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Abstract 

Rodents use active whisker movements to explore their environment. The physical 

parameters of vibrissa deflections, which carry the texture information and are used by the 

tactile system for discrimination, are unknown. Particularly, it remains unclear whether 

perception relies on parameters such as frequency (e.g., spectral information) and intensity 

(e.g., mean speed) which need to be integrated over time or whether it  has access to 

instantaneous kinematic parameters (i.e., the details of the trajectory). The search for 

instantaneous kinematic parameters is motivated by findings from studies on rodent 

vibrissae biomechanics showing that short-lived kinematic events, abrupt movements called 

‘slips’, carry texture information and could therefore be used for tactile perception. Here, I 

use a novel detection of change paradigm in head-fixed rats, which presents passive vibrissa 

stimuli in seamless sequence for discrimination. Unlike previous paradigms, this procedure 

ensures that processes of decision making do not need to rely on memory functions and can, 

instead, directly tap into sensory signals. In a first attempt, repetitive pulsatile stimuli were 

employed in a noise free environment to optimally control the parameter space. I find that 

discrimination performance based on instantaneous kinematic cues far exceeds the ones 

provided by frequency and intensity. Neuronal modeling based on barrel cortex single-unit 

activity shows that small populations of sensitive neurons provide a transient signal that 

optimally fits the characteristic of the subject’s perception. However, a realistic scenario 

involves background noise (e.g. evoked by rubbing across the texture) and kinematic ‘slip’ 

events, carrying texture information. Therefore, if these events are used for tactile 

perception, the neuronal system would need to differentiate slip-evoked spikes from those 

evoked by noise. To test the animals under these more realistic conditions, I presented 

passive whisker-deflections, consisting of ‘slip-like’ events (waveforms mimicking ‘slips’ 

occurring with real textures) embedded into background noise. Varying the event shape 

(ramp or pulse), kinematics (amplitude, velocity, etc.), and the probability of occurrence, I 

observed that rats could readily detect ‘slip-like’ events of different shapes against a noisy 

background. Psychophysical curves revealed that larger events improved performance while 

increased probability of occurrence had barely any effect. These results strongly support the 

notion that encoding of instantaneous ‘slip’ kinematics dominantly determines whisker-

related tactile perception while the computation of time integrated parameters plays a 

minor role.  
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1. Introduction 

1.1.  The rat whisker system 

The rodent vibrissae-related tactile system has been studied extensively for about hundred 

years (Vincent, 1912). With its well defined structural and functional organization, it has 

been established as an exemplary model system to study neuronal processing underlying 

perception and sensorimotor interaction. The whiskers are complex tactile organs developed 

in particular by nocturnal animals living underground that are not able to rely on vision for 

orientation. Rats and mice use them as tools to sample their spatial environment or detect, 

localize and discriminate objects (Vincent, 1912; Hutson and Masterton, 1986; Carvell and 

Simons, 1990; Brecht et al., 1997; Mehta et al., 2007; O’Connor et al., 2010; Stüttgen and 

Schwarz, 2008; von Heimendahl et al., 2007). Each of the whiskers consists of a stiff modified 

body hair that is embedded in the skin around the animals’ snout in a so-called follicle-sinus 

complex (Ebara et al., 2002). This complex is innervated by numerous myelinated and non 

myelinated fibers of the infraorbital nerve, a side branch of the trigeminal nerve. They end 

either as free nerve endings or specialized mechanoreceptors including merkel cells, 

lanceolate- and club-shaped endings (Ebara et al., 2002; Rice and Munger, 1986). These 

diverse innervation types fall into two functional classes, the slowly and the rapidly adapting 

afferents (SA and RA)(Gibson and Welker, 1983). Arranged are the whiskers in a fixed 

pattern with the long whiskers (‘macro vibrissae’; Brecht et al., 1997) on the side and the 

short whiskers (‘micro vibrissae’) on the front of the snout. Due to anatomical advantages 

(size and easy accessibility) this work focuses exclusively on macro vibrissae. The Macro 

vibrissae consist of five parallel rows (labeled with A to E from dorsal to ventral) each of 

which contains four to nine single whiskers (columns, numbered from caudal to rostral). 

Completed is the whisker pad by the four ‘straddlers’ (Alpha to Delta) on the caudal end with 

a downward offset to the rows. The length of the whiskers varies from several centimeters 

on the caudal end down to a few millimeters on the rostral end close to the lips (Brecht et 

al., 1997). With intrinsic and extrinsic muscles the whiskers can be moved actively forth and 

back (Dörfl, 1982; Berg and Kleinfeld, 2003) with a frequency between five and eleven hertz. 

This behavior during exploration is called ‘whisking’ (Welker, 1964). Once a whisker touches 

the surface of an object, it is deflected, due to its biomechanical properties, at an angle 
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relative to the surface of the skin (Ritt et al., 2008; Wolfe et al., 2008; Pammer et al., 2013). 

These deflections evoke action potentials in sensory neurons of the trigeminal nerve that 

excites brainstem trigeminal nuclei (TN). From there sensory information is sent to the 

ventro-posterior-medial nucleus (VPM) of the thalamus to a second synapse that excites 

thalamo-cortical projections to the cortex (Figure 1A) (Petersen, 2003, 2007; Feldmeyer et 

al., 2013). The whisker related representation in primary somatosensory cortex (S1) is 

remarkably big compared to the rest of the body surface which parallels the 

overrepresentation of the fingers and face found in primate somatosensory cortex (Penfield 

and Rasmussen 1950). Arguably the most important characteristic of S1 is its distinct 

somatotopic organization (Figure 1b). This phenomenon was first discovered by Cajal 

(Ramon Y Cajal, 1911) and further described by Woolsey and Van der Loos (Woolsey and Van 

der Loos, 1970). Based on tangential Nissl stained sections, these researchers discovered 

anatomically distinguishable structures in layer 4 of the primary somatosensory cortex, 

which were arranged in the same pattern as the whiskers on the skin and according to their 

shape in frontal sections they were described as ‘barrels’. Mapping experiments using 

microelectrodes (Welker, 1971) confirmed the assumption that the barrel cortex has a 

precise topographic representation of the whiskers. Neurons of individual barrels respond 

preferentially to stimulation of the corresponding contralateral whisker (Simons, 1985). This 

organization can also be found on earlier stages of the ascending pathway, the VPM of the 

thalamus that contains ‘barreloids’ relaying mono whisker signals to S1 barrel columns (Lo et 

al., 1999) and the trigeminal brainstem complex with histologically defined zones termed 

‘barrelettes’ (Jacquin et al., 1990). The thalamo-cortical system is subdivided into a fast, 

highly resolved, ‘lemniscal’ system and a slower and more spatially coarse ‘paralemniscal’ 

system. The first passes through VPM and terminates predominantly in layer 4 (and to lesser 

degree in L5B) of the barrel column, whereas the second passes through the posterior- 

medial (POM) nucleus of the thalamus and terminates mainly in layer 5A but also in layers 4 

and 2/3 in strips of dysgranular cortex, called inter-barrel columns. Layer 5 contains huge 

pyramidal cells integrating inputs from barrel and inter-barrel compartments (Brecht, 2007; 

Feldmeyer et al., 2013).  Although  the detailed anatomy is unique to this particular pathway, 

the functional elements of the circuit are common  to  other  sensory  pathways,  allowing  

many  aspects  of  the  work  proposed  here  to generalize to both humans and other animal 

models.  
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Figure 1. The main features of the rodent whisker system. (A) Ascending pathway from 

whisker to cortex. Synaptic stations are brainstem, thalamus and barrel cortex. (B) Whisker 

pad arrangement and tangential section through layer 4 of the primary somatosensory 

cortex after staining with cytochrom oxidase. Adapted from Petersen (Petersen, 2003). 

 

1.2.  Texture encoding 

Rodents rub their whiskers across objects to tactilely explore them. Due to biomechanical 

properties, the whisker vibrations along the hair shaft show a complex and indirect 

relationship to the textural properties of the object, and finally result in what we call the 

vibrotactile signal - the movements at the follicle that are directly translated into spike trains 

of primary afferents. High speed video recordings of moving whiskers revealed so called 

'slips' - kinematic signatures contained in the vibrotactile signal, defined by short-lived, fast 

deflections of the whisker. Under natural conditions slips are based on bioelastic properties 

of the hair, i.e. its form and elasticity (Hartmann, 2001; Ritt et al., 2008; Hires et al., 2013) 

but may as well reflect properties of the probed texture (Wolfe et al., 2008; Jadhav et al., 

2009), and thus may be used by the animals for tactile perception. The latter conjecture is 

termed 'slip hypothesis'. In the lab, slips can be mimicked by ‘slip-like’ kinematic signatures 

(i.e. ramp- or pulse-like whisker deflections), and are applied mechanically directly to the 

whisker base near the follicle. Different kinematic signatures are represented by highly 

selective spike responses on the ascending whisker-related tactile system (Jones et al., 2004; 

Arabzadeh et al., 2005; Petersen et al., 2008; Jadhav et al., 2009; Chagas et al., 2013) and 

form the major basis for perceptional performance in detection and discrimination of 

vibrotactile stimuli (Stüttgen and Schwarz, 2010).  
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The classical parameters 'intensity', and 'frequency', established in work on the primate 

fingertip system (LaMotte and Mountcastle, 1975), and investigated in similar ways also in 

the whisker system (Adibi et al., 2012), both carry information about textures (Hipp et al., 

2006), but support perception only in suboptimal ways (Stüttgen and Schwarz, 2010). The 

latter study also revealed that it is unlikely that these classical parameters are encoded in 

the neuronal signals judging from the fact that neuronal activity can be best fit to behavioral 

performance when assuming integration time constants of barrel cortex activity in the 

millisecond range. A recent study that identified intensity as a critical variable (Gerdjikov et 

al., 2010) also showed that psychometric performance fell short of the one expected if 

information about instantaneous trajectory characteristics present in individual primary 

afferents were fully accessible, prompting the question whether the behavioral paradigms 

used so far have been appropriate to reveal the usage of fully detailed trajectory 

information. It is possible, that previous task designs entailed process models (i.e., the 

spatio-temporal description of which brain systems contribute and are critical for 

performance) that made the read out of instantaneous features impossible or impeded 

them. For instance, in the Gerdjikov et al. (2010) study, animals had to store vibrotactile 

information in memory to do the task—discriminanda were presented isolated from each 

other, such that, in a single trial, the incoming tactile information had to be compared with 

memory contents. It is intuitive to assume that detailed trajectory information due to 

capacity limits of the stores cannot be stored in memory, while a time-integrated (i.e., 

compressed) signal may well offer a less memory-consuming alternative.  
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1.3.  Aim and scope of this study 

In the present study, I aimed at improving previous attempts by a behavioral paradigm 

which allowed subjects to compare discriminanda using purely sensory representations, 

without memory components, combined with a stimulus set that systematically varies 

physical parameters and also involves naturalistic whisker ‘slips’ in a noisy context, 

mimicking vibrations upon texture contact.  

I established a novel task, the ‘detection of change’ (DOC) psychophysical task, which 

presents S- (NoGo stimuli predicting no reward) and S+ (Go stimuli predicting reward) in 

seamless sequence. To compare the discriminanda, subjects do not need to store stimuli in 

neither working nor long-term memory (Stüttgen et al., 2011). With repetitive pulsatile 

stimuli, the parameters frequency, intensity, and instantaneous kinematic features can be 

readily disentangled (Salinas et al. 2000). This enabled me to perform three sets of 

psychophysical experiments, each of them keeping one of the three parameters (pulse 

frequency, intensity, and instantaneous kinematic cues) constant during the switch of the 

stimulus. The experiments were accompanied by extracellular unit recordings in barrel 

cortex to assess neuronal responses while the animal was engaged in the task thereby 

enabling a direct correlation between stimulus encoding on the neuronal level and actual 

behavior. These data have been published recently (Waiblinger et al., 2013).  

In order to investigate perceptual skills under more natural conditions I tested rats in two 

additional behavioral (DOC) experiments with ‘slip-like’ events of different shape and 

number, embedded into noisy background vibration of the whisker. This part of the study is 

in the course of being submitted. 
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2. Methods 

2.1.  Animals, surgery, and general procedures for behavioral testing.   

All experimental and surgical procedures were carried out in accordance with standards of 

the Society of Neuroscience and the German Law for the Protection of Animals. Subjects 

were thirteen female Sprague-Dawley rats (Charles River, Germany), aged twelve to sixteen 

weeks at the time of implantation. The basic procedures of head-cap surgery, habituation for 

head-fixation, and behavioral training followed the ones published in a technical review 

(Schwarz et al., 2010). The animals were anesthetized using ketamine and xylazine (100 and 

15 mg/kg body weight, respectively) and chronic electrode arrays (Haiss et al., 2010) were 

implanted in subjects 1-6. Barrels were located by mapping the cortex with a single 

intracerebral microelectrode. Unit and field potential responses to a brief manual whisker 

flick were monitored until a site maximally responsive to flicks of a single whisker with lower 

activation of adjacent whiskers was found. Across the six animals that were used for 

electrophysiological recordings, columns A3, C1, C2, D1, and D2 were implanted. Movable 

multi-electrode arrays were centered over the mapped location and slowly inserted into the 

cortex at a speed of 1.25 µm s
-1

 until all electrodes had penetrated the dura (usually 300–

800 µm). The electrodes were then slowly retracted to a depth of ∼250 µm relative to the 

cortical surface and fixed to the skullcap with dental cement so that the mobility of the array 

was still guaranteed. The wound was treated with antibiotic ointment and sutured. 

Analgesia and warmth were provided after surgery. Oral antibiotics (Baytril; Bayer 

HealthCare, Leverkusen Germany, 2.5% in 100-mL drinking water) were provided for three 

days before surgery and one week postoperatively. Rats were allowed to recover for at least 

ten days before habituation training. Groups of three rats were housed together and kept 

under a 12/12 h inverted light/dark cycle. After complete regeneration, rats were put on a 

water-controlled diet. Water was given to the animal only when successfully completing a 

task, such as entering the restrainer box or accepting head-fixation. During testing, water 

intake was restricted to the apparatus where animals were given the opportunity to earn 

water to satiety. Testing was paused and water was available ad lib during two days a week. 

Body weight was monitored daily and typically increased during training. No animal in this 

study needed supplementary water delivery outside training sessions to keep its weight.  
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The first step of behavioral training was systematic habituation to head-fixation lasting about 

two weeks: After the animal was accustomed to the restrainer box, the head screw was hold 

by hand repeatedly until the animal tolerated fixation for several minutes without signs of 

stress. Once this level was achieved, the animal was fixated completely to the bracket of the 

restrainer box and transferred to the training setup. After another week of habituation 

inside the experimental setup two trainings-/ recording-sessions were usually conducted per 

day, each lasting for 15-30 min resulting in 100-200 trials depending on the impulsivity and 

motivation of the animal. During behavioral testing a constant white acoustic background 

noise (70 dB) was produced by an arbitrary waveform generator (W&R Systems, Vienna, 

Austria) to mask any sound emission of the whisker stimulators. The main elements of the 

experimental setup including the head-fixed animal are shown schematically in figure 2A. 

 

2.2.  Electrophysiology 

For electrophysiological recordings I used movable multielectrode arrays (Haiss et al., 2010). 

An individual microdrive moved an array of four glass coated tungsten electrodes (Thomas 

Recording, Giessen, Germany. 2×2; electrode distance, 250-375 µm,). Voltage traces picked 

up by the electrodes were band-pass-filtered (200-5000 Hz) and recorded at a sampling rate 

of 20 kHz using a multichannel extracellular amplifier (Multi Channel Systems, Reutlingen, 

Germany). Spikes from arrays were detected using amplitude thresholds. Two-millisecond 

cutouts centered on the time bin in which the voltage trace first traversed the amplitude 

threshold were recorded and sorted offline using a laboratory-written software package 

(Hermle et al., 2004). Artifacts were removed and neurons sorted to yield either single-unit 

or multi-unit spike trains. Criteria for classification as a single-unit were conservative and 

have been described in an earlier study (Möck et al., 2006). Firing rates of all units in the 1 s 

interval preceding the onset of S+ stimuli were compared between short periods at the start 

and the end of each behavioral session to clarify whether there were long-term adaptations. 

Only units in which no statistical significant difference was found between the beginning and 

end of recording sessions were included in the study to exclude that systematic long-term 

run down of firing rates played any role for the present results. On average, the firing rate 

during the first five trials of a session was 6.6 spikes/s (SD = 4.1) compared with 6.3 spikes/s 

(SD = 3.8) during the last five trials (Student’s t-test, P = 0.83, n = 19).  
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2.3.  Whisker Stimulation 

Two different whisker stimulators were used in this study, a piezo bender actuator that was 

identical to the one used by Stüttgen et al. (Stüttgen et al., 2006) for pulsatile stimulation 

and a galvo-motor (galvanometer optical scanner model 6210H, Cambridge Technology) as 

described in Chagas et al. (2013) for ‘slip-like’ and broadband noise stimulation, which 

required a higher temporal accuracy. Both stimulators were calibrated using a modified 

phototransistor with a resolution of 20 µs and 1 µm (HLC1395, Honeywell, Morristown, NJ, 

USA) and an optoelectronic measuring device with a resolution of 1.4 ms and 11 µm (laser 

emitter and detector; PAS 11 MH; Hama Laboratories, Redwood City, CA, USA) (Stüttgen et 

al., 2006). To ensure precise whisker deflection, the piezo was equipped with a glass capillary 

(inner diameter ~300 µm with a narrowed insertion hole as described in Stüttgen et al., 

2006). The length of the glass capillary and point of attachment of the piezo element were 

adjusted such that the ringing of the stimulator was minimal between pulses (<0.1° at 

frequencies around 1 kHz). The rotor of the galvanometer was equipped with a thin 1 cm 

long aluminum arm with a small insertion hole at the end (~200-300 µm) for single whisker 

stimulation. The angular position of the galvo shaft (max. angle: ±26 mechanical degrees) 

was detected by an optical sensor located in the back of the scanner. The output signal of 

this sensor was a differential current signal that was fed back to the drive electronics, closing 

the servo loop, and allowing very fast and accurate stimulation. Amplitudes and velocities 

were derived from the output signal of the sensor and converted into angular values at the 

whisker base. Both stimulators contacted the whisker 5 mm (±1 mm tolerance) away from 

the skin, and thus, directly engaged the proximal whisker shaft, largely overwriting bioelastic 

whisker properties. The null position of the whisker during pulsatile stimulation and the 

mean position during broadband noise stimulation was its resting point, with an angle 

between whisker and skin of about 90°. Stimulation was always delivered in rostro-caudal 

direction. Voltage commands for the stimulators were programmed in LabVIEW (National 

Instru-ments, Austin, TX), or Matlab and Simulink (The MathWorks, Natick, Massachusetts, 

USA).  
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2.3.1.1. Pulsatile stimuli 

Stimuli that were delivered by the piezo element consisted of brief pulsatile deflections (one 

single pulse corresponding to a single-period sine wave of a 100 Hz frequency; starting from 

the negative maximum, thus yielding a bell-shaped pulse with smooth on- and offsets; 

duration 10 ms) presented continuously to one single whisker on the left whisker pad. To 

manipulate pulsatile stimuli, exclusively two basic parameters, ‘interpulse frequency’ and 

‘pulse amplitude’, were changed in a trial based fashion. Interpulse frequency is defined as 

the reciprocal of the interpulse interval, that is, the time elapsed between the onsets of two 

sequential pulses in seconds. Pulse amplitude is defined by the height of a pulse and is 

changed by multiplying the signal with a constant. Thus, a change in pulse amplitude leaves 

the width of the pulse untouched. In fact, pulse-width was fixed at 10 ms in all stimuli used 

in the present study. Using these two basic parameters, three classical vibrotactile 

parameters were manipulated: 1) instantaneous kinematic cues, 2) frequency, and 3) 

intensity. With the pulsatile stimuli used here, numbers 1 and 2 of these correspond simply 

to the two basic parameters interpulse frequency and pulse amplitude. The last one, 

intensity, corresponds to mean speed of the stimulus (Gerdjikov et al., 2010), and can be 

manipulated by both of the basic parameters. It is important to note that a balanced change 

of the two basic parameters interpulse frequency and pulse amplitude in opposite direction 

leaves intensity constant while changing frequency and instantaneous kinematic cues, a feat 

used systematically in the present study. Three different manipulations were carried out to 

distinguish S+ (rewarded) from S- (nonrewarded) stimuli (Experiments 1a, b, and 2a). The 

first set of stimuli (used in Experiment 1a) varied frequency, and kinematic variables, but 

kept intensity constant (balanced change of the two basic parameters in opposite direction). 

The second set (used in Experiments 1b and 2b) varied intensity and kinematic variables but 

kept frequency constant (exclusive manipulation of pulse amplitude). Finally, the third set 

(used in Experiment 2a) varied frequency and intensity, and kept kinematic variables 

constant (exclusive manipulation of interpulse frequency) (cf. Figure 2). Interpulse intervals 

ranged from 11.1 to 33.25 ms corresponding to interpulse frequencies of 30-90 Hz (for the 

stimulus set applied in Experiment 2a, I also tried frequencies down to 10 Hz to improve 

performance, see Results). These values cover the main frequency range carrying texture 

information (Hipp et al., 2006). Deflection amplitudes ranged from 3.9 to 11.3° (equivalent 
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to 0.35-1 mm deflections at 5 mm distance from the whisker base). The chosen frequencies 

and amplitudes of the pulsatile stimuli used here gave intensities ranging from 482 to 

1240°/s (cf. Table 1). The kinematic, frequency, and intensity values were assessed based on 

the measured trajectory (i.e., the output of the phototransistor tracking the whisker). Using 

pulsatile stimuli, special care was taken to assure that the change from S- to S+ (and back) 

occurred within one interpulse-interval, that is, the succession of interpulse-intervals was a 

clean step function (i.e., no other interpulse interval than the ones defining S- and S+ 

occurred). Control experiments were conducted by disconnecting the subjects’ vibrissa from 

the stimulator (by retracting it a few millimeters) after the first half of a session, while 

monitoring of licking was continued. In all animals, task performance broke down after 

whisker disconnection assuring that the animals were using exclusively tactile cues to 

perform the task. 

 

2.3.1.2. Broadband noise and ‘slip-like’ events 

Stimuli that were delivered by the galvo-motor consisted of low pass filtered broadband 

noise sections (Butterworth filter with a cutoff frequency of 100 Hz) of different maximal 

amplitudes (An mean = 0; SD = [0.125, 0.25, 0.5, 1]°) or constant noise of fixed maximal 

amplitude (SD = 0.5°) applied throughout the entire recording session with unilaterally 

embedded ‘slip-like’ features exceeding the noise (Af = 3, 6, 9 and 12°). In one rat different 

noise amplitudes (An mean = 0; SD = [0.25, 0.5, 1] °) to embed different ‘slip-like’ features 

with scaled signal to noise ratios were used (Af = [(1.5, 3, 4.5, 6), (3, 6, 9, 12), (6, 12, 18, 

24)]°). The events consisted either of pulses (single-period sine wave; starting from the 

negative maximum, thus yielding a bell-shaped pulse with smooth on- and offsets; 100 Hz; 

duration 10 ms) or ramps (half-period sine wave; starting from the negative maximum, 

duration 5 ms with a slow decay, half period sine wave; starting from the positive maximum, 

duration 995 ms). The slowly decaying part of the ramp did not offer an extra cue to the 

animal (Stüttgen et al., 2006) and was used to reset the stimulator to its null position. To 

assure a smooth embedding of ‘slip-like’ events, the noise was silenced (multiplied) with an 

inverted Gaussian (SD = 10 ms; minimum at the peak is 0, approaching 1 at ± infinity) 

centered at the time of the pulse peak or the time of the ramp's maximum velocity. As a 
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result, the fast transitions where smooth and noise free, whereas the slow decay of the 

ramp was interspersed with noise (Figure 2F). Higher numbers of ‘slip-like’ features (Nf > 1) 

were presented within a maximal window of 1 s per trial which also represented the time 

window for response and potential reward. The time window was always initiated by the 

first event whereas the following events were distributed randomly within the 1 s period 

with the only constraint that the inter-slip-interval was always larger than 50 ms. Catch trials 

contained a continuation of the background noise without any embedded features, but the 

noise silencing used to embed the features was kept to control for its possible function as a 

cue. In all experiments catch trials were responded with false alarm rates between 0.1 and 

0.25. These numbers were similar to the ones measured before in studies using 

psychophysical detection tasks (Stüttgen et al., 2006; Stüttgen and Schwarz, 2010). 

Therefore, it could be concluded that the noise silencing episodes by themselves were not 

perceivable for the rats. 

 

2.4.  Experimental paradigm 

All thirteen rats were trained on a novel detection of change (DOC) psychophysical task 

(Figure 2B). In this task, the whisker is continuously vibrated (S-), but vibration parameters 

change once in a while, an event that is to be detected (S+) and indicated by the animal by 

licking at a spout to gain a water reward (intertrial interval 4-10 s drawn from a flat 

probability distribution). Catch trials contained a continuation of S- instead of presenting a 

S+. In a first step, continuously applied background stimulation was interspersed by a strong 

stimulus-switch lasting for 1 s automatically followed by the delivery of a water-drop to 

condition the consummatory response (licking) upon the stimulus-switch. For pulsatile 

stimuli the switch consisted of a strong change in interpulse-frequency (e.g. 60 Hz), intensity 

(e.g. 759°/s) or kinematic variables (e.g. 7.17° pulse amplitude). For naturalistic stimulation, 

mimicking texture induced vibrations, the S- consisted of low pass filtered broadband noise 

of fixed amplitude (An mean = 0°, SD = 0.5°), interspersed by a S+, which contained a strong 

and rapid succession of ‘slip-like’ features with amplitudes exceeding the noise (Af = 12°, Nf = 

6-20 pulses, each 10 ms duration, all occurring within a 1 s noise-section). Once the animals 

regularly licked off the water the task was switched from classical to operant conditioning, 
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i.e. the reward delivery was made contingent on an operant lick during the occurrence of S+ 

plus extra 500 ms to allow any temporal integration. Now, the rats were able to retrieve a 

water reward by licking immediately after they detected the onset of S+. Licking during a 

‘no-lick-interval’ that spanned the last 2 s before the scheduled S+ presentation was 

punished by resetting time and starting a new inter-trial interval. Psychophysical testing was 

conducted using the method of constant stimuli which implies the presentation of stimuli in 

pseudo-random sequence. Pseudo-random order as applied here presented blocks in which 

all stimuli occurred once in randomly shuffled order (this strategy avoids sessions in which 

certain types of stimuli are presented toward the end or the beginning of the session by 

chance). The lick response window (window of opportunity) was now restricted, typically to 

1 s (in some sessions 1.5 s) to prevent high false alarm rates during catch trials.  

In this study five major experiments were conducted (Figure 2C-F). Experiment 1a presented 

five intensity-matched pulsatile stimuli, one catch trial, and three additional stimuli that 

modulated intensity cues. Experiment 1b presented five frequency-matched pulsatile 

stimuli, one catch trial, and one additional stimulus that modulated frequency cues. 

Experiment 2a presented five pulsatile stimuli with matched kinematic variables and one 

catch trial. Experiment 2b was similar to Experiment 1b except it did not contain any 

additional stimuli; it was simply used as a control experiment. Experiment 3 was exceptional 

as it consisted of a trial based presentation of 1 s broadband noise sections (S+) of different 

amplitudes (An mean = 0; SD = [0.125, 0.5, 1]°) with no extra background vibration. This 

control experiment was conducted to test the animals’ detection threshold for broadband 

noise after they had already learned the DOC task. The on- and offset of the noise stimulus 

was smoothed with a sinusoidal filter (50 ms duration) to avoid abrupt transitions. In 

experiment 4, the noise stimulus was considered as S- background vibration and applied 

constantly throughout the entire recording session with a fixed or varying amplitude An, 

whereas the embedded ‘slip-like’ events (S+) occurred only in a trial based fashion with 

amplitudes exceeding the noise band. In experiment 4a, ‘slip-like’ features consisted of 

single 10 ms pulses embedded in constant broadband noise, whereas in experiment 4b, ‘slip-

like’ features consisted of 5 ms ramps (in both experiments An mean = 0; SD = 0.5°; Af = 3, 6, 

9, 12°). Experiment 4c was like experiment 4b, only that here three different blocks of noise 

amplitudes (An mean = 0; SD = [0.25, 0.5, 1]°) and three blocks of adjusted ramp amplitudes 
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were presented (Af = [(1.5, 3, 4.5, 6), (3, 6, 9, 12), (6, 12, 18, 24)]°). Between the three 

different conditions the signal to noise ratio (Af/An) was kept constant. To avoid confusing 

the animal by abruptly changing the noise amplitude, the different noise conditions were 

presented in separate sessions. Finally, in experiment 5 the numbers of ‘slip-like’ features 

(Nf) and the amplitudes (Af) exceeding the noise band were varied, resulting in thirteen 

possible stimuli including catch trial (An mean = 0; SD = 0.5 °; Af = 3, 6, 9, 12°, Nf = 1, 3, 6). 

Animals 1-6 were used in experiment 1-2 (table 1), whereas animals 7-13 were used in 

experiment 3-5 (table 2). 

 

 

 

Figure 2. Setup and experimental strategy. (A) Schematic of a head-fixed rat inside the 

restrainer with water spout, whisker stimulator and chronically implanted electrodes. (B) 

Subjects were trained on a detection of   change (DOC) task. Constant stimuli were applied to 

a single whisker and the animals had to detect a 1 s change (S+, gray box) with a lick 

response in order to get a water reward. No change served as catch trial (S-). Impulsive licks 

triggered extra time of background stimulation. (C) Overview of pulsatile stimuli applied in 

experiment 1 and 2 (first column). The general idea was to keep one of the three vibrotactile 

parameters intensity (I, experiment 1a), frequency (F, experiment 1b), or instantaneous 

kinematic cues (K, experiment 2a) constant between S- and S+ (second column) and only vary 

the other two. Schematic stimulus waveforms at the time of stimulus transitions are shown in 

the fourth column. Using pulsatile stimuli, an increase of instantaneous kinematic cues (i.e., 

increase of pulse amplitude) is correlated with intensity but not pulse frequency. (D) In 

Experiment 2a, the instantaneous kinematic cues are constant; therefore, the observer has to 

integrate the running stimulus with a minimal time window comprising more than one pulse 

(>10 ms). Stimulus transitions filtered with integration windows of different size (red boxes = 

moving average) demonstrate that perfect discrimination of these stimuli can theoretically 

be performed very soon after stimulus onset. (E) Overview of noise stimuli applied in 

experiment 3-5. In experiment 3, perceptibility of broadband noise was assessed by 

presenting 1 s sections of different noise-levels (An). In all the following experiments the noise 

served as background (S-) and was presented continuously throughout the entire session. In 

experiment 4 ‘slip-like’ features (S+) of different amplitudes (Af) and shapes (pulses in 

experiment 4a or ramps in experiment 4b) were embedded exceeding the kinematics of the 

noise band. The noise amplitude (An) was additionally varied in experiment 4c. In experiment 

5 ‘slip-like’ features of different amplitudes (Af) and numbers (Nf) were embedded. (F) 

Examples of pulse-shaped or ramp-shaped ‘slip-like’ features of different amplitudes 

embedded into broadband noise of constant amplitude (n = 100 trials overlaid in each panel). 

The noise was silenced with an inverse Gaussian at the time of feature location, thereby 

smoothing the fast transitions.  
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Table 1. Pulsatile stimuli and psychophysical experiments. 

 

 

 Intensity (°/s) Frequency (Hz) Amplitude (°) 
N-Trials 

Rat 1 2 3 

Experiment 1a 

S-  646 90 4.14 536 605 617 

S+ - S- 

0 -12 +0.33 586 596 616 

0 -24 +1.14 586 649 553 

0 -36 +2.20 579 609 642 

0 -48 +3.86 567 631 648 

0 -60 +7.17 576 615 624 

S+ - S- 
+64 -24 +1.66 366 425 471 

-64 -24 +0.62 424 507 444 

-128 -24 +0.09 452 513 455 

Experiment 1b 

S-  507 66 4.14 626 489 454 

S+ - S- 

+41 0 +0.33 637 502 461 

+140 0 +1.14 636 509 447 

+268 0 +2.20 567 525 468 

 +464 0 +3.86 676 531 471 

+844 0 +7.17 630 475 513 

 S+ - S- +140 +24 0 630 508 445 

     Rat 4 5 6 

Experiment 2a 

S- 1240* 90* 7.76 272 136 49 

S+ - S- 

-131* -12* 0 303 190 69 

-291* -24* 0 316 159 51 

-451* -36* 0 287 159 63 

-602* -48* 0 282 184 70 

-759* -60* 0 314 193 49 

Experiment 2b 

S-  482 66 3.90 319 271 302 

S+ - S- 

+157 0 +1.29 299 252 297 

+307 0 +2.53 305 251 317 

+468 0 +3.85 363 295 297 

+628 0 +5.17 366 283 298 

+759 0 +6.34 345 244 304 

* in rat 5 stimulus order was reversed: the absolute intensity and frequency of S- was 482 °/s and 30 Hz 

respectively, the difference S+ - S- was in this case always positive (same value).  

Data in light gray fields describe added stimuli that deliberately varied the parameter that was else kept 

constant in the respective experiment (cf. Figure 3CD). 
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Table 2. Broadband noise with ‘slip-like’ stimuli and psychophysical experiments. 

Experiment 
Stim- 

type 

An  

2SD 

(°) 

Af (°) Nf 

N-Trials 

Rat 

7 
8 9 10 11 12 13 

3 

S- 0 0 0 156 228      

S+ 

noise 

0.25 0 0 156 230      

0.5 0 0 154 230      

1 0 0 155 229      

2 0 0 156 230      

4a 

S- 1 0 0 226  132 165 174   

S+ 

pulse 

1 3 1 225  132 165 174   

1 6 1 225  130 165 175   

1 9 1 225  131 167 175   

1 12 1 226  134 167 175   

4b 

S- 1 0 1 200 267    175 151 

S+ 

ramp 

1 3 1 199 265    175 152 

1 6 1 196 268    175 148 

1 9 1 199 266    174 150 

1 12 1 198 265    172 151 

4c 

S- 

0.5 0 0 203       

1 0 0 200       

2 0 0 201       

S+ 

ramp 

0.5 1.5 3 4.5 6 0 201*       

1   3 6 9 12 0 196*       

2 6 12 18 24 0 200*       

5 

S- 1 0 0  157 161 106 148   

S+ 

pulse 

1 3 1 3 6  155* 160* 105* 147*   

1 6 1 3 6  157* 159* 106* 145*   

1 9 1 3 6  156* 161* 106* 149*   

1 12 1 3 6  158* 162* 107* 145*   

* The numbers correspond to the minimum values.  

An = Noise Amplitude 

Af = Feature Amplitude (‘slip-like’ event) 

Nf = Numbers of feature (‘slip-like’ event) 
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2.5.  Data analysis and statistics 

Psychophysical data was assessed as mean response-probabilities across trials and sessions 

during presentation of S+ stimuli and catch trials (S-). The psychometric curves in this study 

are Weibull or Logistic fits estimated from a maximum likelihood estimator (Wichmann and 

Hill, 2001a, b). Error bars of psychometric data signify 95% confidence intervals calculated 

from a binomial model setting the animal’s response probability to the probability of a 

Bernoulli trial. Statistical differences between psychophysical data was assessed using 95% 

confidence limits of the thresholds (probability of detection = 0.5). Response probabilities 

were converted into sensitivity d′ using the following equation: 

 �′ = Φ
�����	 − Φ

����� (1) 

 

where phit signifies the probability of correct responses, pFA the probability of false alarms, 

and Φ
−1

 is the probit function. In order to compare psychometric with neurometric 

sensitivities, d′ values were converted to area under the receiver operating curve (AUROC) 

(Stanislaw and Todorov, 1999) by 

 ���� = Φ( �′

√�
) (2) 

 

(for the correction term √2 see ref. Stüttgen et al., 2011); note that despite the typing error 

in their equation (3), this is identical to what has been done by Gerdjikov et al. (2010). To 

give a rough estimate of psychophysical performance across sessions of experiments 1 and 2 

(Figures 3B and 4B), a simple discrimination index was calculated 

  

 �� = �(�|� +) − �(�|�−), (3) 

 

where �(�|� +) is the response probability to presentation of the strongest S+ and �(�|�−) 

is the response probability to S-.  

Reaction times of experiment 4-5 were calculated by subtracting the timestamp of the first 

lick within the 1 s window of opportunity from the onset of the respective ‘slip-like’ event.  



20 

 

Neuronal sensitivities were computed from distributions of cortical spike counts calculated 

as the difference of the spike counts found in intervals of equal length just before and after 

each onset of pulsatile stimulus change (negative spike counts indicate a suppressed 

response under S+ relative to background). A criterion shifted in steps of one spike across 

the two distributions was used to determine the hits and false alarms of the neuron, and 

thus the ROC curves (Britten et al., 1992). Sensitivities for all S+ are expressed as AUROC. 

Neurometric sensitivities of pools of neurons were fitted to the psychometric one by 

applying a Monte Carlo maximum likelihood procedure (Stüttgen and Schwarz, 2008). The 

database included the probability of spike counts in a varying window after stimulus onset 

(as calculated from 50 single-unit trains recorded in Experiment 1a and 24 single-unit trains 

recorded in Experiment 1b). The fit was performed for all combinations of four parameters: 

1) the number of most sensitive neurons accepted into the pool (3, 5, 10, and 15), 2) the 

pool size (5, 10, 20, 40, 100, 200, and 500), 3) the duration of the time window in which 

spikes were counted (12.5, 25, 50, 100, 200, 400, and 800 ms), and 4) the prior expectation 

of the animal of receiving a stimulus that predicts reward, that is, the probability of the 

occurrence or absence of a certain stimulus according to the subject’s knowledge about 

stimulus ratios. This prior ratio was varied between the extremes PRmin = 1/8 (number of 

catch trials divided by the number of S+ in Experiment 1a) and PRmax = 10/5 (time of 

background stimulation divided by the time of S+ presentation, average from all sessions 

that entered the dataset). To reliably account for neuronal responses despite the limited 

number of spikes that could be sampled in the course of one session, I focused exclusively 

on spike counts (thus ignoring information potentially included in temporal spike patterns, 

cf. Stüttgen and Schwarz, 2008). In each resampling step, the selection of pool units was 

performed by a random pick (with return) from a subset of neurons taken from the top of a 

ranked list according to their sensitivity (assessed from responses to S+ with a maximum of 

7.2° amplitude difference to the background stimulus using equation 2). Based on the 

measured response probabilities, the responses of each pool member to all stimuli were 

determined by a random pick. These resulted in the likelihood function of each neuron. 

Assuming independence of neuronal responses, the pool’s response was then found by 

summing the logarithmized likelihood functions of all pool members. The decision was 

formed by comparing the likelihoods for each stimulus (S+) versus no stimulus (S −). From 
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Bayes’ rule, one can derive that it is optimal to decide for hypothesis h1 versus the 

alternative h2 if 

 

 LR�,� =  !("#|$)

!("%|$)
 =  &($|"#)

&($|"%
> &("%)

&("#)
= PR�,� (4) 

 

that is, if the likelihood ratio of h1 and h2 given the pool response r (LR1,2) exceeds the 

inverse ratio of the respective prior probabilities PR2,1. The optimal criterion (converted to 

log space) to decide about the presence of a stimulus then is 

 

 log,p(r|s0)1 − log,PR�,�1 > log,p(r|s2342")1. (5) 

 

On the left side of the inequality, PR2,1 is accounted for by taking the logarithm and 

subtracting from the log likelihood of the stimulus (si). The right side holds the log likelihood 

of the catch trial given r. The pool’s decision was set to 1 (stimulus present) if any 

comparison favored the presence of a S+ (i. e. equation 5 was true), otherwise it was set to 0 

(i. e. equation 5 was false). The pool’s neurometric responses were calculated based on its 

decisions exactly as done with the behavioral data gained from the rat (see above), and 

compared with psychometric response curves using the Euclidean distance.  
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3. Results 

3.1.  Psychometrics with pulsatile stimuli  

The first set of psychophysical data (experiment 1-2) was sampled from two groups of three 

rats each subjected to a DOC paradigm (Figure 2B). Pulsatile stimulation was applied to the 

base of one whisker (5 mm from the base) with a piezo bender. All animals learned the DOC 

task after they underwent the training steps described above. I tested whether rats used one 

of three vibrotactile stimulus parameters for discrimination: 1) ‘instantaneous kinematic 

cues’ which can be used to detect so called kinematic events, or extremes in amplitude or 

velocity, 2) ‘pulse frequency,’ and 3) ‘intensity’ as measured by mean speed in an interval 

minimally encompassing one stimulus period (interval between two sequential pulse 

onsets). The choice to measure intensity as mean speed was based on psychophysical results 

showing that rats confound stimuli matched in mean speed (Gerdjikov et al., 2010). To 

change instantaneous kinematic cues, pulses were multiplied with a constant factor resulting 

in pulses with different amplitudes and maximal velocities. Changes in frequency were 

introduced by manipulating interpulse intervals. By applying one of these two 

manipulations, instantaneous kinematic cues and frequency can be changed independently. 

However, the intensity of the stimulus is duly affected by both manipulations. Therefore, to 

keep intensity constant, the pulse amplitude and the interpulse interval had to be changed 

in reverse directions. Three sets of changes from S- to S+ could be constructed by 

manipulating pulse amplitude and interpulse interval in a systematic way, each keeping one 

of the vibrotactile stimulus parameters constant while changing the other two (Figure 2C). 

This strategy is not possible with the classically applied sinusoid waveforms where changes 

in frequency necessarily cause changes in both the remaining parameters as well. 

Experiment 1, performed with the first group of rats, was designed to test the contribution 

of instantaneous kinematic cues, and therefore, held first the intensity (Experiment 1a) and 

then the frequency (Experiment 1b) constant between S- and S+, while the pulse amplitudes 

changed. Experiment 2a then tested if rats temporally integrate the stimulus to extract 

frequency or intensity information from stimuli that did not offer any differences in pulse 

waveforms (i.e., kinematic events that could be extracted were identical). I wish to stress 

that for Experiment 2, a second group of naïve rats were used (rather than testing the 

animals that already learned the tasks in Experiment 1). This was done to exclude the 
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possibility that subjects may have learned an inappropriate strategy due to their prior 

experience (in Experiment 1) with stimuli that differed in amplitude. This strategy assured 

that in case of minor performance on the task of Experiment 2a, one can exclude the 

possibility that rats did not perform well because their learning ability was impaired by 

whatever they had learned before. In order to investigate how the temporal evolution of 

such an integration compares to the duration of stimuli, running averages of stimulus 

transitions were computed from windows of different lengths (10–200 ms) and are shown 

for one stimulus used in Experiment 2a (Figure 2D). Assuming an optimal discriminator, 

minimal integration time needed to discriminate the stimuli is one period (33 ms for 

pulsatile stimuli at the lowest frequency of 30 Hz). Although one does not know the 

properties of the hypothesized integrator, with this analysis, one can be fairly confident that 

the integration time needed to discriminate stimuli is going to be a small fraction of a 

second, very likely below 100 ms, which will give the rat ample time to respond during 

stimulus duration (typically 1 s, some sessions of Experiment 2a used 1.5 s).  

Experiment 1a used stimuli that displayed constant intensity, which could be detected either 

by monitoring instantaneous kinematic cues or by integrating the signal for frequency 

decomposition. Previous results using a standard trial-based Go/NoGo psychophysical task 

without background stimulation and similar stimuli, predicted that the animals should have 

difficulties to discriminate these stimuli, as intensity has been found to be the decisive cue in 

the earlier task (Gerdjikov et al., 2010). In contrast to this expectation, all three rats of this 

group working on the DOC paradigm could readily discriminate the stimuli, indicating 

intensity coding is not necessary in the present context (Figure 3A, red psychometric curves). 

Experiment 1b used the same amplitude differences between S- and S+ but the pulse 

frequency of 66 Hz was kept constant. Switched to the new stimulus set, the animals 

immediately performed well (Figure 3A, blue psychometric curves). Within the first session 

their response was nearly as good as with the old stimulus set (Figure 3B). The presentations 

of stimulus sets 1a and b were then alternated in blocks of 10 sessions, and performance 

never dropped when switching between experimental blocks. Consequently, the 

psychophysical curves shown in Figure 3A have been constructed from all sessions including 

the ones right after switching from one stimulus set to the next. Plotted across 

instantaneous kinematic cues (the shared parameter between stimulus sets 1a and b), the 
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two psychometric curves are nearly identical for all three rats (blue and red curves in Figure 

3A). The confidence limits of the two curves overlap for all stimuli except for a slight 

deviation of the response to stimuli at amplitude difference 1.1° in rat 1. This demonstrates 

that stimuli lacking either intensity or frequency cues are detected equally well, suggesting 

that instantaneous kinematic features are the relevant cue used by the animals during 

discrimination. This conclusion is supported further by the analysis of additional stimuli that 

were presented together with the core stimulus sets in Experiments 1a and b reported so 

far. These additional stimuli (randomly inserted into the sequence of core stimuli) deviated 

from the equal intensity (1a), or frequency (1b) rule respectively. I asked whether 

discrimination would improve if some intensity cue (1a) or frequency cue (1b) were added to 

a stimulus close to perceptual threshold (1.1° amplitude difference). Experiment 1a 

contained three additional stimuli, two deviating downward and one deviating upward from 

the intensity of the original 1.1° stimulus (see schematic in Figure 3C). This was done by 

manipulating the pulse amplitude of the stimulus; thus, it was a co-manipulation of intensity 

and instantaneous kinematic cues. In the downward direction, the intensity cue decreased 

(because it deviated more and more from that of the S-) but, at the same time, the 

amplitude was drawn closer to the one of S-, in fact reducing the instantaneous kinematic 

cue. The expectation then was that the animals should show better discrimination whenever 

they used the intensity cue while they should show the opposite if they used instantaneous 

kinematic cues. Clearly, in all animals, the latter was the case supporting the hypothesis that 

they used dominantly instantaneous kinematic cues to solve the task (Figure 3C). Note that 

the performance of all rats on stimuli with negligible amplitude differences (-128°/s in Figure 

3C, +24 Hz in Figure 3D; significantly so in rats 1 and 2) was small but better than catch 

performance (black outlined box). This indicates the remaining ability to discriminate stimuli 

after abolishing all instantaneous kinematic cues. In Experiment 1b, one stimulus of 

increased frequency was added while reducing the pulse amplitude to match the intensity of 

the original stimulus (see schematic in Figure 3D). The same logic applies here. The animals 

should discriminate this stimulus better if they used the introduced frequency cue but they 

should perform worse if they used the abolished instantaneous kinematic cue. Again, the 

latter was clearly the case in all animals (Figure 3D).  
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Figure 3. Psychometric performance with two stimulus sets that both employed kinematics as 

discriminative cues. (A) Response probabilities of three rats are depicted as a function of 

amplitude differences in red for Experiment 1a and in blue for Experiment 1b. Data points 

represent means and are based on 447-676 trials. Smooth lines are Weibull fits estimated 

from a maximum likelihood estimator. Vertical error bars represent 95% confidence intervals. 

Horizontal bars at the bottom represent 95% confidence intervals of the thresholds. (B) 

Discrimination index (equation 3) achieved in the last 10 sessions of the first block of 

Experiment 1a and the first 10 sessions after switching to Experiment 1b. (C) Additional 

stimuli with manipulated intensities were introduced to test the animals' sensitivity 

compared with a stimulus with matched intensity from the psychometric curve (colored bar). 

(D) Same as in C but additional stimuli that modulated frequency. Performance to catch trials 

is shown as black outlined box. Schematics of stimulus traces used in each experiment are 

shown on the left side.  
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The results presented so far strongly argue in favor of the hypothesis that the animals used 

mainly instantaneous kinematic cues of the pulses as the cue to perform discrimination. 

Regarding our previous study (Gerdjikov et al., 2010), this fits the hypothesis that the 

preference for intensity only emerges if instantaneous kinematic features are not available 

as discriminant cue. However, it is also possible that in principle rats can use all parameters 

of vibrotactile stimuli to perform discrimination, but they stick to the cue presented when 

learning the task for the first time and refuse (or are unable) to relearn if the cues change 

later on. Particularly, I was concerned that in Experiments 1a and b, the animals adopted the 

strategy to watch out for the first different pulse (with respect to the background S- pulses) 

to perform the task. Such a strategy could possibly divert them away from integrating the 

stimulus (and the use of intensity or frequency cues). In order to address this point, I 

designed an experiment to investigate how a second set of naïve rats learned the task if 

instantaneous kinematic cues (i.e., a divergent waveform or ‘oddball’ pulse) were absent 

from the start. Experiment 2a held instantaneous kinematic cues (i.e., the pulse waveform) 

constant across stimuli and thus forced the subjects to use temporal integration, if they 

could. Later, a stimulus set very similar to the one in Experiment 1b was presented in 

Experiment 2b, to check if the animals would switch to instantaneous kinematic cues when 

present or stay with whatever they learned in Experiment 2a (Figures 2C and 4A).  

The hypothesis that animals learn the task equally well using any of the three parameters 

was rejected by Experiment 2a. A second naïve set of three rats showed great difficulties 

learning the task when instantaneous kinematic cues were absent (Figure 4A, green curves). 

An extension of S+ duration to 1.5 s and the use of larger frequency differences, 90 versus 10 

Hz (data not shown) in some training sessions did not help. The resulting psychometric 

curves indicated hit rates between 0.45 and 0.71 during presentation of the strongest 

stimulus change and false alarm rates between 0.29 and 0.43 during catch trials (with n = 49-

316 trials per stimulus). Rat 5 experienced positive changes in intensity (intensity S-< 

intensity S+) while rats 4 and 6 were confronted with negative changes (intensity S-> 

intensity S+; see Table 1 for details). Only rat 4 was able to perform reasonably well (hit rate 

0.71, false alarm rate = 0.29), but never reached the performance achieved by the first set of 

animals that experienced changes in kinematic cues. Moreover, rat 6 refused to work on the 

task at one point, forcing me to terminate this part of the experiment at a lower number of 

sampled trials than intended (cf. Table 1). Finally, when I switched to a stimulus set that 
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contained instantaneous kinematic cues (but held frequency constant, Experiment 2b) all 

three rats readily learned the task (Figure 4A, blue curves). The transition of the general 

discrimination index after the first switch to Experiment 2b is shown in Figure 4B. After 

learning to discriminate stimulus set 2b, the rats were repeatedly switched back to 

Experiment 2a but never showed any improvement in discrimination performance on this 

stimulus set. As shown in Figure 4C, the performance of the successful rat 4 was roughly in 

the range of performances observed using a quite different psychophysical design but similar 

stimuli (no instantaneous kinematic cues) (Gerdjikov et al., 2010). I wish to stress that this 

comparison must be viewed with caution— not only because the data were obtained with 

different psychometric paradigms—but also because, in the previous study, the S+ were the 

higher frequency stimuli while the present rat 4 was confronted with S+ that were of lower 

frequency than S-. Nevertheless, I find the comparison instructive as it shows that the 

exclusive presence of intensity and frequency cues does not abolish discrimination 

performance but rather is able to grant a minor amount of discrimination ability consistent 

with the previous results using a quite different task design. In summary, these experiments 

conclusively show that the usage of a certain type of cue is not dependent on the sequence 

of learning. Furthermore, they show that it is also not due to a bias generated by the 

structure of the psychophysical Experiment 1ab, which potentially led the animals’ to use 

the strategy to detect oddball pulses. Rather, the results point to a limitation of perceptual 

capabilities of the rats: they show superior performance when instantaneous kinematic cues 

are present, and their ability to discriminate vibrotactile stimuli using frequency or intensity 

cues is minor. 

 



29 

 

 



30 

 

Figure 4. Psychometric performance without kinematic cues. (A) Response probabilities of 

three rats are depicted as a function of intensity differences in green for Experiment 2a and in 

blue for Experiment 2b. Data points represent means and are based on 49-316 trials. Weibull 

fits and statistics are the same as in Figure 3. 95% confidence intervals of the thresholds 

(horizontal bars) are only shown if the psychometric curve surpasses the threshold. Rats 4 

and 6 experienced negative change (intensity and frequency of S+ was lower than that of S-, 

upper green icon), rat 5 worked on the inverted stimulus relationship (intensity/frequency S+ 

>intensity/frequency S-, lower green icon, see details in Table 1). Rats were naïve before 

being trained on stimulus set 2a. (B) Discrimination index (equation 3) achieved in the last 

ten sessions of the first block of Experiment 2a (no kinematic cue) and the first ten sessions 

after switching to Experiment 2b (almost identical to 1b, see Table 1). Note that the index in 

sessions 1-7 before switching to 2b was not plotted for rat 6. This individual was frustrated by 

stimulus set 2a and thus was presented only with extreme stimuli (S- and strongest S+) in 

these sessions in an attempt to keep up its motivation. (C) Comparison of psychometric 

results with an earlier study using the same type of stimuli (Gerdjikov et al., 2010). The 

earlier study (left) used a classical Go/NoGo paradigm with stimuli separated in time; S+ was 

the highest frequency stimulus (90 Hz). The present study used a DOC paradigm with 

seamless presentation of S- and S+ (center). The psychophysical results of rat 4 (the one 

successfully trained on the DOC task) was obtained with S- being the highest frequency 

stimulus (90 Hz). Despite the differences in psychophysical design and in stimulus-reward 

association, the psychophysical results of the two experiments are comparable (right). To 

allow direct comparison of the curves, the absolute stimulus frequencies used in the earlier 

study, were converted into frequency differences between S+ and S-.  
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3.2.  Barrel Cortex activity with pulsatile stimuli 

Barrel cortex activity has been shown to be critical for whisker-based passive detection and 

discrimination (Miyashita and Feldman, 2013). I, therefore, investigated how barrel cortex 

unit activity represents the present stimuli and explored possibilities for perceptional read-

out. During the behavioral session of rats 1-3 (Experiment 1), I recorded a total of 74 single-

units and 91 multi-units (Experiment 1a: 50 SU, 61 MU; Experiment 1b: 24 SU, 30 MU) in the 

barrel column associated with the stimulated whisker. By gradually moving the electrodes, 

neurons were found between 400 and 1700 µm. Figure 5 shows representative neuronal 

responses to different S+ and catch trial (the threeunits shown were recorded in the same 

session of Experiment 1b). All units generated a phasic response in response to the first few 

pulses after a stimulus switch (best seen with the highest amplitude difference). This pattern 

is indicative of cortical (re-) adaptation with fairly short time constants kicking in after the 

stimulus switch. Similar observations have been made with pulsatile stimuli engaging the 

cortex in the nonadapted (idle) state (Stüttgen and Schwarz, 2010). After the transient 

response at S+ onset, the firing rate settled at a new level for the remainder of the S+ 

presentation. With respect to S-, this sustained firing during S+ was elevated in part of the 

cells (Figure 5, bottom), and it was reduced in very few (Figure 5, top). In many cases, 

however, sustained firing rate appeared the same in both conditions, and the only visible 

signs of S+ presence were the transient ON and OFF responses (Figure 5, center).  
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Figure 5. Example cortical responses to changes in pulsatile stimuli (Experiment 1b). PSTHs of 

representative barrel cortex units recorded from one animal in one session of Experiment 1b. 

Spike counts across time (bin width 10 ms) are plotted for two single-units (SU) and one 

multi-unit (MU) (the right column plots a random selection of 100 waveforms for each unit). 

The other columns plot the response to three different S+ amplitudes (label indicates the 

difference of S+ and S- pulse amplitudes) and catch trials. The gray area represents the time 

of stimulus change (S+).  
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In Figure 6A the distribution of PSTHs obtained from the whole sample are shown for four 

different stimuli and catch trial used in Experiment 1b. Median firing rate changes (black) 

and 25% and 75% percentile levels (yellow and green) are depicted for the 30 multi-units 

(top) and 24 single-units (bottom) recorded in this experiment. The sustained firing rate to S- 

was subtracted, so that positive/negative firing rates would indicate a higher/lower 

sustained response to S+ as compared with S-. The median firing rate of multi-units was 

clearly modulated by the first pulses with amplitude changes down to +2.2°. Inspection of 

different percentile levels reveals that more than 75% of the multi-units showed an 

excitatory response to amplitude changes of 7.2° and 3.9°. Owing to very low firing rates, 

single-unit population activity appeared noisier but generally matched the observation from 

multi-units. Interestingly, in experiments which kept pulse kinematics constant but varied 

frequency (labeled ‘+24 Hz’), all recorded neurons showed flat PSTHs varying around zero 

change in firing rate. This result reveals the near complete absence of neuronal responses to 

an isolated switch in stimulus frequency. Nevertheless, as mentioned above, rats display the 

low but consistent ability to discriminate even when instantaneous kinematic cues were 

absent (cf. Figures 3C, D and 4C). To examine more closely the sustained firing rates that 

might give to rise this accomplishment, I compared the firing rate response shortly after 

stimulus onset, at the end of stimulus presentation, and for the entire stimulus period for 

the total sample of single- (n = 74) and multi-units (n = 91). At stimulus onset, the 

distribution of spike numbers evoked by catch trials versus trials with highest amplitude 

difference differed clearly in both single- and multi-unit data. However, at the end of the 

stimulus or taking the whole stimulus period into account, the difference in response to S- 

and the strongest S+ was mainly visible in multi-unit recordings (Figure 6B). The information 

about the stimulus in the steady state as revealed by the multi-unit data are likely the 

neuronal correlate of the minor psychometric performance when only intensity and 

frequency cues are present (Figures 3C,D and 4C).  

[The detailed effect sizes of spike count distributions obtained comparing 0 (catch) and 7.2° 

difference amplitude (the strongest S+) and using different durations of integration windows 

are the following (effect size is expressed as AUROC, i.e., values of 0 and 1 indicate 

completely separated distributions and a value of 0.5 indicates identical distributions; values 

in-between describe distributions overlapping to different degrees). Below, the first number 
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depicts the effect size obtained with single-unit trains (n = 74) and the second the one 

obtained with multi-unit trains (n = 91) from animals working on Experiments 1a and b: 

stimulus onset: window 50 ms: 0.63, 0.81, window 100 ms: 0.63, 0.76, and window 200 ms: 

0.68, 0.73. Stimulus end: window 50 ms: 0.56, 0.59; window 100 ms: 0.56, 0.62; window 200 

ms: 0.60, 0.65. Entire stimulus period: 0.65, 0.73.].  
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Figure 6. Population analyses of cortical responses to pulsatile stimuli. (A) Distributions of 

evoked activity across time (bin width 1 ms) for the whole population of units (multi-units, n 

= 30; single-units, n = 24) recorded in Experiment 1b. (Note that the ordinate scales responses 

as ‘changes in firing rate’ because the sustained firing rate to the S- background stimulus has 

been subtracted). Each subplot shows the unitary responses to a different S+ stimulus or 

catch trial (schematized on top). The curves indicate the median (black) and the 75th (top) 

and 25th (bottom) percentile (yellow and green). Note that the firing rate distributions 

labeled ‘+24 Hz’ were the ones obtained with the extra stimuli of Experiment 1b, in which 

frequency was manipulated and waveform kept constant (cf. Fiure 3D). These responses, 

although obtained in Experiment 1b, in fact belong to the same category of stimuli as the 

ones used in Experiment 2a. (B) Distributions of neuronal activity evoked by the strongest 

amplitude change (7.2°, black bars) and catch trials (gray bars) as observed in Experiments 

1a and b. The abscissa scales response as spike counts in three different intervals. Left: 

immediately after stimulus onset (0-50 ms peristimulus time). Center: before the stimulus 

offset (950-1000 ms peristimulus time). Right: the whole stimulus period (0-1000 ms 

peristimulus time). Multi- (MU, n = 91, top) and single-unit data (SU, n = 74, bottom) are 

shown.  
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My next aim was to estimate the integration interval employed by the perceptual read-out 

using quantitative comparison of the neurometric with the psychometric data. The 

hypothesis that instantaneous kinematic cues are the main basis of perception would be 

strengthened by the finding of short optimal integration windows. To this end, the 

distributions of single-trial spike counts were converted to neurometric sensitivities, again by 

applying ROC analysis (see Materials and Methods; note that for the present purpose of 

calculating sensitivities, AUROC values are used to compare single-units’ ability to 

discriminate a stimulus pair on the basis of single trials while, in the section before, AUROC 

was used as a measure of effect size for the comparison of mean responses measured across 

the sample of units). Neuronal sensitivities with which each S+ could be discriminated from 

S- were then compared with the respective psychometric sensitivities calculated from the 

rat’s lick responses in the same sessions. Panel A of Figure 7 plots AUROC values for all 

single-units (gray) recorded in Experiment 1b (AUROC values of 0.5-1 scale chance to perfect 

discrimination if cells are excited, while values of 0.5-0 scale the same in the case of 

inhibitory responses). The psychometric curve shown in blue (identical for all subplots) is the 

average across three rats. Each subplot illustrates the neurometric performance based on 

spike counts taken from integration intervals starting at the stimulus onset but with different 

durations. The few responding neurons showed a tendency to increase sensitivity with 

increasing amplitudes, but did so in highly variable ways. Some of them showed low, others 

rather high amplitude thresholds to reach elevated sensitivity. However, even those who did 

respond stayed far below the performance of the rat. One reason for the poor neuronal 

sensitivity was their low spike number per trial, especially when using small encoding 

windows. In a 20-ms window, for example, the spike count was mostly zero and virtually did 

not exceed one or two spikes. In addition, neuronal sensitivity did not vary significantly 

across cortical depth. Units grouped into three bins indicating roughly superficial (400-800 

µm), middle (800-1200 µm), and deep (1200-1700 µm) locations (as measured by screw 

turns at the electrode array) showed similar mean AUROC values for the discrimination of 

the strongest S+ stimulus from S- [mean ± SD; 0.57 ± 0.13 (n = 44), 0.61 ± 0.12 (n = 84), and 

0.59 ± 0.10 (n = 37); t-test for independent samples, all three pair-wise comparisons P > 

0.05]. In conclusion, responses of individual barrel cortex neurons contain low sensitivity for 

the task, and thus, provide a poor tool to estimate the integration interval. Individual 

neurons are unlikely to be at the basis of the animals’ discrimination performance. To 
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explore whether the psychometric results can be better explained by population activity, 

and thus allow a better estimate of the optimal integration interval, I fitted a probabilistic 

model that computes the likelihood function of neurons within a pool under the assumption 

of independence (Figure 7B) as done previously (Jazayeri and Movshon, 2006; Stüttgen and 

Schwarz, 2008). The pool neurons were modeled based on the single-unit data obtained in 

Experiments 1a and b. Using a Monte Carlo procedure, I varied 1) the duration of the spike 

count window, 2) the number of most sensitive neurons picked to compose the pool, 3) the 

pool size, and 4) the animal’s expectation, that is, the prior ratio. The first parameter, the 

spike count window, is the most important one for the present purpose, because it gives us 

an estimate of the optimal integration interval. Parameters 2 and 3 are important as they 

hint at spatial specifications of optimal readout mechanisms. With low optimal number of 

neurons selected and used for the pool, read out mechanisms that assess neurons in highly 

specific ways are better than unspecific ones. Lastly, the fourth parameter addresses the 

expectation of the animal. In the behavioral sessions, the animals experience favorable times 

(presence of S+ and availability of reward) and unfavorable times (absence of S+, i.e., 

presence of S-). The trained animal, thus, forms an expectation of the presence S+ through 

learning and uses it (e.g., to adjust lick rates) even before perceiving the sensory stimuli. 

Under the Bayesian framework, incoming actual sensory data are integrated with this prior 

belief to take a decision (equations 4 and 5). A low value of this parameter would indicate 

that the animals count trial numbers of S- and S+ to calculate their prior belief. A high value 

speaks in favor of the alternative strategy, to measure presentation times of S+ and S-. Refer 

to Materials and Methods for more details and the justification of each parameter’s range in 

which values were varied to fit the model.  

The single-units in the dataset were ranked according to their sensitivity to discriminate the 

strongest stimulus changes. In each resampling step, spike responses of randomly chosen 

units were drawn based on the measured firing probabilities, and the log-likelihood function 

was computed for each neuron. The log-likelihood function of the whole population was 

then calculated by summing the contributions of individual neurons. In the last step of each 

simulation, a decision rule was applied that compared likelihoods of S+ and S- stimuli, taking 

into account varying prior probabilities of the absence or presence of a stimulus (see 

Materials and Methods for more details). The goodness of fit of the simulated pool-
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neurometric curves with the psychometric ones was estimated by calculating their Euclidean 

distance. Figure 7C shows the best fit results for Experiments 1a and b, respectively. The 

simulated pool response curve with the best fit is shown as dashed line, whereas 

psychometric data are shown as solid line. Both, neurometric and psychometric data are 

shown as a function of amplitude difference for the six core stimuli, although the best fit was 

calculated for the whole stimulus set including additional stimuli that modulated intensity or 

frequency (cf. Figure 3C,D). There was a consistent underestimation of the catch trial 

performance of the neuronal pools, in line with the notion that the neurons were purely 

sensory driven and did not reflect the (presumptive top-down) neuronal correlate of the 

animal’s impulsivity. Across experimental conditions 1a and b, I found that the model 

robustly fitted the free parameters at optimal pool size of 10 neurons, the usage of the three 

most sensitive neurons (located at a depth of 930-1325 µm), and a prior ratio of 7.6. A pool 

consisting of more than 10 neurons led to an increase in neuronal sensitivity, which was 

exceeding the performance of the animal, leading to a larger Euclidean distance and a worse 

fit of the model. The low number of pool neurons (and the usage of a small number of 

sensitive neurons) speaks in favor of the notion that very few neurons can carry enough 

information to explain the performance of the subject as noted before (Stüttgen and 

Schwarz, 2008, 2010). The optimal prior ratio of 7.6 was closer to the value of 10.5 expected 

if the animals measure absolute durations of S+ versus S- presentations than the one 

expected from using a ratio of trial numbers for this calculation (value 0.13 or 0.17 for 

Experiments 1a and b, respectively). This finding is reasonable, because the trial-based 

structure of the DOC task is not easily assessable for the subject: S- trials have low 

probability to be noted consciously (they lead to a longer period of perceived background 

stimulation), and, therefore, are unlikely to contribute to a generation of a prior belief based 

on trial numbers. The most important finding of the modeling exercise was that the optimal 

spike count window was of short duration and ranged between 50 and 200 ms (indicated by 

small Euclidean distances in Figure 7D, note that a higher Euclidean distance indicates a 

mismatch between neurometric and psychometric curves irrespective of which of the two is 

better or worse in absolute terms). The finding of short integration windows might have 

been expected from the strong response adaptation of firing rates, reported above. It is 

interesting to note, however, that the best fit interval is somewhat longer than the peaks of 

spiking activity in the PSTHs, likely reflecting the information contained in tonic increment of 
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the firing rate as observed in some units (cf. Figure 6B). In summary, these results suggest 

that the decision of the animals requires a small population of cells and is possible using fast 

and transient responses. Such a coding scheme seems adequate to process instantaneous 

kinematic cues which, as shown by the psychophysical analysis, are the essential parameter 

used for the performance on the DOC task.  
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Figure 7. Quantitative comparison of neurometric and psychometric curves to estimate the 

optimal integration interval used to generate a percept. (A) Neurometric sensitivity of single 

neurons. The graphs show neuronal sensitivities based on spike count distributions observed 

within integration intervals of different durations starting at stimulus onset (top). The 

neurometric (gray lines) and psychometric (blue line) sensitivities are plotted as the function 

of changes in stimulus amplitude (pairwise comparisons to catch trials) and are expressed as 

area under the ROC curve (AUROC). The psychometric sensitivity is calculated as the mean 

across three animals subjected to Experiment 1b. Single neuron’s activity cannot explain the 

animals' performance as none reached the psychometric sensitivity, irrespective of the 

integration interval used. (B) Performance of neuronal pools. A Monte Carlo procedure was 

used to fit the neurometric performance of a population of neurons to the psychometric 

performance. Random picks from the measured spike count distributions of pool neurons, 

were converted into log likelihood functions and summed up to yield the pooled log likelihood 

(lh) function and the pool's decision (equation 5). Repeating the procedure 1000 times 

yielded the pool's response probability. Four variables were varied to find the best fit of the 

pool response to the psychometric performance: 1) the duration of the integration interval, 2) 

the number of neurons in the pool, 3) the number of sensitive neurons chosen for read-out, 

and 4) the prior belief of the animal. (C) Optimal model performance was assessed by 

calculating the Euclidean distance between the outcome of each combination of model 

variables and the psychometric performance in Experiments 1a and b. The best fits of pool 

neurometric sensitivity (broken lines) are plotted together with the average psychometric 

curve (solid colored lines) of the three rats. (D) Model performance as a function of the 

integration interval. The three other variables (listed on top) were fixed to their best fits, 

which were found consistently in Experiments 1a and b. Smallest Euclidean distances (Eucl. 

dist.) were found for intervals between 50 and 200 ms. The best fits are indicated by arrows. 

Note the log scale of the abscissae.  
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3.3.  Psychometrics with ‘slip-like’ events and background noise 

The second psychophysical dataset (experiment 3-5) was sampled from 7 rats each 

subjected to a DOC paradigm (Figure 2B). Rat 7 and 8 were first trained on the detection of 

broadband noise against no movement (experiment 3) and then were subjected to a task in 

which they were required to detect multiple (6 to 20 per second) pulsatile kinematic events 

as described in the methods section. As the kinematic profile of these events was chosen to 

resemble slip events occurring with active palpation of textures (Wolfe et al., 2008), I tag 

them ‘slip-like’ events. All other animals (rats 9-13) were immediately trained on the latter 

task. At the end of training the number of events was reduced to one (single ramp-like 

events or single pulse-like events, cf. table 2) in all subjects. In a subset of animals (rats 8-11) 

the task was then refined for systematic psychometric assessment of pulse amplitude (Af) 

and number (Nf) as described in experiment 5. All variations of the DOC task presented here 

were readily learned by the rats that were trained on them. For purposes of logic of 

presentation I will describe experiment 4 before experiment 5 although they were actually 

performed in reverse temporal order. 

Experiment 3 aimed at identifying a background noise level that is perceivable but does not 

saturate the sensory system. The two animals learned to detect the presence of a noisy 

whisker deflection of 1 s duration (S+) which varied in amplitude An (Figure 8A). When the 

animal detected the presence of noise and reported it by a lick during the 1 s presentation 

time (Hit response), it obtained a water reward. Catch trials contained no whisker movement 

(S-); lick responses during a 1 s long period (false alarm, FA) were not rewarded. The 

psychometric curves assessed this way indicated that a noise level with 2*SD = 1° would be 

readily perceptible. Its location on the supra-threshold, sloped portion of the psychometric 

curve however assures that it engages the tactile system without driving it into saturation 

(Figure 8B). 
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Figure 8. Broadband noise detection. (A) 1s of broadband noise with different amplitudes (An) 

was presented pseudo randomly in a trial based fashion in experiment 3. The task of the 

animal was to detect any whisker deflection. (B) Response probabilities of 2 rats are depicted 

as a function of noise amplitude (An). Data points represent means (n = 154-230 trials per 

stimulus, 5-6 sessions) and smooth lines are logistic fits estimated from a maximum 

likelihood estimator. Vertical error bars represent 95% confidence intervals. Horizontal bars 

at the bottom represent 95% confidence intervals of the thresholds (dashed line). 

 

Experiment 4 was designed to test the animals’ ability to discriminate single ‘slip-like’ events 

from a noisy background. Experiments 4a and b (Figure 9A and B) tested whether the exact 

waveform (pulse vs. ramp) of the ‘slip-like’ event matter for perception. These experiments 

kept the background noise level An constant at a well perceptible level of 2*SD = 1° as 

assessed in experiment 3. Experiment 4c (Figure 9C and D) was designed to investigate 

whether and how detection of ‘slip-like’ events are dependent on the intensity of the 

background noise. In this experiment ramp-like events were embedded into noise of 

different standard deviations in separate sessions. For all sub-experiments within 

experiment 4, a single ‘slip-like’ event (S+) was embedded into continuous background-noise 

every 4 to 10 s (Figure 2F and 9AC). When the animal detected a ‘slip-like’ event and 

reported it by a lick during a 1 s time window following the occurrence of the event (Hit), it 

obtained a water reward. Catch trials contained a continuation of the background noise (S-) 

without any embedded event and lick responses within a 1 s period (FA) were not rewarded. 

All sub-experiments of experiment 4 together, clearly established that rats can readily detect 

single ‘slip-like’ events embedded in noise, as psychometric curves were typically 

characterized by Hit rates above 0.8 and FA rates of ~0.2 (Figure 9BD). Experiment 4a and 4b 
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tested detection performance with pulses vs. ramps (Figure 9AB). The waveforms of the 

uprising phases of pulses and ramps were congruent while they differed in the downswing. 

Pulses were mirror-symmetric with respect to the vertical line through their peaks while 

ramps returned to zero on a very slow trajectory which does not lead to primary afferent 

activity and cannot be perceived by rats (Stüttgen, 2006) (see waveforms in Figure 2F). One 

animal (rat 7) received both, pulses and ramps of identical amplitudes (Af) and maximal 

velocity, in alternating sessions (Figure 9B left). The other rats were trained either on ramps 

or on pulses (Figure 9B right; n = 3 for each group, cf. table 2). The psychometric curves 

obtained with pulses and ramps were almost identical, suggesting that reaching a critical 

speed once (i.e. with ramps) was sufficient to reach the detection performance seen with 

pulses in which the maximum speed occurred twice. In order to test how detection of slip 

events relates to the relative noise amplitude, I conducted experiment 4c using varying noise 

amplitudes (An) and respectively scaled the amplitudes of the ‘slip-like’ features (Af) (Figure 

9C). I found that the signal-to-noise ratio was no unique determinant of perception. Higher 

absolute feature amplitudes (velocities) were detected far better than lower ones even 

when relative noise amplitudes were adjusted to be constant. On the other hand, perception 

was not entirely independent of absolute noise amplitudes (as expected from the simple fact 

that event amplitudes tend to vanish into the noise with increasing noise amplitudes): the 

same event amplitudes (velocities) were detected somewhat better with lower as compared 

with higher noise amplitude. Figure 9D suggests that it is the difference of event and noise 

amplitude, which determines perception. Plotting perceptual performance across this 

difference, results in very similar psychometric curves and statistically inseparable 

thresholds. In summary, experiment 4 provides evidence for the notion that, for detection of 

an event, the animals use its maximum amplitude/velocity after subtraction of the 

amplitude of ambient noise. 
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Figure 9. Pulse vs. ramp detection. (A) ‘Slip-like’ features of different amplitudes (Af) and 

shape were embedded into broadband noise. The events consisted either of pulses (single-

period sine wave; 100 Hz; duration 10 ms, experiment 4a) or ramps (half-period sine wave; 

duration 5 ms with 995 ms decay, experiment 4b). B. Left: Psychometric curves from one 

animal detecting pulse and ramp stimuli in alternating sessions (n = 196-226 trials per 

stimulus, 8-9 sessions). Right: Psychometric curves from three animals with pulse stimuli vs. 

three animals with ramp stimuli. Response probabilities are averaged across subjects and 

sessions (n = 427-593 trials per stimulus, 17-22 sessions). C. In experiment 4c the background 

noise level (An) was varied between sessions and amplitudes of ‘slip-like’ features (Af) were 

scaled accordingly. D. Psychometric performance of one animal extracting ‘slip-like’ features 

from background noise in three different amplitude ranges (n = 196-203 trials per stimulus, 

8-9 sessions). Detection probability is plotted as a function of amplitude difference between 

feature and noise (Af-An). Curve fit and error bar conventions as in Figure 8. 
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Finally in experiment 5, I tested the perceptual capabilities of 4 animals (rat 8-11) to extract 

‘slip-like’ features of different amplitudes (Af) and numbers (Nf) from the background noise 

(Figure 10A). The animals were allowed to immediately report the first event after it had 

occurred. As noted before, all animals received initial training using multiple pulses before 

being subjected to experiment 5 to provide them with the possibility to learn to use 

temporal integration, if they could. Single event testing always came last in the training 

sequence. If the animals integrated across ‘slip-like’ events, one would expect higher 

response rates for trials with a higher Nf and prolonged reaction times. However, the 

presence of multiple ‘slip-like’ events only slightly improved Hit rates (red and green curves 

in Figure 10B) above the ones observed with single events (blue curves) with a non-

significant increase of perceptual thresholds (as indicated by overlapping 95% confidence 

intervals). Evaluation of reaction times (interval between a ‘slip-like’ event and the rewarded 

lick) further revealed that a majority of successful licks were hardly affected by Nf. Figure 

10C shows typical lick time distributions from one animal relative to the n
th

 event of a trial 

(from top to bottom: sixth, third, first
  
‘slip-like’ event) with intermediate amplitude (Af = 6°). 

Reaction times to the first event were found to be in the typical range as measured in simple 

detection tasks using single pulses (Stüttgen and Schwarz, 2010) and also matched the ones 

obtained in this study with trials exclusively presenting single events per trial (experiment 4). 

If licks are plotted in relation to the second and third event, the distributions become more 

spread in time and move towards zero. With higher numbers (Nf > 3) the relative lick times 

become negative indicating that these ‘slip-like’ events were not causally related to the 

indicator response. Figure 10D shows median reaction times as well as interquartile ranges 

for all possible stimuli and for all animals used in this experiment (separated by colors). As 

seen in the example before, the first ‘slip-like’ event triggers a majority of lick responses at 

delay overlapping with the responses to single pulses from experiment 4; whereas the 

following events cannot account for most of the lick responses, since the relative lick times 

are too small or even negative, a result that is consistent across feature amplitudes and 

subjects. I conclude that although the animals have been trained on multiple ‘slip-like’ 

events, they do not integrate the vibrotactile signal to optimize perception. 
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Figure 10. Effect of slip number on perception. (A) Example trials from experiment 5 with 

different numbers of embedded ‘slip-like’ features (Nf). They were presented within a 

maximal window of 1 s which also represented the time window for response and potential 

reward. The time window was always initiated by the first event and the following events 

were distributed randomly with a minimal distance of 50 ms peak to peak. (B) Psychometric 

curves of three animals performing the DOC task with ‘slip-like’ features varying in number 

(Nf) and amplitudes (Af). Each data point represents the mean response probability as a 

function of Af (n = 105-164 trials per stimulus, 10-13 sessions). Curve fit and error bar 

conventions as in Figures 8 and 9. (C) Histograms of one animal’s lick times relative to the n
th

 

slip of a trial (from top to bottom: Nf = 6, 3, 1) with intermediate amplitude (Af = 6°). (D) 

Median reaction times and interquartile ranges for all animals and all stimuli (Subplots 

separate different Af, subjects are color coded). Median reaction times to single events from 

experiment 4 are also shown for comparison (inside grey box). 
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4. Discussion 

4.1. Support for neuronal coding of instantaneous kinematic cues 

The present psychophysical and electrophysiological measurements demonstrate, for the 

first time, that neuronal representations of kinematic events, extracted from instantaneous 

kinematic variables of whisker trajectories, play a decisive role for the subject’s performance 

in a tactile discrimination task. Changes in pulsatile stimuli in the DOC format were detected 

well by animals as well as barrel cortex neurons, given the switch was characterized by a 

change in instantaneous kinematic cues. In contrast, if the stimulus switch was based 

exclusively on the classical parameters frequency and intensity, the performance of animals 

and neurons was minor. How can these results, clearly favoring instantaneous extraction of 

kinematic events, be brought into register with previous evidence presented for each of the 

three candidate parameters? The original evidence for the ‘frequency’ and ‘intensity’ 

hypothesis comes from the primate literature on perception of ‘flutter’. Classic experiments 

have shown that the perception of ‘intensity’ and ‘pitch’, reported by human observers, 

cannot unequivocally be attributed to single stimulus parameters like amplitude and 

frequency of a sine wave (LaMotte and Mountcastle, 1975). My perceptual measurements in 

the whisker system using seamless switches of pulsatile whisker vibrations were aimed to 

disentangle instantaneous and time integrated parameters (i.e., instantaneous kinematic 

cues and mean speed) which had been conflated by the amplitude changes of sine wave 

stimuli in the older literature. The present data clearly show a high level of psychophysical 

performance whenever instantaneous kinematic cues were present and a diminished one 

whenever these cues were absent. Thus, I could not find strong evidence for dominant 

perceptual qualities of pitch and intensity as conjectured in the primate hand system. In my 

view, this does not exclude the possibility that both systems share mechanistic principles of 

tactile processing. First, the classic studies, unable to separate the contribution of 

instantaneous versus time integrated parameters, may have ignored the contribution of 

instantaneous cues. Second, the similarity of instantaneous coding in primate hand and 

rodent whisker systems found more recently (Mackevicius et al., 2012) suggests a read-out 

of such information for perception. Finally, the insight that vibrissae and skin represent 

bioelastic elements, both capable of adding instantaneous kinematic cues about the probed 
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texture to the vibrotactile signal (Scheibert et al., 2009; Jadhav and Feldman, 2010), support 

my expectation that future work may well reveal a significant role of instantaneous 

kinematic cues for primate vibrotactile perception as well. 

The intensity hypothesis has received great biomechanical evidence also in the whisker 

system: the power of the vibrotactile signal (another possible measure of intensity) has been 

shown to carry a large amount of information about the roughness of the contacted texture 

(Hipp et al., 2006). Psychophysical evidence using a trial based Go/No Go paradigm showed 

that rats used intensity cues while being unable to use frequency and instantaneous 

kinematic cues offered to them (Gerdjikov et al., 2010). The present data using the DOC 

paradigm are in accordance with a role of intensity cues. However, the prominence of the 

instantaneous kinematic cues for discrimination performance shown here raises the 

question as to why the importance of this parameter was ignored by the previous study. One 

possibility is that the cognitive process model (Stüttgen et al., 2011) of the previous task 

contains a step in which stimulus information must be stored in long-term memory. In each 

trial, the animal observes only one stimulus which it compares to the S+ stored in long-term 

memory during learning of the task (the memory period in the Gerdjikov study was the time 

difference between the current trial and the last S+ trial successfully discriminated, i.e., 

minimally one interstimulus trial of 15–25 s). Considering the need to limit the size of 

content stored in memory due to capacity limits, it is conceivable that only a strongly 

compressed version of the vibrotactile signal is being preserved. This is exactly what was 

found: intensity, the average of the speed trajectory rather than the full trajectory, is what 

the animals used for discrimination (Gerdjikov et al., 2010). A second line of evidence in 

favor of intensity is based on recordings in urethane-anesthetized rats (Arabzadeh et al., 

2003) which showed that neuronal spike counts in barrel cortex can neither be aligned with 

frequency nor with the amplitude of sinusoidal stimulation alone. In that study, long 

intervals of spiking were analyzed ignoring transient responses. In contrast, the present 

study shows that information about the awake animal’s choice is largely contained within 

the first 200 ms after stimulus change, that is, in the transient response. I therefore conclude 

that the analysis of a long stimulus period — at least under the present experimental 

conditions — does not lead to an adequate description of neuronal activity used for 

perception. Another neurophysiological study using repetitive pulsatile whisker stimulation 
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observed that neuronal responses to stimuli with varying ('noisy') pulse amplitudes are 

larger than those to stimuli containing constant pulse amplitudes (Lak et al., 2010). However, 

in this study responses to individual pulses showed also a clear tuning toward higher pulse 

amplitudes (or velocities) which in principle is as well compatible with instantaneous 

evaluation of pulse amplitudes to be able to discriminate noisy from non-noisy stimuli. A 

more recent psychophysical study in freely running rats simultaneously presented sinusoidal 

whisker deflections on each side of the face, whose frequency (f) and amplitude (A) could be 

either low (f, A) or of double value (2f, 2A)(Adibi et al., 2012). The main point of that study 

was that animals failed to discriminate stimuli whenever the two variables were varied in the 

opposite direction (i.e., f/2A vs. 2f/A), which led Adibi and coworkers to conclude that 

discrimination cannot be based on f or A but rather on their product f*A which is 

proportional to the intensity (mean speed) in sinusoidal stimuli. Importantly, my present 

results show, that the conclusion of Adibi et al. is not the only valid interpretation of their 

result. The distributions of instantaneous velocities contained in the four stimuli (f/A, 2f/A, 

f/2A, 2f/2A) are identical (because all are sinusoids), but are differently scaled: f/A is 

characterized by the slowest maximum velocities, 2f/A and f/2A yield intermediate (but 

identical) maximal velocities, and 2f/2A gives the highest maximal velocities. Therefore, if 

the animals detected instantaneous velocities, instead of f*A, the result of Adibi et al. would 

have been the same. However, the question remains why the animals did not use amplitude 

differences (A vs. 2A) as discriminant cues. One possible answer is that the quite small 

amplitudes applied in that study (13 vs. 26 µm at the whisker tips, which gave rise to a low 

discrimination performance of max. ∼75%), activated exclusively rapidly adapting primary 

afferents, which have been reported to scale their response with velocity and are insensitive 

to amplitude (Stüttgen et al., 2006). From these considerations, I conclude that the results of 

Adibi et al. are well compatible with the notion that the animals use instantaneous kinematic 

cues for vibrotactile discrimination.  
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4.2. Support for the slip hypothesis 

To pursue the slip hypothesis, I tested how subjects actually perform the DOC task when 

confronted with very short and single trial ‘slip-like’ sequences as sampled from different 

textures. The results obtained with these naturalistic stimuli provide behavioral evidence 

that rats are readily able to extract ‘slip-like’ events from background noise. I show that rats 

use instantaneous kinematic aspects of the embedded features rather than evaluating their 

waveforms or number. Again, temporal integration across the noisy signal plays a minor role 

for detection. It could be argued that the stimuli presented here are not ideal to prompt 

detection using integration as ‘slip-like’ events are presented at relatively low frequency. A 

simple modeling exercise shows that this objection is unfounded. I systematically 

investigated the ability of a series of models to detect ‘slip-like’ events, in which the 

temporal integration time was systematically varied. This was done by varying the duration 

of flat kernels (boxcar filters), which were used to filter the signal followed by application of 

a variable threshold to classify trials into hits (‘slip-like’ events present and detected) and 

misses (‘slip-like’ events present but not detected). The performance of such models is 

shown in figure 11A (full lines) together with the mean perceptual performance of the rats 8-

10 (broken lines). The first observation is that ‘slip-like’ stimuli could be readily detected 

with small as well as with long integration windows. However, the models using small 

integration windows, i.e. the ones tuned to instantaneous signatures, fit the behavioral data 

best, as they reproduced the similarity of psychometric curves across the number of 

presented ‘slip-like’ events (different colors). The best fits for each window size were found 

by choosing the threshold that would minimize the largest deviation from the detection 

curves obtained from the rats. As shown in figure 11B, this minimum is quite different when 

using different integration windows. It is much smaller for short windows as compared to 

long ones. In conclusion, the modeling results firstly show that a strategy of temporal 

integration might not be effective to detect the stimuli used in this study, and secondly, lend 

further support to the hypothesis that rats in fact use instantaneous coding to detect rapid 

slip events in a noisy environment.  
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Figure 11. Integration model to detect ‘slip-like’ events. (A) Signal Integration with different 

temporal filters (boxcar filters) was used to classify trials into hits (‘slip-like’ events present 

and detected) and misses (‘slip-like’ events present but not detected). The model 

performance (full lines) is shown for five integration windows together with the actual mean 

perceptual performance of the rats (broken lines). Different numbers of ‘slip-like’ events (Nf) 

are separated by colors. (B) Comparison of detection thresholds between model and actual 

performance of the rats. The best fit (minimal Euclidean Distance) was obtained with a short 

integration window (50 ms). 

 

In the present study I show that instantaneous encoding of kinematic signatures is used also 

in the presence of noise. This is important as neuronal adaptation to noise decisively 

changes stimulus responses. In whisker-related primary afferents, spike history clearly 

determines encoding properties of neurons (Chagas et al., 2013). Generally, several lines of 

evidence suggested that ongoing activity tends to reduce neuronal response to a given 

stimulus. Enhanced background firing during sensorimotor interaction (i.e. whisker 

movement) (Fanselow and Nicolelis, 1999; Hentschke et al., 2006) as well as pre-adaptation 

has been shown to lower tactile responses (Wang et al., 2010; Ollerenshaw et al., 2014). 

There is reason to believe that interactions can be even more diverse than simple 

suppression, as shown by complex interactions of stimulation of principal and surround 
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whiskers (Moore et al., 1999; Wilent and Contreras, 2005; Estebanez et al., 2012). However, 

adaptation does not simply work to adjust detection to the signal-to-noise ratio of the 

vibrotactile signal. It has been suggested to adjust the sensory system to better 

discrimination, but not detection of whisker deflections (Wang et al., 2010; Ollerenshaw et 

al., 2014). The present results suggest that the detection of ‘slip-like’ events is based on the 

difference of signal and noise rather than its ratio. A systematic appraisal of neuronal 

responses adapted to noise in an extensive range and its consequences for coding of 

kinematic events along the entire ascending tactile system is needed to tackle this question 

in the future.  

In summary, my findings best fit the notion that rat whisker related tactile perception is 

based on instantaneous kinematic cues. Intensity cues (average speed) are less powerful and 

may be the parameter of choice if context demands (Gerdjikov et al., 2010). These results 

match the previous finding that for detection of repetitive whisker deflections, temporal 

integration is a minor factor. Temporal integration of short bursts of whisker deflections is 

limited to small integration windows, and even falls short of what is expected from simple 

probability summation (i.e., the probability to detect one of a number of single pulses 

presented in isolation) (Stüttgen and Schwarz, 2010). Small integration windows are in line 

with single-unit recordings in anesthetized animals which suggest that barrel cortex 

responses are transient and are most sensitive to whisker velocity (Pinto et al., 2000), that 

spiking on the ascending tactile pathway is precise and carries information about detailed 

features of the trajectory (Jones et al., 2004; Arabzadeh et al., 2006; Petersen et al., 2008; 

Chagas et al., 2013), and that such precise spiking is particularly useful to represent whisker 

slips — high amplitude/velocity/acceleration due to whisker elasticity (Arabzadeh et al., 

2005; Ritt et al., 2008; Jadhav et al., 2009). The present results support the slip hypothesis as 

a theory of perception, as I show that detailed kinematic properties of single ‘slip-like’ 

sequences as sampled from different textures significantly optimize performance, whereas 

temporal integration across the signal plays a minor role. The prior finding that rats use the 

barrel cortex response to very few initial pulses after a stimulus switch to perform the DOC 

task stands in line with an instantaneous encoding mechanism during texture contact. 
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