed females to make sure that we did not 

overlook any males not displaying obvious male characteristics. This way we were also able to 

compare gonad investment and liver mass of females (no ART-specific adaptation in females) 

among populations with patterns of geographic variation in salinity, providing insights into 

adaptive evolution.  

 

Methods 

Study species 

The common goby (Pomatoschistus microps; Fig. 2) is an annual, benthic fish that occurs along 

the European Atlantic coast, including the Baltic Sea. Common gobies have a promiscuous 

mating system reproducing several times during a single reproductive season (Miller 1975). 

Common goby males were shown to adopt different reproductive tactics, with larger males 

defending nests and providing parental care (‘nest holder’) and smaller males sneaking 

fertilization (‘sneaker’) (Magnhagen 1992; Magnhagen 1994). Males take up nests under 
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empty mussel-shells or rocks and court females to lay eggs inside the nest; thereafter the male 

provides uni-parental care till the eggs hatch (Magnhagen and Vestergaard 1993).  

Sample collection 

Fish were collected during the breeding season (May-July) in 2014 (one exception: fish of IP 

collected 2013) from five different populations (KR, KE, IP, GO, TV) along the salinity gradient 

in the Baltic Sea, categorized into high, intermediate and low salinity sites (see results of 

Chapter I; see Table 1 for information on sampling sites). Besides females of different ripeness 

stages (R1: unripe, R2: ripe, R3: ready-to-mate; Fig. 3), RPS (random population sample) males, 

and nest holding (NH) males, some individuals were categorized during dissection into a third 

male category, namely ‘female mimics’ (FMs). These female mimicking males, which lack 

obvious male characteristics such as the black anal fin or the blue spot on the dorsal fin 

(Nyman 1953), were initially categorized as females of R1 during collection. Only during 

dissection (see below for details) it became clear that that those alleged females had male 

gonads. The sample size of FMs per population was however very small (Table 7). All fish 

collected were measured to the nearest 0.5 mm (Table 7), weighed to the nearest 0.001g and 

afterwards euthanized and stored in 96% ethanol at - 80°C until dissection.  
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Table 7. Reported are the number of random population sample (RPS) males, nest holding (NH) males and males mimicking females (FM; N Males) 

as well as the number of females (N Females ) of three different ripeness stages (R1: unripe, R2: ripe and R3: ready-to mate). Furthermore, the 

mean body length [mm TL] ± SE (standard error) is reported for each male and female category for the different sampling sites (for N ≤ 2 the absolute 

values for body length are given). 

 

    

Sampling site   Abbr.     N Males                     N Females                             Total length [mm]  
 

 

    RSP NH FM R1 R2 R3 total          RSP       NH      FM F (R1) F (R2) F (R3) 

Kristineberg KR 52 21 3 28 27 10 65    39.3 ± 0.34 40.7 ± 0.45 36.3 ± 0.33 38.9 ±  0.55 38.1 ± 0.73 38.1 ± 1.18 

Kerteminde KE 57 23 6 5 22 3 30    37.2 ± 0.48 38.2 ± 0.54 30.8 ± 1.86 32.9 ±  1.62 36.3 ± 0.58 36.7 ± 1.45 

Island Poel IP 25 18 2 2 21 0 23    35.7 ± 0.49 36.1 ± 0.51 30.0, 30.0 34.0, 31.0 35.7 ± 0.50         ---- 

Gotland GO 26 26 0 2 3 22 26    35.1 ± 0.64 35.1 ± 0.47      ---- 35.0, 34.0 36.0 ± 0.24 36.2 ± 0.75 

Tvärminne TV 31 25 0 0 28 2 30    33.9 ± 0.52 35.2 ± 0.73      ----          ---- 34.9 ± 0.41 35.5, 38.5 



 Chapter III  

91 
 

Fish dissection 

First all males, thereafter all females (including FMs) were dissected in a random order. To do 

so, fish were taken out of the ethanol and gently dried with a paper towel. With a medial 

ventral cut the 

abdominal cavity of the 

fish was opened and 

liver, gonads and gut 

(which was discarded 

and not used for 

analyses) were removed. 

Gonads of male common 

gobies are composed of 

the testes as well as 

SDGs (see Fig. 15), which 

were removed and 

treated separately. 

Gonads of females are 

referred to as ovaries 

(Fig. 16). The eviscerated body (= soma mass), the liver and the gonads of all fish were put into 

separate reaction tubes and dried in an oven (Binder BG 115) at 60°C for 24 hours. Thereafter 

body parts were weighed using an electronic analytical balance for soma, female liver and 

ovaries (d = 0.0001g; Sartorius LE324s) and a microbalance for male liver, testes and SDGs (d 

= 0.001mg; Sartorius M2P).  

  

Box 1. The down-side of the Gonado-Somatic-Index (GSI) 

Knowing from previous studies that P. microps has evolved condition-

dependent alternative mating tactics (Magnhagen 1992; Magnhagen 1998) 

as well as that body size decreases from West to East in the Baltic Sea (see 

Chapter I) we decided against the highly criticized (Tomkins and Simmons 

2002; Stoltz et al. 2005) but still very often used method of calculating the 

gonado somatic index (GSI = 100 x gonad mass/total body mass; Hutchings 

and Myers 1994; Taborsky 1998). Ratios like the GSI or HSI (hepatosomatic-

index) do not properly account for underlying body weight variation. Any 

changes in gonad or liver mass depending on different salinity levels, male 

category, or female ripeness stage may come about by body size differences 

due to allometric scaling. The theory of allometry implies that if an 

individual’s body size changes (like P. microps does along the salinity 

gradient in the Baltic Sea) so do e.g. its organs – but at different rates. In 

other words, large individuals have larger organs than small individuals of 

the same species, however, depending on origin or type, the investment of 

large or small individuals may be proportionally larger (allometric exponent 

> 1) or smaller (allometric exponent < 1; Tomkins and Simmons 2002; 

Brockmann 2008; Han and Jablonski 2016). It is therefore necessary to 

account for intraspecific differences in body size when investigating relative 

gonad size between populations. If gonad mass would be isometrically 

related to body size (exponent = 1) one could simply use the GSI or HSI and 

measure the relative investment into sperm/liver production controlling for 

differences in body size (Parker 1990). However, isometric relationships 

appear to be rare in nature (Gould 1966) and especially in fish, therefore 

using the GSI or HSI as approach to investigate gonadal/liver investment in 

fish seems to be inappropriate, because ratios do not control for body size 

due to allometric and not isometric relationships. 
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Figure 15. Shown are a) the position and size of male gonads (T: testes and SDG: sperm duct 

glands, size standard = 0.5 cm) inside the body with gut and liver removed and b) pairwise 

male gonads (size standard = 1 mm) after being removed from the body. 

 

 

Figure 16. Shown are the position and size of female ovaries inside the body with gut and 

liver removed (size standard = 0.5 cm). a) Ovaries of a female in ripeness stage 1 (R1) and b) 

ovaries of a female in ripeness stage 3 (R3).

 

Data analysis 

Based on results of an earlier study (see Chapter I) we divided the five Baltic populations into 

high, intermediate and low salinity sites (Table 1).  However, we compared the AICs (Akaike 

Information Criterion) of models (see below) including all five populations with the AICs of the 

model including the three salinity levels and found the simplified models (lower AICs) to show 

a better fit to the data (Crawley 2005). Therefore, we combined data from the different 

populations according to salinity levels (high, intermediate, low) for further analyses. 

Data for soma mass, testes mass, SDG mass, ovary mass and liver mass were log10 transformed 

to deal with allometric scaling effects (see Box 1) and to reach normality (Tomkins and 



 Chapter III  

93 
 

Simmons 2002). Additionally, we calculated the proportion of SDGs of the total gonad mass. 

To correct for average body size differences between populations we mean centered soma 

mass after log10 transformation and included it as a covariate. In order to avoid spurious 

correlations when investigating part-whole relationships, we included soma mass rather than 

body mass, which would include gonads and liver (Tomkins and Simmons 2002; Stoltz et al. 

2005).  

We decided against the calculation of the gonado-somatic index (GSI; see Box 1) but used 

separate linear models (LMs) in R using R Studio (Version 0.98.1091- © 2009-2014 RStudio, 

Inc.; R Core Team 2012) to examine slope and intercept differences in gonadal and liver 

investment in males and females following and Tomkins and Simmons (2002) and Stoltz et al. 

(2005). This approach allows us to evaluate differences in the allometric scaling of gonad and 

liver mass with soma mass as covariate among salinity levels, male categories, and female 

ripeness stages (R1 - R3; Neff et al. 2003; Hayward and Gillooly 2011).  

Specifically, we investigated how gonadal and liver investment differs between: (I) males 

(RPS+NH males) originating from populations of three salinity levels with ‘salinity’ (high, 

intermediate, low) and ‘male category’ as fixed factor and ‘centred log soma mass’ as 

covariate (model 1), (II) males in a certain role (only NH males) originating from three different 

salinities and thus ‘male category’ not included as a fixed factor (model 2) and (III) males of 

three different ‘male categories’: a random population sample (RPS) of males, males within a 

certain role (NH males) and males mimicking females (FMs) but without ‘salinity’ as fixed 

factor due to a very low sample size of FMs (see Table 7; model 3). Pooling FMs (N = 11 for 

testes- and liver mass, N = 10 for SDGs and proportion of SDGs) it was possible to compare 

FMs with RPS (N = 191) and NH (N = 113) males regarding their gonad mass and liver mass to 

illustrate the differences. Furthermore, we also investigated how ovary and liver investment 
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differs between: (IV) females (R1-R3) of different salinity levels with ‘salinity’ and ‘ripeness’ as 

fixed factors and ‘centred log soma mass’ as covariate (model 4 equivalent to model 1) and 

(V) females of different ripeness stages removing ‘salinity’ as fixed factor (model 5 equivalent 

to model 3). 

Initially, all full models included fixed factors, the covariate and all possible interactions. Model 

selection in a backward stepwise fashion was performed starting from the full model including 

all interaction terms towards the final model (Table 8). We conducted comparisons of the 

estimates of intercepts and slopes between the levels within factors (salinity, male category, 

female ripeness stage). Reported are always the estimates of the coefficients (a for intercepts 

and b for slopes) of the final model and its standard error (±SE) for each factor level. 

Furthermore, t-test results of significant pairwise differences (P < 0.05) of intercept (a) and 

slope (b) estimates as summary statistics to allow within and across study comparisons (Neff 

et al. 2003; Stoltz et al. 2005; Ebert et al. 2011). Additionally, we used linear regressions to 

investigate the relationship between male log10 total gonad mass (testes mass + SDG mass) 

and liver mass and for females ovary mass and liver mass.
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Table 8. Final linear models - providing estimates for intercept and slope interpretation for gonadal- (testes, sperm duct glands (SDG), proportion 

of SDG of the total gonad mass) and liver-mass variation of the five models (1-5) with different data domains (phenotypic males (RPS+NH), nest 

holding males (NH), all male categories (RPS+NH+FMs) and females (F).  Models had different predictors like salinity (high, intermediate, low), male 

category (RPS, NH, FM) and female ripeness stage (R1-R3). See Table 7 for explanation of abbreviations. Variables that were included in the final 

model are listed and given in bold when they showed to have a significant effect.

Response 
 

Model Data 
     

Variable Predictor type domain adj. R2 (%) df F P variables included in model 
   

phenotypic males 
     

Testes Salinity 1 RPS+NH 46 4, 299 65.3 < 0.0001 salinity+cent.soma+M.category 

Liver Salinity 1 RPS+NH 61 2, 297 81.3 < 0.0001 salinity+cent.soma+M.category+salinity:cent.soma 

SDG Salinity 1 RPS+NH 54 6, 297 60.2 < 0.0001 salinity+cent.soma+M.category+salinity:cent.soma 

Prop. SDG Salinity 1 RPS+NH 45 6, 297 42.8 < 0.0001 salinity+cent.soma+M.category+salinity:cent.soma 
   

subset nest holders 
     

Testes Salinity 2 NH 53 3, 109 43.7 < 0.0001 salinity+cent.soma 

Liver Salinity 2 NH 59 5, 107 32.7 < 0.0001 salinity+cent.soma 

SDG Salinity 2 NH 42 3, 107 29.7 < 0.0001 salinity+cent.soma 

Prop. SDG Salinity 2 NH 42 5, 107 17.2 < 0.0001 salinity+cent.soma+salinity:cent.soma 
   

all male categories 
     

Testes Male category 3 RPS, NH, FM 42 3, 311 77.9 < 0.0001 M.category+cent.soma 

Liver Male category 3 RPS, NH, FM 41 3, 311 74.7 < 0.0001 M.category+cent.soma 

SDG Male category 3 RPS, NH, FM 35 3, 310 57.6 < 0.0001 M.category+cent.soma 

Prop. SDG Male category 3 RPS, NH, FM 15 3, 310 19.7 < 0.0001 M.category+cent.soma 
   

females 
     

Ovaries Salinity 4 F 42 5, 168 25.5 < 0.0001 salinity+cent.soma+ripeness 

Liver Salinity 4 F 69 7, 166 55.9 < 0.0001 salinity+cent.soma+ripeness+salinity:cent.soma 

Ovaries Ripeness 5 F 36 3, 170 33.4 < 0.0001 cent.soma+ripeness 

Liver Ripeness 5 F 35 3, 170 32.4 < 0.0001 cent.soma+ripeness 
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Results 

Males 

Differences in gonadal and liver investment between salinity levels 

Gonad and liver mass of males exhibiting typical male phenotypes (= RPS+NH males of model 

1, hereafter referred to as ‘males’; Table 8), and of nest holding males (= NH males of model 

2, hereafter referred to as ‘NH males’; Table 8) originating from three salinity levels in the 

Baltic Sea (high, intermediate, low) were investigated. The effect of salinity on gonad and liver 

mass based on final linear models (Table 8) in relation to ‘soma mass’ is presented as separate 

intercepts and slopes for each response variable (Fig. 17).   

Testes 

No significant differences in males and the subset of known NH males’ testes mass were 

detected between the three salinity levels (Table 9a, b, Fig. 17a,) 

Liver 

Liver mass was significantly higher in males and NH males of low than of high or intermediate 

salinity habitats (Table 9a, b, Fig. 17b). Liver mass of males and NH males originating from high 

and intermediate salinity sites did not differ. ‘Male category’ had an effect on liver mass, with 

NH males showing a heavier liver (on average 0.90 mg) than males in general. 

The slope of the relationship between liver mass and soma mass of males differed only 

significantly between intermediate (b = 1.58 ± 0.11) and low (b = 1.18 ± 0.12) salinity habitats. 

There was no significant difference in the slope between high (b = 1.61 ± 0.20) and 

intermediate and high and low salinity sites (Table 9b). 
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Table 9. Reported are a) estimates for intercepts [a] and standard error [± SE] for each factor level and b) pairwise differences of intercepts [a] and 

slopes [b] of log10 gonad mass (testes, sperm duct glands (SDGs) and proportion of sperm duct glands of total gonad mass (Prop SDG)) and log10 liver 

mass of all phenotypically recognisable males (RPS+NH males, model 1) and the subset of NH males (model 2) between three salinity levels (high, 

intermediate: int., low) of the Baltic Sea and between three male categories (RPS, NH, FM, model 3) independent of salinity level. See Table 7 for 

explanation of abbreviations and Table 8 for statistical details of underlying final models. 

a) 

 
   log Testes  log SDG  Prop SDG  log Liver  

    Model Intercept [a]      SE Intercept [a]    SE Intercept [a]      SE Intercept [a]    SE 

Salinity level RPS+NH              

 high 1 -0.09 0.02 - 0.08 0.04 0.52 0.02 0.63 0.03 

 int 1 - 0.08 0.01 - 0.28 0.02 0.40 0.01 0.60 0.02 

  low 1 - 0.11 0.01 0.08 0.02 0.61 0.01 0.88 0.01 

Salinity level NH            

 high 2 - 0.11 0.03 - 0.18 0.04 0.52 0.01 0.57 0.04 

 int 2 - 0.11 0.02 - 0.25 0.03 0.42 0.01 - 0.57 0.02 

  low 2 - 0.09 0.02 0.05 0.03 0.59 0.01 0.87 0.02 

Male category              

 RPS 3 - 0.09 0.01 - 0.14 0.02 0.48 0.01 0.70 0.01 

 NH 3 - 0.11 0.01 - 0.11 0.02 0.50 0.001 0.60 0.02 

 FM 3 0.05 0.04 - 0.75 0.08 0.16 0.04 0.63 0.06 
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b) 

  
log Testes 

 
   log SDG 

 
     Prop SDG 

 
    log Liver 

 

  
Intercept [a]     Slope [b]     Intercept [a]      Slope [b]       Intercept [a]       Slope [b]      Intercept [a]     Slope [b] 

 
Model  t              P      t              P       t                  P      t              P       t                   P        t                 P       t                    P      t                 P  

Salinity Data: 
RPS+NH 

                

 
high-int 1 1.01 0.313 

  
-4.63 < 0.0001 3.85 0.0002 -5.41 < 0.0001 4.13 < 0.0001 -0.83 0.406 -0.16 0.873 

 
high-low 1 -0.44 0.661 

  
3.74 < 0.0001 1.47 0.143 3.57 0.0004 2.14 0.033 6.5 < 0.0001 -1.86 0.064 

 
int-low 1 -1.75 0.08 

  
13.1 < 0.0001 -3.4 0.0008 14 < 0.00001 -2.84 0.004 11.75 < 0.0001 -2.47 0.014 

Salinity Data: NH 
                 

 
high-int 2 0.08 0.934 

  
-1.54 0.126 

  
-2.65 0.009 1.09 0.275 -0.11 0.91 

  

 
high-low 2 0.55 0.587 

  
4.17 < 0.0001 

  
0.99 0.322 2.44 0.016 5.74 < 0.0001 

  

 
int-low 2 0.7 0.487 

  
-8.19 < 0.0001 

  
8.74 < 0.0001 1.98 0.05 8.62 < 0.0001 

  

Male 
category 

RPS, NH, 
FM 

                 

 
RPS-NH 3 -0.49 0.62 

  
1.1 0.274 

  
1.15 0.252 

  
-0.2 0.844 

  

 
RPS-FM 3 3.63 0.0003 

  
-7.44 < 0.0001 

  
-7.06 < 0.0001 

  
-1.03 0.306 

  

 
NH-FM 3 3.74 0.0002 

  
-7.69 < 0.0001 

  
-7.35 < 0.0001 

  
-0.94 0.351 
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Sperm duct glands (SDGs) 

Males and NH males of low salinity habitats had significantly larger SDGs than males 

originating from intermediate or high salinity habitats (Table 9a, b, Fig.17c). Males but not NH 

males had significantly larger SDGs in high than in intermediate salinity habitats (Fig 17c). 

The slope of the relationship between SDG mass and soma mass was significantly steeper at 

intermediate salinity (b = 1.61 ± 0.13) than under high (b = 0.56 ± 0.24) and low (b = 0.96 ± 

0.14) salinity conditions (Table 9b). The slope did not differ between high and low salinity 

levels.  

Proportion of sperm duct glands (SDGs) of total gonad mass 

Also the proportion of SDGs of the total gonad mass was highest in males and NH males of 

low salinity habitats (~ 60 %) and differed significantly to intermediate and high (only in males) 

salinity sites (Table 9a, b, Fig. 17d).  

The slope of the relationship between the proportion of SDGs and soma mass differed in males 

significantly between all three salinity levels with a positive slope for low (b = 0.15 ± 0.07) and 

intermediate salinity (b = 0.44 ± 0.07) and a negative slope for the high salinity level (b = - 0.17 

± 0.13; Table 9); for NH males the slope was positive and significantly steeper for low (b = 0.23 

± 0.09) salinity habitats compared to a strong negative slope for the high (b = - 0.43 ± 0.25) 

salinity site but no difference in slopes between high and intermediate, and low and 

intermediate (b = - 0.11± 0.14) salinity sites were detected (Table 9b, Fig. 17d). 
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Figure 17. Results of linear models on gonadal and liver investment at different salinity levels 

(high: red rhomb, intermediate: green triangle and low: blue square) in nest holding (NH) 

males (model 2). Log10 a) testes mass, b) liver mass, c) sperm duct gland (SDG) mass and the 

d) proportion of SDGs of the total gonad mass (Y-axis) regressed on to centred log10 soma 

weight (X-axis). Graphs of all phenotypically recognisable males (model 1) are not shown as 

the patterns look almost identical to the plots presented here. Shading shows 95% confidence 

intervals.                        
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Differences in gonadal and liver investment between male categories 

Irrespective of variation in salinity, gonad and liver mass of three male categories (RPS, NH, 

FM, model 3) were analysed (Table 8). This was done because among 106 individuals of KR 

(high salinity) categorised as females three males mimicking females (FMs) were detected 

during dissection. Also at the intermediate salinity site KE out of 97 individuals a priori defined 

as females six FMs were found and at the intermediate site IP out of 25 allegedly defined 

females two FMs were found during dissection. No FMs were detected among females of the 

low salinity sites GO and TV (see Table 1 for site abbreviations). The effect of ‘male category’ 

on gonad and liver mass based on final linear models (Table 8) in relation to ‘soma mass’ is 

presented as separate intercepts and slopes for each response variable (Fig. 18).  

Testes 

Testes mass of FMs (1.1 ± 0.4 mg) was significantly higher than of RPS (0.9 ± 0.02 mg) and 

NH (0.8 ± 0.03 mg) males (Table 9a, Fig. 18a). Testes mass did not differ between RPS and 

NH males (Table 9b).  

Liver 

No significant differences between the three male categories (FM: 3.1 ± 0.5; RPS: 5.9 ± 0.2 mg; 

NH: 5.8 ± 0.3 mg) were detected in liver mass (Table 9a, b, Fig. 18b).  

Sperm duct glands (SGDs) 

Results on SDG mass showed exactly the opposite than for testes mass with SDGs of FMs (0.16 

± 0.05 mg) being significantly smaller than of RPS (0.90 ± 0.004 mg) and NH (0.89 ± 0.04 mg) 

males (Table 9a, Fig. 18c). SDG mass of RPS and NH males did not significantly differ (Table 

9b). 
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Proportion of sperm duct glands (SDGs) of total gonad mass 

Analog to results on absolute sperm duct gland mass, also the proportion of SDGs of the total 

gonad mass was significantly lower in FMs (0.16 ± 0.03) than in RPS (0.50 ± 0.01) and NH (0.48 

± 0.01) males (Table 9, Fig. 18d). There was also no significant difference in the proportion of 

SDGs of the total gonad mass between RPS and NH males (Table 9b). 
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Figure 18. Results of model (3) with log10 a) testes mass, b) liver mass, c) sperm duct gland 

(SDG) mass and the d) proportion of SDGs of total gonad mass (Y-axis) regressed on to centred 

log10 soma mass (X-axis) of FM males (rhomb, red), NH males (triangle, green) and RPS males 

(square, blue). Shading shows 95% confidence intervals. See Table 7 for explanation of 

abbreviations of male categories.        

Females 

Ovary and liver mass of common goby females originating from three salinity levels in the 

Baltic Sea were analysed (model 4). Moreover, differences in ovary and liver mass between 

females of the different ripeness stages (R1-R3) were analysed to test the validity of the visual 

categorization into the three ripeness stages a priori (model 5). The effect of salinity and 

ripeness stage on gonad and liver mass based on final linear models (Table 8) in relation to 

‘soma mass’ is presented as separate intercepts and slopes for each response variable (Fig. 

19).  

Differences in gonadal and liver investment between salinity levels  

Ovaries 

Ovary mass is dependent on the ripeness stage of a female (see Fig. 19c). The number of 

females in different ripeness stages (R1-R3) varied among salinity levels (see Table 1); 

consequently comparing ripeness stages between salinity levels is not informative (but see 

Table 3 and 8; Fig. 19a). 

Liver 

Liver mass was significantly higher in females of low than intermediate or high salinity habitats 

(Table 10a, b, Fig 19b). Liver mass was lowest in high salinity sites and differed significantly 

from that in intermediate salinity sites.  
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The slope of the relationship between liver mass and soma mass differed significantly between 

females of high (b = 1.25 ± 0.11) and low (b = - 0.86 ± 0.12) salinity habitats. The slope of 

intermediate salinity (b = 1.17 ± 0.12) did not differ from high or low salinity habitats (Table 

10 b). 

Table 10. Reported are a) estimates for intercepts [a] and standard error [±SE] for each factor 

level and b) pairwise differences of intercepts [a] and slopes [b] of log10 ovaries and log10 liver 

mass of females originating from three different salinity levels (high, intermediate, low; model 

4) and between three different ripeness stages (R1-R3; model 5). See Table 7 for explanation 

of abbreviations and Table 8 for statistical details on underlying final models. 

 

a) 

 

 

b) 

 

   log Ovaries                                 log Liver 

    Model 
                       

Intercept [a] 
                       

SE       Intercept [a]       SE 

Salinity level        

 high 4 0.90 0.05 0.53 0.02 

 int 4 0.70 0.06 0.60 0.02 

  low 4 0.92 0.07 0.79 0.02 

Ripeness stage       

 R1 5 0.86 0.05 0.58 0.02 

 R2 5 1.17 0.03 0.66 0.01 

 R3 5 1.49 0.05 0.65 0.02 

   
log Ovaries 

 
log Liver 

   
Intercept [a]      Slope [b] Intercept [a]       Slope [b] 

    Model      t                    P      t              P     t                  P       t             P    

Salinity level high-int 4 -3.43 0.0008 
 

  3.3 0.001 -0.5 0.611  
high-low 4 0.29 0.773 

 
  12.3 < 0.0001 -2.45 0.015 

  int-low 4 3.74 0.0003     9.13 < 0.0001 -1.86 0.063 

Ripeness stage 
     

  
    

 
R1-R2 5 5.32 < 0.0001 

 
  3.31 0.001 

  

 
R1-R3 5 8.97 < 0.0001 

 
  2.06 0.041 

  

 
R2-R3 5 -5.37 < 0.0001 

 
  -3.22 0.03 
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Differences in gonadal and liver investment between female ripeness stages 

Ovaries 

Ovary mass differed significantly between the three ripeness stages (R1-R3). Females of R3 

had significantly heavier ovaries (34.5 ± 2.1 mg) than females of R2 (18.2 ± 1.0 mg); and ovaries 

of R2 females were heavier than those of R1 (9.9 ± 1.1 mg) females (Table 10a, b, Fig. 19c).  

The slope of the relationship between ovary mass and soma mass did not differ significantly 

between female ripeness stages (Table 10b). 

Liver 

The three ripeness stage of females had an effect on liver mass. Females of R1 (4.3 ± 0.3 mg) 

had significantly lower liver mass than females of R2 (4.8 ± 0.2 mg) and R3 (4.9 ± 0.3 mg; Table 

10a, b, Fig. 19d). Females of R2 and R3 did not significantly differ in liver mass.  

The slope of the relationship between liver mass and soma mass did not differ between female 

ripeness stages (Table 10b). 
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Figure 19. Graphs show results of model 4 with log10 a) ovary mass and b) liver mass  of females 

(Y-axis) originating from high (rhomb, red), intermediate (triangle, green) and low (square, 

blue) salinity habitats regressed on to centred log10 soma mass (X-axis) and results of model  

5 with log10 c) ovary mass and d) liver mass of females (Y-axis) categorised in three ripeness 

stages: R1 (rhomb, red), R2 (triangle, green) and R3 (square, blue) regressed on to centred 

log10 soma mass (X-axis). Shading shows 95% confidence intervals. See Table 7 for explanation 

of abbreviations of ripeness stages. 
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Gonad and liver mass 

There was a significant relationship between the total gonad mass (testes mass + SDG mass = 

total gonad mass) and liver mass in males (RPS+NH+FM) with a correlation coefficient of 0.60 

(linear regression: R2 = 36 %, F1, 302 = 170.0, P < 0.0001; Fig. 20a). In females (only R2 and R3 

included) the relationship of ovary mass and liver mass was less clear with a correlation 

coefficient of 0.25 (linear regression: R2 = 6 %, F1, 135 = 9.4, P = 0.0003; Fig. 20b). 

 

 

 

Figure 20. The relationship (linear regression) of a) log10 total gonad mass (= testes mass + 

SDG mass) and log10 liver mass of males originating from three different salinity habitats (high, 

intermediate, low) as well as the relationship of b) log10 ovary mass and log10 liver mass of 

females in three different ripeness (R1- R3) stages. Shading shows 95% confidence intervals. 

See Table 7 for explanation of abbreviations of ripeness stages. 
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Discussion 

The main findings of this study were (1) the first discovery of male common gobies mimicking 

females and that these female mimics had significantly larger testes but smaller SDGs than 

other males, (2) that males of low salinity sites had larger SDGs, but testes size seemed not to 

be affected by salinity and (3) that individuals (males and females) had larger energy stores 

(i.e., liver mass) at low salinity sites.  

Female mimics in common gobies 

Here, we describe for the first time in common gobies that ‘sneaker’ males seem to mimic 

females, which suggests not only a condition-dependent alternative mating tactic but 

potentially rather an alternative mating strategy based on genetic polymorphism (Gross 

1996). ‘Sneaker’ males in common gobies were so far described in the literature as ‘small’ 

males of the population (but still clearly recognisable as males, e.g. black anal fin), unable to 

establish and defend a nest but with a life history not different from the large nest-holding 

males (but see for Britain: Tipping 1991; see for our study area: Magnhagen 1992; Magnhagen 

1994; Magnhagen 1998). Thus, it was assumed till now that the difference in the behaviour of 

common goby males of different sizes is depending on ontogenetic development, changing 

with growth. Males not displaying any male phenotypic traits (FMs) at all, however, might be 

the result of genetic polymorphism (Lank et al. 2013). Further investigation is needed to assess 

if the female mimics phenotype is genetically different to other males or sequential like in the 

peacock blenny (Salaria pavo; Goncalves et al. 2005). We only found males mimicking females 

in high and intermediate salinity sites. A possible explanation might be the overall lower 

population density at low salinity sites (see Chapter I), reducing male-male competition over 

access to females and making the occurrence of female mimics redundant.  
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Our results on testes mass of FMs mirror those in sand gobies (P. minutus), where small males 

without breeding colouration (but still recognisable as males) showed extremely large testes 

compared to males in breeding colouration (Kvarnemo et al. 2010). It has been shown in fish 

that with increasing risk and intensity of sperm competition testes size increases and 

correlated to this ejaculate volume (Parker et al. 1996; Parker et al. 1997; Stockley et al. 1997; 

Parker and Ball 2005). Female mimics most likely always face strong sperm competition, and 

thus need to invest in large testes (Parker 1990). To directly assess the intensity of sperm 

competition, however, it is necessary to know the frequency of NH males versus FM males 

within populations. Thus, we encourage further research directly addressing the occurrence 

and abundance of FMs in populations along the salinity gradient in the Baltic Sea.  

SDGs of female mimics were significantly smaller than those of other males (RPS, NH), which 

again coincides with results found for ‘parasitic’ males of the sand goby (Miller 1984; 

Kvarnemo et al. 2010). Investing in large testes implies lower investment in SDGs (Immler et 

al. 2004), which our results support by SDGs making up the lowest proportion of the total 

gonad mass in FMs compared to all other males. SDGs evolved in males of all Gobiidae (Eggert 

1931; Miller 1984; Marconato et al. 1996; Ota et al. 1996; Rasotto and Mazzoldi 2002; 

Svensson and Kvarnemo 2005) independent of the mating tactic (Fishelson 1991). 

Morphological patterns of SDGs, however, can reflect adaptations to different mating tactics:  

in two different goby species (Z. ophiocephalus and G. niger) small males (more likely to sneak 

fertilizations) had SDGs containing very little mucus, mainly used for sperm storage, while 

large males’ SDGs produced large amounts of mucus (Rasotto and Mazzoldi 2002; Mazzoldi et 

al. 2005). From an evolutionary point of view it is obvious why FMs do not heavily invest in 

SDGs but rather in testes: FMs do not provide a nest for females to spawn in, thus preparing 

the nest with protective mucus is not necessary, however, withstanding high sperm 
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competition is. The clear allocation differences in gonadal investment (large testes, small 

SDGs) in female mimics highlight that we here not just coincidentally discovered odd morphs 

of males looking like females but that we actually deal with males taking on the role of 

‘sneaking’.  

The relationship of gonad size and salinity  

Phenotypically recognisable males (=RPS+NH males of model 1, hereafter referred to as 

‘males’) and nest holding (NH) males of low salinity habitats had significantly larger SDGs than 

males of high and intermediate salinity sites - both in absolute and relative terms. For males 

of low salinity sites in general and for NH males (independent of salinity) in particular, large 

SDGs should be advantageous, because SDG size is assumed to be positively correlated with 

the production of mucins. Mucins are used to make sperm-containing mucus trails that cover 

the nest (Kvarnemo et al. 2010) and which can improve sperm viability (Eggert 1931; Fishelson 

1991; Miller 1992) and egg survival (Giacomello et al. 2006). In particular, the mucus may 

protect against egg infection by the fungus Saprolegnia in low salinity habitats (Lehtonen and 

Kvarnemo 2015a; Lehtonen and Kvarnemo 2015b). Compatible with results on SDGs, we 

found that also the proportion of SDGs of the total gonad mass was largest in males and NH 

males from low salinity sites. In males where SDGs take up the larger proportion of the total 

gonad mass (in our study on average 60 % for males originating from low salinity sites) a trade-

off between investing in SDGs or investing in testes is expected (Immler et al. 2004). What 

weakens the idea of such a gonadal investment trade-off, however, is the absence of 

differences in testes mass of males originating from different salinity levels. Our prediction for 

NH males of intermediate salinity sites to show larger testes due to a higher population density 

(see Chapter I) increasing the intensity of sperm competition (Brown and Brown 2003) was 
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not verified. Such allocation differences in gonadal investment highlight the importance to 

investigate testes and SDGs in Gobiidae separately to avoid false conclusions about the 

investment into gonads. 

The relationship of liver size and salinity 

Liver size, which can fluctuate over time as a function of social status, migration, feeding and 

reproduction (Allen and Wootton 1982; Piersma and Lindstrom 1997; Sopinka et al. 2009) was 

significantly larger in males and NH males as well as in females of low salinity sites than of 

intermediate or high salinity sites. The consistency in the results for both sexes of low salinity 

sites, support the assumption that geographical variation in salinity or its potential ecological 

consequences provides insights into adaptive evolution, in this case by enlarged energy 

reserves (see also Chapter II). A large liver may be a prerequisite to invest heavily in large 

gonads necessary in low salinity habitats (see above), which is supported by a strong 

relationship between gonad mass and liver mass (Person correlation coefficient, ρ = 0.60). 

Large livers could also indicate an increased energy intake (Allen and Wootton 1982), 

however, low salinity sites in the Baltic Sea rather represent poor quality habitats for many 

fish species (see also Chapter I; Möllmann and Koster 2002; Möllmann et al. 2005; Vuorinen 

et al. 2015). Thus, greater access to food or an overall better body condition of fish is therefore 

rather unlikely.  

Testing variation among all three male categories without accounting for salinity levels (model 

3) there was no pairwise difference in liver mass among males. Nevertheless, male category 

seemed to have an effect (see Table 8) but the low sample size of female mimics and the 

strong effect of salinity might prevent the detection of significant differences. This underlines 

that salinity itself has a strong effect on the amount of stored energy reserves in P. microps 
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and that variation of salinity may mask other more subtle variation of liver mass in relation to 

male reproductive roles. The lack of a significant differentiation in liver mass between male 

categories may suggest selection by salinity on the level of energy reserves necessary in 

common gobies.  

Here, we assume that liver size is related to spawner quality and/or energy reserves stored 

(Marshall et al. 1999). However, we did not measure liver glycogen, lipids and protein levels, 

nor have they been related to size/mass differences in other studies. Thus, liver mass may not 

be a sufficient energy metric. Nevertheless, consistent differences in liver mass between 

salinity levels warrant further investigations into the histology measuring liver glycogen, lipids 

and protein levels of the liver in populations living along the salinity gradient in the Baltic Sea, 

with a special focus on individuals of low salinity habitats.  

Conclusion 

There is no doubt that the direct environment in which an organism lives is influencing 

different aspects of its life history, and therefore growth, reproduction and survival. With this 

study we contribute empirical evidence that abiotic factors can influence gonadal investment 

and even more so the storage of energy reserves in marine fish. Providing here the basis of 

differences in gonadal investment between males originating from different salinity habitats, 

we suggest to further investigate which male type uses which suite of ARTs in the field along 

the salinity gradient in the Baltic Sea. This would allow to link environmental heterogeneity to 

the fitness of ARTs. A sufficient explanation for livers to be larger at low salinity sites is lacking. 

Thus, and because liver size might not reflect energy stores sufficiently well, we suggest to 

examine liver glycogen, lipid and protein levels. The most surprising finding of this study was, 

however, the existence of female mimics. Thus, for future studies investigating gonadal 
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investment and ARTs we encourage to include females to avoid overlooking the real frequency 

of ‘sneakers’ within a population. 
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Summary and discussion 

A major goal of evolutionary biology is to understand the origin of phenotypic and genetic 

population divergence (Wright 1931). Studying adaptation and evolution at geographically 

and temporally large scales is hereby a major problem. A solution to this dilemma is to 

investigate the distribution of organisms and their genetic and phenotypic variation as a 

function of environmental tolerances and adaptation across environmental gradients, where 

abiotic and biotic parameters gradually change in space and time (Doyle et al. 2010; Jennings 

et al. 2013). Analysing ecological variation across a salinity gradient in the Baltic Sea I could 

show that an abiotic factor like salinity may lead to phenotypic and genetic population 

divergence. 

I first aimed to fill the lack of knowledge about nest resource quantity and quality along the 

complete salinity gradient in the Baltic Sea, including intermediate salinity sites to assess 

geographic variation of an abiotic factor fundamental for mating success in the mussel-

breeding common goby (Pomatoschistus microps, Chapter I). I counted Mya arenaria mussel 

nests and assessed their size distribution, and found a clear decrease in quantity and quality 

(size) from West (high salinity) to East (low salinity). The assessment of nesting resources, 

being the most important prerequisite for successful mating in many fish species with a 

resource-based mating system is crucial, to be able to fully evaluate processes and outcomes 

of sexual selection (Forsgren et al. 1996b), natural selection and population divergence 

(Schluter 2000). Shortage or poor quality of nesting resources may affect sexual selection, i.e. 

male-male competition as well as female choice (Lindström 1992; Borg et al. 2002; Takahashi 

and Kohda 2002; Lehtonen et al. 2007). That sexual selection and natural selection are strongly 
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linked is known from examples such as the ‘sensory drive hypothesis’, where both male mating 

traits as well as the perceptual system that underlies female preferences adapt to local 

environments (but see for other examples on the interaction of natural and sexual selection 

e.g. Endler 1983; Boughman 2002; Seehausen et al. 2008; Safran et al. 2013). However, the 

relative strength of divergent selection (natural and sexual selection) in heterogeneous 

environments is in many species still poorly understood (but see Svensson et al. 2006; 

Labonne and Hendry 2010; Morgans et al. 2014). To evaluate variation in mating- and 

reproductive success I further conducted a standardized mating assay along the salinity 

gradient. I found the highest mating success at low salinity sites (i.e., sites with a low natural 

nest resource availability). However, mating success was not positively correlated with 

reproductive success (i.e., brood size), which was highest at the intermediary site offering the 

highest number of natural nests. Since the fitness currency of sexual selection can be viewed 

as either number of mates (i.e., mating success) or number of offspring (i.e., reproductive 

success; Wade 1979; Wade and Arnold 1980; Arnold and Wade 1984) it is not feasible to make 

any clear statements about differences in the strength of sexual selection between the 

investigated populations at this point. However, I could highlight that ecological context may 

lead to variation in sexual selection between populations and suggest further field 

experiments testing  variation in mating- and reproductive success between populations along 

the Baltic salinity gradient. Furthermore, along with nest quantity and quality it was body size 

of P. microps that showed the strongest co-variation with salinity. Body size of Baltic common 

gobies showed a clear decrease with decreasing salinity from West to East and male body size 

was highly correlated with M. arenaria nest size. 

After pointing out in Chapter (I) how fundamental aspects of mating success like resource 

availability and body size can co-vary with an abiotic factor like salinity, I aimed to investigate 
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in my second study the relative role of neutral and adaptive evolution in driving population 

divergence and adaptation to salinity in common gobies (Chapter II). Along with the results on 

body size (Chapter I) as well as gonadal- and liver investment (Chapter III) showing a clear 

difference between western and eastern Baltic populations I found low salinity populations 

(East) to from a monophyletic group within the Baltic cluster (Chapter II). Even though at this 

point I cannot exclude phenotypic plasticity being the cause for smaller body size and larger 

gonads (i.e., SDGs) and livers in individuals of low salinity sites, eastern Baltic populations 

forming a monophyletic group may suggest divergent selection acting, resulting in different 

phenotypes in different (salinity) environments. This assumption is also supported by the 

results of the PST-FST comparison, which revealed that body shape (often closely linked to 

variation in body size; Araujo et al. 2014) of Baltic common gobies showed to be under 

divergent selection (Chapter II). Eastern Baltic populations being locally adapted to low salinity 

may cause reduced gene flow between high and low salinity sites and thus drive population 

divergence (see also DeFaveri and Merila 2014). I expected GDM results to support the 

assumption of isolation by adaptation for low salinity populations resulting in a pattern of IBE 

(likely to be driven by salinity) explaining genetic differentiation between western and eastern 

Baltic populations; however, neither IBD nor IBE explained population divergence in Baltic 

common gobies. A possible explanation could be the scenario of ‘isolation by colonisation’, 

which is neutral and thus no assumption about non-neutral genetic variation in relation to 

space or environment can be made (Orsini et al. 2013; Spurgin et al. 2014; DeWoody et al. 

2015). My results add to a slowly but steadily growing pool of literature on species inhabiting 

the Baltic Sea showing genetic and phenotypic dissimilarity on a fine geographic scale between 

western and eastern Baltic populations as a result of divergent selection (e.g. Olsson et al. 

2012; Teacher et al. 2013). 
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In my third study (Chapter III) investigating gonadal and liver investment in Baltic common 

gobies I found again differences between high and low salinity populations. Males had larger 

sperm duct glands (SDGs) and males as well as females had larger livers at low salinity sites; 

according to results of Chapter II are western and eastern Baltic populations genetically 

distinct and thus, such differences in gonadal- and liver investment may have a genetic basis. 

It is likely that different genotypes with differences in expression of gonadal- and liver 

investment reaction norms are favoured at different sites along the gradient, leading to 

population divergence. The different allocation in gonads between West and East as well as 

males of low salinity investing more in SDGs than testes does coincide with the investigated 

genetic structure (Chapter II) but also with ecological differences caused by salinity (Chapter 

I). Larger mucus producing SDGs may be needed to protect eggs, which bear a higher risk of 

egg mold infections in low salinity (Lehtonen and Kvarnemo 2015a). Also larger livers in low 

salinity may be needed to store enough energy necessary for osmoregulation (Tseng and 

Hwang 2008). Thus, a very likely explanation for differences in gonadal-and liver investment 

between high and low salinity populations is isolation by adaptation to salinity resulting in a 

pattern of IBE promoting population divergence (Chapter II). 

During dissection I detected for the first time in this species ‘female mimics’, i.e. fish that were 

categorised by visual inspection as females but had male gonads. Such males mimicking 

females, however, were only detected at high and intermediate but not at low salinity sites. 

At low salinity sites I found low nest availability (Chapter I), thus being opportunistic and adopt 

a bourgeois tactic if the opportunity of monopolising a nest comes up, seems advantageous. 

This is an option for ontogenetic sneaker males in common gobies (as they used to be 

described in the literature, see Magnhagen 1992). However, males mimicking females as I 

found them in high and intermediate salinity sites, do not have the option of adopting the 
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bourgeois tactic. Alternative tactics evolve when there is fitness to be gained by divergent 

allocation tactics (Oliveira et al. 2008), thus mimicking females in the high energy demanding 

low salinity environment (as results of Chapter I: small body size and low population density 

and Chapter III: high SDG- and liver investment, indicate) might not be an evolutionary stable 

strategy (Tomkins and Hazel 2007). Female mimics had significantly larger testes but smaller 

SDGs than all other males, a pattern similar to that found in ‘sneaker’ males in the closely 

related sand goby (Kvarnemo et al. 2010). Therefore, I am certain to have not coincidentally 

discovered odd male morphs but actual ‘sneakers’ that possibly even resulting from genetic 

polymorphism (i.e. true alternative tactics; Shuster and Wade 1991; Gross 1996; Tuttle 2003).
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 Synopsis 

In the course of this thesis, I aimed to understand how variation in ecology along an 

environmental gradient can influence fundamental aspects of the mating success in the 

common goby (Pomatoschistus microps), possibly driving population divergence.  

My first study highlights the importance to consider ecological factors promoting a basis for 

environmental-dependent divergent selection (natural and sexual selection). I provide 

valuable background information for further studies on population divergence and adaptation 

to salinity in general.  

In my second study I wanted to investigate if Baltic common gobies show a distinct genetic 

structure and possibly local adaptation to salinity. My conclusion of the first study was 

supported by the outcomes of my second study, where I showed that an environmental factor 

such as salinity can drive divergent natural selection, leading to a clear genetic structure as 

well as phenotypic differentiation. Even though fully disentangling neutral (IBD) and adaptive 

(IBE) evolutionary processes driving population divergence was difficult because of spatial 

variation, I could nevertheless show that it is often not only IBD but also IBE driving population 

differentiation. 

In my third study I found further evidence supporting the assumption of salinity promoting 

population divergence, with males of low salinity showing larger gonads (i.e., sperm duct 

glands) and males as well as females larger livers. 
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Overall I conclude that common goby populations from low salinity sites in the Baltic Sea show 

a clear morphological and genetic distinction highlighting that ecology can drive adaptive 

population divergence and limit gene flow as the first steps towards ecological speciation.
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Outlook 

Chapter I:  

I suggest further research on sexual size dimorphism (SSD; see Fig. 21) in common gobies along 

the salinity gradient in the Baltic Sea. My results showed that females generally tend to be 

slightly larger than males, especially early in the season (Fig. 6; reversed Rensch’s rule). 

However, since females of all population grew and were significantly larger late than early in 

the season, while males grew only in high and intermediate salinity populations, there is a 

shift in SSD over the season as well as a difference in the SSD between populations along the 

salinity gradient. SSD can mirror the relative importance of natural and sexual selection on 

both sexes (Shine 1989) and effects of spatial as well as temporal variation in SSD within and 

between populations can be investigated along the salinity gradient in the Baltic Sea. 

 

Figure 21. Sexual size dimorphism (SSD = centred female length - centred male length) of 

common gobies calculated from body size data collected over three consecutive years early 

(grey boxes) and late (empty boxes) during the breeding season in the Baltic Sea along the 

salinity gradient at five populations. Negative values indicate a male biased SSD (i.e. Rensch’s 

rule, males are larger than females) and positive values indicate a female biased SSD (i.e. 

reversed Rensch’s rule, females are larger than males). 
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Chapter II: 

Supported by GDM results showing IBE to drive population divergence as well as by the PST-

FST comparison suggesting phenotypic population differences due to divergent selection, I 

suggest common gobies to be genetically adapted to salinity. However, the only way to really 

prove genetic adaptation and to exclude phenotypic plasticity is a full-factorial common 

garden experiment. With such an experimental set up, one could at the same time also assess 

if gonadal and liver mass differences show a genetic adaptation to salinity or are caused by 

phenotypic plasticity (Chapter III).  

Chapter III: 

Salinity had a clear effect on gonadal investment (i.e., sperm duct glands). Also male tactic 

(bourgeois males versus female mimics) seemed to affect gonadal investment, however, 

sample size of female mimics was very low and thus no connection to salinity could be made 

regarding gonadal investment in female mimics. Thus, I encourage further research on how 

salinity affects gonadal investment in males following different tactics, especially including a 

higher sample size of female mimics. Only then it is possible to disentangle environmental-

related gonadal investment (e.g. salinity related) and tactic-related gonadal investment to not 

draw wrong conclusion about the fitness of alternative reproductive tactics. Furthermore, it 

is necessary to investigate if differences in gonadal and liver investment are caused by 

phenotypic plasticity or due to divergent selection (see above ‘common garden experiments’).
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