Untersuchung des Sekundären Hyperparathyreoidismus in einem Mausmodell der chronisch progredienten Niereninsuffizienz

Inaugural-Dissertation
zur Erlangung des Doktorgrades
der Medizin

der Medizinischen Fakultät
der Eberhard Karls Universität
to Tübingen

vorgelegt von
Bohnert, Bernhard Nikolaus

2015
Dekan: Professor Dr. I. B. Autenrieth

1. Berichterstatter: Professor Dr. F. Artunc
2. Berichterstatter: Privatdozent Dr. H. Billing
3. Berichterstatter: Privatdozent Dr. G. Schlieper
„Sicher ist, dass nichts sicher ist. Selbst das nicht.“

(Joachim Ringelnatz)

Meiner Familie
Inhaltsverzeichnis

Inhalt
1. Einleitung .. 1
 1.1 Die Niere - Schnittstelle zwischen Nephrologie und Endokrinologie . 1
 1.1.1 Die Physiologie des Calcium-Phosphat-Haushaltes 1
 1.2 Die Niereninsuffizienz ... 5
 1.3 Der Sekundäre Hyperparathyreoidismus ... 7
 1.3.1 Klassische Sichtweise des SHPT ... 8
 1.3.2 Neue Aspekte des SHPT ... 9
 1.3.3 Aktuelle Sicht der Pathophysiologie ... 12
 1.3.4 Therapien .. 13
 1.4 Ziel der Arbeit .. 14
2. Material und Methoden .. 16
 2.1 Material .. 16
 2.2 Methoden ... 20
 2.2.1 Mausmodell ... 20
 2.2.2 Studiendesign ... 20
 2.2.3 Blut- und Urin-Parameter ... 23
 2.2.4 Gewebeanalysen ... 34
3. Ergebnisse .. 41
 3.1 Entwicklung und Verlauf des SHPT .. 41
 3.1.1 Induktion des Modells und Klinischer Verlauf ... 41
 3.1.2 Nierenfunktion ... 44
 3.1.3 Endokrinologischer Verlauf .. 46
Inhaltsverzeichnis

3.1.4 Weitere Parameter ... 48
3.1.5 Gewebeanalytik ... 50
3.1.6 Korrelationen .. 51
3.1.7 Zusammenfassung – Entwicklung und Verlauf des SHPT 53

3.2 Therapie des SHPT .. 54
 3.2.1 Nierenfunktion ... 54
 3.2.2 Endokrinologische Therapieauswirkungen 56
 3.2.3 Gewebeanalytik ... 59
 3.2.4 Interventionelle Therapie und Überlebensanalyse 63
 3.2.5 Zusammenfassung - Therapie des SHPT 66

4. Diskussion .. 67
 4.1 Entwicklung und Verlauf des SHPT 67
 4.2 Therapie des SHPT ... 72
 4.3 Ausblick .. 76
 4.4 Zusammenfassung ... 77

5. Zusammenfassung ... 78

6. Literaturverzeichnis .. 79

7. Erklärung zum Eigenanteil der Dissertationsschrift 88

8. Veröffentlichungen .. 89
Abbildungsverzeichnis

Abb. 1.1: Der Calcium-Phosphat-Stoffwechsel [1] ... 5
Abb. 1.2: CKD Stadieneinteilung [2] ... 6
Abb. 1.4: Klassische Sichtweise des SHPT [6] ... 8
Abb. 1.5: Fibroblast Growth Factor Receptor Signaling [3] 10
Abb. 2.1: Studiendesign: Verlauf des SHPT .. 21
Abb. 2.2: Studiendesign: Therapieversuche ... 22
Abb. 2.3: Studiendesign: Interventionelle Therapie und Überlebensanalyse 22
Abb. 2.4: Funktionsprinzip Sandwich-ELISA .. 28
Abb. 2.5: Funktionsprinzip kompetitiver EIA ... 29
Abb. 2.6: Prinzip der RTQ-PCR am Beispiel GAPDH 35
Abb. 2.7: Schmelzkurvenanalyse am Beispiel GAPDH 36
Abb. 3.1: Induktionsdosis .. 41
Abb. 3.2: Gewichtsverlauf nach Induktion ... 42
Abb. 3.3: Klinischer Verlauf .. 43
Abb. 3.4: Nierenfunktionsparameter im Verlauf über 30 Tage, publiziert in [100] ... 44
Abb. 3.5: Endokrinologische Parameter im Verlauf über 30 Tage, publiziert in [100] .. 46
Abb. 3.6: Verlauf weiterer Parameter, publiziert in [100] 48
Abb. 3.7: Genexpression im Verlauf über 30 Tage, publiziert in [100] 50
Abb. 3.8: Vergleich der Nierenfunktion nach 30 Tagen unter verschiedenen Therapieansätzen, publiziert in [100] 54
Abb. 3.9: Endokrinologische Wirkung der verschiedenen Therapien nach 30 Tagen, publiziert in [100] ... 56
Abbildungsverzeichnis & Tabellenverzeichnis

Abb. 3.10: Veränderung der Genexpression unter Therapie nach 30 Tagen, publiziert in [100] ... 59
Abb. 3.11: Exemplarische Nierenschnitte nach 30 Tagen Verlauf, publiziert in [100] ... 61
Abb. 3.12: Glomerulärer und tubulärer Nierenschaden, publiziert in [100] 62
Abb. 3.13: Interventionelle Therapie mit Phosphatrestriktion, publiziert in [100] ... 64
Abb. 3.14: Kaplan-Meier-Kurve über 103 Tage nach Induktion 65
Abb. 4.1: Abfolge pathophysiologischer Ereignisse in der Entstehung eines SHPT bei Doxorubicin-induzierter Nephropathie, publiziert in [100] ... 77
Abb. 8.1: Nierenschnitte nach 30 Tagen Verlauf, publiziert in [100] 95

Tabellenverzeichnis
Tabelle 1: Verwendete Geräte ... 16
Tabelle 2: Verwendete Verbrauchsmaterialien 17
Tabelle 3: Verwendete Kits und Reagenzien 17
Tabelle 4: Eingesetzte Medikamente .. 18
Tabelle 5: Verwendete Primer ... 19
Tabelle 6: In der Tierhaltung verwendete Produkte 19
Tabelle 7: Tierverbrauch und Sterblichkeit, publiziert in [100] 93
Tabelle 8: Proteinbestimmung Pyrogallolrot Methode: Standardkurve 94
Tabelle 9: Korrelationen .. 95
<table>
<thead>
<tr>
<th>Abkürzungsverzeichnis</th>
</tr>
</thead>
<tbody>
<tr>
<td>... < ...</td>
</tr>
<tr>
<td>... > ...</td>
</tr>
<tr>
<td>1,25OH Vit. D</td>
</tr>
<tr>
<td>25OH Vit. D</td>
</tr>
<tr>
<td>Abb.</td>
</tr>
<tr>
<td>AKI</td>
</tr>
<tr>
<td>anti-GBM</td>
</tr>
<tr>
<td>aqua dest.</td>
</tr>
<tr>
<td>ATP</td>
</tr>
<tr>
<td>BSA</td>
</tr>
<tr>
<td>bzw.</td>
</tr>
<tr>
<td>c[…]</td>
</tr>
<tr>
<td>CaR</td>
</tr>
<tr>
<td>CKD</td>
</tr>
<tr>
<td>CKD-MBD</td>
</tr>
<tr>
<td>CYP24A1</td>
</tr>
<tr>
<td>CYP27B1</td>
</tr>
<tr>
<td>d-</td>
</tr>
<tr>
<td>Da</td>
</tr>
<tr>
<td>DBP</td>
</tr>
<tr>
<td>DNA</td>
</tr>
<tr>
<td>FGF23</td>
</tr>
<tr>
<td>FGFR</td>
</tr>
<tr>
<td>g</td>
</tr>
<tr>
<td>GAPDH</td>
</tr>
<tr>
<td>GFR</td>
</tr>
<tr>
<td>h</td>
</tr>
<tr>
<td>k-</td>
</tr>
<tr>
<td>KDIGO</td>
</tr>
<tr>
<td>KG (BW)</td>
</tr>
<tr>
<td>Abkürzung</td>
</tr>
<tr>
<td>-------------</td>
</tr>
<tr>
<td>I</td>
</tr>
<tr>
<td>µ-</td>
</tr>
<tr>
<td>M</td>
</tr>
<tr>
<td>m-</td>
</tr>
<tr>
<td>-m</td>
</tr>
<tr>
<td>MAPK</td>
</tr>
<tr>
<td>min</td>
</tr>
<tr>
<td>(m)RNA</td>
</tr>
<tr>
<td>n-</td>
</tr>
<tr>
<td>NADH</td>
</tr>
<tr>
<td>NaPi</td>
</tr>
<tr>
<td>p-</td>
</tr>
<tr>
<td>PBS</td>
</tr>
<tr>
<td>PKA</td>
</tr>
<tr>
<td>PKC</td>
</tr>
<tr>
<td>PTH</td>
</tr>
<tr>
<td>PTHR1</td>
</tr>
<tr>
<td>PTHrP</td>
</tr>
<tr>
<td>rpm</td>
</tr>
<tr>
<td>RTQ-PCR</td>
</tr>
<tr>
<td>s</td>
</tr>
<tr>
<td>SEM</td>
</tr>
<tr>
<td>SHPT</td>
</tr>
<tr>
<td>Tab.</td>
</tr>
<tr>
<td>TMB</td>
</tr>
<tr>
<td>TRPV5</td>
</tr>
<tr>
<td>TRPV6</td>
</tr>
<tr>
<td>v.a.</td>
</tr>
<tr>
<td>VDP</td>
</tr>
<tr>
<td>VDR</td>
</tr>
<tr>
<td>VDRE</td>
</tr>
<tr>
<td>vs</td>
</tr>
<tr>
<td>Wnt</td>
</tr>
<tr>
<td>z.B.</td>
</tr>
</tbody>
</table>

- VI -
1. **Einleitung**

1.1 **Die Niere - Schnittstelle zwischen Nephrologie und Endokrinologie**

1.1.1 **Die Physiologie des Calcium-Phosphat-Haushaltes**

Grundlegend für das Verständnis des sekundären Hyperparathyreoidismus (SHPT) ist die Physiologie des Calcium-Phosphat-Haushaltes. Hier nimmt die Niere als Ausscheidungsorgan und endokrin aktives Organ eine zentrale Rolle ein.

In der Regulation des Calcium-Phosphat-Haushaltes gibt es drei wesentliche Hormone, die über den Darm, den Knochen und die Niere für eine Homöostase von Calcium und Phosphat sorgen.
1.1.1.1 Parathormon (PTH)

PTH ist ein zentrales Hormon des Calcium-Phosphat-Haushaltes. Das aus 84 Aminosäuren bestehende Peptidhormon wird in den Hauptzellen der Nebenschilddrüsen gebildet [7, 8].

Die Regulation der Sekretion erfolgt zum einen über die extrazelluläre Calcium-Konzentration [9], wodurch es zu einer Aktivierung des membranständigen Calcium sensing receptor (CaR) kommt. Dieser wirkt über G-Protein gekoppeltes Signaling sowie über Veränderungen am Zytoskelett einer Sekretion von PTH entgegen [10-13]. Zum anderen wird die PTH-Sekretion über die extrazelluläre Phosphatkonzentration stimuliert. Phosphat wirkt vermutlich über eine Stabilisierung der PTH-mRNA sowie über eine Verringerung des Calciumspiegels [14].

PTH wirkt, zusammen mit dem verwandten PTH-related peptide (PTHrP), über den G-Protein gekoppelten PTH/PTHrP- Rezeptor (PTHR1). Dieser wiederum wirkt sowohl über Protein Kinase A (PKA)- wie auch über PKC gekoppelte G-Proteine und über den mitogen-activated protein Kinase (MAPK) Signalweg [12].

Unter kontinuierlichem PTH-Einfluss kommt es durch eine indirekte Aktivierung von Osteoklasten durch Osteoblasten zu einer Mobilisation von Calcium und Phosphat aus dem Hydroxylapatit des Knochens. Intermittierende PTH-Stimulation fördert hingegen die Knochenbildung durch eine alleinige Stimulation der Osteoblasten [15].

Renal wird im proximalen Tubulus die Resorption von Phosphat gehemmt. Unter PTH kommt es hier über den an der apikalen und basolateralen Membran des proximalen Tubulus exprimierten PTHR1 zu einer Internalisierung der Natrium-Phosphat-Kotransporter NaPi-IIa und NaPi-IIc [16]. Ebenfalls im proximalen Tubulus kommt es durch PTH zu einer Hemmung des Natrium-Protonen-Austauschers und der Natrium-Kalium-ATPase, was zu einem Bicarbonat Verlust führt [17]. Darüber hinaus führt
Einleitung

PTH zu einem Chlorid-Ausstrom und einer Hyperpolarisation im distalen Tubulus, was eine vermehrte Calcium-Resorption über spannungsgesteuerte Calcium-Kanäle verursacht [18].

Insgesamt kommt es durch PTH zu einem Anstieg des Serum-Calciums und zu einem Abfall des Serum-Phosphates [8].

1.1.1.2 Calcitriol

Durch Ultraviolettstrahlung wird in der Haut aus dem Provitamin 7-Dehydrocholesterin Cholecalciferol (Vitamin D₃ / Calciole) gebildet. Durch Hydroxylierung entsteht hieraus in der Leber zunächst Calcidiol (25-OH-Vitamin D₃) [7, 8].

Die Wirkung von 1,25-Dihydroxy-Vitamin D auf den Calcium- und Phosphathaushalt werden über den Vitamin D-Rezeptor (VDR) moduliert [22-25]. Calcitriol bildet zusammen mit dem VDR einen Komplex, der im Zellkern hormonsensitive Nukleotidsequenzen, sogenannte vitamin D response elements (VDRE), aktiviert, welche dann als Bindungsstelle für Transkriptionsfaktoren dienen [19].

In den Enterozyten kommt es durch Calcitriol zu einer gesteigerten Expression von transient receptor potential channel, subfamily V, member 6 (TRPV6) und der membranständigen Calcium-ATPase (PMCA). Dies führt zur Calciumresorption [19]. Ebenso wird die Phosphatresorption gesteigert. Dies geschieht möglicherweise über Hochregulation von Natrium-Phosphat Kotransporter NaP_i-III (Pit-2) [26]. Eine Resorption über NaP_i-Iib scheint Vitamin D unabhängig geregelt zu sein [27].

In Osteoblasten wird der VDR ebenfalls exprimiert. Bei der Knochenbildung spielt aber die Bereitstellung von Calcium und Phosphat über die durch Calcitriol gesteigerte intestinale Resorption wahrscheinlich eine übergeordnete Rolle [28].

In der Nebenschilddrüse erhöht Calcitriol die CaR-Expression, was die Nebenschilddrüse gegenüber zirkulierendem Calcium sensibilisiert und somit die PTH-Synthese indirekt inhibiert [29]. Darüber hinaus inhibiert Calcitriol die PTH-Synthese und Freisetzung direkt [30].

Im distalen Tubulus der Niere führt Calcitriol zu einer gesteigerten Expression des intrazellulären Calbindin D28k, des transient receptor potential channel, subfamily V, member 5 (TRPV5) der apikalen Membran sowie des ATP-abhängigen Calcium-Transporters der basolateralen Membran. Somit wird die PTH abhängige Calciumresorption unterstützt [31]. Calcitriol bewirkt im Endeffekt ein Anstieg des Serum-Calciums und des Serum-Phosphates [8].
1. Einleitung

1.1.1.3 Calcitonin

Als drittes wesentliches Hormon im Calcium-Phosphat-Haushalt soll nun der Vollständigkeit halber noch Calcitonin genannt werden, das im Hinblick auf den SHPT allerdings eine untergeordnete Rolle spielt. Das Peptidhormon Calcitonin wird vorwiegend in den C-Zellen der Schilddrüse gebildet. Erhöhte Calcium-Spiegel im Plasma führen zu einer Calcitoninausschüttung, was zu einer vermehrten Einlagerung von Calcium im Knochen führt. Renal führt Calcitonin, wie auch PTH, zu einer vermehrten Ausscheidung von Phosphat und einer verminderten Resorption von Calcium [7].

![Diagramm des Calcium-Phosphat-Stoffwechsels](image)

Abb. 1.1: Der Calcium-Phosphat-Stoffwechsel [1]

1.2 Die Niereninsuffizienz

Infolge einer irreversiblen Verminderung der Nephronenzahl kommt es zur Entwicklung einer chronischen Niereninsuffizienz (CKD). Hierfür können unterschiedliche Faktoren verantwortlich sein. Bei Menschen ist die diabetische Nephropathie mit ca. 35% die mit Abstand häufigste Ursache einer terminalen Niereninsuffizienz, aber auch Glomerulonephritiden können ursächlich für die Entwicklung einer terminalen Niereninsuffizienz sein [32].

Als Folge einer chronischen Niereninsuffizienz kommt es zu einem Versagen der exkretorischen Nierenfunktion, zu Störungen im Wasser-, Elektrolyt- und Säure-Basen-Haushalt, zur Abnahme der inkretorischen Nierenfunktion sowie sekundär zu Organschädigungen durch die retinierten harnpflichtigen Substanzen [32].

Abb. 1.2: CKD Stadieneinteilung [2]

Einteilung der chronischen Niereninsuffizienz anhand der GFR in fünf Stadien (G1-G5) und Anhand der Albuminurie in drei Stadien (A1-A3).

-6-
1.3 Der Sekundäre Hyperparathyreoidismus

Eine der typischen Folgeerkrankungen der chronischen Niereninsuffizienz ist die Entwicklung eines sekundären Hyperparathyreoidismus (SHPT). Bereits im CKD-Stadium G3b (GFR 30-44 ml/min) tritt bei etwa 30% der Patienten ein SHPT auf. Im CKD-Stadium G5 (GFR <15 ml/min) liegt der Anteil der Patienten mit einem SHPT bei über 95% [32].

Der SHPT ist Teil eines Syndroms, welches in Folge einer chronischen Niereninsuffizienz sekundär entsteht und unter dem englischen Begriff *Chronic kidney disease - mineral and bone disorder* (CKD-MBD) zusammengefasst wird. Hierbei kommt es zu Störungen im Calcium-Phosphat-Haushalt und in der Folge im Knochensstoffwechsel.

Die als ursächlich für die Entwicklung des SHPT angesehenen pathophysiologischen Faktoren unterliegen aktuell einem Wandel und somit auch die Frage nach einer effizienten Therapie des SHPT.
1.3.1 Klassische Sichtweise des SHPT

Als wichtige Faktoren für die Entwicklung eines renalen SHPT werden klassisch eine Hypocalciämie, eine Verminderung der Calcidiol- und Calcitriol-Spiegel, eine Skelettrezistenz gegenüber der kalziämischen Wirkung von PTH sowie eine im fortgeschrittenen Stadium der Niereninsuffizienz auftretende Phosphatretention angesehen. Als pathophysiologisch ursächlich für die gesteigerte PTH-Sekretion gelten eine gestörte gastrointestinale Calciumabsorption, eine Abnahme des supprimierenden Effekts von Calcitriol auf die Biosynthese und Sekretion von PTH sowie eine direkte Stimulation der PTH-Sekretion durch die Hyperphosphatämie [32].

![Diagram](image)

Abb. 1.4: Klassische Sichtweise des SHPT [6]
1.3.2 Neue Aspekte des SHPT

Im Gegensatz zur Regulation der Calcium-Homöostase war bisher relativ wenig über die Regulation der Phosphat-Homöostase bekannt. Mit der Entdeckung des fibroblast growth factor 23 (FGF23) im Jahr 2000 [33] und seiner Identifikation als Phosphat ausscheidendes Hormon, einem sogenannten Phosphatonin [34], rückten bei der Betrachtung des SHPT eine bisher unerkannte Hormonachse zwischen Knochen, Nebenschilddrüse und Niere und die dadurch gesteuerte Phosphat-Homöostase ins Blickfeld [6, 8, 35, 36].

1.3.2.1 Fibroblast Growth Factor 23 (FGF23)

Gehemmt wird die Synthese von FGF23 durch Proteine der SIBLING (small integrin-binding ligand N-linked glycoproteins) -Familie, zu der Dentin Matrix
Protein 1 (DMP1), extrazelluläre Matrix-Phosphoglycoproteine (MEPE) und ASARM (acidic serine aspartate rich MEPE-associated motif) -Peptide gehören [37, 43, 44].

Im Gegensatz zu den meisten anderen Hormonen der FGF-Familie, welche Zellfunktionen vorwiegend auf einem „lokalen“ Niveau regulieren, zeigt FGF23 eine renotrope wie auch eine parathyreotrope Wirkung. FGF23 wirkt hier über einen der vier FGF-Rezeptoren (FGFR 1-4). Durch alternatives Splicing entstehen bei FGFR 1-3 epithel- (FGFR1b-FGFR3b) und mesenchymspezifische (FGFR1c-FGFR3c) Rezeptorsubtypen. Der intrazelluläre Teil des Rezeptors trägt eine Tyrosinkinase [45, 46]. Um den Rezeptor zu aktivieren, wird α-Klotho als Kofaktor benötigt. Dieses bindet FGF23 am C-Terminus und erhöht so die Affinität von FGF23 zum Receptor [47]. Aktivierte FGFRs bilden Heterodimere, die dann weiter über die MAPK-Kaskade auf die Genexpression einwirken [47, 48].

Abb. 1.5: Fibroblast Growth Factor Receptor Signaling [3]

1.3.2.2 Klotho

Bei α-Klotho handelt es sich um ein Transmembranprotein, das 1997 in einer transgenen Mauslinie nachgewiesen wurde und durch Hyperphosphatämie, Hypercalcämie, erhöhte Vitamin D-Spiegel, beschleunigte Alterung sowie
Einleitung

Neben dem membrangebundenen α-Klotho, wird dem gelösten s-Klotho ebenfalls eine Rolle als humoraler Faktor bzw. als Enzym zugeschrieben. s-Klotho entsteht entweder durch eine gesteigerte Transkription einer alternativ gespleißten Form des α-Klotho oder als Abscherung der extrazellulären Domäne von intaktem α-Klotho durch ADAM10 und ADAM17, Proteine der A Desintegrin and Metalloproteinase domain containing protein Familie [52].

Aufgrund der vorwiegenden Expression der FGF-Rezeptoren sowie von α-Klotho im distalen Tubulus, stellt sich zwingend die Frage, wie über diese Rezeptoren eine Regulation des proximal-tubulären Phosphat- und Vitamin D-Metabolismus gelingt [50, 51, 56]. Eine Stimulation des proximalen Tubulus durch FGF23 erscheint daher nur über den Umweg einer Stimulation des distalen Tubulus durch FGF23 und einer dadurch bedingten parakrinen Stimulation des proximalen Tubulus möglich. Ein naheliegender parakriner Faktor hierfür wäre s-Klotho [37].

In der Nebenschilddrüse wurde gezeigt, dass FGF23 die Expression und Sekretion von PTH hemmt [57, 58]. Andererseits kommt es im Rahmen einer CKD mit erhöhtem FGF23 zu einem SHPT. Alles in allem scheinen FGF23
und PTH sich in einer Feedback-Schleife gegenseitig zu beeinflussen. Diese Interaktionen können aber durchaus durch andere systemische und lokale Faktoren beeinflusst werden [37]. FGF23 beeinflusst ebenfalls den Knochenstoffwechsel. Hierbei führt eine Erhöhung des FGF23 ebenso wie ein Mangel an FGF23 zu einer gestörten Mineralisation der Knochenmatrix [34, 59, 60]. In letzter Konsequenz kommt es durch FGF23 zu einer Verringerung des Serum-Phosphat-Spiegels und zu einer Verringerung des Calcitriol-Spiegels, was eine Hypocalciämie nach sich ziehen kann [8].

1.3.3 Aktuelle Sicht der Pathophysiologie
1.3.4 Therapien
Den verschiedenen Therapieformen liegen die verschiedenen pathophysiologischen Mechanismen, die zu einem SHPT führen, zugrunde.

1.3.4.1 Senkung des Phosphat-Spiegels
Über eine Reduktion der Phosphatüberladung soll der Entwicklung eines SHPT entgegengewirkt werden. Hierbei kann sowohl die orale Aufnahme von Phosphat reduziert als auch das im Körper zirkulierende Phosphat durch Phosphatbinder gebunden werden. Als Folge fällt die Stimulation der Nebenschilddrüse durch erhöhte Phosphat-Spiegel weg [32].

1.3.4.2 Therapie mit Vitamin D
Bei höhergradiger Niereninsuffizienz sind sowohl die Calcidiol- wie auch die Calcitriol-Spiegel erniedrigt. Durch Substitution mit 25-Hydroxy-Vitamin D bzw. -Vitamin D-Derivaten oder aktiven 1,25-Hydroxy-Vitamin D-Präparaten soll eine Suppression auf die PTH-Sekretion erreicht werden. Aufgrund der calciämischen Wirkung von Vitamin D-Präparaten ist hier eine engmaschige Kontrolle der Plasma-Calcium-Spiegel von Nöten [32].

Abb. 1.6: Neuere Sichtweise des SHPT [6]
1.3.4.3 Calcimimetika
Über eine Aktivierung des CaR der Nebenschilddrüsen kommt es zu einer erhöhten Sensibilität gegenüber extrazellulärem Calcium und somit einer Abnahme der PTH-Sekretion [32].

1.3.4.4 Parathyreoidektomie
Die Verringerung des Nebenschilddrüsenvolumens durch chirurgische Resektion als ultima ratio führt zu einer verminderten Syntheseleistung und somit einer Reduktion des ausgeschütteten PTH [32].

Trotz eines besseren Verständnisses der Pathophysiologie des SHPT ist bisher eine optimale Strategie zur Prävention und zur Therapie eines SHPT bei prädialysepflichtigen Patienten mit chronischer Niereninsuffizienz nicht klar.

1.4 Ziel der Arbeit

Die KDIGO-Leitlinien empfehlen im Falle niedriger Vitamin D-Spiegel eine Substitution mit Calcidiol und im Falle eines progressiven SHPT eine Substitution mit Calcitriol [2, 67]. Von einer phosphozentrischen Perspektive aus gesehen müsste es durch Therapie mit Vitamin D allerdings durch eine vermehrte Phosphatresorption aus dem Darm zu einer Erhöhung der Phosphatlast kommen. Dem steht entgegen, dass es sich bei Vitamin D um

2. **Material und Methoden**

2.1 Material

Tabelle 1: Verwendete Geräte

<table>
<thead>
<tr>
<th>Gerät</th>
<th>Hersteller</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concentrator 5301</td>
<td>Eppendorf AG</td>
</tr>
<tr>
<td>Eppendorf Research® pro 20-300 µl (multi-channel)</td>
<td>Eppendorf AG</td>
</tr>
<tr>
<td>Eppendorf Research® plus (0,1 µl - 2,5 µl)</td>
<td>Eppendorf AG</td>
</tr>
<tr>
<td>Eppendorf Research® plus (0,5 µl - 10 µl)</td>
<td>Eppendorf AG</td>
</tr>
<tr>
<td>Eppendorf Research® plus (2 µl - 20 µl)</td>
<td>Eppendorf AG</td>
</tr>
<tr>
<td>Eppendorf Research® plus (10 µl - 100 µl)</td>
<td>Eppendorf AG</td>
</tr>
<tr>
<td>Eppendorf Research® plus (20 µl - 200 µl)</td>
<td>Eppendorf AG</td>
</tr>
<tr>
<td>Eppendorf Research® plus (100 µl - 1000 µl)</td>
<td>Eppendorf AG</td>
</tr>
<tr>
<td>ELx800 Absorptions-Reader für Mikroplatten</td>
<td>BioTek®</td>
</tr>
<tr>
<td>Plattenschüttler</td>
<td></td>
</tr>
<tr>
<td>Überkopfmischer</td>
<td></td>
</tr>
<tr>
<td>LightCycler 1.5</td>
<td>Roche</td>
</tr>
<tr>
<td>CENTRIFUGE & VORTEX</td>
<td>neoLab®</td>
</tr>
<tr>
<td>Tpersonal Thermocycler</td>
<td>Biometra®</td>
</tr>
<tr>
<td>GeneQuant pro</td>
<td>GE Healthcare Biosciences</td>
</tr>
<tr>
<td>Biofuge 13</td>
<td>Heraeus Instruments</td>
</tr>
<tr>
<td>Megafuge 2.0R</td>
<td>Heraeus Instruments</td>
</tr>
<tr>
<td>Liebherr Comfort Kühlsschrank 2-8°C</td>
<td>Liebherr</td>
</tr>
<tr>
<td>Gefrierschrank -20°C</td>
<td></td>
</tr>
<tr>
<td>Gefrierschrank -80°C</td>
<td></td>
</tr>
<tr>
<td>Vortex VF2</td>
<td>IKA®-Labortechnik</td>
</tr>
<tr>
<td>Flammenphotometer EFUX 5057</td>
<td>Eppendorf AG</td>
</tr>
<tr>
<td>Dräger Vapor® 2000 - Isoflurane</td>
<td>Dräger Medical GmbH</td>
</tr>
<tr>
<td>BioMate 3 Spectrophotometer</td>
<td>Thermo Fisher Scientific Inc.</td>
</tr>
<tr>
<td>MagNA Lyser</td>
<td>Roche</td>
</tr>
<tr>
<td>IL GEM® Premier 3000</td>
<td>Instrumentation Laboratory GmbH</td>
</tr>
</tbody>
</table>
Tabelle 2: Verwendete Verbrauchsmaterialien

<table>
<thead>
<tr>
<th>Verbrauchsmaterial</th>
<th>Hersteller</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peha-soft® nitrile puderfreie Einmalhandschuhe</td>
<td>Hartmann</td>
</tr>
<tr>
<td>Standard Micro Test Tube 3810X</td>
<td>Eppendorf AG</td>
</tr>
<tr>
<td>Eppendorf PCR Tubes 0,2 ml</td>
<td>Eppendorf AG</td>
</tr>
<tr>
<td>Eppendorf PCR Tubes 0,5 ml</td>
<td>Eppendorf AG</td>
</tr>
<tr>
<td>CELLSTAR® PP-Test tubes, 15 ml</td>
<td>greiner bio-one</td>
</tr>
<tr>
<td>CELLSTAR® TUBES, 50 ml</td>
<td>greiner bio-one</td>
</tr>
<tr>
<td>CELLSTAR® Cryo.s</td>
<td>greine labortechnik</td>
</tr>
<tr>
<td>ratiolab® Pipettenspitzen Gelb 1-200 µl</td>
<td>Ratiolab GmbH</td>
</tr>
<tr>
<td>Micro tube 0,5 ml PP</td>
<td>Sarstedt AG&Co.</td>
</tr>
<tr>
<td>epT.I.P.S. Standard 50-1000 µl</td>
<td>Eppendorf AG</td>
</tr>
<tr>
<td>Pipettenspitzen Standard MIKRO 0,1-10µl</td>
<td>Carl Roth GmbH+Co. KG</td>
</tr>
<tr>
<td>Reaction Tubes 1,5 ml PP, graduated</td>
<td>greiner bio-one</td>
</tr>
<tr>
<td>Luer-(Kapillar) Adapter ohne Sieb</td>
<td>Instrumentation Laboratory GmbH</td>
</tr>
<tr>
<td>Haematokrit Kapillaren 75 µl</td>
<td>Hirschmann® Laborgeräte</td>
</tr>
<tr>
<td>Einmal-Kapillarpipetten</td>
<td>Hirschmann® Laborgeräte</td>
</tr>
<tr>
<td>Blutgaskapillaren 280 µl</td>
<td>Hirschmann® Laborgeräte</td>
</tr>
<tr>
<td>UV-Küvette mikro 70 µl</td>
<td>Brand® GmbH</td>
</tr>
<tr>
<td>MagNA Lyser Green Beads</td>
<td>Roche</td>
</tr>
<tr>
<td>ep Dualfilter T.I.P.S.®, steril, 50-1000 µl</td>
<td>Eppendorf AG</td>
</tr>
<tr>
<td>ep Dualfilter T.I.P.S.®, steril, 1-200 µl</td>
<td>Eppendorf AG</td>
</tr>
<tr>
<td>ep Dualfilter T.I.P.S.®, steril, 0,1-10 µl</td>
<td>Eppendorf AG</td>
</tr>
<tr>
<td>Aluminium-Folie</td>
<td></td>
</tr>
<tr>
<td>Light Cycler ® Capillaries (20 µl)</td>
<td>Roche</td>
</tr>
</tbody>
</table>

Tabelle 3: Verwendete Kits und Reagenzien

<table>
<thead>
<tr>
<th>Kits, Reagenzien</th>
<th>Hersteller</th>
</tr>
</thead>
<tbody>
<tr>
<td>LT-SYS® Gesamt-Eiweiß im Liquor/Urin Pyrogallolrot, flüssig (LT-UP 011)</td>
<td>Labor+Technik EBERHARD LEHMANN GmbH</td>
</tr>
<tr>
<td>LT-SYS® Calcium Arsenazo III, modifiziert (LT-CA 0103)</td>
<td>Labor+Technik EBERHARD LEHMANN GmbH</td>
</tr>
<tr>
<td>LT-SYS® Creatinin Jaffé, flüssig (LT-CR 0121)</td>
<td>Labor+Technik EBERHARD LEHMANN GmbH</td>
</tr>
<tr>
<td>LT-SYS® Harnstoff enzymatisch (LT-UR 0010)</td>
<td>Labor+Technik EBERHARD LEHMANN GmbH</td>
</tr>
<tr>
<td>LT-SYS® Phosphor, anorganisch (LT-PH 0100)</td>
<td>Labor+Technik EBERHARD LEHMANN GmbH</td>
</tr>
</tbody>
</table>
Material und Methoden

<table>
<thead>
<tr>
<th>Eingesetzte Medikamente</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medikament</td>
</tr>
<tr>
<td>Isofluran CP® 1 ml/ml</td>
</tr>
<tr>
<td>DECOSTRIOL® inject 1 µg/ml Injektionslösung</td>
</tr>
<tr>
<td>D₃-Vicotratt® Injektionslösung</td>
</tr>
<tr>
<td>DOXO-cell® 150 mg Injektionslösung</td>
</tr>
<tr>
<td>Isotonische Kochsalzlösung 0,9%, 100ml</td>
</tr>
</tbody>
</table>

Tabelle 4
Material und Methoden

Tabelle 5: Verwendete Primer

<table>
<thead>
<tr>
<th>Gen</th>
<th>sense/forward 5'→3' orientation</th>
<th>antisense/reverse 5'→3' orientation</th>
<th>Amplikon</th>
</tr>
</thead>
<tbody>
<tr>
<td>1α-Hydroxylase; CYP27B1</td>
<td>GCATCACTTAACCCACTTCC</td>
<td>CGGGAAAGCTCATAGAGTGT</td>
<td>135 bp</td>
</tr>
<tr>
<td>(Gene ID: 13115)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24-Hydroxylase; CYP24A1</td>
<td>CCCCCCTGCAAGAAAACCTGC</td>
<td>CTCTTGGAGGGCTCTGATTGG</td>
<td>232 bp</td>
</tr>
<tr>
<td>(Gene ID: 13081)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Klotho (Gene ID: 16591)</td>
<td>CCCTGTGACTTTGCTTTGG</td>
<td>CCCACAGATAGACATTCGGGT</td>
<td>91 bp</td>
</tr>
<tr>
<td>GAPDH (Gene ID: 14433)</td>
<td>AACGACCCCCTTCATTGAC</td>
<td>TCCACGACATACTCAGCAC</td>
<td>191 bp</td>
</tr>
</tbody>
</table>

Tabelle 6: In der Tierhaltung verwendete Produkte

<table>
<thead>
<tr>
<th>Futter/Trinken</th>
<th>Hersteller</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1000 Kontrolldiät Ratte/Maus</td>
<td>Altromin Spezialfutter GmbH & Co. KG</td>
</tr>
<tr>
<td>C1048 Phosphatarme Diät (<0,1%)</td>
<td>Altromin Spezialfutter GmbH & Co. KG</td>
</tr>
<tr>
<td>C1000 + 5000 IE 25OH Vit. D</td>
<td>Altromin Spezialfutter GmbH & Co. KG</td>
</tr>
<tr>
<td>C1000 + 25000 IE 25OH Vit. D</td>
<td>Altromin Spezialfutter GmbH & Co. KG</td>
</tr>
<tr>
<td>Fein Zucker</td>
<td>Südzucker AG</td>
</tr>
<tr>
<td>Leitungswasser</td>
<td>Stadtwerke Tübingen</td>
</tr>
<tr>
<td>ssniff® Futtermittel für Ratten und Mäuse</td>
<td>ssniff® Spezialdiäten GmbH</td>
</tr>
<tr>
<td>Espen-Tiereinstreu AB</td>
<td>AsBe-Wood GmbH</td>
</tr>
</tbody>
</table>
2.2 Methoden

2.2.1 Mausmodell

2.2.1.1 Tierverbrauch und Sterblichkeit

Über alle durchgeführten Versuche hinweg gesehen, verstarb etwa jedes fünfte Tier bevor der Endpunkt der jeweiligen Untersuchung erreicht wurde. Etwa 40% der injizierten Tiere hatten einen Krankheitsverlauf nach der unten beschriebenen CKD 1-3-Verlaufsform und waren nicht nephrotisch. Genauere Zahlen liefert Tabelle 7 auf Seite 93 im Anhang.

2.2.2 Studiendesign

Nach Transfer der Tiere in und Akklimatisierung an den Versuchsraum, wurde 7 Tage vor Versuchsbeginn das Futter durch das Versuchsfutter und das Trinkwasser durch 5%ige Saccharose-Lösung ersetzt.
2. Material und Methoden

2.2.2.1 Verlauf des SHPT

Um den Verlauf des SHPT zu untersuchen, wurden durch unterschiedlich hohe Doxorubicin-Dosierungen (4,5 µl/g KG - 7,5 µl/g KG) verschiedenen starke Verlaufsformen der Niereninsuffizienz ausgelöst. Anschließend wurde täglich über 10 bzw. 30 Tage der Gewichtsverlauf und die Fressmenge der Tiere verfolgt, sowie Spontanurin gewonnen. Nach Ablauf der Beobachtungszeit wurden die Tiere geopfert, ausgeblutet und die Nieren sowie die thorakale Aorta entnommen.

Abb. 2.1: Studiendesign: Verlauf des SHPT

2.2.2.2 Therapieversuch

Um die Wirksamkeit verschiedener Therapien auf den SHPT zu untersuchen, wurde, wie oben beschrieben, durch niedrige und mittlere Doxorubicin-Dosen (4,5 µl/g KG - 7,0 µl/g KG) wiederum eine Niereninsuffizienz ausgelöst. Die Therapie erfolgte präemptiv entweder durch phosphatarmes Futter (Altromin, C1048), mit Calcidiol angereichertes Futter, durch intraperitoneale Gabe von Calcidiol oder durch intraperitoneale Gabe von Calcitriol. Unter Therapie wurde 10, 20 und 30 Tage nach Induktion der Niereninsuffizienz jeweils das Gewicht bestimmt und Spontanurin gewonnen. Nach 30 Tagen wurden die Tiere geopfert, ausgeblutet und die Nieren sowie die thorakale Aorta entnommen.
2.2.2.3 Interventionelle Therapie und Überlebensanalyse

Um die Therapieeffizienz und die Auswirkung auf das Überleben der Tiere zu untersuchen, wurde durch eine mittlere Doxorubicin-Dosis wiederum eine Niereninsuffizienz ausgelöst. Anhand der Plasmaspiegel von FGF23, Phosphat und Harnstoff sowie der Proteinurie zehn Tage nach Induktion wurden die Tiere einem Kontroll- und einem Therapiearm zugewiesen. Dies geschah so, dass sich die beiden Gruppen hinsichtlich der bestimmten Parameter statistisch nicht unterschieden. Therapiert wurde durch Phosphatrestriktion, was sich bis dahin als am effizientesten gegenüber dem SHPT gezeigt hatte. Durch Laborkontrollen an Tag 20 und 30 wurde der weitere Verlauf über 30 Tage beobachtet. In der Nachbeobachtung bis Tag 103 wurde das Überleben der Tiere verfolgt.
2.2.3 Blut- und Urin-Parameter

Blutproben wurden mit Hilfe einer Mikrokapillare aus dem rechten retrobulbären, kapillären Venenplexus gewonnen und das nach anschließender Zentrifugation gewonnene Plasma bei -20 °C im Gefrierschrank gelagert.

Urinproben wurden als morgendlicher Spontanurin durch transabdominelle Blasenmassage gewonnen und anschließend bei -20 °C im Gefrierschrank gelagert.

2.2.3.1 BGA

Ungefähr 150 µl frisch gewonnenes Kapillarblut wurden mit Hilfe des Analyseautomaten IL GEM® Premier 3000 (Instrumentation Laboratory GmbH) analysiert und folgende Parameter direkt bestimmt: pH, pCO₂, pO₂, Na⁺, K⁺, Ca²⁺, Hämatokrit bzw. durch den Analyseautomaten berechnet: Ca²⁺(pH 7,4), Bikarbonat, Standard-Bikarbonat, Base Excess, SO₂c, cHbc.

2.2.3.2 Klinische Chemie

Plasma Calcium - LT-SYS® Calcium Kit; Arsenazo III, modifiziert (LT-CA 0103)

<table>
<thead>
<tr>
<th>Inhalt:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Reagenz 1:</td>
<td>Imidazolpuffer, pH 6,5 100 mmol/l</td>
</tr>
<tr>
<td></td>
<td>Arsenazo III 0,08 mmol/l</td>
</tr>
<tr>
<td></td>
<td>Detergenzien</td>
</tr>
<tr>
<td>Standard:</td>
<td>Calcium 2,5 mmol/l</td>
</tr>
</tbody>
</table>

Bei dem LT-SYS® Calcium Kit handelt es sich um einen Farbtest mit Endpunktbestimmung. Arsenazo III reagiert mit Calcium in saurer Lösung unter Bildung eines violettten Farbkomplexes. Die Intensität der Farbentwicklung ist proportional zur Calcium-Konzentration [73].
2. Material und Methoden

Durchführung:
3 µl Probe werden mit 300 µl Reagenz 1 zur Reaktion gebracht und nach einer Inkubationszeit von 10 min die Absorption bei 600 nm bestimmt.
Die Calcium-Konzentration berechnet sich wie folgt:
c[Ca^{2+}] = \frac{\text{Extinktion}[Probe]}{\text{Extinktion}[Standard]} \times c[\text{Standard}]
Der Test ist bis zu einer Calciumkonzentration von 5,0 mmol/l linear. Bei höheren Konzentrationen muss die Probe entsprechend mit Wasser (Ampuwa®) verdünnt werden.
Die untere Nachweissgrenze liegt bei 0,05 mmol/l Calcium.

Plasma und Urin Eiweiß - LT-SYS® Gesamt-Eiweiß im Liquor/Urin Kit; Pyrogallolrot, flüssig (LT-UP 011)

Inhalt:

<table>
<thead>
<tr>
<th>Reagenz 1: Pyrogallolrot</th>
<th>60 µmol/l</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dinatriummolybdat</td>
<td>40 µmol/l</td>
</tr>
<tr>
<td>Bernsteinsäure</td>
<td>50 mmol/l</td>
</tr>
<tr>
<td>Di-Natriumoxalat</td>
<td>1 mmol/l</td>
</tr>
<tr>
<td>Natriumbenzoat</td>
<td>3 mmol/l</td>
</tr>
<tr>
<td>Natriumodecylsulfat</td>
<td>86 µmol/l</td>
</tr>
<tr>
<td>Standard: Eiweiß</td>
<td>1300 mg/l</td>
</tr>
</tbody>
</table>

Durchführung:
3 µl Probe werden mit 300 µl Reagenz 1 zur Reaktion gebracht und nach einer Inkubationszeit von 10 min die Absorption bei 600 nm bestimmt.
Die Eiweiß-Konzentration berechnet sich aufgrund einer Standardkurve (s. Anlage Seite 94) wie folgt:
c[Eiweiß] = -0,000106 + \sqrt{(0,000106^2 - 4 \times -6,5543E-09 \times (0,005305 - \text{Extinktion}[Probe]))}/(2\times-6,5543E-09)
Der Messbereich bei Verwendung oben genannter Standardkurve reicht bis zu einer Eiweißkonzentration von 6 g/l. Bei höheren Konzentrationen muss die Probe entsprechend mit Wasser (Ampuwa®) verdünnt werden.
Die untere Nachweissgrenze liegt bei 35 mg/l Eiweiß.
2. Material und Methoden

Plasma Harnstoff - LT-SYS® Harnstoff Kit; enzymatisch (LT-UR 0010)

<table>
<thead>
<tr>
<th>Inhalt:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Puffer:</td>
<td>Tris-HCl-Puffer, pH 7,8 100 mmol/l</td>
</tr>
<tr>
<td></td>
<td>α-Ketoglutarat 6 mmol/l</td>
</tr>
<tr>
<td></td>
<td>GLDH ≥9000 U/l</td>
</tr>
<tr>
<td></td>
<td>NADH 0,2 mmol/l</td>
</tr>
<tr>
<td></td>
<td>Adenosin-5-Diphosphat 2 mmol/l</td>
</tr>
<tr>
<td></td>
<td>EDTA 4 mmol/l</td>
</tr>
<tr>
<td>Enzym:</td>
<td>Urease ≥4000 U/l</td>
</tr>
<tr>
<td>Standard:</td>
<td>Harnstoff 40 mg/dl</td>
</tr>
</tbody>
</table>

Bei der Messmethode die dem LT-SYS® Harnstoff Kit zugrunde liegt, handelt es sich um eine vollenzymatische Reaktion mit Urease und Glutamatdehydrogenase (GLDH):

Harnstoff + 2 H₂O \text{Urease} → 2 NH₄⁺ + 2 HCO₃⁻

α-Ketoglutarat + NH₄⁺ + NADH \text{GLDH} → L-Glutamat + NAD⁺ + H₂O

Die durch die Reaktion erfolgte Umwandlung von NADH zu NAD⁺ führt zu einer der Harnstoff-Konzentration proportionalen Extinktionsabnahme [75].

Durchführung:

Das lyophilisierter vorliegende Enzym wird in 16 ml Puffer bei Raumtemperatur gelöst. Anschließend werden 3 µl Probe mit 300 µl gelöstem Enzym zur Reaktion gebracht und direkt im Anschluss die Absorption bei 340 nm gemessen. Nach 8 Minuten wird erneut die Absorption bei 340 nm bestimmt. Die Konzentration des Harnstoffes berechnet sich mit Hilfe der jeweiligen Extinktionsdifferenzen nun wie folgt:

\[c[\text{Harnstoff}] = \frac{\Delta \text{Extinktion}[\text{Probe}]}{\Delta \text{Extinktion}[\text{Standard}]} \times c[\text{Standard}] \]

Der Test ist bis zu einer Harnstoffkonzentration von 300 mg/dl geeignet. Bei höheren Konzentrationen muss die Probe entsprechend mit Wasser (Ampuwa®) verdünnt werden. Die untere Nachweisgrenze liegt bei 2 mg/dl Harnstoff.

Plasma und Urin Phosphat - LT-SYS® Phosphor Kit; anorganisch (LT-PH 0100)

<table>
<thead>
<tr>
<th>Inhalt:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Reagenz1:</td>
<td>Ammoniummolybdat 12 mmol/l</td>
</tr>
<tr>
<td></td>
<td>Schwefelsäure 2,2 mol/l</td>
</tr>
</tbody>
</table>
2. Material und Methoden

<table>
<thead>
<tr>
<th>Detergenzien und Stabilisatoren</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard: Phosphat 1,29 mmol/l</td>
</tr>
</tbody>
</table>

Durchführung:

3 µl Probe werden mit 300 µl Reagenz 1 zur Reaktion gebracht und nach einer Inkubationszeit von 10 min die Absorption bei 340 nm bestimmt.

Die Phosphat-Konzentration berechnet sich nun wie folgt:

Der Test ist bis zu einer Phosphatkonzentration von 4,84 mmol/l linear. Bei höheren Konzentrationen muss die Probe entsprechend mit Wasser (Ampuwa®) verdünnt werden. Die untere Nachweisgrenze liegt bei 0,23 mmol/l Phosphat.

Urin Kreatinin - LT-SYS® Creatinin Kit; Jaffé, ohne Enteiweißung (LT-CR 0121)

<table>
<thead>
<tr>
<th>Inhalt:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reagenz1: NaOH</td>
</tr>
<tr>
<td>Di-Na-Phosphat 300 mmol/l</td>
</tr>
<tr>
<td>Reagenz2: Pikrinsäure</td>
</tr>
<tr>
<td>8,7 mmol/l</td>
</tr>
<tr>
<td>Standard: Creatinin</td>
</tr>
<tr>
<td>2 mg/dl</td>
</tr>
</tbody>
</table>

Bei dem LT-SYS® Creatinin Kit handelt es sich um einen kinetischen Farbtest. Kreatinin, in alkalischer Lösung mit Pikrinsäure zur Reaktion gebracht, bildet einen orange-gelben Komplex, dessen Farbintensität photometrisch gemessen werden kann und sich proportional zur Kreatinin-Konzentration verhält [77].

Durchführung:

Zur Herstellung einer working solution werden Reagenz 1 und Reagenz 2 im Verhältnis 1:1 gemischt. Anschließend werden 3 µl Probe mit 200 µl working solution zur Reaktion gebracht und direkt im Anschluss die Absorption bei 492 nm gemessen. Nach 8 Minuten wird erneut die Absorption bei 492 nm bestimmt.

Die Kreatinin-Konzentration berechnet sich mit Hilfe der jeweiligen
2. Material und Methoden

Extinktionsdifferenzen nun wie folgt:
\[c_{\text{Kreatinin}} = \Delta \text{Extinktion}[\text{Probe}] / \Delta \text{Extinktion}[\text{Standard}] \times c_{\text{Standard}} \]

Der Test ist bis zu einer Konzentration von 300 mg/dl Kreatinin im Urin linear. Bei höheren Konzentrationen muss die Probe entsprechend mit Wasser (Ampuwa®) verdünnt werden. Die untere Nachweisgrenze liegt bei 0,03 mg/dl Kreatinin.

2.2.3.3 Flammenphotometrie

Bei der direkten flammenphotometrischen Bestimmung wird die zu messende Lösung mit Pressluft vernebelt und der Nebel einem Acetylen- oder Leuchtgasbrenner zugeführt. Mittels eines selektierenden Farbfilters wird das Licht der für die Messung geeigneten Wellenlänge isoliert und dessen Intensität unmittelbar mit Hilfe einer Photozelle oder eines Photoelements gemessen [78].

Die Konzentrationen von Natrium, Calcium und Kalium im Urin wurden mithilfe des Flammenphotometers EFUX 5057 (Eppendorf AG) vollautomatisiert bestimmt. Konnte nicht genügend Urin gewonnen werden, bzw. lagen die gemessenen Werte außerhalb der Referenzbereiche (Na⁺: 10,0 - 300,0 mmol/l; K⁺: 5,0 - 200,0 mmol/l; Ca²⁺: 0,5 - 20,0 mmol/l), so wurde der Urin in verdünnter Form manuell mit dem EFUX 5057 gemessen. Hierzu wurde die verdünnte Urinprobe in 1 ml der vom Gerät verwendeten Lithium-Lösung gegeben und dem Flammenphotometer manuell zur Messung vorgelegt.

2.2.3.4 ELISA und EIA

Die Analyse der Plasma-Hormone PTH, FGF23, Calcidiol sowie Calcitriol erfolgte aus dem bei Opferung der Tiere gewonnenen Plasma mittels ELISA bzw. EIA. Bei einem enzyme linked immunosorbend assey (ELISA) handelt es sich um ein antikörperbasiertes Nachweisverfahren, das eine enzymatische Farbreaktion nutzt. Bei den hier zur Messung der PTH- und FGF-23-Konzentration verwendeten ELISAs, handelt es sich um sogenannte Sandwiche-ELISAs. Ein „capture“-

Bei den hier zur Messung der 25-Hydroxy-Vitamin D- und 1,25-Dihydroxy-Vitamin D-Konzentration verwendeten Tests, handelt es sich um sogenannte kompetitive Immunoassays bzw. enzymgekoppelte Immunadsorptionstests (EIA). Hier wird zur Detektion kein zweiter „detection“-Antikörper verwendet, sondern ein Kompetitor-Antigen, welches ebenfalls am „capture“-Antikörper bindet und mit HRP markiert ist. Nach einem Waschschritt wird ein Substrat der HRP zugegeben, welches von dieser umgesetzt wird und zu einem photometrisch messbaren Farbumschlag führt. Dieser ist umgekehrt proportional zur Konzentration des zu messenden Analyten [5, 80].

Abb. 2.4: Funktionsprinzip Sandwich-ELISA

Linker Bildteil: (A) Eine streptavidinbeschichtete Mikrotiterplatte bindet den biotinylierten „capture“ Antikörper, welcher den Analyten bindet. (B) Der „detection“ Antikörper der ebenfalls am Analyten bindet trägt das Enzym HRP. (C) Dieses setzt das zugegebene TMB Substrat um, was zu einem photometrisch messbaren Farbumschlag führt. grau – Mikrotiterplatte; gelb – Streptavidin; rot und schwarz – biotinylierter „capture“ Antikörper; grün – Antigen; orange und blau – „detection“ Antikörper mit HRP

Rechter Bildteil: Standardkurve am Beispiel des PTH-ELISAs [4]
2. Material und Methoden

Plasma PTH - Mouse PTH 1-84 ELISA Kit (Cat.# 60-2305)

Inhalt:
- Streptavidin coatet microtiter plate (96 wells)
- mouse PTH 1-84 biotinylated Antibody
- mouse PTH 1-84 HRP conjugated antibody
- mouse PTH 1-84 standards (0 pg/ml; 32 pg/ml; 102 pg/ml; 336 pg/ml; 1045 pg/ml; 2616 pg/ml)
- ELISA wash concentrate: liegen in lyophilisierter Form vor; vor Gebrauch in 2 ml (0 pg/ml) bzw. 1 ml aqua dest. lösen
- ELISA HRP substrate: nach Zugabe von 400 ml aqua dest. gebrauchsfertig
- ELISA stop solution: TMB
- 1M Schwefelsäure
- plate sealer
- mouse PTH 1-84 sample diluent: liegt in lyophilisierter Form vor; vor Gebrauch in 10 ml aqua dest. lösen

Plasma FGF-23 - Mouse/Rat FGF-23 (C-Term) ELISA Kit (Cat.# 60-6300)

Inhalt:
- Streptavidin coatet microtiter plate (96 wells)
- mouse FGF-23 biotinylated Antibody
- mouse FGF-23 HRP conjugated antibody
- mouse PTH 1-84 standards (0 pg/ml; 19.5 pg/ml; 64 pg/ml; 200 pg/ml; 640 pg/ml; 1910 pg/ml)
- Abb. 2.5: Funktionsprinzip kompetitiver EIA

Linker Bildteil: (A) Der Analyt und ein weiteres biotin-markiertes Antigen konkurrieren um die Antikörperbindung auf der Mikrotiterplatte. (B) Es wird avidin-markierte HRP hinzugegeben, die über das Avidin an Biotin bindet. (C) Die HRP setzt das zugegebene TMB Substrat um, was zu einem photometrisch messbaren Farbumschlag führt. grau – Mikrotiterplatte; schwarz – Antikörper; grün – Analyt; rot und gelb – biotiniliertes kompetitives Antigen; orange und blau – avidin-markierte HRP

Rechter Bildteil: Standardkurve am Beispiel des Calcitriol EIA [5]
Material und Methoden

<table>
<thead>
<tr>
<th>Material/Produkt</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELISA wash concentrate</td>
<td>aqua dest. lösen nach Zugabe von 400 ml aqua dest.gebrauchsfertig</td>
</tr>
<tr>
<td>ELISA HRP substrate</td>
<td>TMB</td>
</tr>
<tr>
<td>ELISA stop solution</td>
<td>1M Schwefelsäure</td>
</tr>
<tr>
<td>plate sealer</td>
<td></td>
</tr>
<tr>
<td>sample diluent</td>
<td>liegt in lyophilisierter Form vor vor Gebrauch in 10 ml aqua dest. lösen</td>
</tr>
</tbody>
</table>

Durchführung:
Wenn nicht anders beschrieben, gelten die aufgeführten Schritte sowohl für das Mouse PTH 1-84 ELISA Kit wie auch für das Mouse/Rat FGF-23 (C-Term) ELISA Kit.
Es werden 20 µl (PTH) bzw. 25 µl (FGF-23) Standard bzw. Probe in den mit Straptavidin beschichteten Wells vorgelegt.
Anschließend werden 50 µl der Antikörper working solution (Mischung der im Kit enthaltenen Antikörper im Verhältnis 1:1) zugegeben, die Mikrotiterplatte mit einem plate sealer verschlossen und in Aluminiumfolie verpackt.
Die Mikrotiterplatte wird für 3 h bei Raumtemperatur auf einem Plattenschüttler bei 180-220 rpm inkubiert.
Nach Ablauf der 3 h wird jedes Well fünf Mal mit je 300 µl der Waschlösung gewaschen.
Jetzt werden jedem Well 100 µl ELISA HRP substrate zugegeben, die Mikrotiterplatte mit einem plate sealer verschlossen und in Aluminiumfolie verpackt.
Die Mikrotiterplatte wird für 30 min bei Raumtemperatur auf einem Plattenschüttler bei 180-220 rpm inkubiert.
Nun wird innerhalb von 5 min die Absorption bei 650 nm gegen den 0 pg/ml Standard als Leerwert im ELx800 Absorptions-Reader (BioTek®) gemessen.
Nach Zugabe von 100 µl (PTH) bzw. 50 µl (FGF-23) ELISA stop solution wird innerhalb von 10 min die Absorption bei 450 nm gegen einen Leerwert aus 100 µl Substrat und 100 µl (PTH) bzw. 50 µl (FGF-23) stop solution gemessen.
Die untere Nachweisgrenze des mouse PTH 1-84 beträgt 4 pg/ml (assay sensitivity).
Die untere Nachweisgrenze des mouse FGF-23 beträgt 4 pg/ml (assay sensitivity).

Plasma-Calcidiol - 25-Hydroxy Vitamin D EIA Kit

Inhalt:
- **Antibody coated plate (96 wells)**
- **Calibrators**
 - 25OH Vit. D sheep polyclonal antibodies
 - (0 nM; 6,8 nM; 14 nM; 27 nM; 67 nM; 179 nM; 380 nM)
 - liegen in lyophilisierter Form vor
 - vor Gebrauch in 1 ml aqua dest. lösen
- **Puffer**
 - 25-D Biotin Concentrate
 - liegt in lyophilisierter Form vor
 - durch Zugabe des Puffers erhält man die
 - gebrauchsfertige 25-D Biotin Solution
- **Enzym Conjugate**
 - PBS, avidin linked to HRP, Protein,
 - Stabilisatoren und Konservierungsstoffe
- **TMB-Substrate**
- **Stop Solution**
 - 0,5M HCl
- **Wash Concentrate**
 - PBS mit Tween
 - nach Zugabe von 950 ml aqua dest.
 - gebrauchsfertig
- **plate sealer**

Durchführung:
6 µl Kalibrator bzw Probe werden in einem Tube mit 240 µl 25-D Biotin Solution gründlich vermischt.
200 µl hiervon werden auf die antikörperbeschichtete Mikrotiterplatte gegeben, die Platte mit einem plate sealer verschlossen und bei Raumtemperatur für 2 h inkubiert.
Anschließend werden die verwendeten Wells mit je 300 µl Waschlösung 3-mal gewaschen.
Danach wird in jedes Well 200 µl Enzymkonjugat gegeben, die Platte verschlossen und für 30 min bei Raumtemperatur inkubiert.
Anschließend werden die verwendeten Wells mit je 300 µl Waschlösung 3-mal gewaschen.
Mit Hilfe einer Mehrkanalpipette werden in jedes Well 200 µl TMB-Substrat gegeben, die Mikrotiterplatte mit einem plate sealer verschlossen und für 30 min bei Raumtemperatur inkubiert.
Nach Zugabe von 100 µl Stoplösung wird der Assay innerhalb von 30 min im ELx800 Absorptions-Reader (BioTek®) bei 450 nm (Referenz: 650 nm) ausgelesen.
Material und Methoden

Mit Hilfe der mitgemessenen Standards wird nun eine Standardkurve erstellt, anhand derer sich die Konzentrationen der Proben bestimmen lassen. Die Empfindlichkeit des Assays (assay sensitivity) für 25OH Vit. D liegt bei 5 nM.

Plasma-Calcitriol - IDS 1,25-Dihydroxy Vitamin D EIA Kit

<table>
<thead>
<tr>
<th>Inhalt:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Immuncapsules</td>
<td>an eine Festphase gebundener monoclonal anti-1,25OH Vit. Antibody in suspension mit VDP Inhibitor</td>
</tr>
<tr>
<td>Delipidation Reagent</td>
<td>Dextransulfat und Magnesiumchlorid</td>
</tr>
<tr>
<td>Elution Reagent</td>
<td>Ethanol</td>
</tr>
<tr>
<td>Assay Puffer</td>
<td>BSA Puffer mit 0,09% NaCl</td>
</tr>
<tr>
<td>Antibody coated plate (96 wells)</td>
<td>anti-sheep IgG</td>
</tr>
<tr>
<td>Calibrators</td>
<td>(0 pM; 5,7 pM; 13,4 pM; 34 pM; 112 pM; 246 pM; 544 pM) liegen in lyophilisierter Form vor vor Gebrauch in 1 ml aqua dest. lösen</td>
</tr>
<tr>
<td>Primary Antibody Concentrate</td>
<td>sheep anti-1,25OH Vit. D</td>
</tr>
<tr>
<td>Primary Antibody Puffer</td>
<td>Primary Antibody Solution entsteht durch Mischen des Primary Antibody Concentrate mit dem Primary Antibody Puffer</td>
</tr>
<tr>
<td>1,25-D Biotin Puffer</td>
<td>liegt in lyophilisierter Form vor durch Zugabe des Puffers erhält man die gebrauchsfertige 1,25-D Biotin Solution</td>
</tr>
<tr>
<td>1,25-D Biotin Concentrate</td>
<td>durch Zugabe des Puffers erhält man die gebrauchsfertige 1,25-D Biotin Solution</td>
</tr>
<tr>
<td>Enzym Conjugate</td>
<td>PBS, avidin linked to HRP, Protein, Stabilisatoren und Konservierungsstoffe</td>
</tr>
<tr>
<td>TMB-Substrate</td>
<td>0,5M HCl</td>
</tr>
<tr>
<td>Stop Solution</td>
<td>PBS mit Tween nach Zugabe von 950 ml aqua dest. gebrauchsfertig</td>
</tr>
<tr>
<td>Wash Concentrate</td>
<td></td>
</tr>
<tr>
<td>plate sealer</td>
<td></td>
</tr>
</tbody>
</table>

Durchführung:
Die Immunkapseln werden nun für 90 min bei Raumtemperatur Ende-über-Ende rotiert. Anschließend lässt man sich das Gel der Immunkapseln für 5 min setzen.
Der untere Verschluss der Immunkapseln wird abgebrochen, die Immunkapsel in ein Tube gestellt und der flüssige Inhalt der Kapseln bei 1000 rpm für eine Minute abzentrifugiert.
Nun wird die Immunkapsel mit je 500 µl aqua dest. und anschließendem Abzentrifugieren für 1 min bei 1000 rpm 3-mal gewaschen. Der Durchfluss wird verworfen.
In jede Immunkapsel werden nun 150 µl Elutionsreagenz gegeben. Um das Eluat zu gewinnen wird die Immunkapsel nach 2 min bei 1000 rpm für 1 min zentrifugiert. Dieser Schritt wird noch 2-mal wiederholt und das Eluat gesammelt (Gesamtvolumen 450 µl).
Die Immunkapseln werden verworfen und das Eluat im Concentrator 5301 (Eppendorf AG) bei 30 °C unter Rotation und Vakuum verdunstet.
In jedes Tube werden nun 100 µl Assay Puffer gegeben um die Rückstände zu lösen.
Nun werden in weitere Tubes je 100 µl der Kalibratoren gegeben und zu allen Tubes je 100 µl der Primary Antibody Solution pipettiert und gut vermischt. Der Ansatz wird bei 2-8 °C für 16-20 h inkubiert.
150 µl der Lösung werden anschließend in je ein Well der antikörperbeschichteten Mikrotiterplatte gegeben. Die Platte wird mit einem plate sealer verschlossen und mit 500 rpm auf einem Plattenschüttler bei Raumtemperatur für 90 min inkubiert.
Nun werden jedem Well 100 µl 1,25-D Biotin Solution zugegeben, die Platte mit einem plate sealer verschlossen und auf dem Plattenschüttler mit 500 rpm bei Raumtemperatur für 1 h inkubiert.
Anschließend werden die verwendeten Wells mit je 300 µl Waschlösung 3-mal gewaschen.
Danach wird in jedes Well 200 µl Enzymkonjugat gegeben, die Platte verschlossen und für 30 min bei Raumtemperatur inkubiert.
Anschließend werden die verwendeten Wells mit je 300 µl Waschlösung 3-mal gewaschen.
Mit Hilfe einer Mehrkanalpipette werden in jedes Well 200 µl TMB-Substrat gegeben, die Mikrotiterplatte mit einem plate sealer verschlossen und für 30 min bei Raumtemperatur inkubiert.
Nach Zugabe von 100 µl Stopplösung wird der Assay innerhalb von 30 min im ELx800 Absorptions-Reader (BioTek®) bei 450 nm (Referenz: 650 nm) gegen einen Leerwert aus 200 µl Substrat und 100 µl Stoplösung gemessen. Mit Hilfe der mitgemessenen Standards wird nun eine Standardkurve erstellt, anhand derer sich die Konzentrationen der Proben bestimmen lassen.
Die Empfindlichkeit des Assays (assay sensitivity) für 1,25OH Vit. D liegt bei 6 pM.
2.2.4 Gewebeanalysen

2.2.4.1 Quantitative real-time Polymerasekettenreaktion (RTQ-PCR)

Mit Hilfe der quantitativen Echtzeit-PCR wurde in jeweils der rechten Niere, die nach Opferung der Tiere rasch entnommen, in flüssigem Stickstoff schockgefroren und bei -80 °C gelagert wurde, die Enzymproduktion der 24-Hydroxylase (CYP24A1) und der 1α-Hydroxylase (CYP27B1) sowie die Translationsaktivität für den Co-Faktor am FGF-Rezeptor, Klotho, indirekt über die jeweilige mRNA bestimmt.

Bei der RTQ-PCR handelt es sich um das derzeit gängigste Verfahren zur Quantifizierung von Nukleinsäuren. Nach RNA-Isolation und Transkription in cDNA wird während einer herkömmlichen PCR mittels Fluoreszenzmessungen die Quantifizierung der gewonnenen DNA ermöglicht. Hierzu wird ein fluoreszierender DNA-Farbstoff, hier SYBR® Green I, verwendet, der in die amplifizierte DNA interkaliert und so zu einem Anstieg der Fluoreszenz führt. Zur Quantifizierung der zu untersuchenden Templatemenge wird die Kinetik der PCR-Reaktion genutzt. Zu Beginn der PCR findet eine nahezu exponentielle Amplifikation statt, die sich dann zu einem linearen Wachstum verlangsamt und schließlich zum Erliegen kommt. Als CT-Wert (cycle threshold) ist die Zykluszahl definiert, bei der sich das Fluoreszenzsingal gerade deutlich vom Hintergrund abhebt. Mit Hilfe der C_T-Werte parallel amplifizierter bekannter Templatemengen wird nun eine Standardkurve erstellt, woraus dann umgekehrt durch die gemessenen C_T-Werte auf die Templatemenge geschlossen werden kann.
Da die Bindung des Fluoreszenzfarbstoffs nicht spezifisch ist und somit nicht zwischen verschiedenen PCR-Produkten unterschieden werden kann, muss zusätzlich eine Schmelzkurvenanalyse durchgeführt werden. Bei einer für jedes DNA-Fragment spezifischen Schmelztemperatur denaturiert die zuvor doppelsträngige DNA, wobei der darin gebundene Fluoreszenzfarbstoff freigesetzt wird, was eine Abnahme der Fluoreszenz nach sich zieht. Eine Unterscheidung ist nun anhand der Schmelztemperatur möglich. Doppelsträngige spezifische PCR-Produkte weisen eine höhere Schmelztemperatur auf, als unspezifische Nebenprodukte. Die Höhe des Peaks der Schmelzkurve korreliert mit der Menge des gebildeten Fragments [81, 82].

Abb. 2.6: Prinzip der RTQ-PCR am Beispiel GAPDH

(Link) Fluoreszenzkurven für vier Amplifikationen mit unterschiedlicher Template-DNA-Menge. (Rechts oben) Logarithmierte Darstellung der obigen Kurven. Die C\textsubscript{T}-Werte (Schnittpunkt mit der noise band – horizontale grüne Linie) werden in einem Bereich der Kurve ermittelt, an dem die Amplifikation noch exponentiell verläuft. (Rechts unten) Durch Auftrag der ermittelten C\textsubscript{T}-Werte gegen den Logarithmus der zu Beginn eingesetzten DNA-Menge erhält man eine Standardkurve. Anhand dieser kann mit Hilfe gemessener C\textsubscript{T}-Werte von Proben die jeweils in den Proben vorhandene DNA-Menge ermittelt werden.

-35-
2. Material und Methoden

Material und Methoden

- **RNA-Isolierung**

RNeasy® Mini Kit (Cat. No. 74104)

Ihnen:

- **RNeasy Mini Spin Columns (pink)**
- **Collection tubes (1,5 ml)**
- **Collection tubes (2,0 ml)**
- **RLT Puffer**
 - pro ml RLT Puffer 10 µl β-ME zugeben
- **RW1 Puffer**
- **RPE Puffer**
 - Konzentrat (vor Gebrauch das vierfache Volumen Ethanol (96-100%) zugeben)
- **RNase-Free water**

Abb. 2.7: Schmelzkurvenanalyse am Beispiel GAPDH

Die Schmelzkurve zeigt einen einheitlichen Schmelzpunkt aller analysierten Proben, d.h. in allen Proben wurde das gleiche Produkt gebildet, im Beispiel GAPDH.
2. Material und Methoden

RNase-Free DNase Set (Cat. No. 79254)

<table>
<thead>
<tr>
<th>Inhalt:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>DNase I, RNase-Free (lyophilized)</td>
<td>1500 Kunitz units in 450 µl RNase-Free water lösen</td>
</tr>
<tr>
<td>RDD Puffer</td>
<td></td>
</tr>
<tr>
<td>RNase-Free water</td>
<td></td>
</tr>
</tbody>
</table>

Durchführung:

Transkription der mRNA in cDNA

Advantage® RT-for-PCR Kit (Cat.# 63906)

<table>
<thead>
<tr>
<th>Inhalt:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>5X Reaction Puffer</td>
<td>250 mM Tris-HCl, pH 8,3</td>
</tr>
<tr>
<td></td>
<td>375 mM KCl</td>
</tr>
<tr>
<td></td>
<td>15 mM MgCl₂</td>
</tr>
<tr>
<td>Oligo (dT)₁₈ Primer</td>
<td>20 µM</td>
</tr>
<tr>
<td>Random Hexamer Primer</td>
<td>20 µM</td>
</tr>
<tr>
<td>MMLV Reverse Transcriptase</td>
<td>200 units/µl</td>
</tr>
<tr>
<td>(MMLV: Moloney Murine Leukemia Virus, recombinant)</td>
<td></td>
</tr>
<tr>
<td>Recombinant RNase Inhibitor</td>
<td>40 units/µl</td>
</tr>
</tbody>
</table>
2. Material und Methoden

dNTP Mix

10 mM each

DEPC-treated Water

(treated with diethyl pyrocarbonate (1:1000) and autoclaved)

Durchführung:

Mit Hilfe des GeneQuant pro Photometers wird die Konzentration der bei der RNA Isolation gewonnenen RNA bestimmt. Die folgenden Schritte werden auf Eis durchgeführt.

In einem sterilen Tube werden 1 µg RNA in 12,5 µl DEPC-treated Water vorgelegt, 1 µl oligo(dT) Primer zugegeben und 2 min im Thermocycler auf 70°C erhitzt. Anschließend wird das Reaktionsgefäß für 2 min auf Eis gekühlt.

Zu jeder RNA Probe werden nun 6,5 µl Mastermix (4,0 µl 5X reaction buffer; 1,0 µl dNTP Mix; 1,0 µl MMLV reverse transcriptase; 0,5 µl recombinant RNase inhibitor) gegeben und durch auf- und abpipettieren gut vermischt.

Die Tubes werden nun 1 h bei 42 °C im Thermocycler inkubiert, dann 5 min auf 94 °C erhitzt, um die cDNA Synthese abzubrechen.

Die synthetisierte cDNA wird bei -20 °C gelagert.

RTQ-PCR

LightCycler® DNA Master SYBR Green I (Prod. No. 12015099001)

Inhalt:

LightCycler® DNA Master SYBR Green I

MgCl₂ Stock Solution 25 mM

DEPC-treated Water

(treated with diethyl pyrocarbonate (1:1000) and autoclaved)

Primer:

1α-Hydroxylase (CYP27B1)

sense: GCA TCA CTT AAC CCA CTT CC
antisense: CGG GAA AGC TCA TAG AGT GT
final concentration je 1,0 µM

24-Hydroxylase (CYP24A1)

sense: CCC TTC TGC AAG AAA ACT GC
antisense: CTC TTG AGG GCT CTG ATT GG
f. c. je 0,5 µM

Klotho

sense: CCC TGT GAC TTT GCT TGG G
antisense: CCC ACAG ATA GAC ATT CGG GT
f. c. je 0,3 µM

GAPDH (housekeeping gene)

sense: AAC GAC CCC TTC ATT GAC
antisense: TCC ACG ACA TAC TCA GCA C
f. c. je 1,0 µM
Material und Methoden

Durchführung:
Es werden 2 µl der transkribierten cDNA mit 3,2 µl MgCl₂-Lösung (5mM) für 1α- und 24-Hydroxylase bzw. 2,4 µl MgCl₂-Lösung (4mM) für Klotho und GAPDH, 1 µl Primerlösung (je 0,5 µl sense- bzw. antisense-Primer) sowie 2 µl LightCycler® DNA Master SYBR Green I und 12,6 µl DEPC-treated water im LightCycler® zur Reaktion gebracht.

Die Amplifikation findet in jeweils Produkt-spezifischen Sequenzen statt:
1α-Hydroxylase (CYP27B1) und 24-Hydroxylase (CYP24A1):
3 Minuten Aktivierung bei 95°C (Denaturierung), dann 45 Zyklen zu je 15s bei 95°C (Denaturierung), 20 s bei 56°C (Annealing) und 20 s bei 72°C (Extension)
Klotho:
2 min Aktivierung bei 95°C, dann 40 Zyklen zu je 15 s bei 95°C, 15 s bei 55°C und 20 s bei 72°C
GAPDH:
10 min Aktivierung bei 95°C, dann 35 Zyklen zu je 15 s bei 95°C, 10 s bei 69°C und 9 s bei 72°C

Es wird eine Schmelzkurvenanalyse zur Spezifitätskontrolle der RTQ-PCR durchgeführt.
Die gemessenen Kopienzahlen der Ziel-Gene werden auf diejenige des housekeeping Gens GAPDH bezogen.

2.2.4.2 Histologie

Die histologischen Untersuchungen wurden an der jeweils linken Niere sowie der thorakalen Aorta, die nach Opferung der Tiere entnommen und in 4%iger Formalin-Lösung aufbewahrt wurden, durch die Nephropathologische Abteilung des Pathologischen Instituts des Universitätsklinikums Erlangen durchgeführt.

-39-
Analog zum GSI dient der tubulointerstitielle Schädigungsindex (TSI) der Beurteilung der tubulären Schädigung. Unter 200-facher Vergrößerung wurden in der Mark-Rindengrenze 12 Gesichtsfelder hinsichtlich der tubulären Schädigung beurteilt und, wie von Véniant et al. beschrieben, in vier Stadien unterteilt [84].

2.2.4.3 Statistik
3. Ergebnisse

Soweit nicht anders angegeben, sind alle Werte als Mittelwert ± SEM angegeben bzw. dargestellt.

3.1 Entwicklung und Verlauf des SHPT

3.1.1 Induktion des Modells und Klinischer Verlauf

Analog der drei verschiedenen, für die Induktion des Modells verwendeten Doxorubicindosen ließen sich drei unterschiedlich stark ausgeprägte Verlaufsformen der Niereninsuffizienz und des SHPT beobachten. Diese drei Verlaufsformen werden im Folgenden in Anlehnung an die KDIGO-Stadien CKD 1-3 und CKD 4-5 sowie an ein akutes Nierenversagen (AKI) benannt.

Abb. 3.1: Induktionsdosis
Dargestellt ist die für die Induktion der jeweiligen Verlaufsform nötige Toxindosis als Mittelwert ± SEM in der Einheit µl/g KG
#: p < 0,05 vs CKD 1-3-Mäuse; §: p < 0,05 vs CKD 4-5-Mäuse; $: p < 0,05 vs weiblich
Rückschließlich ließen sich für die Weibchen mit 5,6 ± 0,19 µl/g KG, 6,5 ± 0,20 µl/g KG und 7,5 ± 0,00 µl/g KG sowie für die Männchen mit 6,7 ± 0,12 µl/g KG, 7,2 ± 0,06 µl/g KG und 7,8 ± 0,12 µl/g KG je drei signifikant verschiedene Toxindosen ermitteln, um die unterschiedlich schweren Verlaufsformen der Niereninsuffizienz und des SHPT zu generieren.

Bei der Beobachtung des Gewichtsverlaufs der Mäuse nach Induktion ließen sich klinisch drei unterschiedliche Verlaufsformen erkennen, welche sich im weiteren Verlauf auch laborchemisch unterscheiden ließen.

Die CKD 1-3-Mäuse verloren zu Beginn moderat an Gewicht und hielten sich dann mit einem mittleren Gewichtsverlust von 1,65 ± 0,09 g stabil.

Die CKD 4-5-Mäuse zeigten einen kontinuierlichen Gewichtsverlust auf zuletzt 5,64 ± 0,35 g. Dieser kontinuierliche Gewichtsverlust wurde zwischen den Tagen 4 bis 15 durch eine vorübergehende Gewichtszunahme mit

Abb. 3.2: Gewichtsverlauf nach Induktion
Dargestellt ist für die jeweilige Gruppe die Gewichtsdifferenz zum Induktionstag als Mittelwert ± SEM in der Einheit g sowie jeweils eine Regressionsgerade
3. Ergebnisse

Die AKI-Mäuse zeigten nach anfänglich minimalen Gewichtsverlust ebenfalls zwischen den Tagen 3 bis 16 eine deutliche, ödembedingte Gewichtszunahme (s. Abb. 3.3 B-C) mit Punctum maximum an Tag 13 mit 10,16 ± 1,51 g. Über den 30-tägigen Verlauf verblieb bei diesen Mäusen im Mittel allerdings eine tendenziell positive Gewichtsbilanz mit 4,30 ± 7,41 g.

Bei den Blutentnahmen an Tag 10 zeigte sich bei den Mäusen der CKD 4-5- und AKI-Verlaufsform eine makroskopisch sichtbare Hyperlipidämie (s. Abb. 3.3 E).

Abb. 3.3: Klinischer Verlauf
3. Ergebnisse

3.1.2 Nierenfunktion

Die Nierenfunktionsparameter zeigten die unterschiedlich schnelle und unterschiedlich starke Entwicklung einer Nephropathie mit drei Verlaufsformen:

Eine Verlaufsform mit nur leicht bis mäßig vermindriger GFR (CKD 1-3) und konsekutiv nahezu unverändertem Plasma Harnstoff- und Phosphatwert. Hier trat eine im Verlauf zunehmende Proteinurie mit maximal 87 ± 15 mg/mg Kreatinin, sowie eine kontinuierliche Erhöhung des Plasma Kaliums von 4,36 ± 0,08 mM auf 5,20 ±0,15 mM auf.

Eine weitere Verlaufsform zeigte eine stark verminderte GFR (CKD 4-5),
wobei es hier nach anfangs nur unwesentlichem Anstieg ab Tag 10 zu einem deutlichen Harnstoffanstieg im Plasma von 42 ± 6 mg/dl auf 228 ± 32 mg/dl an Tag 30, das ca. 5,4-fache, kam. Konsekutiv kam es zu einem kontinuierlichen Phosphatanstieg im Plasma von zu Beginn $1,72 \pm 0,08$ mM auf das ca. 1,8-fache an Tag 30. Der Kaliumanstieg im Plasma fiel vergleichbar mit der Vorgruppe aus, die Proteinurie unterschied sich mit einem Spitzenwert von 138 ± 12 mg/mg Kreatinin an Tag 10 deutlich von der Vorgruppe. Die Proteinurie fiel mit abnehmender Nierenfunktion kontinuierlich auf ca. 43% des Spitzenwertes ab. In Zusammenschau mit den oben beschriebenen klinischen Beobachtungen entwickelten die Mäuse dieser Verlaufsform um Tag 10 ein klassisches nephrotisches Syndrom mit ausgeprägter Ödembildung, deutlicher Proteinurie und Hyperlipidämie.

Die dritte abgrenzbare Verlaufsform zeigte, einem akuten Nierenversagen (AKI) entsprechend, bereits an Tag 10 einen deutlichen GFR-Verlust mit einem Harnstoffanstieg an Tag 10 auf das ca. 9,2-fache des Ausgangswertes und einem weiteren Anstieg auf 434 ± 58 mg/dl, was etwa dem 13,8-fachen des Ausgangswertes entspricht. Konsekutiv kam es zu einem kontinuierlichen Phosphatanstieg im Plasma auf $3,9 \pm 1,3$ mM an Tag 30. Der Kaliumanstieg fiel in dieser Gruppe nicht signifikant stärker zu den anderen beiden Verlaufsformen aus. Die Proteinurie zeigte einen mit der CKD 4-5-Gruppe vergleichbaren Verlauf. Hier lag der Spitzenwert an Tag 10 bei 174 ± 32 mg/mg Kreatinin. Die Proteinurie fiel mit abnehmender Nierenfunktion kontinuierlich auf ca. 32% des Spitzenwertes ab. Die AKI-Verlaufsform zeigte ebenfalls klinisch wie laborchemisch ein ausgeprägtes nephrotisches Syndrom mit ausgeprägter Ödembildung, deutlicher Proteinurie und Hyperlipidämie.
3.1.3 Endokrinologischer Verlauf

Analog zu den Beobachtungen der Nierenfunktionsparameter zeigten sich beim Verlauf über 30 Tage drei verschiedene Ausprägsformen eines SHPTs.

Bei den CKD 1-3-Mäusen kam es zu einem signifikanten, kontinuierlichen Anstieg des Plasma PTH über 30 Tage auf mit 497 ± 62 pg/ml das ca. 2,4-fache des Ausgangswertes im Sinne eines SHPT. Das FGF-23 zeigte im Verlauf an Tag 10 zunächst einen signifikanten Anstieg auf 500 ± 85 pg/ml um anschließend auf 172 ± 32 pg/ml, ca. 55% des Ausgangswertes an Tag 0, abzufallen. Die Plasmakonzentration von 25-Hydroxy-Vitamin D fiel im
Verlauf von 30 Tagen signifikant auf ca. 17% des Ausgangswertes von 87 ± 4 nM ab. Die 1,25-Dihydroxy-Vitamin D-Konzentration fiel auf ca. 69% des Ausgangswertes von 116 ± 9 pM weniger stark. Die CKD 4-5-Mäuse erreichten mit einem mittleren PTH von 2045 ± 272 pg/ml die höchste PTH Konzentration der drei Verlaufsformen. Der FGF23-Anstieg verlief kontinuierlich bis zu einem Spitzenwert von 8402 ± 2487 pg/ml an Tag 30. 25-Hydroxy-Vitamin D und 1,25-Dihydroxy-Vitamin D waren mit einem Abfall auf ca. 6% bzw. ca. 2% der jeweiligen Ausgangswerte von 87 ± 4 nM bzw. 116 ± 9 pM nahezu nicht mehr nachzuweisen. Die Mäuse, die eine AKI entwickelten, fielen durch einen verzögerten PTH-Anstieg nach Tag 10 auf. Mit einem Anstieg auf 329 ± 29 pg/ml, das ca. 1,6-fache des Ausgangswertes, fiel dieser nicht signifikant aus und wurde daher nicht im Sinne eines SHPT gewertet. Der FGF23-Spiegel erreichte nach kontinuierlichem Anstieg im Vergleich mit 11299 ± 6394 pg/ml an Tag 30 die höchsten Werte. 25-Hydroxy-Vitamin D und 1,25-Dihydroxy-Vitamin D zeigten mit einem Abfall auf ca. 2% bzw. ca. 0,6% der jeweiligen Ausgangswerte von 87 ± 4 nM bzw. 116 ± 9 pM einen noch stärkeren Abfall als bei den Mäusen der CKD 4-5-Gruppe. Sowohl bei den CKD 4-5-Tieren als auch bei den AKI-Tieren konnte im Urin an Tag 10 qualitativ 25-Hydroxy-Vitamin D und 1,25-Dihydroxy-Vitamin D nachgewiesen werden.
3.1.4 Weitere Parameter

Bereits an Tag 10 zeigte sich hinsichtlich des mit der Pyrogallolrot-Methode bestimnten Plasma-Eiweißes ein signifikanter Abfall auf ca. 78% des Ausgangswertes von 41 ± 1 g/l bei den CKD 1-3-Mäusen, auf ca. 58% bei den CKD 4-5-Mäusen und auf ca. 40% bei den AKI-Mäusen. Im Verlauf bis Tag 30 kam es lediglich bei den CKD 4-5-Mäusen zu einem Anstieg auf 33 ± 2 g/l, wohingegen es bei den CKD 1-3-Mäusen wie auch bei den AKI-Mäusen zu keiner wesentlichen Veränderung im Vergleich zu Tag 10 kam. Die Werte lagen hier bei 32 ± 2 g/l bzw. bei 14 ± 3 g/l.

Das freie Calcium zeigte nur eine geringe, nicht signifikante Dynamik. Bei
3. Ergebnisse

den CKD 1-3-Mäusen kam es an Tag 10 zu einem Anstieg auf das ca. 1,11-fache des Ausgangswertes von 0,93 ± 0,03 mM, der mit Werten von 1,02 ± 0,05 mM an Tag 30 konstant blieb. Bei den CKD 4-5 – und den AKI-Tieren kam es nach einem geringen Anstieg auf jeweils 0,97 ± 0,05 mM zu einem nicht signifikanten Abfall auf 0,89 ± 0,03 mM bzw. 0,85 ± 0,07 mM. Der Hämatokrit zeigte nicht signifikant die Entstehung einer Anämie, wobei bei den CKD 1-3-Tieren über 30 Tage keine Anämie nachgewiesen werden konnte. Die CKD 4-5-Tiere zeigten bereits an Tag 10 einen signifikanten Abfall auf ca. 79% des Ausgangswertes von 49,0 ± 1,1%. Dieser Wert blieb im Verlauf über 30 Tage nahezu unverändert. Die AKI-Mäuse zeigten an Tag 10 vergleichbar mit den CKD 1-3-Mäusen einen nicht signifikanten Abfall, wobei es im Verlauf über 30 Tage, anders als bei den CKD 1-3-Tieren, zu einem weiteren nicht signifikanten Abfall des Hämato- krits auf 42,0 ± 4,5% kam.

Bei den CKD 1-3-Tieren kam es hinsichtlich der Phosphatausscheidung über den Urin zu einem kontinuierlichen, nicht signifikanten Anstieg der Phosphatausscheidung bis Tag 30 auf ungefähr das 1,2-fache des Ausgangswertes von 116 ± 18 µmol/mg Kreatinin. Die CKD 4-5-Tiere wie auch die AKI-Tiere zeigten zwischen Tag 10 und Tag 20 einen Anstieg der Phosphaturie auf das etwa 1,6-fache bzw. das etwa 1,7-fache des Ausgangswertes, um dann bis Tag 30 auf eine Phosphaturie von 101 ± 19 µmol/mg Kreatinin bzw. 112 µmol/mg Kreatinin zu fallen.
3. Ergebnisse

3.1.5 Gewebeanalytik

3.1.5.1 RTQ-PCR

Die Genexpression von Klotho verhielt sich nahezu umgekehrt proportional zum FGF-23-Verlauf. Bei den CKD 1-3-Mäusen kam es an Tag 10 zu einem Abfall der Genexpression auf ca. 43% des Ausgangswertes, gefolgt von einem leichten Anstieg auf 30,8 ·10³ ± 3,6 ·10³ Kopien, was ungefähr 56% des Ausgangswertes entspricht. Bei den CKD 4-5-Mäusen wie auch bei den AKI-Mäusen zeigte sich ein kontinuierliche Verringerung der Genexpression.

Abb. 3.7: Genexpression im Verlauf über 30 Tage, publiziert in [100]

Dargestellt ist jeweils das Verhältnis zwischen dem jeweils untersuchten Gen und dem housekeeping gene GAPDH. A: Klotho/GAPDH Ratio; B: CYP27B1/GAPDH Ratio; C: CYP24A1/GAPDH Ratio

*: p < 0,05 vs gesunde Tiere; #: p < 0,05 vs CKD 1-3-Tiere; §: p < 0,05 vs CKD 4-5-Tiere
auf etwa 26% bzw. etwa 20% des Ausgangswertes von $55,1 \cdot 10^3 \pm 8,6 \cdot 10^3$ Kopien.

Die 1α-Hydroxylase verhielt sich ebenfalls nahezu umgekehrt proportional zur 1,25-Dihydroxy-Vitamin D-Konzentration. Die CKD 1-3-Mäuse zeigten ab Tag 10 einen leichten Anstieg der 1α-Hydroxylase-Expression auf $2,0 \cdot 10^3 \pm 0,2 \cdot 10^3$ Kopien, das ungefähr 3,2-fache des Ausgangswertes. Ebenfalls ab Tag 10 zeigten die CKD 4-5-Mäuse einen etwas stärkeren Anstieg der Genexpression auf $6,6 \cdot 10^3 \pm 3,1 \cdot 10^3$ Kopien, das etwa 10,7-fache des Ausgangswertes. Bei den AKI-Mäusen zeigte sich über 30 Tage eine kontinuierlich gesteigerte Genexpression, bis auf Werte von $10,2 \cdot 10^3 \pm 3,6 \cdot 10^3$ Kopien.

Die 24-Hydroxylase zeigte bei den CKD 1-3-Mäusen eine abnehmende Aktivität und fiel über 30 Tage auf etwa 31% des Ausgangswertes von $22,6 \cdot 10^3 \pm 5,9 \cdot 10^3$ Kopien. Die CKD 4-5-Mäuse zeigten wie die AKI-Mäuse an Tag 10 einen Spitzenwert in der 24-Hydroxylaseaktivität von $44,4 \cdot 10^3 \pm 11,0 \cdot 10^3$ Kopien bzw. $68,2 \cdot 10^3 \pm 16,9 \cdot 10^3$ Kopien, um anschließend bis Tag 30 auf ca. 118% bzw. 87% des Ausgangswertes zu fallen.

3.1.5.2 Histologie

Die untersuchten Aorten zeigten, unabhängig von der Verlaufsform unter von-Kossa-Silberfärbung keine Verkalkungen.

Die GSI-Scores wie auch die TSI-Scores der unbehandelten CKD 1-3-Mäuse waren signifikant geringer als die entsprechenden Scores der CKD 4-5-Tiere.

3.1.6 Korrelationen

Eine Tabelle mit den Korrelationen der wichtigsten bestimmten Parameter befindet sich im Anhang. Hervorgehoben werden sollen hier nun einige
auffällende Korrelationen.
Der GSI zeigte eine hoch signifikante Korrelation mit der Nierenfunktion, beispielsweise in Form des Plasma-Phosphates (Pearson Korrelationskoeffizienten $r = 0,66; r^2 = 0,43; p=0,04$) oder des Plasma-Harnstoffs ($r = 0,80; r^2 = 0,64; p= 0,006$). Ebenfalls zeigte sich ein signifikanter, negativer Zusammenhang mit dem Plasma Proteingehalt ($r= -0,66; r^2= 0,43; p=0,04$). Dieser korrelierte wiederum negativ mit der Proteinurie an Tag 10 ($r= -0,58; r^2= 0,33; p <0,0001$). Eine weitere hochsignifikante Korrelation zeigte sich zwischen den Nierenfunktionsparametern und den logarithmierten FGF23-Spiegeln, beispielsweise sei die Korrelation zwischen dem Logarithmus des FGF23-Spiegels und Phosphat genannt ($r= 0,77; r^2= 0,59; p <0,0001$).

Die logarithmierten Vitaminspiegel von Calcidiol und Calcitriol zeigten eine sehr hohe Korrelation mit dem Plasma Eiweiß ($r = 0,42; r^2 = 0,17; p= 0,0043$ bzw. $r = 0,68; r^2 = 0,46; p <0,0001$), sowie eine signifikante negative Korrelation mit dem Logarithmus des FGF23-Spiegels ($r= -0,38; r^2= 0,15; p= 0,01$ bzw. $r= -0,54; r^2= 0,29; p= 0,0002$). Darüber hinaus zeigte der Logarithmus des 1,25-Dihydroxy-Vitamin D-Spiegels einen hoch signifikanten Zusammenhang mit dem Logarithmus des 25-Hydroxy-Vitamin D-Spiegels ($r= 0,65; r^2= 0,42; p <0,0001$).

Die Ratio (Klotho/GAPDH)$\cdot 10^3$ erwies sich als stark negativ mit dem Logarithmus des FGF23-Spiegels korreliierend ($r= -0,66; r^2= 0,43; p= 0,0003$). Die Ratio (Klotho/GAPDH)$\cdot 10^3$ zeigte mit der Ratio (CYP27B1/GAPDH)$\cdot 10^3$ eine signifikante, negative Korrelation ($r= -0,60; r^2= 0,36; p= 0,002$). Ebenfalls einen hoch signifikanten, negativen Zusammenhang zeigte die Ratio (CYP27B1/GAPDH)$\cdot 10^3$ mit dem freien Calcium ($r= -0,70; r^2= 0,50; p= 0,0001$).

Auffallend war außerdem die geringe Korrelation zwischen den gemessenen PTH-Werten und den anderen ermittelten Parametern, wohingegen die FGF23-Werte zu zahlreichen Parametern eine hohe Korrelation zeigten.
3.1.7 Zusammenfassung – Entwicklung und Verlauf des SHPT

3. Ergebnisse

3.2 Therapie des SHPT

Im Therapieteil der Studie wurde versucht, den durch eine chronische Niereninsuffizienz verursachten SHPT mittels phosphatarmer Diät oder Behandlung mit Calcidiol bzw. mit Calcitriol präemptiv zu therapieren. Hierzu wurden nur die Tiere mit der CKD 1-3 - bzw. CKD 4-5 - Verlaufsform herangezogen, die Tiere der AKI - Verlaufsform wurden aufgrund der akuten Niereninsuffizienz und des sich nur milde entwickelnden SHPT (s.o.) nicht beachtet.

3.2.1 Nierenfunktion

Als unbehandelt wird hier die Tierpopulation beschrieben, die zur Verlausungsuntersuchung (s. oben) verwendet wurde und keiner therapeutischen Intervention unterlag. Diese Tiere wurden als Kontrollpopulation für den Therapieeffekt herangezogen.

![Abb. 3.8: Vergleich der Nierenfunktion nach 30 Tagen unter verschiedenen Therapieansätzen, publiziert in [100](#)][1]

Unter A dargestellt die jeweiligen Plasmaphosphat-Werte in der Einheit mM unter verschiedenen Therapieansätzen. Unter B die entsprechenden Plasmaharnstoffwerte in der Einheit mg/dl.

Die CKD 1-3-Tiere sind jeweils in einem Blauton, die CKD 4-5-Tiere in einem Rotton dargestellt.

* p <0,05 gesunde vs unbehandelte Tiere; #: p <0,05 unbehandelte CKD 1-3-Tiere vs behandelte CKD 1-3-Tiere; §: p <0,05 unbehandelte CKD 4-5-Tiere vs behandelte CKD 4-5-Tiere; &: p <0,05 zwischen korrespondierenden CKD 1-3- und CKD 4-5-Tieren.
Die mit phosphatarmer Diät behandelten Tiere zeigten sowohl in der CKD 1-3 - also auch in der CKD 4-5 - Verlaufsform einen signifikanten Abfall der Plasmaphosphat-Werte auf 0,8 ± 0,1 mM bzw. 1,0 ± 0,2 mM, was gegenüber den unbehandelten Tieren einem Abfall auf ca. 48% bzw. ca. 32% entspricht. Die Harnstoffwerte waren mit 36 ± 6 mg/dl bei den CKD 1-3-Tieren bzw. 343 ± 80 mg/dl bei den CKD 4-5-Tieren nicht signifikant verändert.

Die mit Calcidiol behandelten Mäuse zeigten wie die mit Calcitriol behandelten Tiere in der CKD 1-3-Verlaufsform einen signifikanten Anstieg des Phosphatwertes auf das etwa 1,4-fache bzw. das etwa 1,2-fache des Vergleichswertes, der bei den unbehandelten Tieren bei 1,58 ± 0,04 mM lag. Hinsichtlich des Harnstoffes zeigten diese Tiere mit 43 ± 7 mg/dl bzw. 35 ± 3 mg/dl keine signifikante Veränderung zu den unbehandelten Vergleichstieren.

Die Tiere der CKD 4-5-Verlaufsform zeigten mit 2,5 ± 0,3 mM bzw. 2,5 ± 0,2 mM weder bei den Phosphatwerten noch mit 178 ± 51 mg/dl bzw. 162 ± 51 mg/dl bei den Harnstoffwerten eine signifikante Veränderung im Vergleich zu den unbehandelten Tieren.
3.2.2 Endokrinologische Therapieauswirkungen

Dargestellt sind die Plasma-PTH-Werte in der Einheit pg/ml (A), die Plasma-FGF23-Werte in der Einheit pg/ml (B), die Plasma-25-Hydroxy-Vitamin D-Werte in der Einheit nM (C) und die 1,25-Dihydroxy-Vitamin D-Werte in der Einheit pM (D).

Die CKD 1-3-Tiere sind jeweils in einem Blauton, die CKD 4-5-Tiere in einem Rotton dargestellt. *: p <0,05 gesunde vs unbehandelte Tiere; #: p <0,05 unbehandelte CKD 1-3-Tiere vs behandelte CKD 1-3-Tiere; §: p <0,05 unbehandelte CKD 4-5-Tiere vs behandelte CKD 4-5-Tiere; &: p <0,05 zwischen korrespondierenden CKD 1-3- und CKD 4-5-Tieren.

Hinsichtlich des Plasma-PTH zeigten die mit phosphatarmen Diät behandelten Tiere einen deutlichen Abfall gegenüber den Kontrolltieren auf 172 ± 18 pg/ml bei den CKD 1-3-Tieren bzw. auf 205 ± 27 pg/ml bei den CKD 4-5-Tieren und wiesen mit den gesunden Tieren – 203 ± 27 pg/ml – vergleichbare PTH-Werte auf. Die mit phosphatarmen Diät behandelten Tiere wiesen nach 30 Tagen also weder in der CKD 1-3- noch in der CKD 4-5-Verlaufsform einen SHPT auf. Die mit 25-Hydroxy-Vitamin D wie auch die mit 1,25-Dihydroxy-Vitamin D behandelten Tiere entwickelten sowohl in der CKD 1-3- als auch in der CKD 4-5-Verlaufsform einen mit den Kontrolltieren
3. Ergebnisse

vergleichbaren SHPT. Die Plasma-PTH-Werte waren hierbei bei den mit 25-Hydroxy-Vitamin D behandelten Tieren - 661 ± 151 pg/ml bei den CKD 1-3-Mäusen und 1746 ± 372 pg/ml bei den CKD 4-5-Mäusen - wie auch bei den mit 1,25-Dihydroxy-Vitamin D behandelten Tieren - 537 ± 130 pg/ml bei den CKD 1-3-Mäusen und 3204 ± 911 pg/ml bei den CKD 4-5-Mäusen - nicht signifikant different zu den Kontrollwerten von 497 ± 62 pg/ml bei den CKD 1-3-Mäusen und 2045 ± 272 pg/ml bei den CKD 4-5-Mäusen.

Beim Plasma-FGF23 zeigten die CKD 1-3-Tiere unter phosphatarmer Diät sowie diejenigen unter 25-Hydroxy-Vitamin D-Therapie FGF23-Werte, die sich mit 240 ± 72 pg/ml bzw. 294 ± 24 pg/ml von den FGF23-Werten der gesunden Tiere (311 ± 42 pg/ml) nicht wesentlich unterschieden. Gegenüber den Kontrollwerten der unbehandelten Tiere (172 ± 32 pg/ml) zeigte sich hingegen ein nicht signifikanter Anstieg auf das 1,4-fache bei den Tieren unter phosphatarmer Diät bzw. auf das 1,7-fache bei den Tieren unter 25-Hydroxy-Vitamin D-Therapie. Die mit 1,25-Dihydroxy-Vitamin D therapierten CKD 1-3-Tiere zeigten gegenüber den Kontrollwerten der unbehandelten Tiere einen deutlichen Anstieg auf 664 ± 91 pg/ml, das 3,9-fache. Bei den CKD 4-5-Mäusen zeigten die Tiere unter 25-Hydroxy-Vitamin D-Therapie wie auch die Tiere unter 1,25-Dihydroxy-Vitamin D-Therapie mit FGF23-Werten von 6528 ± 3162 pg/ml bzw. 7849 ± 1803 pg/ml im Vergleich zu den FGF23-Werten der unbehandelten CKD 4-5-Tieren keinen Unterschied. Die CKD 4-5-Tiere unter phosphatarmer Diät zeigten demgegenüber FGF23-Werte im Plasma, die mit 1755 ± 514 pg/ml bei etwa 21% der Kontrollwerte von 8402 ± 2487 pg/ml lagen.

Die Tiere unter phosphatarmer Diät zeigten sowohl in der CKD 1-3-Verlaufsform als auch in der CKD 4-5-Verlaufsform einen Abfall des Calcidiol-Spiegels. Die bestimmten Calcidiol-Spiegel von 4,9 ± 1,4 nM bei den CKD 1-3-Tieren bzw. von 0,6 ± 0,4 nM bei den CKD 4-5-Tieren entsprachen etwa 34% bzw. 11% des Kontrollwertes von 15 ± 4 nM bzw. 5,4 ± 0,5 nM. Unter 25-Hydroxy-Vitamin D-Therapie kam es bei den CKD 1-3-
3. Ergebnisse

Tieren wie auch bei den CKD 4-5-Tieren zu einem signifikanten Anstieg des Plasma-Calcidiol-Spiegels auf physiologische Werte von 89 ± 21 nM bzw. 110 ± 16 nM (Calcidiol bei den gesunden Tieren: 87 ± 4 nM). Die Behandlung mit Calcitriol führte bei den CKD 1-3-Tieren hinsichtlich der 25-Hydroxy-Vitamin D-Spiegel ebenfalls zu einem Anstieg, allerdings fiel dieser mit einem Anstieg auf 32 ± 6 nM, das etwa 2,2-fache des Kontrollwertes, geringer aus. Bei den CKD 4-5-Tieren unter Calcitriol-Therapie zeigte sich mit einem Calcidiol-Spiegel von 4,2 ± 1,0 nM keine wesentliche Änderung gegenüber den unbehandelten Kontrolltieren.

Hinsichtlich des Plasma-Calcitriol kam es bei den CKD 1-3-Tieren sowohl unter phosphatarmer Diät wie auch unter Calcidiol- bzw. Calcitriol-Therapie zu einem Anstieg. Die Werte lagen mit 168 ±73 pM, 160 ± 44 pM bzw. 117 ± 34 pM über dem Kontrollwert der unbehandelten CKD 1-3-Tiere von 80 ± 17 pM. Verglichen mit dem Calcitriol-Spiegel der gesunden Tiere, der bei 116 ± 9 pM lag, wurden bei den CKD 1-3-Tieren unter phosphatarmer Diät wie auch bei den CKD 1-3-Tieren unter Calcidiol-Therapie supraphysiologische Werte erreicht. Die CKD 1-3-Tiere unter Calcitriol-Therapie erreichten Calcitriol-Spiegel, die mit denen der gesunden Tiere vergleichbar waren. Bei den CKD 4-5-Tieren waren die Plasma-Calcitriol-Spiegel mit 2,1 ± 1,2 pM unter phosphatarmer Diät bzw. mit 1,4 ± 0,4 pM unter Calcitriol-Therapie vergleichbar zu den Kontrollwerten der unbehandelten Tiere (2,6 ± 1,0 pM). Die mit 25-Hydroxy-Vitamin D behandelten CKD 4-5-Tiere zeigten hingegen mit 12,1 ± 1,7 pM um das 4,7-fache höhere Werte als die unbehandelten Kontrolltiere.
3. Ergebnisse

3.2.3 Gewebeanalytik

3.2.3.1 RTQ-PCR

Abb. 3.10: Veränderung der Genexpression unter Therapie nach 30 Tagen, publiziert in [100]

Dargestellt ist jeweils das Verhältnis der Genexpression zur gesunden Mauspopulation in % für folgende Gene: Klotho (A), CYP27B1 (B) und CYP24A1 (C).

Ad (A): Die gestrichelte Linie zeigt die 100 % der unbehandelten Tiere. Bei den CKD 1-3-Tieren entspricht dies einer Ratio (Klotho/GAPDH)·10^3 von 31,88 ± 3,285 und bei den CKD 4-5-Tieren einer Ratio (Klotho/GAPDH)·10^3 von 13,993 ± 3,425.

Ad (B): Die gestrichelte Linie zeigt die 100 % der unbehandelten Tiere. Bei den CKD 1-3-Tieren entspricht dies einer Ratio (CYP27B1/GAPDH)·10^3 von 1,838 ± 0,366 und bei den CKD 4-5-Tieren einer Ratio (CYP27B1/GAPDH)·10^3 von 3,782 ± 1,865.

Die CKD 1-3-Tiere sind jeweils in einem Blauton, die CKD 4-5-Tiere in einem Rotton dargestellt. *: p <0,05 gesunde vs unbehandelte Tiere; #: p <0,05 unbehandelte CKD1-3- vs behandelte CKD 1-3-Tiere; &: p <0,05 zwischen korrespondierenden CKD 1-3- und CKD 4-5-Tieren.

Hinsichtlich der 1α-Hydroxylase-Expression kam es bei den CKD 1-3-Mäusen unter phosphatarmer Diät zu einem Anstieg auf 137,828 ± 36,492 %, bei den Mäusen unter Calcidiol-Therapie zu einem Abfall auf 33,481 ± 8,784 % und bei denjenigen unter Calcitriol-Therapie zu einem Abfall der 1α-Hydroxylase-Expression auf 31,711 ± 7,057 % des Kontrollwertes der unbehandelten CKD 1-3-Tiere, der bei einer Ratio (CYP27B1/GAPDH)·10³ von 1,838 ± 0,366 lag. Die CKD 4-5-Tiere zeigten unter phosphatarmer Diät einen Abfall der 1α-Hydroxylase-Expression auf 34,305 ± 8,098 % des Kontrollwertes. Die CKD 4-5-Tiere unter 25-Hydroxy-Vitamin D fielen hinsichtlich der 1α-Hydroxylase-Expression in ihren Nieren auf 20,356 ± 3,377 % des Kontrollwertes, wobei es unter 1,25-Dihydroxy-Vitamin D-Therapie zu einem Anstieg auf 143,446 ± 71,128 % des Kontrollwertes der unbehandelten CKD 4-5-Tiere - Ratio (CYP27B1/GAPDH)·10³ 3,782 ± 1,865 kam.

Die 24-Hydroxylase-Expression fiel sowohl bei den CKD 1-3-Tieren als auch bei den CKD 4-5-Tieren unter phosphatarmer Diät auf 40,145 ± 8,962 %.

-60-

3.2.3.2 Histologie

Abb. 3.11: Exemplarische Nierenschnitte nach 30 Tagen Verlauf, publiziert in [100]
Beispielhafte histopathologische Nierenschnitte der verschiedenen Verlaufsformen und Behandlungsformen; PAS-Färbung, 400-fach vergrößert
(Eine vergrößerte Darstellung findet sich auf Seite 96 dieser Arbeit)
Ergebnisse

Unter Behandlung zeigten die CKD 1-3-Mäuse durchweg GSI-Score-Werte, die sich nicht signifikant voneinander unterschieden. So lag der GSI-Score bei den unbehandelten CKD 1-3-Tieren bei 0,9 ± 0,2, bei den CKD 1-3-Tieren unter phosphatarmen Diät bei 1,1 ± 0,2, bei den mit Calcidiol behandelten CKD 1-3-Mäusen bei 0,5 ± 0,2 und bei den CKD 1-3-Tieren unter Calcitriol-Therapie bei 0,7 ± 0,1. Die CKD 4-5-Tiere unter 25-Hydroxy-Vitamin D-Therapie zeigten mit 2,2 ± 0,1 gegenüber den unbehandelten CKD 4-5-Tieren (2,7 ± 0,1) einen signifikant geringeren GSI-Score. Die anderen Behandlungsformen zeigten sich mit 2,4 ± 0,1 bei den CKD 4-5-Mäusen unter phosphatarmen Diät und mit 2,76 ± 0,04 bei den CKD 4-5-Tieren unter

Abb. 3.12: Glomerulärer und tubulärer Nierenschaden, publiziert in [100]

Die CKD 1-3-Tiere sind jeweils in einem Blauton, die CKD 4-5-Tiere in einem Rotton dargestellt. §: p <0,05 unbehandelte CKD 4-5- vs behandelte CKD 4-5-Tiere; &: p <0,05 zwischen korrespondierenden CKD 1-3- und CKD 4-5-Tieren.
1,25-Dihydroxy-Vitamin D-Therapie nicht signifikant different zu den unbehandelten CKD 4-5-Kontrolltieren. Also wiesen, abgesehen von den CKD 4-5-Mäusen unter Calcidiol-Therapie, alle CKD 1-3- bzw. CKD 4-5-Tiere einen jeweils vergleichbaren glomerulären Schaden auf. Die CKD 1-3-Tiere unter phosphatarmer Diät zeigten mit einem TSI-Score von 1,0 ± 0,3 einen nahezu identischen Wert wie die unbehandelten CKD 1-3-Kontrolltiere, deren TSI-Score bei 1,0 ± 0,3 lag. Die CKD 1-3-Tiere unter 25-Hydroxy-Vitamin D-Therapie zeigten mit einem TSI-Score von 0,8 ± 0,2 wie auch die mit 1,25-Dihydroxy-Vitamin D therapierten Tiere mit einem TSI-Score von 0,6 ± 0,2 geringere Scores als die unbehandelten CKD 1-3-Kontrolltiere. Bei den CKD 4-5-Tieren zeigten die Mäuse unter Calcitriol-Therapie mit einem TSI-Score von 2,4 ± 0,2 einen etwa 1,2-fachen Score der unbehandelten CKD 4-5-Kontrolltiere, deren TSI-Score bei 2,0 ± 0,2 lag. Dem gegenüber zeigten sich, wenn auch nicht signifikant, unter phosphatarmer Diät wie auch unter Calcidiol-Therapie deutlich geringere TSI-Scores, die mit Scores von 1,5 ± 0,1 bzw. 1,5 ± 0,2 bei etwa 73% bzw. 72% des Kontrollwertes der unbehandelten CKD 4-5-Tiere lagen.

3.2.4 Interventionelle Therapie und Überlebensanalyse

Dieser Teil der Untersuchung wurde auf CKD 4-5-Mäuse beschränkt. Verglichen wurden unbehandelte Tiere mit Tieren unter phosphatarmer Diät. Diese hatte sich als effizienteste Therapie erwiesen und führte zu einer Verringerung der Phosphaturie und zu einer Unterdrückung des SHPT.
Ergebnisse

Zehn Tage nach Induktion des Krankheitsmodells wurden Tiere der CKD 4-5-Verlaufsform mit erhöhten Plasma-FGF23-Werten einem Kontroll- bzw. einem Therapiearm zugeteilt. Hierbei wurde darauf geachtet, dass die beiden Gruppen sich hinsichtlich ihrer Nierenfunktion nicht signifikant voneinander unterschieden. Im Verlauf über 30 Tage kam es bei den Kontrolltieren wie auch bei den therapierten Tieren zu einem FGF23-Anstieg auf 2098 ± 1573 pg/ml bzw. 2074 ± 872 pg/ml.

Zum Zeitpunkt der Stratifizierung wiesen die Tiere eine milde Hyperphosphatämie auf. Im Verlauf stabilisierte sich die Hyperphosphatämie bei den Kontrolltieren mit einem Wert von zuletzt 2,2 ± 0,3 mM. Nach
3. Ergebnisse

Therapiestart zeigten die therapierten Tiere an Tag 20 einen gegenüber den Kontrolltieren signifikant erniedrigten Plasmaphosphat-Spiegel von $1,1 \pm 0,2$ mM. Bis Tag 30 stieg bei diesen Tieren der Phosphatspiegel wieder auf einen Wert von $1,6 \pm 0,1$ mM an. Die Phosphaturie war bei den Kontrolltieren mit einem Wert von 272 ± 24 µmol/mg Kreatinin an Tag 30 nur diskret erhöht. Die Tiere im Therapiearm der Untersuchung zeigten hingegen nach Therapiestart einen signifikanten Abfall der Phosphaturie auf einen Wert von zuletzt $2,3 \pm 0,1$ µmol/mg Kreatinin.

30 Tage nach Induktion hatte sich bei den Kontrolltieren ein SHPT mit Plasma-PTH-Werten von 878 ± 314 pg/ml eingestellt. Die therapierten Tiere wiesen mit 333 ± 6 pg/ml keinen SHPT auf und zeigten signifikant niedrigere PTH-Werte.

Im Verlauf kam es bei beiden Gruppen zu einer Verschlechterung der Nierenfunktion mit Plasma-Harnstoffwerten von zuletzt 143 ± 108 mg/dl bei den Kontrolltieren und 156 ± 71 mg/dl bei den therapierten Tieren.

Abb. 3.14: Kaplan-Meier-Kurve über 103 Tage nach Induktion
Ein Vergleich der Überlebenskurven lieferte im Gehan-Breslow-Wilcoxon-Test mit einem p-Wert von 0,47 kein signifikantes Ergebnis, jedoch zeigte sich vor allem zu Beginn bei den therapierten Tieren eine Tendenz zu längerem Überleben.

Das mediane Überleben war mit 77 Tagen bei den Kontrolltieren und 80 Tagen bei den therapierten Tieren nicht signifikant verschieden.

3.2.5 Zusammenfassung - Therapie des SHPT

4. Diskussion

Ziel der Arbeit war es, anhand eines proteinurischen Mausmodell es eine optimale Strategie zur Behandlung und Unterdrückung des SHPT zu finden. Dies geschah durch eine Verlaufsbeobachtung des SHPT und durch die Untersuchung verschiedener Therapiestrategien mit Phosphatrestriktion und Vitamin D-Substitution.

4.1 Entwicklung und Verlauf des SHPT

Abhängig von der injizierten Doxorubicin-Dosis war es gelungen drei unterschiedliche Verläufe der Niereninsuffizienz zu generieren: eine akute Niereninsuffizienz (AKI-Tiere) und zwei Formen einer proteinurischen chronischen Niereninsuffizienz, einmal mit nahezu erhaltener GFR (CKD 1-3-Tiere) und eine fortgeschrittene Form (CKD 4-5-Tiere). Alle Tiere zeigten eine Proteinurie, wobei diese bei den AKI-Tieren am ausgeprägtesten und bei den CKD 1-3-Tieren am wenigsten ausgeprägt war. Parallel hierzu entwickelten die Tiere eine, dem Ausmaß der Proteinurie entsprechende, Hypoproteinämie. Zehn Tage nach Induktion hatten die AKI-Tiere und in geringerem Ausmaß auch die CKD 4-5-Tiere eine massive Hyperphosphatämie entwickelt, welche über den gesamten Beobachtungszeitraum von 30 Tagen bestand. Bei diesen Tieren zeigte sich analog eine erhöhte Phosphaturie, welche ab Tag 20 einbrach. Das freie Calcium war bei allen Verlaufsformen nahezu konstant, wobei sich bei den AKI-Tieren wie auch bei den CKD 4-5-Tieren eine leichte Tendenz hin zu einer Hypocalciämie andeutete.

Die CKD 1-3-Tiere wie auch die CKD 4-5-Tiere entwickelten einen SHPT, der bei ersteren eher mild, bei letzteren sehr deutlich ausgeprägt war. Bei den AKI-Tieren zeigten sich kein SHPT. Mit dem FGF23 verhielt es sich genau umgekehrt, hier zeigten die AKI-Tiere einen massiven Anstieg, der bei den
CKD 4-5-Tieren weniger stark ausfiel und bei den CKD 1-3-Tieren nicht nachzuweisen war. Zehn Tage nach Beginn der Proteinurie zeigten sowohl die AKI-Tiere als auch die CKD 4-5-Tiere einen massiven Abfall ihrer Calcidiol- wie auch Calcitriol-Spiegel. Bei den CKD 1-3-Tieren fiel der Calcidiol-Spiegel langsamer und weniger stark ab und der Calcitriol-Spiegel blieb nahezu stabil.

Die Expression von α-Klotho in der Niere sank in allen Untersuchungsgruppen, wobei die AKI-Tiere und die CKD 4-5-Tiere einen wesentlich stärkeren Abfall nachzuweisen hatten. Die 1α-Hydroxylase Expression stieg bei allen Tieren an, wobei der Anstieg bei den AKI-Tieren an Tag 10 zuerst auftrat. Die 24-Hydroxylase zeigte bei den AKI-Tieren und den CKD 4-5-Tieren an Tag 10 eine erhöhte Expression und sank danach wieder auf Normalwerte ab, bei den CKD 1-3-Tieren sank die 24-Hydroxylase Expression an Tag 30 deutlich weiter ab.

Neben der Resistenz zahlreicher Mauslinien ist das Abweichen des Modells von der klinischen Praxis eine weitere Einschränkung. Üblicherweise ist der Vitamin D-Mangel bei Patienten nicht durch einen proteinurischen Verlust über den Urin verursacht und eine Therapie des Calcitriol-Mangels ist durch
orale Substitution gut möglich. Es gibt jedoch auch Patienten mit massivem nephrotischem Syndrom, bei denen ein Vitamin D-Mangel durch Verlust über den Urin verursacht wird [66], ebenso wie bei Kindern und Erwachsenen mit Diabetes mellitus Typ 1 [65].

4. Diskussion

zeigte große Parallelen zum Verlauf der Phosphatspiegel. Über alle Verlaufsformen hinweg gab es eine hohe Korrelation zwischen Plasma-Phosphat und FGF23 (r = 0,77). Dies legt eine enge Beziehung zwischen Phosphatretention und FGF23 nahe, die auch in anderen Untersuchungen bereits gezeigt werden konnte [90]. Interessanterweise zeigten die AKI-Mäuse trotz der höchsten Phosphatwerte im Vergleich zu den CKD Tieren keine deutliche Entwicklung eines SHPT. Diese Tatsache lässt sich wohl mit einem inhibitorischen Effekt exzessiv erhöhter FGF23-Spiegel auf die PTH-Sekretion erklären [57, 58]. Der inhibitorische Effekt auf die PTH-Sekretion mag auch, aufgrund der im Vergleich zu den beiden anderen Verlaufsformen veränderten PTH-Dynamik, als Grund für die geringen Korrelationen zwischen den gemessenen PTH-Werten und den anderen ermittelten Parametern angesehen werden.

Eine weitere Auffälligkeit ergab sich bei Betrachtung der Vitamin D-Spiegel. Hier stellte sich innerhalb kurzer Zeit, bereits zehn Tage nach Induktion, in allen Verlaufsformen ein deutlicher Vitamin D-Mangel ein, wobei bei den
4. Diskussion

CKD 4-5-Tieren und bei den AKI-Tieren das Plasma nahezu Vitamin D frei war. Angesichts der langen Halbwertszeit von Calcidiol ist diese Tatsache zunächst verwunderlich, lässt sich aber bei einem zweiten Blick am besten dem proteinurischen Modell zuschreiben. Durch die massive Proteinurie vor allem in der CKD 4-5 – und der AKI-Verlaufsform kommt es zu einem Verlust von DBP und anderen Vitamin D bindenden Proteinen. Dies führt parallel zu einem Verlust der Vitamin D-Bindekapazität des Plasmas und dadurch vor allem zu einem Verlust von Calcidiol, das den größten Anteil der im Plasma gebundenen Vitamin D-Metabolite ausmacht. In der Folge fällt auch das Calcitriol, welches eine deutlich kürzere Halbwertszeit als Calcidiol hat und aus diesem synthetisiert wird. Diese Hypothese lässt sich durch den deutlichen Nachweis von Vitamin D im Urin von CKD 4-5 – und AKI-Tieren untermauern. Darüber hinaus sprechen hohe Korrelationen zwischen sowohl Calcidiol (r=0,42) als auch Calcitriol (r=0,68) und dem Plasma-Eiweiß-Spiegel, der durch die starke Proteinurie beeinflusst ist, für diese Annahme. Trotz deutlich erhöhter FGF23-Werte, die normalerweise die Expression der 1α-Hydroxylase unterdrücken [54], wurde der massive Vitamin D-Mangel von einer kompensatorisch erhöhten Expression der 1α-Hydroxylase begleitet. Dieses Ergebnis könnte durch eine Unterbrechung des negativen Feedbacks von Calcitriol auf die renale 1α-Hydroxylase bei massivem Calcitriol-Mangel, wie er in diesem Modell vorliegt, erklärt werden [94]. Bestätigung erfahren diese Ergebnisse durch andere Tierexperimente mit Vitamin D-defizienten Modellen, die ebenfalls eine erhöhte Expression der renalen 1α-Hydroxylase gezeigt haben [95, 96]. Dem gegenüber stehen Beobachtungen einer älteren Studie, die in Nierenbiopsien von CKD-Patienten erniedrigte 1α-Hydroxylase-Aktivität nachgewiesen hat [97]. Hinsichtlich der 24-Hydroxylase muss bedacht werden, dass ihre Aktivierung ebenfalls zu einem Vitamin D-Mangel führen kann [95], was hier aber sicherlich nicht führend zum Tragen kommt. Dies zeigt sich auch durch eine Normalisierung der zwischenzeitlich erhöhten Expression aufgrund des Vitamin D-Mangels.
Ab Tag 10 zeigten alle Tiere eine verminderte Klotho-Expression, die invers mit der Schwere der Nephropathie und des Nierenschadens, repräsentiert durch den GSI und den TSI, korrelierte (r= -0.82 bzw. r= -0.56). Diese Daten suggerieren einen frühzeitigen Verlust der Klotho-Expression bei CKD, was zu einer FGF23-Resistenz führt und daher eine starke negative Korrelation zwischen FGF23 und Klotho begründet (r= -0.66). Bei Dialysepatienten konnte ebenfalls eine verminderte Klotho-Expression bei erhöhten FGF23-Spiegeln nachgewiesen werden [98].

4.2 Therapie des SHPT

Es konnte gezeigt werden, dass die Phosphatrestriktion in der Lage ist, sowohl in der CKD 1-3-Verlaufsform wie auch in der CKD 4-5-Verlaufsform, die Entwicklung eines SHPT zu unterbinden, wohingegen weder die Substitution mit Calcidiol noch die Substitution mit Calcitriol in der Lage waren, die erhöhte PTH-Sekretion zu unterdrücken. Calcidiol war in der Lage bei den CKD 1-3-Tieren wie auch bei den CKD 4-5-Tieren die Calcidiol-Spiegel im Plasma zu normalisieren, was durch keine andere Therapieform gelang. Die Calcitriol-Spiegel blieben bei den CKD 1-3-Tieren unter jeder Therapie normal, wohingegen bei den CKD 4-5-Tieren keine Behandlung in der Lage war, die Calcitriol-Spiegel zu normalisieren. Die Phosphatrestriktion verhinderte sowohl bei den CKD 1-3-Mäusen wie auch bei den CKD 4-5-Mäusen eine Hyperphosphatämie, wohingegen Calcidiol und Calcitriol auch bei den CKD 1-3-Tieren eine Hyperphosphatämie induzierten. Das freie Calcium blieb stabil und zeigte nur bei den CKD 4-5-Tieren unter phosphatarmen Diät eine geringfügige Erhöhung.
4. Diskussion

Die histologischen Untersuchungen zeigten bei den CKD 4-5-Tieren einen gegenüber den CKD 1-3-Tieren deutlich höheren Glomerulosklerose-Index (GSI), der bei den CKD 4-5-Tieren unter Calcidiol-Substitution signifikant geringer war. Der tubuläre Schädigungsindex (TSI) war bei den CKD 4-5-Tieren verglichen mit den CKD 1-3-Tieren ebenfalls erhöht, wobei die Tiere unter phosphatarmer Diät und unter Calcidiol-Substitution deutlich, wenn auch nicht signifikant, niedrigere Scores aufwiesen.

Nachdem die phosphatarme Diät sich als potenste Therapie erwiesen hatte und sich zeigte, dass sie in der Lage ist, die Hyperphosphatämie und Phosphaturie zu verringern und die Entwicklung eines SHPT zu verhindern, wurden CKD 4-5-Tiere mit erhöhten FGF23-Werten an Tag 10 in zwei Gruppen unterteilt, um im interventionellen Setting die Therapieeffizienz und die Hypothese eines Nierenschadens durch Phosphaturie [69, 70] zu überprüfen. Zu diesem Zeitpunkt wiesen alle Tiere eine milde Hyperphosphatämie und Phosphaturie, jedoch keinen SHPT auf. Die phosphatarme Therapie führte zu einer deutlichen Verringerung der Hyperphosphatämie und der Phosphaturie und verhinderte die Entwicklung eines SHPT, der bei der Kontrollgruppe ohne Therapie auftrat. Die FGF23-Konzentration blieb stabil, die Plasma-Harnstoff-Konzentration als Marker der fortschreitenden Niereninsuffizienz stieg jedoch in beiden Gruppen gleichförmig an. Auch hinsichtlich des Überlebens bei der Nachbeobachtung ergaben sich keine signifikanten Unterschiede, allerdings zeigten die Tiere...
unter phosphatarmer Diät eine Tendenz zu längerem Überleben, vor allem in der Anfangsphase des Beobachtungszeitraumes.

In engem Zusammenhang mit einer phosphatarmen Therapie des SHPT steht auch die Hypothese, die Kuro-o in einem Paper diskutiert und einen Paradigmenwechsel bei der Therapie des CKD-MBD vorschlägt. Als Trigger einer Therapie bei chronischer Niereninsuffizienz in der Prädialyse-Phase schlägt Kuro-o erhöhte FGF23-Konzentrationen vor und zwar mit dem Ziel, weiteren Nierenschaden durch Phosphaturie und die damit verbundene
Bildung von Calciprotein Partikeln (CPP) zu verhindern [69, 70]. Diese These lässt sich mit den histologischen Ergebnissen der Tiere unter phosphatarmer Diät in Einklang bringen. Trotz gleicher GSI-Werte, die eine vergleichbare Schwere der Nierenschädigung durch die Doxorubicin-Induktion belegen, zeigen die CKD 4-5-Mäuse unter phosphatarmer Diät eine deutlich geringere tubuläre Schädigung durch die Proteinurie, repräsentiert durch den TSI. Angesichts des Plasma-Harnstoffs als Marker der fortschreitenden Niereninsuffizienz ergaben sich allerdings keine Vorteile für die Tiere unter phosphatarmer Diät. Demgegenüber zeigt die Überlebensanalyse eine, wenn auch nicht signifikante, Tendenz der phosphatarm therapierten Tiere zu einem längeren Überleben vor allem in der Frühphase nach Krankheitsbeginn.

4.3 Ausblick

Aufgrund der in dieser Arbeit gewonnenen Erkenntnisse wäre es denkbar, die aus pathophysiologischer Sicht sinnvolle Therapie mit Vitamin D in weiteren Versuchen genauer zu untersuchen. Hierbei sollte an eine weitere Dosissteigerung bzw. eine höhere Dosisdichte bei der Vitamin D-Applikation gedacht werden, die, solange es zu keinen Nebenwirkungen kommt, durchaus denkbar ist. Ebenfalls wäre eine Kombination aus Phosphatrestriktion und Vitamin D-Substitution ein weiterer Ansatzpunkt, um SHPT und Hypovitaminose zu behandeln. Interessant wären hierbei auch die Art und das Ausmaß der Therapieinteraktion. Ebenso interessant wären Untersuchungen mit einem Therapiestart erst nach Manifestation des SHPT. Auch die Hypothese einer Nierenschädigung durch die anhaltende Phosphaturie, die sich in dieser Arbeit bereits andeutungsweise als plausibel erwiesen hat, könnte durch hierauf fokussierte Untersuchungen an diesem Mausmodell und anhand weiterer Überlebensstudien und Histologien mit größeren Fallzahlen noch eingehender untersucht werden.

Wünschenswert wären darüber hinaus Untersuchungen an Patienten, die ähnliche Konstellationen wie sie in diesem Mausmodell auftreten, bieten, mit dem Ziel, die Übertragbarkeit der gewonnenen Ergebnisse zu überprüfen. Ebenfalls eher klinisch geprägt wären weitere Untersuchungen, die darauf abzielten, FGF23 als einen der Bestimmung der Hyperphosphatämie überlegenen, sensitiveren Marker als Trigger für eine Präventivtherapie eines SHPT zu verwenden.

4. Diskussion

4.4 Zusammenfassung

Zusammenfassend lässt sich sagen, dass diese Studie weitere Belege für eine entscheidende Rolle einer Phosphatretention bei der Entwicklung des SHPT liefert und diesem in der Folge durch strikte Phosphatrestriktion vorgebeugt werden kann, sobald erhöhte FGF23-Werte nachgewiesen wurden. Ein Substitutionsversuch mit nativem Vitamin D zeigte ebenso wie die Substitution mit aktivem Vitamin D in den hier angewandten Dosierungen keinen Effekt auf die Entwicklung eines SHPT.

Abb. 4.1: Abfolge pathophysiologischer Ereignisse in der Entstehung eines SHPT bei Doxorubicin-induzierter Nephropathie, publiziert in [100]

Wie in dieser Arbeit gezeigt, stellt die Hyperphosphatämie die treibende Kraft bei der Entwicklung des SHPT in diesem Modell dar. In der Folge kann der SHPT durch phosphatarme Diät komplett verhindert werden. Der Vitamin D-Mangel hingegen scheint in diesem Modell keine wesentliche Rolle zu spielen.
5. Zusammenfassung

In einem proteinurischen Mausmodell wurde an 129 S1/SvImJ Wildtyp-Mäusen die Entwicklung des SHPT untersucht. Darüber hinaus wurden Phosphatrestriktion, Calcidiol bzw. Calcitriol als Therapiestrategien untersucht.

Die Entwicklung des SHPT war stark vom Ausmaß der induzierten Proteinurie abhängig. Tiere mit milder Proteinurie (< 100 mg/mg Kreatinin) zeigten einen milden SHPT, während die FGF23-, Phosphat- und Harnstoffwerte nahezu stabil blieben. Tiere mit starker Proteinurie (> 100 mg/mg Kreatinin) dagegen zeigten einen deutlichen SHPT, der mit massiv angestiegenen FGF23-Werten, Hyperphosphatämie, Nierenversagen und Depletion von sowohl 25-Hydroxy-Vitamin D als auch 1,25-Dihydroxy Vitamin D einherging.

Eine Substitution mit Calcidiol oder Calcitriol war nicht in der Lage den SHPT zu unterdrücken. Mit phosphatarme Diät gelang es hingegen, den SHPT sowohl bei den Mäusen mit milder als auch mit starker Proteinurie zu unterdrücken.

Zusammenfassend lässt sich sagen, dass in diesem proteinurischen Modell der SHPT aus einer Phosphatretention resultierte und folglich in vollem Umfang durch eine phosphatarme Diät unterdrückt werden konnte.
6. Literaturverzeichnis

7. Hans Oberleithner; 2010; Salz- und Wasserhaushalt - Regulation des Calcium- und Phosphathaushalts; Ss. 407 - 411; Klinke, Pape, Kurtz, Silbernagel; Physiologie; Georg Thieme Verlag; Stuttgart, New York.
14. Moallem E, Kilav R, Silver J, Naveh-Many T: Rna-protein binding and post-

17 Alpern RJ: Cell mechanisms of proximal tubule acidification. Physiological reviews 1990;70:79-114.

26 Katai K, Miyamoto K, Kishida S, Segawa H, Nii T, Tanaka H, Tani Y, Arai H,
Tatsumi S, Morita K, Taketani Y, Takeda E: Regulation of intestinal Na+-
dependent phosphate co-transporters by a low-phosphate diet and 1,25-

Capuano P, Radanovic T, Wagner CA, Bacic D, Kato S, Uchiyama Y, St-Arnoud
R, Murer H, Biber J: Intestinal and renal adaptation to a low-pi diet of type ii
napi cotransporters in vitamin d receptor- and 1alphaohase-deficient mice.

Amling M, Priemel M, Holzmann T, Chapin K, Rueger JM, Baron R, Demay
MB: Rescue of the skeletal phenotype of vitamin d receptor-ablated mice in
the setting of normal mineral ion homeostasis: Formal histomorphometric
and biomechanical analyses. Endocrinology 1999;140:4982-4987.

Canaff L, Hendy GN: Human calcium-sensing receptor gene. Vitamin d
response elements in promoters p1 and p2 confer transcriptional
responsiveness to 1,25-dihydroxyvitamin d. The Journal of biological
chemistry 2002;277:30337-30350.

Demay MB, Kiernan MS, DeLuca HF, Kronenberg HM: Sequences in the
human parathyroid hormone gene that bind the 1,25-dihydroxyvitamin d3
receptor and mediate transcriptional repression in response to 1,25-
dihydroxyvitamin d3. Proceedings of the National Academy of Sciences of

Suzuki Y, Landowski CP, Hediger MA: Mechanisms and regulation of
epithelial Ca2+ absorption in health and disease. Annual review of physiology
2008;70:257-271.

Herold G und Mitarbeiter; 2012; Renale Osteopathie; Ss. 630 - 632; Gerd
Herold; Innere medizin 2012 : Eine vorlesungsorientierte Darstellung unter
Berücksichtigung des Gegenstandskataloges für die Ärztliche Prüfung; G.
Herold, Köln.

Yamashita T, Yoshioka M, Itoh N: Identification of a novel fibroblast growth
factor, fgf-23, preferentially expressed in the ventrolateral thalamic nucleus
of the brain. Biochemical and biophysical research communications
2000;277:494-498.

Shimada T, Kakitani M, Yamazaki Y, Hasegawa H, Takeuchi Y, Fujita T,
Fukumoto S, Tomizuka K, Yamashita T: Targeted ablation of fgf23
demonstrates an essential physiological role of fgf23 in phosphate and
vitamin d metabolism. The Journal of clinical investigation 2004;113:561-
568.

Torres PA, De Brauwere DP: Three feedback loops precisely regulating serum

Silver J, Naveh-Many T: Fgf-23 and secondary hyperparathyroidism in

Martin A, David V, Quarles LD: Regulation and function of the fgf23/klotho

Li H, Martin A, David V, Quarles LD: Compound deletion of fgfr3 and fgfr4 partially rescues the hyp mouse phenotype. American journal of physiology Endocrinology and metabolism 2011;300:E508-517.

Sitara D, Razzaque MS, Hesse M, Yoganathan S, Taguchi T, Erben RG, Juppner H, Lanske B: Homozygous ablation of fibroblast growth factor-23

Kuro OM: A phosphate-centric paradigm for pathophysiology and therapy of

<table>
<thead>
<tr>
<th>Page</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>93</td>
<td>Bai X, Miao D, Li J, Goltzman D, Karaplis AC: Transgenic mice overexpressing human fibroblast growth factor 23 (r176q) delineate a putative role for</td>
</tr>
</tbody>
</table>

7. Erklärung zum Eigenanteil der Dissertationsschrift

Die Konzeption der Studie erfolgte in Zusammenarbeit mit meinem Doktorvater und Betreuer Herrn Professor Artunc.

Sämtliche Versuche wurden nach Einarbeitung durch Herrn Professor Artunc von mir eigenständig durchgeführt.

Die Einarbeitung in die PCR-Methodik erfolgte durch Frau A. Janessa (MTA), die die Messungen am LightCycler 1,5 der Firma Roche durchführte.

Die histologische Aufarbeitung der entnommenen Nieren sowie Aorten und die Bestimmung der Glomerulosklerose Indices (GSI) sowie der Tubulären Schädigungsindices (TSI) erfolgte in der Nephropathologischen Abteilung von Frau Professor Dr. K. Amann am Universitätsklinikum Erlangen durch Herrn Privatdozent Dr. C. Daniel.

Die statistische Auswertung erfolgte eigenständig durch mich.

Ich versichere, das Manuskript selbständig verfasst zu haben und keine weiteren als die von mir angegebenen Quellen verwendet zu haben.

Tübingen, den
8. Veröffentlichungen

Ergebnisse dieser Arbeit wurden unter folgenden Titeln veröffentlicht:

Poster:

„Entstehung des sekundären Hyperparathyreoidismus in einem proteinurischen Mausmodell und dessen therapeutische Beeinflussung durch Phosphatrestriktion oder Vitamin-D-Substitution“

Bernhard Bohnert, Christoph Daniel, Kerstin Amann, Ferruh Artunc

Paper:

„Impact of phosphorus restriction and Vitamin D-substitution on secondary hyperparathyroidism in a proteinuric mouse model“

Bernhard N. Bohnert, Christoph Daniel, Kerstin Amann, Jakob Voelkl, Ioana Alesutan, Florian Lang, Nils Heyne, Hans-Ulrich Häring, Ferruh Artunc

Danksagung

An erster Stelle möchte ich mich bei Herrn Professor Artunc für die Überlassung dieses interessanten Themas sowie die gute und umfassende Betreuung während der gesamten Dauer dieser Arbeit bedanken. Lieber Ferruh, ich hätte mir keinen besseren Doktorvater wünschen können. Es war mir eine Freude bei Dir zu promovieren, herzlichen Dank!

Des Weiteren gilt mein Dank der Nephropathologischen Abteilung von Frau Professor Dr. K. Amann am Universitätsklinikum Erlangen und hier im Besonderen Herrn Privatdozent Dr. C. Daniel für die reibungslose Zusammenarbeit bei der histopathologischen Aufarbeitung der Nieren.

Darüber hinaus möchte ich mich bei den angestellten Mitarbeiterinnen der Nephrologischen Labore und im Besonderen bei Andrea Janessa bedanken, die mir mit Ihrem Wissen bei kleineren und größeren Problemen des Laboralltags stets weiterzuhelfen wussten.

Nicht zuletzt möchte ich meinen Mit-DoktorandInnen danken, die mich bei der Wochenend- und Ferienbetreuung der Mäuse unterstützt haben.
Lebenslauf

Name: Bohnert
Vorname: Bernhard Nikolaus
Geburtsort: Ochsenhausen, BC

Schulbildung:
August 1995 bis Juli 1999 Grund- und Hauptschule mit Werkrealschule Baindt
August 1999 bis Juni 2008 Studienkolleg St. Johann Blönried Abschluss: allgemeine Hochschulreife (Abitur)

Zivildienst:
August 2008 bis April 2009 Oberschwabenklinik KKH St. Elisabeth Ravensburg, Kardiologie

Studium:
SS 2009 bis WS 2010/2011 Humanmedizin, Vorklinik an der Eberhard Karls Universität zu Tübingen
04.04.2011, Staatsexamen M1 (Physikum)
SS 2011 bis WS 2013/2014 Humanmedizin, Klinik an der Eberhard Karls Universität zu Tübingen
10.04.2014, Staatsexamen M2
Mai 2014 bis April 2015 Praktisches Jahr (PJ) am Universitätsklinikum Tübingen (UKT)
Chirurgie, Innere Medizin und Radiologie
11.06.2015, Staatsexamen M3

Promotion:
"Untersuchung des Sekundären Hyperparathyreoidismus in einem Mausmodell der chronisch progredienten Niereninsuffizienz"
Mai 2012 bis Dezember 2015 Universitätsklinikum Tübingen Medizinische Klinik, Abteilung IV Sektion für Nieren- und Hochdruckkrankheiten Nierenphysiologie, AG Prof. Dr. F. Artunc
ANHANG
Tabelle 7: Tierverbrauch und Sterblichkeit, publiziert in [100]

Die Tabelle schließt den Tierverbrauch in den jeweiligen Versuchen auf und gibt Auskunft über den Anteil nicht-nephrotischer Tiere (CKD 1-3-Verlaufsform) sowie den Anteil der vor Erreichen des jeweiligen Endpunktes verstorbenen Tiere.

<table>
<thead>
<tr>
<th>Verlaufsuntersuchungen</th>
<th>injiziert</th>
<th>nicht-nephrotisch (CKD 1-3)</th>
<th>verstorbene Tiere</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Endpunkt Tag 10</td>
<td>18</td>
<td>12</td>
<td>2</td>
</tr>
<tr>
<td>- Endpunkt Tag 30</td>
<td>19</td>
<td>7</td>
<td>5</td>
</tr>
<tr>
<td>präemptive Therapieserien</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- phosphatarme Diät</td>
<td>16</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>- Therapie mit Calcidiol</td>
<td>14</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>- Therapie mit Calcitriol</td>
<td>18</td>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td>interventionelle Therapieserien</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Kontrollarm</td>
<td>14</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>- Therapiearm</td>
<td></td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Tabelle 8: Proteinbestimmung Pyrogallolrot Methode: Standardkurve

<table>
<thead>
<tr>
<th>Probe (standard) + 300 µl Reagenz</th>
<th>1300 mg/l</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>standard</td>
<td>1300 mg/l</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>eingesetztes Volumen, [µl]</td>
<td>Vol. korr.</td>
</tr>
<tr>
<td>bl (aqua) 0</td>
<td>0,00</td>
</tr>
<tr>
<td>1</td>
<td>436,21</td>
</tr>
<tr>
<td>2</td>
<td>869,54</td>
</tr>
<tr>
<td>3</td>
<td>1300,00</td>
</tr>
<tr>
<td>4</td>
<td>1727,63</td>
</tr>
<tr>
<td>5</td>
<td>2152,46</td>
</tr>
<tr>
<td>6</td>
<td>2574,51</td>
</tr>
<tr>
<td>7</td>
<td>2993,81</td>
</tr>
<tr>
<td>8</td>
<td>3410,39</td>
</tr>
<tr>
<td>9</td>
<td>3824,27</td>
</tr>
<tr>
<td>10</td>
<td>4235,48</td>
</tr>
<tr>
<td>11</td>
<td>4644,05</td>
</tr>
<tr>
<td>12</td>
<td>5050,00</td>
</tr>
<tr>
<td>13</td>
<td>5453,35</td>
</tr>
<tr>
<td>14</td>
<td>5854,14</td>
</tr>
<tr>
<td>15</td>
<td>6252,38</td>
</tr>
<tr>
<td>16</td>
<td>6648,10</td>
</tr>
<tr>
<td>17</td>
<td>7041,32</td>
</tr>
<tr>
<td>18</td>
<td>7432,08</td>
</tr>
</tbody>
</table>

Polynomiiell Anpassung an den Datensatz nebenstehender Tabelle, unter Benutzung der Funktion: \(a_0 + a_1 \cdot x + a_2 \cdot x^2\)

Y Standardfehler: Unbekannt
Von \(x = 0\) bis \(x = 5.854,14\)

\[
a_0 = 0,00530575506749212 \pm 0,00327284792642806
\]
\[
a_1 = 0,000106714063485479 \pm 2,5752500124771 \cdot 10^{-06}
\]
\[
a_2 = -6,55432874415179e-09 \pm 4,2273777789676e-10
\]

\[
\text{Chi}^2/\text{doF} = 2,25381306548519e-05
\]
\[
R^2 = 0,998840963693009
\]
R²	GSI	TSI	24 Ohase	1alpha	Klotho	Phosphaturie Tag 10	Proteurinie Tag 10	free Ca	Hkt	K	Na	Ig 1,25OH	Ig 25OH	Ig FGF23	Ig PTH	Eiweiß	HST	Ca	
P	0.4297	0.4855	0.1082	0.4332	0.3157	0.1444	0.1033	0.0272	0.1078	0.2036	0.3681	0.1305	0.1036	0.1166	0.5913	0.01246	0.1555	0.4263	0.00334
Ca	0.3099	0.1935	0.01091	0.3701	0.0000499	0.003974	0.008866	0.05064	0.06273	0.001222	0.01394	0.007675	0.01551	0.00001359	0.009772	0.1045	0.009119		
HST	0.3946	0.2033	0.01693	0.3669	0.000499	0.007064	0.006304	0.02892	0.1225	0.0782	0.03496	0.01181	0.08763	-0.1245	-0.003687	0.09885	0.3233	-0.08549	
HST	0.4332	0.2033	0.01693	0.3669	0.000499	0.007064	0.006304	0.02892	0.1225	0.0782	0.03496	0.01181	0.08763	-0.1245	-0.003687	0.09885	0.3233	-0.08549	
Klotho	0.4043	0.1423	0.005867	0.09506	0.01384	0.01708	0.00000907	0.09325	0.03917	0.01491	0.06339	0.01123	0.02016	0.05133					
HST	0.4217	0.2033	0.01693	0.3669	0.000499	0.007064	0.006304	0.02892	0.1225	0.0782	0.03496	0.01181	0.08763	-0.1245	-0.003687	0.09885	0.3233	-0.08549	
lg PTH	0.2371	0.0282	0.01693	0.3669	0.000499	0.007064	0.006304	0.02892	0.1225	0.0782	0.03496	0.01181	0.08763	-0.1245	-0.003687	0.09885	0.3233	-0.08549	
lg FGF23	0.3793	0.7503	0.2613	0.3936	0.4348	0.07988	0.1515	0.3929	0.2278	0.114	0.3679	0.2879	0.1465						
lg 25OH	0.3918	0.2518	0.01042	0.06958	0.2578	0.01341	0.1279	0.0854	0.03731	0.1224	0.08066	0.1224							
lg 1,25OH	0.1063	0.4218	0.002948	0.5389	0.1951	0.02819	0.09654	0.1292	0.1113	0.56									
Na	-0.326	-0.0945	-0.05429	0.07341	0.4471	0.04679	0.03107	0.0399	0.3395	0.4784									
K	0.0421	0.4405	0.1806	0.5728	-0.3098	0.106	0.3282	-0.2061	-0.2197										
Hkt	0.0144	0.2535	0.3884	0.00343	0.00178	0.13407	0.5264	0.0442	0.1553	0.1291									
free Ca	-0.2374	-0.0945	-0.05429	0.07341	0.4471	0.04679	0.03107	0.0399	0.3395	0.4784									
Proteinurie Tag 10	-0.01672	-0.03399	-0.159	-0.01905	-0.0189	-0.3897													
Phosphaturie Tag 10	-0.01239	-0.1827	0.3987	-0.04364	0.1375	0.6243													
Klotho	0.01239	0.01343	0.001693	0.00000907	0.09325	0.03917	0.06339	0.01123	0.05133										
1alpha	0.05064	0.01343	0.001693	0.00000907	0.09325	0.03917	0.06339	0.01123	0.05133										
24 Ohase	0.0286	0.0275	0.001693	0.00000907	0.09325	0.03917	0.06339	0.01123	0.05133										

Legende
* p<0.05
** p<0.01
*** p<0.001

Tabelle 9: Korrelationen
Anhang

Abb. 8.1: Nieerschnitte nach 30 Tagen Verlauf, publiziert in [100]
PAS-Färbung, 400fach vergrößert

CKD 1-3
Mäuse

CKD 4-5
Mäuse