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 Summary 
 

Nematodes of the genus Strongyloides are common small intestinal parasites of 

vertebrates. They have a complex life cycle, which in addition to parthenogenetic parasitic 

adults also contains a facultative free-living adult generation, with males and females. The 

presence of sexually reproducing adults outside of the host offers opportunities for 

genetic research, which are quite unique for an endo-parasitic organism. Accordingly, 

Strongyloides spp. is developing into a model system for parasitological, basic biological 

and evolutionary studies. 

 

In the first part of my thesis, I examined the Small Ribosomal Subunit rDNA (SSU) 

sequences from S. stercoralis larvae isolated from human patients in Cambodian highly S. 

stercoralis prevalent areas. Three polymorphic positions and three different haplotypes 

were identified within a region of the SSU normally considered to be essentially invariable 

within a nematode species. Interestingly, no hybrid individuals were found. These results 

suggested a low frequency of interbreeding between the different haplotypes in this area, 

either because S. stercoralis in this region reproduces only asexually or because crossing 

happens only within rather than between haplotypes. 

 

Many research tools and techniques routinely used in model organisms like 

Caenorhabditis elegans are not yet available for Strongyloides spp. One of these methods 

is mutagenesis using chemical mutagens. In the second part of my thesis I devised a 

protocol to mutagenize S. ratti with the chemical mutagen Ethyl Methanosulfonate (EMS). 

Using this protocol, I generated S. ratti mutants with a higher proportion of animals 

developing into the parasitic form. As a control, I also attempted to obtain the same effect 

by selection only, in absence of EMS. Next I evaluate the possibility of identifying the 

mutated genes by whole genome sequencing of multiple mutagenized and selected 

strains. While this approach appeared promising, I also found that the currently used 

laboratory strain is not sufficiently isogenic such that the number of resulting candidate 

mutations, which need to be tested is rather high. The strong population bottlenecks 

associatiated with the mutagenesis and selection procedures reduced the genetic 

complexity of the populations significantly. This demonstrated that generating a more 

isogenic S. ratti strain for genetic work is possible. 

 

In the third part of my thesis I isolated and characterized Strongyloides mariner-like 

transposons (SMARTs). Contrary to S. ratti, in S. papillosus several copies of SMART 

appeared potentially active. These transposons have the potential to be used as genetic 

tools as it has been demonstrated for the related Tc1 transposons in C. elegans. 
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 Zusammenfassung 
 

Nematoden der Gattung Strongyloides sind weit verbreitete Dünndarmparasiten von 

Wirbeltieren. Der komplexe Lebenszyklus beinhaltet neben parthenogenetischen 

parasitischen Adulttieren auch eine fakultative frei lebende Generation mit Männchen 

und Weibchen. Die Existenz von Geschlechtstieren außerhalb des Wirts eröffnet 

Möglichkeiten für genetische Studien, die für Endoparasiten außergewöhnlich sind. 

Dementsprechend entwickelt sich Strongyloides spp. zu einem Modellsystem für 

parasitologische, grundlagenbiologische und evolutionsbiologische Studien. 

Im ersten Teil meiner Doktorarbeit untersuchte ich die Sequenzen der rDNA für die 

kleine ribosomale Untereinheit (SSU) von S. stercoralis Larven aus Patienten in Regionen 

Kambodschas mit hoher S. stercoralis Prävalenz. Ich identifizierte drei polymorphe 

Positionen und drei verschiedene Haplotypen in einem Abschnitt der SSU, der 

normalerweise als praktisch invariable innerhalb einer bestimmten Art gilt. 

Interessanterweise gab es keine Hybride. Dieses Resultat lässt vermuten, dass sich S. 

stercoralis in dieser Gegend ausschließlich parthenogenetisch vermehrt, oder dass 

Kreuzung nur innerhalb, aber nicht zwischen den Haplotypen vorkommt. 

Viele Methoden, die in Modellorganismen wie C. elegans routinemäßig angewandt 

werden, sind für Strongyloides spp. noch nicht verfügbar. Eine davon ist die Mutagenese 

mittels chemischer Mutagene. Im zweiten Teil meiner Doktorarbeit erarbeitete ich ein 

Protokoll zur Mutagenese von S. ratti mit Ethyl Methanosulfonat (EMS). Ich isolierte 

mutante S. ratti Linien, die sich zu einem größeren Anteil zu parasitischen Individuen 

entwickelten. Als Kontrolle versuchte ich den gleichen Effekt auch durch reine Selektion, 

ohne Mutagen zu erzeugen. Ich testete ich, ob es möglich ist die mutierten Gene durch 

Genomsequenzierung der mutanten und selektierten Linien zu identifizieren. Der Ansatz 

erwies sich als vielversprechend, Allerdings fand ich, dass der momentan verwendete 

Laborstamm nicht ausreichend isogen ist. Die Anzahl der isolierten 

Kandidatenmutationen, die getestet werden müssten, stellte sich deshalb als recht hoch 

heraus. Die mutagenisierten und selektierten Linien, die in Folge des Experiments durch 

starke "population bottlenecks" gegangen waren zeigten eine deutlich reduzierte 

genetische Variabilität. Dies zeigte, dass es möglich ist, einen mehr isogenen S. ratti 

Stamm für genetische Arbeiten zu erzeugen. 

Im dritten Teil meiner Doktorarbeit isolierte und charakterisierte ich "Strongyloides 

mariner-like Transposons" (SMARTs). Anders als in S. ratti fand ich in S. papillosus 

mehrere möglicherweise aktive SMART Kopien. Diese Transposone haben das Potential 

als genetischen Werkzeugen benutzt zu werden, wie dies für die verwandten Tc1 

Transposone in C. elegans der Fall ist. 
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 Introduction 

 

3.1 Strongyloidiasis and Strongyloides spp. 

 

Strongyloidiasis is a parasitic disease caused by nematodes, or roundworms, of the 

genus Strongyloides and is most common in tropical or subtropical countries (Viney & Lok 

2007). Members of the genus Strongyloides are small intestinal parasites of vertebrates 

and over 50 species were described from different hosts (Speare 1989). These nematodes 

are only rather distantly related to the nematode model organism Caenorhabditis elegans 

based on the phylogeny of the phylum Nematoda according to Blaxter et al. (1998). 

Strongyloides stercoralis is the major cause of human Strongyloidiasis, and recently 

attracts more and more interest in human parasitology. 

 

In 1876 the French physician Louis Alexis Normand first recognized Strongyloidiasis and 

examined the worm from faecal samples with the microscope (Normand, 1876). 

Meanwhile, Bavay described the worm as Anguillula stercorale and Rhabditis stercoralis 

(Bavay 1876). In 1883 Rudolf Leuckart reported initial observations on the life cycle of 

this nematode (Leuckart 1983), and Paul Van Durme described the mode of infection 

through the skin (Van Durme 1902). The interest increased in the 1940s when a study 

revealed disseminated infections in immunosuppressed patients (Gill & Bell 1979). 

 

3.1.1 Strongyloidiasis  

 

Strongyloidiasis is worldwide spread and over 370 million people are estimated to be 

infected (Bisoffi et al. 2013). It is most common in tropical or subtropical climates and has 

been reported in Southeast Asia, Australia, Africa, Europe, Latin America and south 
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eastern United States (Johnston et al. 2005; Genta 1989; Liu & Weller 1993; Berk et al. 

1987).  

 

The parasitic nematodes Strongyloides spp. enter the host through exposed skin and 

establish infection in the small intestine (Streit 2008). Heavy infection with S. stercoralis 

leads to the symptoms of Strongyloidiasis. They are usually diarrheal and weight loss. 

Chronic infections with very low worm burdens may last for decades through an auto-

infective cycle with the infective L3 larvae even in absence of new infection (Siddiqui & 

Berk 2001). The current record appears to be 65 years (Liu & Weller 1993). 

 

Because of the low parasite load and the irregular larval output, Strongyloidiasis is 

sometimes difficult to diagnose (Siddiqui & Berk 2001). Strongyloidiasis is determined by 

clinical symptoms, such as eosinophilia and serologic finding (Grove 1996; Liu & Weller 

1993; Genta 1989; Berk et al. 1987). Definitive diagnosis of Strongyloidiasis is usually 

made on the basis of larvae detection from the stool. The larvae of S. stercoralis are more 

easily detected in the case of strong autoinfection, because large numbers of worms are 

involved in disseminated infections (Heyworth 1996; Liu & Weller 1993). Detection from 

a single stool examination by use of conventional techniques may fail to detect larvae in 

up to 70% of cases. The detection rate can approach 100% if 7 serial stool samples are 

examine (Nielsen & Mojon 1987). Serological methods, like enzyme-linked 

immunosorbent assays (ELISAs) and indirect immunofluorescent test (IFAT), were 

successfully introduced in the detection of Strongyloidiasis (Boscolo et al. 2007; Conway 

et al.). Antibodies (IgG, IgG4 and IgE) are widely used in the detection against S. stercoralis 

(Norsyahida et al. 2013). Schär reported the first application of real time PCR in the 

diagnosis of S. stercoralis (Schär et al. 2013).  

 

A molecular method is widely applied to identify nematodes of different species by 



5 
 

amplifying the small subunit ribosomal DNA. The ribosomal DNA consist of the small 

subunit 18S DNA (SSU) and the large subunit 5.8S and 28S DNAs (LSU), which are 

separated by internal transcribed spacer I and II (ITS1 and ITS2) (Ellis et al. 1986). About 

55 copies of the rDNA were found in C. elegans, and a similar number is likely present in 

other nematodes (Dorris et al. 1999; Ellis et al. 1986). The SSU is highly conserved in 

sequence and is about 1700 base pairs in length and used in phylogenetic analysis across 

all organisms. The ITS regions are highly variable and can be used for the measurement 

of genetic distance within species (Chilton et al. 1995). 

 

 

3.1.2 The nematode phylogenetic classification  

 

Nematodes consist of large and widely distributed groups of animals in marine, 

freshwater, and terrestrial habitats. Estimates of the number of species in this phylum 

range from 40,000 to 100 million (Dorris et al. 1999). The traditional nematode 

phylogenetic classifications rely on morphological traits, such as buccal, pharyngeal 

structure, intestine, tail and etc. Because of the microscopic size of these structures, 

comparative morphological studies in nematodes are rather prone for observer bias and 

error, compared to studies on other taxa with various species (Dorris et al. 1999). The 

results consequently lead to some disagreements on nematode phylogeny. The 

application of the electron microscope gave more exact details for morphological 

research in nematodes (Gibbons 1986). However, the high expense and inconvenience 

prevent the use of electron microscopy for large scale phylogenetic analyses of nematodes. 

Recently, DNA sequence analysis was employed as an alternative method to determine 

phylogenetic relationships.  
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Blaxter directly compared free-living and parasitic taxa by amplifying rDNA sequences, 

which are found in all nematodes and keep a conserved function (Blaxter et al. 1998). This 

method allows comparing also distant taxa and gives more information about the 

phylogenetic structure of Nematoda. Parasitic species can be found in all five major clades 

within the phylum (Blaxter et al. 1998). Within the nematodes parasitism has evolved at 

least seven times independently from one another (Blaxter et al. 1998). Within the 

phylum Nematoda, over 16,000 of the about 28,000 described species are parasitic 

(Hugot et al. 2001).   

 

While in the old phylogenies based on morphology Stronghlyoides spp. was considered to 

be fairly closely related to Caenorhabditis elegans, in the original molecular phylogeny 

based on the SSU Strongyloides was included in clade IV, and with this rather distant from 

C. elegans, which falls into clade V (Blaxter et al. 1998). The SSU sequences were later used 

as molecular markers in Strongyloides spp. in a number of taxonomic studies (Hasegawa 

et al. 2009; Dorris et al. 2002; Eberhardt et al. 2008; Hasegawa et al. 2010). 

 

3.1.3 The parasitic model organism 

 

In biological research, model organisms as the nematode Caenorhabditis elegans have 

been frequently used. Because it is easy to keep and breed, the small free-living soil 

nematode Caenorhabditis elegans is used as an experimental model organism in a variety 

of study areas, such as genetics, cell biology, developmental biology and neurobiology 

(Riddle et al. 1997).  

 

Currently, there is no comparatively well-studied parasite model to investigate for 

example the co-evolution and the interaction between host and parasite. However, S. 
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stercoralis, S. papillosus and S. ratti and the closely related facultative parasite 

Parastrongyloides trichosuri are increasingly well studied and develop into an ideal group 

of organisms for the study of nematode parasitism (Viney & Lok 2007). 

 

The maintenance of Strongyloides species relies on a vertebrate host. Because of the 

ability to tolerate infection with large numbers of infective larvae and the higher larvae 

output, the human parasite S. stercoralis is usually maintained in dogs in the laboratory 

environment (Schad et al. 1989). Gerbils are used as alternative lab host when requiring 

many replicate host infections (Lok 2007). The laboratory cultures of S. papillosus can be 

maintained in rabbits, which are non-natural but permissive hosts for the parasite of 

sheep (Eberhardt et al. 2007). S. ratti is maintained in its natural host but also infects 

gerbils under laboratory conditions. 

 

3.1.4 Life cycle of Strongyloides spp.  

 

The life cycle of Strongyloides species is quite different from other nematodes (Figure 1.1). 

The parasitic females infect the vertebrate host by skin penetration, establish infection in 

the small intestine, and reproduce parthenogenetically. The progeny leaves the host with 

the faeces and can undergo either of two fundamentally different life cycles. i) Direct or 

homogonic life-cycle: the larvae develop to infective third-stage larvae (iL3s) and invade 

a new host by skin penetration; all homogonically developing larvae are females; ii) 

Indirect or heterogonic life cycle: the larvae develop into non-infective L3s, which develop 

into free-living adults; this free-living generation consists of males and females and 

reproduces sexually; usually, all the progeny of the free-living generation are female and 

develop into iL3s (Streit 2008). The existence of the free-living generation provides a 

unique opportunity for the experimental manipulation (e.g. crossing) of a true parasite.  
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The human parasite S. stercoralis, shows a third developmental cycle, which is of great 

medical importance. A fraction of the larvae develop into infective larvae within the gut 

of the host and are able to re-infect the same host individual without leaving it. In 

immunocompetent patients an S. stercoralis infection can be maintained through this auto 

infective cycle for decades at very low level without clinical symptoms. If later the person 

becomes immunocompromised, the infection can self-enhance and result in a hyper 

infection syndrome and disseminated Strongyloidiasis, which, when untreated, is 

frequently fatal (Grove 1989). 

 

Figure 1.1: Generalized life-cycle of Strongyloides (Streit 2008).  

 

 

Two genetic switches are important in the life history of Strongyloides. The first one is sex 

determination. The sex of an embryo is determined very early in development and is 

influenced by the immune status of the host (Gemmill et al. 1997). The second switch is 
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between homogonic and heterogonic development. In this female only choice, the larvae 

choose to develop directly into iL3s or develop into free-living adult females. The genetic 

background and the immune status of the host, affect both, the sex choice and the 

homogonic versus heterogonic switch, such that increased host immunity against 

Strongyloides leads to a higher proportion of males and predisposes females to undergo 

heterogonic development (Crook & Viney 2005; Harvey et al. 2000; Triantaphyllou & 

Moncol 1977). The homogonic versus heterogonic switch, but not the sex, can still be 

influenced by multiple environmental factors the larvae encounter only after leaving the 

host (Streit 2008). But the mechanism of this genetic switch is still not clear. 

 

 

3.1.5 Sex determination in Strongyloides spp. 

 

In the animal kingdom, the mechanisms of sex determination have been studied. The 

predominant one is considered as sex chromosome based mechanism. Of this mechanism, 

the sex determination employ either heterogametic chromosome based mechanism 

(XX/XY and ZW/ZZ system), or sex chromosome ratio based system (XX/XO), the ratio 

between the number of sex chromosome and autosomes lead the consequence of females 

and males. In the XX/XY system, the male is heterogametic (XY); in the ZW/ZZ system, 

female is heterogametic (ZW) (Namekawa & Lee 2009). However, some organisms like 

zebra fish have no sex chromosome. The sex is influenced by environmental factors 

(Slanchev et al. 2005). 

 

The nematode C. elegans, uses a sex chromosome ratio based system (XX/XO). There is 

no Y chromosome. The male is heterogametic and denoted as XO; the hermaphrodite is 

homogametic as XX. In C. elegans male (XO) embryos, low X dosage activate the male-
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specific switch gene xol-1. In contrast, the female (XX) embryos develop as a result of xol-

1 inactivation (Miller et al. 1988). XX/XO sex determination mechanism is very common 

across the phylum Nematoda (Walton 1940). Only a few of nematodes employ XX/XY 

system: Brugia malayi, Onchocerca volvulus, Baylisascaris transfuga, Contracaecum 

incurvum, and Trichuris muris (Zanetti & Puoti 2013).  

 

The sex determination of Strongyloides species was studied cytologically and genetically 

(Bolla & Roberts 1968; Nigon & Roman 1952; Harvey & Viney 2001; Hammond & 

Robinson 1994). The cytological evidences in S. stercoralis and S. ratti indicate that the 

species employ an environmentally controlled XX/XO system (Figure 1.2) (Streit 2008). 

The females have 2 pairs of autosomes and 1 pair of X chromosomes; the males have the 

same autosomes and only 1 X chromosome (Nigon & Roman 1952; Bolla & Roberts 1968; 

Hammond & Robinson 1994). Nevertheless, although a sex chromosome is present, the 

proportion of males produced by the parasitic females is influenced by the immune 

response of the host (Gemmill et al. 1997). The cytological studies suggested that S. 

papillosus and S. ransomi do not have sex chromosomes (Triantaphyllou & Moncol 1977). 

Unlike in a conventional XX/XO system, S. papillosus was shown to achieve a chromosomal 

difference between the sexes through sex specific chromatin diminution (Figure 

1.2)(Albertson et al. 1979; Nemetschke, Eberhardt, Hertzberg, et al. 2010). In males an 

internal portion of one of the homologues of one pair of chromosomes gets eliminated, 

creating a hemizygous region, which corresponds to the X chromosome in S. ratti. The 

result suggests that a chromosome fusion event may have occurred in the predecessor of 

S. papillosus but not S. ratti (Triantaphyllou & Moncol 1977; Nemetschke, Eberhardt, 

Hertzberg, et al. 2010; Kulkarni et al. 2013). 
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Figure 1.2: Schematic representation of the various karyotypes in females and males proposed for 

different species of Strongyloides (Streit 2008). (A) XX/XO sex determination. Autosomes (two 

pairs) are in black, X chromosomes are in grey. (B) No karyotypic difference between the sexes. (C) 

Sex specific chromatin diminution in males. In (B) and (C) the regions that were proposed to be 

derived from an X chromosome are in grey. 

 

 

3.1.6 Strongyloides infective larvae development  

 

In the response to harsh environmental conditions, nematode C. elegans undergo a dauer 

arrest after the second molt (Cassada & Russell 1975). The Strongyloides species have a 

complex life-cycle (Figure 1.1), which includes both an obligatory parasitic generation as 

well as a facultative free-living generation. The parasitic larvae are morphologically 

similar to dauer larvae of C. elegans.   

 

The molecular mechanisms that govern the dauer developmental transition in C. elegans 

have been well characterised in past decades. The regulation of morphological 

development in C. elegans served as a model case for the study of organismal development. 

The regulation of C. elegans dauer development is undertaken through several interacting 
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signal transduction pathways (Hu 2007). Recent studies give more details and imply more 

complicated regulatory pathways. Identified pathways for controlling dauer formation 

include cGMP signalling, insulin/IGF-1 signalling (IIS), TGF-beta signalling and a hormone 

pathway (Kimura et al. 1997; P Ren et al. 1996; Birnby et al. 2000; Hu 2007). The cGMP 

signalling pathway regulates the dauer switch upstream of the parallel TGF-beta and IIS 

pathways (Fielenbach & Antebi 2008). The hormone pathway works downstream of the 

cGMP, TGF-beta and IIS pathways (Fielenbach & Antebi 2008).  Neurons were found 

intensively involved in the dauer switch of C. elegans. The environmental signals are 

transformed into endocrine signals by amphid neurons (ASI, ADF, ASG, ASJ, ASK, AWA, 

and AWC) (Bargmann & Horvitz 1991; Schackwitz et al. 1996; P. Ren et al. 1996; Sze et al. 

2000; Li et al. 2003). Serotonergic signalling in the neuron ADF relays environmental 

information and control dauer formation through DAF-16 (Liang et al. 2006).  

 

The dauer stage in C. elegans is considered to be evolutionarily related to dauer-like 

developmental stages in parasitic nematodes i. e. infective larvae (Viney 2009; Hotez et 

al. 1993; Bürglin et al. 1998). Recent studies suggest that some regulatory pathways 

controlling the morphological development are conserved. Akira Ogawa in Ralf Sommer’s 

lab, in collaboration with our lab, showed that the hormone ∆7-dafachronic acid (∆7-DA) 

which block the dauer formation in C. elegans, can also inhibit the development of iL3s in 

S. papillosus (Ogawa et al. 2009). This result strongly suggests that these two distantly 

related nematodes share a conserved endocrine pathway in developmental regulation. In 

C. elegans, this endocrine module is at the very end of the genetic cascade that controls 

dauer formation. Numbers of homologs from the pathways were cloned in S. ratti, S. 

stercoralis, and their close relate species Parastrongyloides trichosuri, a parasite of 

Australian possums (Massey et al. 2001; Massey et al. 2006; Massey et al. 2005; Stoltzfus, 

Massey, et al. 2012; Siddiqui et al. 2000; Castelletto et al. 2009; Crook et al. 2005; Viney 

2006). To understand the expression of these cloned gene in Strongyloides species, the 
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transcriptomes of S. stercoralis were analysed by comparing the expression profiles with 

that of C. elegans (Stoltzfus, Minot, et al. 2012). The result suggested significant 

differences in the patterns of gene expression. The dauer regulatory pathway genes are 

present in S. stercoralis. While the expression patterns of IIS and cGMP signalling pathway 

genes appear to be conserved with those in C. elegans, the TGF-beta signalling pathway 

genes appear to be expressed differently.  

 

 

3.1.7 Transposable elements in C. elegans 

 

After the first transposable element had been found in maize, the first transposon isolated 

from C. elegans was Tc1 (Rosenzweig et al. 1983). It is a marine-like transposon and 

functions by “cut and paste” mechanism. Like other members of mariner-like super family, 

Tc1 consists of two inverted terminal repeats (ITRs), flanking one open reading frame, 

which encodes the protein necessary to accomplish the transposition reaction 

(Rosenzweig et al. 1983). In addition to Tc1, Colloms et al identified another marine-like 

transposon gene, Tc3, in C. elegans (Colloms et al. 1994). In the genome of C.elegans N2, 

there are 31 Tc1s and 22 Tc3s, but these numbers are strain dependent. Greenwald took 

advantage of the presence of transposons to generate mutations which were tagged by 

the transposon using a mutator strain in which the transposons are activated due to a 

mutation (Greenwald 1985). However, as mentioned above, the endogenous transposons 

are present in multiple copies rendering the tag not unique and spontaneous re-excision 

can lead to tag loss. To circumvent these drawbacks, the exogenous transposon Mos1  

was introduced and became a most useful tool in C. elegans studies (Jacobson et al. 1986), 

which is discussed in more detail in sections 1.2 and 2.3.  
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3.2 Research strategies and methodology for the study of Strongyloides 

spp. 

 

3.2.1 Next generation sequencing in nematode and parasitic nematode 

 

The genome of C. elegans was the first sequenced genome from a multicellular organism. 

The complete assembly of the genome without gap is available for comprehensive 

analysis (Hillier et al. 2005). The nematode genomes, for which information is available, 

vary in size from about 50 to about 250 Mb (Rödelsperger et al. 2013). The genome of C. 

elegans is ~100 Mb and has ~20,000 genes. The genome of the related species C. briggsae 

is about 5 Mb bigger, but has roughly the same number of genes as C. elegans (Stein et al. 

2003). The difference in size between two genomes is in part the consequence of different 

amounts of repetitive sequence. Parkinson et al. used over 250,000 ESTs to analyse 30 

species across the phylum (Parkinson et al. 2004). Of the in total 90,000 analysed genes, 

around 15,000 genes were found across all clades, only ~1300 genes were nematode-

specific, meaning that they were present in most if not all nematodes but absent from all 

other phyla. 

 

After the sequencing of the C. elegans genome, the genomes of a variety of nematodes 

were determined and used in recent research. The genome sequences of seven additional 

Caenorhabditis species are available on WormBase and can be used in comparative 

analyses (Yook et al. 2012). In addition, genomes of several parasitic nematodes were 

finished, such as Meloidogyne hapla, M. incognita, Ascaris suum, genomes of S. ratti and S. 

stercoralis are in process (Martin et al. 2012; Yook et al. 2012). 

 

Among the Strongyloides species, S. ratti, and S. stercoralis are the most intensively 

studied ones. For S. ratti, Thompson et al. analysed 15,000 ESTs from free-living and 
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parasitic cDNA libraries, which grouped into over 4000 clusters (Thompson et al. 2005). 

One quarter showed non-significant BLAST alignments; around three quarter had 

significant alignments. This result probably reflects the large evolutionary distance 

between taxa (Parkinson et al. 2004). A similar result was shown by Mitreva et al, who 

obtained about 11,000 ESTs which grouped into over 3000 clusters (Mitreva et al. 2004). 

Only about 15% of the clusters had no significant alignment. The analysis of secretome 

data showed that 89.8% excretory/secretory protein had homologues in the free-living 

nematode C. elegans and 86.3% in other parasitic nematodes (Garg & Ranganathan 2011). 

In another S. stercoralis transcriptomic analysis, 56% putative protein sequences had 

orthologs/homologs in public databases (Marcilla et al. 2012). The rest sequences 

remained unannotated. 

 

Thompson et al. used microarray for gene expression analysis of the free-living and 

parasitic stage in S. ratti (Thompson et al. 2006). Ramanathan et al. analysed the 

differences between non-infective first stage and infective third-stage larvae of S. 

Stercoralis (Ramanathan et al. 2011). Twenty five genes were found highly expressed in 

infective L3. A RNAseq analysis of S. stercoralis revealed divergent regulation of genes 

involved in the control of dauer formation in C. elegans (Stoltzfus, Minot, et al. 2012).  

 

Most genes in parasitic nematode are probably inherited from their free-living ancestors 

(Blaxter 2003). Some genes essential for parasitism in worms were novel. One 

explanation is that this kind of genes may derive from gene duplication, which make one 

duplicate available for the acquisition of a new, i.e. parasitism related, function while the 

other copy retains the original function (Gomez-Escobar et al. 2002). The other 

explanation is horizontal gene transfer (Dieterich & Sommer 2009). Plant parasite 

Meloidogyne species were reported to carry genes acquired from bacteria (Bird et al. 2003; 

Dieterich & Sommer 2009). 
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Although, the free-living stages of Strongyloides can be grown on bacterial lawns like C. 

elegans, large-scale culturing of Strongyloides is still limited. This makes it more difficult 

to conduct, for example, proteomic studies of Strongyloides as it has been done in free 

living nematodes C. elegans and P. pacificus (Audhya & Desai 2008; Borchert et al. 2010).  

 

 

3.2.2 Transgenesis  

 

First attempts to establish transgenes in S. stercoralis, S. ratti and in the related nematode 

P. trichosuri were based on protocols developed for the model nematode C. elegans (Li et 

al. 2006; Grant et al. 2006; Rieckher et al. 2009; Li et al. 2011). This was successful in P. 

trichosuri (Grant et al., 2006) but in Strongyloides spp. the results were not satisfactory. 

While reporter constructs containing promoters, and 5’ and 3’ untranslated regions (UTR) 

were expressed in a tissue-specific manner in the first generation, they were silenced in 

subsequent generations (Junio et al. 2008; Li et al. 2006; Lok & Massey 2002). This 

problem was later solved by employing a strategy that is based on the piggyBac 

transposon such that the desired construct is flanked by transposon derived terminal 

repeats and injected into the gonad of Strongyloides spp. females along with a helper 

plasmid containing the piggyBac transposase gene (Shao et al. 2012). When lacking the 

helper vector, the transgenes were only transiently expressed in F1 generation after 

transformation and became silenced in later generations, although their physical 

presence could still be detected. 
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3.2.3 Mutagenesis 

 

A protocol of chemical mutagenesis for S. ratti was applied to isolate invermectin resistant 

worms (Viney et al. 2002). However, so far this is the only report of a forward genetic 

screen in any species of Strongyloides and the mutations causing the phenotype were not 

identified. In C. elegans a completely sequenced genome and a dense genetic map allow 

the identification of the mutations, which cause a particular phenotype (Kutscher & 

Shaham 2014). Although the genome of S. ratti is being sequenced at the Sanger Institute 

and a first genetic map was established in our lab, these tools are still very limited in 

Strongyloides (Nemetschke, Eberhardt, Viney, et al. 2010). As mentioned above 

transposons were used to generate tagged mutations in several systems, among them C. 

elegans where the transposable element Tc1 was used successfully to generate mutants 

(Greenwald 1985; Moerman et al. 1986). No attempts to use transposons as mutagen have 

been made in Strongyloides spp. yet. 

 

 

3.2.4 Cell ablation 

 

The cell deactivation through laser ablation became an important method, which allows  

for example neuronal studies in model nematode C. elegans (Bargmann & Avery 1995). 

The morphological similarities between C. elegans and Strongyloides spp. gives the 

possibility to identify homologous cells in Strongyloides species. Ashton introduced this 

protocol to S. stercoralis as the first parasitic nematode and analysed neurons in detail 

(Ashton et al. 1995; Ashton et al. 1998). From his results, 13 amphidial neurons were 

identified and named by using C. elegans nomenclature (Ashton et al. 1995). The ALD 

neurons in S. stercoralis are likely the homologs of the AWC neurons in C. elegans (Lopez 

et al. 2000). Nolan et al. reported that the ALD neurons in S. stercoralis controls the 
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temperature-sensitive choice of alternative developmental pathways (Nolan et al. 2004). 

The homologs of C. elegans ASJ in S. stercoralis were found to trigger the resumption of 

development of infective larvae, an equivalent to dauer stage (Ashton et al. 2007). These 

findings suggest conserved neurons in S. stercoralis. In the process of interaction with 

external environment, neurons transmit the signals and cause downstream regulations. 

 

 

3.2.5 RNA interference in parasitic nematodes 

 

Gene silencing through double stranded RNA (dsRNA) interference was successfully 

established in C. elegans (Fire et al. 1998). However, the introduction of RNAi to parasitic 

nematodes is not straightforward (Britton et al. 2012). The efficiencies were found to vary 

among species. The technique was successfully applied in the plant parasitic nematodes 

Heterodera glycines, Globodera pallida and Meloidogyne incognita (Urwin et al. 2002; 

Dalzell et al. 2010). Unsuccessful attempts to use of RNA interference were reported in 

the animal parasite Ostertagia ostertagi, Haemonchus contortus and Heligmosomoides 

polygyrus (Lendner et al. 2008; Geldhof et al. 2006; Visser et al. 2006). The hypotheses to 

explain the difficulties with RNAi in parasitic nematodes that were proposed are a) the 

delivery of dsRNA to parasitic nematodes is inappropriate (Viney & Thompson 2008). 

Parasitic nematodes seem to be generally refractory to systemic RNAi from dsRNA 

present in the intestinal lumen; b) genes required for RNAi are functionally incapable to 

initiate gene silencing in animal parasitic nematodes (Viney & Thompson 2008). In C. 

elegans the uptake of environmental dsRNA requires the transmembrane proteins SID-1 

and SID-2 (Winston et al. 2002; Winston et al. 2007). The intercellular spread of double 

stranded RNA in C. elegans requires RSD-3, rsd-3 null mutants are unable to distribute 

dsRNA into germline (Dalzell et al. 2011). However, recent reports suggest that SID-2 is 

not widely conserved even among the Caenorhabditis species (Winston et al. 2007; 
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Hunter et al. 2006). No homologs of SID-1/2 were found in the animal parasitic 

nematodes Haemonchus contortus and Heligmosomoides polygyrus, and the plant 

parasites G. pallida and M. incognita (Geldhof et al. 2006; Lendner et al. 2008; Britton et 

al. 2012). Nevertheless, without identifiable orthologs of SID-1/2 and RSD-3, the plant 

parasitic nematodes Meloidogyne and Globodera species are susceptible to RNA 

interference by soaking in dsRNA/siRNA (Rosso et al. 2009; Dalzell et al. 2011; Dalzell et 

al. 2010; Kimber et al. 2007). The results suggested that alternative mechanisms for 

dsRNA distribution are involved (Dalzell et al. 2011). 
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3.3 Aim of this thesis 

Given that Strongyloides spp. is not only an emerging model system for both basic 

biological and parasitological research but also a medically relevant parasite of humans 

and livestock, in this thesis I attempted to contribute to three different areas of 

Strongyloides research.  

 

a) Development of methods for the analysis of Strongyloides spp. To this end I isolated an 

endogenous transposon from S. papillosus, which has the potential to be developed into a 

tool for mutagenesis and transgenesis and I devised a protocol for chemical mutagenesis 

of S. ratti. 

 

b) Epidemiology of human Strongyloidiasis. In collaboration with a research group at the 

Swiss Tropical and Public Health Institute in Basel I molecular genetically characterized 

Strongyloides spp. isolated from humans and animals in rural Cambodia. I identified 

multiple non-interbreeding genotypes of S. stercoralis in humans. 

 

c) Basic biology of an S. ratti developmental switch. Combining mutational analysis and 

selection experiments with genomic approach I characterized potential mutations in the 

developmental switch between the homogonic (direct) and the heterogonic (indirect) 

development. 
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 Results and discussion 
 

4.1  Strongyloides stercoralis genotypes in humans in Cambodia 

Li Guo1, Fabian Schär1, Adrian Streit, Virak Khieu, Muth Sinuon, Hanspeter Marti, Peter 

Odermatt 

1Shared first authorship. The paper was published as Schär, Guo et al.  

 

 

4.1.1 Synopsis 

 

The nematode Strongyloides stercoralis is one of the worldwide distributed human 

parasitic nematodes. However, it is one of the most neglected helminth infections in 

tropical areas. The larvae infect human host by skin penetration and reproduce 

parthenogenetically in the small intestine. The adult females can give rise to either 

parasitic female progeny or to a facultative free-living generation reproducing sexually. 

As a suitable host, humans can be also infected by another species, S. fuelleborni in Africa 

and Papua New Guinea. 

 

The small subunit (SSU) rDNA is for the most part highly conserved among organisms, 

allowing the design for PCR primers that work for many different species over a fairly 

broad phylogenetic range. However, it also contains so called hyper variable regions 

(HVR-I to -IV) in which species tend to differ. Therefore this region is popular for 

phylogenetic studies of various organisms including of the genus Strongyloides. The SSU 

sequences of S. stercoralis from different locations and hosts had been described. 

However, a study of the genetic structure of S. stercoralis populations within a certain 

location had not been reported. 
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To examine the SSU genotypes of S. stercoralis larvae from Cambodian highly S. stercoralis 

endemic regions, larvae were collected from infected persons. The portions of the SSU 

including HVR I and HRV IV were sequenced from individual S. stercoralis larvae. Three 

polymorphic positions and three different haplotypes were identified. Interestingly, no 

hybrid individuals were found. These results suggested that interbreeding between the 

different haplotypes in the study area is very rare, either because in this region S. 

stercoralis reproduces asexually only or because mating occurs only within but not 

between haplotypes.  

 

 

4.1.2 Contribution 

 

Fabian Schär and Virak Khieu collected samples in Cambodia. I genotyped all larvae from 

all samples. Analysis of sequencing data was done by myself and Fabian Schär. The results 

were interpreted together with Adrian Streit, Hanspeter Marti and Peter Odermatt. 

Fabian Schär and Peter Odermatt wrote the manuscript, Adrian Streit, Simuon Muth, 

Hanspeter Marti and I assisted with manuscript revisions. 

 

 

4.2  A Protocol for chemical mutagenesis in Strongyloides ratti 

Li Guo, Zisong Chang, Christoph Dieterich and Adrian Streit 
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4.2.1 Synopsis 

 

Forward genetics was first established in fruit fly Drosophila melanogaster and became 

an important approach in the analysis of many model organisms. Mutations are generated 

and followed by screening for the desired phenotypes. Since the chemical mutagen ethyl 

methanesulfonate (EMS) induced mutations efficiently in D. melanogaster, it has been 

used for the nematode Caenorhabditis elegans and later also applied for the studies of 

other free-living nematodes like C. briggsae and Pristonchus pacificus.  

 

In endoparasitic nematodes, however, the mutagenesis techniques used in C. elegans 

cannot be easily adapted, primarily because of the location of the reproductive adults 

within their hosts. The exception are nematode worms of the genera Strongyloides and 

Parastrongyloides which can form facultative free-living generations in between parasitic 

generations. Transgenesis was introduced from C. elegans into the human parasitic 

nematode S. stercoralis. The first and so far only genetic map of an animal parasitic 

nematode was established in S. ratti, which improves the experimental usefulness in 

genetic research. A single attempt to mutagenize S. ratti, was reported but never followed 

up. One of the reasons for this was that even if a desired phenotype could be obtained, at 

the time it was virtually impossible to identify the gene that carried the mutation causing 

the phenotype. Recent development in sequencing technology, however is now offering 

new opportunities to identify mutations by whole genome sequencing of mutants. 

 

Here I present a detailed protocol the mutagenesis of S. ratti with the chemical mutagen 

EMS. Starting from protocols for C. elegans and S. ratti I devised a protocol and 



24 
 

systematically varied different parameters in order to improve the initially unusably low 

survival and reproduction of the EMS treated worms. Then I mutagenized a strain of S. 

ratti with a very high tendency to form free-living worms and screened for an increase in 

the development to infective larvae. As a control I also attempted to obtain the same 

phenotype by selection, in absence of the mutagen. Finally, in order to directly assess the 

effect of the mutagenesis and the screening/selection procedures and to explore the 

possibility of identifying mutations by whole genome sequencing, I sequenced the 

genomes of several mutagenized and selected strains. The main results were: i) the 

currently used standard laboratory strain of S. ratti, still contains a rather high number of 

polymorphic positions, ii) the strong populations bottlenecks associated with the 

mutagenesis and selection procedures reduced the genetic complexity of the populations 

considerably, but also made some originally rare alleles detectable which were not seen 

when the starting population was sequenced. As a consequence that total number of 

candidate mutations to be further tested in order to identify the one causing the 

phenotype of interest was in the several hundred to a few thousands. This is too high for 

practical feasibility but our results clearly indicate that the number could be strongly 

reduced by additional inbreeding of the starting population. Our results also demonstrate 

that such further inbreeding is tolerated by S. ratti. 

 

4.2.2 Contribution 

 

I carried out all mutagenesis, screening and selection experiments and I maintained the 

mutant and selection lines in the lab, and collected worms for genome sequencing. Zisong 

Chang extracted DNA and prepared the libraries for sequencing. I analyzed the data 

together with Christoph Dieterich, Adrian Streit and Zisong Chang. The manuscript was 

written by Adrian Streit and myself with input from Christoph Dieterich. 
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4.3  Identification of a Strongyloides MARiner-like Transposon (SMART) in 

Strongyloides papillosus. 

 

4.3.1 Introduction 

 

Transposons are genetic element capable of moving around in the genome. Varieties of 

transposable elements have been identified in prokaryotes and eukaryotes since it was 

first identified in maize (McClintock 1950). They are divided into two main classes, 

namely class I retrotransposons and class II DNA transposon. Retrotransposons are 

reverse-transcribed into DNA and inserted into genome via an RNA intermediate, and 

result in a new, additional copy of themselves (Feschotte & Pritham 2007). Whereas DNA 

transposon function without RNA mediated replication. In transposition, it is excised 

from donor site and paste into a target site without increase in number, called “cut-and-

paste” mechanism (Haren et al. 1999).  

 

Tc1, the best studied member of Tc1/mariner transposable element superfamily, was 

identified from C. elegans (B Rosenzweig et al. 1983). Tc1 elements, which are about 1,3 – 

2,4 kb in length and contain a single open reading frame, were also found in ecdysozoans 

and vertebrates (Plasterk et al. 1999). Tc1/mariner elements were applied in C. elegans 

as mutagens which generates mutations with special tags simplifying screening 

(Greenwald 1985). A new strategy combining transgenesis was introduced in C. elegans 

genome engineering. When transgenes contains transposable element and DNA template, 

Tc1 excision cause breakages and the point mutations can be copied into the genome 

during the repair process (Plasterk & Groenen 1992). However, usage of Tc1 has some 

drawbacks as an endogenous transposon. There are several copies in genome, which 
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leads the identification of mutagenic insertion more complicated. Furthermore, in some 

strains, such as mutator strain, transposition is not controlled and spontaneous re-

excision can lead to the loss of the tag. Mos1, a member of Tc1/mariner elements, was 

isolated from D. mauritiana  (Jacobson et al. 1986). It circumvents the limitations by 

providing an efficient exogenous transposase and unique recognition site (Williams et al. 

2005). Recently, Mos1 was used for site directed mutagenesis, targeted transgene 

insertion and gene deletion to engineer the genome of C. elegans (Frøkjaer-Jensen et al. 

2010; Frøkjaer-Jensen et al. 2008; Robert et al. 2009). 

 

In the study of the model organism C. elegans, molecular strategies are well developed for 

forward and reverse genetics (Kutscher & Shaham 2014). The successful introduction of 

extrachromosomal transgenes into S. stercoralis was described (Lok & Massey 2002). 

These transgenes, however, are silenced in the second generation, such that transgene 

expression is limited to the first transgenic generation, severely limiting their usefulness. 

Nevertheless, expression in one generation should be sufficient to mobilize a transposon 

included in the transgene. Therefore, I would like to establish endogenous and exogenous 

transposons as tools for mutagenesis and transformation in Strongyloides sp., as it has 

been done successfully in C. elegans. As a first step towards this goal, I describe here the 

isolation and characterization of a mariner type transposon from S. papillosus. 

 

 

4.3.2 Isolation of SMART ITRs and transposases from S. papillosus. 

 

To isolate SMART sequences from S. papillosus (SMARTpa), degenerate primers were 

designed based on the ITR sequences of S. stercoralis SMART (SMARTst) and S. ratti 
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SMART (SMARTra), which were provided to me by James Lok, University of Pennsylvania 

(unpublished). These primers were used to amplify first transposase sequences from S. 

papillosus. Then, new primers against these sequences were made and used to amplify 

additional ITRs by inverse PCR. Finally, degenerate primers based on the S. papillosus 

ITRs were designed and used to amplify additional copies of the SMART transposase (for 

details see Materials and Methods). In total I isolated 9 ITRs and 17 transposase genes or 

pseudogenes. 

 

The SMARTpa ITR sequences are 28 bp in length, similar to most mariner-like elements, 

which are about 30 bp. TA dinucleotides were found adjacent to the 5' ends of ITRs. Such 

a duplication of the target sequences is common to all transposable elements and is 

thought the result from a staggered cleavage on the target site during transposition (Craig 

1997). The alignment of the ITR from S. papillosus, S. stercoralis, S. ratti and Hsmar1, an 

ancient transposon in man, reveals a highly conserved region within the ITRs (Figure 

2.1). This conserved region is probably important for site recognition during the protein-

DNA binding process. Although it is unknown if SMARTpa has preferred integration sites, 

the target sequence studied in Hsmar1 suggested a common preference of the target sites 

among eukaryotic DNA transposons (Claeys Bouuaert & Chalmers 2010). Of the 

seventeen different SMARTpa transposon sequences, fourteen had at least one premature 

stop codon. Three sequences had one uninterrupted open reading frame, which is 1020 

bp in length. The presence of long open reading frames suggested that these SMARTpa 

putative proteins might function in the element's transposition.  Three contigs 

(Contig12904, FKHPLC401CY67Z, Contig6445) from the S. papillosus EST libraries shared 

high similarities with the region of the consensus sequence encoding the catalytic domain 

(Figure 2.2). The sequences of these contigs were not fully identical to each other, or to 

any of the three putative SMARTpa transposase sequences described above. Of the three 
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Figure 2.1: SMARTpa ITR sequences. - A. Nine S. papillosus ITR sequences (Spa ITR) were aligned. 

Letters in red represent the not conserved base pairs. The consensus Spa ITR sequence is listed 

below. B. The consensus ITR sequences of SMARTpa,SMARTst, SMARTra, and Hsmar1 were aligned 

with each other. The conserved bases among the ITRs are shaded. 

 

contigs, Contig6445 was found in the library derived from infective stages, the other two 

were in the database of free-living. These analysis suggested that there are more putative 

transposases in S. papillosus and that they are probably expressed in both, the free-living 

and the infective stages. The structural organization of SMARTpa shares some common 

features with eukaryotic Tc1/mariner transportable elements. The consensus sequence 

of the full element is composed of 1,290 base pairs in length. Three of sixteen cloned 

candidates were putatively active, and had only one open reading frame, which encodes 

a deduced 340 amino acid protein. The common eukaryotic polyadenylation signal 

AATAAA was found at the 3' end of the coding region, overlapping with the stop codon 

TAA (Figure 2.3). The SMARTpa consensus sequence was used to BLASTN search the S. 

ratti database. Twenty one hits returned with high similarities (e-value less than 7.4e-11), 

but none of them was putatively active. All contained at least one premature stop codon 

in transposase sequence. 

 

A BLASTN search of the C. elegans (WS217) database and the Pristionchus pacicus 

genomes produced no significant hits. The SMARTpa consensus sequence was translated 
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Figure 2.2: SMARTpa sequences. - Seventeen SMARTpa sequences were amplified with primers 

against the consensus ITR sequence. The consensus sequence is schematically shown above the 17 

sequences, with the ITRs on both sides, indicated as arrow. The three EST contigs found in the data 

base were aligned above the consensus sequence. The start (ATG) and stop (TAA) codons are 

shown below the sequence. The polyadenylation signal overlaps with the stop codon. The 

sequences with premature stop codons (red arrow heads) are shown as grey boxes, sequences 

with coding potential for putatively active transposase as black boxes. 

 

and BLASTP searched against the swissprot protein database. The predicted peptides 

shared a high similarity with the Hsmar1 synthetic sequence, the SETMAR of Homo sapiens 

and Mos1 of Drosophila mauritiana, with e-value of 3e-132, 3e-129 and 1e-57 respectively.  

 

To compare conservation among Tc1/mariner-like transposases, SMARTpa was aligned 

with Hsmar1 (AAC52010), Mos1 (AAC16609), Tc1 (P03939), Tc3 (P34257), Sleeping 

Beauty (AAP49009) in ClustalW. The S. papillosus transposase has the major features of a 

mariner transposase (Robertson 1995), in particular the DD34D putative catalytic domain 
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Figure 2.3: The consensus DNA sequence of SMARTpa and conceptual translation of the encoded 

transposase. - The inverted terminal repeats are double underlined. The polyadenylation site that 

overlaps with the stop codon is underlined. Nucleotide and amino acid numbers are shown on the 

left and right side respectively. 

 

(Doak et al. 1994). Unlike Tc-like elements, of which the third amino-acid in the motif is 

E, a common mariner-like DDD motif was found in the catalytic domain of SMARTpa. In 

addition to the catalytic triad, SMARTpa has most of the additional canonical features of 

mariner-like elements (MLEs), the WPHEL motif (WTPHEL in SMARTpa transposase) and 

the YSPDLAP motif (YLPDLSP in the transposase) (Robertson 1993). The conserved 

FLHDNARPH motif that contains the second D of the catalytic triad in most MLE 

transposases was replaced with a LLHDNARSH motif (Robertson & Walden 2003; 

Witherspoon & Robertson 2003), a feature shared with Hsmar1 (Figure 2.4).  

 

In the ancient transportable element Hsmar1, all identified copies appear to be dead 

remnants which are inactivated by mutations (Robertson & Zumpano 1997). However, 

the coding region of this transposase is still active as part of the SETMAR gene, with a 
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Figure 2.4: Multiple sequence alignment of the transposases of SMART with those from related 

transposons. - The position of the catalytic triad domain DD34(D/E) is indicated. The conserved 

motifs of mariner-like elements are overlined. Conserved residues are shaded. The GenBank 

accession numbers of these aligned transposons are Hsmar1 (AAC52010), Mos1 (AAC16609), Tc1 

(P03939), Tc3 (P34257), Sleeping Beauty (AAP49009). 

 

histone methylatransferase SET domain fused to the N-terminus of Hsmar1 (Miskey et al. 

2007). These studies of Hsmar1 revealed two possible fates of this ancient transposon: 1) 

inactivation by mutations or 2) becoming part of a functional protein of the host. To date, 

the only natural mariner elements proven to be active are Mos1 and Famar1 (Barrett et 

al. 2004; Jacobson et al. 1986). 
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4.3.3 Phylogenetic position of SMART 

 

The mariner superfamily transposases were classified into six sub families (Prasad et al. 

2002). A phylogenetic neighbor-joining tree with 1000 boot strap replicates was 

constructed based on the alignment of the entire SMARTpa and SMARTst consensus amino 

acid sequences, and 26 other transposase protein sequences available in public databases. 

This showed that SMART is most closely related to Hsmar1 from Homo sapiens (Figure 

2.5).  

SMART formed a clad within elements from the cecropia subfamily with solid bootstrap 

support. This diphyletic clade includs a branch containing SMART and three primate-

originated MLEs, and a branch with Funmar1 from Fungia sp., Aamar1 from Attacus atlas 

and Gtmar1 from Girardia tigrina. The transportable elements Tc1 and Tc3 from C. 

elegans, and Mos1 from Drosophila are only distantly related with SMART. The 

remarkable identity between SMARTpa, SMARTst and the primate MLEs, Hsmar1 and 

SETMAR, strongly suggest horizontal transition of this element from host to parasite (or 

vice versa).  

 

The exchange of genetic material between hosts and parasites influences their genomic 

evolution. Feschotte and Pritham reviewed DNA-mediate transposons among eukaryotic 

species and also suggested that their movement and accumulation contribute a major 

force shaping the genes and genomes of almost all organisms and therefore led to the 

emergence of genetic innovations in different eukaryotic lineages (Feschotte & Pritham 

2007). 
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Figure 2.5: Phylogram of transposases of representative mariner superfamily transposons. -
Representatives of six clades of mariner-like elements were included in the analysis. The elements 
used in the tree includes Tc1-like and Tc1 from C. elegans, HcTc1 from Haemonchus contortus, TCb1 
from C. briggsae, Bmmar1 and Bmmar6 from Bombyx mori, Himar1 mutagenesis vector 
pFNLTP16H3, Cpmar1 from Chrysoperla plorabunda, Bytmar1-11 from Bythogreae thermydron, 
Dtesmar1 from D. teissieri, Dsecmar1 from D. sechellia, Mbmar1 from Mamesta brassicae, 
XP_001099426 from Macaca mulatta, SETMAR from Cercopithecus aethiops, Hsmar1 from Homo 
sapiens, Aamar1 from Attacus atlas, Funmar1 from Fungia sp., Famar1 from Forcula auricularia, 
Ammar1 from Apis mellifera, Ccmar2 from Ceratitis capitata, Camar1 from Chymomyza amoena, 
Acmar1 from Apis cerana, Ccmar1 from Ceratitis capitata. 

 

 

In conclusion, SMARTpa is a mariner-like transposable element. The similarity among 

mariner-elements in structure and sequence suggest a common origin of these 
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transposons. In the genetic study of Strongyloides, SMART has the potential to be served 

as a tool for genetic manipulation, comparable to Tc1 in C. elegans. 

 

4.3.4 Materials & methods 

 

Culturing Strongyloides 
 

S. papillosus used this study (isolate LIN) was originally isolated from naturally infected 

lambs at the agricultural experimental field station Oberer Lindenhof of the University 

Hohenheim, Stuttgart that is located in Baden-Württemberg, Germany (Eberhardt et al. 

2007). 

 

The infected rabbits were kept in cages with perforated bottoms and feces were collected 

in a tray with wet paper towels. The fecal pellets were crushed and mixed with sterile 

sawdust such that the sawdust contributed one third to one half of the total volume. The 

mixture was moisturized with tap water and placed in a 9 cm Petri dishes and incubated 

at 25 °C in a moisture saturated atmosphere. 

 

To isolate iL3s, from which later DNA was extracted, the cultures in the 9 cm Petri dishes 

were placed without a lid in a 15 cm Petri dish that was filled with tap water up to 1-3 

mm below the edge of the inner dish. The 15 cm dish was covered with a lid and incubated 

at 25 °C in a water saturated atmosphere. Since infective L3 have a tendency to disperse 

out of the culture dish, the iL3s were collected at the bottom of the 15 cm Petri dish after 

6-9 days. 
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Genomic DNA preparation 
 

Infective L3s of S. papillosus were collected as described above. Subsequently, Genomic 

DNA was isolated from the parasites using the Sigma GenElute Mammalian Genomic DNA 

Miniprep Kit (G1N350) according to the manufacturer’s instructions. Briefly, worms (50-

100 mg) were lysed in lysis buffer supplemented with RNase at 50 °C for 4 hours. 

Proteinase K was added to the extract and incubated at 50 °C for 2 hours. The lysate was 

applied to a column. The eluted genomic DNA was ethanol precipitated and dissolved in 

TE buffer, and its concentration and purity determined using a Nanodrop spectro 

photometer. 

 

Isolation of S. papillosus SMART sequence 
 

The initial partial S. papillosus SMART transposase consensus sequence 

“consensus_minus9_10” (see Appendix) was provided by Adrian Streit. It had been 

obtained in the following way. Based on the ITR sequences of S. stercoralis 

(communicated by H. Massey and J. Lok, University of Pennsylvania) primer AS2819 (5' 

TATTAGGTTGTCCCATATKAAATG 3') was designed and used for PCR amplification with 

genomic S. papillosus DNA as template. The PCR products were cloned into TOPO4 and 

several clones were sequenced resulting in consensus_minus9_10. This consensus 

sequence (consensus_minus9_10) was used to design inverse primers (see Table 2.1 

below) to obtain the sequence of inverted terminal repeats. According to their directions 

on SMARTpa sequence, these primers are used as pair as AS2890 & AS2891, LG2924 & 

2925, LG2947 & LG2948, LG2948 & LG2949, LG3225 & LG3226, LG3229 & LG3230, 

LG3247 & LG3247, LG3256 & LG3257. The primers (LG3120, 5' AATATTAGGTTGTCCAG-
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AATGAAATG 3'; LG3121, 5' AATATTAGGTTGTCCCATCCAAGATG 3') against consensus 

ITR sequence were used to amplify SMARTpa sequences.  

 

Primer ID Primer sequence (5' → 3') Direction 

AS2890 GAGAAAACACGCGTCAAACAACG Reverse 

AS2891 AAGCTTGTATCTCGTTGGCAAC Forward 

LG2924 CATTAGTACCGCGTTTGAACTC Reverse 

LG2925 AGAAATGACCCATTTCTARGTCG Forward 

LG2947 GCTTCATCCTTGTCCAACCATT Reverse 

LG2948 GAATMAATAAGCTYGTATCTCGTTGG Forward 

LG2949 CTAATTCSCTCARTTTCTGRASG Reverse 

LG3225 TCGTTATTGTTTCCTGCCCGTA Forward 

LG3226 CGTCTTCCCAAAATCATGGAAT Reverse 

LG3229 GTTATTGTTTCCTGCCCGTAG Forward 

LG3230 TTACGTCTTCCCAAAATCATGG Reverse 

LG3246 TACTTATAATAATGAGAAAACAGTCAG Forward 

LG3247 GAAAGTTTGGTGGTCAATAAAG Reverse 

LG3256 TAATAATGAGAAAACAGTCAGA Forward 

LG3257 AATAAAGTATGCTATCGCC Reverse 

 

Table 2.1: The transposase primers in reverse PCR. 

 

Copies of S. papillosus SMART ITRs were isolated by inverse PCR as follows: per reaction, 

one microgram each of genomic DNA of S. papillosus was digested with the restriction 

endonucleases EcoRV, HincII, HaeIII, RsaI respectively in a total volume of 20 μl. One 

hundred nano gram digested DNA fragments were ligated in the volume of 1 ml in order 

to circularize the molecules. The ligation product was then extracted with 

phenol/chloroform; precipitated with 2 volumes of ethanol; washed with 70% ethanol; 
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re-suspended in 20 μl DNase free water. The ligation mix was used as template for inverse 

PCR using inverse primers against transposase sequences. The PCR products were gel 

purified and isolated with the QIAquick Gel Extraction kit from Qiagen (Cat. No. 28706) 

and TA cloned into TOPO TA cloning vector (Cat. No. K4575-02) from Invitrogen and 

subsequently sequenced with T3 and T7. 

 

To amplify whole length transposase genes, primer LG3120 (5' AATATTAGGTTGT-

CCAGAATGAAATG 3') and LG3121 (5' AATATTAGGTTGTCCCATCCAAGATG 3') were 

designed against the consensus sequence of the ITRs. Fifty microgram genomic DNA was 

used as template in PCR reactions (94 °C for 30 sec, 53 °C for 30 sec and 72 °C for 3 min, 

35 cycles). The PCR products were purified, cloned and sequenced as described above. 

The sequences were aligned using MegAlign of Lasergene. 

 

Sequencing reaction 
 

The cloned ITR and SMART sequences in TOPO vector were sequenced in the reaction mix 

of 2 μl 5X Sequencing Buffer, 0.5 μl Cycle Sequencing Mix of BigDye Terminator 

Sequencing Kit from Applied Biosystems, 0.5 μl 10 pmol sequencing primer in a volume 

of 10 μl, following the condition 94 °C for 20 sec, 50 °C for 10 sec and 72 °C for 4 min, 35 

cycles. 

 

Phylogenetic analysis 
 

The entire transposase ORFs of SMARTpa and related representative elements were 

selected for construction of the phylogenetic tree. The following sequences were included 
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in the analysis: (Tc1-like (AAD12818) and Tc1 (P03934) from C. elegans, HcTc1 

(AAD34306) from Haemonchus contortus, TCb1 (CAA30681) from C. briggsae, Bmmar1 

(U47917) and Bmmar6 (AAN-06610) from Bombyx mori, Himar1 (ABB59013) 

mutagenesis vector pFNLTP16H3, Cpmar1 (AAC46945) from Chrysoperla plorabunda, 

Bytmar1-11 (CAD45369) from Bythogreae thermydron, Dtesmar1 (AAC28261) from D. 

teissieri, Dsecmar1 (AAC16609) from D. sechellia, Mbmar1 (AAL69970) from Mamesta 

brassicae, XP 001099426 from Macaca mulatta, SETMAR (ABC72092) from Cercopithecus 

aethiops, Hsmar1 (AAC-52010) from Homo sapiens, Aamar1 (BAA21826) from Attacus 

atlas, Funmar1 (BAB-32436) from Fungia sp., Famar1 (AAO12863) from Forfiula 

auricularia, Ammar1 (AAO12861) from Apis mellifera, Ccmar2 (AAO12864) from Ceratitis 

capitata, Camar1 (AAO12862) from Chymomyza amoena, Acmar1 (BAB86288) from Apis 

cerana, Ccmar1 (AAB17945) from Ceratitis capitata). Alignments of amino acid sequences 

of functional domains were accomplished with MUSLE (Edgar 2004). Alignment curation 

was finished with Gblocks (Castresana 2000). A phylogenetic analysis was performed on 

this blocked sequence alignment using PROTDIST of PHYLIP and a tree was constructed 

using the neighbor joining method with BioNJ (Gascuel 1997). The resulting phylogenetic 

trees were displayed using Njplot. Statistical significance of branching points was 

evaluated with 1,000 repetitions of a bootstrap analysis. The protein sequences used in 

this analysis were obtained directly from the GenBank entries, or the protein sequences 

were predicted by translating the nucleotide sequences provided in GenBank. 
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