Regulation of the Potassium channels Kv1.3, Kv1.5 and Kir2.1 by Human Parvovirus B19 Capsid Protein VP1

Inaugural-Dissertation
Zur Erlangung des Doktorgrades
der Medizin

Der medizinischen Fakultät
der Eberhard Karls Universität
tu Tübingen

vorgelegt von
Sedig Ahmed, Musaab

2016
Dekan: Professor Dr. I. B. Autenrieth
1. Berichterstatter: Professor Dr. F. Lang
2. Berichterstatter: Professor Dr. O. Garaschuk
To the soul of my grandfather.

To my family and my friends for always being there throughout my hardship, pains and happiness.
Table of contents

1. Introduction ... 1

1.1 Human Parvovirus B19 ... 1

1.1.1 Genomic structure and organization of B19V ... 1

1.1.1.1 Nonstructural protein and capsid proteins ... 1

1.1.2 Pathophysiology .. 2

1.1.3 Prevalence and Incidence .. 4

1.1.4 Transmission ... 4

1.1.5 Diseases associated with B19 .. 4

1.1.5.1 Asymptomatic infection ... 4

1.1.5.2 Fifth disease .. 5

1.1.5.3 Arthropathy ... 5

1.1.5.4 Hydrops fetalis .. 6

1.1.5.5 Myocarditis .. 6

1.1.5.6 Neurologic disease .. 7

1.1.5.7 Hepatitis ... 7

1.1.5.8 Transient aplastic crisis ... 7

1.1.5.9 Congenital anemia ... 8

1.1.5.10 Thrombocytopenia and Neutropenia .. 8

1.1.5.11 Transient erythroblastopenia of childhood ... 9

1.1.6 Diagnosis of B19V ... 9

1.1.6.1 Diagnostic Cytopathology .. 9

1.1.6.2 Detection of B19 Virus ... 9

1.1.6.3 Detection of Antibodies ... 9

1.1.7 Treatment .. 10
1.2 Potassium channels

1.2.1 Voltage gated Potassium Channels Kv1.3 and Kv1.5

1.2.1.1 Structure of Kv Channels

1.2.1.2 Expression and characteristics of Kv1.3 and Kv1.5

1.2.1.3 Functions of Kv1.3 and Kv1.5 K+ channels

1.2.1.4 Pharmacology

1.2.1.5 Abnormalities

1.3 Inwardly rectifying Kir2.1 Potassium channel

1.3.1 Structure of Kir2.1

1.3.2 Factors regulating the activity of Kir2.1

1.3.3 Overview of Physiological Functions of Kir2.1 in Organs

1.3.3.1 Heart

1.3.3.2 Blood vessels

1.3.3.3 Neurons in the brain

1.3.3.4 Skeletal muscle

1.3.3.5 Kidney

1.3.4 Abnormalities

1.3.4.1 Andersen's Syndrome (LQT type7)

1.3.4.2 Short Q-T syndrome

1.4 Aim of the study

2. Materials

2.1 Two electrode voltage clamp

2.2 Technical equipments
2.1.2 Stock materials ...21
2.1.3 Software ..22
2.1.4 Chemicals ..22
2.1.5 Solutions ..23

3. Methods ..24
3.1 Preparation of cRNA ...24
3.1.1 Plasmid DNA linearization ...24
3.1.2 cRNA synthesis ..25
3.2 Xenopus Laevis oocyte preparation27
3.3 Potassium channels current recording in Xenopus laevis oocytes with Two electrode voltage clamp (TEVC) ...29
3.4 Statistical analysis ..33

4. Results ..34
4.1 Regulation of Kv1.3 by VP1 ...34
4.1.1 Inhibition of Kv1.3 currents in Kv1.3 expressing Xenopus oocytes by coexpression of VP1 but not of H153AVP1 ...34
4.1.2 Inhibition of K+ current in Kv1.3 expressing Xenopus oocytes by VP1 coexpression in presence of D-actinomycin ...36
4.1.3 Inhibition of K+-channel activity in Kv1.3 expressing Xenopus oocytes by lysophosphatidylcholine ...38
4.2 Regulation of Kv1.5 by VP1 ...39
4.2.1 Inhibition of Kv1.5 K+ currents in Kv1.5 expressing Xenopus oocytes by coexpression of VP1 but not of H153AVP1 ...39
4.2.2 Inhibition of K+ current in Kv1.5 expressing Xenopus oocytes by VP1 coexpression in presence of D-actinomycin...41

4.2.3 Inhibition of K+ channel activity in Kv1.5 expressing Xenopus oocytes by lysophosphatidylcholine...43

4.3 Regulation of Kir2.1 by VP1..44

4.3.1 Inhibition of K+ currents in Kir2.1 expressing Xenopus oocytes by coexpression of VP1 but not of $^{H153A}V1$...44

4.3.2 Inhibition of K+-channel activity in Kir2.1 expressing Xenopus oocytes by lysophosphatidylcholine...47

4.3.3 Inhibition of K+-channel activity in Kir2.1 expressing Xenopus oocytes by ouabain...49

4.3.4 Nonadditivity of lysophosphatidylcholine and ouabain on Kir2.1 K+ channel activity...50

5. Discussion and Conclusion..52

5.1 Regulation of Kv1.3 and Kv1.5 by parvovirus B19 capsid protein VP1........52

5.2 Regulation of Kir2.1 by parvovirus B19 capsid protein VP1......................57

6. Summary...61

7. Zusammenfassung..63

References...65

Declaration...82

Curriculum vitae..83

List of Publications..85

Acknowledgement..86
List of tables

Table 1: Composition of solutions used for two-electrode voltage clamp experiments (in mM unless stated otherwise).................................23

Table 2: Plasmids containing the desired genes encoding for specific proteins and restriction endonuclease enzymes used to linearize each plasmid.....................24

Table 3: Reaction mixture used to linearize DNA plasmid.................................25

Table 4: Reaction mixture used to synthesize RNA from the linearized DNA.......26

Table 5: RNA polymerases used to prepare cRNA and amount of cRNA injected into oocytes...26
List of Figures

Figure 1: transcription map of the major genes and resulting transcripts of B19.....2
Figure 2: Schematic life cycle of B19...3
Figure 3: Structure of Kv channels...12
Figure 4: The structure of the cytoplasmic pore region of Kir2.1...............15
Figure 5: An illustrative scheme for steps needed to measure with the two
electrode voltage clamp technique (TEVC) in Xenopus oocytes.................30
Figure 6: normalized I/V curve of KV1.3 K+ current with and without Coexpression
of VP1 or the PLA2-negative H153AVP1 mutant..34
Figure 7: effect of VP1 co-expression on K+ current in Kv1.3 expressing Xenopus
oocytes...35
Figure 8: effect of VP1 co-expression on current in Kv1.3 expressing Xenopus
oocytes in the presence of D-Actinomycin..37
Figure 9: effect of Lysophosphatidylcholine on K+ current in Kv1.3 expressing
Xenopus oocytes..38
Figure 10: normalized I/V curve of KV1.5 K+ current with and without Coexpression of
VP1 or the PLA2-negative H153AVP1 mutant..39
Figure 11: effect of VP1 co-expression on K+ current in Kv1.5 expressing Xenopus
Oocytes..40
Figure 12: effect of VP1 co-expression on current in Kv1.5 expressing Xenopus
oocytes in the presence of D-Actinomycin...42
Figure 13: effect of Lysophosphatidylcholine on K+ current in Kv1.5 expressing
Xenopus oocytes...43
Figure 14: normalized I/V curve of KV1.5 K+ current with and without Coexpression of
VP1 or the PLA2-negative H153AVP1 mutant..45
Figure 15: effect of VP1 co-expression on K+ current in Kir2.1 expressing Xenopus
oocytes..46
List of abbreviations

B19V parvovirus B19

cRNA circular RNA

DEPC Diethylpyrocarbonate

E_{res} resting membrane potential

HEPES 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid

I_K Kir current

ITP idiopathic thrombocytopenic purpura

I/V current/voltage

Kv voltage gated Potassium channel

mV millivolt

nm nanometer

ND96 Physiological Ringer solution

nt nucleotide

NS1 major nonstructural protein

PCR polymerase chain reaction

PLA2 phospholipase A2

pS picosiemens

s second

TEVC two electrode voltage clamp
1. Introduction

1.1 Human Parvovirus B19

Parvovirus B19 (B19V) was discovered by the Australian Virologist, Yvonne Cossart while screening sera from blood bank for hepatitis B virus in 1974 (1). The name B19 was originated from the coding of a serum sample occupying position 19 in panel B that gave inconsistent results when it was tested for hepatitis B (1). B19V is a small nonenveloped virus of about 22 to 24 nm in diameter. It is classified as a member of the genus Erythrovirus within the family of Paroviridae (2).

1.1.1 Genomic structure and organization of B19V

The single stranded genome includes 5,596 nucleotides (nt), composed of an internal coding sequence of 4,830 nt flanked by the terminal repeat sequences of 383 nt each (3). The B19V genome has two large open reading frames, with the two capsid proteins VP1 and VP2 encoded by genes on the right side and the single nonstructural protein (NS1) encoded by genes on the left side of the genome. Transcription is capable for producing at least nine overlapping mRNA transcripts, all of them arise from the single P6 promoter at the extreme left side of the genome (3-5). The most important viral proteins include the major nonstructural protein NS1 and the two structural proteins VP1 and VP2 (5, 6).

1.1.1.1 Nonstructural protein and capsid proteins

The major nonstructural protein, NS1 (nt 435 to 2448) has a molecular mass of 77 kDa (5-8). The NS1 protein may function to have site specific DNA binding, DNA nicking, ATPase, transcriptional, and helicase activities (9-13), transactivator of cellular and viral promoters (14), stimulator of apoptosis (15-17), and modulates inflammatory signaling by activation of the STAT3/PIAS3 pathway (18).
The B19V genome further encodes the structural capsid proteins VP1 and VP2 (6), which are decisive for the viral life cycle (19, 20). The VP2 protein is encoded by sequences from nt 3125 to 4786 and has a molecular mass of 58 kDa. VP1 is the minor capsid protein encoded by the sequence from nt 2444 to 4786 and is identical to VP2 with the addition of 227 amino acids (termed the VP1 unique region) at the amino terminus (7, 8). The VP1 has a molecular mass of 84 kDa and makes up 4% of the total capsid protein (7).

The VP1 protein contains a sequence similar to secreted phospholipase A2 (sPLA2) (21-23), which probably generates eicosanoids (23, 24). The vPLA2 enzyme activity is disrupted by replacement of a histidine at position 153 with alanine (H153A VP1) (23, 24).

Figure 1: Transcription map of the major genes and resulting transcripts of B19. The nonstructural protein NS1 arises from the single unspliced transcript on the left-hand side of the genome (hatched areas). The capsid proteins VP1 and VP2 are encoded by genes with overlapping reading frames from the right-hand side of the genome, aa denotes amino acids, nt nucleotides, (1), (2), and (3) reading frames, and P6, the single viral promoter (25).

1.1.2 Pathophysiology

The life cycle of B19V is similar to other nonenveloped DNA viruses in binding of the virus to the receptors of the host cell, internalization, translocation of the genome to the host nucleus, DNA replication, RNA transcription, assembly of
capsids and packaging of the genome, and finally lysis of the cell with release of
the mature virions (2).

Figure 2: Schematic life cycle of Parvovirus B19 (2)

B19V replicates in erythroid progenitor cells (26) and has been shown to cause
agglutination of human red cells (27) and to bind to blood group P antigen in
erthroid progenitor cells, as measured by hemagglutination (26). In tissue culture
anti-P monoclonal antibody has blocked infection of erythroid progenitors with
B19V. Erythrocytes lacking P antigen are not agglutinated with B19 thus
demonstrating that P antigen is the B19V receptor (26). P antigen is present also
on megakaryocytes, endothelial cells, placenta and fetal liver. The tissue
distribution of P antigen is consistent with the clinical syndromes caused by
parvovirus B19. People lacking P antigen are resistant to B19 infection (28).
B19V may enter cells by binding to blood group P antigen (29), α5β1 integrin and
Ku80 autoantigen (30, 31). B19V thus preferably invades erythroid progenitor cells
but may enter fetal myocytes, follicular dendritic cells and endothelial cells (29-32).
In fatal inflammatory cardiomyopathy the virus is particularly abundant in
endothelial cells (33, 34).
1.1.3 Prevalence and Incidence

B19V is a worldwide infectious pathogen in humans. The estimated prevalence of IgG antibodies directed against B19V ranges from 2 to 15% in children at age of 1 to 5 years old, 15 to 60% in children aged 6 to 19 years old, 30 to 60% in adults, and more than 85% in the geriatric population (35-38). Women of the childbearing age have an annual seroconversion rate of 1.5% (39).

1.1.4 Transmission

Transmission of B19V infection can occur through the respiratory route, blood derived products administered parenterally, and from mother to fetus. The virus is generally spread in the community by a respiratory route as B19V specific DNA has been detected in the respiratory secretions at the time of viremia. The case to case interval is 6 to 11 days irrespective of the type of B19V related disease (2). Transmission from the mother to the fetus occurs in one third of cases involving serologically confirmed primary maternal infections (40). Nosocomial transmission has been shown infrequently (41). The transmission can also occur among staff in laboratories handling native virus (42).

1.1.5 Diseases associated with B19V

B19V diseases primarily involves infection in the healthy host manifested as fifth disease (erythema infectiosum), arthralgia, hydrops, myocarditis, neurologic disease, hepatitis as well as hematologic symptoms in predisposed individuals (2).

1.1.5.1 Asymptomatic infection

The presence of subclinical B19V infection is a common finding in both children and adults. In 1989, it has been shown that quarter of infected persons had no recollection of specific symptoms (43) and in 1991, it has been shown that fewer than 50% of IgM-positive women show signs of rash or arthralgia (44). Asymptomatic seroconversion following recent transfusion in patients with
hemolytic anemia suggests that symptoms can be hidden by transfusion of erythrocytes with a longer life span than the defective erythrocytes of the host (45).

1.1.5.2 Fifth disease

Fifth disease is also known as Erythema infectiosum or slapped cheek disease. It is the commonest manifestation of B19V infection in children (46). The association with B19V has been identified following an outbreak of fifth disease by the discovery of specific IgM in specimens from the involved patients (2). The disease starts with prodromal symptoms which often unnoticed including fever, coryza, headache and nausea. It is characterized by a facial erythema of medium intensity appearing in the cheeks with relative circumoral pallor (slapped cheek appearance) beginning 18 days after infection. The second stage is composed of a rash appearing in the limbs and trunk occurs 1 to 4 days later. The rash is reticular and composed of pink maculae that usually undergo a central fading, which causes the rash to develop a festooned appearance. The rash can be transient or recurrent, and the difference in intensity can be linked to environmental factors such as heat and exposure to sunlight (47). Other symptoms include scaly dermatitis, itching, vesicles (43, 48).

1.1.5.3 Arthropathy

The association between arthropathy and B19V infection has been identified in 1985 (49, 50). The incidence of arthralgia is approximately 10% or less in children with fifth disease, while 19% of children with recent arthritis have evidence of recent B19 infection (51). Arthralgia and arthritis are the most prevalent manifestations of primary B19V infection in adults affecting 30% of males and 60% of females, while the dermal affection is less frequent and not characteristic in the adult population (43, 46, 52). The arthropathy is likely to be immunologically mediated since the onset exists with the appearance of circulating antibodies. Joint symptoms present as an acute
moderately severe peripheral polyarthritis involving the metacarpophalangeal joints (75%), wrists (55%), knees (65%), and ankles (40%) without articular erosions (53). About 50% of patients with chronic B19V arthropathy meet the criteria of the American Rheumatoid Association for a diagnosis of rheumatoid arthritis (54, 55).

1.1.5.4 Hydrops fetalis

It has been shown that B19V cause nonimmune hydrops fetalis (56). Fetal B19V infection may also cause fetal or congenital anemia, abortion, or stillbirth or result in an asymptomatic self limiting episode (2). It has been reported that B19V cause congenital malformations (57, 58). The pathogenesis of fetal damage is similar to that of patients with aplastic crisis in which the erythrocytes have a reduced life span. Erythroblasts in the fetal liver exhibit signs of B19V infection (59, 60). Fetal infection is persistent and characterized by severe anemia, high output cardiac failure, and death (61). Impaired circulation caused by fetal myocarditis may contribute to the accumulation of fluids (62).

The incidence rate of B19V infection during pregnancy is about 1 to 5% (63-65). The risk of developing hydrops following B19V infection is ranging from 0 to 24% (66-72), however, in pregnant women with a confirmed primary infection, the risk of an abnormal outcome is about 5 to 10% (40, 67, 71). The possibility of an adverse fetal outcome after infection is greatest between 11 and 23 weeks of gestation, which correlates with the hepatic period of hematopoietic activity (73, 74). Cordocentesis can give precise assessment of fetal anemia, which can be then corrected by intravenous transfusion of erythrocytes (75).

1.1.5.5 Myocarditis

B19V infection of cardiac endothelial cells may result in isolated left ventricular diastolic dysfunction (76) and is an important pathogenic agent in the etiology of inflammatory cardiomyopathy (iCMP) (77). B19V infection may occur during pregnancy leading to maternal and fetal myocarditis, congenital malformations,
stillbirth and abortion (78-81). The consequences of antenatal infections are particularly severe as B19V preferably enters proliferating cells (82). B19V thus preferably invades erythroid progenitor cells but may enter fetal myocytes, follicular dendritic cells and endothelial cells (29-32). In fatal inflammatory cardiomyopathy the virus was particularly abundant in endothelial cells (33, 34). B19 infection has been shown to cause general disease in pediatric cardiac transplant recipients (83, 84) as well as possible myocarditis (85, 86).

1.1.5.6 Neurologic disease

Association of neurologic symptoms with erythema infectiosum has been identified (87, 88). B19V DNA have been detected in cerebrospinal fluid in fatal encephalopathy (89) and aseptic meningitis (90). B19V antibodies were detected in complex regional pain syndrome (91). Neuralgic amyotrophy has been reported following B19V infection (92).

1.1.5.7 Hepatitis

B19V was first identified in a sample sent for hepatitis testing (2). B19V might cause hepatitis (93), transient disturbance of consciousness, hepatic dysfunction (94), fulminant liver failure before or immediately after liver transplantation in children (95), acute hepatitis or hepatic disorder after B19 infection in adults (96).

1.1.5.8 Transient aplastic crisis

Transient aplastic crisis was the first disease to be associated with B19V. It is characterized by a short self limited episode of pure red cell aplasia which had been shown in patients with hemolytic anemia, however, any person suffering from decreased erythrocyte production or increased destruction or loss of erythrocytes might be in risk of developing aplastic crisis following B19V infection (2).
Moreover, conditions associated with decreased erythrocyte production predispose for the development of B19V induced aplastic crisis including iron deficiency (2), congenital dyserythropoietic anemia (97), and α- and β-thalassemias (98-101). B19V may also cause transient aplastic crisis in patients with increased erythrocyte destruction or loss diseases including hereditary spherocytosis (98, 101, 102), hereditary stomatocytosis (103), pyruvate kinase deficiency (104), pyrimidine-5’-nucleotidase deficiency (105), sickle cell disease (45, 98, 106), chronic autoimmune hemolytic anemia (100) and paroxysmal nocturnal hemoglobinuria (107).

1.1.5.9 Congenital anemia

It was reported that three infants with hydrops have congenital anemia due to transplacental B19 infection (108). B19V DNA has been detected in 3 of 11 Bone marrow smears, and giant pronormoblasts showed low sensitivity (33%) and poor specificity (75%) in children diagnosed with Diamond-Blackfan anemia which is a congenital anemia disorder (109). In another report, an infant developed congenital anemia due to a possible B19V infection (110).

1.1.5.10 Thrombocytopenia and Neutropenia

B19V infection may cause subclinical or overt thrombocytopenia in patients (46, 111-113). Recent B19V infection has been shown in 6 of 47 pediatric idiopathic thrombocytopenic purpura patients (ITP) (13%) and it has suggested that children with ITP and associated B19V infection are characterized by acute onset of thrombocytopenia. Among the B19V positive children, the duration of the illness was short in three children treated with immunoglobulin but chronic in the remaining three patients given high dose of steroids (114).

Examination of the bone marrow has showed that Parvovirus B19V infection might be a common cause of immune mediated neutropenia in childhood (115).
1.1.5.11 Transient erythroblastopenia of childhood

Transient erythroblastopenia of childhood (TEC) is a disorder characterized by anemia, reticulocytopenia, and decreased red blood cell precursors in the bone marrow aspiration affecting young children, age 3 to 4 years. TEC is a common cause of red cell aplasia in immunocompetent children. Due to its hematopoietic effect, B19V might be involved in this disorder (116-118).

1.1.6 Diagnosis of B19V

1.1.6.1 Diagnostic Cytopathology

The presence of giant pronormoblasts in either peripheral blood or bone marrow is suggestive of B19V infection, however, their presence or absence should not be considered as the only criteria for diagnosis of B19V infection (2).

1.1.6.2 Detection of B19 Virus

B19V can be detected by isolation of viral DNA using direct hybridization or PCR methods. Direct hybridization as a slot blot or dot blot format, generally employs an almost full length viral DNA probe labeled with 32P, digoxigenin or biotin to bind to DNA in clinical specimens (119, 120). Direct hybridization is very sensitive to detect B19V levels in acute transient aplastic crisis (2).

PCR has increased the sensitivity of DNA detection (121-123). DNA can be detected for extended periods of time in serum (124-126), synovial membranes (127) and bone marrow (128). Detection of low levels of B19V DNA alone cannot be used for diagnosing acute B19V infection (2).

1.1.6.3 Detection of Antibodies

B19V IgM has been detected in over 85% of clinical cases of fifth disease and aplastic crisis With the IgM ELISA method. B19V IgG antibodies prevalence is
increased according to age. About 2% of children less than 5 years of age and 49% of adults greater than 20 years of age had B19V IgG antibodies. The B19V antibody ELISAs are specific and sensitive tests to detect B19 infections (35).

1.1.7 Treatment

In most cases, patients with fifth disease do not need any treatment while some patients with B19V arthralgia might need symptomatic treatment (anti-inflammatory drugs). The prognosis of transient aplastic crisis caused by B19V can be good by erythrocyte transfusion which improve the hemoglobin concentration (129). B19V infection in pregnant seronegative women must be monitored by weekly ultrasound examinations and cordocentesis. The mortality of hydrops fetalis can be lowered by intrauterine transfusions (75). The most Effective treatment for persistent B19V infection (pure red cell aplasia) is infusion of immunoglobulin (0.4 g/kg of body weight/day for 5 days or 1g/kg/day for 2 to 3 days). This treatment is very often curative leading to a marked rise in reticulocyte count and rise in hemoglobin concentration (130-133).

1.2 Potassium channels

Membrane proteins represent about 30% of the total proteome of an organism and the half of this number is carrier proteins and ion channels. Potassium ion channels are considered to be the most diverse and the predominant class of membrane proteins(134). The potassium channels are classified depending on the primary structure and the function into: voltage gated (Kv) channels, inwardly rectifying channels (Kir), Ca^{2+}-activated channels (KCa) and two-pore domain (K2P). Kv channels are the most diverse group of the potassium channels (135).
1.2.1 Voltage Gated Potassium Channels Kv1.3 and Kv1.5

Voltage gated K⁺ channels (Kv), a superfamily that include 12 subfamilies (Kv1-Kv12), contribute to the maintenance of resting membrane potential and the control of action potentials (136). The voltage gated K⁺ channels Kv1.3 and Kv1.5 are members of the Shaker (Kv1) family of K⁺ channels and are involved in tissue differentiation and cell growth (137).

1.2.1.1 Structure of Kv Channels

All Kv channels share high level of similarity. Each Kv channel gene encodes one α-subunit (Kvα). Each four α-subunits form a functional channel. Kv channels are usually homotetrameric in structure (with all Kvα being identical) (138, 139), however, some channels can be heterotetrameric (with two or more non-identical Kvα subunits) (140).

The transmembrane domain of the Kv channel α-subunit is composed of six helices: S1-S6 These helices form two structurally and functionally different parts of the tetrameric channel: pore domain which is a potassium ion conducting domain formed by helices S5-S6 located in the channel center and voltage sensing domain, VSD which is sensible to changes in the membrane potential formed by helices S1-S4 located on the channel periphery (140).

The pore part has a channel gate and a selective filter that does not allow ions other than K⁺ to pass through the channel. The channel gate is created by crossing C-termini of the S6 helices that block passage of ions when the channel is closed (141-143). The selective filter is formed by a conserved fragment (P-region) and a S5-S6 loop (140).

The pore domain and voltage-sensing domain (VSD) are covalently bound by the S4-S5 linker which is an amphiphilic helix connected to the C-terminus of S6 helix (S6T) and the next subunit (140, 144-148). The highly conserved region of the S6T helix plays an important role in the opening and closing of the channel. It is a flexible region which allows the channel to open (140).
Kv channels have two gates: the upper gate formed by the P-loop of the selectivity filter on the extracellular side and the lower gate formed by crossing the S6 helices on the intracellular side. In the Kv channels, lower gates are the main activation gates which are controlled by external stimuli, such as the membrane potential (140). Kv channels also have a cytoplasmic part which is formed by N- and C-termini beside the transmembrane part (149).

Figure 3: Structure of Kv channels. A. Scheme of a single α-subunit of the Kv channel. Transmembrane segments S1–S6 and pore-forming P-loop are marked. Charged Arg of the membrane voltage sensor S4 are marked with “+” signs. PD—pore domain. B. Crystal structure of a single α-subunit of the Kv1.2 channel. S1–6 segments, cytoplasmic domain T1, linker connecting the transmembrane portion with the T1 domain (T1–1), as well as N- and C-termini are marked. Charged Arg residues of the membrane voltage sensor S4 are indicated by blue circles. C. Crystal structure of the Kv1.2 channel in a complex with the β-subunit. TM—transmembrane region. D. Gate of the Kv2.1 channel. (140, 150)
1.2.1.2 Expression and characteristics of Kv1.3 and Kv1.5

Kv1.3 was first cloned from brain tissue, and its expression is widely distributed throughout the body (151, 152). It is highly expressed in lymphocytes and the olfactory bulb (153), and it is also expressed in the hippocampus (154), adipose tissue (155), both skeletal and smooth muscle (156-158), epithelia (159) and endothelium (160).

Kv1.3 currents have both characteristic cumulative inactivation and a marked C-type inactivation. The single channel conductance of Kv1.3 is 13 pS and the voltage which is required for activation of Kv1.3 channel is -35 mV (161).

Unlike the Kv1.3 channel, the first site for isolation of Kv1.5 channel was the human ventricle and Kv1.5 is expressed in the atria (162). Like the Kv1.3 channel, Kv1.5 channel is also ubiquitously expressed (151, 152). Kv1.5 is expressed in skeletal and smooth muscle (156-158). Kv1.5 is abundantly expressed in endothelial cells (163) and to a lesser extent in the brain (164, 165).

Kv1.5 currents take part in the ultra-rapid activating K+ current in the heart known as I_{kur}, which has a role in the repolarization of an action potential (166). The conductance of the Kv1.5 channel is 8 pS and the voltage required for its activation is about 24 mV. In contrast to Kv1.3, the inactivation Kv1.5 is slow and without cumulative inactivation (161).

1.2.1.3 Functions of Kv1.3 and Kv1.5 K+ channels

Kv1.3 and Kv1.5 channels play a role in many cellular processes including maintenance of vascular smooth muscle tone (167), cell growth (168), regulation of cell volume (169) apoptosis (170, 171), adhesion (172), mobility, epithelial transport (173), proliferation (174), insulin release (155) and homeostasis(175).
1.2.1.4 Pharmacology

Kv1.3 and Kv1.5 are inhibited by the general K\(^+\) channel blockers 4-aminopyridine (4-AP) and tetraethylammonium (TEA) (176). Another potent inhibitor for these channels is Psora-4 which has lesser effect on the rest of the Kv isoforms (177). The highly specific toxins such as charybdotoxin and margatoxin (178, 179) and anemone peptide ShK and their derivatives (180) are known to be highly effective for Kv1.3. Kv1.5 is not sensitive to Kv1.3 blockers and has no known specific pharmacology but new chemicals such as S0100176 (from Sanofi-Aventis) (181) or diphenyl phosphine oxide-1 (DPO-1) have been discovered to be potent inhibitors for Kv1.5 (182).

1.2.1.5 Abnormalities

Impaired expression of Kv1.3 in T effector memory cells is involved in the onset of juvenile multiple sclerosis (183). The deficiency of Kv1.3 alters insulin sensitivity and glucose tolerance (184). On the other hand, Kv1.5 loss of function mutations might cause atrial fibrillation (185).

1.3 Inwardly rectifying Kir2.1 Potassium channel

Kir2.1 was the first member of classical Kir channels (Kir2.X) family to be cloned and it has been cloned from a mouse macrophage cell line and named IRK1/Kir2.1/KCNJ2 (186).

It was thought that Kir2.x subunits are made up of homomeric complexes (187). However, it has been shown that Kir2.x subunits can function as heterotetramers in vitro and in vivo. In vitro electrophysiological experiments have revealed that each of Kir2.1, Kir2.2, and Kir2.3 can assemble with any one of the other subunits, and the respective heteromer has different properties from that of their homomers (188).
1.3.1 Structure of Kir2.1

The basic structure of classical Kir channels is composed of transmembrane and cytoplasmic regions and pore structure (189). The inward rectification is due to intracellular ions such as Mg\(^{2+}\) (190, 191) and polyamines (192, 193).

Further site-directed mutagenesis recognized negatively charged amino acids (Glu) at two different positions (E224 and E229 for Kir2.1) in the COOH terminus of the cytoplasmic domain that are involved in both Mg\(^{2+}\) and polyamine sensitivity (194-197). It has been suggested by Mutagenesis and substituted cysteine accessibility experiments that these residues directly interact with Mg\(^{2+}\) and polyamines (198, 199).

The crystal structure of the cytoplasmic domain of Kir2.1 is composed of an intrinsically flexible loop around the membrane face of the cytoplasmic pore (200). The loop narrows the cytoplasmic pore to about 3 Å and forms a girdle around the central pore axis. The girdle consists of a loop between βH and βI strands and is known as the G-loop. The G-loop forms the narrowest portion of the ion conduction pathway in the cytoplasmic region. The narrowest part of the G-loop is formed by A306 and to a lesser extent by E299, G300, M301, and M307. A306 is located at the apex of the G-loop. The Charged amino acids, R228, D255, D259, and R260, face the cytoplasmic pore (189, 200).
1.3.2 Factors regulating the activity of Kir2.1

PKA activators had small effect on Kir2.1 currents (201). The current of Kir2.1 has increased by cAMP when the channel was coexpressed with A kinase-anchoring protein 79 (AKAP79) and treated with the phosphatase inhibitors okadaic acid or cypermethrin (202). Classical Kir channels reconstituted with injection of brain poly(A)^+ RNA into Xenopus oocytes has been shown to be inhibited by isoproterenol, a β-adrenergic agonist (203). This effect is exerted by the increase of intracellular cAMP and also cGMP (203).

Cytoplasmic regulatory factors such as phosphorylation and pH regulate channel function by affecting the channel-PtdIns(4,5)P₂ interaction. Kir2.1 interacts more strongly with PtdIns(4,5)P₂ (204).

Activity of Kir2.1 on the cell surface can be negatively regulated by its internalization, which is dependent on GTPase Rho family proteins. Kir2.1 expresses a high degree of internalization mediated by dynamin, a protein essential for endocytosis (205, 206).

Other Kir2.1 regulators include arachidonic acid (207), phosphatidylinositol 4,5-bisphosphate Pl(4,5)P₂ (208, 209), cholesterol(210), tyrosine kinase phosphorylation(211), TNF-alpha (212), Chapsyn 110 (206) and filamin-A (213).

1.3.3 Overview of Physiological Functions of Kir2.1 in Organs

1.3.3.1 Heart

The classical Kir current I_k is highly expressed in cardiac myocytes, including Purkinje fibers, ventricular and atrial tissues (214-217) but it is absent in nodal cells.
Iₖ play critical role in determining the shape of the cardiac action potential, setting the resting potential, permitting the plateau phase and inducing rapid final stages of repolarization (189). Kir2.1 might be the core subunit that generates the Iₖ current (219).

1.3.3.2 Blood vessels

Endothelial and smooth muscle cells are the major components of vasculature (189). Electrophysiological studies have shown that classical Kir channels are expressed in both endothelial and smooth muscle cells (220, 221). Classical Kir channels are the most prominent channels in vascular endothelial cells (221-223). The functional expression of classical Kir channels provides the driving force for Ca²⁺ influx through Ca²⁺-permeable channels by setting the E_{res} of endothelial cells to a negative potential. Blockage of endothelial Kir channels by Ba²⁺ inhibits both flow-induced Ca²⁺ influx and vasodilatation caused by Ca²⁺-dependent production of Nitric Oxide (224, 225).

Kir2.1 was identified in vascular smooth muscle cells but neither Kir2.2 nor Kir2.3 was identified there (226). Blood vessels in Kir2.2 knockout mice dilated normally in response to high extracellular potassium stimulation but not blood vessels from Kir2.1 knockout mice (227). Therefore, Kir2.1 might be the main subunit to which form the classical Kir current in vascular smooth muscle (227).

1.3.3.3 Neurons in the brain

Kir currents were detected in hippocampal neurons (228) and neonatal rat spinal motor neurons (229). The currents which are generated by Kir2.x subunits play an important role in the maintenance of E_{res} and regulation of the excitability of the neurons. Ba²⁺ block of Kir channels in an isolated neuron caused depolarization and initiated the firing of action potential (230).
In situ hybridization histochemistry and immunohistochemistry had showed that classical Kir channels including Kir2.1 are abundantly and differentially expressed in the whole brain (231).

Kir current has been recorded in Schwann cells surrounding peripheral nerve fibers (232). Kir2.1 and Kir2.3 are expressed in the microvilli of Schwann cells at the nodes of Ranvier (233). As the villi are facing towards the axon, these Kir channels may contribute in maintaining extracellular potassium by absorbing excess K\(^+\) released from excited axons. This function is essential for maintaining proper function of nerve fibers (233).

1.3.3.4 Skeletal muscle

Classical Kir channels play a role in setting the \(E_{\text{res}} \) and shift it toward the direction of hyperpolarization. Kir2.1 is expressed in skeletal muscle (234). The importance of Kir2.1 in muscle function has been revealed by analysis of Andersen's syndrome. A decrease of the Kir2.1 conductance result in depolarization of the \(E_{\text{res}} \), leading to inactivation of Na\(^+\) channels and thus prevent initiation and propagation of action potentials (235).

The functional expression of Kir2.1 is necessary for differentiation of myoblasts (236) and for the fusion of mononucleated myoblasts to form a multinucleated skeletal muscle fiber (237). Kir2.1 induce hyperpolarization which maintain the membrane potential in a range where Ca\(^{2+}\) can enter the myoblasts through Ca\(^{2+}\) permeable channels promoting the differentiation and fusion of myoblasts (237).

1.3.3.5 KIDNEY

Kir2.1 is found in juxtaglomerular cells and it is not found in epithelial cells or glomeruli (238). Kir2.1 plays a major role in setting the membrane potential in the juxtaglomerular cells (238).
Activation of Kir2.1 in proximal renal tubules increases the electrical driving force for electrogenic bicarbonate exit across the basolateral cell membrane leading to cytosolic acidification and subsequent stimulation of the apical Na⁺/H⁺ exchanger and thus increases Na⁺ entry. And the demand for Na⁺ extrusion through the Na⁺/K⁺ ATPase (239).

1.3.4 Abnormalities

1.3.4.1 Andersen’s Syndrome (LQT type7)

Andersen’s syndrome is characterized by cardiac arrhythmias of long Q-T syndrome (LQT7), dysmorphic bone structure in the face and fingers and periodic paralysis (240). It is an autosomal dominant disorder due to loss of function mutations in the KCNJ2 gene which encodes the Kir2.1 subunit (235). These mutations induce dominant negative effects on the K⁺ current (241, 242) by impairing the interaction between the channels and PtdIns(4,5)P₂ (243) or by inhibiting trafficking of Kir2.1 to cell membrane surface (241). Cardiac Arrhythmias in Andersen’s syndrome is due to reduction of Kir2.1 function that prolongs the plateau phase of the action potential and depolarizes the resting membrane potential. Abnormal bone structure can be caused by the dysfunction of osteoclasts. Since the Low extracellular pH in the extracellular matrix is maintained by H⁺ secretion by a proton pump is critical for proper functioning of the osteoclasts and as this H⁺ secretion is achieved in exchange for K⁺ transport through Kir2.1 channels, disruption of Kir2.1 channels can cause osteoclast dysfunction which can lead to severe bone deformity(189).

1.3.4.2 Short Q-T syndrome

The short Q-T syndrome which is associated with a high incidence of sudden cardiac death, syncope, and/or atrial fibrillation even among newborns and young patients due to gain of function mutation affecting the Kir2.1 gene (244).
1.4 Aim of the study

B19V infection is common in humans (245). B19V infection is associated with myocarditis (246, 247). Endothelial B19V infection may lead to isolated left ventricular diastolic dysfunction (76) and B19V associated myocarditis thus causing an endothelial cell mediated disease (248). In pregnancy B19V-infection may be followed by maternal and fetal myocarditis, congenital malformations, stillbirth and abortion (78-81). B19V preferably invades into proliferating cells thus causing particularly severe disorders during antenatal infection (82). Endothelial rather than myocardial B19V genomes were detected in fatal inflammatory cardiomyopathy (33, 34).

The B19V genome encodes the structural capsid proteins VP1 (6) VP1 contains a sequence homologous to the catalytic site and Ca\(^{2+}\)-binding loop of secreted phospholipase A2 (sPLA2) (21-23). The vPLA2 enzyme activity is disrupted by replacement of a histidine at position 153 with alanine (\(^{H153A}\)VP1) (23, 24). Expression of VP1 but not of \(^{H153A}\)VP1 in endothelial cells upregulates Ca\(^{2+}\) entry (249), an effect mimicked by PLA2 product lysophosphatidylcholine (249). VP1 has further been shown to inhibit Na\(^{+}/K^{+}\) ATPase activity (250), an effect abrogated by loss of function mutation of the PLA2 sequence and mimicked by lysophosphatidylcholine (250, 251).

The aim of present study is to explore whether expression of VP1 influences the activity of the Potassium channels Kv1.3 and Kv1.5, which are expressed in the endothelium (160, 163) and are critically important for proliferation in several cell types (252, 253) and whether expression of VP1 influences the activity of the inwardly rectifying Kir2.1 K\(^{+}\) channels, which have previously been shown to be expressed in endothelial cells (221). Moreover, to explore whether the effect of VP1 on Kv1.3, Kv1.5 and Kir2.1 Potassium channels is sensitive to inhibition of PLA2 and is mimicked by lysophosphatidylcholine.
2. Material

2.1. Two electrode voltage clamp

2.1.1. Technical equipments

<table>
<thead>
<tr>
<th>Name</th>
<th>manufacturer and country of origin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Autoclave HICCAVE-50 HMC</td>
<td>System labor systemtechnik, Wettenberg, Germany.</td>
</tr>
<tr>
<td>Digitizer digidata 1322A</td>
<td>Axon Instruments, Union City, CA, USA</td>
</tr>
<tr>
<td>DMZ universal puller</td>
<td>Zeitz-instruments, Martinsried, Germany.</td>
</tr>
<tr>
<td>Eppendorf centrifuge 5415R</td>
<td>Hinz gmdh. Hamburg, Germany</td>
</tr>
<tr>
<td>Eppendorf pipettes 0.1-1000ul</td>
<td>Eppendorf. Hamburg, Germany</td>
</tr>
<tr>
<td>Gene clamp 500 amplifier</td>
<td>Axon Instruments, Union City, CA, USA</td>
</tr>
<tr>
<td>Maclab D/A converter</td>
<td>AD instruments, Castle Hill, Australia.</td>
</tr>
<tr>
<td>Nanoliter injector 2000</td>
<td>World precision instruments, Berlin, Germany.</td>
</tr>
<tr>
<td>pH meter 646</td>
<td>Carl Zeiss, Oberkochen, Germany</td>
</tr>
<tr>
<td>Safety cabinet class II(Hera safe)</td>
<td>Kendro laboratory products, Langenselbold, Germany</td>
</tr>
</tbody>
</table>

2.1.2 Stock materials

<table>
<thead>
<tr>
<th>Name</th>
<th>manufacturer and country of origin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Borosilicate glass capillaries (injection) (External diameter: 1.14mm, internal diameter: 0.5mm)</td>
<td>Harvard apparatus, USA.</td>
</tr>
<tr>
<td>Borosilicate glass capillaries (measurement) (External diameter: 1.5mm, internal diameter: 1.17mm)</td>
<td>Harvard apparatus, USA.</td>
</tr>
<tr>
<td>Milipore express plus high flow rate membranes (PES). 73mm/0.22um.</td>
<td>Milipore, Schwalbach, Germany.</td>
</tr>
<tr>
<td>Combitips plus 2.5 ml</td>
<td>Eppendorf, Hamburg, Germany</td>
</tr>
</tbody>
</table>
Eppendorf tubes
Falcon tubes (50ml)

Eppendorf, Hamburg, Germany
Greiner bio-one, Frickenhausen, Germany

2.1.3 Software

<table>
<thead>
<tr>
<th>Name</th>
<th>Manufacturer and country of origin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microsoft office 2002 SP3</td>
<td>Microsoft corp. Redmond, USA.</td>
</tr>
<tr>
<td>Microcal Origin 6.0G</td>
<td>Microcal software, Northampton, MA, USA.</td>
</tr>
<tr>
<td>GraphPad InStat v3.05</td>
<td>GraphPad Software Inc., La Jolla, CA, USA.</td>
</tr>
<tr>
<td>pClamp 9.0 software package</td>
<td>Axon Instruments, Union City, CA, USA.</td>
</tr>
<tr>
<td>MacPyMOL 1.3 (Open source)</td>
<td>DeLano Scientific, Schödinger, LLC. USA.</td>
</tr>
</tbody>
</table>

2.1.4 Chemicals

<table>
<thead>
<tr>
<th>Name</th>
<th>Manufacturer and country of origin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetone</td>
<td>Sigma-Aldrich Chemie GmbH, Steinheim, Germany.</td>
</tr>
<tr>
<td>CaCl₂ x 2H₂O</td>
<td>Sigma-Aldrich Chemie GmbH, Steinheim, Germany.</td>
</tr>
<tr>
<td>Collagenase Type II</td>
<td>Worthington Biochemical Corp., NJ, USA.</td>
</tr>
<tr>
<td>HEPES</td>
<td>Carl Roth GmbH, Karlsruhe, Germany.</td>
</tr>
<tr>
<td>KCl</td>
<td>Carl Roth GmbH, Karlsruhe, Germany.</td>
</tr>
<tr>
<td>Methanol</td>
<td>Sigma-Aldrich Chemie GmbH, Steinheim, Germany.</td>
</tr>
<tr>
<td>MgCl₂ x 6H₂O</td>
<td>Sigma-Aldrich Chemie GmbH, Steinheim, Germany.</td>
</tr>
<tr>
<td>NaCl</td>
<td>Sigma-Aldrich Chemie GmbH, Steinheim, Germany.</td>
</tr>
<tr>
<td>Paraffin</td>
<td>Merck, Darmstadt, Germany.</td>
</tr>
<tr>
<td>Sodium pyruvate</td>
<td>Sigma-Aldrich Chemie GmbH, Steinheim, Germany.</td>
</tr>
<tr>
<td>Theophyllin (Euphylon ©)</td>
<td>Nycomed GmdH, Konstanz, Germany.</td>
</tr>
<tr>
<td>Phenphormin hydrochloride</td>
<td>Sigma-Aldrich Chemie GmbH, Steinheim, Germany.</td>
</tr>
<tr>
<td>Tetracycline</td>
<td>Sigma-Aldrich Chemie GmbH, Steinheim, Germany.</td>
</tr>
</tbody>
</table>
Ciprofloxacin Fresenius Kabi Austria GmdH, Austria.
Gentamycininsultaf Merck Serono, Dramstadt, Germany.
(Refobacin ©)
Actinomycin D Sigma-Aldrich Chemie GmbH, Steinheim, Germany.
L-α-Lysophosphatidylcholine Sigma-Aldrich Chemie GmbH, Steinheim, Germany.
Ouabain Octahydrate Calbiochem, Darmstadt, Germany.

2.1.5 Solutions

<table>
<thead>
<tr>
<th></th>
<th>ND96</th>
<th>ND96-A</th>
<th>OR2</th>
<th>OR2-Collagenase</th>
</tr>
</thead>
<tbody>
<tr>
<td>NaCl</td>
<td>96</td>
<td>88.5</td>
<td>82.5</td>
<td>82.5</td>
</tr>
<tr>
<td>KCl</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>CaCl.2H2O</td>
<td>1.8</td>
<td>1.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MgCl2.6H2O</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>HEPES</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Sodium pyruvate</td>
<td></td>
<td></td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Tetracyclin</td>
<td></td>
<td></td>
<td>0.11</td>
<td></td>
</tr>
<tr>
<td>Ciprofloxacin</td>
<td>0.004</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Refobacin</td>
<td></td>
<td></td>
<td>0.222</td>
<td></td>
</tr>
<tr>
<td>Theophylin</td>
<td></td>
<td></td>
<td>0.498</td>
<td></td>
</tr>
<tr>
<td>Collagenase</td>
<td></td>
<td></td>
<td></td>
<td>2 mg/ml</td>
</tr>
<tr>
<td>pH</td>
<td>7.4</td>
<td>7.5</td>
<td>7.4</td>
<td>7.4</td>
</tr>
</tbody>
</table>

Table 1: Composition of solutions used for two-electrode voltage clamp experiments (in mM unless stated otherwise)
3. Methods

3.1 Preparation of cRNA

B19V DNA was isolated from deparaffinized myocardial tissue of a patient with fatal B19V-associated inflammatory cardiomyopathy after proteinase K digestion, phenol/chloroform extraction and ethanol precipitation (accession number: DQ225150). Constructs encoding wild-type VP1 (250), PLA2-negative H153A VP1 mutant (250), mouse Kv1.5 (254), mouse Kv1.3 (255) wild-type Kir2.1 (256) were used for generation of cRNA

The cRNA synthesis protocol consists of two steps:
1. Linearization of the plasmid DNA containing the sequence of interest.
2. Generation of cRNA itself.

3.1.1 Plasmid DNA linearization

Endonucleases were used to obtain a cut at the 3' end of the insert. Specific restriction enzymes as shown in table 2 were used to linearize specific plasmids.

Table 2: Plasmids containing the desired genes encoding for specific proteins and restriction endonuclease enzymes used to linearize each plasmid.

<table>
<thead>
<tr>
<th>Protein</th>
<th>Plasmid</th>
<th>Restriction Endonuclease</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kv1.3</td>
<td>pSP64T</td>
<td>EcoR I</td>
</tr>
<tr>
<td>Kv1.5</td>
<td>pBluescript SK</td>
<td>BamH I</td>
</tr>
<tr>
<td>Kir2.1</td>
<td>pGHJ</td>
<td>Mlu I</td>
</tr>
</tbody>
</table>
The reaction mixture as presented in the table below was prepared and incubated overnight at 37°C. Afterwards DNA was purified by NucleoSpin® Gel and PCR clean-up: a 250 μl NTI Buffer was added to the reaction mixture and loaded in a NucleoSpin® Gel and PCR clean-up column that was centrifuged at 11000 rpm for 30 seconds. The column was washed twice with a 700 μl NT3 Buffer and centrifuged at 11000 rpm for 1 minute. After centrifugation DNA was eluted with a 20 μl NE Buffer. Then cRNA concentration was measured by taking 1 μl of cRNA in 69μl water using an Eppendorf Biophotometer (Hamburg, Germany). Finally, to confirm quality of generated cRNA its quality was checked by gel electrophoresis.

Table 3: Reaction mixture used to linearize DNA plasmid

<table>
<thead>
<tr>
<th>Reaction mixture</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 X Buffer</td>
<td>5 μl</td>
</tr>
<tr>
<td>Plasmid DNA (10 μg)</td>
<td>Depends on DNA concentration</td>
</tr>
<tr>
<td>Restriction enzyme (20 U)</td>
<td>2 μl</td>
</tr>
<tr>
<td>Water</td>
<td>Fill till reach a total volume of 25 μl</td>
</tr>
</tbody>
</table>

3.1.2 cRNA synthesis

The linearized DNA produced by the method mentioned above was used as a template to generate cRNA. The reaction mixture listed below was put in a sterile eppendorf tube.
Table 4: Reaction mixture used to synthesize RNA from the linearized DNA.

<table>
<thead>
<tr>
<th>Reaction mixture</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 X Buffer</td>
<td>2.5 µl</td>
</tr>
<tr>
<td>rNTPs</td>
<td>1 µl</td>
</tr>
<tr>
<td>Cap analog</td>
<td>2.5 µl</td>
</tr>
<tr>
<td>RNAse inhibitor</td>
<td>1 µl</td>
</tr>
<tr>
<td>Water</td>
<td>Fill till reach a total volume of 25 µl</td>
</tr>
</tbody>
</table>

The reaction mixture was gently spun and the appropriate RNA polymerase was added and spun again. RNA polymerases T7 or T3 or Sp6 were used, and the mixture was then incubated at 37°C for 2 hours, 5 µl of DNase was added in the reaction mixture afterwards to remove the possible DNA contamination. Finally the reaction mixture was incubated at 37°C for 15 minutes under continuous shaking.

Table 5: RNA polymerases used to prepare cRNA and amount of cRNA injected into oocytes.

<table>
<thead>
<tr>
<th>Protein</th>
<th>RNA polymerase</th>
<th>cRNA (ng/oocytes)</th>
<th>Exp. time (days)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kv1.3</td>
<td>Sp6</td>
<td>2.5 ng</td>
<td>3</td>
</tr>
<tr>
<td>Kv1.5</td>
<td>T3</td>
<td>2.5 ng</td>
<td>3</td>
</tr>
<tr>
<td>Kir2.1</td>
<td>T7</td>
<td>10 ng</td>
<td>3</td>
</tr>
<tr>
<td>VP1</td>
<td>T7</td>
<td>10 ng</td>
<td>3</td>
</tr>
</tbody>
</table>
To purify the generated RNA, 129 μl of phenol chloroform mixture was mixed with 100μl of DEPC water and was added in an eppendorf and centrifuged at 11000 rpm for 5 minutes. After that, the upper inorganic phase was carefully taken into a new eppendorf tube, 12.5 μl of 3 M sodium acetate (pH 5.2) was added, as well as 375 μl of 100% ethanol and then mixed and further incubated at -70°C for at least 30 minutes.

After incubation, the mixture was centrifuged at 20000 rpm for 15 minutes at 4°C. The supernatant was removed and the pellet was washed with 500 μl of 70% ethanol. Finally the pellet was left to dry in a dryer machine for 5 minutes and reconstituted in 40 μl of DEPC water and mixed again. Then cRNA concentration was measured by taking 1 μl of cRNA in 69 μl water using an Eppendorf Biophotometer (Hamburg, Germany). Finally, to confirm the quality of generated cRNA its quality was checked by gel electrophoresis. All the cRNA was provided by the department of Molecular Biology.

3.2 Xenopus Laevis oocyte preparation

The *Xenopus Laevis* female frog was anesthetized by immersion in a solution containing 0.1% ethyl 3-aminobenzoate methanesulfonate salt (Tricain) before the operation and the frogs was laid during operation on an absorbent paper coated with the solution in order to increase the duration of the effect of the Tricain. A small longitudinal incision (around 1-2 cm) was made in the lower abdomen for careful cutting of several pieces of the ovarian lobes and then the oocyte bags were extracted into small portions to avoid contamination through the *Xenopus* skin. Surgical blanket was placed at the operation incision and all the surgical instruments were properly sterilized as a protective measure.
The oocyte bags were put in a Petri dish containing the calcium free solution (OR2) for further separation, cleaning and preparation. The incision was cleaned properly and closed with reabsorbant stitches. The internal tissues mainly muscles and the external tissues (skin) were closed separately to aid the healing process. The *Xenopus laevis* frog was taken back to a provisional cage and was washed several times to be cleaned from possible traces of residual anaesthesia. After 30 minutes of continuous washing when the frog recovered its reflexes and movement, it was washed two additional times. The frog was returned to the aquarium after the total recovery of its reflexes.

The oocyte bags were extracted manually and divided into smaller groups to facilitate their digestion by the collagenase. The collagenase solution was prepared at a concentration of 2 mg/ml in OR2 and the oocytes were placed in a 50 ml Falcon tube containing collagenase recoated by aluminium foil to avoid external light interference. The duration of the digestion process was about 2-3 hours, depending of the digestion procedure, the frog, or the times that this frog was already operated. After the second hour of digestion, the oocytes were periodically visualized under the microscope every 30 minutes to check the status of the oocytes and to avoid excessive digestion by the collagenase. When the oocytes were determined to be ready for selection and injection, they were washed twice with OR2 and then with the ND-96 with antibiotics solution (ND96-A). The oocytes were then stored in a petri dish containing 3-3.5 ml of ND96-A. The stored oocytes can survive till 5-6 days if the petri dish containing the oocytes is kept in an incubator at a temperature of 17° C and the dead cells are removed and the media is changed periodically. The oocytes in growing stage V-VI, with a clear differentiation between poles, were selected for further experiments. All the cRNA injections were done at the same day of the operation.
The cRNA injections were done with a Nanoinjector 2000, previously configured for the suitable volume. A manually prepared borosilicate capillary was used for cRNA injection. After cutting the capillary edge and allowing a diameter of about 10-20 µm at the end, the capillary was manually filled with paraffin oil and afterwards inserted into the microinjector. Careful attention was made all the time to avoid accidental contamination by cleaning the working place, using sterile pipettes, gloves, and DEPC water to dilute stock cRNA preparations. Oocytes injected with cRNA were stored in Petri dishes containing 3 -3.5 ml of sterilized ND96-A solution in an incubator at a temperature of 17° C for 3 days until having considerable expression of the injected cRNA.

3.3 Potassium channels current recording in Xenopus laevis oocytes with Two electrode voltage clamp (TEVC)

Two electrode voltage clamp (TEVC) is an important electrophysiological technique which depends on clamping the membrane potential of Xenopus Laevis oocytes to several voltage steps or fixing it to one holding potential in order to measure and record the charged particles movement across the membrane through ion channels, electrogenic transporters or pumps which were heterologously expressed in the plasma membrane of Xenopus oocytes.
Figure 5: An illustrative scheme for steps needed to measure with the two electrode voltage clamp technique (TEVC) in Xenopus oocytes.

The two electrode voltage clamp measurement is achieved by introducing two glass microelectrodes inside the oocyte to reach the intracellular compartment. The first electrode records the membrane potential and the second electrode is the current injecting electrode. The signal recorded by the recording electrode reaches a feedback amplifier to compare it to the voltage clamp command set by a generator. The difference between these two signals is injected forward through the current injecting electrode to the intracellular leaflet of the Xenopus Laevis oocytes and back through the cell membrane to the reference electrode to complete the circuit. The deflection from the baseline is quantified and visualized as an electrogenic activity of the ion channels, transporters or pumps. The
reference electrodes are made of silver and coated with a silver chloride (AgCl) coating, whereas the microelectrodes are filled with KCl (3M) and connected to the feedback amplifier. The setup is covered by Grounded Faraday cage to prevent against possible external noise currents. Vibration and mechanical noise are reduced by using Pneumatic anti-vibration stage. The electrode potential was set to 0 mV after immersion in the bath solution and just before introducing the electrodes inside the oocytes. Under low magnification stereomicroscope (5-20X), oocytes were impaled with glass capillaries at opposite poles using micromanipulators.

For Kv1.3 and Kv1.5 experiments, Xenopus oocytes were prepared as previously described (257), cRNA encoding Kv1.3 (2.5ng) or Kv1.5 (2.5ng), VP1 (10 ng) and H153AVP1(10ng) was injected on the same day of preparation of the Xenopus oocytes. All experiments were performed at room temperature (about 22° C) 3 days after the injection (258, 259). Two-electrode voltage clamp recordings were performed at a holding potential of -100 mV. The currents were recorded following 2 second depolarizing pulses ranging from −80 to +50 mV in 10-mV and 15-s or 20-s increments from a holding potential of −100 mV. The data were filtered at 1 kHz and recorded with a Digidata 1322A A/D-D/A converter and ClampexV .9.2 software for data acquisition (Axon Instruments). The analysis of the data was performed with Clampfit 9.2 (Axon Instruments) software (260, 261). The oocytes were maintained at 17°C in ND96-A solution. The control superfusate (ND96) contained 96 mM NaCl, 2 mM KCl, 1.8 mM CaCl2,1 mM MgCl2 and 5 mM HEPES, pH was adjusted to 7.4 by addition of NaOH (262). The flow rate of the superfusion was 20 ml/min, and a complete exchange of the bath solution was reached within about 10 s (263, 264).

To investigate whether the effect of VP1 on Kv1.3 or Kv1.5 is modified by actinomycin, Kv1.3 or Kv1.5 was expressed in Xenopus oocytes with additional
expression of VP1 in the presence of actinomycin (10 µM, added 36 hours prior to the experiment).
To investigate whether Lysophosphatidylcholine affect the activity of Kv1.3 and Kv1.5 K channels, *Xenopus* oocytes expressing Kv1.3 or Kv1.5 were treated with lysophosphatidylcholine (1µg/ml) for 10 minutes.

For Kir2.1 experiments, *Xenopus* oocytes were prepared as previously described (257, 265). cRNA encoding Kir2.1(10ng), VP1 (10 ng) and H153A VP1(10ng) was injected on the same day of preparation of the *Xenopus* oocytes (266, 267). All experiments were performed at room temperature (about 22° C) 3 days after the injection (268). In two-electrode voltage clamp experiments Kir2.1 currents were elicited every 20 s with 1 s pulses from -150 mV to +30 mV applied from a holding potential of -60 mV. The data were filtered at 1 kHz and recorded with a Digidata 1322A A/D-D/A converter and ClampexV.9.2 software for data acquisition (Axon Instruments) (269, 270). The analysis of the data was performed with Clampfit 9.2 (Axon Instruments) software (271, 272). The oocytes were maintained at 17°C in ND96-A solution. The control superfusate (ND96) contained 96 mM NaCl, 5 mM KCl, 1.8 mM CaCl₂, 1 mM MgCl₂ and 5 mM HEPES, pH was adjusted to 7.4 by addition of NaOH (256). The flow rate of the superfusion was 20 ml/min, and a complete exchange of the bath solution was reached within about 10 s (273, 274).
To test whether Lysophosphatidylcholine affect the activity of Kir2.1 K⁺ channels, *Xenopus* oocytes expressing Kir2.1 were treated with lysophosphatidylcholine (1µg/ml) for 10 minutes.
To test whether the effect of VP1 expression or lysophosphatidylcholine treatment could be mimicked by inhibition of the Na⁺/K⁺ ATPase with Ouabain. Kir2.1 expressing oocytes were treated with Ouabain (0.1 mM) for 10 minutes.
To test whether the inhibition of Na⁺/K⁺ ATPase was required for the inhibitory effect of lysophosphatidylcholine on Kir2.1. The Kir2.1 expressing oocytes were treated either with lysophosphatidylcholine (1µg/ml) alone or with both lysophosphatidylcholine (1µg/ml) and Ouabain (0.1 mM) for 10 minutes.
3.4 Statistical analysis

Data are provided as means ± SEM, n represents the number of oocytes investigated. All experiments were repeated with at least 3 batches of oocytes; in all repetitions qualitatively similar data were obtained. Data were tested for significance using analysis of variance (ANOVA) or t-test, as appropriate. Results with p < 0.05 were considered statistically significant.
4. Results

4.1 Regulation of Kv1.3 by VP1

4.1.1 Inhibition of Kv1.3 currents in Kv1.3 expressing *Xenopus* oocytes by coexpression of VP1 but not of $^{\text{H153A}}$VP1

The present study explored the impact of parvovirus B19 capsid protein VP1 on Kv1.3 K$^+$-channel activity. In order to test whether VP1 regulate the Kv1.3 K$^+$ current, Kv1.3 was expressed in *Xenopus* oocytes with or without additional expression of VP1 or the $^{\text{H153A}}$VP1 mutant lacking functional PLA2 activity. K$^+$ peak currents taken as a measure of K$^+$ channel activity.
Figure 6: normalized I/V curve of Kv1.3 K⁺ current with and without Coexpression of VP1 or the PLA2-negative H153A VP1 mutant

Arithmetic means ± SEM (n = 9-24) of the normalized depolarization-induced Kv1.3 peak current as a function of voltage in Xenopus oocytes injected with water (black squares), or with cRNA encoding Kv1.3 alone (white circles) or with cRNA encoding both, Kv1.3 and VP1 (black circles) or with cRNA encoding Kv1.3 and PLA2-negative VP1 mutant (grey circles). Peak currents were normalized to the mean peak current at +50 mV in Xenopus oocytes injected with cRNA encoding Kv1.3. *** (p<0.001) indicates statistically significant difference from Xenopus oocytes injected with cRNA encoding Kv1.3 (separated unpaired student t test).
Figure 7: effect of VP1 co-expression on K⁺ current in Kv1.3 expressing Xenopus oocytes

A. Original tracings recorded in *Xenopus* oocytes injected with water (i), with cRNA encoding Kv1.3 alone (ii) with cRNAs encoding both, Kv1.3 and VP1 (iii) and with cRNA encoding both, Kv1.3 and the PLA2-negative H153A VP1 mutant (iv). The currents were recorded following 2 second depolarizing pulses ranging from −80 to +50 mV in 10 mV and 15 second increments from a holding potential of −100 mV. B. Arithmetic means ± SEM (n = 9-24) of the normalized Kv1.3 peak current at +50 mV in *Xenopus* oocytes injected with water (dotted bar), with cRNA encoding Kv1.3 alone (white bar) with cRNA encoding both, Kv1.3 and VP1 (black bar) or with cRNA encoding Kv1.3 and PLA2-negative VP1 mutant (grey bar). *** indicates statistically significant (p<0.001) difference from *Xenopus* oocytes injected with cRNA encoding Kv1.3 (ANOVA-one way).

As shown in Figure 7, K⁺ current was low in *Xenopus* oocytes injected with water. Expression of Kv1.3 resulted in a strong current, which was significantly decreased by coexpression of VP1. In contrast, coexpression of the H153A VP1 mutant lacking PLA2 activity did not significantly modify Kv1.3 currents. As a result, in Kv1.3 expressing *Xenopus* oocytes the K⁺ current was significantly higher following coexpression of H153A VP1 than following coexpression of VP1.

4.1.2 Inhibition of K⁺-current in Kv1.3 expressing Xenopus oocytes by VP1 Co-expression in presence of D-actinomycin

In order to test, whether the effect of VP1 required transcription, additional experiment was performed in the presence of actinomycin (10 µM, added 36 hours prior to the experiment), Kv1.3 was expressed in Xenopus oocytes with additional expression of VP1 in the presence of actinomycin.
Figure 8: effect of VP1 co-expression on current in Kv1.3 expressing Xenopus oocytes in the presence of D-Actinomycin

A. Original tracings recorded in oocytes injected with cRNA encoding Kv1.3 alone (i) or with cRNA encoding both, VP1 and Kv1.3 (ii), each with prior 36 hours treatment with 10 µM D-actinomycin. The currents were recorded following 2s depolarizing pulses ranging from −80 to +50 mV in 10 mV and 15 s increments from a holding potential of −100 mV.

B. Arithmetic means ± SEM (n = 19-20) of the normalized K⁺-peak current following a depolarization from −80 to +50 mV in oocytes injected with cRNA encoding Kv1.3 alone with prior 36 hours treatment with 10 µM D-actinomycin (white bar) or with cRNA encoding both, VP1 and Kv1.3 (black bar), each with prior 36 hours treatment with 10 µM D-actinomycin. ** indicates statistically significant (p<0.01) difference from absence of VP1 (unpaired student t-test).

As shown in Figure 8, even in the presence of actinomycin (10 µM, added 36 hours prior to the experiment) the coexpression of VP1 with Kv1.3 decreased the K⁺ current in Kv1.3 expressing oocytes. Thus, the effect of VP1 on Kv1.3 did not require transcription.
4.1.3 Inhibition of K⁺-channel activity in Kv1.3 expressing *Xenopus* oocytes by lysophosphatidylcholine

Phospholipase A2 (PLA2) of VP1 is known to generate lysophosphatidylcholine. Thus, additional experiment was performed to explore whether lysophosphatidylcholine influences K⁺ currents in Kv1.3 expressing Xenopus oocytes. Kv1.3 expressing oocytes were treated with lysophosphatidylcholine (1µg/ml) for 10 minutes.

Figure 9: effect of Lysophosphatidylcholine on K⁺ current in Kv1.3 expressing Xenopus oocytes

A. Original tracings recorded in oocytes injected with cRNA encoding Kv1.3 alone in the absence (i) or presence (ii) of lysophosphatidylcholine (1 µg/ml). The currents were recorded following 2s depolarizing pulses ranging from −80 to +50 mV in 10mV and 15 s increments from a holding potential of −100 mV.

B. Arithmetic means ± SEM (n = 16) of the normalized K⁺-peak current following a depolarization from -80 mV to +50 mV in oocytes injected with cRNA encoding Kv1.3 alone in the absence (white bar) and presence (black bar) of lysophosphatidylcholine (1 µg/ml). * indicates statistically significant (p<0.05) difference from absence of lysophosphatidylcholine (unpaired student t test).
As shown in Figure 9, treatment of Kv1.3 expressing *Xenopus* oocytes with lysophosphatidylcholine (1µg/ml) for 10 minutes was indeed followed by a decrease of K⁺ currents.

4.2 Regulation of Kv1.5 by VP1

4.2.1 Inhibition of Kv1.5 K⁺ currents in Kv1.5 expressing *Xenopus* oocytes by coexpression of VP1 but not of H₁₅₃ₐVP1

The second part of study explored the impact of the parvovirus B19 capsid protein VP1 on Kv1.5 K⁺ channel activity. In order to test whether VP1 regulate the Kv1.5 K⁺ current, Kv1.5 was expressed in *Xenopus* oocytes with or without additional expression of VP1 or the H₁₅₃ₐVP1 mutant lacking functional PLA2 activity. K⁺-peak currents taken as a measure of K⁺ channel activity
Figure 10: normalized I/V curve of KV1.5 K⁺ current with and without Coexpression of VP1 or the PLA2-negative H₁₅₃A VP1 mutant

Arithmetic means ± SEM (n =3-26) of the normalized depolarization induced Kv1.5 peak current as a function of voltage in Xenopus oocytes injected with water (black squares), or with cRNA encoding Kv1.5 alone (white circles) or with cRNA encoding both, Kv1.5 and VP1 (black circles) or with cRNA encoding Kv1.5 and PLA2-negative VP1 mutant (grey circles). Peak currents were normalized to the mean peak current at +50 mV in Xenopus oocytes injected with cRNA encoding Kv1.5. *** (p<0.001) indicates statistically significant difference from Xenopus oocytes injected with cRNA encoding Kv1.5 (separated unpaired student t tests).
Figure 11: effect of VP1 co-expression on K⁺ current in Kv1.5 expressing Xenopus oocytes

A. Original tracings recorded in oocytes injected with water (i), with cRNA encoding Kv1.5 alone (ii) with cRNAs encoding both, Kv1.5 and VP1 (iii) and with cRNA encoding both, Kv1.5 and the PLA2-negative H153A VP1 mutant (iv). The currents were recorded following 2 second depolarizing pulses ranging from −80 to +50 mV in 10 mV and 20 second increments from a holding potential of −100 mV. B. Arithmetic means ± SEM (n = 3-26) of the normalized Kv1.5 peak current at +50 mV in Xenopus oocytes injected with water (dotted bar), with cRNA encoding Kv1.5 alone (white bar) with cRNA encoding both, Kv1.5 and VP1 (black bar) and with cRNA encoding both, Kv1.5 and PLA2-negative VP1 mutant (grey bar). ** indicates statistically significant (p<0.01) difference from Xenopus oocytes injected with cRNA encoding Kv1.5 (ANOVA-one way).

As shown in Figure 11, The K⁺ current in Xenopus oocytes expressing Kv1.5 was significantly decreased by coexpression of VP1. Coexpression of the H153A VP1 mutant lacking PLA2 activity did not significantly modify Kv1.5 currents. The K⁺ current in Kv1.5 expressing Xenopus oocytes was thus significantly higher following coexpression of H153A VP1 than following coexpression of VP1.

4.2.2 Inhibition of K⁺ current in Kv1.5 expressing Xenopus oocytes by VP1 coexpression in presence of D-actinomycin

In order to test, whether the effect of VP1 required transcription, additional experiments were performed in the presence of actinomycin (10 µM, added 36 hours prior to the experiment). Kv1.5 was expressed in xenopus oocytes with additional expression of VP1 in the presence of actinomycin.
Figure 12: effect of VP1 co-expression on current in Kv1.5 expressing Xenopus oocytes in the presence of D-Actinomycin

A. Original tracings recorded in oocytes injected with cRNA encoding Kv1.5 alone (i) or with cRNA encoding both, VP1 and Kv1.5 (ii), each with prior 36 hours treatment with 10 µM D-actinomycin. The currents were recorded following 2s depolarizing pulses ranging from −80 to +50 mV in 10mV and 20 s increments from a holding potential of −100 mV.

B. Arithmetic means ± SEM (n = 18) of the normalized K⁺-peak current following a depolarization from -80 mV to +50 mV in oocytes injected with cRNA encoding Kv1.5 alone (white bar) or with cRNA encoding both, Kv1.5 and VP1 (black bar), each with prior 36 hours treatment with 10 µM D-actinomycin. *** indicates statistically significant (p<0.001) difference from absence of VP1 (unpaired student t-test).

As shown in Figure 12, even in the presence of actinomycin (10 µM, added 36 hours prior to the experiment), the coexpression of VP1 decreased the K⁺ current in Kv1.5 expressing oocytes. Thus, the effect of VP1 on Kv1.5 did not require transcription.
4.2.3 Inhibition of K^+ channel activity in Kv1.5 expressing *Xenopus* oocytes by lysophosphatidylcholine

PLA2 of VP1 is known to generate lysophosphatidylcholine. Thus, additional experiments were performed to test whether lysophosphatidylcholine influences K^+ currents in Kv1.5 expressing Xenopus oocytes. Kv1.5 expressing oocytes were treated with lysophosphatidylcholine (1 µg/ml) for 10 minutes.

![Figure 13](image_url)

Figure 13: effect of Lysophosphatidylcholine on K^+ current in Kv1.5 expressing Xenopus oocytes

A. Original tracings recorded in oocytes injected with cRNA encoding Kv1.5 alone in the absence (i) or presence (ii) of lysophosphatidylcholine (1 µg/ml). The currents were recorded following 2s depolarizing pulses ranging from −80 to +50 mV in 10mV and 20 s increments from a holding potential of −100 mV.
B. Arithmetic means ± SEM (n = 14-16) of the normalized K⁺-peak current following a depolarization from -80 mV to +50 mV in oocytes injected with cRNA encoding Kv1.5 alone in the absence (white bar) and presence (black bar) of lysophosphatidylcholine (1 μg/ml). **∗∗** indicates statistically significant (p<0.01) difference from absence of lysophosphatidylcholine (unpaired student t test).

As shown in Figure 13, treatment of Kv1.5 expressing *Xenopus* oocytes with lysophosphatidylcholine (1μg/ml) for 10 minutes was indeed followed by a decrease of K⁺ currents.

4.3 Regulation of Kir2.1 by VP1

4.3.1 Inhibition of K⁺ currents in Kir2.1 expressing *Xenopus* oocytes by coexpression of VP1 but not of H153A VP1

The third part of study explored, whether coexpression of parvovirus B19 capsid protein VP1 influences the activity of Kir2.1 K⁺-channels. In order to test whether VP1 regulate the Kir2.1 K⁺ current, Kir2.1 was expressed in *Xenopus* oocytes with or without additional expression of VP1 or the H153A VP1 mutant lacking functional PLA2 activity. Inwardly rectifying K⁺ peak currents was taken as a measure of K⁺-channel activity.
Figure 14: normalized I/V curve of KV1.5 K⁺ current with and without Coexpression of VP1 or the PLA2-negative H153A VP1 mutant

Arithmetic means ± SEM (n = 6-22) of the normalized Kir2.1 current as a function of voltage in Xenopus oocytes injected with water (black squares), or with cRNA encoding Kir2.1 alone (white circles) or with cRNA encoding both, Kir2.1 and VP1 (black circles) or with cRNA encoding Kir2.1 and PLA2-negative VP1 mutant (grey circles). Peak currents were normalized to the mean peak current at -150 mV in Xenopus oocytes injected with cRNA encoding Kir2.1. *** (p<0.001) indicates statistically significant difference from Xenopus oocytes injected with cRNA encoding Kir2.1 (separated unpaired student t test).
Figure 15: Effect of VP1 co-expression on K⁺ current in Kir2.1 expressing Xenopus oocytes

A. Original tracings recorded in Xenopus oocytes injected with water (i), with cRNA encoding Kir2.1 alone (ii) with cRNAs encoding both, Kir2.1 and VP1 (iii) and with cRNA encoding both, Kir2.1 and the PLA2-negative H153A VP1 mutant (iv). The currents were elicited every 20 s with 1 s pulses from -150 mV to +30 mV applied from a holding potential of -60 mV.

B. Arithmetic means ± SEM (n = 6-22) of the normalized Kir2.1 peak current at -150 mV in Xenopus oocytes injected with water (dotted bar), with cRNA encoding Kir2.1 alone (white bar) with cRNA encoding both, Kir2.1 and VP1 (black bar) or with cRNA encoding Kir2.1 and
H153A VP1 mutant (grey bar). *** (p< 0.001) indicates statistically significant difference from *Xenopus* oocytes injected with cRNA encoding Kir2.1 alone, # (p< 0.05) indicates statistically significant difference from *Xenopus* oocytes injected with cRNA encoding wild type VP1 (ANOVA-one way).

As shown in Figure 15, inwardly rectifying currents were low in *Xenopus* oocytes injected with water. Expression of Kir2.1 resulted in a strong inwardly rectifying current (I_K). Coexpression of wild type VP1 was followed by a marked decline of I_K. In contrast coexpression of the H153A VP1 mutant lacking functional PLA2 activity, did not significantly modify Kir2.1 currents. Accordingly, the K$^+$ current was significantly higher following coexpression of Kir2.1 with H153A VP1 than following coexpression of Kir2.1 with VP1.

4.3.2 Inhibition of K$^+$-channel activity in Kir2.1 expressing *Xenopus* oocytes by lysophosphatidylcholine

As PLA2 of VP1 is known to generate lysophosphatidylcholine, additional experiments were performed to test whether lysophosphatidylcholine influences K$^+$ currents in Kir2.1 expressing *Xenopus* oocytes. Kir2.1 expressing oocytes were treated with lysophosphatidylcholine (1µg/ml) for 10 minutes.
Figure 16: effect of lysophosphatidylcholine on K+ current in Kir2.1 expressing Xenopus oocytes

A. Original tracings recorded in oocytes injected with cRNA encoding Kir2.1 alone in the absence (i) or presence (ii) of lysophosphatidylcholine (1 µg/ml). The currents were elicited every 20 s with 1 s pulses from -150 mV to +30 mV applied from a holding potential of -60 mV.

B. Arithmetic means ± SEM (n = 18) of the normalized K⁺-peak current in oocytes injected with cRNA encoding Kir2.1 alone in the absence (white bar) and presence (black bar) of lysophosphatidylcholine (1 µg/ml). * indicates statistically significant (p<0.05) difference from absence of lysophosphatidylcholine (unpaired student t test).

As shown in Figure 16, the treatment of Kir2.1 expressing Xenopus oocytes with lysophosphatidylcholine (1µg/ml) within 10 minutes significantly decreased the K⁺ currents.
4.3.3 Inhibition of K⁺-channel activity in Kir2.1 expressing *Xenopus* oocytes by Ouabain

Additional experiments were performed to test whether the effect of VP1 expression or lysophosphatidylcholine treatment could be mimicked by inhibition of the Na⁺/K⁺ ATPase with Ouabain. In order to test whether effect of VP1 expression or lysophosphatidylcholine treatment could be mimicked by inhibition of the Na⁺/K⁺ ATPase with ouabain, Kir2.1 expressing oocytes were treated with Ouabain (0.1 mM) for 10 minutes.

![Graph showing normalized inward peak current](image)
Figure 17: Effect of Ouabain on K+ current in Kir2.1 expressing Xenopus oocytes

A. Original tracings recorded in oocytes injected with cRNA encoding Kir2.1 alone in the absence (i) or presence (ii) of ouabain (0.1 mM). The currents were elicited every 20 s with 1 s pulses from -150 mV to +30 mV applied from a holding potential of -60 mV.

B. Arithmetic means ± SEM (n = 18) of the normalized K⁺-peak current in oocytes injected with cRNA encoding Kir2.1 alone in the absence (white bar) and presence (black bar) of ouabain (0.1 mM). * indicates statistically significant (p<0.05) difference from absence of ouabain (unpaired student t test).

As shown in Figure 17, the treatment of Kir2.1 expressing *Xenopus* oocytes with ouabain within 10 minutes significantly decreased the K⁺ currents

4.3.4 Nonadditivity of lysophosphatidylcholine and ouabain on Kir2.1 K⁺ channel activity

Further experiments tested, whether the inhibition of Na⁺/K⁺ ATPase was required for the inhibitory effect of lysophosphatidylcholine on Kir2.1. To this end, the Kir2.1 expressing *Xenopus* oocytes were treated either with lysophosphatidylcholine (1µg/ml) alone or with both lysophosphatidylcholine (1µg/ml) and ouabain (0.1 mM) for 10 minutes.
Figure 18: Nonadditivity of lysophosphatidylcholine and ouabain on Kir2.1 K⁺ channel activity

A. Original tracings recorded in oocytes injected with cRNA encoding Kir2.1 alone and treated for 10 minutes with lysophosphatidylcholine (1 µg/ml) (i) or with both, lysophosphatidylcholine (1µg/ml) and ouabain (0.1 mM)(ii). The currents were elicited every 20 s with 1 s pulses from -150 mV to +30 mV applied from a holding potential of -60 mV.

B. Arithmetic means ± SEM (n = 19) of the normalized K⁺-peak current in oocytes injected with cRNA encoding Kir2.1 alone in the presence of lysophosphatidylcholine (1 µg/ml) (white bar) and presence (black bar) of both lysophosphatidylcholine (1µg/ml) and ouabain (0.1 mM).

As illustrated in Figure 18, the decline of I_K in Kir2.1 expressing oocytes was similar following combined treatment with lysophosphatidylcholine (1µg/ml) and ouabain (0.1 mM) and following treatment with lysophosphatidylcholine alone.
5. Discussion and Conclusion

5.1 Regulation of Kv1.3 and Kv1.5 by parvovirus B19 capsid protein VP1

Although the association between B19V infection and acute and chronic myocarditis has been revealed with the identification of myocardial endothelial cells as target cells (30, 33, 247, 275, 276) and the role of B19 as causative agent in the development of endothelial and isolated left ventricle diastolic dysfunction has been discussed (76), little is known about the pathophysiological mechanisms involved (249). Endothelial rather than myocardial B19V was detected in fatal inflammatory cardiomyopathy (33, 34).

It has been shown that parvovirus B19 capsid protein VP1 increase Ca$^{2+}$ entry in the endothelial cells through activation of the store operated or capacitative Ca$^{2+}$ channel (I_{CRAC}), an effect which is mimicked by the PLA2 product lysophosphatidylcholine and abolished by an inactivating mutation of the PLA2-encoding region of the VP1 protein (249). Similarly, VP1 has been shown to downregulate Na$^+$/K$^+$ ATPase, an effect is mimicked by the PLA2 product lysophosphatidylcholine and abolished by an inactivating mutation of the PLA2-encoding region of the VP1 protein (250).

The *Xenopus* oocytes expression system has played an important role in the study of cellular proteins because it is used for expression of transporters and ion channels and for functional screening for ion channels modulators (277). *Xenopus* oocytes expression system was first used for expression of cellular proteins in 1971, where it was revealed that *Xenopus* oocytes are able to synthesize haemoglobin following intracellular injection of the corresponding mRNA (278).

In comparison to mammalian cell lines, *Xenopus* oocytes have a number of advantages as an expression system for cellular proteins. The cost of the frogs is...
relatively low and frogs are easily maintained and reproduced in aquariums. Oocytes can be obtained many times from the same frog by partial ovariectomy and can survive outside the body of the frog for up to a month if conserved at 4 °C. The handling of the Xenopus oocytes is easy because they are big in size. *Xenopus* oocytes contain the necessary enzymes for the expression of a wide range of mammalian proteins (277). Following injection of cRNA into the oocyte, proteins are expressed after 1–2 days and functional studies of ion channels and receptors are easily performed using two-electrode voltage clamp technique. An important advantage is that most cRNAs are readily expressed without the need to develop a cell line, whereas there is often a delay from the cloning of a new receptor until it can be expressed in a mammalian cell line (277).

Despite the advantages of the *Xenopus* oocytes expression system, this expression system has several disadvantages. The most important of these is whether ion channels expressed in Xenopus oocytes are assembled and behave in an identical fashion to those expressed in mammalian cells. The size of the *Xenopus* oocyte is large, which gives a relatively slow fluid exchange time around the oocyte compared to a mammalian cell, which can be a problem for recording fast desensitizing ligand gated channels in the oocytes. Another disadvantage is that each oocyte must be injected with cRNAs, which is slower than the simultaneous transfection of large numbers of mammalian cells (277). However, some studies showed similar results in *Xenopus* oocytes expression system and mammalian cells (250, 279-282).

The present study was done to investigate whether parvovirus B19 capsid protein VP1 modifies the activity of Kv1.3 and Kv1.5 Potassium channels and to test whether the effect is is sensitive to inhibition of PLA2 and is mimicked by lysophosphatidylcholine using Xenopus oocytes expression system. Kv1.3 or Kv1.5 was expressed in the Xenopus oocytes with or without additional expression of VP1 and VP1 dead mutant (H153A-VP1) lacking functional PLA2 activity. Two
electrode voltage clamp technique was used to measure the potassium current. The measurements showed inhibition of both Kv1.3 and Kv1.5 K\(^+\) current by VP1 but not by VP1 dead mutant (\(^{H153A}\)VP1) lacking functional PLA2 activity.

Further experiments were done to test whether the effect of VP1 on Kv1.3 and Kv1.5 potassium current is mimicked by lysophosphatidylcholine, Kv1.3 or Kv1.5 was expressed in Xenopus oocytes and treated by lysophosphatidylcholine (1\(\mu\)g/ml) for 10 minutes. Two electrode voltage clamp technique was used to measure the potassium current. The experiments showed inhibition of Kv1.3 and Kv1.5 K\(^+\) current by lysophosphatidylcholine which is generated by phospholipase A2 like motif of VP1 protein.

The present observations reveal a novel action of the B19V capsid protein VP1, i.e. the downregulation of the voltage gated K\(^+\) channels Kv1.3 and Kv1.5. The effect requires an intact phospholipase A2-like motif (283, 284) in the VP1 protein. Mutation of the motif virtually abrogates the effect of VP1 on Kv1.3 and Kv1.5. The effect of VP1 on Ca\(^{2+}\) entry (249) and Na\(^+\)/K\(^+\) ATPase activity (250) similarly depended on phospholipase A2 activity and was similarly abolished following site directed mutation of the PLA2 motif, i.e. replacement of the histidine by alanine in the putative catalytic site (\(^{H153A}\)VP1). Similar to what has been observed previously on the regulation of Ca\(^{2+}\) entry (249) and Na\(^+\)/K\(^+\) ATPase activity (250), the effect of VP1 expression on Kv1.3 and Kv1.5 channel activity was mimicked by lysophosphatidylcholine, a product of phospholipase A2.

B19V enters myocardial endothelial cells (33, 34) and may thus trigger acute myocarditis resulting in a clinical course similar to myocardial infarction (33, 34). Inhibition of K\(^+\) channels could lead to cell swelling (285, 286) and could thus contribute to endothelial dysfunction. The effect is expected to be compounded by inhibition of Na\(^+\)/K\(^+\)-ATPase (250), which would dissipate the ion gradients across the cell membrane thus further compromising the ability of the cell to maintain cell volume constancy (250). K\(^+\) exit through K\(^+\) channels generates a cell negative
potential difference across the cell membrane driving Cl- exit. Inhibition of K+ channels is expected to depolarize the cell membrane thus dissipating the electrical driving force for Cl- exit. As a result, downregulation of K+ channels is expected to trigger cellular accumulation of KCl with the respective osmotically obliged water and thus to swell the cells (285, 286). Cell swelling is further fostered by cellular NaCl accumulation, if Na+/K+ATPase activity is inhibited (250).

Inhibition of Kv1.3 K+ channels may further affect cell proliferation, which, at least in some cell types, requires Kv1.3 channel activity (252, 253). Whether or not impaired endothelial cell proliferation may contribute to the pathophysiology of B19V infection remains to be shown.

In conclusion, VP1 down-regulates the Kv1.3 and Kv1.5 K+ channel, an effect involving phospholipase A2 activity of the parvoviral B19 protein and penetration of lysophosphatidylcholine. The inhibition of endothelial K+ channels may lead to cell swelling and thus participate in the pathophysiology of endothelial dysfunction during parvovirus B19 infection.
Figure 19: Summary of regulation of Kv1.3 and Kv1.5 by VP1
5.2 Regulation of Kir2.1 by parovirus B19 capsid protein VP1

B19V is a worldwide infectious pathogen in humans as the estimated prevalence of IgG antibodies directed against B19V ranges from 2 to 15% in children at age of 1 to 5 years old, 15 to 60% in children aged 6 to 19 years old, 30 to 60% in adults, and more than 85% in the geriatric population (35-38).

B19V causes common infections (245) leading to diverse clinical entities, such as fifth disease (erythema infectiosum), hydrops fetalis and transient aplastic anaemia (25, 287). More importantly B19V infection is associated with myocarditis (246, 247).

It is known that the myocardial endothelium is as a target for parovirus B19 in acute and chronic myocarditis (30, 33, 247, 275, 276) And it has been shown that B19V is a causative agent in endothelial and left ventricle diastolic dysfunction (76), but the pathophysiological mechanisms involved are still not known (249). Parovirus B19 genomes were detected in the endothelium of myocardial tissue predominantly of small intramyocardial arteries and venoles, but not in cardiac myocytes or epicardial coronaries in fatal inflammatory cardiomyopathy. The presence of B19V genomes is accompanied with expression of the adhesion molecule E-selectin, margination, adherence, penetration, and perivascular infiltration of the heart by T-lymphocytes and macrophages function (33, 34)

It has been shown that parovirus B19 capsid protein VP1 increase Ca$^{2+}$ entry in the endothelial cells through activation of the store operated or capacitative Ca$^{2+}$ channel (I_{CRAC}), an effect which was mimicked by the PLA2 product lysophosphatidylcholine and abolished by an inactivating mutation of the PLA2-encoding region of the VP1 protein (249). Similarly, VP1 has been shown to downregulate Na$^+$/K$^+$ ATPase, an effect was mimicked by the PLA2 product
lyosphosphatidylcholine and abolished by an inactivating mutation of the PLA2-encoding region of the VP1 protein (250).

This study was done to investigate whether parvovirus B19 capsid protein VP1 modifies the activity of inwardly rectifying Kir2.1 Potassium channels and to test whether the effect is sensitive to inhibition of PLA2 and is mimicked by lysophosphatidylcholine using Xenopus oocytes expression system. Kir2.1 was expressed in the Xenopus oocytes with or without additional expression of VP1 and VP1 dead mutant (H153A VP1) lacking functional PLA2 activity. Two electrode voltage clamp technique was used to measure the potassium current. The experiments have shown inhibition of Kir2.1 K+ current by VP1 but not by VP1 dead mutant (H153A VP1) lacking functional PLA2 activity.

Another set of experiments were done to test whether the effect of VP1 on Kir2.1 K+ current is mimicked by lysophosphhatidylcholine, Kir2.1 was expressed in Xenopus oocytes and was treated by lysophosphhatidylcholine (1µg/ml) for 10 minutes. Two electrode voltage clamp technique was used to measure the potassium current. These experiments have shown inhibition of Kir2.1 Potassium current by Lysophosphosphatidylcholine which is generated by phospholipase A2 like motif of VP1 protein.

The present observations disclose a novel effect of the B19V capsid protein VP1, i.e. the downregulation of the inwardly rectifying K+ channel Kir2.1. As shown previously for Kv1.3 and Kv1.5 channels (288), Ca2+ entry(249) and Na+/K+ ATPase activity (250), the effect of VP1 requires its phospholipase A2-like motif (21, 24). Loss of function mutation of the motif disrupts the effect of VP1 on Kir2.1. Again, similar to what has been observed previously on the regulation of voltage gated K+ channels (288), Ca2+ entry (249) and Na+/K+ ATPase activity (250), the effect of VP1 expression on Kir2.1 channel activity was mimicked by the vPLA2 product lysophosphatidylcholine.
The effect of B19V on K^+ channels could contribute to the triggering of endothelial dysfunction, as B19V enters myocardial endothelial cells (33, 34). Inhibition of K^+ channels is expected to foster cell swelling (285, 286), as reduced K^+ channel activity leads to impaired K^+ exit, depolarization, Cl^- entry and thus cellular accumulation of KCl with the respective osmotically obliged water swelling (285, 286). The depolarization is further fostered by inhibition of Na^+/K^+-ATPase activity (250) with the resulting dissipation of the ion gradients across the cell membrane.

The inhibition of Kir2.1 channels could at least partially result from the inhibitory effect of lysophosphatidylcholine on the Na^+/K^+-ATPase (250), as the channels are similarly downregulated by the Na^+/K^+-ATPase inhibitor ouabain. Inwardly rectifying K^+ channels have previously been shown to be highly sensitive to Na^+/K^+-ATPase activity and to be rapidly down regulated following pump inhibition (239).

Since functional expression of classical Kir channels provides the driving force for Ca^{2+} influx through Ca^{2+}-permeable channels by setting the E_{res} of endothelial cells to a negative potential, inhibition of endothelial Kir channels is expected to inhibit both flow induced Ca^{2+} influx and vasodilatation caused by Ca^{2+} dependent production of Nitric Oxide (224, 225).

In conclusion, VP1 down-regulates the inwardly rectifying K^+ channel Kir2.1, an effect involving phospholipase A2 activity of the parvoviral B19 protein, lysophosphatidylcholine formation, and inhibition of Na^+/K^+-ATPase activity. The inhibition of endothelial K^+ channels may lead to cell swelling and thus participate in the pathophysiology of endothelial dysfunction during parvovirus B19 infection.
Figure 20: Summary of regulation of Kir2.1 by VP1
6. Summary

Parvovirus B19 (B19V) can cause inflammatory cardiomyopathy and endothelial dysfunction. Pathophysiological mechanisms involved include lysophosphatidylcholine producing phospholipase A2 (PLA2) activity of the B19V capsid protein VP1. Most recently, VP1 and lysophosphatidylcholine have been shown to inhibit Na⁺/K⁺ ATPase. The present study explored whether VP1 modifies the activity of Kv1.3, Kv1.5 and Kir2.1 K⁺ channels.

The first part of study explored, whether expression of VP1 modifies the activity of Kv1.3 and Kv1.5 K⁺ channels. cRNA encoding Kv1.3 or Kv1.5 was injected into Xenopus oocytes without or with cRNA encoding VP1, which was isolated from a patient suffering from fatal B19V induced myocarditis or the VP1 mutant H153A VP1 lacking a functional PLA2 activity. K⁺ channel activity was determined by dual electrode voltage clamp. Injection of cRNA encoding Kv1.3 or Kv1.5 into Xenopus oocytes was followed by appearance of Kv K⁺ channel activity, which was significantly decreased by additional injection of cRNA encoding VP1, but not by additional injection of cRNA encoding PLA2-negative VP1 mutant H153A VP1. The effect of VP1 on Kv current was not significantly modified by transcription inhibitor actinomycin (10 µM for 36 hours) but was mimicked by lysophosphatidylcholine (1 µg/ml).

The B19V capsid protein VP1 inhibits host cell Kv channels, an effect at least partially due to phospholipase A2 (PLA2) dependent formation of lysophosphatidylcholine.

The second part of study explored, whether expression of VP1 influences the activity of the inwardly rectifying Kir2.1 K⁺ channels. cRNA encoding Kir2.1 was injected into Xenopus oocytes without or with cRNA encoding VP1 or the VP1 mutant H153A VP1. K⁺ channel activity was determined by dual electrode voltage clamp. Injection of cRNA encoding Kir2.1 into Xenopus oocytes was followed by appearance of inwardly rectifying K⁺ channel activity (Iₖ), which was significantly decreased by additional injection of cRNA encoding VP1, but not by additional
injection of cRNA encoding \(^{\text{H153A}}\)VP1. The effect of VP1 on \(I_k\) was mimicked by lysophosphatidylcholine (1 \(\mu\)g/ml) and by inhibition of Na\(^+\)/K\(^+\)-ATPase with 0.1 mM ouabain. In the presence of lysophosphatidylcholine, \(I_k\) was not further decreased by additional treatment with ouabain.

The B19V capsid protein VP1 inhibits Kir2.1 channels, an effect at least partially due to phospholipase A2 (PLA2) dependent formation of lysophosphatidylcholine with subsequent inhibition of Na\(^+\)/K\(^+\)-ATPase activity.
7. Zusammenfassung

Das B19V Capsidprotein VP1 hemmt in der Wirtszelle die Kv-Kanäle, welche teilweise einen Effekt der Phospholipase A2 (PLA2) abhängigen Bildung auf Lysophosphatidylcholin hat.

Oozyten führte zum Auftreten einer nach innen gleichgerichteten K⁺-Kanalaktivität (IK), die durch zusätzliche Injektion von codierter VP1-cRNA signifikant verringert war, jedoch nicht durch zusätzliche Injektion von H153AVP1-cRNA. Der Effekt von VP1 auf die IK war ähnlich wie nach der Zugabe von Lysophosphatidylcholin (1 ug/ml) und Hemmung der Na⁺/K⁺-ATPase mit 0,1 mM Ouabain. Der Ik Strom wurde unter Lysophosphatidylcholin nicht weiter durch Zugabe von Ouabain verringert.

Das B19V Capsidprotein VP1 hemmt Kir2.1-Kanäle, ein Effekt der zumindest teilweise auf der Phospholipase A2 (PLA2) abhängigen Bildung von Lysophosphatidylcholin mit anschließender Hemmung der Na⁺ / K⁺-ATPase-Aktivität zurückzuführen ist.
References

Kubo Y, Murata Y. Control of rectification and permeation by two distinct sites after the second transmembrane region in Kir2.1 K+ channel. The Journal of physiology. 2001;531(Pt 3):645-60.

Declaration

I hereby declare that this thesis is my original work and it has been written by me. This work contains no material which has been accepted for the award of any other degree in my name in any university and to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text.

The experimental work was carried out in Institute of Physiology I, University of Tübingen

The result presented in figure 6, 7 and 8 were generated by Ahmad Almilaji and all the other results in this thesis were generated by me.

Part of this thesis has been published:

Down-regulation of inwardly rectifying Kir2.1 K+ channels by human parvovirus B19 capsid protein VP1.
Ahmed M, Elvira B, Almilaji A, Bock CT, Kandolf R, Lang F.

Down-regulation of K+ channels by human parvovirus B19 capsid protein VP1.

Musaab Sedig Ahmed
Curriculum Vitae

Personal information

Name: Musaab Sedig Ahmed

Address: Institute of Physiology, University of Tübingen, Gmelin str.5, Tübingen 72076, Germany

Mobile: 015217507384

E-mail: musaabsab@yahoo.com

Nationality: Sudanese

Date of birth: 3.1.1979

Gender: Male

Work experience

September 2013 up to now: MD student, Institute of Physiology, University of Tübingen, Tübingen, Germany

February 2011 up to August 2013: Lecturer, Department of Physiology, Faculty of Medicine, Red Sea University, Sudan

July 2010- January 2011: Teaching assistant in the Department of Physiology, Faculty of Medicine, Red Sea University, Sudan

June 2008- June 2010: Tutor in the Department of Physiology, Faculty of Medicine, International University of Africa, Sudan

February 2007- February 2008: General practitioner in the medical commission of the military service, Sudan.

Education and training

2008 – 2010: MSc in Physiology, University of Khartoum, Khartoum, Sudan

2004: Bachelor of Medicine and Surgery (MBBS), Upper Nile University, Sudan

Workshops

28th of November – 2nd December 2010: Course design and management, Educational Development Centre, Faculty of Medicine, University of Khartoum

26th – 30th December 2010: Assessment and evaluation, Educational Development Centre, Faculty of Medicine, University of Khartoum

13th – 17th March 2011: Teaching and learning, Educational Development Centre, Faculty of Medicine, University of Khartoum

Conferences

22nd- 23rd February 2010: The 2nd clinical neurology course, Soba University Hospital, University of Khartoum, Sudan provided by The Sudanese Society for Neurological Sciences

24th – 25th February 2010: The 3rd Sudanese neurosciences Conference, Faculty of Medicine, University of Khartoum provided by The Sudanese Society for Neurological Sciences

Invited posters

94th Annual meeting of the German Physiological Society (Down-regulation of inwardly rectifying Kir2.1 K+ channels by human parvovirus B19 capsid protein VP1) Magdeburg, Germany 2015.
My Publications

SPAK Sensitive Regulation of the Epithelial Na Channel ENaC.

Regulation of the voltage gated K channel Kv1.3 by recombinant human klotho protein.

Down-regulation of inwardly rectifying Kir2.1 K+ channels by human parvovirus B19 capsid protein VP1.
Ahmed M, Elvira B, Almilaji A, Bock CT, Kandolf R, Lang F.

Down-regulation of K⁺ channels by human parvovirus B19 capsid protein VP1.
Acknowledgment

I am very grateful for my supervisor Prof. Dr. Florian Lang for his encouragement, support and continuous help. I am highly thankful for his valuable advices and his wise recommendations.

I am very thankful for Dr. Zohreh Hosseinzadeh, Uwe Schuler, Dr. Peter Dreischer and Dr. Lisann Pelzl for their support, caring and positive attitude.

I would also to thank all my colleagues in Institute of Physiology I, University of Tübingen for the wonderful time we spend in working together. I was really happy and proud to be part of this excellent group and to meet and work with these intelligent people.