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Introduction 

Having looked at univariate and bivariate Kernel Density 
Estimates (KDEs) and their applications in previous CAA 
proceedings (Beardah and Baxter, 1996a and Beardah, 
1998), it is natural to ask how three-dimensional KDEs may 
be utilised in archaeology. Data that are naturally three- 
dimensional do exist in archaeological applications; for 
example, we shall later look at the case of lead isotope ratio 
data. However, the utility of these methods is not restricted 
to such special cases. Often, higher dimensional data are 
analysed, by subjecting them to some dimension reduction 
technique, such as principal component analysis (PCA). 
KDE methods can then be applied to the first two or three 
components of the PCA scores, in an effort to identify 
structure. 

For given trivariate data: 

K.I =iXi,yi,Zi),...,X„ =ix„,y„,z„) 

a trivariate KDE is formed, by placing a four-dimensional 
"bump" at each data point.   The value of the KDE, at any 

point  V = {x, y, z)   in space, is found by summing the 

"height" of bumps, that pass through the point V.   In the 
simplest terms, this is expressed mathematically as: 

f(x,y,z)^ 
1 

n/i]/jj/ij ^ 
I^ X- X, y-yi z-Zt 

h, 
(1) 

The shape of the bump is defined by the kernel function, 
denoted by K(x,y,z)- This is usually a trivariate 
probability density function (pdf) such as the trivariate 
normal pdf, given by 

1 
Kix,y,z) = {27rr"'exp{-^{x' + y'+z')). 

Such functions have the property, that their volume is 1. 
TTie appearance of the KDE is not greatly influenced by the 
choice of kernel function (see Silverman, 1986, or Wand and 
Jones, 1995). We shall, therefore, use the trivariate normal, 
pdf, throughout this paper. 

In equation (1), h^,h^,h-^>Ozi& called the smoothing 

parameters and control the amount of smoothing, in each of 
the three co-ordinate directions. The choice of these 
parameters can have a profound effect upon the appearance 
of the KDE, and hence, upon any conclusions dravra from an 
analysis, thereof. In the case of one-, and sometimes two- 
dimensional data, it is often possible to make a subjective 
choice of the smoothing parameters, at least as a basis for 
further refinement. However, as the dimensionality of the 
data increases, we, inevitably, become more reliant upon 
automatic, data-based choices. A simple method, of 
automatically selecting smoothing parameters in high 
dimensions ( > 2 ), is to apply one of the several well-known 
univariate techniques (see Wand and Jones, 1995), to each of 
the variables in turn. Throughout this paper we have used 
this technique, individually applying the univariate, normal 
scale rule to each of the three variables. While, just as in the 
bivariate case, more general formulations than (1) exist, the 
problem of automatically selecting the smoothing 
parameters, in these (trivariate) cases, has not been fully 
addressed, and we do not consider them further, here. (See 
Wand and Jones, 1993 and Beardah, 1998 for details in the 
bivariate case.) 

Examination of equation (1) immediately reveals a potential 
problem with trivariate KDEs. Namely, how do we display 
them? At each point, {x, y, z) , in three-dimensional space, 
we have a corresponding estimated density value given by 

f(x,y,z), so we need four dimensions to display the 
KDE. One possible approach to this problem, is to use 
colour or shading to represent the density value, and to take 
three-dimensional slices through the four-dimensional 
density estimate. Figure 1(b) shows the results of such an 
approach, based upon a small dataset (n=8) for illustration. 

An alternative, and in our view, better approach, is to form 
percentage contour shells, which for a given value, p, 
enclose the p% of the data, which is most dense. This is the 
three-dimensional implementation of a technique introduced 
by Bowman and Foster (1993) (see also Beardah and Baxter, 
1996a, b and Baxter, et al., 1997, for some archaeological 
applications). In the case of two-dimensional data we have 
two-dimensional contour lines, which enclose the most 
dense p% of the data. For three-dimensional data, our 
contours are three-dimensional surfaces, which connect 
points with the same density. We refer to p, as the level of 
inclusion of the contour shell. For the small dataset, 
illustrated by the scatter plot of Figure 1(a) and Figure 1(c), 
a 75% contour shell is shown. 
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The fomiation of such contour shells is fairly 
straightforward. After the KDE is formed, we evaluate the 

estimated density at each data point X_i^---^2Ln- Data 
points are then ranked in decreasing order of density. A 

density value, d^  say, that is exceeded by the estimated 

densities of p% of the data points, is found and used to 
define   the   contour   shell,   with   level   of   inclusion   p. 

Mathematically, this contour shell is given by points such 
that 

f(x,y,z)=d 

h = Oâ40Og, 032248. 0J4321 h =0 54905,0 82248.0 84321 

tl = 0 54909,0 82248.0 84321 

Figure 1. A small three-dimensional dataset (n=8) and visualisations of the corresponding trivariate KDE.  Clockwise from 
the top-left: (a) a scatter plot of the data; (b) three-dimensional slices through the trivariate KDE, and (c) a 75% contour shell. 

Motivational examples: 

Example 1: Lead isotope ratio analysis. 
Pollard and Heron (1996) discuss the use of lead isotope 
ratio analysis in archaeology. A sample from an ore-body, 
mined in antiquity, can be characterised by three lead isotope 
ratios. If n such samples are obtained, these can be used to 
estimate the lead isotope field for the ore-body, a three- 
dimensional construct, that delineates the isotopic 
compositional variation, within the ore-body. Isotopic 
compositions of artefacts can be compared with those, for 
sampled ore-bodies, to try and identify possible provenances 
(e.g. Sayre et al., 1992). 

It is sometimes assumed that lead isotope fields have a 
trivariate normal distribution (Sayre et al., 1992), and it 
seems to be widely accepted that n = 20 is an acceptable 
value for statistical analysis (Pollard and Heron, 1996). 
Baxter and Gale (1998) and Baxter (1998) have cast serious 
doubt on the normality assumption, using data from ore- 
bodies, for which n > 20, and Westwood et al. (this volume) 
have shown that values of n, well in excess of 20, may be 
needed to detect quite clear non-normality. This last paper 
used univariate methods to demonstrate this; it is of some 

interest to investigate whetha: the direct use of 3- 
dimensional KDEs is helpfiil, in either detecting or 
displaying non-normality, for some of the data sets and 
sample sizes available. 

Figiire 2 shows 30%, 50%, 70% and 90% contour shells 
based upon the trivariate KDE, formed when n=59 ore 
samples, from the Lavrion field (Stos-Gale, et. al., 1996, 
Table 2), are considered. It is clear from Figure 2, that when 
using percentage contour shells as an exploratory technique, 
care needs to be taken to examine contours, based upon a 
variety of different levels of inclusion; otherwise, evidence 
supporting certain types of data structure may be missed. In 
this case, p values in the approximate range, 35 to 60, result 
in the appearance of two clear groups. Small p values (<35) 
reveal only the more prominent of the two groups. On the 
other hand, large p values (>60) yield contour shells, which 
change little in appearance as p is increased, and support the 
overall impression of highly non-normal structure. 

A possible disadvantage of the contour shell approach, to the 
display of trivariate KDEs, is that without advanced graphics 
facilities, it is impossible to effectively display contour 
shells, corresponding to several p values on the same axes. 
Scott (1992) gives some examples of what can be done with 
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advanced graphics, in particular with transparent and/or 
partially "peeled" contour shells. However, such displays 
can sometimes be difficult to interpret, and we feel that the 
use of subplots, as in Figure 2, provides a simple and easily 
interprétable alternative. Another widely available tool, that 
can be used for investigating the appearance of contour 
shells, at various levels of inclusion, is animation. By 
stringing together a sequence of images, of contour shells at 
varying   levels   of  inclusion   we   can   obtain   a   smooth 

animation which can give a good impression of the structure, 
or lack thereof, exhibited by the data. In addition, "fly-by" 
or rotational animations can be used to view three- 
dimensional contour shells, from a variety of viewpoints. 

An important question, in the context of this particular 
example, is whether the visual evidence seen in Figure 2 
supports the hypothesis, that these data are from a normal 
population. We suggest that, to the contrary, the contour 

30% contour shell 50% contour shell 

70% contour shell 90% contour shell 

Figure 2. 30%, 50%, 70% and 90% contour shells based upon n=59 ore samples from the Lavrion field 

shells indicate the presence of two separate clusterings, and 
certainly suggest non-normality. 

Example 2: Glass composition data. 
As a second example, data on the chemical composition of 
specimens, of early Medieval glass, from excavations at 
Southampton, extracted from Heyworth (1991), are used. A 
PCA was undertaken, using standardised values of eleven 
major/minor oxides, of the composition for (a) the whole 
dataset (n=271) and (b) those specimens, characterised by 
Heyworth as light blue or light green (n=227). In previous 
analyses of the dataset (a) (Beardah and Baxter, 1996b) 
bivariate component plots showed two main clusters in the 
data, that largely corresponded to the two colours. This 
grouping could also be seen in one dimension, using the 
ratio of iron to manganese in the glass (the effect of 
chemistry on colour is discussed in Heyworth, 1991). fron, 
and the variables, that are highly correlated with it, 
dominated the first PC; manganese does not feature strongly 
on the first two PCs but dominates the third. It is thus of 
interest to see how strongly the pattern in the data was 
revealed, by looking at the first three, as opposed to two, 
PCs. 

Contour shells, based upon the first three PCs of the whole 
dataset, showed, just as when the first or the first two PCs 
were used, the presence of two clear groupings. Of course, 
not all values of p revealed such structure, and, as mentioned 
previously, care needs to be taken when examining a 
succession of contour shells, at different levels of inclusion, 
possibly by making use of animation. In this case, p values 
in the range 43 to 63 resulted in contour shells, that split into 
two separate sub-shells, with no overlap. Small p values 
(<43) revealed only the more prominent of the two groups, 
largely associated with light blue glass. On the other hand, 
larger values of p (>63) yielded contour shells, that, while 
suggestive of two groupings, were no longer split into two 
separate sub-shells. Figure 3 shows an example of this 
behaviour. Here, p=65 was used. As p is increased further, 
the "bridge" between the two groups widens, however p 
values, as high as 75, are generally supportive of the 
existence of two groupings, within these data. 

As stated above, Heyworth subjectively assigned a colour to 
each glass specimen. Figure 4 shows separate, 50% contour 
shells, based upon the first three PCs, of the n=62 glass 
fragments,   identified   as   light   green,   and   the   n=165 
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fragments, identified as light blue. Clearly, Figure 4 
supports the earlier observations, regarding these data. 
Complete separation between the two contour shells occurs 
for p values, as large as 65%. Furthermore, although some 
overlap occurs for higher levels of inclusion, the groups 
remain largely distinct, even for p values of about 80. 

Trivariate simulations: sample size issues 
The examples in the previous section illustrate that trivariate 
KDEs can provide a useful tool for exploratory data analysis 

h = 0.59717 

and visualisation. However, KDEs do not simply display the 
data as given, but involve estimation of the structure of the 
population, from which the data are sampled - the better to 
see non-obvious patterns in the data. Like all statistical 
estimates, KDEs are subject to uncertainty, in the form of 
variance, and they are also subject to bias. In general, as 
sample size increases, the properties of the estimate improve. 
The question arises as to how large a sample is needed, for 
three-dimensional KDEs to be useful. In this section, we 
present a discussion of some experiments undertaken to 

,0 19145,0 2288 

Figure 3. A 65% contour shell, based upon consideration of the whole glass assemblage (n=271). 

investigate the practicality of the methodology, for realistic 
sample sizes and data structures. 

As usual, in this type of experiment, we make use of normal 
mixture densities (NMDs). These are, simply, mixtures of 
several normal densities. The basic idea is to draw samples 
of varying size from NMDs, chosen to exhibit interesting 
structure, in this case, multi-modality. We then compare the 
structure of KDEs, based upon such samples, with the 
known structure of the population, from which the sample 
was drawn. For the purposes of this paper, the comparison 
is done on a purely subjective basis, by visually inspecting 
percentage contour shells, associated with KDEs of samples. 

A trivariate NMD (denoted NMDi), that simulates the 
perceived structure found in the Lavrion field data (see 
motivational example 1 above), has been created. NMD] is 
a bi-modal mixture of two trivariate normal densities. 
Figure 5 illustrates that KDEs, based upon samples of size 
n=60 from this NMD, exhibit similar structure to KDEs, 
based upon the data itself. We are interested in the 
following question: 

• In practice, how big a sample size do we need, to 
reproduce the true qualitative (bi-modal) structure of 
NMDi? 

Or, looking at the problem from a slightly different 
perspective: 

• In practice, how small does a sample from the standard 
trivariate normal density have to be, to fail to reproduce 
this normality (in the sense that the KDE is visually 
misleading and suggests multi-modality)? 

The "curse of dimensionality" means that bigger samples are 
needed in three dimensions, than in the case of one- or two- 
dimensional data. For example, Silverman (1986) states that 
the sample sizes needed to achieve, in some sense, an 
acceptable error, when approximating a normal density by a 
KDE, are ni=4, n2=19, ny=61, in one, two and three 
dimensions, respectively. Other authors, using different 
measures of "acceptable error", report findings which are 
similar in spirit, to those of Silverman (for example, see 
Scott, 1992). That is, as the dimensionality of the data 
increases, the sample size required to adequately reproduce 
the true structure of a population, also increases, and at a 
much faster rate. 

Summary of simulation results 

For sample sizes of n=20, 30, 45, and 60, respectively, 
samples were drawn repeatedly from NMDi. Each sample 
was analysed by inspection of 20%, 40%, 60%, and 80% 
contours, and a subjective judgement was made, as to 
whether the sample exhibited uni-modal, bi-modal, or some 
other (usually multi-modal) structure. The results are 
summarised in Table 1. The nature of the investigation 
militates against a large number of repetitions. In spite of 
this, for each sample size shown in Table 1, 100 repetitions 
were made. 
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Sample size, n Uni-modal structure Bi-modal structure Other structure 
20 40 53 7 
30 30 64 6 
45 25 70 5 
60 15 75 10 

Table 1. Results obtained by repeated sampling from NMD,. For each sample size, 100 samples were taken. The number of 
samples, exhibiting uni-modal, bi-modal, or "other" structures were recorded. 

h = 0.65617, 0,4199, 0 5958 

Figure 4. 50% contour shells, based upon separate consideration of the «=62 glass fragments identified as light green (light 
contour shell), and the n=165, identified as light blue (dark contour shell). 

Sample size, n Uni-modal structure Bi-modal structure Other structure 
20 62 32 6 
30 64 30 6 
45 72 14 12 
60 88 12 0 

Table 2. Results obtained, by repeated sampling from the standard trivariate normal density. For each sample size, 100 
samples were taken. 

It can be seen from Table 1, that even samples of size n=45 
and «=60 share the true bi-modal structure of the population, 
only 70-75% of the time. Also, as may be expected, as the 
sample size is reduced, samples become less successftil in 
reproducing the true structure of the population. Indeed, 
samples of size «=20, truly reflect the structure of the 
population in only approximately 50% of cases. 

For sample sizes of n=20, 30, 45, and 60, respectively, 
samples were drawn repeatedly from the standard trivariate 
normal density. The results are summarised in Table 2. 
Again, 100 repetitions were made for each sample size, 
shown in Table 2. 

In this case, the true structure of the population is uni-modal. 
It can be seen from Table 2 that samples of all sizes share the 
true structure of the population, most of the time. Again, as 

the sample size is reduced, samples become less successful 
in reproducing the true structure of the population. It is 
noticeable, that the samples are generally more successful at 
reproducing the true structure of the population, in this case. 
However, samples of size «=20, still prove inadequate, for 
truly reflecting the structure of the population, in about 40% 
of cases. Tables 1 and 2, both suggest, that sample sizes, 
somewhat in excess of 60, are needed to have a high level of 
confidence, that the KDEs reflect the true structure in the 
data. 

Summary and conclusions 

In the case of univariate data, we have argued elsewhere 
(Beardah and Baxter, 1996a, b and Baxter, et. al., 1997), that 
KDEs provide a useful alternative to the histogram. For 
bivariate data, the case for using KDEs is even stronger, as 
the method has distinct presentaticmal advantages over both. 
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two-dimensional histograms and the scatter plot. The 
statistical theory, that underpins the technique, can be used 
to provide guidance for appropriate amounts of smoothing, 
and powerful contouring methods follow easily, from the 
definition of the KDE, as a mathematical function. 

In the case of three-dimensional data, many of the 
aforementioned advantages still apply. The only drawbacks 
are the increased computing power, required to cope with 
both, the computation and the graphical presentation of the 

output, and the well-known difficulties, associated with the 
presentation of three- and four-dimensional functions, on a 
two-dimensional screen. Bearing these difficulties in mind, 
we have found contouring to be the most successful method 
of visualising trivariate KDEs. We have illustrated that such 
methods can be effectively used, in exploratory data 
analysis. However, for each KDE, it is wise to look at 
contours with several levels of inclusion. In this respect, 
animations, showing how the percentage contour shells vary 
from low to high levels of inclusion, are a very useful tool. 

h = 0 001139-i . Ci 00024979 , 0 017308 ti = 0 036367 ,0 0075662 ,0 66604 

h = 0 034745 , 0 0085488 . 0 62083 h = 0 033178 , 0 0091948 .0 56443 

Figure 5. 60% contours, based upon the Lavrion field data (top left), and three samples of size n-60, from NMDi. 

The methods discussed here are not only applicable to 
naturally three-dimensional data, such as that found in lead 
isotope analysis. Three-dimensional KDEs are a useful tool, 
for the analysis of datasets, with dimension greater than 
three, provided that some type of dimension reduction 
technique (e.g., PC A) is used. 

In the particular case of lead isotope ratio analysis, we have 
illustrated how KDEs, used as a purely exploratory 
technique, may provide visual evidence, that casts doubt on 
the assumption of normality, and can display the form of 
non-normality, if this is established by more formal 
approaches. Further, we have provided additional evidence, 
supporting the inadequacy of samples of size n=20. If the 
population from which the sample is drawn is non-normal (in 
this case bi-modal, in a form that can be modelled as a 
mixture of normal distributions, with some overlap between 
the components), then sample sizes, in the range 40 to 60, or 
larger, may be necessary, in order to reflect this structure. 

Software 

The techniques discussed in this paper have been 
implemented in the MATLAB package, by the first named 
author, and are freely available (email: 
christian.beardah@ntu.ac.uk). The routines include the 
facility to import and analyse the user's own data. All the 
illustrations were generated using this software. 
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