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ABSTRACT 

We present statistical and geometrical techniques to recon- 
struct incomplete human crania using techniques that for- 
malize the biologist's prior understanding of the considera- 
tions that govern form: continuity, symmetry and integra- 
tion. The modern morphometrics of landmarl<s and curves 
makes it possible to blend statistical and biological reasoning 
in this domain. Factors such as size allometry or sex and also 
directional asymmetry whether zero or nonzero can be expli- 
citly incorporated into the data estimation by way of the cor- 
responding covariance structures. For tasks of estimation 
based on very small samples we show a variant based on the 
continuity assumption of the thin-plate spline. When com- 
plete specimens are adequate in number our estimation can 
be regression-driven instead. All the missing points can be 
estimated at once by maximizing the likelihood of the resul- 
ting configuration in a reduced-rank model of a multivariate 
Gaussian distribution. Whatever integration the form posses- 
ses is automatically exploited in the course of these regres- 
sions. We demonstrate the accuracy of these approaches 
using a dataset of 388 anatomical landmarks and semi-land- 
marks on 52 complete H. sapiens crania. After deliberately 
deleting regions of landmarks we estimate the missing data 
and compare the estimated specimens to the originals. Our 
results indicate that the accuracy of estimation is sufficient- 
ly close to the precision of measurement. 

Life after death is not kind to paleo-anthropological speci- 
mens. Forms are distorted, parts break off, and the textural 
cues we use to locate landmark points may be effaced or 
covered by matrix. Distortion shifts landmarks away from 
their original context; we will not discuss that form of data 
damage here. The effect of the other two types of processes, 
breakage and effacement or encrustation, is to render the 
landmark locations actually unobservable in the single speci- 
men; such points are coded as missing. The topic of the pre- 
sent paper is the subsequent treatment of points coded as 
unobservable in this way. 

Across the general run of modem computational statistics 
there is one core algorithm for handling missing data, the EM 
ALGORITHM (Dempster et ai. 1977). E stands for EXPEC- 
TATION, and M for MAXIMISATION. In any EM analysis, 
an incomplete data set is treated as having arisen from a com- 
plete data set by random knockout of observed values, and 
the data set is completed as a whole (i.e., not specimen by 
specimen but all at once) in order to maximize some overall 
probabilistic likelihood, such as a multivariate Gaussian one. 
The algorithm is iterative: a covariance structure is approxi- 
mated, then missing data is estimated by regressions datum 
by datum, then the covariance structure recomputed, the 
regressions redone, and so on until convergence. The proce- 
dure is robust and reliable in many settings within the natural 
and the social sciences (Allison 2001, Little and Rubin 2002). 

However, anthropological questions involving missing data 
do not necessarily suit any of these typical settings. Data 
might not be missing at random: Geologically older speci- 
mens might be missing more of their landmarks, infant or 
small individuals have fragile bones that break easily - and if 

not the discrete landmark points then certainly the semi-land- 
marks (Bookstein 1997, Mitteroecker et al., in press) that are 
missing tend to cluster on forms. We may not be intending to 
optimize any sort of a likelihood for the sample as a whole, 
but only some descriptive ftinctional for the reconstruction of 
one single form; and the purpose of the reconstruction might 
be to understand gross aspects of size and shape, or instead 
details of local modeling. 

The difference between a concern for spatial position per se, 
versus a concem for aspects of shape, is closely related to the 
distinction between two quantities that are familiar separate- 
ly in the literature of geometric morphometrics: Procmstes 
distance (sum of squared separations of shape coordinates 
regardless of spatial position) and bending energy (weighted 
sum of partial warp scores that take spatial contiguity into 
account in a very fundamental way) (Bookstein 1991, 1997, 
Rohlf and Slice 1990). 

We will show that either of these concerns can be set at the 
core of an algorithm for estimating missing data that yields 
reasonable results in realistic simulations. One approach is 
using the thin plate spline for GEOMETRIC RECON- 
STRUCTION while the other uses multiple multivariate 
regression for STATISTICAL RECONSTRUCTION. The 
choice between the methods is not, at root, a matter of alge- 
bra, but of science: the methods are pertinent to two different 
paleo-anthropological contexts. We will return to this distinc- 
tion in the final discussion, after notating and demonstrating 
the two methods. 

At this point we want to completely dismiss a method that is 
often found in the literattire: the method of MEAN SUBSTI- 
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TUTION borrowed from the social 
sciences. In a mean substitution, mis- 
sing entries are substituted by the 
mean of the non-missing entries over 
the fiill sample data set. When data 
are Cartesian coordinates or shape 
coordinates this procedure makes no 
sense either as statistics or as science 
- because of the method's prevalence, 
the test results of mean substitution 
are shown nevertheless for compari- 
son. 

THE METHODS 

4U. 

Imagine a data set of many land- 
marks or semi-landmarks over many 
specimens. Consider, first, the very 
simplest case: exactly one landmark 
is missing for only one specimen. 
There is a good deal of information 
available to help us to reasonably 
estimate its location. In one approach, 
the STATISTICAL RECONSTRUC- 
TION, we think of this point as corre- 
lated with all the other landmark 
locations of the landmark set. Using 
the other - complete - specimens, we work out the prediction 
function that predicts it with the minimum sum-of-squares 
given the other data.^ 

But we might just as well predict the missing parts based on 
geometric properties of the single specimen, such as continu- 
ity information of curvature - GEOMETRIC RECON- 
STRUCTION. For this purpose we use the thin plate spline 
interpolation fiinction: We predict the missing data mapping 
the average of the complete cases to the specimen with mis- 
sing landmarks - using the thin plate spline interpolation 
based on the subset of observable landmarks. 

These two alternatives yield different locations, in general, 
but for reasonable numbers of reasonably distributed land- 
marks the discrepancy is virtually undetectable. 

If more than one form is missing landmarks, then whichever 
figure of merit we choose, we need an iterative approach, 
because in practical applications not all specimens are mis- 
sing the same landmarks. First we estimate the missing 
points, but then using the regression method we have to re- 
compute the covariance matrix that gives us the prediction 
formulas (because now it is using all the forms, as they have 
all been tentatively completed), and in the thin-plate method 
we have to re-compute the average form that gives us our 
spline, because now it averages over the entire sample com- 
bining both the originally complete forms and the tentatively 
completed. In either version, the iteration converges rather 
quickly for reasonable data schemes. 

At the conclusion of either of these algorithms, we have esti- 
mated all of the missing data anywhere in the data set in order 
to optimize the quantity that is encoded in the estimation step. 

•-i-j 
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Figure 1 GEOMETRIC RECONSTRUCTION, (a) The target specimen is missing land- 
marl<s in the neurocranium. (b) Complete reference specimen, (c) The thin plate 
spline deformation grid between the specimens in (a) and (b) is computed from 
the subset of all landmarks available in (a), (d) Missing data of the target speci- 
men Is substituted according to the deformation grid shown in (c), which maps 
the landmark locations of the reference specimen to the target specimen 

For the first option, that quantity is the net regression residu- 
al sum-of-squares for prediction of landmarks by the others; 
for the second option, it is the net bending energy of the com- 
pleted sample around its grand mean. 

SIMULATIONS 

We demonstrate the accuracy of these approaches using a 
dataset of 388 anatomical landmarks and semi-landmarks on 
52 complete H. sapiens crania. After deliberately deleting 
regions of landmarks we estimate the missing data and com- 
pare the estimated specimens to the originals. Figure 1 shows 
the 4 different KNOCKOUT-SETS that were used to compa- 
re the accuracy of the two estimation methods. 

First the landmarks in the shaded regions were deleted on one 
of the 52 specimens, then this specimen was reconstructed 
using the two methods introduced above. This was done for 
each individual. As in each calculation-cycle only one form is 
missing landmarks, there is no need for iteration here. Figure 
2 summarizes the results as the mean of the summed squared 
residuals per landmark for each knockout-set and estimation 
method. A semi-landmark carries only shape-information 
perpendicular to the curvature, so when a semi-landmark was 
deleted, only the residual normal to the ridge or surface was 
used. 

Each bar's length represents the total error of estimation. 
Mean substitution always performs worst. With the exception 
of the first knock-out set, the regression method is always 
better than the thin plate spline warping. 

These differences result from intrinsic properties of the com- 
pared methods: The spline performs best only in the case of 
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• Regression 
DThin Plate Spline 
• Mean Substitution 

Figure 2 plate spline warping and regression and mean substitution. Each 
bar's length represents the total error of estimation. Mean substitution always 
performs worst. With the exception of the first knock-out set (a), the regres- 
sion method Is always better than the thin plate spline warping 

Figure 2a, where only a small part of the neuro-cranial surfa- 
ce is missing. The thin plate spline computes the deformation 
that is least bent, which turns out to be the best method for the 
smooth curvature of the neuro-cranial surface. Particularly 
elucidating is the contrast between Figure 2b, where regres- 
sion and thin plate spline perform almost equally well and 2d 
and 2e, where the regression is more than twice as precise as 
the spline. In the former case, the whole face has to be esti- 
mated, in the latter, information is missing on only one half 
of the cranium. While it is equally hard for both methods to 
reconstruct the face when only neuro-cranial information is 
available, the different results for the knockout-set of 2d and 
2e demonstrate that only the regression has access to sym- 
metry information. But not only symmetry - the regression 
exploits all information about biological factors present in the 
reference population like allometry or morphological integra- 
tion (Bookstein et al. 2003). 

PRINCIPAL COMPONENTS 

We performed principal components analysis (PCA) of the 
Procrustes coordinates (Rohlf 1993) of the original and the 
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estimated specimens. Figure 3 shows the 
first two PC's of the knockout-set of 
Figure 2e for each method. Each comple- 
te and reconstructed specimen is connec- 
ted with a small vector, where the arrow- 
head points towards the reconstruction. 
The arrows of the thin plate spline recon- 
structions exhibit no obvious patteming 
and the estimation errors of the regression 
are almost too small to be seen in the plot 
of the first two PC's. 

DISCUSSION 

As we have already argued, MEAN SUB- 
STITUTIONS should always be avoided. 
We have reviewed two methods for impu- 
ting missing data that are similar in many 
ways (requiring iteration, ending up with a 
sum of squares) and different in one very 
important matter. For one, the sum of 
squares is of a Procrustes distance, and for 
the other, a bending energy. The choice 
between the methods is thus, in fact, a cho- 

ice between these figures of merit. Under what circumstances 
would one wish to minimize one of these, or the other? 

Thin plate spline interpolation can be considered a reasona- 
ble method in the absence of a reference population, as it 
requires only a single reference form. This single specimen 
however conveys no information about population variance 
and covariance; in some cases it may be plausible to match 
reference and target specimen on some single quantity (for 
example sex or age). 

When specimens are adequate in number, the missing data 
estimation can be regression-driven instead: The likelihood 
of the population that includes the resulting landmark confi- 
guration is maximized, subject to the proviso that the range 
of dimensions one intends to impute is actually present in the 
reference population (e.g. growth allometry). 

In the presence of a reference population of which the recon- 
structed form is likely to be a part, the decision rule we sug- 
gest depends on the use to which the completed forms will be 

put. If you're going to be talking about 
cranial capacity, distances between land- 
marks, or other large-scale properties, you 
want the most precise landmark locations, 
and so you use the regressions as best you 
can. If you want to talk about features of 
shape of the single form, like bumps and 
bends that might be characters, you use 
the bending energy. 

Figure 3 First two principal components of shape of the 52 complete original 
and the reconstructed specimens for the knockout-set of Figure 2e. The vec- 
tors point from the original towards the reconstruction, (a) Mean subsitutlon. 
Note that the reconstructions are biased towards the mean, (b) Thin plate 
spline. No obvious bias, (c) Multiple multlvarlate regression. The error is 
almost too small to be drawn. 

Take care that the assumptions of the 
reconstruction must not overlap with the 
hypothesis you are testing. Statistical 
reconstruction exploits  all  information 
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present in the reference population; hence applying any pro- 
cedure that involves a covariance matrix (eg. principal com- 
ponents or singular warps [Bookstein et al. 2003]), the stati- 
stically reconstructed specimen is 'overestimated'. In such 
cases it makes sense to use geometrical reconstruction inste- 
ad. 
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^In practice, given the predictions by each other shape coor- 
dinate separately - typically we cannot invert covariance 
matrices among shape coordinates, so we just add up the 
separate predictions or the predictions by the first few prin- 
cipal components of those other coordinates. 
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