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1. Introduction: 
 

 

1.1. Hepatocellular carcinoma (HCC): 
 
1.1.1. Epidemiology: 

 
HCC is the sixth most common type of cancer in terms of incidence, accounting 

for approximately 630,000 new cases per year in the world; in addition, HCC is 

the third leading cause of cancer deaths [1]. 

Worldwide, the biggest risk factors for HCC are the infections caused by 

hepatitis B virus (HBV) and hepatitis C virus (HCV), which increase the risk of 

developing liver cancer by about 20-fold [2]. 

A review of the published literature reveals marked global variation in incidence 

rates and risk-factor profiles for HCC. Studies of migrant populations have 

shown that although incidence remains high in the first generation immigrants 

from high-risk areas, subsequent generations show a decrease in HCC rates. 

Although the incidence of HCC continues to rise, it is expected that vaccination 

programs will reduce the rate of HBV-related HCC and that public health 

measures will do the same to HCV-related HCC in the coming years. In parallel, 

health education programs may have the potential to curb the rise and impact of 

diabetes, obesity, and nonalcoholic steatohepatitis (NASH), which are 

becoming increasingly important HCC risk factors [3]. 

 
1.1.1.1. GLOBAL VARIATIONS IN THE INCIDENCE OF LIVER CANCER 

AND HCC 
 

HCC is one area of oncology warranting further investigation into its 

epidemiology. Although HCC was one of the first cancers to be linked 

epidemiologically to a definite risk factor (hepatitis B virus in Taiwan) [4], the 

explanation for what accounts for the incidence of this disease is less clear. 

Although liver cancer is the sixth most common neoplasm worldwide, its very 

poor prognosis makes it the third leading cause of cancer-related mortality, 

responsible for about 600,000 deaths annually [5]. In most countries, HCC 

accounts for 70-85% of primary liver cancer cases [6], with the burden of 

disease expected to increase in coming years [7]. 

Publications arising from analyses of GLOBOCAN database have highlighted 

striking global variations in the incidence of liver cancer, with the burden of 
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disease largely concentrated in countries with developing economies [5, 8]. In 

the most recently published GLOBOCAN global analysis, it was estimated that, 

in 2002, 82% of liver cancer cases occurred in developing countries, with 55% 

in China alone [5]. Figure 1 presents GLOBOCAN estimates for age-

standardized incidence rates of liver cancer in 2002, grouped by region and 

gender. Areas where the incidence of liver cancer is moderately high (11-20 

cases per 100,000 male inhabitants) or very high (>20 per 100,000) include 

China, southeastern Asia, and sub-Saharan western and eastern Africa [5, 9]. 

In most developed areas of the world, including North America and much of 

Europe, the liver cancer incidence is at low (<5 per 100,000) or intermediate (5-

10 per 100,000) levels; however, southern Europe and Japan are notable 

exceptions, with higher incidence rates (11.6 per 100,000 and 23.1 per 100,000, 

respectively). Potential reasons for these variations in incidence rates are 

discussed later. In addition to highlighting geographic trends in incidence, 

Figure 1 illustrates how rates of liver cancer differ according to gender. Liver 

cancer is much more common in men than in women; indeed, according to the 

GLOBOCAN estimates for 2002, the overall male: female incidence ratio was 

2.4, and this ratio was even higher in areas of greater HCC risk [5]. 

HCC is the predominant primary liver cancer in most countries so that the global 

variations in rates of liver cancer discussed above can be considered an 

accurate reflection of HCC incidence [6] with some exceptions. For example, in 

parts of the Philippines and Thailand, biliary tract infection with liver flukes is 

common, and therefore rates of cholangiocarcinoma are particularly high [5, 6]. 

Table 1 summarizes the findings of recently published epidemiologic studies 

that have estimated HCC incidence in the general population of different 

countries, most commonly via analysis of data held in cancer registries. 

Consistent with the findings of the GLOBOCAN analysis of liver cancer 

incidence, reported rates of HCC are lower in North America and northern 

Europe than in southern Europe and Japan [10]. 

 

1.1.1.2. HCC RISK-FACTOR EPIDEMIOLOGY 
 
HCC is a complex disease associated with many risk factors and cofactors [9, 

11]. In most patients, HCC is preceded by cirrhosis of the liver [7] and, 

unsurprisingly, common causes of cirrhosis have been identified as key risk 
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factors for HCC. Of particular importance is chronic infection with HBV or HCV. 

Indeed, it has been estimated that HBV is responsible for 50%-80% of HCC 

cases worldwide, whereas 10%-25% of cases are thought to be a result of HCV 

infection [12, 13]. To date, eight HBV genotypes (A to H) have been classified 

[14]. Patients with HBV genotype C have a higher risk for developing HCC, and 

a genetic mutation has been identified in some of these patients that may 

contribute to this greater risk [15, 16]. In patients with HBV (genotype D) and 

HCV coinfected HCC, significantly lower HBV viremia levels were demonstrated 

than in single-infected HCC individuals [17]. HBV and HCV were found to have 

an intrahepatic synergistic effect, and the replicative efficiency of HBV was 

modified by the introduction of genomic instability by HCV [17]. Antiviral therapy 

resulting in viral suppression is known to significantly decrease the risk for HCC 

in patients infected with HBV and advanced hepatic fibrosis [18]. 

Other environmental and genetic risk factors are excessive alcohol 

consumption, aflatoxin intake, diabetes, obesity, and hereditary 

hemochromatosis [9, 19]. 

Data emerging from epidemiologic studies have led to the realization that global 

variations in HCC incidence largely reflect geographic differences in the 

prevalence of different disease risk factors [19- 21]. For example, there is 

marked geographic variability in HBV prevalence, which is reflected across the 

world: <2% of the population of North America and northern and western 

Europe are chronic carriers of the HBV surface antigen (HBsAg), compared with 

>8% of the population of Asia and sub-Saharan Africa [22-24]. The large 

Taiwan Prospective HBV Study robustly demonstrated that HBV is the primary 

driver of the high HCC incidence rates in regions of high HBV endemicity [4]. 

Another potential contributor to the high incidence of HCC in Asia and sub-

Saharan Africa is dietary exposure to aflatoxin [25], which is produced by a 

fungus of the genus Aspergillus and is a common contaminant of foods such as 

peanuts, grain, legumes, and corn [9]. Aflatoxin appears to act with chronic HBV 

infection [9] as a cofactor for HCC, further increasing the risk for disease. 

HIV infection is also thought to increase rates of HCC in HBV-infected 

individuals [26], and this may be of particular relevance in sub-Saharan Africa, 

where about 67% of all individuals living with HIV reside [27]. 

In countries where HBV infection is not endemic, HCV and alcoholic cirrhosis 
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are generally considered to be the most important risk factors for HCC [21]. A 

recent Japanese nested case-control study showed that HCV infection and 

excessive alcohol consumption contributed to 62% and 17%, respectively, of 

HCC cases observed in 1970-2002 in 20,000 atomic bomb survivors [28]. 

Furthermore, in an analysis of SEER registry and Medicare data in the U.S., 

alcohol-induced liver disease and HCV infection were the most common risk 

factors, present in 22% and 21%, respectively, of 1,325 patients diagnosed with 

HCC in 1996-1999 [29]. Other factors, such as diabetes and nonalcoholic fatty 

liver disease (NAFLD), may be important contributors to the development of 

HCC in the U.S. [29]. Diabetes was also associated with enhanced HCC risk in 

the Japanese case-control study described above, as was obesity (body mass 

index >25 kg/m2) [28]. Both diabetes and obesity are implicated in the 

development of nonalcoholic steatohepatitis (NASH), the severest form of 

nonalcoholic fatty liver disease (NAFLD) that is believed to lead to HCC via 

progression of cirrhosis [9,  30, 31]. The growing burden of diabetes and obesity 

worldwide may drive future increases in HCC incidence, particularly in 

developed countries where, to date, the impact of the obesity epidemic has 

been most marked [32]. 

 
1.1.1.3. PAST AND FUTURE TRENDS IN HCC EPIDEMIOLOGY 

 
In recent years, a number of epidemiologic studies have highlighted how HCC 

incidence rates may change over time; for example, analysis of data from the 

SEER registries demonstrated that HCC incidence rates tripled in the U.S. 

between 1975 and 2005 [33]. This has been partially attributable to an epidemic 

of HCV infection in the U.S. during the 1960s [33, 34]. A peak in HCV infection 

rates was also one of the proposed reasons for a considerable increase in the 

incidence of HCC observed in southern Europe between 1983 and 1992, along 

with growing levels of HBV infection and alcohol consumption [35]. Rising rates 

of obesity and diabetes are thought to have contributed to the increasing 

incidence of HCC over recent decades in Canada, the U.S., and parts of 

Europe [36, 37]. The burden of HCC is also growing in Latin America, which 

was previously known for low rates of liver cancer [5, 38]. In Mexico, for 

example, general mortality rates for HCC increased from 4.1 per 100,000 in 

2000 to 4.7 per 100,000 in 2006, with the impact of HCC on morbidity and 
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mortality predicted to increase further in the future [38]. 

However, the incidence of HCC is not increasing everywhere. In the Osaka 

prefecture of Japan, age-standardized HCC incidence rates in men aged 50-79 

years peaked at 41.9 per 100,000 in 1987, remained stable until 1995, then 

steadily decreased to reach 24.0 per 100,000 in 2003 [39]. This decrease in 

incidence rates may be explained by the fact that HCV began to penetrate 

Japan in the 1920s, much earlier than in other countries such as the U.S., and 

that disease control measures initiated in Japan in the 1950s and 1960s have 

already led to a reduction in HCV infection rates [39]. 

Control measures, such as the screening of blood and blood products, and the 

identification and counseling of infected individuals have the potential to reduce 

global HCV infection rates [40, 41]. However, the spread of HCV among i.v. 

drug users is increasing and may partly counteract any anticipated reductions in 

HCC incidence arising from the decreasing incidental medical transmission of 

HCV [42]. 

At present, treatment options for HCV are effective in a minority of patients. An 

understanding of spontaneous HCV clearance and determination of the optimal 

time for treatment initiation are just two of the requirements for the development 

of new therapeutics for HCV [43]. Currently, the recommended therapy for 

chronic HCV infection is a combination of pegylated interferon-α and the purine 

analog ribavirin [43, 44]. However, this regimen has limited efficacy and is 

associated with significant toxicity [43]. 

HBV vaccination programs were initiated in many East Asian and Asia-Pacific 

countries during the late 1980s [42, 45, 46] and have begun to reduce mother-

to-infant transmission of HBV, the key factor driving chronic HBV infection [46, 

47]. Despite these successes, the full impact of such programs on HCC 

incidence is unlikely to be felt for at least two decades because of the high 

prevalence of chronic HBV infection in many developing regions and the 

prolonged lag period between HBV infection and the development of HCC [48]. 

In addition, the HBV vaccine is ineffective in about 5% of healthy people and 

that population does not develop immunity to HBV [49, 50]. 

Although it is difficult to accurately predict future changes in disease 

epidemiology, some experts have suggested that the overall global incidence of 

HCC will continue to rise in the next few years until a plateau is reached in 
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2015-2020 [7]. Subsequent decreases in the rates of HCC have been predicted, 

resulting, at least in part, from expected improvements in the control of HBV 

and HCV infection [42]. However, as the contributions of HBV and HCV 

diminish, risk factors such as diabetes and obesity may become increasingly 

important drivers of future HCC incidence trends. 

 

1.1.2. Etiology and Pathogenesis: 
 
Factors important in the pathogenesis of HCC are summarized in Table 2 [51-

53]. HCC is highly linked to chronic liver disease, in particular chronic hepatitis 

B and C infection and alcoholic liver disease. Virtually any condition associated 

with chronic hepatic injury (and especially with cirrhosis) may predispose to 

HCC. The annual risk of HCCs developing in a cirrhotic liver is estimated at 1% 

to 6%, with the risk generally highest in the context of viral sources and 

hereditary hemochromatosis [54]. As already discussed, obesity, aflatoxin 

contamination of food and co-infection with HIV in patients with chronic viral 

hepatitis [55, 56] are other risk factors for HCC. 

Although the strong etiologic association of HCC with cirrhosis is well known, 

the pathogenetic sequence leading to malignancy is less well elucidated. Liver 

cell proliferation is increased during chronic hepatitis but is often decreased in 

cirrhosis. Activation of stellate cells in cirrhosis leads to increased production of 

growth factors and other substances that alter hepatocyte proliferation. 

Limitation of the regenerative reserve of the liver has been attributed to 

accelerated telomere shortening in hepatocytes in chronic liver disease, leading 

to telomere dysfunction and susceptibility to chromosomal alterations [57], 

which would correlate with the observation of allelic gains and losses of 

numerous chromosomes in HCC [58]. Specific cell cycle checkpoint 

abnormalities in HCC include frequent mutations in the third nucleotide of codon 

249 of TP53 in HCCs linked to exposure to aflatoxin B1 [57], associated with 

high levels of chromosomal instability. An alternative pathway of 

carcinogenesis, with extensive Methylation of CpG dinucleotides in the 

promoters of cancer-related genes, is associated with β-Catenin mutations but 

not with high levels of chromosomal instability [59], and is frequently seen in 

non-HBV-related tumors. HBV infection promotes carcinogenesis by at least 

three mechanisms: integration of viral DNA into the host genome, leading to 
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chromosomal instability; insertional mutations at specific sites, leading to 

activation of genes involved in cell proliferation (implicated in 20% to 40% of 

HCCs arising in HBV); and ability of expression of HBX viral protein to modulate 

cell proliferation and inactivate p53 activities [60]. HCV does not integrate into 

the hepatocyte genome and has not been found to be directly oncogenic. 

 
1.1.3. Clinical findings: 

 
Surveillance of patients with chronic liver disease and cirrhosis has led to 

detection of tumors at asymptomatic stages in many cases, but many still 

present at advanced stages. Common presenting symptoms are abdominal 

pain, fullness or a mass, or worsening of symptoms attributed to cirrhosis. HCC 

may invade hepatic veins and spread to the inferior vena cava or even into the 

right atrium, producing right-heart failure as the initial manifestation. HCC rarely 

presents with initial symptoms attributable to metastatic spread. The most 

common metastatic sites are hilar and other abdominal lymph nodes, bone, and 

lung, although spread to less common sites such as gastrointestinal tract, skin, 

heart, kidney, spleen, and pancreas may be seen on occasion. Although most 

HCC patients die from cancer progression, an appreciable percentage 

succumbs to complications from cirrhosis [61]. HCC accounts for about 70% of 

all malignant neoplasms found in the cirrhotic liver in regions of low incidence. 

Although up to 30% of HCCs in North America may arise in a normal liver, it is 

much more likely that a malignant tumor in the normal liver represents a 

metastasis (2% HCC vs. 98% hepatic metastasis) [62]. HCC in the noncirrhotic 

liver generally appears at a later stage and with a larger mass than does HCC 

arising in patients with cirrhosis. Screening and early detection programs for 

HCC rely on a combination of ultrasonography and serum levels of AFP, and 

have led to the diagnosis of many small (less than 2cm), asymptomatic HCCs. 

Although it is difficult to demonstrate a decrease in disease-specific or all-cause 

mortality because of the need for large cohorts and randomization to screening 

or no screening [56], screening for HCC is considered appropriate because, 

even though the cure rate for symptomatic cancers is very low (0% to 10% 5-

year survival), early-stage tumors amenable to resection or liver transplantation 

are associated with 5-year survival rates of up to 50% [56]. AFP, a glycoprotein 

produced primarily by fetal liver, remains the most useful serologic marker for 



  

     8 

 

  

HCC, although its limitations are well recognized. Sensitivity ranges from 40% 

to 65% and specificity from 76% to 96% [63]. A cut off of 20 ng/mL is commonly 

used, and values about 400 ng/mL are considered diagnostic for HCC. Because 

patients with chronic viral hepatitis may have elevated serum levels in the 

absence of HCC, AFP appears to be more useful in the patient with nonviral 

liver disease. Progressive increase in serum AFP is also suggestive of HCC 

and warrants further investigation. A variant of AFP differing in its sugar chains, 

AFP-L3, appears to be more specific for HCC than is total AFP. Serum level of 

serum des-γ-carboxy prothrombin (DCP) has been suggested as a useful 

marker, with sensitivities ranging from 28% to 89% and specificities from 87% to 

96%; DCP does not appear to be nonspecifically elevated in chronic liver 

disease. Because DCP and AFP levels do not correlate, combination of both 

markers may improve accuracy in HCC diagnosis [104]: DCP seropositivity 

using a sensitive assay correlates with large tumor size and inversely with 

tumor differentiation [64]. Other promising markers being evaluated include 

glypican-3, insulin-like growth factor-1 (IGF-1), and hepatocyte growth factor 

(HGF) [63]. Although serum AFP levels may be elevated in nonneoplastic 

conditions associated with hepatocyte regeneration, such as acute and chronic 

viral hepatitis and cirrhosis, levels higher than 400 to 500 ng/mL are rarely 

seen. In chronic viral liver disease, increases in serum AFP are often episodic 

and correlate with increased transaminases. Other malignant neoplasms often 

associated with very high levels (more than 1000 ng/mL) of serum AFP include 

hepatoblastoma, germ cell tumors containing a yolk sac component, and 

hepatoid adenocarcinomas arising in various sites, such as stomach or ovary. 

 

1.1.4. Pathologic features: 
 

1.1.4.1. SMALL HEPATOCELLULAR CARCINOMA 
 
1.1.4.1.1. Macroscopic features: 

 
Small HCC is defined as measuring less than 2 cm in diameter [65]. It may be 

indistinguishable from a macro-regenerative nodule (MRN) on gross inspection 

and may be recognized only at the microscopic level, often arising within a 

dysplastic nodule (DN). A fibrous capsule is commonly present in lesions larger 

than 1.5 cm. Smaller tumors have a vaguely nodular appearance with indistinct 
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borders, and are difficult to distinguish from the surrounding cirrhotic liver. The 

nodules often bulge above the cut surface, are rarely necrotic, and may be 

variegated, with green areas corresponding to bile staining and yellow areas 

reflecting fat accumulation in tumor cells. Morphologic characteristics of some 

small HCCs change when the nodule attains size of 2 to 3 cm, resulting from 

development of a well-defined capsule, dedifferentiation, and clonal expansion 

[66]. 

 
1.1.4.1.2. Microscopic features: 

 
Small HCCs are nearly all well differentiated, consisting of relatively thin, 

irregular trabeculae (up to three cells thick) of small, crowded hepatocytes with 

fatty or clear cell change; increased eosinophilia or basophilia may also be 

seen. Mallory hyaline may be prominent. Reticulin stain showing loss of reticulin 

fibers may be helpful in establishing the diagnosis. Acinar and pseudoglandular 

structures may also be seen [66] but are typically smaller than those seen in 

moderately differentiated HCC. Small, well-differentiated HCC is distinguished 

from high-grade DNs by a nuclear density greater than twice normal and by mild 

but definite nuclear atypia (hyperchromasia, irregular nuclear contours). 

Nucleoli are often inconspicuous. As the nodule of HCC enlarges to greater 

than 1 cm, there is clonal dedifferentiation, often in a nodule-in-nodule fashion. 

The moderate or poorly differentiated foci are always found toward the center of 

the nodule, with a peripheral component of WD-HCC that diminishes with 

increasing tumor size. Prominent fatty change, present in 36% of cases [66], 

often declines when the tumor attains a size of 3 cm or more, and may be 

related to the inadequate development of arterial blood vessels at early stages 

of tumor growth. Stromal and portal tract invasion may occur, but vascular 

invasion is rarely identified. 

 
1.1.4.2. ADVANCED HEPATOCELLULAR CARCINOMA 
 
1.1.4.2.1. Macroscopic features: 

 
The macroscopic appearance of advanced HCC varies depending on the 

presence or absence of cirrhosis and the size of the tumor [51, 52]. Tumors 

arising in a noncirrhotic liver usually grow as a single large mass, occasionally 

with satellite nodules (massive or expanding type), whereas those associated 
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with cirrhosis often grow as multiple discrete nodules (nodular type) or 

numerous minute indistinct nodules (diffuse type) that may be indistinguishable 

from cirrhosis (cirrhotomimetic). The tumors are occasionally pedunculated. 

Staging criteria for primary liver carcinoma (HCC and cholangiocarcinoma) 

depend on the size and number of the tumor nodules and the presence or 

absence of vascular invasion [67]. The liver is enlarged by one or more tumor 

nodules that are fleshy, variegated, with green bile-stained, pale yellow and 

white areas, and areas of hemorrhage and necrosis. Except for the rarely 

encountered fibrolamellar and scirrhous variants, HCC is soft, with little fibrosis. 

Invasion of the portal vein branches or hepatic veins is common in larger 

tumors. Involvement of major bile ducts, with intrabiliary growth, can lead to 

obstructive jaundice. Multiple tumor nodules may be due to synchronous 

primaries (multicentric growth) or may represent intrahepatic metastases from 

tumor spreading through portal vein branches. Although genetic analysis may 

be needed to confirm multicentricity, features favoring synchronous primary 

HCCs include multiple HCCs of different histology; presence of peripheral areas 

of well-differentiated HCC in multiple nodules; and multiple small HCCs or 

concurrent small HCC with a classic larger HCC [52]. 

 

1.1.4.2.2. Microscopic features: 
 
The neoplastic cells and micro architecture of HCC resemble normal liver to a 

greater or lesser extent 

depending on the degree of differentiation, which ranges from tumors so well 

differentiated that the distinction from hepatic adenoma is problematic, to 

tumors that are highly anaplastic and show little evidence of hepatocellular 

differentiation. In 1954, Edmondson and Steiner devised a four tiered grading 

system [68] based on autopsy data; this was subsequently modified in a large 

series reported from the AFIP [69], and other similar systems have been 

proposed [51] (Table 3). The World Health Organization (WHO) classification 

divides tumors into well, moderately, and poorly differentiated, and 

undifferentiated grades [52]. Most tumors are moderately differentiated (grades 

2 to 3), and more than one histologic grade is often present within a given 

tumor. Although tumor grade has not universally been shown to have a 

significant impact on outcome, higher nuclear grade has been reported to 
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predict poorer survival in HCCs resected with curative intent [70], and higher 

tumor grade corresponds to positivity on positron emission tomography (PET) 

imaging [71]. Bile located within neoplastic cells or tubular lumina is 

pathognomonic of HCC, but it is found in less than one third of cases and is not 

evident in poorly differentiated tumors. The presence of bile canaliculi is also 

diagnostic. Other than in HCC, bile and bile canaliculi have been identified only 

in hepatoid adenocarcinomas, most commonly arising in the stomach [72]. As a 

rule, typical HCCs do not contain abundant stroma, which explains why HCCs 

tend to be soft, in contrast to many other carcinomas that induce desmoplastic 

stromal response. Fibrolamellar carcinoma and the scirrhous pattern of HCC 

are rare variants that are exceptions to the rule that HCC lacks significant 

fibrosis. Large, blood-filled cystic spaces or vascular lakes within the tumor may 

mimic peliosis hepatis (pelioid pattern). The WHO [52] recognizes four 

architectural patterns in addition to the fibrolamellar variant, and three cytologic 

variants of HCC. 

 

Histologic patterns: 

Multiple histologic patterns are often found in the same tumor. Only the 

fibrolamellar variant appears to have prognostic significance, but familiarity with 

these architectural patterns may be helpful in arriving at a diagnosis of HCC: 

1) Trabecular (sinusoidal, platelike): This commonly found pattern resembles 

normal hepatic architecture in that the tumor cells grow in cords or plates 

separated by vascular channels lined by endothelial cells and Kupffer cells, with 

little or no supporting stroma. The trabeculae vary in thickness, from only a few 

cells thick (microtrabecular) to broad structures 20 or so cells thick 

(macrotrabecular). The reticulin framework is generally reduced or absent. 

2) Compact (solid): This variant of the trabecular pattern is seen in 5% to 15% 

of HCCs. Confluent growth or compression of adjacent trabeculae results in a 

solid growth pattern, with inconspicuous or obliterated sinusoids. 

3) Pseudoglandular (acinar): This pattern is usually admixed with the trabecular 

pattern, and is rarely seen as the dominant pattern in HCC. It is present (at least 

focally) in many HCCs and may be mistaken for metastatic adenocarcinoma, 

cholangiocarcinoma, or HCC combined with cholangiocarcinoma. The spaces 

represent greatly dilated bile canaliculi or degenerated macrotrabeculae, and 
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are lined by a single layer of tumor cells. The pseudoglands may appear to be 

freely floating and are not embedded in fibrous stroma, a feature that helps 

distinguish this pattern from adenocarcinoma. 

The pseudoglandular spaces may contain bile plugs and/ or proteinaceous 

eosinophilic material that is positive for PAS but negative for mucicarmine and 

Alcian blue, and does not represent mucin secretion. 

4) Scirrhous: This variant accounts for less than 1% to 2% of all HCCs. 

Cytologic appearance and variants: 

The tumor cells of HCC are usually polygonal, but may be cuboidal or even 

columnar. They have a moderate amount of finely granular eosinophilic 

cytoplasm that may be more basophilic than normal liver and usually have 

distinct cell borders. Bile canaliculi are readily identified in most well- to 

moderately differentiated tumors but may be inconspicuous by light microscopy 

in high-grade HCCs. Compared to normal hepatocytes; the tumor cells display a 

higher nuclear-to-cytoplasmic ratio. The nucleus is usually round to oval, with 

coarse chromatin, a single prominent nucleolus, and a thickened or irregular 

nuclear membrane. Intranuclear cytoplasmic invaginations are a common, albeit 

nonspecific, finding in HCC. A variety of cytoplasmic inclusions may be 

identified in HCC cells (Table 4 and Figure 2). Fat droplets can be seen in up to 

two thirds of tumors [51]. Diffuse accumulation of fat or glycogen results in a 

clear appearance to the cytoplasm, a variant termed clear cell carcinoma, which 

must be distinguished from metastatic renal cell carcinoma and other clear cell 

neoplasms. Mallory hyaline, representing clumps of intermediate filaments, is 

found in approximately 20% of cases [51] and may be very prominent. The 

accumulation of Mallory hyaline does not appear to be related to the underlying 

liver disease, although tumor Mallory bodies are indistinguishable from those 

seen in steatohepatitis and in chronic cholestasis. Globular proteinaceous 

eosinophilic inclusions are also seen in 20% of cases and are usually PAS-

positive, diastase-resistant, representing accumulation of Alpha 1-antitrypsin 

(A1AT). More lightly staining inclusions (8% of cases) that resemble ground-

glass cells of hepatitis B have been termed pale bodies and represent 

accumulations of fibrinogen. Copper-binding protein (Shikata orcein stain) and 

copper (rhodamine stain) have been detected in up to 28% of HCCs and appear 

to be related to the presence of bile within the tumor [73]. Hemosiderin is rarely 
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found in HCC, even in the context of hereditary hemochromatosis. Calcification 

is also quite rare in untreated cases. The following categories are recognized 

cytologic variants of HCC [74]: 

•Pleomorphic (giant-cell): 

Tumor cells show marked variation in size, shape, and staining characteristics, 

and bizarre tumor giant cells are common in this rare variant. The tumor cells 

show marked loss of cell cohesion, and a distinct trabecular pattern is difficult to 

identify in this high-grade variant. Extensive sectioning may be required to find 

evidence of typical HCC. Up to 30% of lower-grade HCCs also contain 

multinucleated tumor giant cells without anaplastic features; these tumors 

should be graded according to the overall nuclear features [51]. 

•Clear-cell: 

As the name implies, this variant is characterized by tumor cells with prominent 

clear cytoplasm resulting from accumulation of cytoplasmic glycogen and/ or fat 

that is lost in the embedding process. Although HCCs predominantly composed 

of clear cells are seen in only about 16% of cases, foci of clear-cell change are 

common in otherwise typical HCCs. Differentiating this type from metastatic 

renal, adrenal, or ovarian carcinoma may be problematic on purely histologic 

grounds, and the tumor may require extensive sampling to demonstrate foci of 

typical HCC. IHC studies demonstrating bile canaliculi (polyclonal CEA or p-

CEA) and hepatocellular differentiation such as HepPar-1 may be required to 

establish the diagnosis of HCC. Elevated serum AFP level, presence of chronic 

liver disease, and the absence of an extrahepatic mass favor a hepatic primary 

tumor. 

•Sarcomatoid (spindle cell, pseudosarcomatous): 

Up to 4% of HCCs exhibit a prominent sarcomatoid or spindle cell component 

[75] characterized by spindle-shaped cells that suggest a diagnosis of 

fibrosarcoma or malignant fibrous histiocytoma. Sometimes these tumors have 

been reported as carcinosarcoma or malignant mixed tumors, particularly when 

foci of more differentiated sarcomas (osteosarcoma, chondrosarcoma, 

leiomyosarcoma, rhabdomyosarcoma) are noted [51]. In some cases, a 

transition between the spindle cell component and typical HCC is demonstrated, 

whereas in others the components are separate [76]; extensive sampling may 

be needed to demonstrate areas of typical HCC. Pleomorphic and osteoclast-
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like giant cells may be seen, resulting in overlap with the giant-cell variant. CK 

immunoreactivity, most commonly CAM5.2, is detected in the spindle cells in 

about 60% of cases [76], supporting an epithelial origin, but the spindle cells 

also express mesenchymal markers such as vimentin, smooth muscle actin, 

and desmin. S100 can be detected in a small number of cases. The serum AFP 

level is elevated in roughly half of reported patients, similar to that seen for 

typical HCC [76]. Survival after hepatic resection appears to be shortened for 

this rare high-grade variant [76]. Spindle cell change may be more common in 

tumors subjected to chemoembolization or preoperative chemotherapy [74]. 

 

1.1.4.3. Immunohistochemistry and special stains: 
 
Although many cases of HCC are readily recognizable because of the 

characteristic trabecular architecture with little intervening stroma and 

demonstration of bile production by neoplastic cells, IHC studies and a small 

panel of special stains may be invaluable in diagnostically challenging cases. 

Relatively few non-IHC stains are useful in evaluation of tumors suspected to be 

HCCs. Reticulin stain is often helpful in distinguishing WD-HCC from 

nonneoplastic or benign nodules because the reticulin framework is typically 

reduced and incomplete in HCC; the stain also serves to highlight the trabecular 

structure, and delineates thickened liver cell plates. Because HCCs do not 

produce mucin, demonstration of intracellular mucin by mucicarmine stain or 

Alcian blue is useful in distinguishing HCC from cholangiocarcinoma or 

metastatic adenocarcinoma. A useful panel for initial workup of HCC includes: 

(a) polyclonal or cross-reactive CEA antiserum or antibodies directed against 

CD10 to highlight inconspicuous bile canaliculi; 

(b) antibodies against HepPar-1 and AFP to show hepatocellular differentiation; 

(c) monoclonal CEA or MOC-31 to highlight metastatic adenocarcinoma; and 

(d) synaptophysin and chromogranin to rule out a low grade metastatic 

neuroendocrine neoplasm. Polyclonal anti-CEA antiserum or certain 

monoclonal CEA (m-CEA) antibodies that cross-react with canalicular biliary 

glycoprotein 1 highlight bile canaliculi (canalicular pattern) in 30% to 100% of 

HCCs in sections and 47% to 83% in cell blocks or cytologic smears [77], 

depending on the degree of differentiation of the tumor. A similar pattern may 

be seen with antibodies directed against CD10; although CD10 expression may 
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be somewhat less sensitive than p-CEA, interpretation is often easier because 

of less background cytoplasmic staining in the tumor cells. Demonstration of 

this canalicular pattern of expression of CEA or CD10 staining remains one of 

the most useful IHC markers in the differential diagnosis of HCC, although utility 

is less in higher-grade tumors, which tend to show only focal positivity, if any. 

About 50% of poorly differentiated tumors lack immunoreactivity. A false 

positive HCC interpretation of a canalicular pattern may result from entrapment 

of nonneoplastic hepatocytes within the tumor, misinterpretation of an 

incomplete membrane pattern as canalicular in location, or misinterpretation of 

periluminal immunoreactivity for p-CEA in adenocarcinomas as staining of 

dilated canaliculi. HCCs, unlike adenocarcinomas, rarely show cytoplasmic 

immunoreactivity with m-CEA antisera, and inclusion of such antibodies in a 

panel may be diagnostically useful. 

HepPar-1 is a relatively hepatocyte-specific monoclonal antibody that reacts 

with a hepatocyte epitope that is resistant to formalin fixation and tissue 

processing and is present in both adult and fetal liver. The expression pattern is 

granular and cytoplasmic and may be patchy within tumors. HepPar-1 is useful 

in distinguishing HCC from cholangiocarcinoma and metastatic 

adenocarcinoma; it does not distinguish between HCC and benign 

Hepatocellular proliferations. Sensitivity for HCC in recent series ranges from 

73% [78] to 93% [79], with negative cases more likely to show a scirrhous 

architectural pattern or poor differentiation. Most nonhepatocytic neoplasms are 

negative for HepPar-1, although up to 6% of nonhepatic tumors in one series 

[80] were positive. Adenocarcinomas of the gastrointestinal tract, lung, and 

neuroendocrine carcinomas may express HepPar-1 [80, 81], and, as with many 

antibodies, HepPar-1 is probably best used as part of a panel. Scattered 

strongly positive cells in an otherwise negative tumor should be interpreted with 

caution, as they may represent entrapped hepatocytes. Normal hepatocytes 

express CK8 and CK18, which theoretically should be useful in differentiating 

HCC from cholangiocarcinoma (which tends to express CK7 and CK19 and 

variably express CK20) and metastatic adenocarcinomas. However, CK 

expression profiles are variable in HCC as well as in other malignancies, limiting 

enthusiasm for this approach as an initial diagnostic strategy. A panel of CK7, 

CK20, and CK19 has been suggested as a practical approach [77]; negative 
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results for all three markers favors HCC, whereas CK19 and CK7 positivity 

favors cholangiocarcinoma. Results for metastatic adenocarcinomas are 

variable depending on the primary site. 

Other antibodies that may be useful include MOC-31, a cell surface glycoprotein 

that is expressed in cholangiocarcinomas and metastatic adenocarcinomas but 

less often in HCC [77], and glypican-3, a heparin sulfate proteoglycan normally 

expressed in fetal liver. Glypican-3 is reportedly expressed in 84% of HCCs and 

rarely in metastatic adenocarcinoma and cholangiocarcinoma [82]. Cytoplasmic 

transcription termination factor-1 (TTF-1) has also been suggested as a 

relatively specific marker for HCC [83]. Claudin-4, which is expressed by 

cholangiocarcinomas but not HCC, is also a promising marker that may prove 

useful [84]. 

AFP IHC is highly specific but relatively insensitive, with positivity in only 17% to 

68% of cases [77]. However, this marker may be useful in poorly differentiated 

tumors, which may not show a canalicular expression pattern of p-CEA or CD10 

or expression of HepPar-1. 

CD34 has been used to differentiate between hepatic adenoma and other 

benign hepatic nodules and HCC; HCC is more likely to show diffuse sinusoidal 

positivity indicative of capillarization of the sinusoids. Expression in benign 

hepatic nodules is more limited. However, results must be interpreted with 

caution because there may be considerable overlap in degree of expression 

and pattern. 

A variety of other antibodies of limited clinical utility have been applied to HCC. 

These include A1AT and alpha 1-antichymotrypsin (A1ACT), which 

demonstrate a granular cytoplasmic nonspecific expression pattern; most HCCs 

express A1AT, but up to 70% of metastatic adenocarcinomas are positive as 

well [77]. AE1/AE3, CAM5.2, B72.3, inhibin, and factor XIIIa are also poorly 

discriminatory in distinguishing HCC from metastatic adenocarcinoma and 

cholangiocarcinoma [81]. In situ hybridization for albumin mRNA appears to be 

highly sensitive for hepatocellular differentiation, but has not yet gained 

widespread use in the diagnostic setting. Up to 96% of HCCs are positive [77], 

as are Hepatocellular adenomas and nonneoplastic liver. IHC for albumin is not 

useful because its abundance in the serum results in high background. 
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1.1.4.4. Fine needle aspiration: 
 
Aspirates of HCC are generally highly cellular due to the soft texture of the 

tumor and the lack of reticulin scaffolding, often resulting in a finely granular 

smear in well-differentiated tumors [85]. Trabeculae or clusters of tumor cells 

are lined by a variable number of elongated endothelial cells. The tumor cells 

are polygonal with central hyperchromatic nuclei and variably prominent 

nucleoli. The nuclear-to-cytoplasmic ratio is typically increased but varies with 

the degree of differentiation, and isolated stripped tumor cell nuclei are 

common. Intranuclear cytoplasmic invaginations and various cytoplasmic 

deposits such as bile, proteinaceous globules, and Mallory hyaline can be 

identified in cytologic preparations. Clear-cell HCC may be confused with signet 

cell adenocarcinoma or pleomorphic liposarcoma. Correlation of cytologic 

findings with the microarchitecture demonstrated on smear preparations [86] 

and in cell block material is critical to establishing the correct diagnosis in such 

cases showing variant cytologic features. False-negative diagnoses of HCC are 

related either to very well-differentiated tumors that are difficult to distinguish 

from nonneoplastic lesions or from Hepatocellular adenoma, or to poorly 

differentiated tumors that are difficult to distinguish as hepatocellular in origin. 

The presence of monotonous nuclear atypia and nuclear crowding and the 

absence of a reticulin framework in cell blocks may be helpful in the differential 

diagnosis of relatively well-differentiated HCC versus benign hepatic conditions 

[87]. Conversely, false-positive diagnoses are usually the result of the presence 

of reactive or dysplastic hepatocytes in a cirrhotic liver. Reactive hepatocytes 

generally demonstrate a continuum of morphologic changes, and this variability 

is helpful in distinguishing reactive from malignant hepatocytes. 

 
1.1.4.5. Precancerous lesions: 

 
Dysplastic nodules arising in the cirrhotic liver are considered to be direct 

precursors of many HCCs. Although the role of large-cell change as a 

premalignant lesion is disputed [88, 89], small-cell change is considered an 

important morphologic indication of transformation [59], but is relatively 

uncommon and rarely seen in needle biopsies. 

 
1.1.5. Molecular Biology: 
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To date, molecular techniques and DNA analyses have not proved helpful 

enough to warrant routine use in the diagnostic setting. Overexpression of 

mutated p53 can be detected by IHC in up to 37% of HCCs [77], but its 

diagnostic utility is limited by poor specificity, both for distinguishing HCCs from 

other malignancies and from benign reactive conditions. Comparative genomic 

hybridization and fluorescence in situ hybridization have shown promise in 

distinguishing HCC from hepatocellular adenoma, based on the observations 

that HCCs typically demonstrate a wide variety of chromosomal abnormalities, 

whereas hepatocellular adenomas demonstrate a more limited number of 

aberrations affecting different chromosomes [77, 90]. However, these 

techniques are not currently considered standard of practice for diagnosis. 

A new massive anchored parallel sequencing (MAPS)-based study (using next-

generation sequencing to isolate and sequence HBV integrants) [91] showed 

integration of the viral DNA into host chromosomes in most of the HBV-related 

HCCs. The authors identified 296 HBV integration events corresponding to 286 

unique integration sites (UISs) with precise HBV-Human DNA junctions. 

HBV integration favored chromosome 17 and preferentially integrated into 

human transcript units. The targeted genes include 7 genes (PTPRJ, CNTN6, 

IL12B, MYOM1, FNDC3B, LRFN2, FN1) containing IPR003961 (Fibronectin, 

type III domain), 7 genes (NRG3, MASP2, NELL1, LRP1B, ADAM21, NRXN1, 

FN1) containing IPR013032 (EGF-like region, conserved site), and three genes 

(PDE7A, PDE4B, PDE11A) containing IPR002073 (39, 59-cyclic-nucleotide 

phosphodiesterase). Enriched pathways include hsa04512 (ECM-receptor 

interaction), hsa04510 (Focal adhesion), and hsa04012 (ErbB signaling 

pathway) [91]. 

A clonal expansion model in HCC development was suggested relying on the 

fact that fewer integration events were found in cancers compared to cancer-

adjacent tissues. 

A newly published study [92] using whole genome sequencing of 88 HCCs 

found β-Catenin to be the most frequently mutated oncogene (15.9%) and TP53 

the most frequently mutated tumor suppressor (35.2%). 

The Wnt/β-Catenin and JAK/STAT pathways, altered in 62.5% and 45.5% of 

cases respectively, are likely to act as two major oncogenic drivers in HCC. 
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This study also identifies several prevalent and potentially actionable mutations 

including activating mutations of Janus Kinase 1 (JAK1) in 9.1% of patients and 

provides a path towards therapeutic intervention of the disease. 

Accordingly, single nucleotide variations (SNV), copy number variations (CNV) 

and HBV integration data for significantly altered genes and pathways in this 

study were mapped to classify the HCC into three subclasses, revealing distinct 

genetic profiles for each subclass. S1 and S2 express high level of genes 

involved in cell cycle control and cell proliferation. Most S1 and S2 tumors are 

poorly or moderately differentiated with high rate of recurrence. A subset of S1 

and S2 tumors harbours HBV integration into the MLL4 gene locus. S1 tumors 

also express high level of genes in immune response and angiogenesis. S2 has 

the highest frequency of TP53 mutation and the highest serum AFP level. S3 

tumors are well or moderately differentiated with a gene expression profile 

reflecting normal liver function. In addition, S3 has relatively high frequency of 

CTNNB1 and JAK1 mutations, and HBV integration into the TERT gene locus. 

Integrative analysis of gene expression profiles, genetic alterations and clinical 

characteristics appears to at least partially explain the observed difference in 

progression-free survival of these subclasses. 

 

MicroRNAs (miRNAs) are a group of tiny RNAs with a fundamental role in the 

regulation of gene expression. Aberrant expression of several miRNAs was 

found to be involved in human hepatocarcinogenesis and correlates with bio-

pathological and clinical features of HCC. It looks like, aberrantly expressed 

miRNAs could be linked to cancer-associated pathways, i.e. up-regulation of 

mir-221 and mir-21 that could promote cell cycle progression, reduce cell death 

and favour angiogenesis and invasion. These findings suggest that miRNAs 

could become novel molecular targets for HCC treatment [93]. 

 
1.1.6. Differential Diagnosis: 
 

The primary challenges in differential diagnosis of HCC are distinguishing low-

grade HCC from benign hepatocellular proliferations, and in distinguishing HCC 

from cholangiocarcinoma and metastatic adenocarcinoma. Recognition that 

HCC is relatively uncommon in the normal liver and occurs much more 

frequently in the setting of chronic liver disease or cirrhosis can aid in making 



  

     20 

 

  

the distinction, but the possibility of metastasis when evaluating a malignant 

liver tumor should always be considered. Differentiation of HCC from metastatic 

neuroendocrine tumors (NETs) poses special problems because of the 

trabecular growth pattern of both. NETs can have a conspicuous trabecular or 

acinar arrangement and focal oncocytic or clear-cell change. The nuclei of 

NETs typically display a finely stippled chromatic pattern and lack conspicuous 

nuclei. The background liver is normal or may show nonspecific features 

indicative of mass effect. Although some metastatic neuroendocrine tumors are 

associated with prominent fibrous stroma, in others the stroma is delicate and 

inconspicuous, consisting of a rich capillary network surrounding groups of 

tumor cells. Calcification may also be noted, a feature distinctly unusual in HCC. 

Although nearly all hepatic NETs represent metastases (usually from the 

pancreas or small bowel), rare cases of apparent primary tumors have been 

described [94]. Diffuse, strong immunoreactivity for neuroendocrine markers 

such as synaptophysin, CD56, and chromogranin helps to differentiate an NET 

from HCC, but focal immunoreactivity with these antibodies has sometimes 

been described in HCC [95]. Markers that detect hepatocellular differentiation, 

such as p-CEA and HepPar-1, should be included in the panel of antibodies 

chosen. Ultrastructural confirmation of neurosecretery granules may be helpful 

in individual cases, but is rarely needed. 

 
1.1.7. Treatment, Outcome and Prognostic factors: 

 
Patients who present with symptoms attributed to HCC usually survive only a 

few months after diagnosis; median survival in many series is roughly 7 months. 

Longer survivals have been reported in patients enrolled in a screening program 

who are able to undergo surgical resection or liver transplantation. Five year 

survival after resection is often reported as 20% to 30%, but with careful 

selection of patients (noncirrhotic patients or those with compensated cirrhosis, 

tumors less than 5cm), 5-year survival rates can exceed 40% [96]. The 

prognosis of patients with HCC is determined not only by HCC stage but also by 

the functional status of the underlying liver, and it appears that many patients 

with HCC may die as a result of progressive chronic liver disease not 

attributable to tumor growth [61]. Palliation with percutaneous ethanol injection, 

cryoablation, and transcatheter arterial chemoembolization has been employed 
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with some success in patients with inoperable cases. The most common causes 

of death are cachexia, gastrointestinal bleeding, and hepatic failure. 

Spontaneous tumor rupture accounts for about 10% of deaths. Tumor size, 

number, and location (one or both lobes) of tumor nodules, the presence of 

small- or large-vessel invasion, and the presence or absence of cirrhosis are 

the most important prognostic variables for HCC that the pathologist can identify 

in resection specimens [67]. The first three are reflected in the tumor-node-

metastasis (TNM) staging system (Table 5). In particular, microvascular 

invasion and nuclear grade may have prognostic significance for HCC 

reselected with curative intent [70, 95]. The distance of the tumor from the 

resection margin (less than 1cm, more than 1cm or at inked margin) should also 

be noted in the surgical pathology report. Liver transplantation is generally 

limited to patients with solitary HCC 5cm or less, or to up to three nodules each 

smaller than 3cm. Five-year disease-free survival rates for HCC are roughly 

46% in the setting of liver transplantation [97]. 

 

 

1.2. Cholangiocarcinoma (CCC): 
 
1.2.1. Epidemiology: 
 

Cholangiocarcinoma is relatively rare, but high incidence rates have been 

reported in Eastern Asia, especially in Thailand. The etiology of this cancer of 

the bile ducts appears to be mostly due to specific infectious agents. In 2009, 

infections with the liver flukes, Clonorchis sinensis or Opistorchis viverrini, were 

both classified as carcinogenic to humans by the International Agency for 

Research on Cancer for cholangiocarcinoma. In addition, a possible association 

between chronic infection with hepatitis B and C viruses and 

cholangiocarcinoma was also noted. Countries where human liver fluke 

infection is endemic include China, Korea, Vietnam, Laos, and Cambodia. The 

implementation of a more intensive preventive and therapeutic program for liver 

fluke infection may reduce incidence rates of cholangiocarcinoma in endemic 

areas [98]. 

 
1.2.1.1. OVERVIEW 

 
Cholangiocarcinomas are relatively rare, but high incidence rates have been 
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reported in Eastern Asia, especially in Thailand [99]. CCCs are highly fatal 

tumours, as they are clinically silent in the majority of cases [100-105]. 

CCC occurs with a highly varying frequency in different areas of the world. CCC 

is the second most common primary liver cancer and accounted for an 

estimated 15% of primary liver cancer worldwide [98]; however, it varies widely 

by region from 5% in Japan [106] and 20% in Pusan (Busan), Korea [107] to 

90% in Khon Kaen in Thailand [99]. Recently, a rising tendency of intrahepatic 

CCC incidence was reported in Western countries [108-111]. The reasons for 

this increase are not clear, but some of these increases were attributed to the 

switch between coding systems going from International Classification of 

Disease-Oncology-2 (ICD-O-2) to ICD-O-3. 

The etiology of CCC in Asian countries appears to be mostly linked to 

infections, especially infections with the liver flukes Clonorchis sinensis (C. 

sinensis) and Opisthorchis viverrini (O. viverrini) [112-115]. These liver flukes, 

two close members of the family Opistorchiidae [116], are food borne 

trematodes that chronically infect the bile ducts. The disease has been present 

for more than 2300 years in China as some archaeologists found a large 

number of C. sinensis eggs in the content of the bowel from an ancient corpse 

buried at the middle stage of the Warring States Period (475-221 BC)] [117]. 

Liver flukes induce chronic inflammation leading to oxidative DNA-damage of 

the infected biliary epithelium and malignant transformation [116]. Chronic 

infection with either of these two liver flukes is considered to be of major 

socioeconomic importance to humans and animals in Asian countries such as 

China, Korea, Vietnam, Laos, and Thailand [116]. Persons with C. sinensis 

infection were infrequently reported from Singapore and Malaysia, and many of 

them might have been infected in other countries when traveling or through 

eating imported fish. However, liver fluke infection occurs in all parts of the 

world where there are Asian immigrants from endemic areas [118]. 

The infections with C. sinensis or O. viverrini are now both classified in Group 1 

by the International Agency for Research on Cancer (IARC) based on ‘sufficient 

evidence in humans’ for CCC. 

In addition, a possible association between chronic infection with HBV and HCV 

known to cause hepatocellular carcinoma – and cholangiocarcinoma was also 

reported by IARC as there is only limited human evidence [119]. 
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1.2.1.2. RISK FACTORS FOR LIVER FLUKE INFECTION  

 
The main risk factors for liver fluke infection are: 

1) Consumption of raw or undercooked freshwater fish. 

2) Poor sanitation: ‘lavatories’ are built adjacent to fish ponds, resulting in 

human excrement containing C. sinensis eggs ending up in the pond water in 

China [116]. In Laos, 95.5% of houses in some rural villages do not have a 

latrine and the people there use animal and/ or human feces as fertilizer. 

3) Fresh water aquaculture is developing rapidly, but food quality controls are 

not in place [120]. 

4) Accidental ingestion of C. sinensis metacercariae via hands or utensils: 

contamination occurs as a consequence of not thoroughly washing after 

catching and handling freshwater fish in endemic areas [116]. 

 
1.2.1.3. TRANSMISSION 

 
The definitive host is infected by the liver fluke through ingestion of raw or 

undercooked (i.e. dried, pickled, or salted) infected fish which contain 

metacercariae – the infective stage of the liver fluke. 

Three types of uncooked fish preparations are noted: (1) koi pla, eaten soon 

after preparation; (2) moderately fermented pla som, stored from a few days to 

weeks; and (3) pla ra extensively fermented, highly salted fish, stored for at 

least 2-3 months. At present, koi pla is probably the most infective dish, 

followed by fish preserved for <7 days, then pla ra and jaewbhong, in which 

viable metacercariae are rare [121]. 

 

1.2.1.4. OTHER RISK FACTORS OF CCC 
 
Both intrahepatic CCC and extrahepatic CCC are well-known complications of 

primary scleosing cholangitis (PSC) in Western countries [122]. The other 

known risk factors for CCC include cirrhosis, chronic nonalcoholic liver disease, 

obesity, and hepatolithiasis. Other rarer conditions associated with the 

development of CCC are bile duct adenoma, multiple biliary papillomatosis, 

choledochal cysts, congenital fibropolycystic liver, Caroli’s disease (cystic 

dilatation of intrahepatic bile ducts), and exposure to the radiopaque medium 

thorium dioxide (Thorotrast) [100-102, 104, 109]. Approximately 90% of patients 
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diagnosed with CCC do not have a recognized risk factor in Western countries 

[123]. 

Among these risk factors, hepatolithiasis is a very uncommon disease in the 

West; in contrast, intra- and extrahepatic bile duct stones are much more 

common in Eastern Asia [124]. Similarly, in the cholangiocarcinogenesis of 

other risk factors, bacterial infection and bile stasis, which are demonstrable in 

virtually all patients, underlie cholangiocarcinoma development [124-126]. This 

carcinogenic process is not limited to the intrahepatic lesions. 

 
1.2.2. Etiology and Pathogenesis: 

 
The etiology of CCC is generally not known. Most arise in noncirrhotic livers, 

although a study in Japan revealed that about 5% of all CCCs occurred in the 

setting of nonbiliary cirrhosis [127]. Chronic inflammation of the bile ducts and 

conditions causing biliary stasis are believed to play a role in the development 

of carcinoma. One of the most recognized associations is -as already 

discussed- with parasitic infections (C. sinensis and O. viverrini). There is some 

speculation that the additional presence of dietary carcinogens, such as 

nitrosamines and aflatoxins, may increase the risk of CCC in the setting of 

parasitic infection [128-130]. 

Another recognized association with CCC, comprising less than 5% of cases, 

includes fibrocystic diseases such as congenital hepatic fibrosis, Caroli disease, 

and autosomal dominant polycystic liver disease (ADPLD). Rare reports of CCC 

in association with metabolic diseases, specifically hemochromatosis and A1AT 

deficiency, are present in the literature [131-133]. Not surprisingly, cases of 

papillary serous carcinoma (PSC) and primary biliary cirrhosis (PBC) have led 

to the development of CCC, although perhaps fewer than would be expected 

[134, 135], and bile duct dysplasia is generally rare in PSC. Cholelithiasis has 

long been recognized to increase the risk of CCC [135, 136]. The association of 

hepatitis C virus infection with CCC is increasingly recognized [99], and, finally, 

toxin exposure such as Thorotrast, alcohol, oral contraceptives, and 

occupational exposure (metal and asbestos industries) have also been reported 

in association with CCC [51, 134, 135]. Investigators have elucidated a 

mechanism of carcinogenesis in the setting of hepatolithiasis, following a 

multistep progression through hyperplasia, dysplasia, in situ carcinoma, and 
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invasive adenocarcinoma [137]. A number of genetic alterations have been 

shown to play a role in the carcinogenesis sequence, including loss of p53, 

increase in antiapoptotic proteins, and increased angiogenic factors [137]. In 

pursuing the theory of chronic inflammatory insult leading to cancer, other 

researchers have found that exposure to hydrophobic bile acids 

(glycoursodeoxycholic acid) can lead to oncogenic mutations in the biliary 

epithelium that may progress to malignancy [138]. 

 
1.2.3. Clinical findings: 

 
Approximately 85% of patients present with symptoms, including abdominal 

pain, jaundice, ascites, weight loss, fatigue, anorexia, and nausea/ vomiting 

[139]. A right upper quadrant abdominal mass can be palpated on physical 

examination in between 5% and 30% of patients [51, 134, 139]. The most 

common laboratory abnormalities identified with CCC are elevated serum 

alkaline phosphatase (74%), elevated total bilirubin (70%), and elevated 

aspartate amino transferase (85%) [51]. Elevations of serum CEA and CA19-9 

in combination are helpful in the clinical differential diagnosis of CCC from HCC. 

In contrast to HCC, serum AFP is generally normal or only slightly elevated. On 

radiologic examination, a single, large, homogeneous mass with irregular 

margins is identified on CT scan. Intratumoral calcification may be seen and 

delayed tumoral contrast enhancement is highly suggestive of CCC [51, 140-

142]. 

 
1.2.4. Pathologic features: 
 

1.2.4.1. Macroscopic features: 
 
On gross examination, CCC is large, very firm, tan-white, and nodular with 

infiltrating tan-pink areas. The central tumor is often more white and firm than 

the periphery, due to the presence of a prominent desmoplastic stroma. The 

tumor is reportedly more frequent in the right lobe, but may spread throughout 

the liver. Satellite nodules are frequent (one third of cases). Nodules located 

under the capsule often show central umbilication. Calcification is common, 

giving a gritty quality to the tumor; however, necrosis, hemorrhage, and cystic 

degeneration are seen much less commonly than in HCC. The background liver 

is not cirrhotic [51]. 
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1.2.4.2. Microscopic features: 
 
Microscopically, CCC resembles many adenocarcinomas of other primary sites, 

and therefore must be distinguished from metastatic tumors. CCC most 

commonly manifests as a well-to moderately differentiated adenocarcinoma 

forming tubules or acini with a prominent intervening desmoplastic stroma. The 

cells are columnar or cuboidal with moderate, finely granular, clear to pale 

eosinophilic cytoplasm and rare mucin production. The nuclei are generally 

round to oval, smaller than HCC, and lack the distinct nucleoli of HCC. 

Moderate pleomorphism may be seen with irregularity of the nuclear 

membranes; multinucleation is rare. The tumor may occasionally show a 

nesting or trabecular architecture, with focal cribriform patterns. The 

background tumor is notably less vascular than HCC. The tumor grows through 

the sinusoids and can spread through the liver via the portal veins. Perineural 

invasion is frequent and is seen more easily in the hilum of the liver. The 

presence of an in situ preneoplastic lesion is debatable; however, intestinal 

metaplasia, hyperplasia, atypical hyperplasia, and epithelial dysplasia have 

been recognized. In situ (intraductal) adenocarcinoma has been reported, and 

is predominantly papillary in architecture. These tumors are similar to villous 

adenomas elsewhere in the gastrointestinal tract. The term intraductal 

adenocarcinoma or intraductal cholangiocarcinoma has been used for tumors 

containing high grade dysplasia. A component of invasive cancer must, of 

course, be ruled out in these cases. Histologic variants of CCC have been 

reported, including mucinous, adenosquamous (carries a much poorer 

prognosis), mucopidermoid carcinoma, clear cell carcinoma, and spindle cell 

carcinoma. All of these variants are very rare [51, 143]. 

IHC for cytokeratins, including CK7 and CK19, are strongly positive in CCC. 

CK20 is positive in a minority of cases, and in combination with CK7 may be 

helpful in the differential diagnosis of CCC from metastatic adenocarcinoma. 

CEA, CA19-9, EMA, BER-EP4, and blood group antigens are positive in CCC. 

HepPar-1 is generally negative in CCC. Neuroendocrine markers may rarely be 

expressed [51, 143]. 

 
1.2.5. Molecular Biology: 
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Cholangiocarcinogenesis is a multi-step process in which the high amount of 

cytokines and factors secreted during chronic inflammatory processes triggers 

and maintains this incidence. 

Molecules participating in chronic inflammation promote neoplastic process by 

damaging protooncogenes, DNA mismatch repair genes/proteins, and tumor 

suppressor genes involved in cell growth, apoptosis, invasiveness, and 

neoangiogenesis. The final result is the uncontrolled cell proliferation and 

invasion. 

Mutations involving oncogenes and tumor suppressor genes have been 

reported in ICC, including p53, p62 c-myc, p21 c-ras, and p10 c-erbB-2. 

More recently, Kang et al described p53 mutations in mass-forming CC and K-

ras mutations in the periductal extension type [144]. 

Fava and Lorenzini [145] revealed in a recent study that K-ras, p53, p14ARF, 

p16INK4a, and beta-catenin genes can be mutated during the development of 

ICC, initially or through aberrant expression of AID (Activation-induced cytidine 

deaminase) in biliary cells [146]. 

AID is a member of the DNA/RNA-editing enzyme family, whose production 

showed to be significantly increased in human biopsies of PSC and ICC-

affected patients compared with normal liver parenchyma. 

 
1.2.6. Differential Diagnosis: 

 
The key challenge in diagnosis is differentiating CCC from metastatic 

adenocarcinoma. Unfortunately, there are no histologic markers that reliably 

distinguish primary from metastatic adenocarcinoma. IHC is helpful to a certain 

degree, although the search for the ultimate marker for CCC is still in the works. 

A panel of CK7, CK20, TTF-1, gross cystic disease fluid protein (GCDFP), and 

prostate specific antigen (PSA) may help to differentiate tumors such as 

colorectal, breast, lung, and prostate. HCC may show a pseudoglandular 

pattern of differentiation, which may be difficult to discriminate from CCC. CCC 

may also demonstrate a trabecular architecture, overlapping with the low power 

histology of HCC. Histologically, HCC with pseudoglands will lack mucin and 

will often contain bile plugs within the pseudo lumen. p-CEA will delineate the 

canalicular pattern of staining in HCC. HepPar-1 is also a useful IHC tool, which 
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will be positive in HCC and negative in CCC in the majority of cases. The tumor 

cells in CCC will be immunoreactive for cytoplasmic p-CEA, CA19, EMA, and 

BER-EP4. Cytokeratin panels are not especially helpful in differentiating HCC 

from CCC. 

Other differentials include benign lesions such as bile duct hamartoma and 

peribiliary gland hamartoma (bile duct adenoma). These lesions are generally 

small and are found incidentally. Cytologically, the lesions lack the nuclear 

atypia of cholangiocarcinoma, such as pleomorphism, hyperchromasia, irregular 

nuclear membranes, and mitoses. Finally, epithelioid Hemangioendothelioma 

contains vascular spaces that may mimic glandular lumina on H& 

Eexamination. If in question, mucicarmine and IHC stains such as CD34 and 

CD31 will resolve this differential [51]. 

 
1.2.7. Treatment, Outcome and Prognostic factors: 

 
CCC carries a poor prognosis, with a median survival from diagnosis of 

approximately 6 months [51]. Chemotherapy and radiation treatment have not 

shown great efficacy. Surgical resection and transplantation are the only hope 

of a cure; however, 80% of patients present with unresectable tumors [147]. 

The most frequent sites of metastasis include lymphnodes, lung, peritoneum, 

adrenal gland, kidney, and bone [80]. In patients with resectable disease, the 

median survival rate is 12 to 23 months [144, 147-150]. As would be expected, 

tumors with lymphatic or perineural invasion, sarcomatoid change, larger tumor 

size, tumor necrosis, positive surgical margins, and lymph node metastases are 

associated with a poorer prognosis [51]. 

 

 
1.3. Fibrolamellar Carcinoma: 

 
Although fibrolamellar carcinoma (FLC) has conventionally been considered to 

be a histologic variant of hepatocellular carcinoma, it has more recently been 

recognized as a distinct clinical entity with respect to its epidemiology, etiology, 

and prognosis. 

 
1.3.1. CLINICAL FEATURES: 

 
Fibrolamellar carcinoma is recognized by characteristic histologic changes, 
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prolonged survival relative to conventional HCC, and clinical appearance in 

adolescents or young adults [51]. The tumor as a distinct entity has been 

recognized for many years, and has been reported as eosinophilic HCC with 

lamellar fibrosis, polygonal cell type HCC with fibrous stroma, and fibrolamellar 

oncocytic hepatoma [51, 151-154]. It is more common in Western countries and 

relatively rare in Asia and Africa [143]. The vast majority of tumors of this variant 

arise in noncirrhotic livers and are not associated with factors implicated in the 

development of other hepatic tumors, such as hepatitis B or C virus infection, 

alcohol consumption, or use of oral contraceptives. A recent retrospective 

cohort study using SEER program found that FLC comprised less than 1% of all 

primary liver malignancies and 13.4% of all cases in patients younger than 40 

years of age (U.S. data) [155]. The mean age of patients with FLC was 39 years 

versus a mean age of 65 years in patients with HCC. Although previous studies 

have shown that males and females are equally affected, in this study FLC was 

more common in women. Increased patient survival was confirmed in this study, 

with a 5-year relative survival rate of 31.8% versus 6.8% for HCC. Although 

FLC is more commonly found in younger patients, the most common malignant 

liver tumor in children and young adults is still conventional HCC [156]. FLC 

generally comes to clinical attention because of abdominal pain, malaise, 

fatigue, hepatomegaly, or epigastric mass [156, 157]. Rare reported 

presentations of FLC include Budd-Chiari syndrome, anemia, hypoglycemia, 

obstructive jaundice, and gynecomastia [156, 158-165]. Serum 

aminotransferases are often normal or only mildly elevated [158]. Serum AFP 

levels may be mildly elevated in a minority of cases (between 5% and 15%, with 

levels usually below 100 ng/mL) [152, 166]. A more helpful serum marker is 

DCP, which has been reported to be consistently elevated in FLC [167]. 

Previously investigated serum markers include vitamin B12, unsaturated B12 

binding capacity, and neurotensin, but these studies have shown mixed results 

[167-170]. Clinically, the differential diagnosis of FLC can be quite difficult. On 

imaging, the central scar of FLC may mimic FNH or large hepatic hemangioma. 

The presence or absence of calcification may aid in the radiologic diagnosis; 

calcification is much more common in FLC than FNH [171]. Additional features 

that help to distinguish FLC from other liver lesions with central scars include 

tumor size larger than 10 cm, width of tumor scars, presence of surface 
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lobulation, vascular invasion, and lymphadenopathy [172]. The pathogenesis of 

FLC remains a mystery. The common presence of a central scar in FNH and 

FLC has previously led to the speculation that they share a common pathway of 

development. However, only rarely have the two tumors been reported in 

association [173, 174]. Recent studies into the molecular background of FLC 

have revealed overexpression of genes in the RAS, MAPK, PIK3, and 

xenobiotic degradation pathways [175]. FLC is not associated with the risk 

factors for HCC, and does not share the genetic abnormalities that have been 

demonstrated in conventional HCC, such as p53 mutation, survivin 

overexpression, β-Catenin mutation, microdeletions of p14ARF, increased 

Mdm2 expression, gankyrin overexpression, repression of p16, and loss of 

heterozygosity in the insulin-like growth factor 2 receptor (IGF2R) locus [57, 59, 

156, 176, 177]. 

 

1.3.2. PATHOLOGIC FINDINGS: 
 

1.3.2.1. Macroscopic features: 
 
FLC is most often found as a solitary mass (80% to 90%) involving the left lobe 

of the liver [51]. The tumor is grossly well circumscribed, multinodular, firm, 

yellow-tan or brown, with a bulging cut surface, and may show focal bile 

staining. The most distinctive and defining gross feature of FLC is the presence 

of a central scar with radiating fibrous septae. Necrosis and hemorrhage are 

frequently present. The tumor is large at presentation, ranging in average size 

from 9 to 14 cm in greatest dimension [156]. The background liver is 

noncirrhotic in the vast majority of FLC cases. A handful of case reports 

describe an association of nodular regenerative hyperplasia or focal nodular 

hyperplasia with FLC [173, 174]. Lymph node metastases are common at 

presentation [178]. 

 
1.3.2.2. Microscopic features: 

 
The tumor is composed of sheets, nests, and trabeculae of cells with 

intervening hyalinized, relatively acellular, collagenous parallel bands 

(‘‘fibrolamellar’’), which is characteristic of FLC. An adenoid or pelioid 

architecture may also be seen. The tumor cells are large and polygonal, with 
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well-defined cell borders and eosinophilic, coarsely granular cytoplasm [143]. 

The nucleus is large and vesicular with a prominent macronucleolus; mild 

nuclear pleomorphism may be seen. Although mitoses are rare, areas of 

necrosis and vascular invasion are occasionally identified. The tumor often 

contains small, thick-walled arteries. Stainable copper and bile may be 

demonstrated in the cytoplasm of most tumors. Eosinophilic hyaline globules, 

which are often PAS- and PAS-DR (diastase-resistant)–positive, are present in 

approximately half of cases. As in other primary liver tumors, steatosis and 

Mallory hyaline may be present. Although rare, intracytoplasmic mucin may be 

seen in a combined form of HCC-cholangiocarcinoma. So called cytoplasmic 

pale bodies, or ground-glass inclusions, are often seen in FLC. These 

inclusions contain fibrinogen, which is highlighted by immunoperoxidase 

staining. On ultrastructural examination, pale bodies are associated with 

intracytoplasmic lumina/ bile canaliculi or accumulation of rough endoplasmic 

reticulum [179]. Fine needle aspirate smears demonstrate the tumor cells 

singly, in small groups, or in sheets. The tumor cells are often larger than 

benign hepatocytes or the cells of conventional HCC, with abundant granular 

eosinophilic cytoplasm. Strands of collagen are sometimes identified. Many of 

the features of conventional HCC in smear preparations, such as thickened 

trabeculae and thin, arborizing vascular channels, are not seen in FLC [156, 

180]. By electron microscopy, the cytoplasm contains numerous mitochondria, 

creating the eosinophilic, coarsely granular appearance by light microscopy 

(oncocyte). So-called dense core neuroendocrine-like granules have been 

reported [181]. IHC findings in FLC reflect the hepatocyte differentiation of the 

tumor. HepPar-1 is strongly positive in the majority of tumor cells. A variety of 

cytokeratin expression is seen, including strong positivity for CK8 and CK18, as 

well as CK7 and CK19, which are normally expressed in biliary epithelium. FLC 

is more likely to be positive for CK7 than is conventional HCC. Expression of 

neuroendocrine markers may be present. Matrix metalloproteinase 2 expression 

has more recently been recognized in the tumor cells [182]. A1AT, alpha-

fetoprotein, fibrinogen, and C-reactive protein have all been variably 

demonstrated in FLC [154, 156, 183, 184]. Variants of the ‘‘classic’’ FLC have 

been recognized. These include clear-cell FLC and pseudoglandular FLC. 

Clear-cell FLC has been reported only twice in the literature, and is described 
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as clear cells and oncocytic cells arranged in trabeculae, separated by 

prominent lamellar fibrosis [185, 186]. On ultrastructural examination, the clear 

cells contain numerous ballooned mitochondria. The tumor is otherwise similar 

to FLC and the behavior is unknown. Pseudoglandular FLC, also described as 

combined FLC and cholangiocarcinoma, demonstrates areas of gland-like 

(pseudogland) formation composed of cells resembling the rest of the tumor. 

Mucin formation can be demonstrated by mucicarmine stain. Other reports 

describe FLC containing gland formation resembling biliary epithelium, which 

stain diffusely for HepPar-1 and behave similarly to conventional FLC [187]. As 

in clear-cell FLC, the reported number of cases is too small to draw significant 

conclusions as to behavior and prognosis. FLC rarely contains areas 

histologically consistent with usual HCC [188]. Similarly, cases have been 

reported in which FLC and HCC are reported as two separate, synchronous 

tumors [189]. The histologic pattern of metastatic FLC is generally similar to the 

primary tumor; however, cases have been reported in which the metastasis 

demonstrates features of typical HCC [190]. The behavior of these ‘‘mixed’’ 

tumors is unknown at this point due to the small sampling of cases. 

 
1.3.3. DIFFERENTIAL DIAGNOSIS: 

 
The differential diagnosis of FLC includes tumors with a central scar or 

significant fibrous reaction, such as FNH, scirrhous HCC, cholangiocarcinoma, 

and adenosquamous or squamous cell carcinoma with a fibrous reaction. FNH 

lacks the cytologic atypia of FLC. HCC may show fibrosis (scirrhous HCC), or 

have oncocytic features. Grossly, scirrhous HCC shows a more diffuse pattern 

of fibrosis; microscopically, FLC is characterized by much larger cells, 

demonstrates more prominent nucleoli, and lacks the abundant thickened 

trabeculae of HCC. Although FLC may show pseudoglandular formation, 

cholangiocarcinoma histologically will lack the defining features of FLC. 

Metastatic tumors with a prominent desmoplastic response, such as pancreatic 

adenocarcinoma or squamous carcinoma, may also be considered in the 

differential diagnosis. These tumors are easily discriminated histologically: 

pancreatic adenocarcinoma is characterized by gland formation, and squamous 

cell carcinoma will show keratinization and intracellular bridging. 

Neuroendocrine tumors are also an important consideration; these tumors may 
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have abundant cytoplasm, a branching fibrous stroma, and an overlapping IHC 

pattern. However, they lack the lamellar pattern of fibrosis and demonstrate an 

organoid or serpiginous pattern, which is not present in FLC. 

 
1.3.4. TREATMENT AND OUTCOME: 

 
FLC has been demonstrated to have an overall better prognosis relative to 

HCC. However, this may be due in part to the younger age of the patients and 

the lack of background cirrhosis. As in many other tumors, resectability is the 

most important prognostic factor for FLC, with a reported median 5-year survival 

of 76% with resectable disease versus 0% with unresectable disease [188]. 

Approximately one third of patients with resectable disease have 

lymphovascular invasion and 50% show lymph node metastases at the time of 

surgery [188]. Tumors also commonly metastasize to peritoneum and lung. 

Treatment options include partial hepatectomy and transplantation. In one 

series, overall survival following surgical intervention was 89.5% (1 year), 75% 

(3 years), and 50% (5 years) [191]. Chemotherapy options are available for 

treatment of FLC, including fluorouracil (FU) and recombinant interferon alfa-2b 

(rIFNalpha2b), with reported survival benefits [192]. 

 
 

1.4. Combined Hepatocellular Carcinoma-Cholangiocarcinoma: 
 
Combined hepatocellular carcinoma/ cholangiocarcinoma (HCC-CCC) is a rare 

tumor, representing less than 1% of all primary liver carcinomas [51, 143]. The 

tumor contains elements of both HCC and CCC admixed within the same tumor 

mass (as distinguished from two separate tumors of HCC and CCC within the 

same liver). The geographic distribution, patient age and sex, hepatitis virus 

infection status, and levels of serum AFP are more similar to conventional HCC 

than to CCC [143, 193]. Combined HCC-CCC exhibits a slightly more 

aggressive behavior than pure HCC or CCC. A recent study demonstrated that 

combined tumors show more invasion into the portal vein than HCC or CCC 

[190]. The frequency of lymph node metastases has been reported to be slightly 

higher in HCC-CCC than in HCC [143], but is significantly less than in pure 

CCC [193]. 

Macroscopically, tumors with a significant component of CCC will show a 
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prominent white, firm, fibrous stroma [143]. Goodman et al described three 

histologic types in 1985, including collision tumors, transitional tumors, and 

fibrolamellar tumors [194]. Collision tumors represent a coincidental occurrence 

of both HCC and CCC in the same patient. Transitional tumors contain areas of 

intermediate differentiation and a recognizable transition between HCC and 

CCC. Fibrolamellar tumors describe FL-HCC with areas of pseudoglandular 

formation. The current (2000) WHO classification of tumors considers the 

defining feature of HCC-CCC to be the presence of distinct and separate HCC 

and CCC elements within the same tumor mass [143]. Collision and 

fibrolamellar tumors should not be considered combined HCC-CCC under the 

current definition. Conventional HCC may demonstrate prominent 

pseudoglandular spaces, and this should not be confused with combined HCC-

CCC. The pseudoglandular formation may be recognized by the similarity of the 

lining cells to hepatocytes, and the presence of bile rather than mucin [51]. 

Metastases of combined HCC-CCC may show a similar histologic appearance 

or may show elements of either HCC or CCC alone. The neoplastic hepatocytes 

are positive for CK8 and CK18, as in conventional HCC, as well as CK7 and 

CK19 (markers of biliary epithelium). The most useful diagnostic markers are p-

CEA (highlights the bile canaliculi) and HepPar-1 (cytoplasmic) in the HCC 

component, and diastase-resistant PAS positivity demonstrating the neutral 

epithelial mucin in the CCC component [143]. The prognosis of HCC-CCC has 

been reported to be worse relative to conventional HCC [143]. The overall 5-

year survival rate reported in a recent series was 23.1% for combined HCC-

CCC, as compared to 66.2% for HCC and 32.3% for CCC [193]. Predictors of 

poor outcome included macroscopic vascular invasion and bilobar tumor. 

 
 

1.5. Active Signaling pathways in primary liver cancer: 
 
1.5.1. Wnt/β-Catenin pathway: 

 
The Wnt/β-Catenin pathway is a well-conserved pathway that is important in 

embryonic development, cell proliferation, survival, regeneration and self-

renewal [195-197]. 
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Based on the earlier studies, the Wnt/β-Catenin pathway is a central player in 

maintaining liver health and is dysregulated in hepatic cancers, which makes it 

an attractive candidate for potential therapies of HCC. 

In an unstimulated cell, endogenous β-Catenin is found at the adherens 

junctions, where it interacts with components of the cadherin-associated protein 

complexes to confer cell-cell adhesion functions [198, 199]. On the other hand, 

surplus β-Catenin in the cytoplasm is degraded by the action of a destruction 

complex which consists of glycogen synthase kinase 3β (GSK3β), Axin, 

adenomatous polyposis coli (APC) and casein kinase Iα (CKIα) [200]. β-Catenin 

is first phosphorylated at serine-45 (Ser45) by CKIα to further prime it for 

phosphorylation by GSK3β at Ser33, Ser37 and threonine-41 (Thr41). The 

phosphorylated β-Catenin is then ubiquitinated by β-transducin repeat-

containing protein (β-TrCP) and subsequently degraded by the proteasome 

[201] (Figure 3A). 

Maher et al [202] reported that β-Catenin phosphorylated at Ser45 and not at 

Ser33/Ser37/Thr41 is predominantly located in the nucleus, whereas β-Catenin 

phosphorylated at Ser33/Ser37/Thr41 is mostly localized to the cytoplasm. 

For diseased condition, the Wnt/β-Catenin signalling pathway is activated upon 

binding of Wnt to one of the members of the frizzled (FZD) family and to low 

density lipoprotein receptor-related protein 5 or 6 (LRP5/LRP6). The FZD 

recruits dishevelled (Dvl) to the plasma membrane, which in turn recruits Axin 

and GSK3β to LRP5/LRP6 [203]. The intercellular domain of LRP5/LRP6 

contains five reiterated PPPSPxS motifs, which are dually phosphorylated by 

GSK3β and CKIα [204]. The phosphorylation of LRP5/LRP6 disrupts the 

formation of the destruction complex, thereby preventing GSK3β from 

phosphorylating β-Catenin. Therefore, β-Catenin is not degraded and 

accumulates in the cytoplasm from where it translocates to the nucleus. 

In the absence of Wnt, T-cell factor (TCF)/lymphoid enhancer factor (LEF) 

represses gene expression by interacting with co-repressor Groucho, which 

promotes histone deacetylation and chromatin modelling in the nucleus [205]. 

Nuclear accumulation of β-Catenin displaces Groucho from TCF/LEF and 

recruits other transcriptional co-activators, e.g. CREB binding protein (CBP), for 

upregulation of target genes that are implicated in cell proliferation, anti-
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apoptosis, and angiogenesis, such as cyclin D1 (and c-myc, and MMP-7, and 

thus contribute to carcinogenesis) [206] (Figure 3B). 

 
1.5.2. MAP kinase Pathway: 

 
Mitogen-activated protein kinases also known as MAP kinases are 

serine/threonine-specific protein kinases belonging to the CMGC 

(CDK/MAPK/GSK3/CLK) kinase group. MAPKs are involved in directing cellular 

responses to a diverse array of stimuli, such as mitogens, osmotic stress, heat 

shock and proinflammatory cytokines. They regulate proliferation, gene 

expression, differentiation, mitosis, cell survival, and apoptosis - among many 

others. 

The pathway comprises a multistep phosphorylation cascade composed of a 

downstream network of protein kinases. The activation of the pathway occurs 

normally through a series of receptors tyrosin kinase (RTKs) (EGFR, HER2, 

KIT, PDGFRA), which reacts physiologically of the bindings of ligands leading to 

autophosphorylation (binding of phosphate groups on the amino acid Tyrosin in 

the intracellular part of the receptor). This activates indirectly the RAS, which in 

turn leads to the recruitment and phosphorylation of RAF. RAF activates MEK 

which also leads to the activation and phosphorylation of ERK. ERK is 

responsible for the regulation of different proteins such as transcription factors, 

cell cycle proteins and antiapoptotic factors (Figure 4). That can result in a wide 

spectrum of effects within the cell which vary depending on the cell type [207]. 

The activation of the MAPK signal way in the tumor cells occurs through 

mutations in different genes [208-210], of which the so called “driver mutations” 

play the main role in the development and preservation of the malignant 

phenotype. 

BRAF is one of three RAF-Genes (A, B and CRAF) in the MAPK signal way. 

Activating mutations of BRAF are found most frequently in the P-Loop (exon 11) 

and the activated segment (exon 15) of the kinase domain. The most frequent 

mutation (about 90% of all cases) is V600E [210]. Somatic BRAF mutations 

present in about 8% of human tumors especially in thyroid carcinoma and colon 

carcinoma. Also 100% of the hairy cell leukemias and >50% of Langerhans cell 

histiocytosis cases show BRAF mutations. Except for few exceptions, BRAF 

and RAS mutations seem to be mutually exclusive so that one must suppose 
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that both genetic changes activate the same effectors of transformation [210, 

211]. 

Vemurafenib is a BRAF inhibitor which introduced in 2011 for the therapy of 

metastasized melanomas harbouring BRAF mutations leading to a significant 

survival benefit [212]. 

The introduction of new medications for the BRAF targeted therapy (and other 

substances which block the downstream kinase MEK) goes forward with very 

wide steps which should actually trigger the oncology oriented research to find 

further tumors in which the BRAF mutations play at least a partial role in the 

tumorogenesis. 

 
 

1.6. Goal of the study: 
 

In this article, we aimed at describing novel immunohistochemical markers for 

detecting primary liver malignancies, and identifying new molecular biomarkers 

as potential contributors to hepatocarcinogenesis. 
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2. Material and Methods: 
 
 

2.1. The clinicopathological and immunohistochemical analysis: 
 
2.1.1. Study population: 

 
HCCs and CCCs cases were retrieved from the files at Institute of Pathology, 

Eberhard Karls University in Tübingen. 

A total of 51 HCCs between 2003 and 2010, 47 CCCs between 2000 and 2011 

(including 40 ICC and 7 hilar cases), 3 cases of combined HCC-CCC and 8 

cases of FLC (from 7 patients as in one case both the original tumor -2005- and 

the recurrent tumor -2008- were sampled) were identified of which cell blocks 

were available. 

The H&E sections of the cases were reviewed and found to be qualified (after 

confirmation of the original diagnosis). Cases were graded as: well, moderately, 

and poorly differentiated according to the World Health Organization 

classification and staged based on the American Joint Committee on 

Cancer/Union Internationale Contre le Cancer pTNM system 2010. 

 

Pathologic features analyzed included tumor size and multiplicity (presence of 

two or more tumor nodules), lymph node status and status of the margins of 

resection; which was determined on the basis of the gross description recorded 

in the pathology report. In addition the H&E sections of the cases were 

reviewed regarding presence of lymphatic or vascular invasion and other 

special features such as: nuclear grade, histologic patterns and cytologic 

variants, presence or absence of inclusions and steatosis and presence or 

absence of cirrhosis in the background liver. 

Clinical data and follow-up information were obtained from patients’ charts. 

 
2.1.2. Construction of the Tissue Micro Arrays: 

 
Formalin-fixed, paraffin-embedded samples were used to build a set of four 

Tissue Micro Arrays (TMA) corresponding to HCC, CCC, combined HCC/CCC 

and FLC following a previously described protocol [213]. Tumors and paired 

nonneoplastic liver were spotted 3 to 3 times each, using 1-mm cores. 

 
2.1.3. Selection of the antibodies: 
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A wide variety of antibodies were selected starting from standard ones 

(HepPar1, Glypican3, CD10, AFP, β-Catenin, Wnt1, CK7, P53 and MIB1), to 

the protein candidates from the IndividuaLIVER project (i.e. FGG, Claudin 10, 

DEK, APOL1, HSP90, MMP7, APOB, ABCC3 and eEF2), to SALL4 as a stem 

cell marker, BRAF because of the scarce and contradictory reports regarding 

BRAF in the literature. 

 

IndividuaLIVER project is a multidisciplinary study performed at Tübingen 

University on the Immunotherapy of primary liver malignancies. The study 

identified recurrent genomic and phenotypical alterations in HCC and CCC, and 

built a list of markers (HLA-attached peptides or genes which are partners in a 

putative fusion transcript) for the screening of patients with these malignancies. 

 

In spite of applying all the above markers to the TMA sections, we investigated 

in detail only the results of the standard diagnostic markers and the novel ones 

(SALL4 and BRAF), in addition to FGG from the IndividuaLiver study because 

of its unique type of expression. 

 

The antibodies used are summarized in the following table: 

 

 

Antigen Clone Company dilution Secondary Antibody Type 

SALL4 (M03)
a.

 6E3 Abnova 1:500 Mouse. M, isotype: IgG1 Kappa n 

Β-Catenin CAT-5H10 Zytomed 1:400 Rabbit. P, isotype: IgG n, m, c
f.
 

BRAF 
b.

 VE1 Spring Bioscience 1:50 Mouse. M, isotype: IgG2a c 

P53 
c.

 DO-7 Novocastra 1:200 Mouse. M, isotype: IgG2b n 

Ki-67 
d.

 MIB-1 Dako 1:200 Mouse.M, isotype: IgG1 Kappa n 

FGG 
e.

 EPR3084 RabMAbs 1:50 Rabbit. M, isotype: IgG c 

HepPar1 OCH1E5 Dako 1:500 Mouse. M, isotype: IgG1 Kappa c 

Glypican3 HPA006316 Sigma-Aldrich 1:400 Rabbit. P, isotype: IgG c 

AFP A0008 Dako 1:1000 Rabbit. P c 

CK7 OV-TL 12/30 Dako 1:1000 Mouse. M, isotype: IgG1 Kappa m 

CD10 56C6 Novocastra 1:30 Mouse. M, isotype: IgG1 m 

Wnt1 DRAQ7 Abcam 1:100 Rabbit. P, isotype: IgG n 

 

 

 

a. antibody reactive against recombinant protein. 
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b. peptide representing the BRAF V600E mutated amino acid sequence from 
amino acid 596 to 606. 
 
c. recombinant human wild type P53 protein. 
 
d. Human recombinant peptide corresponding to a 1002 bp Ki-67 cDNA 
fragment. 
 
e. Synthetic peptide corresponding to residues in Human Fibrinogen gamma 
chain. 
 
f. β-Catenin is typically expressed in the cell membrane and cytoplasm, 
whereas the nuclear expression is aberrant. 
 
M= monoclonal, P= polyclonal, n= nuclear positivity, c= cytoplasmic positivity, 
m= membranous positivity. 

 
2.1.4. Immunohistochemistry procedure: 

 
Immunostaining was performed using BenchMark XT IHC/ISH autostainer 

(Ventana Medical Systems, Roche; Tucson, Arizona). Briefly, 2.5µm sections 

were deparaffinised and subjected to heat-induced antigen retrieval using EDTA 

buffer (pH 8.4) for 64 minutes (standard CC1). 

Prolonged antigen retrieval (74 min with Ultraview) was used with the 

preparations to be stained with FGG. Subsequently, incubation with the primary 

antibody (in the 37° temperature for 32 min) was followed by detection of 

reaction using iVIEW DAB (diamino benzidine hydrochloride) v3 kit. All slides 

were counterstained with hematoxylin (4 min incubation). 

 
2.1.5. Evaluation of immunostains: 

 
The immunoreactivity was estimated according to two parameters: 

1-The number of tumor cells positive for the staining (focal staining versus 

diffuse) was graded for the SALL4 stain as: 0 when no positive cells identified; 

1+ when <25% of tumor cells are immunoreactive for the stain; 2+ when 25-

50% of tumor cells are immunoreactive; 3+ when 50-75% of tumor cells are 

positive for the stain and 4+ when more than 75% positive cells are observed, 

for the P53 stain as: 0 when no positive cells identified; 1+ when <10% of tumor 

cells are immunoreactive for the stain; 2+ when 10-19% of tumor cells are 

immunoreactive; 3+ when 20-49% of tumor cells are positive for the stain and 

4+ when more than 50% positive cells are observed, 
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and for the MIB1 stain as: 0 when no positive cells identified; 1+ when <5% of 

tumor cells are immunoreactive for the stain; 2+ when 5-9% of tumor cells are 

immunoreactive; 3+ when 10-19% of tumor cells are positive for the stain,  4+ 

when 20-49% of the cells positive and 5+ when more than 50% positive cells 

observed. 

 

Evaluation of the immunohistochemical stains according to the number of 

positive cells: 

 
 0 1 2 3 4 5 
SALL4 no positivity <25% 25-50% 50-75% >75%  
P53 no positivity <10% 10-19% 20-49% >50%  
MIB1 no positivity <5% 5-9% 10-19% 20-49% >50% 
 
2-The intensity of the staining (weak staining versus intense) ranged from 1+ 

for weak staining; 2+ for intermediate degree and 3+ for intense staining. 

Accordingly the results appear as a number which is the result of multiplying the 

two above mentioned values. 

 

The site of positivity was evaluated in the case of β-Catenin stain 

(cytoplasmic/membranous versus aberrant nuclear) in addition to the number of 

tumor cells positive for the stain (focal versus diffuse). 

The presence of canalicular positivity was evaluated in the case of CD10. 

 
2.2. The molecular analysis: 

 
We also applied the polymerase chain reaction to detect BRAF V600E hotspot 

mutations using the Sanger Sequencing method and allele specific PCR with 

melting point analysis. 

 

2.2.1. DNA extraction and BRAF mutation detection (Sanger Sequencing) 

 

DNA used for PCR was extracted from 10 µm paraffin sections after dewaxing 

and proteinase K digestion applying standard phenol/chloroform purification 

procedures [214]. DNA was amplified for exon 15 of BRAF including codon 600 

using the following primers: 

5’-TCATAATGCTTGCTCTGATAGGA-3’ 
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and 5’-CTAGTAACTCAGCAGCATCTC-3’. PCR was performed using 200 ng 

DNA template in a final volume of 50 µl with 0.2 µM of each primer, 0,2 

mMdNTPs, 1.5 mM MgCl2 and 1,5 Units Taq polymerase (AmpliTaq Gold® 

DNA Polymerase, Applied Biosystems, Foster City, CA). Cycling conditions 

entailed an initial denaturation at 95°C for 5 min followed by 45 cycles of 

denaturation (95°C for 45 sec), annealing (56°C for 45 sec) and elongation 

(72°C for 60 sec), with a final elongation at 72°C for 7 min. 

PCR products were purified (AMPure, Beckman Coulter, Brea, CA, USA) and 

aliquots of 7 µl were used for the sequencing reaction with 1 µM of the universal 

sequencing primer and 2 µl of GenomeLab DTCS-Quick Start Kit (Beckman 

Coulter, Brea, CA, USA) in a final volume of 10 µl according to the 

manufacturers protocol. Sequencing reactions were purified (CleanSEQ, 

Beckman Coulter, Brea, CA, USA) and analyzed in a GenomeLabGeXP 

Genetic Analysis System and evaluated by the GenomeLabGeXP software 10.2 

(Beckman Coulter, Brea, CA, USA) to determine the mutation status. 

 

2.2.2. Molecular Detection of BRAF V600E mutation (Melting point 

analysis) 

 

After macrodissection of paraffin-embedded tissue, dewaxing and digestion with 

proteinase K for 16 hours, genomic DNA was purified applying standard 

phenol/chloroform purification [214]. Detection of the BRAF V600E (c.1799T>A) 

mutation was performed by melting curve analysis of amplification products with 

the Light Cycler System (Roche Applied Science, Mannheim, Germany) [215]. 

The primers (forward: 5’-TCATAATGCTTGCTCTGATAGGA-3’ and reverse: 5’-

GGCCAAAAATTTAATCAGTGGA-3’) were used to amplify the region around 

codon 600. Amplicons to be genotyped by melting point analysis were 

separately generated by conventional PCR and by peptide locked nucleic acid 

(LNA)-mediated PCR clamping with a wild-type specific LNA oligonucleotide (5’-

TAGCTACAGTGAAATCTC-PH -3’). PCR amplifications were performed in final 

reaction volumes of 50 µl, containing 2.5 mM MgCl2, 0.2 mMdNTPs, 0.2 µM 

primers and 1.5 Units Taq polymerase (AmpliTaq Gold® DNA Polymerase) with 

0.04 µM LNA in the respective reaction. Each of the 50 PCR cycles consisted of 

denaturation at 95°C for 45 sec, annealing at 56°C for 75 sec and extension at 
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72°C for 45 sec. The first cycle was preceded by denaturation at 95°C for 60 

sec and the last cycle was extended by a 7 min elongation step at 72°C. 

Subsequent melting point analysis was performed using 10 µl PCR product with 

0.05 µM anchor and sensor probe and 2 mM MgCl2. 

 

2.3. Statistical analysis: 
 
Chi-square or Wilcoxon rank-sum test was used to evaluate possible 

associations between covariates (IHC-expression, mutated and wild-type 

genotypes) and clinical or pathological parameters. Statistical comparisons 

were performed using a statistical software package. P-values of less than 0.05 

were considered to be statistically significant. 
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3. Results (Table 6A und 6B): 
 
 
3.1. Clinical and pathologic findings: 

 

The clinicopathologic features of all cases are summarized in Table 7. 

 

3.1.1. Of the HCC cases; forty five patients (88.2%) in this series were males. 

They ranged in age from 16 to 77 years (mean, 64.6 years). 

Tumor size ranged from 1.4 to 21 cm (mean, 6.2 cm). 

The background liver shows a precirrhotic or cirrhotic architecture in 29 cases 

(56.9%). The cirrhosis was associated with viral genesis in 10 (19.6%) cases (4 

with HBV and 6 with HCV), with alcohol abuse in only 2 cases (3.9%) and with 

metabolic disorders in 3 (5.9%) cases (2 cases with Hemochromatosis and one 

case with Wilson disease). The rest cases were marked as cryptogenic 

cirrhosis. 

Topographically, there have been 17 cases (33.3%) in the right liver lobe 

(segments 5-8), 13 cases (25.5%) in the left one (including the caudate/ 

segment  1, the lateral/ segments 2, 3 and medial/ segments 4a, 4b lobes), 

whereas 15 cases (29.4%) show involvement of both hepatic lobs. In 6 cases 

(11.7%) was no topographic placement possible (these are liver explantations 

with small tumors -T1- without referring to the tumor location in the macroscopic 

description). 

In the setting of determining histologic grade; 42 HCCs (82.4%) are grade 2 

(moderately differentiated), 8 (15.7 %) are grade 1 (good differentiated) 

whereas only one case (1.9%) is grade 3 (poorly differentiated). No 

undifferentiated (grade 4) HCC was diagnosed. Only two cases had two 

histologic grades in one tumor (grade 1 and 2, in which the highest grade was 

considered). 

Regarding the histologic subtypes and the cytologic variants; the trabecular 

subtype is evident in 32 (62.7%) cases (pure trabecular in 24 cases or with 

areas of solid growth pattern in 8 cases), the pseudoglandular subtype in 16 

(31.4%) cases (at least as partial differentiation admixed with trabecular or solid 

areas in 14 cases, rarely as a pure pseudoglandular pattern -one case- or as a 

second tumor nodule with pure pseudoglandular differentiation in one case too; 
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patient no. 13, Table 7), whereas the pure solid subtype is observed only in 3 

case (5.9%). Figure 5 illustrates some of the pathologic variants detected in our 

cases. 

In addition; one case shows partial spindle-cell differentiation (spindle-cell 

variant) and glycogen and fat accumulation is observed at least as a focal 

feature in 17 cases (clear-cell variant). No cases of pleomorphic- cell variant 

were observed. 

Eleven cases (21.6%) have undergone total hepatectomy with liver 

transplantation whereas the rest 40 cases (78.4%) underwent partial 

hepatectomy or lobectomy. 

Forty four operations (86.3%) have tumor free margins, whereas 7 operations 

(13.7%) show infiltrated margins of resection. 

Only 13 operations (25.5%) have a lymph node resection, all of which show an 

N0 status. The number of resected lymph nodes ranged from 1 to 13 (mean, 

2.8/resection). 

Only 4 cases (7.8%) show lymphatic invasion (L1) which was accompanied in 

all 4 of them with vascular invasion (V1), whereas 12 cases (23.5%) show 

vascular invasion (including large vessels invasion) pure or accompanied with 

lymphatic invasion. 

In regards to the tumor stage; 22 cases (43.2%) and 15 cases (29.4%) present 

in T1 and T2 stages respectively, whereas 12 cases (23.5%) present as T3 (5 

cases as T3a and 7 as T3b) and 2 (3.9%) as T4. 

 

3.1.2. We studied the 40 intrahepatic CCs further. Of these cases; 18 patients 

(45%) are males. They ranged in age from 42 to 78 years (mean, 60.5 years). 

Tumor size ranged from 0.7 to 12 cm (mean, 6.6 cm). 

The background liver shows a cirrhotic architecture only in 4 cases (10%), 

whilst liver steatosis (with or without the full histologic picture of steatohepatitis) 

is observed in 15 cases (37.5%). The cirrhosis was associated with HBV 

infection in two of the four cases. Other special histological features observed 

are mild to moderate portal fibrosis (in 7 cases or 17.5%) and chronic 

cholangitis in one case (2.5%). 

Topographically, there have been 6 cases (15%) in the right liver lobe, 11 cases 

(27.5%) in the left one, whereas 21 cases (52.5%) show involvement of both 
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hepatic lobs. Two cases are atypical resections without referring to the tumor 

location. 

In the setting of histologic grade; 28 ICCs (70%) show the nuclear grade 2, 11 

(27.5%) the grade 3, whereas only one case (2.5%) has nuclear grade 1. 

Regarding the histologic subtypes; 2 cases of mucinous carcinoma (5%), 2 

cases (5%) of signet ring carcinoma (at least as a focal feature) and one case 

with clear cell features (2.5%) are observed. All other cases (35 or 87.5%) show 

conventional CC (tubular/ trabecular formations with solid areas or carcinoma 

with tubular formations within a desmoplastic stroma). 

Of the 39 cases which have resections all (100%) have undergone a partial 

hepatectomy/ hemihepatectomy, the tumor was unresectable in the 40th case 

and the patient underwent only exploratory Laparotomy with lymphadenectomy 

(case no. 72, Table 7). Of these cases 16 (41%) have infiltrated margins of 

resection and 18 cases (46.2%) have free margins. In 5 cases (12.8%) the 

margins status could not be evaluated (Rx). 

Twenty six operations have lymph node resections, 10 of which (38.5%) with N0 

status and 16 (61.5%) with N1 status. The number of resected lymph nodes 

ranged from 1 to 20 (mean, 7.8 nodes/ resection). The number of positive lymph 

nodes resected ranged from 1 to 9 (mean, 2.5 positive nodes). 

Six cases (15.4%) show lymphatic invasion (L1) which was accompanied in 3 of 

them with vascular invasion (V1), whereas 5 cases (12.8%) show vascular 

invasion (including large vessels invasion) pure or accompanied with lymphatic 

invasion. 

In regards to the tumor stage; 21 cases (53.8%) present in T1 stage, 13 cases 

(33.3%) in T2 stage (3 cases as T2a and 10 as T2b), whereas 4 cases (10.3%) 

present as T3 and only one cases (2.6%) as T4. 

 

3.1.3. Of the 7 Klatskin cases; three patients (42.9%) are males whereas 4 

(57.1%) are females. They ranged in age from 46 to 69 years (mean, 58.6 

years). 

Tumor size ranged from 1.5 to 10 cm (mean, 3.9 cm). 

The background liver shows no cirrhotic architecture in all cases (100%). A mild 

to moderate portal fibrosis is evident only in one case. 
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Topographically, there have been 5 cases (71.4%) in the left hepatic lobe 

whereas 2 cases (28.6%) show involvement of both hepatic lobs. No cases 

involving the right hepatic lobe identified. 

In the setting of histologic grade; 5 cases (71.4%) show the nuclear grade 2 

whereas the nuclear grade 1 and 3 are evident in one case each. 

Regarding the histologic subtypes; all the cases show the conventional CCC 

morphology which is accompanied with focal signet ring features only in one 

case (14.3%). 

All the cases have undergone a partial hepatectomy/ hemihepatectomy, of 

which 4 cases (57.1%) have infiltrated margins of resection and 2 cases 

(28.6%) have free margins. In one case (14.3%) the margins status could not 

be evaluated (Rx). 

Six operations have lymph node resections, 3 of which (50%) show an N0 

status and the other three an N1 status (50%). The number of resected lymph 

nodes ranged from 4 to 25 (mean, 13.8 nodes/ resection). The number of 

positive lymph nodes resected ranged from 2 to 8 (mean, 4.3 positive nodes). 

Only one case (14.3%) shows lymphatic invasion (L1) which was accompanied 

with vascular invasion (V1), whereas 4 cases (57.1%) show vascular invasion 

(including large vessels invasion) pure or accompanied with lymphatic invasion. 

In regards to the tumor stage; 4 cases (57.1%) present in T2 stage (2 cases as 

T2a and 2 as T2b), whereas 2 cases (28.6%) present as T3 and only one case 

(14.3%) as T4. No cases present as T1 (0%). 

 

3.1.4. Of the HCC/CCC cases, two present in male-patients and one in female-

patient. They ranged in age from 14 to 66 years (mean, 42 years). 

Tumor size ranged from 1.8 to 7 cm (mean, 5.1 cm). 

The background liver shows cirrhotic/ precirrhotic architecture in all cases. 

Topographically, there have been 2 cases in the right hepatic lobe whereas one 

case involved both hepatic lobs. 

In the setting of histologic grade; 2 cases show the nuclear grade 3 whereas the 

third case is of grade 2. 

All the three cases have undergone a partial hepatectomy/ hemihepatectomy 

with free margins of resection (R0). 

Two cases have an N0 status and one case an N1 status. 
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One case shows lymphatic invasion (L1), also one case shows vascular 

invasion (V1). 

In regards to the tumor stage; 2 cases present as T2a whereas the third as T1. 

 

3.1.5. Four of the 7 FLC patients are males and three are females. They 

ranged in age from 17-66 years (mean, 31.4 years). The background liver 

shows no cirrhotic architecture in all cases. All the cases have the histological 

grade 2. 

Further clinicopathologic information was available only to 4 of the cases. 

Tumor size ranged from 12 to 14.5 cm (mean, 13.6 cm). 

All the four cases underwent partial hepatectomy or lobectomy. Three 

operations have tumor free margins, whereas the fourth one has infiltrated 

margins of resection. 

Three cases have N1 status and one has N0 status. The number of resected 

lymph nodes ranged from 3 to 11 (mean, 7.5 nodes/ resection). The number of 

positive lymph nodes resected ranged from 1 to 2 (mean, 1.7 positive nodes). 

One case shows lymphatic invasion (L1) and one vascular invasion (V1). 

Regarding the tumor stage; one case presents in T1 stage, another one in T3b 

stage and two cases present as T4. 

 

Noticed in some cases were some special features such as the association of 

one of the FLC cases with focal nodular hyperplasia FNH (patient no. 103, 

Table 7). 

 
3.2. Immunohistochemistry: 
 

3.2.1. HCC: 
Forty six HCCs (90.2%) are positive for HepPar1. The staining showed focal to 

diffuse mostly granular but sometimes homogenous cytoplasmic positivity. In 

the cases with clear cell features the staining was membranous. The normal 

parenchyma showed moderate to strong cytoplasmic positivity in all cases 

(100%). 

50 HCC cases (98%) are positive for Glypican3 with different patterns of 

expression which ranged from moderate to strong sometimes granular at sites 

heterogenous cytoplasmic positivity to typical canalicular positivity which is 



  

     49 

 

  

evident in 6 cases (11.7%). The normal liver showed moderate to strong 

granular cytoplasmic positivity in all cases (100%). 

4 HCC cases (7.8%) showed focal to diffuse AFP positivity with concurrent 

moderate positivity of the adjacent normal liver only in one case (1.9%). 

10 cases (19.6%) show CK7 positivity. This was typically focal and moderate to 

strong in 8 cases and diffusely strong in two cases. 

4 cases (7.8%) are positive for SALL4 of which one case (1.9%) shows diffuse 

and strong nuclear positivity and three cases (5.9%) show mild to moderate 

focal positivity in at least 25% of the tumor cells. No positivity in the normal 

parenchyma observed (Figure 6). 

Five HCCs (9.8%) show focal and weak to moderate FGG positivity (in <25% of 

the tumor cells). 

10 cases (19.6%) show focal nuclear β-Catenin positivity simultaneously with 

diffuse membranous or cytoplasmic positivity. 41 cases (80.4%) show focal to 

diffuse membranous positivity. This was accompanied by focal cytoplasmic 

positivity in 18 cases of them and with diffuse strong positivity in the adjacent 

parenchyma only in one case. 

Diffuse and strong granular cytoplasmic Wnt1 positivity is evident in 48 cases 

(94.1%). Only three cases show absence of expression of Wnt1. Interestingly all 

the three cases are positive for SALL4. 

None of the HCC cases show immunoreactivity with the BRAF antibody. 

13 cases (25.5%) show nuclear accumulation of P53 (moderate to strong 

accumulation in less than 5% of the tumor cells in 10 cases, moderate to strong 

accumulation in 15% of the cells in two cases and strong accumulation in 90% 

of the tumor cells in one case). 

A mild proliferation activity (as evident in the MIB1 stain) is observed in 39 

cases or 76.5% (mild to strong nuclear expression in <5% of the tumor cells in 

35 cases and strong expression in 10% of the cells in 4 cases), whereas a 

moderate proliferation activity (MIB1 positivity in 20-30% of the tumor cells) is 

evident in 3 cases (5.9%). 

36 cases (70.6%) show typical expression of CD10 in a canalicular pattern. The 

adjacent parenchyma stains appropriately. 

 

3.2.2. CCC: 
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Of the 40 ICC cases 38 cases (95%) show diffuse and strong cytoplasmic 

positivity for CK7. The other two cases have only focal positive cells. 

Weak to moderate nuclear positivity for SALL4 is observed only in 3 cases 

(7.5%) as diffuse positivity (in >70% of the tumor cells) in two case and as focal 

positivity in about 5% of the tumor cells in one case, no positivity in the normal 

parenchyma noted. 

BRAF immunoreactivity is not observed in any of the cases. 

Three cases (7.5%) show focal nuclear β-Catenin positivity accompanied by 

diffuse membranous and cytoplasmic positivity. Nine cases (22.5%) show 

diffuse membranous positivity whereas 28 cases (70%) show cytoplasmic 

positivity with membranous enhancement. 

The adjacent hepatic parenchyma show membranous immunoreactivity 

sometimes with focal cytoplasmic positivity in all cases. 

34 cases (85%) are immunoreactive for Wnt1, whereas 6 cases are negative for 

the stain. 

34 cases (85%) show nuclear accumulation of P53 (moderate to strong 

accumulation in less than 5% of the tumor cells in 24 cases, moderate to strong 

accumulation in 10-20% of the cells in 5, moderate to strong accumulation in 

30-50% of the cells in 4 cases and strong accumulation in 90% of the tumor 

cells in one case). 

25 cases (62.5%) have a mild proliferation activity (moderate to strong MIB1 

expression in less than 5 % of the tumor cells), 9 cases (22.5%) show moderate 

expression in 10-20% of the cells, 2 cases (5%) have a proliferation activity in 

30% of the tumor cells whereas one case (2.5%) has a strong proliferation rate 

in 60% of the cells. 

 

3.2.3. Klatskin tumors: 

Six cases of the hilar CCs are positive for CK7 (85.7%). 

None of the cases show positive reaction for SALL4 or BRAF. 

All cases have a membranous expression of β-Catenin or membranous 

expression with focal cytoplasmic positivity. This is also noted in the normal 

parenchyma. No nuclear positivity observed. All the cases (100%) show also 

positive reaction for Wnt1. 
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5 cases (71.4%) show nuclear accumulation of P53 (moderate to strong 

accumulation in less than 5% of the tumor cells in 4 cases and moderate 

accumulation in 10% of the cells in one case). 

4 cases (57.1%) have a low MIB1 expression (in less than 5% of the tumor 

cells) and two cases (28.8%) show a mild proliferation rate in about 10% of the 

cells. 

 

3.2.4. Combined HCC/CCC: 

CK7 positivity is evident only in the CC component. 

Two cases have focal nuclear SALL4 positivity (typically in a dot like pattern in 

one of them) in 20% and 40% of the cells. 

No immunoreactivity for BRAF observed. 

The three cases show no nuclear β-Catenin positivity. One case showed 

reduced membranous expression of β-Catenin (practically only focal 

membranous positivity). 

Wnt1 expression is noted in one case and in the HCC component of another 

one. No expression is observed in the CCC component of this case and in the 

third one. 

One of the cases has a strong nuclear accumulation of P53 in 95% of the tumor 

cells, the two other cases have a moderate expression in 30% and 50% of the 

cells. 

Two cases show a low proliferation rate (MIB1 expression in less than 5% of the 

tumor cells), whereas the third case show a high proliferation rate (about 60% of 

the tumor cells positive for MIB1). This is the same case with high P53 

accumulation. 

 

3.2.5. FLC: 

Seven of the 8 FLC cases (87.5%) show double positivity for HepPar-1 and 

CK7. The HepPar-1 positivity is typically strong, diffuse and with granular 

cytoplasmic pattern, whereas the CK7 positivity ranged from focal and 

moderate in one case to strong and diffuse in the remaining cases. 

The eighth case shows positivity for HepPar-1 with negativity for CK7. All the 

cases (100%) show moderate to strong positive staining for FGG (Figure 7) 

either as individual strongly stained cells in 5 cases (62.5%) or as a diffuse 
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moderate cytoplasmic staining with strong positivity of individual cells in 3 cases 

(37.5%). 

No SALL4 positivity observed in any of the FLC. The eight FLC show a positive 

membranous pattern of β-Catenin expression (100%) with focal cytoplasmic 

positivity in 4 cases. No nuclear positivity identified (0%). All the cases (100%) 

are immunoreactive for Wnt1. 

No immunoreactivity with BRAF antibody identified. 

4 cases (50%) show P53 expression (3 with moderate to strong nuclear 

accumulation in 1-2% of the cells and one with moderate nuclear accumulation 

in 5% of the cells). 

5 cases (62.5%) have a mild proliferation activity in the MIB1 (<5% of the cells 

in 4 cases and in about 15% of the cells in one case). 

 

3.3. Molecular analysis: 
 
3.3.1. HCC: 

BRAF mutation status was determined in 50 of the 51 cases using the melting 

point analysis. 

Two cases showed the typical mutational BRAF melting curve (the melting point 

of the sensor probe is about 56 °C for the WT sequence and 60 °C for the 

V600E). The cases were selected for confirmatory testing by Sanger 

sequencing which validated the results (Figure 8). The two mutations were 

represented by the most common substitution of valine by glutamic acid at 

position 600 (V600E). 

Two additional cases showed an adjacent small peak in the melting curve 

suggesting of V600E, but in the sequencing analysis these were only 

representable in some of the alignments (or sometimes the high level of 

background noise did not allow the exact discrimination), also upon repeating 

the analysis from different blocks we got the same results. These findings might 

be interpreted by the fact that only a subset or sub clone of the tumor cells 

harbours the mutation. 

 

3.3.2. CCC: 

Genomic DNA from 31 of the 40 CCC was analysed for BRAF gene mutations. 

In the remaining 9 cases we had insufficient DNA to perform the analysis. Using 
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the Sanger sequencing method, we failed to detect specific gene mutations in 

exon 15, codon 600 in all the 31 cases. 

 

3.3.3. Klatskin tumors: 

Using Sanger sequencing, we did not detect BRAF mutations in any of the 

seven Klatskin tumors. 

 

3.3.4. Combined HCC/CCC: 

One of the three HCC/CCC cases shows a BRAF V600E mutation confirmed by 

both Sanger sequencing and melting point methods. Hereafter we isolated the 

DNA from the two different tumor components separately. Interestingly only the 

HCC tumor component shows to harbour the V600E mutation. The results were 

validated from a second tumor block. 

 

3.3.5. FLC: 

Of the eight FLC cases only one case show a melting point with a small 

doubtable adjacent peak. This was also not representable in all the sequencing 

alignments. 

 
3.4. Long term outcomes (Table 8): 
 

3.4.1. HCC: 

Follow-up information was available for 46 of the 51 patients. Seven additional 

patients did not present again after the operation discharge. 

The length of the follow-up period ranged from 1-78 months (median, 26.7 

months). Only one patient has documented death 32 months after the operation 

(case no. 34, Table 7). This patient has had HCV infection and liver 

transplantation and has died of liver failure after the activation of the HCV- 

infection with re-cirrhosis. 

The Transcatheter Arterial Chemoembolization/ Transarterial 

Chemoembolization (TACE) technique was used in 7 (17.9%) cases (one cycle 

or more), which made it possible to assess pathologic response rate in these 

cases. Pathologic complete response (complete tumor necrosis) was not 

achieved in all cases. 
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Neoadjuvant therapy (NAT) was administered only in two cases (5.1%). The 

two cases have had multiple tumors or central large tumor with several satellite 

nodules. This was combined with TACE too. 

Eleven patients (28.2%) developed local recurrence. The period to the 

recurrence ranged from 4-25 months (median, 11.6 months). The recurrent 

tumor was multifocal in three cases, was treated with Radiofrequency ablation 

(RFA) alone or combined with one or more cycles of TACE. 

Six cases (15.4%) developed distant metastases (bone and soft tissues in 2 

cases, peritoneal carcinosis in 2 cases, lymph nodes metastases in one case 

and disseminated metastases in one case too). These was treated with 

palliative chemotherapy alone or combined with the multi kinase inhibitor 

Sorafenib. 

 

3.4.2. CCC: 

Follow-up information was available for 34 of the 40 patients. Nine additional 

patients did not present again after the operation discharge. 

The length of the follow-up period ranged from 1-81 months (median, 20.1 

months). Four patients have documented death (period ranged from 8 to 62 

months, median is 31.75 after the operation). 

Neoadjuvant therapy (NAT) was administered in three cases (12%). 

Eight patients (32%) developed local recurrence, of which 3 patients have had 

second recurrence metachronically. The period to the recurrence ranged from 

4-43 months (median, 22.25 months), whereas the period to the second 

recurrence ranged from 14-50 months (median, 34 months). The recurrence 

was treated with chemotherapy or radiochemotherapy with or without 

Radiofrequency ablation (RFA). 

Also eight cases (32%) developed distant metastases: bone and soft tissues in 

2 cases, omentum and peritoneal carcinosis in 4 cases, lymph nodes 

metastases in 1 case and disseminated metastases (lymph nodes and lung) in 

one case too. These were treated with palliative chemotherapy. 

 

3.4.3. Klatskin tumors: 

Follow-up information was available for all the patients. 
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The length of the follow-up period ranged from 1-69 months (median, 27.1 

months). Two patients have documented death at 7 and 9 months after the 

operation. These are patients with T4 and T3 tumors respectively (tumor 

infiltrates the main branch/ bilateral branches/ unilateral branches of portal vein 

or common hepatic artery) and the death was due to multi organ failure in the 

first patient and recurrent AML in the second one. 

Neoadjuvant therapy (NAT) was not administered in any of the patients. Three 

patients (72.9%) developed local recurrence. The period to the recurrence 

ranged from 5-69 months (median, 30 months). One of these three patients 

developed peritoneal metastases concurrent to the recurrence (at 16 months) 

and a second recurrent tumor at 27 months and was treated with palliative 

chemotherapy (combination of Cisplatin and Gemcitabine). 

 

3.4.4. Combined HCC/CCC: 

Follow-up was available for the three patients. The length of the follow-up 

period ranged from 3-32 months (median, 17.3 months). 

No patient was neoadjuvantly treated. All three patients developed local 

recurrence. The period to the recurrence ranged from 3-32 months (median, 17 

months). The recurrent tumor was treated with Radiofrequency ablation (RFA) 

alone or combined with adjuvant chemotherapy. One of the three patients 

developed concurrent abdominal wall metastases. 

 

3.4.5. FLC: 

Follow-up information was available for 4 of the 7 FLC patients. The length of 

the follow-up period ranged from 2-90 months (median, 44.5 months). 

One patient developed local recurrences at 15 und 44 months after the 

operation which were resected accordingly. At 90 months the patient is still 

disease free. 
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4. Discussion and Conclusion: 
 
 

4.1. Histological and clinical findings: 
 

4.1.1. HCC 

About 57% of the HCCs in this series are associated with cirrhosis. This 

emphasizes the role of chronic hepatic injury in the predisposition to HCC [139]. 

A viral association (HBV and HCV) is documented in about 20% of the cases 

(8% for HBV and 12% for HCV). This is much lower percentages as mentioned 

in the literature (50-55% with HBV, and 25-30% with HCV) [63, 3]. This could 

reflect the geographic variability in HBV and HCV prevalence and the effectivity 

of prophylactic procedures and vaccination programs. It could also represent a 

selection bias, because the selection of patients for surgical resection is based 

on clinical findings, laboratory data, imaging and staging systems, so 

that HCC patients with nonscirrhotic liver are most frequently selected 

as surgery candidates than those with cirrhotic background because of 

the lower morbidity rates. 

About 88% of our patients are men (the sex incidence ratio is 7.5). This is a 

higher ratio than known incidence ratios in different parts of the world (varying 

from 1.3 to 3.6) [63]. The fact that sex ratios tend to be higher in high risk 

countries and patients less than 50 years of age [3] cannot really interpret this 

finding as Germany (Northern Europe) are among the geographic areas with 

low risk incidence. 

 

The mean patient’s age is nearly 65 years consistent with the mean age of 

developing HCC in developed countries [105] (usually after age 50). 

 

4.1.2. ICC 

Consistent with the published literature [51], the background liver showed a 

cirrhotic architecture only in 10% of our ICCs, reflecting the fact that ICC is less 

frequently associated with chronic hepatic injury than HCC, the cirrhosis was of 

non-biliary type in all the cases [127]. 

 

ICC was largely classified into conventional adenocarcinoma and other variants 
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and several studies reported these different histologic variants to be very rare 

[51, 143]. 

87.5% of the cases in our series show the conventional CC-morphology 

whereas the rest 12.5% of the cases are divided between mucinous, signet ring 

and clear cell carcinoma as rare morphologic variants. 

 

The average age of patients diagnosed with intrahepatic CC is 70 and it is 73 

for the extrahepatic CC [51]. But in our series the patients are nearly one 

decade younger, probably because of the different pathogenesis or small study 

sample. 

 

4.1.3. FLC 

In the study from El-Serag et al [155], the vast majority of FLCs has arisen in 

noncirrhotic livers and was not associated with other factors implicated in the 

development of HCC, such as HBV or HCV, alcohol consumption, or use of oral 

contraceptives. The mean age of patients was 39 years versus a mean age of 

65 years in patients with HCC. FLC was also more common in women. 

In our small series, none of the cases is associated with cirrhosis, no 

association with HBV or HCV documented, 4/7 patients are males, and the 

mean age at presentation is 31.4 years. 

 

FLC is most often found as a solitary mass (80% to 90%) involving the left lobe 

of the liver [51]. The tumor is large at presentation, ranging in average size from 

9 to 14 cm in greatest dimension [156]. 

The mean tumor size in our series is 13.6 cm. 

 

In the study of Stipa et al [188], approximately one third of the resectable FLCs 

has lymphovascular invasion and 50% show lymph node metastases at the time 

of surgery. 

In our series, three of four cases have N1 status, one case shows lymphatic 

invasion (L1) and one vascular invasion (V1). 

 

The common presence of a central scar in FNH and FLC has previously led to 

the speculation that they share a common pathway of development. However, 
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only rarely have the two tumors been reported in association [173, 174]. In one 

of our FLCs, the tumor was associated with FNH. 

 
4.2. Immunohistochemical findings: 

 
4.2.1. Conventional immunostains: 

 
Demonstrating the presence of bile canaliculi (using a polyclonal CEA antibody 

or CD10) in a tumor is considered diagnostic for an HCC, bile canaliculi are 

readily identified in most well- to moderately differentiated tumors but may be 

inconspicuous in high-grade HCCs (in about 50% of the cases), CD10 and p-

CEA cross-react with canalicular biliary glycoproteins in 30% to 100% of HCCs 

[82], depending on the degree of differentiation of the tumor. 

In our series about 70% (36/51) of the HCCs show typical canalicular 

expression of CD10, whereas none of the ICCs cross-react with the marker 

(P<0.0001). This highlights the importance of this marker in differentiating HCC 

from ICC, especially in small specimen liver biopsies. 

 

HepPar-1 is expressed by HCC in a granular and cytoplasmic pattern and may 

be patchy within the tumor, with the sensitivity in recent series ranging from 

73% [83] to 93% [84]. 

92% (46/51) of our cases are positive for HepPar-1 with negative cases more 

likely to show a poor differentiation. In contrary, HepPar-1 is positive only in two 

out of 40 ICC, i.e. (P<0.0001). 

 

Glypican-3 is serological and histochemical marker of HCC. Yamauchi et al [82] 

reported the expression of Glypican-3 in 84% of HCCs whereas metastatic 

adenocarcinoma and cholangiocarcinoma stain rarely. In the series of 

Shirakawa et al [216], the Glypican-3 expression identified in about 78% of 

HCCs with different sensitivity to the different differentiation grades (60% of well 

differentiated, 90% of moderately differentiated and about 85% of poorly 

differentiated HCCs). Also this study confirmed that Glypican-3 expression is 

specific to HCC component of combined HCC/CCC. 

The results in our review were a little higher (98% in HCC) which could be 

interpreted by the difference in the clone of the antibody. 
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Yamauchi et al [82] also recognized AFP as a highly specific but relatively 

insensitive marker, with positivity in only 17% to 68% of HCC cases [82]. In our 

review only 8% (4/51) of HCCs and none of the other cases (CCCs, FLCs, or 

CC component of HCC/CCC) are immunoreactive for AFP (P=0.027 in 

discriminating HCC from ICC). 

 

The immunohistochemistry for cytokeratin 7 is known to be strongly positive in 

CCC with variable expression in HCC. Consistent with the literature, 95% 

(38/40) of our CCCs and about 19% of HCCs (10/51) express CK7 (P<0.0001). 

This emphasizes the utility of this marker in the differential diagnosis of primary 

liver malignancies, especially in the subset of CCCs which reveal a trabecular 

growth pattern mimicking HCC. 

 

HCC genomes suffer extensive damage in the form of large-scale copy number 

alterations and viral integrations, which if left unchecked, would be expected to 

trigger TP53-mediated apoptosis and cell cycle arrests. Frequent mutations and 

deletions of TP53 appear to have disabled this important line of cellular 

defense. 

Among the mutations involved in hepatocarcinogenesis identified in the cohort 

of Kan et al [92], TP53 has the highest prevalence (35.2%), consistent with 

earlier HCC studies [57, 217]. These tumors are more likely to be poorly 

differentiated and have poor survival. 

Overexpression of mutated p53 can be detected by immunohistochemistry in up 

to 37% of HCCs [77]. In our review it was detected in about 26% of the cases 

and was significantly correlated with higher tumor grade (P=0.0019). 

P53 mutations are also involved in Cholangiocarcinogenesis. 85% of our ICC 

cases show nuclear accumulation of P53 either as focal, moderate, or strong 

accumulation. P53 expression was also statistically correlated with higher tumor 

grade (P=0.0052). 

The molecular basis for FLC remains largely unknown. Only a limited number of 

individual oncogenes and signaling pathways have been studied in FLC, but the 

results indicate that the uniqueness of FLC extends to the molecular level. 

Several studies showed that FLC does not share the genetic abnormalities that 

have been demonstrated in conventional HCC, such as p53 mutations, survivin 
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overexpression [176, 177], β-Catenin mutation, etc [57, 59, 156]. 

Similar to these findings we observed only focal P53 accumulation (in <5% of 

the tumor cells) in 4 FLCs in our review. 

 

Ki-67 is a nuclear antigen expressed in the G1, S and G2 phases. 

Overexpression of Ki-67 suggests cell cycle control disturbances and increasing 

proliferation. 

Proliferative activity measured by positivity for nuclear Ki-67 antigen (clone 

MIB1) increases with decreasing degrees of HCC differentiation but cannot 

distinguish between low-grade HCC and benign nodules [218]. Ki-67 is also a 

potentially valuable prognostic factor in patients with HCC. HCV-related HCC 

does have lower proliferative activity and a better prognosis. 

Regarding Ki-67 expression in CCC, the study of Shrestha et al [219] noticed 

increased expression in the extrahepatic CC than in other bile duct carcinomas. 

This expression was also higher in poorly differentiated tumors and lymph node 

metastasis group. Ki-67 was found to be a good prognostic indicator whereas 

there was no association of p53 and MIB1 expression. 

Our study did not notice any significant association between MIB1 and any of 

the clinicopathological parameters in both HCC and CCC cases. 

 
4.2.2. Aberrant Wnt/β-Catenin pathway in hepatic malignancies: 

 
HCC is one of the cancers with a high rate of dysregulation in the Wnt/β-

Catenin pathway, as 40%-70% [220-223] of HCC patients have tumours with 

high levels of β-Catenin accumulation. 

Maher et al [202] reported that β-Catenin phosphorylated at Ser45 is 

predominantly located in the nucleus, whereas β-Catenin phosphorylated at 

Ser33/Ser37/Thr41 is mostly localized to the cytoplasm. This suggests that 

phosphorylation at Ser45 and at Ser33/Ser37/Thr41 is not necessarily coupled. 

It may also imply that phosphorylation at Ser45 by CKIα serves another 

function, yet to be delineated, other than priming β-Catenin for further 

phosphorylation by GSK3β. 

Nuclear accumulation of β-Catenin is strongly associated with β-Catenin 

mutations [221]. A majority of β-Catenin mutations in HCC are missense 

mutations occurring at exon 3 (at the sites of GSK3β phosphorylation -Ser45, 
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Ser33, Ser37 and Thr41-, are deletions in β-Catenin, or occur at other sites). 

This region is responsible for phosphorylation and ubiquitination of β-Catenin, 

and therefore, mutation in this region results in stable β-Catenin that 

consequently accumulates in the nucleus. 

Kan et al [92] documented β-Catenin (CTNNB1) mutations (exon 3) in 15.9% of 

the HCCs in their series. 

The study detected also a small deletion in exon 3 of CTNNB1 that removes the 

GSK3β phosphorylation sites (S33 and S37). Moreover they showed that 

negative regulators of CTNNB1 including AXIN1 (4.5%), AXIN2 (2.3%) and 

APC (2.3%) could be also mutated, implicating the canonical Wnt pathway as a 

major driver of hepatocarcinogenesis. 

Mao et al [224] associated nuclear β-Catenin accumulation to β-Catenin 

mutation, non-invasive form of tumour and good prognosis. HCC tumours with 

mutant nuclear β-Catenin resulted in a better 5-year survival than HCC tumours 

with wild-type nuclear β-Catenin accumulation. This is suggestive of the 

statement that wild-type β-Catenin accumulation and mutant β-Catenin 

accumulation are not equivalent. 

However, several studies have correlated nuclear β-Catenin accumulation to 

tumour progression and poor prognosis [223, 225, 226]. 

Kondo et al [226] reported that β-Catenin accumulation and β-Catenin mutation 

do not occur early in hepatocarcinogenesis, but could be associated with 

malignant progression of HCC. Similar to these findings, Inagawa et al [225] 

observed poor prognosis in HCC patients with nuclear β-Catenin accumulation 

in grade 3 HCC tumours and not in grade 1 or grade 2 HCC tumours. 

Furthermore, nuclear β-Catenin accumulation in HCC has also been correlated 

to tumour cell proliferation (Ki67 expression), suggesting that β-Catenin 

promotes tumour progression [223]. The discrepancy in β-Catenin accumulation 

and HCC prognosis could be due to the type of β-Catenin mutations. Other 

reasons for the discrepancy may include tumour histology and the size of the 

tumour. 

Additionally, the presence of β-Catenin mutations demonstrates different 

phenotypical features in HCC. Cieply et al [227] reported that HCC tumours 

harbouring a missense mutation at exon 3 exhibit a more aggressive phenotype 

and may develop HCC without cirrhosis compared to HCC with non-mutated β-
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Catenin. Thus, β-Catenin mutations may serve as an independent risk factor for 

the development of HCC in the absence of cirrhosis. 

Greater tumour size has also been reported in HCC tumours with β-Catenin 

mutations as compared to those without mutation in β-Catenin [228]. 

Some studies have correlated cytoplasmic β-Catenin (non-nuclear β-Catenin) 

with poor cellular differentiation, large tumour size (> 5 cm in diameter) and 

short disease-free survival [221]. For reasons not yet elucidated, HCV-

associated HCC has a greater frequency of β-Catenin mutations than the HBV-

associated type [222]. 

Several studies on transgenic animal models have shown that overexpression 

of mutant or stable forms of β-Catenin on its own is not sufficient to induce 

tumours in liver [229-231]. However, deletion of APC in mice results in 

hepatomegaly, hepatocyte hyperplasia and rapid mortality [232]. Thus, β-

Catenin mutations or accumulation may cooperate with other genes or 

signalling pathways to result in hepatocarcinogenesis. 

 

Wnt family is composed of nineteen secreted glycoproteins [233]. They bind to 

the extracellular domain of FZDs and activate the Wnt/β-Catenin pathway [234]. 

Ten different FZD genes have been identified in mammals and all of them 

encode seven transmembrane receptors [235]. Wnt1 is upregulated in HCC 

tissues compared to adjacent non-tumour tissues and its expression has been 

associated with tumour recurrence [236]. Furthermore, three other Wnt genes 

(Wnt3, Wnt4 and Wnt5A), and three FZD genes (FZD3, FZD6 and FZD7) are 

also upregulated in HCC tissues and preneoplastic peritumoural tissues as 

compared with normal liver tissues, suggesting that their overexpression may 

be an early event in hepatocarcinogenesis. However, only the overexpression 

of FZD7 has been associated with nuclear and/or cytoplasmic accumulation of 

β-Catenin in HCC [237-239]. 

 

In our series of HCCs, about 20% of the cases show nuclear beta-Catenin 

positivity, whereas diffuse and strong granular cytoplasmic Wnt1 positivity is 

evident in about 94% of the cases. 

There was no correlation between β-Catenin expression and any of the 

clinicopathological features, whereas this expression was statistically correlated 
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with the Wnt1 expression (P=0.034). 

Wnt1 expression was conversely correlated with P53 positivity as about 72% of 

the positive cases show no P53 accumulation (P=0.012). 

This finding suggests that these two pathways could be mutually exclusive in 

contributing to HCC tumorigenesis. 

 

Several reports indicate that Wnt/β-Catenin pathway contributes also to 

cholangiocarcinogenesis (partially through the role of β-Catenin in E-cadherin 

mediated cell-to-cell adhesion). Sugimachi et al [240] observed reduced 

membranous expression of β-Catenin in 82% of their examined ICCs and 

indicated that this reduction of expression is associated with non-papillary ICCs 

which have a more malignant behaviour. They suggested this reduction leads to 

loss of a cell-to-cell adhesion, an event which may contribute to the invasive 

tendency of ICC. 

The study also observed nuclear accumulation of β-Catenin in 15% of the ICCs, 

but mutations in β-Catenin exon 3 do not appear to be responsible for this 

nuclear translocation of β-Catenin (all the cases examined showed the WT 

sequence) and therefore indicated that the manner in which β-Catenin is 

translocated into the nucleus in cholangiocarcinoma cells is not clear, and 

events other than mutations of β-Catenin may be responsible. 

On the other hand, Zahng et al [241] investigated the roles and mechanisms of 

MicroRNA-26a (miR-26a) in human cholangiocarcinoma as miRNAs have been 

recently implicated in the development and progression of human cancers. 

According to their results, human cholangiocarcinoma tissues and cell lines had 

increased levels of miR-26a compared with the noncancerous biliary epithelial 

cells. Overexpression of miR-26a increased proliferation of cholangiocarcinoma 

cells and colony formation in vitro, whereas miR-26 depletion reduced these 

parameters. Furthermore, GSK-3β messenger RNA was identified as a direct 

target of miR-26a by computational analysis and experimental assays. Thus 

miR-26a promotes cholangiocarcinoma growth by inhibition of GSK-3β and 

subsequent activation of β-Catenin and these signaling molecules might be 

targets for prevention or treatment of cholangiocarcinoma. 

 

We evaluated the cellular localization of β-Catenin in CCC from two different 
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points of view; membranous and nuclear expression pattern, since these 

patterns reflect the dual function of β-Catenin which involves both cadherin 

mediated cell-to-cell adhesion and Wnt signaling pathways. Unlike the 

observations of Sugimachi and the similar studies [242], we did not observe any 

reduced membranous expression of β-Catenin in any ICC or Klatskin case 

whereas a reduced membranous expression was observed in one of the 

combined HCC/CCC cases. 

We immunohistochemically detected strong nuclear accumulation of β-Catenin 

in 7.5% of the ICCs we studied herein and this nuclear expression was 

significantly correlated with the presence of vascular invasion (P=0.048) and 

with tumor localization in the left hepatic lobe (P=0.018). No correlation between 

this expression and the other clinicopathological features noted. 

Also 85% of the ICCs were reactive for Wnt1. Wnt1 expression in ICC was not 

significantly correlated with any of the clinicopathological parameters. 

 

As already mentioned FLC does not share the genetic abnormalities that have 

been demonstrated in conventional HCC including β-Catenin mutation. 

While no β-Catenin mutations are found in FLC in the study from Terris et al 

[243] and there was no nuclear accumulation of β-Catenin by immunostain, 

Cieply et al indicated there is some evidence that the Wnt signaling pathway 

may still be active in FLC [227]. 

Similar to these findings nuclear β-Catenin accumulation has not been observed 

in any of our 8 FLCs, whereas Wnt1 stain (as a probable indicator for Wnt 

signaling pathway activation) was strongly positive in all the FLCs. 

 
4.2.3. SALL4 expression: 

 
Sal-like protein 4 (SALL4) is a member of a family of zinc finger transcription 

factors. It is a regulator of embryogenesis, organogenesis, pluripotency, can 

elicit reprogramming of somatic cells, and is a marker of stem cells. It’s 

expression is noted in normal murine hepatoblasts, normal human hepatic stem 

cells, hepatoblasts and biliary tree stem cells, but not in mature parenchymal 

cells of liver or biliary tree (silenced in the adult liver) [244]. 

Experimental manipulation of SALL4’s expression results in changes in 

proliferation versus differentiation in human HCC cell lines in vitro and in vivo in 
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immune-compromised hosts. Virus-mediated gene transfer of SALL4 was used 

for gain- and loss-of-function analyses in the cell lines. Significant growth 

inhibition in vitro and in vivo, accompanied by an increase in differentiation 

occurred with down-regulation of SALL4 [244], partly through released 

suppression of the phosphatase and tensin homologue protein (PTEN) gene 

[245]. 

The absence of SALL4 expression in the healthy adult liver enhances the 

potential of SALL4 as a treatment target in HCC [245]. 

About 8% (4/51) of the HCC cases in our series show positivity for SALL4. This 

was typically granular to punctuate/clumped nuclear positivity. All the cases 

have embryonic stem-cell features and show probably an aggressive behaviour 

(this is a small series of cases to be correlated with patients’ survival, especially 

that two patients did not present after the operation discharge, but one of the 

other two patients developed lymph nodes metastases six months after the 

operation and the another developed multiple tumor nodules which necessitated 

neoadjuvant and additional surgical interventions). 

Statistically there was a significant correlation between SALL4 expression and 

some of the clinicopathologic characteristics: higher histologic grade (P=0.040), 

higher pT stage (P=0.035) and vascular invasion (P=0.022). 

Moreover, SALL4 expression significantly correlates with higher serum AFP 

levels (P=0.026) and with the loss of immunohistochemical expression of Wnt1 

(P<0.0001). 

 

Also focal to diffuse finely granular to punctuate positivity in 7.5% of the ICC 

(3/40) was observed, of which one case developed local recurrence, the second 

multiple local recurrences, whereas no follow up data was available for the third 

case. 

This immunohistochemical expression was statistically correlated with the 

presence of multiple tumor nodules (P=0.0035), with the presence of vascular 

invasion (P=0.048) and with higher recurrence rate (P=0.035). 

 

Interestingly 2 of the three HCC/CCC cases showed clumped nuclear positivity 

mainly in the HCC tumor component. The two cases developed local 

recurrences which were accompanied in one of them by metastases in the 
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abdominal wall. 

None of the Klatskin tumors or of the FLCs was immunoreactive for SALL4. 

 

No SALL4 expression was observed in the normal liver parenchyma in any of 

the cases in this series. 

 

Unlike some previous studies that reported lack of SALL4 expression in HCC 

and gastric cancer [246-248], this is one of the first reports documenting for the 

SALL4 expression in liver cancer. 

This could be potentially attributed to differences in clone and source of 

antibody used. 

 

Gonzalez-Roibon et al [249] reported the expression of SALL4 in 7% of their 

HCC series using the 25% cutoff and in 27% of the cases using the 5% cutoff. 

They also did not identify any SALL4 expression in the nonneoplastic liver 

samples. The study did not find any correlation between SALL4 extent of 

expression and any of the clinicopathologic characteristics (histologic grade, 

tumor focality, vascular invasion, tumor size, and pT stage). 

 

In the series from Oikawa et al [244] SALL4 was strongly expressed in surgical 

specimens of human HCCs (17/20) and CCCs (4/5). The study also found that 

SALL4 is expressed in combined hepatocellular and cholangiocarcinoma and in 

a transplantable human tumor line derived from a FLC. SALL4 was not detected 

in chronic hepatitis but faintly detected in bile ductules and in hepatocytes at the 

interface of parenchymal and stromal cells in liver cirrhosis. 

Accordingly the study suggested that SALL4 expression indicates selection for 

stem cells as a minor cell population in normal tissue and cirrhotic tissues and 

as a dominant cell population in liver cancers. 

The performed bioinformatics analyses indicated that elevated expression of 

SALL4 in tumors is associated with poor survival of HCC patients [244]. 

 
4.2.4. FGG expression: 

 
Eosinophilic hyaline globules and the so called cytoplasmic pale bodies or 

ground-glass inclusions are present in approximately half of cases in FLC. 
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These inclusions contain fibrinogen, which is highlighted by immunoperoxidase 

staining [250]. 

We observed immunohistochemical reactivity for Fibrinogen gamma chain 

(FGG) in all the FLC cases with a unique pattern of staining either as individual 

strongly stained cells in a non-stained tumor background or as diffuse moderate 

cytoplasmic staining with individual cells more strongly stained. 

 

Fibrinogen is an important protein for coagulation. It is a hexameric protein 

made of two copies of three peptide chains: Aα, Bβ and γ. These chains are 

expressed and secreted as an assembled hexamer (AαBβγ)2 from hepatocytes. 

The three fibrinogen chains are encoded by three genes: FGA for Aα, FGB for 

Bβ and FGG for γ (with the molecular location on chromosome 4: base pairs 

155,525,285 to 155,533,901). These genes (FGB-FGA-FGG) are expressed 

almost exclusively in hepatocytes where their output is coordinated to ensure a 

sufficient mRNA pool for each chain and maintain an abundant plasma 

fibrinogen protein level [251]. 

Studies on the control of fibrinogen gene expression have been ongoing for 

over 30 years. 

During an acute phase inflammatory response, stimuli of expression include 

glucocorticoids, IL-1β and IL6. 

Crabtree and Kant [252, 253] demonstrated increased liver fibrinogen mRNA 

dependent on glucocorticoids confirming the influence of steroids on fibrinogen 

expression that was described previously [254]. 

A second important finding was the stimulating effect of IL-6 (previously known 

as hepatocyte stimulatory factor, HSF) on hepatocyte fibrinogen expression. IL-

6 stimulates a coordinated increase in fibrinogen mRNA and protein expression 

(the majority of regulation felt at the transcriptional level), which leads to STAT3 

activation [255, 256]. 

In addition, miRNA can influence expression post-transcriptionally [219]. 

It is yet not clear if the FGG expression in FLC is the direct impact of mutations 

in the fibrinogen genes or as a result of disorders in other regulatory 

mechanisms mentioned. 

All our FLC cases show positivity for FGG, whereas only 5/51 HCCs express 

the marker. This finding supports the utility of FGG in FLC diagnosis, especially 
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in the cases with less prominent background fibrosis or in discriminating FLC 

from HCC with desmoplasia –the so-called scirrhous type- (P<0.0001 in 

discriminating FLC from HCC). 

 
4.3. Molecular findings: 

 
BRAF mutations: 

Only few data have been previously reported about any possible role of MAPK 

pathway and BRAF mutation rates among patients with primary hepatic 

malignancies. 

 

Colombino et al [257] elucidated unexpected BRAF and PIK3CA mutations in 

HCC patients originating from South Italy. Overall, they detected oncogenic 

mutations in 23% for BRAF gene (V600E), 28% for PIK3CA gene, and 2% for 

K-RAS gene. Using statistical analysis, BRAF mutations were significantly 

correlated with the presence of either multiple HCC nodules (P=0.021) or higher 

proliferation rates (P=0.034). 

These findings clearly indicated that mutational activation of both BRAF and 

PIK3CA genes does contribute to hepatocellular tumorigenesis at somatic level 

in Southern Italian population. 

 

On the other hand, Tannapfel et al [258] identified activating BRAF missense 

mutations in 22% of their ICCs and in one case of tumour surrounding liver, 

whereas these mutations were not detected in the HCC tumors in their series. 

The study failed to observe a correlation between BRAF mutations and 

histopathological factors or prognosis of patients. 

 

Recent studies into the molecular background of FLC have revealed 

overexpression of genes in the RAS, MAPK, PIK3, and xenobiotic degradation 

pathways [175]. 

 

We documented BRAF mutation V600E in 8% (4/50) of our HCCs including 4% 

(2/50) as “low level mutations” with small reproducible mutational peak which 

was not representable in all specimens obtained from different tumor blocks, in 

1/8 FLC (also as low level), and in 1/3 compound HCC/CCC interestingly only in 
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the HCC tumor component. We failed to detect any BRAF V600E mutation in 

the other CCC cases analyzed (31 ICC and 7 Klatskin tumors). Using the 

commercially available antibody we could not identify any immunohistochemical 

positivity correspondingly. 

 

Using a statistical analysis, BRAF mutations were significantly correlated with 

some clinicopathologic features of the HCC such as higher tumor grade 

(P=0.040) and tumor localization when it involves the both hepatic lobes 

(P=0.40). 

An association was also noted with positive serology for HCV and HBV 

(P=0.038). 

The mutational status did not correlate with the immunohistochemical 

expression from other markers. 

Several new studies also found BRAF-mutations to be very rare in CCC [259, 

260]. 

 

Table 9 summarizes all statistically significant correlations.   

 
4.4. Summary: 

 
We report the immunohistochemical and molecular findings from a series of 

primary hepatic carcinomas, aiming for novel markers which may add to their 

diagnosis and gain more understanding of genetically altered genes and 

pathways implicated in their geneses. 

 

Regarding the standard immunostains applied, our findings are consistent with 

published literature and do strongly support the use of a panel of immune 

markers in the discrimination of primary liver malignancies. 

 

We also focused on the biological significance of an activated β-Catenin 

pathway (identified by Wnt1 immunoreactivity and the nuclear translocated β-

Catenin) in hepatocarcinogenesis that can open the door to evaluate existing 

inhibitors of this pathway for future therapeutic management. 

It remains to be determined which genomic lesions identified by aberrant Wnt1 

expression in these tumors are translated into nuclear β-Catenin accumulation. 
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The study documented the expression of SALL4 as a stem cell marker in this 

series. Our findings suggest that SALL4 may play a role in recognizing the 

primary liver cancers, especially the poorly differentiated “primitive” cases. In 

addition SALL4 is one of the potential treatment targets in liver malignancies, 

especially that its expression is absent in the healthy adult liver. 

 

A unique type of expression of FGG immunostain was also observed in 

fibrolamellar carcinomas, the finding that supports the utility of FGG in FLC 

diagnosis, especially in the cases with less typical morphology or in 

discriminating FLC from scirrhous HCC. 

 

This review also identified BRAF-V600E gene mutations in HCC, FLC and HCC 

component of HCC/CCC but not in other CCC cases. This provides a potential 

path toward therapeutic intervention of the disease. 

We failed to identify a corresponding immunoreactivity with the commercially 

available BRAF antibody in the mutant cases. The conclusion is that the 

antibody is not a useful surrogate to detect BRAF-V600E mutations in primary 

liver malignancies. 

 

From a statistical point of view, this is a small-sample study, but we hope that 

we will contribute to a meta-analysis combining results of similar across studies 

of those immunohistochemical and molecular findings in an adequately sized 

study. 

 

 

 
 
 
 



Legends: 

 

 

Figure 1. 

Global variation in liver cancer incidence rates. From Parkin DM, Bray F, Ferlay J et al. Global cancer 

sta�s�cs, 2002. CA Cancer J Clin 2005; 55: 74–108. 

 

Data are es�mates for the year 2002 from the GLOBOCAN database of the International Agency for 

Research on Cancer. Classifica�on of incidence was based on data in males (a>20 per 100,000, b 11–20 

per 100,000, c 5–10 per 100,000, d<5 per 100,000). 

 

Figure 2. 

Different Cytoplasmic Deposits and Inclusions in HCC: (a.) Fat droplets within an HCC (HE Stain, 

Magnifica�on 20X), (b.) Mallory hyaline, represen�ng clumps of intermediate filaments and found in 

about 20% of cases without rela�on to the underlying liver disease (HE Stain, Magnifica�on 40X), (c.) 

Globular proteinaceous eosinophilic inclusions are also seen in 20% of cases and could represent A1AT    

(HE Stain, Magnifica�on 40X), (d.) Glycogen accumulation in the cytoplasm of HCC cells responsible for 

the so called “clear cell variant” (HE Stain, Magnifica�on 40X). 

 

Figure 3. 

Wnt/β-catenin signalling in the absence and presence of Wnt stimulus. A: Wnt/β-catenin signalling is 

regulated by several antagonists to prevent the formation of frizzled (FZD)-Wnt-low-density lipoprotein 

receptor-related protein 5/6 (LRP5/6) complex. Secreted frizzled-related protein (sFRP) and Wnt 

inhibitory factor (WIF) bind directly to Wnt, whereas dickkopfs (DKKs) bind to LRP5/6. Furthermore, 

human homologue of Dapper (HDPR1) and Prickle-1 inhibit the ac�on of dishevelled (Dvl). In the 

absence of Wnt stimulus, β-catenin is first primed for phosphorylation by casein kinase Iα (CKIα) 

followed by phosphorylation by glycogen synthase kinase 3β (GSK3β) at three residues. The 

phosphorylated β-catenin is targeted for ubiquitination by β-transducin repeat-containing protein (β-

TrCP) and is subsequently degraded by the proteasome. In the nucleus, T-cell factor (TCF)/lymphoid 

enhancer factor (LEF) represses transcription of the Wnt/β-catenin pathway target genes by interacting 

with co-repressor Groucho; B: Wnt binds to and ac�vates FZD and LRP5/6 receptors. Dvl is recruited to 

the plasma membrane and binds to FZD. This results in the recruitment of Axin and GSK3β to LRP5/6. 

LRP5/6 is then phosphorylated by CKIα and GSK3β, resulting in an inactivation of the destruction 

complex and leading to β-catenin accumulation in the cytoplasm. β-catenin then subsequently 

translocates to the nucleus where it binds with TCF/LEF and other co-activators e.g. CREB binding 

protein (CBP) to mediate transcription of genes and microRNAs responsible for proliferation and growth. 

APC: Adenomatous polyposis coli; NLK: Nemo-like kinase; p: Phosphorylated; Ub: Ubiquitinated. 

 

Figure 4. 

Simplified illustration of the main signal ways. MAPK pathway plays a central role. 

 

Figure 5. 

The histological patterns of HCC: (a.) Pseudoglandular pattern (HE Stain, Magnification 10X), (b.) the 

trabekulär pattern (HE Stain, Magnification 10X), (c.) the solid pattern is seen in 5% to 15% of HCCs (HE 

Stain, Magnification 10X), (d.) the spindle cell variant may be more common in tumors subjected to 

chemo-embolization or preoperative chemotherapy (HE Stain, Magnifica�on 20X). 

 

 



Figure 6. 

SALL4-Expression in hepatic cancer: (a.) The positive HCC cases show typically embryonic features (HE 

Stain, Magnification 10X), (b.) SALL4 posi�vity in an HCC, note the typical clumped nuclear expression 

(SALL4 Stain, Magnification 20X), (c.) nuclear SALL4 expression in CCC (SALL4 Stain, Magnification 20X), 

(d.) combined HCC/CCC, note the punctuate dot-like posi�vity (SALL4 Stain, Magnification 40X). 

 

Figure 7. 

Fibrolamellar carcinoma, (FLC): (a.) the tumor is characterized by thick fibrous bands in its Stroma (HE 

Stain, Magnifica�on 10X), (b.) the positivity of FGG stain in FLC (FGG Stain, Magnification 20X), the cases 

show typically double posi�vity for HepPar1 (c.) (HepPar1 Stain, Magnifica�on 10X) and CK7 (d.) (CK7 

Stain, Magnification 10X). 

 

Figure 8.  

Examples of the results of BRAF somatic mutations. Top: a melting point from a positive HCC sample 

(case no. 34, Table 8): 1; WT curve, 2; posi�ve control, 3; nega�ve control, 4; pa�ent sample. Bottom: 

Electropherogram shows the nucleotide sequences of the genomic DNA from the same sample; arrow 

indicates the mutation position within the sequence. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 1. 

Studies reporting the age-standardized incidence of hepatocellular carcinoma (HCC) in the general 

population 
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Factors Implicated in the Pathogenesis of Hepatocellular Carcinoma. 
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Hepatocellular Carcinoma--Cytoplasmic Deposits and Inclusions.  
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Table 6. (A and B) 
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Significant statistical correlations.  



Figure 1: Global variation in liver cancer incidence rates [5]. 
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Mccubrey JA et al. Simplified illustration of the main signal ways. MAPK pathway plays 
a central role. 
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Region Scope of 
study

Data source Period 
covered

Overall Men Women Study

Canada National Canadian cancer 
registry

National and provincial  

cancer registries

1976-2000

1984-2000

-

-

6.0 (1996-2000)

5.5 (2000)

2.0 (1996-2000)

2.2 (2000)

Pocobelli et al. 

Dyer et al.  

USA National SEER 9 cancer 
registries

SEER cancer registries 
and CDC NPCR

 

SEER 9 and 13 cancer 
registries

1982-1994

1998-2003

1975-2005

-

-

4.9 (2005)

3 (1992-1994)

6.2 (2003)

7.9 (2005)

<1 (1992-1994)

1.7 (2003)

2.3 (2005)

Capocaccia et al. 

Ahmed et al. 

Altekurse et al.  

Europe Northern α

Southern b

EUROCARE cancer 
registries 

1983-1994 -

-

3 (1992-1994)

12 (1992-1994)

<1 (1992-1994)

3 (1992-1994)

Capocaccia et al. 

Netherlands National Netherlands cancer 
registry 

1989-2000 - 1.6 (2000) 0.3 (2000) Verhoef et al. 

France Regional

(Bas-Rhin)

Regional

(Finiste're)

Single cancer registry

 

Progressive registration 
of cases by physicians

1990-1999

2002-2003

10.8 (1998-
1999)

-

-

13.8 (2002-2003)

-

0.8 (2002-2003)

Binder-Foucard et 
al. 

Caumes et al. 

Japan Regional

(Osaka)

Osaka cancer registry 1990-2003 - 24.0 (2003) 7.3 (2003) Tanaka et al. 



Table 1. Studies reporting the age-standardized incidence of hepatocellular carcinoma in the general population.

Most recent estimate of age-standardized HCC incidence per 100.000 people (yrs). 

Relevant studies published in the period between June 11, 2004 and June 11, 2009 were identified 

by searches of the U.S. National Library of Medicine PubMed database.

α Northern Europe = Denmark, Norway, Sweden, Iceland, and the UK.

b Southern Europe = Italy, France, and Spain.

Abbreviations: CDC NPCR, Centers for Disease Control and Prevention National Program of Cancer 

registries; SEER, Surveillance, Epidemiolgy and End results.

 



Table 2 

Chronic hepatic injury (60%–90%)    

  Cirrhosis (most common)  

  Chronic hepatitis only (far less common) (HBV >> HCV)  

Specific etiologies  

  High rate of associated HCC (>15%)   

  HBV
a
   

  HCV
a
  

  Hereditary hemochromatosis   

  Hereditary tyrosinemia  

  Porphyria cutanea tarda  

  Hypercitrulinemia
b
 

  Membranous obstruction of the inferior vena cava  

Intermediate rate of associated HCC (5%–15%)  

  Alcohol
a
 

  A1AT deficiency  

  Glycogen storage disease (types 1 and 3)
b
  

  Autoimmune hepatitis (?)  

Low rate to rare presence of associated HCC (<5%)  

  Primary biliary cirrhosis   

  Primary sclerosing cholangitis  

  Hereditary fructose intolerance
b
  

  Paucity of intrahepatic bile ducts
b
    

  Progressive intrahepatic cholestasis (Byler disease)  

  Congenital hepatic fibrosis  

  Biliary atresia  

  Wilson disease  

  Oral contraceptive steroids
b
  

  Anabolic-androgenic steroids
b,c  

  
Obesity  

  Diabetes mellitus  

  Cardiac cirrhosis  

  Exposure to various chemicals/ toxins, including aflatoxinB1
d 

_______________________________________________________________________________________________________________________________ 

a 
Most important specific etiologies associated with HCC worldwide. Multiple factors may act in a 

synergistic fashion, most frequently associated with cirrhosis. 
b
 Conditions where HCC uniformly occurs in a noncirrhotic liver. Occasionally other conditions, such as 

chronic hepatitis B or alpha-1-antitrypsin deficiency or, rarely, chronic hepatitis C, alcoholic liver disease, 

or hereditary hemochromatosis, will lead to HCC in the absence of cirrhosis. 
c
 Although hepatic tumors associated with anabolic-androgenic steroid usage may have the histologic 

appearance of HCC, biologically malignant behavior (metastasis) is rare.  
d Although aflatoxin B1 has been strongly associated with the occurrence of HCC in regions of high 

incidence and in experimental animals, its role as a carcinogen appears to be synergistic with hepatitis B. 

Chronic exposure to vinyl chloride, pesticides/ herbicides, and other organic chemicals has occasionally 

been reported in association with HCC. Cigarette smoking has shown inconsistent association with HCC.  

 
Table courtesy of Scott Saul, MD, Chester County Hospital, West Chester, PA. 



Table 3: Histologic Grading of Hepatocellular Carcinoma 

Grade Architecture Nuclear Features Cytoplasmic 

Features/Cell Size 

Other 

 

Well-differentiated 

(grades I/II of 

Edmonson and Steiner) 

 

 

 

 

Thin plates, 3 or fewer 

hepatocytes thick; 
pseudoglandular 

architecture common. 

 

Minimal nuclear atypia; 
nuclear density greater 
than twice that of 

nonneoplastic liver. 

 

Fatty change common. 
Tumor cells typically smaller 

than nonneoplastic cells. 

 

Clear-cut histologic    
distinction from 
hepatocellular adenoma 

may not be possible in 

some cases without 

finding other, more poorly 

differentiated foci and 

knowing the status of the 

nonneoplastic liver. This 

pattern is typical of small 

(<2 cm) HCC.  

 

 

Moderately differentiated 

(grades II/III of 

Edmonson and Steiner) 

 

 

 

 

Trabecular pattern 

typical; plates more than 

3 cells thick. 

 

Nuclear atypia more 

pronounced. 

 

Tumor cells are larger and 

have more abundant 

eosinophilic cytoplasm and 

distinct nucleoli, compared 

with well-differentiated 

tumors. Giant cells may be 

present. Bile may be seen. 

   

 

Most common type of 

differentiation seen in 

advanced (>2 cm) HCC. 

 

Poorly differentiated  

(grades III/IV of 

Edmonson and Steiner) 

 

 

Compact growth pattern 

with rare or no 

trabeculae is common. 

 

Pronounced nuclear 

atypia, enlargement, and 

hyperchromasia.     

 

Bile is not present. Spindle 

or small cell areas may be 

seen. 

 

May be difficult to 

recognize as 

hepatocellular in origin. 

 

 

Modified from: Hamilton SR, Aaltonen LA, eds. World Health Organization Classification of Tumours. 

Pathology and Genetics of Tumours of the Digestive System. Lyon, France: IARC Press, 2000; and Yano Y, 

Yamamoto J, Kosuge T, et al. Combined hepatocellular and cholangiocarcinoma: a clinicopathologic 

study of 26 resected cases. Jpn J Clin Oncol 2003; 33(6): 283-287. Table courtesy of Scott Saul, MD, 

Chester County Hospital, West Chester, PA.  



Table 4: Hepatocellular Carcinoma—Cytoplasmic Deposits and Inclusions 
a
 

 

 

Deposit/ Inclusion                  Sensitivity (%)                                         Comments 
 

Diagnostically useful                                          100             Mucin may be present in combined HCC-CCC, CCC, or metastatic adenocarcinoma 

 

Absence of cytoplasmic mucin                        5–33           Virtually pathognomonic of HCC 

 

Bile                                                                       7–41           To date, negative in CCC and metastatic adenocarcinoma 

 

Copper/ copper-binding protein                     2–25           In malignant neoplasm, virtually pathognomonic of HCC 

 

Mallory hyaline                                                 10–15          Highly suggestive of HCC in malignant hepatic tumor, but metastatic 

Hyaline globules                                                                     adenocarcinoma and neuroendocrine carcinoma may demonstrate these deposits 

 

PAS-positive DR                                                                      AFP, A1AT, A1ACT, giant lysosomes, other glycoproteins 

 

PAS-negative                                                                          Megamitochondria, apoptotic bodies, albumin, fibrinogen, other proteins 

 

Ground-glass/ pale bodies                               5–10           Fibrinogen, other serum proteins; HBsAg (usually represents trapped nonneoplastic cells) 

 

Of interest, but not diagnostically useful     20–40          Predominant in 5%–16% of cases 

 

Fat, glycogen (clear cells)                              Rare, trace    True even in HCC arising in hereditary hemochromatosis 

 

Hemosiderin                                                    amounts        When prominent, liver may be black (Dubin-Johnson–like) 

 

Lipofuscin-like pigment                                    Rare             

_________________________________________________________________________________________________________________ 

AFP, alpha-fetoprotein; A1AT, alpha1-antitrypsin; A1ACT, alpha1-antichymotrypsin; CCC, cholangiocarcinoma; DR, diastase-

resistant; HBsAg, hepatitis B surface antigen; HCC, hepatocellular carcinoma; PAS, periodic acid-Schiff. 

 
a
 Data primarily from: Ishak KG, Goodman ZD, Stocker JT, eds. Tumors of the Liver and Intrahepatic Bile Ducts. Washington, DC: 

Armed Forces Institute of Pathology, 2001; and Nzeako UC, Goodman ZD, Ishak KG. Hepatocellular carcinoma in cirrhotic and 

noncirrhotic livers: a clinicopathologic study of 804 North American patients. Am J Clin Path 1996; 105: 65-75. Table courtesy of 

Scott Saul, MD, Chester County Hospital, West Chester, PA. 



Table 5: pTNM Staging of Primary Hepatic Epithelial Malignancies 

 

HCC 

T-- Primary tumor:  

TX    The primary tumor cannot be evaluated 

T0    There is no evidence of a primary tumor 

 

T1    Solitary tumor without vascular invasion 

T2    Solitary tumor with vascular invasion or multiple tumors, no one bigger than 5 cm in                 

maximal diameter 

T3    Mul)ple tumors bigger than 5 cm in maximal diameter or tumors involve branches of portal 

or hepatic veins. 

   T3a    Mul)ple tumors bigger than 5 cm in maximal diameter   

   T3b    Tumor involves the branches of portal or hepa)c veins 

T4    Tumor (s) with direct invasion of the nearby organs (except the gallbladder) or tumor (s) 

with perforation of the visceral peritoneum   

 

N-- Regional lymph nodes: 

NX    The regional lymph nodes cannot be evaluated 

N0    Cancer has not spread to the regional lymph nodes 

N1    The cancer has spread to the regional lymph nodes            

 

M-- Distant metastases: 

M0    No distant metastases  

M1    Distant metastases present  

 

Stage groupings:  

Stage I           T1, N0, M0 

Stage II          T2, N0, M0 

Stage IIIA      T3a, N0, M0 

Stage IIIB      T3b, N0, M0 

Stage IIIC      T4, N0, M0 

Stage IVA      Any T, N1, M0 

Stage IVB      Any T, any N, M1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Intrahepatic bile ducts (CCC): 

T-- Primary tumor:  

TX    The primary tumor cannot be evaluated 

T0    There is no evidence of a primary tumor 

Tis    Carcinoma in situ (intraductal tumor) 

 

T1    Solitary tumor without vascular invasion 

T2a    Solitary tumor with vascular invasion 

T2b    Multiple tumors with or without vascular invasion  

T3    Tumor (s) with perforation of the visceral peritoneum or with direct invasion of 

extrahepatic structures  

T4    Tumor with periductal invasion   

 

N-- Regional lymph nodes: 

NX    The regional lymph nodes cannot be evaluated 

N0    Cancer has not spread to the regional lymph nodes 

N1    The cancer has spread to the regional lymph nodes            

 

M-- Distant metastases: 

M0    No distant metastases  

M1    Distant metastases present  

 

Stage groupings:  

Stage I           T1, N0, M0 

Stage II          T2, N0, M0 

Stage III         T3, N0, M0 

Stage IVA      T4, N0, M0 

                       Any T, N1, M0 

Stage IVB      Any T, any N, M1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Perihilar bile ducts: 

T-- Primary tumor:  

TX    The primary tumor cannot be evaluated 

T0    There is no evidence of a primary tumor 

Tis    Carcinoma in situ 

 

T1    Tumor confined to the bile ducts and invades the muscularis propria or the fibromuscular 

layer 

T2a    Tumor infiltrates beyond the bile ducts in the nearby so5 )ssue 

T2b    Tumor infiltrates the nearby liver 

T3    Tumor infiltrates unilateral branches of portal vein or common hepa)c artery 

T4    Tumor infiltrates the main branch or bilateral branches of the portal vein or common 

hepatic artery; or infiltrates unilateral branches of the bile ducts (2
nd

 level) with infiltration of 

the contralateral branches of the portal vein or common hepatic artery  

 

N-- Regional lymph nodes: 

NX    The regional lymph nodes cannot be evaluated 

N0    Cancer has not spread to the regional lymph nodes 

N1    The cancer has spread to the regional lymph nodes (cys)c duct, choledochal duct, hepa)c 

artery and portal vein)           

 

M-- Distant metastases: 

M0    No distant metastases  

M1    Distant metastases present  

 

Stage groupings:  

Stage 0          Tis, N0, M0 

Stage I           T1, N0, M0 

Stage II          T2a, T2b, N0, M0 

Stage IIIA      T3, N0, M0 

Stage IIIB      T1, T2, T3, N0, N1, M0 

Stage IVA      T4, any N, M0 

Stage IVB      Any T, any N, M1 

 

AJCC Cancer Staging Manual. 7
th

 ed.  

 



Table 6A

HCC (51) ICC (40) Klatskin (7) HCC/CCC (3) FLC (8 cases/7 patients)

Clinico/pathological

Demographic Males/Females 45/6 18/22 3/4 2/1 4/3

Age (mean, Year) 64.6 60.5 58.6 42 31.4

tumor size (mean, cm) 6.2 6.6 3.9 5.1 13.6

cirrhosis 29/51 (56.9%) 4/40 (10%) 0/7 3/3 0/7

Location right lobe 17/45 (33.3%) 6/38 (15%) 0/7 2/3

left lobe 13/45 (25.5%) 11/38 (27.5%) 5/7 0/3

both 2° 15/45 (29.4%) 21/38 (52.5%) 2/7 1/3

Tumor grade Grade 1 8/51 (15.7%) 1/40 (2.5%) 1/7 0/3 0/8

Grade 2 42/51 (82.4%) 28/40 (70%) 5/7 1/3 8/8

Grade 3 1/51 (1.9%) 11/40 (27.5%) 1/7 2/3 0/8

Histologic subtypes HCC trabecular 32/51 (62.7%)

pseudoglandular 16/51 (31.4%)

solid 3/51 (5.9%)

Histologic subtypes ICC conventional 35/40 (87.5%) 7/7

mucinous 2/40 (5%) 0/7

signet ring 2/40 (5%) 1/7

clear cell 1/40 (2.5%) 0/7

Operation total hepatectomy 11/51 (21.6%) 0/39 0/7 0/3 0/4

partial hepatectomy 40/51 (78.4%) 39/39 (100%) 7/7 3/3 4/4

Margins of resection R0/R1 44/7 18/16 2/4 3/0 3/1

Rx 0/40 5/40 1/7 0/3 0/4

Nodal status Lymphnode resection 13/51 26/39 6/7 3/3 4/4

N0 13/13 (100%) 10/26 (38.5%) 3/6 2/3 1/4

N1 0/13 16/26 (61.5%) 3/6 1/3 3/4

Lymphatic invasion L1 4/51 (7.8%) 6/39 (15.4%) 1/7 1/3 1/4

Vascular invasion V1 4/51 (7.8%) 5/39 (12.8%) 4/7 1/3 1/4

Stage T1 22/51 (43.2%) 21/39 (35.8%) 0/7 1/3 1/4

T2 15/51 (29.4%) 13/39 (33.3%) 4/7 2/3 0/4

T3 12/51 (23.5%) 4/39 (10.3%) 2/7 0/3 1/4

T4 2/51 (3.9%) 1/39 (2.6%) 1/7 0/3 2/4



Table 6B

HCC ICC Klatskin HCC/CCC FLC P -value

Immunohistochemistry HepPar1 46/51 (90.2%) 2/40 0/7 3/3 in HCC 8/8 <0.0001 (discrimination HCC/CCC) 

Glypican3 50/51 (98%) NA NA NA NA

AFP 4/51 (7.8%) 0/40 0/7 0/3 0/8 0,027 (discrimination HCC/CCC)

CK7 10/51 (19.6%) 38/40 (95%) 6/7 3/3 in CCC 7/8 <0.0001 (discrimination CCC/HCC)

SALL4 4/51 (7.8%) 3/40 (7.5%) 0/7 2/3 0/8

FGG 5/51 (9.8%) NA NA NA 8/8 <0.0001 (discrimination FLC/HCC)

β-Catenin 10/51 (19.6%) 3/40 (7.5%) 0/7 0/3 0/8

Wnt1 48/51 (94.1%) 34/40 (85%) 7/7 2/3 in HCC 8/8

BRAF 0/51 0/40 0/7 0/3 0/8

P53 13/51 (25.5%) 34/40 (85%) 5/7 3/3 4/8

CD10 36/51 (70.6%) 0/40 NA NA NA <0.0001 (discrimination HCC/CCC)

Molecular pathology BRAF 4/50 0/31 0/7 1/3 in HCC 1/8



Table 7 

Case 

no. 

Sex Age 

(yr) 

Diagnose/ 

Grade 

Subtype DI 

(cm) 

T N L V R 

01 M 69 HCC/G3 Solid+trabecular 7.5 T1 Nx L0 V0 R0 

02 M 68 HCC/G2 Trabecular (clear-cell v.) 13 T3a Nx L0 V0 R1 

03 M 74 HCC/G2 Trabecular  13 T3b Nx L0 V1 R0 

04 M 66 HCC/G2 Trabecular 10 T1 Nx L0 V0 R0 

05 M 65 HCC/G2 Trabecular+PG (fat droplets) 3.5 T3b Nx L0 V1 R1 

06 M 75 HCC/G2 Trabecular 3.2 T1 Nx L0 V0 R0 

07 M 74 HCC/G2 Trabecular 12 T3a Nx L0 V0 R0 

08 M 70 HCC/G2 Trabecular+PG 7.5 T3a 0/5 L0 V0 R0 

09 M 70 HCC/G2 Trabecular+PG 15 T1 Nx L0 V0 R0 

10 M 63 HCC/G1 Trabecular 2.8 T2m Nx L0 V0 R0 

11 M 56 HCC/G2 Trabecular+PG 16 T1 Nx L0 V0 R0 

12 W 64 HCC/G2 Trabecular (fat droplets) 5.2 T3b Nx L1 V1 R0 

13 M 71 HCC/G2 Solid+PG (clear-cell v.) 3 T2m Nx L0 V0 R0 

14 M 38 HCC/G2 Trabecular (clear-cell v.) 17.5 T3b 0/4 L0 V1 R0 

15 M 63 HCC/G2 Trabecular+PG 11 T3b Nx L1 V1 R0 

16 W 70 HCC/G1 Trabecular+PG 21 T3a Nx L0 V0 R1 

17 M 62 HCC/G2 Trabecular 6.5 T2m 0/1 L0 V0 R0 

18 M 62 HCC/G2 Solid+trabecular ? T1 Nx L0 V0 R1 

19 W 16 HCC/G2 PG 11 T3b 0/1 L0 V2 R0 

20 M 63 HCC/G2 Trabecular 6.3 T2 Nx L0 V1 R0 

21 M 64 HCC/G1 Trabecular 1.8 T1 Nx L0 V0 R0 

22 M 62 HCC/G1 Trabecular+PG 7 T4 Nx L0 V0 R0 

23 M 65 HCC/G1 Solid+PG (fat droplets) 3.5 T1 0/1 L0 V0 R0 

24 M 58 HCC/G2 Trabecular 2.8 T1 Nx L0 V0 R0 

25 M 70 HCC/G2 Solid (clear-cell v.) 3.1 T1 Nx L0 V0 R0 

26 W 69 HCC/G2 Solid  5.2 T3b Nx L0 V1 R1 

27 M 63 HCC/G1 Trabecular+PG 5 T1 Nx L0 V0 R0 

28 W 71 HCC/G2 Solid+trabecular (clear-cell V.) 7 T1 Nx L0 V0 R0 

29 M 72 HCC/G2 Solid+trabecular 4.5 T1 Nx L0 V0 R0 

30 M 71 HCC/G2 Solid+trabecular 6.2 T2 Nx L0 V1 R0 

31 M 69 HCC/G2 Trabecular+PG 3.7 T1 Nx L0 V0 R0 

32 M 60 HCC/G2 Trabecular (clear-cell v.) 3 T2 0/1 L1 V1 R0 

33 M 67 HCC/G1-2 Trabecular (fat droplets) 1.8 T2m 0/1 L0 V0 R0 

34 M 54 HCC/G2 Trabecular (clear-cell v.) 7 T3a Nx L0 V0 R0 

35 M 66 HCC/G2 Solid+trabecular 7 T2m Nx L0 V1 R1 

36 M 69 HCC/G2 Trabecular (fat droplets) 3.5 T2m Nx L0 V0 R0 

37 M 63 HCC/G1-2 Solid+trabekulär (fat droplets) 1.9 T1 Nx L0 V0 R0 

38 M 68 HCC/G2 Trabecular+PG 1.7 T2m Nx L0 V0 R0 

39 M 61 HCC/G2 Trabecular+PG (fat droplets)  1.5 T2m 0/1 L0 V0 R0 

40 M 77 HCC/G2 Solid+PG (spindle-/clear-cell v.)  2.4 rT1 Nx L0 V0 R0 

41 M 75 HCC/G2 Trabecular 2.8 T2m Nx L0 V0 R0 

42 M 64 HCC/G2 Trabecular 2 T1 0/3 L0 V0 R0 



43 M 71 HCC/G2 Trabecular (clear-cell v.) 5.5 T1 Nx L0 V0 R0 

44 M 66 HCC/G2 Trabecular 1.4 T1 Nx L0 V0 R0 

45 M 44 HCC/G2 Trabecular 1.6 T2m 0/3 L0 V0 R0 

46 M 69 HCC/G2 Solid+PG 11 T2 0/13 L1 V1 R0 

47 M 76 HCC/G1 Solid (fat droplets) 1.7 T1 Nx L0 V0 R0 

48 M 70 HCC/G2 Trabecular 8.5 T4 Nx L0 V0 R1 

49 W 58 HCC/G2 Trabecular 3.5 yT1 Nx L0 V0 R0 

50 M 56 HCC/G2 Trabecular 1.5 T1 0/1 L0 V0 R0 

51 M 66 HCC/G1 Solid+trabecular 3.5 T2m 0/1 L0 V0 R0 

52 M 70 ICC/G2 Conventional 2.5 T1 Nx L0 V0 R0 

53 M 63 ICC/G2 Conventional 10 T1 Nx L0 V0 Rx 

54 M 73 ICC/G2 Conventional 1.9 T1 Nx L0 V0 R0 

55 W 55 ICC/G2 Conventional 5.7 T1 Nx L0 V0 Rx 

56 W 47 ICC/G2 Conventional 8.2 T2bm Nx L1 V1 R0 

57 W 64 ICC/G3 Conventional 5 T3 3/12 L1 V0 R1 

58 M 65 ICC/G2 Conventional 4.4 T1 Nx L0 V0 R0 

59 M 77 ICC/G2 Conventional 7.2 T1 2/9 L0 V0 R0 

60 M 62 ICC/G2 Conventional 4.5 T1 Nx L0 V0 R0 

61 W 64 ICC/G2 Conventional 3.5 T2a Nx L0 V 1 R0 

62 W 46 ICC/G2 Mucinous 7.3 T2b 4/18 L0 V0 R0 

63 W 53 ICC/G2 Conventional 10.7 T1 0/16 L0 V0 R0 

64 M 63 ICC/G2 Conventional 3.8 T1 0/2 L0 V0 R1 

65 M 60 ICC/G2 Conventional 3.5 T2b Nx L1 V1 Rx 

66 W 52 ICC/G2 Conventional 4 T1 Nx L0 V0 R0 

67 M 68 ICC/G3 Conventional 0.7 T1 N1? L0 V0 R1 

68 W 59 ICC/G3 Conventional ? T1 3/9 L0 V0 R0 

69 M 58 ICC/G2 Conventional 6 T2b 1/1 L0 V0 R1 

70 M 50 ICC/G3 Conventional  11 T3m Nx L0 V0 R0 

71 W 60 ICC/G2 Conventional + clear-cell  8.5 T2bm Nx L1 V0 R0 

72 M 55 ICC/G3 Conventional   9/9    

73 W 63 ICC/G2 Conventional 11.5 T2a 0/2 L0 V2 R1 

74 W 58 ICC/G2 Conventional 11.5 T4 3/4 L0 V0 Rx 

75 M 60 ICC/G2 Conventional 11.5 T2bm 1/14 L1 V0 R1 

76 M 65 ICC/G3 Conventional + signet ring  6.5 T1 3/13 L0 V0 R1 

77 M 72 ICC/G2 Conventional 5.2 T3 1/8 L0 V0 R1 

78 M 78 ICC/G1 Conventional 6.2 T1 0/6 L0 V0 R0 

79 W 54 ICC/G2 Conventional 3 T3 Nx L0 V0 R0 

80 W 66 ICC/G2 Conventional 8.2 T1 0/2 L0 V0 R0 

81 W 50 ICC/G2 Mucinous 3.5 yT1 0/1 L0 V0 R1 

82 W 57 ICC/G3 Conventional 11 T2b 0/3 L0 V0 R0 

83 W 56 ICC/G3 Conventional 11.5 T1 1/20 L0 V0 R1 

84 W 50 ICC/G3 Conventional 11 T1 0/11 L0 V0 R1 

85 W 72 ICC/G3 Conventional 4.2 T2b 1/19 L0 V0 Rx 

86 M 62 ICC/G3 Conventional 2.5 T1 Nx L0 V0 R0 

87 W 69 ICC/G2 Conventional 12 T2a 1/1 L1 V1 R1 

88 W 77 ICC/G2 Conventional 7 T1 0/3 L0 V0 R1 



89 M 57 ICC/G2 Conventional 5.5 T2bm 1/5 L0 V0 R1 

90 W 48 ICC/G2 Conventional 5 T1 3/6 L0 V0 R1 

91 W 42 ICC/G2 Conventional 7.2 T2b 0/1 L0 V0 R1 

92 W 64 Klatskin/G2 Conventional 3 T2a 0/25 L0 V0 R0 

93 M 50 Klatskin/G2 Conventional 4.3 T4 2/8 L0 V1 Rx 

94 W 66 Klatskin/G2 Conventional 1.5 T2b 3/15 L0 V0 R0 

95 M 57 Klatskin/G2 Conventional + signet ring 10 T3 0/4 L0 V2 R1 

96 W 46 Klatskin/G1 Conventional 3 T2a 0/8 L0 V0 R1 

97 W 69 Klatskin/G3 Conventional 1.8 T3 Nx L0 V1 R1 

98 M 58 Klatskin/G2 Conventional ? T2b 8/23 L1 V1 R1 

99 M 46 HCC/CCC-G3  6.5 T2a 12/14 L1 V0 R0 

100 M 66 HCC/CCC-G2  1.8 T1 0/8 L0 V0 R0 

101 W 14 HCC/CCC-G3  7 T2a N0? L0 V1 R0 

102 M 17 FLC  14 T1 1/6 L0 V0 R0 

103 W 39 FLC  14 T3b 2/11 L1 V0 R0 

104 M 32 FLC  12 T4 0/3 L0 V0 R0 

105 M 21 FLC  14.5 T4 2/10 L0 V0 R1 

106 W 27 FLC        

107 W 18 FLC        

108 M 66 FLC        

 

 



Table 8

Case No. Diagnosis
Recurrence/ Time to 

recurrence (months)
Metastases Follow up (months) Clinical history

Death date/ Time to 

death (months)/ Cause

01 HCC No Lymphnodes 6 HCV-cirrhosis

02 HCC No 0

03 HCC No 1

04 HCC No 47 cirrhosis (alcohol)

05 HCC No 0

06 HCC No 31 rectal ca 01.2007

07 HCC No peritoneal 26

08 HCC Yes, 11 11 HCV

09 HCC Yes, 11 bone/soft tisse 11

10 HCC No 42

11 HCC Yes, 4 multiorgan 9

12 HCC No 0

13 HCC Yes, 16 40 rectal ca and liver mets 06.2008

14 HCC No 0 Hemochromatosis

15 HCC Yes, 11 11

16 HCC Yes, 25 34 cryptogenic liver fibrosis

17 HCC No 3

18 HCC No 10

19 HCC No 16

20 HCC No NA

21 HCC No 0

22 HCC No 0

23 HCC Yes, 6 27 Oesophagus ca 2007

24 HCC No 26 HBV

25 HCC No 25

26 HCC No NA

27 HCC No NA

28 HCC No 78

29 HCC No NA

30 HCC No NA

31 HCC No 0

32 HCC Yes, 21 21 HBV

33 HCC No 33 HCV
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34 HCC No 32 HCV Yes, 32, re-cirrhosis

35 HCC Yes, 10 43

36 HCC No 16 HCV

37 HCC No 67

38 HCC No 3

39 HCC No 58 Prostate ca 03.2010

40 HCC No bone 13

41 HCC Yes, 16
peritoneal 

carcinomatosis
26

42 HCC No 42

43 HCC No 27 NHL 04.2009

44 HCC Yes, 8 35 HCV

45 HCC No 33 HBV

46 HCC No 17

47 HCC No 28 colon ca 02.2007

48 HCC No 16

49 HCC No 30 HBV

50 HCC No 24 Wilson/ liver fibrosis

51 HCC No 23 cryptogenic cirrhosis

52 ICC No NA

53 ICC No NA

54 ICC No NA

55 ICC No NA

56 ICC No NA

57 ICC No NA

58 ICC Yes, 17 42

59 ICC No Lymohnodes 9

60 ICC No NA

61 ICC No 81

62 ICC Yes, 4 7

63 ICC No 1

64 ICC Yes, 45 62 Melanoma Yes, 62

65 ICC Yes, 10 23

66 ICC Yes, 61 Omentum 61

67 ICC No NA

68 ICC No NA

69 ICC No
peritoneal 

carcinomatosis
NA

70 ICC No NA

C:\Users\zeid\Desktop\Dr-Arbeit\Tables\Follow-up table 8 2 von 4



71 ICC No NA NASH

72 ICC No NA HBV and fibrosis 

73 ICC Yes, 25
Lymphnodes 

(mediast/cervical), Lung 
34 Yes, 34

74 ICC No
peritoneal 

carcinomatosis 
7

75 ICC No peritoneal 7

76 ICC No 0

77 ICC No single bone mets 8

78 ICC No 10 Yes, 10, multiorgan failure

79 ICC No 23

80 ICC No NA

81 ICC No 21 Yes, 21

82 ICC No 1 IDC 2010

83 ICC Yes, 10 22

84 ICC No 22

85 ICC No paravertebral/ pleural, 9

86 ICC No 19 HBV+cirrhosis

87 ICC No 1

88 ICC No 15

89 ICC No 9

90 ICC No 1

91 ICC Yes, 5 8

92 Klatskin Yes, 69 69

93 Klatskin Yes, 5 7 Yes, 7, multiorgan failure

94 Klatskin No 44

95 Klatskin No 33

96 Klatskin Yes, 16
peritoneal 

carcinomatosis, 
27

97 Klatskin No 9 AML/NHL Yes, 9, AML-recurrence

98 Klatskin No 1 HBV/HCV

99 HCC/CCC Yes, 15 17

100 HCC/CCC Yes, 32 32 NHL

101 HCC/CCC Yes, 3 abdominal wall 3

102 FLC Yes, 15 90

103 FLC No
Lymphnodes 

retropancreatic
67
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104 FLC No Lymphnodes 19

105 FLC No bone, lung, peritoneum 2

106 FLC No NA

107 FLC No NA

108 FLC No NA
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Table 9 

Tumor Biomarker Correlation and P-value 

HCC   
 P53 higher tumor grade (P=0.0019) 

   
 β-Catenin Wnt1 expression (P=0.034) 
   
 Wnt1 loss of P53 expression (P=0.012) 
   
 SALL4 higher tumor grade (P=0.040) 

  higher pT stage (P=0.035) 
  vascular invasion (P=0.022) 
  higher serum AFP levels (P=0.026) 
  loss of Wnt1 expression (P<0.0001) 
   
 BRAF-V600E higher tumor grade (P=0.040), 

  tumor localization in the both hepatic lobes (P=0.40) 
  positive serology for HCV and HBV (P=0.038) 
   
CCC   
 P53 higher tumor grade (P=0.0052) 
   
 β-Catenin vascular invasion (P=0.048) 

  tumor localization in the left hepatic lobe (P=0.018) 
   
 SALL4 multiple tumor nodules (P=0.0035) 
  vascular invasion (P=0.048) 
  higher recurrence rate (P=0.035) 
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