pZi MuseumsIndex — An object oriented approach
to the design and implementation of a data
driven Data Base Management System

Jorgen Feder

24.1 BACKGROUND

The story about MuseumsIndex began in 1985,
when it was decided by the Danish museums co—-
ordinating body, Statens Museums Nawn, to set up
an advisory group which was given the task of
helping museums who wished to enter the con-
fuse and obscure world of computers and their
ways of dealing with reality.

After the conclusion of reports on which com-
puters to buy (IBM PC'’s or compatible) and
which word processors to use, the focus was di-
rected to the issue of documentation, where the
group was very well aware of the dangers and
complications lurking ahead.

The Danish museums are in the issue of docu-
mentation like most other museums in the world:
diverse, with scarce guidelines in writing of their
documentation practice and differences in prac-
tice over time. But they have one thing in com-
mon: each and every of them are convinced that
their way of doing things is the best.

24.1.1 The Case Management System

Before 1985 there had however been various at-
tempts at standardisation, and one of them
turned out up to have a major influence on the
way MuseumsIndex later became structured: The
Case Management System.

The idea behind the Case Management System
(CMS), is, that every bit of information in a muse-
um can be referred back to a case — the event that
originally caused the information later to enter the
museum. This could be a phone call from a man
who found a gold bracelet while ploughing, the
museum initiating an excavation on a promising
piece of land or an investigation on the distribu-
tion of computers in museums in the 20th century.

Every time such an event takes place, the mu-
seum opens a case. The case is given a number, a
short description and an opening date. When ob-
jects (if any), photos, maps, letters, personal infor-
mation, etc. have been collected and meticulously
examined and described, then the case can be clo-
sed. If more information relevant to the case later
emerges, the case is reopened until all relevant
information again is collected and documented,
after which the case can be closed again. As it can
be seen the CMS — beside its documentation ele-
ment — also has an element of administrative
control. The weight of these elements will of
course vary from museum to museum.

In the CMS the different objects for documen-
tation (artefacts, photos, maps, etc.) are linked to
the case through an ingenious number and sym-
bol system. If a case, for instance, has the number
1901, then the first artefact in the case will be
given the number 1901X0001, the first photo will
get the number 1901F0001 and so on.

Although only a part of the Danish museums
was using the CMS (and among those who used
it many were using home brewed variants) it be-
came apparent that it was much easier to reach
agreement on the overall structure following the
guidelines of CMS, than when it came to more
subtle details like dating, material and terms as
such. Furthermore it became evident — as many
in the group had little or no experience at all with
computers — that there was an urgent need to
demonstrate a model, which could be used as a
subject for further discussions.

24.1.2 Prototyping in HyperText

At that time [was rather occupied by the concept
of HyperText as outlined by Ted Nelson in the
Xanadu-project, an ambitious multi media

221

Jorgen Feder

project for Sun work stations. Ted Nelson
founded his work on the work in the sixties by
Douglas Engelbart from Stanford Research Insti-
tute and — further back — the thoughts of
Vannebar Bush, scientific advisor to United States
president Roosevelt.

The HyperText concept stresses two important
characteristics of information:

o Information is interconnected with other infor-
mation, and the connections are frequently dif-
ferent from those in accordance with which the
information is ordered in the first place

e The importance of a specific set of connections
between blocks of information may vary be-
tween persons, purposes and/or time

Vannebar Bush criticised the existing information
systems for being based on rigid hierarchical in-
dex methods based on the system for libraries:

«The human mind does not work that way. It oper-
ates by association. With one item in its grasp, it
snaps instantly to the next that is suggested by the
association of thoughts, in accordance with some
intricate web of trails, carried by the cells of the
brain» (Bush 1945).

HyperText, in the Ted Nelson sense of the word,
is a collection of pieces of text and other types of
information in various sizes and forms coupled
by roads, among which the user is free to choose.
Typically, a hypertext system may be viewed as a
network of text fragments linked together by a
complex network of pointers. A HyperText docu-
ment is not necessarily read sequentially like a
novel. It is read according to contents and asso-
ciative thoughts like an encyclopaedia. One reads
the text, spots a relevant or interesting term or
concept and is then able to go directly to the text
explaining the term by pressing a key or clicking
a mouse. HyperText is thus not one piece of text,
but in principle an unlimited number of texts de-
pending on how — and how many times — the
user traverses the text pieces and their connec-
tions. Such a system will today often include sup-
port for texts, graphics and even music fragments
and moving images, and the more general (and
hype!) term “hypermedia” is to be preferred to
“HyperText”.

In many ways the odd pieces of information
material collected in a museum could be looked
upon as an enormous HyperText or hypermedia
structure. A freedom to organise and browse
through information this way looked promising.
At that time we had no HyperText tools at hand,
so instead we forced an outline processor to

222

simulate a prototype of a museum information
system organised after these principles. The
demonstration of the prototype harvested an
overwhelmingly positive response, and it was
quickly decided to try and follow up these prin-
ciples in the design and development of the real
system.

The starting point and guidelines for the devel-
opment were thus a user interface, HyperText—
like, and to a certain extend the functionality and
data structures inherent in CMS. Top—down de-
sign in its pure form.

24.2 AN OBJECT ORIENTED APPROACH

One of the central problems of software engineer-
ing is that of coping with complexity. It was clear
cut from the beginning, that developing a system
able to handle the inherent complexity of the data
in a museum, combined with the diversification
in museum types and documentation practices,
constituted a tremendous challenge to a compu-
ter system created to deal with reality in nice
square boxes.

It was obvious, that the system should not only
have a high degree of configurability but also be
extremely flexible. Managing complexity simply
requires great flexibility. Object oriented design
methods address this issue precisely.

«After years of relative obscurity, object orientation
appears to be entering the mainstream of commer-
cial computing for both software developers and
end users. A shift to object orientation is occurring
simultaneously across a wide range of software
components, including languages, user interfaces,
databases, and operating systems. While object ori-
ented programming is no panacea, it has already
demonstrated, that it can help to manage the grow-
ing complexity and increasing costs of software de-
velopment» (Winblad et al. 1991).

The above quotation from the book Object oriented
Software by Winblad, Edwards & King, is an ex-
cellent summary of what is happening in the
world of computing today. Although exciting re-
search and development are taking place on
many fronts, no single software topic currently
enjoys as wide a scope or as heavy an impact as
object-orientation.

One of the fundamental reasons that object ori-
entation is enjoying such success as a program-
ming paradigm is very simple: the real world is
made up of objects. A sword is an object. A grave
is an object. An excavation is an object. An entire
museum is an object!

24 MuseumsIndex — An object oriented approach to the design and implementation of a data driven DBMS

The catechism of object oriented is that encap-
sulation, polymorphism, and inheritance are the
criteria of a “true” object oriented programming
system.

Encapsulation means that classes of objects
(and therefore, of course, the objects themselves)
are defined not only in terms of what they are,
but also in terms of what they are able to do. The
methods are an integral part of the object. Poly-
morphism means that a particular operation can
be performed on more than one type of object.
Inheritance refers to the ability to create new ob-
jects (or, more properly, classes of objects) that
take over all properties of a previously defined
object.

Despite the virtues of object oriented systems,
it does not make sense to insist on conformance
to the narrow technical definition of “object ori-
ented”. A tool is not automatically useless simply
because it does not meet the strict criteria of “ob-
ject oriented”. The best criterion by which to
judge a tool is still its suitability to the job one
needs to do.

24.2.1 The design

As mentioned above, one of the key features of
the system should be its run time configurability
and ability to adapt to different situations includ-
ing different user groups and complex data struc-
tures.

With this in mind, I took a quite radical deci-
sion regarding the design: the system should be
constructed around a Hyper Object Engine
(HOE), without any explicit references to museums at
all, but of course with sufficient power in its
methods and structure generation ability to han-
dle the data structures and operations necessary
for using the Engine in a museum documentation
application.

The idea was, that the HOE should take care of
all the essentials in the handling of objects inclu-
sive the building and maintenance of the hyper
structure, the navigation tools, validation, secu-
rity levels, reporting, etc., so that only a very tiny
application—specific module had to be linked in to
conclude an application. As a matter of fact the
application—specific part of the Danish Museums-
Index amounts to less than 5 % of the total code!

Furthermore the HOE should draw all its run
time parameters from externally maintainable
sources, so that no changes in the HOE were
needed because of changes in say, menus, param-
eter table structure, user language, etc. Only if
new methods had to be introduced, a recompila-
tion should be needed, and then again — only of
the application-specific module.

24.2.2 The objects

The primary object types or classes in the system
are the Frame and the Link. These classes are the
fundamental building blocks needed to construct
a hyperstructure.

It is necessary here to stress a vital point about
the Link. In a traditional relational system two
tables can be linked or joined via a common
unique key—field. But this link is purely a passive,
“hard-wired”, link. Let us say we have a group
of painters and a set of paintings. With a passive
link, you must choose between attributing a par-
ticular work to an artist or not doing it. With an
intelligent link, you would be able to classify
and/or explain your premises for the attribution.
The validity of a link is neither a quality of the
painting nor the painter. The same problems exist
with most connections. If you attribute an ar-
chaeological artefact to a specific dating, the same
problem exists.

What is mandatory in a genuine hyper struc-
ture is, that links are active connections with
attributes which make it possible to qualify and
explain the link. This is also important if the sys-
tem should be able to accommodate differences in
methods and working style. Although artefacts,
photos, paintings, maps, etc. ordinarily are
looked upon as the salt of a museum’s collection,
there are other schools who value the context as
the area of primary interest or in its extreme
form: objects without context are worthless. The
HOE should, of course, be able to cope with both
views (and those between).

Among the secondary classes Block (an at-
tribute in Frame) Menu and Blob (Binary Large
OBjects), are the most important ones.

Now let us look at the classes in more details
and describe some of their features, attributes
and methods.

24.2.2.1 The Frame class
The Frame class could be described by its at-
tributes and methods like in Table 24.1.

The list of attributes (or instance variables) is
— as the methods — by no means exhaustive, but
merely serves to convey a general idea about the
FRAME class.

The appearance and behaviour of an instance
of FRAME will be controlled by data stored in exter-
nal files. The Show method will for instance use
Rows, Columns, ScreenOffset, ScreenSize, etc. to
paint the screen.

One of the attributes deserves a special consid-
eration — the Block. As mentioned before, Block
too is a class or object type. The Block Class could
be described as in Table 24.2.

223

Jorgen Feder

The attributes of the Block Class are what
comes closest to an ordinary field in a data base
record (or tuple): An instance of BLOCK has a
name, a type, a length and a value. But it also
contains attributes that are not standard for a
data base field. It has a Picture clause, which can
be used to structure its appearance and editing on
the screen. As shown it also contains LookAccess
and EditAccess attributes which make it possible
to administer who has the right to see the con-
tents and to edit it. Normally the instances of
Block will correspond to either a data base field
or a look-up field, where Row and Col will be
used to position the contents on the screen.

The persistence of some of the attributes of the
object, or instances, from session to session are
secured through transferring their values to and
from records or tuples in a database with a name
related to the Frameld. The methods in FRAME,

FRAME CLASS:
Frameld Constructor()
Name Destructor()
Indexes Show()
EditArrays FetchEditInfo()
Mode Edit()
Blocks CreateRecord()
Rows FetchRecord()
Columns UpdateRecord()
BorderColour DeleteRecord()
InnerColour FetchNext()
ScreenOffset FetchPrevios()
ScreenSize FetchFirst()
Status FetchLast()
TextNo Createlink()
NumLinks DeletelLink()

Table 24.1: The Frame Class

BLOCK CLASS:
Name BlockInit()
Type ExecMethod()
Length |
Row
Col
Value
Picture
MethodName
Mode
Help
LookAccess
EditAccess
Cargo

Table 24.2: The Block class

224

CreateRecord, FetchRecord and UpdateRecord
are taking care of the transfer between records
and the actual BLOCK object.

An extremely important attribute in BLock is
MethodName. To this attribute, a name of a
method can be assigned, and the method itself
can be executed by the objects ExecMethod—func-
tion later on. Cargo and other attributes can be
used as parameters. The method is thus not “hard
wired” to the class, but can be externally speci-
fied among available methods or functions in the
HOE and/or in the programming language.

One of the main uses of this technique is to call
look-up functions, pick-lists, validation-routines,
etc. Through a special coding structure of the
MethodName, one or more of these routines can
be called before editing, during editing and/or
after editing.

A particularly important use of this facility is
as a mechanism to access and/or create (and con-
trol access to) subframes linked to the present
frame. The linking is semantically attached to
Block:Name, but this attribute merely serves as a
placeholder for the number (automatically taken
care of by the system) of subframes attached to
the present object of the particular type denoted
by the Block:Name and the content of the
Block:Cargo. The Block:Cargo also controls
whether or not it is allowed to link to existing
subframes or whether only links to new sub-
frames can be created. The Block:Picture denotes
(together with the Block:Cargo) how many sub-
frames to which it is allowed to construct links.

Another feature available through the
Block:Method mechanism is its use in Multi Me-
dia applications. Depending on the contents it is
possible this way to show digitised pictures, play
sections of video disks, video tapes or CD’s or
play digitised sound or speech.

24.2.2.2 Implementation of free text

The use of text in documentation systems is a
questionable issue. On one hand it allows the
documenter to elaborate freely on softer issues in
the documentation. On the other hand, free text
has a tendency to quickly overflow a system, take
pressure away from a needed discussion about
terminology and classification, and unstructured
text has only a limited value when searched due
to differences in culture, education, documenta-
tion style, terminology, vocabulary, etc.

In the Danish Museums HOE application the
use of text has almost exclusively been confined
to the links. The objects in the FRAME subclasses
(artefacts, photos, persons, etc.) is supposed to be
described sufficiently by their attributes (with con-

24 MuseumsIndex — An object oriented approach to the design and implementation of a data driven DBMS

trolled vocabulary wherever possible). But the
content in the LINK objects is some times of a more
non—conclusive type, where a simple code is not
enough to characterise the reasoning behind a
link.

A LINK object always has — besides a Status at-
tribute — an attribute which can be looked upon
as a “hard wired” link to a TEXT object. If no TexT
object is attached, the attribute is NiL. The TEXT Ob-
ject has an attribute, TextLine, and a “hard —
wired” link to a free text (NIL when not used). If
free text is needed in a FRAME Object — for instance
to a verbal description of a site or a book — the
sub frame link mechanism is used to attach a LNk
object with only its inherent TexT object initialised.
All texts in HOE are indexed in a way that makes
searching possible not only by single words, but
also in various combined ways. Via the text search
you can find the objects the text is attached to,
and it is possible to narrow the search to only con-
sider texts attached to specific FRAME subclasses.

2.2.3 The subclasses in Dansk MuseumsIndex

The Danish museums HOE application has 30
sub—classes of FramE defined at present. In Table
24.3 is a list of the most important with the sub-
classes that it is possible to link to, indented be-
low the class—name

Let me here emphasise once more, that none of
the characteristics of these subclasses are stored
within the HOE itself. The definitions of the clas-
ses together with the affiliated sLock definitions
are confined in external files, and only a few of
the application specific functions implied by the
MethodName attribute, are placed in the separate
application—specific module.

As it probably appears, the structure here is
predominantly a hierarchical one. The HOE has
the ability to handle more complicated structures
as well. For instance MAP objects linked to other
MAP objects, or ARTEFACT objects linked to sub arte-
facts. These structures call for a very strong mo-
rale (and deep knowledge) on the part of the user
however, in order to avoid circular references
with objects in the end pointing to themselves.
Although the HOE is able to handle these kinds
of structures, it would be very difficult and time
consuming to check for reports that ultimately
would send the system in an endless loop. In-
stead, it is recommended to make reference to ob-
jects of the same class (or above) in text or by uti-
lising a special reference class. During a browse
of the hyper structure it will be possible to utilise
the HOE's built-in macro facility to find and
show another object referred to by a member of
the same class.

24.2.2.3 The data structure

The data structure for a dynamic network data-
base system — as the one the HOE is suitable for
— could be quite complicated to describe with
ordinary data structure description tools.

Case Conservation
Correspondence Literature
Artifact Deposit
Photo
Map Map
Tape Participant
Report Place/use
Archive Dating
Literature Conservation
Participant Literature
Place/use Deposit
Dating
Conservation Tape
Deposit Participant

Place/use

Artist Dating
Photo Conservation
Correspondence Literature
Tape Deposit
Literature
Report Report
Artifact Participant
Exhibition Place/use
Participant Dating

Conservation

Artwork Literature
Participant Deposit
Exhibitions
Report Exhibition
Dating Participant
Literature Dating
Correspondence Conservation
Photo Literature
Conservation
Tape Literature
Deposit Participant

Artifact Correspondence
Participant Participant
Place/use
Dating Conservation
Conservation Participant
Literature
Deposit Archive

Participant

Photo Place/use
Participant Dating
Placefuse Conservation
Dating Literature

Table 24.3: The subclasses in Danish MuseumsIndex

225

Jorgen Feder

A way to do it could be the following chart, tures have to be employed and the primary
which shows a part of the data structure for the choices when searching are:
Danish museums HOE-application. 1) What FrRaME sub class are you searching For?

2) What FrRaME sub class(es) are you searching By ?
The easiest case is, if you want to search directly

24.3 SEARCHING WITH THE HOE in a specific FRAME sub class. For instance among
the artefacts, where the answers to both questions

Searching for data in a Hyper Structure is not will be ARTEFACT. You can here choose between an

like searching in a flat file. Certain search struc- indexed search, browsing, QBE or by setting up a

search criterion. Of course the indexed searches
are by far the fastest. An indexed search for a spe-
cific object number will, for example, in a 32 MB
99 Links file will take less than one second with a 386/33
Status: 98 PC and a reasonable fast hard disk. As with other
parts of the HOE, the number of indexes in each

15 Cases FRAME sub class is externally defined and it is thus
possible to introduce new indexes without recom-
222324416263 piling the HOE.
A
—— 24.4 SEARCHING ACROSS SUBCLASSES
ALL2E3S A little more complicated are combined searches
where more than one sub class is involved. Let’s
4 say you are searching for those cases that contain
23 Gommunications artefacts of a specific type. Your answer to the first
62 question will then be cast and to the second, ARTE-
FAcT. Normally these choices are made through
the MENU objects and — depending on the number
— 4 of “hits” — the system will, as conclusion of the

search, provide you with the possibilities of brow-

41626382 sing the hits, searching via one or more indexes, a

QBE search or using the search language.

Things get even more complicated when the

41 Litterature search has to be carried out on several classes. Let

" o8 us say again that your answer is cask to the first
question and PARTICIPANT (person or institution) to

the second. After you have specified the search

& criteria for a person, the system will now not only
_| 62 Persons find those cast to which this person is linked, but
7273 also the cases where a sub—class to a sub—class to

the cast contains a link to that person.

63 Place/use

747576 Figure 24.1: Part of the data structure for Danish
MuseumsIndex. The boxes on the left are subclasses. The
upper part of the boxes contains the Frameld and Name

4 and the lower part the Framelds for the subclasses it is pos-
64 Description sible to connect to. In the lower part some of the Framelds
are underlined. To these subclasses it is possible to connect
to existings frames (n:m relations) — otherwise it is only
possible to connect to new frames (1:n relations). These

A conditions are stored in the block objects and can as such be
73 Personal information changed without recompiling the program. Connections can
4180 only be made by sending messages to the Link class where

the connection also can be classified andfor annotated.

226

24 MuseumsIndex — An object oriented approach to the design and implementation of a data driven DBMS

24.4 MANOEUVRING IN THE HYPER
STRUCTURE

When — as in the last example — a case has been
found, the object can be edited (or deleted), or the
object can be used as a starting point for traversing
the complete hyper structure. Every time you have
an object on the screen, a press on a button, <F6>,
gives you the complete structure or hierarchy for
the object and its sub class objects in a semi-
graphical form. The structure is shown in a quite
terse form in order to put as much information
about the structure on one screen as possible, but
moving the browse cursor around will provide
more information about the individual objects in
the structure. And if you choose to do so, you can
— by pressing <Enter> on a specific object — call
the whole object on the screen, and afterwards
return to the hierarchy.

Another possibility is to press the <F7>-key.
This gives you the object level above and below
the present level on-screen, and by pressing
<F10> on any of these levels you will make this
level your new central level. With new presses on
<F7> you will be able to move around in the com-
plete structure and — as with <F6> — you can at
any place press <Enter> and see the actual object.

This associative browsing is one of the strong
points in a Hyper Structure, but you may also get
lost in the structure! Fortunately a press on <F5>
gives you — in pick list form — a list of the places
you have visited, including the starting point, and
a move of the cursor and a selection with <Enter>
brings you right to the object you want.

24.5 REPORTING WITH THE HOE

For each HOE application there will be some
standard reports defined, but the system contains
a quite powerful REPORT generator with which the
user has the ability to create his own report
masks. The report generator contains some spe-
cial functions which allow the user to create re-
ports across different FRAME sub classes. Another
function allows the user to output bar codes.

Beside the special functions. it is also possible
to use quite a few standard functions in the re-
ports and some counting functions. It is possible
to send the report output to a file, so the report
afterwards can be further treated in, say, a desk
top publishing program or word processor.

24.6 OTHER HOE APPLICATIONS

The system maintenance part of the Museums-
Index is also built using the HOE. The applica-
tion-specific part is here the code which takes
care of the management of user codes, pass-
words, the user definable colours in the program,
reindexing of files, etc.

A particularly important feature of this appli-
cation is its Export and Import functions. Through
these functions complete hyperstructures can be
exported and imported. This feature can also be
utilised to perform non-standard searches by ex-
porting a selected set of data in hyperstructure
form, and afterwards — with the standard HOE !
— perform new searches in the exported
structure.

And needless to say — the development of the
HOE is also taken care of in a HOE application
where the HOE's hyperstructure ability is utilised
as a data and function dictionary including
screens, index lists and object structures together
with menus (and menu generator), block informa-
tion, etc.

References

Bush, Vannebar

1945 As we may think. Atlantic Monthly.
Winblad, Edwards & King

1991 Object-Oriented Software. New York.

Author's address
Jorgen Feder

Dansk MuseumsIndex
Negrrebro 17

DK-5900 Rudkebing

227

