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Abstract

This thesis focuses on developing onboard visual simultaneous localization and map-
ping (SLAM) systems to enable autonomous navigation of micro aerial vehicles (MAVs),
which is still a challenging topic considering the limited payload and computational ca-
pability that an MAV normally has. In MAV applications, the visual SLAM systems are
required to be very efficient, especially when other visual tasks have to be done in par-
allel. Furthermore, robustness in pose tracking is highly desired in order to enable safe
autonomous navigation of an MAV in three-dimensional (3D) space. These challenges
motivate the work in this thesis in the following aspects.

Firstly, the problem of visual pose estimation for MAVs using an artificial landmark is
addressed. An artificial neural network (ANN) is used to robustly recognize this visual
marker in cluttered environments. Then a computational projective-geometry method
is implemented for relative pose computation based on the retrieved geometry informa-
tion of the visual marker. The presented vision system can be used not only for pose
control of MAVs, but also for providing accurate pose estimates to a monocular visual
SLAM system serving as an automatic initialization module for both indoor and outdoor
environments.

Secondly, autonomous landing on an arbitrarily textured landing site during auto-
nomous navigation of an MAV is achieved. By integrating an efficient local-feature-
based object detection algorithm within a monocular visual SLAM system, the MAV is
able to search for the landing site autonomously along a predefined path, and land on
it once it has been found. Thus, the proposed monocular visual solution enables auto-
nomous navigation of an MAV in parallel with landing site detection. This solution
relaxes the assumption made in conventional vision-guided landing systems, which is
that the landing site should be located inside the field of view (FOV) of the vision system
before initiating the landing task.

The third problem that is addressed in this thesis is multi-camera visual SLAM for
robust pose tracking of MAVs. Due to the limited FOV of a single camera, pose track-
ing using monocular visual SLAM may easily fail when the MAV navigates in unknown
environments. Previous work addresses this problem mainly by fusing information from
other sensors, like an inertial measurement unit (IMU), to achieve robustness of the
whole system, which does not improve the robustness of visual SLAM itself. This thesis
investigates solutions for improving the pose tracking robustness of a visual SLAM sys-
tem by utilizing multiple cameras. A mathematical analysis of how measurements from
multiple cameras should be integrated in the optimization of visual SLAM is provided.
The resulting theory allows those measurements to be used for both robust pose tracking



Abstract

and map updating of the visual SLAM system. Furthermore, such a multi-camera visual
SLAM system is modified to be a robust constant-time visual odometry. By integrating
this visual odometry with an efficient back-end which consists of loop-closure detection
and pose-graph optimization processes, a near-constant time multi-camera visual SLAM
system is achieved for autonomous navigation of MAVs in large-scale environments.
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Kurzfassung

Diese Arbeit konzentriert sich auf die Entwicklung von integrierten Systemen zur gleich-
zeitigen Lokalisierung und Kartierung (Simultaneous Localization and Mapping, SLAM)
mit Hilfe visueller Sensoren, um die autonome Navigation von kleinen Luftfahrzeugen
(Micro Aerial Vehicles, MAVs) zu ermdglichen. Dies ist noch immer ein anspruchsvol-
les Thema angesichts der meist begrenzten Nutzlast und Rechenleistung eines MAVs.
Die dafiir eingesetzten visuellen SLAM Systeme miissen sehr effizient zu sein, vor al-
lem wenn parallel noch andere visuelle Aufgaben durchgefiihrt werden sollen. Dariiber
hinaus ist eine robuste Positionsschitzung sehr wichtig, um die sichere autonome Navi-
gation des MAVs im dreidimensionalen (3D) Raum zu ermoglichen. Diese Herausforde-
rungen motivieren die vorliegende Arbeit gemif den folgenden Gesichtspunkten:

Zuerst wird das Problem bearbeitet, die Pose eines MAV's mit Hilfe einer kiinstlichen
Markierung visuell zu schitzen. Ein kiinstliches neuronales Netz wird verwendet, um
diese visuelle Markierung auch in anspruchsvollen Umgebungen zuverldssig zu erken-
nen. Anschliefend wird ein Verfahren aus der projektiven Geometrie eingesetzt, um die
relative Pose basierend auf der gemessenen Geometrie der visuellen Markierung zu er-
mitteln. Das vorgestellte Bildverarbeitungssystem kann nicht nur zur Regelung der Po-
se des MAVs verwendet werden, sondern auch genaue Posenschitzungen zur automa-
tischen Initialisierung eines monokularen visuellen SLAM-Systems im Innen- und Au-
Benbereich liefern.

AnschlieBend wird die autonome Landung eines MAVs auf einem beliebig texturier-
ten Landeplatz wihrend autonomer Navigation erreicht. Durch die Integration eines ef-
fizienten Objekterkennungsalgorithmus, basierend auf lokalen Bildmerkmalen in einem
monokularen visuellen SLAM-System, ist das MAV in der Lage den Landeplatz auto-
nom entlang einer vorgegebenen Strecke zu suchen, und auf ihm zu landen sobald er
gefunden wurde. Die vorgestellte Losung ermoglicht somit die autonome Navigation
eines MAVs bei paralleler Landeplatzerkennung. Diese Losung lockert die giingige An-
nahme in herkdmmlichen Systemen zum kameragefiihrten Landen, dass der Landeplatz
vor Beginn der Landung innerhalb des Sichtfelds des Bildverarbeitungssystems liegen
muss.

Das dritte in dieser Arbeit bearbeitete Problem ist visuelles SLAM mit mehreren Ka-
meras zur robusten Posenschitzung fiir MAVs. Aufgrund des begrenzten Sichtfelds von
einer einzigen Kamera kann die Posenschidtzung von monokularem visuellem SLAM
leicht fehlschlagen, wenn sich das MAV in einer unbekannten Umgebung bewegt. Friihere
Arbeiten versutchen dieses Problem hauptsidchlich durch die Fusionierung von Informa-
tionen anderer Sensoren, z.B. eines Inertialsensors (Inertial Measurement Unit, IMU)
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Kurzfassung

zu losen um eine hohere Robustheit des Gesamtsystems zu erreichen, was die Robust-
heit des visuellen SLAM-Systems selbst nicht verbessert. Die vorliegende Arbeit un-
tersucht Losungen zur Verbesserung der Robustheit der Posenschiitzung eines visuellen
SLAM-Systems durch die Verwendung mehrerer Kameras. Wie Messungen von meh-
reren Kameras in die Optimierung fiir visuelles SLAM integriert werden konnen wird
mathematisch analysiert. Die daraus resultierende Theorie erlaubt die Nutzung dieser
Messungen sowohl zur robusten Posenschétzung als auch zur Aktualisierung der visu-
ellen Karte. Ferner wird ein solches visuelles SLAM-System mit mehreren Kameras
modifiziert, um in konstanter Laufzeit robuste visuelle Odometrie zu berechnen. Die In-
tegration dieser visuellen Odometrie mit einem effizienten Back-End zur Erkennung von
geschlossener Schleifen und der Optimierung des Posengraphen ermdglicht ein visuel-
les SLAM-System mit mehreren Kameras und fast konstanter Laufzeit zur autonomen
Navigation von MAVs in groen Umgebungen.
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Notation

The list below contains the symbols and notations that are most frequently used in this
thesis. In addition, vectors are bold faced lower-case characters (e.g. x). Matrices are
upper-case characters (e.g. Q).

=

the world coordinate system

the body coordinate system of a robot

the camera coordinate frame

the i camera coordinate system

the image coordinate system

a specific external coordinate system

the mapping from coordinate system WV to Z

the mapping from coordinate system C to Z

the mapping from coordinate system C; to Z

a pose graph

the i camera

the j/ map point in a SLAM system

a keyframe

a set of keyframes from the i”* camera

the j™ keyframe from the i’ camera

a vertex in a pose graph

an edge between the i and the j* vertex in a pose graph
a translation vector

B a translation vector interpreting the origin of coordinate system 5
expressed in A

ﬁ;}\\)ml\n@mm

SARAS OO

M
< =

oo~

Rap the rotation matrix rotating a vector from coordinate system B to
A

Tup the transformation matrix transforming a vector from coordinate
system B to A

Exp the transformation from coordinate system A to B, represented as
a member the Lie group SE(3)

g the gravity vector

gA the gravity vector expressed in the coordinate system .4
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Notation

The list below contains the abbreviations that are most frequently used in this thesis.

MAV Micro Aerial Vehicle

UAV Unmanned Aerial Vehicle
SLAM Simultaneous Localization and Mapping
PTAM Parallel Tracking and Mapping
AR Augmented Reality

GPS Global Positioning System

INS Inertial Navigation System
EKF Extended Kalman Filter

SFM Structure from Motion

FOV Field of View

3D three dimensional

DOF Degrees of Freedom

IMU Inertial Measurement Unit
ANN Artificial Neural Network
RANSAC RANdom SAmpling Consensus
RMSE Root-Mean-Square Error

P3P Perspective-3-Point

PnP Perspective-n-Point

PGO Pose-Graph Optimization
BOW Bag of Words

Xvi



Chapter 1

Introduction

1.1 Motivation

Robotics has been an important scientific discipline in the past decades, because of the
significance of developing robots to extend the physical capability and the potential of
human beings. Research on mobile robots is an especially attractive field, which seeks
solutions for operating robots with mobility in unstructured and unknown environments.
Unlike industrial robots, i.e. robot arms/manipulators with varying degrees of freedom,
which are normally mounted on a fixed working station for industrial manufacturing,
e.g. as shown in Fig. [[.Ta] mobile robots are potentially able to navigate in various
environments for a wide range of applications, such as service, surveillance, rescue, and
transportation. Recently, more focus has been on developing autonomous mobile robots
for those applications.

Many exciting developments have been seen in the field of autonomous mobile robots
(Siegwart et al.,2011). To date, mobile robots of different types designed for various pur-
poses have been developed. Some state-of-the-art robots, ranging from ground robots,
to marine robots and aerial robots, are shown in Fig. The humanoid robot
ASIMO (Honda, |2014), designed to assist humans in their daily tasks, can perform com-
plex movements and interactions. BigDog (Raibert et al., 2008)), a four-legged robot, is
designed to traverse rough terrains and carry heavy loads. The autonomous vehicle Stan-
ley (Thrun et al., 2006), which won the 2005 DARPA Grand Challenge, is developed
for high-speed desert driving without manual intervention. In outer space, the Curiosity
Mars rover (NASA, |2014)) is exploring the Red Planet and has provided key information
about this planet. The autonomous underwater vehicle (AUV) Sirius (ACFR, 2014) is
capable of undertaking high-resolution survey works in ocean. The MQ-9 Reaper is an
unmanned aerial vehicle (UAV) designed for military use with long-endurance, persistent
surveillance/strike capability (GA-ASI, 2014). The autonomous helicopter at Stanford
Al Lab is able to perform complicated aerobatics (Abbeel ez al., [2010). Fig. shows
a micro aerial vehicle (MAV) developed in GRASP Lab. This quadrotor can perform
aggressive maneuvers when its accurate pose estimates are provided by an external pose
tracking system (Mellinger et al., [2012).

In the last decade, we have seen a growing interest in MAVs from the robotics com-
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Figure 1.1: Some state-of-the-art robotic platforms. (a) An industrial robot from KUKA
(plant-spot welding robot). © KUKA Roboter GmbH. (b) The humanoid robot ASIMO.
©American Honda Motor Co. Inc. (c) The BigDog robot. Reprint from
(2010). (d) The autonomous vehicle Stanley described in [Thrun ez al (2006). (e) An
artist’s concept depicting the Curiosity Mars rover. ©NASA/JPL-Caltech. (f) The Sirius
AUV in an ocean-survey mission. ©Australian Centre for Field Robotics. (g) The MQ-9
Reaper UAV. Reprinted from Wikipedial (2014a). (h) An autonomous helicopter from
SAIL performing aerobatics under computer control. ©Andrew Ng. (i) A quadrotor
performing aggressive maneuvers through a narrow gap. © GRASP Lab.




1.1 Motivation

munity. One of the reasons for this trend is that MAVs are potentially able to efficiently
navigate in complex 3D environments with different types of terrains, which might be
inaccessible to ground vehicles or large-scale UAVs, e.g. in an earthquake-damaged
building (Michael ef al., 2012). A basic requirement for MAVs to autonomously operate
in such environments is their robust pose tracking, which is still a challenging task when
the environment is previously unknown. Meanwhile, if a map of the environment can
be built, it will be able to provide support to path planning of autonomous navigation
of the MAV (Schauwecker and Zell, 2014). Recently, an interesting research focus has
been on using onboard visual solutions to address these issues, especially using visual
simultaneous localization and mapping (SLAM) systems.

The SLAM problem is one of the most fundamental problems in robotics. It asks if it
is possible for a mobile robot to be placed at an unknown location in an unknown envi-
ronment, and for the robot to incrementally build a consistent map of this environment
while simultaneously determining its location within this map (Durrant-Whyte and Bai-
leyl, [2006). There are three basic questions for autonomous navigation of a mobile robot
(Leonard and Durrant-Whyte, |1991): “where am 1?7, “where am I going?” and “how
should I get there?” The first question is about the localization of the robot. The second
and the third questions are about specifying a goal and being able to plan a path which
enables the robot to achieve this goal. A SLAM system will answer the first question,
and provide the basic knowledge to a robot in order to autonomously navigate in the
environment: the location of the robot, and the understanding of the environment in the
form of a map. Then it is possible to find answers to the later two questions.

To achieve SLAM, different sensor modalities can be used, like laser scanners and
cameras. Laser scanning systems are generally active and accurate, but with some draw-
backs in MAV applications. 2D laser scanners have been well studied for autonomous
navigation of MAVs in both structured and unstructured indoor environments (Grzonka
et al., 2009; Shen et al., [2011; Bry et al., 2012). However, solutions using 2D laser
scanners are difficult to be extended to work in complex 3D environments and in object
recognition tasks. 3D laser scanners, on the other hand, are usually heavy and slow, see
Xiao et al.| (2013), thus not suitable for onboard use of MAVs. Compared with other
sensors, like laser scanners, cameras are passive, and have a superior potential for envi-
ronment perception, while still being lightweight, relatively low cost and energy efficient.
These advantages make vision systems quite attractive for the research on autonomous
navigation of MAVs which in general have very limited payload. Thus, many MAVs
have been relying on visual solutions for autonomous flight tasks, especially in GPS-
denied environments, e.g. in indoor or in urban-outdoor environments. In this thesis,
visual SLAM, or SLAM using cameras, for autonomous navigation of MAVs, is our
main concern.

Although we have seen some successful applications of visual SLAM on ground ve-
hicles (Cummins and Newman, 2008; |Strasdat et al.,[2011)), there are more challenges in
using visual SLAM to enable autonomous navigation of MAVs. First, the payload of an
MAV is rather limited. This usually leads to limited onboard computational capability,
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which requires the visual SLAM system to be very efficient, especially when other vi-
sion tasks, e.g. object recognition, are required to be done simultaneously. Second, the
3D maneuverability of an MAV makes the robustness of pose tracking to be highly de-
sired. When pose tracking fails, unlike a ground vehicle, which may be able to maintain
stability simply by ceasing moving, an MAV is likely to run into catastrophic situations
with its control getting lost and even to crash into obstacles. This thesis is dedicated to
a systematic study of visual SLAM solutions to autonomous navigation of MAVs un-
der these challenges. More specifically, we investigate monocular visual solutions to
pose estimation of MAVs, monocular visual SLAM for autonomous landing of MAVs,
as well as extending monocular visual SLAM to multi-camera visual SLAM for robust
pose tracking and environmental mapping.

The first specific problem addressed in this thesis is visual pose estimation of MAVs
based on an artificial landmark. Most of the existing work solves this problem by relying
on infrared markers with known geometric configurations (Wenzel et al.,2010a}; |[Faessler
et al.,|2014)), or visual markers with special combinations of some basic geometric com-
ponents (Merz et al., 2006, Meier et al., 2011). The advantage of such marker-based
methods is that their computational costs are normally rather low. However, those meth-
ods are only designed for applications in certain restricted environments, e.g. in indoor
environments or in environments without cluttered background for the special markers.
Can we develop a visual solution which is able to provide robust pose estimation in clut-
tered environments, based on some simple and regular visual marker? This is one of the
motivations for our work in Chapter|3| Another major motivation for that work directly
comes from the requirement of our visual SLAM system: A monocular system is gen-
erally lacking of metric-scale information, and needs to be initialized either by a metric
sensor or by a cooperative object. A robust visual solution for retrieving the metric scale
will facilitate our visual SLAM system to be initialized in complex environments.

The second problem addressed in this thesis is the autonomous landing of MAVs.
Autonomous landing is a basic but also challenging phase for autonomous navigation of
MAVs. When the exact position of a desired landing site is unknown, an MAV should be
able to search for and locate it autonomously, and then land on it to finish the autonomous
flight. The existing work normally assumes that the landing site is already located inside
the field of view (FOV) of the vision system onboard an MAV/UAV (Sharp et al., 2001}
Saripalli and Sukhatme, 2007), or the landing site searching task is enabled by global
pose estimates from a GPS sensor (Cesett1 et al., |2010). One reason resulting in this
state of research is that both pose estimation in unknown environments and object (land-
ing site) recognition are computationally intensive tasks, and therefore, difficult to be
processed in parallel on an MAV with constrained computational power. Then an open
question remains: How to search for a designated landing site in an unknown environ-
ment, and land on it, during vision-based autonomous navigation of an MAV? Our work
presented in Chapter [ is going to answer this question.

In order to achieve more robust pose tracking of visual SLAM for MAVs, previous
work has made much effort in sensor fusion, e.g. fusing inertial measurements for vi-
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sual SLAM (Shen et al., 2013b; Weiss et al.,|2013). However, how to improve the pose
tracking robustness of the visual SLAM system itself has not been equally emphasized.
Pose tracking of a monocular visual SLAM system may easily fail in complex envi-
ronments due to poor visual features which can be observed by the camera. This also
applies to stereo visual SLAM, which employs cameras looking in one specific direction
with limited FOVs. Actually, a larger effective FOV of a vision system can be obtained
by integrating multiple cameras in it. This implies that better pose tracking robustness
can be achieved by extending the monocular visual SLAM to utilize measurements from
multiple cameras. This motivates our work in Chapter [5} which presents a multi-camera
visual SLAM system. In such a visual SLAM system, multiple cameras can be mounted
pointing to different directions, so that more reliable visual features can be observed to
fulfil the pose tracking and map updating tasks.

Employing the work in Chapter[5] we address the problem of improving the efficiency
of visual SLAM for MAVs. A multi-camera visual SLAM system provides us with
more robustness in pose tracking. However, a multi-camera system can also be more
time-consuming than a monocular system, since it is required to process images from
multiple cameras at each time instance. To apply multi-camera visual SLAM systems in
autonomous navigation of MAVs, it is natural for us to ask: How to achieve constant-time
operations for large-scale explorations of MAVs? This motivates our work in Chapter [6]
which modifies our multi-camera visual SLAM system developed in Chapter [5]to be a
constant-time visual odometry, and presents an efficient back-end to correct the pose drift
resulting from the visual odometry.

1.2 Contributions

The research described in this thesis mainly focuses on developing robust and efficient
onboard visual SLAM systems for autonomous navigation MAVs. The specific contri-
butions made in each of the four technical chapters are the following:

Chapter 3:

e A real-time artificial-landmark recognition method is presented, which is robust to
cluttered environment.

o To compute the six degrees-of-freedom (6DOF) pose estimates of MAV's, a compu-
tational projective-geometry solution is presented, which is based on the retrieved
geometry information of the artificial landmark and attitude estimates from the
onboard IMU.

e Low-altitude autonomous takeoff, hovering, and landing of an MAV is enabled
by using the proposed monocular-vision system to provide pose estimates of the
MAV.
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Large parts of this work have been pre-published in the following papers:

1. Yang, S., Scherer, S. A., and Zell, A. (2012). An onboard monocular vision system
for autonomous takeoff, hovering and landing of a micro aerial vehicle. In 2012 In-
ternational Conference on Unmanned Aircraft Systems (ICUAS’12), Philadelphia,
PA, USA.

2. Yang, S., Scherer, S. A., and Zell, A. (2013b). An onboard monocular vision
system for autonomous takeoff, hovering and landing of a micro aerial vehicle.
Journal of Intelligent & Robotic Systems, 69, 499-515.

The following co-authored paper is partially based on this work:

3. Masselli, A., Yang, S., Wenzel, K., and Zell, A. (2014). A cross-platform compar-
ison of visual marker based approaches for autonomous flight of quadrocopters.
Journal of Intelligent & Robotic Systems, 73(1-4), 349-359.

Chapter 4:

¢ An efficient monocular visual SLAM system is implemented for autonomous nav-
igation of MAVs, which provides accurate pose estimates of the MAV and an en-
vironment map.

e To efficiently detect an arbitrarily textured landing site for an MAYV, a local-feature-
based object detection algorithm is presented, which is integrated into the SLAM
system and makes use of the feature corners detected on the multi-scale images by
the SLAM system.

e The absolute pose of the detected landing site is estimated by using a novel method
which utilizes those map points of the SLAM system associated with the landing
site. This method does not require a known size of the landing site.

e The presented vision system enables an MAV searching for the landing site while
autonomously navigating in an unknown environment. Autonomous landing on a
designated landing site with a previously unknown location is also achieved.

Large parts of this work have been pre-published in the following papers:

4. Yang, S., Scherer, S. A., Schauwecker, K., and Zell, A. (2013a). Onboard monoc-
ular vision for landing of an MAV on a landing site specified by a single refer-
ence image. In 2013 International Conference on Unmanned Aircraft Systems
(ICUAS’13), pages 317-324, Atlanta, GA, USA.

5. Yang, S., Scherer, S. A., Schauwecker, K., and Zell, A. (2014a). Autonomous
landing of MAVs on an arbitrarily textured landing site using onboard monocular
vision. Journal of Intelligent & Robotic Systems, 74(1-2), 27-43.



1.2 Contributions

Chapter 5:

e To integrate measurements from multiple cameras into a single SLAM system, a
mathematical analysis of the optimization problems in the SLAM system is pro-
vided.

e An efficient multi-camera visual SLAM system is developed, which utilizes feature
points detected in the images from multiple cameras for pose tracking and map
updating. It can provide robust pose estimates of MAVs in real-time in complex
environments, in which a monocular visual SLAM system may easily fail.

¢ Autonomous navigation of an MAV in a complex environment is achieved by using
the proposed multi-camera visual SLAM system for the pose estimation.

Large parts of this work have been pre-published in the following paper:

6. Yang, S., Scherer, S. A., and Zell, A. (2014c). Visual SLAM for autonomous
MAVs with dual cameras. In 2014 International Conference on Robotics and Au-
tomation (ICRA’14), pages 5227-5232, Hong Kong, China.

Chapter 6:

o A robust visual SLAM system consisting of a constant-time visual odometry and
an efficient back-end for loop closure detection and pose-graph optimization is
developed. The multi-camera visual SLAM system presented in Chapter [5is mod-
ified to be the constant-time visual odometry.

e An adaptive-window pose-graph optimization algorithm is proposed for efficient
global relaxation of the SLAM system. Constant-time pose-graph optimization
within a small window defined by a uniform-cost search is processed during reg-
ular exploration of the SLAM system, utilizing pose constraints from the bundle
adjustment of the visual odometry. When a loop closure is detected, pose-graph
optimization is done within a large window, which can efficiently correct long-term
pose drift of the visual odometry.

e Autonomous navigation of an MAV in an unknown environment is achieved using
the proposed SLAM system for the pose estimation.

Large parts of this work have been pre-published in the following paper:

7. Yang, S., Scherer, S. A., and Zell, A. (2014b). Robust onboard visual SLAM for
autonomous MAVs. In 2014 International Conference on Intelligent Autonomous
Systems (IAS-13), Padova, Italy. Accepted.



Chapter 1 Introduction

The thesis is structured in the following way: In this chapter the motivations and
contributions of this thesis have been introduced at a high level. In Chapter [2] the back-
ground related to MAV control and visual SLAM is presented. The following four tech-
nical chapters report the main work of this thesis which has been enumerated above. The
specific related work is discussed in individual technical chapters which address the cor-
responding problems. Finally, Chapter /| concludes the thesis by summarizing the main
points and drawing outlook for future research.



Chapter 2
Background

This chapter presents basic principles and related work on MAV control and visual
SLAM. The quadrotor-MAV platform used for experiments throughout this thesis is in-
troduced in Sec. [2.1] Furthermore, we present quadrotor control algorithms in Sec.[2.2]
In Sec. @ the camera model and its calibrations are explained, which are the founda-
tions to our vision systems. Finally, in Sec.[2.4] we briefly introduce the SLAM problem,
the PTAM system (Klein and Murray, 2007) which forms the basis for the visual SLAM
systems developed in this thesis, and provide an overview of previous work on visual
SLAM and its applications in autonomous navigation of UAVs/MAVs.

2.1 The MAYV Platform

In this thesis, we choose an open source quadrotor developed in the Pixhawk project at
ETH Ziirich to be our MAV platform. The design of this quadrotor is described by Meier
et al. (2011). A quadrotor provides us with advantages like being simple in mechanics,
and having a moderate size and payload for indoor or low-altitude outdoor applications.

As shown in Fig. 2.1 our quadrotor is equipped with four motors and 10-inch pro-
pellers, which enable it to lift approximately 400 g payload at a total system weight
of about 1.2 kg, including battery. Its onboard computer is a Kontron microETXexpress
computer-on-module (COM) featuring an Intel Core 2 DUO 1.86 GHz CPU, 2 GB DDR3
RAM and a 32Gb SSD. The pxIMU inertial measurement unit and autopilot board that
we use mainly consists of a micro computer unit (MCU) and inertial sensors, including a
tri-axes accelerometer and a tri-axes gyroscope. The MCU is a 60MHz ARM7 microcon-
troller, which is used for sensor-data readout and fusion, as well as position and attitude
control of the MAV. The accelerometer and gyroscope provide three-dimensional (3D)
linear acceleration (£6 g) and 3D angular velocity (£500 deg/s) measurements of the
MAV.

Each camera used in our vision systems in this thesis is a PointGrey Firefly MV
monochrome camera of only 37 g weight. It has an image resolution of 640x480 pixels,
a maximum frame rate of 60 fps, and is equipped with a lens featuring an approximately
90° viewing angle. In the cases of a monocular vision system as in Chapter [3|and Chap-
ter 4] one such camera is mounted on the MAV in a downward-facing pose. In the later
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Figure 2.1: The quadrotor MAV (left) which is used as the research platform in our
experiments in this thesis, and a camera (top right) and the IMU (bottom right) which
are used on the MAYV, with their sizes compared with that of a coin.

two chapters, which describe the implementations of multi-camera visual SLAM sys-
tems, two cameras with non-overlapping fields of view are used: one facing downward,
and the other one facing forward. More details will be provided in the individual techni-
cal chapters.

The original quadrotor mechanical frame of the Pixhawk project is based on carbon-
fiber material. Throughout the four technical chapters, the quadrotor frame may be
slightly changed: We may also use a frame from MikroKopter (HiSystems, 2014), which
is made of aluminum material and is more durable. However, the effect of such a change
to the quadrotor control is ignored in this thesis. Thus, we do not distinguish the MAV
platform used in each chapter. Since there is no easy way to locate the exact center of
mass of our quadrotor, we assume it to coincide with the geometric center of the quadro-
tor frame. We expect the controllers of our quadrotor to be robust to the errors caused by
this assumption.

In order to use the attitude estimates from the IMU for the pose controllers of our
quadrotor and for our vision systems, the relation between the IMU coordinate system
(U) and the quadrotor body coordinate system (53) needs to be calibrated. As the IMU
does not directly provide position estimates, we assume the origin of the IMU frame to
coincide with the MAV body frame, as illustrated in Fig.[2.2] Thus, we only need to find
the rotation matrix Rpy between these two coordinate systems. We expect that, if the
IMU was perfectly mounted, ¢/ would exactly coincide with 3, i.e. Rpy = I. However,
this is usually not the case in practice. The actual rotation between the IMU frame and the

10



2.2 MAV Flight Control

Figure 2.2: The IMU frame
and the quadrotor body
frame.

body frame can be estimated by measuring the normalized gravity vector gy (expressed
in U/) using the accelerometer data when the quadrotor is placed on a horizontal plane.
In this case, the gravity vector should be parallel to the zp axis, i.e. in B, it can be
expressed as gg = [0, O, 117. Therefore, the rotation matrix Rpy can be found as the
shortest rotation which satisfies gg = Rpygy. Since yaw angle estimates from the IMU
will not be used in our system, we ignore the errors in the alignment along x and y
direction.

2.2 MAV Flight Control

This section introduces the controllers of our MAV. Since this thesis focuses on the
vision-system aspect of MAVs, we generally implement the controllers based on the
previous work in the literature, mainly the work presented in|Michael et al.| (2010) and a
similar implementation from the Pixhawk project.

For robust flight control of a quadrotor, the work in Michael et al. (2010) presents a
nested controller, which consists of an attitude controller and a position controller. A
hover controller and a 3D trajectory controller have been developed for position control
in different stages of a flight. In Mellinger et al. (2010), robust perching and landing a
quadrotor on a landing pad based on this nested controller was demonstrated. Further in
Mellinger et al.| (2012)), precise aggressive maneuvers of quadrotors are achieved using
the previously proposed controller and a 3D trajectory generation algorithm. Some very
impressive aggressive maneuvers of an MAV are performed in this work, such as flying
through narrow, vertical gaps and perching on inverted surfaces. However, we should
note that the above work achieving autonomous flight is based on accurate 6DOF pose
estimates from an external Vicon tracking system (Vicon, 2014).

For flight control of our quadrotor, we adapt the quadrotor dynamic model and the
nested controller presented in Michael et al.| (2010) in this thesis. We will briefly de-
scribe them in the following sections. Furthermore, we modify the original method im-
plemented in the pxIMU to comply with this controller.

11



Chapter 2 Background

(a) (b)

Figure 2.3: (a) A top view of rotation directions of the four rotors on a quadrotor, pro-
ducing moments acting on the quadrotor frame in counter directions. (b) Forces and
moments acting on the quadrotor frame, with a depiction of the principle of yaw control
to clockwise rotation.

2.2.1 Quadrotor configuration and dynamic model

A common configuration of quadrotors is illustrated in Fig. [2.3a] with four fixed-pitch
propellers configured in a symmetric cross, which also applies to our quadrotor. The
quadrotor body frame B is attached to the center of mass of the quadrotor, with xp co-
inciding with the preferred forward direction along one arm of the quadrotor frame and
zp pointing to the downward direction perpendicular to the quadrotor frame, as depicted
in Fig. 2.3b] The rotors 1 and 3 rotate in the zp direction, while 2 and 4 rotate in the
—zp direction. In addition to a force in the —zp direction, each rotor produces a moment
perpendicular to the rotation plane of its propeller, i.e. the plane of the quadrotor frame.
Since the moments acting on the quadrotor are opposite to the rotation directions of the
respective propellers, driving the two pairs of propellers in opposite directions removes
the need for a tail rotor (Bouabdallah, 2007). By adjusting the rotation speed of each
rotor, corresponding forces and moments acting to the quadrotor frame can be generated.
Consequently, the attitude and position of the quadrotor can be controlled, as described
in[Nonami et al.| (2010).

Fig. illustrates forces and moments produced by the rotation of the four rotors
in the directions shown in Fig. In this example, the control of the yaw rotation
in clockwise direction is depicted. We use Z — X — Y Euler angles (Schilling, |1990) to
express the rotation of the quadrotor in the world frame VV, which is defined with zy
pointing upward. When considering to rotate WV to the quadrotor body frame 13, we first

12



2.2 MAV Flight Control

rotate around zw by the yaw angle ¢, then rotate around the intermediate x—axis by the
roll angle ¢, and finally rotate around the yp axis by the pitch angle 6. Following the
notations in Michael et al.|(2010), the resulting rotation matrix for transforming a vector
from B to WV is in the form of

CyCo— SpSySe —CpSy  CySet CoSepSy
Rwp = |cosy +cySpSe  CopCy  SySg—CyCoSy|,
—C¢So S¢ CpCo

where cg and sy denote cos(#) and sin(6), respectively, and similarly for ¢ and . The
forces acting on the quadrotor are the gravity in the —zy direction, and the forces F;
generated by each of the four rotors in the —zp direction. Let r denotes the position vector
of the center of mass of the quadrotor in the world frame )V, the equation governing the
acceleration of the quadrotor is

0 0
mi=| 0 |+Rwg 0 . 2.1
—mg ?:1 F;

The angular velocities around xp, yp and zp are p, g and r, respectively. They can
be calculated by transforming the derivatives of the roll, pitch and yaw angles to the
quadrotor body frame (Murray et al., 1994) according to

pl [co 0 —ceso ¢
gl=10 1 s [[6]. (2.2)
r so 0 cyco r

Among the moments M; produced by each of the four motors, M| and M3 act in the
—zp direction while M, and M, act in the zp direction. Let L be the distance from the
axis of rotation of each rotor to the center of the quadrotor, and / be the moment of
inertia matrix referenced to the center of mass along the xp — yp — zp axes, the angular
acceleration determined by the Newton-Euler equations (Murray et al., [1994) is

p L(Fy—Fy) p p
Ilg|= L(F1—-F3) —1q|xI|q|. (2.3)
2 M +Mr,—- M3+ My r r

2.2.2 Attitude control and hover control

The nested controller proposed in Michael et al. (2010) is illustrated in Fig. We
briefly introduce the attitude controller and the hover controller here, which are used for
the position control of our quadrotor. These controllers rely on small angle assumptions,
i.e. assuming that the quadrotor attitude is very close to a level attitude.

13
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Figure 2.4: The nested controller for position and attitude control in Michael ez al.{(2010).

Following the notations in Michael et al.| (2010), the desired four rotor speeds of the
quadrotor are set to be

wf* 1 0 1 —1][wy+Awr

w?es |1 -1 0 1 Aw¢

wé’ 10 -1 -1 Awg |’ (24)
wle| 11 0 1 Awy

where wy, is the nominal rotor speed which keeps a steady hovering state, and Awr, Awy,
Awy, and Awy, are the deviations from the nominal vector [wy, 0, 0, 0]17. Awp results in
a net force along the zp axis, while Awg, Awy, and Awy, produce moments which cause
roll, pitch and yaw, respectively. Then a proportional-derivative (PD) controller can be
used to control the attitude in the form of

Aw¢ — kp,qb (¢des _ ¢) + kd,¢ (pdes _ P) i
Awy = kpo (67 —0) + kao(q" —q). (2.5)

A(,()l/, — kp,l// (wdes _ w) + kd,l// (rdes _ r) '

Substituting Eq. along with a chosen Awp into Eq. yields the desired rotor
speeds.

For the 3D position control, the roll and pitch angles are used to control the position
of the quadrotor in the xw — yw plane, while Awp to control the position along zy and
Awy, to control the yaw angle. The hover controller is used by the quadrotor to reach a
desired position and yaw angle with zero linear and angular velocities. Let rr and /7 be
the trajectory and yaw angle to be tracked, the desired accelerations i‘?es at time step i
can be calculated from a proportional-integral-derivative (PID) feedback of the position

error e¢; = (rr,; —r;) as
fdes = kp,iei + ki,i feidt+ kd,iéi. (26)

1

This PID controller is then used for the hover control. By linearizing Eq. |(2.1), we get
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the simplified relationship between the desired accelerations and the roll and pitch angles
as follows,

des = g(6%5 cos(yr) + ¢?** sin(yr)),
des = (67 sin(yr) — ¢7 cos(yr)),

'I.'gles 8kF(,l)hA wp,
m
where kr is the motor factor so that the vertical force produced be the motor with an
angular speed w is F = krpw?®. Then the desired roll and pitch angles for the attitude

controller and wr can be computed from the desired accelerations as

¢l = (rd”sm(wT) 9 cos(yr)),

ges = (rd‘“ cos(yr) + rd“ sin(y7)), 2.7)
A — --des_
i Skah 1'3

From Eq.[(2.4)] Eq.[(2.5)} and Eq. the desired rotor speeds for the hover control of
the quadrotor can be calculated.

In this thesis, the 3D position estimates from our onboard vision systems are used as
feedback to the position controller after fusing the IMU data with a basic Kalman Filter
(Kalman, [1960). Since the IMU can provide roll and pitch estimates with a frequency of
200 Hz, which is much higher than those of the onboard vision systems, we use the esti-
mates provided by the IMU for attitude control. Meanwhile, the yaw estimates provided
by the onboard vision system are used for the yaw control.

2.2.3 Trajectory control

Two trajectory control methods have been implemented for our MAV: the setpoint method
and the trajectory-following method. A comparison of these two methods will be pre-
sented in the experiments in Chapter 4]

Setpoint method

A simple trajectory control method can be achieved by setting a list of 3D points along
the predefined flight-path, which will be reached by the quadrotor one after another. In
this case, we assume that the quadrotor flies in a hovering state, or in a state trying to
reach a hovering state. Then the hover controller described in Sec. [2.2.2| can be used
for the position control in order to reach those setpoints. Thus, the quadrotor can be
controlled to follow the path. We assume that the MAV has reached a setpoint, if its
distance to this point is smaller than a threshold d; and the yaw angle difference is smaller
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than ¢, for a period of time ¢, after which we advance the setpoint to the next one on
the predefined path.

Trajectory-following method

To allow the quadrotor to follow a predefined flight path more efficiently, we imple-
mented a trajectory-following method based on the path following controller presented
in Michael et al.| (2010). The general idea of this controller is to only consider position
errors in the normal direction of the predefined path, while ignoring errors in the tangent
direction. Thus, a constant expected forward speed can be achieved. This approach is
similar to the one presented in Hoffmann et al.| (2008), but is extended from 2D to 3D
trajectories. The final commanded acceleration is calculated by a PD feedback of the
position and velocity errors, together with the consideration of a feed-forward term of
the desired acceleration. We simplify this method by dropping the feed-forward term,
and set a constant forward speed, vy, along the tangent direction of the predefined path.
The reason for this simplification is that we do not expect our MAV to perform aggres-
sive maneuvers, and thus, a constant expected speed is sufficient for the autonomous
navigation tasks of the MAV.

2.3 Camera Model and Calibration

The vision algorithms in this thesis are designed for perspective cameras (Hartley and
Zisserman, 2004). The perspective camera model and calibrations are briefly introduced
in the following sections.

2.3.1 Perspective camera model

This section introduces the mathematical model of a perspective camera which projects a
point in 3D space onto the image plane. The complete chain of transformations for such
projections is presented following the frameworks in Bleser| (2009) and Zhang| (2013).

Normalized pinhole camera model

As illustrated in Fig. we can associate a pinhole camera with two different 2D image
planes (Forsyth and Ponce, 2002): a normalized image plane, and the physical retina of
the camera which will be introduced together with intrinsic camera parameters later.
Under the pinhole camera model, the camera is represented by a 2D image plane and a
3D point called the optical centre or camera centre. The distance from the optical centre
to the image plane is called the focal length of the camera, denoted by f, which is speci-
fied in terms of metric units. The line from the optical centre perpendicular to the image
plane is called the optical axis or principal ray of the camera, and the point where the
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Normalized Physical Retina
Image Plane (Image Plane)

Optical Center

-
|
|
|
|
|
|

optical axis

Figure 2.5: Pinhole projection of a 3D point onto the normalized image plane and the
physical retina.

optical axis meets the image plane is called the principle point (Hartley and Zisserman,
2004). The camera coordinate system C is defined such that its origin coincides with
the optical centre, and its z axis coincides with the optical axis. A point in 3D space is
projected onto the image plane by drawing a ray from the 3D point to the optical centre.
Here, under the normalized pinhole model with f = 1, the normalized image plane co-
incides with the normalized image coordinate system N. The projection of a 3D point
m, =[x, yc,zC]T in the camera frame C to a 2D point m,, = [x;, yn]T in the normalized

image frame N\ is
1
-2
Yn Ze | Ye

By introducing homogeneous coordinates, Eq. can be written as

X x,] [1 0 0 o]l*
yulocze|yl=[0 1 0 0]]¢]. (2.9)
1 1 0010Zf

Radial and tangential distortion

The normalized pinhole model does not consider lens distortions of cameras. However,
real cameras, especially low cost ones or those with wide angle lenses, usually exhibit
significant lens distortion. In this thesis, the distortion model presented in Heikkila and
Silven| (1997) is introduced. It accounts for both radial and tangential distortion, and the
distorted image coordinates my = [xg4, yd]T are expressed as a function of the normalized
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. . T
image coordinates m,, = [x,,y,]" as

[xd] =(1+ K1I’2 + K2r4 + K3r6) [ (2.10)

Xn] N [2K4xnyn + K5 (r2 + Zx%)
Yd

Yn K4 (r2 + 2y,%) + 2K5XnVn

radial distortion tangential distortion

where r = 4 /x% + y,%, and «;,i = 1,...,5 are distortion coeflicients which are the parameters
of the distortion model. More elaborated distortion models can also be found in [Brown
(1971)); [Faig (1975); Slama et al.| (1980); Weng et al. (1992)). We should note that the
distortion function is likely to be dominated by the radial components according to|Zhang
(1999). In this work, only the first two terms of radial distortion are considered.

We can use Eq. to retrieve an undistorted image in the following way. First,
we sample in the undistorted image domain to form a set of undistorted coordinates
milj, i € [1,height], j € [1,width], whose values describe the image with a dimension of
height X width that we want to retrieve. Then we use Eq. to compute the corre-
sponding distorted image coordinates m;j. Finally, the image value of m;j is interpolated

in the distorted image domain, which is the retrieved value for m;;. In order to undistort
single coordinates, the inverse function of is required. An analytical solution does
not generally exist in this case. However, we can use Newton’s method to iteratively
calculate the inverse mapping of with the distorted coordinates as an initial guess.

Intrinsic camera parameters

In order to model the projection of a 3D point onto the physical retina of a camera
(the image plane as we normally call it) in the pixel coordinate system, as illustrated in
Fig. the intrinsic camera parameters need to be considered. In the rest of this thesis,
we call the pixel coordinate system the image coordinate system Z.

The physical retina of a camera is located at distance f # 1 from the optical center.
It may have non-square pixels with dimensions of % X %, where k and [ are expressed in
pixel per metric unit (Forsyth and Ponce, 2002). Then f, = fk and f, = fI can be used to
describe the focal length in x and y directions, respectively. Furthermore, the pixels may
even be non-rectangular. In such case, s = —f,cota can be used to describe the skew
of pixels. Here, « is the angle between the two pixel axes, which may not be exactly
equal to 90°. In general, the origin of the image coordinate system Z is at a corner of
the retina (as depicted in Fig. [2.5) instead of the principal point. The coordinates of
the principle point in Z are (ug,vp). The intrinsic parameters are used to compose the
affine transformation matrix K, which describes the mapping from the distorted image
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Figure 2.6: Relation between the camera and the world coordinate system, with vectors
expressed in the world coordinate system V.

coordinate system D to the image coordinate system Z as

xp| |fx s wuol|xa

yol=10 £ vol|ya (2.11)
1 0 0 1|1
K

Extrinsic camera parameters

In this thesis, points in 3D space usually need to be expressed in terms of a fixed Eu-
clidean coordinate system (e.g. the world coordinate system }V) and the camera coordi-
nate system C. The relation between these coordinate systems is given by a rotation Rcw
and a translation tyc, which are called the extrinsic camera parameters or the camera
pose. RE%,V can be interpreted as the orientation of the camera frame and ty ¢ as the posi-
tion of the camera centre in the world frame, as illustrated in Fig.[2.6] Then the mapping
of a point my, = [Xyy, Vs 2] in W to a point me = [x¢, ye,ze]” in C is

m. = Rew (my, —twc). (2.12)

It is often convenient not to make the camera centre explicit, instead, to represent the
transformation as m, = Rcwm,, + tcw, where tcw = —Rcwtwce. By introducing homo-
geneous coordinates, Eq.|(2.12)|can be expressed as

Xe Xy
Ye| _|Rew tew||yw
- . 2.13
Zc [01X3 1 ] Tw ( )
1 1
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Central perspective camera model

Combining the forward transformations given in Eq. [2.9)}-Eq. [(2.13)} the image coor-
dinates m,, of a point m,, expressed in the world coordinate system can be computed
as

m, = P(m,,) = (ProPgoPyoT)(my), (2.14)

where m, = 7 (m,,) maps m,, in the world frame )V to the point m. in the camera frame
C according to Eq. m,, = P,(m,) maps m. to m,, in the normalized image frame N
according to Eq. my = P,(m,) corresponds to the distortion function as expressed
in Eq. and m, = Pr(my) denotes the affine transformation from the distorted
image frame D to the image frame 7 as given in Eq.[(2.1T)|
We also define the mapping of a point m, in the camera frame to the image coordinates
m,, as
my, = Pc(m,) = (PxoPgoPy)(m,). (2.15)

Pc will be used in the technical chapters of this thesis.

2.3.2 Camera calibration

The aim of the camera calibration is to obtain the intrinsic parameters and distortion co-
efficients described in the previous section. The calibration procedure typically requires
the collaboration of a calibration object with known geometry information. For compli-
cated auto-calibration methods which relax this requirement, the readers are referred to
the work in Maybank and Faugeras| (1992); |[Hartley (1994); Luong and Faugeras| (1997)).
The work in Zhang| (1999) has made the calibration procedure rather flexible and simple
by requiring images of a planar pattern from a few (at least two) different orientations.
The general method proposed in that work can be extended to include more camera
parameters to be estimated, as has been done in Bouguet| (2001). Fig. shows two
example images of a planar pattern used for our calibration. The corner points detected
in each image can be used to form a set of 2D/3D point correspondences (my, > My, j),
where i is the image index and j is the point index.

The calibration procedure consists of several steps, and also requires the extrinsic
camera parameters to be estimated. The planar pattern is always assumed to be fixed
in the world coordinate system WV, such that the origin of V¥ coincides with one of its
corners, and the xw — yw plane is coplanar, i.e. each corner point has coordinates with
Zyw = 0. As initialization step, the intrinsic and extrinsic camera parameters are estimated
from the homographies between the planar pattern and its images. The homographies
are obtained from Eq. while ignoring camera distortions. The initial solution is
then refined by solving the nonlinear least squares problem:

g = argminZ Z I my,, —P(m,,, %) I, (2.16)
X =1 =1
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Figure 2.7: Two example images of a planar pattern used for our camera calibration.

where x comprises the distortion coeflicients, the intrinsic and extrinsic parameters, X is
the estimate of x, #n is the size of the image set, m is the number of corner points on the
calibration pattern, and P(m,,, ;,X) corresponds to Eq. @ while adding the parameters
that should be estimated.

The toolbox presented in Bouguet (2001]) is freely available online, and is used for the
camera calibration in this thesis.

2.3.3 Extrinsic calibrations

In this thesis, the extrinsic calibration of the cameras onboard the MAV mainly consists
of two calibration tasks: the extrinsic calibration between the MAV body frame and
the camera frame, which is also known as hand-eye calibration (Tsai and Lenz, 1988;
Horaud and Dornaikal |1995), and the extrinsic calibration among multiple cameras, i.e.
calculating their relative poses.

We perform the extrinsic calibrations with the assistance of the external tracking sys-
tem “Optitrack” by Naturalpoint (2014), which includes 12 infrared cameras. After at-
taching several markers to an object, the tracking system can provide 6DOF pose esti-
mates of the object with a speed up to 100 fps. The deviation of position estimates for a
static object is less than a millimetre according to our tests. This tracking system is also
used to provide ground truth data of the MAV poses in the experiments throughout this
thesis.

MAV-camera calibration

We define Ty to be the homogeneous transformation matrix, which transforms a vector
in coordinate system A to a vector in coordinate system M. It consists of a rotation
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];VE

Figure 2.8: The coordinate systems and relative poses in the MAV-camera extrinsic cali-
bration.

Ry and a translation tyyy:
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The camera frame (C) and MAV body frame (B) are defined as shown in Fig. @ The
MAV-camera calibration then finds the homogeneous transformation 7'gc.

R t
TMN=( MN MN)_

We obtain 7'p¢ by estimating the transformations of the corresponding two coordinate
systems with respect to an external frame &£, which is fixed on the planar pattern as we
use in the camera calibration procedure described in the previous section. We attach
several markers on both the planar pattern and the quadrotor, then place both of them
within the field of view of the external tracking system, which provides measurements in
its own world coordinate system W,. Thus, their 6DOF poses in W,, Twp and TwE, can
be obtained from the measurements of the tracking system. Furthermore, we obtain the
transformation between the camera frame C and the external frame &, Tgc, by perform-
ing extrinsic-parameter calibration of the camera with respect to the planar pattern using
the toolbox in Bouguet| (2001). Finally, the desired transformation 7p¢ can be computed
as:

Tsc = (T Twe)TEC. (2.17)
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2.4 Visual SLAM for MAVs

Figure 2.9: The coordinate systems and relative poses in the camera-camera extrinsic
calibration.

Camera-camera calibration

The aim of the camera-camera calibration is to find the relative pose, T¢c,c;, between
camera Cp and another camera C;, as illustrated in Fig. Since the cameras mounted
on our MAV share no overlap in their respective fields of view, typical stereo-camera
extrinsic calibration methods, e.g. those presented in [Bouguet (2001); Faugeras and
Toscani (1986); Luong and Faugeras (1993); Knight and Reid| (2000), cannot be used
directly. We achieve the calibration by performing the previously described MAV-camera
calibration twice to obtain T'gc, and Tgc;. Thus, the relative pose T¢c,c; can be found as

Teyc; = Tpe, T, (2.18)

When an external tracking system is unavailable, alternative methods for camera-
camera calibration can be used, such as the semi-automatic calibration methods pre-
sented in L1 et al.| (2005)); [Kaess and Dellaert (2010), or the auto-calibration methods
presented in Carrera et al.| (2011); Esquivel et al. (2007)); |Oskiper et al.| (2007); |Angst
and Pollefeys (2009).

2.4 Visual SLAM for MAVs

When a mobile robot navigates in an unknown environment, its accurate localization
is a prerequisite in order to build a good map of the environment. On the other hand,
having an accurate map is essential in order to achieve good localization. These two
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Figure 2.10: The SLAM problem. A SLAM system simultaneously estimate both the
robot and the landmark locations, based on observations of landmarks.

problems are addressed as the SLAM problem, which is the process of simultaneously
tracking the position of a mobile robot relative to its environment and building a map of
the environment, as illustrated in Fig. [2.10]

At a time instance k, given a map achieved at time instance k — 1, a set of observations
to the landmarks in the environment, and a prior estimation of the relative motion of the
robot, ui_1, a SLAM system has to simultaneously estimate the robot location x; and the
locations of the landmarks in the environment, which have been observed. To initialize
the map, different initialization procedures can be used, depending on the type of sensor
modality used for SLAM. Detailed descriptions of the SLAM problem in a probabilistic
perspective can be found inThrun ez al.|(2005); Durrant-Whyte and Bailey (2006)); Thrun
and Leonard (2008)).

SLAM using cameras, i.e. visual SLAM, relies on visual features, e.g. line segments
or local features, as landmarks. A popular choice has been adopting local features, such
as SIFT (Lowel [2004), SURF (Bay et al., 2006) and FAST (Rosten and Drummond,
2006)), for visual SLAM. Using such visual features facilitates SLAM in unmodified
and unknown environments, which is highly desirable for a wide range of applications,
including our MAV applications.

2.4.1 The PTAM system

In Klein and Murray| (2007)), parallel tracking and mapping (PTAM) is proposed for
estimating the camera pose in a small-scale unknown scene. In general, it is a monocular
visual SLAM process. Here, we briefly introduce the PTAM system which will be used
as a foundation of our SLAM systems in this thesis.

The original PTAM implementation can produce a detailed environment map with a
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2.4 Visual SLAM for MAVs

large number of landmarks, which can be used for accurate pose tracking of a monocular
camera at a high frequency. In order to achieve real-time operation, the main idea pro-
posed in PTAM is to split tracking and mapping into two separate threads, which can be
processed in parallel on a dual-core computer. One thread is responsible for tracking the
camera motion relative to the current map. The other thread extends the map that con-
sists of 3D point features organized in keyframes, and refines the map by using bundle
adjustment (Triggs et al., 2000).

The tracking thread

In the thread responsible for tracking the camera pose (the tracking thread), the FAST
corner detector (Rosten and Drummond, 2006) is applied to each image at four pyramid
levels. All map points are projected to the current image frame based on a prior pose
estimate, which is predicted by using a simple decaying-velocity motion model. The
map points located inside the image after this projection are chosen as candidates which
could be used for pose tracking. An 8 X 8-pixel patch search template is then generated
for each map point. To locate each map point in the target pyramid level, a fixed-range
search around its predicted position is performed to find the best match for its template.
This is done by evaluating the zero-mean sum-of-square-difference (SSD) scores at all
FAST corner locations within a circular search region, and by selecting the location with
the smallest difference score. If this score is below a preset threshold, the map point is
considered to have been found. Then the image coordinates of each map point can be
refined by performing an iterative error minimization.

All the successful observations of the map points are utilized in an optimization pro-
cess to estimate the camera pose update, as will be analyzed in Chapter[5] Depending on
the current camera pose, the current keyframe will be decided whether to be added to the
map or not.

The mapping thread

The mapping thread integrates new keyframes into the map when requested by the track-
ing thread, and creates new map points by triangulating FAST corner matches between
the new keyframe and its closest neighbors. Local and global bundle adjustment are
continuously performed to refine the map for the rest of the time. The operation of the
mapping thread is illustrated in Fig.

Limitations in MAV applications

In the context of adapting PTAM for autonomous navigation of MAVs, there are three
issues we need to keep in mind: First, since the PTAM system features a monocular
vision system, it does not provide metric scale measurements. Second, PTAM was origi-
nally designed for augmented reality applications in small areas, and thus is not suitable
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for large-scale SLAM. Third, if an MAV flies in complex environments or in aggressive
ways that lead to failure in triangulating new map points or tracking the existing points,
pose tracking of PTAM will consequently fail. All those three issues will be addressed
when we discuss the SLAM systems implemented in this thesis.

2.4.2 Related work

Very early work related to visual SLAM can be found in Harris and Pike| (1988). In
this work, a 3D visual map is built from feature-points extracted from a sequence of im-
ages taken by a moving camera, with the ego-motion of the camera also being estimated.
In recent years, real-time visual SLAM has been achieved using both monocular and
stereo cameras. Two methodologies have become predominant in visual SLAM (Scara-
muzza and Fraundorfer], 2011): filtering methods which fuse information from all past
measurements in a probability distribution (Davison et al., [2007; [Eade and Drummond,
2007)), and keyframe-based methods, like PTAM. Davison and Murray| (2002) proposed
a visual SLAM system that uses stereo cameras in a probabilistic framework of the Ex-
tended Kalman Filter (EKF). This work describes the first application of active vision to
real-time sequential map-building in SLAM. Later in Davison| (2003), SLAM at camera
frame rate is achieved using a monocular camera. Further work in Davison et al.| (2007)
presents the monocular visual SLAM system, MonoSLAM, achieving a real-time and
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2.4 Visual SLAM for MAVs

drift-free performance. The monocular visual SLAM system in [Eade and Drummond
(2007) builds a graph of locally filtered sub-maps. Updates to the local sub-maps are
carried out using non-linear optimization rather than EKF, in order to avoid the inconsis-
tency resulting from imperfect approximation of the observation model. The advantages
and disadvantages of filtering and keyframe-based methods are analyzed in the work of
Strasdat ef al.| (2010a, 2012)), suggesting that, in most modern applications, keyframe
optimization gives the most accuracy per unit of computing time.

Most of the current SLAM systems have been limited to small-scale workspaces. Nev-
ertheless, a number of systems have recently been developed for large-scale operations
(Cummins and Newman, 2011} Mei et al., 2011). To achieve real-time performance in
large scale explorations, the work in |Me1 et al. (2009) combines accurate local visual
odometry using stereo cameras with constant-time large-scale mapping. A continuous
relative representation is chosen to represent the world. The resulting visual SLAM sys-
tem obtains precisions down to a few metres over distances of a few kilometres. The
monocular visual SLAM system in (Strasdat et al., 2010b) obtains a near real-time per-
formance using a framework similar to PTAM. In the pose-graph optimization (PGO)
process at loop closures, the scale drift of the monocular vision system is taken into
account. The real-time stereo SLAM system proposed in Lim ef al. (2011) alternates
bundle adjustment in a local window with global segment optimization.

With the availability of some relatively cheap and lightweight RGB-D cameras, like
the Microsoft Kinect and the Asus XtionPro, some successful RGB-D SLAM systems
have been developed. The KinectFusion system proposed in Newcombe et al.| (2011
achieves accurate real-time mapping of complex and small-scale indoor scenes in vari-
able lighting conditions. All depth data streamed from a Kinect sensor is fused into
a single global implicit surface model of the observed scene for dense reconstruction.
Mapping large indoor environments in near-real time has been achieved in |Henry et al.
(2014). The alignment between frames is computed by jointly optimizing over both ap-
pearance and shape similarity. Pose optimization is applied to achieve a globally consis-
tent map after loop closures are detected. In Engelhard ez al.|(2011), a similar approach is
implemented, while the more efficient SURF feature detector is applied instead of SIFT.
To avoid problems caused by incomplete depth measurement within the field of view
of the RGB-D camera, the SLAM system presented in Scherer et al.| (2012) uses depth
information only as additional constraints in bundle adjustment to improve the accuracy
of the PTAM system.

Autonomous navigation of UAVs/MAVs relying on pose estimates from GPS sensors
has been well studied in early researches. Related work usually fuses inertial navigation
system (INS) data to aid GPS-sensor data, achieving autonomous navigation in high al-
titude and long range operations. However, they are not suitable in GPS-denied environ-
ments. Recently, much effort has been focused on developing visual SLAM systems to
enable autonomous MAVs. Related work using stereo cameras, monocular cameras and
RGB-D cameras can be found in the literature. Autonomous mapping and exploration
for MAVs based on stereo cameras is presented in Fraundorfer et al. (2012). The work
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in Schauwecker and Zell (2013)) features a vision system for autonomous navigation of
MAVs using two pairs of stereo cameras, with stereo triangulation adding constraints
to bundle adjustment in PTAM. A stereo setup yields metric scale information of the
environment. However, those systems have difficulties in using distant features since
they triangulate those feature points based on their short baselines. Stereo visual odom-
etry and SLAM systems may degenerate to the monocular case when the distance to the
scene is very much larger than the stereo baseline. In this case, stereo vision becomes
ineffective and monocular methods must be used (Scaramuzza and Fraundorfer, [2011)).

In |Achtelik et al.| (2011), PTAM is used to provide position estimates for an MAYV,
while fusing data from an air pressure sensor and accelerometers to estimate the un-
known metric scale factor of the monocular vision system. The work in|Weiss and Sieg-
wart (2011) presents a visual-inertial data fusion method based on the EKF. It is further
implemented in |Weiss ef al.| (2012) for autonomous navigation of MAVs using inertial
data and visual pose estimates from a modified PTAM system. The scale drift of the
monocular PTAM system has been considered in the EKF framework.

A vision-based system combining advantages of both monocular vision and stereo
vision is developed in Shen ef al. (2013b)), which uses a low frame-rate secondary camera
to extend a high frame-rate forward facing camera that is equipped with a fisheye lens.
It can provide robust state estimates for a quadrotor by fusing the onboard inertial data.
The resulting vision system mainly relies on monocular vision algorithms, while being
able to track metric scale by stereo triangulation. Since the two cameras are configured
in a stereo setup, the field of view of the vision system is not expanded. The improved
work in Shen et al.|(2013a) enables a quadrotor to autonomously travel at speeds up to 4
mys, and allows roll and pitch angles exceeding 20 degrees in 3D indoor environments.

In Huang et al.| (2011), autonomous flight of an MAV is enabled by the proposed
SLAM system using an RGB-D camera. A visual odometry is used for real-time lo-
cal state estimation, and integrated with the RGBD-Mapping (described in Henry et al.
(2014)) to form the SLAM system. An efficient RGB-D SLAM system is described in
Scherer and Zell| (2013), which enables an MAV to autonomously fly in an unknown
environment and create a map of its surroundings. Sparse optical flow is used for feature
matching, which is of advantage when motion blur may result in a very limited number
of local features being detected.
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Chapter 3

Artificial-Landmark-Based Visual Pose
Estimation

In this chapter, we address the problem of six degrees-of-freedom (6DOF) pose estima-
tion of MAVs using an onboard monocular visual solution. The camera pose can be
estimated based on a single image of an artificial landmark by the presented solution.
This landmark is chosen to be similar to a regular helicopter landing pad, avoiding a too
specified setup. The landmark detection is based on an artificial neural network (ANN),
while the pose computation is mainly depending on a computational projective geometry
method. The visual pose estimation algorithm developed in this chapter can be applied
to enable autonomous takeoff, hovering and landing of an MAV. Furthermore, it will be
used for automatic initialization of another visual SLAM system as will be shown in the
other technical chapters of this thesis.
Large parts of this work have been pre-published in Yang, S. et al. (2012, 2013b).

3.1 Introduction

In MAV applications, visual pose estimation based on artificial landmarks (visual mark-
ers), has been a popular choice, since it is computationally very efficient. Related meth-
ods can be found in autonomous landing of MAVs on a specific target with previously
known geometry information, assuming the target is very distinctive to the background,
which can be recognized by a simple image processing method. Such a target can either
be fixed on the ground (Saripalli et al., 2002; Merz et al., 2006), or on a moving platform
(Saripalli et al., 2003} Meier et al., |2011). In those scenarios, marker-based pose esti-
mation can be more efficient and accurate, compared with visual-feature-based methods
(Lowe, 2004; |Lepetit and Fua, 2006) or some advanced template-based methods (Hin-
terstoisser et al.l, 2011). However, it has often been overlooked to improve the robustness
of such marker-based methods in order to be extended to applications in more complex
environments, in which the background of the target can be very cluttered.

In this chapter, a robust pose estimation method based on an artificial landmark is
presented. We first chose a helicopter landing pad as the visual marker, which consists
of a letter “H” surrounded by a circle, as depicted in Fig. [3.Tal After the landing pad is
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(a) (b)

Figure 3.1: (a) The landing-pad landmark. (b) The world coordinate system.

robustly detected using an artificial neural network, its geometry information is retrieved
by fitting ellipses to its image pattern. Then the five degrees-of-freedom (SDOF) pose of
the MAYV, its 3D position, roll and pitch angles, is estimated from the image projection of
the known circle, using a computational projective geometry method (Kanatani, [1991)
with a simple algebraic form. Since MAVs are nearly always equipped with an IMU,
its gravity-vector estimates are used as a reference for solving the geometric ambiguity
inherited from the computational geometry method. Furthermore, the remaining degree-
of-freedom pose, the yaw angle, is estimated using the ellipse fitted to the image contour
of the projected letter “H”.

In the proposed method, no additional metric measurement sensor is needed for pose
estimation. The 3D position and yaw angle estimates are used as input to the nested PID
controller described in Sec. to control hovering of the MAV above the landing pad,
as well as the control of autonomous takeoff and landing.

The remainder of this chapter is organized as follows. Related work on artificial-
landmark-based pose estimation methods in MAV applications is reviewed in Sec. [3.2]
In Sec. the vision algorithm for the landmark recognition is presented. Then the
computational projective geometry method for 6DOF pose estimation based on the im-
age of the landmark is presented in Sec. [3.4 The efficiency of the proposed method
is demonstrated in the experiments in Sec. [3.5] Finally, we draw the summary of this
chapter in the last section.

3.2 Related Work

Previous work on artificial-landmark-based pose estimation in MAV applications nor-
mally uses two kinds of visual markers with known geometry information: a group of
point markers, and a group of curves.
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In Wenzel et al.| (2010b), four coplanar infrared LED markers are used in a low-cost
solution for visual pose tracking of an MAV. A Wii remote infrared camera distributed
by Nintendoand (Wikipedia, [2014b) is utilized to capture images of the four markers. In
Wenzel et al.| (2010a), a new geometric method is proposed using a different configura-
tion of such four LED markers. Autonomous takeoff, hovering and landing of an MAV
on a moving platform is achieved using the visual pose estimates based on those markers.
Their further work in|Wenzel et al.| (2012), an MAV following another MAV is achieved
in a follow-the-leader scenario. The relative pose estimates of the follower to the leader
are provided by a modified method of that in Wenzel et al.| (2010a)). Since infrared LED
markers are difficult to be used in outdoor environments, methods using passive point-
markers have been investigated in a number of vision systems. The work in|Massell1 and
/ell| (2012)) uses four coplanar-configured orange-ball markers for pose estimation of an
MAV. The ball detection process is based on a color segmentation method. The MAV
pose is estimated by solving the Perspective-3-Point (P3P) problem using a new method,
with the fourth marker being used to reject false detections. In Jimenez Lugo et al.
(2013)), the same P3P solver is used to retrieve the relative pose between two quadrotors
to solve the leader-following problem. Three passive orange ball markers are used in this
work. A comparison of pose estimation methods using infrared LED markers, passive
point-markers, and the method proposed in this chapter is presented in Masselli et al.
(2014). The performance of those methods in both indoor and outdoor environments is
evaluated.

Visual markers with various curves have been used for visual pose estimation of
UAVs/MAVs. The work in [Saripalli ef al.| (2003) achieves autonomous landing of a
helicopter on a H-shaped landing pad. An image-moment-based method is used for
detecting the landing pad and estimating the orientation of the helicopter. The relative
position of the helicopter to the landing pad is estimated using these orientation estimates
and precise height estimates provided by a differential-GPS sensor. Merz et al.| (2006)
designed a special landing pad with five circle triplets in different sizes. Three ellipses
in the image, i.e. the projections of three circles of this pad, are used for estimating
the relative pose in a coarse-to-fine process. The work in [Lange et al.| (2009) achieves
autonomous landing and position control of an MAV by estimating the 3D position from
a landing pad consisting of several concentric circles, assuming that the MAV is flying
exactly parallel to the landing pad. The work in Xu et al.| (2009) uses a T-shape coop-
erative object and an infrared camera for pose estimation of UAVs. However, only the
yaw angle is computed in this method. More complicated visual markers can be found in
Meier et al. (2011). This work presents a new self-developed quadrotor system capable
of autonomous flight with onboard pose estimation using a vision system and an inertial
measurement unit (IMU). The vision system features a marker-based approach with an
adapted implementation of ARToolkit+ (Wagner and Schmalstieg, [2007)).

Visual markers with circular curves are another alternative for visual pose estimation.
The geometry of the image projection of a circle, which is an ellipse in the general case,
is well studied in the area of projective geometry (Forsyth et al., 1991; Kanatani and Wu,

31



Chapter 3 Atrtificial-Landmark-Based Visual Pose Estimation

1993}, (Chen et al., 2004). However, this does not mean that the pose estimation methods
in the previous work can be directly used in MAV autonomous flight applications, since
there is a common geometric ambiguity in those approaches, i.e. two possible solutions
exist. Thus, the absolute solution cannot be obtained from one image projection of one
circle. The same issue applies to the work in Chen et al.| (2004) for camera calibration,
which uses two coplanar circles in the implementation. Recently, the work in Eberli
et al.|(2011)) presents a vision algorithm which is able to estimate the SDOF pose of an
MAV by using two concentric circles with very different radii. However, this algorithm
does not work when the camera is in an upright position above the circle. Thus, in this
method, the attitude estimates from the IMU are used for the 3D position estimation.

3.3 Artificial-Landmark Recognition

In this section, the vision algorithm for robust and real-time landmark recognition is
presented, including the detection of the target landmark and its geometry-information
retrieving by accurately fitting ellipses corresponding to the image projection of the land-
mark.

3.3.1 The artificial landmark and coordinate systems

The landing-pad landmark is printed on A4 paper for the experiments. The radius of the
outer and inner boundaries of the circle are 90 mm and 75 mm, respectively. A larger
circle would lead to a larger working distance for the vision system. However, it would
also lead to a larger “blind” range above the landmark, in which the camera cannot
observe the complete landmark.

The world frame (V) is defined in the way as illustrated in Fig. [3.1b] It is assumed
to be the inertial frame. Due to the symmetric nature of the letter “H”, we define the xy
axis along the forward direction of the MAV when it takes off.

3.3.2 Vision algorithm for landmark detection

Regular landing pads for helicopters are usually not particularly textured, whereas their
background might be visually very cluttered. This is a difficult scenario for feature-based
object detection methods, as they will find only few interest points on the landing pad
compared to other objects in the background. We note that the landing pad consists
of the letter “H” surrounded by a circle which is actually a distinguishing sign. Thus,
a straightforward solution to the landmark detection is to treat it as a sign detection
problem. It is then solved similarly as proposed in Scherer et al.|(2011), by binarizing
the image, finding connected components, and classifying connected components using
an artificial neural network. We also enforce a geometric-relationship constraint to detect
the landmark more reliably. Results in different steps are illustrated in Fig. [3.2] This
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Figure 3.2: Different steps of landing pad detection: the original image (top left), the
binary image (top right), connected components labelled with their bounding boxes (bot-
tom left), and the classification result (bottom right).

method allows us to detect the landmark in real-time on computationally constrained
hardware.

Binarization

In order to separate image pixels into two groups, each of which represents either objects
or the background, adaptive thresholding proposed in Bradley and Roth| (2007) is used
to binarize each camera image. Here, we assume objects to be black and the background
to be white in the binary image.

A basic way to binarize an image is to apply a global threshold to it. However, this will
hardly work in cluttered environments, especially with dynamically changing illumina-
tion conditions. On the contrary, the adaptive thresholding method proposed in Bradley
and Roth|(2007) can cope well with illumination changes and even allows different light-
ing conditions in different parts of the image. It computes the average value I(i, j) of a
s X s window of pixels centered around each pixel (i, j). If the value of the pixel (i, j)
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is ¢ percent less than I(i, j), then the pixel (i, j) is assigned to be black; otherwise, it is
assigned to be white.

The average value I(i, j) can be efficiently computed by using the integral image,
which is computed within a linear time cost as a preprocessing. Each location (7', j’)
of the integral image stores the sum of intensities of all pixels in the corresponding rect-
angle, which is defined by the pixel (0,0) as its top left corner and the pixel (i/, ) as its
bottom right corner. When the surrounding s X s window of a pixel (i, j) is given by the
top left corner (i1, j1) and the right bottom corner (iz, j»), I(i, j) is calculated as

— I(ZZ,JZ)_I(Q,]I - 1)_1(11 - 1a]2)+l(ll’]1)

P
@@, /) (2 —i)(j2 = 1)

One drawback of the adaptive thresholding method should also be noted: it has major
difficulties when binarizing a black/white pattern with a large size, e.g. the circle of the
landing pad in Fig. When the dynamic window is smaller than the width of the curve
of the circle, the image area of the curve will be randomly binarized depending on image
noise. However, for the MAV takeoff and landing applications, the dynamic window size
can be easily decided by a heuristic, depending on the required working range of the
vision system in these applications.

Extracting Connected Components

Given a binary image described above, connected components of all objects in it are ex-
tracted based on the run-based two-scan labeling algorithm proposed by He et al.| (2008)
and its modifications presented in Scherer et al.| (2011). A run is a set of contiguous
object pixels within a certain row of an image. The original labeling algorithm in He
et al.| (2008) uses runs as basic elements of a connected component for detecting the
connectivity, and traverses the image twice to label all connected components.

In the first scan, the original labeling algorithm extracts runs in the image by pixel-
wise traversal in the raster scan direction. If a new run is not eight-connected with any
run in the row above the current scan row, all pixels in it are assigned a new provisional
label; otherwise, those pixels are assigned the same provisional label as one of its eight-
connected run. Furthermore, all provisional labels that are assigned to a connected com-
ponent are combined in a provisional label set, with a representative label. Whenever
temporary connected components are found to be connected, all corresponding provi-
sional label sets are merged into one set. Thus, after the fist scan, all provisional labels
which belong to each connected component are combined in one provisional label set,
with a final representative label. In the second scan, the labeling algorithm traverses the
image again simply to replace each provisional label with its final representative label.

We use a similar strategy as in|Scherer ef al.| (2011) to modify the algorithm in He et al.
(2008)). First, since completely labeling all pixels in an image is not necessary for the
sign detection task in our work, the second scan described above is abandoned. Second,
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Figure 3.3: Illustration of the classification using the neural network. The size of the
image pattern and the neural network are listed in the bottom. From the left to the
right: resized image pattern, the input layer, the hidden layer of the neural network,
and the output neurons. The classifier requires one output neuron per class. The final
classification output is chosen after applying the loss function.

we store the bounding box of each connected component, which corresponds to one
provisional label set in the first scan. This allows us to disregard connected components
which do not have a proper dimension to be a part of the landmark sign. The proper
bounding-box dimension is decided by a heuristic: The bounding box should not be
too small to be reliably classified, and the ratio of its height to its width should be in a
certain range. In this way, after the first scan of the image, we can efficiently extract a
set of connected components which might be parts to the landmark sign, based on their
bounding boxes.

Classification of Connected Components

We classify each of the connected components detected in the image using an artificial
neural network (ANN) (Bishopl, [2006; Dayhoff, [1990). This neural network assigns one
of three classes to each connected component: Circle, letter “H” or other object. As
the classification result shown in Fig.[3.2] the circles and the letter “H”’s are marked with
green and blue bounding boxes, respectively; other objects are marked with red ones.
We implement this by using the 1-of-3 target coding scheme, which requires one output
neuron per class: For each input sample, we expect the output neuron corresponding to
its true class to return 1 and the others to return O after we apply the loss function, as
illustrated in Fig.[3.3]

The structure of the neural network is a multilayer perceptron with 196 input units (one
per pixel of patterns resized to 14 X 14), only one hidden layer consisting of 20 hidden
units, and three output units. All units of the hidden layer use the logistic activation
function. However, the units of the output layer use the softmax activation function,

35



Chapter 3 Atrtificial-Landmark-Based Visual Pose Estimation

OO00O000
T IV HHHT

© Do =G Pk

Figure 3.4: Samples belonging to different classes for training the neural network, from
the top row to the bottom row: circles, letter “H”’s and other objects.

so we can interpret the output value of each output unit as the posterior probability of
the input patch belonging to its corresponding class. In the loss function, [Scherer et al.
(2011) assign a much larger loss to false positives compared with that to false negatives,
due to the concern that false positives and wrong detections cause worse consequences
to the robot control than false negatives can do. In our case, we have the same concern.
However, after we apply the geometric constraint which will be introduced later, false
positives can be significantly suppressed. Thus, we applied a loss function that assigns a
loss of 1 to false negatives and a loss of 2 to false positives and wrong detections. The
final classification output is then chosen to minimize the expected loss.

We use standard backpropagation to train the network, based on a labeled dataset con-
taining approximately 3,000 samples for each of the two parts of the landmark (circle and
letter “H”) and 7,000 samples of other objects, taken from various perspectives relative
to the landmark. Some examples of the samples can be found in Fig. We carry out
the training process by using the Stuttgart Neural Network Simulator (SNNS), proposed
by Zell et al.| (1994)), in a progressive fashion: We first manually label a small number
of samples, which are used to train a preliminary neural network. Then we use this pre-
liminary network to classify all remaining samples in the dataset. Thus, we only need
to manually verify the results and correct the labels of those samples which have been
classified to a false class. Finally, all the labeled samples in the dataset are used to train
the final neural network. After training the network, we can generate efficient C code
using the snns2c module of the SNNS, which is one of the reasons that we chose SNNS
for this training task.

Enforcing the geometric relationship constraint

Once all connected components are classified by the neural network, we can suppress
false positives by enforcing the geometric constraint that each letter “H” which is a part
of our landmark has to be surrounded by a circle. Therefore, we disregard all connected
components classified as letter “H”s that do not lie within the bounding box of a con-
nected component classified as a circle. The relative sizes and center positions of their
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3.3 Artificial-Landmark Recognition

bounding boxes are also considered in this constraint. Let p;, p> be the false positive
rates of the circle and the letter “H” detections, respectively, due to this geometric con-
sistency check, the false positive rate for the final landing pad detection will be lower
than min(p;, p2), usually by a large amount. In fact, we seldom encountered a single
false positive of the landing pad detection during our flight experiments.

If our system is still certain that it has detected the landmark at this point, it extracts
the corresponding original image pattern for further processing. In Fig. [3.2] the correct
combination of a circle and letter “H” is marked with an orange cross, and the original
image pattern inside the green bounding box will be used as the finally detected landing
pad.

3.3.3 Retrieving the geometry information

In the general case, the perspective image projection of a circle is an ellipse. To make
our vision system reliable in a large range of perspective views, this general case is
considered in our work. Thus, accurate ellipse fitting turns out to be a critical issue for
the later geometric computation. In this section, we obtain the ellipses corresponding to
the inner and outer boundary of the landing pad circle and that of the letter “H”. This
is achieved by performing edge detection on the gray scale image pattern of the landing
pad and fitting ellipses to these detected edges. Lens distortion effects to the ellipse
parameters are taken into account during this process.

First, the well known Canny edge detector (Canny, 1986) is applied to the gray scale
image pattern. The edge contours retrieved from the detected edges are then used to
fit ellipses by implementing a so called direct least square fitting algorithm proposed
in [Fitzgibbon et al.| (1999), which is very robust to image noise and very efficient. A
comprehensive comparison of this algorithm with some other ellipse fitting algorithms
can also be found in Fitzgibbon ef al.| (1999). An implementation of this algorithm exists
in OpenCV (Bradski, 2000).

Due to lens distortion, especially when using a wide angle lens, the assumption of a
perspective projection no longer applies. To eliminate the effect of this issue, we apply
a correction step to the edge contours before applying the ellipse fitting algorithm: We
transform the edge contour from the image frame into the undistorted image frame. For
this step, the camera model calibrated in Sec. [2.3.2] is adopted. To further improve the
efficiency of this transformation, a look-up table mapping distorted image coordinates to
undistorted image coordinates is pre-computed at the initialization phase of the vision
system.

Even though we can detect two ellipses for the circle of the landing pad, we only use
the ellipse corresponding to its outer boundary for further pose estimation. Fitting an

ellipse to the projected contour of the letter “H” provides us with the orientation of the
landing pad, which will be described in Sec.[3.4.2]
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3.4 6DOF Pose Estimation

In this section, we use a single ellipse originated from the projection of a known circle
for the SDOF pose estimation of the MAV within the world frame WV, including its 3D
position typ and the roll and pitch angles (¢, 6) of the MAV. ¢ and 6 are derived from the
normal vector of the plane on which the circle lies. |(Chen ef al. (2004) also described this
problem for camera calibration, however, with two arbitrary coplanar circles. We briefly
introduce it for the pose estimation here, and then use an IMU-aided approach to resolve
the ambiguity inherited from this problem. The yaw angle of the MAV (y) is estimated
as the orientation of the major axis of the ellipse fitted to the projection of the letter “H”.

3.4.1 SDOF camera pose estimation

Once the effect of the lens distortion has been corrected, we can consider the vision
geometry to obey perspective projection, in which a pinhole camera model applies. An
ellipse in the image frame can then be described by the following quadratic equation:

Ax* +2Bxy+Cy* +2Dx+2Ey+F =0, (3.1)
or if we define the augmented vector x = (x, y, 1)T, we get

ABD
BCE
DEF

x! x=0. (3.2)

Let f be the focal length of the camera, we can define the image plane to be at z = f.
A bundle of straight lines, passing through the optical center and the ellipse, define an
oblique elliptical cone, as illustrated in Fig.[3.5] in the form of

P=kx,y, O, (3.3)
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3.4 6DOF Pose Estimation

where £ is a scale factor describing the distance from the origin to P. Combining Eq.|(3.2)
and Eq.|(3.3), the equation to describe the oblique elliptical cone is:

PToP=0, (3.4)
where
A B?
0=|BC%|, (3.5)
DEF
Fr7

which is called a conic in [Kanatani and Wul(1993)).

We directly derive the SDOF pose of the circle in the camera frame from the conic Q.
The proof of this result is detailed in|Kanatani and Wu| (1993)) and|Chen et al.| (2004)). We
define r to be the radius of the original circle which is projected as the ellipse, 41, 42, and
A3 to be the eigenvalues of Q, and u, and u3 to be the unit eigenvectors for eigenvalues
Ay and A3, respectively. As Q has a signature of (2, 1) (Kanatani and Wu, |1993), without
the loss of generality, we can assume that A3 < 0 < A; < A,. Then following the world
frame definition in Fig. the unit vector of the zy axis and the origin of the world
frame described in the camera frame (denoted by n and tcw) are given by

(L —2A)) (A1 = A3)

—w+ —ug3, 3.6
-2z - P\ (-3 G0
(12— A1) (1= 43)
tcw = By DA 3.7
cw Z0(51 3 (/12_/13)112+Sz 2 (/12_/13)113], (3.7

where 7o = § 3%, and S, S, and S3 are the undetermined signs. Eq. ((3.6) and
give us a clear algebraic formula for the SDOF pose estimation. As n faces to the
camera, and the center of the circle is in front of the camera in our definition, we can get
two constraints for the undetermined signs,

n-(0, 0, DT <0, (3.8)

tew - (0, 0, DT > 0. (3.9)

Since only two of the three signs can be determined by Eq. [(3.8)] and [(3.9)] there are
two possible solutions for n and tcw. When the camera is in an exactly upright position
above the circle, we get 41 = A, and only one solution exists. In the general case, let us
denote these two solutions to be ny, t; and ny, t;. Further disambiguation is needed to
obtain the absolute SDOF pose estimation.
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Resolving the Ambiguity

The gravity vector described in the camera frame can be calculated from the roll and
pitch angles (¢ and 6) estimated by the IMU. We use it as a reference to resolve the
geometric ambiguity.

Two assumptions are introduced for the disambiguation step: The error of the attitude
estimates by the IMU is small, and the landing pad is placed horizontally oriented. Since
the attitude estimates by the IMU are used for high frequency attitude control, the first
assumption should be met, otherwise an MAV could not fly properly. Fortunately, this as-
sumption does apply to our IMU and most commercial ones. In this case, the error of the
gravity vector estimation will be small correspondingly. Also, we usually want an MAV
to land on leveled ground. Therefore, it is reasonable to make the second assumption.

Following the second assumption, the gravity vector g is antiparallel to the zy axis.
While estimating the SDOF pose, we assume the yaw angle to be y = 0. Then the rotation
matrix from frame B to frame W can be derived as,

1 0 0 cos¢p 0 —sing
Rwp=10 cosf® —sinf|-[ O 1 0 |. (3.10)
0 sinf cosf | [sing O cos¢

Let zy be the unit vector of the zy axis, then in frame B, z,, can be expressed as

zzw = Rwp) ' - zw.

In the camera frame C, we have

zcw = Rep 2w (3.11)

Zcw 1s used as the final reference vector for resolving the ambiguity of the SDOF pose
estimation according to the angles of the vectors n; and n, to zcw, denoted by 6; and
6>. According to our assumptions, the correct vision measurement should be close to the
IMU measurement. So we choose the vector with smaller angle relative to zcw to be the
final estimate of the unit vector n, which means

_ {n1 if 01 <6,

- (3.12)
n; if 6 > 6>.

Thus, the last undetermined sign in Eq. and|(3.7)[is now solved, and the 5DOF pose
can be derived.

It should be noted that if the error of the gravity vector estimated from the IMU is
higher than the angles spanned by the two possible solutions to the true gravity vector,
the disambiguation may fall to the false result according to Eq. [(3.12)] However, as
predicted by our assumptions, this should seldom happen. And if this ever results in a
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large difference between the previous and current estimate, the current one can simply
be disregarded as an outlier.

3.4.2 Resolving the remaining DOF

For yaw angle (y¢) estimation, the existing work uses image moments to estimate the
orientation of a letter “H”, as described in Saripalli et al.| (2003). In our work, the orienta-
tion of the major axis of the ellipse fitted to the letter “H” is used as an approximation of
Y. We tested these two methods by using a synthetic image of a letter “H”, and rotating
it with a step size of one degree. Errors of less than 3 degrees were achieved by using
the ellipse fitting method in this case, and less than 1 degree for the image-moment-
based method. But when fitting the ellipse to a solid rectangle, even smaller errors were
achieved. The errors from both of the two methods would be larger in real applications
with noise and perspective projection. We adopt the ellipse fitting approach because of
the following advantages. First, additional computational cost can be avoided, and we
can unify the 6DOF pose estimation by using the ellipse fitting method. Furthermore,
we can use other patterns with rectangular shape to replace the letter “H” as long as we
train the neural network with this new pattern, making the vision algorithm more flexi-
ble. This approach is demonstrated to be sufficient for controlling the yaw angle of the
MAV in our experiments in Sec3.5]

Due to the symmetric nature of the letter “H”, the yaw angle of the MAV has two
solutions, with a difference of 180°. As this is inherited from the symmetric configuration
of the landing pad, and does not affect the autonomous flight, we simply ignore this issue
and assume —90° < ¢ < 90°.

3.4.3 6DOF MAY pose

Until now, the estimated 6DOF pose is describing the pose of the world frame W ex-
pressed in the camera frame C. The 6DOF pose of the MAV in WV is obtained by per-
forming a few basic transforms from C to W.

Let R, be the rotation matrix transforming the vector n in Eq. to the z¢ axis,
which can be calculated by using Rodrigues’ formula (Faugeras, [1993). From Eq. [(3.6)|
and R, and ¢, we get the 6DOF pose of the camera in the world frame in the
forms of

cosyc —sinyc 0

Rwc =|sinyc cosyc Of-R,, (3.13)

(A2 —A1) (41— A3)
twe =z21| A3 4| ———up+S A [ ————u3|, 3.14
wC Zl[ o2t (/12_/13)u3] (3.14)

where z; =S’ \/ﬁ’ and S, S’ are determined by Eq. |(3.8)|, |(3.9)| and |(3.12)}

41



Chapter 3 Atrtificial-Landmark-Based Visual Pose Estimation

e
l I !“‘,@ L 8

Figure 3.6: Landing pad recognition results when the MAV hover above the landing pad
in cluttered environment.

Finally, we get the 6DOF pose of the MAV in the world frame as follows,
Rwp = (Rec-Rew) ™", (3.15)

twp = —Rwp - (Rpc - tcw). (3.16)

twp 1s the 3D position of the MAV in the world frame, and the rotation matrix Ryp gives
the three individual roll, pitch and yaw angles of the MAV, which can be calculated by
the Euler decomposition of Ry (Diebel, 2006).

3.5 Experiments and Results

In this section, the efficiency of the presented vision system is demonstrated compre-
hensively by comparing its pose estimates to ground truth data provided by an external
tracking system and by using its pose estimates as control inputs of our MAV for its
autonomous takeoff, hovering and landing.

3.5.1 Landmark detection and ellipse fitting

Fig. [3.6] shows an example of image processing results for the landmark recognition,
with the same color labels as used in Fig. Besides the landing pad, we use some
other circles and letter “H”s with different orientations and stretched shapes attached to
some posters which are rich of texture features. All our latter experiments are done in
the same cluttered environment. It shows that different circles and letter “H”s can be
efficiently detected even if the perspectives change dramatically. False positives for the
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Figure 3.7: Image patches of the landing pad from different perspectives and the corre-
sponding edge detection and ellipse fitting results.

individual circle class or the letter “H” class may appear, but will not be finally classified
as a landing pad.

Fig. shows the results of fitting ellipses to a few gray scale image patches depicted
above, detected from various perspectives. Some of them clearly exhibit the effect of
motion blur. The major and minor axis of the ellipses are also plotted. The orientation of
the major axis fitted to the letter “H” provides an approximation for the yaw angle of the
camera.

3.5.2 6DOF pose estimation results

We compare the 6DOF pose estimates of the onboard vision system with ground truth
data from the tracking system, both recorded at a frequency of 60Hz. The 3D position
and the attitude of the MAV are compared separately.

Hand-held Case

First, we manually rise and hover the MAV above the landing pad so that a large range
of perspective changes of the camera can be tested. As shown in Fig. [3.8] estimates of
the onboard vision system are plotted in red, the ground truth data in green. The SDOF
onboard vision pose estimates are well in line with ground truth data, without many
obvious outliers, even though the position and attitude of the MAV change in a large
range. When the landing pad gets further away from the camera, its image projection
will get smaller respectively, and thus image noise will cause larger errors to the pose
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Table 3.1: RMSE:s in different cases.

Hand-held | Hovering | Auto
XwYw RMSE (mm) 43.1 38.8 33.7
Zw RMSE (mm) 7.9 5.7 6.8
3D RMSE (mm) 43.8 39.2 344
¢ RMSE (deg) 1.4 1.3 1.4
6 RMSE (deg) 1.2 1.4 1.5
¥ RMSE (deg) 7.2 4.8 2.7

estimates, which can be found in Fig. [3.8) when the MAV was hovering at a height of
around 1.5 meters.

Deviations of the yaw angle are larger than those of the roll and pitch angles, especially
when the MAV is at poses where the image projections of the letter “H” are warped dra-
matically. This is because we use the approximation method as described in Sec.|3.4.2]
where only the rotation of the letter “H” is considered. Since the IMU, the onboard vision
system and the tracking system perform very similarly for the roll and pitch estimation,
to clearly demonstrate the performance of the onboard vision system, we omit those es-
timates provided by the IMU in the figures, even though they are required by both the
vision algorithm and attitude control of the MAV.

In Fig. outliers of the ground truth data are mainly caused by occlusions of the
attached markers on the MAV when the MAV is held in certain poses. We initialize
the onboard vision pose estimates with the 3D position [0, O, 30017 mm and the identity
matrix for the rotation matrix, as the circle is not fully visible when the camera is very
close to it, e.g. when the MAV has landed on the landmark. We compute the root-mean-
square errors (RMSEs) of the onboard 6DOF pose estimates for the whole trajectory
by comparing them with the ground truth data. The raw 3D RMSE in Table |3.1| is for
the distance of the onboard vision 3D position estimates to the ground truth data, and
xw —yw RMSE is for the distance on the xw — yw plane.

Hovering Case

Fig. shows an autonomous hovering flight with a set point of [0, 0, 1000]” (mm) for
more than 60 seconds. More motion blur from the vibration of the MAV is introduced
during the flight, which will increase the errors of the pose estimates. We still manually
added disturbances to the control command to let the MAV hover in a larger area, so
that a relatively large range of perspectives could still be tested in this case. Compared
with the hand-held case, the performance is not much worse and the RMSEs are even
smaller. This is not surprising as in autonomous hovering flight, the three Euler angles
are normally very small, and the MAV usually does not reach such poses where large
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Figure 3.8: (a) Position and (b) attitude estimates with hand-held MAV.
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Figure 3.9: (a) Position and (b) attitude estimates during a hovering flight with remotely
added disturbances to the controller.
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errors may be introduced.

Autonomous Flight

In this experiment, the setpoint method described in Sec. is used for trajectory
control in takeoff and landing of the MAV. The desired trajectory is defined to be along
the zy axis of the world frame for both phases. In the takeoff phase, the target height is
simply increased in a constant rate until the MAV reaches the desired hovering height.
In the landing phase, the setpoint py.; 1s initialized as [0, O, hinil? . Pser 1s decreased by a
constant vector [0, 0, h,]7 after reaching the current setpoint, until the MAV reaches the
point [0, O, hianal”, where the MAV can be safely landed by blindly powering down the
rotors.

A full trajectory of the MAV during an autonomous taking off, hovering and landing
flight is shown in Fig.[3.10] In this flight, it took the MAV about 6 seconds to reach the set
point for hovering state. After 5 seconds of hovering around set point [0, 0, 1000]7 (mm),
the MAV started the landing phase, which took about 3 seconds to land on the landing
pad. For the start of the takeoff phase, the MAV just ascends with open loop control
until it observes the circle of the landing pad. Based on ground truth data of the final
states of the MAYV, the errors of final landing positions can be found. In our tests of
10 continuous landing flights, the mean errors of the position on xy, yw direction and
yaw angle are about 24 mm, 86 mm and 6 degrees, respectively. The errors are partially
caused by the “blind” range of the camera, during which the camera can not observe the
whole landmark circle. This “blind” range also causes the landing of the MAV not soft
enough for the mechanism of the MAV landing gear.

Computation Time

The computation time of our vision system during the autonomous flight in Fig. [3.10]is
shown in Fig. The main part of it comes from the landing pad detection phase,
which has an average time cost of less than 10 ms and a maximum of about 18 ms. Peaks
in Fig. may be mainly be caused by the performance of the onboard computer, as
they did not occur when we tested video logfiles on an off-board PC. While hovering
on the set point [0, O, 100017 (mm), the time cost for geometry computation, including
edge detection, ellipse fitting and the 6DOF pose computation, is around 1 ms. When
the landing pad gets very close to the camera, its image projection may nearly occupy
the whole image, which causes a longer time for geometry computation. When the MAV
hovers above the landing pad at a height of about 300 mm, the time cost for geometry
computation reaches a maximum of about 11 ms. The average time cost of the vision
algorithm is less than 11 ms/frame, making full use of our 60 fps camera.
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Figure 3.10: (a) Position and (b) attitude estimates during an autonomous takeoff, hover-
ing and landing flight.
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Figure 3.11: Time cost during the autonomous takeoff, hovering, and landing flight.
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Figure 3.12: (a) 3D Position RMSE and (b) attitude RMSE within different distance and
attitudes to the landing pad.
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SDOF Accuracy Evaluation

We evaluate the SDOF RMSE of the MAV pose estimated by the onboard vision system
at different distances and attitudes to the landmark. The results are shown in Fig.
We manually fix the MAV above the landmark and record the onboard estimates and
ground truth data from the tracking system at each pose for about 10 seconds, i.e. 600
frames, and calculate the RMSEs of these measurements. Since roll and pitch angles
have the same effect to pose estimation in our geometric method, we set the pitch angle
of the MAV to be approximately zero degree and only change the roll angle. The yaw
angle is also set to be approximately zero degree. The optical axis of the camera nearly
coincides with the zy axis, with a small tilt in pitch angle. All onboard pose estimates
for this evaluation are obtained within the same system configuration, which means that
the systematic deviation with respect to ground truth data is constant throughout this
experiment.

Fig. shows that the RMSE of the 3D position estimates grows with increasing
distance to the landing pad and increasing roll angle. When the roll angle is nearly zero,
the two possible solutions mentioned in Sec. [3.4.1] are very close to each other, which
may cause our disambiguation method to fail and results in larger deviations. This can
explain why the RMSE:s for roll = 0 may exceed those for roll = 10 degrees. Fig.[3.12b|
shows that there is no obvious relationship between the attitude and its RMSE even if it
increases to 40 degrees, and its RMSE tends to grow with the increase of the working
distance. Attitude estimates of our vision system are overall very accurate, with RMSEs
below 1.5 degrees for all tested poses. We do not expect our ground truth data to be
much more accurate than this, which could explain why the decrease in accuracy for
higher distances and angles in Fig. 1S not so obvious.

3.6 Conclusions

We have presented an onboard vision system that can detect a landing-pad landmark,
which consists of a letter “H” surrounded by a circle, from images captured by a monoc-
ular camera on an MAYV, and determine the 6DOF pose of the MAV relative to the landing
pad using a computational projective geometry method.

Our algorithms are computationally efficient enough to process up to 60 frames per
second on the onboard computer. We have shown that the whole system produces robust
and accurate pose estimates, which were evaluated using an external tracking system.
We have used these pose estimates to enable an autonomous MAV to reliably start from,
hover above, and land on the landmark, even if the landmark was located within a chal-
lenging environment, i.e. in front of a visually cluttered background.

A video demonstrating the autonomous flight of our MAV enabled by the proposed
vision system can be found onlineﬂ

Thttp://www.youtube . com/watch?v=yvyzvttuNsQ, accessed 12-April-2014
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Chapter 4

Visual-SLAM-based Autonomous
Landing of MAVs

This chapter presents a monocular visual SLAM solution for MAVs to autonomously
search for and land on an arbitrarily textured landing site. The autonomous MAV is
provided with only one single reference image of the landing site with an unknown size
before initiating this task. The PTAM system is extended to enable autonomous naviga-
tion of the MAV in unknown landing areas, in order to search for the landing sites. Fur-
thermore, a multi-scale ORB-feature based method is implemented and integrated into
the SLAM framework for landing site detection. A RANSAC-based method is imple-
mented to locate the landing site within the map of the SLAM system, taking advantage
of those map points associated with the detected landing site. The efficiency of the pre-
sented vision system is demonstrated in autonomous flights of the MAV in indoor and in
challenging outdoor environments.
Large parts of this work have been pre-published in Yang, S. et al. (2013a, 2014a).

4.1 Introduction

Visual SLAM has brought more flexibility to autonomous navigation of MAVs. It can
provide accurate pose estimates of MAVs for the control of autonomous flight in un-
known environments (Achtelik e al., 2011). This can be achieved by either stereo visual
SLAM, RGB-D SLAM, or monocular visual SLAM. For an MAV with limited payload,
monocular visual SLAM can be a better choice, considering that monocular vision is
more compact and less computationally intensive than stereo vision, and a monocular
camera is lighter in weight than an RGB-D camera. In fact, monocular visual SLAM is
especially well-suited for the autonomous landing task of an MAV: The problem of slow
scale drift, which is inherent in every purely monocular vision system caused by the un-
observability of the metric-scale factor, can hardly cause much effect in the relatively
small areas where the MAV is expected to land.

In this chapter we show that the rich information provided by a visual SLAM system
can actually benefit both the real-time detection and the localization of a designated
landing site. Considering the limited computational power that is typically available
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Figure 4.1: Our MAV navigating autonomously to search for a textured landing site.

onboard of an MAYV, those processes are normally difficult to be performed in parallel
with onboard-vision-based autonomous navigation. We achieve autonomous flight of
our MAV by implementing a monocular visual SLAM system with near-constant time
cost, while simultaneously detecting an arbitrarily textured landing site based on ORB
features (Rublee e al.l[2011) and estimating its global position. The resulting monocular
vision system enables the MAV to autonomously search for the landing site in unknown
environments (as shown in Fig. @), and then land on it once it is found.

The rest of this chapter is organized as follows. After a brief review of the related work
on vision systems for autonomous landing of UAVs/MAVs in Sec. 4.2} we introduce the
monocular visual SLAM system for autonomous navigation of our MAV in Sec. 4.3]
Then the landing site detection and pose estimation algorithm is presented in Sec. 4.4]
We evaluate the proposed visual-SLAM-based algorithm for autonomous landing of the
MAV in Sec. 4.5 and give further experiment results and discussions on an outdoor
experience of our MAV in Sec. .6 Finally, we conclude this chapter and provide more
discussions in Sec. 4.7

4.2 Related Work

Early work on visually guided autonomous flight of UAVs/MAVs mainly focuses on
the autonomous landing problem, while classical systems combining GPS and Inertial
Navigation System (INS) usually being implemented for long range and high altitude
missions. Computer vision methods do not depend on external signals. Moreover, they
fit especially well to those cases in which precise position control relative to other objects
is required, e.g. for the landing tasks of UAVs/MAVs. Thus, they are highly appreciated
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for researches towards full autonomy of UAVs/MAVs.

Vision systems for autonomous landing of UAVs/MAVs can mainly be divided into
two groups: The first one is for safe landing of an UAV/MAV on a suitable area (Garcia-
Pardo et al.,[2002; |Cesetti et al., 2010), which uses visual methods to detect a place good
enough for safe landing. The second group is for landing an UAV/MAV on a predefined
artificial landmark (Saripalli et al., 2003; Merz et al., 2006; Lange et al., 2009; Wenzel
et al., 2010a), which requires precise pose estimates of the UAV/MAV relative to the
specific marker, as have been reviewed in Sec. The applications of those systems
can be found on large scale helicopters with a high payload to MAVs with a very limited
payload. |Garcia-Pardo et al.| (2002) presented a strategy to find a safe landing area by
searching the image for a circular area in which all the pixels have a level of contrast
below a given threshold. The vision system developed in Cesetti et al. (2010) allows a
remote user to define a target area as a new waypoint or as a landing area for an UAYV,
based on a high resolution aerial or satellite image. In that work, a SIFT-based image
matching algorithm is implemented to find the natural landmarks, and an optical-flow-
based method is used for the detection of a safe landing area.

Although a number of visual-SLAM-based systems have been developed for auto-
nomous flight of MAVs (Achtelik et al., [2011; Weiss et al., 2012; Shen et al., 2013a)),
none of the those works have addressed the problem of visual SLAM in parallel with
landing site detection. Related work on combining SLAM and object recognition in a
vision system can be found in |Castle et al. (2010) and |Castle and Murray| (2011)), which
dedicated to the field of augmented reality (AR). In Castle et al.| (2010), monoSLAM
(Davison, [2003) and SIFT features are used to recognize and localize objects within a
3D map built by a wearable camera. Each object is located from a single view using its
known size, and then its location is fed back to the EKF framework of the SLAM system.
Further in Castle and Murray| (2011)), a multiple-map and multiple-camera extension to
the PTAM algorithm is implemented to replace monoSLAM. The location of an object is
determined by triangulation from the locations of SIFT features matched across different
keyframes.

To land an MAV on an arbitrary landing site, we implement an ORB-feature-based
method for landing site detection, running in parallel with visual SLAM. Furthermore,
based on the existing map points, we show that it is possible to robustly estimate the
3D global pose of the detected landing site even if the size of it is unknown, without
re-triangulation from the landing site features as Castle and Murray| (2011) did. Since
the pose estimates of our MAV for position control are provided by a SLAM system,
high frequency landing site tracking and pose estimation become unnecessary, while
still maintaining the final landing performance. This is of advantage to marker-based
methods or conventional template-based methods, which only consider the relative pose
of an MAV to a landing site. An example of such a template-based method can be found
in the work in Mondragon et al.| (2010), which estimates the 3D pose of a camera based
on the homographies computed for a reference image of a planar pad with a known size.
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4.3 Monocular Visual SLAM for Autonomous MAVs

The visual SLAM framework we use for autonomous navigation of our MAV is based
on PTAM (Klein and Murrayl, 2007), as briefly described in Sec.[2.4.1] It provides MAV-
pose estimates as control input for the navigation of the MAV. In order to overcome
the lack of a scale factor, we implement an automatic initialization method for PTAM
based on the work in Chapter 3] which can cope with cluttered environments and provide
accurate pose estimates of a camera. Moreover, we modify the mapping thread of PTAM
to achieve a near-constant time cost during the navigation of the MAV.

4.3.1 Using PTAM in near-constant time

Bundle adjustment, including global bundle adjustment (full bundle adjustment) and lo-
cal bundle adjustment (window bundle adjustment), is used for map refinement in PTAM.
It is also the most computationally intensive task in PTAM.

Since the global bundle adjustment adjusts poses of all keyframes and positions of all
map points, it is so computationally intensive that one may stop the mapping thread from
adding enough new keyframes to facilitate successful pose tracking. To enable PTAM
to achieve a near-constant time cost, we abandon the global bundle adjustment and only
retain its local bundle adjustment, which adjusts the poses of keyframes and positions of
map points in a relatively small window.

Meanwhile, we still keep the complete map during the exploration of the SLAM sys-
tem, rather than using PTAM as a visual odometry like in Schauwecker et al.| (2012)). To
keep a complete map is important for the SLAM system in two aspects: First, it allows
more accurate pose tracking of the MAV. We do not consider loop closures in the SLAM
system in this chapter since we expect the landing site locates in a relatively small area.
In this case, discarding old keyframes that are no longer considered for local bundle ad-
justment from the map might result in considerable pose drift. Such pose drift will also
affect the accuracy of locating the landing site. Second, map points having been triangu-
lated in those old keyframes may be useful for the landing site location. All map points,
which are potentially visible by the camera, would facilitate the landing site location, as
will be presented in Sec.

4.3.2 Automatic initialization of the SLAM system

Since there exists a common scale ambiguity inherent in monocular camera systems,
PTAM naturally requires additional metric scale information. PTAM was originally in-
tended for augmented reality applications (Klein and Murray, 2007). Thus, an accurate
metric scale was not necessary for its original implementation, and only a coarse scale
estimate is applied to the triangulation of its initialization phase. We deal with this initial-
ization issue by using an individual visual initialization module as presented in Chapter[3]
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Figure 4.2: A scene when the PTAM-based SLAM system is initialized. Top left, the orig-
inal image; Top right, the detected artificial landmark, labelled with an orange cross; Bot-
tom left, vision features at different pyramid levels of the image marked in different colors
(from the bottom to the top level: blue, green, cyan and magenta) after non-maximum
suppression; Bottom right, initialized map points of the SLAM system, marked in red.

which can robustly estimate the camera pose based on the image projection of a landing-
pad landmark. Using this method, we can achieve accurate automatic initialization of
PTAM during the takeoff phase of our MAV, without requiring any additional sensors.
Before the SLAM system is initialized, the autonomous takeoff of the MAV is enabled
by the initialization module. Fig. 4.2 shows an example scene and related results during
the initialization of the SLAM system using this method.

Once we obtain a pose estimate of the camera with a height larger than a threshold 4;
using the initialization module, this pose estimate and the image associated with it are
both sent to a queue in the SLAM system for the initialization. If more than a minimum
number of FAST features after non-maximum suppression are detected in all four pyra-
mid levels of this image, we use them to initialize the map of the SLAM system, and
send a message to the initialization module to terminate its operation. We obtain the 3D
positions of those feature points by assuming that they all lie on the ground plane and by
projecting them from their image coordinates to the z = 0 plane in the world frame W.
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Figure 4.3: Landing site detection and pose estimation integrated in the PTAM-based
SLAM system. Operations related to our landing-site detection and localization are
marked in red.

In this way, the world frame defined in the SLAM system coincides with V.

4.4 Landing Site Detection and Pose Estimation

To search for an arbitrary landing site during autonomous navigation of our MAYV, a
feature-matching-based object detection scheme is implemented in this section. Using
one preset reference image of the designated landing site, a set of feature matches be-
tween the reference image and the currently visible scene can be established. Then the
landing site is detected by using a robust RANSAC-based method to estimate the corre-
sponding homography and eliminating false estimates. Because it is possible that some
of the map points produced by the SLAM system are associated with the matched fea-
tures, we can use the 3D position estimates of those map points to estimate the global 3D
pose of the landing site. An advantage of our method is that it does not require absolute
scale information of the landing site. The above process is integrated in the mapping
thread of the SLAM system, as depicted in Fig. [4.3]

4.4.1 Brief overview of the ORB features

Rublee et al.| (2011) proposed the ORB (Oriented FAST and Rotated BRIEF) features
based on the FAST keypoint detector (Rosten and Drummond, 2006) and the BRIEF
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4.4 Landing Site Detection and Pose Estimation

descriptor (Calonder ef al., 2010), both of which are known for their high computational
efficiency.

BRIEF uses a binary string constructed from a set of binary intensity tests as an effi-
cient point feature descriptor. Because BRIEF is not designed to be aware of the orien-
tation of a feature point, it is notably lacking rotation invariance (Rublee et al., 2011)),
which is, however, important for feature-matching-based object detection. To cope with
this issue, Rublee et al. (2011]) proposed to compute an orientation component for each
FAST interest point (0FAST) by using the so-called intensity centroid, which is com-
puted from image moments. BRIEF descriptors for those points are then efficiently ro-
tated according to the orientation component, and thus form the steered BRIEF descrip-
tor. Furthermore, a learning method is developed for choosing a good subset of binary
tests, in order to increase the feature variance and reduce correlation among the binary
tests, both of which are important for a discriminative feature. The resulting descriptor
is named rBRIEF.

4.4.2 Applying multi-scale ORB to the SLAM framework

We chose ORB as the feature descriptor for our landing site detection because of its
low time cost and high discrimination capability for feature matching. ORB achieves
scale invariance by applying the FAST detector to a scale-space pyramid of the original
image. Note that in the tracking thread of PTAM, FAST points have been detected in
four levels of pyramid images of the current scene. Thus, it is straightforward for us to
use those points on the multiple image levels for further feature description. We chose
such a multi-scale scheme in order to avoid the computation of further pyramid levels,
as a compromise between matching performance and time cost. In the mapping thread,
we compute orientation components of the FAST points to obtain oFAST features, and
use rBRIEF for feature description. We perform both of these operations individually at
pyramid level 0 and 1, resulting in two sets of descriptors {D{|i =0, 1}, each with a size n;.
We discard higher pyramid levels, since at higher levels, a landing site appears too small
for us to obtain useful features for matching. For the reference image of the landing site,
the number of pyramid levels and the scale factor for producing the pyramid images can
vary according to the requirements of scale invariance and available computation time.
In our work, we apply a three level pyramid with a scale factor of 1.2 to the reference
image, obtaining the reference descriptor sets {D!| i =0, 1,2}. A Gaussian blur is applied
to each pyramid level before feature detection.

4.4.3 Landing site detection by feature matching
Feature Matching

We use a standard feature matching scheme to obtain a set of good feature matches from
{D;1i=0,1,2} to {Df] i =0, 1}, for estimating the homography H,. between the reference
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() (b)

(©) (d)

Figure 4.4: Examples of homography estimation results shown in one pyramid level.
After eliminating false estimates, only the one in (d) will be regarded as a correct ho-
mography estimate, and a true positive detection of the landing site.

image and the current image of the landing site. For finding all possible matches, we
employ a brute-force matcher without cross checking, which is implemented in OpenCV
(Bradski, 2000). It finds the k descriptors with the closest normalized Hamming distances
in {Df]i= 0,1} for each descriptor in {D}| i = 0, 1,2}. Similar to|Lu and Zheng|(2010) and
Lowe|(2004)), we consider a match between a reference descriptor and the corresponding
descriptor with the closest distance to be valid, if the ratio of the closest to the second
closest distance is smaller than a threshold 7.

Homography Estimation

As the ORB feature is applied at different individual pyramid levels of the current image,
we project all matched feature points to the source pyramid level (level 0) to calculate
the homography. The homography H,. is estimated by using RANSAC, and then further
refined by using the Levenberg-Marquardt method to minimize the image projection
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errors. We limit the iterations in RANSAC to a relatively small number, in order to
make this process more efficient. However, this may cause a higher false negative rate,
i.e. failing to detect the landing site which is actually located in the current scene of the
camera. Since our consecutive landing site pose estimation can cope well with a high
false negative detection rate, which will be explained in Sec. #.4.4] we opt for a higher
processing performance.

Eliminating False Estimates

The reference image forms a quadrilateral O, when transformed to the current image
frame with H,.. Some examples of the homography estimates we received can be found
in Fig. False homography estimates may still occur due to false matches or too
few correct matches of features. We dramatically eliminate those false estimates by
evaluating some basic properties of quadrilateral Q, : First, it is required to be a convex
polygon (Fisher,|1994)). Second, all four vertexes of it should have a reasonable relative
distances to their centroid and to each other. This will eliminate estimates like the ones
shown in Fig. and Fig. Although the reference image can be found in the
current image, we reject this homography estimate since we will not achieve a correct
pose estimate of the landing site according to it. Third, the number of matched features
that are inside of this quadrilateral should be larger than a threshold n,. We determine
whether a point is located inside a polygon by using a crossing-number method (Sunday,
2014).

4.4.4 Locating the landing site within the map

After the landing site has been detected in the current image by using the above method,
we locate its 3D position in the world coordinate frame. For this task we take advantage
of the environment map produced by the SLAM system, which can consist of a large
number of map points. Doing this provides us with much more tolerance to a high false
negative detection rate: Even if the landing site is not tracked at camera frame rate, its
final position estimate will be hardly affected, since it should retain a static position in the
environment. Thus, the mapping thread can flexibly decide the time intervals of adding
new image frames for landing site detection. Furthermore, using the map points ensures
that only discriminative image features are used for locating the landing site.

We first project all map points to a rectified image frame based on their 3D positions
and the calibrated camera model. Again, we use a crossing number method to check
whether a projected map point is located within the quadrilateral Q, or not. Those points
inside Q, form the map points subset {p;}.

If the size of {p;} is larger than a threshold 7n;,;,, a RANSAC-based method is applied
to the points in {p;} to estimate the dominant plane P, of the landing site. We perform
this step in a similar fashion as in Klein and Murray (2007)): Many sets of three points are
randomly selected to form a plane hypothesis, while the remaining points are tested for
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consensus. The winning hypothesis is further refined using the consensus set, resulting
in the detected plane normal n,. Together with the mean 3D coordinate value of all
consensus set points X,,, this normal defines the plane P;. Once an estimate for Py
is achieved, we use its corresponding measurements n, and X,, as the initial guess for
the RANSAC procedure when evaluating the next image frame. Thus, a much smaller
threshold for the number of RANSAC iterations can be applied, which further reduces
the time cost of the algorithm.

The location of the landing site can be calculated by projecting the quadrilateral Q,
to the plane P;. We define x,,,i = 0,1,2,3, as the four vertices of Q,, which are the
image projections of the four corners (P;) of the landing site with the corresponding
world coordinate positions x,,,. After projecting X, to the normalized image frame with
rectified lens distortions, we obtain the normalized coordinates X, = [X;,Yn,, 117, In the
camera frame, we then have x;, = s [x,,,Vn;, 117, with s being an undetermined scale
factor. Thus, in the world frame we have

Xy, = s -Rwc “Xp; +twe, 4.1)

with Ryc and tyc being the camera pose in the world frame obtained by the tracking
thread of the SLAM system. Since P; is located on the plane P4, we have

n, - (X, —Xm) = 0. 4.2)

From Eq.[(4.1)|and [(4.2)] we can calculate x,,,. The landing site location is then obtained
3
as Xy = }1 2. Xy,;, Where k is the current image frame index.

1=
We further refine the landing site location by integrating m successful estimates of
m—1
x;. Estimates with a large difference to xz,, = % >, X; are assumed to be outliers. The
mean value of the remaining inlier estimates is then assumed to be the final landing site
position estimate X;.

4.5 Experiments and Results

4.5.1 Experimental setup

We implemented our software in several modules (nodes) using the open source Robot
Operating System (ROS) (Quigley et al., |2009) on Ubuntu Linux 12.04. ROS provides
the infrastructure for logging all interested onboard data and for efficient communication
among our different vision modules: one ROS node for the camera driver, one node
for the initialization module, and another one for the SLAM system with landing-site
detection and pose estimation integrated in it. Images and other onboard sensor data are
recorded into ROS-bag files if necessary.

60



4.5 Experiments and Results

RMSE poster book mail Pack. PC Pack. Table 4.1: RMSEs (mm) of position

x-y 29 15 34 43 estimates for different landing sites
) g 6 5 during a manual flight.

z

3D 22 17 35 43

]

ez ‘V 4Q Joud) e

uabugn ) W
(ISM) YBULIOUL 411 178

(ug2)

|

IV anveeaey

‘ -
LVLISHHAIN

(d) (e)

Figure 4.5: (a) A scene from the MAYV, (b), (c), (d) and (e) are the reference images of
the poster landing pad (size 500 x 500, height 4.5), the book (size 246 X 175, height 33),
the mail package (size 380 x 335, height 140) and the computer package (size 650 x 435,
height 235), respectively. All size and height are measured in millimeters.
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4.5.2 Landing site position estimation results

We evaluate the landing site detection and position estimation results by processing a
video logfile taken during a manual flight of our MAV above different objects with planar
surfaces which are used to represent different landing sites: a poster pad, a book, a mail
package, and a computer package. Each of them has different texture features. Moreover,
they are different in size and height. We control the MAV to take off from another pad
nearby those objects, such that our SLAM algorithm can be initialized by this pad as
described in Sec. [4.3.2] Fig. 4.5a shows an image taken by the camera on the MAV
during this flight. Reference images of those landing sites are captured by manually
holding the MAV above them in different illumination conditions, as shown in Fig.[4.5]

We process the same recorded video sequence four times, selecting a different refer-
ence image for landing site detection each time. The identical MAV trajectory estimated
by the visual SLAM algorithm is shown in Fig. and The origin of the world
frame is attached to the center of the artificial landmark from which our SLAM system
is initialized. The poster pad provides a total number of 481 ORB features in all three
pyramid levels, the book 69, the mail package 153 and the computer package 97 fea-
tures. Despite their differences we mentioned above, they can be correctly detected and
located. The RMSE:s of their 3D position estimates are listed in Tab.

Since position distributions of the detected landing sites are similar, we only present
the results for the book and the computer package, which have the overall smallest and
largest RMSEs, respectively. Fig. and show the distribution of the position
estimation results for the book, and Fig. and[.6d|show that of the computer package.
The position estimates are projected to the xw — yw and xw — zw planes of the world
frame. The systematic errors to the position estimates of different landing site are in the
order of few centimeters, which is acceptable for autonomous landing of MAVs. The
few estimates with relatively large errors do not affect the autonomous landing since
they can be excluded after a refinement process as described in Sec. In Fig.
we mark the height of the detected poster pad with black crosses, if it is detected at the
corresponding time. Similarly, in Fig. d.6f, we mark the MAV yaw angle estimates when
the poster pad is detected. They show that the poster pad is detected when the MAV is at
different positions and yaw angles.

4.5.3 Autonomous navigation and landing results
Using the setpoint method

In this experiment, we use the poster pad shown in Fig. as the target landing site.
Our MAV autonomously navigates using the setpoint method described in Sec. for
trajectory control, in order to search for the landing site and finally land on it. Once an
initial position of the landing site x;;,; is estimated, we change the setpoint to be above
this position, keeping our searching height h;. After the final refined location of the
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Figure 4.6: (a), (b) Position estimates for the book, on xw —yw and xw — zw plane re-
spectively, and (c), (d) for the PC package. (e) Trajectory of the MAYV, and (f) the cor-
responding yaw angle estimates (a cross is marked if the landing site is detected at the
corresponding time).
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Figure 4.7: The built map and MAV trajectory during a searching and landing task using
the setpoint method for trajectory control.

landing site Xz = [x;,y1,z;]7 is determined, we define the end of the searching path to be
(x5, v, h 7. Finally, the desired height of the setpoint is decreased until the MAV reaches
a predefined landing height #; where it can steadily shut down its motors to finish the
landing process.

The trajectory of this searching and landing task, as estimated by our onboard SLAM
system, is shown in Fig. The map points are triangulated and refined when new
keyframes are added. The world frame is indicated as the RGB axes (corresponding to
xw —yw —Zw axes) that lie on the ground grids in Fig. The pose of each keyframe
has been depicted as small RGB axes.

The predefined searching path should depend on the expected complexity of the land-
ing area. Here, a simple rectangular searching path is defined, as depicted in Fig.
with a cyan rectangle. We choose four setpoints evenly distributed on each edge of the
rectangle. The MAV navigates along this searching path after takeoff and initialization
of the visual SLAM system. At each corner of the rectangle, the MAV is commanded to
hover for 3 seconds to maintain better stability. The parameters for the setpoint method
(see Sec. [2.2.3)) are listed in Tab. The landing site is detected when the MAV is
at the position Py = [2.001,—-1.556, 1.1971% (m), relative to the starting position. When
the landing site is detected at the MAV position P, =[2.337,-1.616, 1.20117 (m), the de-
tection process stops, and the landing site pose is further refined using all the previous
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Figure 4.8: (a) MAV position estimates from our vision system on xy,yw, and zy axes.
(b) MAV trajectory projected to the xy —yw plane. The initial and final position estimates
of the landing site and the associated MAV poses are also marked.

obtained pose estimates. The final refined landing site position is visualized as a bold
colored quadrilateral in Fig. Fig. [4.§]is the resulting trajectory on different axes of
the world frame. It shows that the MAV needs to hover for a certain period of time to
satisfy the constraint of reaching each setpoint, and then moves to the next one.

Fig. [4.§] also shows that the above MAV trajectory fits well with the ground truth
data, which proves the accuracy of both the SLAM system and its initialization module.
Tab. lists the RMSE of the on-board MAV-pose estimates when compared with the
ground truth data. Position P; is marked with a blue cross in Fig. [4.8b|, P, with a green
cross. The initial position estimate of the landing site on the xw — yw plane is marked
with a blue square, and the final refined estimate with a green circle. Both position es-
timates are very close to the ground truth data, which is marked with a black square.
The blue and green crosses in Fig. show the initial and final height estimate, com-
pared to the ground truth height marked with squares. With the landing site size being
500 500(mm) , the initial and final position estimation error is [~19, =26, —6]7 (mm) and
[—11,-27,-5]17 (mm), respectively.
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Table 4.3: MAV pose estimation RMSEs of the whole trajectory, with position errors in
millimeters and attitude errors in degrees

X y z 3D  roll pitch yaw
RMSE 86 13.6 143 216 1.04 085 1.49

SP
of TF
search path
-500¢
S
E
> -1000
Flggre 4.9: MAV trajectories _1500}
projected to the xw — yw plane,
when using the two different 500 0 500 1000 1500 2000 2500
methods for navigation. X (mm)

Using trajectory-following method

In this experiment, we compare the efficiency of the trajectory-following method (TF,
described in Sec. with the setpoint method (SP) for trajectory control of our MAV.
The poster pad is again used.

The trajectories of the MAV when using both methods are shown in Fig. The PID
parameters of the low level position and attitude controllers are the same in both cases.
Trajectory controller parameters different from those in the previous section are shown
in Tab.4.4] Only when we use the method of trajectory following, we can explicitly set
the MAV forward speed. However, we should note that it does not directly control the
MAV speed. Instead, the forward speed will be fed to the position controller of the MAV.

When we calculate the RMSE:s of the actual flight trajectory with respect to the prede-
fined searching path on xy — yw plane, position errors along the tangent direction of the
searching path are ignored. The resulting RMSEs during the period of searching for the
landing pad are listed in Tab. 4.5 It shows the two methods result in similar precision
for trajectory control under the parameter setup in Tab. with the setpoint method
performing a bit better. However, the trajectory-following method performs extremely
well on yaw angle control. More importantly, this method is much more efficient regard-
ing the flight time, which is 32 seconds to obtain the initial pose of the landing pad. On
the contrary, the setpoint method spends 52.8 seconds to achieve this, even though we
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Parameter hy t Vg Table 4.4: Parameter setup for trajectory
Value 04m 0.1s 0.35m/s control using the two different methods.
xX—y z yaw Table 4.5: MAV trajectory control

RMSEs, with RMSE1 for the set-
point method, and RMSE?2 for the
trajectory-following method.

RMSEl 134.8mm 18.3mm  3.6deg
RMSE2 163.5mm 153mm 0.03deg

have set 7; smaller than that in Sec. to speed up the searching process. To improve
the trajectory control precision, which will result in less efficiency in forward speed on
the other hand, we suggest to distribute more setpoints along the predefined path and a
relatively larger ¢, in the setpoint method, while setting a smaller forward speed in the
trajectory-following method.

When using the setpoint method, the detected landing pad positions and the corre-
sponding MAV positions are marked in Fig.[4.9]in the same way as in Fig. For the
results of using the trajectory-following method, the initially and finally detected landing
pad positions are marked with a red square and cyan circle, and the corresponding MAV
positions are marked with red and cyan crosses, respectively.

4.6 Outdoor Experience

4.6.1 Outdoor experiment

In this experiment, we want to examine the robustness and extensibility of our vision
system when working in outdoor environments. The experiment was carried out on a
sunny midday with moderate wind, and the scenario is challenging in three aspects:
First, the MAV flies above a meadow, as shown in Fig. Thus, the first challenging
aspect is that the environment is filled with highly self-similar visual features from grass,
which will be discussed in Sec. 4.6.2] Second, there is wind strong enough to bring
disturbance to the pose controller of our MAV, which makes it a good scenario for testing
the robustness of the controller. Third, another challenge is introduced by the grass and
other plants below the MAV: When the MAV flies above them in low altitude, their
physical shape will be obviously changed by the wind produced by MAV propellers.
The effect introduces more noise to our visual SLAM system.

The landing site we defined is a piece of package paper with a size of 0.95m x 0.95m.
The reference image as shown in Fig. was taken on another day by the same camera
on our MAV. It provides a total number of 59 ORB features in the three pyramid levels.
The trajectory-following method is used for trajectory control. Parameters for trajectory
control are set in the same way as in Sec. 4.5.3] except that we define d; to be 0.3m.
However, we define a longer searching path as 5m x 5m with a height of 3.5m.
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= THEMAY

/The landing site " The takeoff site

Figure 4.10: The scenario for the outdoor experiment.

Figure 4.11: The reference image
of the landing site in the outdoor
environment.
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4.6 Outdoor Experience

Figure 4.12: Visualization of the built map and MAV trajectory during the outdoor
searching and landing task. Map points are marked in green.

x—y z yaw Table 4.6: MAV trajecthy control
RMSE 1920mm 624mm 0.04deg  RMSEs for the outdoor flight.

Fig. .12 and Fig. {.13| show the built map and MAV trajectory of an outdoor flight.
Tab. shows the RMSEs of the actual flight trajectory with respect to the predefined
searching path. We find that the flight performance is not much worse than that in the
indoor experiments despite the challenges we mentioned earlier. One reason for such
results is that the MAV now flies much higher than in the indoor experiments, which
leads to much less ground effect on the MAV.

Fig. .14 shows a scene when the SLAM system is initialized in this outdoor exper-
iment. Although this time the assumption of all features lying on the same plane is no
longer strictly true, it will not bring obvious effects to the pose tracking process, and
those inaccurate map points produced during initialization will be later adjusted by local
bundle adjustment.

4.6.2 Discussions

We mentioned three challenging issues in Sec.[#.6.1] which make it difficult for our MAV
to autonomously navigate in outdoor complex environments. Those challenges may fi-
nally cause pose tracking failures. Among them, the self-similarities of visual features
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Figure 4.13: (a) MAV trajectory projected to xw — yw plane, and (b) to the yw — zw plane.
The initial and final position estimates of the landing site and the associated MAV poses
are also marked.

Figure 4.14: Visual features at different image levels marked in different colors (from
the bottom to the top level: blue, green, cyan and magenta), when the SLAM system is
initialized in the outdoor environment.
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are related to vision systems in general. Fig. shows a view of intermediate re-
sults from our visual SLAM system, which gives an example depicting self-similarities.
Such self-similarities may make the feature matching difficult, especially when features
are in high density, resulting in false map points to be triangulated. As can be found in
Fig. [4.15b] most of those map points with relatively large altitude are false ones. More
robust feature matching strategies need to be investigated to cope with this issue. An-
other way to achieve better tracking robustness can be augmenting the monocular SLAM
system with more cameras looking at different directions. Thus more diverse vision fea-
tures can be matched for localization. This method will be investigated in later chapters.
[Nllumination changes in outdoor environments are another challenge for vision systems,
which may easily cause cameras to be overexposed or underexposed, and result in track-
ing failures. We did our outdoor experiment in sunny daytime, since the illumination
does not change much in this case. Thus, to finally go outdoor, we have to develop vi-
sion systems employing techniques which can efficiently handle illumination changes,
e.g. auto-adjusting camera parameters as proposed in Lu et al.| (2010).

4.7 Conclusions and Discussions

In this chapter we have presented a monocular vision system which enables an MAV
to navigate autonomously in unknown landing areas, and search for the landing site on
which it is designated to land. Our visual SLAM system can provide accurate pose
estimates for the control of the MAV. We have solved the landing site detection problem
by integrating a multi-scale ORB feature matching scheme into the mapping thread of
the SLAM framework. We have further utilized the map points produced by the SLAM
system to accurately estimate the 3D position of the landing site, using a RANSAC-
based method. No absolute scale information of the landing site is needed for its pose
estimation.

By evaluating the position estimation results of different landing sites, we have shown
that our method is flexible and accurate enough for the proposed task of searching for
and landing on an arbitrarily textured landing site. Finally, we have demonstrated our
claims by the autonomous navigation and landing flights of our MAV in indoor and in
outdoor environments. The successful outdoor flight in the challenging scenario proves
that our visual system can be extended to applications in complex outdoor-environment.
Video demonstration for the work presented in this chapter can be found onlineﬂ

For an autonomous landing phase at the end of a long-term mission of an UAV/-
MAV, we propose to fuse IMU data to get its accurate short-term relative pose estimates,
which can provide a metric scale constraint to initialize the monocular visual SLAM sys-
tem. Thus, autonomous searching for and landing on an arbitrary landing site could be
achieved with a similar strategy as proposed in this chapter.

1http: //www . youtube. com/channel /UCQd6_G6qyvGHUmz7NUelDZQ/videos, accessed 12-April-
2014

71


http://www.youtube.com/channel/UCQd6_G6qyvGHUmz7NUelDZQ/videos

Chapter 4 Visual-SLAM-based Autonomous Landing of MAVs

(b)

Figure 4.15: (a) An intermediate result of the SLAM system when the MAV flies above a
meadow. Those blue, green and cyan points are features at different image levels, and the
red points are built map points, while those successfully matched map points are marked
with yellow circles. (b) A side view of the final built map in the outdoor scenario.
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Chapter 5

Multi-Camera Visual SLAM for
Autonomous MAVS

In this chapter, we extend a monocular visual SLAM system to utilize two cameras with
non-overlapping fields of view. The resulting visual SLAM system is used to enable auto-
nomous navigation of an MAV in unknown environments. The methodology behind this
system can easily be extended to multi-camera configurations, if the onboard computa-
tional capability allows this. We analyze the iterative optimizations for pose tracking and
map refinement of the SLAM system in multi-camera cases. This ensures the soundness
and accuracy of each optimization update. Our multi-camera visual solution is more re-
sistant to tracking failure than conventional monocular visual SLAM systems, especially
when MAVs fly in complex environments. It also brings more flexibility to configuring
multiple cameras used onboard of MAVs. We demonstrate its efficiency with both auto-
nomous flight and manual flight of an MAV. The results are evaluated by comparing with
ground truth data provided by an external tracking system.
Large parts of this work have been pre-published in Yang, S. et al. (2014c).

5.1 Introduction

Monocular vision systems with conventional lenses normally have rather limited fields
of view. This is one of their disadvantages when being used for MAV navigation appli-
cations, since a larger field of view (FOV) can provide better environmental awareness.
In the context of visual SLAM on MAVs, a larger FOV of the vision system can be more
resistant to tracking failure. The FOV can be enlarged by using a lens with a wider view-
ing angle (even fish-eye lens), at the cost of suffering from larger lens distortion and loss
of environmental details, due to a smaller angular camera resolution. This also applies to
catadioptric omnidirectional vision systems (Lu ez all 2011). Another type of omnidi-
rectional vision systems combines multiple cameras into one vision system, maintaining
a single-viewpoint projection model. However, these cameras need to be very precisely
configured within relatively heavy mechanical systems in order to preserve this model,
and thus are not flexible enough for MAV applications.
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e

Figure 5.1: Our MAV platform, with two cameras facing two different directions: down-
ward (green ellipse) and forward (red ellipse).

In this chapter, we focus on achieving autonomous navigation of MAVs by extending
PTAM to utilize image features from multiple cameras. We expand the FOV of our MAV
vision system by using two cameras mounted looking in two different directions (forward
and downward) to capture more critical views, as shown in Fig. @ The choice of the
count of cameras is the result of a compromise between tracking robustness and onboard
computational capability.

Our method allows a SLAM system to integrate images captured from various useful
perspectives without requiring the cameras to be mounted in a specific way in order to
keep a single-viewpoint model. This makes the configuration of cameras very flexible.
On the other hand, since multiple cameras no longer preserve this model, using features
from multiple cameras in SLAM is not trivial: How the features are involved in iterative
optimizations needs to be carefully analyzed. Based on that analysis, we are able to
integrate those image features into a single visual SLAM system. This enables our MAV
to achieve more robust pose tracking and to build a map that consists of more interesting
regions of the environment.

The remainder of this chapter is organized as follows. Related work on pose estimation
using multiple cameras is reviewed in Sec. In Sec. the analysis on optimizations
in multi-camera SLAM is presented. Further implementation details about the proposed
visual SLAM system are presented in Sec.[5.4] The performance of the proposed SLAM
system is evaluated in the experiments in Sec.[5.5] Finally, in the last section, we provide
a summary and discussion of this chapter.
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5.2 Related Work

In order to use multiple cameras for pose estimation, the extrinsic parameters of those
cameras need to be calibrated. Here we describe the previous work solving this cali-
bration problem for multiple cameras with non-overlapping fields of view. [Carrera et al.
(2011) proposed a SLAM-based automatic calibration scheme for multiple cameras. The
scheme uses global bundle adjustment to optimize the alignment of maps built by dif-
ferent visual SLAM instances, each processing images from one corresponding camera.
The proposed solution computes the relative 3D poses among cameras up to scale. An
advantage of this method is that it does not require any external infrastructure or calibra-
tion pattern. An extensive review on auto-calibration methods for such camera systems
can also be found in this work.

Previous work on developing multi-camera systems can mainly be found in appli-
cations of surveillance and object tracking (Collins et al.l [2000; Kettnaker and Zabih,
1999; Rosales and Sclaroft, |1999; [Krumm ez al., 2000). More relevant related work ap-
pears in the context of structure from motion (SFM). The work in |Pless| (2003)) presents a
theoretical treatment of multi-camera systems in SFM deriving the generalized epipolar
constraint. The work in Frahm et al.| (2004) proposes a virtual camera as a representa-
tion of a multi-camera system for pose estimation. A structure-from-motion scheme is
achieved using multiple cameras in this work.

A number of multi-camera systems for pose estimation of mobile robots can be found
in the literature. In Ragab|(2008)), pose estimation of a mobile robot is solved by plac-
ing two back-to-back stereo pairs on the robot using the Extended Kalman Filter (EKF).
The work in [Lee ef al.| (2013a)) adopts a generalized camera model described in Pless
(2003) for a multi-camera system, to estimate the ego-motion of a self-driving car us-
ing a 2-Point RANSAC algorithm. This system allows point correspondences among
different cameras. In Lee et al.| (2013b)), pose-graph loop-closure constraints are com-
puted. The relative pose between two loop-closing pose-graph vertices is obtained from
the epipolar geometry of the multi-camera system. Kaess and Dellaert (2006) presented
a visual SLAM system with a multi-camera rig using Harris corner detectors (Harris and
Stephens, [1988). In their further work in|Kaess and Dellaert (2010)), a Bayesian approach
to data association is presented, taking into account moving features, which can be ob-
served by cameras under robot motion. The work in|Sola et al.|(2008) provides solutions
to two different problems in multi-camera visual SLAM: automatic self-calibration of a
stereo rig while performing SLAM and cooperative monocular SLAM.

Another work most similar to our work in this chapter is that in Harmat ez al.| (2012),
which uses PTAM with multiple cameras mounted on a buoyant spherical airship. It
employs a ground-facing stereo camera pair which can provide metric scale, together
with another camera mounted pointing to the opposite direction using a wide-angle lens.
There are three advantages of our work compared to it. First, we provide a solid math-
ematical analysis on how measurements from different cameras can be integrated in
each optimization process of PTAM. The analysis guarantees soundness and accuracy of
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the optimizations for the pose update and bundle adjustment using measurements from
multiple cameras. Second, we make use of the fact that multiple cameras are typically
mounted rigidly, and force camera poses to obey their rigid extrinsic calibration in bun-
dle adjustment, as will be shown in Sec.[5.3.4] This ensures a consistent map to be built
in a multi-camera SLAM system. Furthermore, the resulting pose tracking accuracy in
Harmat er al.| (2012) was evaluated only in a manual flight experiment, and the posi-
tion errors are reported to be higher than our results, although stereo cameras were used
there. We also demonstrate that our SLAM system can enable autonomous navigation of
an MAV.

5.3 Multi-Camera Visual SLAM

We implemented our SLAM system based on the PTAM system as in Chapter @ The
reason for this choice is that PTAM provides an efficient tracking module and it is able
to generate an accurate map with a large number of map points from the environment.
Furthermore, PTAM uses iterative optimizations for both pose tracking and map refine-
ment. Thus, we can extend it to incorporating multi-camera image features by solving
those optimization problems in multi-camera cases. In this section, we provide the math-
ematical analysis on how measurements from different cameras can be integrated in one
SLAM system.

5.3.1 Multi-camera projection and pose tracking

Using the same calibrated camera projection model described in Sec. the image
projection of the j map point to the i’ camera is

uji =Pc, (Ec,-ij), (5.1)

where Pc; 1s the projection function of the i"" camera considering lens distortion as de-
scribed in Eq. p; are the world coordinates of the 7™ map point p j» and E¢,, is
a member of the Lie group SE(3), which represents the i camera pose in the world
coordinate system, containing a rotation and a translation component.

Since our goal is to use the SLAM system to track the pose of the MAV, without losing
generality, we compute the pose update of one specific camera, which we call the first
camera, C1, based on the measurements from all cameras. The pose of other cameras can
be updated by assuming a constant transformation relative to C;. Thus, with a calibrated
transformation between the first camera and the MAV body coordinate system, the MAV
pose can be updated, as illustrated in Fig. Following this idea, pose updates of all
cameras can be expressed with one single six-element vector u using the exponential
map:

E., =Ej-ée'-E.\,, (5.2)
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Figure 5.2: A 2D illustration of MAV and camera pose updates in a dual-camera case.
Although points p e 2,... 5) are measured in either camera Cy or C3, these measurements
are used to optimize the pose of camera Cy only. The camera C; pose and the MAV pose
are updated by assuming rigid connections to camera Cj.

where 4 is an element of the Lie algebra se(3), and Ej; is the pose of Cj in the i camera
coordinate system. For Cj itself, E;; is simply the identity matrix. The pose tracking
(and a part of mapping) problem of the SLAM system now mainly consists of how to
obtain an optimized u as a pose update for camera C; by minimizing a certain objective
function. The advantage of the parametrization of the camera pose updates using the
six-element vector u is that it allows a closed-form differentiation of Eq.

5.3.2 Optimizations in the multi-camera SLAM

Both the camera pose update and map refinement (using bundle adjustment) in PTAM
are based on iteratively minimizing a robust objective function of the reprojection errors
of sets of image measurements §;, which are observed map points in each camera (or
keyframe) i. It needs to be analyzed how to correctly use features from different cameras
in such optimization processes in order to preserve the soundness and accuracy. In an
n-camera (or n-keyframe) system, we need to minimize the function:

an ZObj(lzi|,aT), (5.3)

i=1 jeS;

where Obj is the Tukey biweight objective function (Huber, |2011), | e;; | is the reprojec-
tion error of point j measured in camera (or keyframe) i, o j; is the estimated measure-
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ment noise of point j, and o7 is a median-based robust standard-deviation estimate of
the distribution of all reprojection errors (Zhang, [1997). ej; is defined as the difference
between the image reprojection of map point j and its actual image measurement:

€ji =llji—ﬁj,'. (5.4)

The minimization problem can be solved by multiple iterations of reweighted nonlin-
ear least squares (Wright and Nocedal, |[1999). One fundamental requirement to do this
efficiently is to differentiate e; (i.e. to obtain the Jacobians of e ;) with respect to those
parameters that need to be estimated, at each iteration step. In pose tracking, the differ-
entiation of e;; with respect to the estimated camera pose update needs to be computed.
In bundle adjustment, the differentiation of e;; with respect to the map point j position
change is also required. The work in Blanco|(2010) provides a good tutorial to the math-
ematical background of related differentiations. We will focus on the differentiations of
e;; in multi-camera systems in the following two sections.

5.3.3 Pose update with multiple cameras

For the pose update of an n-camera system, the optimization problem is to find the opti-
mal pose update u for camera Cj:

n
lejil )
| = argmin E E Ob'( 0T |- (5.5)
u g’u ] o T

i=1 jeS;

Following the discussion in Sec.[5.3.2] we analyze the differentiations required for solv-
ing this optimization problem. For a map point j measured by the first camera Ci, we
can compute the Jacobian matrix of ej; with respect to the estimated C; pose update u
using the chain rule as

a(eﬂEclij)
T (5.6)

I = IPc, (e'chlej) B J0Pc, ()
= o T de

CZECI ij

The first term of the above matrix product is the Jacobian of the camera projection func-
tion in Eq. [(5.1)] and the last term is:

6(e“Echpj)

TR (L = [Ec,wpjlx)- (5.7)
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However, for map points measured by other cameras, with Eq. [(5.2)| the differentiation
becomes:

aPCi (EileﬂEclij) _ aPCi (C)
6.“ B oc

‘ d(Ene"Ec,wp))

c:ECl' ij al"l

Ji,u =

. (5.8)

Its difference to Eq. lies in the last term of this equation:

a(Eile'chlij)
Ou

=Rot(En)-(Is = [Ec,wpjlx), (5.9)

where Rot (E;) represents the rotation component of Ejj.

5.3.4 Bundle adjustment with multiple cameras

Bundle adjustment in PTAM means solving the following minimization problem:

N
{ua...unt{p1 ... pm}} = argmin E E Ob]( J ,O'T), (5.10)
{{uhirh 21 Jjes; .

where N is the number of keyframes and M is the number of observed map points that
need to be updated. The first keyframe is normally assumed to be fixed and to function
as the reference frame.

In a multi-camera system, we assume that the relative poses among the group of new
keyframes obtained at the same time ¢ by different synchronized cameras are constant,
since the cameras are mounted rigidly. Thus, in bundle adjustment, we can use image
measurements from all cameras to compute the optimal pose updates of the keyframe
set K; which are obtained by the first camera C;. The poses of other rigidly connected
keyframes are computed based on the updated poses of their associated keyframes in
K. This multi-camera bundle adjustment strategy is illustrated in Fig. [5.3] Therefore,
a consistent map can be built by using multiple cameras. Here, the consistency is in the
sense of rigid connectivity among sub-maps generated by multiple cameras.

In the above case, to solve bundle adjustment, we differentiate e;; with respect to the
corresponding keyframe (in K;) pose update y;, which can be computed in the same
way as in Eq. [(5.6)] or Eq. [(5.8)] depending on the camera identity of the point j, i.e.
by which camera this point has been measured. The Jacobian of e;; with respect to the
estimated point j pose can be expressed in a consistent way, regardless of the camera
used to measure this point:

_ 0P, (Eenp)) _ 9P, (©

a(Eciij)
Jo; = op; dc T op;

(5.11)
C=Eciij ap/
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|
|

oD
Figure 5.3: A 2D illustration of bundle adjustment in a dual-camera case with two
keyframes from each camera (K11, 2 from camera C; and K1, Kpo from camera Cy).
In this bundle adjustment problem, the measurements to points pje(; 2, . 5) are used to
optimize the poses of keyframes K1, K2 and the positions of all these points. The poses

of keyframe K»; and Ky, are updated by assuming their rigid connections to Kq; and
K12, respectively.

The last term simply becomes:

0 (Ec,-ij)

=Rot(E..,,). 5.12
apj 0( c,w) ( )

5.4 Implementation

Our two cameras have no overlap in their fields of view. This configuration achieves a
maximal total FOV of the vision system. In the software of the SLAM system, we modify
both the pose tracking thread and the mapping thread of the original PTAM system. We
also re-organize the map in order to efficiently manage it in our dual-camera case. Details
are presented in the following sections.

5.4.1 Organizing the map

Since we do not expect our MAV to do aggressive maneuvers with extreme roll or pitch
rotation, the two cameras mounted on our MAV as shown in Fig. will hardly obtain
images with similar perspectives to the environment. Thus, we can assume that the two
cameras share no common feature point from the environment. Then the global map of
the SLAM system can be treated as two sub-maps, each of which corresponds to one
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camera. We divide the map by giving a label to each keyframe and map point, indicating
from which camera they have been obtained.

The above organization method can make map operations in both pose tracking and
mapping more efficient. For example, it is required to search for all potentially visible
map points in each pose tracking process. When performing this search in an image taken
by camera C1, now only the map points measured by C need to be checked whether they
are potentially visible or not. In the mapping process, neighbouring keyframes can be
searched in a sub-map only, instead of the whole global map. This is done whenever
we need to decide whether a new keyframe should be added, or to choose an existing
keyframe for triangulating new map points.

Despite our choice of a sup-map organization method, we still maintain a single global
map. It is a trivial issue in PTAM to assume features can be matched among multiple
cameras, since both map point triangulation and bundle adjustment are designed to han-
dle multiple observations of a feature point. Thus, if multiple cameras can share common
perspectives to the environment, e.g. they are mounted looking in the forward direction
or the sides of the MAV, we can easily adjust the organization of the map to allow feature
matching among multiple cameras. In this case, each sub-map should include all the
keyframes and map points generated by all the cameras that share common perspectives.

5.4.2 Pose tracking

Map points in the two sub-maps are reprojected to their corresponding source camera to
decide whether they are potentially visible. Successful matches between image features
and those potentially visible points serve as image measurements which are used in iter-
ative optimizations for the pose update of the camera C. Then the optimal pose of the
camera C» is computed by using Eq.

In the original PTAM, if map point j is measured in image pyramid level s (s €
{0,1,2,3}), the measurement noise is estimated to be o-; = 2°. In our dual-camera pose
tracking optimizations, we assume that the measurement noises of the two cameras fol-
low the same distribution, i.e. for any camera i € {1,2} measuring point j, we have
oji = 2°. This also applies to the optimizations in bundle adjustment. Measurement
noise of each camera in a multi-camera system using significant different cameras or
lenses should not be considered to follow the same distribution. Instead, the distribu-
tions can be estimated according to the actual performance of each sensor, as proposed
in[Scherer et al.| (2012).

5.4.3 Mapping

New keyframes Ky, and Ky, from both dual cameras are added to the global map, when
the geometric distance of Ky, (or Kj,) to its closest neighbor obtained by the same
camera is larger than a threshold. This means, if we obtain a keyframe from any of the
dual cameras that should be added to the map, the keyframe obtained by the other camera
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at the same time will also be added. Thus, in the global map, each keyframe obtained
by the camera C; is always associated with another keyframe obtained by C,, and vice
versa. Here, the geometric distance measures the sum of weighted translation distance
and angular difference, as has been done in the original PTAM.

Additionally, we attempted to implement a scheme that allows individual keyframes
from only one of the dual cameras to be added to the global map: a keyframe from a
camera is added to the map, only if its geometric distance to its closest neighbor ex-
ceeds a threshold. However, this scheme does not obviously reduce the total number of
keyframes in the map. On the contrary, it requires a complex logic in order to achieve
correct associations between the two keyframe sets which are obtained by the two cam-
eras.

To achieve real-time performance of the SLAM system during its exploration, we
only retain the local bundle adjustment and abandon global bundle adjustment in the
mapping thread. The local bundle adjustment process involves a subset of map points
and keyframes in the global map which are generated by both cameras. It computes the
pose updates for keyframes and the 3D position updates for map points, which are added
to the keyframe set K, and the point set p,, respectively. As explained in Sec. only
the keyframes from the camera C; will be added to K,. Keyframes which are obtained
by the camera C» and associated (rigidly connected) to K, form the set K., whose poses
can be computed by using the optimized poses of K,. p, consists of all the points which
are measured in K, or K.. A further fixed keyframe set Ky contains any keyframe in
which a measurement of any point in p, has been made. Then the minimization of the
local bundle adjustment becomes

{{ttiexc ), (P jep, 1} = argmin D Obj(' L 'm), (5.13)

Hud Pl ek ,UR UK ; jepanS; Ji

which is solved by using the Levenberg-Marquardt method (Hartley and Zisserman,
2004) as in the original PTAM. The Jacobians of e;; are solved as described in Sec.[5.3.4]
We use a similar strategy as in PTAM to define the keyframe set K,: It consists of ny
keyframes obtained by the camera C, including the newest keyframe and the other n; — 1
ones nearest to it. Normally, we set n; = 5.

5.4.4 Automatic Initialization

Metric scale ambiguity generally exists in monocular camera systems. Our dual-camera
system has the same issue since the cameras have no overlap in their respective fields of
view, and thus no stereo triangulation can be used to recover the metric scale factor of the
map built by the system. We solve this issue by initializing the metric map of our SLAM
system similarly as we did in Chapter 4 We use the initialization module presented in
Chapter 3] to robustly estimate the pose of the downward-looking camera C; during the
takeoff phase of our MAV. When the MAV height is larger than a given threshold, the
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first camera pose and the associated image are sent to the SLAM system. 3D positions
of the feature points in the image are obtained by assuming they lie on the ground plane,
which does not need to be strictly true, as demonstrated in the outdoor experiment in
Chapter 4 The sub-map corresponding to the first camera Cj is initialized with those
feature points. The sub-map corresponding to the second camera C; is initialized after
two keyframes from this camera are obtained, when 3D feature points can be triangulated
with the known keyframe poses.

5.5 Experiments

5.5.1 Experimental setup

Our software system is implemented in several modules, as we did in Chapter 4 The
only difference is that we use two cameras here, and their drivers are in two individual
ROS nodes. We synchronize them both at the hardware and the software level. At the
hardware level, we use a master-slave scheme to synchronize different cameras. Camera
C performs as a master, with an image frequency of f,, = 30 fps. Image acquisitions
of camera C, are triggered by the signal sent by C; at each time it starts to acquire an
image. At the software level, we enforce a rule that the time-stamp difference of the
two newest images from the two cameras should be smaller than 1/(2- f;,) second. An
image obtained by the slave camera C> which breaks this rule will be dropped to avoid
unexpected errors during image transportation between camera drivers and the SLAM
system. If this happens, the new image from camera C; will be used for pose tracking
only, and not for the further mapping process.

5.5.2 Enabling autonomous navigation

In this first experiment, we demonstrate the efficiency of our SLAM system to enable
autonomous navigation of MAVs. Furthermore, we evaluate its accuracy by comparing
its pose tracking results to the ground truth data provided by the external tracking system.

A picture of the experimental environment is shown in Fig. in which we also
sketch the world coordinate system in visual SLAM and depict the desired path of the
MAV. There is a large white area on the desired path, in which no visual feature can be
obtained by the downward-looking camera. The MAV autonomously navigates along a
predefined rectangular path (plotted in cyan in Fig.[5.5b)) in a counter-clockwise direction
with a commanded forward speed of vy = 0.4m/s, taking off and finally landing above
the origin of the world coordinate system. The takeoff phase is controlled by using pose
estimates fed from the initialization module until the SLAM system is initialized. We
set the MAV to turn 90 degrees at the first corner, which makes the forward-looking
camera unable to triangulate new features and track its pose if it is the only camera in the
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Figure 5.4: A scene of our robot lab where we carry out the experiments. The world
coordinate system and the desired flight path of the MAV are indicated inside.

SLAM system. We use the trajectory-following method (described in Sec. [2.2.3) for the
trajectory control of our MAV in autonomous flight.

The resulting MAV trajectory during an autonomous flight can be found in Fig. [5.5]
The MAV trajectory estimated by our onboard SLAM system (SLAM?2c) using two cam-
eras fits well with the ground truth data from the external tracking system (ETS). The
SLAM?2c attitude estimates are actually less noisy than that of the ETS data. The RM-
SEs of the pose estimates of SLAM?2c data with respect to the ETS data are listed in
Tab. [5.1] (the row of Auto). Three sources of noise which contribute to the errors should
be noted. First, slow scale drift still exists in our SLAM system, since this system does
not have additional sensor data or stereo triangulation to provide metric scale measure-
ments. Second, the extrinsic camera calibration errors can also affect the pose tracking
and mapping accuracy. A last minor factor comes from the ground truth data itself, since
it is difficult to set the tracking system coordinate frame to perfectly coincide with the
world frame.

In Fig.[5.5b] we can find fluctuations in the resulting trajectory at the designated path
corners. The reasons are that we set the MAV to hover 5 seconds at each corner, and
we have not implemented a sophisticated and precise pose controller, which is out of the
scope of this thesis. If the desired pose of the MAV propagates forward when the MAV
is still trying to hover back to a corner, the trajectory may form a fluctuation like the one
at the top right corner of Fig.[5.5b]
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Figure 5.5: The MAV poses estimated by our visual SLAM system (SLAM2c) and the
external tracking system (ETS) during the autonomous navigation. (a) The trajectory on
xw,Yw, and zw axes, and (b) projected to the xy — yw plane. (c) The yaw angle of the
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Table 5.1: MAV pose RMSEs of the whole trajectories in autonomous flight (Auto) and
manual flight (Manual), with position errors in millimeters and attitude errors in degrees.

RMSEs X y z 3D roll pitch yaw
Auto 23.5 37.2 15.9 46.8 0.82 0.81 1.04
Manual 234 43.2 12.5 50.7 1.31 1.08 1.06

Table 5.2: MAV pose RMSEs during the part of manual flight when the MAV pose can
be tracked by the downward-looking camera alone, with position errors in millimeters
and attitude errors in degrees.

RMSEs X y z 3D roll pitch yaw
SLAM2c 25.5 35.4 13.1 45.6 1.02 0.94 0.91
SLAMdc 38.2 29.7 19.1 52.0 1.30 1.27 1.37

5.5.3 Further evaluation through manual flight

We process an image logfile off-board to perform further evaluation of our SLAM sys-
tem. The onboard computational capability does not allow us to take image logfiles
during autonomous navigation. Thus, we manually control the MAV to follow a sim-
ilar path as in Sec. and take a logfile containing images from both cameras and
other useful onboard sensor data by utilizing the original ROS functions for recording
ROS-bag files.

The MAV trajectory during this manual flight is shown in Fig. 5.6l When using the
proposed SLAM system with two cameras, the MAV pose can be tracked well throughout
the flight, and also fits well with the ground truth data. The corresponding RMSEs are
listed in Tab. (the row of Manual). Two minor parts of the ground truth data are
missing due to the flight outside the working area of the external tracking system, which
is found to be two periods of straight dashed lines in Fig. around the time of 17
seconds and 29 seconds. Fig. shows two views of the final map built by our SLAM
system including the dual-camera trajectory.

However, if we use PTAM with the downward-looking camera alone, pose tracking
will fail when the MAV flies above the white area (see the SLAMdc case in Fig. [5.6).
The MAV position where pose tracking fails in this case is marked with black circles
in Fig. [5.6a] and Fig. [5.6b] We mark the time when it fails with a vertical red line in
Fig. in which MAV positions on each axis are shown. During the part of flight
before tracking failure happens, the RMSEs of pose tracking using the proposed SLAM
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Figure 5.6: The MAV poses estimated by the proposed SLAM system (SLAM2c), PTAM
with only the downward-looking camera (SLAMdc), and the external tracking system
(ETS) for the manual flight logfile. (a) The trajectory on xw,yw, and zw axes, (b) pro-
jected to the xw — yw plane, and (c) with respect to the flight time.
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(b)

Figure 5.7: Built map and the forward-looking camera trajectory during the manual flight,
in two different perspectives. Map points measured by the downward-looking camera are
marked in blue, those measured by the forward-looking camera in red.
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system (SLAM?2c) are a bit smaller than those of using only the downward-looking cam-
era (SLAMdc), as can be found in Tab. Similarly, if we use the SLAM system with
only the forward-looking camera after the initialization of the system, pose tracking will
fail again when the MAV turns 90 degrees during hovering. Like in the first failure case,
we mark the failure with black crosses in Fig. [5.6a and Fig. [5.6b] and a vertical black

line in Fig.

5.6 Conclusions and Discussions

In this chapter, We have presented a visual SLAM system which can utilize feature mea-
surements from dual cameras. The mathematical analysis on how those measurements
should be integrated in the optimization processes of the SLAM system has been pro-
vided. We have demonstrated the efficiency of the system by enabling an MAV with
two cameras to navigate autonomously along a predefined path. The experiments with
a logfile taken from a manual flight prove that our proposed system is more resistant to
tracking failure in complex environments. We have also shown the accuracy of our sys-
tem by comparing the pose tracking results with the ground truth data provided by the
external tracking system. A video demonstration of this work can be found onlineﬂ

In the future, the effect of extrinsic camera calibration errors to the pose tracking and
mapping accuracy could be analyzed. Furthermore, it would be interesting to investigate
the fact that more parameters could be tracked in the optimizations of the SLAM system,
if there is overlap in the fields of view of the multiple cameras: Based on more Jacobian
analysis, it is possible to integrate the online changes of extrinsic camera parameters into
the optimization problem. Such online changes may happen when the cameras are not
rigidly connected, e.g. when they are mounted on different wings of a fixed-wing aerial
vehicle.

1http: //www . youtube. com/channel /UCQd6_G6qyvGHUmz7NUelDZQ/videos, accessed 12-April-
2014
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Chapter 6

Towards Constant-Time Multi-Camera
Visual SLAM for MAVs

In this chapter we present a robust visual SLAM system consisting of a constant-time
visual odometry and an efficient back-end with loop-closure detection and pose-graph
optimization. Robustness of the visual odometry is achieved by utilizing dual cameras
looking in different directions with no overlap in their respective fields of view, as pro-
posed in Chapter [5| The back-end of the SLAM system maintains a keyframe-based
global map, which is also used for loop-closure detection. An adaptive-window pose-
graph optimization method is proposed to refine keyframe poses of the global map and
thus correct pose drift that is inherent in the visual odometry. The position of each map
point is then refined implicitly due to its relative representation to its source keyframe.
We demonstrate the efficiency of the proposed visual SLAM algorithm for applications
onboard of MAVs in experiments with both autonomous and manual flights. The pose
tracking results are compared with the ground truth data provided by the external track-
ing system.
Large parts of this work have been pre-published in Yang, S. et al. (2014b).

6.1 Introduction

In Chapter 5| we have presented a visual SLAM system which integrates feature mea-
surements from multiple cameras. Multiple cameras looking in different directions can
provide more reliable image features for pose tracking, compared with one monocular
camera. Therefore, we achieve more robust pose tracking of an MAV being more re-
sistant to tracking failures. This achievement is especially useful when MAVs fly in
complex environments. We keep the complete map during explorations of the visual
SLAM system. Thus the system can utilize all previous visible measurements for lo-
calization and mapping, and provide more accurate pose estimates and mapping results
when working in small-scale environments. However, this SLAM system does not scale
well for operations in large-scale environments, in which it will hardly be able to build
a consistent map when flying around with loops, i.e. re-visiting certain places during an
exploration.
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Figure 6.1: (a) A local map built by our dual-camera visual odometry during an explo-
ration, with n; = 4 (see Sec. [6.4.1). Map points from the forward-looking camera are
marked in red color, and those from the downward-looking camera in blue. The trajec-
tory of the forward-looking camera is plotted in green. (b) A scene of the actual lab
environment where this experiment was performed, in a similar perspective.

In this chapter, we modify our previous multi-camera visual SLAM system to operate
as a robust visual odometry with constant-time cost during large-scale explorations. Our
final implementation utilizes two cameras pointing forward and downward, respectively,
as we have done in Chapter[5] An example map built by the visual odometry in our dual-
camera setting is shown in Fig. [6.1a] Moreover, we propose an efficient visual SLAM
back-end for loop-closure detection and correcting pose drift that is inherent in the visual
odometry by using pose-graph optimization (PGO).

The back-end of our visual SLAM system maintains a global map organized in keyframes,
each of which is associated with some map points represented using positions relative to
it. In the global map, we keep map points in a relative representation, the keyframes
in absolute representation. Thus, map points can be implicitly updated by PGO opera-
tions, which optimize the poses of keyframes in the global map. [Strasdat ez al.| (2011
proposed a double-window graph structure for optimizing the global map. Bundle adjust-
ment within a small inner window and pose-graph optimization within a larger window
are integrated within one optimization problem. In our work, we decouple bundle adjust-
ment and PGO into a visual odometry front-end and a separate back-end, so that accurate
pose tracking can be achieved in constant time, without losing the benefit of PGO which
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can correct pose drift of the visual odometry in long-term explorations and thus ensures
a consistent global map.

The remainder of this chapter is organized as follows. We review the related work
on map representation and loop closure detection in visual SLAM in Sec. Then we
present our visual SLAM back-end for managing the global map, loop-closure detection
and pose-graph optimization, in Sec. [0.3] We provide further details of the implemen-
tation of our SLAM system in Sec. [6.4] In Sec. [0.5] we validate our SLAM system by
using it onboard of an MAV. Finally, in the last section, we conclude the work of this
chapter and discuss possible future work.

6.2 Related Work

In visual SLAM, different ways to represent the environment map have been proposed.
The map of the MonoSLAM system (Davison et al., 2007) adopts a probabilistic feature-
based map. This map consists of the current estimates of the camera state and all feature
points with uncertainty measurements, which are updated by the Extended Kalman Filter
(EKF). In PTAM, the map consists of a collection of map points and keyframes. Re-
cently, the work on visual SLAM systems using keyframe-based methods has proposed
to organize the map with relative representation to improve the efficiency. In Mel et al.
(2011), robot positions and the map are represented in a continuous relative represen-
tation (CRR) framework, which allows relative bundle adjustment for map refinement
and real-time loop closure. The work in [Lim et al. (2012)) presents a hybrid metric-
topological map for large scale online environmental mapping. The map is represented
as a graph of the keyframes and the relative poses between keyframes. This work strictly
enforces the metric property of the local sub-maps, which are optimized by using bundle
adjustment and assumed to be rigid segments in the global segment optimization.

Recently, a number of efficient loop-closure detection methods have been proposed
using visual vocabulary (Sivic and Zisserman, 2003). In those methods, local features
are extracted to represent the appearance information of an image, and the loop-closure
detection is solved using a place-recognition scheme. The visual vocabulary model treats
an image as a bag of words (BOWs) much like a text document. In this model, each
word corresponds to a region in the space of invariant feature descriptors (Cummins
and Newman, 2011). A comparison of the visual-vocabulary-based approach to map-to-
map (Clemente ef al.l 2007) and image-to-map (Williams et al., |2008) approaches for
loop-closure detection in monocular SLAM can be found in the work of |Williams et al.
(2009).

In|Cummins and Newman (2011)), images are represented with a bag of words whose
co-visibility probability is learned offline using a Cho-Liu tree. In Cadena et al.|(2012),
loop closures are detected based on the BOW method using SURF features. The loop
closing verification is carried out using a method based on conditional random fields.
The work in |Galvez-Lopez and Tardods| (2012) features a hierarchical BOW method. It

93



Chapter 6 Towards Constant-Time Multi-Camera Visual SLAM for MAV's

uses a vocabulary tree that discretizes a binary descriptor space. This vocabulary tree
can efficiently speed up the retrieval of similar images and the verification of geometri-
cal consistency for loop-closure detection. By using BRIEF descriptors (Calonder ef al.,
2010) which are binary and require very little time to be computed, a much faster con-
version of the BOWs can be achieved than using SIFT or SURF descriptors. Rather than
building the visual vocabulary based on a prior knowledge of the environment, |[Nicose-
vici and Garcia (2012) proposed a method for loop-closure detection using visual vocab-
ularies built online. To investigate the effect of quantity and quality of visual information
to place recognition, Milford (2013)) presented comprehensive experiments with different
datasets using SeqSLAM (Milford and Wyeth, |[2012).

6.3 Back-End of the SLAM System

Our multi-camera visual odometry only maintains a local map for pose tracking. We
further implement a back-end for the SLAM system to manage and refine a global map,
which is built based on the local map of the visual odometry during exploration. The
back-end mainly performs loop-closure detection and pose-graph optimization to refine
the global map.

6.3.1 The global map representation

We use a keyframe-based global map representation as proposed in |Scherer et al.|(2014).
The representation is similar to the one used in the original PTAM: Each keyframe con-
sists of a four-level image pyramid with FAST corners computed in each level, while
each map point storing a reference to its source keyframe in which it is measured. How-
ever, the work in Scherer et al.|(2014) adopts a relative representation for the position of
each map point and uses local feature descriptors for feature matching.

Instead of storing an absolute position of each map point in the world frame as in
PTAM, we store the position of each map point relative to its source keyframe. In this
way, we can achieve implicit updates of the absolute position of a map point after the pose
of its source keyframe being updated in pose-graph optimization as will be described in
Sec.

We also compute BRIEF descriptors (Calonder et al., 2010) for feature points in all
pyramid levels of each keyframe. They are used for wide-baseline matching between
keyframes and appearance-based loop-closure detection in the back-end. Compared with
some other local feature descriptors, e.g. SIFT (Lowe, 2004), SURF (Bay et al., 2006)
and ORB (Rublee et al., 2011), the BRIEF descriptor is not scale invariant nor rotation
invariant. However, it is more efficient and is already sufficient for our MAV-application
scenario. First, since we compute it in four pyramid levels of a keyframe, scale invari-
ance can be achieved to a certain extent already without considering further pyramid
levels. This is similar to our strategy for landing site detection in Sec.[#.4.2] Second, as
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will be discussed in Sec. only keyframes and map points from the forward-looking
camera will be used to build the global map. Then, as our MAV flies in a nearly hovering
attitude, we do not expect the image measurements of a map point to be significant ro-
tated among different keyframes. Thus, rotation invariance of feature descriptors is not
necessary for feature matching. In general, BRIEF descriptors offer us a good compro-
mise between distinctiveness and computation time. On the other hand, ORB features
can be a reasonable alternative to BRIEF if rotation invariance is required.

6.3.2 Loop-closure detection

loop-closure detection provides additional pose constraints (edges) to the pose graph
of the SLAM system as will be described in Sec. [6.3.3] It is of vital importance for
correcting pose drift and building a consistent map during loopy explorations in large-
scale environments. We consider the following two types of loop closures:

Appearance-based loop closure

we use appearance-based (image-to-image) method for large-scale loop-closure detec-
tion among keyframes. More specifically, we adopt local features (BRIEF features) to
represent the image appearance information of a keyframe. We use the open-source im-
plementation of the bag-of-words method developed in|Galvez-Lopez and Tardos| (2012)
for the loop-closure detection task. In the off-line process, we train the vocabulary tree
required by this method using BRIEF descriptors of FAST keypoints extracted from a
large number of images taken from various environments.

After a large loop is detected between the current keyframe /4 and a previous keyframe
K, we match feature corners in X4 to map points measured in Kp to retrieve 2D-3D
correspondences. If there are enough 2D-3D correspondences, we estimate the relative
pose E4p between these two keyframes to achieve keyframe registration. This can be
done efficiently using a P3P (Gao et al., 2003) plus RANSAC method and further refin-
ing the result by robust optimization which minimizes 2D reprojection errors of all inlier
correspondences. Then the edge £4p is added to the pose graph. We do not compute the
otherwise relative pose Epy, since we expect that the keyframe K4 would have signifi-
cant pose drift relative to Kp, and thus positions of map points measured in Xp should
be trusted.

Local loop closure

A potential local loop closure can be detected by trying to register the current keyframe
IC4 to its best neighbor Kp within a certain geometric distance range, and estimating
their relative pose in a way similar to the method we used after an appearance-based loop
closure is detected. Here, the best neighboring keyframe is decided by its co-visibility of
common features with /Cy4.

95



Chapter 6 Towards Constant-Time Multi-Camera Visual SLAM for MAV's

a4 P T

Figure 6.2: Edges added to the pose graph after a new keyframe K, is added, in the case
of four keyframes involved in bundle adjustment. Edge &7 and &,3 will also be added to
the graph before K, is removed from the local map. Edge &2 and &3 will be replaced
by new constraints (in red) after a new bundle adjustment operation.

In this case, we compute both E4p (from 2D-3D correspondences matching feature
corners in 4 to map points measured in Kp) and Ep4 (from 2D-3D correspondences
matching feature corners in g to map points measured in 4). We expect E4p and Epg
to agree with each other if a true local loop closure has been detected, as proposed in
Scherer et al.| (2014).

6.3.3 Adaptive-window pose-graph optimization

We apply pose-graph optimization (PGO) at each time when a new keyframe is added
to the global map. During this process, we adaptively define a window (sub-graph) of
the whole global graph to be adjusted, depending on whether new edges are added from
loop closures.

The graph structure

For the purpose of PGO, the graph structure definition of our SLAM system is straight-
forward: It consists of a set of keyframe-pose vertices (V;) and relative edges (&;;) de-
scribing the relative pose-pose constraints (E;;) among those vertices. Each vertex V;
stores an absolute pose E; of its corresponding keyframe X; in the world frame of the
SLAM system. The edges consist of constraints obtained from the bundle adjustment in
the visual odometry and the two types of loop closures described in Sec.[6.3.2]

We notice that each bundle adjustment operation in the visual odometry produces pose
constraints among all ny keyframes in the local map. When a new keyframe X, is added
to the local map of the visual odometry, the oldest keyframe /C, will be removed be-
fore the next bundle adjustment operation. As a result, poses of the remaining n; — 1
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keyframes will be re-adjusted during the next bundle adjustment step without consider-
ing the pose constraints to K. This means that pose constraints between X, and the other
nr — 1 nodes may actually contain useful information and should be considered in PGO.
Thus, we not only add pose constraints among consecutive keyframes to the pose graph,
but also add those between K, and all other keyframes within the current local map, as

depicted in Fig.

Defining the sub-graph for optimization

In PGO, we always consider a window of the whole pose graph G to be adjusted. We
perform uniform-cost search for choosing sub-graph vertices, beginning with the latest
added vertex. The cost is measured by the geometric distances among vertices. The
sub-graph to be adjusted (denoted as G;) consists of all those sub-graph vertices and
constraints among them. We define the size of the sub-graph vertices in the following
adaptive way depending on whether a loop closure has been detected: During regular
exploration of the SLAM system without loop closure detected, only a relatively small
window (with no more than ng vertices) of the whole pose graph is to be adjusted. In this
case, PGO is still useful due to the constraints produced by the bundle adjustment, as we
discussed in the last section. When a loop closure between two keyframes is detected,
an edge between their corresponding vertices will be added to the pose graph. Then we
expand the graph window G, to contain a large number of vertices, until it has included
all vertices in the detected loop or a maximal number (#n,,) of vertices.

Pose-graph optimization

Given an n-vertices sub-graph G we previously defined, the pose-graph optimization is
to minimize the following cost function:

F(E) = ZAE,-TjQijAEij, 6.1)
&g,

with respect to all vertex poses E = (E1, E»,...,E,), where &g, contains all edges in G,
AE;j:=log(E;;- Ej_.1 - E;) is the relative pose error in the tangent space of SE(3) and €;; is
the information matrix of the pose constraint E;;. We estimate €);; coarsely as a diagonal
matrix in a way proposed in Strasdat et al.|(2011)):

2
Az 03x3 ] 6.2)

j = wij [ 03x3  A7[3x3

with the rotation component A, being a constant and the translation component A; being
proportional to the parallax of E;; which is measured by normalizing the translation t;;
using the average scene depth. Here, t;; is the translation element of E;;. We consider
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the pose constraints produced in the bundle adjustment and loop closures are similar in
accuracy. Thus, we set w;; to be a constant w;; = 1.

6.4 Implementation

Our visual SLAM system mainly consists of three threads: two threads for the visual
odometry (the tracking thread and the mapping thread as in PTAM), and a third thread
working for the back-end (back-end thread). The mapping thread of the visual odometry
manages a local map and handles most of the interactions with the back-end. The global
map and the pose graph are managed by the back-end thread. The flowcharts of the
mapping thread and the back-end thread are shown in Fig.[6.3] In this section, we present
further implementation details about interactions between the visual odometry and the
back-end.

6.4.1 The visual odometry
General approach

In order to achieve constant-time cost in large-scale explorations, we further reduce the
complexity of our previous multi-camera visual SLAM system presented in Chapter [5]
by fixing the size of keyframes from each camera to be a constant number 7y, in the local
map. We remove the oldest keyframe when a new keyframe is added to the map. Bundle
adjustment is performed within all m - ny keyframes in an m-camera case. This changes
our multi-camera SLAM system to be an efficient constant-time visual odometry.

Motion-model update

In the tracking thread, we assume a slowly decaying-velocity model of the cameras. In
each tracking process, we estimate a prior pose E), of the camera Cy as the initial guess
of the pose estimation, based on the camera velocity v, and the camera pose E; in the
last tracking process. Once the local map is updated by the mapping thread according
to the updated global map, we update the prior estimation E), to avoid tracking failure.
This is performed by simply retaining the velocity v, unchanged, and updating E), by
assuming a constant relative pose E;, to its neighbouring keyframe K;. Thus, we have
the new prior pose E;, =F pEl.‘lElf , where E; and E7 are the poses of K; before and after
the local map update, respectively.

Removing old keyframes from the local map

If the number of keyframes from camera C; in the local map exceeds ny after a new
keyframe is added, we remove the oldest keyframe K, from the local map. Before that,
we first update data associations of the map points measured in /C,.
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Figure 6.3: (a) the mapping thread of the visual odometry, and (b) the back-end thread of
the SLAM system. Abbreviations: KF (keyframe), L-map (local map), G-map (global

map), and LC (loop closure).
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Each keyframe KC; is associated with a set of map points p;. We call K; the source
keyframe of p;, since after it obtains a measurement to p;, it is then used to triangulate
p; together with one of its neighboring keyframes which also measures p;. When K;
should be removed, we only remove those map points which are not measured by any
other keyframe in the local map. Other map points could be important for later pose
tracking. If p; is measured by another keyframe KC,,, we transfer its source keyframe
identity to K,,, and update its related data association with the measurement in X,
which will be used in pose tracking. Meanwhile, we mark p; indicating that it has been
sent to the global map already, in order to avoid re-sending it with /C,, in the future.

Updating the local map

After each pose-graph optimization process, we update the local map according to the
global map, including updating keyframe poses and the positions of their measured map
points.

Here, we distinguish keyframe Ky, j € {1,2,...,n.} from the downward-looking cam-
era Cy and keyframe K5}, j € {1,2,...,n.} from the forward-looking camera C;. We as-
sume that the pose of Ky; is identical to the pose of its corresponding keyframe in the
global map, while the Ky ; pose is updated by assuming a calibrated rigid transform to
K2;. Since the map points in the local map are stored with absolute coordinates, their
positions need to be updated individually. We do this by assuming unchanged relative
translations to their current source keyframe.

6.4.2 The back-end

Overview

The back-end thread runs in an endless loop as illustrated in Fig. It is activated
by the mapping thread whenever a new keyframe is added to the waiting queue of the
global map. After a pose-graph optimization operation is done, the global map is up-
dated according to the pose graph: The keyframe poses are updated by directly copying
the corresponding vertex poses of the graph, leaving the associated map points only im-
plicitly updated. The implementation of our PGO is based on the open source library g%o
described in [Kummerle et al.| (2011)).

Adding local map to the back-end

In order to construct the global map, we add the local sub-map (including keyframes and
map points) built by one specific camera to the back-end. BRIEF descriptors of feature
points in the keyframes are computed in the back-end. We set the specific camera to
be the forward-looking camera C»,, for three reasons. First, since the dual cameras are
rigidly connected, pose constraints of one camera are sufficient for pose-graph optimiza-
tion. Second, we mainly use our MAV in low-altitude applications. Thus, we expect
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Table 6.1: MAV pose tracking RMSE:s in the autonomous flight (Auto) and the manual
flight (Manual) experiments using the proposed visual SLAM system, and using only the
visual odometry (VO), with position errors in millimeters and attitude errors in degrees.

RMSEs X y z 3D roll pitch yaw
Auto 103.0 117.0 82.7 176.5 1.70 1.45 0.80
Manual 50.6 89.9 114.9 150.4 2.06 1.34 1.92
VO 69.2 168.2 106.7 206.9 2.37 1.35 2.28

more interesting views taken from the forward-looking camera, which will be used for
loop-closure detection. Third, this is again a compromise for real-time performance:
Keyframes from the downward-looking camera might later be included in the global
map when the onboard computation capability significantly improves.

6.5 Experiments

In this section, we evaluate our visual SLAM system in an indoor environment (our
robotics laboratory), as shown in Fig. The external tracking system available here
provides accurate measures of the pose tracking errors of our onboard SLAM system.

6.5.1 Enabling autonomous navigation

In this experiment, we demonstrate the efficiency of our SLAM system to enable auto-
nomous navigation of our MAV. The MAV autonomously navigates along a predefined
rectangular path with a height of 1.2 m (plotted in cyan in Fig.[6.4b)) in a clockwise direc-
tion, taking off above the origin of the world frame and landing on the top-right corner.
It turns 90 degrees at each corner in order to head to the forward direction.

Fig.[6.4] shows the pose tracking results of the SLAM system (SLAM) compared with
the ground truth data provided by the external tracking system (ETS). The visual odome-
try slowly drifts during explorations. However, the local-map update process will correct
the drift after a loop closure is detected and the pose-graph optimization is performed.
We can clearly recognize the effect of such corrections in Fig. [6.4} The black crosses
are marked to the pose tracking results after local-map updates. The first loop-closure
provides an obvious correction to the pose tracking of the visual odometry. Fig.
shows the 3D translation errors of the pose tracking results compared with the ground
truth data during the flight. Those very short horizontal lines in Fig. result from
missing ground truth data during those periods of time, when the MAV is not flying in
the effective field of view of the external tracking system. The RMSEs of the 6DOF pose
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Figure 6.4: MAV pose-estimation results during the autonomous flight, compared with
ground truth data: (a) MAV position estimation on xy,yw, and zy axes, (b) on xw —yw
plane, and (c) the translation error. Pose corrections after loop closures been detected
and PGO been processed, are marked with black crosses.
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estimates of the SLAM system to the ground truth data during the whole flight are listed
in Tab. (in the row of Auto).

Pose estimates of a visual odometry are subjected to drift during explorations. In our
case, two metric scale related issues which contribute to the pose drift should be noted:
First, although dual cameras are used in our visual odometry, they have no overlap in their
respective fields of view. Thus, the visual odometry cannot make stereo triangulation
to track the metric scale of the environment, which results in scale drift in the pose
estimation. Second, the accuracy of our automatic initialization module mentioned in
Sec. [6.4.1] could be affected by the vibration of the MAV. The initialization errors in
the metric scale and the attitude will be accumulated in the whole flight trajectory of
the MAV. Another factor which could affect the pose tracking accuracy of the visual
odometry is the errors in extrinsic calibration of the dual cameras.

6.5.2 Further evaluations with manual flight data

We manually control the quadrotor to fly in a similar way as we have done in Sec.[6.5.1]
and record all necessary onboard data in a ROS-bag file. We process this logfile in
post-processing on the onboard computer, to gain more insights into the performances
of both the visual odometry and the back-end of the SLAM system. The results of this
experiment are shown in Fig. [6.5] and Fig.[6.6

Fig.[6.5a shows the pose tracking results of the SLAM system on xw, yw, and zw axes
of the world frame. Fig. [6.5b] provides a top view of the MAV trajectory on xw — yw
plane. Here, we have processed the ROS-bag file twice using our SLAM system: firstly,
using the full SLAM system (SLAM), and secondly, using only the visual odometry (VO)
without the back-end. The results of the two processes are compared with pose estimates
from the external tracking system (ETS). Fig. shows the position estimation errors
of these two processes. Without the back-end, the visual odometry would result in larger
pose drift. Furthermore, loop-closure detection of the back-end can obviously benefit
the pose tracking with drift corrections. RMSEs of the pose tracking results of the two
processes are listed in Tab. [0.1] (in the row of Manual and the row of VO, respectively).

Fig. and provide more details in the performance of the visual odometry
when running our full SLAM system. Time costs of the tracking thread (Tracking) and
the mapping thread (LMapping) of the visual odometry are shown in Fig. which
are largely affected by the number of map points in the local map, as shown in Fig.
The pose tracking process is rather fast, with an average time cost of 0.0152 second. The
bundle adjustment in the mapping thread is the most time intensive process, which only
runs when new keyframes are added to the map, however. Time costs of both threads
reach peaks when the MAV flies above the place where it takes off (with highly textured
background). This results from the way we initialize the SLAM system: We use all
feature corners (after non-maximum suppression) of the image which are sent by the
initialization module for initialization, resulting in a very large number of map points in
the local map if the background is highly textured.
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Fig. [6.6b] shows the time cost of the back-end process when each new keyframe is
added to the global map: the pose-graph optimization (PGO) process, and the other pro-
cesses of the back-end (rest) which mainly consists of the loop-closure detection and the
preparation processes. Since this experiment is performed in a small area, the maximum
time cost of the PGO process is only less than three milliseconds. Both the currently
visible map points and the feature corners in the new keyframe can affect the time cost
of the local loop closure and the appearance-based loop-closure detection. The time cost
of the loop-closure detection and related preparation contributes the most to that of the
back-end. Nevertheless, the maximal time cost is less than 0.1 second. The low time
costs before 25 keyframes and after 53 keyframes are added can be explained mainly
by two reasons: First, we ignore the most recent 15 keyframes in local loop closure de-
tection. Second, if the geometric distance between the current keyframe and a previous
keyframe is not within a certain range, the time-intensive keyframe registration process,
as described in Sec. [6.3.2] will not be performed by the local loop closure detection
process. Peaks of the time costs after 50 keyframes are added may happen if poten-
tial appearance-based loop closures are detected, when keyframe registration processes
will be performed. Fig. [6.6d| shows the total number of map points in the global map
(GPoints), as well as the number of feature corners in each new keyframe (corners).
The number of map points in the global map increases linearly during the exploration.
However, their positions will only be implicitly updated, and thus they do not affect the
real-time performance of the SLAM system.

Fig. illustrates two views of the resulting global map of the SLAM system, with
references of the real-world pictures. In this figure, we can find the pose graph with
nodes (keyframe poses) and edges (in green), and map points at their absolute positions
which are only computed for visualization purpose.

6.6 Conclusions and Discussions

Our proposed visual SLAM system utilizes two cameras to achieve a constant-time vi-
sual odometry, which can provide robust pose tracking for autonomous navigation of our
MAV. The back-end of the SLAM system performs loop-closure detection and adaptive-
window pose-graph optimization to correct pose drift of the visual odometry and to main-
tain a consistent global map. Autonomous navigation of an MAV following a predefined
path has been achieved using the proposed visual SLAM system.

In general, doing PGO in the Similarity space Sim3, instead of SE3, can provide
better scale corrections to the SLAM system (Strasdat et al., 2010b), which could be a
near future work. A map merging strategy would also be considered to achieve a more
consistent map after loop closures. Then the performance of the resulting visual SLAM
system in large-scale outdoor environments would be evaluated in the future. Currently,
the keyframes and map points in the global map are not used in the visual odometry.
It would be worthwhile to investigate how to more efficiently merge the back-end with
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Figure 6.7: Two views of the global map built by the visual SLAM system during a
manual flight in the lab. The grid cell size is 1m X 1m. The global map points are shown
in grey-scale. The vertices of the pose graph are illustrated with red tri-axes, and the
edges are plotted in green.
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the visual odometry, so that the updated global map can be directly used by the visual
odometry.
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Chapter 7

Conclusions

7.1 Summary

This thesis deals with the visual SLAM problem for autonomous navigation of MAVs.
The major concerns of this thesis have been the efficiency and pose tracking robustness
of visual SLAM. We have worked on monocular visual SLAM and extended it to multi-
camera visual SLAM in order to achieve more robust pose tracking. The presented visual
SLAM systems provide robust pose estimates for an MAV to enable the autonomous
flight in a previously unknown environment, and simultaneously build an environment
map. Furthermore, these systems are efficient enough to be used onboard of MAVs which
have limited payload and computational capability.

We started by solving the visual pose estimation based on artificial landmarks (vi-
sual markers) using a monocular camera in Chapter [3] The resulting vision system was
used as a robust vision module for automatic initialization of the presented visual SLAM
systems in this thesis. This vision system can also enable autonomous takeoff, hover-
ing and landing of an MAYV, provided that the visual marker is located within the field
of view (FOV) of the camera. The general approach of this visual solution is using an
artificial-neural-network (ANN) based method for robust visual-marker recognition, and
then calculating the six degrees-of-freedom (6DOF) pose of an MAV based on a compu-
tational projective-geometry method.

In Chapter 4] by integrating an efficient ORB-feature-based object detection algorithm
into a PTAM-based visual SLAM system, we have presented a monocular vision system
enabling an MAV to autonomously search for and land on an arbitrarily textured landing
site. The proposed visual solution enables the MAV to detect the landing site while
navigating autonomously in unknown environments. After the landing site is detected,
its location is estimated by a RANSAC-based method utilizing those map points (built by
the SLAM system) associated with it, without the knowledge of its metric size. We have
demonstrated the efficiency of the proposed system both in indoor and in challenging
outdoor environments.

In Chapter [5] to improve pose tracking robustness of a monocular visual SLAM sys-
tem in complex environments, we have extended PTAM to utilize measurements from
multiple cameras, resulting in a robust multi-camera visual SLAM system. By analyzing
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the optimization problems in pose tracking and map refinement in visual SLAM, we have
provided the mathematical foundations for correctly integrating multi-camera measure-
ments into those optimizations. The final implementation used a dual-camera setting,
as a compromise between pose tracking robustness and time cost. Using the proposed
visual SLAM system, we have achieved to enable autonomous navigation of an MAV in
a challenging scenario, in which the pose tracking of a monocular visual SLAM system
fails, and can build the environment map using measurements from both cameras.

Finally in Chapter|[6] to work towards multi-camera visual SLAM for MAVs operating
in large-scale environments, we have modified the SLAM system proposed in Chapter [3]
to be a robust constant-time visual odometry, and have developed an efficient back-end to
maintain the global environment map and to correct the pose drift of the visual odometry
by performing loop-closure detection and pose-graph optimization (PGO). Two types of
loop closures have been considered: local loop closures, which can be predicted using
metric information, and global loop closures, which are detected using appearance infor-
mation of images. An adaptive-window PGO method has been presented to efficiently
utilize pose constraints from bundle adjustment and loop closures. Autonomous flight of
an MAV following a predefined path has been achieved using the visual SLAM system
proposed in this chapter.

To summarize, in this thesis, we have focused on developing robust and efficient vi-
sual SLAM systems to enable autonomous navigation of MAVs. We have developed
an efficient monocular-visual-SLAM-based vision system for autonomous landing of an
MAV on an arbitrarily textured landing site. The proposed multi-camera visual SLAM
systems have been able to provide more robust pose tracking for autonomous MAVs than
conventional monocular visual SLAM systems.

7.2 Future work

Although promising results have been obtained, our approaches still have their limita-
tions and open questions. Those limitations and possible solutions related to the work in
individual chapters have been discussed in the corresponding conclusion sections. In the
following, we discuss more general questions and future research.

Since a monocular vision system cannot provide direct metric scale information of the
environment, our monocular visual SLAM system will suffer from scale drift during ex-
plorations. A multi-camera system will have the same problem if the respective FOV's of
the cameras share no overlap. A possible solution to improve the scale tracking accuracy
is to fuse data from other sensors which can provide metric measurements, like fusing
IMU data (Weiss et al., 2012). However, considering that MAVs are normally equipped
with low-cost IMUs which provide rather noisy data, more effort is required in order
to achieve better scale tracking performance in the SLAM system. Fusing data from a
laser scanner with visual SLAM results can be another option. The existing work on
fusing GPS signal with laser scan has achieved promising results (Adler ez al., 2013). It
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would be interesting to investigate fusing laser scans in visual SLAM systems. Another
alternative solution is to add an asynchronous camera into the vision system with reason-
able overlapping areas in the FOVs of the cameras, and then to do stereo triangulation
in selective time instances similarly as the work in |Shen et al.| (2013a), in order to get
depth constraints for certain visual features. An additional benefit of this solution is that
the metric scale of the visual SLAM system can be initialized without external artificial
landmarks.

Let us recall the three basic questions for autonomous navigation of a mobile robot
(Leonard and Durrant-Whyte, [1991) that we introduced in Chapter [I} “where am 1?7,
“where am I going?” and “how should I get there?” Our multi-camera visual SLAM
systems have been able to provide robust pose estimates for a robot, which answers the
first question. They can also build an environment map consisting of a set of keyframes
and a group of sparse 3D map points measured in those keyframes, which provides an
understanding of the environment. For autonomous explorations of a mobile robot in
unknown environments without predefined paths for safe navigation, we have to find fur-
ther answers to the later two questions. This requires an efficient exploration strategy
and sufficient environmental information. An exemplary work towards this goal can be
found in the work of |[Keidar and Kaminka (2014), which presents an efficient frontier
detection algorithm for robot exploration using data from laser scanners. Then an inter-
esting future work rises: to investigate how to effectively use our current map with sparse
3D points to facilitate those tasks. A possible approach is to build an 3D occupancy grid
map, like in Schauwecker and Zell| (2014), based on the current map. However, since the
3D map points generated in our SLAM systems are rather sparse, the resulting grid map
may not be sufficient to support the operations like obstacle avoidance. New approaches
should be developed to effectively utilize the information in the maps generated by the
visual SLAM systems.

111






Bibliography

Abbeel, P., Coates, A., and Ng, A. Y. (2010). Autonomous helicopter aerobatics through
apprenticeship learning. The International Journal of Robotics Research, 29(13),
1608-1639.

ACFR (2014). Autonomous underwater vehicle (AUV) - sirius. http://www.
acfr.usyd.edu.au/research/projects/subsea/auvSIRIUS.shtml. [Online;
accessed 10-April-2014].

Achtelik, M., Achtelik, M., Weiss, S., and Siegwart, R. (2011). Onboard IMU and
monocular vision based control for MAVs in unknown in-and outdoor environments.
In IEEE International Conference on Robotics and Automation (ICRA), pages 3056—
3063.

Adler, B., Xiao, J., and Zhang, J. (2013). Finding next best views for autonomous UAV
mapping through GPU-accelerated particle simulation. In Intelligent Robots and Sys-
tems (IROS), 2013 IEEE/RSJ International Conference on, pages 1056—1061.

Angst, R. and Pollefeys, M. (2009). Static multi-camera factorization using rigid motion.
In Computer Vision, 2009 IEEE 12th International Conference on, pages 1203—-1210.

Bay, H., Tuytelaars, T., and Van Gool, L. (2006). SURF: Speeded up robust features.
In A. Leonardis, H. Bischof, and A. Pinz, editors, Computer Vision — ECCV 2006,
volume 3951 of Lecture Notes in Computer Science, pages 404—417. Springer Berlin
Heidelberg.

Bishop, C. M. (2006). Pattern recognition and machine learning, volume 1. springer
New York.

Blanco, J.-L. (2010). A tutorial on SE(3) transformation parameterizations and on-
manifold optimization. Technical report, University of Malaga.

Bleser, G. (2009). Towards visual-inertial SLAM for mobile augmented reality. Univer-
sity of Kaiserslautern.

Bouabdallah, S. (2007). Design and control of quadrotors with application to auto-
nomous flying. Ph.D. dissertation.

Bouguet, J. (2001). Camera calibration toolbox for matlab.

113


http://www.acfr.usyd.edu.au/research/projects/subsea/auvSIRIUS.shtml
http://www.acfr.usyd.edu.au/research/projects/subsea/auvSIRIUS.shtml

Bibliography

Bradley, D. and Roth, G. (2007). Adaptive thresholding using the integral image. Journal
of Graphics, GPU, and Game Tools, 12(2), 13-21.

Bradski, G. (2000). The opencv library. Doctor Dobbs Journal, 25(11), 120-126.

Brown, D. C. (1971). Close-range camera calibration. Photogrammetric engineering,
37(8), 855-866.

Bry, A., Bachrach, A., and Roy, N. (2012). State estimation for aggressive flight in GPS-
denied environments using onboard sensing. In Robotics and Automation (ICRA),
2012 IEEE International Conference on, pages 1-8.

Cadena, C., Galvez-Loépez, D., Tardos, J., and Neira, J. (2012). Robust place recognition
with stereo sequences. Robotics, IEEE Transactions on, 28(4), 871-885.

Calonder, M., Lepetit, V., Strecha, C., and Fua, P. (2010). Brief: Binary robust indepen-
dent elementary features. Computer Vision—-ECCV 2010, pages 778-792.

Canny, J. (1986). A computational approach to edge detection. Pattern Analysis and
Machine Intelligence, IEEE Transactions on, 8(6), 679 —698.

Carrera, G., Angeli, A., and Davison, A. (2011). SLAM-based automatic extrinsic cali-
bration of a multi-camera rig. In Robotics and Automation (ICRA), 2011 IEEE Inter-
national Conference on, pages 2652—2659.

Castle, R. and Murray, D. (2011). Keyframe-based recognition and localization during
video-rate parallel tracking and mapping. Image and Vision Computing, 29(8), 524 —
532.

Castle, R., Klein, G., and Murray, D. (2010). Combining monoSLAM with object recog-
nition for scene augmentation using a wearable camera. Image and Vision Computing,
28(11), 1548 — 1556.

Cesetti, A., Frontoni, E., Mancini, A., Zingaretti, P., and Longhi, S. (2010). A vision-
based guidance system for UAV navigation and safe landing using natural landmarks.
In K. Valavanis, R. Beard, P. Oh, A. Ollero, L. Piegl, and H. Shim, editors, Selected
papers from the 2nd International Symposium on UAVs, Reno, Nevada, U.S.A. June
8-10, 2009, pages 233-257. Springer Netherlands.

Chen, Q., Wu, H., and Wada, T. (2004). Camera calibration with two arbitrary coplanar
circles. In T. Pajdla and J. Matas, editors, Computer Vision - ECCV 2004, volume 3023
of Lecture Notes in Computer Science, pages 521-532. Springer Berlin Heidelberg.

Clemente, L. A., Davison, A.J., Reid, I. D., Neira, J., and Tardés, J. D. (2007). Mapping
large loops with a single hand-held camera. In Robotics: Science and Systems.

114



Bibliography

Collins, R. T., Lipton, A., Kanade, T., Fujiyoshi, H., Duggins, D., Tsin, Y., Tolliver, D.,
Enomoto, N., Hasegawa, O., Burt, P., et al. (2000). A system for video surveillance and
monitoring, volume 2. Carnegie Mellon University, the Robotics Institute Pittsburg.

Cummins, M. and Newman, P. (2008). FAB-MAP: Probabilistic localization and map-
ping in the space of appearance. The International Journal of Robotics Research,
27(6), 647-665.

Cummins, M. and Newman, P. (2011). Appearance-only SLAM at large scale with FAB-
MAP 2.0. The International Journal of Robotics Research, 30(9), 1100-1123.

Davison, A. (2003). Real-time simultaneous localisation and mapping with a single
camera. In Computer Vision, 2003. Proceedings. Ninth IEEE International Conference
on, pages 1403-1410 vol.2.

Davison, A. and Murray, D. (2002). Simultaneous localization and map-building us-
ing active vision. Pattern Analysis and Machine Intelligence, IEEE Transactions on,

24(7), 865-880.

Davison, A., Reid, 1., Molton, N., and Stasse, O. (2007). MonoSLAM: Real-time single
camera SLAM. Pattern Analysis and Machine Intelligence, IEEE Transactions on,
29(6), 1052-1067.

Dayhoft, J. E. (1990). Neural Network Architectures: An Introduction. Van Nostrand
Reinhold Co., New York, NY, USA.

Diebel, J. (2006). Representing attitude: Euler angles, unit quaternions, and rotation
vectors.

Durrant-Whyte, H. and Bailey, T. (2006). Simultaneous localization and mapping: part
I. Robotics Automation Magazine, IEEE, 13(2), 99-110.

Eade, E. and Drummond, T. (2007). Monocular SLAM as a graph of coalesced observa-
tions. In Computer Vision, 2007. ICCV 2007. IEEE 1 1th International Conference on,
pages 1-8.

Eberli, D., Scaramuzza, D., Weiss, S., and Siegwart, R. (2011). Vision based position
control for MAVs using one single circular landmark. Journal of Intelligent & Robotic
Systems, 61, 495-512.

Engelhard, N., Endres, F., Hess, J., Sturm, J., and Burgard, W. (2011). Real-time 3D
visual SLAM with a hand-held RGB-D camera. In Proc. of the RGB-D Workshop on
3D Perception in Robotics at the European Robotics Forum, Vasteras, Sweden, volume
2011.

115



Bibliography

Esquivel, S., Woelk, F., and Koch, R. (2007). Calibration of a multi-camera rig from
non-overlapping views. In F. A. Hamprecht, C. Schnorr, and B. Jéhne, editors, Pat-
tern Recognition, volume 4713 of Lecture Notes in Computer Science, pages 82-91.
Springer Berlin Heidelberg.

Faessler, M., Mueggler, E., Schwabe, K., and Scaramuzza, D. (2014). A monocular
pose estimation system based on infrared LEDs. In IEEE International Conference on
Robotics and Automation (ICRA), Hong Kong, 2014.

Faig, W. (1975). Calibration of close-range photogrammetric systems: mathematical
formulation. Photogrammetric engineering and remote sensing, 41(12), 1479-1486.

Faugeras, O. (1993). Three-dimensional Computer Vision: A Geometric Viewpoint. Ar-
tificial intelligence. MIT Press.

Faugeras, O. D. and Toscani, G. (1986). The calibration problem for stereo. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern Recognition, volume 86,
pages 15-20.

Fisher, P. S. F. (1994). Testing the convexity of a polygon. Graphics gems 1V, 4, 7.

Fitzgibbon, A., Pilu, M., and Fisher, R. (1999). Direct least square fitting of ellipses.
Pattern Analysis and Machine Intelligence, IEEE Transactions on, 21(5), 476 —480.

Forsyth, D., Mundy, J., Zisserman, A., Coelho, C., Heller, A., and Rothwell, C. (1991).
Invariant descriptors for 3D object recognition and pose. Pattern Analysis and Ma-
chine Intelligence, IEEE Transactions on, 13(10), 971 —991.

Forsyth, D. A. and Ponce, J. (2002). Computer Vision: A Modern Approach. Prentice
Hall Professional Technical Reference.

Frahm, J.-M., Koser, K., and Koch, R. (2004). Pose estimation for multi-camera systems.
In C. Rasmussen, H. Biilthoff, B. Scholkopf, and M. Giese, editors, Pattern Recogni-
tion, volume 3175 of Lecture Notes in Computer Science, pages 286—293. Springer
Berlin Heidelberg.

Fraundorfer, F., Heng, L., Honegger, D., Lee, G., Meier, L., Tanskanen, P., and Polle-
feys, M. (2012). Vision-based autonomous mapping and exploration using a quadrotor
MAV. In Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ International Con-
ference on, pages 4557-4564.

GA-ASI (2014). Predator B UAS. http://www.ga-asi.com/products/aircraft/
predator_b.php. [Online; accessed 11-April-2014].

Giélvez-Lépez, D. and Tardés, J. (2012). Bags of binary words for fast place recognition
in image sequences. Robotics, IEEE Transactions on, 28(5), 1188-1197.

116


http://www.ga-asi.com/products/aircraft/predator_b.php
http://www.ga-asi.com/products/aircraft/predator_b.php

Bibliography

Gao, X., Hou, X., Tang, J., and Cheng, H. (2003). Complete solution classification for
the perspective-three-point problem. Pattern Analysis and Machine Intelligence, IEEE
Transactions on, 25(8), 930-943.

Garcia-Pardo, P. J., Sukhatme, G. S., and Montgomery, J. F. (2002). Towards vision-
based safe landing for an autonomous helicopter. Robotics and Autonomous Systems,
38(1), 19 —29.

Grzonka, S., Grisetti, G., and Burgard, W. (2009). Towards a navigation system for
autonomous indoor flying. In Robotics and Automation, 2009. ICRA ’09. IEEE Inter-
national Conference on, pages 2878-2883.

Harmat, A., Sharf, I., and Trentini, M. (2012). Parallel tracking and mapping with mul-
tiple cameras on an unmanned aerial vehicle. In Proc. 5th International Conference
on Intelligent Robotics and Applications, volume 7506 of Lecture Notes in Computer
Science, pages 421-432. Springer Berlin Heidelberg.

Harris, C. and Pike, J. (1988). 3D positional integration from image sequences. Image
and Vision Computing, 6(2), 87 — 90. 3rd Alvey Vision Meeting.

Harris, C. and Stephens, M. (1988). A combined corner and edge detector. In the 4th
Alvey Vision Conference, volume 15, pages 147—-151. Manchester, UK.

Hartley, R. and Zisserman, A. (2004). Cambridge University Press.

Hartley, R. 1. (1994). Self-calibration from multiple views with a rotating camera. In
J.-O. Eklundh, editor, Computer Vision — ECCV 94, volume 800 of Lecture Notes in
Computer Science, pages 471-478. Springer Berlin Heidelberg.

He, L., Chao, Y., and Suzuki, K. (2008). A run-based two-scan labeling algorithm. Image
Processing, IEEE Transactions on, 17(5), 749 -756.

Heikkila, J. and Silven, O. (1997). A four-step camera calibration procedure with implicit
image correction. In Computer Vision and Pattern Recognition, 1997. Proceedings.,
1997 IEEE Computer Society Conference on, pages 1106—1112.

Henry, P., Krainin, M., Herbst, E., Ren, X., and Fox, D. (2014). RGB-D mapping:
Using depth cameras for dense 3D modeling of indoor environments. In O. Khatib,
V. Kumar, and G. Sukhatme, editors, Experimental Robotics, volume 79 of Springer
Tracts in Advanced Robotics, pages 477-491. Springer Berlin Heidelberg.

Hinterstoisser, S., Holzer, S., Cagniart, C., Ilic, S., Konolige, K., Navab, N., and Lepetit,
V. (2011). Multimodal templates for real-time detection of texture-less objects in heav-
ily cluttered scenes. In Computer Vision (ICCV), 2011 IEEE International Conference
on, pages 858-865.

117



Bibliography

HiSystems (2014). Mikrokopter. http://www.mikrokopter.de/en/home. Online;
accessed 10-April-2014.

Hoffmann, G. M., Waslander, S. L., and Tomlin, C. J. (2008). Quadrotor helicopter
trajectory tracking control. In AIAA Guidance, Navigation and Control Conference
and Exhibit, Honolulu, Hawaii, pages 1-14.

Honda (2014). Asimo. http://asimo.honda.com/. [Online; accessed 10-April-
2014].

Horaud, R. and Dornaika, F. (1995). Hand-eye calibration. The International Journal of
Robotics Research, 14(3), 195-210.

Huang, A. S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., and Roy, N.
(2011). Visual odometry and mapping for autonomous flight using an RGB-D camera.
In International Symposium on Robotics Research (ISRR), pages 1-16.

Huber, P. (2011). Robust statistics. In M. Lovric, editor, International Encyclopedia of
Statistical Science, pages 1248—-1251. Springer Berlin Heidelberg.

Jimenez Lugo, J., Masselli, A., and Zell, A. (2013). Following a quadrotor with another
quadrotor using computer vision. In European Conference on Mobile Robots (ECMR
2013), Barcelona, Catalonia, Spain.

Kaess, M. and Dellaert, F. (2006). Visual SLAM with a multi-camera rig. Technical
report.

Kaess, M. and Dellaert, F. (2010). Probabilistic structure matching for visual SLAM
with a multi-camera rig. Computer Vision and Image Understanding, 114(2), 286 —
296.

Kalman, R. E. (1960). A new approach to linear filtering and prediction problems. Trans-
actions of the ASME—-Journal of Basic Engineering, 82(Series D), 35-45.

Kanatani, K. (1991). Computational projective geometry. CVGIP: Image Understand-
ing, 54(3), 333 — 348.

Kanatani, K. and Wu, L. (1993). 3D interpretation of conics and orthogonality. CVGIP
Image Understanding, 58, 286-286.

Keidar, M. and Kaminka, G. A. (2014). Efficient frontier detection for robot exploration.
The International Journal of Robotics Research, 33(2), 215-236.

Kettnaker, V. and Zabih, R. (1999). Bayesian multi-camera surveillance. In Computer
Vision and Pattern Recognition, 1999. IEEE Computer Society Conference on., vol-
ume 2, pages —259 Vol. 2.

118


http://www.mikrokopter.de/en/home
http://asimo.honda.com/

Bibliography

Klein, G. and Murray, D. (2007). Parallel tracking and mapping for small AR
workspaces. In Proc. Sixth IEEE and ACM International Symposium on Mixed and
Augmented Reality (ISMAR’07), Nara, Japan.

Knight, J. and Reid, I. (2000). Binocular self-alignment and calibration from planar
scenes. In D. Vernon, editor, Computer Vision — ECCV 2000, volume 1843 of Lecture
Notes in Computer Science, pages 462—476. Springer Berlin Heidelberg.

Krumm, J., Harris, S., Meyers, B., Brumitt, B., Hale, M., and Shafer, S. (2000). Multi-
camera multi-person tracking for EasyLiving. In Visual Surveillance, 2000. Proceed-
ings. Third IEEE International Workshop on, pages 3—10.

Kummerle, R., Grisetti, G., Strasdat, H., Konolige, K., and Burgard, W. (2011). G20: A
general framework for graph optimization. In Robotics and Automation (ICRA), 2011
IEEE International Conference on, pages 3607-3613.

Lange, S., Sunderhauf, N., and Protzel, P. (2009). A vision based onboard approach
for landing and position control of an autonomous multirotor UAV in GPS-denied
environments. In Advanced Robotics, 2009. ICAR 2009. International Conference on,
pages 1-6. IEEE.

Lee, G. H., Faundorfer, F., and Pollefeys, M. (2013a). Motion estimation for self-driving
cars with a generalized camera. In Computer Vision and Pattern Recognition (CVPR),
2013 IEEE Conference on, pages 2746-2753. IEEE.

Lee, G. H., Fraundorfer, E., and Pollefeys, M. (2013b). Structureless pose-graph loop-
closure with a multi-camera system on a self-driving car. In Intelligent Robots and
Systems (IROS), 2013 IEEE/RSJ International Conference on, pages 564-571.

Leonard, J. and Durrant-Whyte, H. (1991). Mobile robot localization by tracking geo-
metric beacons. Robotics and Automation, IEEE Transactions on, 7(3), 376-382.

Lepetit, V. and Fua, P. (2006). Keypoint recognition using randomized trees. Pattern
Analysis and Machine Intelligence, IEEE Transactions on, 28(9), 1465-1479.

Li, H., Hartley, R., and Wang, L. (2005). Auto-calibration of a compound-type omnidi-
rectional camera. In Digital Image Computing: Techniques and Applications, 2005.
DICTA °05. Proceedings 2005, pages 26-26.

Lim, J., Frahm, J.-M., and Pollefeys, M. (2011). Online environment mapping. In
Computer Vision and Pattern Recognition (CVPR), 2011 IEEE Conference on, pages
3489-3496.

Lim, J., Frahm, J.-M., and Pollefeys, M. (2012). Online environment mapping using
metric-topological maps. The International Journal of Robotics Research, 31(12),
1394-1408.

119



Bibliography

Lowe, D. G. (2004). Distinctive image features from scale-invariant keypoints. Interna-
tional journal of computer vision, 60(2), 91-110.

Lu, H. and Zheng, Z. (2010). Two novel real-time local visual features for omnidirec-
tional vision. Pattern Recognition, 43(12), 3938-3949.

Lu, H., Zhang, H., Yang, S., and Zheng, Z. (2010). Camera parameters auto-adjusting
technique for robust robot vision. In Robotics and Automation (ICRA), 2010 IEEE
International Conference on, pages 1518—1523.

Lu, H., Yang, S., Zhang, H., and Zheng, Z. (2011). A robust omnidirectional vision
sensor for soccer robots. Mechatronics, 21(2), 373 — 389.

Luong, Q.-T. and Faugeras, O. (1993). Self-calibration of a stereo rig from unknown
camera motions and point correspondences. Rapport de recherche RR-2014, INRIA.

Luong, Q.-T. and Faugeras, O. (1997). Self-calibration of a moving camera from point

correspondences and fundamental matrices. International Journal of Computer Vision,
22(3), 261-2809.

Masselli, A. and Zell, A. (2012). A novel marker based tracking method for position and
attitude control of MAVs. In Proceedings of International Micro Air Vehicle Confer-
ence and Flight Competition, pages 1-6, Braunschweig, Germany. DGON.

Masselli, A., Yang, S., Wenzel, K., and Zell, A. (2014). A cross-platform comparison of
visual marker based approaches for autonomous flight of quadrocopters. Journal of
Intelligent & Robotic Systems, 73(1-4), 349-359.

Maybank, S. J. and Faugeras, O. D. (1992). A theory of self-calibration of a moving
camera. International Journal of Computer Vision, 8(2), 123—-151.

Mei, C., Sibley, G., Cummins, M., Newman, P. M., and Reid, I. D. (2009). A constant-
time efficient stereo SLAM system. In BMVC, pages 1-11.

Mei, C., Sibley, G., Cummins, M., Newman, P., and Reid, I. (2011). RSLAM: A sys-
tem for large-scale mapping in constant-time using stereo. International journal of
computer vision, 94(2), 198-214.

Meier, L., Tanskanen, P., Fraundorfer, F., and Pollefeys, M. (2011). PIXHAWK: A
system for autonomous flight using onboard computer vision. In IEEE International
Conference on Robotics and Automation (ICRA), pages 2992-2997.

Mellinger, D., Shomin, M., and Kumar, V. (2010). Control of quadrotors for robust
perching and landing. In Proceedings of the International Powered Lift Conference.

120



Bibliography

Mellinger, D., Michael, N., and Kumar, V. (2012). Trajectory generation and control for
precise aggressive maneuvers with quadrotors. The International Journal of Robotics
Research, 31(5), 664-674.

Merz, T., Duranti, S., and Conte, G. (2006). Autonomous landing of an unmanned heli-
copter based on vision and inertial sensing. In J. Ang, MarceloH. and O. Khatib, edi-
tors, Experimental Robotics IX, volume 21 of Springer Tracts in Advanced Robotics,
pages 343-352. Springer Berlin Heidelberg.

Michael, N., Mellinger, D., Lindsey, Q., and Kumar, V. (2010). The grasp multiple
micro-UAV testbed. Robotics & Automation Magazine, IEEE, 17(3), 56-65.

Michael, N., Shen, S., Mohta, K., Mulgaonkar, Y., Kumar, V., Nagatani, K., Okada, Y.,
Kiribayashi, S., Otake, K., Yoshida, K., Ohno, K., Takeuchi, E., and Tadokoro, S.
(2012). Collaborative mapping of an earthquake-damaged building via ground and
aerial robots. Journal of Field Robotics, 29(5), 832-841.

Milford, M. (2013). Vision-based place recognition: how low can you go? The Interna-
tional Journal of Robotics Research, 32(7), 766—789.

Milford, M. and Wyeth, G. (2012). SeqSLAM: Visual route-based navigation for sunny
summer days and stormy winter nights. In Robotics and Automation (ICRA), 2012
IEEE International Conference on, pages 1643—1649.

Mondragén, 1. F., Campoy, P., Martinez, C., and Olivares-Méndez, M. A. (2010). 3D
pose estimation based on planar object tracking for UAVs control. In Robotics and
Automation (ICRA), 2010 IEEE International Conference on, pages 35—41. IEEE.

Murray, R., Li, Z., Sastry, S., and Sastry, S. (1994). A Mathematical Introduction to
Robotic Manipulation. Taylor & Francis.

NASA (2014). Curiosity Mars rover. http:www.nasa-usa.de/mission_pages/
msl/. [Online; accessed 10-April-2014].

Naturalpoint (2014).  Optitrack. http://www.naturalpoint.com/optitrack/
products/tracking-tools-bundles. Online; accessed 10-April-2014.

Newcombe, R. A., Izadi, S., Hilliges, O., Molyneaux, D., Kim, D., Davison, A. J., Kohi,
P., Shotton, J., Hodges, S., and Fitzgibbon, A. (2011). KinectFusion: Real-time dense
surface mapping and tracking. In Mixed and Augmented Reality (ISMAR), 2011 10th
IEEE International Symposium on, pages 127-136.

Nicosevici, T. and Garcia, R. (2012). Automatic visual bag-of-words for online robot
navigation and mapping. Robotics, IEEE Transactions on, 28(4), 886—898.

121


http:www.nasa-usa.de/mission_pages/msl/
http:www.nasa-usa.de/mission_pages/msl/
http://www.naturalpoint.com/optitrack/products/tracking-tools-bundles
http://www.naturalpoint.com/optitrack/products/tracking-tools-bundles

Bibliography

Nonami, K., Kendoul, E., Suzuki, S., Wang, W., and Nakazawa, D. (2010). Autonomous
Flying Robots: Unmanned Aerial Vehicles and Micro Aerial Vehicles. Springer.

Oskiper, T., Zhu, Z., Samarasekera, S., and Kumar, R. (2007). Visual odometry system
using multiple stereo cameras and inertial measurement unit. In Computer Vision and
Pattern Recognition, 2007. CVPR ’07. IEEE Conference on, pages 1-8.

Pless, R. (2003). Using many cameras as one. In Computer Vision and Pattern Recog-
nition, 2003. Proceedings. 2003 IEEE Computer Society Conference on, volume 2,
pages [1-587-93 vol.2.

Quigley, M., Gerkey, B., Conley, K., Faust, J., Foote, T., Leibs, J., Berger, E., Wheeler,
R., and Ng, A. (2009). ROS: an open-source robot operating system. In /ICRA work-
shop on open source software, volume 3.

Ragab, M. E. M. (2008). Multiple Camera Pose Estimation. Ph.D. thesis, The Chinese
University of Hong Kong (People’s Republic of China). AAI3348872.

Raibert, M., Blankespoor, K., Nelson, G., Playter, R., ef al. (2008). Bigdog, the rough-
terrain quadruped robot. In Proceedings of the 17th IFAC World Congress, pages
10823-10825.

Rosales, R. and Sclaroff, S. (1999). 3D trajectory recovery for tracking multiple objects
and trajectory guided recognition of actions. In Computer Vision and Pattern Recog-
nition, 1999. IEEE Computer Society Conference on., volume 2, pages —123 Vol. 2.

Rosten, E. and Drummond, T. (2006). Machine Learning for High-Speed Corner Detec-
tion. In European Conference on Computer Vision (ECCV), pages 430—443. Springer.

Rublee, E., Rabaud, V., Konolige, K., and Bradski, G. (2011). ORB: an efficient alterna-
tive to sift or surf. In Computer Vision (ICCV), 2011 IEEE International Conference
on, pages 2564-2571. IEEE.

Saripalli, S. and Sukhatme, G. (2007). Landing a helicopter on a moving target. In
Robotics and Automation, 2007 IEEE International Conference on, pages 2030-2035.

Saripalli, S., Montgomery, J., and Sukhatme, G. (2002). Vision-based autonomous land-
ing of an unmanned aerial vehicle. In Robotics and Automation, 2002. Proceedings.
ICRA °02. IEEE International Conference on, volume 3, pages 2799-2804.

Saripalli, S., Montgomery, J., and Sukhatme, G. (2003). Visually guided landing of an
unmanned aerial vehicle. Robotics and Automation, IEEE Transactions on, 19(3), 371
—380.

Scaramuzza, D. and Fraundorfer, F. (2011). Visual odometry [tutorial]. Robotics Au-
tomation Magazine, IEEE, 18(4), 80-92.

122



Bibliography

Schauwecker, K. and Zell, A. (2013). On-board dual-stereo-vision for autonomous
quadrotor navigation. In Unmanned Aircraft Systems (ICUAS), 2013 International
Conference on, pages 333-342.

Schauwecker, K. and Zell, A. (2014). Robust and efficient volumetric occupancy map-
ping with an application to stereo vision. In 2014 International Conference on
Robotics and Automation (ICRA’14), Hongkong, China.

Schauwecker, K., Ke, N. R., Scherer, S. A., and Zell, A. (2012). Markerless visual
control of a quad-rotor micro aerial vehicle by means of on-board stereo processing.
In 22nd Conference on Autonomous Mobile Systems (AMS), pages 11-20. Springer.

Scherer, S. and Zell, A. (2013). Efficient onbard RGBD-SLAM for autonomous MAVs.
In Intelligent Robots and Systems (IROS), 2013 IEEE/RSJ International Conference
on, pages 1062—-1068.

Scherer, S., Dube, D., and Zell, A. (2012). Using depth in visual simultaneous locali-
sation and mapping. In Robotics and Automation (ICRA), 2012 IEEE International
Conference on, pages 5216-5221.

Scherer, S. A., Dube, D., Komma, P., Masselli, A., and Zell, A. (2011). Robust real-time
number sign detection on a mobile outdoor robot. In Proceedings of the 6th European
Conference on Mobile Robots (ECMR 2011), Orebro, Sweden.

Scherer, S. A., Yang, S., and Zell, A. (2014). DCTAM: Dirift-corrected tracking and
mapping for autonomous micro aerial vehicles. In Intelligent Robots and Systems
(IROS), 2014 IEEE/RSJ International Conference on. Submitted.

Schilling, R. (1990). Fundamentals of robotics: analysis and control. Prentice Hall.

Sharp, C., Shakernia, O., and Sastry, S. (2001). A vision system for landing an unmanned
aerial vehicle. In Robotics and Automation, 2001. Proceedings 2001 ICRA. IEEE
International Conference on, volume 2, pages 1720-1727 vol.2.

Shen, S., Nathan, M., and Kumar, V. (2011). Autonomous multi-floor indoor navigation
with a computationally constrained MAV. In Robotics and Automation (ICRA), 2011
IEEE International Conference on, pages 20-25.

Shen, S., Mulgaonkar, Y., Michael, N., and Kumar, V. (2013a). Vision-based state esti-
mation and trajectory control towards high-speed flight with a quadrotor. In Robotics:
Science and Systems (RSS). Citeseer.

Shen, S., Mulgaonkar, Y., Michael, N., and Kumar, V. (2013b). Vision-based state es-
timation for autonomous rotorcraft MAVs in complex environments. In Proc. of the
IEEE Intl. Conf. on Robot. and Autom., Karlsruhe, Germany.

123



Bibliography

Siegwart, R., Nourbakhsh, I., and Scaramuzza, D. (2011). Introduction to Autonomous
Mobile Robots. Intelligent robotics and autonomous agents. MIT Press.

Sivic, J. and Zisserman, A. (2003). Video Google: a text retrieval approach to object
matching in videos. In Computer Vision, 2003. Proceedings. Ninth IEEE International
Conference on, pages 1470-1477 vol.2.

Slama, C. C., Theurer, C., Henriksen, S. W., et al. (1980). Manual of photogrammetry.
Number Ed. 4. American Society of photogrammetry.

Sola, J., Monin, A., Devy, M., and Vidal-Calleja, T. (2008). Fusing monocular informa-
tion in multicamera SLAM. Robotics, IEEE Transactions on, 24(5), 958-968.

Strasdat, H., Montiel, J. M. M., and Davison, A. (2010a). Real-time monocular SLAM:
Why filter? In Robotics and Automation (ICRA), 2010 IEEE International Conference
on, pages 2657-2664.

Strasdat, H., Montiel, J., and Davison, A. J. (2010b). Scale drift-aware large scale
monocular SLAM. In Robotics: Science and Systems, volume 1.

Strasdat, H., Davison, A., Montiel, J. M. M., and Konolige, K. (2011). Double window
optimisation for constant time visual SLAM. In Computer Vision (ICCV), 2011 IEEE
International Conference on, pages 2352-2359.

Strasdat, H., Montiel, J., and Davison, A. J. (2012). Visual SLAM: Why filter? Image
and Vision Computing, 30(2), 65 - 77.

Sunday, D. (2014). Inclusion of a point in a polygon. http://geomalgorithms.com/
a®3-_inclusion.html. [Online; accessed 12-April-2014].

Thrun, S. and Leonard, J. (2008). Simultaneous localization and mapping. In B. Sicil-
iano and O. Khatib, editors, Springer Handbook of Robotics, pages 871-889. Springer
Berlin Heidelberg.

Thrun, S., Burgard, W., and Fox, D. (2005). Probabilistic Robotics. Intelligent robotics
and autonomous agents. MIT Press.

Thrun, S., Montemerlo, M., Dahlkamp, H., Stavens, D., Aron, A., Diebel, J., Fong,
P., Gale, J., Halpenny, M., Hoffmann, G., Lau, K., Oakley, C., Palatucci, M., Pratt,
V., Stang, P., Strohband, S., Dupont, C., Jendrossek, L.-E., Koelen, C., Markey, C.,
Rummel, C., van Niekerk, J., Jensen, E., Alessandrini, P., Bradski, G., Davies, B.,
Ettinger, S., Kaehler, A., Nefian, A., and Mahoney, P. (2006). Stanley: The robot that
won the DARPA Grand Challenge. Journal of Field Robotics, 23(9), 661-692.

Triggs, B., McLauchlan, P., Hartley, R., and Fitzgibbon, A. (2000). Bundle adjustment —
a modern synthesis. Vision Algorithms: Theory and Practice, pages 153—177.

124


http://geomalgorithms.com/a03-_inclusion.html
http://geomalgorithms.com/a03-_inclusion.html

Bibliography

Tsai, R. and Lenz, R. (1988). Real time versatile robotics hand/eye calibration using
3D machine vision. In Robotics and Automation, 1988. Proceedings., 1988 IEEE
International Conference on, pages 554-561 vol.1.

Vicon (2014). Bonita. http://www.vicon.com. Online; accessed 10-April-2014.

Wagner, D. and Schmalstieg, D. (2007). Artoolkitplus for pose tracking on mobile de-
vices. In Proceedings of 12th Computer Vision Winter Workshop (CVWW’07), pages
139-146.

Weiss, S. and Siegwart, R. (2011). Real-time metric state estimation for modular vision-
inertial systems. In Robotics and Automation (ICRA), 2011 IEEE International Con-
ference on, pages 4531-4537. IEEE.

Weiss, S., Achtelik, M., Lynen, S., Chli, M., and Siegwart, R. (2012). Real-time on-
board visual-inertial state estimation and self-calibration of MAV's in unknown envi-
ronments. In Robotics and Automation (ICRA), 2012 IEEE International Conference
on, pages 957-964.

Weiss, S., Achtelik, M. W., Lynen, S., Achtelik, M. C., Kneip, L., Chli, M., and Siegwart,
R. (2013). Monocular vision for long-term micro aerial vehicle state estimation: A
compendium. Journal of Field Robotics, 30(5), 803—831.

Weng, J., Cohen, P., and Herniou, M. (1992). Camera calibration with distortion mod-
els and accuracy evaluation. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 14(10), 965-980.

Wenzel, K. E., Masselli, A., and Zell, A. (2010a). Automatic take off, tracking and
landing of a miniature UAV on a moving carrier vehicle. Journal of Intelligent &
Robotic Systems, 61, 221-238.

Wenzel, K. E., Rosset, P., and Zell, A. (2010b). Low-cost visual tracking of a landing
place and hovering flight control with a microcontroller. In Selected papers from the
2nd International Symposium on UAVs, Reno, Nevada, USA June 8—10, 2009, pages
297-311. Springer.

Wenzel, K. E., Masselli, A., and Zell, A. (2012). Visual tracking and following of a
quadrocopter by another quadrocopter. In IEEE/RSJ International Conference on In-
telligent Robots and Systems (IROS 2012), pages 1-6, Vilamoura, Algarve, Portugal.
IEEE. Accepted for publication.

Wikipedia (2014a). General Atomics MQ-9 Reaper — wikipedia, the free encyclo-
pedia. http://en.wikipedia.org/w/index.php?title=General_Atomics_
MQ-9_Reaper&oldid=603501944. [Online; accessed 11-April-2014].

125


http://www.vicon.com
http://en.wikipedia.org/w/index.php?title=General_Atomics_MQ-9_Reaper&oldid=603501944
http://en.wikipedia.org/w/index.php?title=General_Atomics_MQ-9_Reaper&oldid=603501944

Bibliography

Wikipedia (2014b). Wii remote — wikipedia, the free encyclopedia. http://en.
wikipedia.org/w/index.php?title=Wii_Remote&oldid=596344373. [On-
line; accessed 12-April-2014].

Williams, B., Cummins, M., Neira, J., Newman, P., Reid, 1., and Tardos, J. (2008). An
image-to-map loop closing method for monocular SLAM. In Intelligent Robots and
Systems, 2008. IROS 2008. IEEE/RSJ International Conference on, pages 2053-2059.

Williams, B., Cummins, M., Neira, J., Newman, P., Reid, 1., and Tardés, J. (2009).
A comparison of loop closing techniques in monocular SLAM. Robotics and Auto-
nomous Systems, 57(12), 1188 — 1197. Inside Data Association.

Wooden, D., Malchano, M., Blankespoor, K., Howardy, A., Rizzi, A., and Raibert, M.
(2010). Autonomous navigation for BigDog. In Robotics and Automation (ICRA),
2010 IEEE International Conference on, pages 4736—4741.

Wright, S. and Nocedal, J. (1999). Numerical optimization, volume 2. Springer New
York.

Xiao, J., Adler, B., Zhang, J., and Zhang, H. (2013). Planar segment based three-
dimensional point cloud registration in outdoor environments. Journal of Field
Robotics, 30(4), 552-582.

Xu, G., Zhang, Y., Ji, S., Cheng, Y., and Tian, Y. (2009). Research on computer vision-
based for UAV autonomous landing on a ship. Pattern Recognition Letters, 30(6), 600
- 605.

Yang, S., Scherer, S. A., and Zell, A. (2012). An onboard monocular vision system for
autonomous takeoff, hovering and landing of a micro aerial vehicle. In 2012 Inter-
national Conference on Unmanned Aircraft Systems (ICUAS’12), Philadelphia, PA,
USA.

Yang, S., Scherer, S. A., Schauwecker, K., and Zell, A. (2013a). Onboard monocular
vision for landing of an MAV on a landing site specified by a single reference image.
In 2013 International Conference on Unmanned Aircraft Systems (ICUAS’13), pages
317-324, Atlanta, GA, USA.

Yang, S., Scherer, S. A., and Zell, A. (2013b). An onboard monocular vision system
for autonomous takeoff, hovering and landing of a micro aerial vehicle. Journal of
Intelligent & Robotic Systems, 69, 499-515.

Yang, S., Scherer, S. A., Schauwecker, K., and Zell, A. (2014a). Autonomous landing of
MAVs on an arbitrarily textured landing site using onboard monocular vision. Journal
of Intelligent & Robotic Systems, 74(1-2), 27-43.

126


http://en.wikipedia.org/w/index.php?title=Wii_Remote&oldid=596344373
http://en.wikipedia.org/w/index.php?title=Wii_Remote&oldid=596344373

Bibliography

Yang, S., Scherer, S. A., and Zell, A. (2014b). Robust onboard visual SLAM for auto-
nomous MAVs. In 2014 International Conference on Intelligent Autonomous Systems
(IAS-13), Padova, Italy. Accepted.

Yang, S., Scherer, S. A., and Zell, A. (2014c). Visual SLAM for autonomous MAVs
with dual cameras. In 2014 International Conference on Robotics and Automation
(ICRA’14), pages 5227-5232, Hong Kong, China.

Zell, A., Mache, N., Huebner, R., Mamier, G., Vogt, M., Schmalzl, M., and Herrmann,
K.-U. (1994). SNNS (Stuttgart Neural Network Simulator). Neural Network Simula-
tion Environments, pages 165—-186.

Zhang, L. (2013). Line Primitives and Their Applications in Geometric Computer Vision.
Ph.D. thesis, Christian-Albrechts-Universitit Kiel.

Zhang, Z. (1997). Parameter estimation techniques: a tutorial with application to conic
fitting. Image and Vision Computing, 15(1), 59 — 76.

Zhang, Z. (1999). Flexible camera calibration by viewing a plane from unknown orien-
tations. In Computer Vision, 1999. The Proceedings of the Seventh IEEE International
Conference on, volume 1, pages 666—673 vol.1.

127



	Notation
	1 Introduction
	1.1 Motivation
	1.2 Contributions

	2 Background
	2.1 The MAV Platform
	2.2 MAV Flight Control
	2.2.1 Quadrotor configuration and dynamic model
	2.2.2 Attitude control and hover control
	2.2.3 Trajectory control

	2.3 Camera Model and Calibration
	2.3.1 Perspective camera model
	2.3.2 Camera calibration
	2.3.3 Extrinsic calibrations

	2.4 Visual SLAM for MAVs
	2.4.1 The PTAM system
	2.4.2 Related work


	3 Artificial-Landmark-Based Visual Pose Estimation
	3.1 Introduction
	3.2 Related Work
	3.3 Artificial-Landmark Recognition
	3.3.1 The artificial landmark and coordinate systems
	3.3.2 Vision algorithm for landmark detection
	3.3.3 Retrieving the geometry information

	3.4 6DOF Pose Estimation
	3.4.1 5DOF camera pose estimation
	3.4.2 Resolving the remaining DOF
	3.4.3 6DOF MAV pose

	3.5 Experiments and Results
	3.5.1 Landmark detection and ellipse fitting
	3.5.2 6DOF pose estimation results

	3.6 Conclusions

	4 Visual-SLAM-based Autonomous Landing of MAVs
	4.1 Introduction
	4.2 Related Work
	4.3 Monocular Visual SLAM for Autonomous MAVs
	4.3.1 Using PTAM in near-constant time
	4.3.2 Automatic initialization of the SLAM system

	4.4 Landing Site Detection and Pose Estimation
	4.4.1 Brief overview of the ORB features
	4.4.2 Applying multi-scale ORB to the SLAM framework
	4.4.3 Landing site detection by feature matching
	4.4.4 Locating the landing site within the map

	4.5 Experiments and Results
	4.5.1 Experimental setup
	4.5.2 Landing site position estimation results
	4.5.3 Autonomous navigation and landing results

	4.6 Outdoor Experience
	4.6.1 Outdoor experiment
	4.6.2 Discussions

	4.7 Conclusions and Discussions

	5 Multi-Camera Visual SLAM for Autonomous MAVs
	5.1 Introduction
	5.2 Related Work
	5.3 Multi-Camera Visual SLAM
	5.3.1 Multi-camera projection and pose tracking
	5.3.2 Optimizations in the multi-camera SLAM
	5.3.3 Pose update with multiple cameras
	5.3.4 Bundle adjustment with multiple cameras

	5.4 Implementation
	5.4.1 Organizing the map
	5.4.2 Pose tracking
	5.4.3 Mapping
	5.4.4 Automatic Initialization

	5.5 Experiments
	5.5.1 Experimental setup
	5.5.2 Enabling autonomous navigation
	5.5.3 Further evaluation through manual flight

	5.6 Conclusions and Discussions

	6 Towards Constant-Time Multi-Camera Visual SLAM for MAVs
	6.1 Introduction
	6.2 Related Work
	6.3 Back-End of the SLAM System
	6.3.1 The global map representation
	6.3.2 Loop-closure detection
	6.3.3 Adaptive-window pose-graph optimization

	6.4 Implementation
	6.4.1 The visual odometry
	6.4.2 The back-end

	6.5 Experiments
	6.5.1 Enabling autonomous navigation
	6.5.2 Further evaluations with manual flight data

	6.6 Conclusions and Discussions

	7 Conclusions
	7.1 Summary
	7.2 Future work

	Bibliography

