Endoskopisch-videoassistiertes Crossenclipping bei endovenöser Radiofrequenzobliteration der Vena saphena magna bei Varikosis

Inaugural-Dissertation zur Erlangung des Doktorgrades der Medizin der Medizinischen Fakultät der Eberhard Karls Universität zu Tübingen vorgelegt von Brunnert, Alicia Kim 2016
Dekan: Professor Dr. I. B. Autenrieth

1. Berichterstatter: Professor Dr. T. Hupp
2. Berichterstatter: Professor Dr. A. Strölin
Gewidmet meinen Eltern
INHALTSVERZEICHNIS

ABKÜRZUNGSVERZEICHNIS .. VI

1. EINLEITUNG ... 1

 1.1. Definition und Pathogenese der Varikosis .. 1
 1.2. Epidemiologie .. 2
 1.3. Klinik ... 3
 1.4. Diagnostik ... 4
 1.5. Stadieneinteilung der Varikosis ... 6
 1.6. Therapie der Varikosis .. 7
 1.6.1. Varizenstripping nach W.W. Babcock ... 9
 1.6.2. Radiofrequenzobliteration ... 12
 1.7. Aktueller Wissensstand .. 13
 1.8. Studienziel und Hypothese .. 14

2. MATERIAL UND METHODE ... 15

 2.1. Studiendesign .. 15
 2.2. Studienablauf .. 15
 2.2.1. Phase I: Evaluation des endoskopisch-videoassistierten Crossenclipping an der Leiche ... 16
 2.2.2. Phase II: Durchführung des endoskopisch-videoassistierten Crossenclipping an Patienten ... 16
 2.2.3. Follow-up ... 17
 2.3. Patientenkollektiv .. 17
 2.3.1. Einschlusskriterien .. 18
 2.3.2. Ausschlusskriterien .. 18
 2.4. Patienteninformation, Einverständniserklärung ... 19
 2.5. Methode des endoskopisch-videoassistierten Crossenclipping 20
 2.6. Material .. 24
 2.7. Datenerfassung, Datenschutz .. 25
2.8. Statistische Auswertung ..26

3. ERGEBNISSE ...26

3.1. Auswertung des Patientenkollektivs ..26

3.1.1. Studiengruppe 1 ...26

3.1.2. Studiengruppe 2 ...29

3.2. Vergleich der perioperativen Komplikationen32

3.3. Vergleich der Operationszeiten ..35

3.4. Auswertung der Nachuntersuchungen besonders im Hinblick auf die
Rezidivraten ..38

3.5. Auswertung der postoperativen Komplikationen41

4. DISKUSSION ..43

4.1. Ursachen und Häufigkeiten einer Rezidivvarikosis43

4.2. Bewertung des Patientenkollektivs ..45

4.3. Beurteilung des endoskopisch-videoassistierten Crossenclipping im
Rahmen der RFO ...46

4.4. Schlussfolgerung und Ausblick ...49

5. ZUSAMMENFASSUNG ...51

6. LITERATURVERZEICHNIS ..53

7. ABBILDUNGSVERZEICHNIS ..60

8. TABELLENVERZEICHNIS ...62

9. ANLAGENVERZEICHNIS ...63

9.1. Aufklärungsbogen für die Studienpatienten63

9.2. Datenschutzerklärung für die Studienpatienten73

9.3. Einverständniserklärung für die Verwendung der Leiche zu
wissenschaftlichen Zwecken im Rahmen einer wissenschaftlichen Studie ...74

10. DANKSAGUNG ..75
ABKÜRZUNGSVERZEICHNIS

<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Erklärung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arteria</td>
<td>Abbildung</td>
</tr>
<tr>
<td>BMI</td>
<td>Body Mass Index</td>
</tr>
<tr>
<td>bzw.</td>
<td>beziehungsweise</td>
</tr>
<tr>
<td>ca.</td>
<td>circa</td>
</tr>
<tr>
<td>cm</td>
<td>Zentimeter</td>
</tr>
<tr>
<td>d. h.</td>
<td>das heißt</td>
</tr>
<tr>
<td>et al.</td>
<td>et alii</td>
</tr>
<tr>
<td>EVCC</td>
<td>endoskopisch-videoassistiertes Crossenclipping</td>
</tr>
<tr>
<td>ICD</td>
<td>International Classification of Diseases</td>
</tr>
<tr>
<td>Min.</td>
<td>Minuten</td>
</tr>
<tr>
<td>mm</td>
<td>Millimeter</td>
</tr>
<tr>
<td>N.</td>
<td>Nervus</td>
</tr>
<tr>
<td>RFO</td>
<td>Radiofrequenzobliteration</td>
</tr>
<tr>
<td>OP</td>
<td>Operation</td>
</tr>
<tr>
<td>sog.</td>
<td>sogenannt</td>
</tr>
<tr>
<td>Tbl.</td>
<td>Tabelle</td>
</tr>
<tr>
<td>V.</td>
<td>Vena</td>
</tr>
<tr>
<td>vgl.</td>
<td>vergleiche</td>
</tr>
<tr>
<td>VNUS</td>
<td>Valid, Novel, Useful & Simple (Akronym für den Radiofrequenzgenerator der Firma VNUS Medical Technologies)</td>
</tr>
<tr>
<td>VSM</td>
<td>Vena saphena magna</td>
</tr>
<tr>
<td>z. B.</td>
<td>zum Beispiel</td>
</tr>
</tbody>
</table>
1. EINLEITUNG

1.1. Definition und Pathogenese der Varikosis

Krampfadern (Varizen) sind nicht nur ein kosmetisches Problem, sondern eine ernstzunehmende, häufige Erkrankung der unteren Extremität, bei der es durch eine sackartige Erweiterung der oberflächlichen Venen mit daraus resultierender Klappeninsuffizienz zu einem gestörten Rückstrom des Blutes zum Herzen kommt. Dies kann auf unterschiedliche Ursachen zurückgeführt werden. Daher wird die Varikosis zunächst in eine primäre, häufige und eine sekundäre, seltene Form eingeteilt (Henne-Bruns, 2012).

Die primäre Varikosis betrifft das extrafaszial und somit oberflächlich gelegene Venensystem. Bis heute gibt es verschiedene Hypothesen zur Pathogenese der Varikosis. Eine Störung der glatten Muskelzellen und der Extrazellulärmatrix, die zu einer Schwäche der Venenwand führen, werden diskutiert (Somers und Knaapen, 2006). In einer aktuellen Studie zur Pathogenese der primären Varikosis konnte eine erhöhte Expression von Relaxin-2 und dessen Rezeptor in der Vena saphena magna (VSM) bei Varikosis festgestellt werden. Dies könnte eine Venenschwäche erklären und in Zukunft möglicherweise einen pharmakologischen Angriffspunkt darstellen (Adams et al., 2012). Des Weiteren gilt eine genetische Komponente als äußerst wahrscheinlich (Fiebig et al., 2010), (Ng et al., 2005).

vorangegangenen Trauma der unteren Extremität auf (Laurikka et al., 2002),
(Lee, 2003), (Bromen et al., 2004).

Die sekundäre Varikosis betrifft das intrafaszial und somit tiefer gelegene
Venensystem. In den meisten Fällen liegt eine Okklusion z. B. durch eine tiefe
Beinvenenthrombose vor, wodurch das sauerstoffarme Blut nicht mehr über die
tiefen Beinvenen abfließen kann und ein Umgehungskreislauf über die
oberflächlichen Venen entsteht. Die Kapazität der oberflächlichen Venen wird
folglich überschritten, sodass sie dann durch die zunehmende Stasis des Blutes
als parrellelastische, geschlängelte Konvolute sichtbar werden (Hach-Wunderle
und Hach, 2006).

1.2. Epidemiologie

Obwohl es sehr unterschiedliche Daten bezüglich der Prävalenz der Varikosis
gibt, lässt sich zusammenfassend feststellen, dass es sich um eine sehr häufige
und volkswirtschaftlich bedeutsame Erkrankung handelt (Heit et al., 2001),
(Evans et al., 1999), (Rabe et al., 2012), (Brand et al. 1988).

Laut der Bonner Venenstudie, bei der 3072 Probanden untersucht wurden,
wiesen lediglich 9,6% keine Hinweise auf eine venöse Veränderung auf. Eine
Varikosis (C2 nach der CEAP-Klassifikation, vgl 1.5.) konnte bei 14,3% (12,4%
der Männer, 15,8% der Frauen) nachgewiesen werden. Die Mehrheit zeigte mit
59,1% feine Veränderungen wie Besenreiser, Teleangiektasien oder retikuläre
Venien.

1.3. Klinik

1.4. Diagnostik

Eine weitere apparative Diagnostik stellt die **Venenverschlussplethysmographie** dar. Durch die Anlage von Blutdruckmanschetten mit ca. 60 mmHg an den Beinen wird der Rückfluss des venösen Blutes aus dem Bein zum Herzen kurzzeitig unterbunden. Da die arterielle Zufuhr jedoch erhalten bleibt, und das venöse, sauerstoffarme Blut nicht mehr über die Barriere der Blutdruckmanschetten hinauskommt, nimmt der Beinumfang zu. Diese Veränderung des Blutvolumens wird mittels Dehnungstreifen gemessen, sodass Rückschlüsse auf die venöse Kapazität
sowie den Zu- und Abfluss des arteriellen sowie venösen Blutes gezogen werden können. Dieses diagnostische Verfahren dient des Weiteren zur Detektion einer Thrombose (Kendler et al., 2010), (Hach et al., 2012a).

Die **Phlebodynamometrie** hingegen ist eine invasive Messung, bei der nach Punktion einer Beinvene Druckveränderungen bei genormten Lagerungen gemessen werden können (Hach et al., 2012a). Aufgrund der Invasivität der Methode ist sie heutzutage im klinischen Alltag jedoch nur selten in Anwendung.

Früher hatte die **Phlebographie** einen hohen Stellenwert in der Diagnostik der Varizen. In den letzten Jahren wurde sie jedoch von der Duplexsonographie weitgehend abgelöst und wird nur noch bei individueller Fragestellung oder falls per Duplexsonographie keine sichere Beurteilung erfolgen kann eingesetzt. Durch die Injektion von Kontrastmittel z. B. über die Vena dorsalis pedis und einer anschließenden Röntgenaufnahme kann das venöse System dargestellt und beurteilt, aber auch eine tiefe Beinvenenthrombose detektiert werden (Hach et al., 2012a), (Henne-Bruns, 2012).

1.5. Stadieneinteilung der Varikosis

Varizen können nach unterschiedlichen Gesichtspunkten eingeteilt werden.

Abb. 2: Bildliche Darstellung der Stadieneinteilung der Varikosis nach Hach (Nüllen und Noppeney, 2010b).

Der Grad der Varikosis der Vena saphena parva kann ebenfalls nach Hach in drei Stadien eingeteilt werden. Hach I bedeutet eine Insuffizienz auf Höhe des Knies, Hach II zieht sich bis ca. zur Mitte des Unterschenkels, bei Hach III bis zum Außenknöchel (Henne-Bruns, 2012).

Wesentlich mehr Bedeutung erhält jedoch heutzutage die CEAP-Klassifikation (Hach et al., 2012a). Dieses Akronym steht für C = clinical condition, E = etiology, A = anatomic location, P = pathophysiology und berücksichtigt zur Stadieneinteilung somit wesentlich mehr Kriterien. Jeder Buchstabe dieses Akronymys wird nun weiter unterteilt.

Ätiologisch kann die Varikosis entweder angeboren (En), primär (Ep) oder sekundär (Es) sein.

Pathophysiologisch unterscheidet man als Ursache der Symptomatik einen Reflux (Pr) und eine Obstruktion (Po) sowie eine Kombination aus beidem (Pro).

1.6. Therapie der Varikosis

Abhängig vom Stadium und dem Beschwerdebild des Patienten können sowohl konservative als auch interventionelle Maßnahmen getroffen werden. Eine Therapie ist aufgrund der Progredienz und der Gefahr von Komplikationen wie z. B. der Entwicklung eines Ulcus cruris oder einer tiefen Beinvenenthrombose

Oftmals persistieren jedoch die Beschwerden der Patienten unter der konservativen Therapie, sodass interventionelle - minimalinvasive oder offen chirurgische - Maßnahmen zum Einsatz kommen. Auch wenn minimalinvasive Verfahren in den letzten Jahren immer beliebter geworden sind, bleibt das Venenstripping nach Babcock kombiniert mit der Crossektomie als Goldstandard unangefochten (Noppeney et al., 2007). Laut einer Befragung der
Teilnehmer der 21. Norddeutschen Gefäßchirurgietage ist das offen chirurgische Verfahren nach Babcock in Deutschland mit ca. 78% nach wie vor die am meisten durchgeführte Behandlung der Varikosis (Michallek, 2007).

Trotz vieler Studien, die die minimalinvasiven Verfahren wie Sklerosierung, endovenöse Radifreqenzobliteration und endovenöse Lasertherapie mit der offen chirurgischen Therapieoption vergleichen, gibt es keinen klaren Konsens bezüglich einer eindeutigen Überlegenheit eines Verfahrens. Immer wieder gelangen verschiedene Vergleichsstudien zu unterschiedlichen Ergebnissen (Siribumrugwong et al., 2012), (Murad et al., 2011), (Schmedt et al., 2010). Laut Mumme sind die wenig vorhandenen randomisierten Kontrollstudien nicht ausreichend und in ihrer Qualität nicht überzeugend (Mumme, 2012).

1.6.1. Varizenstripping nach W.W. Babcock

erkrankt ist, kann sie alternativ auch nur bis zu ihrem distalen Insuffizienzpunkt entfernt werden (vgl. Stadieneinteilung nach Hach 1.5.). Am Ende werden die Schnitte schichtweise vernäht und eine Kompression mit Hilfe eines elastischen Strumpfes oder einer Wickelung mit Hilfe elastischer Binden angelegt (Stumpf et al., 2013).

Nachteilig für den Patienten ist, dass beim Strippingverfahren ein größeres Trauma verursacht wird und eine längere Hautinzision im Vergleich zu minimalinvasiven Verfahren nötig ist. Dies hat vermehrt postoperative Schmerzen und eine längere Arbeitsunfähigkeit zur Folge (Brar et al., 2010). (Luebke et al., 2008). Des Weiteren zeigen sich vor allem bei unzureichender Kompression größere Hämatome und Schwellungen (Luebke et al., 2008), (Subramonia und Lees, 2010).
1.6.2. Radiofrequenzobliteration

In den amerikanischen Leitlinien wird die RFO mit dem Evidenzgrad 1B gegenüber dem konventionellen Venenstripping, das lediglich mit dem Evidenzgrad 2B belegt ist, sogar favorisiert (Gloviczki et al., 2011).

Ein wesentlicher Unterschied zum offen chirurgischen Verfahren ist das Entfallen der Crossektomie, die einen entscheidenden Grundpfeiler des offen chirurgischen Standardverfahrens darstellt. Eine Ausschaltung der Seitenäste und eine mündungsnahen Ligatur der VSM erfolgen nicht.

Insgesamt scheint die wenig invasive RFO ein extrem niedriges Komplikationsrisiko und einige Vorteile im Sinne einer kürzeren Arbeitsunfähigkeit und einer höheren Lebensqualität postoperativ aufzuweisen (Brar et al., 2010), (Luebke et al., 2008). Die häufigsten Nebenwirkungen sind Ekchymosen (6,4%), Parästhesien (3,2%) und eine Hyperpigmentierung (2 %) (Proebstle et al., 2008), (Thompson et al., 2013).

1.7. Aktueller Wissensstand

Es gibt zahlreiche Studien über die RFO und ihren Vergleich zum klassischen Strippingverfahren (Colli et al., 2005), (Helmy ElKaffas et al., 2011), (Hinchliffe et al., 2006). Das endoskopisch-videoassistierte Crossenclipping (EVCC) im Rahmen der RFO ist bisher allerdings in keiner Studie beschrieben worden. Es existiert lediglich das Verfahren der endoskopisch subfaszialen Perforatordissektion, welches zur Verbesserung der OP-Strategie und zur Reduktion von Wundheilungsstörungen bei der Behandlung von venösen Ulzera beitragen soll (Hauer et al., 1999), (Hauer et al., 1988), (Jugeneimer
1.8. Studienziel und Hypothese

Es galt herauszufinden, ob diese neue Methodik, wie sie in Punkt 2.5. ausführlich beschrieben wird, in der geplanten Form durchführbar und zielführend ist. Außerdem sollten mögliche Komplikationen oder Schwierigkeiten dokumentiert werden. Zugleich sollte beantwortet werden, welchen zeitlichen und finanziellen Mehraufwand dieses Verfahren durch den erhöhten technischen Aufwand mit sich bringt.

Die Hypothese lautete:
Nachweis der Praktikabilität des endoskopisch-videoassistierten Crossenclipping mit einer Reduktion der Rezidivrate im Vergleich zur
herkömmlichen RFO und zugleich weniger postoperativer Komplikationen aufgrund des minimalinvasiven Vorgehens.

2. MATERIAL UND METHODE

2.1. Studiendesign

Es wurde eine prospektive Studie durchgeführt, bei der die Machbarkeit eines endoskopisch-videoassistierten Crossenclipping (EVCC) im Rahmen einer endovenösen Radiofrequenzobliteration (RFO) der Vena saphena magna bei Varikosis geprüft wurde.

2.2. Studienablauf

Zunächst erfolgte ein Antrag zur Durchführung der Studie bei der Ethikkommission der Eberhard Karls Universität Tübingen. Nach ihrer Genehmigung konnte folgender Ablauf der Studie durchgeführt werden.
2.2.1. Phase I: Evaluation des endoskopisch-videoassistierten Crossenclipping an der Leiche

2.2.2. Phase II: Durchführung des endoskopisch-videoassistierten Crossenclipping an Patienten

Nach Erprobung und Evaluation an der Leiche haben wir das endgültige Operationsverfahren festgelegt. Es wurde so eine Operationsmethode, die die Vorteile des konventionellen Strippingverfahrens inklusive Crossektomie und die Vorteile der Minimalinvasivität der RFO kombiniert, entwickelt. Die Beschreibung der entwickelten Operationsmethode ist im Ergebnisteil im Detail aufgeführt. Die Durchführung erfolgte an 18 Patienten bzw. 19 Extremitäten, da bei einer Patientin sowohl die rechte als auch die linke Extremität in je einer Sitzung operiert wurde. Die Patienten erfüllten die Einschlusskriterien (vgl. 2.3.1.) und willigten in die Teilnahme an der Studie und die Durchführung der Operation (vgl. 9.1.) ein. Der Aufklärungsbogen wurde in Anlehnung an die dokumentierte Patientenaufklärung für Varizenoperationen von
„proCompliance, Thieme Compliance GmbH“ verfasst und lediglich im Hinblick auf die operative Ergänzung durch das EVCC im Rahmen der Studie erweitert. Während der Durchführung wurden besonders auf perioperativ potentiell auftretende Komplikationen geachtet und diese dokumentiert.

2.2.3. Follow-up

Es erfolgte bei jedem Patienten eine Kontrolle mittels farbkodierter Duplexsonographie in zuvor festgelegten Zeitabständen, wobei die neue Methode vorwiegend hinsichtlich eines Crossenrezidivs und der aufgetretenen peri- und postoperativen Komplikationen geprüft wurde. Die vorgesehenen Kontrolluntersuchungen sollten vor der Entlassung, nach drei und sechs Monaten und nach einem Jahr nach der Operation vorgenommen werden sowie zusätzlich bei Bedarf.

2.3. Patientenkollektiv

2.3.1. Einschlusskriterien

An der Studie konnten alle Patienten teilnehmen, die an einer Varikosis im Stadium II-IV nach Hach litten, sich in einem Alter zwischen 20 und 80 Jahren befanden und keine der geschilderten Ausschlusskriterien erfüllten (vgl. 2.3.2.). Da sich im Verlauf die Praktikabilität des EVCC im Rahmen der RFO auch bei Patienten im höheren Alter erwiesen hatte, wurde zu einem späteren Zeitpunkt in Studiengruppe 1 auch ein Patient mit 81 Jahren eingeschlossen. In Studiengruppe 2 wurden retrospektiv alle Patienten, bei denen zwischen 2009 und 2012 eine RFO ohne EVCC im Klinikum Stuttgart durchgeführt wurde, aufgenommen. Außerdem musste die unterschriebene Einverständniserklärung des Patienten für die Operation und zur Teilnahme an der wissenschaftlichen Studie vorhanden sein.

2.3.2. Ausschlusskriterien

Bei allen Patienten musste gesichert sein, dass das tiefe Venensystem keine pathologischen Veränderungen, z. B. eine akute, tiefe Beinvenenthrombose oder ein postthrombotisches Syndrom aufwies und dass somit trotz operativer Ausschaltung der VSM ein Rückfluss des venösen Blutes zum Herzen gewährleistet war.

Eine weitere Kontraindikation für die RFO war das Vorliegen einer akuten Thrombophlebitis oder einer akuten Infektion des Beines.

Patienten mit einer zum OP-Zeitpunkt vorliegenden Tumorerkrankung wurden ebenso nicht in die Studie aufgenommen.

Bei Patienten, bei denen ein Herzschrittmacher oder ein Defibrillator implantiert wurde, sollte besondere Vorsicht gelten. Dies sollte nur mit Rücksprache des behandelnden Kardiologen und dem Hersteller erfolgen. In unserer Studie traf dieser Fall jedoch auf keinen Patienten zu.

2.4. Patienteninformation, Einverständniserklärung

2.5. Methode des endoskopisch-videoassistierten Crossenclipping

Zunächst erfolgte nach sterilen Abwaschen das sterile Abdecken, wobei die Leistenregion und das zu operierende Bein freigelassen wurden. Das Bein befand sich in leichter Außenrotation und einem leicht angewinkelten Kniegelenk. Der Verlauf der VSM sowie deren Mündung in die V. femoralis wurden zu Beginn sonographisch dargestellt und extern auf der Haut markiert.

Es erfolgte nun ein kleiner, quer verlaufender Hautschnitt von 2 bis 3mm Länge, etwa drei fingerbreit unterhalb des Leistenbandes und lateral der Gefäß-Nerven-Scheide, über den eine Kanüle eingeführt und Gas (Kohlendioxid) insuffliert wurde. Somit konnten ein Raum und bessere Sichtbedingungen geschaffen werden.

Abb. 4: Leicht nach außen rotiertes, linkes Bein mit schemenhaft angezeichnete Crosse sowie einer Kanüle einige Zentimeter unterhalb des Leistenbandes, über die später Gas insuffliert wurde.

![Abb. 5: Darstellung der Zugänge im Rahmen des EVCC von medial nach lateral: Trokar mit Clippzange, Trokar mit Endoskop und Lichtquelle.](image)

Die Abgänge der VSM wurden dann doppelt geklippt und durchtrennt, sodass sie zuverlässig ausgeschaltet waren.
Abb. 6: Endoskopisch-videoassistierte Darstellung der VSM mit doppelt geclipptem Seitenast.

Abb. 7: Endoskopisch-videoassistierte Darstellung der Durchtrennung eines doppelt geclippten Seitenastes der VSM.

Im letzten Schritt der minimalinvasiven, endoskopischen Crossektomie wurde die VSM auf Höhe der Crosse doppelt geclippt, sodass dann folgend mit dem üblichen Vorgang der RFO begonnen werden konnte (Czuprin et al., 2013).

Um die VSM wurde nun ebenfalls unter sonographischer Kontrolle die definierte Tumeszenzlösung mit einer Punktionskanüle appliziert, sodass durch die perisaphenale Flüssigkeit eine leichte Kompression und somit ein besserer Kontakt der RFO-Sonde zur Venenwand vorlag. Weiterhin schützt die Lösung vor Überhitzung des die VSM umgebenden Gewebes (Noppeney und Nüllen, 2010a). Diese Prozedur erfolgte in Beintieflage. Anschließend wurde der Tisch in eine leichte Beinhochlage gekippt, sodass sich das Blutvolumen in der Vene verminderte.

Unter endoskopisch-videoassistierter Kontrolle wurde dann die RFO-Sonde bis zum Clip vorgeschoben und gemäß den Vorgaben des Herstellers mit der segmentalen Obliteration der VSM durch die Radiofrequenzsonde begonnen.

Abb. 8: Darstellung der endoskopisch-videoassistierten, doppelt geclippten VSM und der deutlichen Farbveränderung durch die thermische RFO.
Die Energiezufuhr erfolgte auf den ersten 20 cm, gemessen vom Saphenaclip aus, zweimalig (sog. „double shooting“ der Radiofrequenzenergie). Die Sonde wurde pro Energiezufuhr 7 cm zurückgezogen, damit eine vollständige Obliteration der VSM erfolgen konnte. Dieses schrittweise Vorgehen erfolgte bis zur distalen Punktionsstelle. Der untere VSM-Anteil wurde mit einem resorbierbaren Faden unterbunden und die Sonde entfernt.

2.6. Material

Folgende Materialien wurden für das EVCC im Rahmen der RFO verwendet:

- Gasinsufflator mit dem Gasinsufflationsschlauch (Wolf)
- HD Optik (Wolf)
- Kamerabezug (Flexanorm)
- Videoturm HD (Wolf)
- Metzenbaumschere Endoskopie 2,5 mm (Applied Medical)
- Trokar 5 mm (Applied Medical)
- Clippzange LigaMax 5 mm, Titanclips (Ethicon Endo Surgery)
- VNUS ClosureFAST Generator (VNUS Medical Technology)
- Endovenöser Radiofrequenzablationskatheter (Covidien ClosureFAST)
- Prolene 5,0 Hautnaht
- Histoacryl Hautkleber
2.7. Datenerfassung, Datenschutz

Alle für die Studie erhobenen Daten werden zehn Jahre im SAP- System des Klinikums Stuttgart (Kriegsbergstraße 60, 70174 Stuttgart) gespeichert und mittels Zugangspasswort geschützt. Hierbei werden folgende Daten gesichert: Name, Geburtsdatum, Adresse, Telefonnummer, Geschlecht des Patienten sowie Ambulanzbriefe, Untersuchungsbefunde, Entlassungsbrief, Operationsberichte, Sonographie- und Operationsbilder.

Von dem gesamten Patientenkollektiv wurden folgende Daten erhoben und in einer Tabelle in Excel codiert übertragen.

- Vor – und Nachname des Patienten bzw. eine ihm/ihr zugeordnete Nummer zur Anonymisierung des Patientengutes
- Geburtsdatum des Patienten/in
- Geschlecht des Patienten/in
- Versicherungsstatus (privat oder gesetzlich)
- Diagnose nach ICD-10 (I83.0, I83.1, I83.2, I83.3)
- Stadium nach Hach (I-IV)
- Operationsdatum
- Alter zum Operationszeitpunkt in Jahren
- Zuordnung zur Studiengruppe 1 oder 2
- Operierte Beinseite (rechts oder links)
- Schnitt-Naht-Zeit in Min.
- Gesamte Operationsdauer in Min.
- Umstieg (Ja oder Nein)
- Perioperative Komplikationen
• Datum der Nachuntersuchungen
• Crossenrezidiv zur jeweiligen Nachuntersuchung (Ja oder Nein)
• Tage von der Operation bis zum Auftreten eines Rezidivs
• Postoperative Komplikationen

2.8. Statistische Auswertung

Basierend auf den erhobenen Daten erfolgte die statistische Auswertung und Darstellung in Grafiken mittels IBM SPSS Statistics Version 22.

3. ERGEBNISSE

Nachdem sich die technische Machbarkeit in der Phase I der Studie an der Leiche erwiesen hat, wird der Fokus des Ergebnisteils nun auf dem klinischen Abschnitt, der Phase II der Studie, liegen.

3.1. Auswertung des Patientenkollektivs

3.1.1. Studiengruppe 1

Alle Patienten wurden in den Jahren 2011 bis 2013 in der Krampfadersprechstunde der Gefäßchirurgie des Klinikum Stuttgart vorstellig und die Indikation zur operativen Versorgung der Varikosis gestellt. Das
Patientenkollektiv bestand aus 18 Patienten, bei denen eine Patientin an beiden Extremitäten operiert wurde. Jede Operation wurde als einzelner Fall betrachtet, sodass die an beiden Extremitäten operierte Patientin zweimal vertreten ist. Insgesamt wurden daher 19 Fälle, bei denen das EVCC im Rahmen der RFO durchgeführt wurde, in die Studie mit einbezogen.

Der Anteil des weiblichen Geschlechts lag bei 13 Patientinnen, beziehungsweise bei 14 weiblichen Extremitäten, entsprechend 73,7%, wogegen 5 Patienten entsprechend 26,3% männlich waren.

\[\text{Abb. 9: Geschlechtsverteilung der Studiengruppe 1 in \%, welche mit dem EVCC im Rahmen der RFO operiert wurde.}\]

In dieser Studiengruppe waren die Patientinnen in einem Alter zwischen 32 und 80 Jahren, die Patienten in einem Alter von 45 bis 81 Jahren. Das mediane Alter der Studiengruppe 1 zum Zeitpunkt der Operation betrug 68 Jahre. Der Mittelwert des Alters lag bei 61,4 Jahren. In folgender Abbildung (vgl. Abb. 10) zeigt sich, dass mehr als die Hälfte der Patienten im Alter zwischen 60 und 79 Jahren waren.
Insgesamt wurden in der **Studiengruppe 1** neun rechte untere Extremitäten und neun linke untere Extremitäten operiert. Bei einem Fall konnte wegen widersprüchlicher Dokumentation die operierte Seite nicht sicher zugeordnet werden.

14 Patienten (77,8%) waren gesetzlich, 4 Patienten (22,2%) privat versichert.

Die Verteilung der nach ICD-10 (International Classification of Diseases) vermerkten Diagnosen wurde ebenfalls betrachtet. In der **Studiengruppe 1** lag in einem Fall (5,3%) die Diagnose I83.0, welche Varizen der unteren Extremität mit Ulzerationen beschreibt, vor. Die Diagnose I83.1, die als Varizen der unteren Extremität mit Entzündung definiert ist, wurde bei 13 Fällen (68,4%) vorgefunden. In zwei Fällen (10,5%) wurde I83.2 entsprechend Varizen der unteren Extremität mit Ulzerationen und Entzündung diagnostiziert. Varizen ohne Ulzeration oder Entzündung (I83.9) lag in der **Studiengruppe 1** bei drei Fällen (15,8%) vor.
29

Abb. 11: Darstellung der Verteilung der ICD-10 Diagnosen der Studiengruppe 1 in %. I83.1 entspricht Varizen der unteren Extremität mit Entzündung; I83.2 stellen Varizen der unteren Extremität mit Entzündung und Ulzerationen dar; I83.9 ist als Varizen ohne Ulzerationen oder Entzündung definiert; I83.0 entsprechen Varizen der unteren Extremität mit Ulzerationen.

3.1.2. Studiengruppe 2

Abb. 12: Geschlechtsverteilung der Studiengruppe 2, bei denen eine RFO durchgeführt wurde, in %.

Abb. 13: Altersverteilung der Studiengruppe 2, bei denen eine RFO durchgeführt wurde.
In der **Studiengruppe 2** wurden insgesamt 15 (48,4%) rechte und 16 (51,6%) linke untere Extremitäten operiert.

14 Patienten entsprechend 53,8% waren bei einer gesetzlichen Krankenversicherung. Eine Privatversicherung lag bei 12 Patienten (46,2%) vor.

Bei der Verteilung der ICD-10 Diagnosen in der **Studiengruppe 2** wurden am häufigsten mit 61,3% beziehungsweise 19 Fällen Varizen der unteren Extremität ohne Ulzerationen oder Entzündung (I83.9) diagnostiziert. Die Diagnose I83.1 (Varizen der unteren Extremität mit Entzündung) und die Diagnose I83.2 (Varizen der unteren Extremität mit Entzündung und Ulzerationen) lagen gleichermaßen mit 19,35% in je sechs Fällen vor. Keinmal wurde die Diagnose I83.0, Varizen der unteren Extremität mit Ulzerationen, gestellt.

Abb. 14: Darstellung der Verteilung der ICD-10 Diagnosen der Studiengruppe 2 in %. I83.1 entspricht Varizen der unteren Extremität mit Entzündung; I83.2 stellen Varizen der unteren Extremität mit Entzündung und Ulzerationen dar; I83.9 ist als Varizen ohne Ulzerationen oder Entzündung definiert; I83.0 entsprechen Varizen der unteren Extremität mit Ulzerationen.
3.2. Vergleich der perioperativen Komplikationen

Von den 18 Fällen der Studiengruppe 1, bei denen ein EVCC zusätzlich zur RFO geplant war, konnte dieses in 13 Fällen entsprechend 68,4% wie geplant durchgeführt werden. In sechs Fällen entsprechend 31,6% erfolgte ein Umstieg, der dadurch definiert war, dass von der minimalinvasiven, endoskopischen Crossektomie aus verschiedenen Gründen abgesehen werden musste.

| Umstiege aufgrund perioperativer Komplikationen in Studiengruppe 1 (RFO+ EVCC) |
|-----------------|-----------------|-----------------|-----------------|
| Häufigkeit | Prozent | Gültige Prozent | Kumulative Prozent |
| kein Umstieg | 13 | 68,4 | 68,4 |
| Umstieg | 6 | 31,6 | 31,6 |
| Gesamtsumme | 19 | 100,0 | 100,0 |

Tbl. 1: Anzahl der Patienten der Studiengruppen 1 (RFO + EVCC), bei denen intraoperativ ein Umstieg erfolgte. Dieser war definiert als ein Wechsel von der minimal invasiven Crossektomie zur offen chirurgischen Crossektomie.

In drei Fällen (15,8%) musste auf das Strippingverfahren nach Babcock und eine offen chirurgische Crossektomie umgestiegen werden, da die RFO-Sonde bei obliterierter VSM nicht vorschubbaren war. In einem Fall (5,3%) kam es bei der Präparation der Crosse zu einer Blutung, die minimalinvasiv bei schlechter, intraoperativer Sicht nicht lokalisiert und ausgeschaltet werden konnte. Deswegen musste ein ca. 3 bis 5 cm großer Hautschnitt in der Leiste und eine offen chirurgische Präparation der Crosse durchgeführt werden. Das weitere Verfahren erfolgte jedoch wie geplant. Es wurden alle Seitenäste und die VSM doppelt geclippt und durchtrennt, sowie die RFO lege artis ausgeführt. In einem weiteren Fall (5,3%) wurde intraoperativ eine akzessorische VSM vorgefunden, die zuvor nicht bekannt war. Es erfolgte daher ebenfalls ein Hautschnitt in der Leiste zur besseren Darstellung der Crosse und sicheren Identifizierung und Ausschaltung der VSM mit ihren Seitenästen und der akzessorischen VSM. Zu einem weiteren Umstieg kam es bei einem Fall (5,3%), da sonographisch die Lage der RFO-Sonde nicht sicher dargestellt werden konnte. Rückblickend
stellte sich heraus, dass sich die RFO-Sonde in einem großkalibrigen Seitenast der VSM verfangen hatte.

![Diagramm]

Abb. 15: Darstellung der perioperativ aufgetretenen Komplikationen in %, die zu einem Umstieg von dem minimalinvasiven EVCC zu einer offen chirurgischen Crossektomie oder in 15,8% auch zu einem Stripping nach Babcock geführt haben.

Insgesamt sind die perioperativ aufgetretenen Komplikationen in **Studiengruppe 1** (RFO + EVCC) vergleichbar mit Komplikationen, die auch bei der klassischen RFO auftreten können. Die intraoperative Blutung im Bereich der Crosse ist jedoch aufgrund der technisch schwierigeren, minimalinvasiven Präparation der Crosse ein spezifisch für diese Methode auftretendes Problem. Mit zunehmender Anwendung des EVCC ist jedoch mit hoher Wahrscheinlichkeit eine steigende Lernkurve des Operateurs zu erwarten, sodass das Risiko einer Verletzung von Gefäßen minimiert werden kann.

In der **Studiengruppe 2**, die als Kontrollgruppe diente, konnte in 29 von 31 Fällen entsprechend 93,5% die klassische RFO durchgeführt werden. In den anderen zwei Fällen (6,5%) musste von der minimalinvasiven RFO auf ein Stripping nach Babcock mit offen chirurgischer Crossektomie umgestiegen werden. Bei einem dieser Fälle (3,2%) konnte die RFO Sonde nicht
vorgeschoben werden, da die VSM obliteriert war. Im anderen Fall (3,2%) konnte intraoperativ die Lage der RFO-Sonde nicht eindeutig dargestellt werden, sodass ebenfalls eine offen chirurgische Crossektomie durchgeführt werden musste.

Umstiege aufgrund perioperativer Komplikationen in Studiengruppe 2 (RFO)

<table>
<thead>
<tr>
<th></th>
<th>Häufigkeit</th>
<th>Prozent</th>
<th>Gültige Prozent</th>
<th>Kumulative Prozente</th>
</tr>
</thead>
<tbody>
<tr>
<td>kein Umstieg</td>
<td>29</td>
<td>93,5</td>
<td>93,5</td>
<td>93,5</td>
</tr>
<tr>
<td>Umstieg</td>
<td>2</td>
<td>6,5</td>
<td>6,5</td>
<td>100,0</td>
</tr>
<tr>
<td>Gesamtsumme</td>
<td>31</td>
<td>100,0</td>
<td>100,0</td>
<td></td>
</tr>
</tbody>
</table>

Tbl.2: Anzahl der Patienten der Studiengruppen 2 (RFO), bei denen intraoperativ ein Umstieg erfolgte. Dieser war definiert als ein Wechsel von der RFO zum klassischen Stripping nach Babcock.

Bei weiteren zwei Fällen (6,5%) wurde eine Blutung als perioperative Komplikation dokumentiert, die jedoch nicht zum Umstieg geführt hat. In einem dieser Fälle lag bei der Patientin das Ehlers-Danlos-Syndrom vor, bei dem eine Kollagenmutation zu Varikosis führt und es durch eine ausgeprägte Brüchigkeit der Venen intraoperativ sehr leicht zu einer Blutung kommen kann. Im Rahmen dieser seltenen Erkrankung ist die Miniphlebektomie oftmals durch sofortiges Zerreißhen der Venen beim Fassen mit der Klemme erschwert (Sharma et al., 2009), (Whiteley und Holdstock, 2014).
Abb. 16: Darstellung der perioperativ aufgetretenen Komplikationen in %, die zum Umstieg von der RFO auf ein Stripping nach Babcock geführt haben.

Insgesamt liegt somit in Studiengruppe 1 die Umstiegsrate mit 31,6% wesentlich höher als in Studiengruppe 2 mit 6,5%. Die Ursachen für die Umstiege sind jedoch in beiden Studiengruppen dieselben, sodass dies möglicherweise Zufall sein kann. Alternativ könnte aber auch die wesentlich komplexere und mit höherem technischem Aufwand verbundene Methodik dafür verantwortlich sein. Hierfür wären weitere Studien mit wesentlich größeren Fallzahlen hilfreich, die zeigen würden, ob sich die höhere Umstiegsrate wiederholen oder widerlegen ließe.

3.3. Vergleich der Operationszeiten

Deskriptive Statistiken der Operationszeiten in Studiengruppe 1 (RFO + EVCC)

<table>
<thead>
<tr>
<th>Schritt</th>
<th>N</th>
<th>Minimum</th>
<th>Maximum</th>
<th>Mittelwert</th>
<th>Standardabweichung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schnitt-Naht-Zeit [Min.]</td>
<td>19</td>
<td>53</td>
<td>131</td>
<td>89,42</td>
<td>20,222</td>
</tr>
<tr>
<td>OP- Dauer [Min.]</td>
<td>19</td>
<td>82</td>
<td>178</td>
<td>123,32</td>
<td>22,179</td>
</tr>
<tr>
<td>Gültige Anzahl</td>
<td>19</td>
<td>19</td>
<td>19</td>
<td>19</td>
<td>19</td>
</tr>
</tbody>
</table>

Tbl.3: Darstellung der Schnitt-Naht-Zeit sowie der Operationsdauer in Studiengruppen 1 (RFO + EVCC).

Deskriptive Statistiken der Operationszeiten in Studiengruppe 2 (RFO)

<table>
<thead>
<tr>
<th>Schritt</th>
<th>N</th>
<th>Minimum</th>
<th>Maximum</th>
<th>Mittelwert</th>
<th>Standardabweichung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schnitt-Naht-Zeit [Min.]</td>
<td>31</td>
<td>28</td>
<td>140</td>
<td>81,48</td>
<td>26,095</td>
</tr>
<tr>
<td>OP- Dauer [Min.]</td>
<td>31</td>
<td>48</td>
<td>179</td>
<td>113,81</td>
<td>32,889</td>
</tr>
<tr>
<td>Gültige Anzahl</td>
<td>31</td>
<td>31</td>
<td>31</td>
<td>31</td>
<td>31</td>
</tr>
</tbody>
</table>

Tbl.4: Darstellung der Schnitt-Naht-Zeit sowie der Operationsdauer in Studiengruppe 2 (RFO).

Es zeigte sich hierbei, dass die Schnitt-Naht-Zeit bei Studiengruppe 1 im Vergleich zur Studiengruppe 2 im Mittel 7,94 Minuten länger dauerte. Auch die Operationsdauer betrug im Mittel 9,51 Minuten mehr.

3.4. Auswertung der Nachuntersuchungen besonders im Hinblick auf die Rezidivraten

Bei einer weiteren Patientin zeigte sich in den Nachuntersuchungen, dass die VSM im Bereich des Oberschenkels - nicht jedoch im Bereich der Crosse - partiell revaskularisiert war. Da die Patientin klinisch zudem unauffällig und symptomfrei war, wurde dies nicht als Rezidiv gewertet.

Im Vergleich dazu traten in der Studiengruppe 2 (RFO) bei insgesamt acht und somit erheblich mehr Patienten ein Rezidiv auf. Diese Rezidive traten in einem Zeitraum von 10 bis 1509 Tagen nach der Operation auf.

Somit ergibt sich im Hinblick auf die Rezidivraten von 5,6% in Studiengruppe 1 (RFO + EVCC) gegenüber 33,3% in Studiengruppe 2 (RFO) ein deutlicher Unterschied.

<table>
<thead>
<tr>
<th>Vergleich der Rezidivraten in Studiengruppe 1 und 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>kein Rezid</td>
</tr>
<tr>
<td>-----------------</td>
</tr>
<tr>
<td>RFO Anzahl</td>
</tr>
<tr>
<td>% in Studiengruppen</td>
</tr>
<tr>
<td>RFO + EVCC Anzahl</td>
</tr>
<tr>
<td>% in Studiengruppen</td>
</tr>
<tr>
<td>Gesamtsumme Anzahl</td>
</tr>
<tr>
<td>% in Studiengruppen</td>
</tr>
</tbody>
</table>

Tbl. 5: Tabellarische Darstellung der Anzahl sowie der Prozentzahl der Patienten mit und ohne Rezidiv in beiden Studiengruppen im Vergleich.
In den Nachuntersuchungen wurde ebenfalls auf das kosmetische Ergebnis geachtet. In Abb. 21 ist exemplarisch eine Narbe, die durch das EVCC entstanden ist, dargestellt. Es belegt die deutlich kleineren Hautschnitte im Vergleich zur Narbe beim klassischen Varizenstripping nach Babcock.

Abb. 21: Exemplarische Darstellung einer kleinen, gut verheilten Narbe etwas unterhalb des Leistenbandes nach EVCC.

3.5. Auswertung der postoperativen Komplikationen

Im Rahmen des stationären Aufenthaltes und der Nachuntersuchungen wurde besonderes Augenmerk auf postoperative Komplikationen gelegt. Alle aufgetretenen postoperativen Beschwerden wurden dokumentiert und innerhalb der zwei Studiengruppen verglichen.

In der Studiengruppe 1 (RFO + EVCC) gab es in neun Fällen, entsprechend 47,4%, postoperativ keine Beschwerden. In zwei Fällen (10,5%) wurde ein Hämatom dokumentiert, wovon eines postoperativ ausgeräumt werden musste. Eine N. saphenus Läsion im Sinne eines leichten Taubheitsgefühls am medialen Unterschenkel lag in einem Fall (5,3%) vor. Zu einer lokalen Verhärtung im Verlauf der obliterierten VSM kam es in zwei Fällen entsprechend 10,5%. Bei einem Studienpatienten mit Adipositas und Wundheilungsstörungen entstand über eine Lymphfistel eine Wundinfektion, die
jedoch im weiteren Verlauf gut verheilte. Bei vier Fällen lagen keine Angaben vor.

Postoperative Komplikationen der Studiengruppe 1 (RFO + EVCC)

<table>
<thead>
<tr>
<th>Komplikation</th>
<th>Häufigkeit</th>
<th>Prozent</th>
<th>Gültige Prozent</th>
<th>Kumulative Prozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>keine</td>
<td>9</td>
<td>47,4</td>
<td>47,4</td>
<td>47,4</td>
</tr>
<tr>
<td>Hämatom</td>
<td>2</td>
<td>10,5</td>
<td>10,5</td>
<td>57,9</td>
</tr>
<tr>
<td>N. saphenus Läsion</td>
<td>1</td>
<td>5,3</td>
<td>5,3</td>
<td>63,2</td>
</tr>
<tr>
<td>Wundinfekt</td>
<td>1</td>
<td>5,3</td>
<td>5,3</td>
<td>68,4</td>
</tr>
<tr>
<td>Verhärtung</td>
<td>2</td>
<td>10,5</td>
<td>10,5</td>
<td>78,9</td>
</tr>
<tr>
<td>Keine Angabe</td>
<td>4</td>
<td>21,1</td>
<td>21,1</td>
<td>100,0</td>
</tr>
<tr>
<td>Gesamtsumme</td>
<td>19</td>
<td>100,0</td>
<td>100,0</td>
<td></td>
</tr>
</tbody>
</table>

Tbl. 6: Tabellarische Darstellung der aufgetretenen postoperativen Komplikationen in Studiengruppen 1 (RFO + EVCC).

Im Vergleich dazu waren 64,5% der Patienten der Studiengruppe 2 (RFO) postoperativ und in den Nachuntersuchungen beschwerdefrei. In einem Fall (3,2%) lag postoperativ ein Hämatom vor. Die Diagnose einer Thrombophlebitis wurde bei drei Fällen (9,7%) postoperativ gestellt. In sieben Fällen wurden keine Angaben zu postoperativen Beschwerden gemacht, sodass man am wahrscheinlichsten davon ausgehen kann, dass die Patienten ebenfalls beschwerdefrei waren.

Postoperative Komplikationen der Studiengruppe 2 (RFO)

<table>
<thead>
<tr>
<th>Komplikation</th>
<th>Häufigkeit</th>
<th>Prozent</th>
<th>Gültige Prozent</th>
<th>Kumulative Prozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>keine</td>
<td>20</td>
<td>64,5</td>
<td>64,5</td>
<td>64,5</td>
</tr>
<tr>
<td>Hämatom</td>
<td>1</td>
<td>3,2</td>
<td>3,2</td>
<td>67,7</td>
</tr>
<tr>
<td>Thrombophlebitis</td>
<td>3</td>
<td>9,7</td>
<td>9,7</td>
<td>77,4</td>
</tr>
<tr>
<td>Keine Angabe</td>
<td>7</td>
<td>22,6</td>
<td>22,6</td>
<td>100,0</td>
</tr>
<tr>
<td>Gesamtsumme</td>
<td>31</td>
<td>100,0</td>
<td>100,0</td>
<td></td>
</tr>
</tbody>
</table>

Tbl. 7: Tabellarische Darstellung der aufgetretenen postoperativen Komplikationen der Studiengruppen 2 (RFO).
4. DISKUSSION

4.1. Ursachen und Häufigkeiten einer Rezidivvarikosis

In der Literatur zeigen sich insgesamt sehr unterschiedliche Angaben bezüglich möglicher Ursachen von Rezidiven sowie deren Häufigkeit. Die Problematik beginnt bereits damit, dass der Begriff des Rezidivs oftmals unterschiedlich definiert wird (Noppeney et al., 2007). Abwechselnd wird ein Rezidiv als Rekanalisation bzw. als Neo-Reflux mit oder ohne klinische Beschwerden bezeichnet. So entstehen in verschiedenen Studien teilweise unterschiedliche Angaben, die nur schwer vergleichbar sind (Nüllen et al., 2009), (Ebner und Ebner, 2014).

In Tbl. 8 wurden exemplarisch einige Studien, die sich mit dem Erfolg bzw. Misserfolg der RFO und ihrem Vergleich mit anderen Verfahren in der Varizenchirurgie beschäftigt haben, zusammengetragen. Hier werden die schwankenden Angaben sowie die Problematik der teilweise kurzen Follow-ups deutlich.

<table>
<thead>
<tr>
<th>Autor</th>
<th>Jahr</th>
<th>Extremitäten</th>
<th>Follow-up</th>
<th>Okklusionsrate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proebstle et al.</td>
<td>2008</td>
<td>252</td>
<td>6 Monate</td>
<td>99,6%</td>
</tr>
<tr>
<td>Lurie et al.</td>
<td>2005</td>
<td>44</td>
<td>24 Monate</td>
<td>85,7%</td>
</tr>
<tr>
<td>Proebstle et al.</td>
<td>2011</td>
<td>256</td>
<td>36 Monate</td>
<td>92,6%</td>
</tr>
<tr>
<td>Merchant et al.</td>
<td>2002</td>
<td>319</td>
<td>24 Monate</td>
<td>85,2%</td>
</tr>
<tr>
<td>Hinchliffe et al.</td>
<td>2006</td>
<td>16</td>
<td>6 Wochen</td>
<td>81,2%</td>
</tr>
<tr>
<td>Perälä et al.</td>
<td>2005</td>
<td>15</td>
<td>36 Monate</td>
<td>77,7%</td>
</tr>
<tr>
<td>Rautio et al.</td>
<td>2002</td>
<td>15</td>
<td>7-8 Wochen</td>
<td>100%</td>
</tr>
<tr>
<td>Stötter et al.</td>
<td>2006</td>
<td>20</td>
<td>12 Monate</td>
<td>100%</td>
</tr>
<tr>
<td>Kianifard et al.</td>
<td>2006</td>
<td>55</td>
<td>12 Monate</td>
<td>100%</td>
</tr>
<tr>
<td>Puggioni et al.</td>
<td>2005</td>
<td>53</td>
<td>24 Monate</td>
<td>90,9%</td>
</tr>
<tr>
<td>Park et al.</td>
<td>2013</td>
<td>60</td>
<td>3 Monate</td>
<td>83,3%</td>
</tr>
<tr>
<td>Almeida et al.</td>
<td>2009</td>
<td>46</td>
<td>1 Monat</td>
<td>100%</td>
</tr>
</tbody>
</table>
Analog dazu sind die Ursachen für die Entstehung eines Rezidivs bis heute nicht eingehend geklärt. Diskutiert werden eine Progression der Grunderkrankung, ein belassener Saphenastumpf, der einem technischen Fehler entspricht, sowie eine Neovaskularisation (Hartmann et al. 2006), (Geier et al. 2008), (Noppeney et al., 2007).

Im Bereich der Crosse liegt insgesamt eine hohe anatomische Variabilität vor, sodass die Seitenäste der VSM im Bereich des Venensterns im Bezug auf die Höhe des Abgangs sowie ihrer Anzahl stark variieren können (Hach et al., 2012b). Dies kann intraoperativ zu einer fehlerhaften Crossektomie führen, bei der der Saphenastumpf entweder zu lang belassen oder so unterbunden wird, dass die VSM über offen gelassene Seitenäste revaskularisiert werden kann (Altenkämper et al., 2001), (Fischer et al., 2002). Sowohl in einer Studie von Geier et al. als auch in einer Studie von Mumme et al. konnte gezeigt werden, dass mit 64 bzw. 65% ein technischer Fehler im Sinne einer fehlerhaften Crossektomie extrem häufig als Ursache eines Varizenrezidivs auftrat (Geier et al. 2008), (Mumme et al. 2002).

Ebenso konnte gezeigt werden, dass 80% der Rezidive am Übergang der VSM in die V. femoralis zu finden sind (Mumme et al., 2002). Im Rahmen der RFO erfolgt jedoch genau an dieser Stelle kein sicheres Unterbinden der VSM sowie ihrer Seitenäste und könnte somit als mögliche Schwachstelle im Bezug auf das Entstehen einer Rezidivvarikosis diskutiert werden. Da ein Sicherheitsabstand zum Übergang zur V. femoralis wegen der Gefahr einer tiefen Beinvenenthrombose oder einer Embolie eingehalten werden muss, gibt es somit bei dieser Methode einen zusätzlichen Risikofaktor hinsichtlich einer

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Merchant, Pichot</td>
<td>2005</td>
<td>117</td>
<td>5 Jahre</td>
<td>87,2%</td>
</tr>
<tr>
<td>Morrison</td>
<td>2005</td>
<td>50</td>
<td>12 Monate</td>
<td>80%</td>
</tr>
<tr>
<td>Goldman</td>
<td>2000</td>
<td>10</td>
<td>6 Monate</td>
<td>100%</td>
</tr>
</tbody>
</table>

Tbl. 8: Literaturübersicht der RFO (Lurie et al., 2005), (Merchant et al., 2002), (Proebstle et al., 2011), (Puggioni et al., 2005), (Perälä et al., 2005), (Luebke et al., 2008), (Park et al., 2013), (Proebstle et al., 2008), (Merchant und Pichot, 2005), (Almeida et al., 2009), (Morrow, 2005), (Goldman, 2000), (Rautio et al., 2002), (Hinchliffe et al., 2006), (Stötter et al., 2006), (Kianifard et al., 2006).
Revascularisierung der VSM. In der klassischen Varizenchirurgie galt ein mündungsnahes Absetzen der VSM jedoch als ein Qualitätsmerkmal, welches bei der RFO nicht mehr eingehalten wird. Somit wird deutlich, dass gerade ein Intervenieren an dieser Stelle im Sinne eines sicheren Unterbindens am saphenofemoralen Übergang ein Ansatz zur Vermeidung von Rezidiven darstellen könnte.

Insgesamt zeigt sich zudem in mehreren Studien, dass die Anzahl der Patienten, die bei Rezidivvarikosis erneut operiert werden müssen, mit 17 bis 25% hoch ist (Darke, 1992) (Fischer et al., 2002). Auch dies legt nahe, dass sowohl hinsichtlich der Rezidivursache als auch der potenziellen Vermeidung noch entscheidender Forschungsbedarf besteht.

4.2. Bewertung des Patientenkollektivs

Insgesamt ist das Altersspektrum der Frauen in beiden Studiengruppen wesentlich breiter, da viele weibliche Patienten zum Zeitpunkt der Operation deutlich jünger waren als die männlichen Patienten. Die jüngste weibliche Patientin in Studiengruppe 1 war 32 Jahre und in Studiengruppe 2 29 Jahre alt,
wohingegen der jüngste Mann in Studiengruppe 1 mit 45 Jahren und in Studiengruppe 2 mit 41 Jahren deutlich älter waren. Somit bestand bei den Frauen insgesamt früher die Indikation zur operativen Sanierung der Varikosis.

Bei der Betrachtung der operierten Beinseite lässt sich in beiden Studiengruppen eine homogene Verteilung feststellen. Daraus lässt sich schließen, dass wahrscheinlich keine anatomische Prädisposition bezüglich einer Beinseite vorliegt.

Die Verteilung der Diagnose nach ICD-10 verhält sich in den beiden Studiengruppen inhomogen, da in Studiengruppe 1 am häufigsten Varizen mit Entzündung jedoch ohne Ulzerationen (I83.1) vorlagen und in Studiengruppe 2 die Mehrheit der Patienten Varizen ohne Entzündungen oder Ulzerationen (I83.9) hatten. Hier könnte eine mögliche Bias im Bezug auf die Patientenauswahl nach Einführung der neuen OP-Methode (RFO) vorliegen.

4.3. Beurteilung des endoskopisch-videoassistierten Crossenclipping im Rahmen der RFO

In Studiengruppe 1 (RFO + EVCC) fand sich in den Nachuntersuchungen lediglich bei einer Patientin, entsprechend 5,6%, nach drei Jahren ein Rezidiv. Mit 33,3% liegt die Rezidivrate in der Vergleichsgruppe mit Patienten, bei denen die herkömmliche RFO durchgeführt wurde, deutlich höher. Dies könnte ein Hinweis darauf sein, dass ein sicheres Ausschalten der Seitenäste der VSM tatsächlich dazu beiträgt, Rezidive zu verhindern. Dass in Studiengruppe 1 dennoch ein Rezidiv im Sinne einer Rekanalisation der VSM ab der Crosse
aufgetreten ist, steht möglicherweise mit einer unzureichenden RFO und nicht mit dem EVCC selbst in Zusammenhang. Alternativ könnte ein technischer Fehler, wobei ein Clip nicht gut platziert wurde oder sich gelöst haben könnte, diskutiert werden. Somit könnte an dieser Stelle eine Neovaskularisation oder ein Fortschreiten der Erkrankung möglich sein.

Intraoperativ zeigten sich weitestgehend ähnliche Komplikationen in beiden Studiengruppen. Herauszunehmen ist davon jedoch die Rate der Umstiege, also wie häufig man von dem geplanten Verfahren des EVCC im Rahmen der RFO absehen und entweder auf eine offen chirurgische Crossektomie oder sogar auf das klassische Stripping nach Babcock ausweichen musste. Hier zeigt sich mit einer Häufigkeit von 15,8%, dass die meisten Umstiege aufgrund
einer nicht vorschiebbaren RFO-Sonde erfolgten. Dies ist eine intraoperative Komplikation, die auch bei der herkömmlichen RFO auftreten kann, jedoch durch eine gute präoperative Selektion normalerweise verhindert werden kann. So soll z. B. bei einer übermäßig geschlängelten VSM oder bei einem außergewöhnlich dicken Kaliber der VSM von mehr als 20 mm eher das klassische Varizenstripping nach Babcock und nicht die RFO zur Anwendung kommen (Noppeney und Nüllen, 2010b). Diese spezielle Ursache für einen Umstieg könnte also mit einer falsch eingeschätzten präoperativen Duplexsonographie in Zusammenhang stehen und nicht mit dem EVCC selbst. Auch an dieser Stelle könnten weitere Studien mit größeren Fallzahlen zeigen, ob es sich um ein zufälliges Phänomen handelt oder doch ein direkter Zusammenhang mit dem EVCC besteht, den es dann zu klären gilt.

Kritisch zu beurteilen ist in der Studie das Follow-up, da es aufgrund mangelnder Compliance nicht möglich war, die geplanten Follow-up-Zeitpunkte strikt einzuhalten. Die Studienpatienten wurden folglich nicht alle zu gleichen Zeitpunkten und nicht alle gleich oft in der Sprechstunde der Gefäßchirurgie des Klinikum Stuttgart vorstellig. Die Patienten der Studiengruppe 2, die retrospektiv als Vergleichsgruppe diente, wurden nicht nach dem Studienprotokoll einbestellt, sondern es erfolgten Kontrollen nach dem gängigen Schema der Abteilung für Gefäßchirurgie oder nach Bedarf. Somit ist die Betrachtung der Ergebnisse des Follow-ups in ihrer Vergleichbarkeit leicht eingeschränkt. Eine Studienpatientin, die mit dem Verfahren des EVCC im Rahmen der RFO behandelt wurde, ist zu keiner Nachuntersuchung erschienen und unbekannt verzogen, sodass sie in der Auswertung der Rezidivrate

Postoperativ zeigte sich die Mehrheit der Studienpatienten mit 47,4% in Studiengruppe 1 absolut beschwerdefrei. Insgesamt traten keine Komplikationen, die nicht auch im Rahmen von Studien bei der herkömmlichen RFO beschrieben worden sind, auf (Noppeney und Nüllen, 2010a).

4.4. Schlussfolgerung und Ausblick

Es hat sich in der Studie gezeigt, dass das endoskopisch-videoassistierte Crossencligging (EVCC) eine mögliche Alternative bzw. eine sinnvolle ergänzende Maßnahme zu den aktuell angewandten minimalinvasiven Verfahren zur operativen Versorgung der Varikosis darstellen kann. Technisch ist das EVCC machbar. Die Crosssektomie, die als ein wichtiger und fester Bestandteil der klassischen Varizenchirurgie galt und möglicherweise von entscheidender Bedeutung für die Vermeidung einer Rezidivvarikosis ist, könnte so in den Rahmen der modernen minimalinvasiven Verfahren wieder eingegliedert werden. Auch heute noch gibt es bezüglich der Pathogenese und der Prävalenz einer Rezidivvarikosis keinen übereinstimmenden Konsens, sodass es sinnvoll erscheint, die Vorteile der modernen Verfahren mit den klassischen Qualitätsmerkmalen zu kombinieren und zu eruieren, inwiefern sich die Ergebnisse zugunsten des Patienten verhalten. Als Ursachen für ein Rezidiv werden immer wieder ein Fortschreiten der Grunderkrankung, eine Neovaskularisation oder ein belassener Saphenastumpf diskutiert (Hartmann et
In unserer Studie zeigte sich mit 5,6% eine deutlich geringere Rezidivrate in der Studiengruppe, die mit dem Verfahren des EVCC behandelt wurde, als in der Vergleichsgruppe der Patienten, die lediglich eine RFO erhalten haben (33,3%). Da die Fallzahl in unserer Studie jedoch mit 19 eher klein ist, sind die Ergebnisse nur eingeschränkt repräsentativ und es sollten weiterführende, größere Studien durchgeführt werden. Hierbei könnte sich zeigen, ob die Rezidivrate tatsächlich geringer ist als bei der herkömmlichen RFO und keine weiteren schwerwiegenden Komplikationen auftreten. Wenn dies der Fall ist, könnte der finanzielle und zeitliche Mehraufwand aufgrund eines erhöhten Materialbedarfs zugunsten des Operationsergebnisses für die Patienten gerechtfertigt werden. Mit zunehmender Anwendung des EVCC könnte außerdem eine steigende Lernkurve mit folglich geringerer Komplikationsrate erwartet werden. Je häufiger der Operateur das Verfahren angewandt hat, umso mehr werden sich erfahrungsgemäß auch die Operationszeiten verkürzen, sodass der aktuell noch messbare zeitliche Mehraufwand sich wieder relativieren würde. Des Weiteren sollten Studien mit einem längeren Beobachtungszeitraum und einem regelmäßigen Follow-up durchgeführt werden, in dem dann erneut duplexsonographisch das Ergebnis des neuen Verfahrens sowie Aspekte wie die „Quality of Life“ postoperativ beurteilt werden sollte. Abschließend lässt sich sagen, dass weitere Studien zeigen werden, ob das EVCC im Rahmen der RFO gegenüber den zahlreichen etablierten Verfahren Stand halten und tatsächlich die gezeigten Vorteile erfüllen kann.
5. ZUSAMMENFASSUNG

In der heutigen operativen Therapie von Varizen wird neben dem klassischen Venenstripping mit vollständiger Crossektomie der Fokus zunehmend auf minimalinvasive, endovenöse Verfahren wie z. B. die Radiofrequenzobliteration oder die endovenöse Laserbehandlung gelegt. Diese zeigen in Studien in verschiedenen Punkten nachgewiesene Vorteile, beispielsweise in einer deutlich kürzeren Arbeitsunfähigkeitszeit, einer geringeren Beeinträchtigung der Lebensqualität, seltenerem Auftreten von Hämatomen und geringeren Schmerzen (Thompson et al., 2013), (Rautio et al., 2002), (Brar et al. 2010). Der Hauptunterschied zu dem klassischen Varizenstripping nach Babcock ist aber eine Unsicherheit bezüglich der Ausschaltung insuffizienter Seitenäste an der Saphenacrosse. Stehen gelassene, offene Seitenäste an der Crosse können revaskularisiert werden und zu einem Varizenrezidiv führen (Brake et al., 2013). Gerade die Crossektomie galt in der klassischen Varizenchirurgie über Jahrzehnte hinweg als entscheidender und anerkannter Grundpfeiler, der für ein langfristig gutes Ergebnis steht und mit der Vermeidung von Rezidiven korreliert.

Aus diesem Grund galt es in der vorliegenden Evaluationsstudie, die Vorteile beider Methoden zu kombinieren und ein Verfahren zu erproben, das sowohl minimalinvasiv ist als auch als sicher bezüglich der Ausschaltung aller Seitenäste an der Saphenacrosse am saphenofemoralen Übergang gilt. Weiterführend wurde das Verfahren mit der konventionellen RFO hinsichtlich der Rezidivrate in einem Follow-up der Patienten verglichen.

In der Phase I der Studie wurde das endoskopisch-videoassistierte Crossenclipping (EVCC) im Rahmen einer RFO an Leichen durchgeführt und hinsichtlich der technischen Machbarkeit erprobt und weiter optimiert.

Nach Evaluation wurde das Verfahren in der Phase II auch an 18 Patienten bzw. an 19 Extremitäten, bei denen eine Behandlung durch eine RFO indiziert war, durchgeführt.
Das Ergebnis zeigt, dass dieses innovative Verfahren praktikabel ist und eine Alternative bzw. sinnvolle Ergänzung der Radiofrequenzobliteration zur Behandlung der Varikosis darstellen kann.

Aus der abschließenden Evaluation der Phase II erhalten wir gute Ergebnisse mit nahezu identischen Komplikationen in beiden Studiengruppen. Es ergibt sich jedoch ein zeitlicher und finanzieller Mehraufwand bei der zusätzlichen Anwendung des EVCC im Rahmen der RFO. Bezüglich der Rezidivrate zeigt sich mit 5,6% in der Studiengruppe 1 (RFO mit EVCC) und 33,3% in der Studiengruppe 2 (RFO ohne EVCC) ein deutlicher Unterschied. Diesen Vorteil gilt es in weiteren Studien mit größeren Fallzahlen und längeren Follow-ups zu verifizieren.
6. LITERATURVERZEICHNIS

7. ABBILDUNGSVERZEICHNIS

Abb. 1: Ergebnisse der Bonner Venenstudie von Pannier-Fischer und Rabe (Pannier-Fischer und Rabe, 2003)..3

Abb. 2: Bildliche Darstellung der Stadieneinteilung der Varikosis nach Hach (Nüllen und Noppeney, 2010b)..6

Abb. 3: Darstellung des Venensterns (Hach et al., 2012b)..10

Abb. 4: Leicht nach außen rotiertes, linkes Bein mit schemenhaft angezeichnete Crosse sowie einer Kanüle einige Zentimeter unterhalb des Leistenbandes, über die später Gas insuffliert wurde..20
Abb. 5: Darstellung der Zugänge im Rahmen des EVCC von medial nach lateral: Trokar mit Clippzange, Trokar mit Endoskop und Lichtquelle.21

Abb. 6: Endoskopisch-videoassistierte Darstellung der VSM mit doppelt geclipptem Seitenast. ..22

Abb. 7: Endoskopisch-videoassistierte Darstellung der Durchtrennung eines doppelt geclippten Seitenastes der VSM. ...22

Abb. 8: Darstellung der endoskopisch-videoassistierten, doppelt geclippten VSM und der deutlichen Farbveränderung durch die thermische RFO.23

Abb. 9: Geschlechtsverteilung der Studiengruppe 1 in %, welche mit dem EVCC im Rahmen der RFO operiert wurde.................................27

Abb. 10: Die Altersverteilung der Studiengruppe 1 in %. ..28

Abb. 11: Darstellung der Verteilung der ICD-10 Diagnosen der Studiengruppe 1 in %. I83.1 entspricht Varizen der unteren Extremität mit Entzündung; I83.2 stellen Varizen der unteren Extremität mit Entzündung und Ulzerationen dar; I83.9 ist als Varizen ohne Ulzerationen oder Entzündung definiert; I83.0 entsprechen Varizen der unteren Extremität mit Ulzerationen.29

Abb. 12: Geschlechtsverteilung der Studiengruppe 2, bei denen eine RFO durchgeführt wurde, in %. ..30

Abb. 13: Altersverteilung der Studiengruppe 2, bei denen eine RFO durchgeführt wurde. ..30

Abb. 14: Darstellung der Verteilung der ICD-10 Diagnosen der Studiengruppe 2 in %. I83.1 entspricht Varizen der unteren Extremität mit Entzündung; I83.2 stellen Varizen der unteren Extremität mit Entzündung und Ulzerationen dar; I83.9 ist als Varizen ohne Ulzerationen oder Entzündung definiert; I83.0 entsprechen Varizen der unteren Extremität mit Ulzerationen.31

Abb. 15: Darstellung der perioperativ aufgetretenen Komplikationen in %, die zu einem Umstieg von dem minimalinvasiven EVCC zu einer offen chirurgischen Crossektomie oder in 15,8% auch zu einem Stripping nach Babcock geführt haben...33
Abb. 16: Darstellung der perioperativ aufgetretenen Komplikationen in %, die zum Umstieg von der RFO auf ein Stripping nach Babcock geführt haben.35

Abb. 18: Darstellung der Operationsdauer in Minuten mit Minimum, Maximum, dem unteren sowie dem oberen Quartil und dem Median. Die Studiengruppe 1 (RFO + EVCC) ist in grün dargestellt. Im Vergleich dazu die Studiengruppe 2 (RFO) in blau. ..37

Abb. 19: Duplexsonographischer Nachweis eines Rezidivs bei einer Patientin, bei der das EVCC im Rahmen der RFO drei Jahre zuvor durchgeführt wurde.39

Abb. 20: Darstellung der Rezidivraten in Studiengruppe 1 (RFO + EVCC) rechts und Studiengruppe 2 (RFO) links in einem Säulendiagramm. Die Anzahl der Patienten ohne Rezidiv werden jeweils in blau und die der Patienten mit Rezidiv in grün dargestellt. ..40

Abb. 21: Exemplarische Darstellung einer kleinen, gut verheilten Narbe etwas unterhalb des Leistenbandes nach EVCC. ..41

8. TABELLENVERZEICHNIS

Tbl.1: Anzahl der Patienten der Studiengruppen 1 (RFO + EVCC), bei denen intraoperativ ein Umstieg erfolgte. Dieser war definiert als ein Wechsel von der minimal invasiven Crossektomie zur offen chirurgischen Crossektomie.32

Tbl.2: Anzahl der Patienten der Studiengruppen 2 (RFO), bei denen intraoperativ ein Umstieg erfolgte. Dieser war definiert als ein Wechsel von der minimal RFO zum klassischen Stripping nach Babcock. ..34

Tbl.3: Darstellung der Schnitt-Naht-Zeit sowie der Operationsdauer in Studiengruppen 1 (RFO + EVCC) ..36

Tbl.4: Darstellung der Schnitt-Naht-Zeit sowie der Operationsdauer in Studiengruppe 2 (RFO) ..36
Tbl. 5: Tabellarische Darstellung der Anzahl sowie der Prozentzahl der Patienten mit und ohne Rezidiv in beiden Studiengruppen im Vergleich............ 40

Tbl. 6: Tabellarische Darstellung der aufgetretenen postoperativen Komplikationen in Studiengruppen 1 (RFO + EVCC)... 42

Tbl. 7: Tabellarische Darstellung der aufgetretenen postoperativen Komplikationen der Studiengruppen 2 (RFO)... 42

Tbl. 8: Literaturübersicht der RFO (Lurie et al., 2005), (Merchant et al., 2002), (Proebstle et al., 2011), (Puggioni et al., 2005), (Perälä et al., 2005), (Luebke et al., 2008), (Park et al., 2013), (Proebstle et al., 2008), (Merchant und Pichot, 2005), (Almeida et al., 2009), (Morrison, 2005), (Goldman, 2000), (Rautio et al., 2002), (Hinchliffe et al., 2006), (Stötter et al., 2006), (Kianifard et al., 2006)....44

9. ANLAGENVERZEICHNIS

Alle aufgeführten Anlagen wurden mit Name, Anschrift, Ort und Datum in den standardisierten Klinikbogen eingefügt.

9.1. Aufklärungsbogen für die Studienpatienten

Sehr geehrte Patientin, sehr geehrter Patient,
sie leiden an Krampfadern (Varizen), die operativ behandelt werden sollten. Vor dem geplanten Eingriff wird der Arzt mit Ihnen über den Ablauf, die Operation und die Teilnahme an der nachfolgend beschriebenen Studie sprechen und Sie genauestens über alles informieren.

Studentitel:
Endoskopisch-videoassistiertes Crossenclipping bei endovenöser Radiofrequenzobliteration der Vena saphena magna bei Varikosis.
Die bei Ihnen geplante Operation wird im Rahmen einer wissenschaftlichen Studie durchgeführt und wurde in dieser Form noch nicht wissenschaftlich an Patienten, sondern lediglich an Leichen getestet und für sinnvoll und möglich bewertet. Es handelt sich hierbei um eine Kombination aus zwei bereits etablierten Verfahren, mit dem Ziel, bei einem minimalinvasiven Verfahren das Wiederkommen von Krampfadern durch die gesicherte Ausschaltung aller Seitenäste an der Mündungsstelle zu verringern bzw. zu eliminieren und Ihnen somit einen möglichen Vorteil zu bieten. Dies gilt es zu belegen. Jedoch gibt es hierzu bisher keine Studien, sodass sich für Sie nicht nur ein Vorteil, sondern eventuell auch ein nicht vorhersehbarer oder nicht zu erwartender Nachteil ergeben könnte. Sie sollten am Ende des Gesprächs die bisher bekannten Risiken und Folgen der Behandlung kennen, damit Sie sich entscheiden und in die Operation und damit auch zur Teilnahme an der wissenschaftlichen Studie einwilligen können.

Im Anschluss werden sonographische Kontrolluntersuchungen und die Wiedervorstellung im Klinikum in vorbestimmten Zeitabständen (vor Entlassung, nach drei und sechs Monaten und nach einem Jahr postoperativ) erfolgen, die für Sie einen geringen zeitlichen Mehraufwand darstellen können. Im Rahmen der Studie ist es jedoch wichtig, das Ergebnis umfassend zu evaluieren, um entscheiden zu können, ob das operative Verfahren einen Vorteil zum bisherigen Standardverfahren mit sich bringt. Ebenso besteht die Möglichkeit, dass die Methode verglichen mit der Standardtherapie eine längere Operationszeit mit sich bringt. Dieses Aufklärungsblatt soll helfen, das Gespräch vorzubereiten und die wichtigsten Punkte zu dokumentieren.

Was sind Krampfadern?

Krampfadern (Varizen) entstehen, wenn die Blutgefäße, die das Blut zum Herzen zurücktransportieren (Venen), sich erweitern. Besonders häufig sind die oberflächlichen Hautvenen der Beine betroffen.

Bei einer Krampfadernbildung erweitern sich die oberflächlichen Venen, sodass die Venenklappen nicht mehr schließen. Beim Stehen und Gehen kann daher das Blut nicht mehr zum Herzen transportiert werden, sondern bleibt in den Krampfadern stehen.

Auf Wunsch informiert Sie Ihr Arzt gerne näher über Behandlungsalternativen. Die durchgeführten Untersuchungen haben jedoch gezeigt, dass bei Ihnen eine Operation sinnvoll ist.

Wie wird operiert?
Es handelt sich bei dem operativen Eingriff um eine wissenschaftliche Studie, bei der das bereits etablierte Verfahren der Radiofrequenzobliteration mit einem neuen Verfahren, dem endoskopisch-videoassistierten Crossenclipping, kombiniert wird.

Das Standardverfahren:
In Vollnarkose wird nach dem sterilen Abwaschen und Abdecken die Vena saphena magna sowohl distal an der Fußinnenseite als auch proximal in der Leiste freipräpariert. Hierbei wird in der Leiste ein Hautschnitt von ca. 30-50

Das neue, bei Ihnen geplante Verfahren:
Der Eingriff erfolgt in Allgemeinnarkose oder Regionalbetäubung. Über Einzelheiten und Risiken des Narkoseverfahrens werden Sie gesondert aufgeklärt.

Um bei der Ausschaltung der Stammvene größere Blutergüsse am Oberschenkel zu vermeiden, wird in Höhe des Kniegelenkes eine Verödungssonde (RFO-Sonde) eingebracht, die bis zur Leiste vorgeschoben wird. In das umliegende Gewebe der Vene wird zum Zusammendrücken der Vene und zum Schutz des Gewebes über eine Punktionssonde Kochsalzlösung mit Lokalanästhetikum untergebracht. Durch Erhitzen der Sonde kommt es zur Verklebung der Vene und somit zum Ausschalten der krankfadrig veränderten Stammvene.

Zur Ausschaltung weiterer nicht intakter Venenäste in der Leistenregion, die von der erkrankten Stammvene ausgehen, erfolgt das Einbringen einer Minikamera und CO2-Gas. Ein weiterer kleiner Hautschnitt dient dazu, eine Clippzange einzubringen, die die nicht funktionstüchtigen Venenäste durch das Clipping sicher ausschaltet.

Sind die Kurzschlussverbindungen (Perforansvenen) zwischen oberflächlichem und tiefem Venensystem ebenfalls erweitert, werden diese über zusätzliche Hautschnitte aufgesucht und unterbunden.
Können Komplikationen auftreten?
Trotz größter Sorgfalt kann es vereinzelt zu Komplikationen kommen, die unter Umständen auch lebensbedrohlich sein können und weitere Behandlungsmaßnahmen erfordern. Zu nennen sind:

Allgemeine Komplikationen, die beim Standardverfahren bekannt sind:
- **Nachblutungen** (ca. 1%) sowie größere **Blutergüsse**, die operativ versorgt werden müssen;
- **Wundinfektion** (ca. 1-3%): Dabei kommt es zur Vereiterung der Wunde (Abszess), können weitergehende Behandlungsmaßnahmen erforderlich werden. Die Wundheilung ist dann verzögert, in der Folge kann eine störende und berührungsempfindliche Narbe entstehen;
- **Überempfindlichkeitsreaktion** (Allergie) (ca. <1%) z. B. gegen das Betäubungsmittel, die sich als Juckreiz äußern können, stärkere Reaktionen bis hin zu Kreislaufstillstand, Krampfanfällen und Atemstörungen, die teilweise dann stationär behandelt werden müssen und schwere bleibende Schäden (Nierenversagen, Hirnschädigung) hinterlassen können, sind aber äußerst selten; die Reaktion kann allgemein sehr variabel verlaufen und sich sowohl sehr milde als auch in
einem lebensbedrohlichen Zustand (Kreislaufversagen, Atemstörungen, ...) zeigen;
- **Schäden** an Nerven und Weichteilen: Trotz ordnungsgemäßer Lagerung bei der Operation können Druckschäden auftreten; sie sind meist vorübergehend; vereinzelt können jedoch Beschwerden (z. B. Taubheitsgefühl, Missempfindungen, Lähmungen) oder Narben zurückbleiben. Das gilt auch für Hautschäden durch Desinfektionsmittel und/oder elektrischen Strom.

Spezielle Komplikationen:
- **Schädigung von Gefühlsnerven** an der Oberschenkelinnenseite, der Oberschenkelaußenseite und des Fußes (ca. 1-3%); meist bilden sich diese Schädigungen innerhalb weniger Wochen oder Monate zurück; in Einzelfällen können jedoch auch dauerhafte Beschwerden zurückbleiben (z. B. Taubheitsgefühl, Berührungsempfindlichkeit, Schmerzen);
- **Hautveränderungen** wie bleibende Verhärtungen oder auch bräunliche Verfärbungen im Verlauf der behandelten Vene;
- **überschießende Narbenbildung**: bei einer entsprechenden Veranlagung können dicke, wulstige und/oder schmerzhafte Narben (Keloide) entstehen;
- **dauerhafte Schwellungen** des operierten Beines, z. B. durch Lymphstauungen. In diesem Fall können Lymphdrainagen und das konsequente Tragen einer Kompressionsstrumpfe erforderlich werden;
- extrem selten kann es zu vorübergehenden, in Ausnahmefällen auch bleibenden **Durchblutungsstörungen, Muskel- oder Nervenschäden**
bis hin zu einer Teillähmung des betroffenen Beines kommen. Diese Störungen lassen sich aber meist gut behandeln und sind äußerst selten.

Zu den bisher genannten Komplikationen können weitere, bei unserer Methode bisher unbekannte Komplikationen auftreten, die nicht vorhersehbar sind.

Worauf ist zu achten?

- Bitte handeln Sie nach Anweisungen Ihres Arztes!
- Die bei der Operation **angelegte Kompression** (z. B. Binden) **darf** bis zur nächsten Kontrolluntersuchung **nicht abgenommen werden**. Treten jedoch **starke Schmerzen, Gefühlsstörungen** (z. B. Taubheit) oder **Blaufärbung der Zehen** auf, muss die Kompression unbedingt entfernt werden. Informieren Sie dann bitte **unverzüglich** den Arzt oder das
Pflegepersonal oder suchen Sie bei/nach ambulanter Operation sofort die Klinik auf.

Geringe Schwellungen, leichtes Spannungs- und Taubheitsgefühl sowie kleinere Blutergüsse (blaue Flecken) sind harmlos und vergehen nach einiger Zeit von selbst.

- Bis zum völligen Abklingen der Schwellneigung sollten Sie einen Kompressionsstrumpf tragen oder das Bein wickeln. Machen Sie anfangs häufiger kurze Spaziergänge, vermeiden Sie aber in den ersten Tagen und Wochen eine Überlastung der Beine z. B. durch mehrstündiges Sitzen oder Stehen.

- Da nur die aktuell erkrankten Venenbezirke ausgeschaltet werden, kann es später zum erneuten Auftreten von Varizen kommen (Rezidiv). Meist können diese, ebenso wie Krampfadern, die nach der Operation noch verblieben sind, durch eine ambulante Verödungstherapie beseitigt werden. Vereinzelt werden nach der Operation vermehrt Besenreiser beobachtet, die ebenfalls verödet werden können.

- Nehmen Sie die Termine für die Kontrolluntersuchungen rechtzeitig wahr, sie sind wichtig, um eventuelle Rest- oder neu auftretende Krampfadern rechtzeitig erkennen und behandeln zu können.

- Sind bereits die tiefen Venen miterkrankt (z. B. nach früherer Thrombose oder bei lange bestehendem Krampfadernleiden), kann durch die Operation die Durchblutung Ihrer Beine zwar verbessert werden, eine völlige Heilung ist jedoch nicht mehr möglich. Sie sollten deshalb konsequent tagsüber einen Kompressionsstrumpf tragen oder das Bein wickeln, da es sonst fast immer zu neuen Krampfadern kommt. Wichtig ist dann auch eine regelmäßige ärztliche Kontrolle.

Fragen zum Aufklärungsbogen?
Im Aufklärungsgespräch sollten Sie nach allem fragen, was Ihnen wichtig oder noch unklar erscheint (z. B. individuelle Risiken, Erfolgsaussichten). Hier haben Sie die Möglichkeit, Ihre Fragen zu notieren, um sie während des Aufklärungsgesprächs nicht zu vergessen:
Wichtige Fragen...

Das Risiko ärztlicher Eingriffe wird von körperlicher Verfassung und Vorschäden beeinflusst. Damit Ihr Arzt Gefahrenquellen rechtzeitig erkennen kann, bitten wir Sie, folgende Fragen zu beantworten:

1. Wurden **Allergien/ Unverträglichkeiten** (z. B. gegen Pflaster, Latex, Medikamente, Nahrungsmittel) beobachtet? Nein____ ja____

2. Leiden Sie an einer **Störung der Blutgerinnung** oder haben Sie eine **erhöhte Blutungsneigung** (z. B. Nasen- oder Zahnfleischbluten, häufig blaue Flecken, Nachbluten bei Operationen, bei Zahnbehandlungen, kleineren Wunden), oder gibt es bei Ihrer Blutsverwandtschaft eine Anlage dazu? Nein____ ja____

3. Kam es früher bei Wunden zu **Eiterung, verzögerter Heilung, Abszessen, Fisteln, starker Narbenbildung**? Nein____ ja____

4. Kam es zur Bildung/ Verschleppung von Blutgerinnseln (Thrombose, Embolie)? Nein____ ja____

5. Wurde früher ein Herzfehler korrigiert/ eine Herzoperation durchgeführt? Nein____ ja____

Ärztliche Anmerkungen zum Aufklärungsgespräch
(z. B. individuelle Risiken und mögliche Komplikation, Nebeneingriffe, Folgemaßnahmen, mögliche Nachteile im Falle einer Ablehnung/ Verschiebung der Operation, Gründe für die Ablehnung, Betreuungsfall)

Datum Arzt

Einwilligungserklärung
Ich habe keine weiteren Fragen, fühle mich genügend informiert und willige hiermit nach angemessener Bedenkzeit in die geplante Operation und die Teilnahme an der wissenschaftlichen Studie ein. Mit erforderlichen, auch unvorhersehbaren Erweiterungen des Eingriffs bin ich ebenfalls einverstanden. Mein Einverständnis bezieht sich auch auf eine gegebenenfalls medizinisch notwendige Blutübertragung.

Datum Patientin/Patient

Datum Arzt
9.2. Datenschutzerklärung für die Studienpatienten

Sehr geehrte Patientin, sehr geehrter Patient,

bei Ihnen ist im Rahmen einer Studie ein minimalinvasives endoskopisch-videoassistiertes Crossenlipping bei Radiofrequenzobliteration der Vena saphena magna vorgesehen.

Anhand dieser Daten, die bei mehreren Patienten gesammelt werden, soll zum späteren Zeitpunkt überprüft werden, ob der operative Eingriff wirksam ist und ob der Nutzen des operativen Eingriffs die Risiken oder Nebenwirkungen dieser Methode überwiegt.

Die Entscheidung über den operativen Eingriff wird unabhängig davon getroffen, ob im Anschluss an diese Behandlung Daten gesammelt werden oder nicht. Für Sie kann sich aus der Studienteilnahme sowohl ein Nach- als auch ein Vorteil ergeben, da die operative Methode in dieser Form bisher nur an Leichen getestet und für machbar und sinnvoll bewertet wurde. Die Zustimmung zur Datensammlung, -auswertung und -veröffentlichung ist vollkommen freiwillig. Sie können die Datenerfassung jeder Zeit, auch nachdem Sie bereits zugestimmt haben, ohne Begründung und Nachteile für die weitere Behandlung ablehnen.

Alle Daten werden pseudonymisiert, d. h. durch eine mehrstellige, Ihrer Person zu diesem Zweck zugeteilte, Patientennummer gekennzeichnet. Dies bedeutet, dass die erhobenen Daten später nur anhand einer Patientenliste Ihrer Person zugeordnet werden können. Diese Liste wird getrennt von den Studienunterlagen in einem verschlossenen Schrank aufbewahrt, nur Prof. Dr. med. Thomas Hupp und Dr. med. Carsten Czuprin können die Liste einsehen und die Daten vergleichen. Bei der Auswertung und Veröffentlichung werden ausschließlich verschlüsselte Daten verwendet.

Wenn Sie mit der Datensammlung, -auswertung und -veröffentlichung in der oben beschriebenen Form einverstanden sind, unterschreiben Sie bitte das Informationsblatt an der dafür vorgesehen Stelle.
Einverständniserklärung Frau/Herr

Hiermit erkläre ich mein Einverständnis zur Datensammlung,- auswertung und -veröffentlichung im Rahmen der Studie „Endoskopisch-videoassistiertes Crossenclipping bei endovenöser Radiofrequenzobliteration der Vena saphena magna bei Varikosis“ in der oben beschriebenen Form.

Ich kann mein Einverständnis jederzeit formlos ohne Nachteile widerrufen. Alle Fragen zur Studie wurden zu meiner Zufriedenheit beantwortet.

Eine Kopie des Informationsblattes habe ich erhalten.

Datum Patientin/Patient

Datum Arzt

9.3. Einverständniserklärung für die Verwendung der Leiche zu wissenschaftlichen Zwecken im Rahmen einer wissenschaftlichen Studie

Hiermit erklären sich Frau /Herr ____________________ als Angehörige des Verstorbenen ____________________ damit einverstanden, dass der Körper im Rahmen der Obduktion zu wissenschaftlichen Zwecken verwendet werden darf. Im Rahmen der Studie „Endoskopisch-videoassistiertes Crossenclipping bei endovenöser Radiofrequenzobliteration der Vena saphena magna bei Varikosis.“ wird zunächst auf Knieinnenseite die oberflächlich verlaufende Vene punktiert und über diese eine Radiofrequenzsonde eingeführt. Im Folgenden kommt es zu kleinen Hautinzisionen kurz unterhalb der Leistenfalte, über die eine Kamera und ein Arbeitskanal zur Abklemmung der Mündungsvenen eingeführt wird. Hierbei wird weder körpereigenes Material des Verstorbenen entnommen noch kommt es zu Verstümmelungen oder einer merklichen Veränderung des äußeren Gestalt.
Unterschrift des/ der Angehörigen

10. DANKSAGUNG

Mein besonderer Dank gilt Prof. Dr. med. Thomas Hupp, Ärztlicher Direktor der Klinik für Gefäßchirurgie des Klinikum Stuttgart, für die Überlassung des Themas meiner Dissertation, die stete Begleitung meiner medizinischen Laufbahn sowie das Einführen in wissenschaftliches Arbeiten. Durch hilfreiche Anregungen und konstruktive Kritik hat er erheblich zur Fertigstellung dieser Arbeit beigetragen.

Prof. Dr. med. Alexander Bosse, Ärztlicher Direktor des Instituts für Pathologie des Klinikum Stuttgart, spreche ich meinen Dank für die freundliche Zusammenarbeit im Hinblick auf die Durchführung der Phase I der Studie aus.

Für all die Unterstützung und Aufmunterung während der Erstellung dieser Arbeit danke ich von Herzen meiner Familie sowie meinen Freunden.