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Abstract—Computational historical linguistics is a young and
new field. Among it’s major challenge is the collection and
preparation of suitable data resources. Here we present an
approach that takes lexical data taken from a large collection
of publicly available wordlists as input and infers automatic
assessments regarding the cognacy of words and sounds. We
illustrate the workflow and test it by comparing the results
obtained from the computation of Maximum Likelihood trees
with those provided by experts. The results show that our
workflow still lags behind simpler approaches which analyze
the data within a distance-based framework. However, since
distance-based analyses bear a blackbox character, not allowing
for a rigorous check of the individual decisions which lead to
a certain classification proposal, we think that our experiments
are an important contribution towards the establishment of more
transparent methods in quantitative historical linguistics.

I. INTRODUCTION

Computational historical linguistics is a still very young
but thriving new field. One of the major challenges it cur-
rently faces is the collection and preparation of suitable
data resources. There is a plethora of sophisticated methods
and techniques — often adapted from computational biology
— allowing very detailed and fine-grained inferences about
language change. Bayesian phylogenetic inference is a prime
example. These methods, however, require data to be organized
in character matrices, i.e. languages have to be categorized
according to a collection of (historically informative) discrete
features. High quality data of this type are currently only
available for a small number of language families, such as
Indo-European and Austronesian.

An alternative approach, currently pursued mostly in the
connection with the Automated Similarity Judgment Program
(ASJP) http://asjp.clld.org/, deploys pairwise se-
quence alignment and distance-based phylogenetic inference
methods. These techniques are comparatively shallow and
provide little information about the actual processes underlying
the observed linguistic diversity. On the other hand, they can be
used with fairly raw, un-processed data, such as the collection
of over 6,000 phonetically transcribed 40-item Swadesh lists
collected by the ASJP community. Therefore this approach has
a much wider scope as suitable data are available for all extant
language families.

In this paper we propose a workflow for bringing ASJP data
into the character-matrix format, and we present results from
a pertinent pilot study. For this we use the flat techniques for
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Fig. 1. Workflow of the PMI Analysis.

processing ASJP data being proposed in [1] as stepping stone
to infer lexical and phonetic characters for a substantial portion
of ASJP. The quality of the results is assessed by using the
expert classification from Glottolog (http://glottolog.
org/) as gold standard.

II. PMI ANALYSIS OF ASJP DATA

In [1], [2] a collection of method for pairwise string align-
ment and the calculation of pairwise dissimilarities between
ASJP word lists is proposed. These will be used as baseline
in this paper. As the notion of Pointwise Mutual Information
between sound occurrences play a central role in this approach,
we will call the entire suite of methods “PMI analysis”.

The workflow of the PMI analysis (as spelled out in [1])
can be described as shown in Figure 1. We deviate from [1] in
three minor points: (a) we used the entire ASJP database for
training PMI scores (while [1] only uses half of it to separate
training and test data), (b) we transformed the distances pro-
duced in step C according to the function f(x) = − log(1−x)
(monotonically mapping values in (0, 1) to values in (0,∞)),
and (c) for step D we used an improved variant of the
Neighbor Joining algorithm as implemented in the fastme
software [3] (first computing the Neighbor Joining tree and



then performing a heuristic search minimizing the ordinary
least square criterion via Nearest Neighbor Interchange).

This collection of methods is highly successful in identify-
ing language families. For some language families, the family-
internal structure inferred this way is also in very good agree-
ment with the expert classification, while for other families,
the fit is mediocre or even poor. (Uralic would be an example
for an “easy” family whose internal structure is recovered
almost perfectly by the PMI method, while Austronesian or
Algic are “hard” families. Experience shows that hard families
are also hard for other ASJP-based phylogenetic techniques,
so the large variance between families is arguably due to
the varying informativeness of the ASJP word lists rather
than the algorithmic techniques, but this point still requires
further investigation). In any event, to our knowledge the PMI
methods suite is among the most successful approaches to infer
phylogenies from ASJP data currently on the market. It essen-
tially rests on the intuition that the closer two languages are
related, the more similar are, on average, the wordforms these
languages use for a given concept. The wordforms w1, w2

from languages L1, L2 (for a given concept) can be dissimilar
for two reasons: (a) they are etymologically unrelated or
(b) they are cognate but underwent sound changes. So the
PMI approach implicitly captures information both regarding
phonetic and lexical change. One of the objectives of the
current study is to factorize these two sources of phylogenetic
signals.

As will be spelled out below, both the pairwise sequence
alignments from step B and the final tree computed in step D
will be used for scaffolding the character-based methods to be
developed.

III. DATA

We selected the 6,080 doculects from ASJP that (a) are
recent or went extinct after 1750, (b) represent neiter pidgins
nor creoles nor artificial/fake languages, and (c) have entries
for at least 28 of the 40 ASJP concepts. Those doculects
were split into language families according to the Glottolog
classification. Only language families containing between 10
and 70 doculects were considered, as (a) very small fami-
lies provide too little phylogenetic information and (b) large
families couldn’t be analyzed adequately with the available
hardware and software within a reasonable amount of time.
The families Ainu (actually a language isolate that is, however,
represented with 20 dialects in ASJP) and Eastern Trans-
Fly are not internally structured according to the Glottolog
information provided in the ASJP meta-data. As there is thus
no expert phylogenetic information about those two families,
they were excluded from analysis as well. This left us with
1,217 doculects from 48 families.

IV. METHODS

Starting from ASJP word lists and the PMI analysis [A],
we will perform automatic cognate detection [B], multiple
sequence alignment within automatically detected cognate
classes [C] and filter out those lexical and phonetic characters
exhibiting a large amount of homoplasy [D].1 This results

1The scripts and the data we used to run these analyses along with a detailed
description of how to replicate the workflow are provided in the supplementary
material accompanying this paper.
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Fig. 2. Workflow for the Factoring of Lexical Data.

in a character matrix for each language family considered
here. This workflow is graphically depicted in Figure 2. The
quality of these character matrices are evaluated by computing
a phylogenetic tree via Maximum-Likelihood inference and
comparing it to the Glottolog classification.

A. Cognate detection

The entries for the concept slots in the word lists for
each language family were automatically clustered into au-
tomatically detected sets of homologous words (henceforth
called ADH). This was done with help of the LexStat program
[4], [5] provided as part of the LingPy software package [6]
(http://lingpy.org). LexStat offers different algorithms
for automatic cognate detection which vary in complexity.
Since our datasets are small regarding the number of words
per language, we chose the “SCA” method for cognate detec-
tion over the more accurate but also more time-consuming
“LexStat” method which is more suitable to be applied to
datasets containing more words per language. This method
identifies potentially homologous words in two stages (see
Fig. 3 AB): [A] Distance Calculation: In an initial stage, all



words in a given concept slot are compared using the Sound-
Class Based Phonetic Alignment algorithm (SCA, [5], [8]).
From the alignments, distance scores are retrieved using the
formula proposed in [9]. [B] Flat Clustering: The distance
scores are then used to partition the words into ADHs, using
a flat version of the average linkage algorithm (UPGMA
[10]) which terminates when clusters exceed the user-defined
threshold of average distances. The result is a word list in
which all words are assigned to a specific ADH (Fig. 3
[C]). LexStat as implemented in LingPy offers a certain range
of alternative partitioning (flat cluster) algorithms, including
Markov Clustering [16] which is very common in biology and
seems to outperform alternative approaches, such as k-means
[17] and affinity propagation [18], [19]. However, since the
alternative cluster algorithms have not been intensively tested
so far, we decided to stick to the defaults that LingPy provides,
also for the sake of making the replication of our workflow
easier for scholars who might be interested in taking them as
a starting point for further analyses.

In all our experiments, we used a threshold of 0.45 which
turned out to work fairly well in distinguishing cognate words
from unrelated ones. In order to allow for further computation,
the ADHs for each language family were then transformed
into a character matrix (Fig. 3 [D]). In such a matrix, each
row represents a doculect from a given language family and
each column a parsimony-informative ADH, i.e., an ADH
that includes or excludes at least one doculect. The cells
indicate the presence or absence of all ADHs for a given
doculect. Starting from these character matrices, we calculated
the Maximum Likelihood phylogenetic tree for each language
family. (We assumed constant rates and a molecular clock.)

B. Homoplasy detection

A substantial number of the ADHs display a high amount
of homoplasy. This may be due to a variety of reasons.
Lexical change sometimes does exhibit genuine parallel de-
velopments.2 Additionally, there are also multiple sources of
spurious homoplasies, i.e. homoplastic characters not corre-
sponding to independent but parallel historical processes. Pos-
sible sources include (a) faulty cognate detection due to chance
resemblances between non-cognate word forms, (b) borrow-
ings, and (c) incomplete sampling in the compilation of the
ASJP word lists. As such characters weaken the phylogenetic
signal, we deployed a heuristics to detect and remove heavily
homoplastic characters based on the Maximum Parsimony
principle. Given a phylogenetic tree T and a character C with
a known state at each leaf, the parsimony score parsT (C) of
that character is the minimal number of mutations that has
to be assumed this distribution of values if the the character
evolved according to T . It can efficiently be computed [12].

The maximal number of mutations for a given character
would be achieved for a star-shaped tree where each leaf is an
immediate daughter of the root. Then the most parsimonious
reconstruction would reconstruct the most frequent state for
the root and assume one mutation for each leaf not being in

2This is discussed at length in [11]; it is pointed out there that it is fairly
common for cognate words in different lineages to independently undergo
identical semantic shifts. One example mentioned there is a meaning change
from foot to leg, which applied to descendants of Proto-Indo-European ‘*pod-’
both in Modern Greek and in modern Indic and Iranian languages.

this state. Conversely, the minimal number of mutations for C
would be achieved for a tree where each character state occurs
only within a contiguous sub-region of the tree; it equals the
number of different states minus 1.

The Retention Index (RI; cf. [13]) for a tree T and a
character C is defined as

RI(C, T ) = maxT ′ parsT ′(C)− parsT (C)

maxT ′ parsT ′(C)−minT ′ parsT ′(C)
.

(Recall that parsT (C) is character C’s parsimony score rela-
tive to tree T .) It measures how well T explains the distribu-
tion of states of C at the leafs. An RI of 0 is obtained for a
tree requiring the maximal amount of homoplasy for C, while
an RI of 1 means that T requires no homoplasy for C.

Using the PMI tree for each language family as reference
tree, we calculated the RI for each character. Characters with
an RI < 0.4 relative to the guide tree where excluded from
further analysis.

An example of such a highly homoplastic character would
be the following ADH (for the concept path):

Punjabi Majhi sarak
Romanian 2 cale
Yiddish Eastern dErEX

As these three doculects belong to different parts of the PMI
tree, each instance of that class has to be explained by a
separate mutation. Therefore the RI for this character is 0 and
it is being filtered out (which is linguistically correct as those
three words are in fact etymologically unrelated.3

C. Phonetic characters

Word lists contain information about (at least) two aspects
of language change: (a) semantic change, especially the pro-
cess where a language replaces a word form w1 by a non-
cognate word form w2 to express a certain meaning, and
(b) sound change, i.e. an individual segment within a word
form is added, deleted or replaced by a different segment.
Cognacy data only tap on the first type of information. To
also utilize phonetic information for phylogenetic inference,
we computed multiple sound alignments for each ADH that
were not excluded during the previous step.

Each occurrence of a sound class in each column of these
alignment blocks were treated as binary characters, and those
were arranged in a binary character matrix. As with cognacy
characters, we only included those characters that (a) included
at least two doculects, (b) excluded at least two doculects, and
(c) have a Retention Index > 0.4 relative to the PMI tree.

Here is an example for high homoplasy of phonetic char-
acters. Consider the following multiple alignment (obtained
using the T-Coffee algorithm; see below) for an ADH for leaf
from various Indo-European languages:

3The Majhi and Romanian words belong to different cognate classes
(http://ielex.mpi.nl/), and the Yiddish word is a direct borrowing
from Hebrew (Susan Rothstein, p.c.).
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Fig. 3. Automatic Cognate Detection and Character Matrix Creation.

Irish Gaelic di-L-og
Scottish Gaelic tu-L-ak
Manx do-lyak
Welsh d3il-En
Breton de-lien
Western Armenian de-r-ev
Eastern Armenian te-r-ev

This ADH is partially faulty as the Celtic words are not
cognates of the Armenian words.4 As the five Celtic doculects
are monophyletic in the PMI tree, as are the two Armenian
doculects, the parsimony score for this character is 2, so its
Retention Index is 0.833 and it is not filtered out. However,
the first column requires a parallel mutation from d to t
both in Scottish Gaelic and Eastern Armenian. This leads
to a Retention Index of 0 both for the binary characters
corresponding to the d and the t in that column, so both
characters are disregarded as being too homoplastic.

We compared two algorithms for automatic multiple se-
quence alignment: (a) Sound Class Based Phonetic Alignment
(SCA, [5]), as provided by the LingPy software package [6],
and a specific implementation of the T-Coffee algorithm which
was designed in such a way that it can directly build on the
inferences produced by the PMI analysis. In contrast to the
common heuristic strategies for multiple sequence alignment
(see [14]), the T-Coffee algorithm [15] uses a specific workflow
to build individual libraries for each set of sequences in order
to maximize the signal and their internal consistency [5].

T-Coffee alignment The problem of finding the optimal
multiple alignment for k sequences, each of which is of
length ≤ n, is polynomial in n but exponential in k. So
in the general case it is not possible to find the globally
optimal solution. A simple but appealing polynomial-time
approximation is progressive alignment. It requires a guide
tree, i.e. a binary tree over the sequences in question which

4The two Armenian words belong to one cognate class and the five Celtic
words to another (http://ielex.mpi.nl).
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Fig. 4. Progressive Alignment: Multiple alignment is performed block-wise
recursively from the tips to the root of a guide tree.

ideally captures the phylogenetic relationship between those
sequences. Each tip is augmented with a sequence. The tree
is then traversed tips-to-root, and at each non-terminal node
the optimal alignment between the words or alignment blocks
at its daughter nodes is computed. This can be achieved via
a straightforward generalization of the Needleman-Wunsch
algorithm [21] for pairwise alignments. At the root of the tree,
all sequences are aligned in one block. The entire algorithm
is cubic in the number of sequences, i.e. it is computationally
tractable.

One drawback of progressive alignment is the fact that at
each node, only information which is available at its daughters
can be used. The point is illustrated with a schematic example
in Figure 4. Suppose a proto-form titato is fully preserved
in three taxa, while one taxon has elided the initial ti and
another taxon the final to. If the latter two taxa are phyloge-
netic sisters, the optimal alignment at their mother node will
come out as etymologically incorrect. This decision cannot
be undone further up in the tree, no matter what additional
information becomes available later on.

The T-Coffee algorithm uses heuristics to avoid this locality
trap. In a first step, a library of all pairwise alignments
is collected, and each pairwise alignment receives a weight



according to its quality (i.e. the number of matches and
mismatches in it).5 In a second step, an extended library
of all compositions of pairwise alignments is collected. The
weight of a composite alignment is the sum of the weights
of its components. From this a score for each pair of symbol
occurrences is derived, which is the sum of the weights of all
composite alignments where those to occurrences are indirectly
aligned. These scores are then used for performing progressive
alignment. The entire workflow is schematically displayed in
Figure 5. In the example, the highlighted composite alignment
correctly connects the second t in tita with the first t in
tato. If its weight is sufficiently high, it will enforce the
correct alignment of tita and tato in during progressive
alignment, leading the correct multiple alignment of all se-
quences.

SCA also allows for the use of consistency-based scoring in
a T-Coffee-like framework [5, 108-114]. But while the multiple
alignments produced by SCA are created from scratch, i. e.,
independently from further informations available about the
datasets, the T-Coffee implementation was neatly integrated
into the output of the PMI analysis, and both the pairwise
alignments (which are fed to the T-Coffee algorithm to create
an initial library) and the guide tree (which was used to
successively add more and more sequences to a multiple
sequence alignment) were based on the PMI analysis.

Using those character matrices, we used the software Paup4
[22] to compute the Maximum Likelihood trees, (a) using
only the phonetic characters (using constant rates and the
molecular clock assumption) and (b) using both cognacy and
phonetic characters simultaneously. In the latter case, mutation
rates were assumed to be equal among the cognacy characters
and among the phonetic characters, but possibly different for
both classes. The separate mutation rates were estimated via
Maximum Likelihood for the PMI tree and then kept constant
during tree search.

V. RESULTS

The resulting trees were evaluated by computing the Gen-
eralized Quartet Distance (GQD) [23] to the Glottolog tree
for each family.6 Directly comparing these numbers across
families is problematic though, since — as mentioned above
— the difficulty of the task of recovering the Glottolog
classification from ASJP word lists varies heavily between
families. We therefore normalized GQD values by subtracting
the GQD value of the corresponding PMI tree (x in Table I).

Table I shows the results for different workflows (following
the major steps as described in Figure 2).

As we can see from the table, the accuracy of our results
increases along with the complexity of our workflow. At
the lower end are the Maximum-Likelihood trees based on
unfiltered ADH characters with an averaged normalized GQD
of 3.82% and the unfiltered phonetic characters produced

5In [15] both global and local pairwise alignments are collected in the li-
brary. Our implementation of PMI-basd T-Coffee only uses global alignments.

6The GQD of an automatically generated tree to an expert tree is the
percentage of resolved quartets in the expert tree that have the same topology
in the automatically generated tree. It can be interpreted as “100% - recall”. It
is not possible to assess the precision analogously because for many quartets
of doculects, the expert tree does not provide a resolved topology.

Workflow SCA T-Coffee
[A] 15.28%(= x)
[B]->[E] x + 3.82%
[B]->[D]->[E] x + 3.42%
[C]->[E] x + 20.26% x + 14.87%
[C]->[D]->[E] x + 19.66% x + 19.93%
[B]->[C]->[E] x + 3.00% x + 2.66%
[B]->[C]->[D]->[E] x + 1.79% x + 1.65%

TABLE I. QUANTITATIVE EVALUATION

by SCA alignment, with an average GQD of 20.26%. At
the upper end are the results obtained for the combination
of filtered ADH characters and filtered phonetic characters,
where phonetic alignments produced by the T-Coffee algorithm
(1.65%) outperformed phonetic alignments produced by the
SCA analysis (1.79%). Comparing the best results of our
workflow (1.65%) with those obtained for the PMI analysis (x)
further shows that our new workflow does not outperform the
distance-based method, even though the remaining difference
is small.

VI. CONCLUSION

We have implemented a flexible workflow to factor lexical
and phonetic phylogenetic characters from word list data. As
our results show, this workflow does not significantly improve
the quality of the trees which were obtained using simpler
distance-based methods applied to the ASJP data, and on
average, the agreement between expert classifications and the
trees inferred with help of our workflow is even slightly
worse than the agreement between expert classification and
the PMI analysis. In contrast to the blackbox character of
distance-based analyses, however, our workflow is transparent
and allows to track and trace every single decision that led
to the classificatory outcome. Furthermore, we can build on
the inferences produced in the several steps of our workflow
and use them as starting point for interesting and valuable
further investigations, be it the comparison of automatically
achieved results with those achieved with help of the traditional
comparative method, or the calculation of tendencies and rates
of lexical and phonological change.

SUPPLEMENTARY MATERIAL

The scripts and the data we used to run these analyses along
with a detailed description of how to replicate the workflow can
be downloaded from https://zenodo.org/record/
31987. In order to run the analyses, quite a few software
packages need to be installed. In case you run into troubles,
please don’t hesitate to contact us.
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