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Zusammenfassung 

 

Chlorierte Ethene sind großtechnische chemische Produkte und werden häufig als 

Grundwasserschadstoffe erfasst. Deren Abbau durch reduktive Dechlorierung wird in 

Sanierungsmaßnahmen genutzt, und wurde in zahlreichen Studien mit biotischen und abiotischen 

Modellsystemen untersucht. Trotz allem sind die Prozesse zur Bildung von teils toxischen und teils 

harmlosen Produkten nur unvollständig verstanden, was sich in Wiedersprüchen zwischen den 

erhobenen mechanistischen Hypothesen äußert. Der nötige Zugang zu elementaren Schritten dieser 

Reaktionen wurde in dieser Arbeit durch eine neu entwickelte Methode zur substanzspezifischen 

Messung von stabilen Chlor Isotopen erreicht. 

Zunächst wurden Bioabbau-Experimente mit dieser Messmethode untersucht um die grundlegende 

Fragestellung zu beantworten, wie sich Chlor-Isotopeneffekte in den Produkten einer Abbaureaktion 

äußern. Daraus konnte ein mathematischer Ansatz entwickelt werden der erste Einblicke in positions-

spezifische Chlor-Isotopeneffekte gewährt. Aus deren Interpretation konnte die Regioselektivität im 

Bioabbau von Trichlorethene (TCE) an zwei Chlorsubstituenten abgeleitet werden. Dieses Ergebnis ist 

systematisch im Abgleich mit den mechanistischen Hypothesen diskutiert. 

Mit dem Ansatz einer kombinierten Analytik von Isotopen-Effekten Chlor und Kohlenstoff wurde eine 

mechanistische Gegenüberstellung von Bioabbau-Experimenten zu deren chemischen Modell-

Systemen durchgeführt. Die Ergebnisse der Studie weisen darauf hin, dass der gleiche Abbau-

Mechanismus bei zwei unterschiedlichen Mikroorganismen und bei dem isolierten Dehalogenase-

Kofaktor Cobalamin (Vitamin B12) stattfindet. Im Gegensatz dazu wurde ein unterschiedlicher 

Mechanismus bei dem Modell-Reaktant Cobaloxime ermittelt. Aus dieser Studie lässt sich das 

vielseitige Potential der dualen Isotopenanalytik erschließen um chemische Modellreaktionen und 

deren natürliche Vorbildreaktionen auf mechanistischer Ebene abzugleichen.  

Darüber hinaus wurde die duale Isotopenanalytik in Bezug auf deren Anwendung für permeable 

reaktiven Barrieren (PRB) untersucht, welche als Sanierungsmaßnahme für kontaminierte Standorte 

weit verbreitet sind.  Ein dafür typisches nullvalentes Eisen-Material (Zero Valent Iron, ZVI) wurde 

im Laborversuch für den Schadstoffabbau verwendet. Hierbei wurden einerseits mit der dualen 

Isotopenanalytik und andererseits mit produktbezogener Isotopenanalytik von Kohlenstoff zwei 

eigenständige Ansätze verfolgt, um die Effektivität der PRB-Anwendungen einzuschätzen. 

Die vorliegende Arbeit ergründet das beachtliche Potential der Isotopenanalytik von Chlor und 

Kohlenstoff zur Identifizierung eines nachhaltigen Schadstoffabbaus und deren Abbauwege in der 

Umwelt. Darüber hinaus wurde die Perspektive für deren zukünftige Anwendung an Modell-

Reaktionen eröffnet, um umweltrelevante Reaktionsmechanismen auf einer fundierten 

wissenschaftlichen Ebene zu untersuchen. 



 

 
 

 

Summary 

 

Chloroethenes are large-scale industrial products, and detected as toxic contaminants in the 

environment. Their reductive dechlorination is a clear remediation approach, which has been the focus 

of several studies, using biotic and abiotic model systems. Despite the progress toward understanding 

the underlying process the formation of toxic and harmless products remains incompletely understood, 

and some of the proposed mechanistic hypotheses have led to inconsistencies. A recently developed 

analytical method of continuous flow compound specific chlorine isotope analysis was used in this 

study to further uncover the underlying mechanisms of reductive dechlorination.  

In the first instance, the newly created chlorine isotope data was analyzed towards the basic question 

how isotope effects of chlorine are manifested in the respective products during biodegradation. The 

developed mathematical framework gave first insights into position specific chlorine isotope effects 

during biodegradation of chloroethenes. From their interpretation, the structural selectivity in the 

biotic reductive dechlorination of TCE could be allocated to two chlorine substituents. This 

information allowed a systematic discussion with respect to the hypothesized mechanisms.  

Further degradation experiments with two different microbial strains were investigated by combined 

analysis of carbon and chlorine isotope effects in dual isotope plots in comparison to model reactions 

that are commonly used to mimic microbial dechlorination. Similar mechanisms were indicated for 

biodegradation and reactions with cobalamin (Vitamin B12), the enzymatic cofactor of dehalogenase 

enzymes. In contrast a different mechanism was indicated for reactions with cobaloxime, a commonly 

used mimicking reagent for cobalamin. The results demonstrate the strength of dual isotope plots as an 

indicator of the authenticity of a model reaction for the actual system with respect to the underlying 

mechanisms. 

The method of two dimensional isotope analysis was further investigated for its application towards 

the environmental clean-up technology of permeable reactive barriers (PRB) with zero-valent iron 

(ZVI). Dual isotope plots and product related carbon isotope fractionation were explored here as two 

discrete approaches to distinguish the effectiveness of transformation by ZVI as opposed to natural 

biodegradation. 

The results of this work exemplify the potential of chlorine and carbon isotope analysis to assess the 

sustainable removal of contaminants and their degradation pathways directly in real-world 

transformations. Moreover, it opens the perspective for future work to pinpoint mechanisms of the 

important environmental dehalogenation reactions by applying the approach on further model 

reactions with distinct mechanisms. 
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1 GENERAL INTRODUCTION 

 

1.1 Importance of chloroethenes and dechlorination reactions 

 

The supply of drinking water is considered as a major challenge for upcoming generations. 

Rising prosperity and population lead to an increasing demand for clean water, but at the 

same time its availability runs short due to dissipative handling and discharge of con-

taminants.1 A major type of such environmental pollutants are chlorinated hydrocarbons. 

They are commonly used in industrial applications, for instance as solvents, refrigerants, 

softeners for plastics and dry cleaning agents for electronic parts, engines and clothes. Most 

prominent representatives of this compound class are chloroethenes, which have been 

produced at million ton scales over decades since the 1950´s.2,3 Initially they were considered 

as inert, and therefore unproblematic. This misconception led to improper handling and 

industrial disposal, leaving a legacy of thousands of hazardous waste sites today. Of the 

recorded sites by the U.S. Environmental Protection Agency’s National Priority List alone, 

771 of them contain tetrachloroethene (PCE), 861 trichloroethene (TCE) and 563 

dichloroethene (DCE).4, 5 

Their acute toxicity is generally conferred through the chlorine-substituents, which make 

them reactive to metabolic bioactivation and mutagenic modes of action.6 Therefore complete 

dechlorination to hydrocarbons is a clear approach of detoxification to give benign products. 

Intriguingly, this process was observed in the biogeochemical response from groundwater 

ecosystems. Contaminant-degrading microorganisms have been identified that derive energy 

by stepwise reductive dechlorination. This process has literally been designated as 

“dehalorespiration”, since the bacteria use the chlorinated solvent as electron acceptor.7 Such 

biological dehalogenation commonly occurs by sequential replacement of chlorine by 

hydrogen (hydrogenolysis), as illustrated in Figure 1. Only few of these organisms are capable 

of complete transformation to non-toxic end products at appreciable rates, so that 
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biodegradation often stalls at the stage of DCE and vinyl chloride (VC).8 Rather than leading 

to effective decontamination, such accumulation of problematic intermediates often causes 

more severe pollution.  

This problem has been addressed in a number of remediation technologies. Enhanced 

biodegradation may either occur through biostimulation (= addition of organic substrate to 

stimulate intrinsic dehalogenation activity) or through bioaugmentation (= inoculation of 

dehalogenating bacteria).9 An abiotic alternative is to catalyze reactions with zero valent iron 

(ZVI), which is applied by injecting nanoparticles or the installation of permeable reactive 

barriers.10 Reactions with ZVI additionally involve vicinal dichloroelimination, where two 

chlorine substituents are removed in one step, which offers a more direct pathway to non-

problematic end products.11 However, the accumulation of toxic intermediates and incomplete 

removal of contaminants can also be observed with these engineered approaches of 

remediation. Therefore there is great interest in the mechanisms leading to this diverse 

product formation. Furthermore, advanced techniques to assess these processes in the 

environment are desired. 

 

Cl

Cl H

Cl Cl

H H

Cl H

H H

Cl H

H H

H

Cl H H H
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Cl

Cl Cl

Cl
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Figure 1: Reductive dechlorination of chloroethenes by stepwise hydrogenolysis (horizontal arrows), and 

by vicinal dichloroelimination (vertical arrows).  

 

1.2 Assessment of dechlorination reactions and compound specific isotope analysis 

(CSIA)  

1.2.1 Studies of reductive dehalogenation: State of the art  

 

In order to explore the potential of the applied remediation strategies and to steer them 

towards more sustainable elimination of contaminants, great interest is directed at the 

underlying chemistry of the desired degradation reactions. An understanding of basic aspects 

of reductive dehalogenation in nature was approached in several studies using enrichment 

cultures, pure microorganisms, purified dehalogenase enzymes and chemical model systems 

mimicking selected types of dehalogenation mechanisms.12 An essential role in 
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biodegradation was attributed to cobalamin, commonly known as vitamin B12, which serves 

as a cofactor for almost all known dehalogenase enzymes.  

Nonetheless, reaction mechanisms and product formation via concurring transformation 

pathways remain incompletely understood. For instance, while a chlorovinyl-cobalamine 

intermediate has been proposed for reactions mediated by purified dehalogenase,13 there are 

indications that a single electron transfer occurs from cobalamin to form radical 

intermediates.12, 14 This example points out the current knowledge gap regarding the chemical 

mechanisms of dechlorination and the need for a diagnostic tool to compare the reactions on a 

mechanistic level.  

1.2.2 Concept and application of CSIA 

 

The desired link towards mechanistic information of a chemical reaction can be approached 

by measurements of kinetic isotope effects (KIEs). The KIE derives from the unequal reaction 

behavior of isotopologues. Primary isotope effects refer to the different reaction kinetics of 

heavy isotopes (e.g. 13C) compared to light isotopes (e.g. 12C) in reacting chemical bonds. The 

mass difference of the nuclides affects the vibrational energies and leads to different zero 

point energies between isotopologues, and therefore to different activation energies to reach a 

certain transition state. In a similar way, secondary isotope effects arise when an isotopic 

substitution occurs in a position adjacent to the reacting bond. Although the adjacent atoms do 

not directly participate in the chemical reaction, their mass still have an impact on the 

vibrational energies and thereby again on the zero point energy. With these attributes, the 

measurement of KIEs is one of the only handles to directly reflect properties of a transition 

state, and is therefore used to pinpoint transformation mechanisms.  

In this context, either isotope labelling of reactants or analysis of non-labelled compounds 

with NMR techniques are routinely applied for in vitro reactions with suitable conditions to 

reveal the isotope-sensitive information. For chlorinated ethenes, however, these traditional 

approaches have remained elusive particularly in biotic systems or environmental samples. 

On the one hand, this is because of the difficulty of synthesizing labeled molecules, and on 

the other hand because of the interference of NMR signals in complex reaction mixtures and 

the large amounts of the target compound needed in a sample for NMR analysis.  

An analytical solution was brought forward with gas chromatography-isotope ratio mass 

spectrometry (GC-IRMS), which is recognized as a powerful tool to decipher transformation 

pathways at contaminated sites and low concentrations of contaminants. Degradation 
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processes are typically associated with a normal KIE, which means that light isotopes (e.g., 

12C) react slightly faster with lk than heavy isotopes (e.g., 13C) with hk, when present in the 

reacting chemical bonds.  

KIE
k

k
h

l









           (1) 

As a consequence the remaining reactant becomes enriched with heavy isotopes and the KIE 

can be observed by measurements of isotopic changes of the reactant during the progress of 

reaction. When the isotope ratios are measured with gas chromatography-isotope ratio mass 

spectrometry (GC-IRMS) they are generally obtained as average over all positions in the 

target molecules, so that the kinetic isotope effect is obtained as a compound average, 

KIEcompound-average, which is in direct relationship to the fractionation factor  or the enrichment 

factor  

    11/1 averagecompoundKIE         (2) 

The isotope ratios of the heavy (hE) and  light (lE) element in a compound are typically 

referred to international standard materials, for instance to Vienna Pee Dee Belemnite 

(VPDB) for carbon or to Standard Mean Ocean Chloride (SMOC) for chlorine. This treatment 

has the advantage that measurements from different laboratories become comparable on an 

absolute scale. The isotope values are therefore typically expressed with respect to the 

international reference material by the delta notation: 

1
tan





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










 




StandardStandard R

R

R

RR
E

AverageCompounddardSAverageCompoundh      (3) 
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Standard

Standard 









E

E
R

l

h

  and   

AverageCompound

l

h

AverageCompound
E

E
R



 







     (4) 

The relationship of an isotope ratio after a certain progress of reaction Eh  towards the 

isotope ratio of the starting material 0Eh is well-established to depend on the remaining 

fraction f of the starting material and the kinetic isotope effect according to the Rayleigh 

equation 

fEE hh ln0            (5) 

In a typical application of the Rayleigh equation, the enrichment factor  is obtained by 

analysis of compound-specific isotope ratios during a (bio)chemical reaction degradation, 

which provides  characteristic information on the mechanism of a given degradation pathway. 
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1.2.3 Masking effects and the need for dual isotope plots 

 

An even more robust interpretation towards a respective chemical mechanism is possible 

when isotope fractionation is analysed for two or more elements. Specifically, the mechanistic 

interpretation of isotopic information of only one element can be biased when a reaction 

cascade involves rate limiting steps aside from the chemical reaction, such as diffusion 

through cell membranes or the binding of a substrate to the enzyme. As a consequence, the 

observable enrichment factor may no longer reflect the intrinsic isotope effect of a certain 

reaction mechanism. This commitment to catalysis can lead to a dramatic decrease for the 

apparent kinetic isotope effect (AKIE) of one element. However, the link towards the 

mechanism can be retained when information of a second element is analysed. The reason is 

that the additional steps often do not show element-specific isotope effects themselves, so that 

AKIEs of both elements decrease to the same extent. Therefore, isotope data of two or more 

elements is particularly insightful for their evaluation in dual isotope plots, which still reflect 

the characteristics of the justified mechanism. 

In order to apply this approach for chloroethenes, a method is required which determines 

isotopes of a second element besides carbon. This has not been available until recently, since 

both other elements in these compounds, hydrogen and chlorine, have been considered 

impractical for isotope analysis. Continuous flow chlorine isotope analysis has been prevented 

by the necessity of converting compounds into analytes such as methyl chloride or cesium 

chloride which cannot be generated online in a carrier gas flow. However, innovative 

approaches were brought forward recently for compound specific isotope analysis of 

chlorinated ethylenes with the convenient operation in continuous flow of the analytes. 

1.2.4  Recent developments in compound-specific chlorine isotope analysis of chloroethenes 

 

In the new instrumental method for online compound specific isotope analysis of chlorine a 

direct transfer of the chlorinated compound to the IRMS is provided in a continuous flow, 

after separation by gas chromatrography. For this application, the configuration of the mass 

sensitive detectors (Faraday cups) is adapted specifically to the mass fragments of interest, 

such as C2H2Cl2
+ (molecular ion of DCE), C2HCl2

+ (dechlorinated fragment ion of TCE) or 

C2Cl2
+ (double dechlorinated fragment ion of PCE).15 While this assembly is capable of 

measurements in high precision, the only two instruments in the world with such a dedicated 
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configuration are presently located at the University of Waterloo and the Helmholtz Zentrum 

München. 

For chlorine isotope ratio measurements at lower precision, an alternative approach for 

chlorine isotope analysis was recently established with gas chromatography coupled to 

conventional quadrupole mass spectrometry (GC-qMS). Here, the detection of analytes is also 

conducted on non-combusted molecules, but isotope ratios are obtained from ion multiplet 

intensities of molecular and fragment ions. These two new analytical concepts are promising 

and each has its specific advantages. Whereas the GC-IRMS provides high precision for a 

narrow range of compounds, GC-qMS instruments are shown to be not as precise, yet 

universal in respect to target analytes.  

With the emerging application of both approaches for scientific and commercial assessments, 

a systematic comparison between the performances of the two techniques was required. This 

was carried out in an interlaboratory comparison by addressing aspects of precision, amount 

dependency, standardisation and accuracy for the different methods. A detailed discussion is 

provided in the Appendix A1. The encouraging results of this study lend confidence to 

compound-specific chlorine isotope analysis, and demonstrate the advantage of precision with 

GC-IRMS instruments.  

1.3 Challenges to assess reactions of chloroethenes in reductive dechlorination  

The convenience and high performance of GC-IRMS techniques made CSIA a proven tool 

in contaminant hydrology, so that also the new chlorine isotope analysis has been taken up 

quickly as an advanced site diagnostic tool. The evaluation of chlorine isotope effects 

according to the Rayleigh equation from isotopologue or fragment ratios of the chloroethenes 

builds on a theoretical basis provided by Elsner and Hunkeler in 2008. The study shows that 

the conventional Rayleigh equation can be used to obtain fractionation factors of a chlorinated 

substrate despite the high natural abundance of both stable isotopes of chlorine, 35Cl and 37Cl. 

However, there is little knowledge about how isotope effects of chlorine are manifested in the 

respective products after reductive dechlorination. The chlorine substituents of the parent 

chloroethene are divided in the cleaved chloride and a less chlorinated ethene, so they are 

subjected to different isotope effects (primary in the reacting bond; secondary in non-reacting 

positions).  

In chapter 2 of this thesis the mathematical framework was developed to model product 

related chlorine isotope fractionation. The approach was applied as a first benchmark to 

approach position specific isotope effects of chlorine from experimental data of 
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biotransformations of PCE to TCE by Desulfitobacterium strain VIET-1, and of TCE to cis-

DCE by Geobacter lovleyi strain SZ. The results are discussed in terms of hypothesized 

reaction mechanisms and give insights in structural selectivity for the microbial reductive 

dechlorination of TCE. 

Such information on the underlying mechanisms of reductive dechlorination has been of 

great interest in previous studies as a key to understand the formation of toxic and benign 

products. Investigations used a broad set of tools and include work with microbial strains and 

with chemical models such as cobalamine (vitamin B12), the cofactor of dehalogenases, and 

its simplified analogue cobaloxime in order to mimic in vivo reductive dechlorination.12, 16 

However, in order to understand the authenticity of a model for the actual system, a more 

robust indicator is needed to compare underlying mechanisms of the systems.  

The work presented in chapter 3 aims to compare the mechanisms of the representative 

systems through measurements of dual element (13C/12C, 37Cl/35Cl) kinetic isotope effects. 

These results suggest a similar mechanism in biodegradation of different microbial strains and 

with isolated cobalamin. In contrast, a different mechanism was indicated for transformations 

with cobaloxime, so this model should be used with caution. Our results demonstrate the 

strength of two dimensional isotope analyses to compare in vitro model reactions and natural 

transformations. 

With this demonstration of dual element isotope measurements to link chemical 

transformations on a mechanistic level, there is great potential to assess degradation pathways 

and the sustainable removal of contaminants in real-world remediation approaches. In this 

context it is crucial to have access on comparable reference experiments in order to 

substantiate the interpretation of field data. The presented results in chapters 2 & 3 represent 

such references for instance when the respective microbial strains are used in 

bioaugmentation strategies. Another broadly implemented clean-up technology is the 

installation of permeable reactive barriers (PRB) with zero-valent iron (ZVI).17 

Transformations by ZVI tend to be more efficient than biodegradation and operate with 

vicinal ß-dichloroelimination as an additional pathway to reductive dechlorination.11, 18  In 

chapter 4 an investigation of reference experiments with a typical ZVI material for PRBs is 

presented. Dual isotope plots and product related carbon isotope fractionation were explored 

here as two discrete approaches to distinguish the effectiveness of transformation by ZVI as 

opposed to natural biodegradation.  
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2.1 ABSTRACT  

 

Chlorinated ethenes are prevalent groundwater contaminants. To better constrain 

(bio)chemical reaction mechanisms of reductive dechlorination, the position-specificity of 

reductive trichloroethene (TCE) dehalogenation was investigated. Selective biotransformation 

reactions (i) of tetrachloroethene (PCE) to TCE in cultures of Desulfitobacterium sp. strain 

Viet1; and (ii) of TCE to cis-1,2-dichloroethene (cis-DCE) in cultures of Geobacter lovleyi 

strain SZ were investigated. Compound-average carbon isotope effects were −19.0‰ ± 0.9‰ 

(PCE) and −12.2‰ ± 1.0‰ (TCE) (95% confidence intervals). Using instrumental advances 

in chlorine isotope analysis by continuous flow isotope ratio mass spectrometry, compound-

average chorine isotope effects were measured for PCE (−5.0‰ ± 0.1‰) and TCE (−3.6‰ ± 

0.2‰). In addition, position-specific kinetic chlorine isotope effects were determined from 

fits of reactant and product isotope ratios. In PCE biodegradation, primary chlorine isotope 

effects were substantially larger (by −16.3‰ ± 1.4‰ (standard error)) than secondary. In TCE 

biodegradation, in contrast, the product cis-DCE reflected an average isotope effect of 

−2.4‰ ± 0.3‰ and the product chloride an isotope effect of −6.5‰ ± 2.5‰, in the original 

positions of TCE from which the products were formed (95% confidence intervals). A greater 

difference would be expected for a position-specific reaction (chloride would exclusively 

reflect a primary isotope effect). These results therefore suggest that both vicinal chlorine 

substituents of TCE were reactive (intramolecular competition). This finding puts new 

constraints on mechanistic scenarios and favours either nucleophilic addition by Co(I) or 

single electron transfer as reductive dehalogenation mechanisms. 
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2.2 INTRODUCTION 

 

Chlorinated organic compounds have natural and anthropogenic sources and are 

represented in nearly every organic chemical class 1. Much fundamental interest is directed at 

the underlying reaction chemistry of the C-Cl bond 2-4. The widespread industrial application 

of chlorinated hydrocarbons as solvents, chemical intermediates and pesticides resulted in 

environmental contamination, with adverse effects on drinking water quality and ecosystem and 

human health 5-7. A specific focus has therefore been on their reductive dehalogenation to non-

halogenated hydrocarbons, where detoxification is achieved by reductive cleavage of the 

carbon-chlorine bonds. Evolution has brought forward specialized microorganisms that 

perform organohalide respiration, using chlorinated hydrocarbons for energy conservation.8 

Considering the importance of biotic reactions involved in the degradation of chlorinated 

hydrocarbons, surprisingly little is known about the underlying reaction mechanisms. Even 

the detailed reductive dehalogenation mechanisms of tetrachloroethene (PCE) and 

trichoroethene (TCE)—the two most abundant dry cleaning and degreasing agents and 

notorious groundwater pollutants—remain imperfectly understood. Some bacteria produce 

trans-DCE or 1,1-DCE in this reaction 9, but the typical case is the selective formation of cis-

DCE as the bottleneck of microbial dehalogenation, which is a major problem in remediation 

strategies (Scheme 1) 10. 

 

 

Scheme 1: Typical stepwise reaction sequence in microbial dechlorination of PCE leading to 

less chlorinated ethenes and to non-toxic ethene. 

On the most fundamental level, this product formation depends on the initial reaction step 

of cob(I)alamin (coenzyme B12), the transition-metal cofactor present in reductive 

dehalogenases 11. It is unclear whether the underlying dehalogenation reaction involves 

nucleophilic addition by Co(I), nucleophilic substitution by Co(I) or a radical mechanism 

involving a single electron transfer (SET) from Co(I) to the organohalide (Scheme 2).12-18 

Specifically, it remains unclear whether the transformation of TCE to cis-DCE is 

stereoselective at the geminal chlorine substituent in E-position—as one would presume for a 

nucleophilic substitution mechanism 19 —or whether both geminal E- and Z-positions are 



Chapter 2  Primary and secondary chlorine isotope effects 

 
14 

 

involved—as brought forward for SET by computational results from Nonnenberg et al. 

resulting in the formation of radical intermediates 20. Involvement of both germinal chlorine 

substituents would also be expected for the pathway of nucleophilic addition, as suggested by a 

computational study by Pratt and van der Donk 21. In the light of the selective formation of cis-

DCE, a direct, complementary line of evidence is therefore warranted, which indicates 

whether one or two carbon-chlorine bonds are reactive in TCE. 

 

 

Scheme 2. Proposed degradation pathways of TCE catalyzed by cobalamin. 

A potential solution are measurements of kinetic isotope effects (KIEs), either on reacting 

bonds (primary isotope effects) or on adjacent bonds (secondary isotope effects). If only one 

C-Cl bond in TCE is reactive, a primary isotope effect would occur specifically in this 

position leading to a pronounced difference to the other positions where only secondary 

isotope effects would be expected. In contrast, if two positions are reactive, they would take 

turns in the reaction so that both would reflect a combination of primary and secondary 

effects. If isotope effects in both positions are compared, a smaller difference would therefore 

be expected. On the most fundamental level, however, general knowledge about typical 

primary and secondary isotope effects of chlorine would first be warranted, since so far only 

very limited knowledge exists on isotope effects in reductive dechlorination of chlorinated 

ethenes.  

To close this research gap, KIEs on specific positions in a target molecule must be determined. 

Typical techniques are isotope labelling, or determination of position-specific KIEs by NMR 

measurements 22. However, these approaches do not work well for measurement of chlorine 
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isotope effects in chlorinated ethenes. Even though the stable isotopes of chlorine (35Cl and 

37Cl) are NMR active, they show broad chemical shifts and poor precision in signal 

integrations so that position-specific 37Cl/35Cl isotope analysis with NMR is challenging. 23 In 

addition, the method is not suitable to investigate biodegradation because samples contain 

diluted compound mixtures and NMR analysis requires large amounts of pure target 

compounds. Finally, position-specific isotopic labeling is impossible for PCE, where all 

chlorine substituents are chemically equivalent 24. 

A potential solution to the problem is offered by recent instrumental developments in gas 

chromatography-isotope ratio mass spectrometry (GC-IRMS). Compounds are separated by 

gas chromatography and isotopologue ion multiplets of individual chlorinated ethene 

molecules are recorded simultaneously in dedicated Faraday cups of isotope ratio mass 

spectrometers 25,26. Measurements of changes in chlorine isotope ratios have therefore become 

accessible even in complicated reaction mixtures observed in environmental systems. 

However, the measured isotope effects from such GC-IRMS methods typically reflect the 

compound average of the target compound.  

Even though the recent introduction of chlorine isotope GC-IRMS—combined with 

routine carbon isotope GC-IRMS—has brought about first dual (carbon and chlorine) isotope 

effect investigations, these studies have, therefore, only targeted compound-average isotope 

effects of the reactant 27-30. While they could delineate similarities and differences between 

experimental systems (different microorganisms, chemical reactants) 29 direct insight into 

underlying mechanisms remained elusive.  

In this study, we take advantage of the fact that Cl− is released during reductive 

dechlorination. Since the chlorine substituents of the parent chlorinated ethene end up in 

different products (i.e., Cl− and the less chlorinated ethene), they are subject to different 

isotope effects (primary effects in the cleaved bond, secondary effects in non-reacting 

positions). Information on the magnitude of either position-specific isotope effect may 

therefore be retrieved from analysis of isotope ratios in the products (Cl− and the less 

chlorinated ethene). This approach was discussed in previous work 30 and was pursued in a 

recent experimental study by Kuder et al. 30. There, it was a priori excluded that more than 

one C-Cl bond is reactive in TCE—in contradiction to the scenarios of Scheme 1. Since this 

directly affected all further conclusions of this previous study — including estimates of 

secondary chlorine isotope effects 30 — resultant mechanistic conclusions were, unfortunately, 

biased and reliable insight based on Cl-isotope effect interpretations was not possible. 
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In this study, a more rigorous evaluation was enabled by (i) investigations of one-step 

dehalogenation reactions only and (ii) application of an appropriate mathematical framework. 

Cultures of Desulfitobacterium sp. strain Viet1, a PCE-to-TCE dechlorinator 32, were used to 

determine the typical magnitude of primary and secondary chlorine isotope effects. Further, 

cultures of Geobacter lovleyi strain SZ, a PCE/TCE-to-cis-DCE dechlorinator 33, were used to 

specifically investigate whether one or two C-Cl bonds are reactive in TCE as non-symmetric 

molecule. Mathematical equations were derived for reactant and product isotope ratios to 

model chlorine isotope trends and to extract primary and secondary chlorine isotope effects. 

This approach provided a first benchmark how chlorine isotope data can be interpreted in 

typical scenarios of reductive dechlorination of chlorinated ethenes. Another aim was to 

explore if information on one versus two reactive positions may be obtained and could be 

useful to constrain the number of possible reaction mechanisms for reductive TCE 

dehalogenation. 
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2.3 EXPERIMENTAL SECTION 

Biodegradation Experiments and Carbon and Chlorine Isotope Analysis 

Selective reductive dechlorination of PCE to TCE was accomplished in anaerobic 

biodegradation of PCE with the Firmicute Desulfitobacterium sp. strain Viet1, and selective 

transformation of TCE to cis-DCE was facilitated by the Deltaproteobacterium Geobacter 

lovleyi strain SZ. The cultures were grown following established procedures inside an anoxic 

glove box in glass bottles (250 mL) equipped with Mininert valves (Supelco, Bellefonte, PA, 

USA). The bottles were amended with 10 µL of neat PCE. After four days of shaking, 

inoculation was carried out by adding 20 mL of the active culture, which was previously 

grown in a similar medium. Liquid samples of 7 mL were collected at given time points within 

48 h after inoculation until the initial amount of PCE or TCE (45 mg/L and 90 mg/L, 

respectively) had been dechlorinated. The samples were taken for (i) compound-specific 

isotope analysis (CSIA) of carbon and chlorine in chlorinated ethenes by GC-IRMS and (ii) 

concentration analysis using a gas chromatograph equipped with flame ionization detector 

(GC-FID). Limit of detection in these concentration measurements for the chlorinated ethenes 

were below 0.05 µg/L corresponding to less than 0.1% of the initial concentrations. This 

includes 1,1-DCE and trans-DCE as potential dechlorination products, which were not 

observed in any of the reactions. Abiotic controls were treated with an identical procedure but 

without inoculation of an active microbial culture. Concentrations in these controls did not 

decrease in significant amounts. The analytical uncertainty 2σ was ±0.5‰ for carbon isotope 

analysis and ±0.2‰ for chlorine isotope analysis. Detailed descriptions of experimental and 

analytical methods are provided in the Supporting Information (S.I.). 

2.4 MATHEMATICAL APPROACH (I): COMPOUND AVERAGE ISOTOPE 

EFFECTS 

2.4.1 Fitting Substrate and Product Isotope Ratios: Compound-Average Isotope Effects  

 

Mass spectrometry can measure the proportion of different stable isotopes of element E in 

a given molecule. When looking at a given molecular position, this ratio of heavy isotopes hE 

to light isotopes lE, denoted with R0 for the starting material, typically changes during the 

progress of a reaction to a different ratio Rt at time t: 
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Owing to the kinetic isotope effect (KIE), slower reacting isotopes become enriched during 

the reaction compared to the original starting material. This KIEE is given by the ratio of rate 

constants of the light isotope lk and heavy isotope hk:  

l

Eh

k
KIE

k

 
 

 
 (1) 

For the sake of simplicity, we stick to this this definition even though, strictly speaking, 

bacterial transformation gives isotope effects on (V/K)—V: maximum enzyme velocity, K: 

Michaelis-Menten constant—rather than on elementary rate constants k. 34  

2.4.2  Compound-Average Isotope Effects from Reactant Values 

 

The proportion of Rt/R0 is well established to depend on the remaining fraction f of the 

starting material and the KIE according to 34: 

 1/ 1
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R


  (2) 

In the case of compound-specific isotope analysis, R represents the isotope ratio as a 

compound average RCompound-Average. This means that also the kinetic isotope effect is obtained 

as a compound average KIECompound-Average 
35: 
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The exponent of Equation (3) can alternatively be called enrichment factor ε and 1/KIE be 

named fractionation factor α with the relationship 36: 

 1/ 1 α 1 εCompound AverageKIE       (4) 

A KIECompound-Average of 1.005, for example, corresponds to ε = −0.005 = −5‰, expressing a 

situation, in which molecules with an additional heavy isotope react on average by 5‰ slower 

than the respective lighter isotopologue. Combination of Equations (4) and (3) results in: 

ε

0,

Compound Average

Compound Average

R
f

R





  (5) 

The isotope ratios of the heavy (hE) and light (lE) element in a compound are typically 

stated relative to reference materials, (Vienna Pee Dee Belemnite (VPDB) for carbon, 
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Standard Mean Ocean Chloride (SMOC) for chlorine) and the isotope ratio of a substance is 

typically expressed in the delta notation: 

tan

tan tan

δ 1
Compound Average S dard Compound Averageh

S dard S dard

R R R
E

R R

    
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 (6) 

Equation (6) can be rearranged to:  

  tanδ 1h

Compound Average S dardR E R     (7) 

This can be introduced into Equation (5) according to:  
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Equation (8) is typically used in its logarithmic form as the common Rayleigh equation: 

   0 0
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The obtained epsilon (ε) represents the isotope fractionation as a compound average and 

therefore expresses the average positions p of the element in the target compound, including 

primary as well as secondary positions:  
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ε ε
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2.4.3 Expressions for Product Isotope Values 

 

For the products formed during the reaction, an isotopic mass balance must be fulfilled in a  

closed system:  

0
,
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m E m f E
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Here, the reactant contains mS atoms of element E in its structure. δhE0 is the original 

reactant isotope ratio, whereas δhE is the ratio when reaction has occurred so that only a 

fraction f of reactant remains. A fraction of (1 − f) has then been converted to one or more (up 

to n) products; mi is the number of atoms of E inside the structure of product i, δhEP,i is the 

respective product’s isotope value.  
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2.4.4 Carbon Isotope Effects from Product Values 

 

In the conversion from PCE to TCE or from TCE to cis-DCE, the two carbon atoms 

present in the reactant are passed on to the product. Therefore, in the case of carbon, Equation 

(11) simplifies to: 

13 13
13 0

13 13
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2 δ 2 δ
2 δ
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δ δ
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 (12) 

An equation that allows fitting product isotope trends is obtained by combination of 

Equation (12) with Equation (9) to yield  

13 13
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δ δ ε
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P carbon

f f
C C

f

 
   
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 (13) 

The parameter εcarbon from product data is identical to ε in Equation (9) for substrate data, 

because all carbon isotopes are transferred from reactant to product so that the product isotope 

curve reflects the enrichment trend of the original atoms in the reactant. 

2.4.5 Chlorine Isotope Effects from Product Values 

 

When chlorine isotope values are measured, reductive dechlorination of chlorinated  

ethenes releases chloride and simultaneously forms the less chlorinated ethene so that two  

chlorine-containing products are formed at the same time (n = 2). This circumstance generates 

information about primary and secondary chlorine isotope effects, as derived in the following 

section. 

2.5 MATHEMATICAL APPROACH (II): PRIMARY AND SECONDARY ISOTOPE 

EFFECTS 

2.5.1 Case 1—PCE: Indistinguishable Molecular Positions 

 

General Equations 

In the case of PCE, the molecular positions of all atoms are chemically equivalent so that 

the same chlorine atoms may potentially end up in TCE or as Cl−. Accordingly, isotopes 

partition according to the kinetic isotope effects associated with the formation of either 

product Pi with αi = 1/KIEi. As a consequence, their isotope ratios relate according to: 
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With Equation (7), the fractionation factors αi can be expressed in the delta notation as: 
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with αDiff expressing the ratio between the primary isotope effect (in the formation of Cl−) and 

the average secondary isotope effects (in the three molecular positions that become TCE). 

This equation can be rearranged and simplified according to: 
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(16) 

(17) 

Accordingly, the difference between primary and secondary isotope effects εDiff is directly 

obtained from product isotope values, because chlorine isotope ratios of Cl− and TCE are 

always separated by εDiff. 

For the reaction of PCE with four chlorine atoms to TCE with three chlorine atoms and Cl− 

the enrichment trends of these products must follow Equation (17), as well as an isotopic mass 

balance. According to the derivation in the supporting information, the following equations 

apply: 
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(18) 

(19) 

When f approaches 1 in this expression (i.e., in the beginning of the reaction), the last term 

approaches +εPCE in Equations (18) and (19). As a consequence, the intercept (A) between 

PCE and the TCE formed, and the intercept (B) between PCE and the chloride released are 

determined by:  
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For interpretation of the experimental PCE degradation data, the product isotope trends of 

chloride and TCE were fitted in Sigma Plot according to Equations (18) and (19), 

respectively, with εPCE and εDiff as fitting parameters.  

 

Interpretation of product isotope enrichment trends (ε Chlorine) and intercepts (ε Diff) for PCE  

 

In the case of PCE, εDiff—the intercept of the product curves—provides information about 

primary and secondary isotope effects. The parameter εPCE, in contrast, relates to changes in 

the four chemically equivalent positions of PCE (average of primary and secondary isotope 

effects) and is the same in fits of δ37ClPCE [Equation (9)], δ37ClCl− [Equation (20)] and 

δ37ClTCE [Equation (21)], for the same reasons as discussed above for carbon. 

2.5.2 Case 2—TCE: Distinguishable Molecular Positions 

 

In contrast to PCE, molecular positions in TCE are not chemically equivalent. In addition, 

formation of cis-DCE is clearly regioselective. No mechanism is known which would convert 

1,1-dichloroethene into 1,2-dichloroethene intermediates so that cis-DCE can only be formed 

by cleavage of a C-Cl bond in the geminal α-positions and not in the β-position (see Scheme 

3). Otherwise 1,1-dichloroethene would be detected which is not the case for Geobacter 

lovleyi strain SZ [33]. A primary isotope effect is therefore expected in the reacting bond in α-

position and a secondary isotope effect in the other germinal bond in α-position that is not 

cleaved. A secondary isotope effect is also expected in the vicinal bond at Clβ because it does 

not experience C-Cl bond cleavage. 

Although the two chlorine atoms in cis-DCE are chemically equivalent, they have a 

different history (see Scheme 3). One derives from the β-position of TCE—in which 37Cl/35Cl 

ratios change due to a secondary isotope effect—and one from the geminal α-positions of 

TCE, in which 37Cl/35Cl ratios may change due to a combination of primary and secondary 

effects. 

 

Scheme 3. One step reductive dechlorination of TCE with possible locations of primary isotope 

effects (dotted line) and the location of a secondary isotope effect (Clβ). 
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Since no trans-DCE is observed, it seems an intuitive interpretation that Clα,E should be the 

only reactive position, in analogy to the considerations for Clβ above. Previous studies, 

however, considered that selective formation of cis-DCE may be caused by cleavage of either 

C-Cl bond in the α-positions followed by selective interconversion of cis-/trans-

dichloroethene intermediates, as illustrated in Scheme 2 20,37. If two reactive positions are 

considered, one can therefore define 

  - percentage that reacts from Clα,E to Cl−
α,2 (chloride) 

 - percentage that reacts from Clα,Z to Clα,1 (cis-DCE) 

 - percentage that reacts from Clα,E to Clα,1 (cis-DCE) 

 - percentage that reacts from Clα,Z to Cl−
α,2 (chloride) 

With x = 1 or x = 0, the reaction would follow a position-specific cleavage; however with  

1 > x > 0 two positions would be involved. According to the derivation shown in the 

Supporting Information, the enrichment trends in chlorine isotope values of cis-DCE and 

chloride can be expected to be described by individual enrichment factors according to: 

   chloride , ,1TCE E Zx x          (22) 

for the enrichment trend in chloride isotope data, and 

   cis-DCE , ,

1
1

2
TCE Z Ex x

             (23) 

for the enrichment trend in cis-DCE isotope data. Here, εα,E, εα,Z, and εβ are the position-specific 

isotope effects in the different bonds according to Scheme 3 (for interpretations see below). 

The situation is therefore different from the PCE case where both products (TCE and 

chloride) were formed from indistinguishable molecular positions of PCE so that their isotope 

enrichment trends reflected, and could be fitted by, the same enrichment factor εPCE. In 

contrast, distinguishable chlorine atoms are present in TCE so that εTCE->chloride and 

εTCE->cis-DCE are different. They can be obtained by fitting experimental chloride isotope data 

according to  

37
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The introduced constants K in Equations (24) and (25) are fitting constants in Sigma Plot 

for the respective intercept of each product. For their mathematical definition and 

interpretation see below, as well as the derivatization in the Supporting Information. 

2.5.3 Interpretation of the Product Curve Enrichment Trends εTCE->chloride and εTCE->cis-DCE for TCE 

 

The parameters εTCE->chloride and εTCE->cis-DCE describe the enrichment trend (i.e., the 

steepness) of δ37Cl curves of chloride and cis-DCE. Intriguingly, these parameters allow a 

glimpse on εα,E, εα,Z and εβ the position-specific isotope effects, which can tell whether only 

one, or both positions may react. Specifically, εα,E is a weighted average of εα,E primary and εα,E 

secondary. Here, εα,E primary is defined as the primary isotope effect when position E reacts to 

release chloride (percentage x), and εα,E secondary is the secondary isotope effect in E when 

position Z reacts to release chloride (percentage (1 − x)): 

 , , , , ,sec , ,sec , ,1.E E prim E E Diff Ex x x                 (26) 

In the same way εα,Z is expressed as 

 

                                                                          (27) 

Substitution into Equation (26) gives: 

 

     

 chloride , ,

, , , ,sec , , , ,sec

1

                  

1 1 1

TCE E Z

E prim E Z prim Z

x x

x x x x x x

     

              

 

   

  

   

 (28) 

In the same way, the contribution of x·εα,Z + (1 – x)εα,E in Equation (26)—the one which 

describes the chlorine atoms of cis-DCE stemming from the α-positions of TCE—is given by  

 

 
(29) 

Figure 1 visualizes how both contributions depend on x (i.e., the percentage of Clα,E 

reacting to Cl) assuming exemplary numeric values for chlorine isotope effects 

(εprimary = −8‰ (KIECl = 1.008) and εsecondary = −1‰ (KIECl = 1.001)), which are further 

assumed to be identical in both positions (Z and E). For qualitatively similar trends with other 

numerical scenarios see the supporting information. 

 

  ZDiffZ

ZprimZZ

x

xx

,,sec,,

sec,,,,,

1

1













 

       sec,,,,sec,,,,

,,

111

1

EprimEZprimZ

EZ

xxxxxx

xx















Chapter 2  Primary and secondary chlorine isotope effects 

 
25 

 

 

Figure 1: Representation of parameters εα,E, εα,Z, εTCE->chloride and εTCE->cis-DCE in dependence of x, the 

percentage of Cl−
α,E reacting to Cl−. Assumed values for primary and secondary isotope effects were 

εprimary = −8‰ and εsecondary = −1‰ in both positions. Similar scenarios are obtained if the values are 

allowed to vary between the positions (see S.I.). 

 

2.5.4 Contributions from α-Positions to εTCE->chloride and εTCE->cis-DCE 

 

Figure 1 illustrates that εα,E and εα,Z vary linearly with x. In contrast, a non-linear variation 

with x occurs for εTCE->chloride, as well as for the α-position contribution of εTCE->cis-DCE for the 

following reasons. If more chloride is formed from one position (i) εα is stronger in the 

position from which more chloride is formed with a primary isotope effect; (ii) in addition, 

more atoms in these positions are released as chloride so that the product curve of chloride 

more strongly reflects this higher enrichment. The opposite trend can be observed in the 

product curve of cis-DCE. The combination of both contributions (i) and (ii) therefore lends 

the curves of εTCE->chloride and εTCE->cis-DCE their non-linear shape. In the case of x = 0.5, finally, 

both contributions are identical because the isotope enrichment trend from either position is 

passed on in equal parts to both products (true intramolecular competition; this corresponds to 

the example of PCE, where TCE and chloride also reflect the average isotope enrichment 

trend of the reactant. 

Figure 1, therefore, predicts that εTCE->chloride and the contribution of x·εα,Z + (1 − x)εα,E to 

εTCE->cis-DCE are very sensitive indicators whether the reaction of TCE involves two or only 

one reactive C-Cl bond(s). As illustrated in Figure 1, if both bonds are involved, the 
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difference between εTCE->chloride and εTCE->cis-DCE is smaller than predicted for a typical 

difference between primary and secondary isotope effects. In contrast, only in the case that 

one position reacts (i.e., when x approaches 0 or 1) the positions in TCE can be strictly 

separated into one reactive chlorine substituent (experiencing a primary isotope effect) and 

two non-reactive chlorine substituents (experiencing secondary isotope effects). It is therefore 

only in this case that the enrichment trend of the two product curves reflects a typical 

difference between primary and secondary isotope effects, because only in this case is  

εTCE->chloride = εprimary and εTCE->cis-DCE = εsecondary.  

2.5.5 Interpretation of Intercepts K for the TCE Case 

 

As illustrated in the supporting information, the difference K in chlorine isotope signatures 

of the initially formed chloride and cis-DCE at f = 1 is influenced by two factors. (i) The 

initial chlorine isotope ratio(s) δ37Cl0,i of the position(s), from which the respective product is 

formed (in contrast to PCE, the positions in TCE are not chemically equivalent and may show 

relevant variations of 37Cl/35Cl between each other); (ii) the kinetic isotope effect from the 

reaction (primary for Cl−, secondary for cis-DCE).  

Even though this kinetic isotope effect information is desirable, a direct interpretation like 

in the case of PCE is not possible because TCE internal isotope distributions cannot 

experimentally be determined. In contrast to interpretations of the PCE data, insight into 

position-specific chlorine isotope effects of TCE is therefore not given by the intercepts of 

Equations (24) and (25), but by the parameters εTCE->chloride and εTCE->cis-DCE. Specifically, 

while in the case of PCE the parameter εPCE is the same for all product species, εTCE->chloride 

and εTCE->cis-DCE reflect isotope effects in the positions of TCE, from which the respective 

products are formed. These product enrichment trends are, therefore, a sensitive indicator 

whether the reaction of TCE involves one or two reactive positions (see Figure 1). 
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2.6 RESULTS AND DISCUSSION 

2.6.1 Compound-Specific Carbon Isotope Effects in Reductive Dehalogenation of PCE to TCE by 

Desulfitobacterium sp. Strain Viet1 and of TCE to cis-DCE by Geobacter Lovleyi Strain SZ 

 

Selective reductive dechlorination of PCE to TCE and chloride was performed with the 

microorganism Desulfitobacterium sp. strain Viet1, whereas Geobacter lovleyi strain SZ 

converted TCE to stoichiometric amounts of cis-DCE and inorganic chloride (note that the 

TCE data of the latter experiment are identical to those reported in Cretnik et al. [29]). 

Evaluation of compound-specific carbon isotope fractionation during reductive dechlorination 

of chlorinated ethenes gave fairly consistent results by application of the Rayleigh equation in 

its different forms. The carbon isotopic enrichment factor ε of the transformation was either 

directly obtained from the difference for the very first product fraction at f = 1 (from 

intercepts: εPCE ≈ −19‰, εTCE ≈ −9‰ see Figure 2). Alternatively, since the product contained 

less 13C than the substrate from which it was formed, 13C/12C increased in the remaining 

reactant pool. Evaluation of reactant isotope data according to the Rayleigh equation 

[Equation (9)] was therefore an alternative way of determining ε (from reactant data: εPCE = 

−19.0‰ ± 0.9‰, εTCE = −12.2‰ ± 1.2‰). Finally, since this enrichment trend was reflected 

also in the steepness of the product δ13C curves, ε could alternatively be determined from 

product isotope data according to Equation (13): εPCE = −21.1‰ ± 2.2‰ (from TCE data); 

εTCE = −10.0‰ ± 0.8‰ (from cis-DCE data, see Figure 2). After complete conversion at f = 0, 

the experimental data confirm that the product isotope signature has the same carbon isotope 

ratio as the starting material when the isotopic mass balance was closed. 
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Figure 2. Carbon isotope data from degradation of PCE to TCE by Desulfitobacterium sp. strain 

Viet1, and of TCE to cis-DCE by Geobacter lovleyi strain SZ.  

 

2.6.2 Compound-Specific and Position-Specific Chlorine Isotope Effects in Reductive 

Dehalogenation of PCE to TCE by Desulfitobacterium sp. Strain Viet1  

 

For the selective reductive dechlorination of PCE to TCE and chloride by 

Desulfitobacterium sp. strain Viet1 chlorine isotope signatures were measured in PCE and 

TCE, whereas chloride isotope signatures were calculated based on the isotopic mass balance 

(see S.I.). 

Enrichment factors εPCE were obtained from PCE reactant data (−5.0‰ ± 0.1‰) according 

to Equation (9), from chloride product data (−4.1‰ ± 3.7‰) according to equation (18), and 

from TCE product data (−5.3‰ ± 0.3‰) according to Equation (19) (uncertainties are 95% 
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confidence intervals). This confirms that the products TCE and chloride reflect the chlorine 

isotope enrichment trend of the four chemically equivalent positions of PCE from which they 

are formed. After full conversion at f = 0, the isotope signature of the released chloride must 

show an offset of −3/4εDiff compared to the initial isotope signature of PCE, and the isotope 

signature of the formed TCE must show an offset of 1/4εDiff, which the data confirm 

(Figure 3). 

 

Figure 3: Chlorine isotope data of PCE degradation to TCE and chloride by Desulfitobacterium sp. 

strain Viet1 including fits in Sigma Plot according to the presented mathematical approach and 

95% confidence intervals of the nonlinear regressions (for regression data see S.I.). Uncertainties 

for δ37ClCl
− were calculated by error propagation including uncertainties in δ37ClPCE, δ37ClTCE and 

f(PCE) (see S.I.). Resultant uncertainties of the first two data points (error bars not shown) were 108‰ 

(*) and 24‰ (**). For regressions only data points with standard errors smaller than 2‰ were 

considered (black symbols).  

 

In contrast to the isotope pattern of carbon, these intercepts between PCE as starting 

material and the instantaneously formed products reveal additional information. In the case of 

a one-step scenario, the secondary and primary isotope effects are accessible from the 

intercepts according to Figure 4. The secondary chlorine isotope effect with εsec of 

−1.0‰ ± 0.5‰ (standard error) is obtained in the intercept (A) as average of the three non-

reacted chlorine substituents that remain in TCE. The primary chlorine isotope effect of 
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−16.0‰ ± 4.9‰ (standard error) is extracted from the isotope signature of the instantaneously 

formed chloride at the beginning of the reaction in the intercept (B).  

 

Figure 4: Interpretation of chlorine isotope data in a one-step scenario with respect to intercepts 

between PCE, TCE and chloride of the applied mathematical fits.  

In an alternative approach the primary isotope effect may be extracted in higher precision 

when considering that the enrichment factor of PCE is a weighted average of primary and 

secondary effects:  

prim sec,1 sec,2 sec,3

4

  

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  (30) 

The average secondary isotope effect is further given by 

 

 
(31) 

so that the primary isotope effect in PCE can be calculated: 

 

 

 

(32) 

 

In contrast, if a two-step scenario prevails, no absolute values are obtained, but instead 

only the difference between primary and secondary isotope effects is accessible from the 

intercepts of the two products TCE and chloride as illustrated in Figure 5. 

 

 

Figure 5: Interpretation of chlorine isotope data in a two-step scenario with respect to intercepts 

between PCE, TCE and chloride of the applied mathematical fits.  
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In this case, the observed isotope effect of PCE with −5.0‰ ± 0.1‰ reflects the first step 

to the intermediate (I). A second rate-limiting step forms TCE and Cl−. The difference 

between primary and secondary chlorine isotope effects for the second step is obtained from 

the difference of the intercepts (εDiff) with −16.3‰ ± 1.4‰ (standard error).  

Independent of the prevailing scenario, the difference between primary and secondary 

isotope effects in reductive dehalogenation of PCE by Desulfitobacterium sp. strain Viet1 can 

therefore be determined as −16.3‰ ± 1.4‰. This indicates that primary chlorine isotope 

effects are of significantly larger magnitude than secondary isotope effects. In the case of the 

first scenario (one-step reaction), the exact value of the primary isotope effect 

(−17.0‰ ± 1.6‰) would even be directly accessible, as well as the average of all secondary 

isotope effects (−1.0‰ ± 0.5‰), which would be smaller by an order of magnitude.  

2.6.3 Compound-Specific and Position-Specific Chlorine Isotope Effects in Reductive 

Dehalogenation of TCE to cis-DCE by Geobacter lovleyi Strain SZ 

 

Geobacter lovleyi strain SZ converted TCE to stoichiometric amounts of cis-DCE and 

inorganic chloride. Compound-average chlorine isotope values were measured for TCE and 

cis-DCE, and calculated for chloride based on the closed isotopic mass balance (see S.I.). 

In the case of TCE, the intercepts do not provide useful information about primary and 

secondary isotope effects because the three positions are distinguishable and TCE may have 

an unequal isotope distribution, which cannot be directly measured. For instance, if the 

reactive position in TCE contains more 37Cl/35Cl than the average molecule, a respective 

“lighter” signature would be found in the formed cis-DCE because the produced chloride pool 

would contain more 37Cl/35Cl. Such a scenario would bias the interpretation of intercepts. The 

following discussion is therefore only based on the fitted parameters of ε, which are 

independent of the intercepts in the isotope patterns. Since these parameters reflect 

enrichment trends in molecular positions of the reactant (even if extracted from product data), 

they reflect precisely those reaction steps that lead up to and include the first irreversible step. 

Consequently, they incorporate the initial reaction steps and their interpretation does not 

require consideration of the one vs. two-step case distinction as for PCE above. Figure 6 

shows the fit to the obtained enrichment factor of TCE, which is the average of enrichment 

factors from each of its three chlorinated positions according to:  

 

 
(33)   interval) conficence (95% ‰2.0‰6.3 
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Since no 1,1-DCE is formed in Geobacter lovleyi cultures, the position Clβ in TCE does 

not react and will strictly represent a β-secondary isotope effect that is directly passed on to 

the formed cis-DCE with the enrichment factor εβ. In contrast, as discussed above, we 

considered the possibility that both α-chlorines may undergo C-Cl cleavage. The resultant 

product isotope enrichment for the formed cis-DCE was fitted in Sigma Plot according to 

Equation (25) derived previously to give  

εTCE->cis-DCE = −2.4‰ ± 0.3‰ (95% confidence interval) 

Likewise, data on chloride were fitted according to Equation (24) to yield  

εTCE->Chloride = −6.5‰ ± 2.5‰ (95% confidence interval) 

 

 

Figure 6: Chlorine isotope data of TCE degradation to cis-DCE and chloride by Geobacter lovleyi 

strain SZ including mathematical fits in Sigma Plot according to the presented mathematical 

approach. Error bars of individual data points indicate standard deviations; uncertainties of the 

regressions are 95% confidence intervals.  

 

As derived above, our considerations show that these parameters reflect enrichment trends in 

the molecular positions of TCE according to 

 ,Z ,E

1
  (1 )

2
TCE cDCE x x

           
 

(23) 

   chloride , ,1TCE E Zx x        
  (22) 
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Assuming that only Clα,E is reacting (x = 1), the obtained enrichment trend of the formed 

chloride would strictly reflect a primary isotope effect with −6.5‰ ± 2.5‰. It follows that the 

formed cis-DCE would reflect only the average of secondary isotope effects, resulting in a 

remarkably large magnitude of secondary isotope effects with −2.4‰ ± 0.3‰. Therefore, this 

scenario of strictly one reactive position contrasts strongly with insight from PCE data, both 

regarding the absolute magnitude of primary isotope effects (too small) and secondary effects 

(too large) as well as the difference εDiff between them (too small). It may be argued that small 

values (and small differences) could be attributable to commitment in enzyme catalysis, since 

our data relates to isotope effects on (Vmax/Km) rather than to elementary rate constants 34. 

This would affect the interpretation of the TCE data, because the products cis-DCE and 

chloride reflect position-specific effects in the reactant TCE, and such reactant data are 

subject to masking 35. The interpretation of the PCE data, in contrast, would not be affected, 

because product-curve intercepts reflect the differences in isotope effects in a situation of 

intramolecular competition, which is not subject to masking. While this could explain the 

small primary isotope effect of −6.5‰ ± 2.5‰ for TCE, it would be unable to rationalize the 

surprisingly large secondary isotope effect of −2.5‰ ± 0.3‰. Invoking commitment to 

catalysis would have to make this value even larger. Therefore, the assumption of only one 

reactive position appears to be questionable because it opposes the observation in PCE where 

a substantial difference in the magnitude of primary and secondary isotope effects was 

observed.  

A more consistent picture arises when the possibility of two reactive positions is 

considered, as encountered for any 1 > x > 0 in Figure 1. As illustrated in Figure 1, this 

scenario explains the relatively large isotope fractionation in the formed cis-DCE from a 

different angle, where a decrease in the difference between the isotope effects in cleaved 

chloride goes along with an increasingly even participation of both positions in the reaction. 

Therefore, the observation of the pronounced isotope effect of −2.5‰ ± 0.3‰ in the 

formation of cis-DCE with the relatively small difference to the isotope effect in the cleaved 

chloride of −6.5‰ ± 2.5‰ suggests that both positions react and primary and secondary 

chlorine isotope effects are reflected in both products.  

Our results therefore indicate that the two chlorine substituents in the α-positions are 

accessible for reductive dechlorination of TCE. In this context, the selective formation of cis-

DCE as the only dichloroethene-isomer is an intriguing observation, because it requires that: 
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(i) that two different positions react; (ii) different chlorovinyl-intermediates are formed, and 

(iii) these intermediates selectively react to cis-DCE despite their different stereochemistry.  

In previous mechanistic studies, the nucleophilic substitution of a chlorine substituent by 

the cobalt centre has been discussed as a potential pathway, leading to the formation of a 

dichlorovinyl-anion in the subsequent step of reduction 38,39. Respective anionic intermediates 

have been investigated in a computational study by Nonnenberg et al., which suggest that 

these intermeditates are not susceptible to interconversion 20, which would be necessary to 

explain the observed selectivity to form the cis-conformation. Based on our results, the 

scenario of a direct nucleophilic substitution can, therefore, be ruled out for reduction of TCE 

by Geobacter lovleyi. 

Recent studies pointed out that radical intermediates are involved in reductive 

dechlorination with cobalamin as model system 15,17. The behaviour of chlorovinyl-radical 

species was investigated in the computational study by Nonnenberg et al. 20. From their 

calculations, the dichlorovinyl-radicals may indeed be susceptible to a selective 

interconversion from the trans- into the energetically preferred cis-conformation of DCE 

(Scheme 4). If this preference was further enforced by steric constraints at the catalytic site, 

this could explain an exclusive formation of cis-DCE observed in biodegradation 

experiments, which would otherwise even exceed thermodynamic predictions. According to 

the chlorine isotope effects from the presented biodegradation experiments of TCE, the 

involvement of radical intermediates therefore appears to be a possible pathway.  

 

 

Scheme 4: Mechanistic proposal for dechlorination of TCE via a single electron transfer with 

selective formation of cis-DCE. Adapted from Nonnenberg et al. [20]. 

Based on theoretical considerations, such a conformational change could also occur in a 

pathway of nucleophilic addition, where the addition of the cobalt centre of the corrinoid 

would lead to a change of hybridisation from sp2 to sp3 and create a freely rotating bond 

(Scheme 5).  
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Scheme 5: Mechanistic proposal for dechlorination of TCE via nucleophilic addition followed by 

anti-elimination with selective formation of cis-DCE. Adapted from Pratt and van der Donk [21].  

This intermediate was computed by Pratt and van der Donk 21, where they suggested that 

its minimum energy conformation may lead to a preferential formation of cis-DCE in the 

following step of anti-elimination. It is noteworthy that this scenario requires an extraordinary 

selectivity to engage this hypothesized conformation prior to the elimination reaction in order 

to produce exclusively cis-DCE. Furthermore, the pronounced chlorine isotope effects in TCE 

would indicate another exceptional feature of this scenario. In order to relate the obtained 

isotope effects to primary chlorine isotope effects, the elimination-step must be the rate-

limiting step, while the first addition step would have to be reversible. The reversibility of the 

formation of the chlorinated alkylcobalt complex appears to be unlikely; however, since its 

formation is computed to have a notable driving force of −30.3 kcal/mol 14, and this reverse 

reaction would demand for the elimination of the hydrogen substituent. Therefore, the first 

step of the nucleophilic addition would not be predicted to be reversible.  

With these considerations, the scenario of nucleophilic addition would combine several 

unusual attributes, including a strict conformational selectivity at an sp3 hybridized carbon 

centre and an unexpectedly large magnitude of secondary chlorine isotope effects. 

Nonetheless, this pathway cannot be strictly ruled out as a possible transformation pathway.  
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2.7 CONCLUSIONS 

 

With chlorine isotope effects from GC-IRMS measurements, our study brings forward a 

new perspective for investigating initial mechanisms of reductive chlorinated ethene 

dehalogenation. Mathematical equations accurately describe reactant and product isotope 

data, allow extracting position-specific chlorine isotope effect information and may serve as a 

benchmark for similar evaluations in the future. In reductive biotransformation of PCE, this 

evaluation allowed us to constrain the difference between primary and average secondary 

chlorine isotope effects to an unexpectedly large value of −16.3‰ ± 1.4‰ (standard error). This 

novel insight on primary and secondary chlorine isotope effects in chlorinated ethenes falls 

outside the range of typical chlorine isotope effects 40. 

Our evaluation further allowed us to test whether one or two C-Cl bonds in TCE were 

reactive. In the first case (only one C-Cl position reacts), isotope values of chloride would be 

expected to exclusively reflect the primary isotope effect of the C-Cl bond cleavage, whereas 

isotope values of cis-DCE would reflect the secondary isotope effects in the remaining bonds. 

In contrast, in the second case both positions would take turns in reacting, they would end up 

in both products and the products would show a mixture of primary and secondary isotope 

effects. Their isotopic enrichment trends would, therefore, be more similar. Our data showed 

indeed only a relatively small difference between an average chlorine isotope effect of 

−6.5‰ ± 2.5‰ (95% confidence interval) in the C-Cl bond(s) from which chloride was 

formed, compared to an average effect of −2.5‰ ± 0.3‰ (95% confidence interval) in the C-

Cl bonds that are precursors of cis-DCE. This small difference contrasts with the large 

difference between primary and secondary chlorine isotope effects observed in the PCE data. 

These findings suggest that two C-Cl bonds in TCE were reactive (case 2). 

This insight, in turn, significantly constrained the mechanistic scenarios for the initial step 

in TCE reductive dehalogenation. Direct nucleophilic substitution via dichlorovinyl-anion 

intermediates could be ruled out for reduction of TCE by Geobacter lovleyi, whereas single 

electron transfer followed by radical formation, as well as nucleophilic addition followed by 

anti-elimination remain possible scenarios.  

Finally, this insight can support current interpretations of dual element (C and Cl) isotope 

fractionation during TCE and PCE dehalogenation. Figure 7 shows the dual element isotope 

plots that are obtained when combining the carbon and chlorine data of the present study.  
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Figure 7: Dual element (carbon and chlorine) isotope plots for degradation of PCE toTCE by 

Desulfitobacterium sp. strain Viet1, and of TCE to cis-DCE by Geobacter lovleyi strain SZ. Error 

bars are standard deviations, uncertainties are 95% confidence intervals). 

The value of 13CTCE/37ClTCE = 3.4 ± 0.2 (95% confidence interval) during 

dehalogenation of TCE by Geobacter lovleyi is based on the same data reported in Cretnik et 

al. [29]. There, a remarkable similarity was observed compared to experiments with 

Desulfitobacterium hafniense and with vitamin B12. The present study complements this 

finding with underlying mechanistic insight. Taken together, our results suggest that this 

insight may also be of relevance for reductive dehalogenation by vitamin B12. In addition, our 

calculations can explain the different numerical values in the TCE degradation experiment 

when 13C/37Cl of TCE is compared to C13C/37Cl of cis-DCE. While the slope for 

TCE is equal to εTCE,carbon/εTCE,chlorine 
31, the slope for cis-DCE corresponds to 

εTCE,carbon/εTCE->cis-DCE,chlorine. The observation that εTCE->cis-DCE,chlorine < εTCE,chlorine (see above) 

therefore explains the steeper slope for the cis-DCE data.  

In the case of PCE, the dual element isotope slope of 13CPCE/37ClPCE = 3.8 ± 0.2 

(confidence interval) is, to our knowledge, the first value reported under defined conditions 

with a pure bacterial strain. The treatment of our study can explain in part why the value is 

greater compared to 13CTCE/37ClTCE in the TCE experiment. In the compound-average 

chlorine εPCE of the PCE experiment, the primary isotope effect in the reacting C-Cl bond is 

“diluted” with three secondary isotope effects according to Equation (32). In the TCE experiment, 

only two secondary isotope effects contribute so that the primary isotope effect is more strongly 

represented in εTCE,chlorine. This, in turn, leads to a greater proportion of εchlorine/εcarbon and a smaller 
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value of the dual element isotope slope, since εTCE,carbon/εTCE,chlorine = 13CTCE/37ClTCE. Finally, 

the value of 13CPCE/37ClPCE = 3.8 ± 0.2 coincides with the range of 2.2 to 4.2 observed by 

Wigert et al. 28 in an enrichment culture from a contaminated site (calculated from their value 

εchlorine/εcarbon = 0.35 ± 0.11). The combined results give a first indication of the range of 

13CPCE/37ClPCE that is expected for reductive dechlorination of PCE and TCE at 

contaminated sites.  
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3.1 ABSTRACT  

Chloroethenes like trichloroethylene (TCE) are prevalent environmental contaminants, which 

may be degraded through reductive dechlorination. Chemical models such as cobalamine 

(vitamin B12) and its simplified analogue cobaloxime have served to mimic microbial 

reductive dechlorination. To test whether in vitro and in vivo mechanisms agree, we combined 

for the first time carbon and chlorine isotope effect measurements of TCE. Degradation-

associated enrichment factors carbon and chlorine were -12.2‰ ± 0.5‰ and -3.6‰ ± 0.1‰ with 

Geobacter lovleyi strain SZ; -9.1‰ ± 0.6‰ and -2.7‰ ± 0.6‰ with Desulfitobacterium 

hafniense Y51; -16.1‰ ± 0.9‰ and -4.0‰ ± 0.2‰ with the enzymatic cofactor cobalamin; 

-21.3‰ ± 0.5‰ and -3.5‰ ± 0.1‰ with cobaloxime. Dual element isotope slopes m = 

13C/37Cl of TCE showed strong agreement between biotransformations (3.4 to 3.8) and 

cobalamin (3.9), but differed markedly for cobaloxime (6.1). These results (i) suggest a 

similar biodegradation mechanism despite different microbial strains, (ii) indicate that 

transformation with isolated cobalamin resembles in vivo transformation and (iii) suggest a 

different mechanism with cobaloxime. This model should therefore be used with caution. Our 

results demonstrate the strength of two dimensional isotope analyses to compare in vitro 

model reactions and natural transformations.  



Chapter 3                                      Dual isotope analysis of model reactions and biodegradation 

 
45 

 

3.2  INTRODUCTION 

 

Chloroethenes such as trichloroethylene (TCE) are commonly used industrial solvents, and 

are among the most ubiquitous groundwater contaminants.1 In order to reduce the risk of 

exposure through groundwater, remediation techniques aim to remove these compounds under 

anoxic conditions through reductive dechlorination. However, such efforts do not always lead 

to the desired detoxification. Biotransformation sequentially replaces the chlorine substituents 

by hydrogen (hydrogenolysis), but only few organisms are capable of complete 

dechlorination.2,3 This leads to accumulation of toxic degradation products such as cis-

dichloroethylene (cis-DCE) at contaminated sites.4  

Ultimately, product formation is determined by the underlying reaction chemistry. For 

chlorinated ethylenes, cobalamin (vitamin B12), which is the active cofactor of dehalogenase 

enzymes (Figure 1), has been investigated in detail.5,6 Nucleophilic substitution by Co(I), 

nucleophilic addition of Co(I),7 and single electron transfer have been brought forward as 

possible initial mechanisms.8,9 Investigations used a broad set of tools and include work with 

enrichment cultures,10 pure microorganisms,11 studies with purified dehalogenases,12,13 and on 

the most fundamental level, with chemical model reactants to mimic putative dehalogenation 

mechanisms.8,14,15 Among the most prominent model systems for dehalogenase enzymes are 

cobaloxime and isolated cobalamin. Cobaloxime, a cobalt complex with a similar but 

simplified ligand structure compared to vitamin B12 (Figure 1), has been successfully applied 

to synthesize putative intermediates with TCE and to study their subsequent reactions.8 

However, in order to understand the authenticity of a model for the actual system, a more 

robust indicator is needed to compare underlying mechanisms of the systems.  

 

 

Figure 1: Reductive dechlorination of TCE to cis-DCE in different experimental systems, reaching from 

environmental scenarios (left) to chemical model reactants (right).  
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The work presented in this study aims to compare the mechanisms of the representative 

systems through measurements of dual element (13C/12C, 37Cl/35Cl) kinetic isotope effects. 

Isotope effects serve as a direct indicator for different initial reaction mechanisms, since the 

magnitude of isotope effects depends on the order and manner (i.e., transition state structure) 

of chemical bond breakage or bond formation. Position-specific isotope effect studies with 

labeled substrate have a long tradition in chemistry, but require dedicated synthesis.16 In 

comparison, recent developments in gas chromatography coupled to isotope ratio mass 

spectrometry (GC-IRMS) have made it possible to measure compound-specific isotope effects 

of environmental contaminants with much greater ease. Measurements can be conducted at 

natural isotopic abundance meaning that no label is required and the analysis can be 

conducted on environmental samples. In exchange, isotope effects are not position-specific, 

but reflect the compound average. On the other hand, compound-specific isotope effects can 

be measured for multiple elements. When changes in compound-specific isotope values (e.g., 

13C/12C versus 2H/1H) are visualized in dual element isotope plots, the given slopes 

correspond to characteristic combinations of compound-specific isotope effects, which relate 

to the respective mechanisms.  

Such dual element isotope representations have the additional advantage that their slopes 

are remarkably insensitive towards masking. Masking occurs when observable (apparent) 

kinetic isotope effects (A)KIE decrease because other steps become rate-determining (e.g., 

mass transfer, substrate binding to enzymes (“commitment to catalysis”).17,18 While the effect 

can be dramatic for isotope effects of one element, slopes in dual element isotope plots often 

remain constant. The reason is that the additional steps often do not show element-specific 

isotope effects themselves so that KIE of both elements decrease in the same proportion.19 If 

these steps do show isotope effects, (A)KIE is the weighted average of them and depends on 

respective relative rates.20 Therefore, dual isotope plots have the potential to bridge the gap 

between model and real life systems, since (i) identical transition states result in the same 

slope, whereas (ii) different slopes are indicative of different mechanisms, or may reflect a 

change in kinetics towards other rate-determining steps.20 Such information has the potential 

to demonstrate similarities, and to uncover differences, in the (bio)chemical reaction 

mechanisms in different experimental systems. 

Contrasting with the insight obtained for other environmental contaminants,21-23 such an 

approach has not been possible for chloroethenes until recently. While routine compound-

specific isotope analysis of chlorinated ethylenes has been well established for carbon,24 it had 



Chapter 3                                      Dual isotope analysis of model reactions and biodegradation 

 
47 

 

yet to be achieved for chlorine and hydrogen. An analytical breakthrough has been brought 

about by the latest developments in compound-specific chlorine isotope analysis.25,26,27 By 

now, online measurements of compound-specific chlorine isotope signatures27, chlorine 

isotope fractionation28,29 and dual isotope plots of carbon and chlorine are within reach.30,31  

The objective of this study was, therefore, to measure dual element (13C/12C, 37Cl/35Cl) 

isotope measurements of TCE for the first time in some of the most relevant experimental 

systems for reductive dehalogenation. We investigated biodegradation with different 

dehalogenating strains (i) Geobacter lovleyi strain SZ and (ii) Desulfitobacterium  hafniense 

Y51, (iii), transformation by the enzymatic cofactor cobalamin and (iv) by the simplified 

chemical model system cobaloxime.32,15 Differences in dual element isotope slopes are 

discussed with respect to the questions (a) if microbial strains with substantial biological 

differences employ similar reaction mechanisms for degradation of TCE, and (b) how 

authentic in vivo transformations are reflected by their corresponding in vitro model systems. 

 

3.3 MATERIALS AND METHODS 

 

Chemicals 

Cobalamin (Acros), dimethylglyoxime (Alfa Aesar), pyridine (Alfa Aesar), zinc (20-30 

mesh; Sigma Aldrich), TiCl3 (15% in 10% HCl; Merck), Co(OAc)2·4H2O (Alfa Aesar), 

dimethoxyethane (Alfa Aesar), sodium citrate (Sigma Aldrich) and tris(hydroxymethyl)-

aminomethane (Sigma) were used as received. Trichloroethene was purchased from Dow, 

PPG California and Merck. 

 

Biodegradation with Geobacter lovleyi Strain SZ 

Biodegradation experiments were carried out using the microbial strain Geobacter lovleyi 

strain SZ, purchased from the German Collection of Microorganisms and Cell Cultures 

(DSMZ, Germany). This strain reductively dechlorinates TCE to the final product cis-DCE. A 

growth medium was prepared according to DSMZ instructions, medium 732, with the 

exception that neither hexadecane nor perchloroethylene was added to the medium. The 

growth medium for the experiment was prepared in glass bottles (250 ml), equipped with 

Mininert valves (Supelco, Bellefonte, Pennsylvania, USA), and filled with 150 ml of medium, 

leaving a headspace of 40%. The bottles were amended with 10 µl of neat TCE and constantly 

shaken on a horizontal shaker at 120 rpm for four days. Inoculation was carried out by adding 
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14 ml of active culture, which was previously grown in a similar medium. To eliminate carry-

over of the degradation product (cis-DCE) to the fresh medium, the media with the culture 

that was used for inoculation was flushed with N2/CO2 gas stream (80/20%) for 5 hours prior 

transferring to the fresh medium. A complete removal of chloroethenes after degassing was 

controlled by GC-FID measurements. This procedure was followed for three biological 

replicates in the main degradation experiment (“experiment 2”). Abiotic control batches were 

prepared similarly, but without inoculation of the active culture. In preliminary experiments, a 

similar procedure was followed with the exception that they were conducted in serum bottles 

closed with Viton stoppers (“experiment 1”). Sampling was carried out 20 min after 

inoculation for the initial sample, and at given time points along the degradation. A total 

sample volume of 7 ml was taken with a glass syringe (Hamilton), which was distributed in 

portions of 1 ml each into 7 amber vials with an active volume of 1.6 ml. In order to stop 

biological activity, the vials were spiked with 50 µl of NaOH (1M) and closed with PTFE-

lined screw caps. All vials were frozen upside down for subsequent isotope analysis, except 

one vial, which was used immediately for concentration analysis.  

 

Biodegradation with Desulfitobacterium hafniense Strain Y51 

Biodegradation experiments at University of Tuebingen were carried out using the 

microbial strain Desulfitobacterium hafninese Y51, which degrades TCE to the final product 

cis-DCE. A growth medium was prepared according to modified DSMZ instructions medium 

720. The growth medium for the experiment was prepared in glass serum bottles (560 ml) 

filled with 500 ml of medium, leaving a headspace of 11%. The bottles were closed with butyl 

stoppers. The bottles were amended with 25 µl of neat TCE and constantly shaken on a 

horizontal shaker at 120 rpm for 12 hours. Inoculation was carried out by adding 10 ml of 

active culture, which was previously grown on a similar medium with pyruvate as electron 

donor and TCE as electron acceptor. To eliminate carry-over of the degradation products 

(TCE and cis-DCE) to the fresh medium, the media with the culture that was used for 

inoculation was flushed with N2/CO2 gas stream (80/20%) for 1 hour prior transferring to the 

fresh medium. Complete removal of chloroethenes after degassing was controlled by GC-MS 

measurements. This procedure was followed for three biological replicates in the degradation 

experiments. One abiotic control batch was prepared similarly, but without inoculation of the 

active culture. Sampling was carried out before inoculation for the initial concnetration and at 

given time points along the degradation. For concentration analysis, 500 µl of aqueous sample 
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were taken with a gastight glass syringe (Hamilton), distributed into 10 ml crimp vials 

(amended with 5 ml milipore water and 100 µl H3PO4) and crimped with aluminium crimp 

caps with PTFE septum. For isotope analysis a total sample volume of 10 ml was taken with a 

gastight glass syringe (Hamilton), which was distributed in portions of 1 ml each into ten 

amber vials with an active volume of 1.9 ml. In order to stop biological activity, the vials 

were spiked with 50 µl of NaOH (10M) and closed with PTFE-lined screw caps. All vials 

were frozen upside down for subsequent carbon isotope analysis. Two vials were shipped to 

Munich on dry ice for chlorine isotope analysis.  

 

Cobalamin 

Aqueous stock solution of Ti(III)citrate solutions was prepared from tris(hydroxymethyl)-

aminomethane (8 g), sodium citrate (16 g) and TiCl3 (25 ml; 10% in HCl) under anoxic 

conditions in 50 ml of degassed ultrapure H2O.33 Addition of Na2CO3 followed to adjust to 

pH 9. Cobalamin (100 µM, 0.027 g, 19.9 µmol) and tris(hydroxymethyl)aminomethane 

(90 mM, 2.18 g, 18.0 mmol) were weighed into a glass bottle of 250 ml, and transferred into 

an anoxic chamber. Here aqueous TCE stock solution (190 ml, 0.58 mM) was added. The 

bottle was closed with a mininert valve (Supelco, Bellefonte, Pennsylvania, USA) and 

constantly shaken on a horizontal shaker at 120 rpm for 4 h. To initiate the reaction, 10 ml of 

the Ti(III)citrate stock solution were added. Sampling volumes of 1 ml were taken at given 

time points and diluted 1:10 in H2O. From these solutions, headspace vials were prepared 

directly for concentration analysis; the remaining volume was frozen for isotope analyses. 

Two experimental replicates were performed and measured according to this preparation. A 

similar procedure, but without the addition of cobalamin, was followed as a negative control 

to exclude any other processes of TCE reduction.  

 

Cobaloxime 

A stock solution of dimethylglyoxime (dmgH; 4.7 g, 81 mM) and pyridine (py, 4.85 ml, 

120 mM) was prepared in 500 ml of dimethoxyethane (glyme). In total, ten 100 ml sealed 

reaction vessels were evacuated, back-filled with N2 and charged with 25 ml of the dmgH/py 

stock solution under N2 flow. Co(OAc)2·4H2O (0.25 g; 1.0 mmol) and granular Zn (2.0 g; 

30.6 mmol) were added using a glass funnel. The vessels were then sealed under N2 flow, and 

placed in an oil bath for 60 min at 40 ºC to complete the reduction. After reduction, the 

vessels were cooled in an ice-water bath prior to the addition of neat TCE in varying molar 
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ratios relative to cobalt of 10; 6.7; 5.0; 3.0; 2.0; 1.8; 1.5; 1.3; 1.2 and 1.1 respectively to each 

vessel. Subsequently, the reaction was heated in a closed vessel at 40 °C in an oil bath for 16 

hours with constant stirring. A colour change into a red-orange indicated the formation of the 

chlorovinylcobalt complex as reported in Follett et al. 2007. After cooling, the vessel was 

transferred into an anoxic glove box. Samples were taken with a glass syringe by filling two 

amber glass vials with 1.6 ml of liquid without headspace. 

From these samples 20 µl were dissolved in 2 ml of aqueous Ti(III)citrate (40 mM) solution 

present in headspace vials with a total volume of 10 ml. The vials were quickly closed after 

addition and shaken for 1h. In total, nine vials were prepared in this way. Two of them served 

for concentration measurements, the others were frozen for isotope analysis. A similar 

procedure was followed in the absence of cobalt, as a negative control to exclude any other 

processes of TCE reduction. 

 

Concentration measurements 

TCE and cis-DCE concentrations in the biodegradation experiments were measured by a 

gas chromatograph equipped with flame ionization detector (GC-FID, Hewlett Packard 5890 

Series II) equipped with a 30 m VOCOL column (Supelco, Bellefonte, Pennsylvania, USA) 

0.25 mm inner diameter, with a film thickness of 1.5 µm and operated with nitrogen as carrier 

gas at 1.6 ml/min. Automated headspace injections of 1 ml from 10 ml headspace vials were 

carried out using a CombiPal Autosampler (CTC Analytics), and an injector temperature on 

the GC of 200 °C. For cobaloxime experiments, the temperature program started at 40 °C 

(14 min) and increased at 60 °C/min to 200 °C (2 min). For cobalamin experiments the 

temperature program started at 45 °C, increasing at 25 °C/min to 90 °C (5 min) and increasing 

at 60 °C/min to 180 °C (1 min). For the biodegradation experiments, the temperature program 

started at 85 °C (0.3 min), increasing at 40 °C/min to 140 °C (2.70 min), and at 40 °C/min to 

180 °C (1 min). One-point calibrations were performed along each measurement using TCE 

solutions with defined concentrations. The resulting total relative error in concentrations was 

estimated as ±10%. 

TCE and cis-DCE concentrations in experiments with D. hafniense were measured by a GC-

MS system in SIM mode. An Agilent 7890A GC coupled to an Agilent 5975C quadrupole 

mass selective detector (Santa Clara, CA) equipped with a 60 m RTX-VMS column (Restek, 

Bellefonte, Pennsylvania, USA) 0.25 mm inner diameter, with a film thickness of 1.4 µm and 

operated with helium as carrier gas at 1 ml/min  was used for measurements of TCE and cis-
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DCE. Automated headspace injections of 500 µl from 10 ml headspace vials were performed 

using an automatic multipurpose sampler (Gerstel, Muelheim an der Ruhr, Germany), and an 

injector temperatue on the GC of 200 °C. The temperature program started at 40 °C (2 min), 

increased at 25 °C/min to 110 °C (0 min) and further increased at 15 °C/min to 200 °C 

(5 min). Calibration curves where obtained using TCE solutions with defined concentrations 

between 0 and 1000 µg/l.  

 

Stable Carbon Isotope Analysis  

Compound Specific Isotope Analysis (CSIA) for carbon was conducted by injection of 

headspace samples on a GC-IRMS system (Thermo Fisher Scientific, Waltham, 

Massachusetts, USA) consisting of a Trace GC with a Pal autosampler (CTC Analytics), 

coupled to a MAT 253 IRMS through a GC/C III combustion interface. For biodegradation 

and samples of the cobaloxime experiment, the gas chromatograph was equipped with a 30 m 

VOCOL column (Supelco, Bellefonte, Pennsylvania, USA), 0.25 mm inner diameter, with a 

film thickness of 1.5 µm and operated with He carrier gas at 1.4 ml/min. The GC program 

started at 85 °C (8 min) and increased at 60 °C/min to 205 °C (1 min). 

For cobalamin samples a 60 m DB624 column was used, 0.32 mm inner diameter (Agilent, 

Santa Clara, Claifornia). The GC program started at 70 °C (2 min), increasing at 30 °C/min to 

120 °C (9 min), and increasing at 30 °C/min to 220 °C (0 min). The analytical uncertainty 2σ 

of carbon isotope measurements was ± 0.5‰. An internal standard of TCE was used along the 

measurements with a carbon isotope signature (13C) of -27.1‰± 0.2‰. The given delta 

notation refers to the Vienna Pee Dee Belemnite international standard (VPDB) according to 

the equation: 

dardS

dardSSample

CC

CCCC
C

tan

1213

tan

12131213

13

/

)//( 
         (1) 

Compound-specific carbon isotope analyses in experiments with D. hafniense were performed 

using GC/IRMS. The GC/IRMS system consists of a Trace GC Ultra Thermo Finnigan, 

Milan, Italy) coupled to a DeltaPLUS XP (Thermo FinniganMAT, Bremen, Germany) via a 

combustion interface (GC Combustion III, Thermo Finnigan MAT) operated at 940 °C. 

Headspace samples were enriched with SPME using a StableFlex-Fibre, covered with 85 µm 

Carboxen/Polydimethylsiloxan (Supelco, Bellefonte, USA). After a sorption time of 20 min at 

35°C the compounds were desorbed for 30 s. A 60 m x 0.32 mm RTX-VMX capillary column 

with a film thickness of 1.8 µm was used. Following temperature program was applied: 4 min 
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at 40 °C, 7 °C/min to 180 °C, held for 3 min, total time 27 min. An internal standard of TCE 

was used along the measurements with a carbon isotope signature (13C) of -26.7‰ ± 0.1‰ 

 

Stable Chlorine Isotope Analysis  

Chlorine isotope analysis of TCE was performed according to a method adapted from 

Shouakar-Stash et al. (2006). In this new approach for GC/IRMS the TCE is directly 

transferred in the gas phase to the IRMS through the He carrier stream, where TCE is ionized 

and fragmented for isotope ratio measurements. The measurements were conducted at masses 

m/z = 95, 97 on a GC-IRMS system (Thermo Scientific, Waltham, Massachusetts, USA) 

consisting of a Trace GC that was connected to a MAT 253 IRMS with dual inlet system via a 

heated transfer line. The gas chromatograph was equipped with a 30 m VOCOL column 

(Supelco, Bellefonte, Pennsylvania, USA) with 0.25 mm inner diameter, a film thickness of 

1.5 µm and operated with a He carrier gas at 1.4 ml/min. The GC program used started at 

50 °C (7 min), increasing at 60 °C/min to 70 °C (2.70 min) and at 80 °C/min to 140 °C 

(0.10 min). External standards were measured daily for calibration of 37Cl values according 

to Bernstein et al.27  

Briefly, a reference gas of TCE is introduced via a dual inlet system at the end of each 

measurement. The conversion to delta values relative to the international reference Standard 

Mean Ocean Chloride (SMOC) was performed by an external two-point calibration analysing 

TCE-standards “Eil-1” and “Eil-2” with a chlorine isotope signature (37Cl)  of +3.05‰ and 

-2.7‰ respectively,27 as  previously characterized in the Department of Earth Sciences, 

University of Waterloo.26 Each of these standards was added in triplicates before, during and 

at the end of each sequence, in order to calibrate the obtained values of the samples with 

respect to SMOC. The analytical uncertainty 2σ of chlorine isotope analysis was ± 0.2‰. 

 

Evaluation of carbon and chlorine isotope fractionation 

Isotope enrichment factors of carbon (C) in TCE were evaluated using Sigma-Plot® with 

curve fittings (r2 > 0.96) according to the Rayleigh equation: 

 fCC C ln0

1313            (2) 

where 13C0 and 13C are carbon isotope values in the beginning and at a given time (t) 

respectively, and f is the fraction of substrate remaining at time t. Elsner and Hunkeler 

demonstrated that chlorine isotope fractionation also follows in good approximation to a 
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Rayleigh trend despite a high abundance of 37Cl compared to 13C.34 Thus chlorine isotope data 

was treated similarly using the Rayleigh equation: 

 fClCl Cl ln0

3737            (3) 

where 37Cl0 and 37Cl are chlorine isotope ratios in the beginning and at a given time (t) 

respectively. An apparent kinetic chlorine isotope effect (AKIE) may be estimated under the 

assumption of negligible secondary isotope effects from the following equation:  

)1000/(1

1

Cl

Cl
n

AKIE


          (4)34 

where n is the number of three chlorine atoms for TCE. Dual element isotope fractionation 

can be compared by (a) either considering the ratio of C/Cl or (b) by plotting isotope values 

of δ13C vs δ37Cl (as shown in Figure 3). Uncertainties were obtained from 95% confidence 

intervals (CI). 

 

3.4 RESULTS AND DISCUSSION 

 

Isotope fractionation according to the Rayleigh equation 

An overview of the obtained data is presented in Figure 2. It reflects the results of all 

experimental replicates, which were highly consistent. Pronounced carbon isotope effects of 

TCE were observed in all experiments. Biodegradation experiments with Geobacter lovleyi 

strain SZ and Desulfitobacterium hafniense Y51 showed enrichment factors of carbon = 

-12.2‰ ±0.5‰ and -9.1‰ ±0.6‰, respectively. Although the value for Geobacter lovleyi is 

higher than reported by Cichoka et al. (carbon = -8.5‰ ±0.6‰), both values fall in the range of 

previously reported values for reductive biodegradation of TCE.35,36,37,38 The obtained value 

for cobalamin reactions of -16.1‰ ±0.9‰ agrees with previously reported data of Slater et al. 

(-16.5‰ ±0.6‰).39 These data compare to an enrichment factor of the cob(I)aloxime reaction 

of -21.3‰ ±0.5‰, to our knowledge the first reported for this reaction.  

As expected, the significant carbon isotope enrichment factors indicate that the rate-limiting 

step of all investigated reactions involves the carbon atoms in TCE to some extent.  However, 

a statement on the individual pathways remains elusive because masking effects potentially 

may decrease enrichment trends to an unknown degree. Consequently, the individual 

enrichment factors of one element may not be representative for the intrinsic isotope effects of 

the transformation, particularly with biotic systems.  With these constraints, underlying 

mechanisms cannot be compared between experimental systems using isotope effects of only 
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one element. However, that obstacle can be overcome by including isotope information from 

a second element: chlorine. 

For the first time, we report not only carbon but also chlorine isotope fractionation 

associated with biotransformation of TCE (Figure 2). All reactions feature pronounced 

chlorine isotope fractionation of TCE in a range of chlorine = -2.7‰ to -4.0‰. When 

converting these bulk isotope effects into apparent kinetic isotope effects under the 

assumption of negligible secondary isotope effects (Equation 4) they would result in AKIE 

values between 1.008 and 1.012 reaching to the upper end of Streitwieser limits in C-Cl 

bonds.40 This indicates that primary isotope effects are active in the investigated systems and 

that C-Cl bond cleavage is at least partially rate-limiting.  

 

Figure 2: 

 Isotope fractionation patterns in TCE 

of 13C (left) and 37Cl (right) 

measured during degradation in the 

different experimental systems. The 

fraction of remaining TCE is 

presented as f(TCE) on the x-axis. 

Enrichment factors were extracted 

from curve fittings according to the 

Rayleigh equation (Eq. 1 and Eq 2.). 

Uncertainties for  are 95% CI.  
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Dual Isotope approach 

While the individual C and Cl isotope data alone do not allow a conclusive comparison of 

the given reactions of TCE, a different picture is given in the dual isotope plot in Figure 3. 

Slopes of biodegradation experiments (3.4 ±0.2, 3.4 ±0.2 and 3.8 ±0.2) and reaction with 

cobalamin (3.9 ±0.2) are essentially indistinguishable, within the given 95% CI.  In contrast, 

these results differ significantly from the trend observed with cobaloxime (6.1 ±0.5). In the 

following, the implications of this result are discussed for the different experimental systems.  

 

 

 

Biodegradation experiments 

The study involves biodegradation experiments with two different strains of dehalorespiring 

bacteria, Geobacter lovleyi strain SZ and Desulfitobacterium hafniense strain Y51. Both 

microorganisms feature a metabolic pathway of degrading TCE strictly to cis-DCE as the 

final product. When comparing isotope fractionation during this reaction, a difference in C of 

3.1‰ and in Cl of 0.9‰ was obtained between the two strains (Figure 2). Previous studies 

have addressed differences in carbon isotopic enrichment factors of TCE biodegradation in 

the context of possible variations in enzyme structures or kinetic processes such as transport 

and enzyme-substrate binding prior to the cleavage of the carbon-chlorine bond.36,18,35 Since 

such parameters may mask the kinetic isotope effect (KIEs) of a reaction, the observed 

variations are plausible but an interpretation from enrichment factors of only one element can 

be problematic. 36,18,35  

Figure 3:  

Dual isotope plots of 13C versus 37Cl 

during degradation of TCE in the 

investigated experimental systems.  
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In contrast, the good agreement of the slopes in their dual element isotope plots suggests 

that the -proteobacterium Geobacter lovleyi strain SZ and Desulfitobacterium hafniense Y51 

share the same TCE degradation mechanism, despite their biological differences: The two 

strains belong to different branches of the phylogenetic tree, and have low similarities in their 

BlastP matches of dehalogenase enzymes.41 However, an important common feature is their 

dependency on cobalamin. The identical dual element isotope plots suggest that the rate 

limiting step in the C-Cl cleavage is likely to be similar in the two strains, which emphasizes 

once more the role of this cofactor in microbial dehalogenation.7,41 In this context, the value 

strength of the presented dual isotope approach becomes evident: While the observable KIEs 

of one element may decrease dramatically with the influence of masking effects, the ratio of 

KIEs from two elements remained constant, most likely because KIEs of both elements 

decreased in the same proportion.  

 

Cobalamin 

The individual carbon and chlorine isotope effects of TCE in the dechlorination mediated 

by cobalamin are larger than during biodegradation. Again, this observation may potentially 

indicate different mechanisms. Alternatively, it may indicate that the same mechanism 

prevailed but that masking simply decreases - and isotope effects increase - with diminishing 

cell-integrity so that effects became greater in the chemical reaction with cobalamin.18,42 

Again, a comparison of dual isotope plots of cobalamin in vitro to the biotic reactions gave 

evidence for the second hypothesis.  In this case the respective slopes match within their 

range of errors, suggesting that the transformation with isolated cobalamin occurs in a similar 

fashion as it does in vivo when it is incorporated in the dehalogenase enzyme.7,43 This may 

serve as an important reference in the use of this model system, since it is the first 

experimental confirmation that directly refers to the rate limiting step of the dechlorination.   

A remarkable difference between the two systems, however, lies in the product formation: 

Whereas in biodegradation cis-DCE is selectively formed as final and only product, a more 

diverse set of products is found with cobalamin. Besides the major product cis-DCE, also 

1,1-DCE; trans-DCE and others were observed here and in previous studies under identical 

conditions.44,7 Despite these differences, the rate limiting step in the reaction between TCE 

and the cobalt center appears to be the same in both experimental systems. This indicates that 

the formation of toxic versus harmless products is not yet determined in the initial rate-

determining step, but rather in subsequent reactions of short-lived intermediates. Here, 
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another strength of the dual element isotope approach becomes evident compared to product 

studies: Isotope effects are diagnostic of the initial rate limiting step, allowing it to 

disentangle this step from subsequent steps of product formation. Based on these findings we 

propose that a putative initial intermediate formed from cobalamin and TCE has similar 

properties in vitro compared to the species formed at the active site of the enzyme. However, 

direct structural insights of this specific intermediate are missing.8  

 

Cobaloxime 

In previous studies cobaloxime has been employed as a simplified model of cobalamin.8 

Key findings have included the ability to isolate a stable vinyl-cobalt complex upon reaction 

with TCE. Further, reduction of this species with Ti(III)citrate in protic solvents leads to 

selective formation of cis-DCE, similar to the biodegradation experiments.32,45 As a result a 

vinyl-cobalt species has been suggested as a putative reaction intermediate in the case of 

cobalamin. However, a verification of the reaction chemistry on a more fundamental level is 

still missing.   

From the individual isotope effects in Figure 2 a notably high carbon isotope enrichment 

factor of -21.3‰ ±0.5‰ was observed, while the fractionation in chlorine stayed in the range 

of the previously discussed systems with -3.5‰ ±0.2‰. As mentioned before, a comparison 

of the reactions based on the individual isotope effects from Figure 2 can be problematic. A 

different picture arises if isotope effects of both elements are considered together in the dual 

element isotope plot (Figure 3). Contrasting with the slopes between 3.4 and 3.9 observed 

with cobalamin and the two bacterial strains, a significantly higher slope of 6.1 was obtained 

for the degradation of TCE with cobaloxime. The difference can be ascribed to the high 

enrichment factor of carbon, which indicates that the reaction pathway with cobaloxime 

involves a stronger participation of carbon in the rate-limiting step. The fact that stable 

complexes of TCE with cobaloxime can be synthesized may indicate a stronger affinity to 

form Co-C bonds, compared to cobalamin, where similar complexes are not known.8  

With these considerations, our results point out differences in the rate-determining step of 

reductive dehalogenation of TCE when comparing the model system cobaloxime with 

cobalamin or biodegradation. Previous studies discuss single electron transfer or nucleophilic 

attack as potential mechanisms.7,9,8,33 With our new approach of dual element isotope 

analysis, more conclusive evidence may now be within reach when chemical model systems 

are investigated with known initial reaction mechanisms. 
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3.5 ENVIRONMENTAL SIGNIFICANCE 

 

An exciting feature of the presented dual isotope approach is the possibility to directly 

compare transformation mechanisms of environmental scenarios, biotic transformations, and 

their putative chemical lab scale systems. Our results suggest that different microbial strains, 

as well as in vitro reactions with cobalamin, all share a common initial reaction step of TCE 

degradation. For cobalamin, previous studies have brought forward evidence for single 

electron transfer as the initial mechanism.7,33 This suggests that the same mechanism may be 

active in biodegradation. Since these strains are only two among a large variety of 

dehalogenating micro-organisms, however, different mechanisms in strains with other 

dehalogenase enzymes cannot be excluded. Neumann et al. hypothesized that the degradation 

with a purified dehalogenase enzyme involved nucleophilic attack.6 With dual element 

isotope analysis there is now a tool available to test such hypotheses and investigate if 

different microbial strains involve different dechlorination mechanisms, despite using the 

same cofactor cobalamin. In addition, our approach even allows comparing in vitro model 

reagents with natural transformations. Such information is not only important for process 

understanding from a fundamental scientific point of view, it is also essential when using the 

dual isotope approach to assess the fate of chlorinated compounds in the environment.3,28  
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4.1 ABSTRACT 

 

This study investigated carbon and, for the first time, chlorine isotope fractionation of 

trichloroethene (TCE) and cis-dichloroethene (cis-DCE) during reductive dechlorination by 

cast zero-valent iron (ZVI). Hydrogenolysis and ß-dichloroelimination pathways occurred as 

parallel reactions, with ethene and ethane deriving from the ß-dichloroelimination pathway. 

Carbon isotope fractionation of TCE and cis-DCE was consistent for different batches of iron 

studied. Transformation of TCE and cis-DCE showed chlorine isotopic enrichment factors 

(Cl) of -2.6 ±0.1‰ (TCE) and -6.2 ±0.8‰ (cis-DCE), with AKIECl values of 1.0079 ±0.0005 

(TCE) and 1.0127 ±0.0023  (cis-DCE). This indicates that a C-Cl bond breakage is the rate-

limiting step in TCE and cis-DCE transformation by ZVI. Two approaches were investigated 

to evaluate if isotope fractionation analysis can distinguish the effectiveness of transformation 

by ZVI as opposed to natural biodegradation. (i) Dual isotope plots. Our study reports the first 

dual (C, Cl) element isotope plots for TCE and cis-DCE degradation by ZVI. The pattern for 

cis-DCE differs remarkably from that reported for biodegradation of the same compound by 

KB-1. This trend delineates an expedient approach to distinguish abiotic and biotic 

transformation, but needs to be confirmed in future studies. (ii)  Product-related isotope 

fractionation. Carbon isotope ratios of the hydrogenolysis product cis-DCE differed 

consistently by 10‰ compared to the ß-dichloroelimination products ethane and ethane 

providing a second line of evidence to differentiate abiotic or biotic degradation pathways. 

 

 



Chapter 4  Chloroethene degradation by zero valent iron  

 
67 

 

4.2 INTRODUCTION 

 

Chlorinated aliphatic hydrocarbons (CAHs) are used in a wide variety of applications as dry 

cleaning solvents and degreasers. Historical management of wastes containing CAHs has 

resulted in subsurface contamination, where the CAHs are often released as a mixture of 

dense non-aqueous phase liquids (DNAPL). Since DNAPLs have a higher density than water, 

they migrate vertically through the water table until they reach a confining layer forming 

pools (U.S. EPA, 2003). Moreover, within an aquifer, DNAPLs can be entrapped in fractures 

and matrix porosity constituting a long-term source of contamination of groundwater due to 

their low solubility (Dridi et al., 2009). 

Chlorinated solvents can have detrimental effects to both the environment and human health. 

Of particular relevance is trichloroethene (TCE). Although TCE may undergo natural or 

stimulated biodegradation, often intermediates such as cis-dichloroethene (cis-DCE) or vinyl 

chloride (VC) accumulate (lower pathway of Figure 1), which are more toxic than the parent 

compound. Different remediation techniques have therefore been explored for clean-up (Clark 

et al., 2003). In particular, in situ zero-valent iron (ZVI) permeable reactive barriers (PRB) 

have been implemented as cost effective technology for treatment (Dries et al., 2005; Liu et 

al., 2006). ZVI is capable of effectively removing CAHs through reductive dechlorination. 

One of the most commonly used ZVI in field applications of PRBs is cast iron, which 

contains impurities, in particular graphite (Slater et al., 2002). The virtue of transformation by 

ZVI is two-fold. On the one hand, in adequately designed barriers hydrogenolyis reactions 

(i.e., the lower pathway of Figure 1) tend to be more efficient than in biodegradation so that 

toxic intermediates do not accumulate (Arnold & Roberts, 2000; Elsner et al., 2008; Liu et al., 

2006). On the other hand, a second reductive dechlorination pathway is operative with ZVI: 

vicinal ß-dichloroelimination where two Cl substituents are cleaved off leading rapidly to 

harmless products such as ethene and ethane (upper pathway of Figure 1) (Arnold & Roberts, 

2000; Elsner et al. 2008). 
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Figure 1: Concurring pathways proposed in chlorinated ethane dehalogenation (Elsner et al. 2008). 

Biodegradation generally involves sequential hydrogenolysis to ethene (lower pathway), while abiotic 

dehalogenation includes also ß-dichloroelimination (upper pathway). 

 

ZVI barriers are usually installed within existing contaminant plumes and elevated 

concentrations of contaminants are observed downgradient of PRBs, even long after the 

system has been installed. The presence of contaminants downgradient of a barrier hinders the 

monitoring of the PRB based on concentration data alone. In order to evaluate the PRB 

performance accurately, discrimination between (i) hydraulic bypasses around the barrier, (ii) 

incomplete abiotic degradation within the PRB,  and (iii) biotic degradation stimulated by the 

resultant lower redox potential is necessary.  

Compound Specific Isotope Analysis (CSIA) bears potential to provide precisely such 

discrimination. When a transformation process takes place -such as biotic or abiotic reductive 

dechlorination- a significant kinetic isotope effect usually occurs, in contrast to non-

degradative processes (dilution, dispersion, and volatilization). As a consequence, reacting 

compounds become enriched in heavy isotopes, and the products formed are initially lighter 

than their parent compounds.  Previous studies have determined carbon isotopic enrichment 

factors ( C) during CAHs reaction with ZVI ranging from -5.7 to -25.3‰ for 

tetrachloroethene (PCE); -8.6 to -27‰ for TCE; -6.9 to -23.1‰ for cis-DCE; and -6.9 to 

-20.1‰ for VC (Dayan et al., 1999; Elsner et al., 2008; Slater et al., 2002; Vanstone et al., 

2004). The wide range of reported C values limits the use of carbon isotopic enrichment to 

assess the extent of degradation and to differentiate from biodegradation, since ranges of C 

values overlap (Liu, et al., 2010). In particular, it is unclear whether such variation is 

attributable to (i) fundamentally different chemical reaction mechanisms, (ii) the same 

mechanism, but different rate-limiting steps (i.e., mass transfer limitation) or (iii) mixed 

isotope fractionation of simultaneously ongoing degradation pathways. Combination with 

isotope analysis of other elements (chlorine or hydrogen) bears potential to provide additional 

insight into transformation mechanisms and is, therefore, expected to increase the insight 
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from isotope data. In particular, dual isotope plots of the reacting contaminant have the 

potential to distinguish different transformation pathways (Abe et al., 2009; Elsner et al., 

2005; Hunkeler et al., 2011). The recent development of continuous flow compound specific 

chlorine isotope analysis (Shouakar-Stash et al., 2006) has made such determinations of 

chlorine isotope fractionation and the use of dual carbon – chlorine isotope plots possible. 

Abe et al. (2009) successfully used the dual isotope approach (C/Cl) to distinguish between 

biotic aerobic oxidation and biotic reductive dechlorination reactions for cis-DCE and VC. 

The slopes (i.e., C/Cl) obtained for the reductive dechlorination biodegradation model for 

cis-DCE and VC were 12.3 and 14, respectively. In contrast, chlorine isotope fractionation 

values for degradation of chlorinated ethenes by ZVI have not been reported so far. 

Another approach to distinguish biotic and abiotic transformation of chlorinated ethenes does 

not involve chlorine isotope ratios, but relies instead on carbon isotope analysis of daughter 

compounds (Elsner et al., 2010, 2008). As sketched in Figure 1, the same products that are 

formed in sequential order during biodegradation are formed in parallel during abiotic 

degradation by ZVI. If these products show different isotope trends depending on whether 

they are formed in parallel or in sequence, the type of pathway that produced them and 

consequently their abiotic or biotic origin may be identified. Elsner et al. (2008) obtained that 

hydrogenolysis and ß-dichloroelimination byproducts during transformation by 

nanoparticulate ZVI differed consistently by 10‰ in carbon isotope values. A follow-up field 

study used these results to attempt for the first time a discrimination of abiotic versus biotic 

transformation in the field (Elsner et al., 2010). Therefore, two lines of evidence have recently 

been brought forward to discriminate between abiotic and biotic pathways: (i) evidence from 

dual isotope plots, (ii) evidence from product isotope ratios.  

In this study TCE and cis-DCE batch experiments were carried out in order to investigate a) 

carbon and chlorine isotope fractionation and b) carbon isotope fractionation of parent 

compounds and daughter products during their transformation with cast ZVI. Our motivation 

was to evaluate the potential of both approaches for assessing the effectiveness of ZVI barrier 

treatment. Our main objectives were i) to evaluate whether the concurring pathways of 

Figure 1, hydrogenolysis and ß-dichloroelimination were operative with this type of iron; ii) 

to determine not only carbon, but for the first time also chlorine isotope enrichment factors for 

abiotic transformation of TCE and cis-DCE by cast ZVI; (iii) to construct a Dual Element 

Isotope Plot of both carbon and chlorine isotope data and compare it to reported data on 
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biodegradation, and iv) to investigate the potential of carbon isotope values of daughter 

products as an independent line of evidence to delineate their abiotic versus biotic origin. 

4.3 MATERIALS AND METHODS 

4.3.1 Experimental Procedure  

 

Batch experiments were carried out in duplicates in closed 250 mL bottles equipped with 

Mininert valves (Supelco, Bellefonte, Pennsylvania, USA). Each bottle contained 20 ± 0.1 g 

of cast iron and 100 mL of aqueous solutions containing 60 mg/L of either TCE or cis-DCE, 

or 12 mg/L of VC, leaving 150 mL of headspace. To this end, TCE (99%, Merck, Darmstadt, 

Germany), cis-DCE (97%, Sigma-Aldrich, St. Louis, Missouri, USA) and VC (2000 mg/L in 

Methanol, Supelco, Bellefonte, Pennsylvania, USA) were used Control bottles were filled 

with 100 mL of aqueous chloroethene solutions, without addition of cast iron.   

The specific surface area of the cast iron determined by nitrogen gas adsorption (BET 

method) (Brunauer et al., 1938) was 0.7038 ± 0.0045 m2/g. Prior to the experiment the iron 

was acid-cleaned and dried inside an anaerobic chamber operated with a gas mixture of 90% 

N2 and 10% H2. During acid cleaning, the iron was soaked in 1N degassed HCl for 1 h, then 

rinsed five times with degassed deionized water, and dried and stored in the anaerobic 

chamber (Dayan et al., 1999; Matheson et al., 1994; Slater et al., 2002). The iron was 

weighted before and after the treatment to verify it was dry. Spike solutions of chlorinated 

ethenes were prepared by dissolving defined aliquots of pure compound in deionized water 

(Milli-Q Plus UV, Millipore™, Billerica, Massachusetts, USA), under vigorous stirring for 12 

hours and in the absence of a headspace. Bottles were filled with the iron and deionized water 

inside the glovebox, closed, taken out and spiked outside with anoxic stock solutions of the 

chlorinated ethene by injection through the Mininert Valve. 

After preparation, bottles were immediately covered with aluminum foil to avoid light 

oxidation and were rotated on a horizontal roller table (Wheaton, Millville, New Jersey, USA) 

at 60 rpm about their longitudinal axes to ensure rapid solid/water and water/air mass transfer. 

Samples were taken from the headspace of the reaction bottles through the Mininert valve by 

a Pressure-Lok® Analytical Syringe (VICI, Houston, Texas, USA) with sideport taper needle 

(1000 μL for compound concentration analysis, 250 to 2000 μL for carbon isotope analysis 

and 30 to 500 μL for chlorine isotope analysis). In order to keep reaction bottles over-

pressurized during the experiments, an equal volume of argon gas was injected into the 

reaction bottles before samples were withdrawn. Headspace sampling from the same bottle for 
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concentration, carbon and chlorine isotope measurements was performed right after each 

other, and samples were analyzed immediately to obtain values at the same time point. 

Duplicate experimental vials were sampled and analyzed right afterwards.  

4.3.2 Preliminary Experiments 

 

Prior to the Dual Element isotope study, cis-DCE and TCE preliminary experiments were 

performed in two series of 25 mL vials and analyzed for carbon isotope fractionation. Vials 

were filled with 2.5 ± 0.1 g of iron and with a previously prepared solution of TCE and cis-

DCE (one compound each series). Each pair of vials (duplicates) was prepared at different 

starting points, they were covered with aluminum foil and put in a rotator (Heidolph, 

Schwabach, Germany) (23 rpm). All vials were sacrificed at the same time, assuring the same 

storage conditions and that they were analyzed on the same day. Solutions were separated 

from the iron and split in two aliquots, one was kept at 4 ºC without headspace for 

concentration analysis performed the day after, and the second one was frozen with headspace 

for isotopic analysis (Elsner et al., 2006) and performed 10 days after. Controls were prepared 

at three different time points along the experiments to ensure that other degradation 

mechanisms or losses were not affecting the TCE concentration. 
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4.4 CONCENTRATION AND ISOTOPE ANALYSIS 

4.4.1 Dual Element isotope study  

 

Analysis of compound concentrations were performed on a gas chromatograph with flame 

ionization detector (GC/FID, Hewlett Packard, Palo Alto, California, USA), equipped with a 

60 m GS-Q (Agilent J&W, Santa Clara, California, USA) column, 0.32 mm inner diameter, 

using nitrogen as the carrier gas at 1.6 mL/min flow rate. The injector temperature was 200ºC 

and the temperature program used was of 34°C (9 min), increasing at 15°C/min to 53°C 

(2.70 min), at 13°C/min to 134°C (3.30 min) and at 10°C/min to 190°C (23 min). This 

temperature program allowed separation of the chlorinated ethene byproducts, methane, 

ethane, ethene, acetylene, propene, n-propane, propyne, n-butane as well as of the chlorinated 

ethylenes VC, cis-DCE and TCE. Before the start of the experiment a four point calibration 

for TCE, cis-DCE and VC was conducted, and one point calibrations were conducted daily 

during the experiment by injecting standard solutions of the three compounds. For methane, 

ethane, ethene, acetylene, propene, n-propane, propyne and n-butane an initial one point 

calibration was done before the start of the experiment and daily one-point calibrations were 

performed during the experiment by injecting gas mixtures of standards with 15 ppm of each 

compound in helium (Scotty® Analyzed Gases, Sigma-Aldrich, St. Louis, Missouri, USA). 

The resulting total relative error in concentrations is estimated as ± 10%. 

Carbon isotope analysis of TCE, cis-DCE and their byproducts were conducted by  

Compound Specific Isotope Analysis (CSIA) by injection of headspace samples on a GC-C-

IRMS system (Thermo Fisher Scientific, Waltham, Massachusetts, USA) consisting of a 

Trace GC coupled to a MAT 253 IRMS through a GC/C III combustion interface. The gas 

chromatograph was equipped with a 60 m GS-Q column (Agilent J&W, Santa Clara, 

California, USA), 0.32 mm inner diameter, and operated with He carrier gas at 1.4 mL/min. 

The temperature program was similar to the one used for concentration analysis, 34°C 

(9 min), increasing at 5°C/min to 53°C, at 13°C/min to 134°C (3.30 min) and at 10°C/min to 

190°C (21 min). Carbon isotopic signatures (δ13C) of TCE and cis-DCE internal standards 

used were -27.07‰ and -25.48‰ respectively, characterized against international reference 

materials (referred to the Vienna Pee Dee Belemnite international standard (VPDB)). The 

analytical uncertainty 2σ of carbon isotopic measurements was ± 0.5‰ (Elsner et al., 2012). 

Chlorine isotope analyses of TCE and cis-DCE were determined according to a method 

adapted from Shouakar-Stash et al. (2006). This method is a new approach for GC/IRMS 
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which does not include a combustion step; instead, intact chlorinated ethene molecules are 

directly transferred to the IRMS source through the He carrier stream, ionized and fragmented 

for the isotopic ratio measurement. In order to correct for instrument drifts, values are 

measured in comparison to reference peaks which are introduced via a dual inlet system 

consisting of the same target analyte and converted to delta values relative to the international 

SMOC (Standard Mean Ocean Chloride) standard (Bernstein et al., 2011). 

In this study measurements were conducted on a GC-IRMS system (Thermo Scientific, 

Waltham, Massachusetts, USA) consisting of a Trace GC that was connected to a MAT 253 

IRMS with dual inlet system via a heated transfer line. For the simultaneous determination of 

TCE and cis-DCE (product) a peak jump routine was performed, with cis-DCE monitoring 

gas peaks added at the beginning and TCE monitoring gas peaks added at the end of each 

analytic run. The gas chromatograph was equipped with a 30 m VOCOL column (Supelco, 

Bellefonte, Pennsylvania, USA) and 0.25 mm inner diameter, with a film thickness of 1.5 μm 

and operated with He carrier gas at 1.4 mL/min. The GC program used was 50°C (7 min), 

increasing at 60°C/min to 70°C (2.70 min) and at 80°C/min to 140°C (0.10 min). External 

standards were measured daily for calibration of δ37Cl values against the SMOC scale 

(Bernstein et al., 2011). They had been characterized in the Department of Earth Sciences, 

University of Waterloo. TCE Eil-1 and Eil-2 internal standards (supplied by Orfan Shouakar-

Stash, Canada) were +3.05 and -2.7‰ respectively, regarding the international standard 

SMOC. The chlorine isotopic signature (δ37Cl) of cis-DCE internal standards used, cisF and 

IS-63 (supplied by Orfan Shouakar-Stash, Canada), is -1.52 and +0.07‰ respectively. The 

analytical uncertainty of chlorine isotopic measurements was ± 0.2‰ (Bernstein et al., 2011). 

4.4.2 Preliminary Experiments 

 

Headspace (HS) concentration analysis was performed using a FOCUS gas chromatograph 

coupled with a DSQ II mass spectrometer (GC-MS) (Thermo Fisher Scientific, Waltham, 

Massachusetts, USA). The GC was equipped with a split/splitless injector and a 60 m, 

0.32 mm inner diameter DB-624 capillary column (Agilent, Santa Clara, California, USA) 

with a film thickness of 1.8 μm and operated with He carrier gas at 4.0 mL/min. The 

following temperature program was used: 60 ºC (2 min) and then increased at 8 ºC/min to 

220 ºC (5 min). The injector was set at 220 °C. The compounds were identified in comparison 

to retention times and mass spectrum of calibration standards, and the concentrations were 

quantified using a set of multi-component external standards at different concentrations. Low 
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molecular weight byproducts from cis-DCE degradation (ethene, ethane, methane) were semi-

quantitatively determined by a gas chromatograph with a thermal conductivity detector (GC-

TCD) (5890 Hewlet Packard, Palo Alto, California, USA). The following temperature 

program was used: 35 ºC (5 min) and then increased at 25 ºC/min to 220 ºC (5 min). A 

headspace volume of 1 mL was manually injected with a gas syringe (Hamilton).  

Carbon isotope ratios were determined using headspace solid-phase microextraction (HS-

SPME) and a GC-C-IRMS system consisting of a Trace GC Ultra equipped with a splitless 

injector, coupled to a Delta V Advantage isotope ratio mass spectrometer through a 

combustion interface. The method and equipment used are described in detail in Palau et al. 

(2007). A 60 m long column and 0.32 mm inner diameter (SPB-624 Supelco, Bellefonte, 

Pennsylvania, USA) with a film thickness of 1.8 μm was used with He as carrier gas with a 

flow rate of 2.2 mL/min. The temperature program was: 60 ºC (5 min), increase at 8 ºC/min to 

165 ºC and then at 25 ºC/min to 220 ºC (1 min). The injector was set at 250 ºC at a split ratio 

of 5:1. 

Prior to extraction, samples were diluted to 20 μg/L with Milli-Q water to a final volume of 

100 mL. Then, the samples were put in agitation and the SPME fiber was introduced through 

the septum. The SPME fiber remained in the sample headspace during 15 minutes after which 

it was injected manually into the GC injector. Accuracy of isotope analysis was daily verified 

by measurements of laboratory standards characterized against international reference 

materials (referred to the VPDB international standard). The carbon isotopic signature (δ13C) 

of the TCE and cis-DCE laboratory standard are -30.8 ± 0.2‰ and -26.1 ± 0.2‰, respectively 

(Palau et al., 2007).  

 

4.5 EVALUATION OF C AND Cl ISOTOPE FRACTIONATION 

 

Carbon isotopic enrichment factor (C) was evaluated according to a Rayleigh regression not 

forced through the origin (Scott et al., 2004): 

R/R0= (1000+δ13C)/(1000+δ13C0)=f(ԐC/(1000)      (1) 

where R0 and R are carbon isotope ratios at the beginning and at a given time (t) respectively, 

δ13C0 and δ13C are the same values in delta notation and f is the fraction of substrate 

remaining at time t. According to Equation 1, if the C has been obtained in laboratory 

experiments for a specific transformation, if the initial (= “source”) δ13C0 is known and if 
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δ13C is determined at a given time point without further knowledge of the extent of 

transformation,  isotope data alone allows estimating the fraction of remaining reactant (f). 

This approach may be used to quantify the real extent of a specific transformation reaction in 

the field. The approach is independent of estimations based on concentration ratios of parent 

and daughter compounds, which are subject to sorption, dilution and further degradation so 

that these ratios may not show the actual extent of degradation.  

The specific isotope fractionation pattern of the byproducts can be expressed by determining 

the product-specific isotope fractionation (substrateproduct). According to Elsner et al. (2008), 

it can be calculated through the following abbreviated equation:  

substrateproduct= δ13C0,product – δ13C0,substrate = D(δ13C) + C         (2) 

where D(δ13C) is the deviation that a product can experience from the weighted average of all 

products, expressed as D(δ13C)= δ13Cproduct - δ13C product, average. The D(δ13C) has been 

obtained from the iteration and graphical representation with “Sigma Plot 12” of the following 

equation (Elsner et al., 2008): 

(1000+δ13Cproduct)/(1000+δ13C0,substrate) = (1+(D(δ13C)/1000)) x ((1-f ԐC/(1000+1))/(1-f))  (3) 

Equation 2 allows the determination of product-specific isotope fractionation even without 

knowledge of absolute reaction rates, product distribution, or molar balances, since they rely 

solely on isotope measurements of the substrate and a given product (Elsner et al., 2008).  

Elsner and Hunkeler (2008) demonstrated that chlorine isotope fractionation also follows in 

good approximation a Rayleigh trend despite a high abundance of 37Cl compared to 13C. Thus 

the Rayleigh regression was used again to evaluate the chlorine isotope data. An apparent 

kinetic chlorine isotope effect (AKIE) may be estimated from the following equation (Elsner 

and Hunkeler, 2008): 

AKIECl=1/(1+(n·Cl/1000))              (4) 

where “n” is the total number of chlorine atoms which are considered to be located in the 

reactive positions, with negligible secondary isotope effects. 

Dual element isotope fractionation can be compared by (a) either considering the ratio of 

C/Cl or, alternatively, (b) by plotting changes in isotope values δ13C/ δ37Cl (as shown 

examplary for MTBE with δ2H/δ13C in Elsner et al. (2007)).  
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4.6 RESULTS AND DISCUSSION 

 

4.6.1 Reactivity Trends and product formation  

 

Suspensions of 200 g/L of ZVI achieved 50% transformation of TCE leading to the formation 

of dehalogenated products in almost 3 days (Figure 2A). Under identical experimental 

conditions, observed half-lives for cis-DCE and VC were more than 50 and 80 days, 

respectively (Table S1). Figure 2 shows the kinetics for disappearance of TCE and 

simultaneous product formation in the dual element isotope experiment. Transformation rates 

decreased in the order TCE > cis-DCE > VC (Figure 2, Table S1). It can therefore be 

expected that isotope ratios of cis-DCE are primarily influenced by its formation from TCE, 

rather than by its further degradation to VC. While the observed trend in transformation rates 

is consistent with earlier studies by Dayan et al. (1999), Elsner et al. (2008), Gillham and 

O’Hannesin (1994) and Hunkeler et al. (2011), the opposite trend (TCE < cis-DCE) was 

observed in preliminary experiments (Table S1) and is consistent with previous studies by 

Arnold and Roberts (2000) and Elsner et al (2008). At present, the reasons for these reactivity 

trends remain imperfectly understood. 

Even though mass balance were typically not closed, the detection of several products allows 

conclusions about concurring transformation pathways.  All experiments yielded ethene, 

ethane and methane as final products of the degradation sequence, with small amounts of cis-

DCE, acetylene and VC intermediates produced during TCE degradation (Figure 2 A-B), and 

acetylene and VC from cis-DCE degradation. Complete products are listed in Table 1. 

According to Arnold and Roberts (2000) and Prommer et al. (2008), ethene may be produced 

either (i) from hydrogenation of acetylene, previously formed through the ß-

dichloroelimination pathway or (ii) through VC hydrogenolysis. The evolution of VC and 

acetylene concentration profiles, however, suggests that acetylene is the main responsible 

intermediate of ethene formation, (i) due to an extremely rapid acetylene concentration 

decrease while ethene appeared (Figure 2B), and (ii) because VC concentrations, in contrast, 

accumulated over time. These observations point out that both hydrogenolysis and ß-

dichloroelimination pathways (Figure 1) are occurring simultaneously as parallel reactions 

rather than as consecutive reactions and that ethene and ethane are produced primarily 

through the ß-dichloroelimination pathway. As observed by Burris et al. (1995) traces of 

methane were formed. Also, traces of longer chain hydrocarbons were observed, as C3 

(propene, propane) and C4 (n-butane), probably coming from a concurrent acetylene 
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degradation pathway (Arnold and Roberts, 2000; Elsner et al., 2008) (Figure 1). Only the 

20% of degraded TCE was transformed to cis-DCE, which, in his turn was transformed with 

much slower rate to VC (see reactivity trends above).  

 

 

 

 

4.7 RAYLEIGH FITS OF ISOTOPE FRACTIONATION  

 

The enrichment factors C for TCE in both preliminary and Dual Element isotope 

experiments are within error (Table 1 and Figure 3A), and although C for cis-DCE are 

distinguishable, their error ranges are also close (Table 1 and Figure 4A). This indicates that 

the carbon isotope fractionation that we observed in this study is fairly consistent with this 

type of iron, even despite different reactivity trends (see above and Table S1). VC was not 

evaluated, since it was hardly transformed. Literature carbon isotopic enrichment factors for 

TCE exhibit a wide range of almost 20‰, depending on the type of ZVI-material (-8.6 to 

-27‰) (Dayan et al., 1999; Slater et al., 2002; Elsner et al., 2008). Therefore, prior to 

B 

A 

Figure 2:  

2A) Changes in concentration of TCE 

(panel A), from Dual Element TCE 

experiments, and its byproducts over 

time (A and B).  

 

2B) Panel B is a zoom of Panel A 

without TCE and cis-DCE to see by-

products curve shape clearly. Error 

bars indicate total instrumental 

uncertainty of ±10%. 
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applying the C at field scale to evaluate the extent of the reductive dechlorination, the C 

value produced by a specific ZVI-material should be accurately determined. For conservative 

estimates of degradation in the field according to a modified version of the Rayleigh equation 

(Eq. 1), the more negative value of epsilon should be chosen (Hunkeler et al., 2008).  

 

Table 1. Summary of the Rayleigh fractionation for carbon and chlorine, the carbon product-related 

fractionation, and all the byproducts detected for TCE and cis-DCE Dual Element and preliminary 

experiments, and for VC Dual Element experiment. 
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Figure 3:  

3A) Carbon isotope values of residual TCE fraction in 

a double logarithmic plot over the respective 

concentrations. The isotope enrichment factor  can be 

calculated from the slope of the regression line 

according to Equation 1. Triangles represent TCE 

Dual Element combined experiments and crosses 

represent TCE preliminary combined experiments.  

3B) Chlorine isotope values of residual TCE fraction in 

a double logarithmic plot over the respective 

concentrations. The isotope enrichment factor  has 

been obtained according to Equation 1. In 3A and 3B, 

error bars represent the calculated error due to a total 

instrumental uncertainty of 0.5‰ for compound-

specific carbon isotope measurements, and of 0.2‰ for 

compound specific chlorine isotope measurements.  

Figure 4:  

4A) Carbon isotope values of residual cis-DCE fraction 

in a double logarithmic plot over the respective 

concentrations. The isotope enrichment factor  can be 

calculated from the slope of the regression line 

according to Equation 1. Black squares represent cis-

DCE Dual Element combined experiments and white 

squares represent cis-DCE preliminary combined 

experiments.  

 4B) Chlorine isotope values of residual cis-DCE 

fraction in a double logarithmic plot over the 

respective concentrations. The isotope enrichment 

factor  has been obtained according to Equation 1. In 

4A and 4B, error bars represent the calculated error 

due to a total instrumental uncertainty of 0.5‰ for 

compound-specific carbon isotope measurements, and 

of 0.2‰ for compound specific chlorine isotope 

measurements.  
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Our study also reports the first chlorine isotope fractionation data associated with ZVI 

transformation. Results show that transformation of TCE and cis-DCE was associated with 

pronounced chlorine isotope fractionation, -2.6 ± 0.1‰ for TCE and -6.2 ± 0.8‰ for cis-DCE 

(see Table 1 and Figures 3B and 4B). This chlorine isotope fractionation may provide an 

additional line of evidence for degradation in the field.  

Following Equation 4, it is also possible to calculate AKIECl from TCE and cis-DCE dual 

element isotope experiments resulting in values of 1.0079 ± 0.0005 and 1.0127 ± 0.0023, 

respectively. Compared to other studies (Dybala-Defratyka et al., 2008; Dybala-Defratyka et 

al., 2004; Hofstetter et al., 2007; Wolfsberg et al., 2010) these numbers are typical, or even at 

the higher end of ranges reported for chlorine isotope effects. This indicates that a C-Cl bond 

is cleaved in the rate-determining step of the ZVI-catalyzed transformation and that this 

intrinsic isotope effect is not significantly masked by mass transfer, adsorption, etc.. In 

particular, our estimated values are much higher than the AKIECl = 1.003 calculated for 

biotransformation of cis-DCE by the mixed culture KB-1 (Abe et al., 2009) suggesting 

potential differences in the underlying transformation mechanism.  

In contrast to what Hunkeler et al. (2009) predicted, cis-DCE, as a TCE product, contained 

slightly more 37Cl compared to TCE from which it was formed (Figure 5) showing an initial 

enrichment in 37Cl instead of 35Cl of the product cis-DCE . The reason of this observation in 

the δ37Cl values may be an inverse secondary isotope effect or an unequal distribution of 

isotope ratios in different positions of TCE so that the position containing more 37Cl is 

preferably transferred to the product pool. An inverse secondary isotope effect can occur, for 

instance, if an intermediate of the reaction has a more cramped coordination sphere, e.g. when 

the carbon changes from sp2 to sp3 hybridisation. In this case the positions adjacent to reactive 

bonds bonds have stiffer vibrations and preferably contain heavy isotopes   These preliminary 

results give an exciting glimpse on the potential insight that can be obtained from chlorine 

isotope measurements to investigate the reaction chemistry of TCE and cis-DCE in future 

studies.  
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4.8 DUAL ISOTOPE APPROACH 

 

Figure 6 shows a dual element isotope plot of (a) the TCE transformation experiment with 

δ13C and δ37Cl values of TCE and one of its products, cis-DCE (Figure 6A); and (b) the 

analogous plot for transformation of cis-DCE (Figure 6B). To our knowledge, these are the 

first dual (C, Cl) isotope plots reported for chlorinated ethene transformation by ZVI. Figure 

6A shows that the graphs for TCE and cis-DCE show a parallel trend, as predicted for cases 

when further transformation of cis-DCE is very slow or even negligible (Hunkeler et al., 

2009)  

To evaluate whether such a dual element isotope plot can discriminate between abiotic and 

biotic degradation reactions, a comparison to dual element isotope data on biodegradation was 

attempted. For TCE (Figure 6A), no such reference data is available yet. In the case of cis-

DCE, however, the dual element isotope plot can be compared to data of Abe et al. (2009) on 

reductive dechlorination by the mixed culture KB-1. The slope of 3.1 ± 0.2 observed in our 

experiments is almost 4 times smaller than that observed by Abe et al. (2009) (11.4 ± 0.6) 

(Figure 6B). This observation provides further evidence that the small isotope fractionation 

observed with KB-1 by Abe et al. (2009) is not primarily attributable to masking / 

commitment to catalysis, but that fundamentally different chemical transformation 

mechanisms are at work. If this trend can be confirmed, then our results would delineate an 

expedient new way to discriminate biodegradation and abiotic reductive dechlorination from a 

PRB in the field. To this end, however, more data is necessary to substantiate these initial 

patterns. 

Figure 5:  

Changes in chlorine isotope values of 

TCE (triangles), as substrate, and cis-

DCE (squares), as product, during TCE 

combined Dual Element experiments. 

Error bars represent the total 

instrumental uncertainty of 0.2‰ for 

compound-specific chlorine isotope 

measurements. 
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4.9 PRODUCT RELATED ISOTOPE FRACTIONATION 

 

Carbon isotope ratios of cis-DCE, ethene and ethane were evaluated as a second, independent 

approach to distinguish abiotic from biotic chlorinated ethene degradation. Figure 7 shows 

that products were initially depleted in 13C compared to their parent compound, but 

subsequently became enriched in 13C reflecting the enrichment trend of the substance from 

which they were formed. VC concentrations were too small for precise carbon isotope 

analysis. The product-specific isotope fractionation (substrateproduct) revealed a notable 

difference of about 10‰ between ß-dichloroelimination (ethene, ethane) and hydrogenolysis 

(cis-DCE) products. (Figure 7 and Table 1). This 10‰ difference in δ13C of products formed 

with ZVI confirms the pattern observed in previous studies (Elsner et al., 2008). As brought 

forward in Elsner et al., (2008, 2010) these parallel product curves may be considered 

characteristic of abiotic degradation, since they contrast with trends during biodegradation, 

where products are generated in sequence and, therefore, different isotope patterns are 

obtained that vary in time and space (Elsner et al., 2008). Our study, therefore, confirms the 

B 

A Figure 6:  

6A) Dual isotope plot δ13C versus 

δ37Cl obtained from TCE Dual 

Element combined experiments. The 

slope of TCE (triangles) and cis-DCE 

as a product (squares), are 

represented.  

 

6B) Dual isotope plot δ13C versus δ37Cl 

obtained from cis-DCE Dual Element 

combined experiments. The slope of 

the cis-DCE as a substrate, is 

represented and compared to the Abe 

et al. (2009) slope obtained for the 

same compound and degraded 

through reductive dechlorination by 

the mixed culture KB-1.  

Error bars in 6A and 6B represent the 

total instrumental uncertainty of 0.5‰ 

and 0.2‰ for compound-specific 

carbon and chlorine isotope 

measurements respectively. 
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potential of product isotope values to distinguish biotic from abiotic degradation with ZVI and 

to serve as an indicator of abiotic degradation processes in the field.  

 

 

 

4.10 CONCLUSIONS 

 

This study presents the very first results on chlorine isotope fractionation of TCE and cis-

DCE in transformation with ZVI. Apparent kinetic isotope effects AKIECl of 1.0079 ±0.0005 

and 1.0127 ±0.0023 for TCE and cis-DCE, respectively, indicate that (i) a C-Cl bond was 

broken in the rate-determining step, and (ii) that the intrinsic effect was therefore not 

significantly masked by other processes. Chlorine isotope analyses therefore bears great 

potential to investigate reaction mechanisms of CAHs in future studies. 

This study also presents the first dual element (C, Cl) isotope plots of TCE and cis-DCE 

isotope ratios during degradation by cast zero-valent iron. Pronounced differences are visible 

in comparison to a dual element (C, Cl) isotope slope obtained for biodegradaion of cis-DCE 

by the dehalogenating mixed culture KB-1 (Abe et al., 2009). The biotic plot had a slope 4 

times higher than the one from our cis-DCE abiotic pattern delineating a promising new way 

to discriminate biodegradation and abiotic reductive dechlorination from a PRB in the field. 

More data is necessary, however, to show whether these initial patterns can be reproduced in 

future studies with different organisms and different types of ZVI. 

Product-specific carbon isotope fractionation (Ɛsubstrateproduct) revealed a notable difference 

between the fractionation expressed in ß-dichloroelimination (ethane, ethane) and in 

hydrogenolysis (cis-DCE) daughter products. The same difference (10‰) was observed in 

10‰ 10‰ 

Figure 7:  

Isotope values of TCE and its by-

products, with a 10‰ isotope difference 

between hydrogenolysis cis-DCE 

byproduct and ß-dichloroelimination 

ethylene and ethane by-products. Curves 

are fits of the data according to 

Equations 1 and 2. Error bars represent 

the total instrumental uncertainty of 

0.5‰ for compound-specific carbon 

isotope measurements.  
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recent work (Elsner et al., 2008) suggesting that this product pattern is consistent. The pattern 

is indicative of abiotic transformation by ZVI, because the constant discrimination between 

products occurs only in the presence of ß-dichloroelimination, which takes place only during 

abiotic transformation with ZVI. Product-related carbon isotope fractionation may therefore 

provide a second, independent line of evidence to distinguish biotic from abiotic degradation 

with ZVI.  

Taken together, our study brings forward two promising approaches to distinguish biotic and 

abiotic transformation by ZVI and, therefore, to assess the effectiveness of ZVI treatment in 

field settings: (i) evidence from dual element isotope plots of chlorinated ethene parent 

compounds and (ii) evidence from carbon isotope ratios of their reaction products. We expect 

that these findings will increase the potential of carbon and chlorine isotopic data for 

monitoring a ZVI PRB treatment in the field. 
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5 
 

5 GENERAL CONCLUSIONS 
 

 

Dechlorination reactions in the environment are highly relevant processes, and there are clear 

research needs for a better understanding of the underlying chemical mechanisms. This 

dissertation elucidates the potential of novel analytical methods to measure carbon and 

chlorine isotope effects as an innovative technique to approach the present knowledge gap.  

Before this work started, a theoretical basis to evaluate isotope ratios and to quantify isotope 

fractionation was established for chloroethenes as starting materials. But it was unclear how 

isotope effects of chlorine are manifested in the respective products during stepwise reductive 

dechlorination. Such information can be essential for a conclusive interpretation when 

chlorine isotope measurements are applied for field assessments. Moreover, this study shows 

that a careful interpretation of the experimental data of product isotope signatures contains 

even more fundamental information towards position specific chlorine isotope effects of 

chloroethenes and mechanistic attributes directly in biotic dechlorination reactions. The 

developed mathematical framework retains the potential for even more stringent 

mechanistical interpretations, for instance when additional information of chlorine isotope 

signatures on individual positions of a starting material is available.  

Furthermore, this dissertation presents a new approach to combine carbon and chlorine 

isotope effects. An exciting feature of the created dual isotope is the possibility to directly 

compare transformation mechanisms of environmental processes, biotic transformations, and 

their putative chemical model systems. In a first application of this approach, this work shows 

that that different microbial strains, as well as in vitro reactions with cobalamin, all share a 

common initial reaction step of TCE degradation and suggests that the same mechanism are 

active in these transformations. Furthermore, the results point out differences in the rate-

determining step of reductive dehalogenation of TCE when comparing the model system 

cobaloxime with cobalamin or biodegradation. The study demonstrates the great potential of 

dual element isotope analysis of carbon and chlorine as a robust indicator to compare 

underlying mechanisms of different reaction systems. Therefore it opens the perspective to 
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investigate further reactions with known initial mechanisms and to understand the authenticity 

of mimicking reagents for the actual system.  

The two dimensional isotope assessments have already been applied for other elements (e.g. 

2H, 14N 16O) in contaminant hydrology to identify natural transformation and different 

reaction pathways in the environment. Now that such dual isotope studies are possible for 

carbon and chlorine in chloroethenes, it can also be established as a geochemical tool. Chapter 

4 of this thesis provides the first reference experiments to use this approach for the common 

remediation strategy in permeable reactive barriers (PRBs) with zero valent iron (ZVI). 

Dechlorination reactions were first conducted in batch experiments with the same zero valent 

material applied in field. Carbon and chlorine isotope effects were then measured for 

substrates and residues of chlorinated ethylenes. Two discrete approaches were explored here 

to distinguish the effectiveness of transformation by ZVI as opposed to natural 

biodegradation, with the dual isotope approach and product related carbon isotope 

fractionation. These findings can now be applied to trace the sustainable removal of 

contaminants at installations of PRBs with ZVI in the field.  

Overall, the presented work demonstrates the potential of compound-specific isotope analysis 

of carbon and chlorine as a versatile tool for field assessments and emphasizes its 

applicability to approach fundamental questions regarding chemical mechanisms of 

chlorinated organic compounds. At the moment, the new method of chlorine isotope analysis 

with GC-IRMS is limited to a narrow range of masses of target compounds. However, it 

allows similar investigations other important chlorinated pollutants, such as chloroethanes. 

Furthermore this high-precision technique sets a first benchmark to assign chlorine isotope 

analysis with the GC-qMS methods for a broad variety of chlorinated compounds of interest. 
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A2.1 MATERIALS AND METHODS 

 

Biodegradation of PCE with Desulfitobacterium Strain Viet-1 

Biodegradation experiments of PCE were carried out using the microbial strain 

Desulfitobacrterium strain VIET-1, which reductively dechlorinates PCE to the final product 

TCE. It was gratefully provided by Frank Loeffler and his collection of Microorganisms at 

University of Tennessee and it was cultured according to DSMZ instructions, medium 720, 

with PCE as the electron acceptor. The growth medium for the experiment was prepared in 

glass bottles (250 ml), equipped with Mininert valves (Supelco, Bellefonte, Pennsylvania, 

USA), and filled with 150 ml of medium, leaving a headspace of 40%. The bottles were 

amended with 10 µl of neat PCE and constantly shaken on a horizontal shaker at 120 rpm for 

four days. Inoculation was carried out by adding 20 ml of active culture, which was 

previously grown in a similar medium. To eliminate carry-over of the degradation product 

(TCE) to the fresh medium, the media with the culture that was used for inoculation was 

flushed with N2/CO2 gas stream (80/20%) for 5 hours prior transferring to the fresh medium. 

A complete removal of chloroethenes after degassing was controlled by GC-FID 

measurements. This procedure was followed for three biological replicates. Abiotic control 

batches were prepared similarly, but without inoculation of the active culture. Sampling was 

carried out 20 min after inoculation for the initial sample, and at given time points along the 

degradation. A total sample volume of 7 ml was taken with a glass syringe (Hamilton), which 

was distributed in portions of 1 ml each into 7 amber vials with an active volume of 1.6 ml. In 

order to stop biological activity, the vials were spiked with 50 µl of NaOH (1M) and closed 

with PTFE-lined screw caps. All vials were frozen upside down for subsequent isotope 

analysis, except one vial, which was used immediately for concentration analysis.  

 

Biodegradation of TCE with Geobacter lovleyi Strain SZ 

Biodegradation experiments of TCE were carried out using the microbial strain Geobacter 

lovleyi strain SZ, purchased from the German Collection of Microorganisms and Cell 

Cultures (DSMZ, Germany). This strain reductively dechlorinates TCE to the final product 

cis-DCE. A growth medium was prepared according to DSMZ instructions, medium 732, 

with the exception that neither hexadecane nor perchloroethylene was added to the medium. 

The growth medium for the experiment was prepared in glass bottles (250 ml), equipped with 

Mininert valves (Supelco, Bellefonte, Pennsylvania, USA), and filled with 150 ml of medium, 
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leaving a headspace of 40%. The bottles were amended with 10 µl of neat TCE and constantly 

shaken on a horizontal shaker at 120 rpm for four days. Inoculation was carried out by adding 

14 ml of active culture, which was previously grown in a similar medium. To eliminate carry-

over of the degradation product (cis-DCE) to the fresh medium, the media with the culture 

that was used for inoculation was flushed with N2/CO2 gas stream (80/20%) for 5 hours prior 

transferring to the fresh medium. A complete removal of chloroethenes after degassing was 

controlled by GC-FID measurements. This procedure was followed for three biological 

replicates. Abiotic control batches were prepared similarly, but without inoculation of the 

active culture. Sampling was carried out 20 min after inoculation for the initial sample, and at 

given time points along the degradation. A total sample volume of 7 ml was taken with a glass 

syringe (Hamilton), which was distributed in portions of 1 ml each into 7 amber vials with an 

active volume of 1.6 ml. In order to stop biological activity, the vials were spiked with 50 µl 

of NaOH (1M) and closed with PTFE-lined screw caps. All vials were frozen upside down for 

subsequent isotope analysis, except one vial, which was used immediately for concentration 

analysis.  

Concentration measurements 

PCE, TCE and cis-DCE concentrations in the biodegradation experiments were measured 

by a gas chromatograph equipped with flame ionization detector (GC-FID, Hewlett Packard 

5890 Series II) equipped with a 30 m VOCOL column (Supelco, Bellefonte, Pennsylvania, 

USA) 0.25 mm inner diameter, with a film thickness of 1.5 µm and operated with nitrogen as 

carrier gas at 1.6 ml/min. Automated headspace injections of 1 ml from 10 ml headspace vials 

were carried out using a Pal™ autosampler (CTC Analytics), and an injector temperature on 

the GC of 200 °C. Calibrations were performed along each measurement using solutions of 

the chloroethenes with concentrations between 4.0 and 383.9 mg/l. The resulting total relative 

error in concentrations was estimated as ±10%. 

Stable Carbon Isotope Analysis  

Compound Specific Isotope Analysis (CSIA) for carbon was conducted by injection of 

headspace samples on a GC-IRMS system (Thermo Fisher Scientific, Waltham, 

Massachusetts, USA) consisting of a Trace GC with a Pal™ autosampler (CTC Analytics), 

coupled to a MAT 253 IRMS through a GC/C III combustion interface. The gas 

chromatograph was equipped with a 30 m VOCOL column (Supelco, Bellefonte, 

Pennsylvania, USA), 0.25 mm inner diameter, with a film thickness of 1.5 µm and operated 

with He carrier gas at 1.4 ml/min. The GC program started at 85 °C (8 min) and increased at 
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60 °C/min to 205 °C (1 min). Internal standards of PCE, TCE and cis-DCE were used along 

the measurements. The analytical uncertainty 2σ of carbon isotope analysis was ± 0.5‰.  

Stable Chlorine Isotope Analysis  

Chlorine isotope analysis of TCE was performed according to a method adapted from 

Shouakar-Stash et al. (2006).23 PCE TCE, and cis-DCE are transferred from a Trace-GC 

(Thermo Scientific, Waltham, Massachusetts, USA) to the MAT 253 IRMS through the He 

carrier stream, where the chloroethenes are ionized and fragmented for isotope ratio 

measurements. The measurements were conducted at masses m/z = 94, 96 for PCE, m/z = 95, 

97 for TCE, m/z = 96, 98 for cis-DCE. The gas chromatograph was equipped with a 30 m 

VOCOL column (Supelco, Bellefonte, Pennsylvania, USA) with 0.25 mm inner diameter, a 

film thickness of 1.5 µm and operated with a He carrier gas at 1.4 ml/min. The GC program 

used started at 50 °C (7 min), increasing at 60 °C/min to 70 °C (2.70 min) and at 80 °C/min to 

140 °C (0.10 min). External standards were measured daily for calibration of 37Cl values 

according to Bernstein et al.29  

Briefly, a reference gas of each target analyte is introduced via a dual inlet system. In order 

to enable isotope measurements of two chloroethnenes in one run, the chloroethene with the 

shorter retention time was introduced at the beginning of each run from one bellow of the dual 

inlet, while at the end of each run the chloroethene with the longer retention time was 

introduced from the other bellow. The conversion to delta values relative to the international 

reference Standard Mean Ocean Chloride (SMOC) was performed by an external two-point 

calibration analysing chloroethene-standards as  previously characterized in the Department 

of Earth Sciences, University of Waterloo.23 Each of these standards was added in triplicates 

before, during and at the end of each sequence, in order to calibrate the obtained values of the 

samples with respect to SMOC. The analytical uncertainty 2σ of chlorine isotopic 

measurements was ± 0.2‰. 
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A2.2 EQUATIONS 

The following considerations are based on the one hand on Rayleigh equation, as it is well 

established to express enrichment factors  for a certain element E in a substrate along a 

certain progress of reaction f according to equation (9) in the manuscript with 

fEE hh ln0            (S1) 

On the other hand, an isotopic mass balance can be performed for any reaction in a closed 

system. Here, the reactant contains mS atoms of element E in its structure. 0Eh  is the 

original reactant isotope ratio, whereas Eh  is the ratio when reaction has occurred so that 

only a fraction f of reactant remains. A fraction of (1-f) has then been converted to one or 

more (up to n) products; mi is the number of atoms of E inside the structure of product i, 

iP

h E ,  is the respective product’s isotope value. In the Manuscript, the respective relationship 

is given with equation (11) with 
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Dechlorination reactions with PCE 

In the case of PCE, molecular positions are chemically equivalent so that the same chlorine 

atoms may potentially end up in TCE or Cl-. Isotopes then partition according to the kinetic 

isotope effects associated with the formation of either product, i = 1/KIEi. As a consequence, 

in both cases their isotope ratios relate according to 
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This can be expressed in the delta notation as 
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with Diff expressing the ratio between the primary isotope effect (in the formation of Cl-) and 

the average secondary isotope effects (in the three molecular positions which become TCE). 

This equation can be rearranged and simplified according to 

)1(1
21
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This means the difference between primary and secondary isotope effects Diff is directly 

obtained from product isotope values, because chlorine isotope ratios of Cl- and TCE are 

always by Diff apart. 

This can be combined with the isotopic mass balance for the case of PCE degradation to TCE 

according to 

 TCEClPCEPCE ClfClfClfCl 373737

,0

37 )1(
4

3
)1(

4

1
      (S7) 

Equation (17) in the manuscript is here expressed in (S8) with  
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ClCl  

3737   (S8) 

When (S7) and (S8) is combined, we can resolve the isotope signatures individually for 

chloride according to 
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Together with the Rayleigh enrichment trend for PCE, the isotope trends of the formed 

chloride can be expressed with  
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A similar procedure can be followed in order to resolve equations (S7) and (S8) towards TCE, 

and we obtain an expression to model the enrichment trend of TCE with 
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The equations to equations (S9) and (S10) are equal to equations (18) and (19) from the 

manuscript, which were used for mathematical modeling of product isotope enrichment of 

PCE. 

 

Dechlorination reactions with TCE 

In the case of TCE, molecular positions are chemically distinguishable, and a structural 

preference is present in the -position according to the selective formation of cis-DCE so that 

the same chlorine atoms may potentially end up in TCE or Cl-. It is, then, of interest to which 

percentage of Cl,E and Cl,Z react to form the cleaved chloride. A factor x can be introduced 

to express this as 
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x = percentage that reacts from Cl,E to Cl-
,2 

(1-x) = percentage that reacts from Cl,Z to Cl-
,2 

With an x=1 the reaction would follow a position-specific cleavage, while any 1>x>0 would 

reflect a cse where two positions are involved. For each of the three chlorinated positions the 

mass balance can be raised individually in an extension of the equations describing the 

isotopic mass balance 
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For the two individual reacting positions, the difference in their isotope signatures reflect the 

difference of position specific enrichment factors for the case of a primary isotope effect with 

the formation of chloride, or a secondary isotope effect with the formation of cis-DCE. This 

difference of enrichment factors have to be treated separately for Cl,E and Cl,Z , according to 
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These differences in fractionation factors can be included in the position specific mass 

balance to give 
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The isotopic mass balance can now be set up for the cleaved chloride according to 
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The enrichment factor can be extracted here in order to reflect equation (22) from the 

manuscript  

  ZETCE xx ,, 1    chloride         (S22) 

In the interpretation of our experiments, isotope data of chloride was therefore modeled with 
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Also in the case of cis-DCE, an isotopic mass balance could be set up according to 
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 The enrichment factor can be extracted here in order to reflect equation (23) from the 

manuscript  
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Modeling of the obtained isotope data of cis-DCE from our experiments was therefore 

possible with 
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A2.3 VISUALISATION OF FIGURE 4 WITH DIFFERENT CONTRIBUTIONS 

OF PRIMARY AND SECONDARY ISOTOPE EFFECTS  

A different numerical scenario is visualized here, in order to show how different contributions 

in the -positions depend on x, by accounting for different primary and secondary chlorine 

isotope effects for the individual positions. The exemplary numeric values here were 

,E,primary = -10‰; ,E,secondary = -3‰; ,Z,primary = -8‰; ,Z,secondary = -1‰. The 

representation shows a similar qualitative trend, where (i)  is stronger in the position from 

which more chloride is formed, and (ii) in addition, more atoms of this position are passed on 

to chloride so that product curve of chloride more strongly reflects this higher enrichment 

trend. The opposite trend can be observed in the product curve of cis-DCE.  
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Appendix A3: Supporting information of Chapter 3 
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Individual data from experimental replicates 

 

Concentrations: Concentration data over time for trichloroethene (TCE) degradation in 

experimental replicates (crosses) and controls (diamonds) at given time points. 

Rayleigh plots: Evaluation of enrichment factors Cl and C by regression of ln 

[(13C+1)/(13C0+1)] versus ln(conc./conc.0) data (Rayleigh plots) for each individual 

experimental replicate. Respective error ranges are smaller than the displayed symbols. 

 13C are carbon isotope ratios, conc. are concentrations, the subscript “0” indicates values at 

the beginning of the reaction and analogous regressions apply for chlorine. Note that the 

expression  

ln [(13C+1)/(13C0+1)] = C · ln(conc./conc.0) = C · ln(f) 

is analogous to the expression 

ln (13C+1) = C · ln(f) + ln(13C0+1) 

for which equation (1) of the manuscript is an approximation with ln (13C+1) ≈ 13C: 

13C = C · ln(f) + 13C0    
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Cyanocobalamin:                    Cobaloxime: 

       

 

               Geobacter lovleyi strain SZ:        Desulfitobacter hafniense strain Y51: 
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Appendix A4: Supporting information of Chapter 4 
 

Considering TCE, cis-DCE and VC reduction kinetics by cast ZVI pseudo-first order 

reactions (Arnold and Roberts, 2000), a kobs was estimated for each experiment, and, 

according to this value, half lives were calculated. Data from TCE, cis-DCE and VC Dual 

Element experiments and from TCE and cis-DCE preliminary experiments are shown in 

Table S1. Moreover, it shows reported Kobs values of TCE and cis-DCE degradation by ZVI 

from previous studies (Dayan et al., 1999 and Slater et al., 2002) obtained for cast and 

electrolytic iron with different specific surface area, different treatment conditions and 

different ratios iron/solution. Degradation rates are influenced by the iron specific surface 

area, therefore, surface normalized rate constant (KSA, KSA= (kobs/as·ρm), where as is the 

specific surface area of ZVI (m2/g) and ρm is the mass concentration of ZVI (g·L-1)), is used 

for comparisons between different studies (Johnson et al. 1996).  

 
TABLE S.1. Summary of observed pseudo first order rate constants (Kobs) for dechlorination experiments of TCE, 

cis-DCE and VC experimentsa, including literature data by different ZVI types and surface treatments. 
 



 

 
 

 


