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Abstract 

To further or understanding of past climate changes and their impact on the environment in the 

younger geological past, Quaternary terrestrial deposits such as loess-paleosol sequences 

(LPSS) potentially contain valuable information and have long been recognized as excellent 

archives of paleoclimate data. However, many loess paleosol studies lack truly interdisciplinary 

and multi-proxy approaches, as well as information about the origin, transport and sedimentation 

history of the material, or reliable quantitative climatic information that has been cross-validated 

with independent data from other sources. The aim of this cumulative study was to combine and 

apply a wide range of traditional and innovative methods to a loess-paleosol sequence at Tokaj in 

Northeast Hungary, one of the key locations of loess research in Southeast Europe.  

In the first part, we provide the first complete chronostratigraphy for the section based on 

luminescence (OSL and IRSL) dating, which serves as a framework for all further analyses. 

Results show that previous age estimates were often too low, which may require a review of 

previous studies that rely on the now obsolete age model. Furthermore, this research also 

contributes to the introduction of pIRIR290 as a new luminescence dating technique with a 

substantially extended age range. Sedimentation rates calculated from the updates ages more 

than double during Marine Isotope Stage (MIS) 2 (29-14 ka) compared to MIS 3 (57-29 ka), which 

is consistent with observations from other locations in the Carpathian Basin and confirms the 

pattern of decreasing dust sedimentation from North to South, probably with increasing distance 

from the dust source. 

The second part deals with the weathering history of the section. We present a comparison of 14 

weathering indices that may be used to quantify weathering intensity. The results show that most 

of them perform equally well, including the most widely-used CIA index, and that it is not necessary 

to restrict the choice of suitable indices. Suggestions for the selection of the most suitable index 

for a given LPSS are provided. The second half of this study attempts to quantify mean annual 

temperature and precipitation based on paleoclimate transfer functions and XRF, magnetic 

susceptibility and carbon isotopic data. Although the associated errors are large, we argue that 

robust results can be obtained by combining several independent approaches and literature data. 

All results are consistent with a general trend towards lower temperatures and a drier climate in 

MIS 2, and higher temperatures and a more humid climate in MIS 3.  

In the third part, the results of the provenance study based on a combined Sr-Nd isotopic and 

elemental fingerprinting approach indicate that the source of dust in Tokaj has most likely been 
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stable over time, whereas those of dust in Austria and Germany have been more variable. Loess 

in Europe, and especially in the Carpathian Basin, is overall rather uniform. While a direct 

comparison of loess and rocks from potential source areas is difficult, the correlation with 

floodplain sediments is a highly promising approach. Results indicate that Tokaj loess may have 

been derived from the surrounding mountain chains and Danube sediments, while loess in 

Southwest Germany is probably a mixture of local and Rhine sediments. Our data also underlines 

the contribution of Alpine sediments to loess in both Southeast and West Europe. 

 

Zusammenfassung 

Für die Untersuchung von Klimaschwankungen in der jüngeren geologischen Vergangenheit und 

deren Auswirkungen auf die Umwelt haben sich quartäre terrestrische Sedimente wie 

beispielsweise Löss-Paläoboden-Sequenzen bewährt. Diese enthalten wichtige Informationen 

und sind schon lange als exzellente Paläoklima-Archive bekannt. Jedoch fehlt vielen Lössstudien 

ein tatsächlich interdisziplinärer Ansatz mit dem Einsatz verschiedenartiger Proxyverfahren, sowie 

grundlegende Informationen zu Herkunft, Transport und Sedimentationsgeschichte des Materials, 

oder verlässliche quantitative Klimainformationen, die anhand unabhängiger Daten aus anderen 

Quellen validiert wurden. Ziel dieser kumulativen Dissertation ist es, eine große Auswahl an 

traditionellen und innovativen Methoden an einem Lössprofil in Tokaj (Nordostungarn) zu 

kombinieren und anzuwenden.  

Im ersten Teil dieser Arbeit wird die erste komplette Chronostratigraphie für das Lössprofil 

vorgestellt. Sie basiert auf Lumineszenzdatierung (OSL und IRSL) und ist für alle weiteren Studien 

von zentraler Bedeutung. Die Datierungen zeigen, dass frühere Altersschätzungen oft zu niedrig 

waren, weshalb eine Überprüfung und Neubewertung einiger früherer Studien notwendig wird, die 

sich auf die mittlerweile überholten Alter beziehen. Die Untersuchungen tragen weiterhin dazu bei, 

pIRIR290 als neue, alternative Datierungstechnik mit einer deutlich verlängerten Altersspanne zu 

etablieren. Die aus den neuen Altern berechneten Sedimentationsraten sind in MIS 2 (29-14 ka) 

mehr als doppelt so hoch als in MIS 3 (57-29 ka) und vergleichbar mit denen an anderen 

Standorten im Pannonischen Becken. Diese Ergebnisse bestätigen die Beobachtung eines von 

Nord nach Süd abnehmenden Trends der Sedimentationsraten, was möglichweise auf die 

zunehmende Distanz zur Sedimentursprung zu erklären ist.  
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Der zweite Teil dieser Arbeit beschäftigt sich mit der Verwitterungsgeschichte des Lössprofils. Es 

werden 14 Verwitterungsindizes vorgestellt, die zur Quantifizierung der Verwitterungsintensität 

verwendet werden können. Die Ergebnisse zeigen, dass alle von ihnen, einschließlich des oft 

verwendeten CIA-Indexes, ähnlich gut funktionieren und es daher nicht notwendig ist, sich auf 

spezielle Indizes zu beschränken. Es werden jedoch auch Empfehlungen zur Auswahl eines 

geeigneten Indexes für ein spezifisches Lössprofil gegeben. Im zweiten Teil dieser Studie werden 

Jahresdurchschnittstemperaturen und -niederschläge anhand von Transferfunktionen und 

geochemischen und mineralmagnetischen Daten und Kohlenstoffisotopen berechnet. Obwohl die 

damit verbundenen Unsicherheiten und Fehler hoch sind, zeigen die Ergebnisse, dass robuste 

Resultate durch die Kombination mehrerer unabhängiger Ansätze und Literaturdaten erzielt 

werden können. Alle Ergebnisse weisen auf einen Trend zu niedrigeren Temperaturen und einem 

trockeneren Klima in MIS 2 und höheren Temperaturen und einem feuchteren Klima in MIS 3 hin. 

Im dritten Teil zeigen die Ergebnisse eines kombinierten Elementar- und Sr-Nd-Isotopenansatzes, 

dass die Sedimentquelle für den Löss in Tokaj über die Zeit weitgehend konstant blieb, was für 

Löss in Österreich und Südwestdeutschland nur in geringerem Maße zutrifft. Löss in Europa, vor 

allem im Pannonischen Becken, ist generell relativ einheitlich. Ein direkter Vergleich von Löss und 

potentiellen Ursprungsgesteinen ist schwierig, aber der Vergleich mit fluvialen Sedimenten ist 

vielversrechend. Die Ergebnisse daraus zeigen, dass Löss in Tokaj wahrscheinlich aus Gesteinen 

der umgebenden Gebirge und aus Sedimenten der Donau entstanden ist, Löss in 

Südwestdeutschland ist hingegen eher eine Mischung aus örtlichen Gesteinen und Sedimenten 

des Rheins. Einen weiteren wichtigen Beitrag zu Löss in Südost- und Westeuropa stellen 

außerdem Sedimente der Alpen dar. 

 

 

 



1 
 

1. Introduction 

The fact that human activity affects Earth’s climate has been emphasized ever since the first IPCC 

Scientific Assessment (IPCC, 1990). The latest reports from 2007 (Jansen et al., 2007) and 2013 

(Masson-Delmotte et al., 2013) both underline the role of paleoclimatology to gain relevant insights 

and further our understanding of past climate changes and their impact on the environment, as 

well as to validate and improve predictive climate models. Yet even for the younger geological 

past – the Quaternary – our knowledge is still fragmentary with regard to both space and time. 

While marine sediments and ice cores may provide continuous and highly resolved paleoclimatic 

data, terrestrial archives often lack continuity and tend to cover shorter time spans. On the other 

hand, however, terrestrial archives provide valuable local and regional information that cannot 

easily be derived from distal archives, such as marine and ice cores. Among a range of important 

terrestrial archives – e.g. peat bogs, river terraces, lake sediments, moraines – one of the most 

promising are loess-paleosol sequences (LPSS). LPSS are thick deposits of aeolian dust and 

intercalated paleosols representing cool and dry glacial or stadials when dust was deposited, and 

warm and humid interglacials and interstadials when soil formation occurred. These sedimentary 

sequences have a vast potential for reconstructions of the Pleistocene environmental and climatic 

history. Most attention is currently focused on LPSS in China and Southeast Europe, mainly 

Hungary and Serbia, where these archives are abundant. Other key regions are e.g. Southwest 

Germany (Antoine et al., 2009; Hatté et al., 1999; Rousseau et al., 2002), East Germany 

(Baumgart et al., 2013; Meszner et al., 2013; Zech et al., 2013a), France (Antoine et al., 1999; 

Rousseau and Puisségur, 1990; Rousseau et al., 1998), Belgium (Frechen et al., 2001; 

Vandenberghe et al., 1998), the Czech Republic (Frechen et al., 1999; Fuchs et al., 2013; 

Horáčková et al., in press), the US including Alaska (Arthur Bettis III et al., 2003; Muhs and 

Budahn, 2006; Muhs et al., 2013b; Roberts et al., 2003) and Central Asia (Bronger et al., 1998; 

Dodonov and Baiguzina, 1995; Forster and Heller, 1994). LPSS, especially at the most prominent 

locations, have undoubtedly received a lot of attention recently, leading to a multitude of results 

from established and new methods such as e.g. micromorphology (Kühn et al., 2013; Terhorst et 

al., in press), pollen (Wu et al., 2007; Zech et al., 2010) and grain-size analysis (Novothny et al., 

2011; Varga et al., 2012), mineralogy (Mikulčić Pavlaković et al., 2011; Thamó-Bozsó et al., 2014), 

mineral magnetics (Forster and Heller, 1997; Lukić et al., 2014; Maher et al., 1994), 

paleontological studies based on molluscs, charcoal and macrofossils (Kovács et al., 2012; 

Marković et al., 2007; Sümegi and Rudner, 2001) and a wide range of geochemical methods 

(Sheldon and Tabor, 2009), including isotopic (Hatté et al., 2013; Tuthorn et al., 2014; Zech et al., 

2013b) and biomarker analyses (Bai et al., 2009; Gocke et al., 2013; Zech et al., 2012). Despite 
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the combination of methods, studies often lack truly interdisciplinary and multi-proxy approaches, 

as well as basic information on the chronostratigraphy of a section and the origin and transport 

history of the sediments, or reliable quantitative results that have been validated with independent 

data from other sources. Moreover, each method or proxy has a different sensitivity for changes 

of climate and environment and an individual susceptibility for sediment alteration, e.g. by 

weathering (Buggle, 2011). Therefore, only the combination of multiple proxy approaches and 

subsequent cross-validation of the results allows for reliable insights into past environments and 

for accurate reconstructions of paleoclimate and climate changes. 

The aim of this cumulative study is to combine and apply a wide range of traditional and innovative 

methods to a loess-paleosol sequence at Tokaj in Northeast Hungary, one of the key locations of 

loess research in Southeast Europe. The section comprises both Marine Isotope Stage 2 and 3 

and potentially MIS 4 (14-29-57-71 ka; Lisiecki and Raymo, 2005) and has been subject to detailed 

(micro-)paleontological, sedimentological and geochemical investigations using e.g. mollusc and 

charcoal studies, grain size analysis, magnetic susceptibility, stable C and N isotopes, elemental 

analyses and radiocarbon dating (Pinczés, 1954, 1987; Rudner and Sümegi, 2001; Schatz et al., 

2011; Sümegi, 2005; Sümegi and Hertelendi, 1998; Sümegi and Krolopp, 2002; Sümegi and 

Rudner, 2001). Topics that have not, or only partly, been addressed include the sedimentological, 

chronological and geochemical history of the section, i.e. formation and weathering processes and 

the chronostratigraphy, as well as the origin and transport pathways of the sediment. Hence, Study 

1 provides a valid and comprehensive luminescence-based chronostratigraphy as a framework 

for all subsequent analyses. With this new data, sedimentation rates are calculated for Tokaj using 

an age-depth model. Sedimentation rates are then compared with rates from sections located to 

the West and South to gain insights into the spatial patterns of wind speed in the Carpathian Basin. 

Study 2 focuses on the weathering history of the section and the choice of a suitable measure of 

weathering intensity. A wide variety of weathering indices has been proposed in the literature, but 

there are very few recommendations about the most suitable one for loess-paleosol studies. The 

second part of Study 2 is devoted to (semi-)quantitative reconstructions of paleoclimate data such 

as mean annual precipitation and temperature using different independent proxy data –  elemental 

data, magnetic susceptibility and stable carbon isotopic composition. The results are also cross-

validated with regional proxy data from the literature and modelling results. Study 3 addresses the 

fact that there is only few quantitative evidence to support some widely acknowledged hypotheses 

about the origin of loess in the Carpathian Basin. Here, we use established techniques such as 

Sr-Nd isotopic analyses from sedimentary geology and compare the results with literature data of 

potential source areas, i.e. mountain ranges and floodplain sediments of major rivers. Study 3 is 
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complemented by a European perspective of sediment dynamics that shifts the regional focus 

from SE Europe to two additional study areas in Austria (Grub, East Austria) and Germany 

(Nussloch, Southwest Germany). 

To predict and adapt to our future climate we need to understand the past – which we can only do 

if we leverage all available data in a truly multidisciplinary approach. It is to this overriding belief 

and ambition that this piece of work tries to contribute.  

 

2. Study area  

2.1 Loess in the Carpathian Basin 

The Hungarian Quaternary paleoenvironment is one of the missing links to understand Quaternary 

climate in Europe (Rudner and Sümegi, 2001; Sümegi and Hertelendi, 1998; Sümegi and Rudner, 

2001; Willis et al., 2000; Willis et al., 1995). The Carpathian Basin (Fig. 1), also called Pannonian 

Basin, is a large region of low relief surrounded by major mountain ranges that has remained 

unglaciated during the last ice age (Denton and Hughes, 1981) and therefore might have been an 

important refuge for temperate flora and fauna, or at least one of the first regions into which this 

flora and fauna expanded in the early postglacial (Sümegi and Hertelendi, 1998; Willis et al., 

1995). The Carpathian Basin is largely part of Hungary and covers an area of 300.000 km2. It is 

surrounded by the Carpathians in the North, East and Southeast, the Alps in the West and the 

Dinaric Alps in the Southwest (Rudner and Sümegi, 2001). The basin itself consists mainly of 

alluvial plains and basins. Generally, geology, topography, climate and vegetation are complex 

and heterogeneous. This is partly due to the highly complex geologic history of the area (Matenco 

and Radivojević, 2012), but also to Hungary being the meeting point of four distinct climatic 

regions: oceanic climate in the West, submediterranean conditions in the South, continental 

climate towards the East and sub-montane climate towards the North and in the mountainous 

regions (Rudner and Sümegi, 2001; Sümegi and Krolopp, 2002).  

The Carpathian Basin is not part of the European Loess Belt stretching from Paris to Krakow, as 

it was cut off from the dust supply of the North European glaciations by the surrounding mountain 

belts. Consequently, other contributing source areas have to be taken into account. Smalley and 

Leach (1978) have proposed three different possible sources for Pleistocene dust: (a) sediments 

from the Alpine glaciers transported by the Danube and deposited on its floodplains in Hungary, 

(b) North European meltwater carrying debris through the Moravian depression (c) silt from the 

weathering of rocks in the Carpathians, carried by the Tisza. They also suggest that, in the 
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Carpathian Basin, aeolian loess is mainly a product of short-distance transport from adjacent river 

floodplains and that long-distance transport is usually fluvial in this region. Smalley and Leach 

conclude that the most important constituent of loess deposits in East and North East Hungary is 

the sedimentary input from Carpathian Tertiary flysch carried by the Tisza and Alpine glacial 

material carried by the Danube. The Carpathians are a 1500 km long Mesozoic-Tertiary mountain 

range stretching as a semicircle from Southeast to Northwest. They are part of the Alpine-

Himalayan belt and consist mainly of folded and thrusted crystalline rocks, sedimentary basins, 

volcanic rocks and flysch-molasse belts (Rudner and Sümegi, 2001). The Tisza is one of the major 

rivers draining the Carpathian Mountains and the Great Hungarian Plain, flowing from NE to the 

South of Hungary before discharging into the Danube close to Novi Sad, Serbia. Smalley and 

Leach’s hypotheses are, however, theoretical considerations and not backed up by actual data. 

First (semi-)quantitative evidence for the origin of loess in the Carpathian Basin has been provided 

by Thamó-Bozsó et al. (2014) using heavy mineral analyses and by a combined Sr-Nd and U-Pb 

isotopic approach of Újvári et al. (2012). The results largely confirm Smalley and Leach’s 

hypothesis regarding Danube sediments as the main source of loess in the Carpathian Basin, but 

also show that the data base is still too small and the choice of methods too limited to allow for 

definite conclusions. 

 

2.2 Physiogeographic setting of the Tokaj region 

Tokaj forms the meeting point of the northern edge of the Great Hungarian Plain and the Southern 

edge of the (West) Carpathians, a low mountain region (Fig. 1). At Tokaj, the river Bodrog 

discharges into the Tisza, forming extensive floodplains. Today, Northeast Hungary is part of the 

continental climate zone (Dfb after Köppen’s classification: cold climate type, no dry season, warm 

summer subtype), with a large seasonal temperature variance (mean January temperature:  -3°C; 

mean July: 20°C) and a mean annual precipitation of ~ 600 mm with a summer maximum (Peel 

et al., 2007). However, the meso- and microclimates on the slopes of the hill differ from the regional 

climate. The conditions on the slopes facing north have been described as sub-montane (summer 

19-20 °C, winter -3 °C), while sub-mediterranean conditions prevail on the southern slopes 

(summer 23-24 °C, winter 0 °C) (Sümegi and Hertelendi, 1998). The recent natural vegetation of 

Northeast Hungary consists of large grassland areas, but also of broad-leaved, needle-leaved and 

mixed forests (Hartley, 2003). While grassland and herbaceous vegetation cover is rather confined 

to the Great Hungarian Plain and its border areas, forests tend to occur in hilly, sub-montane 

regions. However, the vast majority of the land surface in this region is cultivated cropland that 

has replaced the natural vegetation. 
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The area around Tokaj is considered of highest paleoenvironmental significance, as it may have 

been an important refuge for deciduous and coniferous trees during the last ice age due to a 

favourable microclimate on the hill slopes (Sümegi and Hertelendi, 1998). The same authors even 

suggest a double forest refuge for both cold-loving and warm-loving species. 

 

 

Fig. 1: Map of the study area, major rivers and mountain ranges and geological units. Tokaj is situated in 

NE Hungary on the banks of the Tisza river. Additional samples from Grub (Austria) and Nussloch 

(Germany) were only used in Study 3. 

 

2.3 The Patkó quarry section 

The study site is situated on the eastern slopes of Kopasz Hill (also called Nagy-hegy; 515 m 

a.s.l., 48°13’N, 20°27’E) on the southernmost part of the Tokaj Mountains. Kopasz Hill is an extinct 

stratovolcano Mid-Miocene age and built up of pyroxene andesite and dacite lava tongues (16.4 

km2) that have partly been eroded and subsequently covered by 15-20 m of Pleistocene loess 

(Kerényi, 1994; Sümegi and Hertelendi, 1998). The loess on top of the hill has been eroded over 

time, yet the flanks are still entirely covered. The thickest layers are typically found on the Eastern 

slopes. However, erosion rates are as high as 0.5-0.7 m per decade (Kerényi, 1994). There are 

about 11 well-described loess outcrops around Kopasz Hill (Sümegi, 2005). Several 

paleontological and sedimentological studies have been carried out at the Patkó quarry section 
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on the eastern slope of the mountain (Rudner and Sümegi, 2001; Sümegi and Hertelendi, 1998; 

Sümegi and Krolopp, 2002; Willis et al., 2000), where two well-developed paleosols and three 

loess layers are exposed on top of an approximately 40 m high dacite wall. The loess walls on top 

have been partly removed and cut backwards due to the mining activities, but the remaining loess 

has essentially stayed unaltered. Because of the artificial steps in the profile and security issues, 

the profile had to be split into two sections for sampling (Fig. 2a, b).  

 

 
 

Fig. 2: a) Photo of the Patkó quarry section, 

facing W. The investigated loess section is 

situated on top of a 40 m high rock wall. The 

positions of the upper and  lower palaeosols are 

indicated with arrows. 

b) Profile sketch of the paleosol-loess section at Patkó 

quarry. Due to logistic reasons the profile had to be 

split into two overlapping sections for sampling 

(Section A and B). 

 

The Patkó quarry outcrop and the results of first sedimentological and geochemical investigations 

have been described in detail by Sümegi and Rudner (2001) and Sümegi and Hertelendi (1998). 

However, a valid chronostratigraphy is still missing. Very basically, the lowermost yellow-brown, 

unstratified loess layer has been dated to 70-50 ka BP based on vertebrate remains found in 

similar stratigraphic positions elsewhere in the area (Pinczés, 1954, 1987). It is assumed that this 

layer accumulated during the first cold and dry phase of the last glacial. This is further supported 

by cryophilous molluscs found in this layer, indicating an open steppe or tundra environment with 

mean July temperatures of 12-13 °C. The Lower Paleosol lies on top of the lowermost loess layer. 

It is a dark brown soil with a high clay content that was formed under humid, warm conditions. 

Very low concentrations of soluble elements indicate strong weathering and pedogenesis. Similar 

to the Lower Paleosol, the Middle Loess layer contains no molluscs or charcoal. Therefore, no 

paleoenvironmental information has been reported. On top of this intermediate loess layer, the 
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Upper Paleosol developed, a reddish-brown, charcoal-rich horizon with low carbonate content. 

Mollusc data indicate a mild and wet climate similar to today. This reddish-brown paleosol rich in 

Al, Fe, and Mn is overlain by a bleached, whitish layer with high silica content, which has been 

interpreted as remnants of a Podsol. On top of this white layer, a thin charcoal layer of burned 

Picea and Pinus pieces can be found. This charcoal layer has been dated to 28-26 ka BP and 

interpreted as the result of extensive natural wildfires occurring after pedogenesis ceased and the 

climate became extremely dry, which is also supported by the sudden occurrence of xerophilous 

molluscs. Needle-leaved forests, dominated by Picea, are also in line with a possible Podsol 

development since Podsols are typical soils of coniferous boreal forests. Further evidence for 

forests at Kopasz Hill comes from the presence of fossil branches and trunks of the same age that 

have been found at another outcrop on the hill in the same stratigraphic position. In the Upper 

Loess layer, cryo-xerophilous and tundra-dwelling molluscs are abundant, indicating a cold 

continental steppe environment. Willis et al. (1995) report that from 12 ka BP onwards the climate 

became gradually warmer in Northeast Hungary and around 6-7 ka BP the first human 

communities developed in the area. However, at Tokaj, the sedimentary and archaeological record 

from this time has been eroded. The recent topsoil is only weakly developed which might be due 

to intensified natural and anthropogenically induced erosion (Kerényi, 1994) caused by the 

agricultural activities on the slopes and the mining in the quarry. 

A recent study based on a combined mineral-magnetic, sedimentological and geochemical 

approach using C and N stable isotopes and biomarkers (Schatz et al., 2011) largely confirms the 

results from previous mollusc studies and provides more detailed insights into the 

paleoenvironmental history of the Tokaj region. The authors propose cyclic climatic and 

environmental changes during the entire time span that the profile covers (Fig. 3). The data 

suggest two cool, treeless-steppe periods during the time when the Upper Loess layer 

accumulated, but also intervals of more favorable climate in which trees and shrubs expanded, 

forming “open parkland” environments. Based on alkane and stable N isotopic data, pedogenesis 

most likely occurred under fertile steppe-grasslands, probably in an intensified, warm seasonal 

climate. 

 

3. Methods and their use in paleosol-loess studies 

3.1 Sample material and nomenclature  

Due to the topology and to safety concerns, the Tokaj profile had to be sampled in two sections. 

After removing at least the first 30 cm of the front in order to avoid sampling weathered sediment 
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and recent biological material, the sections were prepared and fully described with regard to color, 

density, texture and occurrence of fossil and modern roots, carbonate mycelia and charcoal 

remains. For laboratory analyses, mixed samples were taken in 25 cm intervals, stored in plastic 

bags and dried at 40 °C for several days. Luminescence samples were taken by hammering steel 

cylinders horizontally into the loess wall, which were then sealed with light-tight lids. The samples 

from Nussloch and Grub (Study 3) were kindly provided by L. Zöller and taken according to 

standard sampling procedures, but in irregular intervals. The basic stratigraphies are explained in 

Study 3. 

 

Fig. 3: Overview of previous research at the Tokaj paleosol loess section (Schatz et al., 2011), including 

(left to right) n-alkanes as a proxy of vegetation (shrubs and trees vs. grassland), stable N isotopes, 

frequency-dependent magnetic susceptibility, total organic carbon, grain size distribution (>30 µm) and 

stable carbon isotopes. Stable N isotopic ratios have been interpreted to increase with an increase in MAT 

and a decrease in MAP. Stable C isotopic ratios do not provide evidence for a shift from C3 to C4 vegetation 

or vice versa. Single peaks are considered outliers; the same applies for TOC. Paleosols are indicated by 

a grey shade. 

 

3.2 Luminescence dating 

Luminescence dating - usually referred to as “OSL” (optically-stimulated luminescence) for quartz 

samples and “IRSL” (infrared-stimulated luminescence) for feldspar samples - is the preferred 

dating method for Quaternary aeolian samples. It has three main advantages over other methods 

that are commonly used to determine sedimentation ages. First, luminescence dating can be 

applied to the constituent minerals of the sediment itself (quartz, feldspar) and is not constrained 
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to associated particles, as e.g. charcoal. Second, the derived ages do not need additional 

calibration, as e.g. 14C dating. Third, it is one of the few methods that are able to date the time of 

sediment deposition or, more precisely, the last exposure of the mineral grains to daylight. 

Luminescence dating is based on the fact that minerals in sediment are exposed to low-level 

ionizing radiation from the decay of radioactive isotopes in the surrounding sediment, mainly U, 

Th and K. The flux of ionizing radiation creates free charge within the crystal structure. Some of 

this charge, usually electrons, is trapped in meta-stable states within the crystal lattice. By 

exposing the crystal to daylight, the trapped electrons receive sufficient energy to leave the traps 

and return to their normal state. This release of trapped energy, usually called “bleaching”, 

“resetting” or “zeroing”, is the moment when the “clock” is set back (Fig. 4). Being shielded from 

daylight after sediment deposition and burial, trapped charge starts to build up in the crystals. 

If samples are exposed to a light source under laboratory conditions, this causes the release of 

electrons and the emission of photons. The release of light is the luminescence signal. The light 

intensity is a measure of the amount of radiation-induced electrons, which is dependent upon (i) 

the rate of ionizing radiation per unit of time (“dose rate”) and (ii) the duration of burial, i.e. age. 

The longer a mineral is exposed to the flux of radiation the greater the radiation damage. The 

intensity of the radiation damage is consequently a measure for the total amount of energy 

absorbed from the ionizing radiation the mineral has received over a certain period of time (Aitken, 

1998) and can be measured in the laboratory using a photomultiplier tube. The emitted 

luminescence signal is then compared with luminescence signals induced by different radiation 

doses. This is necessary to derive the laboratory dose required to give the same luminescence 

signal as was absorbed to give the 'natural' signal, usually termed “equivalent dose” (De). In 

addition to the equivalent dose, the rate of energy absorption from ionizing radiation has to be 

measured, taking into account the small contribution from cosmic rays and the effect of water in 

the sediment as well. Once both equivalent dose and dose rate have been determined, the 

luminescence age can be calculated cf. Eq. 1 (Aitken, 1985, 1998): 

𝑎𝑔𝑒 [𝑘𝑎] =  
𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡 𝑑𝑜𝑠𝑒 𝐷𝑒 [𝐺𝑦]

𝑑𝑜𝑠𝑒 𝑟𝑎𝑡𝑒 [𝐺𝑦 𝑘𝑎⁄ ]
 

Despite being widely accepted as the main dating technique in loess studies, luminescence has 

two main shortcomings. On the one hand, the age range of quartz-based luminescence is rather 

short (ca. 50-70 ka; Murray et al., 2014). Quartz saturates at much lower doses as feldspar. In 

combination with a high dose rate, this may constrain the potential age range to the younger half 
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of the last glacial only. On the other hand, feldspar-based luminescence ages usually need to be 

corrected for “anomalous fading” (Wintle, 1973), a phenomenon that causes leakage of electrons 

from their traps and loss of the age signal. Although there are methods to detect and correct for 

anomalous fading (Huntley and Lamothe, 2001; Lamothe et al., 2003), an additional source of 

uncertainty is introduced. 

 

 

Fig. 4: Schematic representation of luminescence dating. Minerals are continuously exposed to natural 

radioactivity, through which they acquire a latent luminescence signal. During erosion, transport and 

deposition, the minerals are exposed to sunlight and all the previously accumulated luminescence is 

removed (“bleaching”). After burial, the signal starts to build up again, until the moment of measurement 

in the laboratory when the sample is exposed to a light source. The age obtained is the time that has 

elapsed between these two zeroing events (Vandenberghe, 2004). 

 

Since there is no universally applicable measurement procedure, every sediment type and specific 

measurement approach have to be carefully matched and tested for suitability before the actual 

dating procedure can be carried out. For fine-grained quartz, the SAR protocol (Murray and Wintle, 

2000) is a common and reliable approach that has been used in many different luminescence 

dating studies (Murray and Olley, 2002; Roberts, 2008). For feldspar, several measurement 

protocols have been proposed. Earlier studies have focused on the standard, low-temperature 

IRSL approach (IR50), which requires fading correction (see Roberts, 2008 for a review). The 

elevated-temperature post-IR IRSL (pIRIR290) protocol has recently gained a lot of attention since 
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it yields reliable results and requires no fading correction (Buylaert et al., 2012; Murray et al., 2014; 

Schmidt et al., 2014; Thiel et al., 2014; Thomsen et al., 2008). 

 

3.3 Whole-rock geochemistry  

3.3.1 Weathering Indices 

Loess and paleosol samples can be analyzed as “whole rock” bulk samples just as any other rock 

sample, e.g. for X-ray fluorescence (XRF) analyses to study major, trace and rare earth 

composition. Under weathering conditions, the elemental composition of a rock, sediment or soil 

changes. Soluble and mobile elements are depleted, while less soluble and immobile elements 

are enriched and retained. Furthermore, mineral transformation and formation of secondary 

minerals such as clay, iron oxides or salts may occur. Weathering proxies, i.e. proxies of mineral 

alteration, contain one or more mobile and immobile elements, respectively, often alkali and earth 

alkali elements with a small ionic radius (e.g. Na, Ca, Mg, Sr) as mobile and elements with 

intermediate ionic potential (e.g. Al, Si, Ti, Rb, Ba) as immobile refractory elements (Buggle et al., 

2011). Elemental ratios, e.g. Al/Si, a measure of “clayeyness”, are superior to single-element 

abundances since chemical heterogeneity and variation in absolute abundance are eliminated 

and additional process information may be gained. Yet simple element ratios only quantify single 

weathering processes such as clay formation, gleyization, leaching or salinization (Sheldon and 

Tabor, 2009; their table 3). In order to quantify weathering more thoroughly and measure 

weathering intensity more accurately, more complex weathering indices (WI) have been 

developed which are calculated using two or more major elements. 

Common multi-element WIs based on a wide variety of elements are the Σbases/Al ratio 

(Retallack, 2001) and the Paleosol Weathering Index (PWI; Gallagher and Sheldon, 2013). Other 

WIs are based on a more limited selection of elements (Al, K, Na, Ca) to focus on the weathering 

behavior of feldspar minerals only. An advantage of these feldspar indices is the fact that all index 

elements are hosted in the same mineral group, which helps minimizing the effects of variations 

in mineralogy. Common feldspar indices are the widely used Chemical Index of Alteration (CIA; 

Nesbitt and Young, 1982) and Indices A and B (Kronberg and Nesbitt, 1981). 

In order to exclude potential effects arising from the inconsistency in K weathering (Buggle et al., 

2011), several indices without K were developed, most prominently the Chemical Index of 

Weathering (CIW, also called CIA-K; Harnois, 1988), which is the K-free equivalent of the CIA, 
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and the Plagioclase Index of Alteration (PIA, Fedo et al., 1995), a further modification of CIA and 

CIW that adjusts for Al contained in K-feldspar and results in an account of pure plagioclase 

weathering. The Yang et al. (2006) index uses Ti instead of Al as a refractory element and has 

been developed specifically for loess-paleosol studies, whereas WI-1 and WI-2 (Darmody et al., 

2005) are still to gain more attention. Due to problems associated with determining the correct 

amount of silicate-bound Ca, indices that do not rely on Ca might be preferable, such as the index 

of Feng (1997) or the Chemical Proxy of Alteration (CPA, also known as CIW’; Cullers, 2000, 

Buggle et al., 2011), which excludes both Ca and K, thus attempting to avoid all potential biases. 

Trace element indices are another sub-group of weathering indices. Both Ba/Sr and Rb/Sr 

represent leaching behavior during weathering with Ba and Rb being less soluble than Sr. 

Potential weakness in these indices are the poorly understood behavior of Rb and Ba in the 

sediment (Gallet et al., 1996; Sheldon and Tabor, 2009), grain-size dependence and the fact that 

variable and low initial concentrations may result in erroneously high weathering intensities. In 

addition to that, Sr substitutes for Ca and is therefore controlled by calcite and dolomite behavior. 

Despite an ongoing debate about the reliability of weathering indices (Buggle et al., 2011; Li and 

Yang, 2010; Xiao et al., 2010), many successful applications have been published to date, mainly, 

but not limited to, Quaternary loess and paleosols in Europe (Buggle et al., 2011; Kovács, 2007; 

Kühn et al., 2013; Újvári et al., 2008; Újvári et al., 2014; Vancampenhout et al., 2013), North and 

South America (Goldberg and Humayun, 2010; Hall and Penner, 2013; Meier et al., 2014), China 

(Baumann et al., 2014; Chen et al., 1999; Xiong et al., 2010), Southern Arabia (Pietsch and Kühn, 

2012) and Siberia (Zech et al., 2008). A compilation of how frequently these indices are employed 

in loess paleosol studies is given in Table 1. 

 

3.3.2 Paleoclimate reconstructions 

Weathering indices may not only be used to quantify weathering intensity, but also to estimate 

paleoclimate parameters, i.e. mean annual temperature (MAT) and mean annual precipitation 

(MAP) via specifically calibrated empirical transfer functions (Sheldon et al., 2002; Sheldon and 

Tabor, 2009). This is due to the fact that the degree of chemical weathering increases with 

available precipitation and temperature, which both serve to accelerate the depletion of soluble 

elements in sediments and soils. All other factors equal, more clay should be formed in a wetter 

climate than in an arid climate during the same period of time. To quantify these relationships, 

several transfer or climofunctions have been developed based on empirical relationships of MAT 
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and MAP and the geochemical compositions of modern soils from a large North American dataset 

(Marbut, 1935).  Ideally, a dataset used as a basis for transfer functions specifically for (Southeast) 

Europe would contain local soil data but such a dataset is not available. The North American soils 

used to derive the transfer functions have a very large variety in formation times, formation 

processes and parent materials. Therefore, it can be assumed that they are representative for 

European paleosols as well and, consequentially, the transfer functions can be applied to those, 

too.  

 

Table 1: Compilation of weathering indices from Study 3 calculated with elemental data (XRF). For an 

overview of how often these indices have been used in previous loess studies, they were classified into two 

groups based on a rough review (Google Scholar) of Quaternary loess studies in Europe, N America or 

China. Infrequent (“X) is defined as none or very few publications (<5), frequent (“F”) as 5 or more citations. 

Weathering index Elements Reference Use 

Multi-

element 

CIA Al, Na, Ca, K Nesbitt and Young (1982) F 

Index A Si, Ca, K, Na, Al Kronberg and Nesbitt (1981) X 

 Index B Ca, Na, K, Al Kronberg and Nesbitt (1981) X 

 PWI Na, Mg, K, Ca Gallagher and Sheldon (2013) X 

 Σbases/Al Ca, Mg, Na, K, Al Retallack (2001) X 

K-free CIW (CIA-K) Al, Na, Ca Harnois (1988); Maynard (1993) F 

 PIA Al-K, Al, Ca, Na-K Fedo et al. (1995) X 

 YANG Ca, Na, Mg, Ti Yang et al. (2006) F 

 WI-1 Si, Ca, Fe, Ti Darmody et al. (2005) X 

 WI-2 Si, Ca, Fe, Ti, Al Darmody et al. (2005) X 

Ca-free CPA (CIW’) Al, Na Buggle et al. (2011); Cullers (2000) F 

 FENG Al, Fe, Na, K, Mg, P Feng (1997) X 

Trace 

element 

Ba/Sr Ba, Sr  F 

Rb/Sr Rb, Sr  F 

 

 

Positive evidence encouraging the use of the transfer functions for paleosols has e.g. been 

reported by Sheldon et al. (2002), Sheldon (2004) and Sheldon (2009) who found their 

paleoclimate estimates consistent with results obtained from independent paleobotanical proxies, 

or accurate over a wide age range (Hamer et al., 2007; Retallack, 2005; Sheldon, 2005). 

Furthermore, the transfer functions successfully predict modern MAP even for soil types that are 

not represented in the original Marbut (1935) database (Driese et al., 2005; Nordt, 2006). With 

regard to the application of the transfer functions not only to paleosols, but also to loess, Kühn et 

al. (2013) have argued that they can indeed be used for both materials. Since loess is the parent 

material of the paleosol, it should include a genuine climate signal as well. In their study, Kühn et 
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al. (2013) used two different equations and received similar MAP and MAT results for loess. Their 

results show a clear trend towards lower temperatures for loess than for the paleosol and 

MAT/MAP estimates that are comparable to those obtained from other proxies. These 

observations encourage the application of the transfer functions to loess.    

On the other hand, several issues arise with the use of transfer functions and need to be 

addressed when interpreting the results. First, other processes than weathering may change the 

chemical composition of sediments and soils as well and may therefore lead to a bias. Second, 

large uncertainties are usually associated with the MAPs and MATs, which tend to be 

underestimated and are sometimes not reported in a statistically sound way (Újvári, 2014). An 

error range of up to several degrees Celsius for MAT or hundred mm/a for MAP needs to be taken 

into account. Both factors require a careful evaluation of the results and a verification with 

independent estimates from the literature or from transfer functions based on other proxies such 

as magnetic susceptibility or stable isotopes. Despite the lack of precision, the geochemistry-

based reconstructions are able to demonstrate significant trends and provide valuable and, at 

least semi-quantitative, paleoclimate information. 

Although published for several years, the transfer functions are still to gain more attention in loess-

paleosol studies, especially for SE Europe since most successful studies have been conducted 

elsewhere, with recent studies in Germany (Kühn et al., 2013), North America (Meier et al., 2014) 

and Southern Arabia (Pietsch and Kühn, 2012). A compilation of how frequently these equations 

are employed in loess paleosol studies is given in Table 2. 

Climate parameter Equation Reference Use 

MAP-1 -259.3*Ln[Σ(bases/Al)]+759 Sheldon et al., 2009 F 

MAP-2 -130.9*Ln(Ca/Al)+467 Sheldon et al., 2009 X 

MAP-3 221.9*e0.0179*(CIA-K) Sheldon et al., 2009 X 

MAT-1 46.9*(Al/Si)+4 Sheldon, 2006 X 

MAT-2 -18.5*[(K+Na)/Al]+17.3 Sheldon et al., 2002 X 

MAT-3 -2.74*Ln(PWI)+21.39 Gallagher & Sheldon, 2013 X 

 

Table 2: Paleoclimate transfer functions for mean annual temperature (MAT) and mean annual precipitation 

(MAP) calculated from elemental data (XRF). Some of the functions are based on weathering indices 

(Σbases/Al, CIA-K, PWI) listed in Table 1. For an overview of how often these transfer functions have been 

used in previous loess studies, they were classified into two groups based on a rough review (Google 

Scholar) of Quaternary loess studies in Europe, N America or China. Infrequent (“X) is defined as none or 

very few publications (<5), frequent (“F”) as 5 or more citations. 
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3.3.3 Geochemical characterization 

In provenance studies, the abundances of major, trace and rare earth elements, displayed as 

elemental ratios or normalized diagrams of elemental variations (“spider diagrams”), may serve 

as characteristic sediment “fingerprints” and be subsequently compared with those of potential 

source rocks. Element ratios for provenance analyses are conceptually similarly to those used for 

weathering analyses (3.3.1) and usually consist of one element with variable abundances over a 

wide range of different rock types, such as e.g. Ti, and another element with relatively constant 

abundance, e.g. Al (Sheldon and Tabor, 2009). Both elements should be of low mobility and not 

prone to removal or enrichment by weathering in order to avoid bias. Common ratios are 

SiO2/Al2O3, TiO2/Al2O3, TiO2/SiO2, K2O/Al2O3, Na2O/Al2O3 or combinations thereof, e.g. 

Na2O/Al2O3 vs. K2O/Al2O3. Spider diagrams are a widely used method to display enrichment and 

depletion patterns of a wide range of major and trace elements compared to a reference 

composition such as the average composition of the upper continental crust (UCC).  

Both element ratios and spider diagrams help to characterize a sample based on characteristic 

abundances of its elemental composition. These characteristic patterns will then be used for 

comparison with patterns of potential source rocks, average rock or sediments compositions (e.g. 

GAL, global average loess composition; Újvári et al., 2008) or other sediments to explore 

similarities and differences and to identify e.g. common transport pathways. This was successfully 

done by Muhs and Budahn (2006) for Alaskan loess and fluvial samples or Buggle et al. (2008), 

who compared loess from Serbia, Romania and Ukraine with floodplain sediments from Central 

and Southeast Europe. Other studies based on the geochemical characterization of loess deposits 

and potential source areas have been carried out e.g. in China, South Korea, the US, Croatia and 

Hungary (Hwang et al., in press; Jahn et al., 2001; Mikulčić Pavlaković et al., 2011; Muhs et al., 

2008; Muhs et al., 2013a; Újvári et al., 2008; Újvári et al., 2014). 

Potential limitations and constraints may arise from any alteration of the original geochemical and 

mineralogical composition of a sample e.g. by pedogenesis and weathering, secondary mineral 

formation or sorting during transport. To minimize this bias, paleosol samples are usually excluded 

in loess provenance studies. Mixing may also obscure the characteristic chemical signatures of 

multiple sediment sources. Therefore, sediment sources can only be ruled out, but not confirmed 

based on elemental fingerprinting alone (Buggle et al., 2008; Újvári et al., 2012). While limiting the 

informative power of the results, fingerprinting methods still provide valuable information by 

excluding potential source areas and uncovering similarities and differences of sediments and 

potential sources. 
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3.4 Sr-Nd isotopic characterization 

The use of strontium and neodymium isotopic ratios is based on the fact that rocks of different 

geologic origin have distinct Sr and Nd isotopic signatures. Mantle rocks, such as Mid Ocean 

Ridge Basalts (MORBs) have high 143Nd/144Nd ratios, resulting in positive ƐNd values, and low 

87Sr/86Sr ratios and therefore plot in the upper left quadrant of the Sr-Nd diagram (Fig. 5). Crustal 

rocks and sediments derived from them, in contrast, have high 87Sr/86Sr and low 143Nd/144Nd ratios, 

i.e. negative ƐNd values, and plot in the lower right quadrant of the Sr-Nd diagram. The bulk earth 

composition (Chondritic uniform reservoir, CHUR) delineates the four quadrants in the Sr-Nd 

diagram and serves as a reference. Instead of the 143Nd/144Nd ratio, the ƐNd value is usually 

reported, which is calculated by normalizing the Nd ratio of a sample to the CHUR ratio (0.512638, 

Jacobsen and Wasserburg, 1980) cf. Eq. 2: 
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The different isotopic compositions of Sr and Nd in a sample are due to fundamental differences 

in their geochemical behavior. The radiogenic isotope 87Sr is a daughter atom produced by the 

radioactive decay of 87Rb, a trace element which substitutes for K in clay minerals. Rubidium is a 

highly incompatible element that, during fractional crystallization of the mantle, stays in the 

magmatic melt rather than becoming part of mantle minerals and is therefore enriched in crustal 

rocks. By comparing the abundance of 87Sr with that of the non-radiogenic and stable 86Sr, the 

isotopic ratio 87Sr/86Sr may serve as a characteristic isotopic fingerprint of a sample. While closely 

related, the geochemical behavior of Nd is directly opposed to that of Sr. 143Nd is a decay product 

of 147Sm. Samarium, however, is highly mantle-compatible and therefore depleted in crustal rocks. 

Nd-enriched mantle rocks have higher 143Nd/144Nd ratios and positive ƐNd values. Together with 

non-radiogenic and stable 144Nd, the 143Nd/144Nd ratio complements the 87Sr/86Sr fingerprinting 

method.  

The combination of both systems allows for distinguishing rocks based on their geologic origin 

and chemical composition and may ultimately help identifying the parent rocks of sediments in 

provenance studies. Sr-Nd analyses have served as a valuable tool for loess provenance studies 

in China and South America, where they were used to identify and delineate major contributing 

dust source areas and examine source stability over time (Chen et al., 2007; Gallet et al., 1998; 

Smith et al., 2003; Sun, 2002, 2005; Zhang et al., 2012). First results for Southeast European 
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loess have been reported by Újvári et al. (2012), who used a combination of Sr-Nd and U-Pb 

isotopic provenance indicators to characterize loess samples in the Carpathian Basin and 

compare them with a large variety of potential source areas. 

 

 

Fig. 5: 87Sr/86Sr vs. ƐNd diagram showing the positions of the depleted mantle, the continental crust, the 

chondritic uniform reservoir (CHUR, “bulk earth“) and selected loess samples from N and S America, Europe 

and Asia. 

 

4. Results and discussion 

4.1 Application of established and novel luminescence techniques (Study 1) 

4.1.1 Method development 

One aim of study 1 was to compare standard quartz OSL with standard feldspar (polymineral) IR50 

luminescence ages and ages obtained using a novel feldspar (polymineral) dating protocol at 

elevated temperatures (pIRIR290), which is expected to have an extended age range and be less 

prone to fading. For quartz OSL, using the standard SAR protocol (Murray and Wintle, 2003) on 
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9 samples spread roughly evenly over the entire profile, all luminescence characteristics were 

satisfactory and the ages obtained range from roughly 60 ka to 20 ka. While the youngest 5 

samples are considered reliable, the oldest three have natural signals at 70% of saturation and 

may therefore underestimate. A comparison of IR50 and OSL ages shows that IR50 underestimates 

substantially if not appropriately corrected for fading. However, the results show that even fading-

corrected IR50 ages still underestimate in the younger section of the age range of the profile and 

were therefore entirely not considered any further. 

The luminescence characteristics of the results obtained using the novel pIRIR290 protocol (Thiel 

et al., 2011) are all satisfactory. In contrast to OSL, the natural signal is well below saturation level; 

the samples pass the dose recovery, recycling and recuperation tests. As previously pointed out 

(Buylaert et al., 2012; Buylaert et al., 2011; Sohbati et al., 2012), a significant residual dose, i.e. a 

non-bleachable component of the signal, may be present, which will lead to erroneous ages if 

unaccounted for. The magnitude of this residual was measured in a bleaching experiment under 

natural and controlled laboratory light conditions. Three aliquots of each sample were bleached 

for 1 week in a Hönle SOL2 solar simulator simulating daylight/night; the same number of aliquots 

were exposed to daylight for the same period of time (Denmark, February). A mean residual dose 

of ca. 10 Gy was measured, which is consistent with the pIRIR290 doses reported for polymineral 

fine-grains extracted from modern dust (Buylaert et al., 2011), and subsequently subtracted from 

all pIRIR290 equivalent doses.  

Fading tests showed that while the pIRIR290 signal is more stable than the IR50 signal, fading is 

still measurable on laboratory time scales (ca. 1 % / decade) despite the considerable evidence 

that accurate ages are obtained without fading correction (Buylaert et al., 2012) and that the 

pIRIR290 signal in “infinitely” old samples is very close to saturation (Buylaert et al., 2011; Thiel et 

al., 2011; Thomsen et al., 2011). Both fading-corrected and uncorrected pIRIR290 ages are in good 

agreement with OSL ages but correction may tend to cause overestimation for young samples. 

Moreover, comparison with an independent 14C age obtained from a charcoal layer found directly 

on top of the Upper Paleosol at an adjacent section shows better agreement with the uncorrected 

pIRIR290 age. The comparison of OSL, IR50 and pIRIR290 shows that both OSL and (uncorrected) 

pIRIR290 are most reliable, but pIRIR290 is applicable over a wider age range and therefore more 

suitable for the older samples of the Tokaj profile, which are already rather close to saturation of 

the signal. 
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4.1.2 Chronostratigraphy 

The second aim of Study 1 was to establish a reliable chronostratigraphy using reliable numerical 

age control for the Tokaj paleosol loess profile. The previous chronology is fragmentary and based 

on uncalibrated radiocarbon ages from an adjacent section, as well as on stratigraphic correlations 

with other Hungarian profiles and archaeological findings (Sümegi and Hertelendi, 1998). The new 

chronology is shown in Table 3. Ages range from 62-21 ka (OSL) and 57-25 ka (pIRIR290) from 

the most recent soil to the top of the lower paleosol. 

According to the results, the lower paleosol, previously dated to ca. 50-40 ka uncal. BP (52-42 ka 

cal. BP; all uncalibrated 14C ages were converted using the Cal-Pal tool: Danzeglocke, 2007), has 

most likely developed before the onset of Marine Isotope Stage (MIS) 3 (>57 ka), but may be 

potentially older in case of a hiatus. It is similar in age to the 56 ka age in the lowest Last Glacial 

loess unit at Crvenka, North Serbia, but here the underlying soil has been interpreted to be part of 

the S1 complex (MIS 5, 130-71 ka; Marković et al., 2008; Stevens et al., 2011). The middle loess 

layer at Tokaj, previously estimated to 42-34 ka cal. BP, accumulated between c. 50 and 60 ka, 

in the colder periods of MIS 3. This layer might correspond to the ‘VL1L2’ loess in North Serbia 

(Marković et al., 2008; Marković et al., 2011) although here it usually extends into MIS 4 (60-71 

ka) without any intercalated soils. Two samples from the upper paleosol indicate that it probably 

formed during the later stages of MIS 3, which is consistent with previous estimates of 35-30 ka 

cal. BP. However, the results of 27-39 ka (OSL) and 30-39 ka (pIRIR290) do not necessarily indicate 

the time of soil formation, but rather the time of deposition of the sediment in which the soil 

subsequently developed. Furthermore, the results for the lower sample are only minimum ages 

as it is located 25 cm above the transition from the middle loess layer to the paleosol. Bracketing 

the upper paleosol with ages from the over- and underlying loess layers, an age range for the time 

of soil formation of 45-25 ka can be derived. Similar soils of corresponding age ranges have been 

reported at Crvenka (38 ka; Stevens et al., 2011), Stari Slankamen (34 ka; Schmidt et al., 2010) 

and Surduk (32 ka; Fuchs et al., 2008) in Northern Serbia. The samples from the upper loess layer 

suggest that it was deposited between 21-30 ka (OSL) and 25-28 ka (pIRIR290) during MIS 2 (24-

11 ka) in the Upper Pleniglacial. This is partly consistent with a previous estimate of 29-13 ka cal. 

BP. Similar MIS 2 loess layers have been reported from Northern Serbia (‘V L1L1’ loess; Fuchs 

et al., 2008; Schmidt et al., 2010; Stevens et al., 2011), as well as from other locations in Hungary 

(Novothny et al., 2011). The youngest OSL ages indicate that loess deposition either ended 

around 20 ka or that younger loess layers have been eroded or overprinted by Holocene 

pedogenesis. 
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Previous studies in Tokaj are all based on the old, fragmentary chronostratigraphy. The 

differences between this old chronology and the luminescence chronostratigraphy (Table 3) 

clearly demonstrate that a thorough review and re-assessment of previous studies and published 

proxy data is necessary. 

 
 New chronology Old chronology 

OSL pIRIR290 14C 

Upper loess layer 27-21 ka 28-25 ka 29-13 ka cal. BP 

Upper paleosol 39-27 ka 39-30 ka 35-30 ka cal. BP 

Middle loess layer 62-50 ka 60-45 ka 42-34 ka cal. BP 

Lower paleosol >62 ka >60 ka 52-42 ka cal. BP 

Lower loess layer - - (70-60 ka BP) 

 
Table 3: Comparison of the old and new chronology of the Tokaj profile. New OSL and pIRIR290 ages are 

from Study 1, old ages are from Sümegi and Hertelendi (1998), reported originally as uncalibrated 

radiocarbon ages and converted using the Calpal online tool (Danzeglocke, 2007). The age of the lower 

loess layer is an estimate (unconfirmed) based on paleontological findings.  

 

4.2 Weathering intensity and the suitability of weathering indices (Study 2) 

One aim of Study 2 was to examine weathering intensity and conditions in order to contribute to 

the general understanding of paleoclimate. Weathering intensity can be quantified via a wide 

selection of geochemical weathering indices (WIs) and elemental ratios (Chapter 3.3.1; Buggle et 

al., 2011; Sheldon and Tabor, 2009). 14 WIs from loess and paleosol samples from the upper part 

of the Tokaj profile were calculated and evaluated with respect to sensitivity. The results confirm 

that paleosol samples are more weathered than loess samples. All samples are less weathered 

than standard reference materials for weathered continental material (Post-Archean Australian 

Shale - PAAS, North American Shale Composite - NASC) and plot parallel to the A-CN line in the 

A-CN-K diagram, which shows that weathering follows the plagioclase weathering trend with a 

constant K-feldspar/plagioclase ratio. The degree of weathering is variable; paleosol samples are 

located closer to the CN corner and PAAS, which indicates progressive enrichment of Al and 

depletion of Ca and Na (plagioclase weathering) with increasing weathering intensity, while the K 

content (K-feldspar, micas) remains constant. A comparison of WI results from Tokaj with those 

from other loess and dust deposits in the Carpathian Basin shows similarities with most loess 

deposits, while Red Clay samples are more intensely weathered. The average weathering 
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intensity of loess from this region (AVL3, Újvári et al., 2008) is slightly lower or similar, depending 

on the WI. 

The shapes of the WI depth plots for Tokaj are overall rather similar and well-correlated, indicating 

that there are equally suited to track changes in weathering intensity. Anomalies associated with 

the use of K in these equations, resulting in differences between K-free and K-based indices, 

cannot be observed in our dataset. The two trace element WIs, Ba/Sr and Rb/Sr, are highly 

correlated with the majority of the main element WIs. Yet due to a lack of understanding of their 

weathering behavior, coupling to CaCO3 dynamics and grain-size dependence, the use of these 

indices is discouraged. There are two subgroups of WIs which, although moderately to well 

correlated with the other WIs, show slightly different depth plots. WI-1, WI-2 and Index A include 

Si as an additional element in their calculations, which might explain this minor deviation and 

decrease in correlation coefficients. PWI and, to a lesser extent, CPA are particularly weakly 

correlated with all other indices, which might be due to the relative overemphasis of Na in the 

equations. 

The sensitivity of the weathering indices was evaluated by comparing and correlating them with 

mass-specific magnetic susceptibility (Χ) values. Χ is the only direct weathering proxy available. 

Such a validation step has not been included in previous studies, which discussed various WI data 

without examining correlations with other weathering proxies (Buggle et al., 2011; Varga et al., 

2011). The results show that all WIs are moderately to well correlated with Χ (r = 0.68-0.87), with 

FENG ranking highest, followed by the trace element indices. PWI is least correlated with Χ, but 

still acceptable. The performance of the FENG index is surprising because multi-element indices 

have come under suspicion due to their reliance on Na and Ca, which may bias results if 

secondary carbonates or Na salts are present (Baumann et al., 2014; Buggle et al., 2011). Yet for 

the Tokaj loess paleosol section it yields the best result, probably because the samples are not 

affected by secondary Na salt formation. For future loess paleosol studies at other locations, we 

recommend an individual evaluation of WI sensitivity to identify the best-performing index since 

weathering conditions vary through time and space. 

 

4.3 Paleoenvironment and -climate (Study 2) 

Besides the quantification of weathering intensity, another aim of Study 2 was the application of 

several transfer functions derived from different proxy records - elemental data, mass-specific 

magnetic susceptibility (Χ), stable carbon isotopes (δ13C) – to estimate mean annual precipitation 
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and temperature (MAP, MAT) and to compare the results with literature data of local and regional 

paleoclimate. The study focuses exclusively on the upper part of the sequence because the only 

paleotemperature data for the Northeastern part of Hungary and Tokaj are malacothermometer 

paleotemperatures (Sümegi and Hertelendi, 1998) from the upper half of the profile. Furthermore, 

the chronostratigraphy (Schatz et al., 2012) for the upper half of the sequence is more detailed. 

The results show that absolute MAP and MAT values vary depending on the methods and proxy 

data used but paleosol values have always higher MAP and MAT (Δ = 100-200 mm/a and 0.1-2.0 

°C). All results indicate that the climate was warmer and wetter during paleosol formation in MIS 

3 and cooler and drier during dust deposition in MIS 2. 

The MAT results for the paleosol (45-27 ka) are in a range of 8.8 ±0.6 °C to 9.9 ±4.4 °C  and 8.4 

±0.9 °C (Χ-based). The δ13C-based mean summer temperature of 18.0 ±1.4 °C was converted to 

a MAT of 8.8 °C via an empirical conversion formula (Hall and Penner, 2013). These temperatures 

agree within the error limits and are similar to the current MAT of 9.8 °C (World Data Center for 

Meteorology, 2011). It has been proposed by various researchers that the climate of the 

Carpathian Basin during MIS 3 was warmer and drier than elsewhere in Europe (Fitzsimmons and 

Hambach, 2014; Willis et al., 2000; Willis and van Andel, 2004). A MAT range of 10-17 °C was 

suggested for parts of Slovakia and the Czech Republic (Kovács et al., 2012). Based on the 

malacothermometer method, Sümegi and Hertelendi (1998) found mean July paleotemperatures 

equivalent to MATs of 7.4-8.8 °C for Tokaj. While local proxy data in the literature agree well with 

each other, these temperature estimates are usually not consistent with results from large-scale 

paleoclimatic reconstructions, as e.g. the Paleoclimatic Atlas of the Northern Hemisphere (MAT 

2-4 °C; Frenzel et al., 1992). This might be due large uncertainty ranges in proxy data, a higher 

climatic variability during the Last Glacial Maximum (LGM), complex terrain, a too coarse spatial 

resolution of model data, the sensitivity of regional climate to vegetation cover or a combination 

thereof and have been observed and discussed before (Kageyama et al., 2006; Mairesse et al., 

2013; Strandberg et al., 2011).  

The MAT results for the upper loess layer (27-21 ka) are in a range of 8.5 ±0.6 °C to 8.9 ±4.4 °C 

(XRF-based) and 6.6 ±0.7 °C (Χ-based). Literature temperatures of the LGM from climate models 

and local proxies are considerably lower (-5 to 8 °C) but it is not sure if the Tokaj section even 

includes the LGM since OSL and IRSL ages differ for this period of time. The results from this 

study were therefore not considered to be LGM temperatures. Non-LGM temperatures from MIS 

2 derived from isotopic analyses of bones, shells and groundwater (Corcho Alvarado et al., 2011; 
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Kovács et al., 2012) are in a range of 4-11 °C for Hungary and 6-8 °C for Tokaj, specifically 

(Sümegi and Hertelendi, 1998).  

Χ-based MAP results for the paleosol vary from 258 mm/a to 390 mm/a, XRF-based MAP from 

685 ±156 mm/a to 785 ±235 mm/a, while current MAP is 546 mm/a. Literature data is scarce and 

rather vague and suggest values between 240 and 850 mm/a. For the loess layer, XRF-based 

methods yield a range of 572 ±156 mm/a to 687 ±235 mm/a, while the Χ-MAP is again lower (222 

±24 mm/a). Literature MAP values are lower and between 50 and 450 mm/a. Χ-based MAP 

reconstructions are generally more consistent with the literature, whereas most XRF-based results 

are probably too high. 

Overall, our results are consistent with regional proxy evidence from the literature and indicate 

that the region sustained milder climatic conditions than elsewhere in Europe during MIS 2 and 3 

and might have been a possible location for the hypothesized cold stage refugia of temperate flora 

and fauna. The paleoclimate of the region was probably spatially highly diverse and different from 

the surroundings. Large-scale models may not be able to express these heterogeneous 

conditions, a fact that is also reflected in the wide range of predicted model MATs and MAPs in 

the literature. Local proxy data may serve to refine these models. 

 

4.4 Dust dynamics 

4.4.1 Wind speed and sediment pathways (Study 1 & Study 3) 

Recent results based on highly resolved luminescence chronologies indicate that loess deposition 

is often episodic and sedimentation rates can be highly variable by up to 1-2 orders of magnitude. 

These variations cannot be reliably obtained from grain size or magnetic susceptibility data and 

are only revealed by independent dating (Buylaert et al., 2008; Stevens et al., 2006; Stevens and 

Lu, 2009; Stevens et al., 2008; Stevens et al., 2007). In Study 1, a comparison between implicitly 

assumed linear sedimentation rates and a new age-depth model shows that sedimentation rates 

at Tokaj are variable, indeed, and differ significantly over time. While uniform sedimentation is 

0.42 mm/a on average, the luminescence-based age-depth model yields a considerably lower rate 

of 0.3 mm/a for the middle loess layer, and a substantially higher rate of 0.86 mm/a for the upper 

loess layer. This suggests more active source regions, higher transport rates, or more effective 

trapping, or a combination of these processes during this period.  
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The sedimentation peak in MIS 2, during the accumulation of the upper loess, has also been 

observed at other locations in the Carpathian Basin, e.g. at Surduk, Serbia (Fuchs et al., 2008), 

Süttő, Hungary (Novothny et al., 2011) and Crvenka, Serbia (Stevens et al., 2011). Absolute 

sedimentation rates between these sites and Tokaj are comparable and match the general pattern 

of a North-South trend of decreasing sediment magnitudes in the Carpathian Basin, which might 

be due to a closer proximity to dust source areas (Stevens et al., 2011; Újvári et al., 2010). The 

implications of these more detailed insights into sediment dynamics are potentially substantial. 

Many published proxy studies, such as earlier studies at Tokaj (Schatz et al., 2011; Sümegi and 

Hertelendi, 1998), are based on assumed uniform sedimentation rates. In the light of the new data, 

a thorough review and re-assessment of proxy data and interpretations is necessary. 

The results from the Sr-Nd isotopic analyses in Study 3 show that despite the higher sedimentation 

rate in MIS 2 and potential reasons - changing source, transport and/or trapping parameters - the 

sediment source of loess at Tokaj has remained stable over time. This is not only true for the MIS 

2 peak but in fact for the entire time span the profile covers (60-20 ka). Careful analysis of 20 

samples from the profile shows low internal variability and an absence of shifts, peaks or trends 

for both 87Sr/86Sr and 143Nd/144Nd values. Furthermore, Sr and Nd ratios have a very low correlation 

coefficient (r²=0.01). A change of source would be characterized by a synchronous, inversely 

correlated shift in both isotopic systems. 

Tokaj loess is geochemically very similar to other European loess, especially to loess from 

Southeast Europe (e.g. Southwest and Central Hungary). Both Sr-Nd isotopic signatures and 

major and trace elemental data of several loess samples from this region are indistinguishable or 

near-identical. A genetic link between major Southeast European loess deposits in Hungary, 

Croatia, Slovakia and Austria has been observed before (Újvári et al., 2012), defined as a common 

loess region, “D4”, (Smalley and Leach, 1978) and interpreted as a common, distal sediment 

source or a mixture of sources with roughly identical proportions, and a common transport 

pathway. No evidence was found for a significant contribution of local material, such as e.g. from 

Tokaj volcanic rocks. 

The direct comparison of loess and potential source rocks from major geological units surrounding 

the Carpathian Basin (Fig. 1) is only of limited validity. This is due to two reasons: (i) a significant 

share of detrital (i.e. non-secondary) carbonates is present in SE European loess samples, which 

'dilutes' both the isotopic signatures and the elemental contents. (ii) the source signal may be 

modified by weathering, sorting and transport, especially elemental fingerprints. A tentative 

comparison of rocks and loess shows that most rocks have very different Sr-Nd and elemental 



25 
 

distribution patterns. However, some similarities can be found, e.g. for East Carpathian flysch, 

Bohemian Massif sediments, West Carpathian granites, Central Alpine granitoids, Alpine molasse 

and granites from the Tisia terrane in the Carpathian Basin. These results are consistent with 

Smalley and Leach's (1978) hypotheses but need to be examined in more detail. 

It has often been argued that fluvial rather than aeolian processes acted as the main transport 

mechanism for material that later accumulated as loess. Smalley and Leach (1978) assume that 

glacial sediments from the Alps were transported to the North and Southeast by the Rhine and 

Danube Rivers, deposited in floodplains and river banks and subsequently transported by the wind 

to build proximal loess deposits. Several provenance studies have therefore focused on studying 

floodplain deposits as potential source materials of loess (Buggle et al., 2008; Muhs and Budahn, 

2006; Újvári et al., 2012). A comparison of Holocene, Pleistocene and Miocene floodplain and 

suspended samples from the Austroalpine cover nappes area, the Bohemian Massif, the Drava 

catchment, the Western Carpathians, the Rhine and Rhône, Morava and Danube and their 

tributaries, and from Central and Eastern Hungary reveals similarities between the elemental 

signatures of Tokaj loess and sediments from East and Central Hungary, the Bohemian Massif, 

the Western Carpathians and the Drava and Morava Rivers (Fig. 1). Sr-Nd analyses show 

similarities with recent suspended and Pleistocene fluvial sediment from the Danube and Miocene 

Pannonian sands, a local sediment of the North Carpathian Basin. The results are in line with the 

rock data and previous findings from the Northwest and Central Carpathian Basin (Buggle et al., 

2008; Thamó-Bozsó et al., 2014; Újvári et al., 2012) and confirm the fundamental theoretical 

hypotheses of loess origin (Smalley et al., 2009; Smalley and Leach, 1978). 

 

4.4.2 Dust dynamics – a European perspective (Study 3) 

Study 3 compares elemental data and the Sr-Nd fingerprints of three loess sections spanning MIS 

2 and 3 in Europe - Tokaj in Northeast Hungary, Grub in East Austria and Nussloch in Southwest 

Germany (Fig. 1). Previous hypotheses about the origin of the sediments suggest a mixture of 

glacial material from the Alps, carried by the Danube, and from northern Europe, transported by 

the Morava River, for Grub and material from the Central Alps in Switzerland, transported by the 

Rhine and deposited in the Upper Rhine Graben, for Nussloch (Antoine et al., 2009; Antoine et 

al., 2001; Hill, 2005; Smalley et al., 2009; Smalley and Leach, 1978; Zech et al., 2012). 

The results of the combined elemental and isotopic approach indicate that while the source of 

Tokaj loess has remained stable, the sources of the loess at Grub and Nussloch may have shifted. 

At Grub, there is a weak trend between 50-30 ka. At Nussloch, a more pronounced shift of 1 ƐNd 
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unit between 30-20 ka was observed. The weak trend at Grub is not consistent in both the Sr and 

Nd systems (r²=0.11), but can be confirmed for Nussloch (r²=0.74).  

However, despite possible shifts, the data of all three locations are very similar to each other and 

to other loess deposits in Europe. This is especially true for Southeast European loess, but also 

for loess from France, Germany and distal deposits (North Africa, Mediterranean Sea, 

Spitsbergen). Loess from Grub is particularly similar to loess from Tokaj, Croatia, Germany and 

Hungary, which confirms the overall uniformity of loess in the Northern Carpathian Basin and 

adjacent areas. For loess at Nussloch, similarities can be found with e.g. German loess, but 

variance regarding elemental and isotopic composition is much higher in Central and Western 

European loess. 

A comparison of loess and rocks from potential source areas reveals similar results for Grub as 

for Tokaj, i.e. some similarities with rocks from the Bohemian Massif, the Alps and the Western 

Carpathians, but also with rocks from locations of which a contribution is less likely (Eastern 

Carpathians, Tisia terrane). Nussloch has similar results and Alpine sediments have been 

suggested as the main source of sediments previously (Hill, 2005; Smalley and Leach, 1978) but 

a contribution of southeast European material to the Nussloch site is highly unlikely since neither 

rivers nor dominant wind systems exist and have existed throughout the Quaternary to constantly 

transport material from the Carpathian Basin to Southwest Germany. These results demonstrate 

the main shortcoming of the isotopic and elemental fingerprinting methods. By using these 

methods, sediment sources can only be ruled out, but not confirmed. However, the results indicate 

that Tokaj, Grub and Nussloch loess and Alpine molasses samples have several geochemical 

similarities and should be included in further analyses, since these sediments have probably been 

derived from the same initial source, i.e. the Alps, and may have supplied material for both 

Southeast and Central European loess via the Rhine and the Danube. 

Floodplain data confirms that both Tokaj and Grub loess is related to fluvial sediments from the 

Western Carpathians, the Bohemian Massif and the Danube. For Nussloch, little data is available 

but samples show strong similarities with Rhine and Rhône sediments, suggesting transport from 

the Swiss Central Alps via the Rhine to the Upper Rhine Graben, as suggested by Hill (2005). A 

further contribution of a mixture of sediments from the Black Forest Mountains and the Vosges 

Mountains bordering the Upper Rhine Graben is possible as well and requires further examination. 
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5. Conclusions 

Loess-paleosol sequences in the Carpathian Basin represent valuable archives of Mid- and Late 

Pleistocene paleoclimate and -environment. The multi-proxy approach of this cumulative study 

contributed to increase and deepen our understanding of regional climatic and environmental 

factors in the Northeastern part of the basin. With the OSL and IRSL ages of Study 1, we were 

able to establish the first complete chronostratigraphy for the Tokaj section, which serves as a 

framework for all further analyses. Results show that previous age estimates were too low for both 

the upper part of the section (MIS 2 loess, ca. 26-20 ka) and the lower part (MIS 3 loess, ca. 60-

40 ka). The age of the upper paleosol is now estimated to ca. 45-25 ka, while the lower paleosol 

must have developed before ca. 60 ka. Sedimentation rates calculated from the updates ages 

more than double during MIS 2 compared to MIS 3, which is consistent with observations from 

other locations in the Carpathian Basin and confirms the pattern of decreasing dust sedimentation 

from North to South. In addition to the chronostratigraphy, Study 1 also contributed to the 

introduction of pIRIR290 as a new luminescence dating technique with a substantially extended 

age range. 

Study 2 provides a comparison of 14 weathering indices that may be used to quantify weathering 

intensity. The results show that most of them perform equally well, including the most widely-used 

CIA index, and that, therefore, it is not necessary to restrict the choice of suitable indices to those 

containing only very few elements. Rather, we recommended to calculate several indices and 

evaluate their sensitivity towards weathering, e.g. by correlating them with magnetic susceptibility. 

The second part of Study 2 attempts to quantify MAT and MAP based on paleoclimate transfer 

functions and XRF, magnetic susceptibility and carbon isotopic data. Although the associated 

errors are large we argue that robust results can be obtained by combining several independent 

approaches and literature data. The results suggest a MAT similar to today of 8-10 °C for the time 

of soil formation in MIS 3 and a MAT of 6-9 °C for the time of dust deposition in MIS 2. For MAP, 

variance is higher depending on the input proxy data. X-based MAP is generally more consistent 

with literature data, while XRF-based MAP is probably too high. All results are consistent with a 

general trend towards lower temperatures and a drier climate in MIS 2, and higher temperatures 

and a more humid climate in MIS 3.  

The results of the provenance study (Study 3) based on a combined Sr-Nd isotopic and elemental 

fingerprinting approach show that the source of dust in Tokaj has most likely been stable over 

time, whereas those of dust in Austria and Southwest Germany have been more variable. Loess 

in Europe, and especially in the Carpathian Basin, is overall rather uniform. While a direct 
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comparison of loess and rocks from potential source areas is difficult, the correlation with 

floodplain sediments is a highly promising approach. Results indicate that Tokaj loess may have 

been derived from the surrounding mountain chains, but also from Danube and local Miocene 

sediments, while loess in Southwest Germany is probably a mixture of local and Rhine sediments. 

Our data also underlines the contribution of Alpine sediments, deposited and lithified as Alpine 

molasse in the forelands and transported by major rivers such as the Rhine and the Danube, to 

loess in both Southeast and West Europe. 
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Abstract  

We present a comparative study of quartz OSL, polymineral IRSL at low temperature (50°C, IR50) 

and post-IR elevated temperature (290°C) IRSL (pIRIR290) feldspar dating on nine samples from 

the Tokaj loess section in NE Hungary (SE Europe). Preheat plateau tests show a drop in quartz 

OSL De between 160 and 240°C but above 240°C a clear De plateau is present. Quartz OSL SAR 

is shown to be generally appropriate to these samples (recycling, recuperation) but a satisfactory 

dose recovery result was only obtained when a dose was added to a sample without any prior 

optical or thermal pre-treatment; this gave a dose recovery ratio of 1.04±0.05 after subtracting the 

natural dose from the measured dose. The pIRIR290 SAR protocol also results in acceptable dose 

recovery results for the pIRIR290 signal (1.08±0.01) when a large dose is added to the natural dose. 

Bleaching experiments suggest a detectable non-bleachable residual pIRIR290 dose of 10±4 Gy. 

Agreement with quartz OSL ages is best achieved by correcting the IR50 ages for fading; however 

this is not necessary when using the pIRIR290 signal. With respect to Hungarian Late Quaternary 

geology our results indicate that the major part of the Tokaj loess has been deposited during MIS 

3 (60-24 ka), with periods of soil formation occurring during the onset of MIS 3 (≥58 ka) and 

between about 35 to 25 ka. Our results also indicate episodic deposition of loess and varying, 

non-linear sedimentation rates during MIS 3. Proxy analyses in the literature are based on the 

traditional concept of continuous deposition; in the light of our new data the use of such simple 

assumptions must be reconsidered. 

 

Keywords: loess; Hungary; OSL; SAR; post-IR IRSL; bleaching 
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1. Introduction  

Loess-paleosol sequences are an important terrestrial archive of Quaternary climate fluctuations 

and an essential tool for deciphering the impact of climate change on local and regional 

landscapes and ecosystems. Several recent studies have focused on the Carpathian Basin in SE 

Europe because of its favourable geomorphological setting and multiple loess paleosol 

sequences; it preserves well-resolved spatial and temporal records of the European late 

Quaternary history (Marković et al., 2008; Sümegi and Krolopp, 2002; Újvári et al., 2010; Willis et 

al., 2000). Besides providing information about local and regional paleoclimate and 

paleoenvironment, these records can also be compared with other extensive loess deposits such 

as in the Chinese Loess Plateau and other regions in the Eurasian loess belt (Frechen and 

Dodonov, 1998; Frechen et al., 2009; Machalett et al., 2008; Stevens et al., 2007), or correlated 

with marine and ice core records (Stevens et al., 2008, 2011).  

The Tokaj section in NE Hungary (see supplementary section; Fig. S1) is one of the key Hungarian 

loess sections for paleoclimatic reconstructions. Detailed paleontological (molluscs, charcoal), 

sedimentological and geochemical studies (biomarkers, stable isotopes) have been carried out at 

this site (Rudner and Sümegi, 2001; Schatz et al., 2011; Sümegi and Hertelendi, 1998; Sümegi 

and Rudner, 2001). However, the current chronostratigraphy of the profile is fragmentary and 

based on uncalibrated radiocarbon ages obtained from mollusc shells and charcoal recovered 

from an adjacent section, as well as on stratigraphic correlations with other Hungarian profiles 

(Sümegi and Hertelendi, 1998). Detailed and reliable numerical age control is lacking, limiting the 

interpretation of paleoclimatic and paleoenvironmental information and restricting the correlation 

of this record with other loess-paleosol profiles of the Carpathian Basin and with marine archives. 

The post-IR IRSL signal of feldspar (Thomsen et al., 2008) has been shown to be more stable 

than the conventional IRSL signal usually measured at ~50°C (Buylaert et al., 2009). In the post-

IR IRSL method the samples are, after a preheat, first stimulated with IR at low temperature 

(typically 50°C, IR50) and subsequently IR stimulated at an elevated temperature to record a more 

stable post-IR IRSL signal (pIRIRelevT) In this paper we establish the first luminescence chronology 

for the Tokaj profile by comparing fine-grained quartz OSL ages with polymineral fine-grain IR50 

and pIRIR290 ages obtained following Thiel et al. (2011a) and Buylaert et al. (2012). The resulting 

ages and calculated sedimentation rates are presented in the context of other Hungarian sections 

and implications for previously published paleoenvironmental proxy information are discussed. 
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2. Geological setting  

Tokaj is situated in the northeast of the Carpathian Basin, a region of approximately 300,000 km2 

surrounded by major mountain ranges (Fig. S1). The area around Tokaj has been suggested as 

one of the rare refuges for deciduous and coniferous trees during the last glacial and has, as a 

result, received considerable attention (Rudner and Sümegi, 2001; Schatz et al., 2011; Sümegi 

and Hertelendi, 1998; Sümegi and Krolopp, 2002; Sümegi and Rudner, 2001; Willis et al., 2000). 

The study site itself is situated on the eastern slopes of Kopasz Hill (Patkó quarry; 100 m a.s.l., 

48,07’ N, 21,24’ E; Fig. S1), in the southernmost part of the Tokaj Mountains where the river 

Bodrog discharges into the Tisza. 

This Late Pleistocene 15 m high section consists of three loess layers and two intercalated 

paleosols (Fig. 1). Independent age control is only available for the upper paleosol. A charcoal 

layer was observed on top of a paleosol at a similar profile in the immediate vicinity and dated to 

28-26 14C ka BP (uncalibrated) (Sümegi and Hertelendi, 1998). For the upper loess layer the same 

authors suggest an age range of 26-12 14C ka BP (uncalibrated) based on radiocarbon ages 

obtained from mollusc shells. We converted the published uncalibrated radiocarbon ages using 

the CalPal online tool (Danzeglocke et al., 2011) and suggest an age of ~35-30 ka for the upper 

reddish-brown paleosol, and 29-13 ka for the upper loess layer. (All subsequent 14C ages cited in 

this paper were calibrated in the same manner.)  

 

3. Sample preparation, measurement facilities and dosimetry 

Nine samples were taken during a field campaign in 2009 (lab codes: 103001-103009; Fig. 1). All 

samples for equivalent dose (De) determination were treated under subdued red laboratory light. 

Polymineral fine-grains (4-11µm) were separated from bulk sediment using conventional sample 

preparation techniques (10% HCl, 10% H2O2, Stokes’ settling). A portion of this material was 

etched for 5-7 days with H2SiF6 to obtain fine-grained quartz. The purity of this quartz extract was 

confirmed by the absence of a significant IRSL signal (<3% of the corresponding blue light 

stimulated luminescence) and OSL-IR depletion ratios (Duller, 2003) within 10% of unity. Both 

polymineral and quartz fine grains were settled on aluminium discs from an acetone suspension 

(2 mg/ml).  

 



45 

 

 

Fig. 1: Stratigraphic log and quartz OSL, polymineral pIRIR290 (uncorrected, residual 

subtracted; see section 4.2 for details) and IR50 ages (corrected, residual subtracted) of 

the Tokaj paleosol-loess profile. The positions of the luminescence samples (lab codes 

103001-09) are indicated by black circles. IR50 ages were included for completeness; 

however, quartz OSL and pIRIR290 ages are considered the most reliable ages. 

 

A Risø TL/OSL DA-20 reader equipped with blue LEDs (470nm, ~80 mW/cm2) and IR diodes (875 

nm, ~135 mW/cm2) was used for all measurements. Quartz measurements were made with a U-

340 filter and feldspar emission was detected through a blue filter pack (Schott BG39/ Corning 

7/59).  

High resolution laboratory gamma spectrometry (Murray et al., 1987) was used to determine the 

dose rates. Dose rates for fine-grained quartz (assuming a-value of 0.04±0.01, (Rees-Jones, 

1995) do not vary much down the section and range from 3.37 to 3.87 Gy/ka. For the polymineral 
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fine-grains an a-value of 0.08±0.02 was used (Rees-Jones, 1995). The concentrations of uranium, 

thorium and potassium were converted into dose rates using the dose rate conversion factors of 

(Olley et al., 1996) and water-content attenuation factors (Aitken, 1985). From an examination of 

the European loess literature (Frechen et al., 1997; Novothny et al., 2010; Stevens et al., 2011) 

and a consideration of the setting of our section, we have adopted a life-time average water 

content of 15±5% for all our samples. Radionuclide concentrations and the total dose rates are 

given in Table S2.  

There is no unambiguous evidence for disequilibrium between 238U and 226Ra in any single sample 

(Table S2) and the mean 238U to 226Ra ratio is 0.97±0.06 (n=9). We assume secular equilibrium 

has persisted throughout the lifetime of the site with the possible exception of some 222Rn loss 

which we assume to be 20±10%. 

 

4. Luminescence measurements 

4.1 Quartz OSL measurements 

All quartz dose measurements were performed using a SAR protocol with a preheat of 260°C for 

10 s, a cut-heat of 240°C and a blue-light cleanout for 40 s at 280°C (Murray and Wintle, 2003). 

Stimulation with blue LEDs was for 40 s at 125°C. All calculations were made using the first 0.32 

s of the decay curve minus a background derived from the interval 0.8-1.6 s (early background 

subtraction, (Ballarini et al., 2007).  

A typical dose response curve and the results of a preheat plateau test for two samples are shown 

in Figs. S3 and S4 (supplementary section), respectively. The quartz OSL signal is clearly 

dominated by a fast component (inset Fig. S3) and the dose response curve is well-represented 

by a single saturating exponential. The mean D0, estimated using the oldest sample (103009), is 

173±9 Gy (n=12).  

From Fig. S4a it can be seen that that the De is independent of temperature for preheats >240°C. 

Recycling ratios are all satisfactory, i.e. within 10% of unity, especially for higher preheat 

temperatures (Fig. S4a, Table S5). Recuperation is below 5% of the natural signal for all samples 

and over the entire temperature range (Table S5, Fig. S4b). A preheat/cut-heat combination of 

260°C (10s) / 240°C was chosen, and dose recovery tests were then undertaken using sample 

103005. Three natural aliquots were bleached twice with blue light for 100 s at room temperature 

(with a 10 ks pause in between) and another set of three aliquots received a 5 min Hönle SOL2 

solar simulator bleach to remove the natural signal. A beta dose of ~90 Gy was then given in the 
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reader and measured as usual. These optical treatments gave rather poor measured to given 

dose values of 1.29±0.06 and 1.88±0.34 for blue LED and SOL2 bleach respectively. A further 

dose recovery test was then carried out using the same preheat settings but now by adding a 

large dose (~100 Gy) on top of the natural dose of the youngest sample (103001; De= 71±2 Gy); 

after subtraction of the natural De from the measured dose the dose recovery ratio was 

satisfactory (1.04±0.05, n=6), suggesting that the protocol can recover a known dose given before 

any optical or thermal pre-treatment. 

 

4.2 Post-IR IRSL on polymineral fine-grains 

4.2.1 Measurement of dose 

All measurements on polymineral fine-grains were made using a recently proposed post-IR IRSL 

protocol (Thiel et al., 2011a; Buylaert et al., 2012) (Table S6). There is increasing evidence that 

the pIRIR290 signal measured in steps 4 and 8 does not fade significantly (Buylaert et al., 2012; 

Thiel et al., 2011b; Thomsen et al., 2011). The initial ~2 s of signal less a background derived from 

the last ~40s of the decay curves was used for calculations. 

Typical dose response curves (IR50 and pIRIR290) for an aliquot of sample 103005 are shown in 

Fig. 2. While the shapes of the dose response curves are almost indistinguishable, the signal 

intensity of the pIRIR290 signal is much higher than that of the IR50 signal (inset Fig. 2); similar 

observations were made by Thiel et al. (2011a) and Stevens et al. (2011) for Austrian and Serbian 

loess, respectively. It can also be seen that the natural signals are well below the saturation level 

of the dose response curves. For feldspar SAR dose response curves, 86% of signal saturation 

corresponds typically to ~1100 Gy (e.g. Buylaert et al., 2012); natural IR50 and pIRIR290 doses in 

this study are well-below this value. Recycling ratios are close to unity for both IR50 and pIRIR290 

measurements and the 10% criterion is met by all samples (Table S5). Values range from 

0.93±0.03 (103009, IR50) to 1.07±0.05 (103007, IR50). Recuperation is always well below 5% 

(Table S5); minimum and maximum values are 0.90±0.04% (103009, IR50) and 2.7±0.3% (103002, 

IR50), respectively. 

As with quartz, a dose recovery test using laboratory bleached samples resulted in rather poor 

results (ratios >>1.2), and so a second dose recovery test without prior optical treatment was 

carried out. A large dose (~280 Gy) was added on top of the natural dose for three aliquots of the 

youngest sample 103001. After subtracting the natural De value from the measured dose, the dose 
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recovery ratios are 0.86±0.01 and 1.08±0.01 for IR50 and pIRIR290, respectively (Table S5). At least 

for the pIRIR290 signal this dose recovery test is considered acceptable. 

 

 

Fig. 2: IR50 (open circles) and pIRIR290 (closed circles) dose response and 

natural decay curves (inset; grey: IR50, black: pIRIR290) for sample 103005. The 

values of the zero dose points and recycled points in the graph are almost 

identical; no individual symbols were used in order to improve the readability of 

the graph. 

 

 

4.2.2 Bleaching experiment 

Buylaert et al. (2011) have observed significant residual doses in modern Chinese dust (up to 20 

Gy for the pIRIR290 signal). Sohbati et al. (2011) and Buylaert et al. (2012) have suggested that 

there may in fact be an unbleachable component to these residuals. Unfortunately, a modern 

analogue is not available at or near this site. The best estimate of any residual is obtained by 

laboratory and sunlight bleaching experiments of the individual samples. Three aliquots of each 

sample were bleached for 1 week in a Hönle SOL2 solar simulator simulating daylight/night cycles 
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and at ~1m from the light source to minimize any heating; the same number of aliquots were 

exposed to daylight for the same period of time (Denmark, February).  

Fig. 3 shows residual dose plotted against De for the IR50 and pIRIR290 signals. As reported before 

by Sohbati et al. (2011) for pIRIR225 and Buylaert et al. (2012) for pIRIR290, there is a correlation 

between observed residual dose and De value. Sohbati et al. (2011) suggested that this trend 

implies that short-term laboratory bleaching is not as effective as bleaching under natural 

conditions; this may also explain why our dose recovery results obtained using laboratory 

bleached samples were unsatisfactory (see section 4.2.1). The youngest sample (De=104.6±1.3 

Gy) still has a residual of 12 Gy (SOL2) and 16 Gy (natural daylight). Extrapolating the regression 

line in Fig. 3 to zero total dose gives intercepts of 8±2 and 12±2 Gy, respectively. These residual 

doses at De=0 presumably represent a signal unbleachable in nature, and so we have subtracted 

a mean residual dose of 10±4 Gy from the pIRIR290 equivalent doses. This residual dose is 

consistent with the pIRIR290 doses reported for polymineral fine-grains extracted from modern dust 

collected across the Chinese Loess Plateau (Buylaert et al., 2011). For IR50 there may also be a 

small unbleachable residual intercept (~4±2 Gy for both laboratory and daylight bleaching) 

corresponding to about 6.5% of the smallest values of De; this residual was subtracted from the 

IR50 equivalent doses in the same manner as for pIRIR290.   

 

4.2.3 Anomalous fading 

Fading rate measurements (g2days) were made using the same SAR protocol used for the 

equivalent dose, with a fixed regenerative dose of ~100 Gy and a test dose of ~30 Gy. The mean 

fading rates for the IR50 and pIRIR290 signals are 2.3±0.2%/decade and 1.07±0.11% (n=31, 9 

samples) confirming that the pIRIR290 signal is more stable than the IR50 signal. Three aliquots 

were used per sample and sample-averaged fading rates for IR50 range from 1.9±0.2%/decade to 

3.5±0.4%/decade and for pIRIR290 from 0.3±0.3%/decade to 1.6±0.5%/decade (Table S5). It is 

interesting to note that the pIRIR290 signal still shows measurable fading on laboratory timescales 

despite the considerable evidence that accurate ages are obtained without fading correction 

(Buylaert et al., 2012) and that the pIRIR290 signal in “infinitely” old samples is very close to 

saturation (Buylaert et al., 2011; Thiel et al., 2011a; Thomsen et al., 2011). Sample-averaged 

fading rates were used to correct the IR50 and pIRIR290 ages using the model of Huntley and 

Lamothe (2001). The individual fading rates (g-value) and uncorrected and corrected ages for both 

signals are presented in Table S5.  
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Fig. 3: Results of laboratory (Hönle SOL2 simulator) and daylight bleaching 

experiments for the IR50 (triangles) and pIRIR290 (circles) signals. Three 

aliquots were measured per sample (error bars represent 1s.e.). 

Extrapolating the regression line to zero age gives 8±2 and 12±2 Gy for 

pIRIR290 and 4±2 Gy for IR50. 

 

  

5. Results and discussion  

5.1 Age comparison 

When comparing a stratigraphic sequence of ages derived from the same signal one must of 

course only consider the independent sources of uncertainty on each age. Only at the top of the 

sequence (3 and 3.75 m) is there any suggestion of age inversion (Table S5). This inversion may 

be significant in the quartz OSL and feldspar pIRIR290 data but is not apparent in the IR50 feldspar 

data. Removing the systematic errors on the ages from these two samples gives quartz ages of 

27.1±0.9 ka (103002) and of 30.5 ±1.3 ka (103003) and uncorrected pIRIR290 ages of 27.6 ±1.2 

(103002) and of 25.5±1.2 (103003). In both quartz and feldspar these ages are probably 

significantly different from each other but it is difficult to ascribe a reason for this discrepancy 
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because the deviations are in opposite directions. Thus we cannot deduce, for example, that these 

discrepancies arise because of incomplete bleaching or inaccurate dose rate estimation. 

Figure 4 shows the uncorrected and corrected IR50 and post-IR IR290 ages (including correction for 

residual doses) plotted against quartz OSL ages. For the five youngest samples (lab codes 

103001-103005; dose range 70-130 Gy) we consider quartz OSL ages as reliable independent 

age control. The oldest three samples (lab codes 103007-103009) have quartz doses around 200 

Gy with natural signals at ~70% of saturation, and we are less confident of the accuracy of these 

ages.  

 

 

Fig. 4: a) Uncorrected and fading-corrected IR50 ages plotted against quartz OSL ages. An unbleachable 

residual of 4±2 Gy was subtracted from all IR50 data. The grey dashed lines show a deviation of 10% from 

the 1:1 grey solid line. b) Uncorrected and fading-corrected pIRIR290 ages plotted against quartz OSL ages. 

An unbleachable residual of 10±4 Gy was subtracted from all pIRIR290 data. 

 

From Fig. 4a it can be seen that the uncorrected IR50 ages clearly underestimate compared to 

quartz OSL ages over the entire age range (20-60 ka). Fading correction appears to overcome 

most of the underestimation for the older samples but, surprisingly, at least for three young 

samples the correction is not sufficient. For pIRIR290 both uncorrected and corrected ages are in 

good agreement with quartz although it is possible that correction may tend to cause 
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overestimation for the youngest five samples (Fig. 4b, ratio corrected pIRIR290 to quartz OSL age 

= 1.12±0.06).  

Both quartz OSL and feldspar IRSL ages are equally sensitive to the assumed water content of 

15±5%. Using sensitivity analysis we deduce that all our ages would increase by ~1% for a 1% 

increase in water content at least over a range of ±10%. 

As discussed above, the age of the upper paleosol is taken as 35-30 ka based on correlation with 

an adjacent profile from which a single 14C age is available. This independent age control should 

be compared with the luminescence ages from sample 103005 for which quartz gave 27±2 ka, 

pIRIR290 gave 30±3 ka (uncorrected) and 31±3 ka (corrected). This supports the earlier 

conclusions that the pIRIR290 signal does not require a fading correction to give accurate ages.  

Similarly, we use the 14C ages reported by Sümegi and Hertelendi (1998) for an adjacent section 

to provide age control for the upper loess layer of between 26 and 18 ka. Overall, these ages are 

very consistent with our data, especially when we take into account that the exact transitions from 

loess to paleosols were not specifically dated. We conclude from the comparison of quartz OSL, 

polymineral IR50 and pIRIR290 and from the good agreement with the independent age control that 

standard quartz OSL and polymineral pIRIR290 seem to yield the most reliable ages. The results 

of the IR50 measurements are not considered any further as they clearly underestimate or, if 

corrected, still deviate from quartz OSL for younger samples. The chronology of the Tokaj profile 

will now be discussed based on quartz OSL and polymineral pIRIR290. 

 

 

5.2 Chronology of the Tokaj profile 

Fig. 1 shows the luminescence ages together with the lithology of the Tokaj profile. Both the 

uncorrected pIRIR290 ages and the quartz OSL ages increase with depth (except between 3 and 6 

m) and are stratigraphically consistent with no significant inversions (with the possible exception 

of samples 103002 and 103003, as discussed above). Ages range from 21±2 ka (OSL) and 25±2 

ka (pIRIR290) below the most recent soil to 62±4 ka (OSL) and 57±5 ka (pIRIR290) directly on top 

of the lower paleosol. 

This lower paleosol appears to have developed before the onset of MIS 3 (>58 ka), assuming no 

stratigraphic gaps in the profile. In case of a hiatus, the lower paleosol can be considerably older 

than the overlying loess. The age is remarkably similar to the 56±4 ka age in the lowest last glacial 
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loess unit at Crvenka, but here the underlying soil has been interpreted to be part of the S1 

complex (MIS 5, 71-130 ka; Marković et al., 2008, Stevens et al., 2011).  

The middle loess layer in Tokaj is represented by three samples (103007-09) and accumulated 

between c. 50 and 60 ka, in the colder periods of MIS 3. This layer might correspond to the ‘VL1L2’ 

loess in the adjacent Vojvodina region in Serbia (after the Vojvodina chronostratigraphic system; 

Marković et al., (2008; 2011) although here it usually extends into MIS 4 (60-71 ka) without any 

intercalated soils. Further investigations are needed to better constrain the timing of soil and loess 

formation in the early last glacial across this region. The Upper Paleosol is represented by two 

samples taken from the top and the lower half of the soil (103005, 103006). Results of 27±2 and 

39±3 ka (OSL) and 30±3 and 39±4 ka (pIRIR290), respectively, indicate that this soil probably 

formed during the later stages of MIS 3.  

However these ages do not necessarily indicate the time of soil formation, but rather the time of 

deposition of the sediment in which the soil subsequently developed. Furthermore, the results for 

sample 103006 are only minimum ages for these processes as this sample is located about 25 

cm above the transition from the middle loess layer to the paleosol. Bracketing the upper paleosol 

with ages from the over- and underlying loess layers, an age range for the time of soil formation 

of between c. 45 ka and c. 25 ka can be derived. Similar soils of corresponding age ranges have 

been reported at Crvenka (38±4 ka; Stevens et al., 2011), Stari Slankamen (34.4±2.2 ka, Schmidt 

et al., 2010) and Surduk (31.8±3.7 ka, Fuchs et al., 2008) in Vojvodina, Serbia. Earlier studies of 

the Tokaj profile using biomarkers, stable C and N isotopes (Schatz et al, 2001), molluscs (Sümegi 

and Hertelendi, 1998) and charcoal (Sümegi and Rudner, 2001) have shown that the climate 

became warmer and drier during the time of soil formation, most likely resulting in a dry steppe 

environment. The Vojvodina MIS 3 soils and pedocomplexes (‘VL1S1’) are, however, often less 

well developed than at Tokaj, probably indicating different paleoclimatic conditions in the south of 

the Carpathian Basin. 

Four samples (103001-04) taken from the uppermost loess layer have ages from 21.2±1.5 ka 

(OSL) and 25±2 ka (pIRIR290) to 30±2 ka (OSL) and 28±2 ka (pIRIR290). These ages all suggest 

that the upper loess layer was deposited during MIS 2 (11-24 ka) in the upper pleniglacial. Similar 

MIS 2 loess layers have been reported from the Vojvodina region (‘V L1L1’ loess) (Fuchs et al., 

2008; Schmidt et al., 2010; Stevens et al., 2011), as well as from other locations in Hungary 

(Novothny et al., 2011). According to Sümegi and Hertelendi (1998) the upper loess layer was 

deposited from 29 ka BP, which is compatible with our data, but is also hypothesized to cover the 

period until ~13,000 yrs ago, although there is no radiocarbon age in their publication that confirms 
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this assumption. However, our youngest OSL age is 21.2±1.5 ka, which clearly indicates that loess 

deposition either ended around 20 ka or that younger loess layers have been eroded or 

overprinted by Holocene pedogenesis. 

 

5.3 Sedimentation rates and implications for proxy records 

Recent results based on highly resolved luminescence chronologies indicate that loess deposition 

is often episodic and sedimentation rates can be highly variable by up to 1-2 orders of magnitude. 

These variations cannot be reliably obtained from grain size or MS data and are only revealed by 

independent dating (Buylaert et al., 2008; Stevens et al., 2006; Stevens and Lu, 2009; Stevens et 

al., 2008, 2007). Fig. 5 shows a comparison of an assumed uniform sedimentation rate and 

sedimentation rates based on the new OSL/pIRIR290 age depth model of the Tokaj profile. The 

luminescence derived sedimentation rates differ significantly and are considerably more variable 

throughout the profile compared to the uniform sedimentation rate. While sedimentation is 

considerably lower during the middle loess layer (0.30 mm/a compared to 0.42mm/a), values for 

the last glacial upper loess layer are almost twice as high as previously assumed (0.86 m/a 

compared to 0.42mm/a). This suggests more active source regions, higher transport rates, or 

more effective trapping, or a combination of these processes during this period. This MIS 2 centred 

peak in loess accumulation rates has also been observed elsewhere in the Carpathian Basin, 

most pronounced at Surduk (Fuchs et al., 2008), Süttő (Novothny et al., 2009; Novothny et al., 

2011) and Crvenka (Stevens et al., 2011). In addition to the relative increases in dust deposition 

during this period, absolute sedimentation rate values between these sites are comparable and 

match the general pattern of decreasing magnitudes from the north to the south of the Carpathian 

Basin, potentially due to a closer proximity to likely dust source areas (Stevens et al., 2011; Újvári 

et al., 2010). Previous proxy studies in Tokaj are all based on an assumed uniform sedimentation 

rate; our luminescence chronology suggests that a thorough review and re-assessment of the 

proxy data and interpretations is necessary.  

 

6. Conclusion 

In this study we compare fine-grained SAR quartz OSL ages with IR50 and pIRIR290 ages from 

polymineral fine-grains from the Tokaj loess-paleosol section, NE Hungary and present the first 

pIRIR290 ages of Hungarian loess. 
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In general, the luminescence characteristics are satisfactory for all signals. An unbleachable 

residual of ~10 Gy (pIRIR290) and ~4 Gy (IR50) was estimated through a laboratory bleaching 

experiment and subtracted from the appropriate De estimates. As expected, the IR50 signal shows 

significant fading (g2days ~2.3 %/decade) and uncorrected IR50 ages severely underestimate both 

for young and old samples compared to standard SAR quartz OSL ages. Fading correction 

improves the results substantially, but even after correction the younger samples still 

underestimate and are therefore not used to establish a numerical chronology. The pIRIR290 

laboratory fading rate is much smaller (~1%/decade) and we report uncorrected as well as fading-

corrected pIRIR290 ages. Uncorrected pIRIR290 ages and quartz OSL ages agree well with each 

other and seem to confirm that pIRIR290 ages do not require fading correction. 

 

 

Fig. 5: Comparison of an assumed uniform sedimentation rate (grey solid 

line) and the rates derived from the luminescence age-depth model (black 

solid line). For the latter, ages are taken as the mean of the quartz OSL age 

and the polymineral pIRIR290 age (uncorrected, residual subtracted). 

Sedimentation rates are calculated from the quotient of the difference 

between two ages and the difference in depth. Errors, propagated in 

quadrature, are shown as a grey shaded band. The uniform sedimentation 

rate (0.42 mm/a) is based on 2 rough tie points taken from the literature 

(Sümegi and Hertelendi, 1998); the upper tie point is the youngest reported 

loess age (18 ka BP, 14C), the lower is an estimate of the minimum age of the 

lower paleosol (50 ka BP). Please note that this uniform rate is only intended 

for illustrative purposes. 
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Using the uncorrected pIRIR290 and OSL ages we present the first complete chronology for the 

Tokaj loess profile. This luminescence chronostratigraphy is supported by previously published 

radiocarbon ages and is consistent with other loess-paleosol profiles in the Carpathian Basin. 

Following the terminology of the Vojvodina region, an L1L1 (~20-26 ka) and L1L2 loess layer (~40-

60 ka) are present at Tokaj, as well as a strongly developed L1S1 paleosol (~25-45 ka) and a 

second paleosol that presumably developed before MIS 3 (>58 ka). Contrary to previous 

assumptions and interpretations we found that loess accumulation rates are highly variable and 

range from 0.30 mm/a to 0.86 mm/a. Peaks in these values are comparable in age and magnitude 

to sedimentation rates reported from other locations in Hungary and Serbia. Since previous 

studies at the Tokaj site all assume a uniform sedimentation rate, these proxy interpretations 

require a thorough review. 
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Supplementary material 

 

   Fig. S1: Location of the studied paleosol-loess profile at Tokaj, NE Hungary. 

 

 

 

Table S2: Uranium, radium, thorium and potassium content as measured by gamma spectrometry, and 

calculated effective dose rates to fine-grained quartz and polymineral (PM) grains. See text for details. 

Uncertainties mentioned with the analytical data and resulting dose rates are both random (1 s.e.) and 

systematic (~1.5%); a systematic uncertainty of 5% is associated with the cosmic dose rates. 
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Fig. S3: Example of a quartz OSL dose response and natural 

decay curve (inset) for sample 103005.  

 

 

 

 

 

Fig. S4: a) Preheat plateaus for samples 103005 and 103009 (cut-heat 20°C below preheat). Three aliquots 

were measured per temperature step, error bars represent 1s.e. b) Recycling ratio (triangles) and 

recuperation (circles) for the same aliquots. Solid line at 1.00 represents perfect recycling and dashed lines 

denote 10% of unity. 
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Table S5: Summary table of De results, luminescence characteristics, g2days-values and corrected and 

uncorrected age estimates for the three signals under investigation (errors are 1s.e.). For details see text. 

 

 

 

 
Table S6: post-IR/IRSL protocol after Thiel et al. (2011a). 
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Abstract 

The Tokaj loess-paleosol sequence in NE Hungary is one of the key sites for detailed paleoclimate 

reconstructions of the Quaternary in SE Europe. In this study, the geochemical composition of 

samples from the upper part of the sequence (45-21 ka) was analyzed and a variety of commonly 

used weathering indices and element ratios were applied to estimate weathering intensity. Further, 

similarities and differences between these weathering indices and their sensitivity to changes in 

paleoclimatic conditions were assessed. Results indicate that all of them accurately track changes 

in weathering intensity and are, with minor exceptions, very similar to each other.  

Based on different transfer functions for major and trace element concentrations (XRF), mass-

specific magnetic susceptibility (Χ) and δ13C data, we calculated mean annual paleotemperature 

(MAT) and mean annual paleoprecipitation (MAP) for the time intervals of paleosol formation (45-

27 ka) and dust deposition (27-21 ka). Results differ depending on the respective transfer function 

and method but largely agree with previously published paleoclimate data of the region. XRF- and 

δ13C-based results converge to a MAT of 8-10 °C (paleosol) and 8-9 °C (loess) and show a MAP 

range of 685-879 mm a-1 (paleosol) and 572-700 mm a-1 (loess). Χ-based results are probably 

more consistent with the literature with MATs of 8.4 °C (paleosol) and 6.6 °C (loess) and MAPs of 

258-390 mm a-1 (paleosol) and 222 mm a-1 (loess). 
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1. Introduction 

Loess paleosol sequences are important terrestrial archives of Quaternary climate changes (An 

et al., 1990; Catt, 1991; Catt et al., 2000; Kemp, 2001; Porter, 2001). Geochronological techniques 

have provided valuable insights into sediment dynamics and helped establish a general 

chronologic framework of loess-paleosol sequences as a basis for all subsequent climate studies. 

Geophysical and sedimentological methods, such as grain size analyses and magnetic 

susceptibility (e.g. Evans and Heller, 2001; Lu et al., 1999; Terhorst et al., in press) have 

contributed to an improved understanding of past climate fluctuations, whereas paleontological 

findings have added unique paleoenvironmental information (Kovács et al., 2012; Sümegi and 

Krolopp, 2002). Spatially and temporally higher resolved micromorphological studies of soils and 

sediments provide complementary insights to past climate, landscape and environment (Kühn et 

al., 2013; Pietsch et al., 2014). An additional source of more quantitative environmental and 

climate data are the wide range of organic geochemical methods such as biomarkers and stable 

isotopes (e.g. Hatté et al., 1999; Schatz et al., 2011; Zech et al., 2007; Zech et al., 2010). 

Besides providing provenance information (Muhs et al., 2013; Újvári et al., 2008; Újvári et al., 

2014), loess and paleosol inorganic geochemistry generally reflects paleoweathering conditions 

and contributes to paleoclimate reconstructions as well. To quantify absolute and relative changes 

of paleoweathering intensity, a variety of different geochemical weathering indices (WIs) and 

element ratios have been introduced (e.g. Buggle et al., 2011; Sheldon and Tabor, 2009). Despite 

the debate about the reliability of these indices (Buggle et al., 2011; Li and Yang, 2010; Xiao et 

al., 2010), many successful applications can be found in the literature, mainly, but not limited to, 

Quaternary loess and paleosols in Europe (Buggle et al., 2011; Kovács, 2007; Kühn et al., 2013; 

Újvári et al., 2008; Újvári et al., 2014; Vancampenhout et al., 2013), North and South America 

(Goldberg and Humayun, 2010; Hall and Penner, 2013; Meier et al., 2014), China (Baumann et 

al., 2014; Chen et al., 1999; Xiong et al., 2010), Southern Arabia (Pietsch and Kühn, 2012) and 

Siberia (Zech et al., 2008).  

Yet weathering indices may not only serve to quantify paleoweathering intensity, but also to 

estimate paleoclimate parameters, i.e. mean annual temperature (MAT) and mean annual 

precipitation (MAP) via specifically calibrated empirical transfer functions (Sheldon and Tabor, 

2009). Although having been published for several years, these transfer functions based on 

weathering indices (Sheldon and Tabor, 2009), magnetic susceptibility (Han et al., 1996; Maher 

et al., 1994; Maher et al., 2003) and stable carbon isotopes (Nordt et al., 2007) are still to gain 
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more attention in loess-paleosol studies, especially for SE Europe since most successful studies 

have been conducted elsewhere (Kühn et al., 2013; Meier et al., 2014; Pietsch and Kühn, 2012). 

Against this background, our study investigates one of the most extensively studied loess paleosol 

profiles in Tokaj, SE Hungary (NE Europe). The goals are (a) to apply a variety of geochemical 

weathering indices and element ratios to estimate weathering intensity (b) to assess and compare 

similarities and differences between these weathering indices as well as their sensitivity to 

changes in paleoclimatic conditions and (c) to apply transfer functions to derive MAT and MAP 

estimates from different proxy records and to discuss and compare the results with local climate 

data from the literature and the results of global climate models.  

The results of this study will broaden our understanding of the late Quaternary paleoclimate of SE 

Europe and contribute to the current debate about full-glacial refugia of thermophilous plants 

(Willis et al., 2000; Willis and van Andel, 2004). Furthermore, this study may serve as an 

encouragement of future applications of these methods to examine and quantify paleoclimate 

records at other locations. 

 

2. Study area 

Tokaj (NE Hungary) is situated in the NE Carpathian Basin, a region of approximately 300,000 

km2 that is surrounded by major mountain ranges (Carpathian Mts., Alps, Dinaric Mts.; Fig. 1a). 

The area around Tokaj has been suggested as one of the rare refuges for deciduous and 

coniferous trees during the last glacial and has, as a result, received considerable attention (e.eg. 

Rudner and Sümegi, 2001; Schatz et al., 2011; Schatz et al., 2012; Sümegi and Hertelendi, 1998; 

Sümegi and Rudner, 2001; Sümegi and Krolopp, 2002; Willis et al., 2000). Today, NE Hungary is 

part of the continental climate zone (Dfb, warm summer subtype), with a large seasonal 

temperature variance (mean January T:-3 °C; mean July T: 20.6 °C; mean annual T: 9.8 °C) and 

a mean annual precipitation of 546 mm a-1 (World Data Center for Meteorology, 2011).  

The loess-paleosol sequence at Patkó quarry is situated on the eastern slopes of Kopasz Hill (100 

m a.s.l., 48°07’ N, 21°24’ E), in the southernmost part of the Tokaj Mountains at the confluence of 

the Bodrog and Tisza rivers. A 15 m high loess-paleosol sequence with two well-developed 

paleosols and three loess layers is exposed on top of an approximately 40 m high wall cut into the 

flanks of Kopasz Hill. The investigated section and the results of sedimentological, 



67 

 

geochronological, geophysical and geochemical investigations have been described in detail by 

Sümegi and Rudner (2001), Sümegi and Hertelendi (1998) and Schatz et al. (2011, 2012). 

 

Fig. 1: a) Map of the study area, Tokaj in NE Hungary. b) Chronostratigraphy of the upper half of the 

paleosol-loess profile at Tokaj (Schatz et al., 2012). 

 

In this study, we decided to focus exclusively on the upper part of the loess-paleosol sequence for 

two reasons: (i) the only paleotemperature data for the Northeastern part of Hungary and Tokaj, 

specifically, are the malacothermometer paleotemperatures from Sümegi and Hertelendi (1998) 

but they are only available for the upper half of the Tokaj loess-paleosol sequence. (ii) The 

chronostratigraphy (Schatz et al., 2012) for the upper half of the loess-paleosol sequence is more 

detailed than for the lower half, for which only rough age estimates exist. Paleoclimate information 

for a part of the sequence that is not well-constrained with regard to age does not yield much 

scientific value and lacks context. Therefore, only samples from the upper loess layer and the 

upper paleosol were included in our analyses (Fig. 1b). 

The upper paleosol developed on top of a ca. 50-60 ka old loess layer which corresponds to the 

MIS3 'VL1L2' loess layer in the adjacent Vojvodina region in Serbia (e.g. Marković et al., 2008). It 

shows a reddish-brown, humic horizon with signs of podsolization in the upper part (Sümegi and 

Rudner, 2001). This soil formed in the latter stages of MIS3 between ca. 45-27 ka and may be 

classified as a weakly developed type of 'VL1S1' soil in the Vojvodina system. A charcoal layer 

directly on top of the paleosol, found in a similar stratigraphic position in an adjacent profile, was 

dated to 28-26 ka BP and has been interpreted as the result of extensive natural wildfires occurring 

after pedogenesis ceased and the climate became extremely dry (Sümegi and Hertelendi, 1998; 

Sümegi and Rudner, 2001). The upper loess layer was deposited in MIS 2 between 27-21 ka and 
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corresponds to the ‘VL1L1’ loess. Dust deposition may have ceased afterwards, or younger loess 

may have been eroded or overprinted by pedogenesis. The recent soil is only weakly developed 

and affected by recent bioturbation. Samples of the recent soil are not included in our analyses. 

 

3. Methods 

3.1 Laboratory analyses 

Standard procedures were followed for sampling and sample handling in the field and lab. The 

section was cleaned and 35 bulk samples for geochemical analyses were taken in depth 

increments of 25 cm and air-dried at 40 °C. For all analyses, representative aliquots from 

homogenized and sieved (<2 mm) sample material were used. 

XRF measurements were carried out on ball-milled subsamples. For the fused beads 1.5 g of 

dried sample powder (at 105 °C) is mixed with 7.5 g MERCK spectromelt A12 (mixture of 66% Li-

tetraborate and 34% Li-metaborate) and melted at 1200 °C to fused beads using an Oxiflux system 

from CBR analytical service. Measurements were done with a Bruker AXS S4 Pioneer wavelength 

dispersive XRF device (Rh-tube at 4kW) and 32 standardized samples, using the traces program. 

Loss on ignition (LOI) was determined externally at 1000 °C. The element concentrations are 

expressed as wt.-% or ppm and were recalculated on a volatile-free basis. 

Total organic carbon (TOC) was measured on decalcified subsamples (50 mg) using an NA 1108 

Elementar Analyzer (CE Instruments, Milan, Italy). CaCO3 was measured gasvolumetrically (DIN 

ISO 10693) and served as a basis for the calculation of total inorganic carbon (TIC). TIC and 

calcite-bound CaO were calculated stoichiometrically (wt.-%): 

TIC = CaCO3 * 0.12         (1) 

CaOcalcite = [(TIC * 3.6641) – (MgO * 2.092) * 0.522] * 2.2743 * 0.5603   (2) 

CaO* = CaO tot – CaO calcite       (3) 

In samples with low carbonate and high Mg concentrations (dolomite, mafic minerals), CaOcalcite 

calculations can yield negative results. In this case, values are set to 0. Results are roughly similar 

to those obtained with McLennan’s correction, which may support their validity. If CaO is corrected 

after McLennan (1993), the CaO* (henceforth called CaO**) concentration is calculated based on 

the ratio of Ca and Na: if the concentration of CaO is less or equal to the concentration of Na2O, 
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the CaO value remains unaltered. If the CaO concentration is higher than Na2O, the CaO** value 

is set equal to Na2O. Apatite-bound Ca is assumed to be negligible. 

 

3.2 Weathering indices 

A variety of WI were calculated (for equations, see Table 1). Traditional, multi-element weathering 

indices are calculated from the concentrations of several mobile and immobile elements (in molar 

portions), thus providing a quantitative measure of mineral weathering. They are usually based on 

the enrichment of Al and the depletion of cations as Ca, K, Na or Mg. Common multi-element WIs 

are ΣBases/Al ratio (Retallack, 2001) and, more recently, the Paleosol Weathering Index (PWI, 

Gallagher and Sheldon, 2013). Other ratios are based on a more limited selection of elements (Al, 

K, Na, Ca) to focus on the weathering behavior of the feldspar group. An advantage of these 

feldspar indices is the fact that all index elements are hosted in the same mineral group, which 

helps minimizing the effects of variations in mineralogy. Common feldspar indices are the widely 

used Chemical Index of Alteration (CIA, Nesbitt and Young, 1982) and the Indices A and B after 

Kronberg and Nesbitt (1981).  

In order to exclude potential effects arising from the inconsistency in K weathering (Buggle et al., 

2011), several indices without K were developed, most prominently the Chemical Index of 

Weathering (CIW, also called CIA-K, Harnois, 1988), which is the K-free equivalent of the CIA, 

and the Plagioclase Index of Alteration (PIA, Fedo et al., 1995), a further modification of CIA and 

CIW that adjusts for Al contained in K-feldspar and results in purely plagioclase weathering. The 

WI after Yang et al. (2006) index uses Ti instead of Al as a refractory element and has been 

developed specifically for loess-paleosol studies, whereas WI-1 and WI-2 after Darmody et al. 

(2005) have not been widely applied to loess and paleosols yet. 

Due to problems associated with determining the correct amount of silicate-bound Ca, indices that 

do not rely on Ca might be preferable, such as the index of Feng (1997) or the Chemical Proxy of 

Alteration (CPA, also known as CIW’, Cullers, 2000, Buggle et al., 2011), which factors out both 

Ca and K, thus attempting to avoid all potential biases due to these cations. 

Trace element indices are the last group of commonly employed weathering indices (Table 1). 

Both Ba/Sr and Rb/Sr represent leaching behavior during weathering with Ba and Rb being less 

soluble than Sr. Potential weakness in these indices are the poorly understood behavior of Rb and 

Ba in the sediment (Gallet et al., 1996; Sheldon and Tabor, 2009), grain-size dependence and the  
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Table 1: Overview of weathering indices and empirical climate transfer functions for MAT, MAP and MJT 

(mean July temperature): a) Mollisol-specific, b) Inceptisol-specific, c) forest soil-specific, d) XB-C = [(mean 

mass-specific magnetic susceptibility Χ of B horizon)-(mean mass-specific magnetic susceptibility Χ of 

loess)], Χ [10-8m3kg-1], e) X = mean mass-specific magnetic susceptibility of B horizon or loess, f) the δ13C 

transfer function results in a mean July paleotemperature (MJT) which needs to be converted to MAT (see 

5.3.1 for details). 

Weathering index Equation Reference 

multi-

element 

CIA =[Al/(Al+Na+Ca*+K)]*100 Nesbitt & Young, 1982 

Index A =(Si+Ca*+K+Na)/(Al+Si+Ca*+K+Na) Kronberg & Nesbitt, 1981 

 Index B =(Ca*+Na+K)/(Al+Ca*+Na+K) Kronberg & Nesbitt, 1981 

 PWI =[(4,20*Na)+(1,66*Mg)+(5,54*K)+(2,05*Ca)]*100 Gallagher & Sheldon, 2013 

 Σbases/Al =(Ca*+Mg+Na+K)/Al Retallack, 2001 

K-free CIW (CIA-K) =[Al/(Al+Na+Ca*)]*100 Harnois, 1988; Maynard, 1992 

 PIA =[(Al-K)/(Al+Ca*+Na-K)]*100 Fedo et al., 1995 

 YANG =(Ca*+Na+Mg)/Ti Yang et al., 2006 

 WI-1 =(Si+Ca*)/(Fe+Ti) Darmody et al., 2005 

 WI-2 =(Si+Ca*)/(Fe+Ti+Al) Darmody et al., 2005 

Ca-free CPA (CIW') =[Al/(Al+Na)]*100 Cullers, 2000; Buggle et al., 2011 

 FENG =(Al+Fe)/(Na+K+Mg+P) Feng, 1997 

trace 

element 
Ba/Sr   

 Rb/Sr   

    

Climate parameter Equation Reference 

XRF-based XRF1-MAP =-259,3 Ln(Σ bases/Al)+759 Sheldon et al., 2002 

 XRF2-MAP a) =-130,9 Ln(Ca/Al)+467 Sheldon et al., 2002 

 XRF3-MAP =221,1e0,0179(CIA-K) Sheldon et al., 2002 

 XRF1-MAT b) =46,9(Al/Si)+4 Sheldon, 2006 

 XRF2-MAT =-18,5* [(K+Na)/Al]+17,3 Sheldon et al., 2002 

 XRF3-MAT c) =-2,74Ln(PWI)+21,39 Gallagher & Sheldon, 2013 

MS-based Χ1-MAP d) =222+199 log (XB-C),  Maher et al., 1994 

 Χ2-MAP e) =-22,7+11,6X-6,7*10-2X2+1,9*10-4X3-1,9*10-7X4 Han et al., 1996 

 Χ3-MAP d) =86,4*Ln(XB-C)+90,1 Maher et al., 2003 

 Χ-MAT e) =-2,4+0,2X-1,1*10-3X2+2,7*10-6X3-2,7*10-9X4  Han et al., 1996 

δ13C-based δ13C-MJT f) =[0,685(δ13C)+34,9] Nordt et al., 2007 

 

fact that variable and low initial concentrations may result in erroneously high weathering 

intensities. In addition to that, Sr substitutes for Ca (Wedepohl, 1987) and is therefore controlled 

by calcite and dolomite behavior. 
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3.3 Paleoclimate information 

Some of the weathering indices listed above may also be used to estimate paleoprecipitation and 

paleotemperature based on empirical relationships between MAT or MAP and the geochemical 

composition of soils. We calculated MAP in three different ways after Sheldon et al. (2002). MAT 

was calculated after Sheldon et al. (2002), Sheldon (2006) and Gallagher and Sheldon (2013). 

These equations (Table 1) were mostly derived from a large database of North American soils 

(Marbut, 1935) and modern climate data. Ideally, a dataset used as a basis for transfer functions 

specifically for (SE) Europe would contain local soil data but such a dataset is not available. The 

North American soils used to derive the transfer functions, however, have both a very large variety 

in formation times, formation processes and parent materials. We therefore assume that they are 

representative for European (paleo-)sols as well and, consequentially, the transfer functions can 

be applied to those, too. 

In this study, an important conceptual assumption needs to be made if we want to apply the XRF-

based transfer functions to the paleosol and loess from the upper half of the Tokaj sequence. In 

order to be able to compare the results, we have to assume that the upper loess is geochemically 

identical to the middle loess (not included in our analyses) from which the paleosol has developed. 

A detailed geochemical analysis is beyond the scope of this study but the results of a forthcoming 

study support this assumption (Schatz et al., submitted). Sr-Nd isotopic analyses suggest a stable 

sediment source over time and elemental fingerprints confirm the geochemical homogeneity of 

the both loess layers. 

With regard to the validity of using the transfer functions not only for paleosols, but also for loess, 

Kühn et al. (2013) have argued that they can indeed be used for both materials. Since loess is the 

parent material of the paleosol, it should include a genuine climate signal as well. In their study, 

Kühn et al. (2013) used two different equations and received similar MAP and MAT results for 

loess. Their results show a clear trend towards lower temperatures for loess than for the paleosol 

and MAT/MAP estimates that are comparable to those obtained from other proxies. These 

observations encourage the application of the transfer functions to loess. 

For comparison with XRF-based reconstructions, we also calculated MAT and MAP based on 

mass-specific magnetic susceptibility Χ (henceforth called “Χ-based”) following Maher et al. 

(1994), Maher et al. (2003) and Han et al. (1996). Equations are given in Table 1. Unlike XRF, 

magnetic susceptibility data are available for the entire profile, including the middle loess (Schatz 

et al., 2011; see appendix) from which the upper paleosol has developed. This middle loess was 
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used to calculate Χ1- and Χ2-MAP, which require a ‘background’ or baseline Χ signal of the parent 

material of a paleosol. 

 

Table 2: Overview of weathering index results. Arrows indicate if WI increases or decreases with increasing 

weathering intensity. CaO* and CaO** denote the type of CaO correction (see text). The min/max values 

obtained for the study area are shown, together with results from previous studies at other locations: a) 

Loess from southwest Hungary (Újvári et al., 2008), b) Loess from Paks, Hungary (Újvári et al., 2012), c) 

Loess from Stari Slankamen, Serbia (Buggle et al., 2011), d) Loess from Beremend, Hungary (Varga et al., 

2011), e) Average Loess Composition (AVL3, Újvári et al., 2008), f) Red Clay from SW Hungary (Kovacs, 

2007). Caution is required when comparing WIs in absolute numbers because results differ depending on 

the CaO correction used. 

 

Index ↑↓ CaO Results Loess a) Loess b) Loess c) Loess d) AVL3 e) Red Clay f) 

   min/max HU HU RSB HU global HU 

CIA ↑ CaO* 49-67 - - - - - 79.3 

  CaO** 57-67 58-66 60-70 57-76 67-78 41 - 

Index A ↓ CaO* 0.91-0.923 - - - - - - 

  CaO** 0.91-0.923 - - - - 0.922 - 

Index B ↓ CaO* 0.33-0.51 - - - - - - 

  CaO** 0.33-0.43 - - 0.24-0.43 - 0.59 - 

PWI ↓ CaO* 11.6-13.4 - - - - - - 

  CaO** 11.6-13.4 - - - - 11.9 - 

Σbases/Al ↓ CaO* 0.76-1.5 - - - - - - 

  CaO** 0.75-1.18 - - - - 1.94 - 

CIW ↑ CaO* 54-75 - - - - - - 

  CaO** 64-75 - 67-80 64-86 76-88 45 - 

PIA ↑ CaO* 48-72 - - - - - - 

  CaO** 59-72 - - 60-85 - 39 - 

YANG ↓ CaO* 6.4-14 - 6-23 - - - - 

  CaO** 6.3-10.6 - - - - 22 - 

WI-1 ↓ CaO* 31-36 - - - - - - 

  CaO** 31-35 - - - - 41 - 

WI-2 ↓ CaO* 7.3-8.7 - - - - - - 

  CaO** 7.3-8.7 - - - - 9 - 

CPA ↑  78-83 - 81-89 78-91 86-94 81 - 

FENG ↑  1.3-1.9 - - - - 1.34 - 

Ba/Sr ↑  1.5-2.5 2.1-2.8 1.0-3.7 1.0-3.2 1.0-5.0 1.3 1.1 

Rb/Sr ↑  0.51-0.87 0.2-0.7 0.2-0.9 0.4-1.2 0.3-1.4 0.38 0.46 

 

Although the Χ-based equations have been derived from local datasets – the Chinese Loess 

Plateau (Maher et al., 1994; Han et al., 1996) and the Russian steppe (Maher et al., 2003) – it has 

been argued that they can be applied elsewhere as well. Panaiotu et al. (2001) have successfully 

used the Χ1-MAP equation to calculate MAP for a paleosol-loess sequence in SE Europe. Using 

an extensive dataset of well-drained paleosols developed on loess from the Northern Hemisphere 

temperate zone, Maher and Thompson (1995) and Maher et al. (2002) have shown that these 
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soils follow a similar magnetic enhancement trend as soils from the Chinese Loess Plateau. Maher 

et al. (2003) proposed an adjusted equation derived from Russian steppe soils, which is applicable 

to well-drained soils in a MAP range of 100-2000 mm a-1. Again, they confirm the similarities in 

magnetic enhancement mechanisms of such soils from the Northern hemisphere temperate zone. 

Similar observations have been made by Forster and Heller (1997) for paleosols from SE Europe 

and Asia. Based on a quantitative model of magnetic enhancement, Orgeira et al. (2011) 

demonstrate that enhancement is mainly controlled by the ratio of MAP and evapotranspiration 

and identify world regions where Χ-based transfer functions can be applied, including the E 

Carpathian Basin. These results encourage us to apply the Χ-based transfer functions to our 

samples, although a truly ‘global’ transfer function is still missing. 

A third, independent method to reconstruct paleoclimatic information are carbon isotopes (δ13C). 

Mean July paleotemperature was calculated based on δ13C (Schatz et al., 2011; see appendix) 

following Nordt et al. (2007). This transfer function is based on differences in the isotopic 

composition of C3 and C4 plants and their dependence on temperature and climate and has 

successfully been applied to reconstruct paleotemperatures in semiarid grasslands (Hall and 

Penner, 2013; Meier et al., 2014). However, this equation may not be suitable for samples outside 

a mean July temperature range of ca. 16-26 °C, i.e. minimum and maximum temperatures that 

result from the highest and lowest naturally occurring plant δ13C values (-13 ‰ for C4, -26 ‰ for 

C3 plants). Therefore, δ13C-based mean July paleotemperature was only calculated for the 

paleosol. 

 

4. Results 

4.1 General geochemistry 

Loss on ignition (LOI, see Table S1 in the supplementary section) reflects variable amounts of 

carbonate, hydrous phases (e.g. clay minerals) and organic matter in the samples. Average LOI 

of the Tokaj samples is 6.48 wt.-%, ±0.83; highest LOI tends to be found in loess, paleosol samples 

have overall lower values. There is a positive correlation of LOI with CaCO3 and CaO (r=0.66 and 

0.73, respectively), indicating that LOI is mainly associated with carbonates. Average total 

inorganic carbon (TIC) is 0.56 wt.-% ±0.32; average values are higher for loess than for paleosol 

samples, whereas organic carbon (TOC; Ø 0.15 wt.-% ±0.33) is lower in loess. CaCO3 (4.71 wt.-

% ±2.63) is higher in loess (5.88 wt.-%) than in paleosol samples (1.77 wt.-%). Carbonate is 
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strongly correlated with uncorrected CaO (r=0.99), indicating that CaO contents are strongly 

dependent on CaCO3, therefore, a correction is needed to obtain non-calcitic, silicate-bound CaO* 

only. Uncorrected CaO is highly negatively correlated with CaO-based weathering indices such 

as CIA (r=-0.99), which suggests that CIA variation is strongly influenced by uncorrected CaO and 

hence by CaCO3, instead of reflecting a change in non-calcitic CaO. If corrected, the correlation 

coefficients of CaO* and CaCO3 decrease (CaO*/CaCO3: r=0.90, CaO*/CIA: r=-0.95). 

Corrected CaO values differ systematically according to the correction method used. Measured 

CaO* values range from 2.17 wt.-% to 3.85 wt.-% (Ø 2.92 wt.-% ±0.4; loess: 3.02 wt.-%, paleosol: 

2.68 wt.-%). Using McLennan‘s (1993) correction method, CaO** is significantly lower, ranging 

from 0.65 wt.-% to 1.83 wt.-% (Ø 1.50 wt.-% ± 0.37, loess: 1.63 wt.-%, paleosol: 1.18 wt.-%). 

 

4.2 Major elements 

An overview of the results of the XRF measurements is given in table S1 in the supplementary 

section. Compared with average loess composition (AVL3, Újvári et al., 2008) and literature data, 

the samples contain a rather high amount, but narrow range, of SiO2 (73.4 wt.-% ± 1.4), above-

average amounts of Al2O3 (12.20 wt.-%±0.52), TiO2 (0.88 wt.-%±0.04) and Fe2O3 (4.26 wt.-% 

±0.21), while MgO (1.78 wt.-% ±0.24), Na2O (1.84 wt.-% ± 0.07) and K2O (2.11 wt.-% ± 0.14) 

contents are comparable to or slightly below average. Down-section compositional variability 

among samples is low to moderate. Paleosols can be differentiated from loess by slightly higher 

contents of SiO2 (74.3 wt.-% vs. 73.11 wt.-%), Al2O3 (12.88 wt.-% vs. 11.9 wt.-%) and Fe2O3 (4.5 

wt.-% vs. 4.2 wt.-%) and slightly lower contents of MgO (1.5 wt.-% vs. 1.9 wt.-%), CaO* (2.68 wt.-

% vs. 3.02 wt.-%) and Na2O (1.8 wt.-% vs. 1.9 wt.-%). In addition, paleosol samples have 

substantially lower CaCO3 values than loess. The chemical differences between loess and 

paleosol samples are similar to the results of other studies and were probably caused by 

dissolution of soluble /mobile elements during pedogenesis.  

 

4.3 Weathering 

The changes in elemental compositions due to pedogenesis can also be visualized in X/Y 

elemental plots. In Fig. 2 a)-c), Al2O3/SiO2, Fe2O3/TiO2 and ΣBases/TiO2 plots illustrate the relative 

enrichment of Al and Fe during pedogenesis, whereas bases are depleted during the process.  
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This depletion is further illustrated in the Na2O/Al2O3 vs. K2O/Al2O3 plot (Fig. 2d), Garrels and 

Mackenzie, 1971), which shows that chemical weathering leads to the removal of more soluble 

components such as Na and K compared to UCC and AVL3 (i.e. lower left corner), but also within 

the Tokaj dataset with paleosol samples being more depleted than loess samples.  

The Tokaj samples plot in the A-CN-K diagram (Fig. 2f; Nesbitt and Young, 1984) in a less-

weathered region compared to PAAS (Taylor and McLennan, 1985) and NASC (Gromet et al., 

1984) - both are standard samples for weathered continental sediments - and nearly parallel to 

the A-CN line, i.e. they follow the plagioclase weathering trend with a constant K-

feldspar/plagioclase ratio. The degree of weathering is variable, with paleosol samples plotting 

closer to the CN corner and PAAS, indicating the progressive enrichment of Al and depletion of 

Ca and Na (plagioclase weathering) with increasing weathering intensity, while the K content (K-

feldspar, micas) remains constant. The weathering trend originates close to the UCC composition 

(Taylor and McLennan, 1985), which equals a granodioritic composition and suggests that the 

samples have been derived from a felsic source, which has most likely remained constant over 

time. The location of the samples in the A-CN-K diagram changes, if CN is calculated with CaO** 

based on McLennan’s correction instead of the measured CaO* values. This underestimation 

results in a shift along the plagioclase weathering trend towards the CN corner, parallel to the A-

CN line. However, both datasets still plot on a line between UCC and PAAS, comparable with 

other paleosol and loess samples in the literature (Újvári et al., 2008, 2012; Buggle et al, 2011). 

Since the weathering trend is the same, an uncertainty in CaO composition does not affect the 

interpretation. 

 

 

 

 

 

 

Fig. 2 (next page): a)-d): Al2O3/SiO2 [wt.-%], Fe2O3/TiO2 [wt.-%], Σbases/TiO2 [wt.-%], and Na2O/Al2O3 vs. 

K2O/Al2O3 [mol] plots illustrate geochemical weathering behavior. Grey open squares denote loess, black 

open triangles paleosol samples from Tokaj. The composition of the upper continental crust (UCC, Taylor 

and McLennan, 1985) and of average loess (AVL3, Újvári et al., 2008) are indicated for comparison. See 

text for details. e) Comparison of the CIA weathering index computed with CaO* (corrected via measured 

CaCO3 content and TIC) and based on CaO** (corrected after McLennan, 1993). f) Ternary A-CN-K diagram 

of the Tokaj paleosol and loess samples, UCC, AVL3 and post-Archean Australian shale (PAAS, Taylor and 

McLennan, 1985). The samples plot parallel to the A-CN join, following an ideal weathering trend from less 

weathered UCC to highly weathered PAAS. 
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14 weathering indices were calculated (Table 2, Fig. 3) and compared with literature data. As most 

published weathering index data are predominantly based on McLennan’s CaO correction, both 

CaO* and CaO**-based values are listed in Table 2. The comparison shows that CIA, CIW, CPA, 

Index B, PIA and Yang results are comparable to those of other loess studies, with the exception 

of Varga et al. (2011), who tend to report values associated with a higher degree of weathering. 

The results of Kovács (2007) clearly deviate from the Tokaj results since Red Clay is stronger 

weathered than paleosols and loess. AVL3 generally shows less intense weathering but some 

indices are similar (CIW, WI-2), depending on the elements used for calculation. 

Whereas the absolute results of the weathering indices calculated with either CaO* or CaO** differ 

systematically, the shape of the WI depth plots, i.e. the relative changes of weathering intensity, 

does not vary much (Fig. 3). Correlation is between r=0.93 (CIA-K) and r=0.98 (WI-1). Hence, for 

comparisons regarding relative changes in weathering intensity due to pedogenesis and climatic 

variations, the uncertainty introduced by different CaO corrections is negligible. For comparisons 

of absolute WI values, however, caution is required, as the results differ depending on the CaO 

correction used. To further illustrate this observation, CIA (CaO*) and CIA (CaO**) are shown in 

Figure 2e.  

A large group of WI plots are surprisingly parallel and have correlation coefficients of well above 

0.85 (CIA, CIA-K, PIA, CALMAG, Index B, Yang, Feng, Σbases/Al, Rb/Sr, Ba/Sr; Table 3). A 

second group of highly correlated WIs (r >0.95) with similar shape includes WI-1, WI-2 and Index 

A; CPA and particularly PWI are least correlated with the other indices.  

 

4.4 Paleoclimatic data 

The results of the MAP transfer functions are generally in a range of several hundred mm a-1 and 

6-15 °C for all methods and equations (Table 4). Absolute values vary depending on the method 

used and the sample material. Paleosols have consistently higher MAP (Δ=100-200 mm a-1) and 

MAT (Δ= 0.1-2 °C; Table 4). Both MAP and MAT calculated from geochemical and Χ data indicate 

warmer and wetter conditions during the time of paleosol formation (~45-27 ka) and colder, drier 

climate during dust deposition in MIS 2 (27-21 ka), including the LGM. Χ-based MAP is 

significantly lower than XRF-based MAP, but MAT values usually agree within error. XRF3 

(Gallagher and Sheldon, 2013) is an exception and yields consistently higher MAT and MAP than 

all other methods and shows only little variation between loess and paleosol. Both XRF3-MAP 
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and XRF3-MAT seem erroneously high, especially if compared to literature data (see below), and 

are therefore excluded from further interpretations. 
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Fig. 3 (previous page): Overview of all weathering indices versus depth (for details, see Table 1). The 

paleosol (6-8.25 m) is indicated by a grey shade. A large group of WIs plot surprisingly parallel and are 

highly correlated (CIA, CIA-K, PIA, CALMAG, Index B, YANG, FENG, (Σbases/Al), Rb/Sr, Ba/Sr). A second 

group of highly correlated WIs with similar shape include WI-1, WI-2 and Index A; a third group consists of 

PWI and CPA. See Table 3 for a correlation matrix of the indices. 

 

5. Discussion 

5.1 Comparison of weathering indices, recommendations and the CaO* controversy 

The majority of WIs is highly correlated (Table 3), indicating that there are equally well-suited to 

detect changes in the weathering intensity within the Tokaj loess-paleosol sequence. Anomalies 

and divergences associated with the use of K in these equations, resulting in differences between 

K-free and K-based indices, cannot be observed in our dataset. This might be due to the stronger 

weathering resistance of K-bearing minerals in low to moderately weathered samples and to the 

predominance of plagioclase (K-free feldspar) in the Tokaj samples, as inferred from the A-CN-K 

diagram. If Ca is corrected for calcite-bound Ca, as discussed above, WIs are not biased by 

CaCO3 content and yield more reliable results, similar to Ca-free indices as FENG.  

Thus, as long as any type of correction is applied, it is not necessary to use Ca-free indices. While 

we do acknowledge the geochemical considerations that led to the recommendations of K- and 

Ca-free indices, our results indicate that that these limitations might be overcautious. It is even 

possible that, by limiting an index to very few contributing elements such as Al and Na in the CPA, 

specific element concentrations, as e.g. introduced by secondary Na-salts at sites with negative 

water balance, are easily overemphasized and may lead to a bias in the results (Baumann et al., 

2014). 

 

 

 

 

 

 

 

 

 

Table 3 (next page): Correlation matrix of all weathering indices computed in this study (n=35). The main 

group of weathering indices is highly correlated (CIA, CIA-K, CALMAG, PIA, Index B, (Σbases/Al), YANG, 

FENG, Ba/Sr, Rb/Sr). The Si-based subgroup (WI-1, WI-2, Index A) differs slightly; CPA and PWI are least 

correlated with all other indices.  
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Table 3 shows that the two WIs based on trace elements are highly correlated with the majority of 

the WIs based on main elements. The ratios Ba/Sr and Rb/Sr are frequently used in paleosol and 

loess weathering studies (e.g. Chen et al., 1999; Varga et al., 2011). There is, however, an 

ongoing debate about the reliability of trace element indices due to a lack of understanding of their 

weathering behavior, especially under strong weathering conditions, and the fact that they are 

controlled by CaCO3 dynamics (Buggle et al., 2011). Furthermore, Sr and Rb contents – and 

consequently Rb- and Sr-based indices – are strongly grain-size dependent since these trace 

elements are primarily enriched in micas and clay minerals. Grain size is influenced by weathering 

but also by other factors such as e.g. climate, sediment source, transport etc. and can therefore 

not be considered as a direct or first-order weathering proxy (Újvári, 2014). In our data, Rb/Sr and 

Ba/Sr are highly correlated with the majority of the WIs (r=0.92-0.97) but given the discussion 

about trace element indices, the results should not encourage the use of these indices as reliable 

weathering indicators. 

There are two subgroups of WIs which, although moderately to well correlated with other indices, 

show slightly different depth plots. WI-1, WI-2 and Index A indicate a decrease in weathering 

intensity between 2.5-4.0 m in the L1L1 loess layer that is not displayed by the main group of WIs. 

All three indices include Si as an additional element in their calculations, which might explain this 

minor deviation and decrease in correlation coefficients (r=0.8-0.85). PWI and, to a lesser extent, 

CPA are particularly weakly correlated with all other indices. Both indices point to an increase in 

weathering intensity between 1.75-2.25 m and seem to underestimate the weathering intensity for 

the upper half of the paleosol, which is significantly lower that the lower half. This might be due to 

the relative overemphasis of Na in the equations.  

 

5.2 Sensitivity of weathering indices 

In order to decide which WI is most sensitive to variations in the paleoweathering intensity, one 

approach may be to compare and correlate the WI results with a first-order, direct weathering 

proxy. Such a validation step has not been included in previous studies, which demonstrated and 

discussed various WI data without examining correlations with other weathering proxies (e.g. 

Buggle et al., 2011; Varga et al., 2011). Both Χ and grain size distribution are commonly applied 

as indicators of weathering intensity (e.g. Buggle et al., 2009; Marković et al., 2008; Terhorst et 

al., in press) but as discussed above, grain size is an ‘integrated’ index of both weathering and 

other factors such as climate, source distance and aridity and wind speed. Mass-specific magnetic 
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susceptibility (Schatz et al., 2011; see appendix) is more directly linked to weathering and will 

therefore be used to evaluate the WIs in this study.  

 

Table 4: Mean annual temperature (MAT, °C) and mean annual precipitation (MAP, mm a-1) for the Tokaj 

loess-paleosol profile, including coefficients of determination (R²) and standard errors (S.E.) of the equations 

listed in Table 1. The R²s and S.E.s are from the original publications, except those of XRF1-, XRF2- and 

XRF3-MAP, as well as of XRF1- and XRF2-MAT, which are from Sheldon and Tabor (2009). 

 

Method  R² S.E. CaO Loess Paleosol 

geochemistry- XRF1-MAP 0.66 ±235 CaO* 687 785 

based    CaO** 729 798 

 XRF2-MAP 0.59 ±156 CaO* 572 685 

    CaO** 644 708 

 XRF3-MAP 0.72 ±181 CaO* 700 879 

    CaO** 811 912 

 XRF1-MAT 0.96 ±0.6 - 8.5 8.8 

 XRF2-MAT 0.37 ±4.4 - 8.9 9.9 

 XRF3-MAT 0.57 ±2.1 CaO* 14.4 14.5 

    CaO** 14.4 14.5 

MS-based Χ1-MAP n.a. n.a. - - 390 

 Χ2-MAP 0.66 ±11% - 222 325 

 Χ3-MAP 0.92 n.a.   258 

 Χ-MAT 0.72 ±11% - 6.6 8.4 

δ13C-based δ13C-MAT 0.67 ±1.4 - - 8.8 

 

 

Table 5 shows an overview of the correlation coefficients between the WIs and Χ. They are all 

moderately to well correlated with Χ (r=0.68-0.87). The FENG index is highest correlated with Χ, 

followed by the trace-element indices. PWI is least correlated with Χ but the correlation is too high 

to reject the index based on this result alone. The evaluation of the sensitivity of different WIs 

implies that the use of FENG is most desirable since it most accurately tracks changes in 

weathering intensity. This is surprising because multi-element indices (e.g. FENG) have come 

under suspicion due to their reliance on elements such as Na and Ca, which may bias results if 

secondary carbonates or Na salts are present (Baumann et al., 2014; Buggle et al., 2011). Yet for 

the Tokaj loess paleosol section the FENG index yields the best result. This might be due to the 

fact that the profile is not affected by secondary Na salt formation. For future loess paleosol studies 

at other locations, an individual evaluation of the WI sensitivity and the suitability of the best-

performing index is recommended since weathering conditions vary through time and space. 
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Table 5: Correlation chart of weathering indices and mass-specific magnetic susceptibility (Χ) as a direct 

weathering proxy. Highest correlation coefficients are marked in bold print. FENG overall correlates best 

with the proxy records, PWI has the lowest correlation coefficient. 

  Χ 

CIA 0.71 

CIA-K 0.70 

CALMAG 0.70 

PIA 0.71 

Index B 0.72 

(Σbases/Al) 0.75 

YANG 0.75 

FENG 0.87 

Ba/Sr 0.80 

Rb/Sr 0.85 

WI-1 0.78 

WI-2 0.70 

Index A 0.72 

CPA 0.79 

PWI 0.68 

 

 

5.3 Paleoclimatic reconstruction 

5.3.1 Limitations and uncertainties of the paleoclimate transfer functions 

The quantification of paleoclimate parameters from paleosols and loess is still a relatively new 

field, so neither has one function evolved as the most suitable one nor have there been larger 

discussions on quality, associated uncertainties and potential improvements.  

One fundamental point that needs to be examined is the quality of the regressions used as transfer 

functions. Regressions, especially from large and highly diverse datasets with a variety of different 

soils, are certainly not perfect. One might speculate that the regression quality would improve if 

we use a dataset of regional and/or loess and paleosol samples only, but there are no published 

transfer functions specifically for SE European loess yet. The individual coefficients of 

determination (R²) of the transfer functions used in this study vary and reach from rather low values 

(Table 4; XRF2-MAP: 0.59, XRF2-MAT: 0.37) to high or very high ones (Χ3-MAP: 0.92, XRF1-

MAT: 0.96). Lower regression quality generally leads to larger uncertainties of the resulting MAP 

and MAT, something that has to be kept in mind when evaluating the paleoclimate estimates.  

A major obstacle in these evaluations are missing or misleading information on how the regression 

models describe the data and their variability, as well as on associated errors. While R²s are 
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always indicated (except for Χ1-MAP), a measure of uncertainty is not always given. Usually, 

standard errors (S.E.) are provided, either absolute or relative, but it is not always clear how they 

have been calculated. As pointed out by Újvári (2014), who recalculated the regression of 

Gallagher and Sheldon (2013), the S.E. or root mean squared error (RMSE) of the regression 

should not be used for estimating the errors of MAT and MAP. Instead, for an independent 

estimation of the uncertainties, the 95% prediction intervals have to be calculated (details and 

equations can be found in Újvári, 2014). We followed this approach and calculated errors of ±4.3 

°C for XRF3-MAT instead of the ±2.1 °C reported in Gallagher and Sheldon (2013). This suggests 

that more rigorous and statistically sound error calculations have to be applied to the transfer 

functions and that published S.E. have to be used with cautions as they probably underestimate 

the uncertainties. 

Despite these limitations, the transfer functions may still yield useful quantitative paleoclimate 

information from paleosols and loess. Due to the large errors, MAP and MAT estimates may be 

considered as semi-quantitative indicators only, but they nevertheless provide relative 

temperature and precipitation trends. The combination of transfer functions based on independent 

input data, such as XRF, Χ and carbon isotopes in this study, and independent paleoclimatic data 

from the literature, should lead to more robust and reliable paleotemperature and -precipitation 

estimates. 

 

5.3.2 Mean annual temperature (MAT) 

MAT during the time of paleosol formation (~45-27 ka)  

For this paleosol formation interval, geochemistry-based MAT results in a temperature range of 

8.8 ±0.6 °C (XRF1-MAT) to 9.9 ±4.4 °C (XRF2-MAT). Χ-MAT of 8.4 ±0.9 °C is slightly lower, but 

agrees within the XRF error limits (Table 4, Fig. 4a). Current MAT at the nearest weather station, 

Miskolc (Hungary), is 9.8 °C with a mean July temperature of 20.6 °C (1991-2000 average; World 

Data Center for Meteorology, 2011).  

It has been proposed by various researchers that the Carpathian Basin was warmer and drier than 

elsewhere in Europe during MIS 3 and with patchy, mosaic-like variations in local climates, 

creating refugia for thermophilous species (Willis et al., 2000; Willis and van Andel, 2004; 

Fitzsimmons and Hambach, in press).  
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Fig. 4: a) Reconstructed MAT for loess and paleosol based on geochemical data (XRF1-MAT, 

XRF2-MAT, XRF3-MAT), magnetic susceptibility (Χ-MAT) and stable carbon isotopic data (δ13C-

MAT). Grey arrows denote present MAT (9.8 °C). Selected regional temperature estimates from 

the literature are shown for comparison (see text for details): a) Kovács et al. (2012), b) Strandberg 

et al. (2011), c) Corcho Alvarado et al. (2011), d) e.g. Krolopp and Sümegi (1995), e) Frenzel et al. 

(1992), f) Sümegi and Hertelendi (1998), g) e.g. Sümegi and Krolopp (2002).  

b) Reconstructed mean annual precipitation for loess and paleosol based on geochemical data 

(XRF1-MAP, XRF2-MAP, XRF3-MAP) and magnetic susceptibility (Χ1-MAP, Χ2-MAP, Χ3-MAP). 

Grey arrows denote present MAP (550 mm/a). Selected regional precipitation estimates from the 

literature are shown for comparison: a) Frenzel et al. (1992), b) Hatté and Guiot (2005), c) Kühn et 

al. (2013), d) Fitzsimmons and Hambach (2013), e) Strandberg et al. (2011).  
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Regional paleotemperature estimates for this period of time are scarce, but Kovács et al. (2012) 

reported MATs of 10.4–17.4 °C at several locations in the Czech Republic and Slovakia based on 

isotope analyses of mammoth teeth enamel. Several studies in Hungary and Serbia using the 

malacothermometer method (Sümegi, 1989) suggested mean July paleotemperatures of 16-19 

°C and MAT similar to that of today, i.e. around 10 °C (Marković et al., 2007; Krolopp and Sümegi, 

1995; Sümegi and Krolopp, 2002; Hertelendi et al., 1992). Specifically for the Tokaj hills, Sümegi 

and Hertelendi (1998) reported mean July summer paleotemperatures of 14-18 °C 

(malacothermometer), depending on topography and aspect. 

Further insights may come from the δ13C-derived mean July paleotemperature, resulting in 18.0 

±1.4 °C, which is consistent with previous malacothermometer results. A novel approach to 

convert mean July paleotemperatures into MAT has recently been proposed by Hall and Penner 

(2013). It requires a simple linear regression calculated from modern MAT and modern mean July 

temperature. We used input data from the Hungarian Meteorological Survey for the nearest 

weather station, Debrecen (1901-2000, 10-year intervals; Hungarian Meteorological Service, 

2013), and derived an empirical conversion formula following their approach (y= 0.3507x+2.5117; 

R²=0.42). If applied to the present mean July temperature of 20.6 °C from Miskolc, the resulting 

9.7 °C are almost identical to the measured MAT of 9.8 °C, which provides evidence for the validity 

of the method and encourages a tentative application to the paleotemperatures cited above. A 

MAT range of 9.2-9.9 °C can be derived from the Hungarian mean July malacothermometer 

temperatures of 19-21 °C. The proposed temperatures for Tokaj, 14-18 °C from the 

malacothermometer method and 18.0 °C from δ13C, result in a MAT of 7.4-8.8 °C or 8.8 °C. 

The regional temperature estimates from the literature largely correspond to our data and 

converge towards a MAT of ca. 8 °C for the period of 45 to 27 ka. However, these 

paleotemperature estimates are consistently higher than those proposed in large-scale 

paleoclimatic reconstructions as e.g. in the Paleoclimatic Atlas of the Northern Hemisphere with a 

MAT of 2-4 °C and a mean July temperature of 14-16 °C (Frenzel et al., 1992). Contradictions 

between proxy data and climate models have been observed e.g. by Kageyama et al. (2006), 

Strandberg et al. (2011) and Mairesse et al. (2013). Among the factors discussed are e.g. a higher 

atmospheric and oceanic variability during the LGM, large uncertainty ranges in proxy data, a too 

coarse spatial resolution of model data, complex terrain and the sensitivity of regional climate to 

vegetation cover. Besides this deviation of model and proxy data, a higher regional MAT in the 

Carpathian Basin would result in a very large climatic gradient between SE and NW Europe. For 

this hypothetic gradient, evidence can be found in the literature: Huijzer and Vandenberghe (1998) 
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have proposed a MAT of -2 °C and mean July temperature of 10°C for NW Europe; a NW/SE 

climatic gradient was also observed by Heyman et al. (2013) in their glacier modeling data. To 

clarify and further explore these (apparent) contradictions, more and detailed quantitative data 

from different archives and proxies are required. 

 

MAT during the time of dust deposition (27-21 ka) 

For the time of dust deposition in MIS 2, geochemistry-based XRF-1-MAT and XRF2-MAT result 

in a temperature range of 8.5 ±0.6 °C to 8.9 ±4.4 °C. Χ-based MAT is lower with a MAT of 6.6 

±0.7 °C (Table 4, Fig. 4a). For the period of maximum cooling of the LGM (21 ka; Clark et al., 

2009), regional mean annual temperatures of 2-3 °C (Kovács et al., 2012), 3.3 °C (Varsányi et al., 

2011), 0.8 °C (Corcho Alvarado et al., 2011) and 1 °C (Stute and Deák, 1989) have been reported. 

These values are largely consistent with those from large-scale models, e.g. 0-2 °C and a mean 

July temperature of 8-10 °C (Frenzel et al., 1992), a MAT of 0°C (Peyron et al., 1998) or a mean 

July temperature of 10 °C (Kageyama et al., 2006). More recent climate modeling results show a 

decrease in MAT of -8 to -15 °C for Central European upland regions (Heyman et al., 2013) and 

global cooling of -1.9 to -9.1 °C (Strandberg et al., 2011) or -5.8 ± 1.4 °C (Schneider von Deimling 

et al., 2006) compared to modern MAT (9.8 °C), resulting in an absolute LGM MAT range of -5.2 

to 7.9 °C. An atmospheric circulation model yields a MAT of 0-6 °C for the Carpathian Basin 

(Strandberg et al., 2011). While some of these estimates are consistent with our data, most of 

them are slightly or considerably lower than our temperatures. However, we did not specifically 

sample the peak LGM loess layer, nor are we certain if our samples even include loess deposited 

during this specific cold peak, since OSL and pIRIR290 ages differ for the youngest loess of the 

section (Fig. 1b; Schatz et al., 2012). We therefore do not consider our results to be peak LGM 

temperatures but rather mean temperatures during dust deposition in MIS 2. Model and proxy 

temperature estimates for the peak LGM are accordingly considered as minimum temperatures.  

Regional temperature estimates for the MIS 2 before the LGM peak have been reconstructed from 

oxygen isotopes in mammoth tooth enamel (Kovács et al., 2012), ranging from 6.2 °C to 11.2 °C 

in the Czech Republic and Slovakia. Corcho Alvarado et al. (2011) report a MAT of 4.5 °C using 

noble gas thermometry (NGT). Based on the malacothermometer method, Krolopp and Sümegi 

(1995), Hertelendi et al. (1992) and Sümegi and Krolopp (2002) propose a mean July temperature 

of 11-14 °C in Hungary, and generally cooler and drier temperatures compared to MIS 3. Sümegi 

and Hertelendi (1998) have reconstructed mean July temperatures of 12-16 °C - related to 
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topography and particularly aspect – for Tokaj. Using the conversion for mean July temperatures 

(Hall and Penner, 2013), these malacothermometer results probably correspond to a Hungarian 

MAT range of 6.4-7.1 °C and a Tokaj-specific MAT of 6.7-8.1 °C. Although there is singular 

evidence for permafrost activity in North-Central Hungary, which would require MAT to be as low 

as -12 to -20 °C (Kovács, 2007), the vast majority of studies conducted in the Carpathian Basin 

indicates that, on the contrary, the region sustained milder climatic conditions than comparable 

latitudes further west and might have been a possible location for the hypothesized cold stage 

refugia of temperate flora and fauna (Fitzsimmons and Hambach, in press; Willis et al., 2000; 

Willis and van Andel, 2004).  

Our MATs of 6.6 ±0.7 °C (Χ), 8.5 ±0.6 °C (XRF-1) and 8.9 ±4.4 °C (XRF-2) seem to be slightly too 

high although they are overall comparable with the literature data, especially the Χ-based MAT. 

The same problem with XRF-MAT has been observed by Kühn et al. (2013) who considered the 

temperatures calculated for loess as too high, but the temperatures calculated from the paleosols 

as plausible. 

 

5.3.3 Mean annual precipitation (MAP) 

Current mean annual precipitation (MAP) of the region around Tokaj is 546 mm a-1 (1991-2000 

average, Miskolc, World Data Center for Meteorology, 2011). Quantitative regional 

paleoprecipitation estimates from the literature are scarce. There seems to be an agreement on 

the fact that MIS 3 was wetter, while MIS 2 was dry or very dry (Fitzsimmons et al., 2012 and all 

malacology studies cited above).  

For the paleosol (45-27 ka), our Χ-based MAP yields 258 mm a-1, 325 ±36 mm a-1 and 390 mm a-

1, depending on the equation used (Table 4). XRF-based MAP results in 685 ±156 mm a-1 and 

785 ±235 mm a-1 (XRF2-MAP, XRF1-MAP; Table 4, Fig. 4b). The use of XRF2-MAP is only 

recommended for Mollisols, but still included for comparison. Frenzel et al. (1992) suggested a 

MAP range of 250-450 mm a-1 for SE Europe during a corresponding timespan. Hatté and Guiot 

(2005) reported 240-360 mm a-1 for the paleosol-loess section at Nussloch, SW Germany, based 

on inverse modelling of carbon isotopic data. A range of 450-850 mm a-1 has been proposed by 

Kühn et al. (2013) for Alsheim, SW Germany, using the same XRF-based transfer functions as in 

this study.  
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For the loess layer (27-21 ka), our XRF data result in a range of 572 ±156 mm a-1 to 687 ±235 mm 

a-1, while the Χ-MAP is again lower (222 ±24 mm a-1; Table 4, Fig. 4b). Frenzel et al. (1992) 

propose a range of 50-450 mm a-1 for the LGM. Peyron et al. (1998) suggest a decrease of 800 

mm a-1 compared to the modern MAP of 546 mm a-1, which would result in negative values for our 

data. Hatté and Guiot (2005) report 220-400 mm a-1 for Nussloch and Kühn et al. (2013) 300-400 

mm a-1 for Alsheim. Specifically for the LGM in upland regions, Heyman et al. (2013) propose a 

precipitation decrease of 25-75% compared to modern MAP. Strandberg et al.’s (2011) European 

circulation model returns a decrease in precipitation of about 300 mm a-1, but with substantial 

regional variations. Fitzsimmons and Hambach (in press) suggest a decrease of about 60% for 

the Carpathian Basin based on a review of other studies. For both paleosol and loess samples, 

our Χ-MAPs are more consistent with the literature, whereas XRF1- and XRF2-MAP are probably 

too high. XRF2-MAP has lower values, which might still be acceptable considering the large errors 

associated with such calculations.  

As discussed for MAT above, the paleoclimate in the Carpathian Basin was probably spatially 

highly diverse and differed from the surrounding regions. Large-scale models may not (yet) be 

able to express these heterogeneous conditions in their predicted MATs and MAPs, a fact that is 

also reflected in the wide range of predicted model MAPs in the literature. Consequently, the 

results from large-scale models for specific locations tend to differ from those obtained by local 

proxy reconstructions. 

 

6. Summary and conclusions 

We calculated and compared 14 WIs from loess and paleosol samples from the upper part of the 

Tokaj profile. The results are basically similar and show almost no variation with depth for the 

different WIs, leading us to the conclusion that restricting the choice of suitable weathering indices 

to those containing only a few elements (e.g. CPA, as proposed by Buggle et al., 2011) is probably 

overcautious and potentially introduces additional sources of error, mainly effects of recent 

weathering processes soil formation like accumulation of salts under dry climate conditions. We 

recommend to calculate a selection of weathering indices from different generic groups, i.e. multi-

element, Ca-free, K-free, evaluate their sensitivity towards changes in weathering intensity and 

compare the results; if similar, it is not necessary to present more than one index in the publication. 
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The climate of the past in NE Hungary was described by MAT and MAP. MAT was calculated 

based on XRF, δ13C and Χ data since errors of the transfer functions are large and more robust 

information can only be obtained by combining several independent methods and literature data. 

For the time of soil formation (45-27 ka), XRF-, Χ- and δ13C-based results converge to a MAT of 

8-10°C, similar to, or slightly lower than today. This temperature range corresponds to the majority 

of the literature data for the region, but is systematically higher than proposed by large-scale 

climate models, which are probably not (yet) able to reflect the highly diverse paleoclimate of the 

Carpathian Basin. The locally reconstructed paleoclimate data may serve to refine these models. 

For the time of dust deposition (27-21 ka), XRF-based MAT results in a temperature range of 8-9 

°C, which is probably too high, compared to other loess studies. Agreement with the literature data 

is best achieved with the Χ-based MAT of 6.6 °C. 

For MAP we estimate a range of 685-879 mm a-1 for the time of paleosol formation using XRF 

transfer functions. Χ-based results are consistently lower (258-390 mm a-1). For the time of loess 

deposition, both XRF- and Χ-based results are significantly lower with 572-700 mm a-1 vs. 222 

mm a-1. Χ-based MAP reconstructions are generally consistent with the literature, whereas most 

XRF-based results are probably too high. 
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Supplementary material 

Table S1: XRF results (this study), as well as grain size and magnetic susceptibility data of Schatz 

et al. (2011) cited in this study. This table can be downloaded at http://www.clim-past-

discuss.net/10/469/2014/cpd-10-469-2014.html 

Fig. S1: Overview of regional paleoclimate proxy data from the literature cited in this study. 

http://www.clim-past-discuss.net/10/469/2014/cpd-10-469-2014.html
http://www.clim-past-discuss.net/10/469/2014/cpd-10-469-2014.html
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Abstract 

There are several competing hypotheses for the origin of loess in Europe but quantitative evidence 

is still rare. Here, Sr-Nd isotopic and bulk elemental composition of loess from Marine Isotope 

Stages 2 and 3 from three study regions in Central and Southeast Europe – Nussloch (Germany), 

Grub (Austria) and Tokaj (Hungary) - are analyzed. This study aims at examining differences and 

similarities of loess deposits throughout Europe, correlating loess with potential source rocks from 

major mountain ranges and comparing loess with floodplain sediments from main rivers as 

integrated samples of the drainage areas. The results show that European loess deposits are 

largely uniform and that sediment sources have been rather stable in Southeast Europe and more 

variable in Central Europe. However, the methods used are not sufficient to unequivocally confirm 

and reject potential sediment sources but, in combination, help to identify the most likely sediment 

origins. While a direct correlation of loess and potential source rocks is difficult, the comparison 

with floodplain sediments is most promising and confirms previous hypotheses. Loess from Tokaj 

and Grub is most likely a mix of local sediments and material transported by the Danube River. 

Rhine River sediments are probably the main source of loess at Nussloch.  

 

Keywords: Loess, Provenance, Sr-Nd, Geochemistry, Dust 
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1. Introduction 

Dust is an integral part of the Earth’s environment and terrestrial deposits of aeolian sediments, 

such as loess, are the most extensive Quaternary deposits of the surface of the Earth. Loess is 

recognized as an important archive of paleoclimatic and paleoenvironmental information that may 

be used to complement highly resolved, long-term marine records. As a primarily aeolian 

sediment, loess is one of the few direct proxies of paleowind direction and strength and thus 

constitutes an important component of detailed and comprehensive paleoclimatic studies. In order 

to understand and use the paleowind information contained in loess, it is, however, essential to 

identify the source sediments. For the extensively studied loess deposits along the two main rivers 

in Central and Southeast Europe - the Rhine and the Danube – Smalley and Leach’s (1978) and 

Smalley et al.'s (2009) hypothesis of a primarily glacial, Alpine origin of loess has been widely 

accepted. While undoubtedly providing a valuable theoretical foundation, their assumptions are 

largely conceptual in nature and lack quantitative evidence. Recently, several studies have been 

published which employ quantitative geochemical methods to examine potential sediment source 

areas. Buggle et al. (2008) successfully used different major and trace elemental characterization 

methods to compare loess deposits from Serbia, Romania and Ukraine with floodplain sediments 

of Central and Southeast Europe. With the help of heavy mineral analyses, Thamó-Bozsó et al. 

(2014) were able to confirm earlier assumptions and identify new sources of loess in Hungary. 

Újvári et al. (2012) used a combination of Sr-Nd and U-Pb isotopic provenance indicators to 

characterize loess in the Carpathian Basin and compare with a large variety of potential source 

areas. 

With this study, we aim to contribute to the increasing body of quantitative evidence for the origin 

of loess in Central and Southeast Europe. We focus on three loess sections - Nussloch (Southwest 

Germany), Grub (East Austria) and Tokaj (Northeast Hungary) - and combine two widely accepted 

methods from sedimentary provenance research. The abundances of major and trace elements, 

displayed as normalized diagrams of elemental variations (“spider diagrams”) or ratios of selected 

elements, may serve as characteristic sediment ‘fingerprints’ and have successfully been used in 

the geochemical characterization of loess deposits and potential source areas (Buggle et al., 2008; 

Jahn et al., 2001; Muhs et al., 2013; Újvári et al., 2008; Újvári et al., 2014). Sr-Nd isotopic analyses 

may help identifying the parent rocks of sediments and have often served as a valuable tool for 

loess provenance studies in China and South America (Chen et al., 2007; Gallet et al., 1998; 

Smith et al., 2003; Sun, 2002, 2005; Zhang et al., 2012). With a combined elemental and isotopic 

approach and a large collection of literature data of potential source areas, we want to address 

four fundamental questions: 
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(i) Are loess deposits of Marine Isotope Stages (MIS) 2 and 3 homogenous, i.e. have sediment 

sources remained stable over time? 

(ii) Are there regional similarities of loess deposits in Central and Southeast Europe, which may 

indicate common sediment sources and transport pathways? 

(iii) Can loess be directly traced back to rocks from major and local mountain ranges and 

geological units (e.g. Alps, Carpathians, Bohemian Massif)? 

(iv) Is loess genetically linked with floodplain and fluvial sediments of rivers in the vicinity of the 

deposits (e.g. Rhine, Danube, and Tisza)? 

 

2. The Tokaj, Grub and Nussloch study sites and potential source areas of loess 

The Tokaj site, located in the Northeast Carpathian Basin (Northeast Hungary; Fig. 1) at the 

confluence of the Bodrog and Tisza Rivers, has been intensively studied (Schatz et al., 2011; 

Schatz et al., 2014; Sümegi and Hertelendi, 1998; Sümegi and Rudner, 2001), including a 

chronostratigraphy based on optically and infrared stimulated luminescence (OSL, IRSL) ages 

(Schatz et al., 2012). A fundamental hypotheses on the origin of loess in the Carpathian Basin 

has been proposed by Smalley and Leach (1978), who classified the region around Tokaj and in 

the vicinity of the Tisza River as “D4 loess region”, consisting of wind-blown material from three 

main loess sources: (i) North European glacial debris carried through the Moravian Depression, 

(ii) glacial material from the Alps transported by the Danube River, and (iii) silt-sized material from 

weathered flysch rocks in the Carpathian Mountains. There is a general consensus in the literature 

on Smalley and Leach’s hypotheses. Other studies suggest a contribution of local materials such 

as loosely consolidated Miocene/Pliocene material in the Great Hungarian Plain  ("Pannonian 

sands"; Smith et al., 1991) and Miocene flysch and molasse rocks (Pécsi, 1993), and a 

contribution of distal sediments as e.g. North African dust (Stuut et al., 2009; Varga, 2011). Recent 

studies, however, limit the contribution of African dust to <10 % (Újvári et al., 2012). Based on a 

heavy mineral study (Thamó-Bozsó et al., 2014), a mixture of fluvial sediments from the Danube 

and local Transdanubian rivers and local Cenozoic sandstones has been proposed. A 

geochemical study of Serbian loess (Buggle et al., 2008) showed a major contribution of material 

from the Carpathians, transported by the Tisza and smaller Danube tributaries, and sediment 

carried by the Danube, the Drava (metamorphic crystalline Alps) and probably also by the Inn 

River. This study did not find evidence for a significant contribution of Austroalpine (Eastern Alps, 

cover nappes) and Bohemian Massif (transported through the Moravian Depression) sediments. 
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A recent isotopic study (Újvári et al., 2012) proposes a mixture of Quaternary Danube sediments, 

Pannonian sands and local rocks (e.g. Transdanubian Range). Paleowind reconstructions for the 

Carpathian Basin are in line with most of these assumptions and indicate wind directions between 

north and northwest for the Carpathian Basin (Marković et al., 2008; Rousseau et al., 2007; Sebe 

et al., 2011). 

The Grub-Kranawetberg site near Stillfried (Lower Austria; Fig. 1), on the banks of the Morava 

River and close to the Austrian-Slovakian boarder, has less extensively been studied (Antl, 2013; 

Zöller et al., 2013). We follow the stratigraphic framework of Zöller et al. (2013). Grub is part of 

the “D2 loess region” (Smalley and Leach, 1978), for which two main loess sources have been 

proposed: (i) glacial material from the Alps, carried by the Danube River, (ii) glacial material from 

northern Europe transported by the Morava River. To our knowledge, quantitative geochemical 

provenance studies for this region are lacking. 

 

 

Fig. 1: Map showing the location of the study areas Nussloch, Grub and Tokaj, major mountain ranges, 

geological units and rivers, as well as paleowind directions (yellow arrows). 

 

The Nussloch site, ca 10 km south of the city of Heidelberg (Germany; Fig. 1) and ca. 20 km 

southeast of the Neckar-Rhine confluence, is one of the most extensively studied loess sites in 
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the Upper Rhine Valley (e.g. Antoine et al., 2009; Gocke et al., 2010; Hatté et al., 1999; Hatté and 

Guiot, 2005; Moine et al., 2005; Rousseau et al., 2002). We use samples from the P4 section and 

follow the chronostratigraphy of Antoine et al. (2009). Nussloch is part of Smalley and Leach’s “D1 

loess region”, which should predominantly consist of Alpine glacial material. Smalley et al. (2009) 

and Hill (2005) propose sediments from the Central Alps in Switzerland, transported by the Rhine 

River, as the main source of Tertiary and Quaternary sediments in the Upper Rhine Graben, which 

in turn is the most likely major source of loess along the Rhine River. Broad alluvial plains and a 

braided river system in the Rhine valley, transported by strong NW and W winds, have also been 

proposed by Antoine et al. (2009; 2001) and Zech et al. (2012) as the main source of loess at 

Nussloch.  

 

3. Materials and methods 

3.1 Sampling 

Standard procedures were followed for sampling and sample handling during field and laboratory 

work. Homogenized and sieved (<2 mm) representative aliquots from 20 bulk loess and paleosol 

samples from Tokaj, 10 samples from Nussloch and 7 samples from Grub were used for 

geochemical analyses.  

 

3.2 Bulk geochemistry 

X-ray fluorescence (XRF) analyses were carried out on ball-milled subsamples. 1.5 g of dried 

sample powder (at 105°C) was mixed with 7,5 g MERCK spectromelt A12 (mixture of 66% Li-

tetraborate and 34% Li-metaborate) and melted at 1200°C to fused beads using an Oxiflux system 

from CBR analytical service. Measurements were done with a Bruker AXS S4 Pioneer wavelength 

dispersive XRF device (Rh-tube at 4kW) and 32 standardized samples, using the traces program. 

Loss on ignition (LOI) was determined externally at 1000°C. The element concentrations are 

expressed as wt.-% or ppm and were recalculated on a volatile-free basis. Elements with missing 

data due to the detection limit were excluded from the analyses. 

 

3.3 87Sr/86Sr and 143Nd/144Nd isotope geochemistry 

Analyses of the 87Sr/86Sr and 143Nd/144Nd ratios on the lithogenic fractions of the loess samples 
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were performed at the Key Laboratory of Crust-Mantle Materials and Environments, University of 

Science and Technology of China (USTC), Hefei. In order to remove organic material, impurities 

and carbonates (Smith et al., 2003; Újvári et al., 2012), 100 mg of sample powder were leached 

with 4 ml 0.5 N acetic acid (CH3COOH) at 50 °C for 4 hours. The detrital residual was rinsed 3 

times with ultrapure water, transferred into Teflon vessels and dissolved using HF and HClO4 (120 

°C, 3 days). The digested samples were evaporated at 130 °C and dissolved in HClO4, and 

subsequently evaporated at 150 °C and redissolved in 6 N HCl twice to remove fluorides. In a final 

step the samples were redissolved in 1 ml of 3N HCl and centrifuged. Sr and light rare-earth 

elements were isolated on quartz columns by conventional ion exchange chromatography with a 

5 ml resin bed of Bio Rad AG 50W-X12, 200-400 mesh. Nd was separated from other rare-earth 

elements on quartz columns using 1.7 ml Teflon powder coated with HDEHP, di(2-

ethylhexyl)orthophosphoric acid, as cation exchange medium. Isotope analyses were conducted 

on a Finnigan MAT 262 mass spectrometer using static collection mode. Sr was loaded with a Ta-

HF activator on pre-conditioned Ta filaments and was measured in double-filament mode. Nd was 

loaded as phosphate on pre-conditioned Re filaments and measurements were performed in a Re 

double filament configuration. The 143Nd/144Nd ratios are expressed as ƐNd, where ƐNd is the 

analyzed 143Nd/144Nd ratio normalized to the chondritic uniform reservoir value (CHUR, 0.512638; 

Jacobsen and Wasserburg, 1980). Analyses of NBS-SRM 987 and La Jolla Nd standards during 

this study yielded an average values of 87Sr/86Sr = 0.710244 ±15 and 143Nd/144Nd = 0.511823 ±15. 

87Sr/86Sr ratios are normalized to 86Sr/ 88Sr = 0.1194 and the 143Nd/144Nd ratios to 146Nd/144Nd = 

0.7219. Results of Nd and Sr in blank measurements are 80 pg and 65 pg, respectively. Relative 

errors of the samples are ≤0.0024% for Sr and ≤0.0022% for Nd. 

 

4. Results 

4.1 Bulk geochemistry 

The results of the XRF measurements for the Tokaj (TO), Nussloch (NU) and Grub (GR) samples 

are listed in Table S1 in the appendix. The SiO2 content of all samples is relatively low and narrow 

from 63.5 ± 1.2% (NU) to 74 ± 1.9 wt.-% (TO). TiO2 is relatively high for TO (0.90 ± 0.06 wt.-%) 

and GR (0.89 ± 0.05 wt.-%) but much lower for NU (0.56 ± 0.02 wt.-%). Al2O3 and Fe2O3 contents 

of all samples show narrow ranges from 7.9 ± 0.2% (NU) to 12.5 ± 1.2 wt.-% (GR) for Al2O3 and 

2.8 ± 0.2 wt.-% (NU) to 4.4 ± 0.5 wt.-% (GR) for Fe2O3. MgO is rather low and within a narrow 

range for all samples (TO: 1.7 ± 0.2 wt.-% - NU: 3.6 ± 0.3 wt.-%). CaO content varies widely. While 

percentages for TO and GR are rather low (3.0 ± 1.9 wt.-%, 5.9 ± 3.4 wt.-%, respectively), CaO of 
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NU is 18.3 ± 1.1 wt.-%. Na2O (NU: 1.3 ± 0.1 wt.-% - TO: 1.8 ± 0.1 wt.-%) and K2O (NU: 1.6 ± 0.1 

wt.-% - GR: 2.3 ± 0.1 wt.-%) contents are both low and within a narrow range for all samples. Loss 

on ignition (LOI) varies from relatively low values for TO (5.7 ± 1.5 wt.-%) and GR (8.0 ± 2.7 wt.-

%) to higher average values for NU (15.9 ± 0.8 wt.-%).  

 

4.1.1 Major element ratios 

An increase in SiO2 content is correlated with an increase in Al2O3, which indicates the presence 

of alumosilicates containing both elements, such as feldspars and micas. This effect is most 

pronounced for the GR samples and least for the NU samples, which plot in the lower left corner 

of the Al2O3 vs. SiO2 diagram (Fig. 2a). TO and GR samples overlap slightly and plot together with 

global average loess (GAL; Újvári et al., 2008). All samples have compositions near the upper 

continental crust (UCC), which represents a global average of slightly weathered crustal rocks, 

and are more different from highly altered sediments such as PAAS (Post-Archean Australian 

Shale; Taylor and McLennan, 1985). In the SiO2 vs. TiO2 diagram (Fig. 2b), the samples show a 

similar distribution as in the Al2O3 vs. SiO2 diagram. Again, TO and GR samples show similar 

compositions, while NU samples are displaced to lower SiO2 and Al2O3 values. NU samples plot 

close to UCC, but all samples are distinctly different from PAAS. There is no, or only a weak, linear 

correlation between Ti and Si for the NU and TO samples, indicating that Ti is probably present in 

different mineral groups such as silicates (e.g. chlorite, biotite) and oxides (e.g. rutile). This is 

different for the GR samples, which show a more pronounced linear trend, probably due to Ti 

being accommodated in a Ti-bearing mineral phase. In the K2O vs. Al2O3 diagram (Fig. 2c), the 

TO and GR samples overlap again, while NU samples are displaced towards lower K2O and Al2O3 

contents. The samples show a clear linear trend, indicating that the Al abundance is mainly 

controlled by K-bearing minerals such as K-feldspar and phyllosilicates. In the Na2O/Al2O3 vs. 

K2O/Al2O3 diagram the samples show some overlap in composition (Fig. 2d). They are close to 

UCC and GAL, reflecting characteristics of depositional conditions of sedimentary rocks, whereas 

igneous rocks have much higher Na2O/Al2O3 ratios (Garrels and Mackenzie, 1971). 

 

 

Fig. 2 (next page): Diagrams of a) SiO2 vs. Al2O3, b) SiO2 vs. TiO2, c) K20 vs. Al2O3 and d) Na2O/Al2O3 vs. 

K2O/Al2O3 for loess samples from Tokaj (grey squares), Grub (grey triangles) and Nussloch (dark grey 

circles). For comparison, the Upper Continental Crust (UCC, black cross; Rudnick and Gao, 2003) and Post-

Archean Australian Shale (PAAS, grey X; Taylor and McLennan, 1985) standards are shown, as well as 

Global Average Loess (GAL, grey open triangle; Újvári et al., 2008). 
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Discrimination between the three sample groups is best achieved in the SiO2/TiO2 vs. Al2O3/TiO2 

diagram (Fig. 3a). Furthermore, both Si and Al, as well as Ti, are hardly mobile in environments 

with pH >4. Therefore, these elements – and hence the Al2O3/TiO2 vs. SiO2/TiO2 ratios – should 

not significantly be affected by weathering processes and pedogenesis. The TO, NU and GR 

samples plot mostly as discrete clusters. Again, the TO and GR data points are located closer 

together, while the NU samples plot in the upper left area due to their lower Ti content. GAL plots 

roughly half-way between NU and TO/GR, but all samples are distinctly different from both UCC 

and PAAS, probably as a consequence of weathering. 
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Fig. 3: SiO2/TiO2 vs. Al2O3/TiO2 plots. a) Tokaj (grey squares), Grub (grey triangles) and Nussloch (grey 

circles) loess with UCC (Rudnick and Gao, 2003), PAAS (Taylor and McLennan, 1985) and GAL (Újvári 

et al., 2008). 

b) Overview of Tokaj, Grub, Nussloch loess and loess from other localities in Europe. Data sources: 

Lower Saxony/Hesse (Northwest Germany; Schnetger, 1992), Baranya (Southwest Hungary; Újvári et 

al., 2008), GAL (Global Average Loess; Újvári et al., 2008), Paks (Central Hungary; Újvári et al., 2014), 

Beremend (South Hungary; Varga et al., 2011), Bonn (West Germany; Smykatz-Kloss, 2003), Picardy 

(North France; Smykatz-Kloss, 2003), Susak Island (West Croatia; Mikulčić Pavlaković et al., 2011), 

Slovakia (Nehyba et al., 2010), Kaiserstuhl (Southwest Germany; Taylor et al., 1983), Alsheim (West 

Germany; Kühn et al., 2013), South England (Parks and Rendell, 1992). 

c) Overview of Tokaj, Grub and Nussloch loess and floodplain data (all: FOREGS data: Salminen et al., 

2005; except MO: Nehyba et al., 2010) of major European drainage areas (AA: Austroalpine cover nappes 

area; BM: Bohemian Massif, DR: Drava, WC: Western Carpathians, RH: Rhine, RHO: Rhône, HU-M: 

Central Hungary, HU-E: East Hungary, MO: Morava).  

d) Overview of Tokaj, Grub and Nussloch loess and rock data from major geologic units. Abbreviations: 

sed. - sedimentary rocks, volc. - volcanic rocks, ign. - igneous rocks, WC - West Carpathians, EC - East 

Carpathians, CB - local mountain ranges in the Carpathian Basin, BM - Bohemian Massif, C Alps - Central 

Alps. Sources: WC, sed. (a): Nehyba et al., 2010; Tokaj, volc. (a): Kiss et al., 2010; WC, sed. (b): Vďačný 

et al., 2013; EC, sed.: Mason et al., 1996; WC, ign. (b): Kohút and Nabelek, 2008; CB, sed.: Varga et al., 

2007; BM, sed. (a): Drost et al., 2004; BM, ign.: Siebel et al., 2008; EC, ign. (a): Jurje et al., 2013; C Alps, 

ign.: Schaltegger et al., 2003; EC, ign. (b): Seghedi et al., 2004; BM, sed. (b): Drost et al., 2007; Alps, 

molasse: von Eynatten, 2003. 
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4.1.2 UCC-normalized spider diagrams 

To minimize the effects of weathering and associated selective element depletion/enrichment, 

only pure loess samples are shown in the UCC-normalized element plots; paleosol samples were 

excluded. In these plots, the elemental concentrations of GAL are usually close to unity or slightly 

depleted compared to UCC, except Ca and Zr, which are enriched, and Na, which is depleted 

(Fig. 4a). The TO, NU and GR samples generally follow this trend, but show some distinct 

differences. TO samples largely follow the GAL pattern but are slightly enriched in Ti, Mn and Cr, 

whereas Mg and Sr are slightly and Ca strongly depleted, compared with GAL. The profile does 

not show much variation, except for Mg, Sr and Ca. NU samples are slightly depleted in most 

elements compared with GAL, except for Mg, Ca and Sr, which are enriched. Variation is generally 

lower than that of the other profiles. The GR profile is most similar to GAL composition, but slightly 

more enriched in Ti, Mn and Mg. Variation is very low except for Ca. Comparing all three profiles, 

the elemental compositions generally do not vary much within a profile, except for Ca and, to a 

lesser extent, Mg, Sr and Cr. This is probably due to the presence of secondary carbonates. Note 

that for the UCC-normalized compositions, Ca is expressed as total Ca (Catot), not corrected, 

silicate-bound Ca*, in order to ensure comparability with GAL and the literature data. Catot includes 

Ca from secondary carbonates. Therefore, the Ca/UCC ratio (as well as Mg/UCC, Sr/UCC) should 

be considered less diagnostic of the elemental composition of a sample or profile. 

 

 

Fig. 4 (this and next page): UCC-normalized spider diagrams. For abbreviations and references, see Fig. 

3. a) UCC-normalized elemental abundances (major and selected trace elements) and errors (standard 

deviations) of Tokaj, Grub, Nussloch and Global Average Loess. b-c) Comparison of Tokaj, Grub and 

Nussloch with loess from North, West, Central and Southeast Europe. d) Comparison of Tokaj and Grub 

with potential source rocks from SE Europe and the Alps. e) Comparison of Tokaj, Grub and Nussloch 

loess and Alpine potential source rocks. f-g) Tokaj, Grub and Nussloch loess and floodplain data of major 

European drainage areas.  
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Table 1: Overview of 87Sr/86Sr and 143Nd/144Nd values and additional data. Chronostratigraphic information 

based on optically-stimulated and infrared-stimulated luminescence (OSL, IRSL) is according to (Zöller et 

al., 2013) for Grub, (Antoine et al., 2009) for Nussloch and (Schatz et al., 2012) for Tokaj. Paleosol samples 

are marked with an asterisk (*). Results of isotopic analyses are given with absolute and relative errors. >30 

µm is the percentage of particles > 30 µm in the sample and represents grain size distribution.  

 

Lab 

code 

depth OSL IRSL 87Sr/86Sr abs. e. rel. e. 143Nd/144Nd abs. e. rel. e. εNd >30 µm 

 m ka Ka  ± %  ± %  % 

Grub (Austria) 

GR 7 1.70 32 23 0.720091 13 0.0018 0.512143 7 0.0014 -9.7 n.a. 

GR 6 2.40 30 28 0.719926 10 0.0014 0.512121 8 0.0015 -10.1 n.a. 

GR 5 2.80 34  0.720137 15 0.0021 0.512197 5 0.0011 -8.6 n.a. 

GR 4 3.10 33 30 0.720220 13 0.0018 0.512124 7 0.0014 -10.0 n.a. 

GR 3 3.40 39 34 0.720063 15 0.0021 0.512116 8 0.0015 -10.2 n.a. 

GR 2 * 3.70 40  0.719918 10 0.0013 0.512079 11 0.0021 -10.9 n.a. 

GR 1 * 4.00 47 40 0.720138 10 0.0015 0.512073 11 0.0021 -11.0 n.a. 

Nussloch, P4 section (Germany) 

NU 1 4.90  19 0.716552 13 0.0019 0.512164 8 0.0015 -9.2 n.a. 

NU 2 5.60 23  0.716788 13 0.0018 0.512162 7 0.0014 -9.3 n.a. 

NU 3 9.45   0.718051 12 0.0017 0.512162 8 0.0016 -9.3 n.a. 

NU 4 11.10   0.718817 14 0.0020 0.512124 7 0.0013 -10.0 n.a. 

NU 5 11.60   0.719320 13 0.0018 0.512110 8 0.0016 -10.3 n.a. 

NU 6 * 12.90   0.718528 14 0.0020 0.512122 8 0.0015 -10.1 n.a. 

NU 7 * 13.10  32 0.718888 12 0.0017 0.512119 5 0.0010 -10.1 n.a. 

NU 8 15.30   0.718636 14 0.0019 0.512128 11 0.0022 -9.9 n.a. 

NU 9 16.00   0.718916 17 0.0024 0.512095 6 0.0013 -10.6 n.a. 

NU 10 17.00 < 54 < 57 0.719114 12 0.0017 0.512123 9 0.0017 -10.0 n.a. 

Tokaj, Patkó quarry (Hungary) 

TO 20 0.75 21 25 0.719018 11 0.0015 0.512146 9 0.0018 -9.6 54.6 

TO 19 1.5   0.718918 15 0.0021 0.512135 8 0.0015 -9.8 51.7 

TO 18 2.25   0.719354 15 0.0021 0.512130 10 0.0019 -9.9 60.3 

TO 17 3.00 27 28 0.718424 14 0.0019 0.512144 7 0.0014 -9.6 63.4 

TO 16 3.75 31 26 0.718235 15 0.0021 0.512140 8 0.0015 -9.7 59.0 

TO 15 4.50   0.719058 14 0.0019 0.512156 5 0.0011 -9.4 59.8 

TO 14 5.25 27 28 0.718985 15 0.0020 0.512151 8 0.0015 -9.5 57.2 

TO 13 * 6.00 27 30 0.719584 14 0.0019 0.512136 7 0.0014 -9.8 46.5 

TO 12 * 6.75   0.718925 10 0.0014 0.512145 7 0.0014 -9.6 44.6 

TO 11* 7.5 39 39 0.718860 14 0.0019 0.512117 11 0.0021 -10.2 36.9 

TO 10 * 8.25   0.718396 14 0.0019 0.512145 7 0.0014 -9.6 40.2 

TO 9 9.00   0.718194 12 0.0017 0.512104 9 0.0017 -10.4 48.3 

TO 8 9.75   0.718663 14 0.0020 0.512131 6 0.0011 -9.9 48.9 

TO 7 10.50 53 47 0.718754 14 0.0019 0.512 9 0.0017 -10.9 47.8 

TO 6 11.25   0.718292 14 0.0019 0.512 8 0.0016 -10.1 46.5 

TO 5 12.00   0.718304 12 0.0017 0.512 6 0.0012 -10.2 51.8 

TO 4 12.75 57 52 0.718424 12 0.0017 0.512 6 0.0011 -10.2 47.8 

TO 3 13.50 62 57 0.718351 13 0.0018 0.512 8 0.0015 -10.2 47.0 

TO 2 14.25   0.719393 9 0.0013 0.512 8 0.0015 -10.7 44.6 

TO 1 * 15.00   0.720358 11 0.0016 0.512 8 0.0016 -10.5 39.3 
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4.2 87Sr/86Sr and 143Nd/144Nd isotope analyses 

4.2.1 Grain-size dependence of 87Sr/86Sr and 143Nd/144Nd ratios and leaching experiments 

Several studies have shown that strontium isotope ratios in aeolian sediments are grain-size 

dependent and increase with decreasing grain size, since more radiogenic Sr is present in the fine 

fraction (Feng et al., 2009). This coupling between grain size and 87Sr/86Sr ratio is usually not 

observed for 143Nd/144Nd. The authors conclude that isotopic compositions should be measured 

on specific grain size fractions of the samples instead of using bulk material (Chen et al., 2007; 

Feng et al., 2009; Újvári et al., 2012). However, there is some debate on this topic and other 

authors have argued that it is only the bulk fraction that contains the entire source area information 

of a sample (Jahn et al., 2001; Smith et al., 2003; Zhang et al., 2012). For Tokaj, grain size data 

are available that were obtained from the same samples used for isotopic measurements (Schatz 

et al., 2011; Table 1). These data support that 143Nd/144Nd and grain size are only weakly 

correlated (R²=0.234). The correlation between grain size and 87Sr/86Sr ratios is one order of 

magnitude lower, resulting in an R² of 0.038. Therefore, in this study, we present bulk 87Sr/86Sr 

and 143Nd/144Nd ratios since the correlation between grain size and isotopic ratios is weak to non-

existent – at least for Tokaj - and therefore negligible. 

The decision for a leaching pre-treatment of the isotopic samples and the choice of the leaching 

procedure may significantly influence the results of 87Sr/86Sr and 143Nd/144Nd measurements. We 

conducted an experiment with three samples (TO8, NU6, GR4). All of them were measured 

unleached and leached (4 ml 0.5 N acetic acid, 50 °C, 4 h). The results are shown in Fig. 5 and 

Table 2. For 143Nd/144Nd ratios, the difference between the leached and unleached samples ranges 

from 0.0015% to 0.0034%, which is within or slightly above the relative error from the 

measurement (0.0011-0.0018%). For 87Sr/86Sr, the difference is 2 orders of magnitude higher 

(0.21%-0.79%) than the relative error from the measurement (0.0018-0.0020%). These results 

indicate that isotopic signatures depend at least partly on the respective leaching method used. 

Caution is required when comparing results obtained from samples with different pretreatments 

and careful documentation is needed when such results are reported. 

 

 

Table 2 (next page): Results of the leaching experiment. 3 samples were used, one from each location. 

Results of isotopic analyses are given with absolute and relative errors. The difference between the leached 

and unleached sample is expressed as Δ (%). 
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Lab code treatment 87Sr/86Sr abs. 

e. 

rel. e. Δ 143Nd/144N

d 

abs. 

e. 

rel. e. εNd Δ 

   ± % % ± %   % 

TO 8 unleached 0.716586 13 0.0018 0.21 0.512097 8 0.0016 -10.6 0.0034 

 leached 0.718663 14 0.0020  0.512131 6 0.0011 -9.9  

NU 6 unleached 0.710606 14 0.0019 0.79 0.512127 6 0.0012 -10.0 0.0005 

 leached 0.718528 14 0.0020  0.512122 8 0.0015 -10.1  

GR 4 unleached 0.716142 14 0.0020 0.41 0.512102 10 0.0018 -10.5 0.0022 

 leached 0.720220 13 0.0018  0.512124 7 0.0014 -10.0  

 

 

4.2.2 87Sr/86Sr and 143Nd/144Nd isotopic compositions 

Strontium and neodymium isotopic compositions of the three localities are fairly uniform and do 

not vary much with depth (Table 1, Fig. 5, Fig. 6). For the majority of the samples from all three 

localities, ƐNd values range from -9.25 to -11, with the exception of one GR outlier (GR5) which 

has an ƐNd value of -8.6. Sr ratios are more variable but generally fall in a typical range of the 

weathering products of old continental crust. The majority of the samples overlap in an 87Sr/86Sr 

range of 0.718 to 0.7195. GR samples have slightly more radiogenic (i.e. higher) 87Sr/86Sr ratios 

(0.720), while 3 samples from the upper part of the Nussloch profile have clearly less radiogenic 

87Sr/86Sr ratios for 3 samples from the upper part of the profile (0.716-0.718).  

 

 

Fig. 5: 87Sr/86Sr vs. ƐNd diagram of leached (circles) and unleached (triangles) 

Tokaj, Grub and Nussloch loess samples.  
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The 87Sr/86Sr ratios of 20 bulk loess and paleosol samples from Tokaj range from 0.7188 and 

0.7203 and ƐNd ratios range from -9.4 to -10.9. ƐNd values are rather stable throughout the profile, 

with a possible weak trend to less radiogenic values with depth. The 87Sr/86Sr ratios show some 

variation in the upper part of the profile, but are generally constant. However, there is a 

pronounced shift towards more radiogenic ratios for the lowermost samples, which, however, is 

not manifested in the ƐNd data. 87Sr/86Sr ratios of the Nussloch samples (n=10) range from 0.7166 

to 0.7193 and Nd ratios from -9.2 to -10.6. ƐNd values show a possible weak trend to less 

radiogenic values with depth, while there is a clear trend to more radiogenic Sr values with depth. 

For the Grub samples (n=7), 87Sr/86Sr ratios range from 0.7199 to 0.7202 and ƐNd from -8.6 to -11. 

Sr ratios are very homogeneous with depth, but there is a weak trend to less radiogenic ƐNd values 

with depth. One sample (GR5) has an exceptionally high ƐNd value of -8.6. This strong deviation 

is not repeated in the Sr ratios and might be an outlier.  

 

 

Fig. 6: 87Sr/86Sr and ƐNd vs. depth (in meters) plots of the Tokaj, Nussloch and Grub profiles. Paleosols 

are indicated as grey shaded areas. Symbol size exceeds bars for analytical errors in all cases. 
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5. Discussion 

5.1 Limitations of the methods used 

Before discussing potential sediment sources, the main limitations and constraints of the Sr-Nd 

isotopic and element fingerprinting methods should be considered. First, processes such as 

weathering and pedogenesis, secondary carbonate formation and sorting via transport in air and 

water may alter both the isotopic signature and the element composition. These biasing effects 

can be controlled to some extent by limiting the samples to a similarly weathered selection (e.g. 

by excluding paleosol samples) and constraining the age range, as well as by removing secondary 

carbonates. Sorting effects, however, cannot be controlled for. In our study we used samples from 

MIS 2 and 3 (ca. 60-20 ka) and either excluded or paid special attention to possible biases 

introduced by paleosol samples. Samples were leached to remove secondary carbonates for 

isotopic measurements and ensure comparability with literature data. This was not the case for 

XRF analytical results that are usually reported as total CaO. Second, the signatures of multiple 

sources and/or the contribution of minor sediment sources will be obscured by mixing. This fact 

has been discussed previously (Buggle et al., 2008; Újvári et al., 2012) and is one of the main 

limitations of all fingerprinting methods. A third limitation is the fact that Danube loess contains a 

mixture of both detrital silicatic material and detrital carbonates, mainly dolomite (Újvári et al., 

2012). Carbonates have low 87Sr/86Sr values and ‘dilute’ the isotopic signal, hence is it difficult to 

compare loess isotopic signatures with those of crystalline silicatic source rocks. While this is a 

major shortcoming for 87Sr/86Sr, 143Nd/144Nd signatures will be less affected by a potential 

carbonate contribution. Fourth, fingerprinting requires that the composition of the possible source 

areas is both sufficiently well known and distinctive. While abundant XRF and isotopic data of 

possible source areas is available, the second criterion probably cannot always be fulfilled. If the 

geochemical characteristics of all potential source areas are not known and/or distinguishable 

from each other, certain sources can only be ruled out, but not confirmed. This has been discussed 

before (Újvári et al., 2012) for similarities between Greenland dust and Southeast European loess. 

While limiting the validity of the fingerprinting results, fingerprinting methods still provide valuable 

information by excluding potential source areas and uncovering similarities and differences of 

sediments and potential sources. Last, it is worth keeping in mind that some conflicting results in 

element and isotopic compositions from the literature may be attributed to different analytical 

methods or different measurement conditions. 
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5.2 Within-profile variation 

All three profiles do not show much variation in 87Sr/86Sr and ƐNd values with depth (Fig. 6, Fig. 5, 

Table 1). No systematic effects of paleosol formation and associated higher clay content 

containing more radiogenic Sr, such as shifts, peaks etc., on the composition of both isotopic 

systems can be observed. The Tokaj samples have the lowest internal variability for both 87Sr/86Sr 

and ƐNd. Nussloch has a narrow range of ƐNd and a wider 87Sr/86Sr range. Grub has constant 

87Sr/86Sr values but a wider ƐNd range, including one potential outlier. There is no evidence for a 

clear shift or trend in sediment isotopic composition in both isotopic systems at the same time. 

This is further supported by very low correlation coefficients between 87Sr/86Sr and ƐNd for Tokaj 

(r²=0.01) and Grub (r²=0.11). An identifiable change of sediment source would ideally be 

characterized by a synchronous, inversely correlated shift in both isotopic signals. The Nussloch 

Sr-Nd correlation coefficient is higher (r²=0.74), which might indicate an actual shift of the sediment 

source over time, albeit not pronounced. Due to the biasing influence of grain size and secondary 

carbonates on the 87Sr/86Sr composition, it has been argued that 143Nd/144Nd is a more reliable 

provenance indicator (Rao et al., 2006). Based on ƐNd alone, our results indicate a stable sediment 

source for Tokaj from ca. 60-20 ka and strong sediment homogeneity within the profile. For Grub, 

a possible weak and gradual shift towards a less radiogenic sediment source from 50-30 ka can 

be observed. For Nussloch, the results indicate a small shift of about 1 ƐNd unit in the upper part 

of the profile, at some time between ca. 20 and 30 ka. 

 

5.3 Uniformity of Central and Southeast European loess and dust 

In an overview of global loess and dust Sr-Nd isotopic signatures (Fig. 7) , the Tokaj, Grub and 

Nussloch samples have a distinct composition when compared to loess from other regions of the 

world such as Argentina, the U.S. and Alaska, Central Asia, China and Ukraine. 87Sr/86Sr vs. ƐNd 

diagrams (DePaolo, 1988) are commonly used in petrological studies to identify the sources of 

igneous rocks. Samples derived from the depleted mantle of the Earth plot in the upper left quarter, 

whereas those derived from crustal material plot in the lower right quarter. Our samples cluster in 

the lower half of a mixing hyperbola defined by Svensson et al. (2000), close to, or overlapping 

with, several recent and last glacial maximum (LGM) Greenland dust samples, which indicates a 

common source or a genetic link between these sediments. The implications of this observation 

have been discussed previously for Southeast European loess (Újvári et al., 2012).  
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Fig. 7: Comparison of the Tokaj, Grub and Nussloch loess samples and selected global loess and dust 

data. GRIP is Greenland dust, references are given in Fig. 8. Sources: Argentinian loess data: Smith et 

al. (2003), Circum-Pacific average volcanic rock data: Svensson et al. (2000), US, China, Gobi and 

Ukraine data: Biscaye et al. (1997). CHUR is the chondritic uniform reservoir (Jacobsen and Wasserburg,  

1980), indicated by a vertical and horizontal grey line. 

 

Zooming into the region of weathered crustal rocks (Fig. 8) and our loss data, it is obvious that the 

majority of the Tokaj, Nussloch and Grub samples are isotopically very similar and has probably 

been derived from the same source or from several sources with roughly identical isotopic 

properties. Minor exceptions are the Grub outlier and the three youngest Nussloch samples which 

have unusually high ƐNd values. Similarities, especially in ƐNd values also exist between the 

analyzed samples and spatially close loess deposits in Southwest and Central Hungary and 

Croatia, and loess from France. However, the isotopic signatures of more distant loess from 

Morocco and Tunisia, from Spitsbergen, and of Mediterranean Sea sediments are similar as well. 

In contrast, Belgian loess plots further away from the Nussloch and the French loess samples, 
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towards Ukrainian loess. The same is true for loess from the Western UK (Scilly Islands) and the 

Canary Islands. 

 

 

Fig. 8: Comparison of Tokaj, Grub and Nussloch loess, loess samples from various locations in Europe, 

Greenland dust, suspended and floodplain sediments of the Danube and Rhine Rivers and rivers in the 

Vosges Mts. and Miocene sands from Hungary (Pannonian Sands). Data sources: Basaharc, Mende, 

Paks and Zmajevac loess, Mohács and Basaharc fluvial sediments, Miocene sands (Újvári et al., 2012), 

Spitsbergen, French and Belgian loess (Gallet et al., 1998), Moroccan, Canary Island and Tunisian loess 

and Mediterranean Sea sediments (Grousset et al., 1992), Ukrainian loess and GRIP Greenland dust 

(Svensson et al., 2000), Scilly Islands (UK) loess (Gallet et al., 1998), GISP2 Greenland dust (Biscaye et 

al., 1997), NorthGRIP Greenland dust (Bory et al., 2002), fluvial sediments of the Rhine River and streams 

in the Vosges Mts. (Tricca et al., 1999).  

 

Additional information of similarities and differences is provided by comparing the major and trace 

element spider diagrams and element ratio plots. In both the UCC-normalized spider diagrams 

(Fig. 4b) and the Al2O3/TiO2 vs. SiO2/TiO2 plot (Fig. 3b), Tokaj and Grub samples show similar 

patterns, close to GAL, whereas samples from Nussloch reveal a different composition. Compared 

with geographically close loess data from Southeast Europe, all samples exhibit identical patterns 

in the spider diagrams, except for Mg, Ca and Sr. The latter three elements were probably 
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influenced by the presence of secondary carbonates and are therefore not indicative of potentially 

different sediment sources. A similar relationship is found in the Al2O3/TiO2 vs. SiO2/TiO2 plot (Fig. 

3b), where Tokaj and Grub samples plot close to Croatian loess (Susak Island; Mikulčić Pavlaković 

et al., 2011), Hungarian loess from South Baranya (Újvári et al., 2008), Beremend (Varga et al., 

2011) and Paks (Újvári et al., 2014), and West German loess from Alsheim (Kühn et al., 2013) 

and east of Bonn (Smykatz-Kloss, 2003). Tokaj samples overlap with Slovakian loess (Nehyba et 

al., 2010), while Grub samples have identical ratios to loess from Paks in Hungary. The results, 

together with those from the Sr-Nd analyses, clearly show the genetic link between major loess 

deposits in Hungary, Croatia and probably Slovakia and Tokaj and Grub. Geochemical similarities 

of loess from Central Hungary/Croatia have been observed before (Újvári et al., 2012) and can 

now be expanded with results from East Hungary (Tokaj) and Austria (Grub). The overall 

uniformity of loess in the Northern Carpathian Basin and adjacent regions points to a common, 

distal source of sediment (or rather a mixture of multiple sources) and a common transport 

pathway but does not provide evidence for the idea of a significant contribution of local, proximal 

material, as e.g. Tokaj volcanic rocks, assuming a unique geochemical signature of the proximal 

sediment. 

The situation in Nussloch and other, geographically close loess deposits in Western and Central 

Europe, however, is less clear. While samples from these regions show rather similar patterns in 

the spider diagram (Fig. 4c), variance is much higher than for the Southeast European loess 

samples. Nussloch loess is isotopically most similar to loess from Lower Saxony and Hesse 

(Schnetger, 1992), Bonn and Alsheim (West Germany), and shows different patterns than loess 

from Southeast England (Parks and Rendell, 1992), Kaiserstuhl in Southwest Germany (Taylor et 

al., 1983) and the Picardy (Smykatz-Kloss, 2003) and Normandy (Lautridou et al., 1984) regions 

in France. This is only partially supported by the Al2O3/TiO2 vs. SiO2/TiO2 plot (Fig. 3b), in which 

Nussloch loess is most similar to Picardy and South England loess, and again to Lower Saxony 

and Hesse, but different from Alsheim and Bonn. This points to the conclusion that there are larger 

regional differences in the chemical and isotopic composition of Western and Central European 

loess deposits compared to those of Southeast Europe. The results from the different analyses 

are often ambiguous and do not clearly show similarities or differences between the localities. 

Both spider diagrams and Al2O3/TiO2 vs. SiO2/TiO2 ratios indicate that Nussloch loess is similar to 

samples from Lower Saxony and Hesse. However, this observation is not confirmed by Sr-Nd 

data. Isotopic and elemental analyses show some similarities between Nussloch and French loess 

(Fig. 8), but the picture is less clear for Alsheim, Bonn and Kaiserstuhl, which we would expect to 

be similar as well, assuming a uniform sediment source and pathway, such as the Rhine River. 
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5.4 Rocks and floodplain sediments as potential sources of Tokaj, Nussloch and Grub 

loess 

5.4.1 A comparison of loess and potential source rocks from the Alps and Southeast 

Europe 

As discussed above, a direct comparison of elemental data of loess samples and potential 

crystalline silicatic source rocks will probably not result in valid matches due to the presence of 

detrital carbonates in the samples and the destruction of the source signal through weathering, 

sorting and transport processes. In the UCC-normalized spider and Al2O3/TiO2 vs. SiO2/TiO2 

diagrams (Fig. 4d, 4e, 3d), potential crystalline source rocks have different and much more 

heterogeneous compositions and generally possess no similarities with loess. Some East 

Carpathian flysch, Bohemian Massif and Alpine granitoid samples plot in the vicinity of the Tokaj 

and Grub samples, but do not overlap, indicating that there is probably no direct link between 

these rocks and the loess samples and that the source information may have been obscured by 

weathering. A comparison between Swiss molasse and igneous rock samples from the Swiss Alps 

reveals similarities between Nussloch loess and molasse, indicating that Rhine River sediments 

are the main source for loess from this locality (Hill, 2005; Smalley et al., 2009). This observation 

is confirmed by the Nd isotopic data, where Nussloch loess falls in the ƐNd range of Alpine 

molasses samples (Henry et al., 1997). 

As for elemental data, the same limitations due to weathering and sediment mixing apply for 

87Sr/86Sr, but 143Nd/144Nd ratios should be less affected by weathering processes and potentially 

carry a source signal. Compared to loess, many potential source rocks have a different isotopic 

signature with much higher ƐNd values (Fig. 7, Fig. 9, Fig. 10), including basalts from Hungary and 

Austria (Carpathian Basin (CB); Embey-Isztin et al., 1993), igneous rocks from the Central Alps 

(Schaltegger et al., 2003), igneous rocks from Hungary and Romania (Eastern Carpathians (EC); 

Seghedi et al., 2004) and Bohemian Massif granites (BM; Siebel et al., 2008). Our loess samples 

plot close to, or within, the rectangles of East Carpathian flysch (Mason et al., 1996), granites from 

the Tisia terrane in Southwest Hungary (Carpathian Basin (CB); Klötzli et al., 2004), Bohemian 

Massif sedimentary rocks (Drost et al., 2007), Western Carpathian granites (WC; Kohút and 

Nabelek, 2008), and at some distance to Slovakian gneiss (WC; Gaab et al., 2006) and Czech 

metamorphic rocks (BM; Janousek et al., 2006). A more detailed analysis of single data points 

(Fig. 10) reveals that the loess samples overlap with several rock samples, most notably with East 

Carpathian flysch (Mason et al., 1996). Furthermore, all samples are located within the ƐNd range 
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of Alpine molasses samples (Henry et al., 1997) and close to the 87Sr/86Sr range of igneous rocks 

from the Black Forest Mts. in Southwest Germany (Baumann and Hofmann, 1988). 

 

Fig. 9: Tokaj, Grub and Nussloch loess and potential source rocks from Southeast Europe and the Alps. 

Squares are drawn based on min/max values. Abbreviations: BM - Bohemian Massif, C Alps - Central 

Alps, CB - local rocks in the Carpathian Basin, EC - East Carpathians, WC - Western Carpathians, sed. 

- sedimentary rocks, ign. - igneous rocks, metam. - metamorphic rocks. Data sources: BM, sed. (a): Drost 

et al. (2004), BM, sed. (b): Drost et al. (2007), BM, ign.: Siebel et al. (2008), BM, metam.: Janousek et al. 

(2006), CB, ign. (a): Embey-Isztin et al. (1993), CB, ign. (b): Klötzli et al. (2004), EC, sed.: Mason et al., 

(1996), EC, ign. (b): Seghedi et al. (2004), WC, ign. (b): Kohút and Nabelek (2008), WC, metam.: Gaab 

et al. (2006). 

 

These results also demonstrate the main shortcoming of the Sr-Nd fingerprinting method. There 

might be a contribution from the surrounding East and West Carpathian Mountains (WC, EC) or 

local rocks from the Carpathian Basin (CB) to the Tokaj (and possibly Grub) loess sites, but a 

contribution of southeast European material to the Nussloch site is highly unlikely since neither 
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rivers nor dominant wind systems exist and have existed throughout the Quaternary to constantly 

transport material from the Carpathian Basin to West Germany. Thus, sediment sources can only 

be ruled out, but not confirmed. However, a contribution of East Carpathian material to East 

Hungarian loess via the Tisza River has been discussed before (Smalley and Leach, 1978) and 

further investigations are encouraged by the isotopic and elemental data. Furthermore, Tokaj, 

Grub and Nussloch loess and Alpine molasses samples have several geochemical similarities and 

should be included in further analyses, since these sediments have probably been derived from 

the same initial source, i.e. the Alps, and may have supplied material for both Southeast and 

Central European loess via the Rhine and the Danube Rivers. 

 

 

Fig. 10: Tokaj, Grub and Nussloch loess and potential source rocks from Southeast Europe and the Alps. 

This figure is a zoom-in of Fig. 9 with individual data points.  
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5.4.2 A comparison of loess and floodplain sediments in Central and Southeast Europe 

It has often been argued that fluvial rather than aeolian processes acted as the main transport 

mechanism for material that later accumulated as loess. Smalley and Leach (1978) assume that 

glacial sediments from the Alps were transported to the North and Southeast by the Rhine and 

Danube Rivers, deposited in floodplains and river banks and subsequently transported by the wind 

to build proximal loess deposits. Several provenance studies have therefore focused on studying 

floodplain deposits as potential source materials of loess (Buggle et al., 2008; Muhs and Budahn, 

2006; Újvári et al., 2012). Here we followed the approach by Buggle et al. (2008) who successfully 

compared their loess data with recent floodplain geochemical data from the FOREGS database 

(Salminen et al., 2005). We expanded their selection  and classification (Austroalpine cover 

nappes, Bohemian Massif, Drava, Western Carpathians) with additional samples from the Rhine 

and Rhône Rivers and their tributaries, and Central and Eastern Hungary, representing the 

deposits of the Danube and Tisza and tributaries, respectively (all FOREGS; a complete list of 

samples can be found in the appendix). One additional sample is from the Dřevnice-Morava 

confluence in Slovakia (Nehyba et al., 2010). So far, Sr-Nd data is only available from the Danube 

River at Mohács and Basaharc (Hungary), from Miocene Pannonian sands in Hungary (all: Újvári 

et al., 2012) and from the Upper Rhine Valley (Tricca et al., 1999), but not from other locations 

across Europe or rivers as, e.g., the Tisza. 

A comparison of these samples in the spider diagrams (Fig. 4f) shows similar patterns of Tokaj 

and Grub and floodplain sediments from Eastern Hungary (E-HU), the Bohemian Massif and the 

Western Carpathians and, to a lesser degree, Central Hungary (C-HU), and the Drava and Morava 

Rivers. Samples from the Austroalpine region (AA) deviate from Tokaj and Grub. This is confirmed 

in the Al2O3/TiO2 vs. SiO2/TiO2 diagram (Fig. 3c), where Tokaj and Grub plot close to the Western 

Carpathians and East Hungary (Tisza), but plot away from the Drava and the Bohemian Massif. 

The Sr-Nd data (Fig. 8) from the suspended load and Pleistocene fluvial sediments of the Danube 

River, as well as of the Miocene Pannonian sands, plot around Tokaj and Grub. The ƐNd values of 

the Pleistocene fluvial sediments and the Pannonian sands are identical with our loess samples, 

indicating that the loss and the fluvial sediments have probably been derived from the same 

source(s). These results are in line with previous findings for the Northwest and Central Carpathian 

Basin (Buggle et al., 2008; Thamó-Bozsó et al., 2014; Újvári et al., 2012) and confirm the 

fundamental theoretical hypotheses of loess origin (Smalley et al., 2009; Smalley and Leach, 

1978). The high degree of similarity between Tokaj and Grub loess either implies that input from 

the East Carpathians and the Pannonian sands did not change the geochemical signature 
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significantly, or that material from East Hungary and Pannonian sands must have been 

transported to East Austria.  

Very little floodplain data is available for Nussloch. A comparison with FOREGS data of Rhine, 

Rhône and Austroalpine floodplain sediments shows strong similarities with Rhine and Rhône 

samples in both the spider diagrams (Fig. 4g) and in the Al2O3/TiO2 vs. SiO2/TiO2 plot (Fig. 3c), 

which supports the theory of fluvial transport from source regions in the Swiss Central Alps via the 

Rhine River, deposition and subsequent short aeolian transport, as suggested by previously 

(Antoine et al., 2001; Hill, 2005; Smalley et al., 2009). A comparison of isotopic signatures (Fig. 8) 

shows that river, spring and soil samples from the Vosges Mts. (Probst et al., 2000; Tricca et al., 

1999) adjacent to the Upper Rhine Valley have more radiogenic Sr ratios than the Nussloch 

samples, but might result in a similar isotopic composition if mixed with sediments from the Black 

Forest (Fig. 10) from the opposite side of the Upper Rhine Valley, or with Rhine River sediments 

(Tricca et al., 1999). Such a mixture could provide an additional, minor contribution of sediment 

with a similar geochemical signature. However, more data from potential source rocks and from 

sediments in the Alps and along the Rhine River are needed to consolidate these findings. 

  

6. Conclusions 

The results of our combined geochemical and Sr-Nd isotopic study and MIS 2 and 3 loess samples 

from Tokaj (Hungary), Grub (Austria) and Nussloch (Germany) show that: 

 The sediment source of the Tokaj loess-paleosol profile most likely remained stable 

between 60 to 20 ka. In contrast, the geochemical and isotopic composition of loess from 

Grub and Nussloch is less homogenous, indicating a weak change in the source from 50 

to 30 ka in Grub and a more pronounced change between 30 to 20 ka at Nussloch. 

 Overall, European loess has a rather similar geochemical and isotopic composition. This 

is especially true for loess from the Carpathian Basin and adjacent areas (Tokaj, Grub, 

Hungary, Croatia), where the uniformity is most pronounced, which indicates a common, 

distal sediment source and common transport pathways and weakens the theory of a 

significant contribution of local/proximal sediments. Geochemical and isotopic variance is 

higher in Central and Northern European loess (Nussloch, Germany, France, Benelux). 

 A direct comparison of loess and possible source rocks is difficult due to weathering and 

mixing effects. The Tokaj and Grub samples show some similarities with sedimentary rocks 
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from the East Carpathians, the Bohemian Massif and Alpine molasse; Nussloch loess 

could have been derived from deposits of the Alpine molasse. 

 The comparison of loess and floodplain and river sediments is most promising and 

confirms previous results and hypotheses. While Tokaj and Grub loess appear to be linked 

with Miocene local sands in Hungary and fluvial sediments from the Western Carpathians, 

the Bohemian Massif, the Danube and the Tisza Rivers, Nussloch loess may have been 

derived from Rhine River sediments or from a mixture of Black Forest and Vosges Mts. 

sedimentary material. 

 There is a general lack of data, especially Sr-Nd data of floodplain sediments, and 

consistent datasets (XRF, isotopic data, measured on the same samples). 

 Sr-Nd analyses and geochemical fingerprints alone are not sufficient to reliably identify the 

sediment sources of loess in Europe, but may provide indicators for further studies. 

 In all cases, and especially with regard to isotopic analyses, the harmonization of sample 

pre-treatment (such as leaching and grain-size sorting) is desirable since results differ 

substantially depending on pre-treatment processes. 
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