Einfluss von Induktion und Inhibition der Hämoxygenase-1 auf Leukozytenmigration und Endothelpermeabilität im akuten Lungenversagen

Inaugural-Dissertation
zur Erlangung des Doktorgrades
der Medizin
der Medizinischen Fakultät
der Eberhard Karls Universität
to Tübingen

vorgelegt von
Braun, Stefan Franz
2015
Dekan: Professor Dr. I. B. Autenrieth
1. Berichterstatter: Professor Dr. J. Reutershan
2. Berichterstatter: Professor Dr. R. Riessen
Meiner Mutter gewidmet
Inhaltsverzeichnis

1. Acute Respiratory Distress Syndrome ... 10
 1.1 Epidemiologie des ARDS ... 10
 1.2 Klinisches Erscheinungsbild ... 11
 1.3 Ätiologie ... 12
 1.4 Prognose und Risikofaktoren ... 13
 1.5 Pathophysiologie ... 14
 1.6 Pathomechanismus .. 16
 1.6.1 Inflammation ... 16
 1.6.2 LPS als experimenteller Auslöser der pulmonalen Inflammation 18
 1.6.3 Humanes und murines zelluläres Immunsystem im Vergleich 19
 1.6.4 Die Rolle der neutrophilen Granulozyten in der Inflammation 20
 1.6.5 Endothel-Neutrophilen-Interaktion in den Lungen 21
 1.6.6 Endotheliale Barrierefunktion und kapilläres Leck 25
 1.6.7 Apoptose und Neutrophilen-Clearance ... 27
 1.7 Therapeutische Konzepte .. 27
 1.7.1 Nicht-pharmakologische Konzepte .. 28
 1.7.2 Pharmakologische Konzepte .. 30
 1.8 Konzepte zur Prophylaxe .. 32

2. Die Hämoxygenase-1, ein zytoprotektives Molekül .. 33
 2.1 Die Metabolite der HO-1 ... 36
 2.1.1 Kohlenstoffmonoxid ... 36
 2.1.2 Biliverdin und Bilirubin .. 37
 2.1.3 Eisen ... 38
 2.2 Enzymaktivität der Hämoxygenase .. 39
 2.3 Regulation der HO-1 in der Lunge ... 39
 2.4 Die pharmakologische Beeinflussung der HO-1 .. 41

3. Material und Methoden .. 44
 3.1 Material .. 44
 3.1.1 Versuchstiere ... 44
 3.1.2 Geräte ... 44
 3.1.3 Verbrauchsmaterialien ... 45
 3.1.4 Chemikalien ... 47
3.1.5 Medien .. 48
3.1.6 Enzyme ... 49
3.1.7 Medikamente ... 49
3.1.8 Antikörper .. 49
3.2 Methoden .. 50
3.2.1 Induktion einer pulmonalen Inflammation 50
3.2.2 Induktion und Inhibition der Hämoxygenase 51
3.2.3 Versuchskonditionen ... 52
3.2.4 Histologische Präparate .. 53
3.2.5 Immunhistologische Präparate 54
3.2.6 Differenzialblutbilder .. 59
3.2.7 Nachweis der pulmonalen Gefäßpermeabilität 60
3.2.8 Zellkultur und in vitro-Nachweis der Neutrophilenmigration ... 63
3.2.9 In-vivo-Nachweis der Neutrophilenmigration 67
3.2.10 Enzymaktivitäts- und Proteinbestimmung der HO-1 73
3.2.11 Zytokinbestimmung in der bronchoalveolären Lavage 76
3.2.12 Statistik .. 77
4. Ergebnisse .. 78
4.1 Histologische Untersuchung von Lungenparenchym 78
4.2 Immunhistologische Untersuchung von Lungenparenchym 81
4.3 Differenzialblutbilder ... 84
4.4 Pulmonale Gefäßpermeabilität 90
4.5 In vitro-Transmigration neutrophiler Granulozyten 92
4.6 In vivo-Migration neutrophiler Granulozyten 94
4.7 Induktion und Inhibition der HO-1-Aktivität 96
4.8 Zytokinbestimmung in der BAL 97
5. Diskussion .. 99
5.1 Die Rolle der HO-1 bei der Migration neutrophiler Granulozyten 99
5.2 Wirkung von Induktion und Inhibition auf die Enzymaktivität der HO-1 105
5.3 Einfluss der HO-1 auf die Gefäßpermeabilität und die Zytokinlevel 106
5.4 Fazit ... 108
6. Zusammenfassung ... 110
7. Literaturverzeichnis ... 113
<table>
<thead>
<tr>
<th>Kapitel</th>
<th>Seitenzahl</th>
</tr>
</thead>
<tbody>
<tr>
<td>8. Abbildungsverzeichnis</td>
<td>128</td>
</tr>
<tr>
<td>9. Tabellenverzeichnis</td>
<td>130</td>
</tr>
<tr>
<td>10. Erklärung zum Eigenanteil</td>
<td>130</td>
</tr>
<tr>
<td>11. Danksagung</td>
<td>132</td>
</tr>
<tr>
<td>Abkürzungen</td>
<td>Deutscher Begriff</td>
</tr>
<tr>
<td>-------------</td>
<td>------------------</td>
</tr>
<tr>
<td>Abb. Abbildung</td>
<td></td>
</tr>
<tr>
<td>A. dest. Aqua destillata</td>
<td></td>
</tr>
<tr>
<td>AECC Amerikanisch-Europäische Konsensuskonferenz</td>
<td></td>
</tr>
<tr>
<td>Ak Antikörper</td>
<td></td>
</tr>
<tr>
<td>ALI Acute lung injury</td>
<td></td>
</tr>
<tr>
<td>AP-1 Aktivatorprotein-1</td>
<td></td>
</tr>
<tr>
<td>ARDS Acute Respiratory Distress Syndrome</td>
<td></td>
</tr>
<tr>
<td>ATP Adenosintriphosphat</td>
<td></td>
</tr>
<tr>
<td>AWMF Arbeitsgemeinschaft der wissenschaftlichen medizinischen Fachgesellschaften</td>
<td></td>
</tr>
<tr>
<td>BAL Bronchoalveolare Lavage</td>
<td></td>
</tr>
<tr>
<td>BCA Bicinchoninsäure</td>
<td></td>
</tr>
<tr>
<td>BN Stabkerniger neutrophiler Granulozyt</td>
<td></td>
</tr>
<tr>
<td>BR Bilirubin</td>
<td></td>
</tr>
<tr>
<td>BV Biliverdin</td>
<td></td>
</tr>
<tr>
<td>Ca²⁺ Kalzium</td>
<td></td>
</tr>
<tr>
<td>cAMP zyklisches Adenosinmonophosphat</td>
<td></td>
</tr>
<tr>
<td>CF Zystische Fibrose</td>
<td></td>
</tr>
<tr>
<td>cGMP zyklisches Guanosinmonophosphat</td>
<td></td>
</tr>
<tr>
<td>CO Kohlenstoffmonoxid</td>
<td></td>
</tr>
<tr>
<td>COPD Chronisch obstruktive Lungenerkrankung</td>
<td></td>
</tr>
<tr>
<td>CoPP Kobalt-Protoporphyrin</td>
<td></td>
</tr>
<tr>
<td>CORM Carbon Monoxide-Releasing Molecules</td>
<td></td>
</tr>
<tr>
<td>CXCR1 Chemokinrezeptor 1</td>
<td></td>
</tr>
<tr>
<td>CXCR2 Chemokinrezeptor 2</td>
<td></td>
</tr>
<tr>
<td>DAB 3,3-Diaminobenzidintetrahydrochlorid</td>
<td></td>
</tr>
<tr>
<td>DGIIN Deutsche Gesellschaft für internistische Intensivmedizin und Notfallmedizin</td>
<td></td>
</tr>
<tr>
<td>DIVI Deutsche interdisziplinäre Vereinigung für Intensiv- und Notfallmedizin</td>
<td></td>
</tr>
<tr>
<td>DMSO Dimethylsulfoxid</td>
<td></td>
</tr>
<tr>
<td>DNA Desoxyribonukleinsäure</td>
<td></td>
</tr>
</tbody>
</table>
EB Evans blue
ECMO Extrakorporale Membranoxygenierung
EDTA Ethylendiamintetraessigsäure
ELISA Enzyme Linked Immunosorbent Assay
Fe Eisen
FK Feuchte Kammer
FSGO Fischhautölgelatine
G-CSF Granulocyte-Colony-Stimulating-Factor
HBSS+ Hank’s Balanced Salt Solution mit Mg²⁺/Ca²⁺
HFOV Hochfrequenzoszillationsventilation
HIF-1 Hypoxie-induzierender Faktor 1
HMVEC-L Human Microvascular Endothelial Cells - Lung
HO-1 Hämooxygenase-1
HO-2 Hämooxygenase-2
HRP Horseradish-Peroxidase
i.p. intraperitoneal
i.v. intravenös
ICAM Interzelluläres Adhäsionsmolekül
iNO inhalatives Stickstoffmonoxid
iNOS induzierbare Stickstoffmonoxid-Synthase
IPF Idiopathische pulmonale Fibrose
IPS Intensivpflegestation
KC Keratinocyte-derived Chemokine
KG Körperfugewicht
LPS Lipopolysaccharid
Mio Million
MIP-2 Macrophage-Inflammatory-Protein-2
MSC Mesenchymale Stammzelle
NADP⁺ Nicotinamidadenindinukleotidphosphat, oxidiert
NADPH Nicotinamidadenindinukleotidphosphat, reduziert
NFκB Kernfaktor κB
NO Stickstoffmonoxid
OT Objektträger
<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Vollständiger Begriff</th>
</tr>
</thead>
<tbody>
<tr>
<td>p.i.</td>
<td>post infectionem</td>
</tr>
<tr>
<td>paO₂</td>
<td>Sauerstoffpartialdruck</td>
</tr>
<tr>
<td>PBS⁻</td>
<td>Phosphat buffer saline ohne Mg<sup>2+</sup>/Ca<sup>2+</sup></td>
</tr>
<tr>
<td>PCWP</td>
<td>Pulmonaler arterieller Verschlussdruck</td>
</tr>
<tr>
<td>PEEP</td>
<td>Positiver endexpiratorischer Druck</td>
</tr>
<tr>
<td>PMN</td>
<td>Polymorphkerniger neutrophiler Granulozyt</td>
</tr>
<tr>
<td>RAAS</td>
<td>Renin-Angiotensin-Aldosteron-System</td>
</tr>
<tr>
<td>ROS</td>
<td>Reaktive Sauerstoffspezies</td>
</tr>
<tr>
<td>RT</td>
<td>Raumtemperatur</td>
</tr>
<tr>
<td>sGC</td>
<td>lösliche Guanylatzyklase</td>
</tr>
<tr>
<td>SIRS</td>
<td>Generalisiertes Inflammationssyndrom</td>
</tr>
<tr>
<td>SnPP</td>
<td>Zinn-Protoporphyrin</td>
</tr>
<tr>
<td>Tab.</td>
<td>Tabelle</td>
</tr>
<tr>
<td>TLR-4</td>
<td>Toll-like-Rezeptor-4</td>
</tr>
<tr>
<td>TNFα</td>
<td>Tumornekrosefaktor α</td>
</tr>
<tr>
<td>VCAM-1</td>
<td>Vaskuläres Zelladhäsionsmolekül-1</td>
</tr>
<tr>
<td>VEGF</td>
<td>Vascular Endothelial Growth Factor</td>
</tr>
</tbody>
</table>
1. Acute Respiratory Distress Syndrome

Die akute respiratorische Insuffizienz (ARDS) bezeichnet ein Krankheitsbild, welches ätiologisch bis heute nicht vollständig geklärt ist. Das Hauptsymptom ist eine rasch progrediente pulmonale Gasaustauschstörung, auf die eine schwere Hypoxie folgt. Die pharmacologische bzw. nicht-pharmacologische Beeinflussung der pathophysiologischen Abläufe, die zu diesem schweren Krankheitsbild führen, sind Gegenstand zahlreicher Forschungsarbeiten und stellen die Intensivmedizin bis heute vor eine große Herausforderung.

1.1 Epidemiologie des ARDS

Das Krankheitsbild ARDS, im deutschen Sprachraum allgemein als akutes Lungenversagen bezeichnet, ist in Mitteleuropa mit einer Inzidenz von etwa 5 pro 100.000 Einwohner/Jahr eine seltene, jedoch schwer verlaufende und in bis zu 60 % letal endende Erkrankung [1]. Weltweit differieren die Inzidenzen für das ARDS erheblich und reichen bis 64 pro 100.000 Einwohner/Jahr [2]. Zambon und Vincent berichten im Rahmen einer großen Metaanalyse von einer Letalität von durchschnittlich 43% [3]. Rund 9% aller maschinell beatmeten Patienten erfüllen bereits zu Beginn der Beatmung die Diagnosekriterien der Amerikanisch-Europäischen Konsensuskonferenz (AECC) 1994 für ein ARDS [4]. Die Aufwendungen des Gesundheitssystems (Finnland, 2007) betragen durchschnittlich rund 20.700 €/Fall. Maßgeblich für die Aufwendungen ist die Dauer der mechanischen Beatmung. In über 10% der untersuchten Fälle entstehen Kosten von über 50.000 €/Fall [5].

Beobachtungszeitraum die Erkrankungsschwere und die Komorbiditäten der betroffenen Patienten zugenommen [6].

Trotz einiger Fortschritte im Verständnis der Pathophysiologie des ARDS und technischer Weiterentwicklungen im Beatmungsmanagement dämpfen Fergusson und Mitarbeiter die Euphorie. Die Letalität des ARDS ist den Autoren zufolge seit 1994 nahezu unverändert [7].

1.2 Klinisches Erscheinungsbild

Das klinische Erscheinungsbild des ARDS ist gekennzeichnet durch eine rasch progrediente und therapierefraktäre Hypoxämie, eine pulmonale Hypertension, eine herabgesetzte pulmonale Compliance und eine diffuse bilaterale Infiltration in der Röntgenthoraxaufnahme. Die Schwierigkeit bei der Diagnosestellung besteht darin, dass die einzelnen Befunde nicht spezifisch für ein ARDS sind. Erschwerend kommt der rasche Krankheitsverlauf hinzu. Von einem pathologischen Röntgenthoraxbefund bis zum lebensbedrohlichen Krankheitsbild vergehen im Durchschnitt nur 12 bis 72 Stunden [8].

Die Diagnosestellung erfolgt nach den Definitionen der AECC für das ARDS [9;10], sowie in Deutschland in Ergänzung dazu nach den Leitlinien der Deutschen Interdisziplinären Vereinigung für Intensiv- und Notfallmedizin (DIVI). Demnach ist das ARDS gekennzeichnet durch einen akuten Beginn, eine Oxygenierungsstörung $\text{PaO}_2 / \text{FiO}_2 \leq 200$ mmHg, bilaterale Infiltrate in der Röntgenthoraxaufnahme und einen pulmonalarteriellen Verschlussdruck $\text{PCWP} \leq 18$ mmHg. Für die Diagnosestellung eines ARDS muss eine kardiale Ursache für die pulmonalen Infiltrate ausgeschlossen werden [11]. Die AECC unterscheidet bezüglich des Grades der vorliegenden Oxygenierungsstörung einen mittleren Schweregrad, Acute Lung Injury (ALI) ($\text{PaO}_2 / \text{FiO}_2 \leq 300$ mmHg), und einen hohen Schweregrad, ARDS ($\text{PaO}_2 / \text{FiO}_2 \leq 200$ mmHg) [9;10]. Der Beginn eines ARDS zeichnet sich durch klinische Symptome wie zunehmende Dyspnoe, Tachypnoe und therapierefraktäre Hypoxie aus, welche letztendlich eine intensivmedizinische Therapie des Patienten unabdingbar machen.
Trotz der weitläufigen Anwendung der AECC-Definitionen sind die Kriterien zur Diagnosestellung des ARDS nicht ausreichend validiert. In einer Publikation aus dem Jahr 2004 werden Obduktionsergebnisse mit den ARDS-Definitionen der AECC verglichen und kritisch beurteilt. Es wird festgestellt, dass die Kriterien nur ungenau zutreffen und insbesondere Patienten mit pulmonalen Risikofaktoren mit einer schlechten Sensitivität (61%) und Spezifität (69%) erfasst werden [4]. Eine weitere klinisch-pathologische Studie belegt, dass nur bei etwa der Hälfte der klinisch diagnostizierten und verstorbenen ARDS-Fälle die klassische alveolare Schädigung durch eine Obduktion bestätigt werden kann [12].

Seit 2012 liegt die sogenannte Berlin-Definition zum ARDS auf Grundlage einer Metaanalyse von über 4.000 Patienten vor. Darin sollen einige Limitationen der Definition nach AECC ausgeglichen werden. So werden nun drei anstatt bisher zwei Schweregrade zugrunde gelegt [13;14]. Außerdem kann das neu definierte schwere Lungenversagen (PaO₂ / FiO₂ ≤ 100 mmHg) nochmals genauer anhand weiterer Parameter wie beispielsweise dem positiven endexpiratorischen Druck (PEEP), der pulmonalen Compliance und dem Ausprägungsgrad des radiologischen Thoraxbefundes spezifiziert werden. Zudem finden sich in der Berlin-Definition, verglichen mit der Definition nach AECC, differenziere Vorhersagewerte bezüglich der Letalität und eine Auflistung von Risikofaktoren [14]. Die Anwendung der Berlin-Definition wird durch die Fachgesellschaften, unter anderem die Deutsche Gesellschaft für internistische Intensiv- und Notfallmedizin (DGIIN) empfohlen [15].

Im Verlauf eines ARDS ist nicht immer die Hypoxie direkt todesursächlich, sondern in zahlreichen Fällen ein Multiorganversagen [16-18].

1.3 Ätiologie

Während sich die Symptomatik des ARDS uniform darstellt, so können die Faktoren, welche zu dieser Erkrankung führen, sehr vielfältig sein. Bereits in der Beschreibung des ARDS durch Ashbaugh et al. wurden drei auslösende Primärursachen dokumentiert: Pankreatitis, virale Infektion und schweres Trauma [19].
Heute wird zwischen pulmonalen und extrapulmonalen Ursachen unterschieden (siehe Tabelle 1). Dabei sind die pulmonalen (direkten) Ursachen für 57-76% der ARDS-Fälle verantwortlich. Dabei dominieren viral oder bakteriell bedingte Pneumonien [20]. Extrapulmonale (indirekte) Ursachen liegen 24-43% der ARDS-Fälle zugrunde. 7% der Erkrankungen haben gleichzeitig eine pulmonale und eine extrapulmonale Ursache [21].

<table>
<thead>
<tr>
<th>Pulmonale Ursache</th>
<th>Extrapulmonale Ursache</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pneumonie</td>
<td>Sepsis</td>
</tr>
<tr>
<td>Aspiration</td>
<td>Polytrauma</td>
</tr>
<tr>
<td>Reizgasinhalaion</td>
<td>Schockgeschehen</td>
</tr>
<tr>
<td>Lungenkontusion</td>
<td>Akute Pankreatitis</td>
</tr>
<tr>
<td>Fettembolie</td>
<td>Kardiopulmonaler Bypass</td>
</tr>
<tr>
<td>Beinahe-Ertrinken</td>
<td>Transfusionsschaden</td>
</tr>
<tr>
<td>Reperfusionsschaden</td>
<td>Verbrennung</td>
</tr>
<tr>
<td></td>
<td>Schädel-Hirn-Trauma</td>
</tr>
</tbody>
</table>

Tab. 1: Pulmonale und extrapulmonale Ursachen des ARDS [11;21]

Pulmonale Ursachen führen rascher zur Ausbildung des Vollbildes eines ARDS als extrapulmonale Ursachen [7].

1.4 Prognose und Risikofaktoren

Steinberg et al. belegen in einer klinischen Studie einen Zusammenhang zwischen der Anzahl der in die Lungen migrierten polymorphkernigen neutrophilen Granulozyten (PMN) und dem Outcome der Patienten [26]. Eine dauerhaft erhöhte PMN-Akkumulation in der bronchoalveolären Lavage (BAL) ist mit einer erhöhten Letalität assoziiert. Patienten, bei denen eine Sepsis ursächlich für das ARDS ist neigen zu höherer PMN-Akkumulation in der BAL über längere Zeit. Patienten mit Trauma als Ursache für ein ARDS weisen erhöhte PMN-Level in der BAL meist nur über eine kurze Dauer auf. Demnach weisen ARDS-Patienten mit schwerem Trauma eine Letalität von 24% auf. Im Vergleich dazu versterben 56% der ARDS-Patienten mit schwerer Sepsis bei pulmonalem Infektionsherd [2].

Das Überleben polytraumatisierter Patienten hängt entscheidend davon ab, ob ein ARDS verhindert werden kann. Das Patientenalter spielt in diesen Fällen eine untergeordnete Rolle. Im Gegensatz dazu korreliert das Überleben nicht traumatisch bedingter ARDS-Fälle mit dem Patientenalter, der Grunderkrankung und der Liegedauer auf der Intensivpflegestation [27].

1.5 Pathophysiologie

Auf Grund dieser hämodynamischen Veränderungen kommt es zur pulmonalen Hypertension. Diese ist zusammen mit der erhöhten Gefäßpermeabilität im inflammatorisch veränderten Gefäßbett für die entstehenden Lungeninfiltrate.

1.6 Pathomechanismus

1.6.1 Inflammation

Die Inflammation ist eine komplexe Reaktion des Immunsystems in vaskularisierten Geweben im Falle von Infektion, Toxineinwirkung und Zellschaden [29]. Es handelt sich um einen körpereigenen Schutzmechanismus, welcher zur Verminderung der Erregerausbreitung durch Elimination, Verdünnung der Erregerkonzentration und Erregerabtransport mit der Lymphgehn dient.

Bei bakteriellen Infektionen und auch bei LPS-induzierter Lungeninflammation spielen die Zytokine Interleukin-1 (IL-1), IL-6, TNFα und Macrophage-Inflammatory-Protein-2 (MIP-2) eine wichtige Rolle. Zusätzlich ist IL-8 ein wichtiges proinflammatorisches Zytokin beim Menschen. Beim Nager ist es an Stelle von IL-8 das sogenannte Keratinocyte-derived Chemokine (KC). Siehe hierzu auch Kapitel 1.6.3. IL-1 und TNFα sind frühe Zytokine im akuten Lungenversagen und werden von Makrophagen sezerniert [34]. Von besonderer Bedeutung jedoch sind TNFα, MIP-2 und KC, da diese jeweils eine sehr starke chemotaktische Wirkung auf Neutrophile aufweisen [35-37]. Die murinen Chemokine MIP-2 und KC haben zudem eine systemische Wirkung, indem sie für sich alleine als auch zusammen mit Granulocyte-Colony-Stimulating-Factor (G-CSF) für die Neutrophilenfreisetzung aus dem Knochenmark verantwortlich sind [38]. Den bedeutenden Einfluss von MIP-2

1.6.2 LPS als experimenteller Auslöser der pulmonalen Inflammation

Lipopolysaccharid (LPS) ist als Endotoxin ein stark pathogener Bestandteil der Zellwand gramnegativer Bakterien wie beispielsweise Salmonella oder Escherichia coli, zweier relevanter Erreger humaner Enteritiden. Endotoxine wie LPS haben die Eigenschaft, starke Stimulatoren der Zytokinsynthese vor allem von TNFα zu sein. Speziell die Wechselwirkung von TNFα mit Endothel
aktiviert die Endothelzellen, so dass diese rasch Weibel-Palade-Körperchen freisetzen, welche das P-Selektin enthalten. P-Selektin startet die Endothel-Neutrophilen-Interaktion [43]. Siehe hierzu Kapitel 1.6.5.

1.6.3 Humanes und murines zelluläres Immunsystem im Vergleich

In dieser Arbeit wird ein Mausmodell verwendet. Aus diesem Grund wird im Folgenden auf das Mausmodell eingegangen.

Im Grunde sind sich das humane und das murine Genom ähnlich, ca. 80% der Gene sind in beiden Gattungen identisch. Zudem ist der Aufbau des zellulären Immunsystems der Maus dem des Menschen sehr ähnlich. Ein bedeutender Unterschied findet sich jedoch bei den Neutrophilen. Im menschlichen Differenzialblutbild überwiegt die Anzahl der Neutrophilen im Vergleich zu den Lymphozyten (50 – 70 % versus 30 – 50 %). In der Maus dominiert die Lymphozytenzahl mit über 90 % deutlich über der Neutrophilenzahl [44]. Nur 1 – 2 % der Neutrophilen zirkulieren in der murinen Blutbahn. Etwa 98 % der reifen Neutrophilen sind im Knochenmark lokalisiert und können im Falle einer Immunantwort rasch in die Blutbahn freigesetzt werden [45-47]. Im Rahmen einer Inflammation kann innerhalb kürzester Zeit die Zahl zirkulierende Neutrophiler auf ein Vielfaches des Ausgangswertes steigen [48]. Die gesunde C57Bl/6-Maus, wie sie auch für die Versuche in dieser Arbeit verwendet wird, enthält im Knochenmark von Femur und Tibia etwa 6 bis 12 · 10⁶/ml Neutrophile, im Rahmen einer Infektion hingegen bis zu 40 · 10⁶/ml [49].

Eine weitere Abweichung beim Vergleich des humanen und murinen Immunsystems zeigt sich bei den Neutrophilen selbst. Während humane
Neutrophile antimikrobielle Peptide, sogenannte Defensine, sezernieren, so sind murine Neutrophile dazu nicht in der Lage. IL-8 spielt im humanen Immunsystem eine bedeutende Rolle, im murinen hingegen KC (Keratinocyte-derived Chemokine) [44]. Mäuse besitzen ein ausgeprägtes bronchial lokalisiertes lymphoides Gewebe, Menschen hingegen nicht in dieser Ausprägung [51].

1.6.4 Die Rolle der neutrophilen Granulozyten in der Inflammation

Abb. 1: Verlaufskurven Neutrophiler in Knochenmark (linkes Diagramm) und Serum (rechtes Diagramm) nach LPS-Applikation bei der Maus. Durchgezogene Linie: Absolute Zellzahl; punktierte Linie: prozentualer Anteil [42].

20

1.6.5 Endothel-Neutrophilen-Interaktion in den Lungen

Die Extravasation von Neutrophilen erfolgt normalerweise in den postkapillären Venolen. In den Lungen erfolgt dieser Vorgang, im Gegensatz zu anderen Organen, in den Kapillaren [56]. Zusätzlich bieten die Lungen noch weitere Besonderheiten, die im Hinblick auf die Neutrophilenmigration von großer Bedeutung sind. So befindet sich in den Lungen ein ausgeprägtes Kapillarbett, wobei sich eine Arteriole in 40 bis 100 Kapillare aufteilt. Dies hat zur Folge, dass in den Lungen eine 20- bis 60-fach erhöhte Konzentration von Neutrophilen im Vergleich zu den großen systemischen Blutgefäßen vorzufinden ist. Die Transitzeiten Neutrophiler durch das pulmonale Kapillarbett ist mit bis zu 40 s deutlich höher als beispielsweise für Erythrozyten mit 1,5 bis 4 s [57]. Der Grund hierfür ist die für die Passage notwendige Formänderung der Neutrophilen [57-59].

Im Rahmen einer Inflammation verlieren die Neutrophilen durch Umorganisation der intrazellulären Aktinfilamente ihre Verformungseigenschaften, was dann eine verlängerte Verweildauer im pulmonalen Kapillarbett zur Folge hat, die sogenannte Neutrophilen-Sequestration. Die Migration in das Lungenparenchym wird hierdurch erleichtert. Drost et al. betrachten in vitro die Auswirkungen auf die Verformungseigenschaften von Neutrophilen, welche mit proinflammatorischen
Substanzen behandelt werden. Unter anderem verringert IL-8 die Verformbarkeit. TNFα hat hingegen nur geringe Auswirkungen auf die Verformungseigenschaften [35]. Saito et al. untersuchen in ihrer Arbeit die mechanischen Eigenschaften Neutrophiler und zeigen, dass Neutrophile, welche auf Grund inflammatorischer Stimuli aus dem Knochenmark freigesetzt werden, in ihren Verformungseigenschaften steifer sind als bereits zirkulierende Neutrophile. Sie sequestrieren daher leichter im pulmonalen Kapillarbett. Dieser Effekt ist sogar so stark ausgeprägt, dass sich eine signifikante Differenz der absoluten Neutrophilenzahlen im venösen und arteriellen Blut ergibt [60].

Die Migration von Leukozyten in infiziertes Gewebe wird durch Adhäsionsmoleküle induziert. Aktivierte Endothelzellen exprimieren P- und E-Selektine, die interzellulären Adhäsionsmoleküle ICAM-1 und -2 sowie das vaskuläre Adhäsionsmolekül VCAM-1 auf ihren Oberflächen [61].

VCAM-1 ist induzierbar und wird von den Endothelien großer und kleiner Blutgefäße exprimiert. Es vermittelt die Adhäsion von Immunzellen wie Lymphozyten, Monozyten und Leukozyten an der Gefäßwand [62].

P-Selektin, welches innerhalb von Minuten nach endothelialer Interaktion mit proinflammatorischen Zytokinen wie TNFα oder IL-6, beziehungsweise nach direkter Interaktion von LPS mit Weibel-Palade-Körperchen exprimiert wird, induziert die Synthese von E-Selektin, welches von aktivierten Endothelzellen innerhalb von 90 Minuten neu synthetisiert wird. Beide Selektine maximieren das Rollen und die Adhärenz Neutrophiler am Endothel [43;63]. Ein Defizit bei den P- und E-Selektinen führt zu einer verstärkten Infektabfälligkeit [64;65]. Ebenso führt ein Fehlen von Rezeptoren für TNFα und IL-6 auf Endothelzellen zu drastisch reduzierten Proteinkonzentrationen von ICAM-1, VCAM-1, P- und E-Selektin [66]. Sepsispatienten zeigen erhöhte Level von E-Selektin und ICAM-1. Hohe Level dieser Marker sind mit einem schlechteren Outcome verbunden [67;68].
Ein weiteres Selektin, das L-Selektin, wird von Neutrophilen exprimiert und spielt eine wichtige Rolle bei der Adhäsion bereits rollender Leukozyten an der Gefäßwand [63;69].

Die Migration der Neutrophilen durch das Endothel kann prinzipiell auf zwei verschiedene Arten ablaufen, der parazellulären und der transendothelialen Route. Siehe folgende Abbildung 2.

Abb. 2: Neutrophilenmigration aus dem Intravasalraum in das Gewebe [63].

Bereits beim Rollen der Neutrophilen am Endothel kommt es durch weitere komplexe biochemische Vorgänge zum intrazellulären Ca$^{2+}$-Anstieg in Endothelzellen, wodurch diese kontrahieren und einen parazellulären Durchtritt Neutrophiler in das Interstitium erleichtern. Zudem werden durch die Neutrophilen-Elastase Zell-Zell-Kontakte gelöst [56]. Letztlich sezernieren aktivierte Neutrophile auch die Gewebshormone Prostaglandin E und F, welche über den Arachidonsäuremetabolismus und das Enzym Cyclooxygenase
reaktive Sauerstoffspezies (ROS) hervorbringen, die über ihre zytotoxische Wirkung ebenfalls Zell-Zell-Kontakte zerstören können [56]. Auch Scherspannungen durch das Rollen Neutrophiler an der Gefäßwand dehnt diese und erleichtert den Durchtritt Neutrophiler [63]. Der Vorgang der Extravasation Neutrophiler wird als Diapedese bezeichnet.

Bei der transendothelialen Migrationsroute formen ICAM-1-haltige vesikulovakuoläre Organellen intrazellulär einen Kanal, durch den Neutrophile migrieren können. Die transendotheliale Neutrophilenmigration erfolgt vor allem in Bereichen, in denen das Endothel dünn ist [56].

Die Migration der Neutrophilen durch die endotheliale Basalmembran und die Perizytenhülle der Kapillaren geschieht mittels Neutrophilenelastase und Matrixmetalloproteasen. Im physiologischen Zustand sind diese durch körpereigene Proteaseinhibitoren geblockt [56].

Während der gesamten Migration werden die Neutrophilen per Chemotaxis zum Infektionsherd geleitet. Vor allem das von aktivierten Makrophagen in großen Mengen freigesetzte IL-8 bewirkt so einen chemotaktischen Konzentrationsgradienten, entlang dessen die Neutrophilen zum Infektionsherd gelangen können. Kurdowska und Mitautoren zeigen, dass eine hohe Konzentration an IL-8 in der humanen BAL mit einem schlechten Outcome beim ARDS assoziiert ist [70]. Nicht zuletzt rekrutieren aktivierte Neutrophile selbst durch Synthese und Sekretion von Chemokinen weitere Neutrophile [63].

In einer tierexperimentellen Arbeit untersuchen Reutershan et al. den zeitlichen Ablauf der Migration Neutrophiler nach LPS-Inhalation in den Lungen der Maus. Die intravaskuläre Neutrophilen-Konzentration im pulmonalen Kapillarbett erreicht 4 Stunden nach LPS-Inhalation ihren Maximalwert und fällt danach wieder ab. Während dieser Zeit erfolgt bereits die Migration in das Interstitium, erreicht dort nach 12 Stunden sein Maximum und stagniert danach. Der größte Anstieg der Neutrophilenzahlen im Alveolarraum erfolgt zwischen
der zweiten und vierten Stunde nach LPS-Exposition und steigt daraufhin kontinuierlich weiter an [71]. Siehe Abbildung 3.

![Diagramm der Migration Neutrophiler in die Kompartimente der Lunge](image)

Abb. 3: Zeitlicher Verlauf der Migration Neutrophiler in die Kompartimente der Lunge: Intravasalraum, Interstitium und Alveolarraum. BAL = Bronchoalveolare Lavage, PMN = Polymorphkerniger neutrophiler Granulozyt [71].

1.6.6 Endotheliale Barrierefunktion und kapilläres Leck

Das Endothel bildet die innerste Schicht der Blutgefäße und hat damit mehrere wichtige Funktionen wie beispielsweise bei der Blutgerinnung, Angiogenese und Inflammation. Unter physiologischen Bedingungen findet eine geringfügige Migration von Neutrophilen und Makrophagen statt. Persistiert hingegen eine massenhafte Migration Neutrophiler durch pulmonales Endothel, beispielsweise im Rahmen einer Inflammation, so kann dies unter anderem zur Entstehung bilateraler proteinreicher Lungeninfiltrate wie beim ARDS führen [72].

Interzelluläre endotheliale Verbindungen bestehen aus Tight Junctions, Adherens Junctions und weiteren Adhäsionsmolekülen. Diese interzellulären Verbindungen stehen über die Proteine Occludin und Claudin beziehungsweise Cadherin und Catenin in Kontakt mit intrazellulären Membranproteinen und gewährleisten so die endotheliale Barriere [73;74]. Das Endothel stellt eine
größenselektive Barriere dar, wobei den Adherens Junctions, die eher basal angeordnet sind, die tragende Rolle bei der endothelialen Barriere zukommt [75;76].

Einige lösliche Faktoren wie reaktive Sauerstoffspezies (ROS), TNFα, LPS und viele andere sind bekannt dafür, die endotheliale Permeabilität zu erhöhen. Diese Faktoren binden an Plasmamembranrezeptoren, erhöhen unter anderem den intrazellulären Ca²⁺-Gehalt in den Endothelzellen und verursachen damit eine Störung der Endothelbarriere [73]. Insbesondere den ROS kommt eine wichtige Rolle in der Ödembildung bei entzündlichen Vorgängen zu [77]. ROS werden von aktivierten Neutrophilen in erheblicher Menge gebildet und zerstören direkt endotheliale Zell-Zell-Kontakte [78].

Zudem sezernieren aktivierte Neutrophile, wie unter 1.6.5 bereits beschrieben, verschiedene Enzyme, welche zytotoxischen Charakter besitzen, beispielsweise Neutrophilenelastase, Myeloperoxidase, Defensine, Matrix-Metalloproteinasen und Lysozyme [56;72]. In vitro können Hermant et al. die Destruktion des Cadherin durch Neutrophilenelastase nachweisen [79]. Matrix-Metalloproteasen zerstören die Basalmembran [80].

Im Gegensatz zur endothelialen Barriere ist über die epitheliale Barriere nur wenig bekannt. Zwei Forschergruppen können jedoch zeigen, dass eine destruierte endothiale Barriere auch die epitheliale Barriere destabilisiert [81;82]. In einer weiteren Studie von Wang et al. wird besonders auf die Interaktion beider Barrieren eingegangen. So können die Autoren in vitro an humanen Endothel- und Epithelzellen eine verringerte Migration neutrophiler Granulozten und geringere Permeabilität durch einen Bilayer, bestehend aus beiden Zellarten, nachweisen. Ein Monolyer aus Endothelzellen zeigt unter Stimulation mit proinflammatorischen Zytokinen oder LPS wenig Widerstand gegenüber Neutrophilenmigration und zeigt zudem eine stark zunehmende Permeabilität [83].
Zusammenfassend lässt sich sagen, dass aktivierte Neutrophile in Interaktion mit dem Endothel durch mehrere oben beschriebene Mechanismen die endotheliale Barriere direkt oder indirekt schädigen.

1.6.7 Apoptose und Neutrophilen-Clearance

Der programmierte Zelltod reguliert die Funktion des Immunsystems. So werden zum Beispiel Immunreaktionen beendet, indem Immunzellen nach erfolgreich bekämpfter Infektion beseitigt werden. Die Apoptose ist ein geregelter Vorgang und kann auf zwei Wegen induziert werden, wobei beide Wege in eine gemeinsame Endstrecke münden, der Aktivierung spezieller Proteasen [84].

Die eine Möglichkeit ist der intrinsische Weg, bei dem die Apoptose aufgrund schädlicher Reize wie Chemotherapeutika oder UV-Strahlung ausgelöst wird. Eine andere Möglichkeit ist der receptorvermittelte Signalweg, der sogenannte extrinsische Weg. Über letzterer Möglichkeit kann auch TNFα zur Aktivierung der Apoptose führen, als Ligand am Tumornekrosefaktor-Rezeptor-1 (TNFR-1) [43].

In der BAL von ARDS-Patienten kann eine verzögerte Neutrophilenapoptose nachgewiesen werden. So supprimieren erhöhte Level von G-CSF und IL-8 in der BAL die Neutrophilen-Apoptose [85;86].

Zudem werden Neutrophile aus der Zirkulation entfernt, indem durch Organe wie Milz, Leber und Knochenmark eine Neutrophilen-Clearance zu jeweils etwa 30% erfolgt. In diesen Organen entfernen Makrophagen gealterte Neutrophile [48;87].

1.7 Therapeutische Konzepte

Trotz intensiver Forschungen zum Thema ARDS kann bislang keine spezifische Therapie empfohlen werden. Die Behandlungskonzepte sind lediglich supportiv. Parallel zu den supportiven Maßnahmen muss der Auslöser
therapiert werden, da ansonsten das akute Lungenversagen persistiert und nicht überwunden werden kann.

1.7.1 Nicht-pharmakologische Konzepte

In einer neueren Übersichtsarbeit von Shafeeq et al. wird die lungenprotektive Beatmung bereits in einem frühen Stadium des ARDS neben der kausalen Therapie bei bekanntem Fokus, z.B. der antibiotischen Therapie bei Pneumonie, als die bis heute einzige effektive therapeutische Möglichkeit gesehen [88].

Die Beatmungsstrategien haben sich über die Jahre mit dem Zugewinn an Erfahrungen und technischen Weiterentwicklungen geändert. Während Burchardi 1987 noch größere Beatmungsvolumina empfiehlt [16], so strebt man heute Beatmungsvolumina von ≤ 6 ml/kg KG sowie niedrige Spitzendrücke von < 30 cm H₂O an. Durch die Anwendung dieser Beatmungsparameter kann das Outcome der Patienten, unter anderem durch die verringerte Gefahr eines Barotraumas, verbessert werden [89;90].

Eine weitere mögliche Strategie bei ARDS-Patienten ist die Hochfrequenzoszillationsventilation (HFOV). Dabei werden sehr niedrige Beatmungsvolumina von 1 bis 3 ml/kg KG mit sehr hohen Beatmungs frequenzen von 60 bis 360 min⁻¹ kombiniert. Dadurch kann ein verbessertes Alveolarrekrutment erreicht, ein endexspiratorischer Alveolarkollaps vermieden und die intrapulmonalen Scherkräfte reduziert werden [89]. Bein et al. untersuchen in einer prospektiven, randomisierten Studie Tidalvolumina von etwa 3 ml/kg KG in Verbindung mit einer extrakorporalen Membranoxygenierung (ECMO). Es lassen sich nach Angaben der Autoren die Anzahl der Beatmungstage und die Aufenthaltsdauer auf der IPS verringern [91]. Aktuelle Studien widerlegen allerdings einen Überlebensvorteil bei Anwendung der HFOV. In der OSCAR-Studie berichten die Autoren von keinerlei Vorteil der HFOV-behandelten Patienten gegenüber den konventionell ventilierten Patienten [92]. Die OSCILLATE-Studie der Canadian Critical Care Trials Group musste abgebrochen werden, da die Letalität unter den HFOV-Patienten signifikant höher war als unter den Kontrollpatienten [93].
internistische Intensivmedizin und Notfallmedizin (DGIIN) rät bei der Ventilation von ARDS-Patienten deshalb von der HFOV ab.

Bei progredientem Krankheitsverlauf und ausbleibendem Erfolg auf oben beschriebenen Maßnahmen hinsichtlich ausreichender Oxygenierung und CO₂-Elimination kann die extrakorporale Membranoxygnerierung (ECMO) zum Einsatz kommen. Diese Maßnahme ist mit hohem technischem und personellem Aufwand verbunden und obliegt daher spezialisierten Zentren. Die Anwendung der ECMO kann bei geeigneten ARDS-Patienten nachweislich die
Letalität senken und erlaubt überdies oftmals erst die Verwendung einer lungenschonenden Beatmung [101].

1.7.2 Pharmakologische Konzepte

Bis heute können keine wirkungsvollen arzneimittelbasierten Therapiekonzepte zur Behandlung des ARDS genannt werden. Den Grund für das Fehlen derartiger Konzepte sehen verschiedene Autoren in den mannigfaltigen Ätiologien sowie bei der nach wie vor unklaren Pathophysiologie [102;103].

Da die Neutrophilenelastase im Pathomechanismus des ARDS eine erhebliche Rolle spielt, wird versucht, mittels Neutrophilenelastase-Inhibitor Sivelestat die Exazerbation des ARDS zu verringern. Vor allem in Japan wird Sivelestat in
großem Umfang zur Therapie des ARDS eingesetzt. Dabei kann die Applikation bei ARDS-Patienten die Aktivität der Neutrophilenelastase im Plasma signifikant senken. Eine positive Auswirkung auf das Outcome von ARDS-Patienten ergab sich jedoch nicht [111]. Eine Metaanalyse von Iwata et al. kann außer einer geringfügigen Verbesserung bei der Oxygenierung keine Reduzierung der Beatmungstage nachweisen und dementsprechend den Einsatz von Sivelestat nicht empfehlen [112].

Intratracheal instilliertes rekombinantes Surfactant-Protein-C verbessert unabhängig von der Ätiologie des ARDS die Oxygenierung. Ein Überlebensvorteil durch die Surfactantbehandlung zeigte sich jedoch nur bei Patienten mit ursächlicher Pneumonie oder Aspirationseignis [113]. Spragg und Mitarbeiter sehen hingegen keine Verbesserungen hinsichtlich der Letalität und beatmungsfreier Tage und empfehlen daher die Surfactantapplikation nicht für die Routineanwendung [114].

Eine neuere tierexperimentelle Studie von Hall et al. zeigt einen protektiven Einfluss nach Applikation mesenchymaler Stammzellen (MSC) nach Induktion einer Sepsis bei HO-1-defizienten als auch -kompetenten Mäusen. Es ergibt sich ein signifikanter Überlebensvorteil für Tiere beider Gruppen, welche MSC erhalten. Dabei finden die Autoren heraus, dass MSC, unabhängig vom Vorhandensein der HO-1 die Phagozytoseaktivität der Neutrophilen signifikant erhöht und damit die Clearance von Pathogenen beschleunigt [115]. Zudem ist bekannt, dass MSC immunregulatorisch wirken. So sinkt nach MSC-Applikation der Serum-Level an den proinflammatorischen Zytokinen TNFα und IL-6, der Level an antiinflammatorischem IL-10 steigt hingegen [116].

Weitere Studien beschreiben eine Behandlungsmöglichkeit des ARDS mit inhalativem Stickstoffmonoxid (iNO). Trotz initial besserer Oxygenierung zeigt sich bei derartiger Intervention keine Verbesserung der Überlebensrate. Lediglich als ultima ratio bei schwerer therapierefraktärer Hypoxie wird die iNO-Therapie empfohlen [117].
Alle vorgenannten Konzepte einer pharmakologischen Intervention in das Krankheitsgeschehen des ARDS bringen noch nicht die erhoffte Reduktion der Letalität. Dies kann, neben der kausalen Fokussanierung, derzeit nur durch eine supportive Maßnahme, der Optimierung der mechanischen Beatmung, erreicht werden [88;102].

1.8 Konzepte zur Prophylaxe

2. Die Hämoxygenase-1, ein zytoprotektives Molekül

umgewandelt. In der Leber wird das wasserunlösliche Bilirubin glucuronidiert und gelangt daraufhin in die Galle.

![Diagramm des Stoffwechsels von Bilirubin](image)

Abb. 4: Hämoxygenase und die katalysierte Reaktion

Abbildung entnommen aus [120]. Abkürzungen zu Abb. 5: cAMP: cyclisches Adenosinmonophosphat; CO: Kohlenstoffmonoxid; NADPH: reduziertes Nicotinamidadenindinukleotidphosphat; NADP+: oxidiertes Nicotinamidadenindinukleotidphosphat; NO: Stickstoffmonoxid

Abb. 5: Zeitlicher Verlauf der HO - mRNA und des HO-Proteins in verschiedenen Organen nach LPS-Behandlung [134].

Donnelly et al. können zudem eine Enzyminduktion durch proinflammatorische Zytokine wie beispielsweise TNFα oder IL1β nachweisen [135]. Mumby et al. untersuchen die HO-1-Proteinmenge in der BAL von ARDS-Patienten und können erhöhte HO-1-Level in diesem Patientengut feststellen. Die Genese der ARDS-Erkrankungen war dabei unterschiedlich, beispielsweise Sepsis, Pneumonie, post-OP oder Trauma [136]. Tracz et al. unterstreichen den zytoprotektiven Charakter der HO-1 in einer tierexperimentellen Studie. So können die Autoren zeigen, dass in HO-1-defizienten Mäusen (HO-1−/−) die Serum-Level sämtlicher proinflammatorischer Zytokine (TNFα, IL-1, IL-2, IL-6, KC, MIP-2) nach intravenöser LPS-Applikation im Vergleich zu HO-1-kompetenten Mäusen dramatisch ansteigen [137]. Wiesel et al. finden in einer tierexperimentellen Sepsis-Studie mit HO-1-defizienten und heterozygoten Mäusen (HO-1+/−) heraus, dass eine vollständig fehlende HO-1 (HO-1−/−) mit einer erhöhten Letalität durch Multiorganversagen assoziiert ist [138].

Der Fokus soll im Folgenden auf die drei Metabolite Biliverdin, Bilirubin und CO sowie deren antiinflammatorische bzw. vasoaktive Eigenschaften gerichtet sein. Des Weiteren wird nur noch die HO-1 betrachtet, da diese als induzierbares Enzym von besonderem pharmakologischem Interesse ist.
2.1 Die Metabolite der HO-1

Durch den Hämoglobinabbau über die Hämoxygenase-1 entstehen in äquimolaren Mengen CO, Biliverdin, Fe und der Proteinrest Globin. Die drei erstgenannten Metabolite haben einen protektiven Charakter [139], welche im Folgenden und in Abbildung 6 in der Zusammenschau dargestellt werden.

2.1.1 Kohlenstoffmonoxid

Dem Kohlenstoffmonoxid (CO) kommt eine außerordentlich große Bedeutung im Rahmen inflammatorischer Vorgänge zu. Endogen entsteht CO zu über 80% beim Hämoglobinabbau. Dabei liegt eine Korrelation zwischen der HO-1-Enzymaktivität und der Plasma-CO-Konzentration vor. Weitere 20% entstehen HO-unabhängig, beispielsweise durch Lipidperoxidation und Arzneimetabolismus [120;140;141].

Takaki et al. beobachten bei Patienten mit schwerer Sepsis gesteigerte HO-1-Aktivität und höhere CO-Plasmalevel [142]. Ähnliche Studienergebnisse erzielen Zegdi et al. ebenfalls bei Sepsis-Patienten [143]. Beide Forschergruppen können bei kritisch Kranken und erhöhter endogener CO-Produktion einen Überlebensvorteil nachweisen. Allerdings zeigen Melley et al. bei Intensivpatienten nach kardiochirurgischer OP, dass eine exzessiv induzierte HO-1 für das Patientenoutcome ebenso schädlich ist wie eine wenig induzierte HO-1 [144].

Otterbein et al. zeigen, dass exogene CO-Beaufschlagung von kultivierten Makrophagen die LPS-induzierte Produktion proinflammatorischer Zytokine wie beispielsweise TNFα und IL-1 inhibiert und das antiinflammatorische Zytokin IL-10 induziert [147].

Vasodilatative Eigenschaften des CO
CO ist, alternativ zum Stickstoffmonoxid (NO), ein Induktor der löslichen Guanylatzyklase (sGC). Allerdings ist die Affinität von CO zum Enzym um den Faktor 300 geringer im Vergleich zu NO. Über die induzierte sGC wird vermehrt zyklisches Guanosinmonophosphat (cGMP) freigesetzt, welches über intrazelluläre Signalkaskaden vasodilatorisch auf die Gefäßmuskulatur wirkt. Dieser Effekt kann nach Ischämie/Reperfusions-(I/R)-Schäden an verschiedenen Organsystemen zu einer verbesserten Durchblutung führen [141].

Sonstige Eigenschaften des CO
CO inhibiert in vitro die TNFα-induzierte Apoptose. [154;155]. Zudem wird die Ausschüttung von proinflammatorischen Zytokinen und Wachstumshormonen durch CO gesenkt [147;156-158]. Zhou und Mitarbeiter zeigen in vivo am Mausmodell und in vitro an fetalen Lungenfibroblasten außerdem einen antiproliferativen Effekt von CO [159].

2.1.2 Biliverdin und Bilirubin
Biliverdin (BV) und Bilirubin (BR) sind Radikalfänger und haben somit antioxidative bzw. zytoprotektive Eigenschaften [160]. So zeigen Sarady-Andrews et al. in einer tierexperimentellen Studie an Ratten nach Applikation letaler LPS-Dosen, dass die Applikation von Biliverdin über eine Reduktion proinflammatorischer und einer Induktion antiinflammatorischer Zytokine zu einem verlängerten Überleben führt [161]. Im Gegensatz zum CO korrelieren bei kritisch kranken Patienten BV und BR nicht mit der HO-1-Aktivität, da bei
diesen Patienten Leberfunktions- und Transportstörungen einen viel größeren Einfluss auf die jeweiligen Plasmakonzentrationen haben als die HO-1. Aus diesem Grund sind beide Metaboliten im Vergleich zu CO als Marker des Häm-Metabolismus wenig geeignet [142;162]. Für beide Reaktionsprodukte wurde auch ein immunmodulatorischer Effekt nachgewiesen. So führen sie zur Inhibition des Kernfaktors κB (NFκB) und der IL-2-Produktion in den T-Helferzellen [163].

2.1.3 Eisen

Freies Eisen aus dem Häm-Abbau induziert die Synthese von Ferritin, welches Fe (III) bindet. Damit kommt dem Eisen (Fe) indirekt ein zytoprotektiver Effekt zu [141]. Zudem verringert die in vitro-Vorbehandlung von Epithelzellen mit CO die intrazelluläre Fe-Aufnahme, wodurch der intrazelluläre Fe-Gehalt und somit der oxidative Einfluss des Fe vermindert wird [164]. Allerdings steigt mit exzessiver Induktion der HO-1 (> 15-fach) auch der Anteil an freiem Eisen exzessiv, was den Anteil zytotoxischer Sauerstoffradikale erhöht. Die Zytoprotektion durch Ferritin wird dabei aufgehoben und es kommt zu oxidativem Stress mit Gewebeschäden [165].
2.2 Enzymaktivität der Hämoxgenase

Maines benennt für verschiedene Organe der Ratte die Aktivitäten der Hämoxgenase und der NADPH-Reduktase. Die höchste gemessene HO-Aktivität weist die Milz auf. Die Lunge zeigt hingegen nur etwa 1/5 der Aktivität der Milz. NADPH ist ein essentiell wichtiger Reaktionspartner sowohl der Hämoxgenase als auch der Biliverdinreduktase [167].

2.3 Regulation der HO-1 in der Lunge

2.4 Die pharmakologische Beeinflussung der HO-1

Insbesondere der immunmodulatorische Effekt der HO-1 auf myeloide Zellen wie Granulozyten, Makrophagen, Monozyten und dendritische Zellen und auf Endothelzellen wird in der Literatur diskutiert [29]. Zahlreiche Studien der letzten Jahre legen eine antiinflammatorische Wirkung der induzierten HO-1 beim ARDS als auch bei anderen schweren Erkrankungen wie beispielsweise hämorrhagischer Schock, Sepsis, Peritonitis, COPD oder Graft-versus-Host-Reaktion in vivo im Tiermodel und in vitro nahe [29;118;119;121;139;169;177]. Dies bekräftigt Bestrebungen, die auf eine pharmakologisch bedingte Induktion der HO-1 unter anderem zur Therapie bei der pulmonalen Inflammation abzielen.

Die Induktion und Inhibition kann auf vielerlei Art und Weise geschehen (siehe Abbildung 4). CoPP ist ein experimenteller Induktor. Zinn- und Zink-Protoporphyrin (SnPP und ZnPP) sind häufig verwendete Inhibitoren [126;132].
Hämin stellt einen weiteren Induktor dar, welcher experimentell zunehmend Anwendung findet [133].

Die inhibierende Wirkung des SnPP wird durch eine kompetitive Bindung an das katalytische Zentrum des HO-1-Enzymes hervorgerufen. Dadurch wird das Enzym gehemmt, gleichzeitig jedoch die Transkription verstärkt. Neu synthetisiertes Enzym wird unmittelbar gehemmt, so dass die Zunahme an Enzym mit einer gleichzeitigen Abnahme an funktionsfähigem Enzym einhergeht [132].

In hohen Dosen kann jedoch die hemmende Wirkung des CoPP überwiegen. Diese Beobachtung machen Woo et al. in einer tierexperimentellen Untersuchung zur Graft-versus-host-Reaktion, wenn bei Überschreitung einer kritischen Dosis das Überleben der Tiere wieder abnimmt [178].

Des Weiteren besteht die Möglichkeit der transgenen Expression der HO-1 mittels Adenoviren, jedoch ist eine derartige Therapie schlecht steuerbar und deshalb in ihren Konsequenzen unvorhersehbar [179].
3. Material und Methoden

3.1 Material

3.1.1 Versuchstiere

3.1.2 Geräte

<table>
<thead>
<tr>
<th>Produktbezeichnung</th>
<th>Hersteller</th>
</tr>
</thead>
<tbody>
<tr>
<td>Absaugpumpe Vario Vaccubrand BVC 21</td>
<td>Vacuubrand, Wertheim</td>
</tr>
<tr>
<td>Brutschrank cytoperm2</td>
<td>Haraeus, Hanau</td>
</tr>
<tr>
<td>Dispergierantrieb MICCRA D-9</td>
<td>ART Prozess- und Labortechnik, Müllheim</td>
</tr>
<tr>
<td>Dispergierwerkzeug DS-8/P</td>
<td>ART Prozess- und Labortechnik, Müllheim</td>
</tr>
<tr>
<td>Durchflusszytometer FACSORT</td>
<td>Becton&Dickinson, Heidelberg</td>
</tr>
<tr>
<td>Eismaschine AF-10</td>
<td>Scotsman, Sprockhoevel</td>
</tr>
<tr>
<td>Gewebeinfiltrationsautomat TP1050</td>
<td>Leica biosystems, Nussloch</td>
</tr>
<tr>
<td>Histoembedder EG 11160</td>
<td>Leica biosystems, Nussloch</td>
</tr>
<tr>
<td>Inkubationswasserbad Typ 1003</td>
<td>GFL Gesellschaft für Labortechnik, Burgwedel</td>
</tr>
<tr>
<td>Labor-pH-Meter 526</td>
<td>WTW Wissenschaftlich-Technische Werkstätten, Weilheim</td>
</tr>
<tr>
<td>Mehrkanalpipette (3114000158)</td>
<td>Eppendorf, Hamburg</td>
</tr>
<tr>
<td>Mikroskop Leica DM-IRB</td>
<td>Leica, Wetzlar</td>
</tr>
<tr>
<td>Mikrowelle Cookmate</td>
<td>DEAWOO, Butzbach</td>
</tr>
<tr>
<td>Multipette Plus (4981000.019)</td>
<td>Eppendorf, Hamburg</td>
</tr>
<tr>
<td>Photometer GENios</td>
<td>Tecan, Crailsheim</td>
</tr>
<tr>
<td>Photometer Ultraspec 3000 pro</td>
<td>Amersham Pharmacia Biotech, Freiburg</td>
</tr>
</tbody>
</table>
3.1.3 Verbrauchsmaterialien

<table>
<thead>
<tr>
<th>Produktbezeichnung</th>
<th>Hersteller</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell culture tube 12 ml, steril (163160)</td>
<td>Greiner bio-one, Frickenhausen</td>
</tr>
<tr>
<td>Citrat-Monovetten</td>
<td>Sarstedt, Nürnberg</td>
</tr>
<tr>
<td>Combitips Plus 10 ml (0030069.269)</td>
<td>Eppendorf, Hamburg</td>
</tr>
<tr>
<td>Deckgläser (01-2460/1)</td>
<td>R.Langenbrinck, Emmendingen</td>
</tr>
<tr>
<td>Einbettkassetten Rotilapo (K.113.1)</td>
<td>Carl Roth, Karlsruhe</td>
</tr>
<tr>
<td>Einweg-Pasteurpipetten (EA70.1)</td>
<td>Carl Roth, Karlsruhe</td>
</tr>
<tr>
<td>Färbeeinsatz (11-0002)</td>
<td>R.Langenbrinck, Emmendingen</td>
</tr>
<tr>
<td>Färbeküvette (11-0001)</td>
<td>R.Langenbrinck, Emmendingen</td>
</tr>
<tr>
<td>GAZIN Mullkompressen (18501)</td>
<td>Lohmann & Rauscher, Neuwied</td>
</tr>
<tr>
<td>GAZIN Mullkompressen steril (13620)</td>
<td>Lohmann & Rauscher, Neuwied</td>
</tr>
<tr>
<td>Glas Röhrchen No.2775/6 75 x 12 mm</td>
<td>Assistent, Sondheim</td>
</tr>
<tr>
<td>Glaspasteurpipetten 150 mm</td>
<td>WU, Mainz</td>
</tr>
<tr>
<td>Handschuhe DermaClean (PFC4303971)</td>
<td>Ansell, München</td>
</tr>
<tr>
<td>ImmEdge Hydrophobic Barrier Pen (H-4000)</td>
<td>Vector Labs, Peterborough (UK)</td>
</tr>
<tr>
<td>Kanüle Safty-Multifly 21G (851638235)</td>
<td>Sarstedt, Nürnberg</td>
</tr>
<tr>
<td>Kanülen Microlance 20 G (301300)</td>
<td>Becton&Dickinson, Heidelberg</td>
</tr>
<tr>
<td>Kanülen Microlance 24 G (304100)</td>
<td>Becton&Dickinson, Heidelberg</td>
</tr>
<tr>
<td>Kanülen Microlance 25 G (300400)</td>
<td>Becton&Dickinson, Heidelberg</td>
</tr>
<tr>
<td>Kanülen Microlance 27 G (302200)</td>
<td>Becton&Dickinson, Heidelberg</td>
</tr>
<tr>
<td>Artikelnummer</td>
<td>Produktbeschreibung</td>
</tr>
<tr>
<td>---------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>46</td>
<td>Kryoröhrchen 1.8 ml Nunc (368632)</td>
</tr>
<tr>
<td>555101</td>
<td>Mikrotitlerplatte Mikroplate (655101)</td>
</tr>
<tr>
<td>368632</td>
<td>Mikrotitlerplatte Nunc Maxisorp (442404)</td>
</tr>
<tr>
<td>368632</td>
<td>Mikrotomklinge S35</td>
</tr>
<tr>
<td>368632</td>
<td>Nähgarn Mercifil No 50 (M3541)</td>
</tr>
<tr>
<td>03-0004</td>
<td>Objektträger (03-0004)</td>
</tr>
<tr>
<td>382404</td>
<td>Objektträger Superfrost Plus (03-0060)</td>
</tr>
<tr>
<td>03-0004</td>
<td>Paraffilm</td>
</tr>
<tr>
<td>627160</td>
<td>Petrischalen Cellstar (627160)</td>
</tr>
<tr>
<td>628160</td>
<td>Petrischalen Cellstar (628160)</td>
</tr>
<tr>
<td>633171</td>
<td>Petrischalen Cellstar (633171)</td>
</tr>
<tr>
<td>616201</td>
<td>Pipettenspitzen 10 µl (70.1115)</td>
</tr>
<tr>
<td>686290</td>
<td>Pipettenspitzen 1000 µl (686290)</td>
</tr>
<tr>
<td>0030.000.870</td>
<td>Pipettenspitzen 200 µl (0030.000.870)</td>
</tr>
<tr>
<td>70760002</td>
<td>Pipettenspitzen 200 µl (70760002)</td>
</tr>
<tr>
<td>K315.1</td>
<td>Pipettenspitzen 2000 µl (K315.1)</td>
</tr>
<tr>
<td>188271</td>
<td>Polyprolineröhrchen 15 ml (188271)</td>
</tr>
<tr>
<td>352070</td>
<td>Polyprolineröhrchen 50 ml (352070)</td>
</tr>
<tr>
<td>352052</td>
<td>Poly styreneöhrchen 5 ml (352052)</td>
</tr>
<tr>
<td>105-200-QS</td>
<td>Quarzglasküvetten (105-200-QS)</td>
</tr>
<tr>
<td>616201</td>
<td>Reaction-tubes 1.5 ml (616201)</td>
</tr>
<tr>
<td>4870</td>
<td>Reagent Reservoir 50 ml (4870)</td>
</tr>
<tr>
<td>7083.1</td>
<td>Multi-SafeSeal Tubes (7083.1)</td>
</tr>
<tr>
<td>0030121023</td>
<td>Safe-lock tubes 0.5 ml (0030121023)</td>
</tr>
<tr>
<td>300013</td>
<td>Spritze 1 ml (300013)</td>
</tr>
<tr>
<td>4606108V</td>
<td>Spritze Injekt 10 ml (4606108V)</td>
</tr>
<tr>
<td>4606027V</td>
<td>Spritze Injekt 2 ml (4606027V)</td>
</tr>
<tr>
<td>4606051V</td>
<td>Spritze Injekt 5 ml (4606051V)</td>
</tr>
<tr>
<td>356521</td>
<td>Stripetten 1 ml (356521)</td>
</tr>
<tr>
<td>356551</td>
<td>Stripetten 10 ml (356551)</td>
</tr>
<tr>
<td>356525</td>
<td>Stripetten 25 ml (356525)</td>
</tr>
<tr>
<td>356543</td>
<td>Stripetten 5 ml (356543)</td>
</tr>
<tr>
<td>3472-Clesar</td>
<td>Transwell Plate 24 well (3472-Clesar)</td>
</tr>
<tr>
<td>100-SEAL-PLT</td>
<td>SealPlate (100-SEAL-PLT)</td>
</tr>
<tr>
<td>381223</td>
<td>Venenkatheter Insyte 22 G (381223)</td>
</tr>
<tr>
<td>DHC-N01</td>
<td>Zählkammer C-Chip (DHC-N01)</td>
</tr>
<tr>
<td>90076</td>
<td>Zellkulturschale für A549 (90076)</td>
</tr>
<tr>
<td>3290</td>
<td>Zellkulturschale für HMVEC-L (3290)</td>
</tr>
<tr>
<td>352350</td>
<td>Zellsiebe Cell Strainer 70 µm (352350)</td>
</tr>
</tbody>
</table>
3.1.4 Chemikalien

<table>
<thead>
<tr>
<th>Produktbezeichnung</th>
<th>Hersteller</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABTS (A1888-2G)</td>
<td>Sigma-Aldrich, Taufkirchen</td>
</tr>
<tr>
<td>Citronensäure (818707)</td>
<td>Merck, Darmstadt</td>
</tr>
<tr>
<td>DAB Chromogen (S3000)</td>
<td>Dako, Hamburg</td>
</tr>
<tr>
<td>EDTA (ED4S)</td>
<td>Sigma-Aldrich, Taufkirchen</td>
</tr>
<tr>
<td>Evans Blue (206334-10G)</td>
<td>Sigma-Aldrich, Taufkirchen</td>
</tr>
<tr>
<td>Formamid (F9037)</td>
<td>Sigma-Aldrich, Taufkirchen</td>
</tr>
<tr>
<td>H₂SO₄ (100731)</td>
<td>Merck, Darmstadt</td>
</tr>
<tr>
<td>KCl (4936)</td>
<td>Merck, Darmstadt</td>
</tr>
<tr>
<td>KH₂PO₄ (4873)</td>
<td>Merck, Darmstadt</td>
</tr>
<tr>
<td>Na₂-EDTA (A2937)</td>
<td>AppliChem, Darmstadt</td>
</tr>
<tr>
<td>Na₂HPO₄ (6580)</td>
<td>Merck, Darmstadt</td>
</tr>
<tr>
<td>Na-Citrat (35801)</td>
<td>Carl Roth, Karlsruhe</td>
</tr>
<tr>
<td>NaCl (106404)</td>
<td>Merck, Darmstadt</td>
</tr>
<tr>
<td>NaHCO₃ (K10720529)</td>
<td>Merck, Darmstadt</td>
</tr>
<tr>
<td>NaOH (9913)</td>
<td>Merck, Darmstadt</td>
</tr>
<tr>
<td>NH₄Cl (A0988)</td>
<td>AppliChem, Darmstadt</td>
</tr>
<tr>
<td>K₂H₂PO₄</td>
<td>Lieferant (HO-Aktivität)</td>
</tr>
<tr>
<td>NaH₂PO₄</td>
<td>Lieferant (HO-Aktivität)</td>
</tr>
<tr>
<td>MgCl</td>
<td>Lieferant (HO-Aktivität)</td>
</tr>
<tr>
<td>Co(III) Protoporphyrin IX chloride (Co654-9)</td>
<td>Frontier Scientific, Logan (U.S.A.)</td>
</tr>
<tr>
<td>Sn(IV) Protoporphyrin IX dichloride (Sn749-9)</td>
<td>Frontier Scientific, Logan (U.S.A.)</td>
</tr>
<tr>
<td>Chloroform CH₂Cl₂ (C2432)</td>
<td>Sigma Aldrich, Taufkirchen</td>
</tr>
<tr>
<td>Glucose-6-Phosphat (G7772)</td>
<td>Sigma Aldrich, Taufkirchen</td>
</tr>
<tr>
<td>NADPH (N1630)</td>
<td>Sigma Aldrich, Taufkirchen</td>
</tr>
<tr>
<td>Glucose-6-Phosphat-Dehydrogenase (G4134)</td>
<td>Sigma Aldrich, Taufkirchen</td>
</tr>
<tr>
<td>PBS (D5652)</td>
<td>Sigma-Aldrich, Taufkirchen</td>
</tr>
<tr>
<td>PFA 4% (P6148)</td>
<td>Sigma-Aldrich, Taufkirchen</td>
</tr>
<tr>
<td>Sodium-Acid (S-8032)</td>
<td>Sigma-Aldrich, Taufkirchen</td>
</tr>
<tr>
<td>Wasserstoffperoxid 30% (108597)</td>
<td>Merck, Darmstadt</td>
</tr>
</tbody>
</table>
3.1.5 Medien

<table>
<thead>
<tr>
<th>Produktbezeichnung</th>
<th>Hersteller</th>
</tr>
</thead>
<tbody>
<tr>
<td>1%-Antibiotic-Antimycotic-Solution (A5955)</td>
<td>Sigma-Aldrich, Taufkirchen</td>
</tr>
<tr>
<td>Avidin Blocking Kit (SP-2001)</td>
<td>Vector Labs, Peterborough (UK)</td>
</tr>
<tr>
<td>Bluing Reagent (7301)</td>
<td>Thermo Scientific, Bonn</td>
</tr>
<tr>
<td>Bovine Serum Albumine BSA (A7906-100g)</td>
<td>Sigma-Aldrich, Taufkirchen</td>
</tr>
<tr>
<td>Diff-Quick (130832)</td>
<td>Medion Diagnostics, Düdingen (CH)</td>
</tr>
<tr>
<td>DMSO (D5879)</td>
<td>Sigma-Aldrich, Taufkirchen</td>
</tr>
<tr>
<td>DPBS without Mg/Ca (14190094)</td>
<td>Gibco, Invitrogen, Darmstadt</td>
</tr>
<tr>
<td>EBM-2 (CC-3156)</td>
<td>Lonza, Köln</td>
</tr>
<tr>
<td>Ethanol absolut (A3678)</td>
<td>AppliChem, Darmstadt</td>
</tr>
<tr>
<td>Eukitt (03989)</td>
<td>Sigma-Aldrich, Taufkirchen</td>
</tr>
<tr>
<td>F-12 Ham's (21765)</td>
<td>Gibco, Invitrogen, Darmstadt</td>
</tr>
<tr>
<td>FBS (CC-4102B)</td>
<td>Lonza, Köln</td>
</tr>
<tr>
<td>FCS Gold (A15151)</td>
<td>PAA Laboratories, Köln</td>
</tr>
<tr>
<td>Formalin 4% (A3697)</td>
<td>AppliChem, Darmstadt</td>
</tr>
<tr>
<td>FSGO Gelatin (G7765)</td>
<td>Sigma-Aldrich, Taufkirchen</td>
</tr>
<tr>
<td>GA-1000 (CC-4381)</td>
<td>Lonza, Köln</td>
</tr>
<tr>
<td>Glycerin (1.04094)</td>
<td>Merck, Darmstadt</td>
</tr>
<tr>
<td>Hämatoxylin (GHS316)</td>
<td>Sigma-Aldrich, Taufkirchen</td>
</tr>
<tr>
<td>HBSS (14025050)</td>
<td>Gibco, Invitrogen, Darmstadt</td>
</tr>
<tr>
<td>HBSS without Mg/Ca (14175053)</td>
<td>Gibco, Invitrogen, Darmstadt</td>
</tr>
<tr>
<td>Hydrocortisone (CC-4112B)</td>
<td>Lonza, Köln</td>
</tr>
<tr>
<td>ImmunoSet HO-1 (mouse) ELISA development set (ADI-960-071)</td>
<td>Enzo Life Sciences, Hines Drive (U.S.A.)</td>
</tr>
<tr>
<td>L-Glutamin (25030-24)</td>
<td>Gibco, Invitrogen, Darmstadt</td>
</tr>
<tr>
<td>LPS (L6011)</td>
<td>Sigma-Aldrich, Taufkirchen</td>
</tr>
<tr>
<td>Methanol (106009)</td>
<td>Merck, Darmstadt</td>
</tr>
<tr>
<td>Paraffin Rotiplast (6642.5)</td>
<td>Carl Roth, Karlsruhe</td>
</tr>
<tr>
<td>Percoll Plus (17-0891-01)</td>
<td>GE Healthcare, München</td>
</tr>
<tr>
<td>R²-IGF-1 (CC-4115B)</td>
<td>Lonza, Köln</td>
</tr>
<tr>
<td>Reagent Diluent (DY995)</td>
<td>R&D Systems, Wiesbaden</td>
</tr>
<tr>
<td>Recombinant murine MIP-2 (25015)</td>
<td>PeproTech, Hamburg</td>
</tr>
<tr>
<td>rhEGF (CC-4317B)</td>
<td>Lonza, Köln</td>
</tr>
<tr>
<td>rhFGF (CC-4113B)</td>
<td>Lonza, Köln</td>
</tr>
<tr>
<td>RPMI-1640 (R7509)</td>
<td>Sigma-Aldrich, Taufkirchen</td>
</tr>
<tr>
<td>Stop Solution (80-184)</td>
<td>Enzo Life Sciences, Hines Drive (U.S.A.)</td>
</tr>
<tr>
<td>Substrat Solution (DY999)</td>
<td>R&D Systems, Wiesbaden</td>
</tr>
<tr>
<td>Produktbezeichnung</td>
<td>Hersteller</td>
</tr>
<tr>
<td>--</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>TMB Substrate (80-1805)</td>
<td>Enzo Life Sciences, Hines Drive (U.S.A.)</td>
</tr>
<tr>
<td>Triton X-100 (A4975)</td>
<td>AppliChem, Darmstadt</td>
</tr>
<tr>
<td>Trypsin /EDTA Solution (CC-5012)</td>
<td>Lonza, Köln</td>
</tr>
<tr>
<td>Trypsin Neutralizing Solution (CC 5002)</td>
<td>Lonza, Köln</td>
</tr>
<tr>
<td>Türk’sche Lösung (109277)</td>
<td>Merck, Darmstadt</td>
</tr>
<tr>
<td>Unmasking Solution (H-3300)</td>
<td>Vector Labs, Peterborough (U.K.)</td>
</tr>
<tr>
<td>VEGF (CC-4114B)</td>
<td>Lonza, Köln</td>
</tr>
<tr>
<td>Xylol (9713.3)</td>
<td>Carl Roth, Karlsruhe</td>
</tr>
</tbody>
</table>

3.1.6 Enzyme

<table>
<thead>
<tr>
<th>Produktbezeichnung</th>
<th>Hersteller</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collagenase XI (C7657)</td>
<td>Sigma-Aldrich, Taufkirchen</td>
</tr>
<tr>
<td>DNAse (D4527)</td>
<td>Sigma-Aldrich, Taufkirchen</td>
</tr>
<tr>
<td>Hyaluronidase (H3506)</td>
<td>Sigma-Aldrich, Taufkirchen</td>
</tr>
</tbody>
</table>

3.1.7 Medikamente

<table>
<thead>
<tr>
<th>Produktbezeichnung</th>
<th>Hersteller</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atropinsulfat 0.5 mg/ml</td>
<td>Ratiopharm, Ulm</td>
</tr>
<tr>
<td>Desinfektionsspray Softasept</td>
<td>Braun, Melsungen</td>
</tr>
<tr>
<td>Heparin-Natrium 25000 I.E./5 ml</td>
<td>Ratiopharm, Ulm</td>
</tr>
<tr>
<td>Ketamin 50mg/ml</td>
<td>Ratiopharm, Ulm</td>
</tr>
<tr>
<td>NaCl 0.9% 10 ml</td>
<td>Braun, Melsungen</td>
</tr>
<tr>
<td>NaCl 0.9% 100 ml</td>
<td>Fresenius Kabi, Bad Homburg</td>
</tr>
<tr>
<td>Rompun 2% (25ml Xylazin) 20mg/ml</td>
<td>Bayer, Leverkusen</td>
</tr>
</tbody>
</table>

3.1.8 Antikörper

<table>
<thead>
<tr>
<th>Produktbezeichnung</th>
<th>Hersteller</th>
</tr>
</thead>
<tbody>
<tr>
<td>7/4 FITC (MCA771F)</td>
<td>AbD Serotec, Düsseldorf</td>
</tr>
<tr>
<td>Biotinylated rabbit anti rat (BA-4001)</td>
<td>Vector Labs, Peterborough (UK)</td>
</tr>
<tr>
<td>CD45 PerCP (557235)</td>
<td>Becton & Dickinson, Heidelberg</td>
</tr>
<tr>
<td>DuoSet ELISA IL-6 (DY 406)</td>
<td>R&D Systems, Wiesbaden</td>
</tr>
<tr>
<td>DuoSet ELISA KC (DY 453)</td>
<td>R&D Systems, Wiesbaden</td>
</tr>
<tr>
<td>DuoSet ELISA MIP-2 (DY 452)</td>
<td>R&D Systems, Wiesbaden</td>
</tr>
<tr>
<td>DuoSet ELISA TNF-α (DY 410)</td>
<td>R&D Systems, Wiesbaden</td>
</tr>
<tr>
<td></td>
<td>Lymphocyte Culture Center Core, University of Virginia, Charlottesville (USA)</td>
</tr>
<tr>
<td>---------------------</td>
<td>---</td>
</tr>
<tr>
<td>Gr1-633</td>
<td></td>
</tr>
<tr>
<td>IgG 2a FITC (553929)</td>
<td>Becton&Dickinson, Heidelberg</td>
</tr>
<tr>
<td>IgG 2b APC 553991</td>
<td>Becton&Dickinson, Heidelberg</td>
</tr>
<tr>
<td>Rat anti mouse neutrophils (MCA771GA)</td>
<td>AbD Serotec, Düsseldorf</td>
</tr>
<tr>
<td>Vectastain ABC-KIT (PK-4004)</td>
<td>Vector Labs, Peterborough (UK)</td>
</tr>
</tbody>
</table>

3.2 Methoden

3.2.1 Induktion einer pulmonalen Inflammation

Die Induktion einer pulmonalen Inflammation erfolgt mittels Inhalation von Lipopolysaccharid (LPS) von *Salmonella enteritidis*. Aus jeweils 7 ml einer wässrigen Lösung mit der LPS-Konzentration 0,5 mg/ml wird über einen Vernebler Aerosol hergestellt.

Durch die LPS-Inhalation wird eine reproduzierbare Inflammation aller Kompartimente der Lungen erreicht [71]. Es kommt zu einer vermehrten PMN-Migration, einer erhöhten mikrovaskulären Permeabilität und einem Anstieg proinflammatorischer Zytokine in der BAL [71;180]. LPS ist Bestandteil der äußeren Membran gramnegativer Bakterien. LPS wirkt stark antigen und in großen Mengen toxisch. Es wird als Endotoxin bezeichnet, da es vor allem beim bakteriellen Zerfall zum Tragen kommt [181].

Für die Versuchsduurchführung werden jeweils vier Tiere in eine durchsichtige Vernebelungskammer gesetzt (siehe Abbildung 9). Das LPS-Aerosol wird durch einen Vernebler (1) erzeugt, gelangt über einen Zuführschlauch (2) in die Vernebelungskammer (3) und wird an der gegenüberliegenden Seite über einen Absaugschlauch (4) aus der Kammer entfernt. Die Vernebelungskammer gewährleistet die gleichmäßige LPS-Inhalation der Tiere. Die Inhalation nimmt circa 30 Minuten in Anspruch.
3.2.2 Induktion und Inhibition der Hämoxygenase

Cobalt(III)Protoporphyrin-IX-Chlorid

CoPP wird als Induktor der HO-1 in der Dosierung 5 mg/kg KG eingesetzt [182]. Damit wird die von Woo et al. genannte kritische Dosis von 5 mg/kg KG nicht überschritten [178]. Die Auflösung des CoPP-Pulvers erfolgt in 0,5 N NaOH in einer Stockkonzentration von 50 mg/ml. Diese Stocklösung wird 1:100 mit NaCl 0,9 % verdünnt und 10 µl/g KG 24 Stunden vor LPS- bzw. NaCl-Inhalation intraperitoneal injiziert.

Zinn(IV)Protoporphyrin-IX-Dichlorid

SnPP wird als Inhibitor der HO-1 in der Dosierung 50 µMol/kg KG eingesetzt [132;183]. Die Auflösung des SnPP-Pulvers erfolgt in 0,5 N NaOH in einer Stockkonzentration von 50 mg/ml. Diese Stocklösung wird 1:13.200 mit NaCl 0,9 % verdünnt und 10 µl/g KG eine Stunde vor LPS- bzw. NaCl-Inhalation intraperitoneal injiziert.
Kontrollgruppe
Tiere der Kontrollgruppe erhalten 0,5 N NaOH 1:100 verdünnt mit NaCl 0,9 % per intraperitonealer Injektion. Tiere, bei denen keine pulmonale Inflammation induziert werden soll, erhalten das Lösungsmittel NaCl 0,9 % über einen Vernebler.

3.2.3 Versuchskonditionen

Die Induktion einer pulmonalen Inflammation erfolgt jeweils mit LPS entsprechend den Ausführungen in Kapitel 3.2.1. Es werden der Induktor CoPP und der Inhibitor SnPP gemäß Kapitel 3.2.2 einzeln und in Kombination miteinander eingesetzt. Die Abbildung 10 stellt die dieser Arbeit zugrunde liegenden Versuchskonditionen und den zeitlichen Ablauf der Versuche dar.

Abb. 10: Versuchskonditionen mit zeitlichen Abläufen. BAL: Bronchoalveolare Lavage; LPS: Lipopolysaccharid; NaOH: Natronlauge; NaCl: Natriumchlorid; CoPP: Cobalt-Protoporphyrin; SnPP: Zinn-Protoporphyrin; i.p.: intraperitoneal.
3.2.4 Histologische Präparate

Gewebefixierung
Zu jeder Kondition werden Hämatoxylin-Eosin-(HE)-Färbungen und immunhistologische Färbungen angefertigt. Hierzu werden die Lungen der Versuchstiere präpariert. Es werden pro Tier 300 µl Narkoselösung intraperitoneal appliziert. Die Narkoselösung setzt sich für drei Mäuse aus folgenden Substanzen und in folgendem Verhältnis zusammen: 200 µl Ketamin, 50 µl Xylazinhydrochlorid 2 % (Rompun® 2 %), 40 µl Atropin und 710 µl NaCl 0,9%. Fünf Minuten nach Narkoseeinleitung erfolgt die Thoraxeröffnung, die Präparation der unteren Hohlvene, deren Durchtrennung und die Spülung des noch schlagenden rechten Ventrikels mit PBS. Anschließend erfolgt die Präparation der Trachea. Über eine Trachealkanüle werden die Lungen der Tiere mit Formalin 4 % mit einem Druck von 20 cm H2O über 15 Minuten beaufschlagt. Anschließend werden beide Lungen aus dem Thorax entnommen und die Lungenflügel getrennt in Einbettkassetten überführt. Daraufhin werden die beschickten Einbettkassetten für mindestens 24 Stunden in Formalin 4% gelagert.

Hämatoxylin-Eosin-Färbung
Die HE-Färbung ermöglicht die feingewebliche Differenzierung von Gewebepräparaten. Sie gehört in der Pathologie zu den

Zunächst werden die Gewebeschnitte vom Paraffin mittels zweimaligem, jeweils fünfminütigem Spülen der Objekträger (OT) im Xylolbad und anschließend jeweils dreiminütigen Spülvorgängen in Ethanolbädern absteigender Konzentrationen (100%, 96%, 70% und 50%) befreit. Daraufhin erfolgt der zehnminütige Färbevorgang im Hämatoxylin-Färbebad. Danach werden die OT für 15 Minuten unter fließendem Leitungswasser gebläut und anschließend sofort für eine Minute im Eosin-Färbebad gefärbt. Es folgt dann die Dehydrierung der Gewebeschnitte in aufsteigenden Alkoholkonzentrationen für jeweils drei Minuten und zum Schluss für fünf Minuten im Xylol-Bad. Mit einem Eindeckmedium und Deckglässchen werden die Gewebeschnitte abschließend behandelt und bis zum Mikroskopieren lichtgeschützt und trocken gelagert.

3.2.5 Immunhistologische Präparate

Im Rahmen dieser Arbeit kommt die indirekte Methode zur Anwendung. Das Epitop stellen PMNs dar. Hierbei richtet sich ein Primärantikörper gegen das Antigen, in diesem Fall ein normal-rat-IgG. Ein Sekundärantikörper, in diesem Fall ein anti-normal-rat-IgG, mit gekoppeltem Enzym, hier

Diese Lösung wird erst unmittelbar vor Gebrauch angesetzt.

Methanol 200 ml
Wasserstoffperoxid 3 ml

Im Anschluss an die Inkubationszeit werden die OT mit A. dest. gespült.

Nun werden die OT in Unmaskingsolution verbracht und 20 min in einer Mikrowelle gekocht.

Unmasking Solution wird mit A. dest. wie folgt angesetzt:

A. dest. 480 ml
Unmasking Solution 4,5 ml

Abb. 12: Objekträger mit Gewebeproben. 1: Rat-Anti-Mouse-6B.2 Alloantigen (spezifische Bindung an Neutrophile); 2: Normal rat IgG (IgG-Kontrolle, unspezifische Bindung an verschiedene Epitope); 3: kein Antikörper

Die OT werden nun in eine feuchte Kammer (FK) überführt und alle eingekreisten Gewebeproben mit Blocking Solution bedeckt. Es folgt eine Inkubation über 60 min.

Blocking Solution ist eine Lösung aus folgenden Substanzen
- 0,5% FSGO/PBS 1 ml
- Normal rabbit serum (NRS) 100 µl
- Avidin Blocking Solution 4 Tropfen

Anschließend wird die Blocking Solution entfernt und die OT fünf Minuten mit PBS- gespült.

Nun erfolgt die Aufbringung des Primärantikörpers in Biotin Blocking Solution.

Die Vorbereitung des Primärantikörpers geschieht wie folgt:
- Primär-Antikörper (1 µg/ml) 1 µl
- 0.5% FSGO/PBS 1 ml
- Normal rabbit serum (NRS) 100 µl
- Biotin Blocking Solution 4 Tropfen

Die OT inkubieren über Nacht bei 4°C in der FK.

Am darauffolgenden Morgen wird der Primärantikörper entfernt und die OT fünf Minuten lang mit FSGO/PBS- 5% gespült.

Es folgt nun die Auftragung des Sekundärantikörpers und die erneute Inkubation in der FK für eine Stunde.
Die Vorbereitung des Sekundärantikörpers geschieht wie folgt:

Sekundär-Antikörper 10 µl
0,5% FSGO/PBS 1 ml
Normal rabbit serum (NRS) 100 µl

Nach der Inkubation wird der Sekundärantikörper entfernt und die OT mit FSGO/PBS 5% gespült.

Die Vorbereitung pro 1 ml ABC-Lösung geschieht wie folgt:

PBS 1 ml
Solution A 20 µl
Solution B 20 µl

Zur Bildung eines AB-Komplexes muss die Lösung 30 Minuten wippen.

Anschließend werden die OT mit PBS 5 min gespült.

Bereits während der Inkubationszeit wird die DAB-Lösung wie folgt in einem Falcon-Röhrchen mit 10 ml PBS angesetzt:

Es wird nun eine DAB-Tablette zugegeben, das Falcon-Röhrchen in Alufolie einschlagen und 30 Minuten über Kopf gemischt. Unmittelbar vor Gebrauch der DAB-Lösung werden 10 µl Wasserstoffperoxid (H₂O₂) zugesetzt.

Dann erfolgt ein Reaktionstest von ABC- und DAB-Lösung. Wird jeweils eine kleine Menge der beiden Lösungen zusammengebracht, so sollte das Endprodukt unmittelbar in eine dunkelbraune Farbe umschlagen. Sollte dies nicht der Fall sein, so werden zur DAB-Lösung nochmals 5 µl Wasserstoffperoxid zugesetzt und der Test wiederholt.

Abschließend erfolgt die Gegenfärbung mit Mayers-Hämatoxylin für 15 Sekunden, ein dreiminütiges Spülen unter fließendem Leitungswasser und ein einminütiges Bläuen mit Bluing Reagent.
Vor dem Eindecken der Objekte mit Eindeckmedium und Deckgläschen werden die Gewebe mittels Alkohol in aufsteigenden Konzentrationen und abschließend mit Xylol dehydriert, wie oben bereits beschrieben.

3.2.6 Differenzialblutbilder

Getrocknete OT werden mittels Schnellfärbeset Diff Quick® entsprechend einer Pappenheim-Färbung gefärbt. Mit einer Pinzette werden die OT jeweils fünfmal hintereinander in Fixierlösung, Färbelösung 1, Färbelösung 2 und Spülung getaucht. Anschließend werden die OT an der Luft getrocknet.
Die Auszählung erfolgt mittels Lichtmikroskop DM-IRB bei 64-facher Vergrößerung mit einem Ölimmersionsobjektiv. Pro Objektträger werden 100 Zellen ausgezählt und der prozentuale Anteil der Zellpopulationen dokumentiert. Von jeweils vier Mäusen werden zu jedem Entnahmezeitpunkt der Mittelwert und die Standardabweichung berechnet. Über die prozentualen
Anteile der Zellpopulationen und die ausgezählten Zellzahlen lassen sich die absoluten Werte der Zellpopulationen pro ml Blut angeben.

Die Berechnung der Zellzahlen erfolgt nach folgender Formel:

\[N = n \cdot 10 \cdot 2,5 \cdot 1.000 \]

\[\text{N = absolute Zellzahl in 1/ml} \]

Verdünnungsfaktor: 10

\[n = \text{gezählte Zellzahl} \]

Faktor: 2,5

Umrechnungsfaktor µl \(\rightarrow \) ml: 1.000

3.2.7 Nachweis der pulmonalen Gefäßpermeabilität

Evans blue, auch T-1824 genannt, ist ein synthetischer Farbstoff aus der Untergruppe der Azofarbstoffe. Wie auch alle anderen Azofarbstoffe ist EB sehr farbkraftig, farbstabil und lichtecht.

EB bindet mit hoher Affinität an Serumalbumin [184], weshalb es in der Forschung vielfach als Tracer für Serumalbumin eingesetzt wird [185]. Je Albumin-Molekül werden bis zu 14 EB-Moleküle gebunden [186]. In diesem Zusammenhang ist anzumerken, dass der in dieser Arbeit eingesetzte HO-1-Inhibitor SnPP in der verwendeten Dosis das Serumalbumin in der ersten Stunde nach SnPP-Applikation um bis zu 25 % vermindern kann [183].

EB wird über die Leber metabolisiert und über die Galle ausgeschieden, innerhalb der ersten Stunde nach Injektion bis zu 4% des injizierten EB. Über die Nieren erfolgt keine EB-Elimination [187].
Zur Berechnung der EB-Konzentration pro Gramm Lungenparenchym bekommen die Tiere zu Beginn des Versuchs 20 µg EB / g KG in eine Schwanzvene injiziert.

Aus derselben EB-Lösung wird eine standardisierte Verdünnungsreihe angesetzt, um damit die Kalibrierung des Photometers durchzuführen und eine Ausgleichsgerade zu berechnen.

25 min nach EB-Injektion erfolgt die Narkose des Versuchstieres wie unter 3.2.4 beschrieben.

Fünf Minuten nach Narkoseeinleitung, also 30 min nach EB-Injektion, erfolgt die Eröffnung des Thorax. Aus dem rechten Ventrikel werden mittels heparinisierter Spritze (Na-Heparin) 250 µl Blut entnommen und in einem Eppendorf Cup auf Eis zwischengelagert. Es folgen die Durchtrennung der V. cava inferior und die Spülung des schlagenden rechten Ventrikels mit PBS⁻, solange bis die Lungen hell erscheinen. Dadurch soll das intravaskulär zirkulierende EB-haltige Blut im Lungenkreislauf entfernt werden, um eine möglichst geringe Verfälschung der Ergebnisse zu erhalten.

Nun wird das Herz-Lungen-Paket aus dem Thorax entnommen, die Lungen separiert und alle großen Atemwege vom Parenchym makroskopisch abpräpariert. Es erfolgt dann die Gewichtsermittlung der Lungen an der Präzisionswaage HR-120-EC und die Zwischenlagerung in Eppendorf Cups auf Eis.

Das Blut wird bei 13.000 U/min bei 4°C für zwölf Minuten zentrifugiert, das Plasma vorsichtig in ein neues Eppendorf-Cup pipettiert und bei 4°C lichtgeschützt gelagert.

Die Lungenproben werden homogenisiert. 500 µl des Homogenisats werden zu 1.000 µl Formamid gegeben und 12 bis 18 Stunden bei 60°C inkubiert.

Nach der Inkubationszeit erfolgt die Zentrifugation der Lungenproben bei 5.000 U/min für 30 min bei RT.

Es folgt nun die Beschickung einer 96er-Mikroplatte mit Standardlösungen, Plasmen 1:5 verdünnt mit PBS⁻ und Überständen der zentrifugierten Lungenproben, jeweils als Triplet.

Die beschickte Mikroplatte wird in das Photometer verbracht. Es werden zwei Extinktionsmessungen, bei 620 nm und 740 nm, durchgeführt.
EB zeigt photometrisch bei $\lambda=620$ nm die höchste, bei $\lambda=740$ nm die niedrigste Absorption. Anschließend wird mit folgender Gleichung die Extinktion berechnet.

$$E_{620\text{(EB)}} = E_{620\text{(Plasma+EB)}} - [1,426 \cdot E_{740\text{(Plasma)}} + 0,03]$$

Die Gesamtextinktion einer Probe enthält die Extinktion des Plasmas und des EB. Aus diesem Grund muss die Plasmaextinktion von der Gesamtextinktion jeweils subtrahiert werden. Schlussendlich muss zu jeder Probe die Plasmaextinktion ermittelt werden, da sich ansonsten relevante Fehler für die Gesamtextinktion ergeben können. [188].

Funktionsweise der Photometrie

Die Extinktion wird wie folgt berechnet:

$$E_{\lambda} = \log_{10}(I_0/I_1) = \varepsilon_{\lambda} \cdot c \cdot d$$

Hierbei beschreibt I_0 die Intensität des einfallenden Lichts, I_1 die Intensität des transmittierten Lichts. ε_{λ} ist der dekadische Extinktionskoeffizient, c die Konzentration und d die Schichtdicke. Die Extinktion ist proportional zur Konzentration.

Ein Photometer ermöglicht den qualitativen und quantitativen Nachweis als auch die Verlaufsdarstellung chemischer Prozesse von strahlungsabsorbierenden chemischen Verbindungen bei einer definierten Wellenlänge. Mit einem Spektralphotometer ist die Ausweitung des Grundprinzips möglich, d.h. es können bei sämtlichen Wellenlängen von

3.2.8 Zellkultur und in vitro-Nachweis der Neutrophilenmigration

Human Microvascular Endothelial Cells Lung (HMVEC-L) sind käuflich erhältliche Endothelzellen, die der menschlichen Lunge entstammen. Diese Zellen reagieren \textit{in vitro} auf Zytokinstimulation und exprimieren Adhäsionsmoleküle.

Für die Kultivierung der Zellen im Brutschrank bei 37°C, 9% CO$_2$-Gehalt und 91% relativer Luftfeuchtigkeit werden folgende Medien verwendet, die dreimal pro Woche ausgetauscht werden müssen.

<table>
<thead>
<tr>
<th>A-549-Zellen:</th>
<th>F-12 Ham’s</th>
<th>500 ml</th>
</tr>
</thead>
<tbody>
<tr>
<td>FCS Gold</td>
<td>50 ml</td>
<td></td>
</tr>
<tr>
<td>1% Antibiotic-Antimycotic-Solution</td>
<td>5 ml</td>
<td></td>
</tr>
<tr>
<td>I-Glutamin</td>
<td>2,5 ml</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HMVEC-L:</th>
<th>EBM-2</th>
<th>500 ml</th>
</tr>
</thead>
<tbody>
<tr>
<td>FBS</td>
<td>25 ml</td>
<td></td>
</tr>
<tr>
<td>rhFGF</td>
<td>2 ml</td>
<td></td>
</tr>
<tr>
<td>rhEGF</td>
<td>0,5 ml</td>
<td></td>
</tr>
<tr>
<td>VEGF</td>
<td>0,5 ml</td>
<td></td>
</tr>
<tr>
<td>R³-IGF-1</td>
<td>0,5 ml</td>
<td></td>
</tr>
<tr>
<td>Ascorbic Acid</td>
<td>0,5 ml</td>
<td></td>
</tr>
<tr>
<td>GA-1000</td>
<td>0,5 ml</td>
<td></td>
</tr>
<tr>
<td>Hydrocortison</td>
<td>0,2 ml</td>
<td></td>
</tr>
</tbody>
</table>

Zusätzlich werden die Zellkulturen zweimal pro Woche 1:3 passagiert.

Vor dem Einfrieren werden die Epithelzellen zunächst mit Accutase über 5-15 min, die Endothelzellen mit Trypsin/EDTA über 5-10 min abgelöst, in 20 ml Kulturmedium resuspendiert und bei 900 U/min bei 4°C für 15 min zentrifugiert. Anschließend werden die Zellen in 5 ml Einfriermedium resuspendiert und in vorgekühlte Kryoröhrchen aliquotiert. Zunächst werden die Proben bei -80°C eingefroren, danach erfolgt die Lagerung in flüssigem Stickstoff. Das Einfriermedium wird folgendermaßen zusammengestellt:

<table>
<thead>
<tr>
<th>A-549-Zellen:</th>
<th>Medium wie oben aufgeführt</th>
<th>95 %</th>
</tr>
</thead>
<tbody>
<tr>
<td>DMSO</td>
<td></td>
<td>5 %</td>
</tr>
</tbody>
</table>
Das Auftauen der tiefgefrorenen Zellproben erfolgt im warmen Wasserbad bei 37°C. Die Zellsuspension wird sofort nach dem Auftauen in 15 ml Kulturmedium überführt und 8 min bei RT und 1.000 U/min zentrifugiert. Das Pellet wird in 15 ml vorgewärmtem Medium resuspendiert.

Vom resuspendierten Pellet werden nun jeweils 100 µl plus 1 ml Kulturmedium in die Inserts einer 24-Well-Platte überführt. Die Kultivierung erfolgt im Brutschrank unter den oben genannten Bedingungen für eine Woche.

Für die PMN-Isolation werden einem Freiwilligen ca. 30 ml venöses Blut in einer Citrat-Monovette entnommen. In einem Zentrifugenröhrchen werden 4 ml Percoll 72%, 4 ml Percoll 63% und abschließend 4 ml venöses Vollblut geschichtet. Es folgt eine 30-minütige Dichtegradzentrifugation bei RT und 1.700 U/min. Nach der Zentrifugation befinden sich unten im Röhrchen die Erythrozyten, darüber (zwischen den beiden Percoll-Phasen) die PMNs, und zwischen Percoll und Serum die Lympho- und Monozyten.

Mit einer Glaspipette werden die PMNs abgesaugt, in ein Falcongefäß überführt und durch Lyse die restlichen Erythrozyten degradiert. Die Lyse besteht aus folgenden Einzelsubstanzen:

- NaHCO₃: 420 mg
- NH₄Cl: 4 g
- EDTA: 18,5 mg
- A. dest.: 500 ml

Der Lyse folgt ein weiterer Zentrifugationsvorgang bei 1.100 U/min und 4°C für 10 min. Anschließend werden die PMN-Pellets in 5 ml HBSS⁺ resuspendiert und die Zellzahl mittels Neubauer-Zählkammer unter dem Lichtmikroskop bestimmt. Die Zellzahl wird mit HBSS⁺ auf 10⁻⁶ Zellen pro ml Zellsuspension eingestellt.
Beim nun folgenden Transmigrationsversuch können die Zellen isoliert oder kombiniert behandelt werden, um so die Auswirkungen auf die einzelne Zellart zu untersuchen:

Vorbehandlung der PMNs
Vorbehandlung der Epithel- bzw. Endothelzellen
Vorbehandlung der PMNs und der Epithel- bzw. Endothelzellen

Vor der Behandlung der Endothel- bzw. Epithelzellen wird das Medium aus den Wells abgesaugt und anschließend die Zellen mit CoPP in verschiedenen Konzentrationen bei 37°C für 30 min inkubiert.

In eine 24-Well-Platte werden jeweils 900 µl HBSS⁺ als Negativkontrolle oder MIP-2 (200 ng/ml) als Chemokin in die äußeren Wells pipettiert. Durch MIP-2 werden die PMNs zur Migration durch den Monolayer angeregt. Die Inserts werden entnommen und mit 37°C warmem HBSS⁺ gewaschen und jeweils 100 µl PMN-Suspension zugegeben. Es folgt bei 37°C eine einstündige Inkubation auf dem Thermoschüttler. Anschließend erfolgt die Zellvereinzelung mit je 50 µl Citrat und Triton X-100. Die Platte wird nun mit Parafilm verschlossen und die Zellen mittels Ultraschall lysiert. Es werden dann 50 µl Triplikate auf eine 96-Well-Mikrotiterplatte pipettiert.

Für die Erstellung einer Standardreihe werden 850 µl HBSS⁺, 50 µl PMN-Zellsuspension, 50 µl Citrat und 50 µl Triton X-100 zur ersten Standardprobe vermengt und mittels Ultraschall lysiert. Hieraus werden nun über eine Verdünnungsreihe insgesamt elf Standardproben hergestellt und als Duplikate auf eine 96 Well-Mikrotiterplatte pipettiert.

Zur Extinktionsmessung am Photometer werden unmittelbar vor der Messung in jedes Well 75 µl ABTS-Entwicklungsreagenz gegeben.

<table>
<thead>
<tr>
<th>ABTS-Entwicklungsreagenz:</th>
<th>ABTS</th>
<th>28</th>
<th>mg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Citrat</td>
<td></td>
<td>5</td>
<td>ml</td>
</tr>
<tr>
<td>A. dest.</td>
<td></td>
<td>45</td>
<td>ml</td>
</tr>
<tr>
<td>H₂O₂</td>
<td></td>
<td>50</td>
<td>µl</td>
</tr>
</tbody>
</table>
3.2.9 *In-vivo*-Nachweis der Neutrophilenmigration

<table>
<thead>
<tr>
<th>Medium</th>
<th>Menge</th>
</tr>
</thead>
<tbody>
<tr>
<td>PBS⁻</td>
<td>500 ml</td>
</tr>
<tr>
<td>BSA</td>
<td>5 g</td>
</tr>
<tr>
<td>Sodium Acide</td>
<td>2,5 ml</td>
</tr>
</tbody>
</table>

10 µl des resuspendierten Pellets werden zu 90 µl Türk´scher Lösung gegeben. Türk´sche Lösung lysiert vorhandene Erythrozyten. Die PMNs werden mittels
einer Neubauer-Zählkammer unter dem Lichtmikroskop bei 20-facher Vergrößerung gezählt. Anschließend erfolgt die Verdünnung oder Konzentrierung der Suspension auf eine Zellzahl von 200.000/100µl.

Die Enzym-Lösung pro Maus besteht aus folgenden Medien:

<table>
<thead>
<tr>
<th>Medium</th>
<th>Menge</th>
</tr>
</thead>
<tbody>
<tr>
<td>PBS</td>
<td>500 ml</td>
</tr>
<tr>
<td>Gr1-Ak ungefärbt</td>
<td>100 µl</td>
</tr>
<tr>
<td>Collagenase XI</td>
<td>5 µl</td>
</tr>
<tr>
<td>Hyaluronidase</td>
<td>5 µl</td>
</tr>
<tr>
<td>DNAse</td>
<td>5 µl</td>
</tr>
</tbody>
</table>

Anschließend werden die Lungenteile mit einem Spritzenstempel durch ein 70 µm-Zellsieb gesiebt. Die Spülung des Siebs erfolgt zwischendurch bzw. abschließend mit insgesamt 20 ml PBS-. Dieses Gemisch wird bei 300 g und 4°C zehn Minuten zentrifugiert. Der Überstand wird verworfen, das Pellet wird mit 5 ml Lysepuffer resuspendiert und fünf Minuten bei RT im Dunkeln inkubiert.

Der Lysepuffer wird aus folgenden Medien hergestellt:
NH₄Cl (1,5M) 10,03 g
NaHCO₃ (0,1M) 1,05 g
Na₂-EDTA (0,01M) 465,00 mg
Aqua bidest. 125,00 ml

Abschließend wird der Lysepuffer mit Aqua bidest. 1:10 verdünnt.

Die Lyse wird mit 20 ml Färbepeuffer gestoppt und die Lösung dann erneut bei 300 g und 4°C für zehn Minuten zentrifugiert. Der Überstand wird verworfen, das Pellet mit 3 ml Färbepeuffer resuspendiert und 10 µl dieser Lösung zu 90 µl Türk’scher Lösung in ein Eppendorf-Cup gegeben. Die Auszählung der PMNs erfolgt mittels einer Neubauer-Zählkammer unter dem Lichtmikroskop. Anschließend erfolgt die Verdünnung oder Konzentrierung der Suspension auf eine Zellzahl von 200.000/100µl.

Funktionsweise der Durchflusszytometrie
lassen sich Zellen gut differenzieren. Mittels rechnergestützter Datenaufbereitung lässt sich eine Zuordnung vieler unterschiedlicher Zelleigenschaften zu einzelnen Subtypen realisieren. Die Darstellung erfolgt in farbigen Standardpunktdiagrammen (dot plots, zwei Variablen) oder Histogrammen (eine Variable) [189].

<table>
<thead>
<tr>
<th>Farbmittel</th>
<th>λex, peak (nm)</th>
<th>λem, peak (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FITC</td>
<td>490</td>
<td>525</td>
</tr>
<tr>
<td>PerCP</td>
<td>490</td>
<td>670</td>
</tr>
<tr>
<td>Alexa 633</td>
<td>633</td>
<td>647</td>
</tr>
<tr>
<td>APC</td>
<td>650</td>
<td>660</td>
</tr>
</tbody>
</table>
Die Tabelle 2 zeigt den Färbeplan der Zellsuspensionen von BAL und Lunge. Die Proben 1 bis 5 stellen Einzelfärbungen zur Kompensation und zur Isotypkontrolle dar.

<table>
<thead>
<tr>
<th>Probe</th>
<th>Antikörper</th>
<th>Färbung</th>
<th>Isotyp</th>
<th>Verdünnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>2</td>
<td>7/4</td>
<td>FITC</td>
<td>IgG2a</td>
<td>1:5</td>
</tr>
<tr>
<td>3</td>
<td>CD45</td>
<td>PerCP</td>
<td>IgG2b</td>
<td>1:10</td>
</tr>
<tr>
<td>4</td>
<td>Gr1</td>
<td>Alexa 633</td>
<td>IgG2b</td>
<td>1:10</td>
</tr>
<tr>
<td>5</td>
<td>IgG2a (Isotyp)</td>
<td>FITC</td>
<td>IgG2a</td>
<td>1:25</td>
</tr>
<tr>
<td></td>
<td>IgG2b (Isotyp)</td>
<td>APC</td>
<td>IgG2b</td>
<td>1:4</td>
</tr>
<tr>
<td>6</td>
<td>7/4</td>
<td>FITC</td>
<td>IgG2a</td>
<td>1:5</td>
</tr>
<tr>
<td></td>
<td>CD45</td>
<td>PerCP</td>
<td>IgG2b</td>
<td>1:10</td>
</tr>
<tr>
<td></td>
<td>Gr1 (nur BAL)</td>
<td>Alexa 633</td>
<td>IgG2b</td>
<td>1:10</td>
</tr>
</tbody>
</table>

Tab. 2: Färbeplan

Für jede Zelle der Probe 6 werden insgesamt fünf Informationen ermittelt: FSC, SSC, sowie die Intensitäten der drei Fluoreszenzfarbstoffe FITC, PerCP und Alexa 633. Durch diese Informationen können PMNs erkannt und diese dem jeweiligen Kompartiment zugeordnet werden (siehe Abbildung 15):

- Intravasale PMNs: 7/4 FITC⁺, Gr1-633⁺
- Interstitielle PMNs: 7/4 FITC⁺, Gr1-633⁻
- Intraalveoläre PMNs (PMNs in der BAL): 7/4 FITC⁺, Gr1-633⁺

3.2.10 Enzymaktivitäts- und Proteinbestimmung der HO-1

Die Organe werden gewogen, in Eppendorfcups überführt und es wird eiskalter HO-activity-buffer (4-fache Menge des zuvor ermittelten Organgewichtes) zugegeben. Danach werden die Organe in flüssigem Stickstoff schockgefroren und bei -80°C bis zur Weiterverarbeitung gelagert.

Die tiefgefrorenen Gewebeproben werden auf Eis aufgetaut und in leicht gefrorenem Zustand homogenisiert und anschließend für 10 s mit Ultraschallwellen behandelt. Nun werden die Proben in eine auf 4°C vorgekühlte Zentrifuge überführt und bei 18.000 g für 15 min zentrifugiert. Es folgt die Überführung des Überstandes in ein großes Eppendorf-Cup und die Homogenisierung mit einem Vortexer.
Für die Aktivitäts- und Proteinbestimmung werden aus dem Überstand Aliquots von jeweils 100 µl angesetzt, welche bis zur Weiterverarbeitung bei -80°C gelagert werden können.

Zur Bestimmung der HO-Aktivität werden die Proben aus Lungen-, Leber- und Milzüberstand auf Eis aufgetaut. Währenddessen werden 500 µl einer Reaktionslösung in einem Eppendorfcup vorbereitet, welche aus folgenden Substanzen besteht:

<table>
<thead>
<tr>
<th>Substanz</th>
<th>Menge</th>
</tr>
</thead>
<tbody>
<tr>
<td>HO-activity buffer</td>
<td>131 µl</td>
</tr>
<tr>
<td>Leberzytosol</td>
<td>100 µl</td>
</tr>
<tr>
<td>Glucose-6-Phosphat 20 mM</td>
<td>50 µl</td>
</tr>
<tr>
<td>Glucose-6-Phosphat-Dehydrogenase 0,2 U/µl</td>
<td>4 µl</td>
</tr>
<tr>
<td>NADPH 80 mM</td>
<td>5 µl</td>
</tr>
<tr>
<td>Häm 1 mM</td>
<td>10 µl</td>
</tr>
</tbody>
</table>

Abb. 16: Ablaufschema der enzymatischen Reaktion der Hämoxgenase und der Biliverdinreduktase (modifiziert aus [190]). Das entstehende Bilirubin lässt sich photometrisch nachweisen. NADPH+H⁺ wird bei der Negativkontrolle nicht zugegeben. Häm wird zuletzt im Dunkeln dazu pipettiert.

Alle Proben werden nun bei 37°C im Dunkeln für eine Stunde inkubiert. Im Anschluss daran wird den Proben je 500 µl Chloroform zur Beendigung der Reaktion zugegeben. Zudem trennt Chloroform das Bilirubin vom restlichen Gemisch. Die Probengefäße werden für eine Stunde im Dunkeln geschüttelt und anschließend zur Phasentrennung bei 15.000 g und 4°C für 5 min zentrifugiert.

Die obere, rötliche Phase wird abgesaugt und verworfen. Die verbleibende untere Phase enthält das gelöste Bilirubin und das Chloroform; beides wird in eine Photometer-Küvette überführt.

Es werden anschließend die Extinktionen bei 464 nm und 530 nm ermittelt.

Die Bilirubin-Konzentration errechnet sich wie folgt:

\[c = \frac{464\text{nm} - 530\text{nm} \cdot mM \cdot cm}{1\text{cm} \cdot 40} = [\text{pmol}/(h \cdot mg)] \]
Von allen ermittelten Konzentrationswerten muss jeweils der Wert der Negativkontrolle ohne NADPH-Zusatz abgezogen werden.

Da die Enzymaktivität auf die Proteinmenge bezogen werden soll, muss die Proteinmenge ermittelt werden. Eine heute zunehmend angewandte Methode stellt der relativ einfach durchzuführende Bicinchonin-Assay nach Smith [191] (BCA-Methode nach Smith) dar. Diese gehört neben der Methode nach Lowry zu den kolorimetrischen Methoden und beruht auf der Fähigkeit einiger Aminosäuren und Peptidbindungen zweiwertiges Kupfer (Cu^{2+}) in einwertiges Kupfer (Cu^{+}) zu reduzieren. Das Cu^{+} bildet mit Bicinchoninsäure (BCA) einen Farbkomplex mit einem Absorptionsmaximum von 562 nm [192]. Auch bei der Proteinbestimmung muss zunächst eine Standardgerade aus bekannten Proteinkonzentrationen bestimmt werden.

3.2.11 Zytokinbestimmung in der bronchoalveolären Lavage

3.2.12 Statistik

Statistische Analysen werden mit GraphPad Prism, Version 5.3 (Fa. GraphPad Software) durchgeführt. Statistische Analysen zwischen Kontrollgruppe und jeweiliger Versuchsgruppe erfolgen per one-way ANOVA und Bonferroni post hoc test. Signifikanz liegt vor, wenn \(P < 0,05 \). Die Daten sind als Mittelwerte ± Standardabweichung dargestellt.
4. Ergebnisse

4.1 Histologische Untersuchung von Lungenparenchym

Die histologische Untersuchung von Gewebeschnitten durch Hämatoxylin-Eosin-(HE)-Färbung ermöglicht die Quantifizierung morphologisch-pathologischer Veränderungen am Parenchym.

Vorbehandlung mit CoPP

Vorbehandlung mit CoPP+SnPP
Abb. 17 u. 18: Lichtmikroskopie Lungenparenchym (HE-Färbung, 64-fach, Ölimmersion)
Vorbehandlung mit SnPP

Abb. 19: Lichtmikroskopie Lungenparenchym (HE-Färbung, 64-fach, Ölimmersion)

4.2 Immunhistologische Untersuchung von Lungenparenchym

Die semiquantitative Darstellung der Neutrophilenmigration ins Lungenparenchym erfolgt durch immunhistologische Färbung, bei der Neutrophile braun gefärbt und lichtmikroskopisch sichtbar gemacht werden.

Vorbehandlung mit CoPP

Vorbehandlung mit CoPP+SnPP
Abb. 20 u. 21: Lichtmikroskopie Lungenparenchym (Immunhisto, 64-fach, Ölimmersion)
Vorbehandlung mit SnPP

4.3 Differenzialblutbilder

Von den jeweiligen Versuchskonditionen werden zu verschiedenen Zeitpunkten Differenzialblutbilder angefertigt. Ziel ist, systemische Auswirkungen auf das zelluläre Immunsystem der Versuchstiere zu erfassen.

Kontrollgruppe

Die Kontrolltiere, welche mit verdünntem NaOH vorbehandelt wurden, zeigen im Blutbild nach der Injektion bis zur LPS-Inhalation keine Immunreaktion. Zwei Stunden p.i. steigt die Anzahl der segmentkernigen Neutrophilen (PMN) auf 8,8 Mio/ml an, die stabkernigen Neutrophilen (BN) auf 3,2 Mio/ml. Siehe Abbildung 23.

Vorbehandlung mit CoPP

Vorbehandlung mit CoPP+SnPP
Bereits eine Stunde p.i. steigt die PMN-Zahl stark an und erreicht zwei Stunden p.i. einen Wert von 9,5 Mio/ml. Sechs Stunden p.i. haben sich die Zellzahlen etwa auf den Ausgangswert angeglichen. 24 Stunden p.i. liegen die Zellzahlen etwas unterhalb der Werte zum Zeitpunkt t=0. In dieser Gruppe zeigt sich eine deutliche Linksverschiebung. Siehe Abbildung 25.

Vorbehandlung mit SnPP

Vergleich der Differenzialblutbilder
Ein Vergleich der PMNs im Differenzialblutbild der oben beschriebenen Gruppen (siehe Abbildung 27) zeigt zum Zeitpunkt t = 1h signifikant verringerte PMN-Zahlen im peripheren Blut der CoPP-behandelten Tiere im Vergleich zu Tieren mit CoPP+SnPP- bzw. SnPP-Vorbehandlung (CoPP mit LPS: 2,08·10^6 ± 7,37·10^5 vs. CoPP+SnPP mit LPS: 3,64·10^6 ± 5,84·10^5, SnPP mit LPS 5,43·10^6 ± 10,41·10^5/ml kapilläres Mischblut; P < 0,05). Zudem liegen die PMN-Zahlen der CoPP-Gruppe zu den Zeitpunkten t = 2h (CoPP mit LPS: 1,65·10^6 ± 5,96·10^5 vs. Kontrolle mit LPS: 6,56·10^6 ± 10,05·10^5, CoPP+SnPP mit LPS:
7,42·10^6 ± 8,00·10^5; SnPP mit LPS 10,12·10^6 ± 7,53·10^5 /ml kapilläres Mischblut; P < 0,05) und t = 3h (CoPP mit LPS: 1,92·10^6 ± 3,65·10^5 vs. Kontrolle mit LPS: 8,81·10^6 ± 12,33·10^5 ;CoPP+SnPP mit LPS: 9,47·10^6 ± 6,15·10^5; SnPP mit LPS 9,12·10^6 ± 11,68·10^5 /ml kapilläres Mischblut; P < 0,05) signifikant niedriger als bei den anderen Versuchsgruppen und der Kontrollgruppe. Siehe Abbildung 27.

Abb. 27: Vergleich der PMNs im Differenzialblutbild. LPS-Applikation zum Zeitpunkt t = 1h. (jeweils n = 4, # P < 0,05 signifikante Veränderung zur Kontrollgruppe; * P < 0,05 signifikante Veränderung zur Kontrollgruppe zum Zeitpunkt t = 1h). Abbildung modifiziert nach [193].

Bei der Betrachtung der BN-Zahlen (siehe Abbildung 28) ist bei CoPP-vorbehandelten Tieren eine niedrigere Anzahl stabkerniger Neutrophiler bei t = 3h im Vergleich zur CoPP+SnPP- bzw. SnPP-Gruppe erkennbar (CoPP mit LPS: 2,18·10^6 ± 8,85·10^5 vs. CoPP+SnPP mit LPS: 4,60·10^6 ± 6,15·10^5; SnPP mit LPS: 4,56·10^6 ± 8,27·10^5 /ml kapilläres Mischblut; P < 0,05). Dies kann als Hinweis auf eine geringere Linksverschiebung bei CoPP-behandelten Mäusen gedeutet werden.
Abb. 28: Vergleich der BNs im Differenzialblutbild. LPS-Applikation zum Zeitpunkt \(t = 1 \text{h} \). (jeweils \(n = 4 \), \# \(P < 0,05 \) signifikante Veränderung zur Kontrollgruppe; * \(P < 0,05 \) signifikante Veränderung zur Kontrollgruppe zum Zeitpunkt \(t = 1 \text{h} \)).

Abbildung modifiziert nach [193].
4.4 Pulmonale Gefäßpermeabilität

HO-1-Induktion und -Inhibition ohne inflammatorische Stimuli haben keinen Einfluss auf die mikrovaskuläre Permeabilität (siehe Abbildung 29 A). Nach LPS-Applikation kommt es im Vergleich zur Kontrollgruppe ohne LPS zu einer signifikanten Zunahme der Gefäßpermeabilität in allen Versuchsgruppen (Kontrolle ohne LPS: 47,0 ± 13,9 vs. Kontrolle mit LPS: 137,0 ± 18,2; CoPP mit LPS 74,0 ± 20,6; SnPP mit LPS: 243,2 ± 59,1; CoPP+SnPP mit LPS: 186,2 ± 16,7 µg/g Lunge; P < 0,05). CoPP-Behandlung führt damit zu einer signifikant verringerten Permeabilität im Vergleich zur Kontrollgruppe mit LPS. Siehe Abbildung 29 B.

Wird das HO-1-Enzym durch die Monobehandlung mit SnPP bzw. die Kombinationsbehandlung mit CoPP+SnPP inhibiert, so nimmt die Gefäßpermeabilität im Vergleich zur Kontrollgruppe mit LPS signifikant zu. Siehe Abbildung 29 B.

Abb. 29: Evans blue Gehalt in den Lungen. A: Tiere ohne LPS-Inhalation. B: Tiere mit LPS-Applikation (jeweils n = 8, * P < 0,05 signifikante Erhöhung im Vergleich zur Kontrollgruppe ohne LPS, # P < 0,05 signifikante Verringerung im Vergleich zur Kontrollgruppe mit LPS, + P < 0,05 signifikante Erhöhung im Vergleich zur Kontrollgruppe mit LPS)
Die folgende Abbildung 30 zeigt die makroskopischen Auswirkungen der erhöhten Gefäßpermeabilität durch vermehrte kapilläre Durchlässigkeit von Evans blue an einem Herz-Lungen-Organpaket nach LPS-Inhalation verglichen mit einem nicht-inflammatorisch veränderten Organpaket.

4.5 In vitro-Transmigration neutrophiler Granulozyten

Um die verschiedenen bei der Neutrophilenmigration beteiligten Gewebe zu untersuchen, werden humane Endothel- bzw. Epithelzellen auf Transwell-Platten ausgesät und humane neutrophile Granulozyten mit dem Chemokin MIP-2 chemotaktisch stimuliert.

CoPP-Behandlung

Bei isolierter Behandlung der PMNs zeigt sich bei drei verschiedenen CoPP-Konzentrationen eine signifikante Suppression der Transmigration durch die Epithelschicht (170.293 ± 6.261 vs. CoPP 10 ng/ml: 5.573 ± 411; 1 ng/ml: 4.922 ± 161; 0,1 ng/ml: 3.730 ± 581 1/ml; P < 0,05) und durch die Endothelschicht (80.230 ± 21.024 vs. CoPP 10 ng/ml: 20.276 ± 1.112; 1 ng/ml: 19.724 ± 8.081; 0,1 ng/ml: 24.759 ± 3.426 1/ml; P < 0,05). Siehe Abbildung 31 A und B.

Bei isolierter Behandlung der Epithelzellen fällt die Anzahl migrierter PMNs signifikant geringer aus im Vergleich zur Kontrolle (184.483 ± 11.185 vs. CoPP 10 ng/ml: 1.972 ± 65; 1 ng/ml: 2.212 ± 286; 0,1 ng/ml: 1.346 ± 260 1/ml; P < 0,05). Siehe Abbildung 31 C.

Ebenso kommt es zu einer signifikant verringerten Migrationsrate, wenn Epithel und PMNs behandelt werden (208.666 ± 14.628 vs. CoPP 10 ng/ml: 5.905 ± 638; 1 ng/ml: 7.901 ± 2.751; 0,1 ng/ml: 5.402 ± 53 1/ml; P < 0,05). Siehe Abbildung 31 E.

Die isolierte Behandlung des Endothels zeigt keine Auswirkungen auf die PMN-Migration (siehe Abbildung 31 D). Bei gleichzeitiger Behandlung von PMNs und Endothelzellen wird jedoch eine signifikant verringerte PMN-Migration erzielt (55.093 ± 10.114 vs. CoPP 10 ng/ml: 21.071 ± 985; 1 ng/ml: 17.438 ± 2.360; 0,1 ng/ml: 19.798 ± 271 1/ml; P < 0,05). Siehe Abbildung 31 F.
Abb. 31 Migierte, humane PMNs durch Epithel- (A549) und Endothel- (HMVEC-L)-Monolayer bei der Behandlung mit verschiedenen CoPP-Konzentrationen. A: Migration behandelter PMNs durch unbehandeltes Epithel. B: Migration behandelter PMNs durch unbehandeltes Endothel. C: Migration unbehandelter PMNs durch behandeltes Epithel. D: Migration unbehandelter PMNs durch behandeltes Endothel. E: Migration behandelter PMNs durch behandeltes Epithel. F: Migration behandelter PMNs durch behandeltes Endothel. (n = 4, * P < 0,05)
4.6 *In vivo*-Migration neutrophiler Granulozyten

Zur weiteren Untersuchung der PMN-Migration in die verschiedenen Lungenkompartimente erfolgen durchflusszytometrische Analysen.

Intravasal zeigen sich bei Tieren der SnPP-Gruppe nach LPS-Inhalation gegenüber Tieren der Kontrollgruppe mit LPS signifikant erhöhte PMN-Zahlen (SnPP: \(1,54 \cdot 10^6 \pm 7,49 \cdot 10^5\) vs. Kontrolle mit LPS: \(6,67 \cdot 10^5 \pm 2,52 \cdot 10^5\) 1/ml; \(P < 0,05\)). Bei den anderen Versuchsgruppen mit CoPP und CoPP+SnPP kann gegenüber der Kontrollgruppe kein signifikanter Unterschied festgestellt werden. Siehe Abbildung 32.

![IV](image)

IV

Abb. 32: PMNs im Intravasalraum. \(n = 4, * P < 0,05\) signifikante Erhöhung im Vergleich zur Kontrollgruppe ohne LPS. IV = intravasal.

Nach LPS-Inhalation steigen die PMN-Zahlen im Interstitium bei allen Gruppen im Vergleich zur Kontrolle ohne LPS signifikant an. Versuchstiere nach Behandlung mit CoPP+SnPP und LPS-Inhalation zeigen gegenüber der Kontrollgruppe mit LPS eine signifikant erhöhte PMN-Akkumulation (\(4,80 \cdot 10^6 \pm 9,23 \cdot 10^5\) vs. \(2,93 \cdot 10^6 \pm 4,50 \cdot 10^5\) 1/ml; \(P < 0,05\)). Die anderen Versuchsgruppen mit CoPP- bzw. SnPP-Behandlung und LPS-Inhalation zeigen keinen signifikanten Unterschied zur Kontrollgruppe mit LPS. Siehe Abbildung 33.
Nach LPS-Inhalation steigt die Anzahl der PMNs in der BAL in allen Gruppen signifikant an, verglichen mit der Kontrollgruppe ohne LPS. Dabei steigt die PMN-Zahl in der BAL nach Monobehandlung mit SnPP \(2,53 \cdot 10^6 \pm 3,21 \cdot 10^5\) vs. \(3,40 \cdot 10^6 \pm 7,91 \cdot 10^5\) 1/ml; \(P < 0,05\) als auch nach Kombinationsbehandlung mit CoPP+SnPP \(2,53 \cdot 10^6 \pm 3,21 \cdot 10^5\) vs. \(3,10 \cdot 10^6 \pm 7,91 \cdot 10^5\) 1/ml; \(P < 0,05\) noch einmal gegenüber der Kontrollgruppe mit LPS signifikant an. Die Stimulation der HO-1 durch CoPP senkt im Gegensatz dazu die Anzahl der migrierten PMNs im Alveolarraum signifikant \(2,53 \cdot 10^6 \pm 3,21 \cdot 10^5\) vs. \(1,92 \cdot 10^6 \pm 4,26 \cdot 10^5\) 1/ml; \(P < 0,05\). Siehe Abbildung 34.
4.7 Induktion und Inhibition der HO-1-Aktivität

Um die induzierenden Eigenschaften des CoPP auch anhand einer erhöhten Enzymaktivität nachzuweisen, wird die Aktivität des HO-1-Enzyms nach Induktion und Inhibition ermittelt (siehe Abbildung 35). LPS reicht als Stimulus bereits aus, um die HO-1-Grundaktivität auf das rund Vierfache zu erhöhen (1 vs. 0,24 ± 0,08; \(P < 0,05 \)). Die zusätzliche Applikation von CoPP bewirkt sogar eine Versechsfachung der Enzymaktivität, verglichen mit der Kontrolle ohne LPS (0,24 ± 0,08 vs. 1,65 ± 0,24; \(P < 0,05 \)). SnPP inhibiert die HO-1-Aktivität signifikant unter die der Kontrolle mit LPS (0,59 ± 0,27 vs. 1; \(P < 0,05 \)). Die kombinierte Applikation von CoPP+SnPP senkt die HO-1-Aktivität sogar signifikant unter die Aktivität der Kontrolltiere ohne LPS (0,18 ± 0,25 vs. 0,24 ± 0,08; \(P < 0,05 \)).
4.8 Zytokinbestimmung in der BAL

Zytokine spielen in der Migration und Chemotaxis der PMNs eine bedeutende Rolle. Aus diesem Grund erfolgt die Zytokinbestimmung in der BAL.

Abbildung 36 A - D zeigt, dass sämtliche untersuchte Zytokine nach LPS-Applikation, verglichen mit der Kontrollgruppe ohne LPS, in allen Versuchsgruppen signifikant ansteigen.

Durch Vorbehandlung mit HO-1-induzierendem CoPP kann nur die Konzentration von MIP-2 in der BAL signifikant reduziert werden (Kontrolle: \(1.430 \pm 487 \text{ vs. CoPP: } 884 \pm 255 \text{ pg/ml}\)).

Eine Kombinationsbehandlung der Tiere mit CoPP+SnPP und eine Behandlung mit SnPP führen zur signifikanten Erhöhung der Zytokine TNFα (Kontrolle: \(1.290 \pm 311 \text{ vs. SnPP: } 2.444 \pm 1.166; \text{CoPP+SnPP } 1.903 \pm 440 \text{ pg/ml BAL; } P < 0.05\)), CXCL2/3 (MIP-2) (Kontrolle: \(1.430 \pm 487 \text{ vs. SnPP: } 2.171 \pm 828; \))
CoPP+SnPP: 1.937 ± 116 pg/ml BAL; P < 0,05) und CXCL1 (KC) (Kontrolle: 4.147 ± 1.128 vs. SnPP: 6.642 ± 2.110, CoPP+SnPP: 5.266 ± 560 pg/ml BAL; P < 0,05) verglichen mit der Kontrollgruppe mit LPS. Dahingegen kann die IL-6-Konzentration durch keine Vorbehandlung signifikant beeinflusst werden.

5. Diskussion

Neutrophile Granulozyten spielen in der Pathogenese des ARDS eine zentrale Rolle [31;194]. Dabei besteht eine Assoziation zwischen der Menge neutrophiler Granulozyten in der BAL und dem Outcome im ARDS [26]. Das ARDS ist unter anderem gekennzeichnet durch zwei Hauptmerkmale: Die exzessive Neutrophilenmigration in die Lungen und die mikro- und makrovaskuläre Schrankenstörung mit entsprechendem Flüssigkeitseinstrom in die Lungen [20;194]. Beide Hauptmerkmale werden im Rahmen dieser Arbeit am Mausmodell untersucht.

5.1 Die Rolle der HO-1 bei der Migration neutrophiler Granulozyten

Für die Untersuchung des Migrationsverhaltens neutrophiler Granulozyten in die Lungen kommt ein etabliertes durchflusszytometrisches Verfahren zur Anwendung (s. Kapitel 3.2.9), welches eine Quantifizierung von PMNs im intravasalen, interstitiellen und alveolären Kompartiment ermöglicht [71;180;197;198].

Dabei kann im Rahmen dieser Arbeit nachgewiesen werden, dass mit CoPP behandelte Versuchstiere einen reduzierten Neutrophileninflux in den Alveolarraum zeigen. Tiere, die mit SnPP oder einer Kombination aus CoPP+SnPP behandelt werden, zeigen hingegen einen erhöhten Neutrophileninflux. Dies bestätigt den protektiven Einfluss der HO-1 auf das Inflamationsgeschehen. Ähnliche Ergebnisse zeigen auch Yin et al. in ihrer
Studie an einem ähnlichen tierexperimentellen Modell (BALB/c Maus). Die Autoren berichten von verringerten Neutrophilenzahlen in der BAL nach HO-1-Induktion, ebenso wie von erhöhten Zahlen bei HO-1-Inhibition. Zwar unterscheiden sich die absoluten Zahlen im Vergleich zur vorliegenden Arbeit. Dies kann zum einen am abweichenden LPS-Applikationsweg (intranasale Instillation von LPS von E. coli) liegen als auch an der doppelten intraperitonealen Dosis CoPP (10 versus 5 mg/kg KG) [199].

Diese Beobachtungen werden gestützt durch tierexperimentelle Studienergebnisse von Freitas et al., die bei HO-1-Inhibition von einer vermehrten intravasalen Akkumulation Neutrophiler berichten. Zu berücksichtigen ist jedoch, dass die Autoren nicht mit den in dieser Arbeit verwendeten HO-1-Inhibitoren arbeiteten (ZnPP versus SnPP). Zudem wird nicht die Neutrophilenmigration aus den Pulmonalgefäßen untersucht, sondern aus den Mesenterialgefäßen in die Peritonealhöhle [200].

am Endothel spielen, müsste so zumindest bei den oben diskutierten in vivo-Versuchen ein gegensätzliches Ergebnis zu erwarten sein, nämlich ein verringrigerter Neutrophileninflux in das Interstitium. Zu berücksichtigen ist jedoch, dass bei diesen Versuchen die HO-1 durch Adenoviren überexprimiert und nicht durch CoPP induziert wird, welche eine direkte Vergleichbarkeit ebenso in Frage stellen dürfte.

Donnelly et al. zeigen in ihrer Arbeit in vitro an humanen alveolären Epithelzellen, dass sich durch einen Mix aus proinflammatorischen Zytokinen (IL-1β, TNFα, INF-γ) die HO-1-Aktivität um das 8-fache steigern lässt [135]. Geht man davon aus, dass eine erhöhte HO-1-Aktivität mit einer verringerten Neutrophilenmigration assoziiert ist, so kommt den Epithelzellen damit eine starke Rolle in der Inhibition der Neutrophilenmigration zu. Zudem kommt in dieser Arbeit im Rahmen der oben diskutierten in-vitro-Transmigrationsversuche ebenfalls ein proinflammatorisches Zytokin, das MIP-2, zum Einsatz. Es erscheint naheliegend, dass sich hierüber, ähnlich wie bei Donnelly et al., bereits eine Steigerung der HO-1-Aktivität in den Epithelzellen erreichen lässt.

Das vorbeschriebene Migrationsverhalten neutrophiler Granulozyten in dieser Arbeit kann auch in den angefertigten histologischen Schnitten nachgewiesen werden. Darin lassen sich im interstitiellen Kompartiment unabhängig von der

Um die systemischen Auswirkungen einer induzierten HO-1 auf das zelluläre Immunsystem zu untersuchen, wurden zu unterschiedlichen Zeitpunkten Differenzialblutbilder aus kapillärem Mischblut angefertigt. Die absoluten Neutrophilenzahlen zu Beginn der Versuche liegen alle im Bereich von etwa 1 bis 2·10⁶/ml, identisch mit den Angaben von Reutershan [71], Ngamsri [180] und Vietinghoff [51]. Mit LPS behandelte Tiere, die mit CoPP vorbehandelt werden, zeigen im Verlauf der Inflammation eine verringerte Anzahl zirkulierender PMNs und BNs als Tiere, deren HO-1 inhibiert wird oder Tiere der Kontrollgruppe. Es kann daraus geschlossen werden, dass die Freisetzung Neutrophiler in die Blutbahn bei HO-1-induzierten Tieren mit Inflammation in wesentlich geringerem Ausmaß stattfindet als bei Tieren, deren HO-1 inhibiert wird bzw. bei Kontrolltieren. Damit stehen auch weniger Neutrophile für die Migration in die Lungen HO-1-induzierter Tiere bereit. Im Gegensatz dazu findet bei Tieren mit inhibierter HO-1 nach LPS-Inhalation eine rasch und massiv auftretende transiente Neutrophilenvermehrung im Blutkreislauf statt. Die rasche Zunahme Neutrophiler steht damit im Zusammenhang mit der sehr schnellen kompetitiven Enzyminhibition durch SnPP innerhalb einer Stunde, wie Sardana et al. berichten [132].

Zudem scheint bei inhibierter HO-1 der Verbrauch Neutrophiler durch fortdauernde Migration erhöht zu sein, da sich die Tiere am Endpunkt des Versuchs in einem neutropenen Zustand befinden und zudem eine erhebliche

Wie oben erwähnt, befinden sich die Neutrophilenzahlen im kapillären Blut auf einem vergleichbaren Niveau wie in anderen Studien. Dennoch kommt es auch nach CoPP-Gabe zu einer, wenn auch deutlich geringeren, Linksverschiebung, was den Erwartungen widerspricht. Zunächst ist diese Beobachtung schwer hinreichend zu erklären. Wahrscheinlich ist der inflammatorische Reiz nach LPS-Inhalation zumindest so stark, dass es zu einer geringen Linksverschiebung kommt. Dabei ist auch denkbar, dass reife Neutrophile verstärkt, jedoch in deutlich geringerem Maße als bei inhibitorer HO-1, freigesetzt werden, wobei diese dann in einer Anzahl in die inflammatorischen Lungen migrieren, die ein Gleichgewicht zwischen den freigesetzten Neutrophilen aus dem Knochenmark und den migrierten Neutrophilen gewährleistet, also ein vorübergehender Überschuss an zirkulierenden Neutrophilen ausbleibt. Eine weitere Erklärung bietet eine an dieser Stelle vorweggenommene Betrachtung der Zytokinlevel (siehe Kapitel 5.3). Suwa et al. zeigen in zwei tierexperimentellen Arbeiten eine verstärkte Freisetzung reifer als auch unreifer Neutrophiler in den Blutkreislauf alleine durch proinflammatorisches IL-6 im Serum [206;207]. Durch CoPP-Vorbehandlung können in der vorliegenden Arbeit überraschenderweise die Level der untersuchten proinflammatorischen Zytokine IL-6, TNFα und KC in der BAL

5.2 Wirkung von Induktion und Inhibition auf die Enzymaktivität der HO-1

Die HO-1 hat immunregulatorische Aufgaben. HO-1-Defizienz führt bei Mensch und Maus unter anderem zur PMN-Akkumulation [163]. Die Untersuchung der Enzymaktivität in den Lungen zeigt zum einen die stark induzierende Wirkung des CoPP, zum anderen die bereits grundständig deutlich erhöhte Enzymaktivität der Kontrollmäuse, beispielsweise durch LPS-Einwirkung, durch ROS oder durch Zytokinwirkung. So ist die HO-1-Aktivität nach LPS-Inhalation ohne weitere Vorbehandlung bereits zweifach erhöht, verglichen mit Kontrolltieren ohne LPS-Inhalation.

CoPP-Applikation vor der LPS-Inhalation steigert die HO-1-Aktivität um das 1,5-fache. Eine stark verringerte HO-1-Aktivität nach Inhibition mit SnPP bzw. CoPP+SnPP unterstreicht die inhibitorische Wirkung durch SnPP, welches selbst die HO-1-induzierende Wirkung von Endotoxin, ROS und proinflammatorischen Zytokinen nahezu vollständig aufhebt. Betrachtet man die in den Lungen der Tiere bestimmte HO-1-Aktivität nach Enzyminduktion und stellt diese den Ergebnissen aus den oben diskutierten in vivo-

5.3 Einfluss der HO-1 auf die Gefäßpermeabilität und die Zytokinlevel

Neben der Migration neutrophiler Granulozyten in die Lungen ist die gesteigerte mikro- und makrovaskuläre Schrankenstörung ein weiteres Hauptmerkmal der akuten pulmonalen Inflammation und Ursache des Flüssigkeitseinstroms in die Lungen. Tiere, bei denen die HO-1 mit CoPP induziert wird, zeigen ein signifikant geringeres Evans-blue-Infiltrat in das Lungengewebe als Tiere der Kontrollgruppe. Dahingegen fällt das Infiltrat im Lungengewebe nach Behandlung durch SnPP bzw. CoPP+SnPP signifikant höher aus als bei Tieren der Kontrollgruppe, was auf einen stärkeren Defekt der endothelialen Barriere hindeutet.

Dabei scheint die Betrachtung der proinflammatorischen Zytokinlevel sinnvoll. Proinflammatorische Zytokine aktivieren neutrophile Granulozyten und halten einen chemotaktischen Gradienten aufrecht, welcher Immunzellen in infiziertes Gewebe leitet. Zudem haben proinflammatorische Zytokine einen direkter permeabilitätserhöhenden Einfluss auf das Endothel. So ist nachgewiesen, dass viele proinflammatorische Mediatoren wie beispielsweise LPS, IL-6, TNFα und weitere durch Öffnung der interendothelialen Verbindungen die endotheliale Permeabilität steigern [208;209]. Reutershan et al. gehen in ihrer Studie insbesondere auf die Bedeutung der Liganden am CXC-Chemokin-Rezeptor 2 (CXCR2), MIP-2 und KC, beides murine Chemokine, ein und belegen zudem deren bedeutenden Einfluss auf die pulmonale Gefäßpermeabilität. So können die Autoren bei CXCR2-defizienten Mäusen das Evans-blue-Extravasat deutlich reduzieren [210]. Wang et al. betonen in ihrer Studie an humanen Endothel- und Epithelzellen unter septischen Konditionen den Einfluss der Endothelzellen auf die Entstehung proteinreicher Flüssigkeitsansammlungen wie beim ARDS. So zeigen die Autoren in vitro die starke Zunahme der Permeabilität mittels Evans blue nach Behandlung des Endothels mit einem Zytomix aus proinflammatorischen Zytokinen (TNFα, IL-1, INFγ), LPS oder auch mit Plasma septischer Patienten. Ebenso betonen die

5.4 Fazit

Eine wesentliche Erkenntnis dieser Arbeit ist, dass eine Induktion der HO-1 im Vorfeld einer pulmonalen Inflammation zu einem abgeschwächten Inflammationsgeschehen führt. Dies wird durch einen verringerten Neutrophileninflux in den Alveolarraum sowie eine reduzierte mikrovaskuläre Permeabilität nachgewiesen. Es kann gezeigt werden, dass durch HO-1-Induktion die epitheliale Barriere gestärkt wird. Die endotheliale Barriere hingegen zeigt unter HO-1-Induktion keine Verringerung der Transmigration
6. Zusammenfassung

Kennzeichnend für das Krankheitsbild ARDS ist der massenhafte Neutrophileninflux in die Lungen und die Erhöhung der pulmonal-endothelialen Permeabilität, in deren Folge es zum schweren Krankheitsbild mit pulmonalem Flüssigkeitseinstrom, verringelter pulmonaler Compliance und einer therapierefraktären Hypoxämie kommt. Entsprechend dem Stand der Wissenschaft können unkontrolliert und massenhaft migrierende neutrophile Granulozyten als auch die hohe Gewebekonzentration proinflammatorischer Zytokine für die oftmals beobachtete Exazerbation eines Inflammationsgeschehens verantwortlich gemacht werden.

Es kann zudem nachgewiesen werden, dass die mikrovaskuläre Permeabilität in den Lungen unter HO-1-Induktion verringert wird.
Differenzialblutbildkontrollen während der Infektionsphase zeigen unter HO-1-Induktion eine verminderte Anzahl Neutrophiler im peripheren Blut und eine verminderte Linksverschiebung, was auf eine reduzierte Freisetzung neutrophiler Granulozyten aus dem Knochenmark zurückgeführt werden kann.

Im Gegensatz zu den HO-1-induzierenden Eigenschaften des CoPP kann durch Inhibition der HO-1 mittels SnPP eine Exazerbation der pulmonalen Inflammation erreicht werden: Der Neutrophileninflux in den Alveolarraum steigt signifikant an, ebenso wie die pulmonalvaskuläre Permeabilität. Immunhistologische Untersuchungen zeigen ebenfalls eine verstärkte Neutrophilenakkumulation im Parenchym. Im peripheren Blut finden sich nach kurzer Zeit hohe Neutrophilenkonzentrationen und in der BAL steigt die Konzentration proinflammatorischer Zytokine an.

Versuche mit einer kombinierten Vorbehandlung mit CoPP und SnPP zeigen ebenfalls exazerbierte Verläufe, welche sich nicht wesentlich von den Ergebnissen mit SnPP-behandelten Tieren unterscheiden. Es kann festgestellt werden, dass die inhibitorischen Eigenschaften des SnPP schwerer wiegen als die induzierenden Eigenschaften des CoPP.

Der zukünftige humanmedizinische Einsatz HO-1-induzierender Substanzen, sei es bei drohender pulmonaler Inflammation im Rahmen einer Prävention oder als Intervention bei bereits eingetretenem inflammatorisch bedingtem Lungenversagen, sollte ein Ansatzpunkt für weitere Experimente sein, vor allem vor dem Hintergrund nach wie vor fehlender pharmakologischer Möglichkeiten. Eine protektive Wirkung im Tiermodell durch vermehrte HO-1-Aktivität kann in dieser Arbeit nachgewiesen werden, insbesondere durch einen verringerten Neutrophileninflux in den intraalveolären Raum und ein reduziertes pulmonales Infiltrat.

Zudem sollte die Enzyminduktion pharmakologisch gut steuerbar und vorhersehbar sein, da eine exzessiv induzierte HO-1 und damit hohe Eisen-Spiegel als auch hohe Bilirubinspiegel schädlich sein können. Außerdem ist der Hämabbau ein sehr energieintensiver Vorgang.

Vor dem Hintergrund dieser noch limitierenden Eigenschaften der Metalloporphyrine sollte der Einsatz des HO-1-induzierenden Hämins weiterverfolgt werden. Zu Hämin liegen deutlich mehr pharmakologische und toxikologische Erkenntnisse zur Anwendung am Menschen vor. Hämin wird bereits klinisch beispielsweise zur Behandlung der akuten intermittierenden Porphyrie angewendet (Normosang®). Weitere Untersuchungen zur Bedeutung von Hämin sind erforderlich, um ein eventuelles therapeutisches Potenzial zu evaluieren.
7. Literaturverzeichnis

17. Hudson LD, Steinberg KP. Epidemiology of acute lung injury and ARDS. Chest 1999; 116: 74S-82S.

96. AWMF-Leitlinie Lagerungstherapie zur Prophylaxe oder Therapie von pulmonalen Funktionsstörungen. 1-17. 1-11-2007. AWMF - Arbeitsgemeinschaft der Wissenschaftlichen Medizinischen Fachgesellschaften e.V.

182. Scholtes, M. Einfluss der induzierbaren Hämoxygenase (HO-1) auf die Mikrozirkulation bei der Postischämie-Pankreatitis. 2006. Dissertation an der Medizinischen Fakultät der Universität Freiburg.

8. Abbildungsverzeichnis

Abb. 1: Verlaufskurven Neutrophiler in Knochenmark (linkes Diagramm) und Serum (rechtes Diagramm) nach LPS-Applikation bei der Maus. Durchgezogene Linie: Absolute Zellzahl; punktierte Linie: prozentualer Anteil [42].........................20

Abb. 2: Neutrophilenmigration aus dem Intravasalraum in das Gewebe [63].............23

Abb. 3: Zeitlicher Verlauf der Migration Neutrophiler in die Kompartimente der Lunge: Intravasalraum, Intestitial und Alveolarräume. BAL = Bronchoalveoläre Lavage, PMN = Polymorphkerniger neutrophiler Granulozyt [71]..............25

Abb. 4: Hämoxygenase und die katalysierte Reaktion..34

Abb. 5: Zeitlicher Verlauf der HO - mRNA und des HO-Proteins in verschiedenen Organen nach LPS-Behandlung [134]...35

Abb. 6: Eigenschaften der Metaboliten der HO-1 ..39

Abb. 7: Regulation des HO-1-Gens durch die Transkriptionsfaktoren Nrf2 und Bach1. ...41

Abb. 9: Vernebelungskammer zur LPS-Inhalation. 1: Vernebler; 2: Zufüllschlauch; 3: Vernebelungskammer (20cmx9cm); 4: Absaugschlauch...............................51

Abb. 10: Versuchsbedingungen mit zeitlichen Abläufen. BAL: Bronchoalveolare Lavage; LPS: Lipopolysaccharid; NaOH: Natronlauge; NaCl: Natriumchlorid; CoPP: Cobalt-Protoporphyrin; SnPP: Zinn-Protoporphyrin; i.p.: intraperitoneal........52

Abb. 12: Objektträger mit Gewebeproben. 1: Rat-Anti-Mouse-6B.2 Alloantigen (spezifische Bindung an Neutrophile); 2: Normal rat IgG (IgG-Kontrolle, unspezifische Bindung an verschiedene Epitope); 3: kein Antikörper.............57

Abb. 16: Ablaufschema der enzymatischen Reaktion der Hämoxygenase und der Biliverdinreduktase (modifiziert aus [190]). Das entstehende Bilirubin lässt sich
photometrisch nachweisen. NADPH+H⁺ wird bei der Negativkontrolle nicht zugegeben. Hämin wird zuletzt im Dunkeln dazu pipettiert. ………………………..75

Abb. 17 u. 18: Lichtmikroskopie Lungenparenchym (HE-Färbung, 64-fach, Ölimmersion) ………
9. Tabellenverzeichnis

Tab. 1: Pulmonale und extrapulmonale Ursachen des ARDS [11;21]..........................13
Tab. 2: Färbeplan..72

10. Erklärung zum Eigenanteil

Konzeption und Planung der Experimente erfolgte durch Herrn Professor Dr. J. Reuttershan und Frau Dr. F. Konrad. Beide haben die Arbeit betreut und das Manuskript korrigiert.

Die histologische bzw. immunhistologische Aufarbeitung der Gewebeproben, Mikroskopie und Auswertung der Präparate aus Kapitel 3.2.4 und 3.2.5 wurde nach Einarbeitung durch Frau I. Vollmer von mir eigenständig durchgeführt.

Die Anfertigung und Auswertung der Differenzialblutbilder aus Kapitel 3.2.6 wurde von mir eigenständig durchgeführt.

Ebenso wurden nach Einarbeitung durch Frau I. Vollmer die Experimente zur pulmonalen Gefäßpermeabilität aus Kapitel 3.2.7 von mir eigenständig durchgeführt.

Frau I. Vollmer und Frau S. Stark haben sämtliche Zellkulturversuche und Transmigrationsversuche aus Kapitel 3.2.8 durchgeführt. Die statistische Auswertung dieser Versuche erfolgte durch Frau Dr. F. Konrad.
Experimente zur Neutrophilenmigration aus Kapitel 3.2.9 wurden von mir nach Einarbeitung durch Frau I. Vollmer eigenständig durchgeführt und ausgewertet. Frau Dr. F. Konrad und Frau I. Vollmer haben die Experimente zur Enzymaktivitäts- und Proteinbestimmung aus Kapitel 3.2.10 sowie die Versuche zur Zytokinbestimmung aus Kapitel 3.2.11 durchgeführt und ausgewertet.

Ich versichere, das Manuskript selbstständig verfasst zu haben und keine weiteren als die von mir angegebenen Quellen verwendet zu haben.

Tübingen, den 12.02.2015
11. Danksagung

Herrn Professor Dr. Jörg Reutershan danke ich für die Überlassung dieses sehr interessanten Dissertationsthemas, die Bereitstellung des Arbeitsplatzes und die sehr gute Betreuung in der Konzeptionsphase der Arbeit.

Frau Dr. Franziska Konrad möchte ich von ganzen Herzen für die hervorragende Betreuung danken. Durch ihre stets freundliche und motivierende Art, ihre Geduld und ihre zahlreichen Ratschläge hat sie zu einem wesentlichen Anteil zum Gelingen dieser Arbeit beigetragen.

Mein besonderer Dank gilt Frau Irene Vollmer für die Einarbeitung im Labor und ihre Hilfsbereitschaft bei Problemen rund um die Experimente.

Frau Stefanie Stark danke ich für die Hilfestellung in der Anfangsphase meiner Laborarbeit.

Meiner Freundin Sophie danke ich herzlich für das Korrekturlesen.