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I. Introduction

Natural language use is full of choices among multiple
possible alternatives, whether phones, words, or construc-
tions, which are influenced by a large number of contextual
factors, and which rather exhibit asymptotic, imperfect
tendencies favoring one or more of the alternatives, instead
of single, categorical, perfect choices. This contrasts with
item-by-item learning in simple controlled experiments
which typically have been modelled by the Rescorla-
Wagner equations [14]. We find the former “messy” types
of problems to be a key area of interest in modelling and
understanding language use, and consequently consider
the application of the Rescorla-Wagner equations – in the
form of a Näıve Discriminative Learning classifier – to such
complex phenomena of considerable utility in linguistic
research.

Näıve Discrimative Learning (NDL) [6], [5], as imple-
mented by Arppe et al. [4], performs linguistic classifica-
tion on the basis of direct associations between cues and
outcomes, which are learned incrementally according to
the Rescorla-Wagner (R-W) equations [14], [11].

Danks [8] argued that if the R-W equations successfully
acquire the true associations between cues and outcomes,
they should approximate an equilibrium state in which
the expected change in association values is zero if a cue-
outcome event is randomly presented to the learner. This
equilibrium state can be computed directly by solving a
matrix equation, without carrying out many iterations of
R-W updates, making NDL attractive as an efficient learn-
ing technique for quantitative investigations in linguistics.
The use of the Danks equilibrium also circumvents the
problem that a simulation of an R-W learner does not
truly converge to a single state unless the learning rate is
gradually decreased.

It is well known that the R-W equations are related
to neural networks (through the “delta rule” for gradient-
descent training of a single-layer perceptron) and to linear
least-squares regression (e.g. [10], [8], [6]). Furthermore,
empirical observations have shown that, compared to other
statistical classification techniques (such as support vector
machines, random forests, or memory-based learning),
NDL appears to be most similar to logistic regression with
respect to overall prediction accuracy, agreement among

individual predicted outcomes, and the distribution of
estimated probabilities [3]. However, many authors do not
seem to be aware of the true depth of these similarities
and of their implications.

While precise results on the correspondence of the R-W
equations with a certain single-layer perceptron [16, p.
155f] and with least-squares regression [15, p. 457] are
available, they are scattered across various publications,
presented in different notations, and often stated without
a full, self-contained derivation. The most comprehensive
treatment of the relation between R-W and various types
of neural networks is a recent monograph by Dawson [9].
Dawson combines a mathematical comparison with various
simulation experiments, but he rejects neural networks
with a linear activation function as inappropriate [9, p.
11] and consequently does not discuss the connection to
least-squares regression at all.

In this paper, we collect and explain the precise equiva-
lences between the R-W model, neural networks, and least-
squares regression, using a consistent notation and giving
mathematical derivations where appropriate. In Sec. II we
present different forms of the R-W equations, including the
stochastic version implicitly used by [8]. We then show
that R-W is identical to gradient-descent training of a
single-layer feed-forward neural network, which we refer
to as a single layer perceptron (SLP)1 here (Sec. III).
Based on this result, we give a new, simpler derivation
of the equilibrium conditions of [8] and prove that they
correspond to the solution of a linear least-squares re-
gression problem (Sec. IV). Sec. V briefly addresses the
similarity between R-W and logistic regression. Finally
we discuss some consequences of these new insights in
Sec. VI and complement them with preliminary simulation
experiments.

II. The Rescorla-Wagner equations

This section gives a mathematically precise definition
of the R-W model, following the notation of [8]. The
purpose of the R-W equations is to determine associations
between a set of cues C1, . . . , Cn and a single outcome O
in a population of event tokens (c(t), o(t)), where c(t) =

1The term SLP is often reserved for a particular form of such a
single-layer network using a Heaviside activation function. Here, we
use it more generally to refer to any single-layer feed-forward network.



(c
(t)
1 , . . . , c

(t)
n ) is a vector of cue indicators for the event t

and o(t) an indicator for the outcome O. Formally,

c
(t)
i =

{
1 if Ci is present

0 otherwise
o(t) =

{
1 if O results

0 otherwise
(1)

for t = 1, . . . ,m (and m =∞ can be allowed). We assume
that one of the cues is a “background stimulus” that is
always present, e.g. c

(t)
1 ≡ 1. This is necessary in order

to obtain full equivalence with least-squares regression.
It is also intuitively plausible: without the background
stimulus, the learner would not be able to expect the
outcome O in the absence of any explicit cues.

When presented with an event (c, o), the R-W equations
update the associations Vi between the individual cues and
the outcome according to Eq. (2), which is a more formal
notation of Eq. (1) from [8, p. 111].

∆Vi =


0 if ci = 0

αiβ1
(
λ−

∑n
j=1 cjVj

)
if ci = 1 ∧ o = 1

αiβ2
(
0−

∑n
j=1 cjVj

)
if ci = 1 ∧ o = 0

(2)

Here, αi is a measure of the salience of cue Ci, β1 and
β2 are learning rates for positive (o = 1) and negative
(o = 0) events, and λ is the maximal activation level of
the outcome O. A simplified form of the R-W equations
proposed in the context of artificial neural networks [17]
assumes that α1 = · · · = αn = 1, β1 = β2 = β and λ = 1
(known as the Widrow-Hoff or W-H rule).

We will make the assumption that β1 = β2 = β from
here on, but put no restrictions on αi or λ. The R-W
equations can then be combined into a single formula

∆Vi = ciαiβ

λo− n∑
j=1

cjVj

 . (3)

In linguistics, NDL is often used to model a natural learn-
ing process, where event tokens are randomly sampled
from the population, rather than a controlled experimental
procedure. In this case, there is little point in studying
the associations acquired by one particular learner after
a given number of training events, i.e. the sequence of
association vectors V(t) = (V

(t)
1 , . . . , V

(t)
n ). We are rather

interested in the typical associations obtained by averaging
across a large number of learners, i.e. the expected values
E[V(t)], and in how much variability there is between
individual learners. Correspondingly, the events (c(t), o(t))
are interpreted as i.i.d. random variables sampled from
the population of event tokens. As will be shown in the
following section, we can use theoretical arguments to
determine the asymptotic behaviour limt→∞E[V(t)] of R-
W learning, and we can carry out simulation experiments
in order to study variability between learners.

Since the event (c(t), o(t)) at time t is independent from
the current associations V(t), we can take expectations on
both sides of Eq. (3) to obtain E[V(t+1)] = E[V(t)] +

E[∆V(t)] with

E[∆V
(t)
i ] = αiβ

λE[oci]−
n∑
j=1

E[cicj ]E[V
(t)
j ]


= αiβ

λP (O,Ci)−
n∑
j=1

P (Ci, Cj)E[V
(t)
j ]

 .

(4)

Note that E[cicjVj ] = E[cicj ] · E[Vj ] because the random
variable Vj is independent from the ci and cj , that the
expectation of the product oci of two indicator variables
is the co-occurrence probability of the two events, i.e.
E[oci] = P (O,Ci), and that E[cicj ] = P (Ci, Cj) for the
same reason. Eq. (4) is identical to [10, Eq. (A-5)] except
for differences in notation.

Danks [8] argued that a successful R-W learner should
converge to an equilibrium state V = limt→∞E[V(t)]
of the expected association vector, where the expected
update E[∆V] = 0. From Eq. (4), we obtain the identity

λP (O,Ci)−
n∑
j=1

P (Ci, Cj)Vj = 0 (5)

for the Danks equilibrium, which is equal to his Eq. (11)
[8, p. 113] multiplied by P (Ci).

III. R-W and the single layer perceptron

We will now formulate a single-layer feed-forward neural
network (SLP) whose learning behaviour – with gradient-
descent training, which corresponds to the backprop algo-
rithm for a SLP and is also known as the “delta rule” in
this case – is identical to the R-W equations with equal
positive and negative learning rates β1 = β2 (but no
other restrictions). The SLP requires a slightly different
representation of events as pairs (x(t), z(t)) with

x
(t)
i =

{
ai if Ci is present

0 otherwise
z(t) =

{
λ if O results

0 otherwise

(6)

Here, ai > 0 is a (different) measure of the salience of cue
Ci and λ > 0 the maximum activation of outcome O. Note
that the event representation (x, z) is connected to the
representation (c, o) through the equivalences xi = aici
and z = λo. In the simplified W-H case, the two represen-
tations are identical.

The SLP computes the activation of the outcome as a
linear combination y =

∑n
i=1 wixi of the input variables,

where w = (w1, . . . , wn) is the weight vector of the
network. It uses a linear activation function h(y) = y and
a Euclidean cost function for the difference between y and
the desired activation level z. The cost associated with a



given event token (x, z) is thus

E(w,x, z) = (z − y)2 =

(
z −

n∑
i=1

wixi

)2

. (7)

For batch updates based on the full population of event
tokens, the corresponding batch cost is

E(w) =

m∑
t=1

E(w,x(t), z(t)). (8)

If smaller batches are used, the sum j ranges over a subset
of the population for each update step, or a single token
in the extreme case of item-by-item learning.

Presented with a single event token (x, z), gradient-
descent training of the SLP updates the weight vector by

∆wi = −δ ∂E(w,x, z)

∂wi
(9)

where δ > 0 is the learning rate and the gradient ∂E/∂wi
is given by

∂E(w,x, z)

∂wi
= 2(z − y)(−xi) = −2

(
z −

n∑
j=1

wjxj

)
xi.

(10)
Inserting the equalities xi = aici and z = λo, we obtain

∆wi =


0 if ci = 0

2δai
(
λ−

∑n
j=1 cjajwj

)
if ci = 1 ∧ o = 1

2δai
(
0−

∑n
j=1 cjajwj

)
if ci = 1 ∧ o = 0

(11)

Comparing this with Eq. (2), we can set Vj = ajwj , i.e.
we interpret the weight vector w of the SLP as salience-
adjusted cue-outcome associations. With ∆Vi = ai∆wi,
we obtain

∆Vi =


0 if ci = 0

2δa2i
(
λ−

∑n
j=1 cjVj

)
if ci = 1 ∧ o = 1

2δa2i
(
0−

∑n
j=1 cjVj

)
if ci = 1 ∧ o = 0

(12)

which is identical to the R-W equations for β1 = β2 = 2δ
and αi = a2i .

The assumption β1 = β2 can be relaxed if we change
the representation of events to

x
(t)
i =


ai if ci = 1 ∧ o = 1

ai

√
β2

β1
if ci = 1 ∧ o = 0

0 otherwise

(13)

i.e. if we allow the salience of cues to differ between positive
(o = 1) and negative (o = 0) events; the scaling factor
β2/β1 is the same for all cues Ci. We do not pursue this
extension further here because – unlike other parameters
of R-W – the ratio between positive and negative learning
rates has a complex effect on the equilibrium state. As [8]
has already observed, neither the cue saliences αi nor the
overall learning rate β = β1 = β2 affect the equilibrium
and the maximum activation level λ merely results in a
linear scaling.

IV. R-W and least-squares regression

We have shown in Sec. III that the R-W equations
describe the gradient-descent training of a SLP for the
linear regression problem

min
w

E(w) = min
w

m∑
t=1

E(w,x(t), z(t)). (14)

This equivalence holds generally, not only in the case of
the simplified W-H rule. Thus, both R-W and our SLP
aim to solve the same least-squares regression.

If the training procedure is successful, the weight vector
w should approach the least-squares solution of the regres-
sion problem. With item-by-time updates (corresponding
to the behaviour of a single R-W learner), convergence
cannot be achieved unless the learning rate is gradually
reduced.2 With batch updates based on the entire popu-
lation of event tokens, the cost E(w) is a convex function
of w and the gradient descent procedure converges to its
unique minimum after a sufficient number of iterations.3

Since batch updates compute the average of Eq. (12) over
all event tokens, they correspond to R-W updates for the
expected associations E[V(t)] according to Eq. (4).

In order to express Eq. (14) more concisely, we define an

m×n matrix X = (x
(t)
i ) = (xti) of cues for all event tokens

in the population. The rows of this matrix correspond to
event tokens t, the columns to cues i; i.e. row number t
contains the input vector x(t). The particular ordering of
the event tokens is irrelevant. We also define the column
vector z = (z(1), . . . , z(m)) = (z1, . . . , zm) of outcomes
and recall that w = (w1, . . . , wn) is a column vector of
SLP weights. The batch cost can now be written as a dot
product

E(w) =
(
z−Xw

)T (
z−Xw

)
. (15)

The least-squares solution must satisfy the condition
∇E(w) = 0, which leads to the so-called normal equations
[7, p. 142]

XTXw = XT z. (16)

In the case of the W-H rule, X is a coincidence matrix
between cues and events, with xti ∈ {0, 1}, and z is a
vector of indicator variables zt ∈ {0, 1}. A straightforward
calculation shows that XTX is a square matrix of co-
occurrence counts between cues:

(XTX)ij =

m∑
t=1

xtixtj = f(Ci, Cj).

2In fact, item-by-item updates do converge if the regression prob-
lem is linearly separable, i.e. if perfect predictions can be achieved.
This situation is highly unlikely in linguistic applications of NDL,
though.

3In fact, the minimum of E(w) might not be unique under certain
circumstances, viz. if the correlation matrix of the cues is not positive
definite; cf. [8, pp. 115–116] for the special case of “coextensive”
cues. In order to keep the discussion straightforward, we assume the
general case of a unique minimum in the present paper.



Similarly, XT z is a vector of co-occurrence counts between
the cues and the outcome O:

(XT z)i =

m∑
t=1

xtizt = f(Ci, O).

Dividing Eq. (16) by m, we obtain Eq. (5) with λ = 1, i.e.

P (O,Ci)−
n∑
j=1

P (Ci, Cj)Vj = 0

which is the same as Danks’s Eq. (3) [8, p. 112] with
rows multiplied by P (Ci). Since linear regression is invari-
ant wrt. the salience factors ai (the weights are simply
adjusted by reciprocal factors 1/ai to achieve the same
regression predictions) and scales linearly with λ, equiv-
alence to the equilibrium conditions [8, pp. 112–114] also
holds for arbitrary values of ai and λ.

In the general case where the regression problem has a
unique solution, XTX is symmetric and positive definite.
It can therefore be inverted and the least-squares solution
is given by

w∗ = (XTX)−1XT z. (17)

Standard statistical software such as R [13] can be
used to compute w∗ reliably and efficiently. This least-
squares solution corresponds to the equilibrium state V =
limt→∞E[V(t)] of the R-W learner. If we are mainly
interested in such an asymptotic equilibrium, it is not
necessary to carry out the iterative training procedure of
the R-W model or the neural network, and there is no need
to worry about convergence of the training.

V. R-W and logistic regression

If the goal of an NDL application is to make a prob-
abilistic prediction about the outcome O based on cues
Ci, most machine-learning textbooks would recommend
logistic regression [7, p. 205] instead of a least-squares
approach. Logistic regression can be understood as a SLP
with logistic activation function

h(y) =
1

1 + e−y
(18)

and y =
∑n
i=1 wixi. Since 0 ≤ h(y) ≤ 1, it can be

interpreted as the predicted probability of the outcome
O (i.e. of o = 1) given the cues x1, . . . , xn. The accuracy
of a prediction is assessed by the Bernoulli cost

E(w,x, o) =

{
− log h(y) if o = 1

− log(1− h(y)) if o = 0

= −o log h(y)− (1− o) log(1− h(y))

(19)

which indicates how well the SLP was able to predict
the presence or absence of the outcome. Item-by-item
gradient-descent training leads to updates of the form

∆wi = −δ ∂E(w,x, o)

∂wi
(20)

with
∂E(w,x, o)

∂wi
= (h(y)− o)xi (21)

according to [7, p. 205]. Interpreting the weights wi as
salience-adjusted associations Vj = ajwj as in Sec. III and
keeping in mind that xi = aici, we obtain a form that is
strikingly similar to the R-W equations.

∆Vi =


0 if ci = 0

δai

(
1− h

(∑n
j=1 cjVj

))
if ci = 1 ∧ o = 1

δai

(
0− h

(∑n
j=1 cjVj

))
if ci = 1 ∧ o = 0

(22)
The only difference from Eq. (2) is that the total associ-
ation computed by the learner is now transformed into a
probability by the logistic activation function h(y).

Therefore, it would be particularly interesting to ob-
serve the behavior of such a logistic regression learner
and compare it in detail with an NDL learner based on
the R-W equations, using both synthetic data sets and
real linguistic data. General rules-of-thumb for logistic
regression recommend at least 10 or 20 times as many dat-
apoints as there are variables (i.e. cue-outcome pairings)
in order to gain a valid and reliable model (e.g. [12]; [1,
p. 116]). The same recommendation is usually given for
linear regression in order to avoid overfitting, but there
is one important difference between the two approaches.
If the number of cues is sufficiently large, the learning
problem becomes separable and the system can in principle
make perfect predictions. In this case, the weights w of
the logistic regression learner will diverge in an attempt
to predict a probability of p = 1 (wi → ∞) or p = 0
(wi → −∞). NDL, on the other hand, will easily reach the
perfect solution as an equilibrium point, with well-behaved
and interpretable cue-outcome association strengths V.
Experimental evidence found by Arppe and Baayen [3]
corroborates this analysis.

VI. Consequences

We have shown that R-W association learning, a linear
SLP neural network and linear regression are fully equiv-
alent and should ideally lead to the same least-squares
solution. As long as a researcher is only interested in the
final result of associative learning, not in the iterative
process itself, it is sufficient to calculate the least-squares
solution directly from Eq. (17). Essentially, the R-W
salience factors αi have no effect on the learning result –
because linear regression is not sensitive to such a scaling
of the input variables – but only on the learning process:
associations for cues with high salience αi are learnt faster
than for other cues. The parameter λ leads to a (trivial)
linear scaling of the learning result, but has no effect on
the learning process. Only different learning rates β1 6= β2
affect the equilibrium solution, because they modify the
matrix XTX in a non-trivial way. Eq. (13) suggests that
β1 and β2 can be understood as salience measures for



Fig. 1. Simulation results for a Finnish think dataset with selected
linguistic contextual features (cues) and verbs (outcomes), using (i)
R-W learning within a randomized version of the original dataset
(3404 datapoints) (ii) R-W learning with a non-randomized version of
the dataset (3404 datapoints), and (iii) R-W learning with a 10-fold,
randomized multiple of the dataset (altogether 34040 datapoints). R-
W cue-outcome association values shown as a solid line; correspond-
ing equilibrium association values as a dotted line.

Fig. 2. Simulation results for a tiny, artificial dataset of English nouns
and their pluralizations (10 types with 419 tokes), with selected or-
thographical unigraph features (cues) and lemmas (outcomes), using
R-W learning with a 200-fold, randomized version of the dataset [6,
Extension of Fig. 4]. R-W cue-outcome association values shown as
a solid line; corresponding equilibrium association values as a dotted
line. N.B. In the underlying representation of cues and outcomes in
this example, and the subsequent calculations of their incremental R-
W associations weights, multiple occurrences of the same cue within
the same event, i.e. s in lass, are encoded as distinct cues (cf. the
manual page for the plurals dataset in the ndl package [4]).
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Fig. 3. Distributions of instance-wise estimated maximal associations
(NDL) and probabilities (GLM) using the Finnish think dataset
(n = 3404).

positive and negative outcomes. Changing the prevalence
of positive and negative events in the population – in
proportion to β1 and β2 – would have the same effect.

If R-W association learning or SLP training does not
approximate the least-squares solution, it can arguably
be considered to have failed. The only research question
of interest that requires R-W iteration or application of
the delta rule is thus: Under which circumstances and for
which parameter settings does the R-W iteration converge
to or at least approximate the linear regression? This is
particularly relevant for single-event updates (according
to the R-W equations), which are much less robust and
lead to larger fluctuations than batch updates. We plan to
study these issues with the help of simulation experiments.

For instance, with a real dataset on the relationship
between 46 linguistic contextual features as cues and 3404
occurrences of 4 near-synonymous Finnish think verbs as
outcomes [1], [2], [4], the cue-outcome associations arising
from a simulation of R-W learning (using the default
parameters) do appear to converge to the equilibrium val-
ues eventually (Fig. 1). For the non-equivocal contextual
features that occur, to a higher or lower degree, with multi-
ple outcomes (e.g. AgentGroup and AgentIndividual
with pohtia), this convergence seems to happen early, well
within the course of the dataset. In contrast, with near-
categorical features that in practice occur with only one of
the four outcomes (e.g. the near-categorical co-occurrence
of PatientInfinitive with ajatella vs. the categorical
non-occurrence of PatientDirectQuote with this same
verb), convergence appears to happen much slower, so
that multiple iterations over the full data set (as many
as five or more times) are needed to approximate the
equilibrium state. Furthermore, this simulation clearly
shows, particularly in the case of AgentIndividual and
pohtia, a remaining, sometimes quite substantial oscil-
lation in the cue-outcome associations weights. In this
respect, establishing how the learning parameters β1 and
β2 might be adjusted in the course of the R-W learning
process would be worthwhile. Interestingly, for the quasi-
perfect cases, it does not seem to have an effect on the
asymptotic result of R-W learning whether the order of
datapoints is randomized in the learning process or not,



in contrast to reservations in [8, p. 119] – but for the
non-equivocal cases, the assumption of randomized order
appears motivated. Of course, in all this one generally
presumes that the proportions of the cue-outcome co-
occurrences are the same in the overall population from
which the dataset has been sampled.

In contrast, using a tiny, artificial dataset for English
nouns and their pluralizations (10 types with 419 tokes),
with orthographical unigraph features as cues and lemmas
or number as outcome [6, Fig. 4], the cue-outcome associ-
ation weights arising from R-W learning do not show signs
of converging to the equilibrium values at all in some cases,
even after 200 iterations over the randomized dataset, e.g.
for ‘s’ as cue and plural as outcome, or ‘s’ as cue and
‘as’ as outcome (Fig. 2).4

VII. Open questions and future work

Having established NDL as a form of linear least-
squares regression, with its well-known drawbacks (e.g. a
propensity for overfitting the training data, especially if
there is a large number n of cues), it will be interesting
to contrast it with more state-of-the-art machine learning
techniques, as a systematic follow-up and analysis of the
empirical observations in [3].5 Using real linguistic data
sets, we plan to pursue further the mathematical analysis
and empirical study of (i) logistic regression (a subtype of
the Generalized Linear Model, GLM), which is considered
more appropriate for categorical data than linear least-
squares regression, and (ii) regularization techniques for
logistic as well as linear regression, which control over-
fitting and encourage sparse solutions. Finally, as NDL
through the R-W equations is based on a model of human
learning, an interesting avenue for further research would
be to compare cue-outcome associations weights (based
on applying NDL to corpus data that represent naturally
produced language) with experiments that would hone in
on the cognitive processing of the same linguistic stimuli
by human participants.
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