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Zusammenfassung

Die Fortschritte der Next-Generation Sequencing (NGS) Technologie er-
möglichten es ganze Genome schnell und kostene�ektiv zu sequenzieren.
Heute weiÿ man, dass individuelle Organismen einzigartige Genomsequenzen
haben und dass Unterschiede zwischen diesen Sequenzen der Grund für die
genetische Vielfalt sind. Zudem werden die biologischen Prozesse lebender
Organismen durch Gene und dem Zusammenspiel ihrer Produkte gesteuert.
Störungen in diesen Systemen führen oft zu Krankheiten. Daher ist eine der
wichtigsten Fragen der biomedizinischen Forschung, wie genetische Varianten
Genfunktionen beein�ussen und wie diese auf zugrundeliegende Sto�wech-
selwege und Geninteraktionsnetzwerke einwirken. Eine der häu�gsten
Ursachen für genetische Variabilität sind Einzelnukleotidvarianten (SNVs).
So genannte genomweite Assoziationsstudien (GWAS), wie auch expression
Quantitative Trait Locus (eQTL) Studien, beabsichtigen SNVs mit z. B.
krankheitsbezogenen, binären, oder quantitativen, phänotypischen Merkmalen
zu assoziieren. Jedoch sind vorhandene Verfahren zumeist eingeschränkt auf
statistische Methoden und bisherige Ansätze zur besseren Interpretation der
entsprechenden Ergebnisse reichen oft nicht aus.

Das Ziel dieser Dissertation war es neue visuell analytische Verfahren zu
entwickeln, um somit rein statistische Methoden in der Identi�kation, Charak-
terisierung und Interpretation von SNVs zu unterstützen. Zu diesem Zweck
wurde Mayday, ein Programm zur Expressionsanalyse, durch innovative,
visuell analytische Methoden erweitert, um integrative Analysen im Bezug
auf Varianten- und Genexpressionsdaten zu ermöglichen. Für GWAS basierte
Analysen wurde inPHAP entwickelt, welches die visuelle Bewertung von
Genotypen und Haplotypen mit chromosomaler Zuordnung der SNVs zwischen
Populationen und Untergruppen von Populationen erlaubt. inPHAP bietet
eine interaktive, Matrix-ähnliche Visualisierung und fortschrittliche Methoden
zur Identi�kation von SNV Mustern, insbesondere Aggregationen. Zusätzlich
wurde Reveal für die Analyse von eQTL Daten mit Fokus auf die integrative
Analyse von SNV und der Kombination aus SNV und Genexpressionsdaten
entwickelt. Reveal bietet interaktive Netzwerk-, Matrix- und Tabellenvi-
sualisierungen, die auf SNV und Genebene miteinander verknüpft werden
können, um SNV�Gen Assoziationen e�zient zu untersuchen. Schlieÿlich ist
mit Hilfe von GenomeRing die Analyse und Visualisierung von SNVs, sowie
struktureller Varianten im Rahmen eines Alignments vollständiger Genome
möglich. In dieser Arbeit wurden Erweiterungs- und Optimierungsstrategien
zur Verbesserungen der Visualisierung struktureller Gemeinsamkeiten und
Unterschiede in GenomeRing, sowie zur Reduktion visueller Störfaktoren
im Allgemeinen, entwickelt.



Genetische Varianten, vor allem SNVs, spielen auch im stark wachsenden
Gebiet der Paleogenetik eine wichtige Rolle, wo DNS altertümlicher Herkunft
mit moderner DNS verglichen wird, um daraus Erkenntnisse zur evolutionären
Geschichte zu gewinnen. In dieser Dissertation wurde eine computergestütze
Pipeline für die vergleichende NGS Analyse altertümlicher und moderner
DNS Proben beschrieben. Besondere Aufmerksamkeit galt dem Read-
Vereinigungsschritt, der benötigt wird, um die Qualitätseinschränkungen
altertümlicher DNS (aDNS), insbesondere DNS Fragmentierung und den
Fehleinbau von Nukleotiden, zu meistern. Des Weiteren ist aDNS normaler-
weise nur in geringen Mengen zu gewinnen und oft mit DNS moderner
Mikroorganismen verunreinigt. Um dieses Problem zu lösen, wurde eine
hoch wirtschaftliche, Microarray basierte DNS Isolationsstrategie für die
parallele Detektion und Anreicherung von aDNS aus über 100 verschiedenen
menschlichen Pathogenen entwickelt.

Auf Grund des stetigen Rückgangs der Sequenzierungskosten, sowie durch die
Verfügbarkeit robuster statistischer Methoden, wurde die Zeit, die ein Biologe,
Kliniker, Wissenschaftler oder Bioinformatiker benötigt, sowie die E�zienz
verschiedener Verfahren um Ergebnisse zu verknüpfen und zu interpretieren
zum limitierenden Faktor. Folglich leisten die Programme, die in dieser Ar-
beit beschrieben wurden, einen auÿerordentlich wertvollen Beitrag zum Erfolg
aktueller und zukünftiger Studien über genetische Varianten.
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Abstract

The advances in next-generation sequencing (NGS) technology enabled
rapid and cost-e�ective whole genome analyses. Nowadays, it is known that
individual organisms have unique genome sequences and that di�erences
between these sequences are the reason for genetic diversity. Furthermore,
the biomolecular processes of living organisms are steered by genes and the
interplay of their products. Perturbations in these systems often lead to
disease. Thus, one of the major question in biomedical research is how genetic
variations in�uence gene function, and how these a�ect underlying biological
pathways and gene interaction networks. One of the most common sources of
genetic diversity are single nucleotide variations (SNVs). So-called Genome
Wide Association Studies (GWAS) as well as expression Quantitative Trait
Locus (eQTL) studies intend to associate SNVs with e.g. disease related
binary or quantitative traits. However, available methods are usually limited
to statistical analyses and previous approaches to improve the interpretation
of the respective results are often insu�cient.

The goal of this dissertation was the development of new visual analytical
approaches to assist purely statistical methods in the identi�cation, char-
acterization and interpretation of SNVs. For this purpose, Mayday, an
expression analysis workbench, has been extended with innovative visual
analytical methods to allow for integrative analyses with respect to variation
and the combination of variation and gene expression data. For GWAS
based analyses, inPHAP has been developed, which allows for the visual
assessment of genotype and phased haplotype data between populations or
subgroups of populations. It o�ers an interactive matrix-like visualization and
advanced methods for SNV pattern identi�cation, in particular aggregation.
In addition, Reveal was developed for the analysis of eQTL data with a
focus on the integrative analysis of SNV and gene expression data. It o�ers
interactive network, matrix and table visualizations to study SNV�gene
associations, which can be linked to each other on the SNV and gene
level. Finally, the analysis and visualization of SNVs as well as structural
variations is possible in the context of whole genome alignments with the
tool GenomeRing. In this work, enhancement and optimization strategies
have been developed to improve visualization of structural similarities and
dissimilarities in GenomeRing, as well as to reduce visual clutter in general.

Genomic variations, especially SNVs, also play an important role in the
immensely growing �eld of paleogenetics, where DNA of ancient origin is
compared to modern DNA with the intention to gain insights into evolutionary
history. In this dissertation, a computational pipeline for comparative NGS
analyses of ancient and modern DNA samples has been described. Special



attention was given to the read merging step, which is required to cope
with the quality limitations inherent to ancient DNA (aDNA), in particular
DNA fragmentation and nucleotide misincorporation. In addition, aDNA is
usually only retrievable in low amounts and it is often contaminated with
DNA of modern microorganisms. To solve this issue, a highly economical
microarray-based DNA capturing strategy has been developed for the parallel
detection and enrichment of aDNA from up to 100 di�erent human pathogens.

With the costs for sequencing in steady decline and with robust statistical
methods available, the time spent on and the e�ciency of the integration and
interpretation of results by biologists, clinicians, researchers and bioinformati-
cians has become the limiting factor in the �eld. Therefore, the tools described
in this thesis make an invaluable contribution to the success of current and fu-
ture studies on genetic variations.
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1. Introduction

With the completion of the human genome project in 2003 [163], a major
milestone in genetic research had been reached and similar projects for other
organisms were initiated. The human genome project made use of Sanger se-
quencing technology, which is costly and time consuming. Thus, only large
laboratories were able to a�ord large scale applications of Sanger sequencing
for the analysis of whole genomes. However, the increased demand for more
e�cient sequencing techniques led to the development of next-generation se-
quencing (NGS), with the �rst commercially available sequencing platform
presented in 2005 by Roche 454 Life Sciences [99]. With this, deep sequencing
of large genomes became possible, leading to an exponential increase in the
number of whole genome sequencing projects started during the last decade.
As of today (03/11/2015), The Genomes OnLine Database (GOLD) [133] re-
ports over 7,633 completed whole genome sequences and 27,298 permanent
drafts.
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Figure 1.1: The primary y-axis (on the left) shows the number of sequenc-
ing projects per year grouped by organism domain (according to the GOLD
database). On the log-scaled secondary y-axis (on the right) the sequencing
costs per mega-base are shown. Cost data has been taken from the National
Human Genome Research Institute (NHGRI)1.

Together with projects currently in progress, a total of 65,737 di�erent
organisms have been or are still studied. The majority (74, 5%) are bacterial
genome projects. However, the immense progress in the number of sequencing
projects per year (see Figure 1.1) would not have been possible without an
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1. Introduction

exponential decline of the sequencing costs per mega-base.

NGS technology can be applied to various research areas. One of the major
applications, however, is the identi�cation of sequence variations between
sequenced genomes. Using information about similarities and di�erences
between genomes, one can address a multitude of di�erent questions. In
addition to structural variations, such as, for instance, DNA deletions or
insertions, single nucleotide variations (SNVs) play an important role in
explaining disease susceptibility and phenotypic di�erences between popu-
lations. So-called genome-wide associations studies (GWAS) aim at �nding
correlations between phenotypic traits and SNVs on a population scale. This
provides the possibility to distinguish between common variations that are
shared by many individuals and rare ones that are observed with much
lower frequencies. Based on the distributions of variations between di�erent
subgroups of a population, SNVs of interest can be identi�ed. If there is a
signi�cant association between a SNV and a phenotypic trait, this can often
be traced back to individual genes. In many cases, the SNV has a direct
in�uence on the gene product. For protein coding genes, for instance, SNVs
can lead to changes in the amino-acid sequence and consequently to a modi�ed
three dimensional structure of the respective protein. Such modi�cations
can lead to a reduced functionality, or in the worst case to a complete loss
of functionality. In more complex scenarios, however, often not just a single
SNV, but rather the combination of several SNVs has an e�ect on speci�c
genes. Moreover, for diploid organisms the identi�cation of clusters of SNVs
located on the same chromosome, so-called haplotypes, is imperative to draw
meaningful conclusions. Although, software solutions for the construction
of haplotypes exist, there is a lack of tools for their interpretation and the
determination of their e�ects.

In this dissertation, the interactive visual analytics tool inPHAP is described,
which was published in 2014 [72]. Its main component is a matrix-like view
that allows for the visualization of genotype as well as phased haplotype
information. In fact, by the time of writing, inPHAP was the �rst and
only interactive application for the visualization of phased haplotype data.
It o�ers di�erent visual representations to concentrate on speci�c data
characteristics. In particular, di�erences between cohorts can be assessed on
the nucleotide level or, more globally, by comparing frequencies of SNVs based
on subgroups of individuals. The latter has been realized by the introduction
of aggregation techniques that can be used to emphasize rare or common
genotypes / haplotypes for user-de�ned sub-populations. Furthermore,
interactive �ltering can be applied to reduce the amount of SNVs that
have to be investigated in parallel. inPHAP has successfully been applied
to data from the 1000 Genomes project and showed great potential in re-
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vealing population speci�c SNV patterns for rare as well as common variations.

However, SNV e�ects can also manifest indirectly. Instead of being located
inside a gene, which may lead to modi�cations in gene function, SNVs can also
be located far away from a gene and, for example, alter its expression. The
consequence is often a disturbance of the underlying biological pathways, in
which the a�ected genes are involved. Consequently, this leads to phenotypic
alterations, as for instance, susceptibility to disease. Thus, combining the
information gained from SNV based analyses and gene expression analyses
can provide valuable insight into the characteristics of speci�c diseases. A
typical technique for the measurement of gene regulation are expression
microarrays. These are slides containing probes for thousands of di�erent
genes, which allows for the parallel and e�cient assessment of gene expression.
However, expression microarrays are slowly replaced by the application of
NGS technology to isolated mRNA (so-called RNA-seq), which allows for
the assessment of molecule abundances without a restriction on the dynamic
expression range, as it is the case with microarrays. Although, attempts
have been taken, to analyze these di�erent types of data together, as for
instance in so-called expression Quantitative Trait Locus (eQTL) studies,
there is still a lack of software solutions that provide methods for an improved
interpretability of the results.

To �ll this gap, Reveal has been developed o�ering innovative and interactive
visualizations and well established statistics to study SNV associated gene
expression changes. To allow for an integrative analysis that covers SNV
as well as gene expression data equally well, Reveal has been integrated
into the gene expression analysis software Mayday. To this end, a general
extension approach has been de�ned that allows to integrate not just SNV
data, but also other data types in the future. Due to the tight interaction of
Reveal and Mayday resulting from this extension approach, comprehensive
analyses can be performed, since all visualizations in Reveal are linked to
each other on the SNV, gene as well as subject level. In particular, selections
of these data objects are synchronized between the di�erent visualizations,
which enables the user to apply the methods implemented more e�ciently.
Visualization approaches included in Reveal comprise graph- and matrix-
based visualizations for single-locus and two-locus gene expression association
data as well as established visualizations, such as Manhattan or LD plots.
Reveal has successfully been applied to data from the BioVis eQTL data
analysis challenge, where it was selected as the visualization experts' favorite.
This led to its publication in 2012, shortly after the conference [71].

In contrast to single nucleotide changes, larger variations, such as structural
rearrangements, are much harder to detect with NGS applications. However,

3



1. Introduction

for bacterial genomes such variations are very common. This is due to a
higher mutation rate of the genomes as well as horizontal gene transfer,
where whole or large fragments of DNA sequences are exchanged between
di�erent bacterial organisms. These DNA fragments usually contain speci�c
genes related to pathogenicity or drug resistance. Thus, a comparative
study of small variations as well as of the structural di�erences between
genome sequences from bacterial strains can provide valuable information.
For a meaningful analysis often so-called multiple whole genome alignments
are computed after the reconstruction of the original genomes either by de
novo, or by mapping assembly approaches. This allows for the assessment of
similarities and di�erence in the genomic composition. However, due to the
complexity of the underlying variations, as well as the size of the genomes,
gaining meaningful insights remains a challenge. Furthermore, the number of
di�erent organisms that are incorporated in the study design increases data
complexity. Visualization approaches are suitable to address this hindrance,
such as MAUVE's multiple alignment viewer [33], or genome browsers in
general. However, all of them fall short when it comes to the characterization
of sequence similarities and especially dissimilarities for comparative studies
on multiple whole genome sequences.

To overcome the hindrances of previous whole genome alignment visualiza-
tions, GenomeRing has been developed. GenomeRing is a circular plot
that is based on Alexander Herbig's SuperGenome concept. This allows for a
convenient representation of similarities and dissimilarities between aligned
genomes in a common coordinate system. GenomeRing was published
together with the SuperGenome concept in 2012 [58]. In order to improve the
visual experience with GenomeRing, an optimization algorithm has been
developed in this dissertation that allows for the rearrangement of blocks from
the SuperGenome based on three di�erent criteria. Each of these criteria can
be used to reduce visual clutter with respect to speci�c data characteristics.
To demonstrate how choosing the right optimization strategy can lead to
more visually appealing representations, GenomeRing has been applied
to di�erent bacterial multiple whole genome alignments with and without
block order optimization. Furthermore, the possibility to add SNV and gene
information to GenomeRing enables a convenient comparison of genome
sequences on the basis of structural as well as single nucleotide variations.

The challenges in the detection and analysis of sequence variations mentioned
above become even more di�cult when samples with DNA quality issues are
analyzed. Such samples are usually collected from sources exposed to extreme
environmental conditions, leading to modi�cations of the DNA molecules.
In living organisms, such DNA damage occurs naturally and can in general
be repaired. However, for samples collected from dead organisms, DNA
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damage can accumulate over time, resulting in fragmented, demethylated
and sometimes mutated DNA material. Especially DNA from very old
sources (e.g. hundreds or thousands of years old), so-called ancient DNA
(aDNA), has to be treated carefully. Besides the quality issues resulting from
sequencing aDNA, samples are usually contaminated with microorganisms,
which requires additional cleaning procedures after sequencing. Thus, the
processing of aDNA substantially di�ers from modern DNA, since the speci�c
characteristics mentioned above have to be addressed adequately. This often
requires several di�erent cleaning and quality enrichment procedures, as well
as specialized read processing before read mapping and subsequent data
analysis. Performing each step in this processing chain manually, however,
is time consuming and requires additional e�ort to adjust the necessary
parameters at each individual step. Thus, processing pipelines can be of
great assistance, allowing for the application of all the necessary methods in
a single command using prede�ned parameter sets for each intermediate step.
Due to the high level of automation, repetition of whole analyses for di�erent
biological samples is easily possible. Despite of the various advantages of
existing pipelines, an appropriate aDNA speci�c pipeline that ful�lls all of the
requirements is currently missing. The only available pipeline for NGS based
aDNA analyses, the so-called Kircher pipeline [80], has major drawbacks in
its practicability in general, as well as its runtime complexity for large scale
projects. Moreover, features for post-processing of the reconstructed mapping
assemblies, such as variation detection and analysis, are missing.

To address the need for more appropriate analyses of sequence variations
contained in aDNA samples, a new aDNA based analysis pipeline has been
developed together with Alexander Herbig and published in 2013 [144]. To
adequately address the quality issues with ancient DNA fragments, paired-end
sequencing is usually applied resulting in overlapping read pairs. This
overlap can be used to increase base quality in the overlap region. Although,
methods to perform this read merging step exist [92, 96, 134, 150], none of
them provides a fast and accurate read merging for aDNA samples. The
ClipAndMerge tool developed for the pipeline described in this dissertation
outperforms all other read merging solutions with respect to runtime, merging
rate and the ability to produce merged high quality reads for subsequent
mapping. In fact, read merging is the most crucial step in this pipeline,
since all subsequent processes rely on high quality sequence information.
In particular, read mapping e�ciency and the ability to call variants with
low false positive rates can be increased signi�cantly with an accurate read
merging. The pipeline has successfully been applied to ancient and modern
Mycobacterium leprae strains in previous work [57]. In this dissertation,
further applications are shown, to demonstrate the pipelines e�ciency for
comparative analyses of modern bacteria, in particular various Treponema
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pallidum strains collected from all over the world.

Besides the challenges one has to face regarding quality constraints of aDNA,
the amount of DNA contained in typical aDNA samples is also quite low.
Thus, additional hindrances in the identi�cation, as well as the extraction
of aDNA from environmental samples can render the subsequent analysis
di�cult. Hence, suitable methods for the identi�cation and enrichment of
aDNA molecules of interest are required. To this end, capture microarrays
are applied frequently, but the solutions available so far only address single
organisms at once. In fact, existing array designs are only available for very
few organisms. Moreover, capture techniques that allow for the detection and
enrichment of dozens of di�erent organisms in parallel are missing completely.

To provide a more economical capturing technique, the ancient pathogens
screening array (APSA) has been developed in this dissertation together
with an appropriate analysis tool that simpli�es the evaluation of captured
DNA fragments. The APSA, which was published in 2014 [17], allows for
the parallel detection of almost 100 di�erent human pathogens. This has
been achieved by applying an oligo selection technique based on taxonomic
relationships between the microorganisms of interest. Furthermore, analysis
of the APSA captured reads is conducted by applying the aDNA analysis
pipeline described above and mapped reads are further evaluated using the
APSA analysis toolkit. This software calculates normalized read count data
to allow for an unbiased comparison of the detected pathogens. The APSA
has successfully been applied to a Mycobacterium leprae positive control and
various negative controls, showing true positive enrichment rates of > 460
fold as well as negligible false positive rates.

In summary, this thesis presents multiple software applications to detect, an-
alyze and visually assess single nucleotide variations, which address various
research topics. The tools themselves, as well as their application provide a
valuable contribution to the �elds of visual analytics, genomics and transcrip-
tomics. Due to the design choices made in this work, a foundation for future
development and highly integrative analysis platforms has been established.
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1.1. Outline

1.1 Outline

This dissertation is structured into three main parts. In the �rst part, special
attention is drawn towards single nucleotide variation (SNV) analyses and the
study of genotype and haplotype data. In chapter 2, an explanation of the
theoretical and biological background information is given that builds the basis
for understanding the developed methods and visualizations. In particular,
detailed information is provided on the principles of visual analytics as well
as expression and variation data analysis. The visual analytical approaches
developed in this dissertation are based on Mayday, a toolkit for expression
analysis with a powerful visualization framework. Chapter 3 provides detailed
information on Mayday and the extensions that have been introduced to
allow for an integrative study of expression and variation data. In chapter 4,
the inPHAP application is described, which has been developed for the
interactive exploration of genotype and phased haplotype data. Subsequently,
Reveal, a software solution for the comprehensive integration of expression
and variations data in Mayday, is described in chapter 5. Reveal o�ers
new solutions in the form of interactive visualizations for eQTL data.

In chapter 6, which comprises the second part of this thesis, GenomeRing,
which allows for the visualization of structural genomic alterations based on
a multiple whole genome alignment, is described. GenomeRing makes use
of the SuperGenome concept developed by Alexander Herbig, which de�nes a
common coordinate system for aligned genomes. To reduce visual clutter and
to improve the visual experience with GenomeRing, various optimization
strategies have been developed and are described in this part of the thesis.
Furthermore, additional information is given on how SNV data is visualized
in the context of the SuperGenome.

The last part, comprising chapters 7 and 8, focuses on the processing, detection
and analysis of variation data from DNA samples of ancient origin. There, new
approaches are shown that address the issue of often unpreserved aDNA frag-
ments, as well as low amounts of collectible aDNA. In chapter 7, a pipeline for
the processing of sequencing reads resulting from aDNA samples is described
and special attention is drawn towards the read merging step used to improve
overall read quality. Chapter 8 focuses on the identi�cation and enrichment
of aDNA fragments from contaminated sources. This is achieved by apply-
ing a newly designed microarray-based DNA capturing approach called APSA.

This work on visualization and analysis approaches for variation data of various
kinds is concluded in chapter 9 with a discussion of the presented work and an
outlook into future directions.
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2. Background

This chapter summarizes general information on the three main research areas
addressed in this thesis, namely visual analytics, transcriptomics and genomics.
Firstly, an introduction to data visualization and its application to large and
heterogeneous data, with focus on visual analytical techniques, is given. Then
information on expression and variation data analysis is provided, including
state of the art data analysis approaches. This also includes strategies for
the processing of old DNA (e.g. DNA of ancient origin). Last but not least,
approaches towards the integration of expression and variation data are pre-
sented, such as expression quantitative trait locus data, which allow for deeper
insights into the phenotypic implications of both omics �elds.

2.1 The Preference of Data Visualization

The term data visualization describes the process of representing data as visual
elements. By combining these elements, an image is constructed that carves
out speci�c aspects of the information, while others are omitted. Choosing
a suitable visual representation may provide important insights into the data
and may help to answer questions related to the data. In this, tasks can be
carried out more e�ciently. One of the most prominent examples, where the
preference of data visualization stands out clearly is shown by the Anscombe's
quartet [5]. This example shows that pure statistical analysis is not su�cient
to gain valuable insight into the data and that visualization can help to over-
come this hindrance. Anscombe's quartet consists of four di�erent data sets
with two variables each. Figure 2.1 shows a visual representation of the data
using point diagrams. All four data sets show identical statistical properties,
with respect to mean, standard deviation, or the linear regression of the two
variables (can be seen via red lines in �gure 2.1). However, the visualizations
clearly show that the data sets are very di�erent in their nature. Anscombe's
quartet, therefore prominently demonstrates the importance of data visualiza-
tion for any analysis.

2.1.1 The Data Visualization Concept

The process of data visualization consists of several di�erent steps that need
to be taken, in order to transform data into a suitable visual representation.
Ben Fry describes a series of seven steps [47] that are needed in data visualiza-
tion. These guidelines have become the gold standard for any data exploration
approach that tries to answer questions using visualizations. In the following,
a description of these seven steps is given.
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Figure 2.1: Point diagram visualization of Anscombe's quartet, showing four
data sets with di�erent characteristics, but equal statistical properties, such as
equal mean. Although, totally diverse in their nature, statistical methods are
not able to reveal the shape of the data as clearly as a visual approach.

(1) Acquire This step describes the process of obtaining data from a speci�c
source. These sources can, however, be any kind of data storage device, such
as a �le from a disk, or a digital source obtained over a network.

(2) Parse The second step includes the transformation of the obtained data
into a suitable structure. This especially means that an ordering of the data
into di�erent categories has to take place, which in consequence allows for an
easy access and simple data handling.

(3) Filter Clearly, not all of the data that have been collected is usually
needed to answer a speci�c question. Moreover, depending on the research
topic di�erent aspects are more important than others. This requires a pre-
processing of the data, in order to remove all, but the data of interest.

(4) Mine With this step the focus is drawn to the application of methods
from statistics or other data mining approaches, in order to discern patterns
or to describe the data in a mathematical way.

(5) Represent As soon as the data is ready for visualization, a suitable
visual model has to be chosen. For this, various di�erent fundamental rep-
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2.1. The Preference of Data Visualization

resentations can be used, such as graphs, lists or trees consisting of di�erent
visual elements. A more detailed description of the available visual elements
is given in section 2.1.2.

(6) Re�ne Re�ne means that an improvement of the basic representation
has to take place, in order to provide a clearer and more visually appealing
view on the data.

(7) Interact The last, and one of the most important steps, describes the
application of methods for manipulating the data. Thus, the user can con-
trol which features are visible and which are hidden. Furthermore, speci�c
data aspects can be emphasized by interaction possibilities, such as zooming,
panning, or selection.

2.1.2 Data Visualization Primitives

For the construction of powerful visualizations many di�erent visual primitives
can be used. These are basic geometrical elements, such as dots or lines, that
are often related to speci�c data types. Moreover, a single visual primitive
is usually not practical for every data type. In fact, preferred combinations
of data types and geometric primitives used for visual representation exist.
Tamara Munzner de�nes three di�erent basic data categories in her book on
visualization principals [109]. These are relational data, spatial data, and
tabular data, where the latter can further be divided into categorical data and
ordered data. Furthermore, ordered data can either be ordinal or quantitative.
For each of these data types, one can de�ne geometrical elements that best
represent the data. An overview of the visual elements, grouped by data
types, is provided in �gure 2.2.

Besides the major visualization primitives, such as points, lines, shapes, or their
planar position, color is one of the most often used tools in many visualizations.
Although it could be shown that encoding information via di�erent color hues
is not e�ective in conveying information [26], it is still a highly valuable tool
when applied with caution. In fact, most human individuals are not capable
of di�erentiating between more than 12-15 di�erent color values. Thus, color
maps are usually introduced that provide a speci�c ordering, such that in
visualizations only those colors are applied in close proximity to each other
that can easily be distinguished. In addition, also single or multiple color
gradients are used, since varying luminescence allows the identi�cation of small
di�erences. Nevertheless, which color map or gradient one should use largely
depends on the type of data, as well as the question one wants to answer with
the respective visualization. Thus, choosing an appropriate color encoding can
become very di�cult. In this, web-applications, such as ColorBrewer [52], are
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Figure 2.2: Overview of the most important visual primitives used for data
visualization. The di�erent elements are grouped based on the data types they
suit best. This �gure is based on a representation of data primitives by Tamara
Munzner [109].

of assistance. This tool provides prede�ned color maps, as well as visually
appealing and informative color gradients for various purposes.

2.2 Visual Analytics

Visual analytics describes the process of combining automated analysis tech-
niques with interactive visualizations. The intention is to improve decision
making processes for large and complex data sets. Therefore, visual analytics
is especially useful in areas of research, where large information spaces have
to be processed and interpreted. Although, the term visual analytics was
invented based on the advances in computer science, where the generation of
powerful visualizations could be achieved with minimal e�ort, its roots lie in
a more general �eld. In 1977, John Tukey coined the term exploratory data
analysis, which is also the title of his famous �rst book [159]. The common
goal is to gain insights into data sets by envisioning their structures. A
typical application is quality control of raw data, but also the visualization
of results from statistical testing can be extremely useful. For these, various
di�erent visualizations have been introduced, such as scatter plots, pie charts,
histograms, or box plots, just to name some of the most common ones. With
all these visualizations, the main intention is to make use of human cognition,
in order to detect patterns in the data and to analyze and interpret these.
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Nevertheless, human interaction with a visualization is usually necessary. In
this, the user can make re�nements to the plots, such as zooming to get a
more detailed view on the data, or �ltering to concentrate on the data of
interest. Consequently, this implies that the di�erent steps of the visualization
concept described in section 2.1.1 may have to be traversed iteratively to gain
a �nal interpretation of the visualized data.

Consequently, visual analytical approaches to gain insights into data are best
described by multiple iterations of data manipulation, data analysis, data
visualization and re�nement as well as data interpretation. This process
is assisted by human interaction and automatic methods, as for instance
data mining techniques that allow for the generation of data models. An
alternation between automatic methods and visualization of the resulting
data, in order to gain knowledge from the data, is characteristic for visual
analytics. This strategy does not just allow for the detection of misleading
steps early in the process, but in addition leads to results of higher con�dence.
Moreover, the insights gained from visualizations can be used to steer model
building and to improve the automatic analysis. A schematic description of
the visual analytics process in shown in �gure 2.3.

Figure 2.3: Schematic representation of the visual analytics process, combining
automatic and visualization methods for an exhaustive data exploration. This
�gure is based on [78], page 10.

Nowadays, this process is applied in various di�erent �omics� �elds, including
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genomics, transcriptomics, proteomics, metabolomics and many more. This
thesis, however, concentrates on genomics and transcriptomics, i.e. the appli-
cation of visual analytics to the study of variation and gene expression data,
as well as the combination of both.

2.3 Gene Expression

2.3.1 De�nition

Gene expression is the process in which a speci�c nucleotide sequence, called
gene, is used as a template to synthesize a functional gene product. Thereby,
genes can code for many di�erent structures in a cell. Those that code for
amino acid sequences are often called structural genes. Moreover, non-protein
coding genes exist, such as those that guide transfer RNA (tRNA) or small
nuclear RNA (snRNA) production. The nucleotide sequence of a gene is also
known as the genetic code. This is the most fundamental level at which the
phenotype of an organism can be in�uenced. Based on the central dogma of
molecular biology de�ned by Francis Crick in 1970, gene expression involves
two main steps [30]. In the transcription phase, messenger RNA (mRNA) is
produced based on the gene sequence by an enzyme called RNA polymerase.
Subsequently, these molecules are used to guide protein synthesis in the trans-
lation phase. The gene products are responsible for an organism's phenotype,
since they either directly control the organism's shape, or they are involved in
complex metabolic pathways, through which an organism is de�ned.

2.3.2 Gene Regulation

In order to control the rates at which genes are expressed, mechanisms that in-
crease or decrease the production of gene products are needed. These processes
are summarized under the term gene regulation. Thereby, a de�ned system of
when and where genes get activated is built, and the amount of protein or
RNA production is �nely controlled. This is achieved by the interaction of
genes, RNA molecules, proteins (e.g. transcription factors, which are initia-
tors of gene transcription), or other mechanisms, such as post-translational
modi�cation. The regulation of genes was �rst discovered by Jacques Monod
in 1961, who showed that enzymes involved in the lactose metabolism in the
bacterium Escherichia coli can be activated and deactivated by increasing or
decreasing the amount of lactose and glucose [69]. Gene regulation is an essen-
tial process in all living organisms, since it does not just allow for the adaption
to environmental conditions, but also enables the expression of proteins when
needed, e.g. during the development of the organisms phenotypic structures,
such as cellular di�erentiation or morphogenesis.
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2.3.3 Measuring Gene Expression

The measurement of gene expression is ideally suited to understand the on-
going mechanisms, networks and reactions in a cell. Nevertheless, there are
a couple of assumptions that have to be made, which include that (1) more
abundant genes/transcripts are more important, (2) gene expression levels cor-
respond to protein levels, (3) a normal cell has a standard expression pro�le
and changes to that pro�le indicate changes in a cell's biological processes, and
(4) a cell's expression pro�le represents a snapshot of the cellular metabolism.
Thus, the measurement of gene expression can provide valuable information
on a cell's activity on the molecular (mRNA) level. Various di�erent tech-
niques exist to measure mRNA abundances, such as Serial Analysis of Gene
Expression (SAGE) [162], quantitative real-time Polymerase Chain Reaction
(qRT-PCR) [53], or Southern Blotting [149]. However, one of the most widely
used tools in the past years and still nowadays, are DNA microarrays or Gene
Chips, which will be explained in the following section. Today, this technique
gets slowly replaced by the RNA-seq method, which applies NGS technology
to assess mRNA abundances (for details see section 2.4.2).

2.3.4 Microarrays

Microarrays are based on the natural behavior of nucleotide sequences to hy-
bridize into double stranded formations. Usually short DNA sequences of
known nucleotide composition, called probes are immobilized on a solid sur-
face, such as a glass slide and arranged in a well-de�ned order. These probes
can either be spotted onto the slide (spotted arrays [142]) or synthesized di-
rectly on it (in situ arrays [56]). With both techniques, up to millions of
di�erent probes can be placed on a single slide, allowing for the measurement
of thousands of di�erent gene expression levels simultaneously using �uores-
cence labeling. While some arrays use only a single dye for labeling, resulting
in absolute expression levels for each gene, others apply two di�erent dyes.
With the latter approach, a comparative analysis of gene expression levels
from, for example, two di�erent samples on the same array is possible. By
using only a single dye, two arrays are needed to gain the same result. In any
case, the measurement and comparison of gene expression levels allows for the
detection of di�erentially expressed genes between two or more sample groups.
A prominent example for in situ arrays are A�ymetrix GeneChips®covering
various di�erent organisms, including human, mouse, rat as well as many other
eukaryotic and bacterial species.

2.3.5 Gene Expression Analysis

Di�erential gene expression analysis is usually applied to experimental studies,
where two or more conditions are compared with each other. There, di�erences
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in the abundances of transcripts between the conditions are of interest, because
of the assumption that these changes in expression may be the cause of the
observed phenotype di�erences. That is, cells under di�erent experimental
conditions may react di�erently on the molecular level, since they try to cope
with the respective treatment. Usually, such experiments are performed with
three or more biological replicates, which allows for the assessment of the natu-
ral biological variance. In some cases, also technical replicates are produced to
assess the technical variability between di�erent microarrays. However, before
di�erentially expressed genes can be detected, several pre-processing steps have
to be taken, to assure comparability between di�erent microarray raw inten-
sity values. Generally, these steps include background correction, intra-array
normalization, inter-array normalization, feature summarization and base 2
log transformation. These steps will be explained in more detail.

Background Correction Background noise is the result of non-speci�c hy-
bridization or non-complete removal of unbound fragments during the washing
phase. A common strategy to address this issue is to correct the foreground
intensities based on the measured or estimated background. The simplest way
to achieve this, is by subtracting the background intensity value for each probe
from the respective foreground value. However, various di�erent methods exist
to perform a more sophisticated background correction. A popular example
is the Robust Multi-Array Analysis (RMA) algorithm that was introduced for
A�ymetrix based microarrays [68]. This method uses the convolution of signal
and noise distributions to estimate the background noise.

Normalization After the data has been corrected for background noise, the
next step is to adjust for technical di�erences within a single array (intra-
array normalization) and/or between di�erent arrays (inter-array normaliza-
tion). While intra-array normalization methods account for di�erences be-
tween probes on a single array, inter-array normalization tries to compensate
for discrepancies between the hybridization processes for each array. Such
discrepancies usually lead to scaling di�erences in the overall �uorescence in-
tensities. Possible reasons are, for instance, di�erences in the amount of RNA
in a sample, or di�erences in the time that was given for the hybridization
phase. Normalization ensures comparability of microarrays, by compensat-
ing for technical e�ects. A typical method for intra-array normalization for
printed arrays is the Print-Tip Loess-normalization [148], where di�erences
in the amount of RNA for each print-tip are adjusted by a linear smooth-
ing technique. For intra-array normalization, the Quantile normalization is
usually applied [16]. There, the expression value distribution of each array is
adjusted, such that speci�c statistical properties are similar between all the
arrays that need to be compared during subsequent analyses.
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Base 2 Logarithm Transformation Distributions of microarray expres-
sion values are often skewed, which means that most genes are expressed at
very low expression levels and only a few show high expression values. A typ-
ical approach to deal with such kind of data is to transform the data on a
logarithmic scale [130]. This leads to more symmetric and often Gaussian-like
distributions. A further advantage is that fold-changes can be interpreted in
terms of the chosen base of the logarithm. A common practice is to use the base
2 logarithm, since it allows for a convenient interpretation of the fold-change
values.

Summarization Microarrays usually contain several di�erent probes for a
single gene (in particular those of A�ymetrix). To obtain a single expression
value on the gene level, the normalized intensity values for each corresponding
probe have be summarized. The simplest summarization approach is to take
the mean over all probes corresponding to the same gene. However, more
complicated and statistically motivated methods exist, as for instance, the
Median polish method [62] included in the RMA normalization.

Statistical Testing In order to identify di�erentially expressed genes, sta-
tistical testing is commonly applied. An example would be the Student's
t-test [154], where the within group variance is evaluated and compared to the
between group variance, rather than making decisions on a single di�erence
threshold only (e.g. di�erence in the log2 fold-change, which is also a common
strategy, if statistical testing cannot be applied). The result of such a statis-
tical test is a p-value that describes how probable it is to obtain the observed
di�erence in expression levels when drawing both expression values from the
same normal distribution, rather than from two di�erent ones. Genes with a
p-value smaller than a prede�ned signi�cance threshold (typical thresholds are
≤ 0.05, ≤ 0.01, or ≤ 0.001 after correcting the p-values for multiple testing)
are de�ned as di�erentially expressed with statistical signi�cance.

2.4 Next-Generation Sequencing

The term nucleic acid sequencing describes the process of determining the
exact sequence of nucleotides in DNA or RNA molecules. This technique
has become popular with the completion of the Human Genome Project in
2003 [86, 163]. This project, which lasted for about 13 years and cost around
USD 2.7 billion [67] laid a milestone in the progression of sequencing projects
in the following years. For the sequencing itself, technology from the so-called
�rst generation has been used, which is known as Sanger sequencing [138].
This method (the chain termination method) was developed in 1975 by
Frederick Sanger and is considered the gold-standard for now more than three
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decades [51]. However, this method is extremely expensive when sequencing
whole genomes (e.g. high consumption of reagents, expensive equipment,
personnel-intensive, time consuming, etc.). Thus, there was a huge demand
for cheaper alternatives, leading to the development of the second-generation
sequencing methods, also termed next-generation sequencing (NGS). With
this technology massive parallel sequencing has been made possible, where
millions of DNA fragments can be sequenced in a union, opening new ways
for high-throughput data generation. For example, today NGS allows the
sequencing of an entire human genome in only a few hours with sequencing
costs between USD 1000-2000 [51].

A variety of di�erent NGS platforms have been introduced with the most
commonly used systems nowadays being the Illumina MiSeq, the Illumina
HiSeq, as well as the Illumina NextSeq. Although, most research facilities
rely on the Illumina sequencing technology, also other platforms exit, such as
the PacBio RS from Paci�c Biosciences, which allows for single molecule, real
time (SMRTr) sequencing. With these machines, sequencing became feasible
for smaller labs, which led to a massive increase in the amount of sequencing
projects in the last years. Furthermore, also clinical diagnostics rely more and
more on sequencing to make well informed decisions on genetically related
disease states.

Since all the available sequencing platforms are more or less unique in the
way the sequencing itself is accomplished, we will mainly concentrate on tech-
nologies that rely on sequencing by synthesis, which is true for all Illumina
platforms. For these platforms, the general steps include template prepara-
tion, sequencing and imaging, as well as data analysis [102]. The last step
largely varies between the di�erent NGS applications. Thus, we will mainly
concentrate on the main processing steps required by most of them, which are
de-multiplexing, quality �ltering, and read mapping to a reference genome.

2.4.1 NGS Methodology

The application of NGS technology implies several di�erent steps, starting with
DNA or RNA samples from arbitrary sources. These steps, together with a
very general description of the preprocessing of the resulting sequencing data,
are described in the following.

Library Preparation The �rst step after DNA extraction from a sample
involves building a library of nucleic acids (here either DNA or complemen-
tary DNA (cDNA) can be used). This is achieved by fragmenting the original
DNA/cDNA sequence into smaller pieces and ligating an adapter sequence
(synthetic oligo-nucleotides of known sequence) to the 5' and 3' ends. These
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preprocessed DNA fragments are then PCR ampli�ed followed by gel puri�ca-
tion. This constitutes the �nal so-called library, which is ready to be loaded
onto a sequencing �owcell to conduct the actual sequencing procedure. The
�owcell itself is a glass slide containing oligo sequences that are complementary
to the ligated adapter sequence, such that DNA fragments can be immobilized.

Cluster Generation Due to the synthetic adapter sequences, fragments
from the library are captured on the lawn of complementary oligos that are
bound to the surface of the �owcell. By a process called bridge ampli�cation,
each fragment is then ampli�ed once again into distinct, clonal clusters, which
are subsequently sequenced.

Sequencing and Imaging The bound and ampli�ed library fragments act
as a template in the following process. With sequencing by synthesis, a new
DNA fragment is synthesized directly on the �owcell using the library fragment
as a template. When �ooding the �owcell with a known �uorescently labeled
nucleotide (for example with adenine), it is incorporated into the growing DNA
strand, and can be recorded digitally [131]. Before recording, the remaining
unbound nucleotides are washed o�. This process is repeated for a prede�ned
number of cycles. Thereby, one cycle comprises the iterative �ooding and
washing with all four possible nucleotides. As a result, nucleotide sequences
(so-called reads) are produced, whose length corresponds to the number of
di�erent cycles.

Paired-End Sequencing Paired-end sequencing describes the process of
sequencing both ends of a sequencing library, rather than only one end. This
strategy results in two di�erent reads, a forward and a reverse read. These
are then combined into a read pair for further processing. Paired-end sequenc-
ing has a couple of advantages over single-end sequencing, most notably the
reduction of time and costs. Paired-end sequencing produces twice as much
sequencing information in a single run as single-end sequencing and in addi-
tion o�ers possibilities for an advanced data analysis. First of all, read pairs
o�er a more accurate read alignment and a more reliable detection of single
nucleotide variations, insertions and deletions (indels). Since di�erent read
pairs usually share approximately the same read-pair spacing (insert size), a
di�erential analysis of read pair insert sizes allows for a more sophisticated de-
tection of PCR duplicates and their subsequent removal [51]. PCR duplicates
are a common artifact during library preparation and often lead to coverage
biases and false positives in the subsequent analyses. Furthermore, paired-end
sequencing is better suited to deal with repetitive genomic regions, because
larger DNA fragments can be spanned. Although most researches currently
follow the paired-end sequencing approach, there are still NGS applications
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that are better suited for single-end sequencing, as for instance small RNA
sequencing.

2.4.2 NGS Applications

NGS applications are versatile. The extreme reduction of sequencing costs in
the past years led to an immense increase of whole genome sequencing projects
of a wide variety of di�erent organisms. Projects, such as the 1000 Genomes
project [28] for human individuals, or equivalent projects for prokaryotes, as
for example the Human Microbiome Project [124], prove the wealth of knowl-
edge one can gain by applying NGS technology. Further �elds of application
are the sequencing of bacterial strains, viruses or other human pathogens to fa-
cilitate the identi�cation of virulence factors leading to disease. Another more
specialized application is targeted sequencing, where speci�c DNA fragments
of interest are captured preliminary to the actual sequencing process. This is
usually applied in diagnostic settings, where human individuals are screened
for known disease causing alterations in the genome. In addition to the classi-
cal sequencing of DNA material, one can also start with mRNA material. This
so-called RNA-seq approach o�ers the possibility to measure transcript abun-
dances with a much larger dynamic range of expression level detectability as
this is the case for microarrays. Furthermore, results from an RNA-seq experi-
ment can be visualized on the sequence level, providing additional insights into
the data. Another advantage of RNA-seq is the possibility to detect alternative
splicing events, gene fusions, as well as single nucleotide variations from a sin-
gle RNA-seq experiment, without additional sequencing costs. Due to these
advantages over micorarrays and especially due to the shrinking sequencing
costs, RNA-seq is slowly replacing traditional microarray analyses [51].

NGS Applications for old DNA Despite the many �elds of research
involving the analysis of modern DNA, mentioned above, the study of DNA
from human, animal and plant remains o�ers further possibilities. First of
all, it provides insights into evolution. An example is the identi�cation of
about 1-3% of the modern human genome sequence that originated from the
Neanderthales [165]. However, not only prehistoric legacies are of interest,
but also the identi�cation of genetic links between people living today and
those who lived in the past [50]. Furthermore, the study of human pathogens,
for which DNA can still be present in bones, or if available, tissue remains, is
a valid source of information about ancient diseases. This could, for instance,
be shown to work well for cases of plague from the middle ages [18]. Another
issue is the identi�cation of sex based on human remains. Considering the
age and condition of ancient samples, an identi�cation based purely on visual
inspection of the remains may be impossible. However, sequencing the ancient
DNA (aDNA) obtained from such a sample, o�ers the possibility for accurate
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sex determination. Last but not least, the collection of samples from ancestral
remains from all over the world and comparing the DNA information content
of these to each other as well as to people living in those regions today, may
provide information about migration patterns. Hence, a deeper understanding
of how modern humans migrated from Africa into Europe, Asia, and also
America can be obtained.

Nevertheless, the analysis of aDNA is not as straightforward as for modern
DNA. This is due to some special characteristics of aDNA, that are shaped
over time. Despite the fact that usually only a very little amount of aDNA
can be extracted, two major biochemical modi�cations that take place natu-
rally, render the retrieval of the information contained in the DNA di�cult.
Firstly, DNA gets fragmented over time resulting in sequence lengths as short
as 100-500 base pairs [63]. Secondly, aDNA is damaged. It can often be
observed, that a large number of sites are modi�ed, as for instance by oxidiza-
tion. This primarily involves pyrimidine bases (i.e. Cytosine or Thymine) [63].
Mis-incorporations resulting from these modi�cations, can render the analysis
di�cult due to, for instance, base speci�c di�erences of the sequenced reads to
a chosen reference genome. To address these issues, specialized bioinformatic
approaches are needed. Some of which will be introduced in more detail in
chapters 7 and 8.

2.4.3 NGS Data Analysis

Sequencing results in raw intensity values for each cycle and nucleotide.
Thus, the �rst step in each data analysis procedure is the transformation
of these intensity values into readable sequence information. This process
is called de-multiplexing. The result is a text-based �le (a so-called FASTQ

�le) that contains four lines for each sequenced read. Two of these lines
represent the sequence information and the respective quality values for each
of the nucleotides in a read. The other two lines are used as headers for the
sequence and the quality line and contain among others, information about
the instrument, the �owcell, and the cluster tile on the �owcell, as well as
information about the the sequencing mode (either single-end or paired-end
sequencing). Based on the FASTQ �les, various di�erent analyses can be
performed. However, most NGS applications share some general analysis
steps involving the preprocessing of the sequenced reads. As described in
section 2.4.1 arti�cial adapter sequences of known nucleotide composition have
been added to the DNA fragments, in order to enable binding to the �owcell.
During sequencing parts of these adapter sequences may also be sequenced,
especially if the DNA fragments are short and the number of cycles during
sequencing is larger than the fragment length. Since the sequence information
from the adapters would fudge analyses based on the raw reads, adapter
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clipping is performed at �rst. Thereby, semi-local alignment algorithms
are typically applied for each read and the respective adapter sequence to
detect the arti�cial nucleotides, which are then subsequently clipped o�.
Furthermore, all sequencing machines tend to show a decrease in sequence
quality with increasing number of cycles. Thus, it is common practice to
apply a quality trimming from the 3' ends of the sequenced reads, with a
prede�ned quality threshold. This is necessary to increase the average quality
of the reads and in consequence the probability for an alignment with the
reference genome in the next step.

Based on the preprocessed high quality reads, two di�erent approaches are
usually followed. The reads are either aligned to a user-de�ned reference
genome (mapping), or a de novo alignment of the reads is calculated (as-
sembly), which, besides other applications, o�ers the possibility to discover
previously unavailable genome sequences. When the mapping approach has
been followed, several di�erent possibilities exist for further analysis. Typical
tasks are the detection of small variants in comparison to the reference (vari-
ant calling), including single nucleotide variations and indels. The latter are
variations such as insertions and deletions that are no longer than a few nu-
cleotides. But also larger structural variations can be detected. Depending on
the respective NGS application (see section 2.4.2) also the detection of novel
genes or regulatory elements, as well as the assessment of transcript expression
levels is possible. This, however, implies a need of bioinformatic expertise for
the development, application and maintenance of appropriate software solu-
tions. Fortunately, many di�erent open-source tools already exist for the main
analysis tasks, as for instance, quality assessment tools (e.g. FastQC [4]), read
mappers (e.g. BWA [90]), or programs for the assembly of new sequences (e.g.
SOAPdenovo2 [94]).

2.5 Genome Wide Association Studies

With advances of the NGS technology and consequently the initiation of
projects, such as the 1000 Genomes project [28], studies on a population
scale have been made possible. Of special interest are thereby phenotypic
di�erences between cohorts of people, as for instance susceptibility to certain
diseases. Understanding the genetic mechanisms leading to disease provides
the possibility for better treatment and more specialized medication. In this,
single nucleotide variations (SNVs) have become of major interest, since these
can have huge e�ects on gene function. Studies that involve the investigation
of hundreds of thousands of SNVs with the intent to link genetic markers,
or risk factors, to phenotypic characteristics have shown huge potential [98].
The ultimate goal of these so called Genome Wide Association Studies
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(GWAS) is to identify genotypic patterns, in order to make predictions
about who is at risk and what treatment strategies are needed. An example
would be the work by the Wellcome Trust Case Control Consortium1, which
has identi�ed variation-associated phenotypes for various di�erent diseases,
including malaria [73], or myocardial infarction [76]. Such studies, however,
led to a massive increase in detected variations and variation-phenotype
associations. Therefore, the International HapMap Project has been created,
which tries to catalog all known genetic variations in the human genome [29].
As of today, a total of 23.6 million di�erent variants are listed. Another
example, would be the Collaborative Oncological Gene environment Study
(COGS) that focuses on genetic susceptibility of hormone-related cancers [15,
40, 48, 103, 125]. Besides SNVs also other genetic variations have been
associated with disease, such as small insertions, deletions or repeated DNA
fragments. A very prominent example are chromosomal aberrations in cancer,
or trinucleotide repeats, which can have severe e�ects on human health. One
of the most prominent trinucleotide related diseases is Huntington's disease,
for which its severity is directly correlated with the trinucleotide repetition
rate [166]. However, in this thesis the main focus lies on the development of
new visualization strategies for single nucleotide variation based data.

In the following, detailed information on variations, especially SNVs, is given
and the principles of GWAS are introduced, followed by typical statistical
approaches that are widely used in most of today's GWAS. These build the
basis for the data used in the visual analytics approaches developed in this
work.

2.5.1 Single Nucleotide Variations

Single nucleotide variations (SNVs) are modi�cations in the DNA that ma-
nifest as a substitution of single base pairs. Often the term single nucleotide
polymorphism (SNP) is used equivalently to describe such single nucleotide
changes, disregarding that a polymorphism only describes changes that occur
with high frequency (above 1%) on a population scale [27]. SNVs are the
most abundant variations in the human genome. Abecasis et al. showed that
each human individual carries on average about four million variants [28],
but most of them do not have any impact. However, depending on the
location of a SNV and the nature of the respective nucleotide substitution,
functional consequences can be observed. SNVs can lead to amino acid
changes, when located in coding regions of proteins. Such substitutions
are called non-synonymous, whereas substitution that do not change the
respective amino acid are termed synonymous. Amino-acid changes usually
a�ect protein formation and consequently lead to reduced or even complete

1http://www.wtccc.org.uk (01/06/2015)
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loss of functionality [106]. Furthermore, e�ects of SNVs outside of coding
regions can also be observed, such as reduced a�nity of transcription factors
to their respective binding cites [106].

Humans, as well as most other mammals, have two copies (alleles) of each ge-
netic locus. Thus, each nucleotide is represented twice in the genome and SNVs
can occur in di�erent forms, namely heterozygous variations, where only one
allele is mutated and homozygous variations, where both alleles are changed.
Looking at whole populations, one can de�ne base pair frequencies in terms
of the minor (the less common) allele. Within a population, a SNV with, for
example, a minor allele (a) frequency of 0.3, means that 30% of the population
has the a allele, whereas 70% have the more common allele (the major allele
A).

Genotype and Haplotype In diploid organisms, combinations of base pairs
can be de�ned at each genetic locus. These combinations are called genotypes.
This de�nition, however, does not provide any hint about the parentage of the
respective allele. In general, for diploid organisms, one copy of each chromo-
some is inherited from the mother and the other copy from the father. In this
context, one also speaks of homologous chromosomes. However, such homolo-
gous chromosomes can be genetically very di�erent. For some diseases, as for
instance, cystic �brosis, not a single variant causes the disease, but a combi-
nation of di�erent variants within the same gene [79]. However, with genotype
information only, a diagnosis is not possible, since the phase of the mutations
is not known. Combinations of genetic variants that are located on the same
DNA molecule are called (phased) haplotypes. This term was �rst used for
the Human Leukocyte Antigen (HLA) in 1967, which consists of a set of genes
located in close proximity to each other on chromosome 6. For phased haplo-
types, the origin of the alleles (either maternal or paternal) is known. There
are basically two ways to obtain this information. One can either directly infer
the phase, if no other allele combination is possible, or apply haplotype phas-
ing tools that make predictions on the phase of each SNV. Examples for such
tools are SHAPTEIT2 [34, 35] and BEAGLE [20, 21], which both require fam-
ily based data in order to make predictions on the phase. These data usually
contain trios, which are combinations of three subjects, a child, a father and
a mother. Based on these data, haplotypes can be inferred from combinations
of SNVs following the Mendelian inheritance rules.

Linkage Disequilibrium Variations that are in close proximity to each
other, i.e. located on the same chromosome, are likely to be passed on to the
next generation in combination. As de�ned above, these combinations of SNVs
are also called haplotypes. In contrast to that, SNVs located on di�erent chro-
mosomes may be separated during meiosis. The circumstance of non-random
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association between two or more genetic loci is known as chromosomal linkage.
However, linkage can also occur for smaller parts of a chromosome and also
on a population scale, leading to the more general term linkage disequilibrium
(LD). LD is the result of shared ancestry between genetic loci. Nevertheless,
there are many factors that in�uence linkage leading to its decay. Crossing-
overs during meiosis are the most prominent example for the loss of linkage,
which are in�uenced by a number of other factors, namely population size, the
number of founding chromosomes in the population, as well as the number of
generations for which the population has existed [36]. Consequently, di�erent
human subpopulations show di�erent patterns of LD and di�erent rates of
linkage decay. In order to assess LD in a mathematical way, various measures
have been proposed. However, all these measures share the same principle,
namely comparing the observed frequency of co-occurrence for two alleles to
the expected frequency under the assumption of independence. The two most
common measures of LD are D′ and r2 [36]. The equations for these measures
are:

D = πABπab − πAbπaB (2.1)

D′ =


D

min(πAπb,πaπB)
if D ≥ 0

D
min(πAπB ,πaπb)

if D < 0
(2.2)

r2 =
D2

πAπBπaπb
(2.3)

In these equations, πA is the frequency of the major allele A and πB the
frequency of the major allele B. Consequently, πAB is the frequency of the
AB haplotype of the two major alleles A and B. The frequencies for the
minor alleles a and b are de�ned equivalently. D′ takes values between 0
and 1. Thereby, a value of 0 indicates complete linkage equilibrium, meaning
that the two alleles are statistically independent under the principles of
the Hardy-Weinberg Equilibrium (HWE, for details see section 2.5.2), which
implies frequent recombination events between them. If D′ = 1, then complete
linkage disequilibrium is given. No recombination between the two alleles
can be observed within the population and HWE does not provide statistical
signi�cance.

The second parameter, r2, is a statistical measure of correlation. Hence, the
interpretation of its values slightly di�ers from the D′ measure. Large correla-
tion values indicate a similar information content of the two alleles, since one
allele of the �rst SNV is often observed with one allele of the second SNV.
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Although these measure are interpreted di�erently, they are closely related to
each other. Due to the sensitivity of the r2 measure to the respective allele
frequencies of the two SNVs, large correlation values are only seen in regions,
where also D′ indicates strong LD.

2.5.2 Single-Locus Association Testing

One of the major challenges in GWAS is the identi�cation of those SNVs that
show a signi�cant association with a speci�c phenotypic trait. The investiga-
tion of data from single human individuals does often not provide the necessary
certainty, which is why population based approaches are usually chosen. This
allows for statistical testing on a su�cient amount of people, in order to draw
well informed conclusions. If a binary trait is to be investigated, so-called
genetic association case-control studies are applied. There, human individu-
als are separated into two di�erent groups, a case group containing all those
individuals that carry the trait, and, respectively, a control group that does
not show any phenotypic characteristics of the trait. Genetic variations are
then tested for an association with the trait on the basis of these two cohorts.
Statistical tests, however, are usually performed separately for each individual
SNV under the assumption of a speci�c genotypic model. As shown earlier,
human individuals have two alleles of each SNV, thus leading to three possi-
ble combinations of the minor allele a and the major allele A. Based on the
chosen genotypic model, genotype counts are summarized in so-called contin-
gency tables, which are then used to assess signi�cant di�erences between the
case and control group. Under the null hypothesis of no association of the
SNV and the phenotypic trait, the allele frequencies of the case group and the
control group are expected to be highly similar. A statistical test, therefore
needs to assess whether there is a signi�cant di�erence between the genotype
frequencies of the two groups. A typical example for such a statistical test is
given by the χ2-test. Provided with a contingency table of allele frequencies,
this statistic looks for independence of rows and columns from the table. In
the following, detailed information on the di�erent genotypic models and the
composition of contingency tables is given. Additionally, statistical tests are
described, including the χ2-test as well as other possible approaches that are
capable of �nding signi�cant genetic associations with binary traits.

Genotypic Models As it is the case for diploid organisms, two alleles for
each SNV give rise to three di�erent genotype possibilities, namely AA, Aa,
and aa. Based on these combinations, genotypic models can be build, which
de�ne the impact of a heterozygous or homozygous variation. The four most
commonly described models are the dominant model, the recessive model, the
multiplicative as well as the additive model [88]. Under the dominant model,
it is assumed that there is a higher risk when having one or more copies of
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the major allele A in comparison to the allele a. Here individuals with the
genotypes AA or Aa are compared to people with the aa genotype. In contrast
to that, the recessive model assumes that two copies of the major allele are
required, in order to increase the risk. This means that only people with a
homozygous AA genotype are a�ected. The multiplicative model assumes that
risk increases exponentially with each additional risk allele. If, for example,
having one copy of the A allele increases the risk by a factor of k, then having
two copies of A leads to a k2 times higher risk. The additive model is related to
the multiplicative model, however, here a linear relationship between the risk
alleles is assumed. This means that if having one copy of the allele A increases
the risk by a factor of k, then the risk of having the genotype AA is 2k. These
models are used to conduct statistical tests for association. However, in most
studies not a single model is chosen a priori. In fact, multiple models are
evaluated in parallel, coupled with an appropriate method for multiple testing
correction (see section 2.5.3).

Case-Control Study The genetic association case control study is the sim-
plest form of genetic study design, where a binary phenotypic trait is assumed.
In this design, a series of cases, carrying the speci�c phenotypic trait (usually
an a�ection with a disease) are compared to a series of control individuals.
To conduct such a study, a 2 × 3, or 2 × 2 contingency table is needed that
summarizes the genotype or the allele frequencies, respectively, within each
group.

Contingency Tables A contingency table summarizes genotype or allele
frequencies for di�erent cohorts. Thereby, it is di�erentiated between the
major allele A and the minor allele a. A 2 × 3 contingency table can then
be constructed by simply counting the number of occurrences of the three
di�erent genotypes in the two cohorts. An example of a 2 × 3 contingency
table is shown in table 2.1. If one is rather interested in the alleles than in the
genotypes, this 2 × 3 contingency table can easily be converted into a 2 × 2
contingency table by summing up the frequencies of the major and minor
alleles individually (see table 2.2).

Contingency tables are used to decide if e�ects between di�erent cohorts are
present. These e�ects are re�ected by signi�cant similarities or di�erences
between the row and column variables. In the following, statistical methods
based on contingency tables are introduced, which allow for the detection of
e�ects if present. For the description of these methods the same variable
nomenclature as in the tables 2.1 and 2.2 is used.

χ2-Test The χ2-test can be used to compare for two variables x and y, if
their probability distributions are equal [121]. Thereby, x and y are called
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Table 2.1: Generic example of a 2× 3 contingency table.

AA Aa aa Total

Control n00 n01 n02 N00 =
n00 +n01 +n02

Case n10 n11 n12 N01 =
n10 +n11 +n12

Total N10 =
n00 + n10

N11 =
n01 + n11

N12 =
n02 + n12

N =
N00 +N01 =
N10+N11+N12

Table 2.2: Generic example of a 2 × 2 contingency table that has been con-
structed from a 2× 3 contingency table as shown in table 2.1.

A a Total

Control ñ00 = 2n00 + n01 ñ01 = 2n02 + n01 Ñ00 = 2N00

Case ñ10 = 2n10 + n11 ñ11 = 2n12 + n11 Ñ01 = 2N01

Total Ñ10 = 2N10 +N11 Ñ11 = 2N12 +N11 Ñ = 2N

independent, if the probability distribution of one variable is not a�ected by
the other. For the application to contingency tables (i.e. categorical data), an
observed distribution of counts is compared to an expected distribution. In
case-control studies the distribution of allele frequencies in the case group is
expected to be the same as for the control group under the null hypothesis H0

of independence. To test for H0, the sum of the squared di�erence between
the observed counts and the expected counts (cases vs. controls) is calculated
and divided by the expected counts. For n classes the corresponding Pearson's
χ2-test statistic with n− 1 degrees of freedom is de�ned as follows:

χ2 =
n∑
i=1

(Oi − Ei)2

Ei
(2.4)

In this formula, Oi corresponds to the observed allele counts in the cases group
and Ei to the expected allele counts from the controls group for the class i. The
χ2 test can be applied to 2× 2 as well as 2× 3 contingency tables. Under the
null hypothesis of independence the test statistic follows the χ2-distribution
with n− 1 degrees of freedom, from which a p-value is computed.
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Fisher's Exact Test The assumption that underH0 the test statistic follows
the χ2-distribution only holds for large sample sizes. This means that the
calculation of the p-value becomes exact only when the group sizes grow to
in�nity. Thus, when group sizes are low, an appropriate exact test should be
used, such as Fisher's exact test [42]. Although it is often used when frequency
counts are small, it is also valid for large values. According to Fisher's exact
test for 2 × 2 contingency tables, the probability of observing the frequencies
ñ00, ñ01, ñ10, and ñ11, as well as a total sample size of Ñ is given by the
hypergeometric distribution:

p =

(
ñ00+ñ01

ñ00

)(
ñ10+ñ11

ñ10

)(
Ñ

ñ00+ñ10

) (2.5)

=
Ñ00!Ñ01!Ñ10!Ñ11!

ñ00!ñ01!ñ10!ñ11!Ñ !
(2.6)

With this formula, Fisher's exact test calculates the probability of obtaining
the frequencies observed in the contingency table, as well as any con�guration
with a smaller probability of occurrence in the same direction (one-sided test)
or in both directions (two-sided test).

Di�erence of Proportions The di�erence of proportions test allows one to
test if there is a signi�cant di�erence between two independent proportions.
Thus, it is applicable to 2× 2 contingency tables. For our application case, let
P1 denote the population proportion of the minor allele a in the case group and
P0 the proportion of a in the control group. The di�erence D = P1 − P0 then
compares the two proportions. Clearly, if D = 0, then there is no di�erence
between the case and the control group and consequently no association of the
tested variation with the phenotype separating cases and controls. If however
P1 > P0, then there is a positive association with the phenotype. D can be
estimated by the di�erences in group proportions d̂ = p̂1 − p̂0. For su�ciently
large sample sizes, the sampling distribution of d̂ is approximately normal with
mean D = P1 − P0 and standard deviation (SD):

SD(D) =

√
P (1− P )

Ñ
(2.7)

SD can be estimated by the pooled standard error:
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SE(d̂) =

√
p̂(1− p̂)

Ñ
(2.8)

In the formula above, p̂ = Ñ10

Ñ
is the pooled sample proportion of the minor

allele. The corresponding statistic to test the null hypothesis, can then be
formulated as:

Z =
p̂1 − p̂0
SE(d̂)

(2.9)

For the one-sided test (P1 > P0), which looks for a positive association of
the minor allele with the phenotype, the test statistic asymptotically fol-
lows a standard normal distribution and the p-value can be calculated as
p = Prob(N(0, 1) ≥ Z) [2]. For the two-sided test, which checks for an as-
sociation of the genotype with the phenotype (P1 6= P0) the test based on
Z is equivalent to a test based on Z2. Z2, however, asymptotically follows
a χ2-distribution with one degree of freedom. Thus the p-value is given by
Prob(χ2

1 ≥ Z2) [2].

Relative Risk The test statistic based on the di�erences of proportions
becomes inaccurate if the proportions are very small (close to zero). Thus,
the relative risk method has been developed, which addresses this issue [2].
In contrast to the di�erence of proportions, the relative risk is de�ned as
the ratio of the population proportions P = P1

P0
. This can be estimated by

the sample relative risk p̂ = p̂1
p̂0
. As can be seen immediately, there is no

association between the SNV and the phenotype if p1 = p0, i.e. p̂ = 1.

Since the distribution of p̂ can become skewed for extreme values, usually
the log p̂ is calculated instead. Under the null hypothesis that there is no
association of the SNV with the phenotype (P1 = P0), one can de�ne the
estimated standard error SE:

SE(log p̂) =

√
1− p̂1
Ñ01p̃1

+
1− p̂0
Ñ00p̃0

(2.10)

The corresponding test statistic is given by:
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Z =
log p̂1 − log p̂0
SE(log p̂)

(2.11)

As for the di�erence of proportions test under the null hypothesis, Z asymp-
totically follows a standard normal distribution. Hence, the p-value for the
one-sided test of positive association of the minor allele with the phenotype
(P1 > P0) can be calculated as p = Prob(N(0, 1) ≥ Z). In case of the two-
sided test, which looks for an association of the genotype with the phenotype
(P1 6= P0), the test based on Z is equivalent to a test based on Z2, which
asymptotically follows a χ2 distribution with one degree of freedom [2]. Con-
sequently the p-value for the two-sided test is given by p = Prob(χ2

1 ≥ Z2).

Odds Ratio An odds ratio for case-control studies is another possible mea-
sure of association between genotypes and a speci�c phenotype of interest.
This measure is very similar to the relative risk ratio, especially when the
phenotype under consideration is rare in the population studied.
The odds ratio OR is de�ned as the ratio of the odds of the minor allele in
the case group (oddscase) with the odds of the minor allele in the control group
(oddscontrol):

oddscase =
P1

1− P1

(2.12)

oddscontrol =
P0

1− P0

(2.13)

OR =
oddscase
oddscontrol

=
P1

1−P1

P0

1−P0

(2.14)

In the formulas above, P1 is the population based frequency of the minor allele
in the case group and P0 the population based frequency of the minor allele in
the control group. These can be estimated by the sample frequencies p̂1 and
p̂0, respectively. According to the de�nition of the OR, a value of 1 means that
there is no association of the minor allele with the phenotype and for OR > 1
there is a positive association. As for the relative risk, usually the logOR
is considered, to avoid skewness of the respective distribution [2]. Under the
null hypothesis of no association with the phenotype (P1 = P0) the estimated
standard error can be de�ned as:

SE(logOR) =

√
1

ñ00

+
1

ñ01

+
1

ñ10

+
1

ñ11

(2.15)

31



2. Background

The corresponding test statistic is then given by:

Z =
logOR

SE(logOR)
(2.16)

As for the Di�erence of Proportions and Relative Risk statistic, the p-values
for the one-sided (P1 > P0) and two-sided (P1 6= P0) alternatives are given by
Prob(N(0, 1) ≥ Z) and Prob(χ2

1 ≥ Z2), respectively [2].

Although the interpretation of the odds ratio is much more di�cult than for
the relative risk ratio, it is still common practice to calculate the odds ratio
in typical case-control studies. The reason is that it has the advantage that
it can be calculated even when the number of cases and controls is �xed by
the study design. In such studies, the calculation of the relative risk is not
meaningful, since changing the ratio of cases to controls, would also change
the relative risk. Furthermore, for rare phenotypes, the odds ratio is a good
approximation of the relative risk.

Population Strati�cation Although case-control studies have the potential
to reveal associations between SNVs and phenotypic traits, they rely strongly
on the composition of the case and control group. If there are large variations
in the population on the genetic level, one speaks of population strati�ca-
tion [122]. In such cases, subgroups of genotypes with di�erent allele frequen-
cies within a group can be build. These subgroups usually also di�er from
the rest of the population with respect to the phenotype investigated in the
case-control study. The main reason for population strati�cation is migration,
but also other alternative explanations exist. It has often been observed that
a migrated group, which is, for example, susceptible to a particular disease,
has become part of a larger population [158]. Since the detection of disease re-
lated associations in case-control studies largely depends on the homogeneity
of the case and control group with respect to the underlying allele frequen-
cies, falsely deduced associations can result from unrelated subgroups within
one of the groups. Further reasons for population strati�cation are related
to the nature of the study. There may be participants with unknown ethi-
cal backgrounds, which, when unintentionally pooled together, may induce an
association with a disease. However, when the participants are split up with
respect to their backgrounds, the association may no longer be present. In
such cases, methods are needed that are able to cope with population strati�-
cation. Armitage's trend test, which will be described in the following, is one
example of a statistical test that is able to address population strati�cation.
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Armitage's Trend Test In case-control studies, the Armitage trend test [6,
139, 141] is used to assess disease related association based on 2×3 contingency
tables. In contrast to the χ2-test of independence, the Armitage trend test is
able to address the problem of population strati�cation. It is a modi�cation
of the χ2-test, where assumptions on the genotypes, for example, based on a
speci�c genotypic model, can be introduced. For biallelic organisms the test
itself works as follows. Based on the respective genotype of an individual
and its a�liation with the case or control group, a linear regression model
can be de�ned. Let y be the variable for the individual's allelic combination.
Thereby, y = 2 if the individual is homozygous (AA), y = 1, if the individual
is heterozygous (Aa), and y = 0 if he is homozygous with respect to the minor
allele (aa). Furthermore, let x be the phenotype variable that de�nes whether
the individual belongs to the case group (x = 1), or to the control group
(x = 0). The corresponding linear regression model is then described as:

y = β0 + β1 · x+ ε (2.17)

Based on the null hypothesis H0 : β1 = 0 and the respective alternative hy-
pothesis H1 : β1 6= 0 the Armitage trend test statistic is de�ned as follows:

Ar =
β̂2
1

V AR(β̂1)
= Nr2xy (2.18)

In this formula, r2xy is the squared correlation between the genotype variable
y and the phenotype variable x. For the variance estimation for y the sum
of the squared deviations of y from the �tted values is calculated. Under the
null hypothesis, the Armitage trend statistic Ar will approximately follow a
χ2 distribution with one degree of freedom. Thus, the corresponding p-value
is given by Prob(χ2

1 ≥ Nr2xy).

Hardy-Weinberg Equilibrium In 1908 G. H. Hardy and W. Weinberg
independently proposed a theory of how genotype and allele frequencies for
diploid organisms behave across di�erent generations in a population. This
principle later became known as the Hardy-Weinberg principal [152]. It is
based on seven assumptions:

1. the organisms in the population are diploid

2. only sexual reproduction occurs

3. the di�erent generations within a population do not overlap

4. mating is completely random

33



2. Background

5. the population is in�nitely large

6. the allele frequencies are equal between the sexes

7. there is no signi�cant external impact acting on the population, such as
migration, mutation or selection

Under these constraints, the principle describes that genotype and allele fre-
quencies do not change with di�erent generations in the population. Moreover,
they remain constant, if the constraints are not violated by any signi�cant ex-
ternal impact. If we consider a SNV for a diploid organism at a given locus
with the alleles A and a, and allele frequencies p and q, respectively, then one
can easily compute the frequencies for each possible genotype as:

fAA = p2 (2.19)

fAa = 2pq (2.20)

faa = q2 (2.21)

Clearly, the sum of the frequencies of the two alleles A and a must be 1, i.e.
p+q = 1. With this, a relation between the three di�erent genotype frequencies
can be described, which leads to the Hardy-Weinberg-Equilibrium (HWE):

p2 + 2pq + q2 = (p+ q)2 = 1 (2.22)

This equation can be used to measure, if observed genotype frequencies in a
population di�er from the theoretical frequency distribution. In real popula-
tions, however, the HWE will not be followed strictly, but the model is robust
to deviations to some extent. Thus, one can apply statistical tests, in order to
identify signi�cant deviations from the predicted allele frequencies. Any statis-
tically signi�cant deviation is a strong indication that either genotyping errors
exist, or, if these can be excluded, that some biologically relevant factor acts
on the population. A common application of the HWE in GWAS is to check
for deviations from HWE in a control group, where no biological e�ect is ex-
pected. There, deviations from HWE are most likely due to genotyping errors.
Consequently, such SNVs are usually removed prior to subsequent analyses.

2.5.3 Multiple Testing Correction

For GWAS, thousands of di�erent variants are studied in parallel and statisti-
cal testing is applied to each of the variants separately. Thus, it is crucial to
correct for multiple testing, in order to control the type I error, also called the
false positive rate (FPR). The FPR corresponds to the probability of rejecting
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the null hypothesis when it is true. Usually, a signi�cance level α is provided
in statistical testing, which indicates the proportion of false positives an inves-
tigator is willing to tolerate [173]. Thus, when applying multiple simultaneous
statistical tests, it is important to restrict the family-wise error rate (FWER),
which is the probability of observing one or more type I errors. Restriction of
the FWER reduces the number of type I errors, but consequently increases the
type II error rate (also known as false negative rate (FNR)), which is the prob-
ability of maintaining the null hypothesis when it should have been rejected.
Thus, an increased FNR reduces the power to detect signi�cant associations.
Consequently, a suitable trade-o� between FPR and FNR has to be speci�ed
in each study involving multiple statistical testing [173]. In order to control
the FWER, it is important to keep track of the number of di�erent statistical
tests and, in addition, to correct the SNV speci�c signi�cance thresholds based
on the number of tests performed. A very simple correction method is given by
the Bonferroni correction [39] (see equation 2.23), or the Sidak correction [145]
(see equation 2.24), which adjust the signi�cance level α by the total number
of tests n.

α∗ =
α

n
(2.23)

α∗ = 1− (1− α)
1
n (2.24)

Thresholds based on the adjusted signi�cance level α∗ are then applied to iden-
tify signi�cant di�erences in SNV allele frequencies between subject cohorts.
These correction methods work well, if the underlying statistical tests are in-
dependent. However, in typical GWAS, where SNVs are often located in close
proximity to each other, independence can rarely be presumed. In these cases
both corrections are very conservative. An alternative approach that is not
based on the FWER, is the false discovery rate (FDR) [12], which controls for
the proportion of expected false-positives. However, this approach also su�ers
from SNV dependency issues and is therefore not recommended for GWAS.
Currently, the gold standard for multiple testing correction are permutation
based approaches [82], where original p-values are compared to empirical ones,
obtained by randomization of the observed case-control labels and repetition
of the respective statistical test. Nevertheless, permutation based methods
share the disadvantage of being computationally very expensive, requiring ei-
ther powerful workstations for the calculations, or a preliminary �ltering of
the SNVs before statistical testing to reduce the total number of tests and
consequently the overall number of permutations for p-value correction.
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2.5.4 Multi-Locus Analysis

Besides the analysis of single-locus associations, such as the association of
a SNV with a disease phenotype, so-called multi-locus association analyses
focus on the identi�cation of interactions between genetic variants. The
phenomenon in which an interaction between two and more SNVs is needed in
order to induce a phenotypic modi�cation, is called epistasis. In contrast to
single-locus association analyses, the identi�cation and analysis of multi-locus
associations bears a couple of challenges. In a typical GWAS, several
thousand SNVs are analyzed in parallel. If we only concentrate on pair-wise
SNV interactions, we already end up with approximately 1010 − 1014 SNV
pairs that have to be considered in a typical study. This leads to enormous
computational hindrances as well as to increased multiple hypothesis testing
problems [107]. Approaches that address these issues mostly concentrate on
a reduction of the overall comparisons that have to be made. Filtering is a
common strategy, where SNVs are, for example, selected based on results from
a prior single-locus analysis. Interactions are then only evaluated within the
subset of selected SNVs. However, this disregards purely epistatic interactions,
where single SNVs do not have any statistically detectable e�ect, and only
the combination of the SNVs causes a signi�cant change in the phenotype.
With the development of more and more powerful graphics cards that contain
several hundred graphics processing units (GPUs), attempts have been taken
in the direction of parallelization rather than SNV �ltering. Algorithms that
purely operate on the GPUs have shown to be very e�ective in reducing
the overall runtime and are currently the method of choice for epistatic
analyses. Computational cluster systems could also be used, however, due
to the relative low computational e�ort needed to conduct a single test,
GPUs are usually preferred. Nevertheless, the systematic analysis of SNV
triplets or even larger units still remains computationally infeasible. Con-
sequently, most GWA studies today concentrate on two-locus associations only.

A popular method for the analysis of SNV pair associations is multiple logistic
regression. This method is an adaption of linear regression, where in addition
a logit transformation is incorporated in the procedure. This allows for the
analysis of binary information, as it is the case in standard case-control stud-
ies. The following formula shows a typical logit function. In this function, p
corresponds to the probability of having a disease. Furthermore, β coe�cients
are used to describe the individual SNV e�ect as well as the e�ect introduced
by their interaction. β0 represents the intercept of the underlying regression
model, β1 and β2 correspond to the main e�ect of each of the SNVs from the
SNV pair, and β3 represents the interaction term. The genotype information
for the two SNVs is described by the variables x1 and x2, respectively. These
can be encoded in a number of di�erent ways. In this case, the numbers −1,
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0, and 1 are used with respect to an underlying genotypic model (see sec-
tion 2.5.2). Furthermore, the interaction term x1 × x2 can also be encoded in
various ways depending again on the genotpic model.

logit(p) = ln
p

p− 1
= β0 + β1x1 + β2x2 + β3(x1 × x2) (2.25)

Stepwise logistic regression further allows to investigate whether two SNVs
have independent e�ects on a trait, or if they are in linkage disequilibrium
with each other. The latter would for example be the case when there is
evidence of an association, but a missing improvement in the model �t when
both SNVs are included [89]. An alternative to this approach is phasing the
genotypes into haplotypes, if informative relationship data for the individuals
in the study are available. The haplotypes are then used as a unit for the
analysis, rather then testing each individual SNV separately. This method is
especially useful, because a haplotype represents a functional unit of a gene
(see section 2.5.1 for a detailed explanation of genotypes and haplotypes).

2.6 Quantitative Trait Locus

The methods described so far are suitable for the analysis of binary traits.
However, more complex phenotypes, such as blood pressure, height, or obesity
cannot be characterized su�ciently using a binary description. Thus, quan-
titative measures are needed to extensively characterize these traits, rather
than qualitative ones. Such traits are usually a�ected by many di�erent genes
and environmental conditions. Regions on chromosomes that show a signi�-
cant association with a quantitative trait have become known as Quantitative
Trait Loci (QTL). These regions can vary largely in size, ranging from a single
marker up to one or more di�erent genes. Thus, a QTL does not necessarily
have to contain a SNV, it is simply de�ned as the region responsible for the
respective phenotype. The identi�cation of these regions (also known as QTL
mapping) is thus of great importance.

2.6.1 QTL Mapping

The simplest method for QTL mapping is the analysis of variance (ANOVA)
for each SNV marker. This method is also known as marker regression [19].
To perform such an analysis for a speci�c SNV, individuals are grouped
according to their genotype at the SNV locus. Based on these groups and the
distribution of the quantitative phenotype values within each group a tradi-
tional t-test, or an ANOVA can be performed. The goal is to �nd signi�cant
di�erences between the groups under the null hypothesis of no di�erence in
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trait means for any of the genotype groups. This step is then repeated for
each SNV in the data set. However, in order to perform an ANOVA, several
di�erent assumptions have to be made. The underlying test statistic of the
ANOVA requires the quantitative trait to be normally distributed and the
variance of the trait values within each genotype group to be the same, i.e.
the groups have to be homoskedastic. Furthermore, the groups have to be
independent. These requirements and especially the latter one can, however,
not always be ful�lled. In addition, individuals whose genotype is missing at a
speci�c locus have to be excluded. Furthermore, the power of the QTL detec-
tion largely depends on the density of the SNVs. If these are widely spread,
then the QTL may be far apart from them, which leads to a decrease in power.

To overcome the mentioned hindrances, Lander and Botstein developed the
interval mapping (IM) approach [85]. This approach can be applied for the
identi�cation of any QTL that is �anked by two di�erent markers. Conse-
quently, each position between the markers in the genome is scanned consec-
utively. The IM algorithm assumes a mixture model of normal distributions
of the quantitative phenotype at the putative QTL locus. Thereby, the dis-
tribution of the phenotype at the QTL is constituted by the distributions of
respective �anking SNVs assuming equal variance. Variables for the di�erent
distributions are estimated using a maximum likelihood approach applying an
EM (expectation maximization) algorithm. The strength of evidence is then
measured with the so-called LOD (logarithm of the odds) score (see equa-
tion 2.26). This is the log10 likelihood ratio of the alternative hypothesis of
QTL presence at a position γ versus the null hypothesis of no QTL at that
position:

LOD(γ) = log10

Pr(y | QTL at γ, µ̂0γ, µ̂1γ, σ̂γ)

Pr(y | no QTL, µ̂, σ̂)
(2.26)

The values µ̂0γ, µ̂1γ, and σ̂γ are the maximum likelihood estimates of the
respective SNV distributions for the putative QTL position γ. y corresponds to
the observed phenotype data with the assumption that y ∼ N(µ, σ). Under the
no QTL model, the phenotypes are independent and identically distributed.
The higher the LOD score for a particular genome position, the more likely
is the presence of a quantitative trait. The null hypothesis is thus rejected if
LOD(γ) exceeds a prede�ned threshold. Furthermore, due to the maximum
likelihood estimation procedure, the LOD score is asymptotically distributed
as 1

2
(log10 e)χ

2, with χ2 being the χ2-distribution with 1 degree of freedom [85].
The corresponding test statistic is then given as:
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T = 2 ln
Pr(y | QTL at γ, µ̂0γ, µ̂1γ, σ̂γ)

Pr(y | no QTL, µ̂, σ̂)
(2.27)

Thus, statistical testing can be applied, in order to provide additional statis-
tical signi�cance of QTL presence. This procedure is known as the likelihood
ratio test. Together with the Wald test, which is a less computationally intense
approximation of the likelihood ratio test and explained in detail in [164], this
procedure is currently considered the gold standard for QTL mapping.

2.6.2 Expression Quantitative Trait Locus

Complex human diseases are the result of the interplay of various di�erent
genes. As described above, variations within these genes or in close proximity
to them (cis-acting SNVs), but also variations at greater distances (trans-
acting SNVs), can have severe e�ects. However, a direct modi�cation of the
gene is not always required. Also changes in the expression levels of genes
can have severe e�ects. These can, for example, be caused by mutations in
molecules interacting with the a�ected genes. Furthermore, the expression
level of a gene can be interpreted as a quantitative trait, allowing the applica-
tion of methods from traditional QTL association analyses. In these so-called
eQTL (expression Quantitative Trait Locus) studies not a single quantitative
trait is investigated, but the expression levels of several hundred or thousand
genes are studied at the same time. Thus, associations have to be made be-
tween all pairwise combinations of SNVs and genes in the study, leading to
a much more complex and intense study design. In addition, clinical phe-
notypes, such as susceptibility to a disease, are often included. Despite the
computational and statistical challenges, eQTL studies provide a much more
comprehensive view of the underlying e�ects of variations. Thus, they are per-
fectly suited for integrative investigations of di�erential expression as well as
variation analyses. Software solutions such as PLINK [129], an open-source
whole genome association analysis toolkit, allow investigators to perform the
necessary statistics for the identi�cation of single- and multi-locus associations
within a GWAS as well as eQTL study. However, visual assessment of the re-
sults is usually not provided, which is needed to increase interpretability of the
results. Furthermore, well designed visualizations allow for a quick detection
of interesting patterns in the data. Therefore, in this work, powerful and com-
prehensive visual analytics methods have been developed to tackle the need for
improved ways of interpreting GWAS and eQTL data (see chapters 4 and 5).
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2.7 Structural Variations

Structural variations lead to changes in the chromosomes of an organism on a
large scale. These variations can be separated from small variations, such as
SNVs, as well as small insertions and deletions, due to the number of bases
that are a�ected. Typical sequence lengths range from about 1 kilobase up to
3 megabases. However, these de�nitions are rather ambiguous and sometimes
much smaller or larger changes are also included.

Structural variations can be separated into �ve di�erent classes. Insertions
are modi�cations, where additional sequence information is incorporated into
the genome. Possible sources are, for instance, transposable elements, which
are commonly used by viruses, in order to survive in the host cells. Deletions
on the other hand lead to a loss of sequence information and are often the
result of chromosomal recombination or separation defects during meiosis.
Duplications lead to an increased amount of sequence information for the
duplicated region. These can also be the result of chromosomal recombination
and are therefore considered as the counter part of deletions. The fourth class
of structural variations are inversions. Here, sequence information is �ipped
within the genome, such that sequence parts of a chromosome, for example,
are in inverse order in comparison to a reference. These can occur during
replication of the chromosomes during cell division by random formation of
DNA loops. Last but not least, translocations lead to an exchange of sequence
information within a genome. One distinguishes between inter- and intra-
chromosomal translocations, whether only a single chromosome, or di�erent
chromosomes are involved. Reasons are, for example, crossing-overs during
cell division. Furthermore, inversions and translocations can be distinguished
from the other classes, since these two do not change the information content,
i.e. there is neither a gain, nor a loss of sequence information.

Although the de�nition of structural variations does not imply any phenotypic
e�ect, many are associated with genetic disease in humans and other animals.
Prominent examples can be found in clinical diagnostics, where for instance
deletions of large parts of the genome lead to mental retardation or cancer [132].

In contrast to small variations, where the application of NGS can easily
detect changes in the nucleotide sequence, since these are smaller than
typical sequencing read lengths, structural variations are much harder to
identify. While some structural variations, such as deletions or duplications,
can be identi�ed due to a change in the mean read coverage of the a�ected
chromosomal region, others such as translocations can only be identi�ed, if
enough reads cover the initial sites of fracture. Nevertheless, attempts have
been taken to simplify the process of structural variation detection. Using
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paired-end sequencing, for example, allows for the analysis of abnormally
mapped read pairs. For these read pairs, the respective forward and reverse
read could not be mapped with the overall average insert size to a prede�ned
reference genome. This can have several reasons, most of them linked to
structural variation, if sequence quality issues can be excluded. For instance,
if either the forward read, or the reverse read could not be mapped at all, this
is an indication of a potential deletion in the region, where the respective read
would have been expected to map. Read pairs showing large deviations with
respect to the average insert size, on the other hand, indicate an insertion,
duplication or inter-chromosomal translocation event. Intra-chromosomal
events further imply that read pairs map to di�erent chromosomes. Coverage
analysis and detailed determination of the mapping position further helps
to di�erentiate between these variations. When both read pairs map in the
same direction, instead of opposite to each other, this indicates an inversion.
Although the consideration of the di�erent arrangements of read pairs allows
for the detection of structural variations, this approach is usually limited
by the size of the respective variations. Variations that are larger than the
average insert size of read pairs by several orders of magnitude can usually
not be detected su�ciently. Mate-pair sequencing [66], for instance, displays
an attempt to address this issue, since read-pairs with very large insert sizes
can be created. However, due to the complex library preparation process and
the increased sequencing costs, this approach is not feasible in most cases.

However, for the study of small genomes, as for example bacteria, paired-end
sequencing is very e�ective. These genomes usually experience various di�erent
structural rearrangements. This can be explained by the usually high mutation
rates, as well as the process of horizontal gene transfer, where parts of the
bacterial genomes are exchanged between di�erent bacterial strains or species.
Often such elements contain genes that are responsible for pathogenicity or
drug resistance, which makes them an attractive research topic. Thus, methods
for the analysis and visualization of structural variations are an important
instrument to �rstly unravel structural changes and secondly to help in the
interpretation of their impact. In this thesis, a comparative visual analytics
approach for the identi�cation and characterization of structural variations has
been described. Details on this method can be found in chapter 6.
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Analytics Workbench

In this thesis, visual analytics approaches for variation data and the con-
nection with expression data are introduced. For this purpose Mayday [11]
was chosen as a general framework for the development of new analysis
and visualization approaches for variation and expression data, as well as
the combination of both. Mayday, short for Microarray Data Analysis,
is an expression analysis software that focuses on visual data exploration.
Its development started in 2004 by Kay Nieselt, Janko Dietsch, and Nils
Gehlenborg to address the need for a freely available application to study
microarray expression data. With the contributions of Florian Battke during
his PhD thesis [9], Mayday became a platform for the integrative study of
transcriptomics data with respect to the implemented processing methods,
the underlying data structures, as well as visualizations. A major contribution
was the Mayday Seasight extension [10], which enables the integration of
RNA-seq expression data and provides appropriate methods to conduct a
complete RNA-seq data analysis work�ow starting from mapped sequencing
reads (see section 2.4.3). With this extensions, a �rst step was taken towards
the integration of data from next-generation sequencing systems. Due to the
generic design of the underlying data structures, storage of expression data
is independent of the respective source (i.e. microarrays or RNA-seq). This
allows for the application of analysis methods without the need to distinguish
between microarray and RNA-seq expression values. In addition, Mayday

possesses a powerful visualization framework, o�ering di�erent plots for visual
data exploration. The visualizations are thereby highly interactive and can be
linked to each other. As a result, Mayday enables the realization of visual
analytical techniques (see section 2.2) to gain better insights into data. Thus,
it is perfectly suited for the development of new visualization and analysis
strategies including other kinds of data, that have not been addressed so far,
in particular single nucleotide variations.

However, until the beginning of this work, no features for the integration of
other kinds of data, except expression data, were available. For the extension
of Mayday with data analysis methods for RNA-seq introduced with the
Mayday Seasight plugin, data structures available for microarray gene expres-
sion data could be used without larger modi�cations. This means that read
counts are interpreted as gene expression values. For RNA-seq data, this was
possible, since there are only minor di�erences in the way RNA-seq expression
data is processed in comparison to microarray expression data. This does,
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however, not apply for other kinds of data, such as single nucleotide variation
data. Studies linking single nucleotide variations to disease (so-called genome
wide association (GWA) studies), or expression data to variations (known as
eQTL - expression Quantitative Trait Loci - studies, that will be addressed
in more detail in chapter 5) o�er new insights into gene regulatory mech-
anisms and are therefore highly useful in making well informed interpretations.

Thus, this chapter provides details on the existing data structures in May-

day and information about modi�cations necessary to extend Mayday for
the visual analytical study of GWA and eQTL data. This includes a descrip-
tion of how the data model has been extended to allow for the integration
of appropriate data structures for non-expression data, as well as details on
the changes made to the visualization framework, in order to allow for new
visualization approaches that are capable to display expression data together
with variation data. This chapter is therefore structured into two parts. In
the �rst part, the main components of the Mayday software are introduced,
including the Mayday data model with its various data structures for ex-
pression and meta-data. Furthermore, details are provided for the Mayday

visualization framework and on the plot generation system, introducing the
elements needed to create new visualizations in Mayday. The second part fo-
cuses on the modi�cations that were necessary to include other kinds of data,
speci�cally variation data, into the existing Mayday data structures. Here, a
general approach is described that allows the integration of variation data in
the form of new plugins, such that the original data structures do not have to
be changed.

3.1 The Basic Data Structures in Mayday

Gene expression data is usually organized as an expression matrix, where
columns represent di�erent experiments or conditions and rows represent
genes. Each cell of this matrix consequently contains an expression value of a
speci�c pair of gene and experiment. In a microarray study, columns usually
show di�erent microarray experiments and rows display the probes used on
the microarray. Thereby, probes are small DNA, cDNA, or oligonucleotide
molecules with known identity that are used to identify genes of interest.
Clearly, a single gene can be represented by one or more probes and summa-
rization methods, such as taking the mean expression value of the probes, are
usually used to calculate the expression value for each respective gene (see
section 2.3.5).

In Mayday, expression data is organized in a similar way. There are three
major data types used to organize expression values. The MasterTable is a
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matrix containing expression values for pairs of Experiments and Probes. As
in an ordinary expression matrix, Experiments are represented by columns
in the MasterTable, whereas rows represent Probes. Probes, as well as
Experiments hold references to their respective expression values in the
MasterTable, such that access to its entries is either possible directly from
the MasterTable, or indirectly using Probe or Experiment instances. Besides
these three data types, further data structures are needed that allow for
convenient data handling. An often required feature is the possibility to
concentrate only on a subset of the probes in the data set. This allows for the
application of analysis methods or visualizations to a set of probes that are
of speci�c interest. An example would be the selection of a subset of probes
based on a statistical test, where only those considered signi�cant are used
for further processing. Mayday o�ers the possibility to organize probes in
groups, called ProbeLists. These ProbeLists contain references to Probe

instances. Clearly, a single Probe can be contained in one or more ProbeLists.

In addition to these basic data structures, meta-information can be included,
such as gene annotations (gene names, KEGG pathways, GO terms, and many
more). This meta-information is represented by so-called meta-information
objects (MIOs), which are associated with a speci�c Mayday data type (e.g.
a Probe, an Experiment, a ProbeList, etc.). Such MIOs can either represent
strings, integers, doubles, or even more complex data types, such as genomic
locations. MIOs that are associated with the same Mayday data type can
further be grouped into so-called MIOGroups that allow for a hierarchical
structuring. All these data structures are contained in a DataSet, which is
the main data container for expression data. Figure 3.1 shows these described
relationships.

For some of the basic data structures extended versions exist that provide ad-
ditional functionality. For instance, one such functionality is �ltering. When
studying high-throughput data, the number of probes can become large (up
to ten thousands). Filtering can help to reduce data complexity, either for
visualization purposes or for the analysis of the respective features. A typical
scenario is the selection of only those probes that are di�erentially expressed
between two or more conditions. To address this, an extended version of the
ProbeList, a so-called DynamicProbeList, is available. Within this class, spe-
ci�c �lter objects can be de�ned and structured in a hierarchical way. This
allows to combine simple �lters in order to construct complex ones. The �lters
themselves are implemented as DataProcessors, which can be concatenated
to build �lter chains. Each DataProcessor converts a speci�c input data type
into an output data type that is de�ned by the respective DataProcessor.
However, the �nal DataProcessor in such a �lter chain, has to transform its
input data type into a boolean value, which can be evaluated. An example
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Figure 3.1: Overview of Mayday's basic data structures, namely the
MasterTable containing the expression values, ProbeLists representing sub-
sets of probes, as well as MIOGroups that can contain meta-information objects
of di�erent types.

would be a fold-change �lter that allows to select all probes with an absolute
fold-change larger than 1. To construct such a �lter, �rst a meta-information
value DataProcessor has to be chosen, which selects the respective fold-
change meta-information values. Thus, this DataProcessor internally re-
places the Probe objects with the corresponding fold-change values, which are
then passed on to the next DataProcessor. Since absolute fold-change values
should be used for �ltering, a second DataProcessor has to transform the fold-
change values into absolute values, before a third DataProcessor can apply
a simple comparison with the value 1 resulting in a boolean value that is re-
turned. Based on this value, the Probe is inserted into the DynamicProbeList,
or rejected. Due to its dynamic design, a DynamicProbeList can rely on
other ProbeLists or even other DynamicProbeLists. This is realized by
DataProcessors that evaluate if a Probe is contained in a speci�c user-de�ned
ProbeList. Consequently, removing a Probe from that ProbeList automati-
cally leads to the removal of the respective Probe from the DynamicProbeList.

3.2 Mayday's Visualization Framework

As previously described (see section 2.1), visualizations are extremely useful
to understand complex data. Mayday has therefore been built with a large
focus on data visualization and visual data exploration. The basis is a
powerful visualization framework. In the following, the data structures of this
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framework as of Mayday 2.12 are described.

The ViewModel is the major interface between the data contained in the
DataSet and the visualizations. It holds references to the ProbeLists it
was created from, as well as to so-called top priority ProbeLists. These
are disjoint representations of the original ProbeLists. If a Probe is, for
example, contained in more than one ProbeList this would consequently lead
to a multiple rendering of the respective Probe for data visualization. Top
priority ProbeLists provide an optimization of this circumstance, since each
Probe is assigned only to the �rst ProbeLists it is contained in. Thus, when
rendering the top priority ProbeLists, each Probe is rendered exactly once.

Moreover, all plots in Mayday need access to the DataSet, in order to
request the values needed for visualization. However, the data is not passed
directly from the DataSet to the visualization, but access is granted via
the ViewModel. This additional layer allows for live data transformations,
just right before visualization. These data transformations are imple-
mented using so-called DataManipulators. If a plot requests a data value
from the ViewModel for visualization, this value is �rst passed through a
DataManipulator. There transformations, such as z-score transformation,
centering, scaling, or logarithmic transformation to a user-de�ned base, are
performed and the manipulated data value is then passed on to the requesting
plot. This strategy leaves the data in the DataSet unchanged, o�ering the
possibility to apply di�erent manipulations in separate visualizations simul-
taneously. Meta-information is handled similarly. Since meta-information
can be of various di�erent data types, ValueProviders are used that
transform the data into a format that can be interpreted by the respective
plot. For instance, a ColorProvider is a subtype of the ValueProvider

and is used to transform meta-information values into color values, which
can then be used to enhance a visualization by adding color to the data points.

Furthermore, data manipulations, as well as element selections can be shared
between di�erent plots. This is realized by Visualizers that are a�liated
with the plot. All plots that are opened with the same Visualizer are
synchronized with respect to data manipulations and selections. In fact,
changes in the selection state of speci�c elements in one plot are displayed in
all of the linked plots simultaneously. This is achieved through the registration
of each plot to a speci�c Visualizer as a so-called VisualizerMember. This
is an interface that is used by the observing Visualizer to organize the
connected plots. For a more detailed description of how this connection is
implemented see [9].
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Figure 3.2: Overview of the main components of the Mayday visualization
framework. Green components correspond to original Mayday structures as of
version 2.12. Red components have been added in this work to enable visualiza-
tion of non-expression data. Arrows highlight the possible ways of data being
transfered from the data level on the left to the visualization level on the right.
Parts of this image are based on Florian Battke's original ViewModel illustration
in [9], page 44.

SinceMayday has been developed with a main focus on expression data anal-
ysis, the ViewModel in Mayday version 2.12 could only handle data types
necessary for expression data visualization, including Probes, ProbeLists,
Experiments, as well as meta-information objects (MIOs). This implies that
the available manipulations can only be applied to these data types. Therefore,
an adjustment strategy is presented in the following section that addresses the
need for an advanced data integration approach. Figure 3.2 gives an overview
of the main components of Mayday's visualization framework and their rela-
tions. Furthermore, red boxes highlight additional elements required for the
integration of data types di�erent from expression data.
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3.3 Extension of Mayday's Visualization

Framework beyond Expression Data

Due to its powerful visualization framework,Mayday provides a reliable basis
for the development of new visualization approaches. In this work, the initial
purpose of expression data visualization and analysis has been extended to
variation data. However, due to their diverse properties, the integration into
Mayday could not be performed without larger extensions. Especially, new
data structures as well as mechanisms to link variation to expression data
had to be developed. The necessary modi�cations involved Mayday's visual-
ization framework, as well as the DataSet as the general data container. As
mentioned above, the exchange of data was handled mainly by the ViewModel.
However, in Mayday version 2.12 only data structures relevant for gene
expression data were supported. In particular, data values from Probes,
Experiments, and associated meta-information objects (MIOs) could be
processed, as shown in �gure 3.2. These circumstances implied an extension of
the current ViewModel to allow for the integration of other kinds of data and
for connecting these with the already existing ones. Although, in this work the
main focus lies on the integration and visualization of variation data, a gen-
eral concept has been devised that can easily be adapted to other data sources.

First of all, a new data container has been de�ned that is capable of handling
new data objects (organized in a DataStorage), as well as the original
Mayday DataSet. For this purpose, the data container Project has been
de�ned. A Project holds a reference to the DataSet and in addition can
contain one or more DataStorage instances for di�erent non-expression data
sources. To connect the DataStorage and the ViewModel, a new abstract class
ExtendedViewModel has been implemented, that inherits all functionality
from the original ViewModel. This strategy o�ers a couple of advantages over
a direct modi�cation of the original ViewModel. Firstly, all functionality that
is provided by the original ViewModel remains unchanged, which ensures the
applicability of the ViewModel to all available Mayday plugins. In addition,
there is a clear separation between the original functionality and the new
features o�ered by a concrete implementation of the ExtendedViewModel. An
example would be the handling of selections of non-expression data objects,
which is not required by the original ViewModel. If, however, code of the
original ViewModel needs to be changed, it can simply be overwritten in the
ExtendedViewModel, which does not a�ect the functionality of the source
code in the original ViewModel implementation. Thus, plugins relying on
the functionality of the original ViewModel implementation remain intact
at all times. Last but not least, if changes in the original ViewModel have
to be made, these are also inherited by the ExtendedViewModel, such that
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no programming e�orts are required to add the same functionality to the
ExtendedViewModel. Furthermore, visualizations relying on a speci�c type
of ViewModel, either the original implementation or an extended version,
simply need to request the correct type from the Project container during
their initialization. In order to handle concrete data types with an abstract
ExtendedViewModel, a de�ned implementation of the ExtendedViewModel is
required. An example is provided by the Reveal application developed in
this thesis (see chapter 5), which uses a RevealViewModel that inherits the
ExtendedViewModel and provides concrete implementations of the abstract
methods suggested for non-expression data management.

Lastly, interactions with the new data types have to be handled. In Java,
this is usually done using so-called Events. Special Listener classes are
able to process Event objects and to react accordingly. In the original
ViewModel implementation so-called ViewModelEvents have been used to
exchange information about user interaction, as for example element selection
in the visualizations. To be able to exchange events that are speci�c to
the ExtendedViewModel, ExtendedViewModelEvents have been introduced.
Similar to the ExtendedViewModel, the ExtendedViewModelEvents inherit
the original functionality from the ViewModelEvent class and add additional
information types needed only by the ExtendedViewModel. With this
strategy, applications that work with the ExtendedViewModel are also able
to react properly to events that are the result of the original ViewModel, but
not the other way round. This means that the ExtendedViewModel is able
to handle ViewModelEvents as well as ExtendedViewModelEvents, while the
original ViewModel still only handles ViewModelEvents.

By following these simple guidelines for the enhancement of the original
visualization framework with new data types, extensions in the form of new
plugins can easily be added without the need to change any of the existing
functionality. Hence, compatibility to already existing Mayday plugins
is ensured without the need to introduce changes in these. An overview
of the general design of this extension strategy is provided in �gure 3.2
highlighted by red boxes. One additional class that has to be mentioned in
this context, is the Visualizer. As described above, Visualizer objects are
used to enable the synchronization between di�erent plots. Since the original
ViewModel stays intact, the interaction with the Visualizer is not in�uenced
by extended versions of the ViewModel. Moreover, the functionality required
to interact with a Visualizer instance is inherited and can be used readily
within the ExtendedViewModel. Thus, no further changes to the visualization
framework had to be made, since all existing communication features remain
intact.
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The new strategy described above, has been implemented in the variation and
expression data analysis software Reveal, which was developed in this thesis
as a plugin for Mayday. Reveal makes use of concrete implementations of
the ExtendedViewModel and the ExtendedViewModelEvent classes, which are
the RevealViewModel and the RevealViewModelEvent, to integrate expression
and SNV data. This allowed the generation of visualizations that can display
both expression values as well as SNVs. Reveal is described in detail in
chapter 5.

3.3.1 Visualization Generation in Mayday

The Java Swing and Java AWT libraries o�er a variety of di�erent highly func-
tional mechanisms, such as listeners for keyboard and mouse events or panes
providing scroll functionality. These features o�er interaction possibilities
with any resulting visualization implemented in Java AWT/Swing. Mayday

therefore relies mostly on the available Java features. Based on these,
functionality that is often needed has been implemented and encapsulated
in so-called helper classes. One example is the ZoomController that o�ers
zoom functionality with associated plots by using the mouse wheel. This
component solely consists of Java Swing components. Hence, it can be used
independently of the application or required visualization. Zoom functionality
is provided by adding a respective plot to the ZoomController. In addition
to the ZoomController that is usually applied to every plot in Mayday,
Mayday's export functionality is another example that relies solely on Java
Swing components, but uses additional plugins assisting the export. These
plugins provide export functionality to di�erent user-de�ned �le formats,
including raster image formats such as PNG, JPG, or TIFF, as well as vector
based �le formats, including SVG and PDF. Export functionality is available
to every plot in Mayday that renders visualization objects by overwriting
Java's paint(Graphics g) method.

In order to make the implementation of new visualizations as easy as possible,
plots are realized inMayday by extending a common abstract PlotComponent
class. This class provides the graphics canvas for visualization. Each
PlotComponent is contained in a PlotContainer, which represents the re-
spective Graphical User Interface (GUI) window used to make the plot visible
to the user. In addition, an interface called VisualizerMember is available
that enables the communication between plots and the ViewModel by using
Visualizer objects. The interface is implemented by the PlotContainer and
information is passed on to the PlotComponent. With these available struc-
tures, the implementation of a new plot only requires adding the respective
plot panel to the PlotComponent, in order to make it usable inMayday. As a
starting point for new plot implementations an abstract AntialiasPlotPanel
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Figure 3.3: Overview of the available data structures for the generation of new
visualizations in Mayday. Elements of the view model level are colored blue,
elements relevant for the GUI representation of new plots are colored orange
and elements relevant for the implementation of rendering functions are colored
green. The export functionality can be added to any PlotContainer, and the
ZoomController to any PlotComponent. These are colored yellow, since they
only rely on Java Swing/AWT structures. Lines between the di�erent compo-
nents highlight their relationships.

is provided, which o�ers double bu�ering functionality as well as zooming and
image export. With double bu�ering, the calculation of user interactions is
separated from the visualization level. This strategy allows the visualization
to perform necessary calculations in the background, while the user is pre-
sented the bu�ered image. As soon as the calculations are �nished the image
is replaced with the updated version that was calculated in the background.
This results in a smooth interaction with plots using the double bu�er tech-
nique, since costly calculations are hidden from the user. New plots that extend
AntialiasPlotPanel automatically inherit these features and developers can
concentrate on the actual rendering functions needed for the new visualization.
The concept of implementing new visualizations in Mayday is summarized in
�gure 3.3.
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3.4 Availability and Automated Deployment

Up to Mayday version 2.12, the source code was built under Java 6 using the
Hudson automated build system [115]. This system was installed by Florian
Battke in 2010 during his PhD thesis. The source code was thereby managed
using a CVS (Concurrent Versions System). However, this system only
allowed access with speci�c user accounts provided only by the University of
Tübingen. The drawback of this approach was that there was no possibility
to grant read access to the Mayday repository for non-university members.
Furthermore, it was necessary to distribute snapshots of the source code by the
Hudson system on the Mayday website, which could lead to unsynchronized
versions between the automatically built Java Webstart version and the
manually deployed source code package, since external developers were not
able to synchronize their code with the repository. Instead, they had to ask
one of the Mayday core developers to distribute their code for them, which
in addition led to an increased logistical e�ort.

Within this work the old build system, which had the advantage of monitoring
changes in the CVS and providing real-time updates to the Java Webstart
version, was modi�ed to overcome the hindrances discussed above. Since the
Hudson build system only supported automatic source code builds up to Java
version 6, the system was replaced by the Jenkins build system [77]. Jenkins
is based on Hudson, but o�ers a variety of new features, such as building the
source code with the new Java version 8, or the integration of git repositories.
The latter was especially useful to address the mentioned availability issue.
Git is a free and open source distributed version control system that can
either be used online or installed as an individual GitLab server. ForMayday

the latter was chosen1. This has the advantage of a secure communication
of the Jenkins system2 with the Git repository as well as the Mayday web
server, without the need of special security protocols. Furthermore, the Git
system has the advantage that developers who would like to join the Mayday

project can be granted write access, while all other users are restricted to
read-only access. Hence, everyone who is solely interested in the source code,
without the need to modify it, can access the repository without requiring a
personalized user account.

Another important issue that had to be addressed by the new build system are
the new security restrictions introduced by Java 7 that had been further in-
creased with Java 8. These new Java versions did no longer permit the usage of
self-signed JAR �les that were previously created by the Hudson build system.

1https://lambda.informatik.uni-tuebingen.de/gitlab/explore/projects

(29/10/2015)
2https://lambda.informatik.uni-tuebingen.de/jenkins/ (29/10/2015)

53



3. Mayday - An Interactive Visual Analytics Workbench

The new security restrictions required a complete redesign of the Mayday

build processes used by the Jenkins system for source code deployment. Most
notably, the JAR signing procedure had to be redesigned. To be precise, in
order to continue the deployment of Mayday and its plugins as a Java Web-
start version, the necessary JAR �les had to be signed using a certi�cate from
a publicly trusted signing agency. This, however, would have required giving
up the Mayday webstart version as a free of charge solution. Nevertheless,
certi�cates from non-trusted agencies can still be used, but have to be accepted
manually by the respective users. To continue the free webstart deployment
of Mayday, a self-signing system has been established that signs the neces-
sary JAR �les with a self-generated certi�cate that has to be accepted by the
Mayday users. Certi�cate generation and JAR �le signing have thereby been
realized using OpenSSL [23]. The required certi�cate has been made available
to the users on the Mayday website3. With these modi�cations, state of the
art software deployment, as well as a secure distribution of theMayday source
code has been made possible.

3http://it.inf.uni-tuebingen.de/?page\_id=248 (29/10/2015)
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gle Nucleotide Variation Data

Identi�cation and interpretation of genomic variations is important to un-
derstand their impact on phenotype and possibly disease. Especially single
nucleotide variations (SNVs) are of major interest, since these are the most
common genetic variations in humans and can have severe impact on gene
product and expression. Many studies have explored the possibilities to man-
ifest the information contained in genotype data. Among these, genome-wide
associations studies (GWAS) try to identify SNVs that are associated with a
speci�c phenotype, typically a disease state. In addition, associations with
quantitative traits (QTL studies) or gene expression (eQTL studies) can pro-
vide deeper insight into the mechanism that lead to a speci�c phenotype.
Moreover, data visualization is a key feature in the process of detecting and
interpreting signi�cant variants. Often, Manhattan plots are used to visualize
associations between SNVs and phenotype. Manhattan plots are a type of
scatterplot, where genomic coordinates are displayed along the x-axis and the
y-axis shows the negative logarithm of the associated p-value for each variant
in the data set. A typical example of such a plot is shown in �gure 4.1. Strong
associations have very small p-values that lead to large negative logarithmic
values, which then appear most prominent in the Manhattan plot [49]. Al-
though studies based on genotype information have found many interesting
variants and associations linked to disease [60], genotype information alone
is often not su�cient and additional knowledge on the phase of a variant is
needed. Most notably, in cases where phenotypic changes are the result of
an interaction between several di�erent variants, phase information becomes
crucial. This is because it enables one to link a variant to its respective chro-
mosome and in this making correct interpretations. When dealing with data
containing phase information, the term haplotype is used, which refers to a
cluster of variants located on the same chromosome, often in close proximity
to each other.

Many tools have been designed to study variants statistically or visually,
either separately or in their haplotype context. One of these tools is the
SNP&Variation Suite by Golden Helix [55]. This is a collection of analytical
tools for managing, analyzing and visualizing genomic together with phe-
notypic data. It provides many well established visual tools, but most of
them do not scale well for large data. In contrast to that, Flapjack [104] is
another tool that is designed for the visualization of large-scale genotype data
with focus on plant data. In addition, it also o�ers haplotype visualization.
Savant [43] o�ers visualization of multi-individual genotype data by agglom-

55



4. Interactive Visualization of Single Nucleotide Variation Data
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Figure 4.1: Example of a typical Manhattan plot. The plot was created in
the R programming environment [157], using the package qqman [160]. It shows
simulated human GWAS data, as obtained using the software PLINK [129]. The
horizontal blue line indicates the level of signi�cance α ≤ 5×10−8, resulting from
a Bonferroni correction for multiple testing, where the number of SNVs is about
106. SNVs located above that line are considered to be signi�cantly associated
with a respective phenotype.

erating SNVs from larger genomic regions and linking them to each other.
Visualization is thereby realized using a linkage disequilibrium (LD) plot as
originally described by Haploview [7]. Furthermore, some genome browsers
also allow visualizing genotype cohort data using speci�c visualization modes.
Although all the tools described so far are highly useful for the visualization
and exploration of complex genotype and haplotype data, they are limited
to showing raw data. In contrast, Haploscope [137] visualizes haplotype
cluster frequencies that are estimated using statistical models. The iXora
framework [161] o�ers inferring haplotypes from genotype population data
and association of observed phenotypes with these. It provides statistical
tests such as Fisher's exact test and visualization methods such as line charts
for parental haplotype distributions or bar plots for haplotype raw data. All
of the described tools aid in gaining a better understanding of the underlying
data. However, most of them only focus on single aspects of the visualized
data. Statistical visualizations are furthermore often insu�cient, since such
complex data have to be addressed on many di�erent levels and in particular
interactivity is of utmost importance. This task gets even more challenging
when it comes to the analysis of phased haplotype data, that is for example
derived by projects such as the 1000 Genomes project [64].

Until today, an interactive tool for the analysis and visualization of phased
haplotype data has been missing. However, with the iHAT (interactive
Hierarchical Aggregation Table) project [54] a step in the right direction
has been taken. The general idea followed by iHAT is the reduction of data
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complexity in order to visually reveal structural patterns. This reduction
of data complexity is achieved by applying the concept of aggregation,
which allows the user to concentrate on speci�c data aspects. Although,
iHAT can basically be used for all kinds of tabular data, one of its main
applications is the visualization of genome-wide associations, allowing the
user to make connections between genotype and meta-information, as for
example phenotype descriptions. Thereby, qualitative as well as quantitative
meta-information can be processed and visualized along with the raw genotype
information. In iHAT genotype data is represented as a table containing
single nucleotide variations in columns, whereas rows display individuals. For
biallelic individuals only three di�erent genotype states can occur, namely
a heterozygous or homozygous allele combination, or both alleles are equal
to the reference. Thus, single cells colored with one of three di�erent color
values (one for each possible state) have been used to represent genotype
data. To gain a deeper understanding of underlying structures in the data,
an aggregation technique and the visualization of the respective results have
been described. For genotype data individuals can be grouped based on a
user-de�ned selection, a hierarchical clustering or based on meta-information.
Such groups can then be used to summarize the genotypes of the contained in-
dividuals using aggregation. The main idea is to concentrate only on the allele
combination that appears most often within the selected group. Consequently,
only the color value of the respective most frequent allele combination is
necessary to represent the whole group. Furthermore, to show the con�dence
in the group genotypes, the underlying allele frequencies are used and each
cell is visually encoded with a respective saturation value in addition to its hue.

However, in iHAT's �rst implementation, which was conducted during
this thesis in cooperation with the VISUS, the visualization institute at the
University of Stuttgart, it was not possible to visualize phased haplotype data.
To �ll this gap and to address the need for an interactive phased haplotype
visualization tool, a reimplementation of the iHAT tool was necessary. This
chapter concentrates on the resulting software, which is called inPHAP, short
for interactive genotype and Phased HAPlotype visualization. inPHAP is
strongly based on the general concepts of iHAT, but extends its functionalities
in various di�erent ways.

In the following, a detailed description of the inPHAP tool is given and
changes made in comparison to iHAT are stated. This is followed by a proof of
concept application to data from Phase I of the 1000 Genomes project. Text
and �gures in this chapter were adapted from our previous work on inPHAP
published in [72].
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4. Interactive Visualization of Single Nucleotide Variation Data

4.1 inPHAP - Interactive Genotype and

Phased Haplotype Visualization

To address the need for an interactive phased haplotype and genotype visual-
ization tool, inPHAP has been developed. Based on the interactive aggrega-
tion table iHAT, it follows the principal of aggregating raw data, but is a fully
reimplemented version that addresses most of iHAT's drawbacks, namely the
missing possibility to process whole chromosomes, up to eukaryotic genomes,
as well as the lack of phased haplotype data integration and a missing ad-
vanced meta-information visualization. The new inPHAP tool is therefore
not just an extension of iHAT, but a software solution with new and more
advanced features and visualization concepts. It has been implemented in the
Java programming language and exists in two versions, a stand-alone, as well
as an integrated version in the Mayday software framework. In the follow-
ing, detailed information about the design and implementation as well as the
application of inPHAP to real data sets is given.

4.1.1 Application Design

In order to serve the needs of genome-wide visualizations, inPHAP has been
designed as a GUI-based tool with a main focus on interactivity and the possi-
bility to view data in various ways. For this purpose, the tool is structured into
six di�erent components that allow for the exertion of speci�c visualization and
interaction features. An overview of the graphical user interface, highlighting
all of its components is given in �gure 4.2. The main component, which han-
dles the most important part of the software, the visualization of genotype
and phased haplotype data, is constructed as a matrix. Here SNVs are located
in columns and subjects in rows. Di�erent color encodings can be applied to
the cells, that represent combinations of SNVs and subjects. Little white cell
corners assist the user in keeping track of the respective row and column of
interest. This main component is accompanied by two di�erent components
for meta-information visualization, one for subject speci�c and one for SNV
speci�c meta-data. The subject meta-information component represents each
data element as a separate column providing one cell for each subject. Cells
are colored using user-de�ned color maps or gradients to represent actual data
values. In contrast, the meta-information component for SNV speci�c meta-
data contains additional rows for each data element, where colored cells encode
SNV-based meta-information. These three components make up the main vi-
sualization of the application. In order to improve interactivity with inPHAP,
three further components have been designed. An overview panel displays the
viewer's current focus and location in the main visualization. It provides a
zoomed-out view of the complete data set with a small red rectangle giving
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4.1. inPHAP - Interactive Genotype and Phased Haplotype Visualization

an estimate of the proportion of the currently visible sub-matrix in compari-
son to the whole matrix. Furthermore, a settings panel has been added to the
application, that allows the user to quickly switch between di�erent visual rep-
resentations, to adjust colors and fonts, as well as to change cell sizes if needed.
The last component is an information panel, that provides basic statistics for
the currently loaded data set, such as the total number of subjects and SNVs,
as well as the number of meta-information columns and rows. In this panel,
"MI columns" stands for subject speci�c meta-information and "MI rows" for
SNV speci�c meta-information. The graphical user interface is completed by
a menu bar and a button bar on top of as well as a status bar underneath
these six components. The menu bar and button bar o�er various functions,
such as data import and export, sorting, �ltering, aggregation or image ex-
port. The status bar informs the user about changes made to the data and to
the visualization of the data by giving details about what has been changed
and how this change a�ected the underlying data. However, only the latest
change is displayed there. For a complete summary of all interactions with the
applications, as well as potential error messages, an additional log window is
accessible through the help menu in the menu bar.

Genotype Visualization Human genotype data usually consist of two char-
acter symbols standing for the respective nucleotides on the maternal and pa-
ternal allele. However, it is unknown which of the two bases originates from
the father and which from the mother. Furthermore, only those bases are of
interest to researchers that show some di�erence to a de�ned reference. When
comparing the genotype of an individual at a speci�c genetic locus to a refer-
ence, there are only three states that can occur:

1. one of the two alleles di�ers from the reference nucleotide, which means
that there is a heterozygous SNV at that position;

2. both alleles di�er from the reference nucleotide at the speci�ed position,
leading to a homozygous variation;

3. none of the two alleles di�ers from the reference.

Based on these observations, a visual encoding can be chosen that represents
one of these three states at every genetic locus of interest. For the genotype
visual encoding in the inPHAP tool, each cell in the matrix is colored with
respect to the genotype state de�ned by the respective SNV/subject pair for
that cell. By default, red color is used for homozygous SNVs, yellow color
for heterozygous SNVs and green color if there is no change in comparison to
the reference base. The speci�c default color values have been chosen based
on ColorBrewer color maps [52], in order to maximize the ability to distin-
guish cells from each other. These default color values can, however, easily be
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4. Interactive Visualization of Single Nucleotide Variation Data

Figure 4.2: The inPHAP graphical user interface. It consists of six com-
ponents, which are highlighted with boxes of di�erent color. Blue (1): The
genotype/haplotype visualization component providing color-encoded base in-
formation for phased haplotype or unphased genotype data, green (2): the
subject meta-information component, red (3): the SNV meta-information com-
ponent, purple (4): the overview component, displaying the viewers current
focus in the main visualization, black (5): the settings component, which al-
lows the user to quickly change the visual representation of the data, yellow
(6): the data set summary component, providing general information for the
currently loaded data set.

modi�ed by the user to ful�ll speci�c needs or to enhance visual separation of
the three di�erent states for color blind people. In �gure 4.3 an example of
a typical genotype visualization is shown using the default color encoding for
homozygous and heterozygous SNVs as well as alleles that show no di�erence
to the reference.

Phased Haplotype Visualization In contrast to genotype data, where the
phase of a respective allele combination is unknown, haplotype data o�ers the
possibility to arrange single nucleotide variations into groups based on their
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4.1. inPHAP - Interactive Genotype and Phased Haplotype Visualization

Figure 4.3: Genotype visualization with inPHAP. A randomly chosen region
on chromosome 2 of the human genome is shown. Rows represent individuals
and SNVs are shown in columns. Colored cells encode for an individuals allele
combinations with respect to the shown SNVs.

chromosomal origin. This requires analysis tools to handle phase information
by respective visualization approaches that have to take the origin of a variation
into account. Consequently, a single column for a SNV is not su�cient for a
reasonable visual representation of phase information with the matrix approach
introduced in the inPHAP tool. Therefore, the concept of having a single
column for a SNV was extended to one column for each allele from a SNV
locus. This means that each cell now represents one speci�c allele for a single
subject. This design choice is motivated by data from Abecasis et al. who used
two rows for each allele [28]. The decision to use two columns rather than two
rows o�ers the possibility to assign meta-information to alleles only, which
can be useful in some cases. As for genotype data a reference based visual
encoding is available for the haplotype visualization, but here only two states
are possible. Either there is a di�erence to the reference base for the speci�c
allele or the reference base and the base for the respective allele are the same.
By default yellow color is used to highlight a di�erence from the reference base
and blue color represents similar bases. Although this visual representation
easily allows the user to spot di�erences to a given reference, it does not allow
to spot di�erences between the paternal and maternal allele, if both are equal
to or if both di�er from the reference. To address this issue, a second visual
encoding is introduced that is based on the nucleotides themselves rather than
their similarity to the reference base. For each of the four bases Adenine (A),
Guanine (G), Cytosine (C), and Thymine (T) a unique color is used. By
default green color is used for A, blue for C, red for T, and yellow for G.
Again, the colors have been selected based on ColorBrewer color maps. Cells
representing missing nucleotides, as for example in males when comparing the
X and Y chromosome, are colored white. With this second color encoding
di�erences between the maternal and paternal allele can be investigated more
easily. To make optimal use of both visual representations, inPHAP allows
the user to interactively switch between them with a click of a button using the

61



4. Interactive Visualization of Single Nucleotide Variation Data

settings component. Figure 4.4 shows both visual encodings of the haplotype
visualization for the same chromosomal region.

Figure 4.4: Phased haplotype visualization with inPHAP. (A) shows the refer-
ence based visual encoding on a randomly chosen genomic region on chromosome
2 of the human genome. (B) shows the same genomic region as (A) using the
nucleotide based visual encoding. In both visualizations individuals are shown
in rows and SNVs in columns.

Meta-Information Visualization The inPHAP tool o�ers the import of
two di�erent kinds of meta-information, namely SNV based as well as subject
based meta-data. Although these types are distinguished during the import
of the data, they are treated equally on the visualization level. Here, the only
distinction is made between numerical meta-data and categorical meta-data,
no matter if they belong to subjects or SNVs. Usually, for numerical meta-
data, color gradients are used and the numerical values from the respective
meta-information group are mapped to color values from the gradient. For
categorical meta-data, each category is assigned a unique number, which is
then mapped to a unique color from a user selected color map. Color gradients
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4.1. inPHAP - Interactive Genotype and Phased Haplotype Visualization

as well as color maps are mainly taken from ColorBrewer, but also standard
color gradients are available and user-de�ned gradients can be generated. By
default, color gradients are used for numerical meta-data and color maps for
categorical meta-data, but the user is not restricted to this practice and can
for example also use color gradients for categorical meta-data or color maps
for numerical meta-data if needed.

4.1.2 Interaction Possibilities

To provide comprehensive insights into the visualized data, inPHAP o�ers a
variety of di�erent interaction possibilities explained in the following.

Navigation Navigation is possible along the subject axis as well as along
the SNV axis using interactive sliders. Furthermore, the user can navigate
using the overview component. There, the current view is indicated by a red
rectangle, which can be dragged to the desired location inducing a change of
the current view in the main visualization.

Zooming inPHAP o�ers zooming in two di�erent dimensions, i.e. the width
and height of each cell in the matrix visualization can be adjusted separately.
In addition, semi-independent zooming is possible for meta-information cells.
These are linked to the main matrix cells, which means that changing the
height of a cell in the matrix also changes the height of cells for subject meta-
information columns, while their width can be adjusted individually. Analo-
gously, the width of a cell in a meta-information row is linked to the matrix
while its height can be adjusted individually. This strategy enables a clear
visualization of meta-information even on a zoomed out overview of the main
visualization component.

Selection Subjects as well as SNVs can be selected by either clicking on the
respective identi�ers or by dragging over a region of subject or SNV identi�ers.
Selected cells are then highlighted with a colored border drawn around the
selected cells and the subject or SNV identi�ers are overlaid with a colored box.
Selection of subjects or SNVs also a�ects the respective meta-information cells,
which are highlighted with colored borders, too. The default selection color is
black, but a di�erent color can easily be chosen via the settings component.

Sorting inPHAP allows the user to sort both, subjects and SNVs. The
sorting process itself is guided by meta-information. With a double-click on
a meta-information identi�er, the respective rows or columns are sorted ac-
cording to the order given by the meta-information values. Sorting is possible
in ascending or descending order using a stable sort approach. This means
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4. Interactive Visualization of Single Nucleotide Variation Data

that the order of elements that belong to the same sub-group according to
the selected meta-information is not changed. With this it is possible to sort
consecutively based on di�erent types of meta-information. In addition, sort-
ing of subjects can be performed based on a previously calculated hierarchical
clustering, which can be imported in the NEWICK format [113].

Filtering Since the number of SNVs in a typical genotype or haplotype data
set is usually very large, o�ering the user the ability to concentrate only on
those SNVs that are of special interest can be bene�cial. To do so, the data
have to be reduced to only those SNVs that pass a user-de�ned �lter. For this,
inPHAP o�ers a variety of di�erent �ltering methods:

� Chromosomal Location: only those SNVs are shown that are located in
a speci�c region on a chromosome, such as a gene or promoter region or
any other regions speci�ed by the user.

� SNV List : if a prede�ned list of interesting SNVs is available the user
can reduce the current view to only those SNVs that are contained in
that list.

� Regular Expression: SNVs can be �ltered using a regular expression for
SNV identi�ers.

� Frequency : only those SNVs are shown whose genotype frequency lies
below or above a user-de�ned threshold.

All these �lters only a�ect the current view of the main visualization and not
the underlying data. This allows for a quick response to the user, since the
underlying data structure does not have to be changed. Furthermore, several
�lters can be combined to build more powerful �ltering rules.

Aggregation Aggregation has proven to be a powerful method to reveal
hidden structures in the data by reducing the overall complexity [54]. The
implementation of aggregation techniques in the inPHAP tool is based on
the general concept introduced in iHAT, but with extended functionality
regarding the methods for aggregating SNV data as well as meta-data. In fact,
the original implementation in the iHAT software has been reimplemented
to enhance performance of the overall process as well as to allow the user
to aggregate phased haplotype data. Thereby, aggregation is only possible
on a per SNV level summarizing genotype or haplotype constellations of
di�erent subjects, that share some common characteristics. The selection of
subject groups for aggregation can be based on a user-de�ned selection of
rows, or guided by meta-information for the subjects. Such meta-information
can, for example, be the a�liation of a subject to a speci�c population or
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4.1. inPHAP - Interactive Genotype and Phased Haplotype Visualization

sub-groups of populations. In such cases, aggregation makes it easier to spot
similarities shared by speci�c subject groups as well as to spot di�erences
between those groups. For the aggregation process itself, several di�erent
methods have been implemented for the variation based data as well as for
the meta-data. Consequently, the aggregation of subjects not only a�ects the
underlying data in the main visualization, but also the corresponding subject
meta-information. For variation data a maximum and minimum aggregation
method is available. If for example the maximum aggregation method has
been selected, then for each SNV the base with the highest frequency given
the selected subjects is chosen as the consensus base and the respective
frequency is stored as an indication of how representative this base is given
the underlying base distribution. This method is similar to the aggregation
strategy introduced in iHAT [54]. The minimum aggregation method works
analogously. For meta-information the user can choose between the maximum,
minimum, mean or median aggregation method. Moreover, di�erent methods
can be selected for the nucleotide data and the meta-data. For example, the
maximum aggregation method can be used for the nucleotide matrix while
the corresponding meta-information columns are aggregated using the mean
aggregation methods. This is especially useful if, for instance, gene expression
information is available for the subjects. Here, a summarization using the
mean or median aggregation method for the expression values of individual
subjects provides more valuable information than a summarization based on
the maximum or minimum expression value.

For the visual encoding of aggregated data, two di�erent strategies have been
followed. Each of these strategies focuses on a speci�c aspect of the data.
If more attention should be drawn to the consensus base rather than its fre-
quency, aggregated cells are represented using color with saturation of the cells
adjusted according to the frequency of the consensus base. This is the default
visual encoding, which has also been used in iHAT. If, however, more attention
should be drawn towards the di�erences in consensus base frequency, then a
saturation based approach is not very e�cient. In fact, positioning along a
common scale has proven to be a good alternative solution [95]. The second
visual encoding therefore uses �lled boxes for each cell, whose color represents
the consensus base and whose height displays the consensus base frequency.
With this strategy, the user can easily compare the frequencies of di�erent
SNVs or alleles with each other. If several individuals are aggregated, their
representative rows are combined into a single row and the identi�er of the new
row has to be adjusted. The new identi�er of the aggregated row is consti-
tuted by the pre�x "AGN" followed by a number that uniquely identi�es the
respective row. Furthermore, the number of subjects that were chosen for the
aggregation is shown in brackets as a su�x of the new identi�er. Figure 4.5
shows an example of how aggregation can be used to identify di�erences in
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rare variants between whole populations for the Metachromatic leukodystro-
phy (MLD) associated gene ARSA.

Figure 4.5: SNVs for the MLD associated gene ARSA. (A) Data is shown with-
out aggregation. Individuals have been sorted based on their population a�lia-
tion. (B) Individuals have been aggregated based on their population a�liation
using the "minimum" aggregation method for SNVs and the "maximum" aggre-
gation method for subject meta-information. Box height based visual encoding
has been used for the representation of aggregated data. For abbreviations of
the population names see table A.1 and table A.2 in the Appendix.

Further Interaction Features Besides the major interaction features men-
tioned above, further minor changes to the introduced visualizations can be
made. These include the change of the label font, style and size, the interactive
switch between the di�erent visual encodings, the fast and quick change of the
colors used to represent the di�erent data types as well as switching between
the two visual representations of aggregated rows. All these features are ac-
cessible from the settings component with a click of a button. Furthermore,
all visualizations can be exported to di�erent �le formats, including the pixel
based PNG and JPG format, as well as vector based formats such as SVG and
PDF.

4.1.3 Data Structures

Human genotype and phased haplotype data usually consists of two characters
from the alphabet Σ = {A, T,G,C,−}, one for the maternal allele and one for
the paternal allele. To enable the representation of missing allele information
the character '−' is included. This is, for example, very common for SNVs
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on the X chromosome in males, since many corresponding alleles are missing
on the Y chromosome. Since the number of variants can become very large,
and, in consequence, also the amount of data that has to be processed for
a single individual, a memory e�cient representation of the possible allele
combinations was necessary. A binary encoding of the nucleotides was chosen
using only two bits to store a character c ∈ Σ. Consequently, only 4 bits are
necessary to store the maternal and paternal allele combination for a speci�c
subject/SNV pair. With this strategy, the amount of necessary memory could
be reduced by a factor of 8 in comparison to a naive implementation us-
ing character primitives, which would require two bytes per nucleotide in Java.

However, for the visualization of the underlying data, they have to be decom-
pressed from their binary form. To keep interaction smooth at all time, only
the data from the sub-matrix that is currently visible to the user are decom-
pressed. Since only three to four di�erently colored cells are used, depending
on the chosen visual representation of the data, a second memory and time
saving strategy was implemented for the visualization process itself. For each
character c ∈ Σ a colored image is rendered in memory before the actual vi-
sualization takes place. When drawing the sub-matrix that is visible to the
user, the pre-rendered images are used for painting. Since many cells encode
similar values, the pre-rendered images can be used multiple times during a
single repaint event, leading to a huge reduction in memory and time needed
for redrawing the whole scene. Furthermore, repainting a pre-rendered image
is much faster in Java than its recalculation, which also has a positive e�ect
on the overall runtime. Changes that require recalculation, such as changing
the colors used for the visual encoding of the nucleotides, can also be per-
formed e�ciently since for each change in color only a single image has to be
recalculated followed by a single repaint event of the visible sub-matrix. For
aggregated cells, where di�erent saturation values are needed, an array of 100
di�erently saturated white images has been pre-rendered during startup of the
inPHAP application. To represent an aggregated cell, one of the saturation
images is chosen depending on the aggregation frequency and painted on top
of the nucleotide image. With this strategy, frequencies can be displayed with
a one percent accuracy. This is su�cient to cover the number of saturation
values a human being is able to distinguish. Last but not least, the selection
rectangle has also been implemented as a pre-rendered image, that can be
drawn on top of selected cells.

Input File Formats Data can be imported for visualization with inPHAP
in two di�erent �le formats. The variant call format (VCF) is the standard
�le format for genotype and phased haplotype data [32]. It is a tab-separated
text �le format containing one variant per line, while the variant information
and the subjects allele combinations are structured into columns. In order

67



4. Interactive Visualization of Single Nucleotide Variation Data

to apply inPHAP to data in the VCF �le format, all the subject alleles have
to be contained in a single VCF �le. The import of multiple VCF �les at the
same time is currently not possible. The second option for importing data
is the IMPUTE2 �le format. This is again a text based format used by the
phasing program IMPUTE2 [64] to store genotype information. Here, the
data is split into three di�erent �les, a LEGEND �le containing information on
the variants, a SAMPLE �le, holding details on the subjects and their relations
and a HAP �le containing haplotype information for each subject. This �le
format is also used by other phasing programs such as SHAPEIT2 [34, 35] or
BEAGLE [20, 21]. For the import of SNV as well as subject meta-information
an inPHAP speci�c text-based �le format has been developed. These meta-
information �les have tab-separated columns and contain two header lines, the
�rst providing an identi�er for each column and the second indicating the type
of meta-information, which can be either numerical or categorical. The �rst
column however is reserved for SNV or subject identi�ers, depending on the
type of contained meta-information.

4.1.4 Application to Phased Haplotype Data from the

1000 Genomes Project

In order to demonstrate the power and capabilities of inPHAP, it was applied
to data from Phase I of the 1000 Genomes project [28]. The goal of this project
is the identi�cation of most of the genetic variants with frequencies larger than
1% in the populations studied. This is mainly achieved by sequencing of many
individuals using next-generation sequencing platforms in order to provide a
comprehensive resource on human genetic variation across several populations.
In the most recent publication [28] from the 1000 Genomes Consortium a 100
kilo-base large region on chromosome 2 was highlighted, containing the genes
ALMS1 and NAT8, for which variations have been associated with kidney
disease [22]. In contrast to the visualizations produced by Abecasis et al.,
application of inPHAP to the same 100-kb region resulted in two �gures, one
for the common and one for the rare variants, instead of a single �gure showing
all variants at the same time. Figure 4.6 shows all frequent variants selected
by Abecasis et al. (frequency > 0.5%). Variants below this threshold were
de�ned as rare by Abecasis et al. Figure 4.7 shows the same region, but only
variants with a frequency < 0.5%.
These �gures have been produced by �rst loading all variants from chromo-
some 2 into inPHAP. For this, the variants were stored in the VCF �le format
and loaded using inPHAPs integrated VCF �le import option. Afterwards,
variants were �ltered such that only those remained that are located in the
100-kb region described by Abecasis et al. In order to separate common and
rare variants from each other frequency based �lters were used with thresholds
> 0.5% and < 0.5% respectively across all individuals in the data set. Further-
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Figure 4.6: Phased haplotype visualization of a 100-kb region on chromosome
2 spanning the genes ALMS1, NAT8, and ALMS1P. SNVs have been �ltered
based on a frequency > 0.5% across the 1096 human individuals of Phase 1 of
the 1000 Genomes project. (A) Individuals are sorted according to their popula-
tion a�liation. (B) Individuals are aggregated according to their a�liation with
a common population using the "maximum" aggregation method. For abbrevi-
ations of the population names see table A.1 and table A.2 in the Appendix.

more, aggregation techniques were applied to make the respective di�erences
between populations stand out more prominently. Figure 4.6 shows that for
the African (AFR) super population, there are more highly frequent SNVs in
the ALMS1 region than for the other super populations, whereas for the Asian
(ASN) super population only very few variants are found in the central part of
the ALMS1 gene. These are more likely for Europeans (EUR) and Americans
(AMR). While common variants are more uniformly distributed in this 100-kb
region for the African population, for the other populations they are mainly
located in two clusters, namely the �rst part of the ALMS1 gene and an ap-
proximately 20-kb region spanning the genes NAT8 and ALMS1P. All of the
stated observations correlate with the �ndings of Abecasis et al. who showed
that highly frequent variants are di�erentially distributed across populations.
Taking a closer look at the rare variants one can see that the African popula-
tion also has a higher number of these in comparison to the other populations.
However, the numbers vary strongly between the di�erent populations, even
for those belonging to a common super population. An example is the Iberian
population in Spain (IBS), where only very few rare variants are present. In
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Figure 4.7: Phased haplotype visualization of a 100-kb region on chromosome 2
spanning the genes ALMS1, NAT8, and ALMS1P. SNVs have been �ltered based
on a frequency < 0.5% across the 1096 human individuals of Phase 1 of the 1000
Genomes project. Individuals are aggregated according to their a�liation with a
common population using the "minimum" aggregation method. (A) Only SNVs
for the paternal allele are shown. (B) Only SNVs for the maternal allele are
shown. For abbreviations of the population names see table A.1 and table A.2
in the Appendix.

addition, variants are mostly heterozygous. This means that they are located
either on the paternal or the maternal chromosome, but rarely on both. This
again correlates well with the �ndings of Abecasis et al., who argued that
the main reason for rare variants in the Spanish (IBS) and the Finnish (FIN)
population are events such as clan breeding or admixture of diverged popula-
tions [28].
Another important question is the in�uence of speci�c variations, especially
rare ones on subgroups of a population or on only a few individuals. Studying
such variants is usually challenging due to the di�culty to �lter out common
variants that are more alluring and secondly due to the overall number of
subjects in the data set, which renders it di�cult to concentrate on struc-
tures of interest. By the application of inPHAP to another subset of the
data produced by the 1000 Genomes project, its capability in studying speci�c
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Figure 4.8: Two haplotype visualizations with inPHAP showing SNVs for the
MLD associated gene ARSA. SNVs have been �ltered based on their frequency
across the 1096 individuals, such that only those with a frequency > 0.5% are
shown. Individuals have been aggregated according to their population a�liation
and populations have been sorted based on their super population a�liation. Bar
heights for each SNV display the frequency of the aggregated consensus base.
The arrow points to the maternal allele of the central SNV with dbSNP ID
rs743616, which is assumed to be one of the causative mutations leading to
MLD. (A) shows the selected SNVs using the reference-based visual encoding.
(B) shows the selected SNVs using the nucleotide-based color encoding. In both
visualizations di�erences between the maternal and paternal alleles stand out
clearly. For abbreviations of the population names see table A.1 and table A.2
in the Appendix.

variants in more detail is demonstrated. For this, a region covering the gene
ARSA on chromosome 22 has been selected, which is known to be associated
with Metachromatic leikodystrophy (MLD), an inherited disorder, a�ecting
the growth and development of myelin. Myelin is a crucial insulator around
nerve �bers in the human central and peripheral nervous system. Several mis-
sense mutations on chromosome 22 lead to defects of the enzyme arylsulfatase
A (ARSA), which as a result can no longer ful�ll its original function [126].
One of these mutations is a SNP with dbSNP ID rs743616, which is a C → G
substitution on the reverse strand leading to an amino acid change of Threo-
nine → Serine in the ARSA protein. To visualize the important variants for
the MLD associated gene ARSA, the data for the chromosome 22 has been
imported in the VCF �le format. SNVs contained in the ARSA gene have then
be �ltered using the chromosomal location �lter. Afterwards, individuals have
been aggregated according to their population a�liation followed by a sorting
of the aggregated rows according to the super population a�liation. The re-
sult is shown in �gure 4.8. Because the data from the 1000 Genomes project is
provided relative to the forward strand, the highlighted position corresponds
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to a G → C substitution in the �gure. One can see that there are di�erences
between super populations that can be spotted easily. For example the Asian
(ASN) and African (AFR) super populations show low pathogenic rs743616

allele counts for MLD, whereas the European (EUR) and American (AMR)
super populations show signi�cantly higher pathogenic allele counts. Espe-
cially the Puerto Rican (PUR) population stands out clearly. Furthermore,
the allelic origin of the SNP rs743616 can be distinguished. As can bee seen
in �gure 4.8 this SNP seems to be mostly maternal in the Mexican (MXL)
population in Los Angeles. In addition, the aggregation technique, together
with the bar height visual encoding for aggregated rows, gives a good estimate
of the signi�cance of the di�erences in allele counts.

4.2 Conclusion

inPHAP has been designed for the study of genotypes as well as phased hap-
lotypes. Visualization of phase information allows for the investigation of the
in�uence of certain alleles on speci�c phenotypes. Thereby, the design of the
application was inspired by the computation information design approach pre-
sented by Ben Fry [46], who suggested seven main steps for an application that
are needed to understand large and complex data, namely acquire, parse, �lter,
mine, represent, re�ne and interact. All these steps have been addressed in the
inPHAP tool. Furthermore, inPHAP o�ers various visual representations and
a large number of di�erent interaction possibilities, including �ltering, sorting
and most notably aggregations. For the latter, it could be shown that it is
a valuable tool for the identi�cation of hidden patterns in the data and can
help to make well informed interpretations. Enhancement of the visualization
approach with additional meta-information, further improves the discovery of
interesting patterns. By the time of this thesis, inPHAP was the only avail-
able interactive visualization tool capable of visualizing genotype as well as
phased haplotype data.
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Visual Analytics Tool for Single

Nucleotide Variation Gene Ex-

pression Association Data

As shown in the previous chapter, genotype and haplotype patterns can
be used to draw conclusions about similarities and di�erences between
populations or between subgroups of populations. This enabled the iden-
ti�cation of SNVs associated with a speci�c phenotype, such as a disease
state. Furthermore, it was demonstrated how these SNVs are distributed
within a single or between multiple populations. Although the application
of inPHAP to GWAS data can provide valuable insight when dealing
with binary phenotypes, more appropriate analysis methods are needed
for complex phenotypes, such as gene expression levels. Especially when
studying eQTL data, the application of statistical tests in combination with
visualization approaches leads to more meaningful results. Genetic factors
can either directly a�ect gene functionality or indirectly lead to changes in
gene expression levels. However, to identify these factors information on
SNVs and transcript abundances has to be combined to predict potential SNV
related gene expression changes. Statistical approaches that allow for the
prediction of eQTL associations are implemented in the software PLINK [129]
(see chapter 2, section 2.6.2). However, the interpretation of the text-based
results is often di�cult and not suited to deal with large and complex data.
Visualizations are of utmost interest, since they have the potential to reveal
hidden patterns in the data.

There are various software solutions available to visualize eQTL associations.
The eQTL Explorer [108], as well as the AssociationViewer [101] allow for the
visualization of SNVs in their genomic context using genome browsers. The
advantage of this approach is the convenient identi�cation of cis- and trans-
associations. However, due to the limitation of a solely linear representation,
complex associations, such as epistasis, cannot be studied. Furthermore, the
integration of meta-information, such as statistical test results, or the exhaus-
tive study of gene expression levels, is not possible. A web-based alternative
is the eQTL Viewer [174]. The key feature is a scatter plot, in which gene
locations are plotted against SNV positions. Again, the identi�cation of cis-
and trans-associations is easily possible and, in addition, interactions with
the plot are available. These include zooming as well as running interactive
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queries for speci�c genes or SNVs, which are then highlighted within the plot.
Furthermore, meta-information can be introduced and mapped to data points.
However, eQTL Viewer also lacks the possibility to investigate gene�gene
or complex SNV�gene interactions as well as to perform appropriate gene
expression analyses. In contrast to these methods, Genevar [170] o�ers a
combined visualization of a typical Manhattan plot with a tabular view of
meta-information, such as statistical test results. These tests can either
be applied directly within the software, or imported from external tools in
text-based data formats. The two views are visually linked to each other, such
that user selection of SNVs in either visualization is immediately re�ected in
the other. In addition, SNV�gene associations can be studied on the genotype
level by using box plots, showing the expression value distribution of a gene
within a sub-population. Thereby, groups of individuals are built according
to their genotype and box plots for these genotypes are drawn next to each
other for each gene. This enables to quickly spot changes in expression levels
that are associated with speci�c genotype combinations. The drawbacks of
this application are however, a lack of support for SNV�SNV interaction
(epistasis), as well as for the analysis of gene expression di�erences between
sub-populations. A software solution that allows for the generation of whole
eQTL analysis work�ows is provided with GenAMap [31]. It focuses on the
analysis of SNV�gene association results and o�ers node-linked graphs and
dot matrices to display associations of SNVs with their respective quantitative
traits. For the visualization of statistical test results, Manhattan plots can be
generated. GenAMap is a highly interactive tool, o�ering various interaction
possibilities, including zooming, selections and graph manipulations. The
latter are provided through the Jung graph library [114]. Furthermore,
meta-information for speci�c data elements can be obtained through links
to external databases. Although the included methods are useful to digest
statistical association results and to explore SNV�gene associations in various
ways, the analysis of the respective gene expression levels and their in�uences
on disease states is limited. Thus, an integrative study of gene expression and
eQTL associations can not be conducted.

To summarize, all the available tools for eQTL visualization and analysis share
the same drawback of missing appropriate methods for the integrative study of
SNV and gene expression data. Most approaches strongly focus on SNV-based
analyses and are therefore well suited for GWAS, but limited for the analysis
of the impact of SNVs on gene expression levels and consequently on disease.
In this work, a new GWAS and eQTL analysis and visualization toolbox has
been developed that o�ers both, powerful gene expression analyses through
the integration into the Mayday software, as well as appropriate methods for
SNV data analysis and visualization. Furthermore, integrative studies of these
two data types are possible through a �exible data and view model (see sec-
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tion 3.3) allowing for the development of visual analytical methods with which
gene expression and SNV data are addressed equally well. The new software,
called Reveal, will be introduced in more detail in the following. Thereby,
parts of this work, including text and �gures, are based on a previous publi-
cation on eQTL data visualization, where Reveal was �rst introduced [71].

5.1 Reveal: A Foundation for GWAS and

eQTL Data Analysis

As has been mentioned above, an appropriate solution for the integrative study
of GWAS, eQTL and gene expression data in a common software framework
has been missing. To address the need for such a software, Reveal has been
developed with a focus on data visualization and exploration. It has been
implemented as an extension of the Mayday software suite (see chapter 3),
which o�ered the possibility to make use of already existing methods and visu-
alizations for gene expression data analysis. Reveal can be operated through
a graphical user interface (GUI), and contains various di�erent statistical and
visualization methods. In the following, the GUI and technical details about
the integration into Mayday are described. Reveal speci�c data structures
will be introduced, followed by mechanisms needed for linking already existing
visualization inMayday to newly developed visualizations in Reveal. After-
wards, focus is directed on visual analytical approaches developed in this work
for the analysis of GWAS and eQTL association data. Finally, the developed
methods will be demonstrated on two eQTL data sets that were part of the
BioVis 2011 and 2012 data analysis challenges.

5.1.1 Graphical User Interface

Reveal is a highly interactive visual analytics tool. Thus, a simple and
comprehensive graphical user interface (GUI) is required that allows for quick
and easy access to the incorporated methods and visualizations. In order to
achieve this, Reveal's GUI is structured into three parts, which are shown
in �gure 5.1. The upper part contains the menu bar, from which all avail-
able methods and plots can be accessed. Furthermore, a quick button bar,
which can be con�gured individually by each user, o�ers immediate access to
often needed visualizations. The second part of the GUI shows the project
overview, where all the currently active data is displayed in a tree like struc-
ture. Here, the upper part displays the project speci�c subject, gene and SNV
data. These are separated from associated meta-information in the lower part.
The third component of the GUI is a tabbed pane, where each currently active
visualization is shown in a di�erent tab. The tab is further separated into
two components. The left component corresponds to the graphic canvas and
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is used for plot generation. The right component displays the available plot
speci�c adjustment options. In order to make use of multi screen computers,
tabs can be detached from their tab pane and shown in a separate window.
This is also useful for single screen workstations to gain a complete picture
of the data of interest by allowing for the investigation of multiple di�erent
visualizations next to each other.

1

2 3

Figure 5.1: Overview of the di�erent components of Reveal's graphical user
interface. The top component (1) consists of the menu and quick button bar,
which grant access to the di�erent methods and visualizations implemented in
Reveal. The second component shows a summary of the active projects and
their associated data objects, separated into subject, gene and SNV speci�c data
in the upper part and meta-information in the lower part. The third compo-
nent is a tabbed view of the active visualizations. Each visualization consists
of a canvas used to draw the plot and a setting panel providing plot speci�c
manipulation options.

5.1.2 Data Structures and Data Handling

Reveal has been implemented by following Mayday's plugin concept (see
chapter 3 for more details). This means that Reveal can be integrated
into Mayday through a separate JAR �le, which will be recognized by the
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Mayday PluginManager. Furthermore, all features available in Reveal,
including statistics, plots or meta-information handling and processing, have
also been implemented as Reveal speci�c plugins followingMayday's plugin
strategies. Thus, adding a new feature to Reveal only requires to implement
a speci�c abstract plugin class. Depending on the plugin's purpose, there are
di�erent types of abstract framework classes available. For example, there is
a RevealVisualization class for the integration of new visualizations into
Reveal, or the StatisticalTest class, o�ering access to data structures
needed to perform statistical testing in Reveal. All these classes implement
the interface AbstractPlugin, which is used by the PluginManager to
identify and integrate plugins into Mayday.

However, in order to provide access to the underlying data, which is needed to
apply the methods implemented in Reveal, appropriate data structures for
handling the di�erent data types are needed. These have been implemented
by following the extension concepts described in chapter 3, section 3.3. Con-
sequently, the most general data structure in Reveal is the Project, which
holds references to the Mayday DataSet as well as to the Reveal speci�c
DataStorage. Furthermore, variation data typically consists of two types of
data objects. The �rst is the SNV itself, for which a separate SNV class holds
the necessary information, such as its location on the genome, as well as the re-
spective reference nucleotide. In addition, information on an individual's geno-
type has to be available and linked to the respective SNV object. Therefore, a
Subject class is available in Reveal that represents individuals. Haplotype
objects hold the information for speci�c Subject�SNV pairs and allow for an
easy retrieval of such information, e.g. for visualization purposes. These data
types are managed by the DataStorage object, which further provides ac-
cess to subsets of SNVs of interest. Such subsets, which are represented as
SNVLists, can, for example, be de�ned by the user by applying interactive
�lters (explained later in this chapter) to the global SNVList containing all
SNVs in the data set.

Input File Formats Reveal can be used to visualize the results of a GWAS
analysis conducted e.g. by GATK for the genotyping, or an eQTL analysis con-
ducted by PLINK. Therefore, Reveal o�ers two di�erent ways to import data
into the application, either in the variant call format (VCF for GWAS analyses)
or in the PLINK speci�c �le format (for eQTL analyses), where the data is dis-
tributed over multiple di�erent �les (DAT, MAP, PED, LOC, ASSOC). The VCF
�le format is based on variation data only and its speci�cation does therefore
not o�er the possibility to store gene expression data or any kind of associa-
tion data. Thus, when importing SNV information in the VCF �le format only
GWAS based analyses can be performed in Reveal. The second �le format
is based on eQTL analyses and provides SNV information as well as gene ex-
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pression data. Optionally, single-locus or two-locus associations can be added.
Thereby, the DAT �le contains gene expression levels for each gene and indi-
vidual together with meta-information regarding the clinical phenotype (e.g.
healthy or diseased) of the respective individual. The MAP �le contains addi-
tional SNV information, such as the SNV identi�er, the exact chromosomal
location and optionally the identi�er of the gene in the DAT �le to which the
SNV is closest in proximity. The PED �le contains the genotype information for
each individual and SNV. Genotypes are thereby listed in the same order as
the SNVs in the MAP �le. In addition, a LOC �le can be provided that contains
genomic locations for the genes in the data set. SNV associations with gene ex-
pression values are typically stored in so-called ASSOC �les. These �les contain
SNV�gene or SNV-pair�gene expression associations together with statistical
values of the respective test statistic used to calculate the corresponding asso-
ciation. Furthermore, meta-information in tab-separated text format can be
imported, including statistical test results, gene annotations, or linkage dise-
quilibrium correlations. Lastly, genome information can be included. To this
end, two �le formats are supported, namely the FASTA format for sequence
information and the GFF3 format for genome sequence annotations.

Reveal Snapshot An elementary feature of each analysis software is to
save intermediate as well as �nal analysis results and to load these again when
needed. Mayday already o�ered the so-called Mayday Snapshot, which is
a compressed text based representation of the data objects in the current
DataSet. In Reveal this concept has been used to enhance the Mayday

Snapshot with the data that is speci�c to Reveal. Thus, each data structure
representing a speci�c data type that needs to be stored has to implement
two di�erent methods, in particular a serialize as well as a deserialize

method. Within the serialize method the content of the respective data
structure object is transformed into a String representation, which can then
be written to an external text �le. Analogously, the deserializemethod takes
as input a String representation of the respective �elds of the data structure
object and restores it. Since the conventional Mayday Snapshot is simply a
zip-archive containing multiple text �les, this strategy of storing information
could be extended by adding the Reveal speci�c text �les to this zip-archive.
The advantage of this choice is that snapshots created within Reveal can not
just be loaded with Reveal, but also solely inMayday. Then, however, only
expression data is read from the snapshot, while the Reveal speci�c data �les
remain serialized in the archive. Only when opened with Reveal all data, i.e.
the Mayday as well as Reveal speci�c �les, become deserialized. This o�ers
a comfortable way for saving and loading data for future use.

Filtering Filtering is an essential feature for each data exploration tool. It
allows for the reduction of data complexity based on user-de�ned values for
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speci�c data features. In Reveal, SNVs are the main data type. However,
the number of SNVs in a data set can become very large. As described above,
SNVs are organized in SNVLists. Thereby, each project inReveal has a single
global SNVList, which contains all available SNVs in the data set. Based on this
list, �ltering methods can be applied to generate new SNVLists containing only
those SNVs satisfying the applied �lter criteria. In Mayday, the concept of
DynamicProbeLists has been de�ned (see chapter 3, section 3.1), which allows
the user to build complex �lters by combining simple ones. This concept has
been transfered to SNVLists in Reveal. In contrast to the DataProcessor

instances implemented in Mayday, SNV-based �lters have been realized by
DataProcessors acting on SNV objects rather than Probes. These �lters then,
for instance, act on location data, such as the genomic position of a SNV or
any other meta-information available in the respective Reveal project. A
detailed description of all available SNV �lters is provided in the Appendix A.1.
A typical scenario, where combinations of simple �lters are required, is SNV
quality control. For quality control of the raw SNV data several criteria have to
be ful�lled. In particular, most GWAS require SNVs to have a speci�c minor
allele frequency within a population, in order to avoid the problem of rare
alleles being supported only by very few individuals (no power to detect an
association). Furthermore, Hardy-Weinberg equilibrium (HWE, see chapter 2,
section 2.5.2) is often required to exclude potential SNV calls resulting from
sequencing or genotyping errors. For SNVs that are not in HWE it is di�cult
to distinguish between a real population e�ect or a genotyping error.

5.1.3 Reveal's View Model

Reveal makes use of the visualization concepts introduced in chapter 3, sec-
tion 3.3 to extend Mayday's visualization framework for the analysis of SNV
related data. By following this approach, visualizations within Reveal are
linked to each other on the gene level. Furthermore, visualizations can be
linked to Mayday speci�c plots, since in Reveal genes are internally treated
as Probe objects. This allows for a smooth communication between the two
applications. Moreover, the extension of Mayday's view model concept of-
fered new opportunities for linking visualizations in Reveal. In particular,
the introduction of SNVs within the view model enabled to link visualizations
in Reveal on the SNV level, such that for example SNV selections are syn-
chronized between plots. In particular, all visualizations that belong to the
same Reveal project share the same view model and SNV selections in one
plot are immediately re�ected in all the others. In addition, the selection of
data objects is passed on from the view model to the data model. This o�ers
the possibility to use the information about SNV selections to �lter SNVs and
apply subsequent statistics or to create new visualizations with respect to the
selected SNVs.
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5.2 Statistics and Visualizations for

Case/Control based Genome-Wide As-

sociation Studies

Case-control studies are a popular approach for the identi�cation of associ-
ations between SNVs and binary phenotypic traits, such as an individual's
disease status. In order to identify SNVs of interest that show a signi�cant
association with the disease phenotype, statistical tests, such as the χ2-test, or
Fisher's exact test, are applied. In chapter 2, section 2.5.2 details are provided
on how statistical signi�cance for an association between a speci�c SNV and a
disease phenotype can be calculated with various statistical tests. These tests
are all based on the comparison of two cohorts, namely a�ected individuals
and una�ected ones. In order to interpret statistical signi�cance, appropriate
visualizations are often needed. One very simply, but e�ective visualization is,
for example, the Manhattan plot, where the negative logarithm of a p-value
from a statistical test is plotted against a corresponding SNV location in the
genome. In the following, the statistical tests available in Reveal are pre-
sented at �rst and subsequently, new advanced visualization approaches are
described that allow for the visualization of the statistical test results.

5.2.1 Statistics in Reveal

Reveal provides di�erent opportunities to either calculate statistical tests
directly within Reveal, or for more computationally expensive calculations,
to import the respective results. The most widely used toolkit for GWAS
as well as eQTL statistical testing is PLINK [129]. Consequently, Reveal
provides import functionality for various di�erent PLINK result tables. A
full list of the statistics that are available in Reveal, as well as those for
which results can be imported from PLINK is given in table 5.1.

Furthermore, multiple testing correction is very important for GWAS as well
as eQTL studies, since usually hundreds of thousands of single association
tests have to be performed. Reveal o�ers various di�erent multiple testing
correction methods. A full list of all available methods is provided in table 5.2.
Due to the integration of Reveal into Mayday, multiple testing correction
methods available for statistics in Mayday can also be used within Reveal.
However, as discussed in chapter 2, section 2.5.3, a permutation based correc-
tion method is usually the best choice for GWAS data. Thus, this method has
been added in Reveal.
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Table 5.1: Overview of the statistical methods available in Reveal and those
for which results can be imported from PLINK.

Statistical Test Reveal PLINK

χ2-Test X X
Fisher's Exact Test X X
RelativeRisk X
OddsRatio X
Di�erence of Proportions X
Hardy-Weinberg Test X X
Armitage Trend Test X X
Linear Logistic Models X
Likelihood Ratio Test X
Wald Test X

5.2.2 Visualization of Genotypes and Statistics

To visualize the result of statistical tests, such as the χ2-test for binary pheno-
typic traits or equivalent methods for quantitative traits, Reveal o�ers the
typical Manhattan plot as well as a tabular view of the statistical test results.
Furthermore, the SNV Summary plot provides additional information on geno-
type distributions and individual genotypes. These visualization approaches
will be described in the following.

Enhanced Manhattan Plot Manhattan plots are a commonly used
technique for the visualization of statistical p-values for variation data. These

Table 5.2: Overview of the available multiple testing correction methods in
Reveal. Methods from Mayday are also available in Reveal.

Multiple Testing Correction Method Reveal Mayday

Bonferroni X
False Discovery Rate (FDR) - Benjamini Hochberg X
FDR (Benjamini-Yekutieli) X
Holm's X
FDR (Storey) X
Permutation Test X
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are scatter plots, where the genomic position of a SNV is plotted against the
− log10(p) value of a statistical test. Thus, signi�cant associations of SNVs and
a respective phenotype can easily be spotted, since these are the largest values
in the Manhattan plot. In Reveal's implementation of the Manhattan plot,
additional user interactivity is o�ered. Firstly, SNVs satisfying a user-de�ned
p-value threshold can be highlighted in the visualization using a di�erent
color. Secondly, gene locations can be visualized, which are represented as
boxes with their width de�ned by the length of the respective gene. Cis-
and trans-acting SNVs can also be highlighted. For this a custom range
of genomic coordinates, for which SNVs are classi�ed as cis-acting, can be
de�ned. SNVs located within a gene, as well as 5' upstream or 3' downstream
of a gene within the user-speci�ed range are then drawn with a di�erent
color. Lastly, the selection of SNVs is possible, which is synchronized with
other visualizations in Reveal and can additionally be used for �ltering (see
section 5.1.2).

In order to compare statistical test results, for either binary or quantitative
traits, multiple instances of Manhattan plots can be grouped within the same
visualization tab (see �gure 5.2). This allows for comprehensive comparisons
between di�erent statistical tests. An example would be the comparison of
a set of SNVs based on their association with a number of di�erent genes.
For each gene, an individual Manhattan plot can be created. These are then
arranged underneath each other, rather than in separate visualization tabs, to
allow for a convenient comparison of signi�cant in�uences of SNVs on these
genes.

Statistical Results Table In addition to the Manhattan plot, the p-values
can be inspected simultaneously in a tabular view. In this meta-information
table, the �rst column corresponds to SNV identi�ers and the p-values from
the calculated statistical tests are shown in adjacent columns. Rows can be
sorted according to the values in the columns in ascending or descending order.
Furthermore, columns can be rearranged manually by the user. This allows
one to compare results from di�erent statistical tests or for di�erent genotypic
models. Lastly, rows can be selected in the table, which results in a selec-
tion of the corresponding SNVs, which are then highlighted in all connected
visualizations, such as the Manhattan plot.

SNV Summary Plot The SNV Summary plot o�ers the possibility to
explore SNV distributions in more detail. It combines visualization of statis-
tical test results with di�erent tracks, as for example for the comparison of
SNV genotype distributions between two cohorts, i.e. a�ected and una�ected
individuals. Hence, conclusions about a possible connection of a genotype
and a disease state can be made more easily. In the SNV Summary plot
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Figure 5.2: Example of multiple connected Manhattan plots in Reveal. SNVs
with a single-locus association p-value ≤ 0.001 for the CDH1 gene are highlighted
in red in all Manhattan plots. Corresponding gene regions for each plot are shown
with blue boxes.

SNVs are shown in columns. For the rows six di�erent tracks can be added
and interactively be switched on or o�. An overview of the di�erent tracks
is shown in �gure 5.3. These are described in more detail in the following
starting with the track at the top.

First of all, a corresponding SNV identi�er is shown for each column. This
can either be an #rs number from dbSNP if available, or the chromosomal
location of the SNV in the format CHROMOSOME:POSITION. In the second track,
p-values from a statistical test are displayed as a bar chart. To enhance visual
clarity, the corresponding − log10(p) value is shown rather than the original
p-value. Consequently, larger bars correspond to more signi�cant SNVs.

In the third track, the cohort genotype distribution is shown, both for a�ected
as well as una�ected individuals. For this, each column is separated into
two sub-columns. The left sub-column represents a�ected individuals, and
the right sub-column una�ected ones. Each sub-column shows a stacked bar
chart, where each bar represents the genotype frequency of the respective
genotype in the a�ected and una�ected cohort, respectively. To allow for
a better comparison of the genotype distribution, corresponding genotype
bars are aligned horizontally. Furthermore, genotypes are represented by
di�erent color encodings. Homozygous genotypes are encoded with solid
colors, whereas hashed �lls are used for heterozygous genotypes.

The fourth row track is an aggregated display of the cohort genotype distribu-
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Figure 5.3: A single column of the SNV Summary plot showing the �ve possible
tracks. From top to bottom these are: a SNV identi�er (either an #rs number
or the chromosomal location), a bar diagram showing statistical p-values, a co-
hort genotype distribution diagram, which is a stacked bar chart separated into
two sub-columns (the right column for a�ected and the left for una�ected indi-
viduals), a cohort genotype summary track, which is an aggregated view of the
cohort genotype distributions, a genome reference track, showing the reference
base according to the underlying genome sequence, and an individual genotype
view, where genotypes for a user-selected individual can be displayed.

tions shown in the third track. Here, the same aggregation strategy is used as
for genotypes in the inPHAP software described in chapter 4, section 4.1.2.
In summary, the majority genotype is displayed as a bar and a gray-scale
encoding is used to represent homozygous SNVs (black), heterozygous SNVs
(gray), and no variation in any of the two alleles (white). The frequency
of the respective majority genotype is represented by the bar's height.
Again sub-columns are used to display a�ected and una�ected individuals
separately. Boxes are displayed next to each other by default, which allows
for a comprehensive comparison. This representation can also be changed to
a stacked view, which is more appropriate for zoomed-out overviews, since
di�erences in the genotype composition between the a�ected and una�ected
cohort can quickly be spotted, considering the fact that the comparison of
the respective genotype frequencies becomes more di�cult. However, for
zoomed-out overviews details on genotype frequencies are usually of minor
interest.
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The �fth track shows the reference allele, where each of the four possible bases
has been assigned a unique color. Thereby, these colors match with the colors
chosen for the genotype distribution bar chart, which allows for a convenient
correlation of these tracks. Finally, the bottom track can be used to display a
speci�c individual's genotype. This o�ers the possibility to compare genotypes
from individuals of interest with the genotype distributions of the whole
population. This may, for example, help to determine disease susceptibility of
individuals with an unclear phenotype.

Interaction possibilities with the SNV Summary plot include: zooming,
scrolling, selection of SNVs, changing visual representations of speci�c tracks,
as well as changing the order of the columns. For the latter, the default order-
ing is given by the chromosomal location of each SNV. However, this order can
be adjusted, for example based on the majority genotype, or the statistical p-
value. Furthermore, tool-tips for each column in each track provide additional
details about the respective view.

5.3 Linkage Disequilibrium Block Visualization

and Calculation

For SNVs that are located in close proximity to a gene, or even located
inside a gene, it is very likely to observe low p-values in an association test.
Especially when studying e�ects of epistasis (see chapter 2, section 2.5.4),
Linkage Disequilibrium (LD) can lead to an over-representation of SNV-pairs
that were built from SNVs in LD. Thus, disregarding LD structure during an
association analysis can lead to false conclusions. Consequently, including LD
information for the analysis of single-locus as well as two-locus association
studies can provide valuable insights into the data. Software packages, such
as PLINK [129] o�er methods to calculate LD correlation values (r2 values
for SNV-pairs). However, the results do not include information about LD
blocks. These are subsets of SNVs, where all pairwise combinations share a
high r2 correlation value, with respect to a user-de�ned threshold. Thus, the
identi�cation of LD blocks is important for subsequent analyses.

A typical approach is to visualize all pairwise SNV r2 correlation values in a
so-called LD plot. This visualization is similar to a correlation matrix, where
only one half is �lled and then rotated by 45°. Usually, color gradients are
used to enhance the visual assessment of the respective correlation values in
each cell. For a more detailed explanation of the LD plot see [7]. Figure 5.4
shows an example of the LD plot implementation in Reveal. There, LD
blocks can be de�ned manually by selecting ranges of SNVs for which all
pairwise SNV r2 values satisfy a user-de�ned r2 threshold. One such LD block
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selection is highlighted in �gure 5.4 with dark cyan borders surrounding the
cells of the respective sub-matrix. In addition, the SNV identi�ers are colored
in the same way.
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Figure 5.4: Example of the LD-Plot implemented in Reveal. A white-black
color gradient is used to encode pairwise r2 correlation values. A manually
selected LD block is highlighted in dark cyan.

Nevertheless, the number of LD blocks can become very large (up to several
thousands for a whole genome). This makes it infeasible to de�ne all
possible LD blocks manually using visual inspection. Hence, automated
procedures for the identi�cation of LD blocks are needed to assist the visual
determination strategy. Clustering approaches based on the r2 correlation
value can be applied to group SNVs satisfying a user-de�ned quality criterion.
Many clustering techniques exist, but most of them require the estimation
of the number of cluster preliminary to the actual analysis. Although
these methods are usually very fast, they are mostly not applicable to varia-
tion data, since the determination of the �nal number of clusters is challenging.

A possible solution is provided by the QT_Clust algorithm [59], which was
developed for the clustering of gene expression data. The advantage of this
method is that there is no need to de�ne the number of clusters preliminary to
the actual clustering. In fact, only a threshold for the quality of a cluster, de-
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�ned by the maximum distance of elements contained in it, is required and the
�nal number of clusters is de�ned by the algorithm. An improved implementa-
tion with respect ot the overall runtime has been introduced in Mayday [70]
for the analysis of gene expression data. Furthermore, Sebastian Nagel intro-
duced parallelization of the procedure during his Bachelor thesis [110]. Hence,
this algorithm is perfectly suited for the identi�cation of LD blocks, requiring
only little modi�cations, in order to make it applicable to SNVs. For cluster
quality calculations, 1− r2 is used as a distance measure.

5.4 SNV Annotation and E�ect Prediction

Depending on the location of a SNV, it can have severe e�ects on a gene's
functionality. For instance, SNVs located inside a gene can lead to amino-acid
changes and consequently to a potential loss or modi�cation of gene function.
Furthermore, SNVs outside of a gene, but in close proximity to its 5' end can
lead to reduced binding a�nity of transcription factors, which in�uences the
expression level of the a�ected gene. There are several di�erent tools that
allow for the prediction of SNV e�ects, as for example ANNOVAR [167],
VAAST [65], or SNPe� [25]. Of these, SNPe� is by far the most widely
applied SNV e�ect prediction solution. It provides information on SNVs
on the basis of annotated genes, or other genomic elements. This includes
the classi�cation of a SNV into synonymous or non-synonymous, as well
as start and stop codon gains or losses. Furthermore, annotation of SNVs
regarding their genomic location can be made, such as intronic, 5' untranslated
region (UTR), 3' UTR, upstream, downstream, or intergenic. SNPe� makes
predictions starting from a VCF �le and outputs results as an annotated VCF �le.

In Reveal, SNV e�ect information can be included in the analytical process.
This can be achieved by importing SNVs together with their corresponding
SNPe� results in the form of an annotated VCF �le. The e�ect predictions
will then be attached to the SNVs in the form of SNV meta-information data.
Furthermore, if an annotated VCF �le is provided during the creation of a new
Reveal project, the e�ect information will be imported automatically. How-
ever, SNPe� does only allow one subject per VCF �le. For a typical GWAS
data set, this requires to perform multiple SNPe� predictions and to import
each of these into Reveal individually. To overcome this hindrance, Reveal
o�ers the possibility to calculate SNV e�ects directly within itself. The con-
tained implementation makes use of the original SNPe� prediction strategy,
but in addition, it is able to perform multiple calculation in parallel for a user-
de�ned subset of individuals. In order to use this feature, gene annotations
in the GFF3 [153] �le format have to be imported �rst. Reveal can then
predict SNV e�ects either only for the genes included in the current project,

87



5. Reveal - Visual eQTL Analytics

or based on all genes annotated in the GFF3 �le. In addition to the SNPe�
based predictions, Reveal summarizes the e�ect categories into four impact
classes. These are 3=high (very likely to have an impact), 2=middle (proba-
bly has an impact), 1=low (unlikely to have an impact, but still possible), and
0=none (no impact). A full list of categories and their assigned impact classes
is provided in table A.3 in the Appendix. The impact classes allow for a quick
identi�cation of interesting SNV e�ects, when combined with appropriate vi-
sualizations. Within Reveal this is possible by using the SNV E�ect Table
described in the following.

5.4.1 SNV E�ect Table

The SNV E�ect Table o�ers a comfortable solution to explore SNV e�ect pre-
dictions within Reveal. The table consists of multiple rows, which represent
SNVs in the data set and several di�erent columns, that provide annotations
for each SNV. An example of the SNV E�ect Table is given in �gure 5.5
showing all the available columns. User interaction with the table comprises
selection and sorting of SNVs based on values from a speci�c column, as well
as highlighting �elds of interest using color. For example, cells from the SNV
impact column are colored red (for high impact), orange (for middle impact),
and green (for low and no impact) by default.

Figure 5.5: Example of the SNV E�ect Table for the visualization of SNV
e�ect predictions with Reveal. The e�ect of the SNV with dbSNP ID rs35139

is shown for the genotypes of 10 di�erent individuals.

5.5 Visual Genotype based Expression Analysis

Visual screenings of SNV associations with gene expression levels can be per-
formed by comparing the distributions of the expression levels for the three
possible genotypes in a population. If there is a signi�cant association, then
it is expected that this di�erence is re�ected in the genotype distributions. A
common strategy to visually assess di�erences between distributions are box
plots, which have been widely applied in previous studies [41, 172].
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5.5.1 Visualization for SNV Associated Gene Expression

Di�erences

When using box plots to show genotype distributions, typically three di�erent
boxes are drawn, one for each possible allele combination. Then one can
compare the median expression levels as well as the quantiles of the three allele
combinations. Under the assumption of an additive model, one would for
example expect the expression level of a gene associated with a homozygous
SNV to be twice as high/low in comparison to the reference alleles, as it would
be for the heterozygous genotype. Furthermore, if the population can be
separated into two groups based on a phenotypic trait, such as susceptibility
to disease, changes between the groups can also be assessed. An example of
Reveal's genotype box plot visualization is shown in �gure 5.6. There, the
genotype distributions for an a�ected and for an una�ected sub-population are
compared to each other. One can clearly see that there is a signi�cant increase
in the expression level distributions of the homozygous SNV in comparison to
the reference alleles for the a�ected group, whereas this association cannot be
seen in the control group.

Although this visualization can be used to show di�erences between a speci�c
SNV�gene pair, it becomes infeasible for larger numbers of genes or SNVs. If
the number of SNVs in a data set is n and the number of genes is m, then
n×m di�erent box plots would have to be generated and visually inspected in
order to assess the full information content. This number doubles if cases and
controls have to be compared additionally. Thus, a more appropriate strategy
that scales well, even for large data sets, is required. To address this issue,
a data transformation approach, which can be used together with traditional
gene expression visualizations, such as a heat map, has been developed.

5.5.2 SNV Derived Expression Level Transformation

To address the scalability issue of box plots for the visualization of SNV as-
sociated changes in gene expression, a new data transformation technique is
introduced in this thesis, which can be used together with well-established
gene expression visualizations. The basic idea is to transform the information
gained by box plots into a single expression value, which can then be used
for visualization. The following formula describes how genotype associated
expression value distributions can be used to calculate such a single expression
value vC for a speci�c SNV s and gene g within a population C.
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Figure 5.6: Example of two genotype box plots for an a�ected and una�ected
sub-population, demonstrating the in�uence of a SNV to a genes expression
level. On the right side, the gene expression level distributions associated with
the SNV are shown for the a�ected group. Here, an increase in the expression
level for the homozygous SNV can be observed. On the left, the gene expression
level distributions for the una�ected group do not show such di�erences as for
the a�ected group.

vC(s, g) = x

∑
i∈Csref

expg(i)

|Csref |
+ y

∑
i∈Cshet

expg(i)

|Cshet|
+ z

∑
i∈Cshom

expg(i)

|Cshom|
(5.1)

= x ·meang(Csref ) + y ·meang(Cshet) + z ·meang(Cshom) (5.2)

In this formula Csref corresponds to the sub-population of C, for which the cor-
responding individuals carry the reference base on both alleles for s. Cshet and
Cshom are de�ned similarly for individuals with a heterozygous and those with
a homozygous SNV s. The coe�cients x, y, and z can be used to weigh each
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term with respect to a genotypic model. For example, under the assumption
of an additive model, one would expect a linear relationship between the mean
expression in the heterozygous group and the mean expression in the homozy-
gous group. The mean expression value for the reference group can then be
considered as the ground expression level against which comparisons should be
made. Thus, the coe�cients for an additive model would be de�ned as follows:

x = −1 (5.3)

y =
meang(Cshom)

meang(Cshet)
(5.4)

z = 1 (5.5)

Analogously, values for the coe�cients can be de�ned for other genotypic mod-
els. Furthermore, in the formulas 5.2 and 5.4 the mean expression value of g
can be replaced with the corresponding median expression if needed, which is
more robust to outliers for small populations. The values vC may be directly
used for visualization in, e.g. a heat map. Furthermore, if the population C
can be divided into two sub-populations Ccase and Ccontrol, then fold-change val-
ues between these sub-populations can be calculated by applying formula 5.2
individually for Ccase and Ccontrol. The respective fold-change (FC) for log2-
transformed expression values is then given by:

FCCcase,Ccontrol
(s, g) = vCcase(s, g)− vCcontrol

(s, g) (5.6)

In Reveal, calculations of vC or FC values can be performed for all pairwise
combinations of a chosen set of SNVs and a de�ned list of genes. The respective
values are then subjected to Mayday for the visualization with Mayday's
gene expression based plots. By default, SNVs are organized in rows and
genes in columns. A SNV derived heat map example applied to data from the
BioVis 2011 challenge data set is provided in section 5.9.2 �gure 5.13.

5.6 Single-Locus Association Visualization

The discovery of SNVs associated with quantitative traits, especially gene ex-
pression values, is of great interest to clinicians as well as geneticists. Although,
statistical approaches for the identi�cation of signi�cant associations within a
population exist, the interpretation of the results from such statistical tests
remains challenging. The most widely used toolkit allowing to make predic-
tions for such associations is PLINK [129]. However, results from PLINK are
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provided in text-based formats, rendering it di�cult to gain meaningful in-
sight into the data. Moreover, appropriate visualizations for quantitative trait
associations are missing, forcing researches to deal with the data by using
spreadsheet programs, such as Microsoft Excel. However, this can be very
challenging and time consuming, especially when results from di�erent tests
need to be combined. Thus, in this work visualization approaches have been
developed to address the need for more appropriate visual analytics techniques
for the study of eQTL data.

5.6.1 Association Table

To represent single locus QTL associations in a tabular form, the meta-
information table introduced for case/control based statistical test results (see
section 5.2.2) can also be used to display the values from a PLINK based asso-
ciation test statistic. Hence, SNV identi�ers are displayed in the �rst column
of the table. The other columns are used to show the di�erent values from
the Wald test calculated in PLINK. A summary of the available columns is
provided in table 5.3. All other features presented for the meta-information
table, such as row selection, or row/column reordering, remain unchanged and
can therefore also be used in the Single-Locus Association Table.

Table 5.3: Overview of the available columns in the Single-Locus Association
Table. The presented column ordering corresponds to the default ordering in
Reveal. The statistical values are based on PLINK QASSOC result �les [129].

Column Value Description

1 SNV ID Either #rs number, or genomic location
2 P Wald test asymptotic p-value
3 T Wald test (based on t-distribution)
4 BETA Regression coe�cient
5 R2 Regression r2 value
6 SE Standard error

5.6.2 Association Network for Single-Locus Association

Results

The Single-Locus Association Network provides a graph-based visual repre-
sentation of SNV associations with eQTLs by using the Jung library [114]
for graph construction. In this graph, nodes represent genes from the data
set. Furthermore, SNVs in the data set are assigned to the gene, which
is closest in proximity, with respect to a user-de�ned maximum distance.
Consequently, a SNV can be represented by a gene using this strategy. SNVs
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that are not assigned to any gene are removed. With this approach, edges
can be introduced in the graph as follows. If there is a signi�cant association
between a SNV s and the expression of a gene gj, where s is located in close
proximity to gi, then a directed edge e = (gi, gj) is drawn between the nodes
representing the genes gi and gj. Clearly, the direction of the edge is dictated
by the corresponding SNV association. Note that i = j is possible, if a SNV
is associated with the gene it has been assigned to. Moreover, there can be
multiple SNVs located in close proximity to the same gene gi, which are all
associated with the expression level of the same gene gj. To address this
circumstance, edges are drawn with varying thickness, where the thickness
of an edge is proportional to the number of di�erent SNV�gene associations.
Alternatively, the cumulative p-value of the underlying statistical tests for
each SNV can be used to encode edge thickness. If the latter is chosen, the
−log10(p) value is used, which results in thick edges, if there is a signi�cant
association and thin edges otherwise. Since the number of edges in such a
graph can increase quickly when there is large number of signi�cant SNV
associations, the user can interactively �lter edges based on their edge weight.
This can be achieved by either de�ning a threshold on the number of di�erent
SNVs needed to draw an edge, or by de�ning a threshold for the p-value of
the underlying test statistic. Consequently, only those edges are shown that
satisfy the user-de�ned threshold, thus o�ering the possibility to concentrate
only on very prominent associations.

In addition, gene expression values can be mapped to the nodes using a pre-
de�ned color gradient. Nodes are then colored based on the log2 fold-change
expression value between the a�ected and una�ected sub-population. This
allows to quickly spot SNV associated expression changes in this node-linked
graph. Further interaction possibilities include zooming, panning, rotating, as
well as interactive selection of nodes and edges. If nodes are selected, they are
highlighted with a colored border, where the color can be de�ned by the user.
For selected edges, the edge color is changed from black (the default edge color)
to a user-de�ned selection color. If an edge gets selected in the Single-Locus
Association Network, all SNVs represented by the respective edge are selected
simultaneously. Based on these selections, for example, a new SNVList can
be created for a subsequent analysis or for visualization in other plots. An
illustration of the Single-Locus Association Network is given in �gure 5.7.

5.6.3 Association Matrix

In contrast to the Single-Locus Association Network, a matrix like visualiza-
tion does not su�er from clutter and cannot become a hairball when the data
set is large. However, it has the disadvantage of a less intuitive representation
of gene connections. In order to o�er the advantages of both visualizations,
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-2 +20

Figure 5.7: Illustration of a Single-Locus Association Network in Reveal.
Gene expression log2 fold-changes have been mapped to nodes using a blue-
white-red color gradient.

a Single-Locus Association Matrix has been developed to complement the
network representation. The matrix is divided into two parts, an upper
part showing gene expression data and a lower part, for the visualization of
SNV counts or statistical values of an eQTL association test. For the upper,
as well as the lower part, columns represent genes. The upper part shows
gene expression values summarized with respect to the disease phenotype.
Furthermore, there are four di�erent summarization methods available,
namely MIN, MAX, MEDIAN, and MEAN. Each cell in the upper part
encodes for a speci�c cohort based gene expression value using a user-de�ned
color gradient.

In the lower part of the matrix, rows correspond to genes for which SNVs
are in close proximity. In each cell, circles of variable diameter and color
are drawn. With this strategy two di�erent values from the corresponding
eQTL association test can be encoded. Circle size is used to either display
the number of SNVs associated with the gene in the column, or to show the
− log10(p) value of the statistical test. Thus, the larger a circle, the more
signi�cant is its association with the respective gene expression value. In
addition, a color-gradient for the circles is used to encode for the direction and
size of the genetic e�ect. These values correspond to the regression coe�cient
of the underlying likelihood ratio or Wald test used to calculate statistical
signi�cance of the associations. For more details on statistical testing for
quantitative traits, see chapter 2, section 2.6.1. By default, a blue�white�red
gradient is used. Red color corresponds to a positive e�ect (an increase in gene
expression), whereas blue color indicates a negative e�ect (a decrease in gene
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expression) [38]. The magnitude of the regression coe�cient is proportional
to the e�ect size. Consequently, the saturation of the circle indicates the
strength of the respective e�ect. Thus, white circles have no e�ect, since
their regression coe�cient equals 0. When drawn on a white background,
the circle becomes invisible in such cases, which is mostly the preferred
representation, since low p-values have no meaning, if there is no measurable
e�ect. Alternatively, the default color gradient can be changed by the user,
in order to indicate such cases. An example of the Single-Locus Association
Matrix, derived from the BioVis 2011 eQTL data analysis challenge, is shown
in �gure 5.8.
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Figure 5.8: Example of the Single-Locus Association Matrix implemented in
Reveal. This example has been created with eQTL data from the BioVis 2011
challenge data set. The plot is shown with default settings for the color gradients
and the gene ordering.

Clearly, if each SNV is assigned to the gene in closest proximity, as in the
Single-Locus Association Network, this can lead to an assignment of multiple
SNVs to the same gene. Hence, if the user chooses to display p-values instead
of SNV counts, the circle size is de�ned by the mean p-value of all SNVs
assigned to the same gene with an association to the gene represented by the
respective column.

Interaction possibilities with the Single-Locus Association Matrix include: in-
teractive �ltering of SNVs based on a user-de�ned threshold for the p-value,
selection of cells, which results in a selection of the corresponding SNVs, and
lastly rows of the lower part of the Single-Locus Association Matrix can be
sorted according to di�erent criteria. By default, rows are arranged such that
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SNVs that show large numbers of signi�cant associations with the genes in the
columns are presented on top. However, sorting by chromosomal location is
also possible.

5.7 Two-Locus Association Visualization

Although, single-locus association analyses already provide good indications
of genome sequence variations a�ecting phenotypic outcomes and especially
gene expression levels, complex diseases, such as speci�c cancers, may involve
networks of interacting variations. In such cases, gene expression levels are
not a�ected obviously by single SNVs, but by the interplay of various di�erent
variations. The presence and severity of a disease phenotype is thus conditional
on the presence or absence of speci�c SNV combinations. This requires the
identi�cation of multi-locus associations. However, the computational e�ort
increases exponentially with the number of SNVs that are investigated at once,
rendering it di�cult to calculate associations based on more than two or three
SNVs. Consequently, the typical approach is to concentrate on two-locus asso-
ciations, which already means to analyze all possible pairwise combinations of
SNVs within a data set. Again software solutions, such as PLINK, provide sta-
tistical methods to assess the signi�cance of an association of a SNV pair with
a quantitative trait (see chapter 2, section 2.6.2 for more details). However,
the interpretation of the results of such epistatic e�ects is even more complex
than with single-locus associations. Thus, appropriate visual analytical ap-
proaches become even more important when studying epistasis. In Reveal,
three di�erent visualizations are available to address epistatis, which will be
explained in more detail in the following.

5.7.1 Association Table

Similarly to the Single-Locus Association Table, the meta-information table
can be used to represent statistical values from an epistasis analysis conducted
with PLINK [129]. This table, however, contains two columns with SNV iden-
ti�ers, one for each SNV in a SNV pair. Further columns are used to represent
the statistical values from the respective pairwise SNV association tests. Ta-
ble 5.4 shows all available columns. Furthermore, selection of rows can no
longer be uniquely mapped to a speci�c SNV, since rows represent SNV pairs
in this table. Thus, in the Two-Locus Association Table both SNVs of a SNV
pair get selected. All other interaction possibilities introduced for the meta-
information table remain unchanged.
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Table 5.4: Overview of the available columns in the Two-Locus Association
Table.

Column Value Description

1 SNV ID 1 Identi�er for the �rst SNV in the SNV pair
2 SNV ID 2 Identi�er for the second SNV in the SNV pair
3 BETA Coe�cient for SNV interaction
4 STAT χ2-statistic with 1 degree of freedom
5 P Asymptotic p-value

5.7.2 Association Network

The Two-Locus Association Network provides a graph-based visualization of
SNV-pair associated gene expression changes. To construct the graph, the
Jung library [114] has been used. In this graph, each gene is represented by a
node. Furthermore, SNVs are assigned to genes based on their chromosomal
location. Thus, for each SNV the gene, which is closest in proximity, is
identi�ed based on a user-de�ned maximum distance. This approach is
similar to the Single-Locus Association Network described above. It enables
to determine SNV pairs, where the two SNVs are assigned to di�erent genes.
Nodes representing genes, for which such SNV-pairs exist are assigned a
unique color, while the other nodes are colored gray. Colors are chosen based
on ColorBrewer color maps [52], if less then 12 color values are needed, and
based on a rainbow color gradient otherwise. Edges between the nodes are
constructed following a simple strategy. If there is at least one SNV pair
showing a statistically signi�cant association (e.g. based on PLINK results)
with one of the gene expression values from the data set, then an edge between
the corresponding genes is drawn. However, the SNV pair can in�uence any
of the genes in the data set. Thus, edges are colored based on the gene
whose expression is in�uenced. This means that for each edge in the graph
a gene triple (gi, gj, gk) is created, where one SNV of the pair is assigned to
gene gi and the other to gene gj. The edge's color is de�ned by the color of
the gene gk, whose di�erence in expression between a�ected and una�ected
individuals is associated with the respective SNV pair. Clearly, there can be
more than one such SNV pair for a speci�c gene combinations. Some of which
may in�uence the same gene gk. Thus, edge weights are introduced that
correspond to the number of di�erent SNV pairs between the genes gi and gj
in�uencing the gene gk. Nevertheless, di�erent target genes are also expected.
To address this issue, multiple edges between the same two genes are allowed,
which di�er in color and possibly also in edge weight. An example graph
demonstrating the possible node relationships is shown in �gure 5.9. Alterna-
tively, mean p-values of the underlying statistical test can be used instead of
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SNV pair counts to encode edge weight. In this case, the same strategy as
for the Single-Locus Association Network described in section 5.6.2 is followed.

Figure 5.9: Illustration of a Two-Locus Association Network. Nodes represent
genes and edges correspond to SNV pairs that are signi�cantly associated with
one of the gene's expression level. Each gene to which a SNV from a SNV pair
has been assigned to is colored using a unique color value. Genes without any
associated SNV-pair are colored grey. Edge colors indicate speci�c associations
between SNV pairs and genes, and edge weights correspond to the number of
SNV pairs associated with the same gene. Multiple edges are allowed for cases
where SNV pairs from two genes in�uence more than one additional gene.

Since the number of edges can become very large, additional interaction pos-
sibilities are provided in order to increase visual clarity and to explore the
visualized data in more detail. First of all, edges can be interactively �ltered
based on their edge weights. The user can de�ne a threshold τ , such that only
edges with weight w > τ are displayed. Furthermore, nodes can be rearranged
manually, or by using layout algorithms provided by the Jung library [114].
Besides general graph interaction features, such as panning, scaling, rotating,
zooming, and selection, users can map gene expression values to nodes, re-
sulting in node sizes relative to the mean fold-change between a�ected and
una�ected individuals. In order to make interesting associations more visu-
ally prominent, one can activate node or edge highlighting for selections. This
means that nodes connected to a selected node are drawn with a black border,
and edges drawn with the same color as the selected node are highlighted with
increased saturation to make them stand out more clearly. In addition, edges
can be selected, which leads to a selection of the corresponding SNV pairs.
Based on this selection new SNVLists can be created for further processing or
for more detailed visual inspections within other plots.

5.7.3 Association Matrix

Although, the Two-Locus Association Network nicely shows the relationships
between di�erent genes on the level of their correlated SNVs, it su�ers from
the same disadvantage as the Single-Locus Association Network. With an
increasing number of SNV pairs it can become di�cult to spot interesting
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patterns due to visual clutter. Thus, interactive �ltering has been introduced
to reduce the amount of edges that have to be drawn. However, for large data
sets, this approach may not always lead to satisfying results. Furthermore,
with an increasing number of genes in the network, it becomes more di�cult
to di�erentiate between gene and edge colors. A matrix like approach does not
su�er from these hindrances and can therefore lead to a more comprehensive
understanding of the data, when complemented with a network visualization.
Thus, the visualization strategy introduced for the Single-Locus Association
Matrix above (see section 5.6.3) can also be used to visualize epistatic e�ects.
This requires only few modi�cations. Instead of showing single genes in the
rows of the matrix, as it is the case for the Single-Locus Association Matrix,
gene pairs are displayed for two-locus gene expression associations using row
labels in the form of Gene1:Gene2. Furthermore, association tests for epistasis
estimate three di�erent gene e�ect coe�cients, one for the �rst SNV in the pair,
one for the second one, and an interaction coe�cient. The latter describes how
the interaction of two SNVs a�ects the expression of the respective gene. In
the Two-Locus Association Matrix, this interaction coe�cient is used for SNV
e�ect visualization and is encoded using a blue�white�red color gradient by
default. As for the Single-Locus Association Matrix, the size of the circles
in each cell either displays the number of di�erent SNV pairs, or the mean
p-values of the corresponding association tests.

5.8 Interaction between inPHAP and Reveal

In chapter 4, inPHAP has been introduced as a tool for the analysis of geno-
type and phased haplotype data. With Reveal a step further has been taken
to address the need for the integration of genotype data, association data and
expression data, in order to identify SNV related factors causal for disease. Al-
though Reveal does not allow for the direct integration of phased haplotype
data or for the correlation of such data with population speci�c meta-data, a
mechanism to link Reveal to inPHAP has been implemented. As a result,
inPHAP can be invoked from within a running Reveal instance, which al-
lows for the exchange of genotype data and the visualization of such within
inPHAP. The data exchange is thereby realized with a so-called DataLinker,
which holds references to Reveal's as well as inPHAP's data model. Fur-
thermore, the DataLinker contains methods for an online data transformation,
such that genotype data from Reveal is provided in the right format to be
visualized within inPHAP. With this strategy the advantages of Reveal and
inPHAP are combined to enable more powerful analyses.
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5.9 Application Examples based on the BioVis

2011 and 2012 Challenge Data Sets

5.9.1 The eQTL Biological Data Visualization Challenge

In 2011, the BioVis (Conference on Biological Data Visualization) initiated a
new data visualization contest. The idea of this contest was to elevate research
on visualizations for speci�c biological problem domains, with the main goal
to increase the development of enhanced applications that address the needs
of the biological community. For the BioVis 2011 and the following year 2012,
the contest involved the analysis of eQTL data. These data were generated
from actual eQTL analysis data, by applying a so-called observation shu�ing
technique [8]. With this technique it was possible to introduce a hypothetical
disease hoompalitis. The contest data set was designed around this disease
by introducing spiked-in interaction networks in order to establish a ground
truth. The advantage of this technique was that the biological complexity
of the data was preserved, such that realistic biological conditions for the
development of new software solutions were provided. The �rst challenge
data set contained 7555 genomic loci (SNVs) and gene expression levels for 15
genes for a total of 500 di�erent individuals. Furthermore, for each individual
a disease state for hoompalitis was provided. These data were accompanied
with results from statistical association testing conducted with PLINK for
both, single-locus as well as two-locus associations. Based on this information
the challenge included the visual identi�cation of the patterns of variations,
gene expression levels and their interaction in order to elucidate the impact
of these factor for the incidence of hoompalitis. Due to the success of this
challenge in 2011, it was repeated in 2012 with a more complex data set
comprising 230,912 SNVs, 44 genes and the same 500 di�erent individuals. In
addition, data from two sources were available, namely blood as well as tissue
samples. Again the question was to identify the biological factors leading to
disease. Furthermore, participants were asked to give a prediction whether
these factors can only be found in the tissue samples or if a detection with
blood samples would also be possible.

Reveal was developed as a solution for the analysis of the respective problems
introduced with these data sets and was selected as the visualization experts'
favorite application in 2011. In the following, the approaches taken with Re-
veal to solve the questions from the BioVis 2011 and 2012 data analysis
challenges will be explained in detail.
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5.9.2 Analysis of the BioVis 2011 Challenge Data Set

To identify the SNVs most relevant for the disease hoompalitis, attention
was drawn towards epistatic e�ects described by the data. Thus, in a �rst
step two-locus association testing results were used to construct a network of
associations using the Two-Locus Association Network visualization. In total
62,136 di�erent SNV pairs were contained in this network with an association
p-value ≤ 0.05. Furthermore, to concentrate only on the most prominent
features edges were �ltered by edge weight (number of di�erent SNV pairs
between two genes) with a threshold of τ ≥ 50, leaving 3843 SNVs forming
pairs within the graph. The resulting network is shown in �gure 5.10 (A).
One can clearly see that there are four very prominent edges in the graph,
which all correspond to trans e�ects, because the colors of the edges di�er
from the colors of the connected nodes. In particular, SNV pairs for the gene
combinations CDH22�CDH7, CDH22�CDH10, and CDH22�CDH11 show
signi�cant e�ects on the expression of CDH1. In addition, SNV pairs for the
gene combination CDH11�CDH7 have signi�cant e�ects on the expression of
PCDH8.
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Figure 5.10: Two-Locus Association Networks of the BioVis 2011 data set
based on single-locus and two-locus associations. (A) Network based on 3843
di�erent SNVs from the BioVis 2011 contest data set forming signi�cant two-
locus associations (p ≤ 0.05) with gene expression values of 15 genes. Only
edges with an edge weight ≥ 50 (representing the number of di�erent SNV pairs
between the respective genes) are shown; (B) Network from (A) showing 696
remaining SNVs after included signi�cant single-locus associations (R2 > 0.1,
p ≤ 0.05).

In a second step, data from single-locus associations was added to the Two-
Locus Association Network. This allowed for the �ltering of only those SNVs
that show both, a signi�cant association solely by themselves, as well as an
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epistatic e�ect together with another SNV. Thereby, SNVs with single-locus
associations were �ltered that showed a regression value of R2 ≥ 0.1 and had
a statistical signi�cance of p ≤ 0.05. In total 845 SNVs could be identi�ed.
Overlapping these with the SNV pairs from the Two-Locus Association
Network in �gure 5.10 (A) such that at least one SNV in a SNV pair has to be
contained in the list of 845 single-locus associated SNVs, reduced the number
of total SNVs in the network from 3843 to 696. The resulting network based
on these 696 SNVs is shown in �gure 5.10 (B).

Further analysis of the remaining SNVs was performed using the SNV
Summary plot, which visualizes genotype cohort distributions. There, e�ects
between two cohorts based on the individuals disease states can be investigated
for each SNV. In particular, those SNVs that showed either a di�erence in the
cohort distributions (di�erent color values in the aggregation row) or a di�er-
ence in the consensus strength of at least 10% points (di�erent bar heights in
the aggregation row) between a�ected and una�ected individuals were �ltered.
The resulting SNV Summary plot showing the remaining 33 SNVs that are
likely to be correlated with the disease is given in �gure 5.11. In addition,
a χ2-test followed by an FDR correction for multiple testing was performed
for each of the 696 SNVs. The statistical test revealed that 375 of the 696
SNVs had a signi�cant association (p ≤ 0.05) with the disease state, of which
only 13 satis�ed the criteria of the 33 SNVs chosen during visual inspection.
This shows that pure statistical testing would have missed 20 putative can-
didate SNVs with clear di�erences between a�ected and una�ected individuals.

To study the e�ect of the 33 identi�ed SNVs on gene expression levels, a
gene expression analysis was performed in Mayday. For the 15 genes in the
data set t-tests between the a�ected and una�ected individuals have been
computed followed by an FDR correction for multiple testing. Genes with a
p-value ≤ 0.05 have been considered signi�cantly di�erentially expressed. In
particular, eight genes satis�ed this criterion, namely CDH1, CDH10, CDH11,
CDH19, PCDH1, PCDH10, PCDH17, and PCDH19. An aggregated heatmap
showing the mean expression levels of the 15 genes for the a�ected and un-
a�ected individuals is given in �gure 5.12. Comparing these results with the
association results for the 33 selected SNVs reveals that all 33 SNVs are con-
tained in SNV pairs associated with at least one of the di�erentially expressed
genes. To show the in�uence of these SNVs on the expression levels of the
di�erentially expressed genes, a SNV derived expression heatmap, based on
the transformation described in section 5.5.2 has been produced under the
assumption of an additive genotypic model (see �gure 5.13). In this visualiza-
tion, one can clearly see the e�ect of the 33 identi�ed SNVs. Altogether, this
allows for the conclusion that these 33 SNVs are very likely correlated with (or
even causal for) hoompalitis.
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Figure 5.11: SNV Summary plot showing the remaining 33 SNVs after visual
selection based on SNV distribution di�erences (either in the simpli�ed cohort
genotype or at least 10% points in consensus strength) between a�ected and
una�ected individuals. The statistic and individual track are hidden due to
irrelevant information for the purpose of this �gure.
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Figure 5.12: Aggregated heatmap showing the mean expression levels of the 15
genes from the BioVis 2011 contest data set for a�ected and una�ected individ-
uals. Expression levels were mapped to a blue�white�red color gradient centered
on zero. Genes were ordered according to an expression-based clustering using
the Neighbor Joining algorithm. Distances were calculated with the Euclidean
distance measure.

5.9.3 Analysis of the BioVis 2012 Challenge Data Set

For the analysis of the BioVis 2012 data set, a slightly di�erent approach
has been chosen, because of SNV quality issues (e.g. missing genotypes) that
were introduced in the second round. However, since this data set basically
comprises the same analysis steps as the BioVis 2011 data set, only the most
important steps and results are described in the following.

Firstly, focus was directed on the tissue samples. Due to the large number
of SNVs in the tissue data set and the introduction of noise, such as missing
SNV calls or SNV calls located in unannotated reference sequence regions
(missing sequence information indicated with the letter N), �ltering was
necessary before continuing with a visual analytical approach. Thus, SNVs
with an N as a reference nucleotide have been removed as well as those with a
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Figure 5.13: SNV derived log2 expression fold-change visualization for the
BioVis 2011 contest data set using Mayday's heat map. Only the 33 disease
related SNVs are shown. Log2 expression fold-changes were mapped to a blue�
white�red color gradient centered on zero. Genes were ordered according to
an expression-based clustering using the Neighbor Joining algorithm. Distances
were calculated with the Euclidean distance measure.

minor allele frequency of ≤ 5%. With this the 230912 initial SNVs have been
reduced to 35937. Furthermore, to reduce the number of false positives during
further analyses, a statistical test for Hardy-Weinberg equilibrium has been
conducted and SNVs have been �ltered with a p-value ≤ 0.05 after Bonferroni
correction. As a result, 4861 SNVs passed these �lters and could be used for
further visual inspection. These steps were not necessary with the BioVis
2011 data set, since equivalent issues have not been observed there.

In a second step, di�erentially expressed genes have been identi�ed with a
t-test followed by an FDR correction for multiple testing. The signi�cance
threshold was set to p ≤ 0.001. This procedure revealed eight highly signi�-
cant di�erentially expressed genes, namely DRD4, DRD3, SLC6A4, DRD2,
SLC6A3, CNTN4, CNTNAP4, and NRG3. To identify those SNVs that
a�ect the expression levels of the di�erentially expressed genes, a Two-Locus
Association Network was constructed based on the 4861 SNVs. Again, edge
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weight �ltering was used to concentrate only on very prominent features.
Thereby, all edges with a weight τ < 200 were removed. In addition, the
graph was �ltered based on single-locus associations (R2 ≥ 0.1, p ≤ 0.05)
as for the BioVis 2011 data set. After these �ltering steps, the Two-Locus
Association Network was reduced to only display those edges build from SNV
pairs, which have a signi�cant association with the expression level of at least
one of the di�erentially expressed genes. The resulting network is shown in
�gure 5.14.
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Figure 5.14: Two-Locus Association Network based on 4861 �ltered SNVs
associated with gene expression levels from the BioVis 2012 data set. Only
those edges are shown, where either the SNV pairs have an epistatic e�ect on the
expression level of a di�erentially expressed gene, or at least one SNV of the SNV
pair has a signi�cant single-locus association with a di�erentially expressed gene.
In total eight genes could be identi�ed (highlighted with a thick black border
in the network) showing expression di�erences between a�ected and una�ected
individuals.

As with the BioVis 2011 data set, the SNVs represented by the remaining
edges were selected. In total 2575 SNVs remained, which were �ltered based
on their aggregated cohort distribution. This resulted in 91 SNVs, that are
very likely to be correlated with the disease.

To answer the question if blood samples are su�cient to extract the genetic
factors leading to disease, the procedure described for the tissue samples was
repeated. However, di�erential expression analysis using a t-test with an FDR
correction did not result in any signi�cantly expressed genes. Corrected p-
values were in the range of 0.15−0.98. Consequently, no genes associated with
the disease could be identi�ed from blood samples. Thus, a SNV association
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analysis using gene expression information from blood samples would not be
able to identify the genetic factors leading to the disease.

5.10 Conclusion

In this chapter, Reveal has been presented as a toolkit that allows for
the analysis of disease related SNVs. For this purpose several di�erent
linked visualizations are available and gene expression data can be included
through the tight interaction with Mayday. The various features for data
�ltering, statistical testing as well as the rich visualization capabilities make
Reveal a powerful tool for visual exploration of genetic factors leading
to disease. With the application of Reveal to the BioVis 2011 and 2012
data sets it was shown how the identi�cation of SNV associated with gene
expression changes can be performed. Note that no concrete solutions for the
problems in these contests were provided, since the main challenge was the
development of new and interactive visual analytics tools. Accordingly, the
purpose of the application examples above is to demonstrate how the meth-
ods implemented in Reveal would be used to analyze typical eQTL data sets.

Reveal won the visualization experts' favorite award in the BioVis 2011 data
analysis challenge, which addressed the visualization of epistatic e�ects in Re-
veal as well as the data integration with iHAT, the predecessor of inPHAP.
This emphasizes the necessity of Reveal as a visual analytical software solu-
tion for the integrative study of SNV and gene expression data.
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tive Visualization Approach for

Comparative Multiple Whole

Genome Analyses

In the previous chapters, it was shown that with the dramatic increase of
the number of sequenced genomes by large-scale studies, such as the 1000
Genomes project [28], an in depth study of variations between di�erent indi-
viduals and even whole populations has been made possible. Most research
projects thereby focused on investigations concerning small variations such
as SNVs or small insertions, duplications, or copy number variations, since
non-lethal, larger variations are very unlikely in mammals [168].

Studies similar to the 1000 Genomes project also exist for prokaryotic
organisms. In contrast to mammals and many other eukaryotes, research
in prokaryotes focuses on the identi�cation of the genetic factors that lead
to diversity, involving, for example, pathogenicity or drug resistance. Con-
sequently, researchers are interested in the gene content rather than small
variations within a speci�c gene. With the increasing number of available
prokaryotic genome sequences a comparative analysis of whole genomes is
possible, including small as well as larger genomic variations. Comparisons
are usually made on the basis of whole genome alignments, which can be
performed using tools such as MAUVE [33]. However, to be able to e�ciently
interpret such alignments, comprehensive visualizations are helpful. Basically
two approaches have been followed in the past to achieve this. The �rst
approach is to visualize di�erences between single genomes in comparison to
a common reference genome (one to many relation). Genome browsers are
typically used in this context. The second approach is to compare all genomes
against each other in parallel (many to many relation). There, mainly two
strategies have been followed. The �rst strategy is a linear visualization of the
resulting alignment, which was done, for example, in the MAUVE alignment
viewer (see �gure 6.1). The second one focuses on circular representations,
like in the Circos [83] tool shown in �gure 6.2. For both visualization types,
usually arcs or arrows are used to indicate relationships between di�erent
genomic regions. Furthermore, several layers of meta-information can be
included, such as experimental data or genome annotations. While Circos is
especially useful for the generation of aesthetically attractive �gures, it has the
disadvantage that only static views can be produced and that no interaction
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with the �gure is possible. MAUVE, on the other hand, has the disadvantage
that with a rising number of aligned genomes and rising complexity of the
alignments (including large insertions, deletions and rearrangements) visual
clutter is very likely. In general, however, all visualization strategies available
so far share one speci�c drawback. When dealing with large variations,
especially insertions, deletions and rearrangements, genomic coordinates of
the di�erent genomes have to be mapped to one another. This problem
becomes even more obvious when additional information, such as individual
genome annotations, have to be added. In this case, information is usually
displayed in the coordinate system of the respective genome. This implies
manual interaction to adjust coordinates when di�erent genomic areas are
visualized. One example is the MAUVE alignment viewer, where the user
can interactively align speci�c sub-regions of the genomes to the coordi-
nates of one chosen reference for comparison. In addition, such coordinate
mappings are often implemented such that one of the genomes is used as a
reference with the coordinates of the other genomes expressed in relation.
However, this approach does not cover cases where speci�c genomes contain
individual sequence information that is not shared by any other genome
in the alignment, especially not by the chosen reference. Hence, no coor-
dinate mapping between this respective genome and the reference can be made.

Figure 6.1: Example of Mauve's multiple whole genome alignment visualization
strategy. Genomes are shown on di�erent tracks and lines are used to connect
similar blocks between the genomes. In addition, identical color values are used
for similar blocks. This �gure is adapted from [58].

A possible solution would be the calculation of a joint coordinate system that
is then shared by all genomes in the alignment. Furthermore, such a joint
coordinate system would provide the possibility for consistent annotation
of individual genomes with additional information that can easily be com-
pared at any time without further manual intervention. In his PhD thesis,
Alexander Herbig introduced the SuperGenome concept, which allows for
the creation of such a joint coordinate system on the basis of a multiple
whole genome alignment [57]. The SuperGenome is thereby constructed by
interpreting genomic rearrangements as a collection of local alignments that
are called blocks. The SuperGenome o�ers bidirectional mappings between
each individual genome and the calculated common coordinate system, which
in contrast to previously discussed approaches, also allows for the assignment
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Figure 6.2: Example of Circos' multiple whole genome alignment visualization
strategy. Colored arcs are used to represent the genomes on a single circle and
ribbons connect similar blocks between di�erent genomes. This �gure is adapted
from [58].

of coordinates to unaligned regions. Furthermore, starting from an existing
multiple whole genome alignment, the SuperGenome allows the detection
of large insertions or deletion within blocks, by scanning for gaps that are
longer than a user-de�ned threshold. Such gaps are then used to split blocks
into sub-blocks that represent insertions or deletions in one or more aligned
genomes.

Based on the SuperGenome concept a multiple whole genome alignment
visualization tool, called GenomeRing, has been generated in cooperation
with Alexander Herbig and Florian Battke. The SuperGenome algorithm has
been included in GenomeRing to allow users to construct sub-blocks from
an existing multiple whole genome alignment prior to visualization. This
permits the user to decide which types of events are relevant and thus to
draw attention towards smaller or larger genomic variations. Through the
integration of GenomeRing in the visual analytics software Mayday (see
chapter 3), connections to further visualizations implemented in Mayday, or
software packages based on Mayday, such as Reveal (see chapter 5), can
easily be made. With this, the visualization of gene expression values or single
nucleotide variation data within the GenomeRing visualization is possible.

The main contribution of this work to the GenomeRing visualization is the
development of a block optimization strategy for an enhanced visual experi-
ence, i.e. reducing visual clutter. To achieve this, a block sorting algorithm
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has been developed, which is introduced in section 6.2 after a description of
GenomeRing's general visualization concept in section 6.1. Furthermore,
this algorithm can be used to optimize for three di�erent criteria, for which
a comprehensive assessment of the ability to increase visual clarity is given.
Text and �gures in this chapter are based on collaborative work previously
published in [58].

6.1 GenomeRing Design

GenomeRing has been designed as a visualization containing two circles with
several di�erent segments. Each segment on the outer ring, together with
the corresponding segment on the inner ring, represents one sub-block in the
constructed SuperGenome. Furthermore, the outer ring represents genomic
sequences in forward direction, while the inner ring shows the same genomic
locus in reverse direction. Thus, a speci�c block of the genome alignment is
either represented by the outer ring, if the respective sequence is in forward
direction, or by the inner ring, if the block is inverted in this particular genome.
The di�erent segments can be labeled, either numerically or by a user-de�ned
identi�er, to highlight segments of interest. Furthermore, each segment in the
visualization is separated into di�erent lanes, where each lane represents one
genome in the multiple whole genome alignment. For each lane a color is chosen
using ColorBrewer color maps, if the number of aligned genomes is less than 12.
For larger numbers a rainbow gradient is used to assign a unique color to each
genome. Furthermore, lanes representing the same genome, are always located
at the same positions within di�erent blocks, which in addition to the color
values, helps to keep track of genomes. In this, each genome is still uniquely
de�ned, even if the distinction between di�erent colors becomes di�cult, for
example, if the number of di�erent genomes is very large. The lanes within one
segment are connected by paths of the same color, indicating the natural order
of represented blocks in the respective genome. Such paths, drawn outside of
circle segments, however, do not encode for sequence information, but are
solely used to illustrate which blocks of the SuperGenome are contained in
an aligned genome and in which order they appear. If, for example, a block
in the SuperGenome is inverted in one of the aligned genomes, then a path
leads through the respective segment on the inner ring, rather than the outer
ring. With this strategy, complete genome sequences can be reconstructed by
following paths of the same color and concatenating the segments in the order
dictated by the path. In addition to all these view elements, start and end of
a genome alignment have to be indicated. In GenomeRing, two small �ags
are drawn inside of the inner ring for each genome, one for the start position
and one for the end position of the respective genome sequence. The �ags are
colored by the respective color value representing the corresponding genome.
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Furthermore, start and end �ag are distinguished by the direction of the �ag.
If a �ag is drawn away from the �agpole, then this �ag represents a genome
start position. In contrast to that, a �ag pointing towards the �agpole encodes
for the end position. The visualization is complemented by a scale that shows
the number of bases displayed per radial range of the circle. An additional
legend at the bottom of the visualization mapping color values to genome
identi�ers, completes the list of visual components. An example visualization
of an arti�cial whole genome alignment containing three di�erent genomes is
shown in �gure 6.3 to illustrate the use of the di�erent view elements.
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1

2

3

4

80 bp

Forward Ring

Reverse Ring

Outer Jump

Inner Jump

Interchange Connection

Legend

Scale

SuperGenome block "4"
contained in genome 1 and 3

Start Marker

SuperGenome block "3"
contained in genome 3, and
inverted in genome 2

End Marker

GenomeRing Elements

Direct Connection

Figure 6.3: Example of a GenomeRing visualization showing an arti�cial
multiple whole genome alignment containing three di�erent genomes. The view
elements of GenomeRing are highlighted using dotted lines and labeled accord-
ingly. This �gure is based on an illustration previously published in [58].

Clearly, the order of the segments in theGenomeRing visualization, although
initially based on the order of blocks in the SuperGenome, does not encode any
information. Thus, changing the order would only lead to the introduction of
di�erent paths connecting the segments, but the order of blocks in the genomes
would be preserved. This can be used for block order optimization, i.e. to
reduce visual clutter (see section 6.2).

6.1.1 Visual Representation of Circle Segment Connec-

tions

By de�nition of the SuperGenome concept, it is clear that a single genome
does not necessarily have to contain all of the blocks contained in the
SuperGenome. For the GenomeRing visualization this means that there
can be segments that are not connected by a genome path. Due to this
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fact, several di�erent types of segment connections had to be implemented.
All of these connections are shown in �gure 6.3. The simplest connection
is between two segments, either on the outer ring, or on the inner ring, in
consecutive order, where no third block comes in between. Here, a direct
connection between the segments can be made, using a path with the same
radius as the lanes that have to be connected. The second type of connections
are indirect connections, which can further be separated into two di�erent
classes. The �rst class of indirect connections contains paths that have to be
drawn between segments that are both located either on the outer ring, or
on the inner ring, with at least one additional segment in between. In this
case, a jump connection has to be made, skipping the additional segments.
A jump connection for the outer ring is called outer jump and a jump
connection on the inner ring is called inner jump, respectively. Outer jumps
are represented by paths, drawn outside of the outer ring with a de�ned
radius that is determined by the maximal number of other paths skipping
the same segments. Inner jumps are de�ned in a similar way, with the only
di�erence that they are drawn inside of the inner ring.

The second class of indirect connections represents connections where one seg-
ment lies on the outer and the other one on the inner ring. Paths connecting
these segments are called interchange connections. Such interchange connec-
tions are visualized using paths in-between the inner and the outer ring. Thus,
the distance between the inner and the outer ring is de�ned by the maximal
number of interchange connections that have to be drawn.

6.1.2 Directions of Segment Paths

The segments in GenomeRing have been designed in a way that sequence
information represented by lanes inside of these segments can always be read
from left to right. However, the connecting paths do not necessarily need to
follow the same direction. Paths are just used to connect segments, whereas
their direction has no biological meaning. This concept o�ers additional free-
dom for the placement of indirect connections, in order to minimize visual
clutter. To be precise, a layout algorithm for the connecting paths can choose
path directions such that the maximal angle of a path is at most 180°. Conse-
quently, this minimizes the total number of blocks that have to be skipped by
any indirect connection.

6.2 Block Order Optimization

The choice to use paths to indicate the order of segments in GenomeRing

requires further possibilities for avoiding visual clutter. The main reason for vi-
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sual clutter are indirect connections, where blocks have to be skipped. Chang-
ing the order of segments in theGenomeRing visualization does not a�ect the
biological meaning, yet it can largely increase visual clarity and consequently
interpretability. An example of how changing the block order can increase
visual clarity is shown in �gure 6.4. There, the reduced number of block skip-
ping arcs (see �gure 6.4 (B)) clearly simpli�es the assessment of the overall
topology of the underlying multiple whole genome alignment.
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Figure 6.4: GenomeRing example of a multiple whole genome alignment of
four di�erent genomes showing how changing the block order can increase visual
clarity. A shows the initial ordering of blocks as calculated by the SuperGenome
algorithm; B shows an optimized ordering with reduced visual clutter allowing
to better assess the overall topology.

An optimal constellation would only contain direct connections, because these
do not introduce visual clutter. Since this is usually impossible, an arrange-
ment of segments has to be found that minimizes, for example, the number
of indirect connections. This minimization problem can be reduced to the
well known Traveling Salesman Problem (TSP), which has been proven to be
NP-complete [118]. Thus, in general an exact solution for minimizing visual
clutter in GenomeRing cannot be found e�ciently. The default ordering of
segments is de�ned by the ordering of blocks in the SuperGenome. To improve
this default ordering, several optimization strategies have been implemented.
Firstly, segments can be arranged based on the natural ordering of the blocks
of one of the aligned genomes, which is used as a reference for the others. With
this strategy one can easily concentrate on a speci�c genome of interest and
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investigate the structures of the other genomes in relation to that. However, if
the objective is visual clarity, more sophisticated approaches have to be taken.
A heuristic can be used to approximate an optimal solution based on three
di�erent criteria de�ned in the following:

1. Minimization of the number of indirect connections

An indirect connection links two blocks, if these have a consecutive order
in at least one of the genomes, but not in the SuperGenome. This sug-
gests that a possible optimization strategy is to rearrange blocks in the
SuperGenome, such that the total number of indirect connections is min-
imized for all aligned genomes. Hence, a sub-optimal arrangement for a
single genome is permitted, if it leads to a more optimal conformation
regarding all genomes at once.

2. Minimization of the number of skipped blocks

An indirect connection leads to at least one skipped block. However,
visual clutter increases proportionally with the number of blocks that
are skipped by such an indirect connection. Therefore, the focus of this
second approach lies in the minimization of the number of blocks that
have to be skipped for all aligned genomes, regardless of the number of
indirect connections that have to be made. This may increase the total
number of indirect connections, but can lead to a much more appeal-
ing visualization, since the length of indirect connections becomes fairly
small.

3. Minimization of the total jump length

The third approach, in contrast to the second, also takes the length of
a block into account. If blocks have to be skipped, visual clutter can
increase with the length of the skipped bock, since large blocks lead to
longer arcs. Keeping arc lengths short is therefore preferable. Here, the
total jump length is de�ned as the sum of the absolute angles for all
indirect connections in the visualization. Thus, a minimization of the
total jump length leads to shorter arcs and can consequently result in a
clearer visual representation.
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Algorithm 1: Block order optimization

Data: Cost function f, Initial block ordering OI , Set of genomes G
Result: Ordering OM minimizing f

1 OM ← OI // initialize final block ordering

2 repeat
3 foreach g ∈ G do

// order blocks based on the natural ordering in g

// the order of blocks that are not in g is preserved

4 O' ← orderBlocksUsingTemplate(g,OM);
5 if f(O') < f(OM) then
6 OM ← O';
7 end

// swap pairs of blocks

8 foreach bi,bj ∈ OM do
9 O' ← swapBlocks(bi,bj,OM);
10 if f(O') < f(OM) then
11 OM ← O';
12 end

13 end

14 end

15 until f(OM) converges ;
16 return OM

Since there is no polynomial time algorithm that minimizes these criteria, a
heuristic approach has been taken in GenomeRing, using an iterative proce-
dure that evaluates a cost function f . Thereby, f measures the costs given the
current conformation of segments. The costs themselves can vary depending
on the user-de�ned minimization strategy. However, the heuristic is the same
irrespective of the cost function. Given a speci�c cost function and an initial
segment ordering, the heuristic procedure iteratively tries to decrease the cur-
rent costs. A concrete pseudocode description of the whole procedure is given
in Algorithm 1. With this strategy an overall worst case runtime of O(n2 · b2)
was achieved, where n corresponds to the number of aligned genomes and b to
the total number of blocks in the SuperGenome. In contrast, a naive approach
enumerating all possible segment conformations and choosing the optimal one
afterwards, would have resulted in a runtime of O(b!).

6.3 Integration into Mayday

The integration of GenomeRing into the Mayday visual analytics platform
o�ers several di�erent possibilities for extending the visualization with addi-
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tional information, such as gene expression data. This allows, for example,
to visualize genes of interest in the context of a whole genome alignment. In
Mayday, such genes can be identi�ed by applying a statistical test or based on
further meta-information. In order to map genes to blocks in GenomeRing,
chromosomal locations have to be available. In Mayday, such information
is stored in so-called meta-information objects (MIOs). Speci�c Visualizer

objects, that are able to read and process MIOs provide functions that allow
visualization without prior knowledge about the information content. Hence,
to visualize genes in GenomeRing, shared instances of Visualizer objects
can be created using a common ViewModel. All visualizations sharing the
same Visualizer are then linked to each other. This means that, for exam-
ple, selections made on encapsulated objects in the Visualizer in one of the
connected plots, result in a parallel selection of the same objects in all the
other linked visualizations. In addition to that, GenomeRing makes use of
Mayday's integrated export functionalities. This allows the user to generate
high quality images in various bitmap formats, such as PNG, TIFF, or JPG in
arbitrary resolution, as well as in vector graphics formats (SVG, PDF) without
any loss in quality.

6.3.1 Gene Visualization

In GenomeRing, each path representing a genome in the alignment can be
linked to a visualizer object from a Mayday visualization showing a speci�c
set of ProbeLists. All genes contained in these ProbeLists are then drawn
on top of the respective path. To be able to distinguish between the path
itself and the genes drawn on top, the color of the path is brightened up, while
genes are drawn with the color value de�ned by the respective ProbeList. This
leads to a dashed look of the genome path. With this strategy, genomic co-
locations of genes in di�erent genomes can easily be identi�ed. Furthermore,
genes mapping to genomic islands can easily be spotted, allowing for a quick
identi�cation of pathogenic markers. This is shown in �gure 6.5 for a multiple
whole genome alignment of four di�erent Campylobacter jejuni strains, namely
C. jejuni RM1221, C. jejuni NCTC 11168, C. jejuni 81-176, and C. jejuni
81116. For these bacteria, so-called CJIEs (C. jejuni integrated elements)
have been identi�ed previously [44, 119]. In the GenomeRing visualization
one can easily locate gene containing genomic islands that may be linked to
pathogenicity. For example, block 4 in �gure 6.5 corresponds to CJIE4, which
contains phage-related proteins.

6.3.2 Single Nucleotide Variation Visualization

Since all Visualizer objects are managed through Mayday, it is possible to
include single nucleotide information in GenomeRing provided by Reveal.
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Figure 6.5: GenomeRing visualization of a multiple whole genome align-
ment of four di�erent Campylobacter jejuni strains. Gene information has been
mapped to and drawn on top of the circle segments for each genome to allow for
the comparison of the overall gene content between the bacteria.

To do so, a SNV based visualization of a speci�c SNVList has to be created
in Reveal. The respective Visualizer will then be available in Mayday.
As for genes, the Visualizer can be linked to genomes in GenomeRing

to enable the visualization of SNVs. The visualization itself is performed in
the same way as for genes, however, the color for a SNV can be modi�ed to
distinguish it from a gene. By default black color is used for SNVs. To enable
SNV visualization also on a zoomed out overview, an additional scale factor
has been introduced. This allows the user to scale the region occupied by a
single SNV in GenomeRing to a size that can easily be spotted. The scaling
factor can be adjusted for various zoom levels, providing optimal visualization
of SNVs for all kinds of GenomeRing representations.

6.3.3 Linkage to Mayday's Genome Browser

Mayday has an integrated genome browser [155] (see �gure 6.6) that allows
for the visualization of genes, expression data, genome annotations, meta-
information, such as statistical p-values, as well as mapped RNA-seq reads
using di�erent tracks. The genome browser can thus be used to investigate de-
tailed information about speci�c genomic regions. Using a shared instance of a
Visualizer object between GenomeRing and the genome browser provides
the opportunity to concentrate on speci�c genomic regions from a multiple
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whole genome alignment. To provide this functionality, mouse interactions be-
tween GenomeRing and Mayday's genome browser are linked, if they share
the same Visualizer object. To be precise, a double click on a region within
the GenomeRing visualization results in centering the view of Mayday's
genome browser to the exactly same location. This allows for a linearized vi-
sualization of regions of interest and additional annotation of such regions using
various supporting meta-information, either imported from external sources or
generated using functions included in Mayday.

A

B

C

D

Figure 6.6: Example of Mayday's track-based genome browser. Four di�erent
tracks are shown, which are as follows: (A) genomic coordinates of the visualized
genome; (B) expression value heatmap of di�erentially regulated genes; (C) pro-
tein coding gene annotation; (D) wiggle track of corresponding RNA-seq data
for the reverse strand. This �gure has been adapted from [58].

6.4 Interaction Possibilities

Interaction with a visualization o�ers the possibility to explore various
aspects of the visualized data in more detail. In GenomeRing several
di�erent interaction features have been integrated, including free rotation,
zooming and panning by combinations of keyboard keys and the mouse
wheel. Furthermore, modi�cations to the visualization itself can be made,
in order to enhance the visual experience. For example, the visualization of
connecting paths between segments can be switched o�. This is especially
useful, if keeping track of the order of segments is of minor importance in
comparison to the di�erences between individual blocks in the SuperGenome.
Furthermore, the spacing between segments can be adjusted, which also helps
in the identi�cation of similarities and di�erences between segments. If the
paths are of interest, visual clutter can still be an issue, even when a block
order optimization has been performed. To address this issue, two di�erent
strategies have been implemented. Firstly, the user can adjust the spacing
between indirect connections, as well as modify the width of each path with
the combination of keyboard keys and the mouse wheel. This helps in keeping
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track of each respective path, even when color values are very similar.

The second strategy focuses on the visualization of the ordering of the
segments. Providing additional freedom in the placement of paths, as
discussed above, can in some cases lead to confusion regarding the directions
of the paths, especially when there are many blocks in the SuperGenome.
This has been addressed in GenomeRing by path animations, that can
interactively be switched on. The animation of paths is realized using a
dash pattern that moves along the direction of the respective path, traveling
from the genomes start position to its end position. This concept allows
the user to better understand the complex structure of the multiple whole
genome alignment. Furthermore, mouse interactions include the display of
tooltip information for speci�c genomes. This can be achieved by pointing
the mouse cursor over a position of interest in one of the segments for more
than 2 seconds. The displayed tooltip then shows the exact coordinates of
the chosen position in the respective genome as well as in the SuperGenome.
In addition, general information about the chosen block is given, such as the
size of the block, its index in the SuperGenome, or the relative o�set of the
mouse position from the blocks start position in base pairs. If additional
meta-information is visualized at the mouse location, as for example genes,
or single nucleotide variations, information on the respective element, such
as the gene or SNV identi�ers or the exact location in base pairs, are also
shown in the tooltip. The visualization of such meta-information can be
interactively turned o� for speci�c genomes to improve visual clarity if needed.

As mentioned above, visual clarity can additionally be improved by changing
the order of the segments. Besides the introduced optimization strategies, the
arrangement of individual segments can be interactively modi�ed by the user.
Each segment is assigned a label during the SuperGenome construction. By
default, numbers starting with 1 are used to assign unique identi�ers to each
block. However, in the GenomeRing visualization, the labels of the blocks
can be changed to a user-de�ned value, or hidden completely. In addition,
genome colors as well as genome identi�ers can be modi�ed. This circumvents
additional cumbersome post-export modi�cations and guarantees publication
ready high quality images. To assist the user with all the provided interaction
features, an overlaying help page showing all the available keyboard and mouse
commands can be displayed using the F1 key on the keyboard within the
GenomeRing visualization.
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6.5 Application Examples of the Block Order

Optimization Strategies

In this work a block order optimization heuristic for the GenomeRing

visualization has been developed that makes use of di�erent optimization
criteria. Although the general algorithm stays the same for each optimization
criterion, the outcome varies signi�cantly and each strategy emphasizes
di�erent data aspects and helps to clarify speci�c questions to the data. In
the following, example applications for each of the four strategies are shown
that demonstrate their capability to increase visual clarity for the individual
GenomeRing visualizations.
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Figure 6.7: GenomeRing visualization based on a multiple whole genome
alignment of three di�erent Helicobacter pylori strains. A shows the default
ordering of the blocks as provided by the SuperGenome; In B the blocks have
been rearranged with respect ot the natural ordering of blocks in the genome of
the H. pylori J99 strain.

The simplest sorting strategy is to use one of the genomes as a template for
the block ordering. With this strategy visual clarity is guaranteed for the
selected genome and comparisons to the other genomes can easily be made.
An example, showing how changing the block order based on a template
a�ects the overall topology is shown in �gure 6.7 for a multiple whole genome
alignment of three di�erent Helicobacter pylori strains (H. pylori 26695, H.
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pylori J99, and H. pylori P12), with a minimal block length of 20kb. Despite
the risk of increasing visual clutter, this strategy is helpful in making decisions
on how genomes di�er in comparison to a speci�c genome of interest. This
enables, for example, to distinguish between genomes with only small and
those that show large di�erences, either in the number of structural changes
or in the sizes of these events. In �gure 6.7 H. pylori J99 has been chosen as
a reference. One can easily see that H. pylori P12 shows no di�erences to H.
pylori J99 with respect to the chosen minimal block size, but H. pylori 26695
has some larger structural modi�cations and inversions.
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Figure 6.8: GenomeRing visualization based on a multiple whole genome
alignment of six Streptococcus pneumoniae strains. A shows the default block
ordering as de�ned by the SuperGenome; B shows an optimized version, where
the number of jumps and interchange connections has been minimized to improve
visual clarity.

The second ordering strategy minimizes the number of jumps and interchange
connections. This results in a maximization of the number of direct connec-
tions between blocks in the SuperGenome and is thus well suited to visualize
continuous parts shared by the underlying genomes. In �gure 6.8 a multiple
whole genome alignment of six di�erent Streptococcus pneumoniae strains (S.
pneumoniae A026, S. pneumoniae G54, S. pneumoniae 70585, S. pneumoniae
R6, S. pneumoniae D39, and S. pneumoniae ST556) with a minimal block
size of 15kb is shown. As can bee seen, after optimization continuous blocks
between the majority of strains in the alignment stand out clearly. Thus, this
optimization strategy assists with the identi�cation of consecutive, constant
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parts within the genomes in comparison to variable regions.
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Figure 6.9: GenomeRing visualization based on a multiple whole genome
alignment of four Campylobacter jejuni strains. A shows the block ordering
based on the RM1221 strain; B shows an optimized version where the number
of skipped blocks has been minimized to improve visual clarity for the comparison
of C. jejuni RM1221 to the other strains. Genomic islands can easily be identi�ed
after block order optimization.

Figure 6.9 shows a multiple whole genome alignment of four Campylobacter
jejuni strains (C. jejuni RM1221, C. jejuni 81-176, C. jejuni NCTC11168,
and C. jejuni CG8421) with a minimal block size o 2kb. For C. jejuni
it is known that pathogenicity or drug resistance is mostly introduced by
horizontal gene transfer, which can be seen as so-called genomic islands
within a multiple whole genome alignment. Thus, it is expected that the
genome alignment does not contain larger structural changes, but mutliple
di�erent insertion elements that are contained in only one of the genomes.
In �gure 6.9 (A) blocks have been arranged according to the RM1221 strain,
with the intention to improve comparability with respect to that strain.
However, the template ordering strategy does not work well in this case
leading to visual clutter, which makes it di�cult to follow the respective
arcs. Since in this case, mostly insertions between the visualized genomes
are expected the skipped block ordering strategy suits best to improve
visual clarity, as can be seen in �gure 6.9 (B). After optimization individ-
ual genomic regions stand out clearly and genome paths can easily be followed.

The last strategy focuses on the improvement of the visualization with respect
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NC_003923 (S.aureus MW2)NC_002953 (S.aureus MSSA 476) NC_002952 (S. aureus MRSA252)NC_007795 (S.aureus NCTC8325)
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Figure 6.10: GenomeRing visualization based on a multiple whole genome
alignment of four Staphylococcus aureus strains. A shows the default block
ordering as speci�ed by the SuperGenome; B shows an optimized version, where
the total arc length criterion has been used to improve visual clarity. Block
labels have been removed to reduce visual clutter.

to the overall complexity. This is achieved by minimizing the length of the
arcs that have to be drawn. Small arcs can easily be followed by the user,
while for larger ones it is more di�cult to keep track of, especially if these
are drawn in close proximity to each other. Thus, ordering the blocks of the
SuperGenome in a way that small arcs are preferred over large ones, leads
to more comprehensive topologies. Consequently, this strategy is well suited
to gain appropriate overviews of the visualized data. Figure 6.10 shows two
GenomeRing visualizations for a multiple whole genome alignment of four
Staphylococcus aureus strains (S. aureus NCTC8325, S. aureus MSSA476, S.
aureus MRSA252, and S. aureus MW2) with a minimal block size of 2kb.
While the default ordering of blocks does not reveal the general structure of
the multiple whole genome alignment very well, the optimized version clearly
shows the similarities and dissimilarities between these strains with only
minimal visual clutter. By applying additional interaction features after block
reordering, such as zooming or highlighting path directions, a comprehensive
picture of the structures in the multiple whole genome alignment can be
obtained.

To summarize, each of the presented block ordering strategies provides a more
comprehensive visualization of the respective multiple whole genome align-
ments. However, the choice of which ordering strategy to use largely depends
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on the questions one wants to answer and on the individual structure of the
underlying multiple whole genome alignment. Consequently, a single opti-
mization strategy would not su�ce to provide appropriate insights into the
manifold patterns that are often hidden in the data.

6.6 Conclusion

The GenomeRing visualization, which is based on the SuperGenome con-
cept, o�ers new ways of assessing structural similarities and di�erences between
genomes. However, visual clarity of this visualization largely depends on the
arrangement of the blocks within the visualization itself. Due to GenomeR-
ing's �exible design, the order of the blocks does not encode any information,
but can be used to increase visual clarity. In this work, an algorithm com-
prising three di�erent possible optimization criteria has been developed that
helps in �nding optimal arrangements for user speci�c needs. As was shown
in section 6.5 the right choice for an optimization strategy largely depends on
the questions one wants to answer with the visualization. Thus, each of the
three optimization criteria can be useful in an appropriate analysis scenario.
Clearly, the block sorting heuristic does not remove visual clutter completely.
Depending on the underlying data, i.e. the complexity of the multiple whole
genome alignment, complete removal of visual clutter is impossible. Thus, the
intension of the heuristic described in this work is to improve the visual ex-
perience with GenomeRing, in order to clarify structural di�erences as good
as possible. In cases, where visual clutter still remains an issue after block
order optimization, the user is provided with functionalities to interactively
change speci�c characteristics of GenomeRing. Especially, the possibility to
animate the genome paths in order to highlight the direction by which blocks
are traversed, is a very powerful tool to better understand genome structure.
Thus, the block order optimization strategy together with the interaction pos-
sibilities introduced in this dissertation provide a comprehensive solution for an
improved visual experience, when analyzing multiple whole genome alignments
with GenomeRing.
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tion and Comparative Analysis

of Ancient and Modern Bacte-

rial Genomes

The development of the NGS technology has created new opportunities for
genetic research. Due to the decreasing sequencing costs, the study of whole
genomes has become very attractive. Also meta-genomic approaches have
been followed, where a whole collection of di�erent species is sequenced at
once. This is especially useful for the study of bacteria, since a clear separa-
tion of bacterial DNA from environmental samples is often di�cult or even
impossible. However, NGS is not restricted to samples from modern DNA.
It is applicable to all sources of DNA including conserved DNA samples that
are hundreds or thousands of years old. Such ancient DNA (aDNA) samples
can provide insight into the evolutionary history of organisms. Furthermore,
comparing the information gained from such samples with information from
modern DNA can help in the clari�cation of still unexplained historical events,
such as undocumented epidemics or plagues. Moreover, the evolution of bacte-
rial pathogenicity is of great interest, since diseases such as leprosy have been
devastating many years ago leading to the death of hundreds of thousands of
people. Investigations of ancient graves now provide the possibility to study
the concrete factors of mass mortality, which mostly go back to bacterial
infections. Due to the lack of knowledge and the fast outspread of pathogenic
microorganisms, such events are often poorly documented. Hence, using NGS
can help in the description of untraced historical events and identify the
reasons of mass mortality by assessing the remaining genomic information
content. The goal is to identify single nucleotide variations (SNVs), that enable
researches to answer questions on the genetic background of speci�c organisms.

In this context, Bos et al. showed that sequencing coupled with a sophisti-
cated bioinformatic analysis allows for the reconstruction of the genomes of
ancient human pathogens [18]. They also described that when dealing with
aDNA, various problems have to be faced. First of all, DNA does not stay
in its original condition over time. In fact, it gets degraded, which leads to
misincorporations as a consequence of nucleotide deamination. In addition
to that, the aDNA content of an environmental sample, i.e. a sample taken
from water, soil, a corpse, or any other biological material, is usually small
and likely to be contaminated with DNA from modern organisms. Thus,
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appropriate procedures are needed to enrich the DNA fragments of interest
and subsequently to authenticate their ancient origin. Another issue is the
fragmentation of DNA over time, leading to small DNA molecules with mean
lengths between 60 and 150 base pairs [117], but this number can vary greatly
from sample to sample. Furthermore, sequenced reads from such fragments
usually show base calls with low quality Phred scores (low probability that
the corresponding base call is correct), thus sequencing errors are very likely.
A possible approach to address the quality issue has been applied in previous
studies of aDNA [18]. The idea is to generate redundant information during
sequencing in order to increase the overall quality of the resulting reads. This
is achieved by using paired-end sequencing. Due to the short DNA fragment
sizes of aDNA, the forward and reverse reads often overlap, i.e. showing a
negative insert size. This redundant information can be used to improve the
overall quality of the sequencing by applying merging procedures that generate
single reads out of read pairs that cover the whole sequenced fragment (see
�gure 7.1 for an example). Naturally, only those bases with higher quality
in the overlapping region are used for consensus read generation. A further
strategy to improve the quality of reads for a subsequent mapping analysis is
quality trimming of reads that could not be merged, since sequencing quality
usually decreases towards the 3' end of the read. Last but not least, care has
to be taken during the mapping process itself, in order to �nd a good trade-o�
between mapping speci�city and sensitivity. Hence, parameters have to be
chosen, such that a balance between false-positively mapping reads and false
negative reads is achieved.

Although all these practices are highly useful to improve the overall quality
and thus enable researches to study not just modern, but also aDNA, there
is currently no satisfying solution available for high throughput analysis of
multiple di�erent samples. This renders it di�cult to study samples in paral-
lel. Especially connecting information from sequenced samples with already
existing genome assemblies is challenging. In such cases, a system is required
that connects the di�erent steps needed for read pre-processing, mapping
and subsequent analysis. To address this need, Kircher et al. introduced a
pipeline that covers read pre-processing and mapping, which is suited for
aDNA samples [80]. However, this pipeline is very time and disk intensive and
therefore not suitable for projects covering more than a handful of genomes.
Especially the read merging step in the Kircher pipeline is extremely slow.
One reason for that is the lack of parallelization. Furthermore, post-analysis
methods are not covered. These comprise the reconstruction of whole genomes
by e.g. mapping assembly, as well as the subsequent phylogenetic analysis
of the reconstructed genomes together with already existing genomes. Here,
the term mapping assembly refers to the reconstruction of a genome by
incorporating nucleotide variations into the genome of a reference organism.
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Figure 7.1: Example of the read merging procedure. First sequencing adapters
are clipped from the 3' end of the forward and reverse read. Afterwards the
reverse complement of the clipped reverse read is calculated and merged with
the clipped forward read, such that the base with the higher quality phred score is
chosen at each position for the �nal merged read. F-Read represents the forward
read and F-Qual the corresponding quality string. R-Read and R-Qual are
de�ned equivalently for the reverse read and M-Read and M-Qual equivalently
for the merged read.

With this approach, variation e�ect prediction, based on reference gene
annotations, is possible. Thus, valuable information on a genes functional-
ity can be gained, or conclusions about a genes expression state can be inferred.

In order to provide an automated and e�cient processing of the described
analysis steps, a pipeline has been implemented together with Alexander Her-
big [57] that covers all of the mentioned methods. Furthermore, it addresses
limitations of the Kircher pipeline, such as the time and disk consumption
problem. In the following, the di�erent steps of the pipeline are explained and
special attention is drawn towards the merging step, for which a new soft-
ware solution, called ClipAndMerge, has been developed in this thesis. For
the merging procedure itself comparisons have been made to already existing
approaches. A prove of concept application of this pipeline has been described
in our corresponding paper for the comparative analysis of medieval and mod-
ern Mycobacterium leprae strains [144]. There, detailed information is given
on how the pipeline can be used to address the speci�c needs of ancient and
modern DNA processing and analysis. In this dissertation, two additional sce-
narios are described, demonstrating the manifold applicability of the pipeline
to modern as well as ancient DNA. The �rst application, which will be ex-
plained in section 7.2, focuses on the study of the pathogenicity of di�erent
Treponema pallidum strains, which cause syphilis, one of the most devastating
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diseases in human history. Syphilis has been and is still a major threat to hu-
man health with millions of new cases worldwide [116]. Studying the genetic
di�erences of syphilis associated bacterial strains on a population based level
may provide major insights into the evolution of this bacterium. Hence, the
methods described in this chapter have been used on DNA from samples col-
lected from di�erent countries all over the world to elucidate the population
genetic patterns of Treponema pallidum. In addition to that, a microarray
based DNA capture technique is described in chapter 8. There, it is shown
how this pipeline in combination with the methods developed for DNA cap-
turing helps to process DNA sequencing data from ancient as well as modern
pathogenic organisms.

7.1 Individual Pipeline Steps

The main focus of the following pipeline lies in the automated, e�cient and
parallel processing of ancient as well as modern DNA samples. It does not
just provides insights into the evolutionary events that occurred over time,
but also gives rise to a comparative analysis including already existing genome
sequences from organisms with large phylogenetic distances. During the exe-
cution of the pipeline, several di�erent analysis steps are carried out, including
quality assessment of the raw reads, adapter clipping and subsequent read
merging and mapping. Based on the mapping results, draft genomes can be
created, which allow for the application of advanced analyses not included in
the pipeline directly. An example would be a phylogenetic analysis based on a
multiple whole genome alignment. Such an alignment is necessary to allow the
user to include already existing genomes, besides the created drafts, for a fol-
lowing comparative analysis of the di�erences in each of the sample genomes.
Furthermore, the e�ects of variations on coding and non-coding genes can be
assessed through the pipeline. The connection of the individual steps has been
realized using bash scripts, which only require the raw input FASTQ �les in
order to carry out a whole analysis. Figure 7.2 shows an overview of all the
contained components of the pipeline and illustrates how the di�erent compo-
nents are connected to each other.

7.1.1 Read Preprocessing and Mapping

Quality Assessment Assuring a good read quality is crucial for the success
of the read mapping procedure. Only if the read quality is high, it can
be guaranteed that reads get mapped correctly if at all. There are several
existing tools for quality control of raw reads in the FASTQ �le format. An
example is fastx_quality_stats contained in the fastx toolkit [84], which is
a console-based tool without graphical output for interpretation. Another
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Figure 7.2: Overview of the di�erent steps of the ancient and modern bacterial
genomes processing pipeline. Blue boxes indicate the individual step in the
pipeline and corresponding green boxes highlight the tool that is used at the
respective step. Arrows show the direction of the pipeline. The dashed box
shows the application of a phylogenetic analysis as a follow up step to the pipeline
itself.

possibility is the NGS QC Toolkit [120] written in PERL, which performs
quality control analyses for the Illumina and 454 platform.

For this pipeline, the FastQC tool [4] is used, which provides several di�erent
quality measures, such as assessment of the per base sequence quality, the k-
mer content, as well as an adapter contamination estimation. These measures
are combined with informative graphs and charts to improve the interpretabil-
ity of the quality measuring results. In general, a per base quality Phred score
of ≥ 20 is wanted to decrease the probability of mismatches during read map-
ping. Furthermore, the k-mer content should be homogeneously distributed
and no adapters should be left after adapter clipping. The quality of the
reads is assessed at two di�erent stages during the processing of the pipeline,
namely directly on the raw reads and once again before mapping, after all
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pre-processing steps have been performed. This second quality assessment al-
lows for an additional control of the success of the read merging and quality
trimming procedure described in the following.

Adapter Clipping, Read Merging and Quality Trimming Read
merging is a necessary step to improve the overall quality of the reads in
order to prevent mismatches in the subsequent read alignment, which may
lead to false positive variant calls in later analyses. Thus, this step is very
important, since it modi�es the reads and therefore has large in�uence on
the subsequent mapping of the reads to a speci�ed reference genome. In
consequence, it also in�uences all analysis steps relying on the mapped reads.
To perform the merging step, the ClipAndMerge tool has been implemented
in the context of this thesis that is capable of clipping adapter sequences,
merging clipped paired-end reads if possible and trimming non-merged reads
based on a user-de�ned quality threshold. The �rst step includes the removal
of sequencing adapters. To do so, a clipping strategy was developed that
is motivated by the fastx toolkit [84]. Clipping is performed for forward
and reverse reads in parallel, making use of multi-core systems. In order to
identify adapter sequences at the 3' ends of the reads, a semi-local alignment,
based on the Smith-Waterman algorithm [147], is calculated between the
adapter sequence and the read. If an alignment satis�es the user-de�ned
threshold for the minimal alignment length, all bases between the start
position of the alignment and the 3' end of the read are removed. However,
in some cases it may occur that the start position of the alignment and
the start position of the adapter sequence are di�erent. In such cases, the
alignment start position is shifted towards the 5' end of the read by the
number of unaligned bases at the 5' end of the adapter sequence. Although
this strategy is very conservative and may trim o� bases that do not belong to
the adapter, it also ensures that no adapter bases are left in the read sequence,
which is important for the subsequent merging step. Only then it is pos-
sible to prevent reads from being merged due to overlapping adapter sequences.

As mentioned above, the adapter clipping procedure is performed in parallel
for the forward and reverse reads, using separate threads and combining the
results of the clipping afterwards in a third additional thread. For the merging
part, �rst the reverse complement of the reverse read has to be calculated.
Then a maximal overlap between the 3' ends of the forward read and the
reverse complement of the reverse read are calculated by starting with the
largest possible overlap and a pairwise comparison of the nucleotides in the
overlap region. The overlap gets accepted, if the edit distance in the overlap
region is below a user-de�ned threshold and if the size of the overlap region
is larger than a user-de�ned minimal overlap size. Default parameters require
a minimal overlap of 10 bases with at most 5% mismatches in the overlap
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region. Bases with very low sequencing quality are treated as unde�ned
nucleotides and do not contribute to the edit distance in the temporary
overlap region. By default, all bases with a Phred score ≤ 5 are treated as
unde�ned. The Phred score is a measure for the sequencing quality of a base
and varies between di�erent sequencing technologies. For state of the art
Illumina platforms this score typically ranges from 1 to 41. If the criteria for
an overlap cannot be ful�lled, the temporary overlap is reduced by one base
and calculations are repeated. This is done by shifting the reverse read along
the forward read, until a valid overlap is found. If no overlap exists given the
quality criteria, both reads are further processed as single-end reads. In case
an overlap can be found, the two read sequences are merged into a single read
sequence, where the bases in the overlap region are chosen such that for each
base the one with the higher sequencing quality, either in the forward read
or in the reverse read, is taken. If the merged read is longer than the user
de�ned minimal read length, it is reported as a single-end read in the �nal
output FASTQ �le. The default value for the minimal read length is 25 bases.
If no overlap ful�lling the quality criteria can be found, both, the forward as
well as the reverse read are reported in the output �le.

Special care has to be taken of reads, where the pairing read, either the
forward or the reverse read, has been removed during adapter clipping,
because it become shorter than the minimal overlap required for merging. In
such cases, only one read remains and no merging can be performed. Such
reads are treated as single-end reads for further processing. After the merging
step, quality trimming of the reads can be performed before the reads get
written to the output FASTQ �le. This is, however, only necessary for the
non-merged reads, since read quality is usually good at the 5' ends and drops
when moving to the 3' ends of the reads. Bases are therefore trimmed from
the 3' end of single-end reads until a user-de�ned threshold is satis�ed, which
by default is a Phred score of at least 20. If quality trimming is selected,
all non-merged reads undergo this procedure before they are written to the
output FASTQ �le. Here, again, a �lter for minimal read length can be de�ned
to ensure that all output reads ful�ll the quality criteria for mapping.

To demonstrate the power of the ClipAndMerge tool developed in this disser-
tation, a comparison between ClipAndMerge and �ve other state of the art
adapter clipping and merging tools has been made. These tools have been se-
lected based on their capability to merge paired-end reads with a user-de�ned
minimal quality. One of the tools, that was used in various ancient DNA
analysis projects [81, 127, 146] is MergeReadsFastQ by Martin Kircher [80]
that is implemented in the Python programming language. It o�ers adapter
clipping for paired-end reads, as well as the identi�cation of overlaps be-
tween corresponding read pairs. FLASH [96] follows a similar approach as
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MergeReadsFastQ, but does not perform adapter clipping. For the adapter
clipping step, tools such as CutAdapt [100] can be used. FLASH focuses on
high performance merging of overlapping paired-end reads with respect to
the overall runtime. It has therefore been parallelized to take advantage of
multi-core systems. The third tool in this comparison is SeqPrep [150], which
was designed for Illumina reads and is therefore limited to these. It also o�ers
both adapter clipping as well as merging of overlapping paired-end reads. In
contrast to most other adapter clipping algorithms, SeqPrep o�ers a lot of
di�erent parameters to control the actual local alignment step for adapter
identi�cation and can, in addition, deal with potentially high mismatch
rates during adapter clipping and read merging [150]. leeHom [134] uses a
Bayesian maximum a posteriori probability approach to tackle the problem
of adapter clipping and merging of overlapping paired-end reads. In contrast
to the other tools, leeHom, does not separate the process of adapter clipping
and merging, but considers both steps within one probabilistic model [134].
Finally, AdapterRemoval [92] can process both single- and paired-end reads
and performs adapter removal with subsequent read merging. In addition to
the other tools, AdapterRemoval can also trim low quality bases from the
3' end of a read if necessary. Furthermore, adapter clipping is possible from
the 5' and the 3' end, which makes AdapterRemoval a very �exible tool for
di�erent experimental settings and sequencing platforms [92].

Figure 7.3: Overview of the six di�erent categories that were used for the
comparison of adapter clipping and overlapping paired-end read merging tools.

For a fair comparison between all mentioned tools, the respective default
parameters for clipping and merging have been adjusted such that the
following three criteria are ful�lled. Firstly, the overlap region has to contain
at least 10 bases in order to merge two reads. In addition to that, the
number of mismatches in the overlap region is not allowed to be higher
than 5% with respect to the overlap size. And the third criterion requires
a minimal overall read length of 25 bases for merged reads as well as
non-merged reads. For tools, where one of these requirements could not be
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de�ned, �ltering of the reads was performed after merging, if possible. Com-
parisons have been made for six di�erent categories, as illustrated in �gure 7.3.

Of these categories, the number of merged reads is a direct measure of the
merging e�ciency. However, a high merging rate does not su�ce to evaluate
if the merging was correct, i.e. the two merged reads really originated from
the same DNA fragment. For this purpose, the mapping e�ciency, in terms
of the mapping rate for merged reads, has been calculated. For merged reads
that can be mapped to the reference genome it is very likely that the merging
was correct, while unmapped reads do either not originate from the reference
organism or merging let to an arti�cial DNA fragment. Furthermore, also
the total number of mapped reads is calculated in order to provide a quality
measure for the adapter clipping and quality trimming step. If the adapters
are clipped with high accuracy, followed by quality trimming of low quality
bases from the 3' end, the probability to map the resulting read to the
reference genome is increased. In contrast, remaining adapter sequences or
bad quality bases lead to mismatches in the alignment and consequently to
a reduced mapping rate. Additionally, the mapping quality is a measure
for the number of mismatches, insertions, deletions, and soft clipped bases
introduced in the alignment. This number is minimal if technical biases due
to the read preprocessing can be excluded. Thus, counting the reads with a
high mapping quality and comparing this number between the di�erent tested
tools allows for the evaluation of the capability of producing high quality
reads. Furthermore, for downstream analyses the genome coverage is a very
important measure, since many applications, as for instance variant calling,
can only be performed if the genome coverage is large enough. Therefore,
this measure has been taken into account for the merging tool comparison.
Last but not least, one of the most important measures is the overall runtime.
Although, high quality reads are preferable in comparison to lower quality
reads in general, the amount of time that has to be spent in order to achieve
a high quality plays an important role. One might, for example, be willing to
accept a slightly lower quality, if in consequence the overall runtime for the
read preprocessing is largely reduced. This makes clear, that a good merging
tool has to �nd a trade-o� between these categories, rather than concentrating
only at a single one.

Of all tested tools, leeHom is the only one that does not provide the possi-
bility to distinguish between merged and non-merged reads after processing.
Furthermore, there is no possibility to de�ne criteria for the actual overlap
region or to �lter out reads shorter than 20 base pairs. Therefore, not all of
the measures described above could be applied.

For the mapping step, the BWA aln/samse algorithm has been used with
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Figure 7.4: Mapping evaluation of the ClipAndMerge tool in comparison to
�ve other tools capable of clipping sequencing adapters and merging overlapping
paired-end reads. Blue bars show the total number of mapped reads and orange
bars the percentage of mapped reads with respect to the total number of input
reads.

default parameters. The tools have been tested on �ve di�erent data sets from
Mycobacterium leprae samples, for which it could be shown that they contain
DNA of ancient origin [144]. The runtime has been measured on a machine
with 64 cores and 512 gigabytes of memory. Detailed information about the
results of each measurement, for each of the tested tools, is summarized in
table A.4 in the Appendix. The results show that ClipAndMerge outperforms
the other tested tools in most of the categories for the �ve data sets.
Figure 7.4 shows the total number of mapped reads for each of the tested
tools and data sets used for the comparison. One can see that ClipAndMerge
outperforms the other tools or shows at least comparable numbers. The
only tool that had a slightly higher number of merged reads in three of the
�ve datasets is MergeReadsFastQ. However, in MergeReadsFastQ remaining
single-end reads that cannot be merged, due to the lack of a respective pair
after adapter clipping, are also classi�ed as merged. Due to this fact, such
reads could not be distinguished from truly merged reads in the output �le.
Therefore, the number of merged reads for the MergeReadsFastQ tool is
usually overestimated. Looking at the number of mappable merged reads
(see table A.4 in the Appendix), one can see that again ClipAndMerge
shows comparable results to the other tools. Here, especially SeqPrep and
MergeReadsFastQ have to be mentioned, where SeqPrep stands out as the
overall winner in this category. However, di�erences to ClipAndMerge are
only marginal. For the third category in this comparison, all remaining reads,
single-end as well as merged reads, are used for the subsequent mapping.
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The results show no clear di�erences between the compared tools. All
tools perform equaly well, with a marginal advance for ClipAndMerge and
MergedReadsFastQ. Regarding the number of mapped reads with a quality
above 30, ClipAndMerge shows the highest number in three out of �ve data
sets. For the other data sets MergeReadsFastQ is slightly better. These
results can also be seen in �gure 7.5. However, at this point it has to be
mentioned that MergeReadsFastQ performs a quality adjustment for merged
reads, which does not only include the region of the actual overlap. This
procedure is guided by assigning identity values to each of the bases and
quality is then adjusted based on these estimated identities, which usually
leads to higher qualities at the 5' ends and consequently to a larger number
of reads with a mapping quality above 30. Although ClipAndMerge does
not adjust Phred scores outside the overlap region, results show a compa-
rable number of high quality mapping reads with respect to MergeReadsFastQ.

Figure 7.5: Mapping quality evaluation of the ClipAndMerge tool in com-
parison to �ve other tools capable of clipping sequencing adapters and merging
overlapping paired-end reads. Blue bars show the total number of mapped reads
with a mapping quality above 30 and orange bars show the percentage of mapped
high quality reads with respect to the overall number of input reads.

Regarding the genome coverage, results show that it is a bit lower for the
ClipAndMerge tool in comparison to the other tools, but the di�erences are
only small. Furthermore, a higher number of high quality mapping reads
is usually preferable to a slightly higher genome coverage. Last but not
least, the runtime for adapter clipping and merging has been calculated. For
CutAdapt and FLASH the runtime is composed of the total runtime needed
to clip the forward as well as the reverse adapter, plus the runtime needed
for the merging. When one of the tools did not allow to �lter reads smaller
than 20 base pairs in length, a simple awk script was used and the runtime
of that script was added to the overall runtime, in order to get comparable
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results. Figure 7.6 shows the results of the runtime analysis. One can see that
ClipAndMerge performs second best for all data sets. Only the combination
of CutAdapt and FLASH is a little bit faster. However, regarding the
much lower number of merged reads, this seems not surprising, because fewer
computational steps had to be taken by FLASH during merging. Furthermore,
FLASH makes use of all available 64 cores of the evaluation system, while
ClipAndMerge uses only 4 cores. Nevertheless, ClipAndMerge is nearly on
par with CutAdapt and FLASH and a future version that allows to use more
than 4 cores is expected to outperform all existing tools. In this context,
MergeReadsFastQ has to be mentioned, because it was the only one that
achieved comparable results in the previous categories. Although showing
a good performance with respect to merging, mapping, as well as genome
coverage, the runtime is extremely high, which makes this tool unsuitable for
larger data sets with deeper sequenced samples.

Figure 7.6: Runtime evaluation of the ClipAndMerge tool in comparison to
�ve other tools capable of clipping sequencing adapters and merging overlapping
paired-end reads. Runtime is shown as two measures, the overall runtime needed
for the adapter clipping plus merging measured in minutes and the processing
speed measured in reads per second.

To conclude, the results of the measurements that have been performed show
that ClipAndMerge has a very good overall performance that is, in most cases,
better than for already existing tools with respect to sensitivity during the
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merging step, quality of the resulting reads and most notably overall runtime
with respect to the number of merged reads.

Read Mapping and Duplicate Removal Alignment of preprocessed
reads to a user-de�ned reference genome is conducted using the Burrows-
Wheeler Aligner (BWA) by applying either the BWA aln/samse algorithm [90]
or the BWA mem algorithm. The BWA aln/samse algorithm has proven
to provide a good trade-o� between sensitivity and speci�city in earlier
studies [80] when applied to DNA samples from ancient or modern origin.
While the BWA aln/samse is preferable for short reads, the developers
suggest to use the BWA mem algorithm for reads with lengths of 70bp or
longer. In this pipeline, for both algorithms, the default parameters are used
for the mapping procedure. Details about these parameters can be found
in table A.5 in the Appendix. The resulting SAM �le containing all reads
and information about their mapping position in the reference genome is
then �ltered for mapped reads only and converted into the equivalent binary
format (BAM) for subsequent PCR duplicate removal.

The general strategy for duplicate removal di�ers between single-end and
paired-end reads. For single-end reads only the start position can be used
for potential PCR duplicate identi�cation, due to e.g. quality trimming from
the 3' end. For paired-end reads both the start position of the forward as well
as the start position of the reverse read can be used. This means that the pre-
diction of PCR duplicates is more accurate for paired-end than for single-end
reads. If we would apply this strategy to the merged reads, they would be
treated as single-end reads and only the start position of a merged read would
be considered for duplicate identi�cation. However, merged reads correspond
to a single DNA fragment, which was shorter than twice the length of a single-
end read. In addition, merged reads do not su�er from shortening due to
quality trimming, because the 5' end of a read is usually of high quality. Tak-
ing these two characteristics into account, PCR duplicates for merged reads
are those that agree on both start and end position of the respective read.
The modi�ed tool for removing PCR duplicates on data containing merged
reads, called BetterRmDup, operates in two di�erent ways, depending on the
underlying data. For merged reads, the start and end position are considered
during duplicate identi�cation. For single-end reads only the start position is
considered. The concept of this strategy was developed together with Alexan-
der Peltzer [123], who implemented the tool during his master thesis. Since
remaining paired-end reads in the raw data set are also treated as single-end
reads in the mapping stage, no duplicate identi�cation method for paired-end
reads is needed, because every mapped read is now treated as a single-end
read.
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Authentication of Ancient DNA Samples If samples containing ancient
DNA are analyzed using this pipeline, the DNA that mapped to the reference
genome has to be veri�ed to be of ancient origin. Samples containing aDNA
usually also contain modern DNA. During mapping no discrimination between
ancient and modern DNA is made. Ancient DNA su�ers from degradation,
which are postmortem mutations that increase over time. Substitutions re-
sulting from deamination of cytosine molecules are thereby overrepresented
in aDNA samples. Consequently, conversions from C → T and G → A, re-
spectively, make up the majority of errors. Especially the 5' and 3' ends of
aDNA are a�ected by these mis-incorporations, hence software solutions try
to validate aDNA fragments and to distinguish between modern and ancient
DNA based on the nucleotide substitution patterns of aDNA fragments at
their 5' and 3' ends. For detailed information on nucleotide misincorporations
see [140]. In this pipeline the tool MapDamage is used. MapDamage can
calculate misincorporation patterns from mapped reads given the reference se-
quence. Thereby, the 5' and 3' ends of the reads are tested for all possible
nucleotide conversions and graphs are produced showing the frequency of the
�rst and last 25 bases of the mapped reads in the data set. To guarantee
that the misincorporation results are not in�uenced by the pre-processing of
the reads, such as adapter clipping or quality trimming, only mapped merged
reads are used here, since merged reads basically consist of two 5' ends, one
from the forward read and one from the reverse read, that have not been
touched during the quality control and subsequent improvement methods. If
the mapped reads are of ancient origin, an increased frequency of C → T con-
versions should be observed at the 5' end of the merged reads as well as an
increased G→ A conversion frequency at the 3' end [140]. Figure 7.7 shows a
typical example of a MapDamage misincorporation plot from reads of ancient
origin.

7.1.2 Draft Genome Generation and Multiple Whole

Genome Alignment

Based on the mapping results for each sample in the pipeline, a so-called
mapping assembly is conducted and the genomes of the sequenced samples
are reconstructed. As a starting point of the mapping assembly the reference
genome is taken and single nucleotide variations (SNVs) are introduced based
on the respective mapping result. In order to identify SNVs in comparison to
the reference genome, the Unified Genotypermodule of the Genome Analysis
Toolkit (GATK) is used, which produces VCF [32] (Variant Call Format) �les
that typically contain information about all SNVs that were identi�ed. How-
ever, to be able to use the resulting VCF �le for constructing a draft genome,
the option EMIT_ALL_SITES has to be set. This results in a VCF �le containing
all bases that are also found in the reference genome. Applying this procedure
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Figure 7.7: Typical misincorporation plot showing increased C → T conversion
frequencies at the 5' end of mapped reads that are of ancient origin (red line),
as well as increased G→ A conversion frequencies at the 3' end (blue line). The
y-axis denotes the percentage of sites containing a nucleotide change from the
reference, and the x-axis denotes the relative position along the reads. In this
example, reads originated from an ancient Mycobacterium leprae bone sample,
called SK8 [144].

to each sample in the data set, results in a VCF �le for each sample, which can
be used for genome reconstruction. For this purpose, the tool VCF2Draft [57]
that was implemented by Alexander Herbig, is used to transform the VCF �les
into FASTA �les, allowing the user to additionally apply �lter criteria for SNV
incorporation. By default, a reference base is used, if there are at least 5 reads
covering the respective base and the quality of the call is at least 30. If, in
addition to these parameters, the fraction of the reads containing a variant call
is at least 90%, then a SNV is incorporated instead of the reference base. If
these requirements are violated and neither a reference call nor a variant call
can be made, then the character 'N' is inserted.
However, to distinguish between clear calls and borderline decisions,
VCF2Draft produces three types of FASTA �les:

Type 1: In this FASTA �le the character 'N' indicates bases, where neither a
reference call, nor a variant call could be made.

Type 2: In this �le, the character 'N' is replaced with symbols 1, 2, 3, and
4 encoding A, T, C, and G respectively, to illustrate cases in which a speci�c
call was rejected due to low coverage, although the mapped reads suggest a
speci�c call.

Type 3: Here, all 'N' characters from the type 1 �le are replaced with their
respective reference base, disregarding the fact, that a reference call could not
be made.
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In order to improve the subsequent multiple whole genome alignment with
MAUVE [33], a FASTA �le that does not contain any other symbol than A, T,
G, or C is required. Thus, the FASTA output �les of type 3 are used to proceed.
To conduct the multiple whole genome alignment, the progressiveMauve al-
gorithm included in the MAUVE software is applied. The resulting MWGA is
then imported into the MAUVE alignment viewer and a SNV table is created
using the internal SNP table export feature. Thereby, each position, where at
least one of the genomes in the alignment di�ers from the others, is reported in
the resulting table. Further processing of the table involves the removal of un-
wanted positions for downstream analyses. In general, SNVs in repeat regions
or at positions covered by negative controls are removed during this step. The
last processing step involves the transformation of the resulting SNV table into
formats that can be used by downstream analysis software for further process-
ing. For a phylogenetic analysis of the genomes in the data set, usually a FASTA
�le containing only the relevant variant positions is needed. Programs such
as MEGA [156] or BEAST [37] can then be applied to calculate phlyogenetic
relationships between the di�erent organisms. Another application would be
the prediction of variant e�ects. For example, the software SNPe� allows the
user to predict the e�ect of a speci�c variant on protein coding genes. How-
ever, a speci�c SNPe� [25] compatible input �le is required. To generate the
mentioned �le formats the tool SNPtableAnalyzer [57] that was implemented
by Alexander Herbig, has been included into this pipeline.

7.1.3 Phylogenetic Reconstruction

Inferring phylogenetic relationships can provide great insight into bacterial
history and the evolution of phenotypes, such as pathogenicity. Based on the
results of the multiple whole genome alignment (MWGA), a phylogenetic tree
can be constructed. In this work, the software package MEGA [156] was used
for this task. To perform an analysis with MEGA, the informative positions of
the MWGA have to be in FASTA format, where each FASTA entry corresponds
to an individual sample. The phylogenetic tree is calculated using the Maximum
Parsimony method with the following parameters: the substitution type pa-
rameter is set to Nucleotide and the gaps/missing data treatment parameter
to Partial deletion with a site coverage cuto� of 90%. This allows for an im-
proved calculation regarding gaps introduced by MWGA. Furthermore, to test
the constructed phylogeny, the Bootstrap method is selected with 500 replica-
tions and Subtree-Pruning-Regrafting (SPR) is set for the maximum parsimony
search method. The constructed trees can then be exported either in a vector
based graphics format, such as PDF or in the pixel based formats JPG or PNG.
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7.1.4 Variant E�ect Prediction

Pathogenicity of a microorganisms is often de�ned by the e�ects of its respec-
tive SNVs. Furthermore, the e�ect of a SNV largely depends on its location.
It can, for example, lead to severe changes or complete loss of gene function, if
located in a coding gene. There, it can lead to amino-acid substitutions, that
in consequence in�uence the folding and function of the respective protein.
However, not every nucleotide substitution consequently leads to an amino-
acid change, since most amino-acids are encoded redundantly by more than
one base-triplet. Therefore, one refers to a non-synonymous SNV, if it leads
to an amino-acid change and the term synonymous SNV is used otherwise.
SNPe� [25] is a tool that allows the user to determine, if a SNV is synony-
mous or non-synonymous. In addition, predictions on the impact of SNVs
lying outside of a coding region are made. An example would be a substitu-
tion in a gene promoter region, leading to changes in the expression pro�le
of the respective gene. To apply SNPe� to a set of SNVs, a database with
gene annotations is needed, which can either be downloaded from the respec-
tive website 1, if available, or which can be constructed manually. In order to
include additional features, such as pseudogenes or non-coding genes, which
are by default not included in the pre-calculated databases provided by the
SNPe� developers, a custom database needs to be built. To do so, feature an-
notations for the respective genome are required in the GTF or GFF �le format.
In the pipeline presented in this thesis, the default parameters for a SNPe�
analysis were chosen as suggested by the developers, except for the number
of up-/downstream bases that should be considered for the SNV impact pre-
diction. This number was changed to 100 bases, in order to obtain a better
coverage of the up- and downstream regions of coding genes. As input for an
analysis within this pipeline, the SNPe� speci�c input �le created with the
tool SNPtableAnalyzer is used. The resulting predictions can then once again
be parsed with the SNPtableAnalyzer together with the draft genomes of type
2, in order to distinguish between clear and ambiguous SNV or reference calls.
The result is a SNV table for all samples in the data set, together with e�ect
predictions for each SNV from the SNPe� tool.

7.2 Comparative Analysis of Modern Tre-

ponema pallidum Strains

The pathogen Treponema pallidum subsp. pallidum is a sexually transmitted
spirochete microorganism that causes syphilis. Other human diseases caused
by related Treponema pallidum include yaws (subspecies pertenue), pinta (sub-
species carateum), and bejel (subspecies endemicum). However, syphilis was

1http://snpeff.sourceforge.net/download.html#databases(29/10/2015)
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the most devastating disease in human history, prior to HIV. It has severe
e�ects on the cardiovascular and neurological system and can also facilitate
the transmission of HIV [61, 171]. According to the world health organization
(WHO), in the year 2008, there were more than 36 million people su�ering
from syphilis with around 10.6 million new cases [116]. Nowadays, this dis-
ease is still a threat to human health, since the number of antibiotic resistant
strains rises for second line antibiotics. As of today, there is no e�ective vac-
cine available and the only way to reduce the risk of infection is by abstinence
of intimate physical contact, since even latex condoms do not provide com-
plete protection [151]. Studies on syphilis so far mostly focused on strains that
were propagated in rabbits, since the clinical symptoms are very similar to
humans. In 1998 the �rst whole genome sequence of syphilis was published
from a rabbit isolate [45]. Since then further studies have been conducted and
with the rise of next-generation sequencing technologies another six di�erent
strains, namely Nichols, SS14, DAL-1, MexicoA, Chicago, and Sea81-4 were
published. In addition, three whole genome sequences of yaws became avail-
able, which are Gauthier, CDC2, and Samoa D. However, all these strains are
also isolated from rabbits and not clinical human samples. Although, studies
on clinical samples were conducted [111], these mainly focused on speci�c ge-
netic markers and not on whole genomes. Thus, the information content was
insu�cient for phylogenetic analyses on a population based level. In this the-
sis, the phylogenetic and population genetic patterns of Treponema pallidum
were investigated. In total 64 di�erent T. pallidum pallidum strains, 5 T.
pallidum pertenue, and 1 T. pallidum endemicum strain were made available
from various countries all over the world. In particular, 13 samples originated
from Switzerland, 10 from the Netherlands, another 12 from the Czech Re-
public, and 4 from Argentina. Spain, Samoa, and Iraq contributed each with
1 sample, 11 samples came from the USA, 6 from Austria and UK respec-
tively, as well as 2 from Ghana and another 2 from Indonesia. Preprocessing
of the collected samples involved a genome-wide enrichment using a capture
hybridization approach based on a capture microarray with 60 base pair long
oligos with a 4 base pair tiling density. Paired-end sequencing of the enriched
DNA fragments was performed on an Illumina HiSeq 2500 platform resulting
in read lengths of 150 base pairs per read. The introduced processing pipeline
was then applied to these raw data. However, some intermediate steps had
to be adjusted to ful�ll the speci�c needs of the T. pallidum samples. In the
following, the application of the pipeline and the modi�cations that had to be
made, are explained in detail.

Analysis of Hyper-Variable Regions and Draft Genome Genera-
tion Mapping against the Nichols reference strain (NC_021490.2) using the
BWA aln/samse algorithm resulted in low coverage regions, where read cover-
age dropped below 5 reads, although the rest of the genome showed very high
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coverage values. Visual inspection of these regions in the Integrative Genomics
Viewer (IGV) [135] revealed that the coverage drop is most likely the result of
various SNVs located in these regions. Pairwise whole genome alignments of
the Nichols strain with the 10 other available genome sequences further con-
�rmed that these regions are in fact hyper-variable. Altogether, seven di�erent
gene loci were identi�ed that could not be covered using the default parameters
for the BWA aln/samse algorithm, because the number of allowed mismatches
was too low. These genes were TP0136, TP0326, TP0548, TP0623, TP0897,
TP1029, and TP1031. Simply increasing the maximal number of mismatches,
however, has not been a satisfying solution, because an introduction of false
positive variations in other regions was observed as a consequence. Therefore,
the BWA mem algorithm was used for the mapping step. This algorithm is more
sensitive to regions with a large number of variations, without decreasing align-
ment quality too much for the rest of the genome. Using BWA mem, in total
29 of the samples ful�lled the criteria for draft genome generation. However,
these criteria were relaxed in comparison to the defaults of the pipeline, since
modern DNA is usually of high sequence quality. Thus, only a coverage of 80%
of the genome with at least 3 di�erent reads was required. A list of the remain-
ing strains for draft genome generation is provided in table 7.1. Furthermore,
switching to BWA mem in the pipeline resulted in a su�cient coverage for six of
the seven hyper-variable regions for subsequent variant calling. For TP0136,
however, some reads did not map uniquely, thus SNV calling was not possible.
Further investigations of the TP0136 gene locus showed that a small sub-region
of 96 nucleotides was repeated within this gene. Furthermore, reads mapping
into one of the duplicated regions did not map elsewhere in the genome. How-
ever, since it is unclear whether variations in the duplicated region result from
the �rst or the second copy, inclusion of such variations was not trustworthy.
Variant calling was performed using GATK's Unified Genotyper, following
the pipeline guidelines. However, the parameter for the minimal coverage of a
SNV position was reduced from at least 10 di�erent reads to at least 3 reads.
The default value of 10 o�ers a good trade-o� when ancient DNA, in addition
to modern DNA, is being processed. However, here only modern strains were
analyzed and DNA fragments from the incorporated T. pallidum strains were
expected to result in high read qualities during sequencing. Thus a reduction
of the coverage per variant position was reasonable.

Analysis of 23S rRNA Antibiotic Resistance Variations For T. pal-
lidum the 23S rRNA gene has two operons, where one resulted from a dupli-
cation event from the other. Two mutations in these regions, namely A2058G
and A2059G, have been associated with antibiotic resistance in clinical sam-
ples, i.e. resistance to azithromycine [24]. Therefore, these mutations have
a high clinical signi�cance and should be included in the draft genomes for
downstream analyses. Based on the GFF3 annotation �le available for the
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Table 7.1: Details on the 29 T. pallidum samples that ful�lled the requirements
for draft genome generation (a coverage of ≥ 3 reads for at least ≥ 80% of the
genome). TPA stands for the subspecies Treponema pallidum pallidum and TPE
for the subspecies Treponema pallidum pertenue.

Strain Country Source Subspecies Cov. ≥ 3

S1 Switzerland Clinical TPA 99.98%
S2 Switzerland Clinical TPA 84.07%
S4 Switzerland Clinical TPA 99.53%
S6 Switzerland Clinical TPA 99.82%
S8 Switzerland Clinical TPA 99.99%
S13 Austria Clinical TPA 90.62%
S15 Austria Clinical TPA 100%
S16 Austria Clinical TPA 99.97%
S17 Austria Clinical TPA 99.78%
N12 Netherlands Clinical TPA 97.46%
N13 Netherlands Clinical TPA 95.11%
N14 Netherlands Clinical TPA 95.73%
N15 Netherlands Clinical TPA 99.76%
N17 Netherlands Clinical TPA 99.99%
N19 Netherlands Clinical TPA 97.85%
N20 Netherlands Clinical TPA 99.99%
C27 Czech Republic Clinical TPA 99.99%
C33 Czech Republic Clinical TPA 91.72%
ARG2 Argentina Clinical TPA 99.98%
UW1 USA Rabbit TPA 99.31%
GRA2 Atlanta, USA Rabbit TPA 98.13%
SEA86 Seattle, USA Rabbit TPA 97.22%
BAL3 Baltimore, USA Rabbit TPA 99.95%
BAL73 Baltimore, USA Rabbit TPA 99.74%
NIC 2 Washington DC, USA Rabbit TPA 99.93%
NIC 1 Washington DC, USA Rabbit TPA 100%
GHA1 Ghana Rabbit TPE 98.95%
IND1 Indonesia Rabbit TPE 99.83%
SAM1 (reseq.) Western Samoa Rabbit TPE 99.93%

Nichols (NC_021490.2) strain, the mutations are located in the respective
23S rRNA gene at positions A2110G and A2111G. The Nichols wild-type
(TAGACGGAAAGACCCC), however, does not carry any of these two mu-
tations. A straight forward mapping approach followed by variant calling,
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was not capable of identifying mutations in these regions. This is due to the
fact that reads mapping to two di�erent locations in the reference genome get
assigned a mapping quality value of 0 by the BWA mem algorithm and are
therefore disregarded during the variant calling process. Furthermore, SNVs
from these regions can only be included in the draft genomes, if they appear in
both copies of the 23S rRNA operon, since identi�cation of the correct operon
from NGS data, in the case of only one operon carrying the mutation, is im-
possible. Therefore, all variations that are shared by only one operon had to
be identi�ed and excluded, while variations shared by both operons should be
included in the respective draft genomes. To identify mutations in the 23S
rRNA operons, one operon sequence was extracted from the reference genome
including 200 bases on each side of the operon. Mapping was then conducted
individually for the extracted operon sequence. For variant calling the settings
were modi�ed such that also heterozygous SNVs, with a major allele frequency
< 90%, were included in the resulting VCF �le, since those variations indicate
a di�erence in the two operon sequences. Investigations of the resulting VCF

�les for each strain, however, revealed that there are no heterozygous muta-
tions in any of the strains. Furthermore, with this approach the corresponding
variation A2058G for azythromicine resistance could be identi�ed for 15 of the
29 clinical T. pallidum strains. For three additional clinical samples the cov-
erage was not high enough to make a clear statement, although the mapped
reads suggest that the corresponding mutation is also present. Furthermore,
none of the 29 strains carried the A2059G mutation. As an additional result,
this analysis showed that resistance to the second-line antibiotic azithromycin
is widespread in Europe, involving all European countries in this study. Se-
quencing of further samples from other countries would provide even deeper
insights into the current degree of resistance against azithromycin in Europe.

Multiple Whole Genome Alignment For the multiple whole genome
alignment the 29 T. pallidum strains were supplemented with 11 additional
T. pallidum sequences that were already available from the NCBI genome
database. A list of these 11 strains, together with their respective database
identi�er, the country they were collected from, and their subspecies type is
provided in table 7.2. Furthermore, the genome sequence of Treponema par-
aluiscuniculi was also included, which allows for an out-group analysis during
phylogenetic tree construction. In a �rst attempt, the draft genomes of the 29
sequenced strains were aligned together with the original sequences of the 11
additional reference genomes. Investigations of the resulting alignment showed
major rearrangements, especially for the reference strain MexicoA. In depth
analysis of the resulting alignment revealed that the observed rearrangements
occur basically due to �anking identical sub-regions. These regions corre-
spond to the 16S rRNA, which is found in two di�erent operons, thus the
rearrangements are artifacts of the progressiveMauve alignment algorithm.
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Table 7.2: T. pallidum reference genomes that were obtained from the NCBI
genome database and used to complement the 29 newly sequenced T. pallidum

strains for phylogenetic analysis. In the Treponema subspecies column TPA
stands for Treponema pallidum supsp. pallidum (agent of syphilis), TPE for
Treponema pallidum subsp. pertenue (agent of yaws), and TEN for Treponema

pallidum subsp. endemicum (agent of bejel, endemic syphilis).

Strain NCBI RefSeq
ID

Country Subspecies Source

Nichols NC_021490.2 Washington DC,
USA

TPA Rabbit

SS14 NC_021508.1 Atlanta, USA TPA Clinical
Chicago NC_017268.1 Chicago, USA TPA Rabbit
MexicoA NC_018722.1 Mexico TPA Rabbit
DAL-1 NC_016844.1 Dallas, USA TPA Rabbit
SEA81 NZ_CP003679.1 Seattle, USA TPA Rabbit
Fribourg NC_021179.1 Guinea,

West Africa
TPE Baboon

SamoaD NC_016842.1 Western Samoa TPE Rabbit
CDC2 NC_016848.1 Akorabo, Ghana TPE unknown
Gauthier NC_016843.1 Ghana TPE Rabbit
BosniaA NZ_CP007548.1 Bosnia TEN Rabbit

To prevent such arti�cial rearrangements that would lead to falsely discovered
SNVs, a di�erent alignment approach had to be taken. Since investigations
of the conducted multiple whole genome alignment also showed that the main
di�erences of the included strains result from SNVs, it seemed reasonable to
calculate draft genomes for the already available T. pallidum strains, too. With
this strategy the positions of the SNVs in the genomes correlate with the SNV
positions of the newly sequenced strains, which results in an improved multiple
whole genome alignment without arti�cial rearrangements. To calculate draft
genomes from the available T. pallidum strains, arti�cial reads were produced
by cutting the genome sequences with a 6 base pair tiling approach using a slid-
ing window of length 150. Base pair qualities in the resulting FASTQ �les were
set to the maximum value in the Illumina 1.8 phred score encoding scheme,
which corresponded to the letter I. These arti�cial reads were then used to be
processed by the pipeline in the same way as the 29 newly sequenced strains.
Afterwards, draft genomes for all 40 strains as well as the out-goup T. paraluis-
cuniculi were available for multiple whole genome alignment. Since now all
of the incorporated genome sequences were based on the Nichols reference, no
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large rearrangements were observed and SNV calling using the integrated SNP
table extraction feature in the MAUVE alignment software could be applied
as suggested by the pipeline.
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Figure 7.8: Phylogenetic tree of 40 di�erent T. pallidum strains, including 32
T. pallidum subsp. pallidum strains, 7 T. pallidum subsp. pertenue strains, and
1 T. pallidum subsp. endemicum strain. T. paraluiscuniculi was used as an
out-group. The strains cluster into three di�erent branches, highlighted with
di�erent colored edges (green: SS14-like syphilis, red: Nichols-like syphilis, blue:
yaws, purple: bejel). Numbers on the edges represent the phylogenetic distance
between respective nodes as the absolute number of single nucleotide substitu-
tions. The signi�cance of phylogenetic distances was assessed with bootstrap
values written in italic style next to the internal nodes of the phylogenetic tree.
Colored arcs around the phylogenetic tree display additional meta-information
for each of the strains.

Phylogenetic Analysis The phylogenetic relationships between the 40 sam-
ples, constituted by 29 clinical strains and 11 references, together with 1 out-
group, were computed in MEGA 5 using the Maximum Parsimony (Subtree-
Pruning-Regrafting) method and partial deletion of missing data. Thereby,
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sites with more than 10% missing data had been removed, reducing the ini-
tial number of 2329 di�erent variants to 1487 variants that could be used
for phylogenetic analysis. For signi�cance testing the bootstrap method with
500 replications had been chosen. The resulting phylogenetic tree is shown in
�gure 7.8. The strains cluster mainly into two di�erent branches, one repre-
senting SS14-like samples and the other containing Nichols-like samples. All
clinical samples from this study, except for one Dutch sample, fall into the
SS14-like cluster. In order to evaluate why one dutch individual falls into a
cluster consisting only of rabbit samples, additional information about ecolog-
ical circumstances of this individual would have to be collected. Furthermore,
no clear separation of clinical samples from di�erent European countries can be
made. The second branch consists only of T. pallidum subsp. pertenue samples
and one T. pallidum endemicum sample. Clearly, a separation between di�er-
ent T. pallidum subspecies can be made. The fact that some rabbit samples
cluster in between clinical samples further indicates that the genetic diversity
between T. pallidum subspecies may be larger than between human and rab-
bit strains. Regarding the A2058G antibiotic resistance mutation, one can see
that most SS14-like strains carry this mutation, as it is the case for SS14 itself.
Moreover, Nichols-like strains do not carry the mutation.

7.3 Conclusion

During this dissertation, a new pipeline for the automated processing and com-
parison of ancient and modern bacterial DNA samples has been implemented
in cooperation with Alexander Herbig. Besides the integration of various avail-
able software solutions, new tools have been introduced that address speci�c
needs of ancient samples, such as the merging of overlapping paired-end se-
quencing reads. With the application to various M. leprae samples in our
previous publication [144], the pipelines capabilities for analyzing ancient and
modern bacterial strains in parallel has been demonstrated. Furthermore,
with the application to modern T. pallidum strains it could be shown that the
pipeline is �exible and allows for modi�cations of individual steps, in order
to address the speci�c characteristics of di�erent data sets. Although, at its
current point, this pipeline mainly focuses on the analysis of bacterial data,
steps towards the inclusion of eukaryotic samples, especially from ancient hu-
man remains, have already been taken by Alexander Peltzer, who is going
to continue the aDNA pipeline project under the acronym EAGER (E�cient
Ancient GEnome Reconstruction).
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Pathogens via Array-Based

DNA Capture

In the previous chapters it was shown that next-generation sequencing (NGS)
o�ers new possibilities for data acquisition and analysis. Another �eld of ap-
plication is the identi�cation of DNA contained in environmental samples. To-
gether with an appropriate bioinformatic analysis, NGS can be an extremely
helpful technique to achieve a better understanding of the genetic information
content. Furthermore, environmental samples taken from soil, water or ex-
tracted from corpses of ancient humans or animals can provide deep insights
into our history. Especially the study of bacterial DNA, which is contained
in almost every sample, has huge potential in solving questions of ancient
pathogenicity, bacterial development in general or the evolution of pathogenic
agents. In this way, the extraction of biological material containing DNA from
pathogenic organisms can help to explain historical events such as pandemics.
However, to study the organism that led to such historically relevant events it is
important to isolate the DNA of those organisms of interest from a conglomer-
ate of di�erent organisms that are also present in every environmental sample.
For example, when dealing with soil samples, a whole collection of di�erent
microorganisms, especially bacteria, archaebacteria and viruses, but also other
organisms, such as �ies, worms or larger animals, are necessarily present. Fur-
thermore, not all strains of a speci�c microorganism are pathogenic, meaning
that it is important to also isolate non-pathogenic strains from the species in
question. To do so, appropriate methods are needed, since a rather straight
forward approach, such as performing a shotgun sequencing of the whole DNA
that is present in the sample and doing a meta-genome analysis afterwards
might not lead to satisfying results. A lack of su�cient enrichment can lead
to an underrepresentation of DNA fragments from the organisms of interest,
making them undetectable in the sequencing and subsequent mapping pro-
cess. Moreover, the isolation of ancient DNA, which in comparison to modern
DNA su�ers from the availability of only short DNA fragments as well as from
DNA degradation [117], is extremely di�cult. To overcome this hindrance,
DNA capture is highly suitable to �lter those DNA fragments belonging to the
organisms of interest. This is usually done using DNA capture microarrays
with speci�cally designed probes that bind to the organism's DNA fragments.
Unfortunately, already available techniques are so far restricted to single or-
ganisms only [18, 143]. However, when dealing, for example, with ancient
tissue it is often not clear what type of infection had been present. Mor-

149



8. Parallel Detection of Human Pathogens via Array-Based DNA Capture

phological changes lack speci�city and co-infections could have occurred [93].
This renders it di�cult to decide which pathogen's DNA fragments might be
present and consequently which DNA capture array should be used. Further-
more, progress in the �eld was hindered by the lack of an economical screening
technique that is capable of detecting a larger number of di�erent pathogens
in parallel. A solution would be to use DNA capture microarrays that are
able to detect multiple organisms in parallel rather than concentrating on one
pathogen at a time. Ideally, such an approach should include bacteria, DNA
viruses, protozoa and multi-cellular organisms with both, a high speci�city and
sensitivity. In this thesis, such an approach that is capable of detecting up to
92 di�erent pathogens was implemented and named APSA, Ancient Pathogen
Screening Array. For manufacturing, the Agilent SureSelect 1-million feature
DNA capture array with oligo lengths of 60 base pairs was used. Although,
the array and the subsequent bioinformatic analysis are designed for the de-
tection of pathogens from ancient samples, the overall analysis process is not
restricted to those and can also be applied to samples from modern sources.

In this chapter, detailed information is given on the bioinformatic challenges
in the design steps involved in the identi�cation of pathogen speci�c regions,
followed by information on oligo preparation and selection. This is completed
by details about the analysis of the APSA captured DNA fragments, including
the processing of the sequenced reads as well as the subsequent data cleaning,
mapping and visualization techniques. Text and �gures in this chapter were
adapted with minor modi�cations from work previously published in [17].

8.1 Design of the APSA

The precise detection of speci�c pathogens bears several bioinformatic chal-
lenges that have to be addressed in the design of a DNA capture microarray.
First of all, pathogens di�er in the size of their genomes. This means that
pathogens with large genomes are more likely to be captured than those with
relatively smaller genomes when assuming equal distribution of organisms in
an environmental sample. Secondly, it has to be guaranteed that the captured
sequences are unique to the corresponding pathogen, especially then, when not
all strains of a speci�c species are pathogenic. Furthermore, special attention
has to be given to the analysis of the captured data, since technical issues such
as cross-hybridization cannot be excluded completely.

In the following, the design pipeline for the pathogen speci�c DNA capture
microarray will be explained and detailed information will be given regarding
the bioinformatic challenges and how they have been addressed.
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8.1.1 Identi�cation of Pathogen Speci�c Genomic Re-

gions

When dealing with microorganisms, pathogenicity can arise on di�erent
hierarchical levels. While some organisms are pathogenic on the species level,
for others only a subset or even a single strain is pathogenic. This fact has
to be taken into account during the design of the pathogen speci�c oligos to
make a clear separation of pathogenic and non-pathogenic microorganisms.
Clearly, each individual organism has to be treated di�erently depending on
its speci�c level of pathogenicity. A summary of the strategy chosen in this
work for the identi�cation of pathogenic sequences is shown in �gure 8.1(A).
In total 92 di�erent microorganisms have been selected covering most of the
pathogens that could be present in archival samples including bone, dental
pulp, mummi�ed tissue or anatomical collections of soft tissue. However,
RNA viruses have been omitted, because of their predicted poor conservation
in ancient tissue [112]. Since for most of the selected pathogens pathogenicity
was shared between several di�erent strains, the �least common ancestor
(LCA)� 1 of all these strains had to be chosen for oligo design. In order
to identify the respective LCAs for the 92 selected pathogens, taxonomy
identi�ers were assigned based on NCBI's taxonomy database [1]. This
database contains unique taxonomical identi�ers for each known organism as
well as their ancestral relatives. It can therefore be seen as a phylogenetic tree,
where each leaf node as well as each internal node has been given a unique
taxonomy ID. Thereby, IDs have been distributed such that internal nodes
always have lower IDs than nodes in the subtree rooted at the respective
internal node. For the identi�cation of unique pathogenic regions for oligo
design, each individual is not given its own taxonomy ID, but the taxonomy
ID of the respective LCA. In a subsequent sequence comparison analysis all
similar subsequences between di�erent individuals sharing the same taxonomy
ID are treated as self-hits, which allows one to address pathogenicity at
di�erent hierarchical levels de�ned by the assigned taxonomy IDs. Genome
sequences, however, are only available on the strain level. Therefore, for
organisms where an LCA could be found, one of the strains in the taxonomical
subtree was chosen randomly as the reference. This was repeated for all of
the 92 pathogens until one strain for each had been chosen. Sequences for the
selected strains were then obtained from the NCBI genome database [1] for
further processing.

The next step in the design pipeline is the identi�cation of unique regions in
the genome of each pathogen. Therefore, all collected genome sequences were
used for a subsequent BLAST search against the NCBI BLAST nucleotide se-
quence database (nt) using the blastn algorithm (version 2.2.26) [3]. This nu-

1LCA is here not meant in an evolutionary, but just hierarchical sense
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cleotide collection database consists of GenBank [13], EMBL [75], DDBJ [105],
PDB [14] and RefSeq [128] sequences and is therefore perfectly suited for the
identi�cation of subsequences in the genomes of the 92 pathogens that are
common among other organisms. An E-value threshold of ≤ 10−3 was used in
order to be speci�c enough during the BLAST search. Since the nt database
also contains the genomes of our selected pathogens, only those hits are rele-
vant that are truly similar to a di�erent organism, as de�ned by the assigned
taxonomy IDs. To exclude self-hits from the results, each BLAST hit was
assigned a taxonomy ID, too, allowing to �lter based on these taxonomy IDs.
Each hit with an ID equal to or greater as the query's taxonomy ID was re-
moved from the output table, since those hits correspond to the same branch in
the underlying phylogenetic tree and are therefore declared as self-hits. With
this strategy, all hits corresponding to an organism below the de�ned LCA
of the respective pathogen were considered as unique regions, while the re-
maining hits in the BLAST output correspond to non-unique regions. The
sequences from the remaining hits were then collected and removed from the
genomes of the 92 pathogens used for the array, resulting in subsequences for
each pathogen that can be used for oligo selection. These regions ranged from
84 up to 3,291,871 base pairs.

Figure 8.1: Overview of the work-�ow followed by the oligo design pipeline of
the APSA. It can be divided into two parts, where A shows the steps needed for
the identi�cation of unique genomic regions for each pathogen and B shows the
selection process from these resulting regions.
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8.1.2 Oligo Selection from Pathogen Speci�c Genomic

Regions

In order to generate oligos from the unique regions identi�ed by the taxonomy
and sequence search based strategy explained above, a 6-base-pair-tiling
approach was used with subsequent �ltering for oligo quality. In �gure 8.1(B)
a summarized overview of the oligo selection procedure is given. Unique
regions were dissected into oligo candidates of 60 base pairs in length, where
adjacent oligos share an overlap of 54 base pairs. This strategy provides a
good trade-o� between sequences being unique and not loosing too much
sequence information for the actual fragment capturing. However, uniqueness
with respect to a speci�c pathogen is not su�cient for good oligos, because of
the technical circumstances that have to be addressed in the microarray hy-
bridization step. Here, additional quality measures have to be ful�lled such as
a good a�nity to the target sequences (sensitivity criterion) as well as sharing
approximately the same melting temperature in comparison to the other oligos
on the array (isothermal criterion). Only oligos that are speci�c, sensitive and
isothermal can be used for the array [87]. Moreover, additional �ltering had
to be performed for all candidates. Therefore, basically three di�erent issues
have been addressed, namely sequence complexity, the ability to fold into a
stable secondary structure and the melting temperature. Sequence complexity
has been addressed by implementing a measure of complexity, that is based
on a length comparison of the condensed sequence of an oligo candidate with
the candidate's original sequence. The condensed sequence is calculated by
using the Lempel-Ziv-Welch lossless data compression algorithm [169]. Oligos
were �ltered such that only those with a length ratio ≥ 0.5 between the
condensed form and the original sequence remained in the candidate set. The
secondary structure criterion was addressed by applying the mfold (version
3.5) algorithm [175] to each oligo candidate and calculating the Gibbs free
energy (∆G) of a possible folding. Filtering was then performed such that
only those oligos with a positive ∆G value (endothermal reaction) remained in
the candidate set. The third �ltering step addressed the isothermal criterion
by calculating the melting temperature of each remaining oligo candidate
and keeping only those with a melting temperature in the range of 60 to 85° C.

After that, one last �lter had to be applied in order to exclude those regions in
the genomes where nucleotide resolution was not su�cient enough and ambigu-
ous bases, other than A,T,C, or G were present. After removing all oligos that
contained ambiguous nucleotides, the remaining set of candidates ful�lled all
the criteria for being good oligos for a DNA capture microarray. The resulting
number of available candidates, however, exceeded the number of oligos that
could be used for the array. In total 974,016 oligos are permitted on the Agilent
1-million feature array. This means that on average 10,587 oligos can be used
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for each of our 92 pathogens. However, due to the large di�erences in genome
size and the strict �ltering criteria, for only a few pathogens this number of
oligos was still available. In fact, for most of the pathogens much less than
the average number of oligos remained. Therefore, a di�erent strategy had to
be applied. For those pathogens, where less than the average amount of oligos
was available, all the remaining oligos were selected. For those pathogens, were
more than the average number of oligos was available, the remaining spots on
the array were distributed equally. With this strategy, the number of oligos
for each pathogen di�ers from the other pathogens, which has to be accounted
for during the analysis of the array capture results. This is important, because
DNA from those organisms with large numbers of oligos on the array is more
likely to be captured than DNA from organisms with only a few oligos, such
as viruses.

8.2 Analysis of APSA captured DNA

When analyzing captured DNA from potentially ancient origin, special care has
to be taken during the pre-processing of the sequenced DNA fragments. Higher
damage rates are expected and DNA fragments are usually much shorter than
modern DNA fragments. Therefore, a paired-end sequencing was performed
with read lengths of 100 base pairs for the forward as well as for the reverse
read. Due to the short fragment size of the captured DNA, a positive insert
size for the paired-end reads can not always be guaranteed. In the following,
detailed information is given on the pre-processing of APSA captured paired-
end reads and the subsequent read mapping and counting procedure. The
latter is used to determine the number of reads mapping to each organism,
which is correlated to the organism's amount of DNA present in the sample. An
overview summarizing all steps of the analysis protocol is shown in �gure 8.2.

8.2.1 Captured Read Preprocessing and Mapping

For the processing of the APSA captured paired-end reads the newly devel-
oped ancient and modern DNA processing pipeline described in chapter 7 was
applied including all steps up to the mapping procedure. However, some mi-
nor modi�cations have been made with respect to the huge diversity of the
organisms contained on the APSA. Quality assessment, adapter clipping, read
merging as well as quality trimming were performed as described in chapter 7.
Mapping itself was performed using the BWA aln/same algorithm keeping all
parameters as suggested by the BWA developers, except for the parameter
that controls the number of allowed mismatches (−n). This parameter was
increased from 0.04 to 0.1 in order to decrease the average number of mis-
matches for a read of 100 nucleotides in length from at most 6 to no more
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Figure 8.2: Overview of the APSA read processing and analysis strategy. Blue
boxes indicate a speci�c step of the processing/analysis pipeline and green boxes
represent the tool used at the respective step.

than 2. With that, a highly speci�c mapping of the captured reads can be
guaranteed. All genomes used for the oligo design of the APSA were com-
bined in a single FASTA �le that was used as the reference for the mapping.
Post-processing of the mapped reads included removal of non-uniquely mapped
reads as well as non-mapped reads. For that the samtools toolbox [91] was
applied. Afterwards, potential PCR duplicates were removed using the Better-
RmDup method, thereby following again the steps of the pipeline introduced
in chapter 7. Since the purpose of the APSA is the identi�cation of pathogens
in environmental samples, rather than a detailed analysis of individual organ-
isms and/or their genomes, no further steps of the pipeline have to be applied
after duplicate removal. In fact, the resulting mapped reads are directly used
for a subsequent pathogen speci�c read count analysis.

8.2.2 APSA Read Count Analysis

After mapping all reads to the reference genomes of the pathogens selected
for the array, the amount of captured DNA for each of the APSA speci�c
pathogens has to be calculated. For this purpose, the reads were, after dupli-
cate removal, �ltered based on mapping quality, to make sure that only highly
reliable reads are taken into account. The BWA aln/samse algorithm reports
mapping qualities in the range of 0 to 37. By default all reads with a mapping
quality ≥ 25 undergo the subsequent counting process. During this process,
the reads mapping to a region in the genomes of the APSA speci�c pathogens
are counted and reported. In order to distinguish between reads that map to
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an oligo region and those that do not map to such a region, a minimal overlap
of at least 10 bases is required for a read to be counted. After following these
strategies a count table is generated that holds the number of reads mapped
to an oligo region for each of the selected pathogens on the array. As men-
tioned in the APSA design description, pathogens that have a large number of
oligos on the array are more likely to capture DNA fragments than those with
lesser numbers. Therefore, an additional normalization of the raw count table
is required. Here, for each pathogen the number of read counts is divided by
the respective number of oligos on the APSA. This gives the relative amount
of DNA mapped to the array for each organism. Both tables, the raw count
table as well as the normalized count table, are reported for post-processing
and interpretation.

8.2.3 Visualization of Read Count Results

For a better interpretation of the resulting count tables, a scatterplot visual-
ization has been implemented that shows the APSA results and allows one to
spot overrepresented pathogens immediately. An example visualization show-
ing results for a Mycobacterium leprae positive control is given in �gure 8.3.
On the x-axis the di�erent pathogens are shown sorted lexicographically. On
the y-axis the normalized number of mapped reads is shown. For species lo-
cated next to each other on the x-axis, the respective read count values are
connected with lines and by default the largest 10 count values are labeled
with the respective organism's name. This number can, however, be adjusted
by the user. In this, overrepresented pathogens show up as spikes in this type
of scatterplot, as can be seen in �gure 8.3 for M. leprae. This visualization is
implemented in the statistical programming language R. The only required in-
put �le is the count table in TSV-format, where each row represents a pathogen
and each column a speci�c sample. If more than one sample is contained in
the count table, separate plots are produced for each of the samples.

8.2.4 The APSA Analysis Toolkit

To simplify the process of analyzing APSA captured read data, the APSA anal-
ysis toolkit has been implemented. This is a fully automated program that
allows users to produce raw as well as normalized count-tables from paired-end
reads resulting from APSA captured DNA fragments. It o�ers a user-friendly
front-end that is shown in �gure 8.4. In order to perform an analysis, the
speci�cations of the array have to be known. Therefore, an APSA speci�c
design �le has been created. This design �le contains information about the
number of oligos and their locations in the respective genomes for each of
the pathogens on the array. Together with this information, the APSA ar-
ray toolkit uses mapped reads in the SAM/BAM �le format to generate counts
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Figure 8.3: Scatterplot showing the normalized read count results for the My-

cobacterium leprae SK8 positive control [144]. On the x-axis the pathogens on
the APSA are ordered lexicographically and on the y-axis the normalized num-
ber of reads per oligo is shown. Here, only the top hit is labeled due to the large
di�erence to and the very low number of mapped reads for the second best hit.

for each pathogen. In addition, it is possible to analyze multiple samples at
the same time. To do so, multiple SAM/BAM �les can be provided and are pro-
cessed altogether in parallel. This results in count tables, where rows represent
pathogens and each sample is represented by a separate column. Additional
�lter opportunities allow the user to include only those reads in the counting
procedure that ful�ll a speci�c mapping quality threshold.

8.3 Application of the APSA Capture Tech-

nique

The APSA capture approach was applied to several di�erent negative control
samples for the estimation of the number of falsely discovered organisms as
well as to a positive control sample that was known to contain ancient leprosy
DNA. With this strategy, the false discovery rate as well as the speci�city and
sensitivity of the APSA were measured.
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Figure 8.4: Graphical user interface of the APSA analysis toolkit for the count-
ing and normalization of mapped paired-end reads resulting from the APSA
capturing approach.

Application to Negative Controls For an appropriate estimation of the
false discovery rate of the APSA capture approach, shotgun data of several
di�erent negative control samples were produced constituting between 71,766
and 279,577 reads per sample. In addition, APSA capture reads (between
44,761 and 991,460) were compared to the shotgun data. The majority of the
organisms that showed an enrichment in the APSA approach had no detectable
reads in the shotgun data. The detection of a few soil dwelling organisms,
such as V. parvula, E. coli or B. cepacia can be explained by the ubiquity of
these bacteria in the environment. Although, some of these organisms show
up during the analysis with rather low read counts (between 1 and 34), the
introduced capture approach coupled with the high mapping strictness yields
only very few false positives.

Application to a Mycobacterium leprae Positive Control To show the
detective power of the APSA combined with the strict analysis strategy, se-
quencing of a Mycobacterium leprae positive control sample was conducted.
Here, the library SK8 from a medieval bone sample from the United Kingdom
was used. The ancient origin as well as the containment of Mycobacterium
leprae in this sample was shown in Schuenemann et al. in 2013 [144] via dam-
age plot investigations using MapDamage [74]. This sample contains enough
preserved DNA to conduct a whole genome assembly. Again shotgun data as
well as APSA captured sequencing data were produced resulting in 3,058,969

158



8.4. Conclusion

shotgun reads and 213,611 APSA captured reads. From the shotgun reads
149 mapped to unique capture regions and 148 mapped to M. leprae speci�c
regions. For the APSA 4,774 reads mapped to capture regions. Out of these
4,756 reads solely mapped to M. leprae resulting in a 460-fold enrichment and
1.16 hits per probe. Duplicate removal after mapping reduced the number of
uniquely mapping reads to 3,656. To verify the ancient origin of the mapped
reads damage plots were produced showing about 10% C to T damage at the
5' ends. The remaining 18 reads that did not map to M. leprae all belong to
B. pseudomallei, a pathogenic organism, that leads to meloidosis in humans.
Since this organisms survives in soil and water, its environmental origin cannot
be excluded.

8.4 Conclusion

In this chapter, an economical screening technique has been presented that is
capable of detecting up to 92 di�erent pathogens in parallel. The microarray
based approach thereby requires a number of di�erent quality criteria that
had to be addressed. For this purpose a custom oligo design pipeline has
been introduced, followed by specialized read processing pipeline with a focus
on the analysis of ancient DNA samples. For the design of the array, a new
bioinformatic approach has been introduced with the application of taxonomy
identi�ers for the de�nition of oligo uniqueness. Furthermore, applications of
the array and the subsequent processing pipeline have shown that the presented
approach yields only very few false positives. Moreover, for true positives very
high enrichment rates can be achieved, which shows the high sensitivity of
the array. Furthermore, speci�city of the array and the subsequent analysis is
guaranteed by unique and high quality oligos produced following the presented
design work-�ow, as well as a highly stringent mapping procedure used for the
identi�cation of captured DNA fragments. To simplify the analysis of mapping
results, the APSA toolkit has been developed that o�ers read count calculation
and normalization with a comprehensive graphical user interface. Altogether,
the APSA capturing together with the introduced processing strategy and the
subsequent application of the APSA toolkit for read count analysis perform
well for the detection of pathogens present in biological samples.
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For years researchers have been struggling with the question what makes an
organism unique. Nowadays, we know that an organism is �rst of all de�ned
by its genome. It is the sequence of nucleotides that dictates the nature of
life. Modi�cations of that sequence may lead to genetic diversity but also
to malfunction. Life largely depends on the genes and the interplay of their
products. Alterations in these complex networks often lead to disease. Thus,
understanding which genetic variations in�uence gene function, the way genes
interact with each other and how this correlates with disease, has become
one of the most important questions in current biomolecular research. With
the development of next-generation sequencing technologies, a new era has
begun for the detection of genetic variations and the study of their phenotypic
implications. With these technologies, it has become possible to economically
decipher an organism's complete DNA sequence, paving the way for more
comprehensive analyses of genome sequence variations by studying thousands
of individual genomes from one species.

The goal of this dissertation was to develop new visual and analytical
approaches for the identi�cation, characterization and interpretation of
variations with a large focus on single nucleotide variations (SNVs), the most
common source of genetic diversity.

Mayday, an expression analysis workbench, has been used as a framework
and extended on the data handling as well as visualization level to allow
for more comprehensive analyses with respect to variation and expression data.

For the visual analysis of genotype and phased haplotype data, inPHAP has
been developed. At the time of writing, inPHAP was the only interactive
visual analytics tool capable of displaying and exploring phased haplotype
data. In previous studies in out group, the data manipulation strategies,
and here most prominently the aggregation technique, as implemented in the
iHAT toolkit [54] have proven powerful for the identi�cation of meaningful
patterns with respect to SNV data. In inPHAP these have been integrated
and extended. With the application of inPHAP to data from the 1000
Genomes project, it could be shown that its visualization concepts together
with the interaction possibilities are a valuable tool for the identi�cation of
population speci�c SNV patterns.

inPHAP was complemented by and combined with Reveal. While inPHAP
is restricted to genotype data, Reveal o�ers integrative analyses of SNV and
gene expression data. Due to its various statistical methods, the comprehen-
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sive visualizations and the high level of user interactivity, and because of the
integration into Mayday, Reveal became a powerful software solution for
the analysis of GWAS and eQTL data. Its value as a visual analytical tool
has been proven in the BioVis 2011 challenge, where Reveal was selected as
the visualization experts' favorite.

GenomeRing is an important tool that takes the visualization of SNVs
together with structural variations to the genome-wide level. In this, dif-
ferences between organisms are intuitively shown in a circular layout and
SNV information can be mapped to the respective genomes in the resulting
plot. In this work, special attention was given to the optimization of the
visual experience with GenomeRing through the development of di�erent
layout optimization strategies with the purpose to reduce visual clutter.
Furthermore, GenomeRing has been integrated into Mayday, which allows
for the visualization of gene information as well as SNV data from Reveal

in the context of a multiple whole genome alignment.

Another important and immensely growing �eld where the analysis of genomic
variations plays an important role is paleogenomics. There, DNA of ancient
origin is studied and compared to modern samples to elucidate evolutionary
history. For this purpose, a computational pipeline for the comparative
analysis of NGS data from modern and ancient DNA samples has been
developed in cooperation with Alexander Herbig. One essential part of this
pipeline is the read merging procedure, which was developed in this work and
compared to other read merging approaches. This pipeline was successfully
applied to distinct use cases, as for example for the comparative analysis of
medieval and modern Mycobacterium leprae strains. In this thesis, the general
applicability and the advantages of the read preprocessing steps in the pipeline
also for the analysis of purely modern DNA samples were demonstrated with
a comparative analysis of di�erent Treponema pallidum strains from all over
the world in order to investigate the evolution of the syphilis disease (see
chapter 7, section 7.2). One of the major problems with aDNA is that
it is usually only retrievable in very low amounts and that samples are
contaminated with modern DNA, especially from microorganisms. In this
work, a microarray based DNA capture techniques has been developed for the
parallel enrichment and analysis of aDNA from human pathogens. As a proof
of concept, this technique was applied to a Mycobacterium leprae positive
control. The resulting data could subsequently be successfully analyzed with
the aforementioned pipeline showing enrichment rates > 460×.

Altogether, the methods developed in the course of this dissertation provide
a valuable contribution to biologists, clinicians, researchers and bioinformati-
cians struggling with the analysis and interpretation of single nucleotide varia-
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tions and complement existing solutions for variant detection and visualization.
In the following, each of the developed tools will be discussed in more detail.

9.1 Mayday, a Framework for the Integrative

Study of Gene Expression and Variation

Data

Due to the large amount of data that can be produced nowadays for various
di�erent research �elds, there is continuously growing importance of integra-
tive software solutions o�ering the possibility to elucidate all facets of di�erent
data types. This dissertation focused on the integration of variation data,
especially single nucleotide variations, and gene expression data in order to
identify genetic factors leading to gene expression changes and consequently
to disease. For this purpose, Mayday, an expression analysis software with
a large focus on visualization of gene expression data, has been used as a
general framework for the integration of variation data and the development
of new visualizations approaches. The choice to use Mayday, rather than
any other software or starting from scratch, was motivated by several di�erent
factors. First of all, Mayday has been designed as a general framework that
allows for an easy integration of new algorithms and visualizations through a
�exible plugin system. In addition, it already o�ers a powerful visualization
framework, which makes it easy to develop and integrate new visualizations,
since basic view elements and functions are already available. With this, a
software developer can concentrate on the main aspects of a new visualization
and does not have to take care of functionality that is needed regularly, as for
example zooming. Furthermore, Mayday is an open source project written
in the Java programming language with the advantages of addressing a large
user community and being platform independent. However, Mayday has
been designed with a strong focus on gene expression data. Thus, all methods
and algorithms, as well as the underlying data structures are not readily
applicable to other data types, such as variation data.

To address this hindrance and to provide a general design concept for the
integrative study of other data types within Mayday, a detailed description
of how Mayday can be adapted to support other data sources by using
already existing data structures has been given in chapter 3. This general
approach allowed for the integration of variation data in the form of new
plugins. The major advantage of this approach is that it does not require to
change original data structures. Consequently, features for the analysis and
visualization of variation data in Mayday can be integrated only if needed,
without forcing users to make themselves familiar with the structures required
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for the additional data types, if only gene expression analyses are of interest.

Clearly, a direct modi�cation of the DataSet, the main class providing access
to all available data in Mayday's data model, would also have been possible
in order to introduce new data sources. However, this idea was rejected for two
di�erent reasons. Firstly, a direct modi�cation would have required additional
modi�cations in the future, if other kinds of data were to be integrated.
Secondly, a modi�cation of the DataSet would not have been possible without
larger structural changes in the Mayday core application and thus risking to
break any core functionality needed by other plugins. However, the strategy
taken in this thesis (see chapter 3, section 3.3), leads to better compatibility
across versions and to a better stability of the core Mayday application, since
new source code does not have any in�uence on the functionality of already
existing core functions or plugins. Although, in this thesis the extension
strategy was only applied for the integration of SNV data, it is not limited to
this data type. Moreover, it can be applied for the integration of other valu-
able data types, such as methylation data, proteomics data or metabolomics
data, which would allow for more systems biology based analyses in the future.

To conclude, with these design strategies, Mayday can be used as a com-
pletely integrative analysis software for the study of gene expression and
variation data as well as other data types that may be integrated in the future.

9.2 Interactive Genotype and Phased Haplo-

type Visualization

When studying SNV related phenotypic changes, genotype information
alone is often not su�cient to digest the mechanisms responsible for the
observed phenotype. Especially complex traits are usually the result of an
interplay of SNVs at di�erent genomic locations. However, if such traits only
manifest themselves when genomic modi�cations accumulate on the same
chromosome, genotype information can not provide the insights needed to
explain which SNVs are the result of the phenotypic outcome. In such cases,
phase information is needed to link variations to their respective chromosome
and to build haplotypes that can be associated with a speci�c trait.

In this dissertation, inPHAP has been developed, which is currently the
�rst and only tool capable of analyzing and visualizing genotype and phased
haplotype data interactively. inPHAP uses a tabular approach to visualize
genotype data with or without phase information for diploid organisms.
If phase information is missing, a clear representation of the data can be
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obtained by using e.g. rows to represent individuals and columns for SNVs,
respectively. Then, each cell represents a speci�c individual's genotype,
which can either be equal to the reference, a heterozygous or a homozygous
variation. However, if phase information is available, a single cell would have
to be used to represent two di�erent values, in particular one value for the
maternal and one for the paternal allele. Other tools, such as Flapjack [104],
separate the cells into triangles to display both values. In contrast, the two
alleles are represented by two individual columns in inPHAP, which allows
for additional meta-information integration and user interactivity. This design
choice was highly motivated by the 1000 Genomes project data published
by Abecasis et al.. There, also rows were used to represent individuals and
columns for SNVs. To represent phased data, the authors used two rows
instead of two columns. However, using multiple columns o�ers the possibility
to include meta-information for individuals as well as SNVs with a clear visual
separation. Furthermore, this allows the user to group SNVs based on the
respective meta-information. An example would be the grouping based on
the chromosomal origin of SNVs to compare haplotypes on the paternal and
maternal chromosomes and between sub-populations in parallel.

Although, the initial design of inPHAP is focused on diploid organisms, the
general concept can easily be extended to more complex genomes, as for exam-
ple omniploid or polyploid ones. In such cases, the number of columns in the
visualization would have to be equal to the number of alleles of the respective
organism's genome. Furthermore, such an extension would also be inter-
esting for the study of cancer genomes, where ploidity is often not even known.

A disadvantage of the table based approach and the representation of SNVs
with two columns is that reordering of SNVs based on chromosomal origin can
lead to comparability issues. This is for example the case, if haplotype regions
are very large. Then comparability is restricted by the screen resolution of the
user's workstation, because it can happen that haplotypes for the paternal
and maternal chromosome cannot be displayed at the same time. A possible
solution for this hindrance would be to split the main visualization panel
based on paternal and maternal SNV annotation into two linked panels,
such that moving within the paternal panel would lead to a synchronized
movement in the maternal panel and the other way round. Such functionality
could be introduced in the future.

Besides the various possibilities for user interaction, as for example zooming,
selection, or switching between di�erent visual representations, inPHAP

makes use of the concept of aggregation. As has been shown in chapter 4,
aggregation can be a valuable tool to assess features that would remain
hidden by investigating solely the raw data. However, aggregation always
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leads to loss of information, which might still be valuable. An example was
shown in chapter 4, section 4.1.4, where it was no longer possible to assess
rare variants after applying the maximum aggregation method. To address
this issue, several di�erent summarization strategies are o�ered in inPHAP,
together with the possibility to revert aggregated rows if needed in order to
apply other aggregation methods.

In order to provide immediate response of the main visualization in inPHAP
to the discussed interaction features, the decision was made to store all data
in memory before presenting them to the user. This required an appropriate
strategy for data storage and visual representation. The binary encoding
for genotype data introduced in this thesis, allows for the analysis of whole
chromosomes (e.g. for data from the 1000 Genomes project) with only a little
more than 20 gigabytes of RAM. However this number could be reduced in a
future release of inPHAP by using a strategy that is similar to the one used
by the IGV (Integrative Genomics Viewer) [135], where data is kept on the
hard drive and only loaded into memory as needed for smooth interaction
with the visualization.

To conclude, inPHAP o�ers visual and analytical methods to digest geno-
type and phased haplotype data in order to assist researchers in making well
informed interpretations. However, some additional features would further im-
prove the application in the future. In particular, an additional view showing
the exact chromosomal location of a SNV would support the user in the inter-
pretation of haplotypes. Furthermore, an interaction feature that allows for
keeping speci�c regions in the tabular view �xed while continuing to inspect
others, could improve comparability between di�erent SNVs. In addition, an
advanced strategy for loading data into memory would increase scalability of
the application. Finally, inPHAP is solely applicable to SNV data. How-
ever, other variations might also be of interest to clinicians or researches, such
as copy number changes. Thus, the design choices introduced with inPHAP
could be reused to build a visual analytical application for the assessment of
copy number variations.

9.3 Visual Analytics for SNV Associated Gene

Expression Changes

The analysis of variations, especially SNVs as the most common represen-
tative, provides valuable insight into the genetic factors leading to disease.
For complex diseases, where not a single variation, but the interaction of
many di�erent ones are possibly involved in a disease, the identi�cation and
interpretation of the e�ect of these SNVs on the phenotype is usually very
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di�cult. Moreover, SNVs can in�uence genes on di�erent levels. Depending
on their location in the genome, they can either alter a gene's expression
or lead to a complete loss of gene function. Furthermore, the analysis of
gene expression changes allows for the interpretation of phenotypic outcomes
and is thus important to combine with SNV data in disease related studies.
Although, these so-called eQTL studies provide a much better representation
of the factors leading to disease, their application is limited by either compu-
tational issues or the lack of appropriate eQTL analysis applications. While
solving the computational problem, especially for the analysis of epistasis, will
probably not be possible without further technical advances, the development
of software solutions for the analysis of eQTL data, including single-locus and
two-locus associations, is readily possible. Unfortunately, currently available
software solutions do not o�er a completely integrative study of SNV and
gene expression data, but are usually focused strongly on either of these two
data types. Furthermore, most available software solutions su�er from a lack
of appropriate visualizations for the interpretation of statistical results.

In this dissertation, a new visual analytical approach has been taken with the
development of Reveal, a highly interactive and integrative software solution
for the study of GWA and eQTL data. Due to the integration into the gene
expression analysis software Mayday, Reveal is able to perform both SNV
based analyses as well as corresponding gene expression analyses equally well,
and results from both can be integrated and used to provide comprehensive
visualizations that assist with the interpretation of the underlying phenotypes.
In this, Reveal is the �rst tool that follows an integrative approach for the
study of eQTL data, which is not centered on either SNV or gene expression
analysis exclusively. Besides the integration of well established methods for
SNV based analyses, such as commonly used statistics or �ltering techniques,
Reveal o�ers new and innovative visualization approaches for the integrative
study of SNVs and gene expression changes. In the following, the most im-
portant developments and features of Reveal will be discussed independently.

In traditional GWAS, SNV distributions between two cohorts, typically
with di�erent clinical phenotype, are compared to identify those SNVs that
show a signi�cant di�erence. For this purpose, often pie charts are used.
However, pie charts have the huge disadvantage, that a direct comparison
of distributions is di�cult. A better solution would be to compare values
on a common scale [95]. This has been realized in the SNV Summary
plot. There, genotype distributions can easily be compared between the two
cohorts for each individual SNV, because bars of di�erent height are used
to represent genotype distributions. Furthermore, additional tracks can be
added to compare these distributions against a reference allele or to compare
a single individual against a cohort. The latter allows for the classi�cation
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of individuals based on selected SNVs, if the disease state is unclear or
not manifested during the time of the analysis. The disadvantage of this
visualization is that it does not scale well with respect to the number of SNVs
that are visualized. Although, zooming techniques have been introduced, in
a zoomed out view individual distribution values are hard to compare. This
can be compensated to some extent with the aggregation track, which shows
a summarized representation of the genotype distribution track. However,
the SNV Summary plot is not meant for the investigation of a large collection
of SNVs, but as a tool that provides detailed information about individual ones.

For the visualization of single- and two-locus association results, Reveal
o�ers three di�erent representations, which are linked to each other to
provide a comprehensive picture of the underlying data. The available data
tables display the statistical data imported from, for example, a PLINK
based analysis and provide a detailed representation for each individual
association. However, tables are not well suited for the representation
of complex interactions. Thus, two additional representations have been
developed, a graph-based visualization and a matrix view. Each of these
representations has speci�c advantages and disadvantages, which will be
brie�y discussed. The node-linked graph has the advantage of showing the
overall complexity of associations and is well suited to display interactions
between di�erent genes. Although the node-linked graph in general is a
standard tool for the representation of complex data, Reveal's speci�c
implementation, the Association Network, has been selected, together with
the genotype based visualization available in inPHAP, as the visualization
experts' favorite during the eQTL biological data visualization challenge at
the BioVis conference in 2011. This especially addressed the innovative design
choices made for the network-based visualization of two-locus associations, in
particular the utilization of edge color and thickness to represent associations
of SNV pairs with gene expression levels (see chapter 5, section 5.7.2 for
more details). The disadvantage of any node-linked graph is that it can
quickly become a hairball, which is a known problem in every graph-based
visualization. In Reveal, this issue has been addressed with the introduction
of user interactivity, as for example interactive edge �ltering to reduce visual
clutter. Moreover, visual clarity largely depends on the number of genes,
SNVs and the corresponding number of associations. In the Two-Locus
Association Network, color values are used to link edges (SNV pairs) to nodes
(genes). Clearly, a unique identi�cation is only possible if the number of genes
is rather small, optimally less than 12, which corresponds to the maximal
number of di�erent colors that can easily be distinguished [52]. For a much
larger number of genes a clear separation cannot be made. Again, this issue
has been addressed by the introduction of user interactivity. Nodes can be
selected by the user and all edges with the same color are highlighted, which
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allows for a unique identi�cation of corresponding SNV pair associations.
Although, these mechanisms compensate the disadvantages of this visual
representation to some extent, displaying the underlying associations in
a matrix-like visualization does not su�er from the discussed hindrances,
since a clear assignment of e.g. SNVs (or SNV pairs) to rows and genes to
columns can always be made. A further advantage of the association matrix
is that distinct colors can be used to represent meta-information, because in
the matrix the color property is not needed to link SNV pair associations
to their respective gene. Nevertheless, in matrix-like visualizations it is
usually harder to identify complex interactions. Thus, the network-based and
the matrix-like views are recommended to be used in parallel to capture a
comprehensive picture of the underlying data. Moreover, all visualizations
in Reveal are linked to each other on the SNV, gene and subject level (see
chapter 5, section 5.1.3 for more details). In this, the user has the opportunity
to overcome hindrances of one visualization by the application of several
visualizations showing the same information, but from di�erent perspectives.
With this strategy, a comprehensive insight into the data can be obtained.

Although Reveal o�ers various ways for data visualization and processing,
its capabilities are limited when it comes to raw data processing and statistical
evaluation. In particular, Reveal does not o�er algorithms for the calcu-
lation of single- or two-locus associations or other computationally intense
statistics, such as the calculation of linkage disequilibrium (LD) correlation
values. The initial purpose of Reveal was to provide a software solution that
supports users with the interpretation of their data. This is why Reveal has
been designed as an interactive desktop solution providing a graphical user
interface, such that users that are not familiar with console based applications
can obtain valuable insights into their data. Consequently, the software was
not intended to take computationally intense calculation to the desktop pc,
but to o�er a platform, which is able to integrate results from more specialized
applications for eQTL data analysis, in particular PLINK [129], in a common
software environment.

Linkage of gene expression values and SNV data can, however, also be
performed without the need for statistical association testing. In typical
GWAS, box plots are used to show the correlation of allele combinations to a
gene's expression level in a given population. However, for diploid organisms
this requires three boxes for the possible allele combinations (homozygous
reference base, heterozygous SNV, homozygous SNV). If there is an additive
e�ect of the SNV on the gene's expression level, then this e�ect should be
visible as an increase or decrease in the mean value of the expression level
distributions between the three possible allele combinations. Although this
approach nicely shows possible associations of a SNV with a gene's expression
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level, it does not scale well with the number of SNVs and genes. In particular,
for each possible SNV/gene combination an individual box plot visualization
has to be constructed. With the data transformation approach described in
chapter 5, the increase or decrease in expression is encoded as a single value.
With this strategy, the most important information provided by the box plot
visualization has been used to create scalable visualizations, such as a pro�le
plot or a heat map. This o�ers a comprehensive representation of SNV derived
expression changes within well established and easy to interpret visualizations.
By additionally applying sorting or clustering techniques known from tradi-
tional gene expression analyses, further improvement of the visualizations can
be achieved. Clearly, each summarization technique results in a loss of infor-
mation. In this case, only information about the mean value of the expression
level distribution for each allele combination is used and other parameters of
the distribution are disregarded. However, if the population sizes are small,
then the mean value may not be very representative. Furthermore, informa-
tion about the �rst and third quantile of the respective distribution may also
be of interest. To compensate for small population sizes and a biased mean
value, also the median value can be used in the transformation. However,
in cases, where a visualization of the distribution itself is needed one has
to use the box plot approach, which is of course also possible inMayday itself.

Since the publication of Reveal at the beginning of 2012 [71], other software
solutions have been introduced that are based on the design choices made in
Reveal. For example, single-locus gene expression association and epista-
sis are also addressed with the Aracari tool [136]. Aracari makes use of the
visualization concepts introduced with the single- and two-locus association
visualizations in Reveal and combines these with a distribution based visu-
alization of gene expression levels. It o�ers a modi�ed version of the association
matrix introduced in this work and combines it with histograms and Q-Q plots
for the comparison of gene expression distributions between di�erent popula-
tions. This demonstrates that the visualization concepts introduced in this
work have already and will probably continue to in�uence how eQTL data are
visualized nowadays and in the future.

9.4 Optimization of Structural Variation Visu-

alization with GenomeRing

GenomeRing is a highly interactive tool developed for the visualization
of structural similarities and di�erences between genomes based on a mul-
tiple whole genome alignment. Although the visualization of genomes in
GenomeRing is largely improved by the application of the SuperGenome in
comparison to existing multiple whole genome alignment visualizations, such
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as Mauve, visual clutter can still not be prevented completely. Whenever
there are missing blocks in one of the genomes, arcs have to be drawn to
indicate a skipping event. With a rising number of structural variation events,
more and more arcs have to be drawn, which eventually leads to visual clutter.
The disadvantage is shared by all existing genome visualization approaches,
including the two most commonly used ones, Mauve and Circos. Furthermore,
existing visualizations usually keep the order of blocks for each genome
�xed. Although this simpli�es the identi�cation of the individual genome
compositions, it can also result in a large number of arcs needed to represent
block identity. In GenomeRing, blocks can be arranged independently of the
visualized genomes, since block composition is represented by genome speci�c
paths drawn with unique color and location. In addition, the direction of a
path within a block does not encode for the sequence direction in the genome.
In GenomeRing a second ring is used to represent the reverse sequences
with respect to the SuperGenome. This feature o�ers additional freedom in
the placement of blocks to improve visual clarity.

In this dissertation, a quadratic time heuristic with respect to the number
of blocks and genomes has been developed that �nds an optimal block
ordering based on a user-de�ned optimization criterion. Currently, three
di�erent criteria are available, namely optimizing the total number of arcs,
the total number of skipped blocks, and the sum of all arc lengths. Each of
these criteria can be used to improve visual clarity within a GenomeRing

visualization and their speci�c properties are discussed in the following.

The �rst criterion minimizes the number of arcs that have to be drawn.
This strategy is based on the assumption that visual clutter correlates with
the number of arcs in the GenomeRing visualization. Thus, reducing
the number of arcs would consequently lead to a better visual experience.
Investigations on real data sets have shown (see chapter 6) that this strategy
can provide good results for genomes, where only a few structural di�erences
are expected, but a large number of arcs is observed due to a non-optimal
ordering. This gives the impression of large structural di�erences and can
lead to false interpretation without proper optimization. However, for such
scenarios the optimization of the total number of arcs is bene�cial.

The second optimization approach focuses on the number of skipped blocks
rather than the number of arcs in the visualization. This method assumes
that arcs that span only very few blocks do not lead to visual clutter, but
those spanning multiple di�erent blocks do. Thus, minimizing the number
of blocks that have to be skipped with respect to all genomes may lead to a
better visual representation. In chapter 6, it could be shown that this strategy
is especially useful to improve the visualization of genomic islands between
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genomes.

If the intention of the user is to get a �rst overview of the structural
variations, and if there is no general interest in speci�c genomic structures,
then a global optimization of the whole GenomeRing visualization is
bene�cial. In such cases, an optimal representation would only allow for
short arcs if any. This is achieved with the third optimization criterion,
which minimizes the total arc length. The disadvantage is that it does not
improve visualization of speci�c structures, but tries to improve visualiza-
tion of the whole multiple genome alignment. It is thus best suited to gain
a �rst overview of the similarities and di�erences between the aligned genomes.

Besides these automatic optimizations, the user can also switch blocks
manually or reorder blocks based on the natural ordering of blocks in one
of the genomes. This provides additional freedom for the comparison of
structural di�erences. Clearly, not every optimization method is well suited
for each data set. Consequently, if an appropriate optimization can be
obtained largely depends on the complexity of the underlying multiple whole
genome alignment, the question that should be solved and the parameters
used to calculate the respective SuperGenome.

Nevertheless, the described layout optimization strategies o�er the possibility
to assess di�erent aspects of the data, which are then visually more appealing.
Thus, the ordering methods described in this work are of great importance to
draw well informed conclusions from multiple whole genome alignments with
GenomeRing.

Although all of the block order optimization methods can largely improve the
user's experience with the software, GenomeRing has not been designed for
the visualization of hundreds of genomes, blocks or events. The complexity
of a multiple whole genome alignment rises with each additional genome
that is included. Thus, when reaching a speci�c number of structural events,
it would not be possible to further improve visual clarity by changing the
block order. Moreover, for a large number of genomes, the question arises
whether the display of detailed information for a whole genome alignment
is still feasible in order to draw meaningful conclusions, or if an appropriate
summarization focusing only on the important events would be satisfactory
in such situations. Future work on GenomeRing could therefore include the
exploration of summarization methods for structural variation detection and
visualization.

To conclude, GenomeRing focuses on the visualization of similarities and
dissimilarities between aligned genomes. It is thus a valuable tool that com-
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plements other applications, such as conventional genome browsers, in order
to provide a more comprehensive representation of structural as well as single
nucleotide variations. With its innovative design together with the application
of the SuperGenome concept, GenomeRing was able to win the Illumina
Challenge Award 2011 in the category Most Creative Algorithm.

9.5 Automated Analysis of NGS Data from An-

cient and Modern DNA Samples

In contrast to the analysis of modern DNA of good quality, the analysis of
very old DNA is more complicated. DNA gets degraded over time, which
poses challenges to the DNA processing in the lab and also to the data
analysis afterwards. A major problem is the fragmentation of DNA and
its consequences for the application of next-generation sequencing for DNA
identi�cation.

In this dissertation, a pipeline has been developed together with Alexander
Herbig that deals with sequencing data from DNA of ancient as well as modern
origin. The crucial step in this pipeline is the preprocessing of the sequenced
reads, in order to provide accurate and sensitive mapping results. Due to the
fragmentation of DNA over time, paired-end sequencing results in overlapping
read pairs, which can be used to improve the overall quality of the reads. The
per base quality of a read tends to decrease from the 5' towards the 3' end.
This is even worse with DNA of ancient origin, where drastic quality drops
at the 3' end are observed frequently. A common approach to address this
issue is merging of overlapping read pairs. For this purpose various di�erent
methods have been introduced over the last years. However, none of the
existing methods was satisfying with respect to quality (measured in mapping
rates after merging) and runtime (measured in the overall time needed to cut
remaining adapter sequences and merge overlapping reads afterwards). Thus,
a new tool, called ClipAndMerge, has been developed and compared to those
tools that were most commonly used at the time of writing. In chapter 7, a
detailed comparison of the performance with the di�erent applications was
made. This evaluation revealed that MergeReadsFastQ outperforms all other
applications on most of the tested data sets with respect to merging and
mapping rates. However, due to the extremely large runtime requirement, it
is unfeasible to use this tool in any larger sequencing project. In particular,
whole genome sequencing projects or projects including multiple di�erent
species cannot be performed within acceptable time. With ClipAndMerge, a
very fast adapter clipping and read merging tool has been introduced that
outperforms existing methods either in mapping quality or in time and that
can compete with the merging and mapping rates of the MergeReadsFastQ
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application. In particular, none of the other methods was able to produce sig-
ni�cantly better results when taking merging and mapping rates into account.
In cases where merging and mapping rates were comparable, ClipAndMerge
usually took much less time for the processing. Furthermore, ClipAndMerge
provides additional features in comparison to the other applications, such
as quality trimming, adapter clipping for single-end reads, or the auto-
matic concatenation of FASTQ �les resulting from multiple sequencing lanes.
This makes ClipAndMerge widely applicable to various di�erent sequenc-
ing projects and thus the best choice for the described data processing pipeline.

The power of the read processing steps within the described pipeline was
already successfully demonstrated in a high impact paper in Science [144], for
which I served as a co-author. In this thesis, I concentrated on showing how
the pipeline performs for special types of modern data, where similar quality
issues arise as with ancient data. The application to modern Treponema
pallidum strains showed that high mapping rates could be achieved with
the application of the ClipAndMerge tool within the processing pipeline.
Furthermore, application of the whole pipeline enabled the characterization
and phylogenetic classi�cation of Treponema pallidum strains from all over the
world. One disadvantage that was observed during the analysis of di�erent
Treponema pallidum strains is that genomic regions with a large number
of variations, so-called hypervariable regions, lead to coverage drops during
mapping when strictly following the steps of the pipeline. In this thesis, this
hindrance was overcome by switching to a more appropriate mapping algo-
rithm with relaxed mapping parameters regarding read alignment speci�city
for these regions. Although this approach worked well for the Treponema
pallidum strains studied in this work, it remains to be investigated how such
an approach would perform with more complex organisms, where in addition
repetitive sequences hinder the analysis process. Furthermore, automation
of this strategy could be included in the pipeline in the future to increase
applicability for complex, highly variable regions.

Based on this pipeline a step further has already been taken by Alexander
Peltzer with the introduction of EAGER (E�cient Algorithms for Genome
Reconstruction, manuscript under revision in Genome Biology). The develop-
ment of EAGER was highly motivated by the successful preliminary work de-
scribed in this thesis. Thus, the methods included in this pipeline are reused in
EAGER. Moreover, EAGER has been designed to additional provide methods
for the analysis of ancient population-based data in the future. To conclude,
the steps taken during this dissertation already have greatly improved and will
continue to improve how genomic sequencing data from ancient and modern
DNA samples are processed.
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9.6 A Microarray Based Ancient DNA Screen-

ing Technique for Human Pathogens

By the development of the ancient sequencing data processing pipeline
discussed in the last section, the comparative analysis of ancient and modern
DNA samples has been simpli�ed and automated. However, a large issue still
remains, namely the low amount of ancient DNA that is usually available in a
corresponding sample. Especially when studying ancient microorganisms the
amount of DNA that can be obtained is much lower than for mammals or any
other larger organisms. The main reason for that is that samples containing
ancient DNA, as for example soil, water or other biological material, are
usually contaminated with DNA from other modern microorganisms living
under such conditions. In comparison to the amount of DNA from these
modern microorganisms, the amount of ancient DNA is usually much less,
rendering it di�cult to gather enough DNA for an appropriate identi�cation
and the subsequent analysis of the organism of interest. To overcome this
hindrance, approaches have been taken to enrich for the DNA of interest.
For this purpose, DNA capture microarrays have been commonly applied.
However, by the time of this thesis only single organism speci�c arrays have
been available. These have the huge disadvantage of only being able to screen
for a single organism at once and are therefore not suited for applications,
where the speci�c organism is unknown.

In this dissertation, a microarray based DNA capture and enrichment
approach, named APSA (Ancient Pathogens Screening Array), has been
developed that is able to identify almost 100 di�erent human pathogens with
a single microarray. Using a multi organism array is very economical, but
clearly the captured DNA content di�ers signi�cantly in comparison to a
single organism capture array. For the development of APSA, it was necessary
to identify unique regions in each of the organisms, which were then used for
probe selection. For a typical whole genome single organism array a genome
tiling approach with e.g. a 6 base pair tiling for 60 base pairs long oligos
would su�ce to evaluate the presence or absence of an organism in a biological
sample. However, for the development of APSA cross-hybridization with
other organisms had to be avoided to assure that the captured DNA provides
a speci�c signal. To achieve this, a phylogenetically based approach was
chosen, where for each pathogen added to the array regions were selected to
be unique with respect to a speci�c taxonomic level. Although, identi�cation
of the respective taxonomic level for each pathogen was possible by using
the NCBI Taxonomy Database, the problem of choosing the right genome
sequence for oligo design remained. In this work, one of the possible genomes
for a pathogen was chosen randomly, which strongly relies on the assumption
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that sub-sequences that are unique on a speci�c taxonomic level are shared by
all strains of that species underneath this taxonomic level. Sequence identity
was thereby de�ned by a BLAST search. The disadvantage of this approach is
that with a local alignment complete sequence identity cannot be guaranteed,
which leaves the risk of varying sub-sequences between summarized strains.
Furthermore, some of the strains may also completely lack selected sequence
regions. Although, such di�erences could not be avoided completely with the
approach described in chapter 8, variations are not expected to be very large
and the amount of resulting oligos was large enough to capture a broad range
of all the organisms' genomes. Thus, selecting one possible genome sequence
randomly seemed reasonable.

Another decision concerns the distribution of available oligos on the APSA.
Because of the di�erent genome sizes of the organisms that were chosen for
the APSA, di�erent numbers of usable oligo sequences for each pathogen
were obtained. In particular, viruses revealed the least number of oligos,
whereas for worms up to hundreds of thousands of oligos could be obtained.
However, the total number of oligos on the APSA was limited, which means
that oligos had to be selected carefully to provide a good coverage over each
individual genome. Clearly, if the number of oligos for each pathogen di�ers
on the APSA, then for those with a larger number it is more likely that also
a larger amount of DNA gets captured, whereas pathogens with only very
few oligos can only capture very few DNA fragments. To solve this issue,
basically two di�erent strategies were possible. With the �rst strategy an
equal representation of the pathogens on the array needs to be achieved by, for
example, placing copies of the same oligo multiple times for those pathogens
were only a few oligos were available. With the second strategy each oligo
is placed only once, which results in a di�erent number of oligos for each
pathogen. For the latter, a normalization has to be performed afterwards to
account for the varying capturing potential of the APSA computationally. In
this work, the decision was made to use a normalization approach rather than
placing oligos multiple times. This strategy had the advantage of covering
large genomes equally well in relation to smaller ones, with respect to the
overall genome representation.

To evaluate the detection and enrichment capability of the APSA, it was
applied to a positive control containing ancient Mycobacterium leprae DNA,
which resulted in a 460× enrichment in comparison to a shotgun sequencing
without enrichment. This demonstrates the huge enrichment and detection
potential of the APSA. However, further validation in the future with varying
data sets would be bene�cial to evaluate the detection and enrichment
potential with respect to the other pathogens represented on the APSA.
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Although the design pipeline in this work was used to build oligos for
microarray based DNA capturing, the general concept can readily be applied
to other capturing techniques, such as in-solution capturing [97]. In contrast
to a microarray-based procedure, additional magnetic beads would have to
be added to the oligos for later DNA retrieval. However, this does not a�ect
the general oligo design process, which is why the design procedure described
in this thesis can be used without larger modi�cations to build oligos for
in-solution capturing. Furthermore, the analysis toolkit could also be used
to analyze in-solution captured DNA fragments without the necessity of
modi�cations.

To conclude, the APSA is the �rst and only array based enrichment technique
that allows for the detection and enrichment of up to 100 di�erent human
pathogens in parallel. Although, its main intention was the identi�cation of
ancient DNA material, it is not limited to ancient DNA and can also be applied
for the identi�cation of modern pathogenic DNA. Together with an appropriate
analysis toolkit, that has been developed speci�cally for this array and the
analysis pipeline described in chapter 7, an easy to use, automated analysis of
APSA captured sequencing reads has been made possible.

9.7 Conclusion

With the development of the next-generation sequencing technologies new
possibilities to understand the complexity of biological data have been
provided. However, with the rising amount of data that could be generated,
appropriate methods were needed to process the data and comprehensive vi-
sualization were required to help with their interpretation. In this dissertation
several new data processing and visualization approaches have been presented,
including the analysis of genotype and haplotype data in the context of an
eQTL study, the visual assessment of structural variations as well as methods
for processing very old DNA that satisfy speci�c requirements in order to
obtain a comprehensive set of SNVs for further analysis.

In the future the methods and visualizations presented in this dissertation will
continue to support researchers and clinicians with the analysis and interpre-
tation of SNVs. As has been shown above, some of the design concepts already
had great impact on how SNV data is processed and visualized and will prob-
ably continue to inspire researches in the process of creating new visualization
and data processing concepts. Furthermore, this work highly focused on the
integration of various data types, in particular genotype/haplotype data, gene
expression data, as well as structural variation data, into a single study. As
technologies advance, more and more integrative approaches will be needed
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that unite available data of di�erent data types. Only then a complete picture
of e.g. a speci�c disease or condition of interest can be obtained. The design
choices made in this dissertation pave the way to a fully integrative study of
variation and expression data, o�ering the opportunity to come to a better
understanding of the complexity of life and disease.
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A. Supplementary Material

Table A.1: Population abbreviations used during data analysis of Phase 1 of
the 1000 Genomes project.

Population abbreviation Full population name

ASW People with African ancestry in Southwest United
States

CEU Utah residents with ancestry from Northern and
Western Europe

CHB Han Chinese in Beijing, China
CHS Han Chinese South, China
CLM Colombians in Medellin, Colombia
FIN Finnish in Finland
GBR British from England and Scotland
IBS Iberian populations in Spain
LWK Luhya in Webuye, Kenya
JPT Japanese in Tokyo, Japan
MXL People with Mexican ancestry in Los Angeles,

California
PUR Puerto Ricans in Puerto Rico
TSI Tuscani in Italy
YRI Yoruba in Ibadan, Nigeria

Table A.2: Super population abbreviations used during data analysis of Phase
1 of the 1000 Genomes project.

Super population abbreviation Full super population name

AFR Africans
AMR Americans
ASN East Asians
EUR Europeans
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A. Supplementary Material

Table A.3: Overview of the available SNPe� e�ect prediction categories and
the Reveal impact classes assigned to each category. The categories have been
separated based on their regional (top), or functional (bottom) classi�cation.

SnpE� E�ect Cate-
gory

Description Reveal impact class

5' UTR SNV in untranslated
region upstream of a
gene

middle

CDS SNV in protein coding
sequence (introns ex-
cluded)

middle

Gene SNV in gene region (in-
trons included)

middle

Transcript SNV in speci�c gene
transcript

middle

Exon SNV in exon region middle
Intron SNV in intron region none
3' UTR SNV in untranslated

region downstream of a
gene

low

Intragenic SNV in non-coding in-
tragenic region

none

Start codon gained gain of an additional
start codon upstream
of a gene

middle

Start codon lost SNV in the start codon
leading to a shorter
gene product

high

Splice site acceptor SNV in one of the two
bases before an exon
(not the �rst)

high

Splice codon lost SNV in one of the two
bases after an exon (not
the last)

high

Non-Synonymous amino-acid change high
Synonymous no amino-acid change none
Stop codon gained SNV causes an addi-

tional stop codon be-
fore the original one

high

Stop codon lost SNV in the original
stop codon leading to a
longer gene product

high
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A. Supplementary Material

Table A.5: Overview of the default parameters used by the BWA mem and
BWA aln/samse algorithms. For more information on the individual parameters
please see the o�cial manual page at http://bio-bwa.sourceforge.net/bwa.
shtml (last accessed: September 20, 2015). NA indicates that the respective
parameter is not available.

Parameter BWA mem BWA aln/samse

Minimum seed length -k 19 NA
Band width -w 100 NA
O�-diagonal X-dropo� -d 100 NA
Trigger re-seeding -r 1.5 NA
Max occurrences -c 10000 NA
Matching score -A 1 NA
Mismatch penalty -B 4 -M 3
Gap open penalty -O 6 -O 11
Gap extension penalty -E 1 -E 4
Clipping penalty -L 5 NA
Minimum alignment score -T 30 NA
Maximum number of gap opens NA -o 1
Maximum number of gap extensions NA -e −1
Long extension threshold NA -d 16
Indel length threshold NA -i 5
Number of subsequences as seed NA -l inf
Maximum edit distance in the seed NA -k 2

A.1 Available SNV Filter Methods in Reveal

� Aggregation: This �lter is based on the aggregated genotype distribution
of a SNV in the case group and in the control group. Only those SNVs for
which the aggregated distributions di�er, with respect to the maximum
aggregation method, are selected.

� Aggregation Di�erence: In addition to the aggregation �lter, the aggre-
gation di�erence �lter takes user-de�ned di�erences in the aggregated
frequencies into account.

� Chromosomal Location: SNVs can be selected based on their chromoso-
mal location. Thereby, a position range on a speci�c chromosome can
be de�ned. All SNVs contained in that region are �ltered.

� Closest Gene: Each SNV is assigned to one of the genes in the Reveal
project according to its genetic distance. The user can then select any of
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A.1. Available SNV Filter Methods in Reveal

the genes resulting in a selection of all SNVs for which the selected gene
is closest in proximity with respect to all genes in the current project.

� Contained in SNVList: This �lter allows one to intersect or merge sets
of SNVs, by specifying already created SNVLists and combining them
using set methods.

� SNV No-Call Rate: This �lter allows for the selection of only those SNVs,
for which the number of individuals with missing genotype information
is within a user-de�ned threshold.

� SNV Selection: SNVs can be selected within any of the visualizations
provided in Reveal. With this �lter, user made selection can be trans-
formed into SNVLists for further processing or selection storage.

� SNV Identi�er: Regular expressions can be de�ned for SNV identi�ers.
Furthermore, comma separated lists of di�erent SNV identi�ers can be
provided based on which SNVs from the project are selected.

� Minor allele frequency (MAF): not all SNVs are polymorphic, some show
only one allele across all individuals (monomorphic) or one of the alleles
will be at a very low frequency. The association between a phenotype and
a rare allele might be supported by only a few individuals (no power to
detect the association). The result should be interpreted with caution.
SNV �ltering based on MAF is often used to exclude low MAF SNVs
(usual thresholds are between 1% and 5%).

� Hardy-Weinberg Equilibrium: The statistical test used for the calculation
of signi�cance with respect to the HW equilibrium is a typical Fisher's
Exact test followed by a Bonferroni correction for multiple testing. Com-
mon p-value thresholds for HW are e.g. 10−4 or less.

� Case-/Control Statistics: InReveal various di�erent statistical tests for
case-/control-based studies are available. With this �lter p-value (either
corrected for multiple testing or uncorrected) thresholds can be de�ned
for SNV selection.

� Single-Locus eQTL Association Tests: Allows for the de�nition of p-
value thresholds from single-locus eQTL association tests conducted with
PLINK.

� Two-Locus eQTL Association Tests: Allows for the de�nition of p-value
thresholds for pairs of SNVs with respect to a pairwise SNV based eQTL
association test conducted with PLINK. Both SNVs from a signi�cantly
associated SNV pair are selected.
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C. Academic Teaching Experience

C.1 Supervised Lectures and Courses

WS 2011/12

� Tutorial: Microarray Bioinformatics for Bachelor students

SS 2012

� Tutorial: Grundlagen der Bioinformatik for Bachelor students

� Tutorial: Einführung in die Bioinformatik for Bachelor students

� Practical Course: Practical Transcriptomics for Master students
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� Tutorial: Grundlagen der Bioinformatik for Bachelor students
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SS 2014
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