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Zusammenfassung

Das Thema dieser Dissertation sind Schrödingeroperatoren im adiabatis-
chen Limes. Der adiabatische Limes eines Faserbündels riemannscher Man-
nigfaltigkeiten bezeichnet dabei den Skalierungslimes, in dem das Verhält-
nis der Längen von Vektoren tangential an die Fasern und solchen orthog-
onal dazu proportional zu ε� 1 ist. Genauer gesagt werden Faserbündel
F →M

π→ B von Mannigfaltigkeiten mit Rand, wobei die typische Faser
F kompakt ist und die Basis B randlos, betrachtet. Ein solches Bündel
ist eine riemannsche Submersion wenn M und B riemannsche Metriken
tragen, so dass das Differenzial π∗ eine Isometrie TM/ kerπ∗ → TB in-
duziert. Die Metrik auf M hat dann die Form g = gF +π∗gB und der adi-
abatische Limes wird durch die Familie von Metriken gε = gF + ε−2π∗gB
beschrieben.

Auf Faserbündeln dieser Art werden nun Schrödingeroperatoren

H = −∆gε + V

mit Dirichlet-Randbedingungen und glattem Potential V ∈ C∞b (M) un-
tersucht. Dabei werden auch Störungen dieser durch Differenzialopera-
toren εH1, die etwa eine kleine Störung der Metrik gε modellieren können,
zugelassen.

Die Aufspaltung der Richtungen auf M in vertikale, welche tangential
an die Fasern sind, und horizontale, orthogonal dazu, führt zu einer Auf-
spaltung des Laplace-Operators

∆gε = ε2∆h + ∆F ,

wobei ∆F faserweise als der Laplace-Operator der induzierten Metrik
wirkt. Damit ist für jedes x ∈ B der Operator

HF (x) := −∆F |Fx + V
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auf der Faser Fx unabhängig von ε. Mit Dirichlet-Randbedingungen ist
dies ein selbstadjungierter Operator, dessen Spektrum wegen der Kompak-
theit der Faser eine unbeschränkte Folge von reellen Eigenwerten endlich-
er Entartung bildet. Ein Eigenband ist eine Funktion λ:B → R mit
λ(x) ∈ σ(HF (x)). Zu einem solchen Band gehört eine Projektion P auf
L2(M), welche faserweise durch die spektrale Projektion von HF (x) zu
λ(x) gegeben ist. Ist λ auf geeignete Weise isoliert vom Rest des Spek-
trums (siehe Kapitel 2, Voraussetzung 3), so ist λ stetig und auch P hängt
stetig von x ab (siehe Lemma 2.9). Das Bild von P besteht dann aus L2-
Schnitten in einem Vektorbündel E → B von endlichem Rang, dessen
Faser über x genau der λ(x)-Eigenraum von HF (x) ist.
In Kapitel 2 wird untersucht inwiefern H durch den adiabatischen Op-

erator Ha := PHP = −ε2P∆hP + λ0 auf L2(E) approximiert werden
kann. Eine solche Approximation kann noch verbessert werden durch die
Konstruktion einer super-adiabischen Projektion Pε, deren Differenz zu
P von der Ordnung ε ist. Unter Beschränktheitsannahmen an die Ge-
ometrie von (M, g) (siehe Voraussetzung 1) und H1 (siehe Vorausset-
zung 2) wird gezeigt, dass für geeignete Anfangsbedingungen die von H
erzeugte unitäre Gruppe sehr gut durch einen effektiven Operator auf
L2(E) beschrieben wird.
Theorem. Es gelten die Voraussetzungen 1-3 für (M, g), H und das
Eigenband λ. Dann existiert für alle N ∈ N und Λ > 0 eine Projektion Pε,
eine unitäre Abbildung Uε mit UεP = PεUε und Konstanten C, ε0 > 0,
so dass der effektive Operator Heff := U∗εPεHPεUε selbstadjungiert auf
U∗εPεD(H) ⊂ L2(E) ist und∥∥(e−iHt − Uεe−iHefftU∗ε

)
Pε1(−∞,Λ](H)

∥∥
L (H ) ≤ Cε

N+1 |t|

für alle ε ≤ ε0 gilt.
Des Weiteren werden bestimmte Teile des Spektrums von H durch den

selben effektiven Operator approximiert.
Theorem. Unter den Voraussetzungen des vorherigen Satzes existieren
für jedes δ > 0 Konstanten C und ε0 > 0, so dass für jedes µ ∈ σ(Heff)
mit µ ≤ Λ− δ und alle ε < ε0 gilt:

dist(µ, σ(H)) ≤ CεN+1 .

6
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Für den Spezialfall des Eigenbandes λ0(x) := min σ(HF (x)) wird sogar
das gesamte Spektrum von H unterhalb von

Λ1 := inf
x∈B

min
(
σ(HF (x)) \ λ0(x)

)
durch Heff approximiert, wie aus Theorem 2.20 folgt.

Theorem. Sei N ∈ N, Λ = Λ1 und Heff der entsprechende effektive
Operator. Sei −ε2∆h + εH1 ≥ −cε für ein c ≥ 0, dann gibt es für jedes
δ > 0 Konstanten C und ε0 > 0, so dass für alle ε < ε0 gilt

dist
(
σ(H) ∩ (−∞,Λ− δ], σ(Heff) ∩ (−∞,Λ− δ]

)
≤ CεN+1 .

In Kapitel 3 wird die allgemeine Theorie des vorherigen Kapitels anhand
von Beispielen konkretisiert und verfeinert. Dadurch zeigen sich Bezüge
zu einer reichhaltigen Literatur zu verschiedenen Aspekten des adiabatis-
chen Limes, die in Abschnitt 1.2.1 ausführlicher dargestellt wird. Es wird
gezeigt, dass bestimmte Arten von Einbettungen M ↪→ Rk zu Opera-
toren führen, die alle in Kapitel 2 verwendeten Voraussetzungen erfüllen.
Spezialfälle solcher Einbettungen wurden von einer Vielzahl von Autoren
studiert, wie ebenfalls in Abschnitt 1.2.1 erläutert wird. Im Besonderen
werden Laplace-Operatoren der von solchen Einbettungen induzierten Met-
riken, die dem Fall V = 0 entsprechen, behandelt. Das Augenmerk liegt
dabei auf dem Eigenband λ0 und der Asymptotik für niedrige Energien.
Diese wird in besonderem Maße durch den adiabatischen Operator Ha
bestimmt, wie aus der Analyse von Pε folgt (vergleiche Abschnitt 3.2).

Theorem. Sei Λ0 := infx∈B λ0(x) und 0 < α ≤ 2. Für jedes C > 0
existiert ε0 > 0, so dass für alle ε ≤ ε0

dist
(
σ(H)∩ (−∞,Λ0 +Cεα), σ(Ha)∩ (−∞,Λ0 +Cεα)

)
= O(ε2+α/2) .

Ist εαλ ein einfacher Eigenwert von Ha mit

dist(εαλ, σ(Ha) \ εα) ≥ Cλ > 0

dann gibt es einen einzigen einfachen Eigenwert εαµ von H mit
|µ− λ| = O(ε2).

7
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Eine natürliche Skala für die Betrachtung niedriger Energien ist somit
durch die typischen Abstände der Eigenwerte von Ha gegeben, falls diese
existieren. Ist λ0 konstant, so ist diese Skala durch α = 2 gegeben. Hat
hingegen λ0 ein einziges quadratisches Minimum, so verhalten sich die
niedrigen Eigenwerte von Ha wie die eines harmonischen Oszillators und
die passende Skala ist α = 1.
Der verbleibende Teil des Kapitels widmet sich der Untersuchung der

Eigenfunktionen von einfachen Eigenwerten, welche die Bedingungen des
letzten Theorems erfüllen, in den soeben beschriebenen Fällen α = 1, 2.
Zunächst wird bewiesen, dass diese in den Fällen α = 2, dimB ≤ 3
und α = 1, dimB = 1 gleichmäßig durch Eigenfunktionen von Ha ap-
proximiert werden. Anschließend wird dieses Ergebnis benutzt um die
Knotenmengen der Eigenfunktionen zu untersuchen. Diese sind für eine
Eigenfunktion ϕ definiert durch N (ϕ) = ϕ−1(0) ∩M \ ∂M . Das Studium
dieser Mengen ist ein klassisches Problem in der Theorie partieller Differ-
entialgleichungen. So bewies Courant (siehe [64]) eine obere Schranke and
die Anzahl der Knotengebiete, den Zusammenhangskomponenten vonM \
N (ϕ), und Melas zeigte für beschränkte, konvexe Gebiete D ⊂ R2, dass
N (ϕ1)∩∂D 6= ∅ für die erste angeregte Schwingung ϕ1 [52]. Quantitative
Varianten des letzteren Resultats von Jerison [35] und Grieser-Jerison [26]
beschreiben die Lage von N (ϕ) für konvexe Gebiete großer Exzentrizität.
Das verwandte Resultat von Freitas und Krejčiřík [18] beschreibt diese für
dünne Streifen. Eine ausführlichere Diskussion dieser Literatur findet sich
in Abschnitt 1.2.1.
In Abschnitt 3.3.2 wird gezeigt, dass die Knotenmengen sich im Wesent-

lichen nahe der Fasern (beziehungsweise des Urbildes unter π) über den
Knotenmengen der zugehörigen Eigenfunktionen von Ha befinden müssen
(siehe Sätze 3.24 und 3.26). Aus diesen Resultaten lassen sich einige Ko-
rollare über die Struktur der Knotenmengen und Knotengebiete ableiten.

Korollar. Sei λ0 konstant, M kompakt und dimB ≤ 3. Es existiert ein
ε-unabhängiger, selbstadjungierter Operator auf W 2(B) ⊂ L2(B) mit der
folgenden Eigenschaft: Ist µ ein einfacher Eigenwert von H0 mit normiert-
er Eigenfunktion ψ, so existiert ein einfacher Eigenwert ε2λ von H. Falls
Null ein regulärer Wert von ψ ist und 0 6= ϕ ∈ ker(H − ε2λ) so konvergiert
für ε → 0 die Menge N (ϕ) gegen π−1(N (ψ)) in der Hausdorff-Distanz
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kompakter Teilmengen. Ist zudem ∂M 6= ∅, so ist N (ϕ) ∩ ∂M 6= ∅.

Der Operator H0 ist hierbei explizit bestimmbar als der führende Teil
von Ha in einer Störungsentwicklung (siehe Seite 96). Für den Fall eines
quadratischen Minimums von λ0 und dimB = 1 sind alle niedrigen Eigen-
werte einfach und die Form der Eigenfunktionen vonHa weitgehend bekan-
nt, was zusätzliche Information über die Knotengebiete liefert.

Korollar. Das Eigenband λ0 habe ein eindeutiges quadratisches Mini-
mum und es sei dimB = 1. Es gibt für jedes J ∈ N ein ε0 > 0 so dass
für ε ≤ ε0 der Operator H mindestens J + 1 einfache Eigenwerte unter-
halb des wesentlichen Spektrums besitzt. Die zugehörigen Eigenfunktionen
{ϕj : 0 ≤ j ≤ J} seien nach aufsteigenden Eigenwerten geordnet, dann ist
für jedes 1 < j ≤ J : N (ϕj) ∩ ∂M 6= ∅ und für alle ungeraden j hat ϕj
genau j + 1 Knotengebiete.

Die Anzahl der Knotengebiete für ungerades j ist genau die obere
Schranke aus Courants Theorem. Diese wird also zumindest für jede zweite
der Eigenfunktion φj mit j ≤ J des Laplace-Operators auf (M, gε) angenom-
men. Für ein gegebenes Faserbündel über R oder S1 mit kompakten, be-
randeten Fasern lassen sich stets Metriken angeben, welche die Voraus-
setzungen dieses Korollars erfüllen. Es gibt also eine große Menge von
Beispielen in denen die Eigenfunktionen die dort genannten Eigenschaften
haben.

9
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Chapter 1

Introduction

In this thesis we study Schrödinger operators on ‘thin’ manifolds. These
are spaces in which certain dimensions are of magnitude ε� 1 compared
to others. The goal will be the derivation of asymptotics for various
properties of the Schrödinger operator

H := −∆ + V ,

such as its spectrum and the dynamics it generates.
Problems of this type arise in different contexts in mathematics and

physics. For example, models for the quantum mechanical motion of a
particle confined to a small ε-neighbourhood of some submanifold of R3

take this form. More generally one may think of a submanifold in Rk,
that could represent configurations of nuclei corresponding to different
molecules. The system is constrained to an ε-neighbourhood of this sub-
manifold by the electronic forces that bind the molecules. Understanding
the dynamics in these situations is the problem of constrained quantum
mechanics. This problem was studied by purely modelling the constrain-
ing forces near the submanifold, rather than restricting to a small neigh-
bourhood, by various authors [11, 20, 50, 53, 69]. We give a more detailed
discussion of how methods and results of these works relate to ours in
section 1.2.1.

A similar picture is of interest for the heat equation. The Laplacian with
Dirichlet conditions on the boundary of a thin tube around a submanifold
models the conduction of heat in this thin wire in an environment of
fixed temperature. The relation of the heat equation in the wire to an
effective equation on the lower dimensional submanifold was studied for
one-dimensional submanifolds of Riemannian manifolds by Wittich [71].

11



Chapter 1 Introduction

For neighbourhoods of geodesics in surfaces the long-time behaviour was
investigated by Krejčiřík and Kolb [40].
On the other hand, the spectral properties of the Laplacian on Rieman-

nian manifolds, the case V = 0 for the Schrödinger operator, and their
connection to the geometry is in itself an interesting subject. In this field
the investigation of special classes, like thin manifolds, may often serve
to construct examples with specific properties. For example one can find
instances of non-compact manifolds with boundary for which the Lapla-
cian has eigenvalues below the essential spectrum. This was demonstrated
in [7, 9, 10, 16, 21, 24, 47] (and references therein) for a plethora of dif-
ferent geometries. All of these geometries have in common that they are
built as some sort of tubular neighbourhood of a submanifold in Rk, on
the boundary of which Dirichlet conditions are imposed. In [43] a sim-
ilar result is obtained for a curve on a surface. These quantum tubes
may also represent constrained quantum systems, for which the results
show existence of bound states. An important step in proving existence
of eigenvalues below the essential spectrum is to show its stability under
perturbations of the geometry, which is separately studied in [44]. The
question whether the essential spectrum can be empty for non-compact
manifolds was also studied for different geometries without reference to
embeddings. In [1, 3, 5, 38] the authors give criteria for the discreteness
of the spectrum on manifolds with a structure similar to the one we will
consider.
Given that there are eigenvalues, which is always the case for compact

manifolds, it is natural to ask about their asymptotic behaviour in ε.
This was studied in [6, 14, 15, 16, 17, 19, 29, 42] (and references therein)
for thin tubes. Finally it is possible to approximate eigenfunctions and
obtain information on their set of zeros, the nodal set, as done in [18, 26,
36, 35]. We will give some perspective on these results in section 1.2.1,
after introducing the necessary language.
We should also mention that there are many results for similar problems

that will not be treated in this work. These include results for tubular
neighbourhoods of graphs, boundary conditions of Neumann or Robin
type and magnetic Laplacians (or non-trivial connections on a line bundle
over the manifold). The literature on these subjects is covered in the
review by Grieser [25] and the book of Post [59]. Foliated manifolds are

12



1.1 The framework

discussed by Kordyukov [41]. There are also results concerning the limit of
the Hodge Laplacian on differential forms [48, 49, 51] and Dirac operators
(see [4, 12, 23] and references therein). The focus of these works are
topological invariants and we will not obtain any results in this direction.
Nevertheless we expect that the formulation of our results in a natural
geometric language should lend itself to such generalisations.

The aim of this thesis will be to study the underlying principle of the
approximations made in basically all the works on this subject. We aim
at identifying natural conditions on the operator and the geometry for its
validity and presenting our results in a form that provides insight into the
many different aspects of this asymptotic limit.

This principle is the fact that a thin tube or manifold is an adiabatic
problem. The different scale of the small dimensions compared to the
remaining ones can be expressed by saying that objects associated with
the small dimensions, like a Riemannian metric or an eigenfunction of the
Laplacian, vary slowly when moving along the other directions. In the
‘limit’ ε→ 0 they do not vary at all, becoming adiabatic invariants. This
can be exploited, say in a spectral problem, by using trial functions that
are of a fixed form in the small dimensions. One is then left with a prob-
lem that mainly sees the remaining dimensions as well as some simplified
effect of the presence of the small ones. This leads to the concept of an
effective operator representing the original problem in a simplified way.
Such an operator has the potential of capturing many different features
of the original problem, including its spectrum and dynamics, so this is
the formulation we will use.

We will not try to emulate or generalise all the details of the previous
literature, but we will see that some of the reasoning behind these results
may be applied to a very wide class of problems. Better understanding
of the underlying structure of the arguments may also prove fruitful for
those related problems we do not consider here.

1.1 The framework
In this section we give a short introduction to the framework we will work
in. We begin by discussing fibre bundles and Riemannian submersions as

13



Chapter 1 Introduction

well as their Laplacians. We then explain how certain shrinking families
of embedded fibre bundles carry induced metrics that are close to Rieman-
nian submersions. These metrics provide an important class of examples
for the general theory we will develop in chapter 2. Finally we review the
principles of adiabatic perturbation theory.
The reader familiar with these concepts may want to skip directly to

the summary of the results and their relation to the existing literature in
section 1.2.

1.1.1 Riemannian submersions
The spaceM on which all our analysis will take place is a smooth manifold
with boundary that has the structure of a fibre bundle.

Definition 1.1. Let M,B be smooth manifolds (with boundary or not).
A smooth map π:M → B is a fibre bundle over B with fibre F if π is
onto and every x in B has an open neighbourhood U for which π−1(U) is
diffeomorphic to U × F and the diagram

π−1(U) - U × F

U

pr1�
π -

commutes.

The fibre space F ∼= Fx := π−1(x) will always be a compact manifold
with smooth boundary of dimension n. The base space B need not be
compact, its dimension will be called d. Of course the boundary of F
might be empty, but in any case B shall not have a boundary. We will
consider special Riemannian metrics on M and scale them in such a way
that F is small compared to B.

Definition 1.2. Let g, gB be Riemannian metrics on M and B respec-
tively. A fibre bundle π:M → B is a Riemannian submersion if the
differential π∗ induces an isometry TM/ kerπ∗ → TB.

In the usual terminology, a submersion would only require the differ-
ential of π to have maximal rank. Hermann [33] showed that if M is

14



1.1 The framework

geodesically complete and π∗ induces an isometry this already implies
that π:M → B is a fibre bundle. Since we also want to consider mani-
folds with boundary we will have to explicitly add this assumption.

We now discuss some of the basic properties of Riemannian submer-
sions. For a more detailed exposition see O’Neill [55] and the book of
Lang [45]. Since π∗ has maximal rank it splits the tangent bundle of M

TM = kerπ∗ ⊕ (kerπ∗)⊥ =: TF ⊕NF .

The vectors in the kernel of π∗ are those tangent to the fibres. Their
span TF is the vertical subbundle of TM . Its orthogonal complement
with respect to g is the horizontal subbundle NF . It is isomorphic to
π∗TB for any metric g. If π:M → B is a Riemannian submersion the
metric can be written as

g = gF + π∗gB ,

with gF (v, ·) = 0 for any v ∈ NF . This means that lengths of horizontal
vectors depend only on their projections. The fibre metric gF is just the
restriction of g to the fibres, but note that this may differ for fibres over
distinct points of B. A metric g of this form is uniquely determined by the
vertical part gF , the metric on the base gB and the horizontal subbundle
NF .

Example 1.3.

• For any two Riemannian manifolds (F, gF ), (B, gB) the Cartesian
product with the natural product metric (B × F, gB + gF ) is a
Riemannian submersion. Given a smooth and positive function
f :B → R the warped product is the Riemannian manifold (B ×
F, gB + fgF ). This is a Riemannian submersion with the projec-
tion to the first factor, but not to the second.

• Let F be a compact Lie group and M a smooth manifold (without
boundary) with a smooth and free right action %:M ×F →M of F .
It can be shown (see [46]) that the space of F -orbits M/F =: B is a
smooth manifold and the natural projection π:M → B makes M a

15



Chapter 1 Introduction

fibre bundle with fibres diffeomorphic to F . This is an F -principal
bundle over B.
Let f denote the Lie algebra of F . For every ϕ ∈ f the map

M → TM , y 7→ Xϕ := d
dt
∣∣
t=0%

(
y, exp(tϕ)

)
defines a vector field on M tangent to the fibres Xϕ ∈ Γ(TF ). Let
Ad be the adjoint representation of F on its Lie algebra. A one-
form ω ∈ Γ(T ∗M) ⊗ f is called a principal connection on M if it is
F -equivariant (%(·, f)∗ω = Adf−1ω) and it satisfies ω(Xϕ) = ϕ for
every ϕ ∈ f. One easily checks that the second condition implies
TM = kerω ⊕ kerπ∗. Given such a connection, a smooth map
gF :B → f∗ ⊗ f∗ whose image is symmetric and positive definite for
every x ∈ B, and a Riemannian metric gB on B we can define a
Riemannian metric on M by setting

g
(
Xy, Xy

)
:= gF |π(y)(ω(Xy), ω(Xy)

)
+ gB(π∗Xy, π∗Xy

)
,

for y ∈ M and X ∈ Γ(TM). Any metric constructed in this way is
a Riemannian submersion with NF = kerω.

A vector field X̃ ∈ Γ(TM) is a lift of X ∈ Γ(TB) if π∗X̃ = X.

Lemma 1.4. Let X ∈ Γ(TB), X̃ a lift of X and Y ∈ Γ(TM).

1) If X̂ is also a lift of X then X̃ − X̂ is vertical.

2) X has a unique horizontal lift X∗.

3) π∗[X̃, Y ] = [X,π∗Y ].

4) If Y is vertical then so is [X̃, Y ].

Proof. The first claim follows immediately from π∗(X̃ − X̂) = 0 and
TF = kerπ∗.
Given a metric, a horizontal lift may be constructed from X̃ by subtract-

ing its projection to TF . For two distinct horizontal lifts the difference
must be vertical by 1), but then it must be zero since the projections of
both fields to TF vanish.

16



1.1 The framework

If ∂M = ∅ the third claim is a consequence of the fact that the flow of
X̃ lifts the flow of X. On the other hand if the flow of X̃ does not exist
for positive times in a point p ∈ ∂M then the flow of −X̃ must exist in
p and [X̃, Y ]p is defined as the negative of the Lie derivative of Y along
−X̃. The claim then follows from linearity of π∗.
The last statement is an immediate consequence of the third.

For two fields X,Y ∈ Γ(TB) the quantity

Ω(X,Y ) := [X∗, Y ∗]− [X,Y ]∗

is a vertical vector field. The tensor Ω is the integrability tensor of NF .
Its vanishing implies the existence of submanifolds of M tangent to NF ,
hence integrability, by Frobenius’ theorem.

Lemma 1.5. Let X,Y ∈ Γ(TB) and let ∇ denote the Levi-Cività con-
nections of g and gB where appropriate, then

∇X∗Y ∗ = (∇XY )∗ + 1
2Ω(X,Y ) .

Proof. This follows directly from the Koszul formula, see [55] for details.

Now consider the rescaled metric

gε := gF + ε−2π∗gB . (1.1)

In this scaling F is not of size ε, but it is small compared to B, where
lengths grow as ε−1. The equivalent scaling ε2gF + π∗gB makes the limit
ε→ 0 appear more singular and we will not consider it here.

It is instructive to calculate the explicit ε-dependence on of some fun-
damental geometric quantities associated with gε.

Lemma 1.6. Let η, ηε be the mean curvature vector of the fibres with
respect to g and gε. Then ηε = ε2η.

17



Chapter 1 Introduction

Proof. Let U ⊂ M be open and chosen so that there are orthonormal
frames (Yi)i≤n of TF |U and (Xj)j≤d of TB|π(U). Then (εX∗j )j≤d is or-
thonormal with respect to gε and by the Koszul formula

ηε =
∑
i,j

gε(∇εYiYi, εX
∗
j )εX∗j

= ε2
∑
i,j

1
2

(
2Yi gε(Yi, X∗j )︸ ︷︷ ︸

=0

−X∗j gε(Yi, Yi)︸ ︷︷ ︸
=0

+gε(X∗j , [Yi, Yi]︸ ︷︷ ︸
=0

)

+ 2gε(Yi, [X∗j , Yi])
)
X∗j

= ε2
∑
i,j

gF (Yi, [X∗j , Yi])X∗j = ε2η .

When ε→ 0 these quantities converge to those of the product
(Fx, gFx)× (B, gB) for every x, so M looks increasingly ‘straight’.

1.1.2 The Laplacian
Let ∆gε be the Laplace-Beltrami operator of the rescaled submersion met-
ric gε. We calculate the splitting of this operator into horizontal and
vertical parts as well as its dependence on ε following Lang [45].
Choose a local orthonormal frame of TM consisting of vertical fields

(Yi)i≤n and horizontal lifts (εX∗j )j≤d (the Xj have gB-length one). We
then have

∆gε = trgε∇2 =
∑
i≤n

Yi ◦ Yi −∇YiYi + ε2
∑
j≤d

X∗j ◦X∗j −∇X∗jX
∗
j

=
∑
i≤n

Yi ◦ Yi −∇FYiYi − II (Yi, Yi) + ε2
∑
j≤d

X∗j ◦X∗j − (∇XjXj)∗

= trgF (∇F )2 + ε2(trπ∗gB∇2 − η)
=: ∆F + ε2∆h . (1.2)

Here η is the mean curvature vector of the fibres with ε = 1 as in
lemma 1.6. The fibre Laplacian ∆F is clearly just the Laplacian of the
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1.1 The framework

restricted metric on each fibre (Fx, gFx). If ιx:F → Fx is an embedding,
it satisfies ι∗x∆F f = ∆gFx

ι∗xf .
The first term of the horizontal operator is a lift of the Laplacian on B

in the sense that trπ∗gB∇2(π∗f) = π∗∆gBf . This is because ∇X∗
j
X∗j =

(∇XjXj)∗ by 1.5.

Example 1.7. Using spherical polar coordinates we have R3 \ {0} ∼=
(0,∞) × S2. This fibre bundle over (0,∞) is a Riemannian submersion
for the Euclidean metrics on R3 and (0,∞). The Laplacian in these coor-
dinates is of course

∆R3 = 1
r2 ∆S2 + ∂2

∂r2 + 2
r

∂

∂r
,

while the mean curvature vector of the sphere of radius r is exactly
η = − 2

r∂r.

Remark 1.8. This formula for ∆gε may also be obtained using integra-
tion by parts. Take f ∈ C∞0 (M \ ∂M) and let vol be the volume density
of gε, then

−
∫
M

f∆gεf vol =
∫
M

gε(df, df) vol

=
∫
M

gF (df, df) + ε2π∗gB(df, df) vol

=: −
∫
M

f(∆F + ε2∆h)f vol .

Noting that locally vol = vol(gFx) ⊗ π∗ vol(ε−2gB), and that the hori-
zontal derivative of vol(gFx) equals −η by the variation of area formula,
we obtain the same expressions for ∆F and ∆h, in agreement with the
general formula.

In absence of a boundary the horizontal and vertical parts of the Lapla-
cian commute if and only if the fibres are totally geodesic (see [8]). Given
a complete horizontal vector field X one can calculate the Lie derivative
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LX∆F to be

d
dt

∣∣∣∣
t=0

∫
Fx

f
(
(Φt∗X∆F )f

)
volFx = d

dt

∣∣∣∣
t=0

∫
Fx

f∆Φt∗
X
gF f volFx

= − d
dt

∣∣∣∣
t=0

∫
Fx

(Φt∗XgF )(df, df) volFx

= −2
∫
Fx

gF (II (grad f, grad f) , X) volFx . (1.3)

The last step holds because

(LXgF )(df, df) = XgF (df, df)− 2gF (LXdf, df)
= −XgF (grad f, grad f) + 2gF (grad f, [X, grad f ]) ,

which equals 2gF (∇grad f grad f,X) = 2g(II (grad f, grad f) , X) by the
Koszul formula.
Here we can note that if we take the Lie derivative along εX, which has

gε-length of order one, the operator equals ε-times that for ε = 1. In this
sense the fibre Laplacian is slowly varying in the horizontal direction in
the metric gε.
In the presence of a boundary one needs to be more careful. For once

the flow of X might not exist, and even if it does the meaning of LX∆F

depends on the space of functions it is defined on (see example 2.2).

1.1.3 Embeddings and their induced metrics
Often M is given as an ε-neighbourhood of a submanifold of Rk rather
than an abstract fibre bundle. Here we sketch how such a situation may
be treated within our framework. The precise technical conditions are
discussed in section 3.1.1 in a more general situation. A more detailed
exposition will appear in [30].
The key observation is that the induced metric on a sufficiently ‘thin’

embedded fibre bundle is almost a Riemannian submersion. Its Laplacian
can thus be treated as a perturbation of ∆gε.
Let α:B → Rk be an embedding and NB the normal bundle. LetM be

a fibre bundle over B as described above and β:M → NB an embedding
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1.1 The framework

that respects the projections, making the diagram

M
β- NB

B

π
? id- B

πNB
?

commute. We get a family of maps Ψε:M → Rk by identifying Rk with
its tangent space and setting

Ψε(x) := α(π(x)) + εβ(x) .

In the setting we consider, we may assume without loss of generality that
these maps are embeddings for ε ≤ 1. With this construction bothM and
B naturally obtain metrics Gε := ε−2Ψ∗εδ and gB := α∗δ, induced by the
Euclidean metric δ on Rk. In general π: (M,Gε)→ (B, gB) will not be a
Riemannian submersion.

The expression for Gε can be derived in two steps. The first consists in
calculating the metric on (an open subset of) NB induced by the map ν 7→
α(π(ν))+ν. By identification of Tν(NBx), the vertical subspace of TNBx,
with NBx, the differential in the vertical direction is just the identity.
Thus the vertical metric on NB is flat. To calculate the horizontal part
we need to calculate the derivative of α(π(x)) + ν in directions tangent to
B, which yields α∗+∇ν. The projection of ∇ν to TB equals the negative
of the Weingarten map W , while the projection to NB is vertical. The
horizontal part of the induced metric on NB is then given by

G̃(Xh, Y h) = gB
(
(1−W (ν))X, (1−W (ν))Y

)
,

for horizontal lifts Xh, Y h of X,Y ∈ Γ(TB). The leading part is the
Sasaki metric defined by gB , δ and the given horizontal lift. It makes NB
a Riemannian submersion with totally geodesic fibres.

Now if the codimension of M in Rk is zero, F is given by a compact
domain of Rn and restricting G to β(M) is trivial. The complete, rescaled
metric is thus

Gε = ε−2π∗gB
(
(1− εβ∗W ) · , (1− εβ∗W ) ·

)
+ δ .
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In higher codimension similar arguments may be applied to β∗, see sec-
tion 3.1.1. Again the metric takes the form

Gε = gε +O(ε) ,

where gε is of the form (1.1) with gB = α∗δ. The remainder is of order ε
with respect to this metric, although it contains horizontal terms with a
prefactor ε−1, since it satisfies

|(Gε − gε)(X,X)| ≤ Cεgε(X,X) (1.4)

for some constant C > 0. Because of its simple form we will try to use
only geometric quantities related to the metric gε, while dealing with the
remaining terms only in form of differential operators that perturb the
Laplacian. The Dirichlet Laplacian of Gε is given by the quadratic form

−
∫
M

f∆Gεf volGε =
∫
Gε(df, df) volGε ,

for smooth functions f that vanish on ∂M . In a first step we substitute the
volume measure ofGε by that of gε by applying the unitary transformation

Uρ:L2(M, volgε)→ L2(M, volGε) f 7→ ρ−1/2f ,

where ρ is the density ρ := volGε/volgε . This gives (see [69, 71] for details)

−
∫
M

fU∗ρ∆GεUρf volgε =
∫
M

Gε(df, df) + Vρf
2 volgε

with

Vρ = 1
4Gε(d log ρ, d log ρ) + 1

2 divgε gradGε log ρ . (1.5)

The potential Vρ is often called the geometric potential, since it captures
the geometry of the embedding of M into Rk.

Example 1.9. Let B have dimension one, hence B = R or B = S1, and
be parametrised by arc length s. Let M have codimension zero and let
κ(s) = |∂2

sα| denote the ‘curvature’. Then a simple calculation gives

Gε = ε−2(1 + ενκ(s))2ds2 + dν2
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1.1 The framework

and consequently

ρ =
(
1 + ενκ(s)

)
.

Then ∂ν log ρ = εκρ−1 and ∂s log ρ = ε(∂sκ)νρ−1 and the potential is
given by

Vρ = 1
4 (∂ν log ρ)2 + 1

2∂
2
ν log ρ+ 1

4ε
2ρ−2(∂s log ρ)2 + 1

2ε
2∂sρ

−2∂s log ρ
= ρ−2(− 1

4ε
2κ2 − 5

4ε
2ρ−2(∂sρ)2 + 1

2ε
2ρ−1∂2

sρ
)

= − 1
4ε

2κ2 +O(ε3) . (1.6)

Take note that the leading contribution comes from the vertical derivatives
only, since the horizontal derivatives all carry an additional prefactor ε
from the metric.

If the codimension of M is zero we always have Vρ = O(ε2), while in
general the expansion of Gε only implies Vρ = O(ε) (see also remark 3.5).
Denote by εG̃ε := Gε − gε ∈ Γ(TM ⊗ TM), then we get the formula

−U∗ρ∆GεUρf = −∆gεf − ε divgε
(
G̃ε(df, ·)

)
+ Vρf . (1.7)

Note that divgε
(
G̃ε(df, ·)

)
is a differential operator that is bounded by

∆gε because of the bound (1.4) on the coefficients. It is the operator
−U∗ρ∆GεUρ that we will analyse since it highlights the important contri-
bution ∆gε .

1.1.4 Fundamentals of the adiabatic approximation
Take the negative Laplacian −∆gε of a scaled family (1.1) of Riemannian
submersions. It is an essentially self-adjoint non-negative operator on
those smooth functions that vanish on ∂M . For fixed x ∈ B the fibre op-
erator −∆Fx has eigenvalues 0 ≤ λ0(x) < λ1(x) < . . . of finite multiplicity
accumulating at infinity. The operator −∆F can thus be expressed as a
multiplication operator with the functions λj(x), the eigenbands. These
come with projections P , which are given for fixed λ and x by the projec-
tion onto the eigenspace of −∆Fx with eigenvalue λ(x), hence satisfying

−∆FxP = λ(x) .
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The adiabatic approximation (with respect to λ) consists in projecting to
the image of P and considering the operator

Ha := −P∆gεP = −ε2P∆hP + λ(x) .

Showing validity of this approximation amounts to proving that

−∆gε −Ha = O(ε) ,

in a suitable sense. Actually since Ha(1−P ) = 0 such an estimate cannot
be true in general but only on, or close to, the image of P . On the image
of P the equation can equivalently be written as

(−∆gε −Ha)P = −∆gεP + P∆gεP = [−ε2∆h, P ]P = O(ε) .

If λ is separated from the other bands (see chapter 2, condition 3), P is
continuous in x (see lemma 2.9) and its image consists of sections of a
vector bundle E → B, whose fibres are exactly the λ(x)-eigenspaces of
−∆Fx . In these circumstances we can locally express the projection as
P (x) = 1(λ−δ,λ+δ)(∆Fx). The term we want to estimate depends on the
commutator of P with vector fields of the form εX∗. This commutator
may be written as a Lie derivative along εX∗ and since P (x) is a function
of ∆Fx its boundedness depends on that of (1.3).
If all the eigenbands ofHF are separated from each other, this procedure

may be applied to every one of them. This leads to a total decomposition
of the problem into separate equations for each band λj .

1.2 Overview of results
The object we analyse in this thesis is the Schrödinger operator

H := −∆gε + εH1 + V

on a fibre bundle F →M
π→ B with a rescaled family of metrics gε (1.1).

The potential V is assumed to be smooth and bounded and the correction
H1 is a smooth and symmetric differential operator relatively bounded by
∆gε (see chapter 2, condition 2). In particular the operators (1.7) arising
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1.2 Overview of results

from a shrinking family of embeddings of M are of this form. If M has a
boundary we impose Dirichlet boundary conditions, so the domain of H
is the space

D(H) = {ψ ∈W 2(M) : ψ|∂M = 0} := W 2(M)∩W 1
0 (M) ⊂ L2(M, gε) .

For a separated eigenband λ of the fibre operator

HF := −∆F + V

we show validity of the adiabatic approximation under reasonable bound-
edness assumptions on the geometry ofM (see chapter 2, condition 1). We
improve this approximation by constructing a modified super-adiabatic
projection Pε that is close to the original P . In this way we obtain for
any N ∈ N an effective operator Heff , densely defined on L2(E), that is
almost unitarily equivalent to H on the correspondent subspace:

(UHeffU
∗ −H)Pε = O(εN ) .

This holds true for bounded energies of H. Subsequently we show approx-
imation of the unitary group, proving in theorem 2.17 that

(e−iHt − Ue−iHefftU∗)Pε = O(εN )

holds for bounded times and energies. Concerning the spectrum of H,
we see in theorem 2.18 that for any µ ∈ σ(Heff) there is µ̃ ∈ σ(H) with
|µ− µ̃| = O(εN ). Since E is a vector bundle of finite rank over B this
may greatly reduce the number of dimensions relevant to the solution of
the problem. While the original problem is a differential equation in n+d

dimensions, the effective equation is a finite system of equations in only d
dimensions.

The improvement on the adiabatic approximation is important for dif-
ferent reasons. On the one hand the scaling makes the base grow as ε→ 0,
so the eigenvalues of both H and Heff will tend to accumulate. Hence
to make meaningful statements about the spectrum, the approximation
needs to be better than the rate at which they converge. Additionally the
growth of B means that dynamical effects take increasingly long times,
t ≈ ε−1, to manifest themselves. On the other hand it is of general inter-
est to see whether the approximation breaks down beyond a certain point.
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The knowledge that it can accommodate all orders gives insight into the
true nature of the errors. We exploit this in section 3.2, where we use the
existence of the super-adiabatic projections to improve error bounds for
the adiabatic approximation.

So far the eigenband λ on which the construction is based was arbitrary,
under the sole condition of being separated from the rest of the spectrum
of HF . If one specialises to the ground state band λ0(x) := min σ(HF (x)),
and energies below the infimum of the next eigenband of HF , more de-
tailed results can be obtained. Since at these energies only one eigenband
is relevant there is no need to project to the image of Pε and the approx-
imation is valid in the form

UHeffU
∗ −H = O(εN ) ,

as proved in theorem 2.20. Thus the correspondence of spectra between
H and Heff is reciprocal. This is in contrast to the situation at higher
energies, where an eigenvalue µ of H might be associated with different
eigenbands. Hence in that case the spectrum of Heff approximates that
of H, but not the other way around.
In section 3.2 we further analyse the adiabatic approximation at energies

close to the bottom of the spectrum of H. In this regime the behaviour is
dominated by that of the ground state band λ0. If λ0 is constant, all the
terms of Ha carry the prefactor ε2, so this is the characteristic scale at
small energies. On this scale contributions by certain corrections in Heff ,
like the geometric potential (1.5), are no longer small and determine the
properties of Ha at leading order. If on the other hand λ has a unique,
non-degenerate minimum, the leading part of Heff resembles an harmonic
oscillator. From this follows existence of eigenvalues with spacing of order
ε close to the ground state. More generally we investigate energies of order
εα above infx∈B λ0(x) and show that the spectra ofH andHa approximate
each other with an error of order ε2+α/2 (proposition 3.11). If there are
simple eigenvalues with spacing of order εα they are even approximated
to order ε2+α (theorem 3.12).
At these low energies we also show approximation of eigenfunctions.

In section 3.3 we apply this in special situations with low-dimensional
base to study eigenfunctions of H in more detail. In particular we locate
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the regions where they may change sign, gaining information on their
nodal sets in section 3.3.2. This relates to possible generalisations of the
nodal line conjecture to manifolds with boundary and provides examples
of manifolds where a large number of eigenfunctions have the maximal
number of nodal domains (see also the discussion on page 33).

1.2.1 Comparison to existing literature
Here we give a brief review of existing literature on the topic and its
relation to our results. Since the focus of these works is on diverse aspects
of the adiabatic problem we will discuss some of these aspects separately.

Geometries

In the existing literature the problem is often formulated starting from
some sort of tubular neighbourhood of an embedded submanifold of Rk.
This leads to a fibre bundle M with base diffeomorphic to that submani-
fold, as described in section 1.1.3.

The most commonly treated case is B = R or B = I ⊂ R an interval [6,
7, 10, 14, 15, 16, 19, 21, 24], which is usually referred to as a quantum
waveguide. The fibre of such a tube is a compact domain whose dimension
is the codimension of B. Topologically M is the product of a finite or
infinite interval and a compact domain. Since we assume the base to
be geodesically complete we will not cover the case of a finite interval,
but additionally we may admit closed waveguides with B = S1. This
seemingly simple situation already allows for several different effects that
depend on the codimension of B and are encoded in the metric of M .
The authors of [7, 19] treat a tubular neighbourhood of varying width of
the x-axis in R2. On M = R × [0, 1] this can be represented by a metric
in which the varying width is encoded by scaling the metric of each fibre
and the choice of horizontal directions (see example 2.2). Conversely
Goldstone and Jaffe [24] as well as Duclos and Exner ([16] and earlier
works) consider curves in R2 and R3 that are not straight lines. The
tubular neighbourhood has a fixed cross-section, so the fibres, which are
given by a compact domain, are all isometric. The horizontal part of
the metric however acquires corrections due to the ‘bending’ of the curve
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(see example 1.9). The similar case with an embedding into a complete,
non-compact surface, which leads to a slightly different metric on M =
R × [−1, 1] was treated by Krejčiřík [43] and, with a different question
in mind, for neighbourhoods of geodesics by Krejčiřík and Kolb [40]. For
the treatment of the same situation in R3 the additional condition that
the cross-section does not twist against the curve is imposed. This can be
expressed by requiring that for given x ∈ B, the plane in R3 containing
the fibre Fx intersects the boundary of M normally, or equivalently that
the horizontal bundle NF ⊂ TM be tangent to ∂M . The analogous
problem in arbitrary codimension is treated in [10]. The assumption that
the fibre does not twist together with the fact that they are isometric leads
to a situation in which the variation of the fibre eigenfunctions along the
horizontal directions is trivial. Thus the only reason the problem does
not decouple exactly into the vertical and horizontal equations are the
corrections to the metric given in example 1.9. Without the assumption
of no twisting the problem is analysed in [6, 14, 15, 21]. De Oliveira and
Verri [15] and Gadyl’shin [21] simultaneously allow for fibres of varying
size.
The results for bases of higher dimensions are far less detailed. In [9]

and earlier works the authors study embeddings that make the base a
complete and asymptotically flat two-dimensional surface in R3. Apart
from these restrictions, B may have arbitrary topology and M is given by
a neighbourhood of zero with fixed width in the normal bundle of B. Lin
and Lu [47] consider special submanifolds of Rk of arbitrary dimension
and codimension with asymptotically flat complete metrics. Here too,
M is a neighbourhood of zero in NB and the fibre is an n-dimensional
ball. Wittich [71] treats tubular neighbourhoods of compact manifolds
in a Riemannian manifold (A, gA) whose fibres are geodesic balls in the
normal directions (see also remark 3.6). In all of these works there is no
assumption forbidding twisting, but its effects are suppressed due to the
(approximate) rotational symmetry of the fibre.
More general manifolds have been considered with metrics that are of

a simpler structure than those arising from embeddings. In this context
one is usually concerned with closed fibres. Baider [1] works with warped
products (see example 1.3), Kleine [38] treats more general metrics on
manifolds of the form R+ × F and the authors of [3, 5] study Rieman-
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nian submersions, especially with fibres whose mean curvature vector is a
horizontal lift. The works [1, 5, 3, 38] derive conditions for the Laplacian
on a non-compact M to have discrete spectrum. These will not be satis-
fied under our technical assumptions (chapter 2, condition 1), since they
require non-uniform behaviour of the geometry.

Froese and Herbst [20] as well as Teufel and Wachsmuth [69] study lo-
calisation to submanifolds through potentials rather than boundary con-
ditions. Because of the localisation close to α(B) they conveniently refor-
mulate the problem on the normal bundle of B. In this sense the structure
of the problem is very similar, with M = NB and a potential V 6= 0 of
a form that gives localised eigenfunctions of HF = −∆F + V . In [20]
B is assumed to be a compact (without boundary) submanifold of Rk,
while in [69] the base and the ambient space in which it is embedded are,
apart from technical assumptions, basically arbitrary complete Rieman-
nian manifolds. The leading order of the metric on NB arising in this
situation is the Sasaki metric, which is a Riemannian submersion with
totally geodesic fibres.

Our approach considerably generalises the geometries that have been
considered in the literature. This shows that a large class of problems
have the sufficient structure for adiabatic techniques to be applicable.
Our results also complement the previously studied quantum waveguides
by allowing for generic deformations of the fibres, as opposed to scaling
and twisting only. For example one may think of deforming a disk into
an elliptic cross-section along the waveguide.

Effective operators

Many of the authors cited in above discussion explicitly derive an effective
operator, mostly for the ground state band. The sense in which this
operator is effective may be that it asymptotically describes the spectrum
or dynamics of H, or that it is the ε → 0 limit of H in the sense of
quadratic forms or resolvents. It is important to understand that to have
true convergence one needs a candidate limiting object independent of ε.
Since the most simple form of the adiabatic operator is

Ha = −ε2P∆hP + λ
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one can not hope to find such an object if λ does not have simple scaling
properties. Hence in general the effective operator will depend on ε and
approximate H in the asymptotic regime without having a limit as ε→ 0.
For quantum waveguides with isometric fibres, λ is of course constant

and may be subtracted from the equation. Since the leading contribution
from the potential (1.6) is Vρ = −ε2κ2/4 +O(ε3) we can rescale energies
by ε−2 and obtain the candidate for a limiting operator

H0 = −P∆hP − κ2/4 .

Note that this operator also accounts for the effects of possible twisting
of the waveguide, which manifest themselves in the difference of P∆hP

and the Laplacian on the base. For the ground state band, the authors
of [6, 16] show convergence of the resolvent of ε−2H to that of the can-
didate operator H0. De Oliveira [14] and Wittich [71] prove convergence
of quadratic forms, which in general only implies strong convergence of
resolvents. For a compact base the result of [14] reduces to that of [6].
If λ is not constant but the behaviour near its minima is known one can

also determine the correct scaling α of the eigenvalues of Ha. Rescaling by
ε−α then gives a limiting operator. In [15, 19] convergence of resolvents
in norm is shown for these operators. In [15] this scale is α = 1, because λ
has a unique non-degenerate minimum. The authors note that the effects
of the embedding of B, such as twisting and bending, are suppressed on
this energy scale. The limiting operator is, after rescaling s 7→ ε1/2s,

H0 = −∂2
s + a2s2 .

Convergence of resolvents implies convergence of spectra and eigenfunc-
tions. The resulting statements are thus closely related to our analysis of
the spectrum at the appropriate energy scale in section 3.2. In partic-
ular [16, theorem 5.6] gives a statement for the eigenvalues. It derives
mutual correspondence of discrete spectra (see proposition 3.11) and de-
termines the correction to the eigenvalue asymptotics given by the adia-
batic operator to be of order ε4 in the rescaled energies. This statement is
stronger than our general result 3.12, which only gives an error of O(ε2).
This is possible under the conditions of isometric fibres and no twisting
because the fibre-eigenfunctions do not vary and the leading order of the
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error vanishes. Our result on the validity of the adiabatic approximation
improves the asymptotics shown in [15, 19] by including the subleading
terms, due to e.g. twisting and bending, as well as an additional differ-
ential operator due to the correction of the metric. These can be treated
using standard perturbation theory for Ha to obtain expansions of eigen-
values and eigenfunctions beyond the leading order established by the
resolvent limit.

Strong convergence of resolvents also implies the strong convergence of
unitary groups (see [61, theorem VIII.21]). This holds uniformly in time
for t ≤ T , so convergence of ε−αH toH0 in this sense shows approximation
of the dynamics for finite times. In our scaling this corresponds to times
of order ε−α, but with energies of order εα. This is too short to see global
effects because lengths in B still grow like ε−1.

Froese and Herbst [20] derive an effective operator governing the time
evolution starting from an harmonic confining potential of fixed form.
Their scaling corresponds to the case α = 2 discussed above, which again
hinges on the fact that λ is constant. This operator contains a geometric
potential depending on the scalar curvature of (B,α∗δ) and the mean
curvature of α(B). Just as the geometric potential for one-dimensional
base it originates from an expansion of Vρ (1.5) around B. The work
of Teufel and Wachsmuth [69] considerably generalises this. For simple
and separated eigenbands they derive a super-adiabatic projection and an
effective operator satisfying

(H − UHeffU
∗)Pε = O(ε3) .

In order to achieve this, Heff must contain the first super-adiabatic correc-
tions as well as many terms originating from the correction to the metric.
Many of these terms are not present in effective operators derived earlier
because they are not relevant at the energy scales considered there.

In the spirit of [69] we derive effective operators for arbitrary separated
eigenbands. We do not require them to be simple, as this would exclude
many higher modes on fibres with symmetries. The operators can be
constructed so that the approximation error is of arbitrary order in ε.
For the ground state band we derive low energy asymptotics, extending
known results for quantum waveguides.
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Nodal geometry

For a real eigenfunction ϕ of a differential operator on M , the nodal set
is defined as N (ϕ) := ϕ−1(0) ∩ (M \ ∂M). The connected components
of M \ N (ϕ) are called the nodal domains of ϕ. On each of these sets ϕ
has a definite sign. In general they may form very complicated patterns
but their number can be bounded by Courant’s nodal domain theorem
(see [64, chapter 6]).

Theorem (Courant’s nodal domain theorem). Let (M,G) be a compact,
connected Riemannian manifold with boundary. Let 0 ≤ λ0 < λ1 ≤ . . .

be the eigenvalues of −∆G with Dirichlet boundary conditions, repeated
according to multiplicity. If ϕk is the eigenfunction corresponding to λk,
the number of nodal domains of ϕk is at most k + 1.

The eigenfunction ϕ0 may be chosen positive everywhere and has ex-
actly one nodal domain. Since ϕ1 is orthogonal to ϕ0 it must change
sign, so the theorem implies it has exactly two nodal domains. There are
known restrictions to attaining the bound of this theorem. For example
Pleijel [58] proved for domains in R2 that only finitely many eigenfunctions
of the Laplacian may have the maximum number of nodal domains.
In the same setting it was conjectured by Payne [56] that the nodal

line of ϕ1 cannot be closed. This is of course equivalent to the statement
that it must meet the boundary. Because it must do so at a right angle it
then joins two distinct points on the boundary. This conjecture has been
proven by Melas [52] for convex domains. For general domains however
a counter example was given by M. Hoffmann-Ostenhof, T. Hoffmann-
Ostenhof and Nadirashvili [34]. For convex domains of large eccentricity,
Jerison [36] proved that the nodal set of ϕ1 touches the boundary also in
higher dimensions. By comparing convex two dimensional domains with
long and thin rectangles Jerison [35] and Grieser-Jerison [26] were able to
obtain estimates on the location of the nodal set. The location is deter-
mined by the solution of an ordinary differential equation analogous to
our effective operator. Similar ideas were used by the same authors to
estimate the location and size of the maximum of ϕ0 [27]. Using tech-
niques from the study of quantum waveguides, Freitas and Krejčiřík [18]
derived a similar result for thin domains that are given as embeddings
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1.2 Overview of results

of [0, 1] × Ω into Rk. The fibre Ω ⊂ Rn is a bounded domain isometric
to the embedded fibres, so the only variation of Ω along the base is due
to twisting and bending, which ensures that λ0 is constant as described
for quantum waveguides above. In this asymptotic setting they find it
natural to generalise the statement to a finite number of eigenfunctions,
determined by the effective operator. The location of the nodal sets then
also provides a lower bound on the number of nodal domains for these
functions.

We compare the eigenfunctions of the adiabatic operator Ha and the
Laplacian on M for two different classes of manifolds in section 3.3. The
first of these classes are compact manifolds (with and without boundary)
characterised by a constant lowest eigenvalue λ0 of HF and dimB ≤ 3.
The other class are manifolds with non-empty boundary and dimB = 1
for which λ0 has a unique and non-degenerate minimum. This behaviour
of λ0 is of course the generic one. We prove uniform approximation of
eigenfunctions, allowing us to locate the nodal sets of eigenfunctions of
simple, low-lying eigenvalues in section 3.3.2. Using these estimates we
describe, given some k ∈ N , metrics for which the 2k+ 1-th eigenfunction
attains the bound of Courant’s theorem in corollary 3.27. For sufficiently
thin manifolds with non-empty boundary we also show that the nodal sets
of the first eigenfunctions must reach the boundary, and give a lower bound
on how often this happens, in corollary 3.28. This establishes results in
the spirit of [18, 26, 36, 35] for a rather large class of thin manifolds and
provides an answer to the question posed by Schoen and Yau [64, Problem
45] regarding such generalisations.
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Chapter 2

Adiabatic theory on fibre bundles

In this chapter we develop a general adiabatic and super-adiabatic theory
for Laplace-type and Schrödingeroperators on Riemannian submersions
with a scaled family of metrics gε (1.1).
The first section is devoted to the construction of super-adiabatic pro-

jections and their properties. In the second part we use these projections
to define an effective operator. We prove that this operator provides a
good approximation of the original problem for both dynamical and spec-
tral purposes under the right conditions.

Our method builds on the space-adiabatic perturbation theory, devel-
oped for the study of the Born-Opppenheimer approximation by Nen-
ciu, Martinez, Sordoni and Panati, Spohn, Teufel and reviewed by Teufel
in [67]. These methods were already used by Teufel and Wachsmuth [69]
in the study of constrained quantum systems. We go beyond their treat-
ment in applying the method to a wider class of geometries and showing
that the approximation can be carried out to all orders.

Throughout this chapter let (M, g) denote a connected Riemannian
manifold with boundary such that F →M

π→ B is a Riemannian submer-
sion for a metric gB on B. The study of global properties of differential
equations on a non-compact Riemannian manifold (M, g) generally re-
quires some uniformity of the geometry of M . The assumptions we make
throughout are:

Condition 1.

• F is compact,

• (B, gB) is of bounded geometry (definition A.1), in particular it is
geodesically complete,
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Chapter 2 Adiabatic theory on fibre bundles

• M π→ B is uniformly locally trivial (definition A.3).

All the boundedness conditions are satisfied if M , and hence also B, is
compact.
The details of these definitions are given and discussed in appendix A.

Most importantly they imply the elliptic estimates given in theorem A.14
that we will use frequently. Denote by H := L2(M, volg) the Hilbert
space of square-integrable, complex valued functions on (M, gε=1). In
section A.2 we introduce Sobolev spacesW k

ε adapted to the rescaled family
of metrics gε (1.1). The norm on W 2k

ε (M) is equivalent to the graph
norm of ∆k

gε , with constants independent of ε, and a vector field εX∗

with X ∈ Γ(TB) defines an operator W 1
ε → H with norm independent

of ε, because the gε-length εX∗ is just the gB-length of X. All the Sobolev
spaces we use are to be understood as their L2 variants, although we do
not make this explicit in the notation. Now set

H := −∆gε + V + εH1 ,

with:

Condition 2.

• The potential V ∈ C∞b (M) is smooth and bounded with all its
derivatives.

• H1 is a smooth differential operator of second order and symmetric
on D(H). It is bounded independently of ε as a mapWm+2

ε →Wm
ε ,

for every m ∈ N and satisfies H1A ∈ Ak+2,l for every A ∈ Ak,l (see
definition 2.3).

• H is bounded from below.

Under these conditions H is self-adjoint on the Dirichlet domain

D(H) := W 2
ε (M) ∩W0,ε(M) .

From now on H will always denote this self-adjoint operator, while ex-
pressions like the Laplacian ∆gε or H1 may also stand for a differential
operator without reference to a specific domain.
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For x ∈ B the fibre operator on Fx

HF (x) := −∆Fx + V |Fx

is self-adjoint on the domain W 2(F ) ∩W 1
0 (F ). Because of compactness,

the spectrum σ(HF (x)) consists purely of eigenvalues of finite multiplic-
ity accumulating at infinity. An eigenband is a map λ:B → R with
λ(x) ∈ σ(HF (x)). We will only consider such bands with a spectral gap:

Condition 3. There exist δ > 0 and bounded continuous functions
f−, f+ ∈ Cb(B) with dist (f±(x), σ(HF (x))) ≥ δ such that

∀x ∈ B : [f−(x), f+(x)] ∩ σ(HF (x)) = λ(x) .

λ
f+

δ
f−

σ(HF )

B

This condition implies in particular
that dist(λ, σ(HF ) \ λ) ≥ 2δ.

Figure 2.1: An eigenband λ satisfy-
ing the gap condition.

This condition is automatically satisfied for the ground state band
λ0(x) = min σ(HF (x)) if V = 0 and F is connected (see lemma 3.7).

Remark 2.1. We could also consider an ε-dependent family Vε with
ε ≤ 1 as long as conditions 2 and 3 are satisfied uniformly in ε. This
does not change much in the end because the effective operator we obtain
is ε-dependent in any case. However it makes the eigenfunctions and
eigenvalues of HF , and many derived objects, depend on ε, which makes
the notation very cumbersome. For this reason we will not explicitly treat
such dependence on ε although it should become clear from our proofs
that uniformity of the conditions on V and λ is sufficient for the results
we obtain.
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Chapter 2 Adiabatic theory on fibre bundles

The elements of H can be viewed as square-integrable sections of a
vector bundle over B, whose fibres are L2(F ). Although the norm of
L2(Fx) depends on the metric gFx , the norms for different metrics are
equivalent because F is compact. Hence as a topological vector space
L2(Fx) is independent of x. The same holds for the domain of HF (x),
so we can again think of this space as the fibre of a vector bundle (see
appendix B.1 for a more detailed discussion), constructed as follows: Let
X(F ) be some space of functions over F , f ∈ X(F ) and Φ : U × F →
U ×F a transition function between two trivialisations of M over U ⊂ B.
Mapping (x, f) 7→ f ◦ Φ(x, ·) defines a transition function on U ×X(F ).
If X(F ) is a topological vector space for which all the transition functions
induced by those of a cover U are continuous this defines a topological
vector bundle over B with fibreX(F ), that we denote byX(F ;π). IfX(F )
is a Banach space this continuity is equivalent to the strong continuity of
the map x 7→ f ◦Φ(x, ·) by the uniform boundedness principle. We apply
this construction to X(F ) = L2(F ) or equal to any Sobolev spaceWm(F )
and fix the notation for

L2(F ;π) =: HF and W 2(F ;π) ∩W 1
0 (F ;π) =: D(HF ) .

We treat these as hermitian vector bundles with their natural fibre-wise
pairings. It is also helpful to picture HF and its spectral projections as
bundle maps on these vector bundles. Since they operate fibre-wisely they
are sections of bundles, whose fibres consist of bounded linear maps, like
L (HF ) with fibre L (L2(F )). We can observe that HF is a bounded
section

HF ∈ L∞
(
L (D(HF ),HF )

)
,

as is the family of spectral projections P0 associated with an eigenband λ

P0 ∈ L∞
(
L (HF )

)
∩ L∞

(
L (D(HF ))

)
.

For fixed x ∈ B the image of P0 has finite dimension. If now P0 as a
section of L (HF ) is continuous, rank(P0) = trP0 must be constant and
E := P0HF defines a subbundle of HF of finite rank. By identification
H ∼= L2(HF ) the operator P0 defines a bounded operator on H , whose
image is L2(E).
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2.1 Adiabatic and super-adiabatic projections

2.1 Adiabatic and super-adiabatic
projections

Studying the invariance of P0H under ∆gε amounts to the local study of
[−∆gε , P0] = [−ε2∆h, P0]. Since P0 is a spectral projection of ∆F it seems
natural to approach this by first calculating [−ε2∆h,∆F ], which locally
(by formal calculation) consists of commutators of ∆F with horizontal lifts
(see (1.2)). It is important to warn here that, due to the presence of the
boundary, this is very problematic. In fact ‘[X∗,∆F ]’ does not make much
sense since X∗ need not be tangent to the boundary, so its application
destroys the Dirichlet condition and this object has no sensible domain.
To be more precise, a way to make sense of ‘[X∗,∆F ]’ would be as a Lie
derivative LXHF of the section HF ∈ L∞(L (D(HF ),HF )), as in (1.3).
But the flow of X∗, even if it exists, might not leave D(HF ) invariant. In
this case one ends up calculating the derivative of the differential opera-
tor −∆F + V on C∞(F ) instead of (HF , D(HF )). This may completely
miss the point since it could vanish, even though the spectrum of HF (x)
depends on x. To deal with this we need to work with objects that are
adapted to the boundary. These are naturally found in trivialisations. We
will use the fixed atlas U of B introduced in the appendix (see page 131).
The coordinate neighbourhoods (Uν)ν∈N of this atlas come with trivial-
isations Φν of π−1(Uν), a partition of unity χν and orthonormal frames
(Xν

i )i≤d, all satisfying boundedness properties uniformly in ν.
For such a vector field on U ∈ U we may split X∗ = Φ∗X + Y with a

vertical vector field Y , that is bounded by corollary A.6. Since Φ∗X is
tangent to the boundary its flow exists for some positive time and pre-
serves the Dirichlet condition, leaving D(HF ) invariant. The contribution
of the vertical part Y , which we treat separately, will be small since εX∗
has length one in gε while εY goes to zero as ε→ 0. The horizontal vector
fields on π−1(U) are thus increasingly well described by the trivialisation
Φ, making it look more and more like a product.

Example 2.2. To illustrate the objects we have just discussed we calcu-
late them in a simple example. Let h ∈ C∞b (R) be a positive function and
let M = R× [0, 1 + h] ⊂ R2. Let gε = ε−2dx2 + dy2 be the restriction of
the rescaled metric on R2 and H = −∆gε = −ε2∂2

x − ∂2
y on D(H). The
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Chapter 2 Adiabatic theory on fibre bundles

horizontal lift of ∂x ∈ Γ(TR) is trivial ∂∗x = ∂x, so on C∞(M) we have
[∂x, ∂2

y ] = 0. A global trivialisation of M is given by

Φ:M → R× [0, 1] ; (x, y) 7→ (x, z) =
(
x, y/(1 + h(x))

)
.

For f ∈ C∞(M) one easily calculates

Φ∗∂xf = ∂xf
(
x, (1 +h(x))z

)
= ∂xf +h′z∂yf = ∂xf +h′y/(1 +h)∂yf ,

so we can identify Y = ∂∗x − Φ∗∂x = − log(1 + h)′y∂y. Clearly Φ∗∂x is
tangent to ∂M , so for any f ∈ C∞(M) that vanishes on ∂M , Φ∗∂xf is
also zero on ∂M . On such functions we thus have

[Φ∗∂x, ∂2
y ] = −[Φ∗∂x, HF ] = [log(1 + h)′y∂y, ∂2

y ] = −2 log(1 + h)′∂2
y .

We can observe here that [Φ∗∂x, HF ] is bounded relatively to HF , which
will hold in general.

2.1.1 The algebras A and AH

In order to keep track of the number of vertical and horizontal derivatives
in a given expression and avoid tedious calculations in local coordinates we
define special algebras of differential operators. These differential opera-
tors will have coefficients in L∞(L (HF )), which are exactly the fibre-wise
operators in L (H ). We assume these coefficients to be smooth in the
following sense: Take Uν ∈ U and let Cν ⊂ L∞ (L (HF )|Uν ) be those
linear operators A for which any commutator of the form[

Φ∗νXν
i1 , . . . , [Φ

∗
νX

ν
ik
, A] · · ·

]
(2.1)

defines an element of L∞ (L (HF )|Uν ), where k ∈ N and i1, . . . , ik ∈
{1, . . . , d} .
Let CνH ⊂ Cν be the subset of L∞ (L (HF , D(HF ))|Uν ) that is closed

under commutators in the same way as Cν . This is equivalent to saying
that A ∈ CνH if and only if HFA ∈ Cν .

Definition 2.3. The algebras A, AH consist of those linear operators in
L (W∞(M),H ) satisfying π(suppAf) ⊂ π(supp f) and

A|π−1(Uν) =
∑
α∈Nd

Aναε
|α|(Φ∗Xν

1 )α1 · · · (Φ∗Xν
d )αd ,
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2.1 Adiabatic and super-adiabatic projections

with Aνα ∈ Cν , CνH , for which there exist constants C(α, k) <∞ and l ∈ N
(uniformly in ν and ε) such that the norm of the commutator (2.1) in
L (HF ) is bounded by C(α, k) and Aνα = 0 for |α| > l.

From now on we write Cν• and A• in statements that hold with or
without the subscript H. A• is an algebra because of the commutator
condition (2.1) for Cν• and [Φ∗Xi,Φ∗Xj ] = Φ∗[Xi, Xj ], allowing us to ar-
range the vector fields in any order without producing vertical derivatives.
AH consists of those A ∈ A whose image consists of functions satisfying
the Dirichlet condition and for which HFA ∈ A. Hence AHA ⊂ AH and
AH is a right ideal of A.
A• is filtered by setting

Ak• :=
{
A ∈ A• : ∀ν ∈ N

(
|α| > k ⇒ Aνα = 0

)}
.

Clearly Ak ⊂ L
(
W k
ε ,H

)
so it inherits this operator norm, which we de-

note by ‖·‖k. An additional filtration is given by the order in ε by defining
Aj,l• to be those A ∈ Aj• for which the constants C(α, k) of definition 2.3
can be chosen of order εl for some l ∈ N. This of course implies that
‖A‖k = O(εl). Note that a differential operator of order k is also one of
order k + 1, so Ak• ⊂ Ak+1

• , while a norm of order l + 1 is also of order
l, so Ak,l+1

• ⊂ Ak,l• . We may also observe that due to the commutation
properties of the coefficients and vector fields we have for A ∈ Ak, B ∈ Al

AB|π−1(Uν) =
∑
|α|=k
|β|=l

AναB
ν
βε
k+l(Φ∗Xν

1 )α1+β1 · · · (Φ∗Xν
d )αd+βd+Ak+l−1 .

Note also that terms containing commutators of Φ∗Xi with other vector
fields or the coefficients Aα, Bβ produce terms of lower order in ε.

Remark 2.4. The condition π(suppAf) ⊂ π(supp f) allows us to cal-
culate the norms ‖·‖k locally with respect to the base since (see also
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remark A.13)

‖Aψ‖2W 0
ε (M) =

∑
ν

‖χνAψ‖2H =
∑
ν

‖χνA
∑
µ

χµψ‖2

≤ N(U)
∑
µ,ν

‖χνAχµψ‖2

≤ N(U)2
∑
µ

sup
ν
‖χνA‖2L (Wk

ε (π−1Uµ),H ) ‖χµψ‖
2
Wk
ε (π−1Uµ)

≤ N(U)2 sup
µ
‖A‖2L (Wk

ε (π−1Uµ),H ) ‖ψ‖
2
Wk
ε (M) .

Thus for any A ∈ Ak

‖A‖k ≤ N(U)3/2 sup
µ
‖A‖L (Wk

ε (π−1Uµ),H ) ,

where W k
ε (π−1Uν) is defined in the trivialisation by Φν , cf. (A.10).

The key properties for all later calculations with these algebras are
content of the following lemma.

Lemma 2.5. Let A,B ∈ AH with AB ∈ Ak,lH , then

[∆gε , A]B ∈ Ak+1,l

and

[ε2∆h, A]B ∈ Ak+1,l+1 .

Proof. We split ∆gε = ∆F + ε2∆h and first observe that

[∆F , A]B = ∆FA︸ ︷︷ ︸
∈A

B −A∆FB︸ ︷︷ ︸
∈A

∈ Ak,l ,

since ∆FAα ∈ C if Aα ∈ CH . Using this, the second claim implies the first
one.
Since the definition of Ak and its norm are local with respect to the base

(cf. remark 2.4) it is sufficient to show the claim on π−1(Uν). We fix ν and
split X∗i = Φ∗Xi+Yi. In this frame we have ε2∆h = ε2∑

i≤d Φ∗XiΦ∗Xi+
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2.1 Adiabatic and super-adiabatic projections

ε2D, where D contains first order differential operators and second order
parts that contain at least one vertical derivative. We have for every
j ∈ {1, . . . , d}

[Φ∗Xj , A]
∣∣
π−1(U) =

∑
α∈Nd

ε|α|
(

[Φ∗Xj , Aα]︸ ︷︷ ︸
∈CH

(Φ∗X1)α1 · · · (Φ∗Xd)αd

+Aα[Φ∗Xj , (Φ∗X1)α1 · · · (Φ∗Xd)αd ]
)
.

This is of the same order as A in AH because [Φ∗Xj ,Φ∗Xi] = Φ∗[Xj , Xi]
and this Lie bracket is a bounded vector field. Hence

χ[
∑
i≤d

ε2Φ∗XiΦ∗Xi, A]B ∈ Ak+1,l+1
H .

Now for a bounded vertical field Y we have Y AB and AY B ∈ Ak,l. The
commutator [Φ∗Xi, Y ] is also vertical (see lemma 1.4), so by commuting
all the Φ∗Xi to the right we see that

χ[ε2D,A]B ∈ Ak+1,l+1 .

This proves the second claim and thus completes the proof.

By commuting derivatives of the form Φ∗Xν
i to the right as in the

precedent proof one sees that∥∥[ε2∆h, A]
∥∥
k+2 = O(εl+1) (2.2)

if A ∈ Ak,lH . For the same reason ε2∆hA and ∆gεA are elements of Ak+2,l.
Functions in the image of A satisfy the Dirichlet condition andHA ∈ Ak+2

by condition 2, hence AkH is contained in L
(
W k+2
ε , D(H)

)
.

Remark 2.6. In view of this discussion of A we can also see that the
operator H1 satisfies the final part (i.e. H1A ∈ Ak+2,l) of condition 2 if
it has the local form

H1|π−1(Uν) =
∑
|α|=2

Aναε
2(Φ∗Xν

1 )α1 · · · (Φ∗Xν
d )αd +

∑
i≤d

Bνi εΦ∗Xν
i + C ,
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Chapter 2 Adiabatic theory on fibre bundles

with Aνα ∈ Cν , Bνi ∈ L∞(L (W 1(F ;π),HF )|Uν ) and
C ∈ L∞(L (D(HF ),HF )) satisfying commutator conditions analogous to
those for Cν . In typical examples H1 will be exactly of this form (see
chapter 3).

2.1.2 Construction of the projections
We are now set for the treatment of the projections. Form here on the
capital letter C will be used to denote various constants independent of ε
with no specified relation between them and possibly differing even within
the same equation. Our method will heavily rely on functional calculus,
so the resolvent is a central object.

Lemma 2.7. Let z ∈ C with dist(z, σ(HF )) ≥ C > 0, then

RF (z) := (HF − z)−1 ∈ A0,0
H .

Proof. RF (z) is fibre-wise with norms

‖RF (z, x)‖2L (HF ) ≤ C
−2

‖RF (z, x)‖2L (HF ,D(HF )) ≤ 2 + (1 + 2 |z|2)C−2 ,

so RF (z) ∈ L∞ (L (HF )) ∩ L∞ (L (HF , D(HF )). The commutator con-
dition (2.1) remains to be verified. Let U ∈ U with corresponding Φ and
0 6= X ∈ Γb(TU). We will do all the calculations on U × F and then
map everything back to π−1(U). Endow U × F with the metric g̃ =
Φ∗gF + gB induced by Φ and choosing the canonical lift to the product as
the horizontal direction. Then the map W :L2(U ×F, g̃)→ L2(π−1(U), g)
given by f 7→ f ◦ Φ is unitary. Additionally (WXW ∗)f = (Φ∗X)f and
W ∗∆FW = ∆gFx

, so

[Φ∗X,RF (z)] = W [X, (W ∗HFW − z)−1]W ∗ ,

with W ∗HFW = −∆gFx
+ Φ∗V .

Now choose x0 ∈ U and UF ⊂ Fx0 possessing an orthonormal frame
of bounded vector fields (Yj)j≤n. Extend these vertical vector fields by
parallel transport along the integral curves of X starting at x0. We claim
that these extensions form an orthonormal frame of vertical vector fields
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2.1 Adiabatic and super-adiabatic projections

wherever they are defined. To check this we calculate the derivative of
the horizontal components of Yj

Xg̃(Yj , Xi) = g̃(∇̃XYj︸ ︷︷ ︸
=0

, Xi) + g̃(Yj , ∇̃XXi) = g̃(Yj , ∇̃XXi) .

This means the horizontal components of Yj solve a first order differen-
tial equation along the integral curves of X. ∇̃XXi is horizontal because
the integrability tensor Ω vanishes for the metric g̃ and lemma 1.5. The
unique solution of the equation with the given initial value zero is the
constant zero, so the extended Yj must be vertical everywhere. They are
orthonormal because parallel transport is an isometry, so they form an
orthonormal frame of bounded vector fields of TUF × γ on the integral
curves γ of X. Thus ∆gFx

=
∑
j≤n Yj ◦ Yj −∇YjYj on UF × γ. Note that

the flow of X preserves the Dirichlet condition (and obviously also differ-
entiability), so it maps the domains of the fibre Laplacians to each other.
Let LX denote the Lie-derivative and R(x, z) := (−∆gFx

+ Φ∗V − z)−1,
then

[X,R(x, z)]
= LX

(
R(x, z)(−∆gFx

+ Φ∗V − z)R(x, z)
)

= R(x, z)(LX∆gFx
)R(x, z)−R(x, z) (Φ∗XV )R(x, z) . (2.3)

Now on UF

LX∆gFx
=
∑
j≤n

[X,Yj ]Yj + Yj [X,Yj ]− [X,∇YjYj ] , (2.4)

which is a second order vertical differential operator since [X,Yj ] is vertical
(cf. lemma 1.4). This field is bounded, so LX∆gFx

defines a bounded
operator from W 2(F ) to L2(F ). Thus the composition (2.3) is a bounded
operator from L2(F ) to W ∗D(HF ).
The same reasoning applies to iterated commutators with (2.3) and (2.4),

so together with V ∈ C∞b (M) this proves the commutator condition and
RF (z) ∈ A0,0

H .

Lemma 2.8. The spectral gap of λ implies P0 ∈ A0,0
H .
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Proof. Let x0 ∈ B and γ be the circle of radius δ around λ(x0) in C. Due
to the gap (condition 3) there is an open neighbourhood W ⊂ B of x0
such that dist (γ, σ(HF (x))) > δ/2 for every x ∈ W . On W , P0 is given
by the Riesz formula

P0 = i
2π

∫
γ

RF (z)dz . (2.5)

Thus the claim follows from lemma 2.7.

In view of the lemma 2.5 and condition 2 this gives us

[H,P0]P0 = [−ε2∆h, P0]P0︸ ︷︷ ︸
∈A1,1

+ε[H1, P0]P0 ∈ A2,1 .

So P0 is a projection in L (H ) that commutes with H up to an op-
erator that is of order ε from D(H) ⊂ W 2

ε (M) to H . In particular
P0 ∈ L (D(H)).
We now show that E is a well defined subbundle of HF . In appendix B.2

we elaborate on the regularity of E , showing that it is a smooth bundle of
bounded geometry. Its differentiable structure is compatible with that of
M in the sense that Γ(E) ⊂ C∞(M,C).

Lemma 2.9. E := P0HF is a finite rank subbundle of HF and λ ∈ C∞b (B).

Proof. To prove the first claim we need to show that for U ∈ U the map

PU :U → L (L2(F )) ; x 7→ Φ(x, ·)∗P0Φ(x, ·)∗

is strongly continuous, because that implies continuity of the projected
transition maps of the bundle HF (see appendix B.1). This amounts to
showing continuity of the λ-eigenfunctions of HF . In proposition B.7 we
even show smoothness of these functions, but here we take a different
route.
To start with, the map x 7→ ∆gFx

+ V ◦ Φ−1 is strongly continuous
U → L (W 2(F )∩W 1

0 (F ), L2(F )) because gF is smooth. By the resolvent
formula

(A− z)−1 − (B − z)−1 = (A− z)−1(B −A)(B − z)−1 (2.6)
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2.1 Adiabatic and super-adiabatic projections

this implies that RF (z) is strongly continuous, which carries over to P0
because of the Riesz formula (2.5). Since P0(x) is of finite rank for every x
this proves in particular that trP0 = dim ran(P0) is continuous and thus
constant.

Let r = rank(E), then λ = 1/r tr (HFP0). Let X ∈ Γb(TB) and calcu-
late X · λ in the point x ∈ U by lifting it to π−1(U):

π∗(Xλ) = [Φ∗X,π∗λ]
= 1/r tr ([Φ∗X,HFP0])
= 1/r tr ([Φ∗X,HF ]P0 +HFP0[Φ∗X,P0] +HF [Φ∗X,P0]P0) .

(2.7)

All of these terms are trace-class since they have finite rank. They are
also separately bounded: The second and third terms are bounded be-
cause P0 ∈ A0,0

H , by lemma 2.8. For the first term we additionally have
[Φ∗X,HF ] ∈ L∞ (L (D(HF ),HF )|U ) as discussed in the proof of 2.7, so
this is bounded as well. These terms are also continuous which can be
seen in exactly the same way as the continuity of trP0 above. Hence
Xλ is bounded and continuous for every X ∈ Γb(TB), therefore λ ∈
C 1
b (B). Repeating the same arguments for iterated commutators gives

λ ∈ C∞b (B).

Example 2.10. We examine our recent results in the situation of
M = R× [0, 1 + h] of example 2.2. The spectrum of HF (x) is given by
the sequence of simple eigenvalues

λj(x) = π(j + 1)/(1 + h(x)) with j ∈ N .

The corresponding eigenfunctions are

φj(x, y) =

√
2

1 + h(x) sin
(
π(j + 1)y
1 + h(x)

)
,

so all of the bands are simple and separated from each other by a gap.
The unitary W from the proof of 2.7 is a map

W :L2(R× [0, 1], (1 + h(x))dxdz
)
→ L2(M, g) .

47



Chapter 2 Adiabatic theory on fibre bundles

One can easily calculate

W ∗HFW = −(Φ∗∂y)2 = −(1 + h(x))−2∂2
z

and the image of P0 for the j-th band

W ∗P j0W = 2 sin((π(j + 1)z) 〈sin(π(j + 1)z), ·〉L2([0,1],dz) .

As in example 2.2 this gives [Φ∗∂x, HF ] = −2 log(1 + h)′HF . Using (2.3)
we obtain

[Φ∗∂x, P j0 ] = i
2π

∫
γj

[Φ∗∂x, RF (ζ)]dζ

= −2 log(1 + h)′HF
i

2π

∫
γj

RF (ζ)2dζ

= 2 log(1 + h)′HF
i

2π

∫
γj

∂ζRF (ζ)dζ = 0 ,

which can of course be seen directly from [∂x,W ∗P j0W ] = 0. Inserting
these objects into the formula (2.7) we correctly get

∂xλj = tr([Φ∗∂x, HF ]P j0 ) = −2 log(1 + h)′HFP
j
0 = −2 log(1 + h)′λj .

Observe that doing the same calculation formally for [∂∗x, P
j
0 ] gives zero

because [∂∗x, ∂2
y ] = 0, and this entails ∂xλj = 0 which is of course not

correct. The use of Φ∗∂x allows for a systematic treatment of commutators
and may also simplify some explicit calculations, though it depends on the
choice of trivialisation.

Corollary 2.11. RF (λ) := (HF − λ)−1(1− P0) ∈ A0,0
H .

Proof. Follows directly from the lemmata 2.7, 2.8 and 2.9 together with
the formula

RF (λ) = (1− P0) i
2π

∫
γ

1
λ− z

RF (z)dz(1− P0) .
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Remark 2.12. Since P0 is a projection it has the property that

[A,P0] = [A,P 2
0 ] = P0[A,P0] + [A,P0]P0 ,

and thus

P0[A,P0]P0 = 2P0[A,P0]P0 = 0 .

Hence the commutator is off-diagonal with respect to the splitting of H =
P0H ⊕ (1− P0)H induced by P0. This gives another perspective on why
[Φ∗∂x, P0] vanishes in the previous example: The commutator [Φ∗∂x, HF ]
is proportional to HF , so [Φ∗∂x, P0] should be proportional to P0 and
hence must vanish because it is off-diagonal.

We will use this property of projections very frequently in the following
construction of the super-adiabatic projections.

Proposition 2.13. For all N ∈ N and Λ > 0 there exists an orthog-
onal projection Pε ∈ L (H ) ∩ L (D(H)) satisfying Pε − P0 = O(ε) in
L (D(H)) and

‖[H,Pε] %(H)‖L (H ) = O(εN+1) ,

for every Borel function % : R→ [0, 1] with support in (−∞,Λ].

Before defining Pε we construct a sequence of almost-projections PN in
AH having the same asymptotic expansion in ε as Pε. In this we follow
the construction of [67, lemma 3.8], but instead of using the machinery
of pseudodifferential calculus we give the expansion explicitly in form of
commutators. This is possible because we are dealing with an eigenvalue
with spectral gap, and not more general subsets of σ(HF ).

Lemma 2.14. For every k ∈ N there exists Pk ∈ A2k,0
H , such that

PN =
N∑
k=0

εkPk

satisfies
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1) (PN )2 − PN ∈ A2N+1,N+1
H ,

2)
∥∥[H,PN]∥∥2N+2 = O(εN+1) on D(H).

Proof. Take P0 to be the projection on the eigenband λ as above. By
lemma 2.8 we have P0 ∈ A0,0

H ⊂ A1,0
H and 1) is trivially satisfied because

it is a projection. For 2) observe that by condition 2 we have [H1, P0] =
H1P0 − P0H1 = O(1) and by (2.2)

∥∥[−ε2∆h, P0]
∥∥

2 = O(ε), so 2) holds.
We define PN+1 recursively by splitting it into diagonal and off-diagonal

parts with respect to P0 and prove 1) and 2) by induction. To shorten
the notation we write P⊥0 := 1− P0. Define

εN+1PN+1 :=−P0
(
(PN )2 − PN

)
P0 + P⊥0

(
(PN )2 − PN

)
P⊥0︸ ︷︷ ︸

=:εN+1PD
N+1

−P⊥0 RF (λ)
[
H,PN

]
P0 + P0

[
H,PN

]
RF (λ)P⊥0︸ ︷︷ ︸

=:εN+1PO
N+1

.

This is an element of A2N+1

H because of 2.5 and the fact that AH is a
right ideal, since 2N+1 ≥ 2N + 2 for N ≥ 1 and P1 ∈ A2,0

H because
P0, RF (λ) ∈ A0,0

H by 2.8, 2.11. PN+1 is of clearly order ε0 by application
of 1) and 2) to PN , which is the induction hypothesis.

Proof of 1) We prove this for diagonal and off-diagonal parts separately.
In both cases it is just a simple calculation using PN = P0 +A2N ,1

H =
P0 +O(ε).

• Diagonal:

P0
(
(PN+1)2 − PN+1)P0

= P0
(
(PN + εN+1PN+1)2 − PN − εN+1PN+1

)
P0

= P0
(
(PN )2 − PN + εN+1 (PNPN+1 + PN+1P

N − PN+1
))
P0

+A2N+2,2N+2
H

=

=0︷ ︸︸ ︷
P0
(
(PN )2 − PN

)
P0 + εN+1P0P

D
N+1P0 +A2N+2,N+2

H

∈ A2N+2,N+2
H .
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• Off-diagonal:

P⊥0
(
(PN+1)2 − PN+1)P0

= P⊥0
(
(PN )2 − PN

)
P0 + εN+1

∈A2N+1+2N,1
H︷ ︸︸ ︷

P⊥0
(
PN+1P

N − PN+1
)
P0

+ εN+1 P⊥0 P
NPN+1P0︸ ︷︷ ︸

∈A2N+1+2N,1
H

+A2N+2,2N+2
H

= P⊥0
(
(PN )2 − PN

) (
PN + P0 − PN

)
P0 +A2N+2,N+2

H

= P⊥0
(
(PN )2 − PN

)
PNP0 +A2N+2,N+2

H

= P⊥0 P
N
(
(PN )2 − PN

)
P0 +A2N+2,N+2

H

∈ A2N+2,N+2
H .

The calculations for the P⊥0 -P⊥0 and P0-P⊥0 blocks are basically the same,
so 1) is verified.

Proof of 2)

• Diagonal: We will only do the calculation for the P0-block. The
one for P⊥0 is similar. One merely needs to use (2.2) instead of
lemma 2.5, just as in proving [H,P0] = O(ε) in the beginning. First
we show P0[H, εN+1PON+1]P0 = O(εN+2):

P0
[
H, εN+1PON+1

]
P0

= εN+1P0
(
HP⊥0 P

O
N+1 − PON+1P

⊥
0 H

)
P0

= εN+1(−P0 [H,P0]PON+1︸ ︷︷ ︸
∈A2N+1+2,1

P0 − P0P
O
N+1P

⊥
0 [H,P0]P0︸ ︷︷ ︸

∈A2,1

)
= O(εN+2) .

Now by definition PN+1−εN+1PON+1 = PN +εN+1PDN+1, so we still
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have to calculate

P0
[
H,PN + εN+1PDN+1

]
P0

= P0
[
H,PN − P0((PN )2 − PN )P0

]
P0

= 2P0
[
H,PN

]
P0 − P0

[
H, (PN )2]P0

+
(
P0[H,P0]((PN )2 − PN )P0 + P0((PN )2 − PN )[H,P0]P0

)︸ ︷︷ ︸
∈A2N+1+2,N+2

H
by induction hypothesis and 2.5

= P0
(
2
[
H,PN

]
− PN

[
H,PN

]
−
[
H,PN

]
PN
)
P0 +O(εN+2)

= P0
(
(P0 − PN )

[
H,PN

]
+
[
H,PN

]
(P0 − PN )

)
P0︸ ︷︷ ︸

∈A2N+1+2,N+2
H

+O(εN+2)

= O(εN+2) .

• Off-diagonal:
Here we make use of lemmas 2.9 and 2.5 to get

[−ε2∆h + λ, PN+1]P0 ∈ A2N+1+1,1 .

This gives us

[H,PN+1]P0 = [HF−λ, PN+1]P0+[−ε2∆h + λ+ εH1, PN+1]P0︸ ︷︷ ︸
∈A2N+1+2,1

.

We insert this into

P⊥0
[
H,PN + εN+1PN+1

]
P0

= P⊥0
([
H,PN

]
+ εN+1 [HF − λ, PN+1]

)
P0 +O(εN+2)

= P⊥0
([
H,PN

]
+ εN+1[HF − λ, P⊥0 PN+1P0]

)
P0 +O(εN+2)

= P⊥0 (
[
H,PN

]
− (HF − λ)RF (λ)︸ ︷︷ ︸

=1

[
H,PN

]
)P0 +O(εN+2)

= O(εN+2) ,

which completes the proof for the P⊥0 -P0-block. The argument for
the other off-diagonal block is the same, using (2.2).
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Example 2.15. We continue the discussion of M = R× [0, 1 +h] started
in examples 2.2 and 2.10. We explicitly construct the leading part of P1
for this example. Since P0 is a projection, in general PD1 = 0. We first
calculate

[H,P0]P0 = −ε2P⊥0 [∂2
x, P0]P0

= −ε2P⊥0
(
∂∗x[∂∗x, P0] + [∂∗x, P0]∂∗x

)
P0

= −ε2P⊥0
(

[∂∗x, [∂∗x, P0]P0]P0︸ ︷︷ ︸
∈A0,0

+2[∂∗x, P0]P0∂
∗
xP0

)
= −ε22[∂∗x, P0]P0∂

∗
xP0 +O(ε2) .

So up to terms of order ε2 we have

P⊥0 P1P0 = 2P⊥0 RF (λ)[∂∗x, P0]P0ε∂
∗
xP0 .

In order to evaluate this for the j-th eigenband we calculate

[∂∗x, P0]P0 = P⊥0 ∂
∗
xP0

= P⊥0 Φ∗∂xP0 − log(1 + h)′P⊥0 y∂yP0

= − log(1 + h)′
∑
k 6=j

P k0 y∂yP
j
0

= − log(1 + h)′
∑
k 6=j

φkajk〈φj , ·〉L2([0,1+h],dy) ,

with

ajk = 2π(j + 1)
∫ 1

0
z sin(π(k + 1)z) cos(π(j + 1)z)dz .

If we denote by ∇B∂x := P j0 ∂xP
j
0 the Berry connection for this band, P1

takes the form

P1P
j
0ψ = −2 log(1 + h)′

∑
k 6=j

φk
ajk

λk − λj
ε∇B∂xP

j
0ψ +O(ε) ,

and P j0P1 = (P1P
j
0 )∗.
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Now that we have constructed the approximate projections PN , the
super-adiabatic projections can be obtained by a regularisation procedure.

Proof of proposition 2.13. To prove the statement for N ∈ N and Λ > 0,
take PN from lemma 2.14 and let χ1 ∈ C∞0 (R, [0, 1]) be a regular cut-off
(see C.1), equal to one if x ∈ [inf σ(H) − 1,Λ + 1] and equal to zero if
x /∈ (inf σ(H)− 2,Λ + 2). Put P̃ := PN − P0 ∈ A2N ,1

H and define

Pχ := P0 + P̃χ1(H) + χ1(H)P̃ (1− χ1(H)) = P0 +O(ε) .

For every m ∈ N we have χ1 ∈ L (H , D(Hm)) and by elliptic regularity
(see A.14) D(Hm) ⊂ W 2m

ε , so P̃χ1 ∈ L (H ) ∩L (D(H)). Therefore its
adjoint is also a bounded operator and from the construction of PN we
can see that χ1P̃ = (P̃χ1)∗ on W 2N

ε , so they are equal in L (H ) because
W 2N
ε is a dense subspace of H . Hence Pχ ∈ L (H ) is self-adjoint by

construction.
We want to prove that also Pχ ∈ L (D(H)). To show χ1P̃ ∈ L (D(H))

we need to show [H,χ1P̃ ] = χ1[H, P̃ ] ∈ L (D(H),H ). But actually,
by the same argument as before, we have χ1[H, P̃ ] = ([P̃ ,H]χ1)∗ on
W 2N+2
ε ∩D(H), and thus χ1[H, P̃ ] ∈ L (H ). These norms are of order

ε because P̃ ∈ A2N ,1
H . Consequently Pχ −P0 = O(ε) in L (H ) as well as

L (D(H)). We conclude that

‖[H,Pχ]‖L (D(H),H ) = ‖[H,P0]‖L (D(H),H ) +O(ε) = O(ε) . (2.8)

Now let χ2 ∈ C∞0 (R, [0, 1]) be another regular cut-off, equal to one on
[inf σ(H),Λ] and equal to zero where χ1 6= 1. Then we have χ1χ2 = χ2,
(1− χ1)χ2 = 0 and from lemma 2.14 we get

‖[H,Pχ]χ2(H)‖L (H ) = ‖[H,PN ]χ2(H)‖L (H ) = O(εN+1) . (2.9)

Since Pχ is close to the projection P0 we have for m ∈ {0, 1}:

‖(Pχ)2 − Pχ‖L (D(Hm)) = O(ε) .

Thus there is a constant C > 0 such that the spectrum of Pχ (as an
operator in L (H ) as well as L (D(H))) satisfies

σ(Pχ) ⊂ [−Cε,Cε] ∪ [1− Cε, 1 + Cε] .
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Take γ to be the circle of radius 1/2 around z = 1. Then for ε < (4C)−1

the integral

Pε := i
2π

∫
γ

(Pχ − z)−1 dz

exists and is bounded by two in the norms of L (H ) and L (D(H)). It
defines an orthogonal projection by the functional calculus.

To complete the proof of the proposition we will need to control the com-
mutator of Rχ(z) := (Pχ − z)−1 with χ2(H). First of all (1− χ1)χr2 = 0
for every r > 0, so (2.9) holds for every positive power of χ2 and we can
apply lemma C.2 with T = Pχ to get

‖[Pχ, χ2]‖L (H ,D(H)) = O(εN+1) . (2.10)

Then

‖[Rχ(z), χ2]‖L (H ,D(H))

= ‖Rχ(z)[Pχ, χ2]Rχ(z)‖L (H ,D(H)) = O(εN+1) . (2.11)

Now since χ2(H)%(H) = %(H) we have

‖[H,Pε]%(H)‖L (H )

=
∥∥∥∥ i

2π

∫
γ

Rχ(z) [H,Pχ]Rχ(z)χ2(H)%(H)dz
∥∥∥∥

=
∥∥∥∥ i

2π

∫
γ

Rχ(z) [H,Pχ]χ2(H)Rχ(z)%(H)

+Rχ(z) [H,Pχ]︸ ︷︷ ︸
(2.8)
= O(ε)

[Rχ(z), χ2(H)]︸ ︷︷ ︸
(2.11)

= O(εN+1)

%(H)dz
∥∥∥∥

≤
∥∥∥∥ i

2π

∫
γ

Rχ(z) [H,Pχ]χ2(H)︸ ︷︷ ︸
(2.9)
= O(εN+1)

Rχ(z)%(H)dz
∥∥∥∥+O(εN+2)

= O(εN+1) .
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2.2 Main results
We are now ready to define the effective operator Heff as a self-adjoint
operator on L2(E) and prove that it approximatesH in the sense of spectra
and unitary groups. Using the results of the previous section the proofs
rely mainly on standard techniques of perturbation theory. Results for the
approximation of other quantities can be obtained in similar ways. For
example the proof of the approximation for the unitary groups translates
directly to an L2-estimate for the heat semigroups and estimates in other
norms can be derived from the same ideas.
We start by proving the approximate invariance of the image of Pε,

obtained from proposition 2.13 for fixed N and Λ, under the unitary
group e−iHt.

Lemma 2.16. Let Pε be the projection of proposition 2.13, then there
exist positive constants C, ε0 > 0 such that∥∥[e−iHt, Pε]1(−∞,Λ](H)

∥∥
L (H ) ≤ Cε

N+1 |t|

for every ε ≤ ε0.

Proof. We start by calculating

[e−iHt, Pε]1(−∞,Λ](H)
= e−iHt (Pε − eiHtPεe−iHt) 1(−∞,Λ]

= −ie−iHt
∫ t

0
eiHs (HPε − PεH) e−iHs1(−∞,Λ] ds

= −ie−iHt
∫ t

0
eiHs[H,Pε]1(−∞,Λ]e−iHs ds .

Now by 2.13 we have ‖[H,Pε]1(−∞,Λ](H)‖L (H ) = O(εN+1), which is
enough to prove the claim since ‖eiHs‖L (H ) = 1.

Given that the image of Pε is almost invariant under e−iHt one may
think to approximate the unitary group by e−iPεHPεt. Not much is known
however about this space, except that it is ε-close to the image of P0. This
property allows us to unitarily map PεH to P0H = L2(E), which has a
much more accessible description.
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Theorem 2.17. Let N ∈ N, Λ > 0 and Pε be the projection constructed
in proposition 2.13. There exists ε0 > 0 such that there is a unitary
Uε ∈ L (H ) with UεP0 = PεUε. Furthermore Uε ∈ L (D(H)), the oper-
ator Heff := U∗εPεHPεUε is self-adjoint on Deff := U∗εPεD(H) ⊂ L2(E)
and satisfies

∥∥(e−iHt − Uεe−iHefftU∗ε
)
Pε1(−∞,Λ](H)

∥∥
L (H ) ≤ Cε

N+1 |t|

for every ε ≤ ε0.

Proof. Define S := 1− (Pε−P0)2. This is an invertible, positive operator
since Pε − P0 = O(ε) (cf. the proof of 2.13). We can thus define Uε by
the Sz.-Nagy formula

Uε :=
(
PεP0 + (1− Pε) (1− P0)

)
S−1/2 (2.12)

and the required properties are easily checked after noting that S com-
mutes with Pε and P0. The unitary is discussed in more detail in sec-
tion 2.2.1.

As to self-adjointness of Heff we can see that HD := PεHPε +P⊥ε HP
⊥
ε

is self-adjoint on D(H): The difference

HD −H = −PεH(1− Pε)− (1− Pε)HPε = [H,Pε](1− 2Pε)

is of order ε in L (D(H),H ). This means that for ε small enough
HD −H is bounded relative to H with relative bound less than one, so
HD is self-adjoint on D(H) by the Kato-Rellich theorem. Since HD com-
mutes with Pε this shows self-adjointness of (PεHPε, PεD(H)) on PεH ,
which is unitarily equivalent to (Heff , Deff) via Uε.
To check the approximation of unitary groups we use Duhamel’s formula

e−iHt−Uεe−iHefftU∗ε = −i
∫ t

0
Uεe−iHeff(t−s)U∗ε (H−UεHeffU

∗
ε︸ ︷︷ ︸

=PεHPε

)e−iHs ds
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and since UεHeffU
∗
ε = PεHPε commutes with Pε(

e−iHt − Uεe−iHefftU∗ε
)
Pε1(−∞,Λ](H)

=
(
Pε
(
e−iHt − Uεe−iHefftU∗ε

)
+ [e−iHt, Pε]

)
1(−∞,Λ](H)

=
(
− iPε

∫ t

0
Uεe−iHeff(t−s)U∗ε (H − PεHPε)e−iHs ds

+[e−iHt, Pε]
)

1(−∞,Λ]

= −i
∫ t

0
Uεe−iHeff(t−s)U∗ε (PεH − PεHPε)︸ ︷︷ ︸

=−Pε[H,Pε]

1(−∞,Λ]e−iHs ds

+ [e−iHt, Pε]1(−∞,Λ].

The first term is of order εN+1 |t| since the integrand is of order εN+1

by 2.13. The second term is of the same order by lemma 2.16.

What this theorem tells us is that if we start in the correct subspace
PεH of H and with energy below Λ, then we stay in this subspace and
the dynamics is determined by the unitary group of Heff up to times
of order ε−N . The requirement of starting in the correct subspace is of
course essential, because in a different subspace, say one constructed from
a different eigenband λ̃, the dynamics will be quite different.

Theorem 2.18. Let N ∈ N, Λ > 0 and Heff be the effective operator of
theorem 2.17. Then for every δ > 0 there exist constants C and ε0 > 0
such that for every µ ∈ σ(Heff) with µ ≤ Λ− δ and all ε < ε0:

dist(µ, σ(H)) ≤ CεN+1 .

Proof. Let (ψk)k∈N ⊂ L2(E) be a Weyl sequence for µ, i.e. for every k ∈ N
‖ψk‖ = 1 and limk→∞ ‖(Heff − µ)ψk‖ = 0. We can even choose the ψk
in the image of 1(−∞,D](Heff), with D = Λ − δ/2, because µ is in the
spectrum of Heff restricted to this space. Then because ψk ∈ P0H

‖(H − µ)Uεψk‖H
=
∥∥(H − µ)PεUε1(−∞,D](Heff)ψk

∥∥
≤ ‖Uε (Heff − µ)ψk‖+ ‖P⊥ε HPεUε1(−∞,D](Heff)ψk‖ . (2.13)
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Let χ be a regular cut-off with support in (−∞,Λ] that equals one on
(−∞, D] ∩ σ(Heff). Then by lemma C.2

1(−∞,D](Heff) = χ(Heff)1(−∞,D](Heff)
= U∗εPεχ(H)PεUε1(−∞,D](Heff) +O(εN+1) .

Using this and proposition 2.13 with % = χ gives a bound on the second
term

P⊥ε HPεUε1(−∞,D](Heff) = [H,Pε]Pεχ(H)PεUε1(−∞,D](Heff) +O(εN+1)
= O(εN+1) .

For the first one we can then simply choose k large enough for it to be
smaller than the second term. This shows that for ϕ = Uεψk

‖(H − µ)ϕ‖H ≤ CεN+1 .

So either (H − µ)ϕ = 0 and µ is an eigenvalue of H, or the vector
‖(H − µ)ϕ‖−1 (H − µ)ϕ is normalised and

dist(µ, σ(H))−1 = ‖(H − µ)−1‖L (H )

≥ 1
‖(H − µ)ϕ‖‖(H − µ)−1(H − µ)ϕ‖H

≥ 1
CεN+1 .

Remark 2.19. We can observe that the proof of the previous theorem
relies on the fact that the quasi-modes Uεψk have unit norm. If we have
µ ∈ σ(H) with Weyl sequence (ϕk)k∈N the natural choice of quasi-modes
for Heff would be U∗εPεϕk. If this sequence is bounded below in norm we
can easily reproduce the proof to obtain dist(µ, σ(Heff)) ≤ CεN+1.

If the spectrum of HF consists only of separated bands, the whole
Hilbert space decomposes as H =

⊕∞
j=0 P

j
0 H . If ψ has energy be-

low Λ only the projections onto bands with infx∈B λj(x) < Λ should give
significant contributions on ψ, since

Λ ≥ 〈ψ,Hψ〉 =
∑
j∈N
〈ψ,
(
−ε2∆h + εH1 + λj(x)

)
P j0ψ〉 .

59



Chapter 2 Adiabatic theory on fibre bundles

But these are only finitely many, so Λ > µ ∈ σ(H) is expected to
be associated with the effective operator of (at least) one band with
infx∈B λj(x) < Λ. In particular if Λ ≤ infx∈B λ1(x) this operator should
be the effective operator for λ0. To make this more precise, let λ0(x) =
min σ(HF (x)) be the smallest eigenvalue of HF (x). Suppose this sat-
isfies the gap condition and that −ε2∆h + εH1 is bounded below by
−Cε. Let Pε be the super-adiabatic projection of some order N and
put Λ1 := infx∈B inf σ(HF (x))\λ0, then given c > 0 there is ε0 such that
for every ψ ∈ D(H) and ε ≤ ε0:

〈ψ, P⊥ε HP⊥ε ψ〉
= 〈P⊥0 ψ,HP⊥0 ψ〉+O(ε)
= 〈P⊥0 ψ, (−ε2∆h + εH1)P⊥0 ψ〉︸ ︷︷ ︸

≥−Cε

+ 〈P⊥0 ψ,HFP
⊥
0 ψ〉︸ ︷︷ ︸

≥Λ1

+O(ε)

≥ Λ1 − c . (2.14)

Of course −ε2∆h+εH1 has such a lower bound if H1 = 0 or if it originates
from an embedding that only corrects the horizontal part of the metric
(see sections 1.1.3 and 3.1.1).

Theorem 2.20. Let −ε2∆h + εH1 be bounded below by −Cε, λ0 an
eigenband with spectral gap (condition 3) and χ be a regular cut-off with
suppχ ⊂ (−∞,Λ1). Then, for ε small enough the effective operator of
theorem 2.17 with energy cut-off χ, Heffχ(Heff), is unitarily equivalent to
Hχ(H) up to errors of order εN+1 in L (H ).

Proof. We have

Hχ(H) =
(
HD + (1− 2Pε)[H,Pε]

)
χ(H)

2.13= UεHeffU
∗
ε χ(H) + P⊥ε HP

⊥
ε χ(H) +O(εN+1) .

The proof may thus be completed by showing that P⊥ε χ(H) = O(εN+1)
and U∗ε χ(H)Uε = χ(Heff) +O(εN+1) . Both these statements are implied
by χ(H)− χ(PεHPε) = O(εN+1), which we prove in a separate lemma.
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Lemma 2.21. Let −ε2∆h + εH1 ≥ −Cε and χ be a regular cut-off with
suppχ ⊂ (−∞,Λ1) . Then

‖χ(H)− χ(PεHPε)‖L (H ,D(H)) = O(εN+1) .

Proof. We first apply lemma C.2 with T = P⊥ε to get∥∥P⊥ε χ(H)P⊥ε − χ(P⊥ε HP⊥ε )
∥∥

L (H ,D(H)) = O(εN+1) .

Then observe that for ε small enough suppχ∩σ(P⊥ε HP⊥ε ) = ∅ by (2.14),
so χ(P⊥ε HP⊥ε ) = 0. Another application of lemma C.2 gives∥∥P⊥ε χ(H)Pε

∥∥
L (H ,D(H)) = ‖[χ(H), Pε]Pε‖L (H ,D(H)) = O(εN+1) .

Together these statements imply∥∥P⊥ε χ(H)
∥∥

L (H ,D(H)) = O(εN+1) =
∥∥χ(H)P⊥ε

∥∥
L (H ,D(H)) ,

whereby

‖χ(H)− Pεχ(H)Pε‖L (H ,D(H)) = O(εN+1) .

A final use of lemma C.2 with T = Pε concludes the proof.

2.2.1 Expansion of the effective Hamiltonian
For a better understanding of the effective operator we expand it in powers
of ε. We also identify how the terms appearing in the construction of Pε
in lemma 2.14 enter into the effective Hamiltonian. From lemma 2.14 and
the proof of proposition 2.13 we already know a lot about the expansion
of Pε, so first we will need to take a closer look at Uε. By definition we
have

PεUε = PεP0
(
1− (Pε − P0)2)−1/2

.

Since Pε − P0 = O(ε) we can expand Uε by using the power series

(1− z2)−1/2 = 1 +
∞∑
k=1

akz
2k, with ak = (2k − 1)!

22k−1k!(k − 1)! ,
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which converges for |z| < 1. This gives

PεUε = PεP0 +
∞∑
k=1

akPεP0(Pε − P0)2k

= P0 + (Pε − P0)P0 +O(ε2) .

The corresponding expansion of Heff = U∗εPεHPεUε =: P0HP0 + Hsa
consists of the leading adiabatic part Ha := P0HP0 and additional super-
adiabatic corrections Hsa originating from higher order terms in Pε.
As to the adiabatic part we define a connection ∇B on E using that

Γ(E) ⊂ C∞(M,C) (see appendix B.2) and setting

∇BXψ := P0X
∗P0ψ . (2.15)

This is usually called the Berry connection. Since the volume of the fibres
may vary this need not be a metric connection, as we will see in the
following. Let X ∈ Γ(TB) and ψ,ϕ ∈ Γ(E). These functions vanish on
the boundary of F , so

X 〈ϕ,ψ〉E

= LX
∫
F

P0ϕx(y)P0ψx(y) volFx(dy)

=
〈
∇BXϕ,ψ

〉
E +

〈
ϕ,∇BXψ

〉
E +

∫
F

ϕx(y)ψx(y) (LX∗volFx(dy))

=
〈
∇BXφ, ψ

〉
E +

〈
φ,∇BXψ

〉
E −

∫
F

ϕx(y)ψx(y)gB(X,π∗η) volFx(dy)

=:
〈
∇BXφ, ψ

〉
E +

〈
φ,∇BXψ

〉
E − 〈φ, η̄(X)ψ〉E , (2.16)

by the variation of area formula LX∗volFx = −gB(X,π∗η)volFx . This
defines a form η̄ ∈ Γ (T ∗B) ⊗ End(E) by η̄(X) = P0gB(X,π∗η)P0. It is
basically given by the average of the mean curvature, weighted with the
λ-eigenfunctions of HF . That is, given a basis (φi)i≤k of Ex0

η̄ij(Xx0) =
∫
F

φi(y)φj(y)gB(Xx0 , π∗η) volFx0
(y) .
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Let ψ be a smooth section of E with support in U ∈ U. We define the
Laplacian ∆B by the quadratic form∫

B

〈ψ,−∆Bψ〉E volgB

=
∫
B

〈∇Bψ,∇Bψ〉T∗B⊗E volgB

=
∑
i≤d

∫
B

〈∇BXiψ,∇
B
Xiψ〉E volgB

= −
∑
i≤d

(∫
B

〈ψ,∇BXi∇
B
Xiψ〉 − 〈ψ, η̄(Xi)∇BXiψ〉 volgB

+
∫
B

〈ψ,∇BXiψ〉LXivolgB
)

= −
∑
i≤d

∫
B

〈ψ,
(
∇BXi∇

B
Xi −∇

B
∇XiXi

)
ψ〉 − 〈ψ, η̄(Xi)∇BXiψ〉 volgB

= −
∫
B

〈ψ, tr
(
(∇B)2 − η̄(·)∇B·

)
ψ〉 volgB . (2.17)

The difference ∆B − P0∆hP0 is a zeroth order operator usually called
Born-Huang potential in adiabatic perturbation theory. It can easily be
calculated from the quadratic forms and is given by

VBH : = ∆B − P0∆hP0

= trNF
(
P0
(
− [·, P0]2 + [gB(·, π∗η), P0][·, P0]

)
P0

)
.

The adiabatic operator can then be expressed as

Ha = −ε2∆B + λ+ εP0H1P0 + ε2VBH . (2.18)

Example 2.22. For M = R× [0, 1+h] as discussed in examples 2.2, 2.10
and 2.15 we have η = 0 and thus 〈φj , ∂xφj〉 = 1

2∂x〈φj , φj〉 = 0 on the j-th
band. This leads to

∇B∂xφj(x, y)ψ(x) = P0(ψ∂xφj + φj∂xψ) = φj∂xψ .

Hence for every j

∆B = ∂2
x
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and

VBH = ∆B − P0∆hP0 = P0∂xP0∂xP0 − P0∂
2
xP0 = −P0∂xP

⊥
0 ∂xP0 .

For the j-th band this equals

VBH = −
∑
k 6=j

P j0 ∂xP
k
0 ∂xP

j
0 = −

∑
k 6=j
〈φj , ∂xφk〉〈φk, ∂xφj〉

=
∑
k 6=j
|〈φk, ∂xφj〉|2 = |〈∂xφj , ∂xφj〉|2 ,

which evaluates to

VBH =
(

log(1 + h)′
)2( 1

6 (π(j + 1))2 + 1
4
)
.

We discuss the adiabatic operator in more detail in the next chapter.
Now we turn to the study of the super-adiabatic correction Hsa. First we
need to establish some key properties of the expansion of Uε. Note that

P0(Pε − P0)2 = P0P
2
ε − P0PεP0 − P 2

0Pε + P0

= −P0(Pε − P0)P0 = O(ε2) . (2.19)

Using this we can write the first terms of the expansion of PεUε as

PεUε = P0 + P⊥0 (Pε − P0)P0︸ ︷︷ ︸
=:εU1

− 1
2P0(Pε − P0)2P0︸ ︷︷ ︸

=:ε2U2

+O(ε3) ,

with U1, U2 ∈ L (H ) ∩L (D(H)). We then have

Hsa = Heff −Ha

= ε (U∗1HP0 + P0HU1) + ε2 (U∗1HU1 + P0HU2 + U2HP0) +O(ε3)
= ε (P0(Pε − P0)[H,P0]P0 + P0[P0, H](Pε − P0)P0) (2.20a)

+ ε2 (U∗1HU1 + P0HU2 + U2HP0) +O(ε3) . (2.20b)

From this equation we conclude that ‖Hsa‖L (D(H),H ) = O(ε2). If we in-
clude only the leading super-adiabatic contribution we get a rather explicit
expression for Heff .
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Proposition 2.23. Let Heff be the effective operator of theorem 2.17 and
χ be a regular cut-off with support in (−∞,Λ], then

‖Heffχ(Heff)− χ(Heff) (Ha +M)χ(Heff)‖L (H ) = O(ε3) ,

with

Ha = −ε2∆B + λ+ εP0H1P0 + ε2VBH ,

M = P0[H,P0]RF (λ)[H,P0]P0 . (2.21)

Proof. The form of Ha = P0HP0 has already been derived. Also

Heffχ(Heff)− χ(Heff)Haχ(Heff) = χ(Heff)Hsaχ(Heff) = O(ε2) .

By virtue of lemma C.2 we have ‖χ(Heff)− P0χ(H)‖L (H ,D(H)) = O(ε),
so these cut-offs are exchangeable when dealing with Hsa in an expansion
up to O(ε3). Using this, the proof is completed in lemma 2.26.

Example 2.24. In our example M = R × [0, 1 + h] we have by the
calculations of example 2.15

M = −P0P1[H,P0]P0 = −
∑
k 6=j

P j0P1P
k
0 [H,P j0 ]P j0

= 4ε4∇B∂x [∂∗x, P0]RF (λ)[∂∗x, P0]∇B∂x +O(ε3)

=
(

4ε2( log(1 + h)′
)2∑

k 6=j

a2
jk

λk − λj

)
ε2∂2

x +O(ε3) .

The remainder of order ε3 is a first order differential operator.

To get the explicit form of M we need to use information on the ex-
pansion of Pε from its construction in lemma 2.14.

Lemma 2.25. Let χ be a regular cut-off with support in (−∞,Λ] and let
Pk ∈ AH denote the operators constructed in lemma 2.14, then

∥∥∥(Pε − P0)χ(H)−
N∑
k=1

εkPkχ(H)
∥∥∥

L (H ,D(H))
= O(εN+1) .
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Proof. We prove Pεχ = Pχχ+O(εN+1) = PNχ+O(εN+1) (see the proof
of proposition 2.13). By a result of Nenciu [54, proposition 3] we have

Pε − Pχ = 1
2πi

∫
γ

(Pχ − z)−1 + (Pχ − 1 + z)−1

1− z dz ((Pχ)2 − Pχ) .

Thus calculating

((Pχ)2 − Pχ)χ(H) (2.10)= χ1/2(Pχ − 1)Pχχ1/2 +O(εN+1)
= χ1/2((PN )2 − PN )χ1/2 +O(εN+1)
= O(εN+1)

proves the claim.

If we apply this lemma together with equation (2.19) and P0P1P0 =
P⊥0 P1P

⊥
0 = 0 we get an explicit expansion of U1

U1χ(H) = ε−1P⊥0 (Pε − P0)P0χ

= ε−1P⊥0 (Pε − P0)χ+O(ε)
= P⊥0 P1χ+O(ε) .

More precisely this means

‖(U1 − P⊥0 P1)χ(H)‖L (H ,D(H)) = ‖(U1 − P1P0)χ(H)‖ = O(ε) (2.22)

while a similar calculation with U2 yields∥∥χ(H)
(
U2 + 1

2P1P
⊥
0 P1

)
χ(H)

∥∥
L (H ,D(H))

=
∥∥χ(H)

(
U2 + 1

2P0P1P1P0
)
χ(H)

∥∥
L (H ,D(H)) = O(ε) .

With these we can express the leading order of Hsa in terms of P0 and
P1, which is explicitly given in the construction 2.14. The energy cut-offs
in the statement are clearly necessary because if H1 is a second order
differential operator P0P1P1P0 may already be of order four. In this case
it will not be a bounded operator from D(H) to H .
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Lemma 2.26. Let χ be a regular cut-off with support in (−∞,Λ]. The
super-adiabatic operator satisfies

ε−2∥∥χ(H) (Hsa − P0[H,P0]RF (λ)[H,P0]P0)χ(H)
∥∥

L (H ) = O(ε) .

Proof. We start by using (2.22) and lemma 2.14 on one of the terms
in (2.20a)

εP0[P0, H]U1χ(H) = −P0[H,P0]P⊥0 εP1P0χ+O(ε3)
= P0[H,P0]P⊥0 RF (λ)[H,P0]P0χ+O(ε3) ,

The other term in (2.20a) is the adjoint of this one, which means they are
equal since the result is clearly symmetric. Now because U2 = P0U2P0,
inserting H = (−ε2∆h + λ) + (HF − λ) + εH1 into (2.20b) gives

U∗1HU1 + P0HU2 + U2HP0

= U∗1 (−ε2∆h + λ)U1 + P0(−ε2∆h + λ)U2

+U2(−ε2∆h + λ)P0
(2.23a)

+ U∗1 (HF − λ)U1 +O(ε) . (2.23b)

Looking more closely at (2.23b) we find

χ(H) (U∗1 (HF − λ)U1)χ(H)
= −χP0[H,P0]RF (λ)(HF − λ)︸ ︷︷ ︸

=1

RF (λ)[H,P0]P0χ+O(ε)

= −χP0[H,P0]RF (λ)[H,P0]P0χ+O(ε) .

Thus after adding (2.20a) and (2.23b) we are left exactly with the correct
expression (2.21).

To prove the claim we still need to show that the contribution of (2.23a)
is of order ε. To see this first note that

ε2(U∗1U1 + 2U2) = P0(Pε − P0)P⊥0 (Pε − P0)P0 − P0(Pε − P0)2

= (P0(Pε − P0)P0)2 = O(ε4) .
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Therefore we can complete the proof by showing∥∥χ(H)U∗1 [−ε2∆h + λ,U1]χ(H)
∥∥

L (H ) = O(ε) , (2.24a)∥∥χ(H)P0[−ε2∆h + λ,U2]χ(H)
∥∥

L (H ) = O(ε) . (2.24b)

Observe that since [H,χ(H)] = 0∥∥P0[−ε2∆h + λ, χ1/2(H)]χ1/2(H)
∥∥

L (H )

=
∥∥P0[HF − λ, χ1/2]χ1/2 + P0[εH1, χ

1/2]χ1/2∥∥
L (H )

=
∥∥P0(HF − λ)︸ ︷︷ ︸

=0

χ− P0χ
1/2(HF − λ)χ1/2∥∥

L (H ) +O(ε)

=
∥∥[P0, χ

1/2](HF − λ)χ1/2∥∥
L (H ) +O(ε)

= O(ε) . (2.25)

Since Uj = UjP0 for j ∈ {1, 2} this implies∥∥[−ε2∆h + λ,Ujχ
1/2]χ1/2 − [−ε2∆h + λ,Uj ]χ

∥∥
L (H ) = O(ε) .

Using this together with (2.22) in (2.24a) gives∥∥χ(H)U∗1 [−ε2∆h + λ,U1]χ(H)
∥∥

L (H )

=
∥∥χU∗1 [−ε2∆h + λ, P1P0χ

1/2]χ1/2∥∥+O(ε)
≤
∥∥χU∗1 ([−ε2∆h, P1P0]χ︸ ︷︷ ︸

(2.2)
= O(ε)

+ [λ, P1]P0︸ ︷︷ ︸
∈A1,1

H

χ)
∥∥

+
∥∥χU∗1P1P0[−ε2∆h + λ, χ1/2]χ1/2∥∥+O(ε)

= O(ε) .

The last step here is justified by (2.25) and χU∗1P1P0 ∈ L (H ), which
follows from an adjointness argument (cf. the proof of proposition 2.13).
The calculation for (2.24b) is basically identical, so the proof is complete.
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Examples and applications

In this chapter we apply the general theory to more specific problems and
analyse the adiabatic part of the effective operator in detail. First we show
that the general theory of chapter 2 applies to the shrinking embeddings
mentioned in section 1.1.3. Then we turn to the study of the ground
state band λ0(x) = min σ(HF (x)) and its corresponding effective operator.
In particular we derive asymptotics of eigenvalues and eigenfunctions in
terms of the adiabatic operator in section 3.2. In cases of low dimensional
base we refine these asymptotics and relate them to questions concerning
the nodal sets of eigenfunctions of the Laplacian in section 3.3.2.

3.1 Examples

3.1.1 Embeddings of fibre bundles
Here we analyse shrinking embeddings of fibre bundles, already touched
upon in 1.1.3. We show that their Laplacians fit into the framework of
chapter 2, so these embeddings provide a large class of examples for the
general theory, with non-trivial perturbation H1. The results here are
based on the author’s joint work with Haag and Teufel [30].

As discussed in section 1.1.3 let α:B → Rk and β:M → NB be em-
beddings such that the diagram

M
β- NB

B

π
? id- B

πNB
?
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commutes. We identify elements of NB ⊂ TRk with vectors in Rk and
define

Ψε:M → Rk , x 7→ α(π(x)) + εβ(x) .

Let 〈·, ·〉 denote the Euclidean metric on Rk and put gB := α∗〈·, ·〉,
Gε := ε−2Ψ∗ε〈·, ·〉. Whenever dealing with such embeddings we assume
in the following:

Condition 4.

• α(B) has a tubular neighbourhood T of radius rT > 0 and

β(M) ⊂ {ν ∈ NB : |ν| < rT } .

• (B, gB) is of bounded geometry and (M,Gε=1) → B is uniformly
locally trivial.

• The maps α and β are C∞-bounded.

Under these conditions NB is a bundle of bounded geometry over B
and the Weingarten map W ∈ Γ(NB∗)⊗End(TB) of (B,α) is a bounded
tensor. Let G̃ε be the metric on NB induced by the map ν 7→ α(π(ν))+εν
multiplied by ε−2. We will give a short derivation for the key features of
this metric, for a more detailed exposition see [30].

Choose local coordinates on U ⊂ B with coordinate vector fields (∂xi)i≤d
and an orthonormal frame {ej : j = 1, . . . , rankNB} of NB|U . This gives
bundle coordinates ν = νjej(x) on NB|U with coordinate vector fields
{∂xi , ∂νj : i ≤ d, j ≤ rankNB}. For these one easily sees that

(α ◦ π + εν)∗∂xi = α∗π∗∂xi + ε∂xiν (3.1)
(α ◦ π + εν)∗∂νj = ε∂νjν = εej .

With this we can determine the horizontal lift for the metric G̃ε.

Lemma 3.1. Let ωN ∈ Γ(T ∗U ⊗ End(NB)) denote the connection form
of the normal connection over U . The horizontal lift of ∂xi with respect
to G̃ε is independent of ε and given by

∂hxi
∣∣
ν

= ∂xi −
rankNB∑
j=1

〈ωN (∂xi)ν, ej〉∂νj .
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Proof. The vector field ∂hxi clearly projects to ∂xi , so we only need to
check that it is horizontal for any ε. We have

G̃ε(∂xi , ∂νj ) = ε−2〈α∗π∗∂xi + ε∂xiν, εej〉 = 〈∂xiν, ej〉 = 〈ωN (∂xi)ν, ej〉

and

G̃ε(∂νj , ∂νl) = ε−2〈εej , εel〉 = δjl .

Consequently for any j ∈ {1, . . . , rankNB}:

G̃ε(∂hxi , ∂νj ) = G̃ε
(
∂xi , ∂νj )− G̃ε(

rankNB∑
l=1

〈ωN (∂xi)ν, el〉∂νl , ∂νj
)

= 〈ωN (∂xi)ν, ej〉 − 〈ωN (∂xi)ν, el〉δjl = 0 .

Since the fields {∂νj : j = 1, . . . , rankNB} span the kernel of πNB∗ this
proves the claim.

Since the Weingarten map is defined as minus the projection of ∇ν to
TB, equation (3.1) determines the horizontal part of G̃ε to be

G̃ε(Xh
ν , Y

h
ν ) = ε−2π∗gB

(
(1− εW (ν))Xπ(ν), (1− εW (ν))Yπ(ν)

)
,

with gB = α∗〈·, ·〉. On vertical vectors, G̃ε is given by the flat metric δ
induced by the bundle metric on NB. The leading part of this metric is
a rescaled Riemannian submersion with totally geodesic fibres, defined by
the horizontal lift Xh, gB and gF = δ.
If the codimension of M in Rk is zero we have Gε = G̃ε on β(M). In

the case of positive codimension the vertical metric gF is simply obtained
by the fibre-wise restriction of δ to β(M). In particular gF is independent
of ε. In order to find a simple expression for Gε we need to determine
the horizontal lift, which will again turn out to be independent of ε. We
begin by discussing the lift X∗ for Gε=1. For any X ∈ Γ(TB) we have

πNB∗(β∗X∗ −Xh) = π∗X
∗ − πNB∗Xh = 0

and thus β∗X∗ = Xh + ω(X) with a vertical field ω(X) ∈ Γ(TNB).
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NBx

ν

−ν

β(Fx)

β∗TFx

ω(X)ν

ω(X)−ν

0

NBx

ω(X)

Xh

β∗X
∗

ν

0 ∼= B x X

NB

By construction β∗ is an isometry, so we have for every Y ∈ Γ(TF )

0 = Gε=1(X∗, Y ) = G̃ε=1(Xh + ω(X), β∗Y ) = δ(ω(X), β∗Y ) . (3.2)

This means the vertical field ω(X) is orthogonal to β(Fx) in every fibre
NBx. Now let Q be the orthogonal projection to the normal bundle of
β(M) with respect to G̃ε=1. Then 0 = Qβ∗X

∗ = QXh +Qω(X) and this
equation uniquely determines ω as a tensor in Γ(T ∗B ⊗ TNB) by virtue
of the following lemma.

Lemma 3.2. For any y ∈ β(M) denote x := π(y) and let Nβ(Fx)y ⊂
Ty(NBx) be the fibre-wise normal space with respect to the fibre metric
on NB. Then the restriction of Q to this space Q:Nβ(Fx)y → NMy is a
bijection.

Proof. Since β respects the projections, the space Nβ(Fx)y contains no
tangent vectors to β(M), so kerQ ∩ Nβ(Fx)y = {0} and the restriction
is one-to-one. It also has to be onto for dimensional reasons. On the one
hand we have

dim(NB) = rank(TNB) = rank(π∗NBTB) + dim(NBx) ,

by the splitting of TNB into vertical and horizontal parts. On the other
hand, applying the same idea to M ,

dim(NB) = dim(M)+codim(M) = rank(π∗TB)+dim(F )+codim(M) .

This implies dim(NBx) = dim(F ) + codim(M), so the codimension of Fx
in NBx equals codim(M), which means exactly that dim(Nβ(Fx)y) =
dim(NMy) and proves the claim.
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Given this lemma we have ω(X) = −Q−1QXh, but for an explicit calcu-
lation the formula G̃ε=1(ω(X), Y ) = −G̃ε=1(Xh, Y ) for any Y ∈ Γ(NM)
may be more convenient. In particular if the codimension is one and the
normal v ∈ Nβ(M)y has a vertical part vFx , which is then in Nβ(Fx),
and horizontal part vh we have

G̃ε=1(vh, Xh) = −G̃ε=1(vFx , ω(X)) .

In this case Nβ(Fx) is one-dimensional and by the argument of lemma 3.2
vFx 6= 0, so ω(X)y is proportional to vFx and

ω(X)y = −G̃ε=1(vh, Xh)G̃ε=1(vFx , vFx)−1vFx .

The field ω(X) is completely determined by the requirements that Xh +
ω(X) be tangent to β(M) and ω(X)y ∈ Nβ(Fx)y. Both of these con-
cepts are completely independent of ε, so the horizontal lift also has this
property.

Lemma 3.3. For any X ∈ Γ(TB) the horizontal lift with respect to Gε
is independent of ε and given by

β∗X
∗ = Xh + ω(X) = (1−Q−1Q)Xh

in the notation of lemma 3.2.

Proof. The field Xh + ω(X) is a section of Tβ(M) that projects to X, so
we only need to check that it is orthogonal to β∗TF for every Gε, since
then it must be the unique horizontal lift of X. For Y ∈ Γ(TF ) we have

Gε(Y,X∗) = G̃ε
(
β∗Y,X

h + ω(X)
)

= δ
(
β∗Y, ω(X)

) (3.2)= 0 ,

because β∗Y is vertical and the fibre metric does not depend on ε.

This determines the horizontal component of Gε to be

Gε(X∗, Y ∗) = ε−2
(
gB
(
(1−εβ∗W )X, (1−εβ∗W )Y

)
+ε2δ

(
ω(X), ω(Y )

))
.

The vertical metric is given by the restriction of δ to the fibres, gF = β∗δ.
Because NB is a bundle of bounded geometry and β a bounded map, ω
is a bounded tensor and this metric has the form

Gε = gε +O(ε) .
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The leading part gε is a rescaled Riemannian submersion built from gB ,
which is the restriction of the euclidean metric of Rk to α(B), gF = β∗δ

and the horizontal lift X∗. The remainder is of order ε in the sense that
there exists C > 0 so that∣∣(Gε − gε)(X,X)

∣∣ ≤ Cεgε(X,X) .

The Laplacian of Gε fits into the framework of chapter 2 since the various
terms of the difference ∆Gε − ∆gε may be collected in the perturbation
εH1.

Lemma 3.4. The negative Laplacian −∆Gε is unitarily equivalent to an
operator H that satisfies condition 2. Let ∆h be the horizontal Laplacian
of gε, then there is C > 0 so that −ε2∆h + εH1 ≥ −Cε.

Proof. For the calculation of ∆gε we need the metric on one-forms. The
relation of Gε and gε on tangent vectors v ∈ TM implies

gε
(
Gε(v, ·), Gε(v, ·)

)
= gε

(
gε(v, ·), gε(v, ·)

)
+O(ε) = gε(v, v) +O(ε) ,

which entails(
Gε − gε

)(
Gε(v, ·), Gε(v, ·)

)
= Gε(v, v)− gε(v, v) +O(ε) = O(ε) .

This equation completely determines the difference and we have∣∣(Gε − gε)(ξ, ξ)∣∣ ≤ Cεgε(ξ, ξ)
for some C > 0 and every ξ ∈ T ∗M . Now note that all the corrections in
Gε concern only the horizontal directions, so Gε − gε vanishes on vertical
cotangent vectors and for ξ ∈ T ∗B∣∣(Gε − gε)(π∗ξ, π∗ξ)∣∣ ≤ Cε3gB(ξ, ξ) .

Rescaling the volume measure of (M,Gε) with ρ = volGε/volgε as dis-
cussed in section 1.1.3 we obtain the expression (1.7) for H:

H := −U∗ρ∆GεUρψ = −∆gεψ − divgε(Gε − gε)(dψ, ·) + Vρψ , (3.3)

with

Vρ = 1
4Gε(d log ρ, d log ρ) + 1

2 divgε gradGε log ρ .
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Because α and β are C∞-bounded, so are ω and β∗W . Thus we have
ρ = 1 +O(ε) and ε−1Vρ = O(1) in C∞b (M). Let H1 be the operator

H1ψ := −ε−1 divgε(Gε − gε)(dψ, ·) + ε−1Vρ .

If we express this over U ∈ U using the gε-orthonormal frame (εX∗i )i≤d
of NF |U (see equation (C.10)), we obtain an operator whose coefficients
are given by a convergent power series depending on β∗W and ω since
we basically need to compute the inverse of Gε(εX∗i , εX∗j ) minus δij . By
condition 4 these objects are smooth, with derivatives bounded indepen-
dently of ε. This ensures that H1 ∈ L (Wm+2

ε ,Wm
ε ) for every m ∈ N.

We also have that H1A ∈ Ak+2,l for every A ∈ Ak,lH , since expressing H1
by Φ∗Xi = X∗i − Yi we see that it has the form discussed in remark 2.6.
Hence H satisfies condition 2.

The differential operator ψ 7→ −ε2∆hψ − divgε(Gε − gε)(dψ, ·) is the
horizontal Laplacian of Gε (with the volume measure of gε), hence it is
non-negative and

−ε2∆h + εH1 ≥ −‖Vρ‖∞ ≥ −Cε .

Consequently, if condition 4 holds, all of the theorems of section 2.2 are
valid for −∆Gε and any eigenband with a gap. From now on we denote
Sε := ε−3(Gε−gε) ∈ Γ(π∗T ∗B⊗π∗T ∗B), which is a bounded tensor with
respect to gB because of the boundedness of β∗W , ω. For the differential
operator in H1 we adopt the notation

divSε:W 2
ε (M)→H ψ 7→ divgε Sε(dψ, ·) . (3.4)

We close the discussion of embeddings with some remarks.

Remark 3.5. In many cases the contribution of Vρ to the adiabatic op-
erator Ha = P0HP0 is of order ε2. Because ρ = 1 + O(ε) it is clear
that

Gε(d log ρ, d log ρ) = O(ε2) .
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The leading contribution of the second term of Vρ is

∆gε log ρ = ∆F log ρ+ ε2∆h log ρ = ∆F log ρ+O(ε3) .

Now if the codimension of M is zero, the leading term of log ρ is given by

log ρ = log det(1− εW ) = −ε trW +O(ε2) .

Since this leading term is linear in the fibre coordinate ν, the fibre Lapla-
cian vanishes on it and Vρ = O(ε2).
If on the other hand ∂M = ∅ and we are considering the ground state

band λ ≡ 0, with fibre eigenfunction φ0 = π∗Vol(Fx)−1/2, the potential
Vρ might be of order ε, but

P0∆F log ρ = φ0〈φ0,∆F log ρ〉HF
= φ0〈∆Fφ0, log ρ〉 = 0 .

Hence in this case the contribution to Ha, P0VρP0, is again of order ε2.

Remark 3.6. It is possible to treat embeddings of M into general Rie-
mannian manifolds of bounded geometry (A, gA). The maps Ψε are then
defined using the normal exponential map

expN :NB → A ν 7→ expπ(ν) ν .

The corresponding expansion of the metric G̃ε was derived by Wittich [71]
using Jacobi fields. Though the general form of the metric is still the same,
this introduces some new features.

• The vertical metric on NB is no longer flat. Hence its scaling be-
haviour under the rescaling ν 7→ εν is more complex and the vertical
Laplacian acquires ε-dependent corrections. These may be treated
as part of HF or added to H1. In that case −ε2∆h + εH1 may be
unbounded from below.

• The horizontal lift of X ∈ Γ(TB) with respect to Gε will depend on
ε. Because this dependence is of lower order in ε we may define gε
as the rescaled submersion metric obtained from X∗ε=1, gB and gF
and the general framework is still applicable.
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3.1.2 The ground state band of the Laplacian
We now give a detailed derivation of the adiabatic operator associated
with the ground state band of the Laplacian, that is the case V ≡ 0,
HF = −∆F . This also indicates how the corresponding calculations for
other bands or V 6= 0 can be performed. We now show that this eigenband
satisfies the gap condition, because of the restrictions on the geometry,
if the fibres are connected. Estimates on the spectral gap in terms of
geometric quantities have been derived for many cases, see the book [64].

Lemma 3.7. Let F be connected, V = 0 and λ0(x) = min σ(−∆Fx) be
the ground state band. If M satisfies condition 1 then λ0 has a spectral
gap of uniform size and satisfies condition 3.

Proof. Let λ1(x) := min(σ(−∆Fx) \ λ0). We first show that there is a
constant C > 0 such that λ1 − λ0 ≥ C. Assume this were not the case.
Then there would be a sequence (xk)k∈N in B with limk→0∞ λ1(xk) −
λ0(xk) = 0. Now for every k take an open set Uν(k) ∈ U containing xk
and denote by gk := (Φ−1

ν(k))
∗gFxk the metric on F isometric to that of

the fibre over xk. Because of the bounds on (Φ−1
ν(k))

∗ that are required
on M , for any m ∈ N the sequence (gk)k∈N is bounded in the Cm+1-
norm on Γ(T ∗F ⊗ T ∗F ) with respect to g0. Thus by the Arzelà-Ascoli
theorem there is a subsequence converging to a symmetric bilinear form
g∞ of Cm-regularity and by repeated extraction of subsequences and a
diagonal argument g∞ is a smooth tensor. Because of the bounds on the
inverse Φ∗ν(k), the sequence of metrics is also positive definite in a uniform
way and g∞ is a Riemannian metric. Now it was shown by Bando and
Urakawa that the eigenvalues of the Laplacian depend continuously on
the metric (see [2], the proof is stated for manifolds without boundary
but carries over to the Dirichlet Laplacian because the eigenvalues are
determined by a maxi-min principle in a similar way). This means that
the sequences λ1(xk) and λ0(xk) converge to the two smallest eigenvalues
of (F, g∞) and λ1(g∞) = λ0(g∞). But this is impossible since λ0 is always
a simple eigenvalue (see [64]), thus a positive lower bound for λ1−λ0 must
exist.

The continuous dependence on the metric now shows that these eigen-
values may be separated by continuous functions, so condition 3 is satis-
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fied.

Now let F be connected, then for every x ∈ B there is a unique real,
positive and normalised solution φ0(x, ·) to the equation −∆Fxφ = λ0(x)φ
(see e.g. [64]). This provides a trivialisation of the line bundle E and
isomorphisms Γ(E) ∼= C∞(B), L2(E) ∼= L2(B). We may calculate the
Berry connection (2.15) in this trivialisation to be

∇BXφ0ψ = P0X
∗φ0ψ

= φ0(Xψ) + φ0ψ 〈φ0, X
∗φ0〉HF

=: φ0
(
X + ωB(X)

)
ψ ,

for X ∈ Γ(TB) and ψ ∈ W 1(B). Since φ0 is real, the imaginary part of
ωB vanishes and we have

2ωB(X) = ωB(X) + ωB(X)

=
∫
Fx

(
φ0X

∗φ0
)
(x, y) +

(
(X∗φ0)φ0

)
(x, y) volgFx (dy)

= −
∫
Fx

|φ0|2 (x, y)LX∗volFx(dy) (2.16)= η̄(X) .

Note that if ∂M = ∅ the ground state is explicitly given by φ0(x, ·) =
π∗Vol(Fx)−1/2 and

η̄
∂M=∅= −d (log Vol(Fx)) . (3.5)

From the formula ∇B = d + 1
2 η̄ in this trivialisation we may calculate the

corresponding Laplacian (2.17)

∆B = tr
(
(∇B)2 − η̄(·)∇B·

)
=
∑
i≤d

(
Xi + 1

2 η̄(Xi)
)2 − (∇XiXi + 1

2 η̄(∇XiXi)
)
− η̄(Xi)∇BXi

=
∑
i≤d

(
Xi − 1

2 η̄(Xi)
) (
Xi + 1

2 η̄(Xi)
)
−
(
∇XiXi + 1

2 η̄(∇XiXi)
)

=
∑
i≤d

(XiXi −∇XiXi) + 1
2 (Xiη̄(Xi))− 1

2 η̄(∇XiXi)− 1
4 η̄(Xi)2

= ∆gB + 1
2 tr (∇·η̄) (·)− 1

4gB(η̄, η̄) .
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In the particular case of a one-dimensional base we have that ∇X1X1 = 0,
X1 = ∂x may be chosen as a coordinate vector field and

∆B
d=1= ∂2

x + 1
2 (∂xη̄)− 1

4 η̄
2 =

(
∂x − 1

2 η̄
) (
∂x + 1

2 η̄
)
.

We now calculate the Born-Huang potential from its local form

VBH = ∆B − P0∆hP0

= −
∑
i≤d

(
P0X

∗
i P
⊥
0 X

∗
i P0 − P0gB(Xi, π∗η)P⊥0 X∗i P0

)
.

To express this in terms of φ0 we first need

P⊥0 X
∗φ0ψ = X∗φ0ψ −∇BXφ0ψ = ψ

(
X∗φ0 − φ0

1
2 η̄(X)

)
. (3.6)

Applying P0X
∗ to this expression gives

P0X
∗P⊥0 X

∗φ0ψ

= ψ
(
P0X

∗(X∗φ0)− 1
2∇

B
Xφ0η̄(X)

)
= ψ

(
P0X

∗(X∗φ0)− φ0
( 1

2Xη̄(X) + 1
4 η̄(X)2)) . (3.7)

By ωB = 1
2 η̄ we have

1
2Xη̄(X) = XωB(X) = X

∫
Fx

φ0(X∗φ0) volFx

=
∫
Fx

|X∗φ0|2 + φ0X
∗(X∗φ0)− φ0(X∗φ0)gB(X,π∗η) volFx ,

so the second term here will cancel the first term of (3.7) when calculating
VBH. Thus summation over i yields∑

i≤d

P0X
∗
i P
⊥
0 X

∗
i φ0

=
∑
i≤d

∫
Fx

− |X∗i φ0|2 + φ0gB(π∗η,Xi)X∗i φ0) volFx − 1
4 η̄(Xi)2

= −
∫
Fx

π∗gB(gradφ0, gradφ0) volFx + 〈φ0, ηφ0〉 − 1
4gB (η̄, η̄) . (3.8)
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Applying P0gB(Xi, π
∗η) to (3.6) and summing over i yields∑

i≤d

P0gB(Xi, π
∗η)P⊥0 X∗i φ0 = 〈φ0, ηφ0〉 − 1

2gB (η̄, η̄) , (3.9)

whereby

VBH = −(3.8) + (3.9)

=
∫
Fx

π∗gB(gradφ0, gradφ0) volFx − 1
4gB (η̄, η̄) .

Adding this to the negative of the Berry Laplacian we see that the term
proportional to gB(η̄, η̄) is cancelled and we have

Ha = −ε2∆gB + λ0 + εP0H1P0

− ε2

2 tr (∇·η̄) (·) + ε2
∫
Fx

π∗gB(gradφ0, gradφ0) volFx

= −ε2∆gB + λ0 + εP0H1P0 + ε2V0 . (3.10)

If ∂M = ∅ (3.5) we have λ0 ≡ 0 and V0 evaluates to

V0
∂M=∅= 1

2∆(log Vol(Fx)) + 1
4 |d log Vol(Fx)|2gB . (3.11)

3.2 Low energy asymptotics of the Laplacian
In this section we take a closer look at the asymptotic behaviour of the
Laplacian at small energies. We will show that the adiabatic operator
determines the spectrum of H with higher precision in this regime. In
our earlier notation this means we consider connected fibres, V ≡ 0 and
an operator H1 of the type that arises from a perturbed metric Gε as
discussed in section 3.1.1. By small energies we mean energies whose
distance to

Λ0 := inf
x∈B

min σ(∆Fx)

is of order εα, with 0 < α ≤ 2. It is thus convenient to set

H := −∆gε + εH1 − Λ0 , (3.12)

80



3.2 Low energy asymptotics of the Laplacian

and

HF := −∆F − Λ0 .

Clearly if ∂M = ∅, Λ0 = 0 and H = −U∗ρ∆GεUρ ≥ 0 (cf. equation (3.3)).
If the metric Gε arises from an embedding of M with codimension zero
we have H ≥ −ε2∆h + εH1 ≥ −‖Vρ‖∞ ≥ −Cε

2 by remark 3.5.
The eigenband in question is the ground state band

λ0(x) := min σ
(
HF (x)

)
,

which has spectral gap by lemma 3.7. For the following we fix the pro-
jection Pε and the unitary Uε constructed for λ0, given Λ and N ≥ 3.
Analysing energies of order εα amounts to studying H only on the image
of

%α(H) := 1(−∞,εαΛ](H) .

Equivalently one may rescale the original problem by ε−α and consider
bounded energies. The most relevant energy scales are

• α = 1: If λ0 has a unique non-degenerate minimum on B, the small-
est eigenvalues of −ε2∆B + λ0 behave like those of a d-dimensional
harmonic oscillator (see [66]). In particular their difference is of or-
der ε. We will show that this implies existence of eigenvalues of H
with the same behaviour that are well approximated by those of Ha.

• α = 2: Assume λ0 ≡ 0, for example because ∂M = ∅ or the
shape and volume of the fibres is fixed. Then, ignoring divSε for
the moment, the adiabatic operator is Ha = ε2(−∆B + VBH) +
P0VρP0. The spectrum of this operator approximates that of H up
to order ε3 and vice versa (see proposition 3.11). If this operator has
eigenvalues, which may happen also when B is not compact, they
will typically scale like ε2 since P0VρP0 = O(ε2) (see remark 3.5).
We will show that the simple eigenvalues of Ha are ε4-close to those
of H, with eigenfunctions approximated to order ε in W 1

ε=1.

For an embedding we know from lemma 3.4 thatH1 satisfies the conditions
of theorem 2.20, so H is unitarily equivalent to Heff at small energies.

81



Chapter 3 Examples and applications

Looking at the expansion of Heff derived in proposition 2.23 we see that
the super-adiabatic corrections essentially consist of horizontal differential
operators. These corrections are of order ε2 when ε2∆h = O(1), but when
ε2∆h = O(εα) we can expect them to be of order ε2+αk/2, if k is their
order as a differential operator. Thus at this energy scale the adiabatic
approximation should be more accurate, as long as H1 does not contain
potentials at leading order.

Remark 3.8. In the preceding section we saw that Vρ may contain a
term of order ε if M has codimension at least one. In remark 3.5 we
noted that this term does not contribute to Ha if ∂M = ∅. One might
thus expect that it appears in the leading order of the super-adiabatic
corrections. Since it is a differential operator of order zero, the different
energy scale will not help to make it smaller. This problem may however
be circumvented by modifying HF , setting (see also remark 2.1)

HF := −∆F + 1
4gF (d log ρ, d log ρ) + 1

2∆F log ρ .

This operator includes in particular all the terms of Vρ up to order ε3.
Its properties are also easily described in the following way: Consider on
HF the ε-dependent scalar product obtained by integrating against the
density ρ volFx . Because ρ = 1 +O(ε) the norm obtained from this scalar
product is equivalent to the original one with constants independent of
ε. Let ∆ρ

F be the Laplacian on F defined by the quadratic form using
gFx and this product. We then have HF = −U∗ρ∆ρ

FUρ for the unitary
Uρ : L2(F, volFx) → L2(F, ρ volFx) used in the definition of Vρ. Hence
the ground state of HF is λ0 ≡ 0 and the corresponding eigenfunction
is proportional to √ρ. In this way we can absorb the ε-dependence of E
into the bundle metric and that of P ρ0 is easily controlled. Thus using the
formula (3.10) for P0∆hP0 we get

P ρ0HP
ρ
0 = −ε2P ρ0 ∆hP

ρ
0 +εP ρ0H1P

ρ
0 = −ε2P0∆hP0+εP0H1P0+O(ε3) ,

and the adiabatic operator is the same as before up to order ε3.

We now summarise the technical conditions on H1 for the results of this
section to hold.
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Condition 5. The operator H1 has the form

H1 = −ε2 divSε + εVε ,

with divSε given by (3.4) for some Sε ∈ Γb(π∗T ∗B ⊗ π∗T ∗B), satisfying
−ε2∆h − ε3 divSε ≥ 0 and Vε ∈ C∞b (M) bounded uniformly in ε.

This is satisfied for embeddings of M satisfying condition 4 if Vρ =
O(ε2), as in the case of quantum tubes (see remark 3.5), or if ∂M = ∅,
by redefinition of HF as discussed in remark 3.8. It also applies to any
fibre bundle with a rescaled submersion metric and suitable perturbations
thereof.

This condition implies that H ≥ −Cε2, so for α ≤ 2 we have
‖H%α(H)‖L (H ) = O(εα). We now derive refined estimates for the oper-
ators appearing in the expansion of Pε on the image of %α(H).

Lemma 3.9. For A ∈ {H,Ha} we have∥∥[−ε2∆h, P0]P0%α(A)
∥∥

L (H ) = O(ε1+α/2) .

Proof. From lemma 2.5 we already know that [ε2∆h, P0]P0 ∈ A1,1. We
will now see that the part lying in A0 is actually of order ε2, while first
order horizontal differential operators may be bounded by

√
H = O(εα/2).

On U ∈ U we use the corresponding orthonormal frame (Xi)i≤d to
calculate

ε2[∆h, P0]P0

= ε2P⊥0
∑
i≤d

(
[X∗i X∗i , P0]− [(∇XiXi)∗, P0]− [gB(π∗η,Xi)X∗i , P0]

)
P0

= ε2P⊥0
∑
i≤d

(
2[X∗i − gB(π∗η,Xi), P0]P0X

∗
i (3.13a)

+
[
X∗i , [X∗i , P0]

]
− [(∇XiXi)∗, P0]− gB(π∗η,Xi)[X∗i , P0]

)
P0 .

(3.13b)

The terms in (3.13a) and (3.13b) are traces of the maps

X,Y 7→ 2[X∗ − gB(π∗η,X), P0]∇BY
X,Y 7→

[
X∗, [Y ∗, P0]

]
− [(∇XY )∗, P0]− gB(π∗η,X)[Y ∗, P0] .
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One can check that these maps define sections of T ∗B⊗2⊗L (D(HF ),HF )
and T ∗B⊗2 ⊗L (HF ) respectively, by asserting that they are linear with
respect to multiplication by f ∈ C∞(B). Consequently their gB-traces are
well defined sections of L (D(HF ),HF ) and L (HF ) that equal (3.13a),
(3.13b). Because P0 ∈ A0,0

H the second line (3.13b) defines an element of
L∞(HF ) and A0,2 whence it is of order ε2.
The first line (3.13a) is an element of A1,1. To see that it is of order

ε1+α/2 on the image of %α(A), we observe that %α(A) is a bounded op-
erator from H to the domain of ε−2αA2 with its graph norm, which we
denote by D2

α(A). The norm of (3.13a) as an operator in L (D2
α(A),H )

can be estimated using the local expression (see remark 2.4) and

‖ε∇BX‖L (D2
α(A),H ) = O(εα/2) ,

which is proved in lemma C.3 in the appendix.

Lemma 3.10. Let 0 ≤ α ≤ 2 and A ∈ {H,Ha}, then∥∥P⊥0 (Pε − P0)%α(A)
∥∥

L (H ,D(H)) = O(ε1+α/2) .

Proof. Let the regular cut-off χ ∈ C∞0 (−∞,Λ] be equal to one on the
support of %α(x), so that %α(A) = χ(A)%α(A). By lemma C.2

‖χ(Ha)− P0χ(H)P0‖L (H ,D(H)) = O(ε) ,

so by (2.19)

‖(Pε − P0)%α(Ha)‖L (H ,D(H)) ≤
∥∥P⊥0 (Pε − P0)χ(H)%α(Ha)

∥∥+O(ε2) .

Together with lemma 2.25 this implies∥∥P⊥0 (Pε − P0 − εP1)%α(A)
∥∥

L (H ,D(H)) = O(ε2) .

Recall from the construction in lemma 2.14 that

P⊥0 P1P0 = −RF (λ0)[−ε∆h +H1, P0]P0 .

In view of this, lemma 3.9 together with the estimate ‖H1‖L (D2
α(A),H ) =

O(εα/2) from lemma C.3 proves the claim in the L (H )-norm.
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The image of P1 ∈ A2
H satisfies Dirichlet conditions, so by the elliptic

estimates A.14 the result will also hold in the L (H , D(H))-norm if we
can estimate ∆gεP

⊥
0 P1%α(A). This estimate for the term

∆gεRF (λ0)[H1, P0]P0 = O(εα/2)

is a consequence of lemma C.3. For the remaining term note that verti-
cal derivatives acting from the left give bounded operators, while deriva-
tives of the form Φ∗X may be commuted to the right since RF (λ0) ∈ A0

H

(see 2.11 and 2.5). In view of the proof of lemma 3.9 we can thus com-
plete the proof by showing ‖P0X

∗‖L (D2
α(A),D(H)) = O(εα/2), which again

is lemma C.3.

Proposition 3.11. Let 0 < α ≤ 2 and assume there are εαλ ∈ σ(H) and
εαµ ∈ σ(Ha) with µ , λ < Λ. Then there exists a constant C independent
of µ and λ for which

1) dist
(
εαλ, σ(Ha)

)
≤ Cε2+α/2,

2) dist
(
εαµ, σ(H)

)
≤ Cε2+α/2

Proof. 1) Let (ϕk)k∈N ⊂ ran(%α(H)) be a Weyl sequence for εαλ ∈ σ(H).
For ε small enough supp %α ⊂ (−∞,Λ1), so we can choose a regular
cut-off χ ∈ C∞0 (−∞,Λ1) satisfying %α(H) = χ(H)%α(H). The unitary
equivalence shown in theorem 2.20 implies

‖(U∗εHUε −Heff)U∗ε %α(H)‖L (H ) = O(εN+1) .

We now proceed to expand

(Heff −Ha)U∗ε %α(H) = U∗ε (PεHPε − PεUεHU∗εPε) %α ,

using

PεUε = Pε + Pε(P0 − Pε)P⊥ε︸ ︷︷ ︸
=:εŨ1

− 1
2 Pε(P0 − Pε)2Pε︸ ︷︷ ︸

ε2Ũ2

+O(ε3) .

The terms in this expansion are exactly those appearing in the expansion
of Heff (2.20a), (2.20b) with reversed roles of P0 and Pε. We estimate
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these terms separately, starting with those of (2.20a):

εŨ1[H,Pε]Pε%α(H) = εŨ1P
⊥
ε [H,Pε]%α︸ ︷︷ ︸

2.13= O(εN+1)

= O(εN+2) ,

εPε[H,Pε]Ũ∗1 %α(H) = Pε [H,Pε]︸ ︷︷ ︸
=O(ε)

P⊥0 (P0 − Pε)%α︸ ︷︷ ︸
3.10= O(ε1+α/2)

+O(ε3) .

The terms corresponding to those of (2.20b) are:

ε2Ũ1HŨ
∗
1 %α(H) = εŨ1H P⊥0 (P0 − Pε)%α︸ ︷︷ ︸

3.10= O(ε1+α/2)

+O(ε3) = O(ε2+α/2) ,

ε2PεHŨ
∗
2 %α(H) = PεHPε (P0 − Pε)︸ ︷︷ ︸

=O(ε)

P⊥0 (P0 − Pε)%α︸ ︷︷ ︸
3.10= O(ε1+α/2)

+O(ε3) ,

ε2Ũ2HPε%α(H) = ε2Ũ2 H%α︸︷︷︸
=O(εα)

+O(εN+3) = O(ε2+α) .

Altogether these estimates give (for k large enough):

‖(Ha − εαλ)U∗εϕk‖ ≤ ‖(Ha − U∗εHUε)U∗εϕk‖+ ‖(H − εαλ)ϕk‖
= ‖(Ha −Heff)U∗εϕk‖+O(εN+1)
= O(ε2+α/2) , (3.14)

which proves dist(εαλ, σ(Ha)) ≤ C1ε
2+α/2 (cf the proof of 2.18). The

constant is independent of λ because we have only used estimates for the
operators that hold uniformly at energies below Λ.

2) In order to prove the second claim we first show

dist(εαµ, σ(Heff)) = O(ε2+α/2) ,

the claim will then follow from theorem 2.18. Let (ψk)k∈N ⊂ ran(%α(Ha))
be a Weyl sequence for εαµ. As above we can apply lemmata 3.9 and 3.10
to the expansion of Heff , written down in (2.20a) and (2.20b), to get

‖(Heff −Ha) %α(Ha)‖L (H ) = O(ε2+α/2) , (3.15)
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which gives ‖(Heff − εαµ)ψk‖ = O(ε2+α/2) for k large enough. From
this we deduce existence of µ̃ ∈ σ(Heff) with |εαµ− µ̃| = O(ε2+α/2).
Theorem 2.18 states that dist(µ̃, σ(H)) = O(εN+1), which proves the
claim.

Theorem 3.12. Let εαµ < εαΛ be a simple eigenvalue of Ha with
dist (µ, σ(ε−αHa) \ µ) ≥ Cµ for some Cµ > 0.
There is a unique simple eigenvalue εαλ of H with |λ− µ| = O(ε2) and

Cλ > 0 such that λ satisfies dist (λ, σ(ε−αH) \ λ) ≥ Cλ.
Furthermore let ψ ∈ ker(Ha − εαµ) be a normalised eigenfunction and

Pλ(H) the orthogonal projection to ker(H − εαλ). Then

‖ψ − Pλψ‖D(H) = O(εβ) and ‖ψ − Pλψ‖W 1
ε=1(M) = O(εα/2) ,

with β := min{2− α/2, 1 + α/2}.

Proof. The existence of λ ∈ σ(ε−αH) with |λ− µ| = O(ε2−α/2) is assured
by proposition 3.11. Since the correspondence of spectra proved there is
reciprocal, λ must be separated from the rest of the spectrum and simple,
since this holds for µ.

To be more precise, let Pµ be the projection to ker(Ha− εαµ). Assume
there exists εαλ 6= εαλ′ ∈ σ(H) with |µ− λ′| = O(ε2−α/2). We may
choose Weyl sequences, (ϕk)k∈N for εαλ and (φk)k∈N for εαλ′, satisfying
〈ϕj , φk〉 = 0 for every j, k, by choosing both sequences in the image of
spectral projections on disjoint intervals around λ and λ′ respectively. We
may choose an element ϕ = ϕk(ε) of the first sequence satisfying (3.14),
so since |µ− λ| = O(ε2−α/2)

‖(1− Pµ)U∗εϕ‖H ≤ ‖(Ha − εαµ)−1 (1− Pµ)‖︸ ︷︷ ︸
≤(Cµεα)−1

‖(Ha − εαµ)U∗εϕ‖︸ ︷︷ ︸
(3.14)
= O(ε2+α/2)

= O(ε2−α/2) .

This also holds for an element φ = φk(ε) of the second sequence, so PµU∗εϕ
and PµU

∗
ε φ are two almost orthogonal (|〈PµU∗εϕ, PµU∗ε φ〉| = O(ε4−α))

vectors in PµH with norm close to one (1 − ‖PµU∗εϕ‖ = O(ε2−α/2)), in
contradiction to the simplicity of µ. Therefore no such λ′ exists and εαλ is
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an isolated point in the spectrum of H, and thus an eigenvalue. It also has
to be simple, since if there were two orthogonal eigenfunctions ϕ1 and ϕ2
of εαλ we could repeat the preceding argument with ϕ := ϕ1 and φ := ϕ2
to arrive at a contradiction.
This also assures that λ is separated from the spectrum of ε−αH at

least by a quantity C̃λ = Cµ − 2Cε2−α/2, for if this were not the case
proposition 3.11 would contradict the existence of Cµ. Hence we may
take C to be the constant appearing there.
Before improving the estimate of |λ− µ| to O(ε2) we must gain some in-

formation on the eigenfunctions. In proposition 3.11 we effectively proved
that the eigenfunction ψ of Ha is a quasimode for H and thus

‖(1−Pλ)Uεψ‖D(H)

≤ ‖(H − εαλ)−1 (1− Pλ)‖L (H ,D(H))︸ ︷︷ ︸
≤
√

1+(1+2ε2αλ2)C̃λ(εα)−1

‖(H − εαλ)Uεψ‖H︸ ︷︷ ︸
3.11= O(ε2+α/2)

= O(ε2−α/2) .

Since ψ = P0%α(Ha)ψ lemma 3.10 gives

‖(Uε − 1)ψ‖D(H) =
∥∥P⊥0 (Pε − P0) %α(Ha)ψ

∥∥
D(H) +O(ε2)

= O(ε1+α/2) ,

which implies

‖(1− Pλ)ψ‖D(H) = ‖(1− Pλ)Uεψ‖+ ‖(1− Pλ) (1− Uε)ψ‖ = O(εβ) .

Given this we can calculate

εα |µ− λ| = |〈ψ, (Ha − εαλ)ψ〉|
= |〈P0ψ, (H − εαλ)P0ψ〉| (3.16a)
= |〈(1− Pλ)ψ, (H − εαλ)ψ〉|
≤ ‖(1−Pλ)ψ‖εα |µ− λ|

+
∣∣〈(1− Pλ)P0ψ, P

⊥
0 [H,P0]P0ρα(Ha)ψ

〉∣∣
≤
∥∥P⊥0 Pλψ∥∥ ‖[H,P0]P0ρα(Ha)ψ‖︸ ︷︷ ︸

3.9=O(ε1+α/2)

+Cεβ+α |µ− λ| . (3.16b)
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3.2 Low energy asymptotics of the Laplacian

To estimate this we see that∥∥P⊥0 Pλψ∥∥ 2.21=
∥∥P⊥0 PεPλψ∥∥+O(εN+1)

=
∥∥P⊥0 (Pε − P0)ρα(H)Pλψ

∥∥+O(εN+1)
3.10= O(ε1+α/2) , (3.17)

giving (since β ≥ α/2)

|µ− λ| ≤ C1ε
β |µ− λ|+ C2ε

2 3.11= O(ε2) .

We still need to prove the estimate for the W 1
ε=1-norm. For every

φ ∈ D(H) we may estimate this norm by (see [62, proposition 3.25])

C−1 ‖φ‖2W 1
ε=1
≤ ‖φ‖2H + 〈φ,−∆F −∆hφ〉

≤ (1 + Λ0) ‖φ‖2 + ε−2〈φ,−∆F − Λ0︸ ︷︷ ︸
≥0

φ〉+ 〈φ,−∆hφ〉

≤ (1 + Λ0) ‖φ‖2 + ε−2 |〈φ,Hφ〉|+ ε−1 |〈φ,H1φ〉|

≤
(
1 + Λ0 + εα−2λ

)
‖φ‖2 + ε−2 |〈φ, (H − εαλ)φ〉|

+ ε−1 |〈φ,H1φ〉| .

If we apply this to φ := (1 − Pλ)ψ we can use the estimates leading
from (3.16a) to (3.16b) to get ε−2 |〈φ, (H − εαλ)φ〉| = O(εα). By condi-
tion 5 the term containing H1 (and also additional terms arising from a
redefinition of HF as in remark 3.8) can be bounded by

ε−1 |〈φ,H1φ〉| ≤ ‖Vε‖∞ ‖φ‖
2
H + ε ‖Sε‖∞ ‖φ‖

2
W 1
ε=1

.

Already knowing that ‖φ‖H = O(εβ) we conclude

‖(1− Pλ)ψ‖W 1
ε=1

= O(εα/2) .

Remark 3.13. The theorem is formulated to determine eigenvalues of H
from those of Ha. This is relevant because Ha is simpler, or at least op-
erates on a space of lower dimension. In principle though, the eigenvalues
of H also determine those of Ha, by basically the same proof.
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Moreover the first part of the proof naturally extends to a proof of the
following statement (see also [37, section 4.3.5]):
Let Σa ⊂ [0, εαΛ] be a compact subset of σ(Ha), that is separated from

the rest of the spectrum by a gap of order εα and whose spectral projection
PΣa(Ha) has finite rank. Then there exists a compact set Σ ⊂ σ(H) with
dist(Σa,Σ) = O(ε2+α/2), separated from the rest of the spectrum of H
and rank(PΣ(H)) = rank(PΣa(Ha)).

3.3 Eigenfunctions and their nodal sets
Theorem 3.12 tells us that if εαµ is a simple eigenvalue of Ha with eigen-
function ψ this approximates the eigenfunction ϕ := Pλψ/ ‖Pλψ‖ of the
corresponding eigenvalue εαλ of H. We use this as a starting point for a
more detailed analysis of eigenfunctions in two different cases.
The first case is that of a constant ground state band λ0 ≡ 0. We show

that isolated eigenvalues of Ha, if they exist, are typically separated by
gaps of order ε2. Assuming that the base dimension is at most three we
obtain uniform bounds on the difference ϕ− ψ.
The other case concerns an eigenband with a unique and non-degenerate

minimum. It was shown by Simon [66] that Ha has eigenvalues below its
essential spectrum and that they are separated by gaps of order α = 1.
We show uniform approximation for the eigenfunctions corresponding to
these eigenvalues for the case d = 1.
Together, the low-energy effective operators and the uniform estimates

for eigenfunctions provide a rather detailed description of the eigenfunc-
tions of H. We use this to estimate the location of the nodal sets based
on the analysis of the operator Ha for the given manifold. If appropriate
this will imply that the nodal set touches the boundary and provide an
estimate of the number of nodal domains.

3.3.1 Uniform approximation of eigenfunctions
We now derive uniform estimates on the difference ψ − ϕ from the fact
that it is of order εα/2 in W 1

ε=1. The difference is small if the dimension
of B is not too large (d ≤ 3 for α = 2 or d = 1 for α = 1), but irrespective
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of the dimension of F . Like the earlier works [18, 26, 35, 36] our method
relies on the generalised maximum principle [60, theorem 10].

Theorem (The generalised maximum principle). Let Ω ⊂ Rk be a bounded
domain. Let D be a uniformly elliptic (with negative principal symbol) op-
erator of second order with coefficients in C∞(Ω). If φ, ψ ∈ C 2(Ω)∩C 0(Ω)
satisfy the differential inequalities

Dφ ≥ 0
Dψ ≤ 0

in Ω and φ > 0 in Ω , then ψ/φ cannot attain a non-negative maximum
in Ω, unless it is constant.

We will also make use of the following corollary:

Corollary 3.14. Let Ω = B(r, 0) and let D0 denote the operator D
with Dirichlet boundary conditions. Assume D0 is self-adjoint and that
g ∈W 1(Ω) ∩ C 0(Ω) is strictly positive on ∂Ω. Then if λ < min σ(D0) the
unique solution ψ ∈ C∞(Ω) ∩ C 0(Ω) of the boundary value problem

Dψ = λψ in Ω ,

ψ = g on ∂Ω

is strictly positive.

Proof. Existence, uniqueness and regularity of the solution are proved in
most textbooks on partial differential equations, e.g. [22]. The statement
on positivity is also well known but we still give a short proof. let R > r,
DR be an extension of D to B(R, 0) such that λ < µ := min σ(D0

R) <
min σ(D0). Let φ be be the positive eigenfunction with eigenvalue µ of
DR. Now φ is strictly positive on Ω and satisfies

(D − λ)φ = (µ− λ)φ ≥ 0 .

Since (D− λ)ψ = 0, the maximum principle applies to −ψ and φ > 0. So
if there were x ∈ Ω with ψ(x) ≤ 0 we would get

0 ≤ −ψ(x)/φ(x) ≤ sup
y∈∂Ω

−ψ(y)/φ(y) = sup
y∈∂Ω

−g(y)/φ(y) < 0 .

This is a contradiction, so ψ > 0.
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Now let δ := (1−Pλ)ψ (in the notation of theorem 3.12) and take note
that this is a smooth function vanishing on ∂M . Calculate

Hδ = Hψ − εαλPλψ = εαλδ + (H −Ha)ψ + εα (µ− λ)ψ︸ ︷︷ ︸
=:Rε

. (3.18)

Since δ ∈ ran(1 − Pλ) vanishing of Rε would imply δ = 0. The eigen-
function ψ ∈ L2(E) of Ha can be written as a product ψ = φ0ψ̃ where
φ0 ∈ C∞(M) is the λ0-eigenfunction of HF and ψ̃ ∈ L2(B) is an eigen-
function of Ha, as expressed it the trivialisation of E by φ0 in (3.10). Since
Rε is given by the action of a horizontal differential operator on ψ we can
hope to estimate it using elliptic regularity theory for φ0 and ψ̃. Through-
out this section we will commit abuse of notation by not distinguishing
between ψ and ψ̃ or Ha and its form in the given trivialisation.
We now show that a bound on Rε implies a pointwise bound on δ by a

quantity related to the W 1
ε -norm of δ.

Lemma 3.15. Assume there exist a constant K > 0 and γ ∈ R such that
‖Rε‖∞ < Kεγ . Then there are positive constants C and R, such that for
every x0 ∈M

|δ(x0)| ≤ C
( ∫

Ω(x0)

|δ|2 + gε (dδ, dδ) volgε
)1/2

+ 2εγ ,

where Ω(x0) = {x ∈M : distgB (π(x0), π(x)) ≤ εR}.

Proof. We prove the statement for the positive part δ+ of δ, the proof
for the negative part being the same. First note that in the interior of
Ω+ := supp δ+ we have

(H − εαλ−K) (δ+ + εγ) = Rε − εγK︸ ︷︷ ︸
≤0

−Kδ+ − εα+γλ ≤ 0 . (3.19)

We now aim at constructing a function f , defined on a neighbourhood
of x0, with f ≥ δ+ but bounded by the integral in the statement of the
theorem. This will be achieved by choosing f as the solution of an elliptic
boundary value problem and then using the maximum principle.
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First we must choose suitable neighbourhoods that will make the locally
obtained estimates hold uniformly on M . Let Uε be a regular Atlas of
(M, gε) as in lemma A.10, i.e. the coordinate maps κεν are given either
by gε-geodesic coordinates or normal collar maps with (ε independent)
radius rU. Since by proposition A.9 the injectivity radii have lower bounds
independent of ε, there is R > 0 such that for every x ∈ M the metric
ball Bε(R, x) = {y ∈M : dist(x, y) < R} is completely contained in some
coordinate neighbourhood Uεν ∈ Uε (cf. [62, lemma 3.19]). Recall that
the image of Uεν under the normal coordinate map is either given by the
euclidean ball B(rU, 0) or (if ν < 0) the cylinder B(rU, 0)× [0, rc/2).
The virtue of these ε-dependent coordinate systems is that they mitigate

(the leading order of) the ε-dependence of gε since in geodesic coordinates
this leading order is always given by the euclidean metric. By A.9 we have
bounds on the coefficients of gε in these coordinates, that are uniform in
ε and lead to mutual bounds of the distance functions (cf. (A.2)) of gε
and the euclidean metric. Hence there is R0, independent of x and ε, such
that B

(
R0, κ

ε
ν(x)

)
(or B

(
R0, κ

ε
ν(x)

)
∩ {yn+d ≥ 0} if ν < 0) is completely

contained in κεν
(
Bε(R, x)

)
.

M

∂M

Bε1R
Bε2R

κε

BR0

x κ(x)

Figure 3.1: After a shift, the maps κε send different metric balls to similar
sets in B(rU, 0)× [0, rc/2).

Now shift the coordinate system so that κεν(x) = 0 and let Dε
x :=

(κεν)∗H. If ν < 0 extend this to an elliptic operator on B(R0, 0) (by ex-
tending the coefficients, which come from the metric Gε). In this way
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we can obtain a family of elliptic operators Dε
x on B(R0, 0) that have a

common bound {e, c} on their ellipticity constants and coefficients, be-
cause by A.9 the bounds on the geometry are uniform in ε (see also [62,
proposition 5.14]).
Now because of these common bounds we can choose r ≤ R0, indepen-

dent of x and ε, so that the Dirichlet energy

inf
0 6=φ∈W 1

0 (B(r,0))

〈φ,Dε
xφ〉L2(B(r,0))

〈φ, φ〉
≥ 3K .

Then if x0 ∈ Ω+ we can extend (κεν)∗δ+ by zero to a W 1-function δx0
+ on

B(r, 0) and the boundary value problem

Dε
x0
f = 2Kf , f |∂B(r,0) = δx0

+ + εγ

has a unique solution f ∈ C∞(B(r, 0))(see [22, 8.6, 8.11]) that is strictly
positive by corollary 3.14. For ε small enough this solution satisfies(

Dε
x0
− εαλ−K

)
f = (K − εαλ) f > 0

in B(r, 0), while δx0
+ satisfies (3.19)(

Dε
x0
− εαλ−K

) (
δx0
+ + εα

)
≤ 0

in κεν
(
Ω+∩B(R, x0)

)
∩B(r, 0). Thus the maximum principle implies that

that (δx0
+ + εγ)/f attains its maximum on the boundary of this set. On

the boundary of B(r, 0) the quotient equals one, while on the boundary
of κεν

(
Ω+ ∩B(R, x0)

)
we know that δx0

+ equals zero, whereby

(δx0
+ + εγ)/f ≤ 1 + εγ/f .

In particular

δ+(x0) ≤ f(0) + 2εγ .

In order to complete the proof we need to bound f(0). To begin with, we
have the a priori estimate [22, 8.7] (with C = C(K,Λ0, r, e, c))

‖f‖W 1(B(r,0)) ≤ C‖δ
x0
+ ‖W 1(B(r,0)) .
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From this we can obtain bounds on higher Sobolev norms of f , using
that in the interior of B(r, 0) it is an eigenfunction of Dε

x0
. This re-

lies on interior elliptic regularity [22, 8.10], giving for r′ < r (with C =
C(e, c, k, r − r′))

‖f‖Wk+2(B(r′,0)) ≤ C
(
‖f‖W 1(B(r,0)) +

∥∥Dε
x0
f
∥∥
Wk(B(r,0))

)
≤ C

(
‖f‖W 1(B(r,0)) + ‖(Λ0 + 2K)f‖Wk(B(r,0))

))
Repeated application of this inequality (with successively smaller radii
satisfying ri − ri+1 = r/2k) gives an inequality

‖f‖Wk+1(B(r/2,0)) ≤ C(k, r, e, c,K,Λ0) ‖f‖W 1(B(r,0)) .

If we take k > (n+d+1)/4 the Sobolev embedding theorem gives a bound
on supy∈B(r/2,0) f(y) and in particular on f(0). Hence by mapping δx0

+
back to Bε(R, x0) ⊂ Ω(x0) we get

δ+(x0) ≤ C1‖δx0
+ ‖W 1(B(r,0)) + 2εγ

≤ C2

(∫
Bε(R,x0)

|δ|2 + gε(dδ, dδ) volgε
)1/2

+ 2εγ

≤ C2

(∫
Ω(x0)

|δ|2 + gε (dδ, dδ) volgε
)1/2

+ 2εγ .

The integral bounding δ(x0) is basically the W 1(Ω(x0), gε)-norm of δ.
Because of the different volume measures (in the definition ofW 1

ε we used
volgε=1 , see also lemma A.12) this is related to the W 1

ε (Ω(x0))-norm by
‖φ‖W 1(Ω(x0),gε) ≤ Cε−d ‖φ‖W 1

ε (Ω(x0)). This may of course pose problems
for large d. However we can still exploit the fact that Ω(x0) is the lift of an
ε-neighbourhood of x0 and that we have control over the normW 1

ε=1. The
way in which this can be useful depends on the concentration behaviour
of the eigenfunctions. If a large portion of the L2-norm concentrates in
Ω(x0) for some x0 the smallness of this set will not help much. This
behaviour depends strongly on α, so we will have to treat the cases α = 2
and α = 1 separately.
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Since δ is a solution of the differential equation (3.18), with Dirichlet
boundary conditions, establishing uniform bounds on δ gives bounds on
its derivatives.

Lemma 3.16. There is a constant C > 0 such that δ satisfies∥∥√gε(dδ, dδ)∥∥∞ ≤ C( ‖δ‖∞ + ‖Rε‖∞
)∥∥√gε(∇dδ,∇dδ)

∥∥
∞ ≤ C

(
‖δ‖∞ + ‖Rε‖∞

)
Proof. Write (3.18) as (H − εαλ)δ = Rε. To prove the claim for fixed ε
and x ∈M use the (unshifted) coordinate system κεν(x) on the metric ball
B(R, x) introduced in the proof of lemma 3.15. Since the coordinate vector
fields of these are uniformly bounded with respect to gε it is sufficient to
prove C 2-bounds for δ at κεν(x) in these coordinates. These will follow
from [22, lemma 6.4] once we have checked the relevant conditions. First
of all, the operators Dε

x = (κεν)∗H are elliptic with uniform bounds on
their coefficients and ellipticity constants, so it remains to give a bound
on the distance to any boundary portion of κεν(B(R, x)) on which δ does
not vanish. But we know that B

(
R0, κ

ε
ν(x)

)
(or B

(
R0, κ

ε
ν(x)

)
∩{yn+d ≥ 0}

if ν < 0) is completely contained in κεν
(
Bε(R, x)

)
. Hence the (euclidean)

distance from κεν(x) to any part of ∂B(R0, κ
ε
ν(x)) on which δ 6= 0 is R0,

which completes the proof.

The case of a constant eigenband

We now analyse the case in which λ0 is constant, which means λ0 ≡ 0 since
we have subtracted its minimum from H. As discussed in the introduction
this occurs for example if ∂M = ∅ or the fibres (Fx, gFx) are isometric.
In this case we formally have

ε−2Ha = −∆gB + V0 + P0VεP0|ε=0 +O(ε) =: H0 +O(ε) , (3.20)

with the potential V0 of equation (3.10) for Ha, and Vε from condition 5.
Apart from a potential, coming from the expansion of Vε, the difference
Ha − ε2H0 is given by ε3P0 divSεP0. Since Sε ∈ Γb(π∗T ∗B ⊗ π∗T ∗B) by
condition 5 (or condition 4 if it arises from an embedding), the operator
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ψ 7→ P0 divSε is a bounded operator from W 2(E) to L2(E). Because
λ0 ≡ 0, the norm ‖·‖W 2(E) is equivalent to ‖·‖D(ε−2Ha) and thus∥∥ε3P0 divSεP0

∥∥
L (D(ε−2Ha),L2(E)) = O(ε3) .

Consequently, by standard perturbation theory, if H0 has eigenvalues they
approximate those of ε−2Ha with errors of order ε. Since H0 is completely
independent of ε this also means that the eigenvalues of Ha have a spacing
of order ε2.

If H = −U∗ρ∆GεUρ and Gε is induced by an embedding as discussed in
section 3.1.1 the operator H0 can be given rather explicitly.

• For the case ∂M = ∅ we have Vε|ε=0 = 0 (cf. remark 3.8), and V0
is given by equation (3.11), hence

H0 = −∆gB + 1
2∆(log Vol(Fx)) + 1

4 |d log Vol(Fx)|2gB .

• If the embedding of M in Rk has codimension zero, the fibres carry
a flat metric and are totally geodesic, hence η̄ = 0. The leading part
of Vε is the bending potential known from the study of quantum
waveguides (see [30] for a more detailed discussion), Vε = Vbend +
O(ε) with

Vbend =
n∑
i=1

1
4
(

trW (ei)
)2 − 1

2 (trW (ei)2) ,

where (ei)i≤n form a local orthonormal frame of the normal bundle
NB. So in this situation

H0 = −∆gB +
∫
Fx

π∗gB(gradφ0, gradφ0) volFx + Vbend . (3.21)

Lemma 3.17. Let λ0 ≡ 0, α = 2 and ψ ∈ L2(E) be a normalised eigen-
function of Ha with eigenvalue ε2µ. The remainder Rε of equation (3.18)
satisfies ‖Rε‖∞ = O(ε2).

Proof. We will bound Rε using the C 2
b (B)-norm of ψ. This may be

bounded using elliptic regularity, since E is a bundle of bounded geometry
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over (B, gB). The C 2
b -norm of ψ is bounded independently of ε because

the norms ‖·‖D(ε−2kHka ) are equivalent to ‖·‖W 2k(E).
First of all, theorem 3.12 gives

|εα (µ− λ)ψ| ≤ Cε4 ‖ψ‖∞ ,

while the other term is given by

(H −Ha)ψ =
(
[−ε2∆h, P0]P0 + P⊥0 (−ε3 divSε + ε2Vε)

)
P0ψ . (3.22)

Since we can commute all the derivatives to the right as in (3.13a) this
is bounded by a constant times ε2 ‖ψ‖C 2

b
(B) (in fact it is bounded by

C(ε2 ‖ψ‖C 1
b

(B) + ε3 ‖ψ‖C 2
b

(B)) since the only term with second derivatives
is divSε).

Recall the notation δ = (1− Pλ)ψ from the beginning of this section.

Proposition 3.18. Assume λ0 ≡ 0 and d = dimB ≤ 3. Let ε2µ be a
simple eigenvalue of Ha with normalised eigenfunction ψ, then

‖δ‖∞ = O
(
ε
√
θd(ε)

)
.

with θ1(ε) = 1, θ2(ε) = − log ε and θ3(ε) = ε−1.

Proof. By lemma 3.17 we can apply lemma 3.15 with γ = 2. To prove the
statement we now need to estimate the integral∫

Ω(x)
|δ|2 + gε (dδ, dδ) volgε =

∫
Ω(x)

(1+Λ0) |δ|2

+ gε (dδ, dδ)− Λ0 |δ|2 volgε .

Since HF is non-negative we may estimate the terms of the second line
by integrating over the whole of M instead of Ω(x), which gives∫

M

gε(dδ, dδ)− Λ0 |δ|2 volgε
(3.12)= ε−d(〈δ,Hδ〉 − ε 〈δ,H1δ〉)
(3.18)= ε2−dλ ‖δ‖2H + ε−d〈δ,Rε〉 − ε1−d〈δ,H1δ〉 .
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Now by theorem 3.12 we have ‖δ‖2H = O(ε2), hence using condition 5

|〈δ,H1δ〉| = |−ε2〈δ, divSεδ〉+ ε〈δ, Vεδ〉|

≤ C(ε2 ‖δ‖2W 1
ε=1

+ ε ‖δ‖2H ) = O(ε3) ,

and

|〈δ,Rε〉| = |〈δ,
(
H −Ha + ε2(µ− λ)

)
ψ〉|

= |〈δ, ε2P⊥0 [∆h, P0]P0ψ〉|+O(ε4)
≤
∥∥P⊥0 δ∥∥H︸ ︷︷ ︸
(3.17)

= O(ε2)

∥∥ε2[∆h, P0]ρα(Ha)ψ
∥∥

H︸ ︷︷ ︸
3.9=O(ε2)

+O(ε4) = O(ε4) .

Altogether this gives a bound ofO(ε4−d) on the integral. As to the integral
of |δ|2, note that Ω(x) is the lift of a ball of radius εR in (B, gB). When
d = 1 the integral over such a ball is bounded by the W 1-norm (which
controls the maximum) times the volume, thus eliminating the factor ε−d.
This idea can be extended to higher dimensions to some extent using the
Fourier transform, as demonstrated in lemma C.4 in the appendix. For
the problem at hand, first write the integral in a local trivialisation Φ∫

Ω(x)

ε−d |δ|2 volgε=1 =
∫
F

∫
π(Ω(x))

ε−d |Φ∗δ|2 volgBvolΦ∗gF .

Now take gB-geodesic coordinates κ onB(r, π(x)) ⊃ π(Ω(x)) and a smooth
cut-off χ ∈ C∞0 (B(r, 0)), equal to one on (B(εR, 0)) ⊂ B(r, 0). Lemma
C.4 gives∫

B(εR,0)

ε−d|κ∗Φ∗δ|2(y)dy ≤ Cθd(ε) ‖χκ∗Φ∗δ‖2W 1(B(r,0)) .

Now integrating this inequality over the fibres we obtain∫
Ω(x)

ε−d |δ|2 volgε=1 ≤ θd(ε)C ‖δ‖
2
W 1
ε=1
≤ Cε2θd(ε) ,

with a constant C(d,Φ, κ, χ) that may be chosen independent of x because
(B, gB) is of bounded geometry and M π→ B uniformly locally trivial.

99



Chapter 3 Examples and applications

An eigenband with a non-degenerate minimum

Let λ0 have a non-degenerate minimum at x0 ∈ B and assume that

inf{λ0(x) : dist(x, x0) > 1} > 0 , (3.23)

it was shown by Simon [66] that the typical distance between the eigen-
values of Ha is of order ε, so the relevant energy scaling is α = 1.
For the discussion of eigenfunctions in this situation we will restrict

ourselves to the case d = 1 as it allows for much simpler and stronger
statements. In this case the only possible base manifolds are B = R
and B = S1. In both cases we take B to be parametrised by gB-arc
distance s from x0. This parametrisation is a diffeomorphism B → R or
B \ {x1} → I = (−L,L) that maps x0 to s = 0. In this way we can
view Ha either as an operator on R or as an operator on I with periodic
boundary conditions. With this we get the explicit expression

Ha = −ε2∂2
s + λ0(s)− ε3P0∂

∗
sSε∂

∗
sP0 + ε2Veff ,

with Veff = V0 + Vε for the potentials V0 and Vε of equation (3.10) and
condition 5. If this operator arises from an embedding, necessarily with
∂M 6= ∅, these potentials take the same form as for α = 2 (cf. equa-
tion (3.21)).
We now rephrase the main result of [66] for d = 1 in our notation. Let

a := ( 1
2∂

2
s |s=0λ0)1/2 and denote by H0 the operator

H0 := −∂2
s + as2 .

The spectrum of H0 consists of simple eigenvalues

ej = a(2j + 1)

with eigenfunctions

fj = cje−as
2/2hj(

√
as) ,

for j ∈ N, where hj denotes the j-th Hermite polynomial and cj a nor-
malisation constant. Now [66, theorem 1.1] tells us that for given J ∈ N
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and ε small enough, Ha has at least J+1 eigenvalues below its continuous
spectrum. By [66, theorem 4.1] they are simple and have an expansion

εµj = εej + ε2e1
j +O(ε3) . (3.24)

The corresponding eigenfunctions can be expanded in L2 (and also in
W 2 ⊂ D(H0)). Their expansion up to order εβ = ε3/2 reads

Dψj = fj +
√
εf1
j + εf2

j +O(ε3/2) , (3.25)

where the functions f1
j , f2

j are given by a polynomial times e−as2/2 and
D : L2(R)→ L2(R) is the unitary dilation by

√
ε

(Dψ) (s) := ε1/4ψ(
√
εs) .

Such an expansion is also valid for simple eigenvalues of Ha in higher
dimensions. The maximum value of the eigenfunction ψ behaves as ε−d/4,
so in general one should not expect the supremum of (1−Pλ)ψ to be small.

Remark 3.19. Let us comment on some differences of the situation dis-
cussed here to that analysed in [66, theorem 4.1].

In the case B ∼= S1, the operator Ha is not densely defined on L2(R),
so strictly speaking the theorem does not apply. However due to the
exponential decay of the functions D∗fj , D∗f1

j , localising them in I using
a suitable cut-off only produces exponentially small errors in ε. After
doing this we may apply the technique of the proof on L2(I) and the
statement still holds.

Compared with the set-up of Simon we also have an additional pertur-
bation by the differential operator ε3P0∂

∗
sSε∂

∗
s . From the construction

of the perturbation expansion one easily sees that this does not pose a
problem. Since it is of order ε it does not enter the calculation of f1

j ,
while for f2

j one can replace Sε by the constant Sε(x0)|ε=0.

Knowing the expansion of the eigenvalues (3.24) it is clear that one
should look at the energy scale α = 1. Since the eigenvalues are all simple,
theorem 3.12 applies to all of the eigenvalues of H below ε0Λ < Λ1. This
means:
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Corollary 3.20. Let B = R or B = S1, assume that λ0 has a unique,
non-degenerate minimum and satisfies (3.23). For every J ∈ N there
exists ε0 so that for ε ≤ ε0 the operator H has at least J + 1 simple
eigenvalues {ελj : 0 ≤ j ≤ J} below its essential spectrum, satisfying

λj
3.12= µj +O(ε2) = ej + εe1

j +O(ε2) .

Proof. If we choose Λ = eJ+1 for the construction of Pε this is a direct
consequence of [66, theorems 1.1, 4.1] and theorem 3.12.

Theorem 3.12 also gives approximation of the corresponding eigenfunc-
tions ϕj , ‖ϕj − φ0π

∗ψj‖H = O(ε3/2) and ‖ϕj − φ0π
∗ψj‖W 1

ε=1
= O(

√
ε).

We now use the expansion (3.25) of ψj together with lemma 3.15 to show
validity of this approximation in the uniform norm.

Lemma 3.21. Assume the conditions of corollary 3.20 hold. For every
j ∈ {0, . . . , J} the remainder Rε of equation (3.18) satisfies ‖Rε‖∞ = O(ε).

Proof. The proof is the same for every j, so we drop that index for now.
From (3.22) we see that

‖Rε‖∞ ≤ C(ε2 ‖ψ‖C 1
b

(R) + ε3 ‖ψ‖C 2
b

(R)) .

We estimate the C 1
b -norm by comparing with D∗f , which satisfies

‖ε−1/4f(ε−1/2s)‖C 1
b

= ε−1/2 ‖f‖∞ + ε−3/4 ‖∂sf‖∞ ≤ ε
−3/4‖f‖C 1

b
.

Since d = 1 we can bound the C 1
b -norm of the difference ψ −D∗f by its

W 2-norm. From the perturbation expansion (3.25) and D∂2
sD
∗ = ε−1∂2

s

we see that

‖(ψ −D∗f)‖W 2 ≤ ε−1 ‖Dψ − f‖W 2 = O(ε−1/2) . (3.26)

Altogether we conclude

‖ψ‖C 1
b
≤ ‖D∗f‖C 1

b
+ C ‖ψ −D∗f‖W 2 = O(ε−3/4) , (3.27)

so ε2 ‖ψ‖C 1
b

= O(ε5/4).
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In order to gain control over its second derivatives we estimate the W 3-
norm of ψ. From (3.26) and f we already have bound on the W 2-norm
‖ψ‖W 2 = O(ε−1), so we only need to take care of∫

B

(
∂3
sψ
)2 ds =

∫
B

∂3
sψ∂s

(
−ε−2Ha + ε−2λ0 − εP0∂sSε∂s + Veff

)
ψ ds .

Using the Cauchy-Schwarz inequality and

‖∂2
sS0∂sψ‖L2 ≤ ‖S0‖C 2

b
(M) ‖ψ‖W 3(B)

we have

C1 ‖ψ‖W 3 (1− ε)
≤ ε−1µ ‖∂sψ‖L2 + ε−2 ‖∂sλ0ψ‖L2 + ‖Veff‖C 1

b
‖ψ‖W 1 +O(ε−1)

≤ ε−1µ ‖ψ‖W 2 + ε−2 ‖λ‖C 1
b
‖ψ‖L2 + ε−2 ‖λ0∂sψ‖L2 +O(ε−1) .

The first two terms have bounds of order ε−2, which is sufficient for
Rε = O(ε). For the third term we again use the expansion 3.25 of ψ.
The remainder of this expansion can be estimated by

‖λ0∂s(D∗f − ψ)‖L2 ≤ ε−1/2 ‖λ0‖∞ ‖(f −Dψ)‖W 1 = O(1) .

Now since λ0(0) = (∂sλ0)(0) = 0 and the second derivatives of λ0 are
bounded, λ0(

√
εs) ≤ Cεs2. Using that f is a polynomial p times a Gaus-

sian we have (extending λ0 by zero outside of I)

‖Dλ0∂sD
∗f‖2L2(R) =

∫
R
ε−1∣∣λ0(

√
εs)∂sp(s)e−as

2/2∣∣2ds

≤ ε−1
∫
R
ε2s4∣∣∂sp(s)e−as2/2∣∣2ds = O(ε) .

Hence ‖ψ‖W 3 = O(ε−2) = ‖ψ‖C 2
b
and ‖Rε‖∞ = O(ε).

Proposition 3.22. Assume the conditions of corollary 3.20 hold. Then
for any j ∈ {0, . . . , J}, δj := (1− Pλj )ψ satisfies ‖δj‖∞ = O(ε) .
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Proof. Lemma 3.21 shows that lemma 3.15 with γ = 1 may be applied.
Hence we have to bound the integral over Ω(x) by O(ε). This is straight
forward since d = 1 and∫

M

|δ|2 + gε(dδ, dδ) volgε ≤ ε−1 ‖δ‖2W 2
ε

3.12
≤ Cε2β−1 = O(ε2) .

3.3.2 The location of nodal sets
In the previous section we showed that ψ and ϕ are uniformly close, so it
is rather intuitive that their zeros should be located in roughly the same
regions. Under some additional conditions we will determine the location
of the nodal set N (ϕ) from that of ψ. The cases of empty or non-empty
boundary and the different characteristic energy scales α = 1, 2 display
distinct behaviour of these eigenfunctions, so the precise statements differ
for these cases, although they all capture this same basic idea. The fibre
eigenfunction φ0 will be of some importance here, so we will again distin-
guish the eigenfunction ψ ∈ L2(B) of Ha in the trivialisation by φ0 and
the section ψφ0 ∈ L2(E) that we can compare to ϕ.

A constant eigenband

For this case we have proven in proposition 3.18 that ‖ψφ0 − ϕ‖∞ =
O(ε

√
θd(ε)). Now recall that for this case we defined an operator H0 =

−∆gB + Veff in equation (3.20), with H0 − ε−2Ha = O(ε). So to any
simple eigenvalue µε of ε−2Ha there is also an eigenvalue µ0 of H0. Let
ψ0 ∈ L2(B) be the corresponding normalised eigenfunction. Then because
of the equivalence of the norms of D(ε−2Ha) and W 2(B, gB) we have
‖ψ − ψ0‖∞ = O(ε), hence ψ0 may serve to approximate ϕ just as well
as ψ. The fact that ψ0 is independent of ε makes it a more convenient
choice for the comparison with ϕ. The statements we obtain will be true
for both ψ and ψ0, although with different constants.
We now discuss the most simple case, B = S1 and ∂M = ∅ with H1

arising from an embedding, to illustrate the reasoning by which all the
following theorems are true with the minimal technical difficulty at the
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individual steps. We again work in a fixed parametrisation by arc length
of B \ {x1} and call the corresponding coordinate s. In these coordinates
the operator H0 has the explicit form

H0
∂M=∅=
B=S1

−ε2∂2
s + ε2( 1

2∂
2
s log Vol(Fx) + 1

4 |∂s log Vol(Fx)|2
)
,

as an operator on an interval with periodic boundary conditions. Its
spectrum is discrete and for every simple eigenvalue µ0 there is µε to
which theorem 3.12 and proposition 3.18 apply. We now prove that

N (ϕ) ⊂ π−1{x : distgB (x,N (ψ0)) ≤ Cε} .

Proposition 3.23. Let µ0 be a simple eigenvalue of H0 with normalised
eigenfunction ψ0 and ϕ ∈ ker(H − ε2λ) the corresponding eigenfunction
of H. There exists a constant C > 0 such that for y ∈M with

distgB (π(y),N (ψ0)) ≥ Cε

we have

sign(ϕ(y)) = sign(ψ0(π(y)) .

Proof. We carry out the proof in several small steps since the same struc-
ture will appear also in the proofs of more general statements.

Let N (ψ0) = {si : i ∈ I} be the (finite) set of zeros of ψ0.

1) There is C0 > 0 such that |∂sψ0| (si) ≥ C0 for every i ∈ I:

ψ0 solves the second order ordinary differential equation

∂2
sψ0 = (Veff − µ)ψ0 ,

so if at any point ψ0(s) = ∂sψ0(s) = 0 it must vanish everywhere since
zero is the unique solution of the equation with that initial condition.
Thus the derivative of ψ0 cannot vanish at any si. It is independent of
ε since ψ0 does not depend on ε at all. C0 may now be chosen as the
minimum of |∂sψ0(si)| over the finite set I.
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2) For any C1 > 0 and C2 := 2C1/C0 we have, if ε is small enough,
|ψ0(si ± C2ε)| > C1ε:
By Taylor expansion

|ψ0(si + 2C2/C0ε)| = 2C1ε |∂sψ0| /C0 +O(ε2) ≥ C1ε .

3) If dist(s,N (ψ0)) ≥ C2ε, then |ψ0(s)| > C1ε for ε small enough:
If in the interval [si, sj ] between two consecutive zeros of ψ0 there is no
local minimum of |ψ0|, then |ψ0| attains its minimum on the boundary of
[si + C2ε, sj − C2ε], where it is larger than C1ε by step two.
If on the other hand there is a local minimum at s∗ ∈ [si, sj ] we just need
ε to be small enough to ensure that |ψ0| (s∗) > C1ε.

4) Denote by C3 the constant of proposition 3.18 with d = 1 and let

C4 := max{ε−1 ‖ψ − ψ0‖∞ ‖φ0‖∞, C3} .

The proof is complete taking C1 = 2‖φ−1
0 ‖∞C4 and C := C2 = 2C1/C0:

First note that since ∂F = ∅ we have φ0 = π∗Vol(Fx)−1/2 (or in case we
redefined HF as described in remark 3.8, φ0 is proportional to √ρ and
equals π∗Vol(Fx)−1/2 +O(ε)), so ‖φ−1

0 ‖∞ is a positive constant. Now let
y ∈M and x = π(y). By step three we have

|ψ0φ0(y)| > 2C4ε

for distgB (x,N (ψ0)) ≥ Cε, and by proposition 3.18

‖ψ0φ0 − ϕ‖∞ ≤ ‖ψ − ψ0‖∞ ‖φ0‖∞ + ‖ψφ0 − ϕ‖∞︸ ︷︷ ︸
≤C3ε

≤ 2C4ε ,

so ϕ must have the same sign as ψ0.

We now generalise this statement to compact manifolds M for the case
λ0 ≡ 0 and d ≤ 3 of proposition 3.18. This includes manifolds with non-
empty boundary, in which case the behaviour of φ0 near ∂M will require
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some attention. Also, in contrary to the one-dimensional case just proved,
the nodal set of ψ0 could already be complicated.
We say that ψ0 ∈ ker(H0 − ε2µ) has a regular nodal set if zero is a

regular value of ψ0. This implies of course that the nodal set is a C∞-
hypersurface in B. In fact the converse also holds, as ψ0 can be shown to
have a non-zero normal derivative on any smooth surface where it vanishes
(see [22, lemma 3.4]).

Theorem 3.24. Let B be compact and of dimension d ≤ 3. Assume
λ0 ≡ 0 and let µ be a simple eigenvalue of H0. If the normalised eigen-
function ψ0 ∈ ker(H0−µ) has a regular nodal set there is a constant C > 0
such that for every y ∈M \ ∂M with

distgB (π(y),N (ψ0)) ≥ Cε
√
θd(ε)

we have

sign(ϕ(y)) = sign(ψ(π(y)) .

Proof. The proof follows the same steps as that of proposition 3.23.

1) By the assumption of regularity of N (ψ0), the derivative in the direc-
tion of the unit normal ν of N (ψ0) is nowhere zero. Because the nodal
set is compact it is bounded below, |νψ0| ≥ C0, on N (ψ0).

2) For ε small enough, ε
√
θd(ε)2C1/C0 is smaller than the injectivity

radius of (B, gB). Then for every x ∈ N (ψ0) the argument of the original
step two applies on the geodesic t 7→ expx(tν) and we have∣∣ψ0(expx(ε

√
θd(ε)C2ν)

∣∣ ≥ C1ε
√
θd(ε) .

The expansion is uniform on N (ψ0) since the second derivatives of ψ0 are
bounded independently of ε.

3) The original argument can be applied to the connected components
of B \ N (ψ0) and we obtain |ψ0(x)| > C1ε

√
θd(ε) for all x ∈ B with

distgB (x,N (ψ0)) ≥ C2ε
√
θd(ε).

4) If ∂M = ∅ the proof concludes just as in the case d = 1.
Otherwise we need some control of the fibre eigenfunction φ0 to get suffi-
cient estimates near the boundary, where both ψ0φ0 and ϕ vanish.
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5) Let D(y) := distgFπ(y)

(
y, ∂Fπ(y)

)
. There exist constant C5, C6 > 0

such that

C5 ≥ φ0(y)/D(y) ≥ C6

for every y ∈M :

The upper bound C5 follows from the fact that the eigenfunctions for
different fibres form a bounded set in C 1

b (F ) (cf. section B.2).

If a lower bound C6 does not exit, there is a sequence (yk)k∈N ⊂ M for
which φ0(yk)/D(yk) converges to zero as k → ∞. Since M is compact
we may extract a subsequence (from now on denoted yk), converging to
some y ∈ M . The limit point y cannot lie in the interior of M because
φ0 is strictly positive there. Hence in a trivialisation near x = π(y) we
have Φ(yk) = (xk, ỹk), with xk converging to x in B and ỹk converging to
some ỹ ∈ ∂F . Then since φ0 ∈ C 1(M) (see proposition B.7) the quotient
converges to the derivative of φ0 in the direction of the outward normal
of F at ỹ. But the boundary of F is smooth, so by a standard result (see
e.g. [22, lemma 3.4]) this derivative is non-zero. This contradicts existence
of the sequence yk, so C6 must exist.

In order to complete the proof as in step four we need to strengthen the
result of 3.18 to an estimate of the form∥∥ (ψφ0 − ϕ) /D

∥∥
∞ ≤ C7ε

√
θd(ε) . (3.28)

Since the gε-length of a fixed vertical vector field Y is independent of ε,
lemma 3.16 together with proposition 3.18 implies ‖Y δ‖∞ = O(ε

√
θd(ε)).

In particular we have bounds on normal derivatives near the boundary,
which imply (3.28).

The proof can now be completed setting

C̃4 := max{
(
ε
√
θd(ε)

)−1 ‖ψ − ψ0‖∞ C5, C7}

and taking C1 = 2C̃4/C6, C := C2 = 2C1/C0, since

‖(ψ0φ0 − ϕ)/D‖∞ ≤ ‖ψ0 − ψ‖∞ C5 + C7
√
θd(ε) ≤ 2C̃4

√
θd(ε)
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and∣∣ψ0φ0/D
∣∣ ≥ |ψ0|C6 > 2C̃4ε

√
θd(ε) ,

if distgB (π(y),N (ψ0)) ≥ Cε
√
θd(ε) by step three.

An eigenband with a non-degenerate minimum

We now turn to the case of λ0 having a unique minimum and d = 1 of
proposition 3.22. We take up the notation used there. For every j ≤ J

(chosen for corollary 3.20) we have the eigenfunction fj of the harmonic os-
cillatorH0, the eigenfunction ψj ofHa and of course ϕj = Pλjψj/‖Pλjψj‖.
fj can be used to approximate ψj , which in turn approximates ϕj up to
order ε. The second approximation is much more accurate, so it will pro-
vide sharper estimates on the location of N (ϕj). Since fj is explicitly
known, we can use it to establish some basic growth estimates for ψj near
its zeros that effectively replace the estimates of step one to three in the
proof of 3.23 or 3.24.

Lemma 3.25. Assume the conditions of corollary 3.20 hold and let L > 0
such that f−1

j (0) ⊂ [−L,L] =: I0 for every 0 < j ≤ J . For ε small enough
there exist positive constants c0, c1, c2 such that for every s ∈

√
εI0 and

0 < j ≤ J

a) dist(s,N (D∗fj)) ≥ c2ε3/4 =⇒ |ψ(s)| > c0,

b) dist(s,N (D∗fj)) ≤ c2ε3/4 =⇒ |∂sψ(s)| > c1ε
−3/4.

Proof. The steps of the proof do not depend on j, so we drop this index
here.

a) In view of (3.25) we have ‖ψ −D∗f‖W 1 = O(1). Since d = 1 this
implies existence of c0 with

sup
s∈R

∣∣ψ(s)− ε−1/4f(ε−1/2s)
∣∣ ≤ c0 . (3.29)

Now we merely need to choose c2 large enough to assure that

ε−1/4f(s) > 2c0

109



Chapter 3 Examples and applications

for s ∈ I0 with dist (s,N (f)) ≥ c2ε1/4. Since ∂sf does not vanish on
N (f) this is possible, as elaborated in proposition 3.23, steps one to
three.

b) Equation (3.26) implies existence of a constant C with

‖∂s(ψ −D∗f)‖∞ ≤ Cε
−1/2 .

Now since ∂sf does not vanish on the nodal set we have |∂sf(s)| > c

for dist(s,N (f)) ≤ c2ε1/4 for ε small enough and thus on this set

|∂sψ(s)| ≥ ε−3/4c− Cε−1/2 ≥ c1ε−3/4 .

Theorem 3.26. Assume the conditions of corollary 3.20 hold and let I0
be as in lemma 3.25. Then for every 0 < j ≤ J and ε small enough the
following statements hold

a) There is a constant C > 0 such that for every y ∈
(
M \ ∂M

)
∩

π−1(
√
εI0) with distgB (π(y),N (ψj)) ≥ Cε7/4 we have

sign(ϕj(y)) = sign(ψj(π(y))) .

b) N (ϕj) ∩ π−1(
√
εI0) is a smooth hypersurface in the interior of M .

Proof. In principle the proof of part a) follows the same steps as that of
proposition 3.23 up to step five of theorem 3.24.
We drop j for the proof since the method does not depend on that index

and denote {si : i ∈ I} := N (ψ) ∩
√
εI0.

1) By part a) of lemma 3.25 we have dist(si,N (D∗f)) ≤ c2ε3/4 for every
i ∈ I. Hence by part b), |∂sψ| ≥ c1ε−3/4 on N (ψ) ∩

√
εI0.

2) We can use the differential equation that ψ solves to obtain an im-
proved bound on its second derivatives inside

√
εI0:

∂2
sψ = ε−2(λ0(s)− εµ− ε3P0∂

∗
sSε∂

∗
sP0 + ε2Veff

)
ψ
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together with the bound λ0(s) = O(|s|2) = O(ε) on
√
εI0 gives∣∣∂2

sψ
∣∣ ≤ c( ε−1 ‖ψ‖∞︸ ︷︷ ︸

(3.29)
= O(ε−5/4)

+ ε ‖ψ‖C 1
b︸ ︷︷ ︸

(3.27)
= O(ε1/4)

) ≤ c3ε−5/4 .

By Taylor expansion at si we get

|ψ(s)| ≥ c1ε−3/4 |s− si| − c3ε1/4(ε−3/4 |s− si|
)2

≥ c1ε−3/4 |s− si| /2 , (3.30)

if |s− si| ≤ 2c2ε3/4 and ε is small enough that 2c2c3ε1/4 ≤ c1/2.

3) Again by part a) of lemma 3.25 we have dist(si,N (D∗f)) ≤ c2ε3/4 for
every i ∈ I. So those s ∈

√
εI0 with dist(s,N (ψ)) ≥ 2c2ε3/4 are also

further than c2ε
3/4 from N (D∗f), which implies |ψ(x)| ≥ c0. We may

thus deduce from (3.30) that if s ∈
√
εI0 with dist(s,N (ψ)) ≥ Cε7/4,

then

|ψ(x)| ≥ Cc1ε/2 .

4) Exactly the same as step five of theorem 3.24.

In order to prove b) we show that ∂∗sϕ 6= 0 on the nodal set of ϕ. By
lemma 3.25 and part a) we have |ε∂sψ| ≥ c1ε1/4 on π(N (ϕ)) ∩

√
εI0. We

know that φ0 is independent of ε, bounded in C 2 (see proposition B.7)
and that ‖ψ‖∞ = O(ε−1/4) by (3.29). Now let D(y) be the distance to
the boundary in Fπ(y) as in the proof of theorem 3.24, step five, and let C6
be the lower bound for φ0/D obtained there. Then on N (ϕ)∩π−1(

√
εI0)

|ε(∂∗sψφ0)/D| ≥ c1C6ε
1/4 − c5ε3/4 > c6ε

1/4 .

This lower bound for ∂∗sψφ0 will imply a lower bound on ∂∗sϕ if we can
show that their difference is small. Since gε(ε∂∗s , ε∂∗s ) = 1, application of
lemma 3.16 gives ‖ε∂∗s δ/D‖∞ = O(ε) (cf. proof of 3.24, step 5). Conse-
quently

|∂∗sϕ(y)| ≥ c7ε−3/4D(y)

on N (ϕ) ∩ π−1(
√
εI0), which proves the claim.
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The theorem locates parts of the nodal set of ϕj within a neighbourhood
of size ε7/4 of that of ψj . There may however be other parts located in
regions at distance greater than

√
εL from the minimum x0 of λ0, where

ψj is small. Because we also have control of the number of nodal domains
close to x0, Courant’s theorem provides restrictions on the nodal set that
is far from x0.

Corollary 3.27. Under the conditions of theorem 3.26 the set

{y ∈M : distgB (π(y), x0) ≥
√
εL} \ N (ϕj)

has at most two connected components. If j is odd this set has exactly two
components and ϕj attains the bound of Courant’s theorem.

Proof. The eigenfunction fj of the harmonic oscillator has j + 1 nodal
domains. All the zeros of D∗fj are contained in

√
εI0, so by (3.29) the

set B(
√
εL, x0) \ N (ψj) has at least j + 1 connected components and

by theorem 3.26 this also holds for π−1(B(
√
εL, x0)) \ N (ϕj). Those

components contained in the interior of this set are open and closed also
inM\N (ϕj). From this we deduce thatM\N (ϕj) has at least j connected
components by inspecting the boundary. Let x+, x− be the two points in
B that are mapped to ±

√
εL by the coordinate map s. Since

dist(±
√
εL,N (D∗fj)) = dist(±L,N (fj)) ≥ C

it follows from (3.29) and theorem 3.26 that, for ε small enough,

sign
(
fj(±L)

)
= sign

(
ψj(x±)

)
= sign

(
ϕj |Fx±

)
.

Thus the fibres Fx+ and Fx− are each completely contained in one com-
ponent of M \N (ϕj). This means that there are at least j − 1 connected
components contained in the interior of π−1(B(

√
εL, x0)) \ N (ϕj). Thus

(M \ π−1(B(
√
εL, x0))) \ N (ϕj) cannot have more than two connected

components without ϕj having more than j + 1 nodal domains, which is
impossible by Courant’s nodal domain theorem.
If Fx+ and Fx− belong to different components, (M \ π−1(B(

√
εL, x0)))\

N (ϕj) must have two connected components and M \ N (ϕj) has exactly
j + 1. This is the case if j is odd since then fj is an odd function.
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For a given fibre bundle over R or S1 with compact fibres and non-empty
boundary one can always construct metrics satisfying the conditions of this
corollary. One may choose any metric that makes the bundle a uniformly
locally trivial Riemannian submersion and then find a positive function
f ∈ C∞b (B) so that the lowest eigenvalue λ0(x) of the metrics f(x)gFx
has a unique, non-degenerate minimum and is asymptotically larger than
this minimum. Going to the adiabatic limit with this metric thus gives
metrics on M for which any given number of the eigenfunctions ϕ2k+1
attains the bound of Courant’s theorem.

The location of the nodal sets also tells us about its relation to the
boundary, since we know that ϕ must change sign in certain cylinders over
N (ψ). This is independent of λ0 being constant or having a minimum.
It forces N (ϕ) to touch the boundary, since otherwise one could find a
curve joining two points at which ϕ has different signs without hitting the
nodal set. We prove a more refined version of this statement, giving an
estimate on ‘how often’ the boundary is reached.

Figure 3.2: ϕ is positive on F+ and
negative on F− because |ψ| has
reached a certain size there. N (ϕ)
must separate these fibres and thus
it must reach every connected com-
ponent of ∂F .

F+F−

N (ϕ)

N (ψ)

ψ

B

M

π

Corollary 3.28. Assume the conditions of theorem 3.24 or 3.26 hold and
let ψ denote the function ψ0 or ψj of the respective statement. If the nodal
set of ψ has m connected components K1, . . . ,Km, the set ∂M ∩N (ϕ) has
at least as many connected components as

D :=
⋃
l≤m

∂M ∩ π−1(Kl) .

If B is one-dimensional and ∂F has k connected components, D has m
times k components.
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Proof. Let K ⊂ N (ψ) be a connected component. By theorems 3.24,
3.26 there is a small closed tubular neighbourhood T (ε,K) of K in B

such that ϕ changes sign in π−1(T ). More precisely, let ν be the unique
unit normal of K pointing into the region where ψ is positive. Then
there are t+, t− = O(ε) such that if x ∈ K, ϕ|π−1(expx(t+ν)) > 0 and
ϕ|π−1(expx(t−ν)) < 0, except on the boundary of these fibres. We have
a projection p:T → K along the normal direction and T ∼= K × [t−, t+].
Since [t−, t+] is contractible this implies π−1(T ) ∼= π−1(K)× [t−, t+] and
p can be lifted to a projection p:π−1(T )→ π−1(K) (if T lies in a an open
set U over which M is trivial p can be taken as the projection along Φ∗ν,
otherwise such projections may be patched together, see [31, corollary
1.8]).
Because continuous images of connected sets are connected, the set

p (∂M ∩N (ϕ)) ⊂ ∂M ∩ π−1(K) has at most as many connected com-
ponents as ∂M ∩ N (ϕ) ∩ T . We conclude the proof by showing that
p: ∂M ∩N (ϕ)→ ∂M ∩ π−1(K) is onto. Assume there were y ∈ ∂M ∩
π−1(K) not contained in the image of p|∂M∩N (ϕ). Without the restric-
tion to N (ϕ), p is clearly onto so the fibre of p over y is a curve in π−1(T ),
that projects to {π(y)} × [t−, t+]. M is trivial over {π(y)} × [t−, t+], so
p−1(y) can be represented by a curve γ in ∂F × [t−, t+] with γ(0) ∈ ∂Ft− ,
γ(1) ∈ ∂Ft+ and γ ∩N (ϕ) = ∅.
Since the nodal set is closed, there is an open neighbourhood U of γ in

F × [t−, t+] that does not intersect N (ϕ) either. But then there is a curve
γ̃ in the interior of F × [t−, t+], joining Ft− and Ft+ , on which ϕ does not
vanish. This contradicts the fact that ϕ|Ft− < 0 and ϕ|Ft+ > 0.
If d = 1, K = {x} is a point in B and ∂M ∩ π−1(K) = ∂Fx, so D

clearly has m times k components.

Now that we have located the nodal set of ϕ and established some of
its properties, the question remains what it actually ‘looks like’. We know
that it is contained in cylinders around π−1(N (ψ0)), or π−1(N (D∗fj)) in
the case α = 1, that shrink as ε → 0. So in the case λ ≡ 0, where the
set π−1(N (ψ0)) is independent of ε, we have limε→0N (ϕ) = π−1(N (ψ0))
in the Hausdorff metric on compact subsets of M . A natural question
would be whether this limit is also correct in a more geometric sense. For
example if for fixed 0 < ε ≤ ε0, N (ϕ) and π−1(N (ψ0)) are diffeomorphic
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manifolds with boundary and, if this is the case, whether they are homo-
topic as submanifolds of M . Such properties are only established for very
specific cases. For example if M = S1×S1 is a torus, the nodal set N (ϕ)
consists of finitely many immersed circles (see [64]). If ϕ = ϕ1 is the first
excited state these must divideM into exactly two connected components.
Now if the geometry is such that ϕ1 corresponds to a simple eigenvalue of
H0, we know the locations of these circles. For this reason, and because we
know the total nodal count, they must actually be embedded and cannot
intersect each other. Thus N (ϕ) ∼= S1 ∪ S1 ∼= π−1(N (ψ0)). Since each
of these circles must cut the cylinder [−Cε,Cε] × S1 into two connected
components, each of which contains either one of the fibres {±Cε} × S1,
these circles must also have the same homotopy class in π1(M) as the
fibres.

This argument relies on the fact that there is really just one compact
one-dimensional manifold, so generalisations to higher dimensions are not
obvious. A possible approach, at least for the case ∂M = ∅, would
be to push N (ϕ) to that part of the boundary of the tube T (ε) in M

around π−1(N (ψ0)) where it is positive, using the gradient flow of ϕ.
This however requires a proof of the non-vanishing of gradϕ on T (ε), for
which the derivative estimates obtained from theorem 3.24 and lemma 3.16
are not sufficient. Thus the topological behaviour of N (ϕ) in the limit
remains an open question.
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Appendix A

Bounded geometry

A.1 Manifolds with boundary and fibre
bundles

In this section we discuss different concepts of bounded geometry for man-
ifolds with and without boundary based on the expositions of Shubin [65]
and Schick [62, 63]. We also introduce the concept of a uniformly lo-
cally trivial fibre bundle in definition A.3 and relate it to the established
definitions in proposition A.4.

Definition A.1. A connected Riemannian manifold (M, g) is of bounded
geometry if it has injectivity radius ri(M) > 0 and for every k ∈ N there
exists C(k) > 0 for which the curvature tensor R satisfies

sup
M

g(∇kR,∇kR) ≤ C(k) .

Here g denotes the induced metric on the tensor-bundle TM⊗T ∗M⊗k+3

and ∇k is the composition of the connections on the bundles TM ⊗
T ∗M⊗l+3 with 0 ≤ l ≤ k, induced by the Levi-Cività connection of (M, g).
In the following we will always denote induced metrics and connections
on tensor bundles by the original symbols.

Bounded geometry is discussed in detail in [65, appendix A.1]. Most
importantly it provides us with a geodesic coordinate system on the ball
of radius r < ri(M) at any point p ∈ M . The coordinate vector fields of
these coordinate systems have bounded covariant derivatives to any order
and the transition functions are uniformly bounded in C∞(B(r, 0)). This
implies that a tensor T is represented by C∞-bounded functions in these
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coordinates if and only if it satisfies

sup
M

g(∇kT,∇kT ) ≤ C(k) ,

for every k ∈ N. We denote spaces of C∞-bounded functions or sections
by C∞b and Γb respectively.
A manifold with non-empty boundary is not of bounded geometry in

this sense, even if it is compact, since it cannot have positive injectivity
radius. An extension of the concept to manifolds with boundary was
developed by Schick [62, 63].

Definition A.2 ([62, 63]). A Riemannian manifold (M, g) with boundary
∂M is a ∂-manifold of bounded geometry if the following holds:

• Normal collar : Let ν be the inward pointing unit normal of ∂M .
There exists rc > 0 such that the map

b: ∂M × [0, rc)→M , (p, t) 7→ expp(tν)

is a diffeomorphism onto its image.

• Injectivity radius of the boundary: The injectivity radius of ∂M with
the induced metric is positive, ri(∂M, g|∂M ) > 0.

• Injectivity radius in the interior : There is ri > 0 such that for p ∈M
with dist(p, ∂M) > rc/3 the exponential map is a diffeomorphism
on B(ri, 0) ⊂ TpM .

• Curvature bounds: The curvature tensor of M and the second fun-
damental form S of ∂M are bounded tensors on M and ∂M respec-
tively, R ∈ Γb(T ∗M⊗3 ⊗ TM), S ∈ Γb(T ∗∂M⊗2 ⊗N∂M).

This definition also provides us with an atlas. In the interior the charts
are again given by geodesic coordinates on B(ri, p), while for p ∈ ∂M and
r < min{ri(∂M), rc} choosing an orthonormal basis of Tp∂M defines a
coordinate map

bp:B(r, 0)× [0, r)→M , (v, t) 7→ expexp∂p(v)(tν) . (A.1)
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The representation of g in these coordinate systems has bounded deriva-
tives to any order [63, theorem 2.5], which in turn means that the coor-
dinate vector fields are bounded, i.e. if U ⊂ M is the image of one of
these charts ∂k ∈ Γb(TM |U ). Both the geodesic coordinate systems in
the interior and the boundary collar coordinates are referred to as normal
coordinates.

Though the concept of a ∂-manifold of bounded geometry provides all
the necessary tools for analysis of differential equations we will choose a
different definition directly adapted to fibre bundles. We will then prove
that this implies ∂-bounded geometry. Since we assume in chapters two
and three that B is of bounded geometry in the usual sense and F is
compact, the only source of non-uniform behaviour of geometric quantities
in F →M

π→ B is the variation of the fibre. This suggests the following
definition, which is very similar to that of a vector bundle of bounded
geometry [62, 63, 65] except for the lack of a canonical metric on the
model of the fibre.

Definition A.3. Let (B, gB) be a manifold of bounded geometry. A
Riemannian submersion F → (M, g) π→ (B, gB) is uniformly locally trivial
if there exists a metric g0 on F and for every x ∈ B and metric ball B(r, x)
of radius r < ri(B) there is a trivialisation

Φ:
(
π−1(B(r, x)), g

)
→
(
B(r, x)× F, gB × g0

)
,

such that Φ∗ and Φ∗ are bounded with all their covariant derivatives,
uniformly in x and r.

Boundedness of Φ∗ of course means Φ∗ ∈ Γb(T ∗π−1(B(r, p))⊗Φ∗T (U×
F )), with metric and connection induced by g and gB × g0. Since both
Φ∗ and Φ∗ are bounded the transition functions between two such trivi-
alisations will be bounded, too.

Alternatively one could requireM and B to be of bounded geometry, in
the suitable sense, and π to be a bounded map. If there is no boundary this
allows for the construction of trivialisations by lifting geodesics from B to
horizontal geodesics in M . In this case one does not even need to require
the fibre bundle property, since it follows from completeness (cf. [33]).
However in the presence of a boundary it is not clear how to construct
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local trivialisations with sufficiently good properties, so the definition is
quite natural. To clarify the relations between definitions A.1, A.2 and A.3
we formulate a proposition.

Proposition A.4. LetM π→ B be uniformly locally trivial and F compact
then

• if ∂M = ∅, M is of bounded geometry in the sense of definition A.1;

• if ∂M 6= ∅, M is of ∂-bounded geometry the sense of definition A.2.

The statement also holds if (F, g0) is not compact but has bounded
geometry in the appropriate sense of definition A.1 or A.2. We will not
be concerned with this case however and omit its discussion for the sake
of coherence.
For the proof let U = B(r, x) ⊂ B with r < ri(B) and note that the

product (U × F, gB × g0) has all the desired properties. The fibres in the
product are totally geodesic, so the curvature bounds are given by the
maximum of those for (F, g0), which exist since F is compact, and those
for (B, gB), which is of bounded geometry. The width of the boundary
collar is exactly that of (F, g0). The injectivity radius in the interior is
given by min{ri(F, g0), r} for all the points in Fx. Thus we need to assure
that such estimates are conserved by diffeomorphisms that have bounded
derivatives together with their inverse.
First take note of some bounds for elementary geometric quantities that

arise from the requirements on M . Let p, q ∈ π−1(U) with r < ri(B).
Then Φ(p) and Φ(q) are joined by a curve γ that is length-minimising for
the product metric and

distg(p, q) ≤
∫ 1

0

√
g(Φ∗γ̇,Φ∗γ̇) dt

≤
∫ 1

0
C(Φ)

√
(gB × g0)(γ̇, γ̇) dt

= C(Φ) distgB×g0(Φ(p),Φ(q)) .

The argument equally applies to distgB×g0(Φ(p))(Φ(q)), so we can choose
C > 0 (depending on Φ) such that also

C−1 distgB×g0(Φ(p),Φ(q)) ≤ distg(p, q) (A.2)
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Let p ∈ Fx and r′ < min{ri(F, g0), r}. Then there is another constant
C(Φ) > 0 with

C−1VolgB×g0

(
B(r′,Φ(p)

)
≤ Volg

(
Φ−1B(r′,Φ(p)

)
≤ CVolgB×g0

(
B(r′,Φ(p)

)
,

because of the bounds on Φ∗ and Φ∗. By compactness of F and bounded
geometry of (B, gB) the balls B(r′,Φ(p)) have upper and lower volume
bounds in the product metric. These are independent of p, at least if Φ(p)
lies not too close to the boundary, i.e. dist(Φ(p), ∂F ) > rc/3, because then
we can estimate the volume of the ball B(r′,Φ(p)) using the exponential
map. In case dist(Φ(p), ∂F ) ≤ rc/3 the requirement r′ < ri(F, g0) implies
r′ < rc(F, g0)/2, so the ball can be mapped to Rm using the boundary
collar coordinates (A.1), which gives similar bounds (cf [62, lemma 3.19]).
Thus we get a constant C(Φ, gB , g0, r

′) with

C−1 ≤ Volg
(
Φ−1B(r′,Φ(p)

)
≤ C (A.3)

We now prove the proposition A.4 over the course of several lemmata,
also proving boundedness of some secondary quantities on the way. We
begin by proving curvature bounds.

Lemma A.5. Let Φ : (M, g) → (N,h) be a diffeomorphism of Rieman-
nian manifolds with boundary, for which Φ∗, Φ∗ and all their covariant
derivatives are bounded tensors. If the curvature tensor of (N,h) and
all its derivatives are uniformly bounded this also holds for the curvature
tensor of (M, g).

Proof. Because Φ∗ is bijective and bounded together with its inverse we
have a one-to-one correspondence of bounded vector fields on M and N .
We calculate explicitly

Φ∗∇MX Y = − (∇XΦ∗)Y +∇Φ∗TN
X Φ∗Y (A.4)

= − (∇XΦ∗)Y +∇NΦ∗XΦ∗Y ,

where the second equality holds because Φ∗ is an isomorphism and thus
every section of Φ∗TN is a pullback. Insert this into the definition of the
curvature tensor

R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z ,
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by first calculating

Φ∗∇MX∇MY Z
= − (∇XΦ∗) (∇MY Z) +∇NΦ∗XΦ∗∇MY Z
= − (∇XΦ∗) (∇MY Z)−∇NΦ∗X ((∇Y Φ∗)Z) +∇NΦ∗X∇

N
Φ∗Y Φ∗Z (A.5)

with

∇NΦ∗X ((∇Y Φ∗)Z)

=
(
∇2
X,Y Φ∗

)
Z +

(
∇∇M

X
Y Φ∗

)
Z + (∇Y Φ∗) (∇MX Z) (A.6)

and

Φ∗∇M[X,Y ]Z = −
(
∇[X,Y ]Φ∗

)
Z +∇NΦ∗[X,Y ]Φ∗Z . (A.7)

Now in Φ∗RM (X,Y )Z we have cancellations of

• the first term of (A.5) with the last one of (A.6) with X and Y

interchanged,

• the second term of (A.6) with part of the first term of (A.7), since
[X,Y ] = ∇XY −∇YX.

The last terms of (A.5) and (A.7) add up to the curvature tensor of N
and the result reads

Φ∗RM (X,Y )Z
= RN (Φ∗X,Φ∗Y )Φ∗Z −

(
∇2
X,Y Φ∗

)
Z +

(
∇2
Y,XΦ∗

)
Z . (A.8)

The right hand side is bounded because Φ∗ and RN are, hence so is the
left. For the treatment of the derivatives of the curvature note that, since
∇kR is a tensor, its evaluation on vector fields X, . . . at a point p ∈ M
depends only on the values Xp, . . . of these fields in that point. We are
therefore free to choose continuations X̃, . . . of Xp, . . . with (∇M X̃)p = 0
for the calculations. For these we have(

(∇X̃Φ∗) Ỹ
)

Φ(p) =
(
∇NΦ∗X̃Φ∗Ỹ

)
Φ(p)

,

so any number of derivatives acting on (A.8) will only yield additional
derivatives of RN and Φ∗, which are bounded by hypothesis.
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Corollary A.6. Let F → M
π→ B be uniformly locally trivial and F

compact. Then the following geometric quantities are bounded with all
their derivatives:

1) The curvature tensor R of M .

2) The second fundamental form of ∂M .

3) The projection π∗.

4) The second fundamental form of the fibres.

5) The horizontal lift X∗ of any X ∈ Γb(TB).

6) The integrability tensor of the horizontal bundle NF .

Proof.

1) Let U be a normal coordinate chart of B, then A.5 proves the claim
on π−1(U). Since the constants of the estimates for Φ and the curvature
of (U × F, gB × g0) are global so is the boundedness of R.

2) By (A.4) the second fundamental form equals ∇ι∗, where ι is the in-
clusion of the boundary. Its boundedness follows from the diagram

∂π−1(U)
Φ- U × ∂F

π−1(U)

ι
?
�Φ
−1

U × F

ι∂F
?

because the inclusion ι∂F is bounded in the product metric.

3) Follows from the diagram

π−1(U)
Φ - U × F

U

pr1�
π -

because the projection to the first factor is bounded.
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4) Equation (A.4) applied to π∗ gives π∗II (X,Y ) = −(∇Xπ∗)Y for verti-
cal fieldsX,Y . Now 4) follows from 3) since π∗ is an isometry on horizontal
vectors.

5) The length of ∇YX∗ only depends on the the lengths of ∇π∗YX, X
and on the norm of ∇π∗. This can bee seen by splitting vertical and
horizontal directions. Let Y,Z be horizontal and V,W vertical vector
fields, then using (A.4) it is straightforward to calculate (cf. [55, lemma
3])

g (∇YX∗, Z) = gB (∇π∗YX,π∗Z)
g (∇VX∗, Z) = gB (−(∇V π∗)X∗, π∗Z)
g (∇VX∗,W ) = gB ((∇V π∗)W,X) = g

(
(∇V π∗)TX,W

)
g (∇YX∗,W ) = gB (X,−π∗∇YW ) = g

(
(∇Y π∗)TX,W

)
.

We can combine these equations to

∇YX∗ = (∇π∗YX − (∇Y π∗)X∗)∗ + (∇Y π∗)TX

for arbitrary Y . To check this observe that the first bracket is horizontal
by definition and produces the first two equations, while the second term
is vertical since g((∇Y π∗)TX,Z) vanishes if Z is a horizontal lift because
of (A.4) and the first equation. Hence ∇kX∗ is bounded because π∗ is
and B is of bounded geometry.

6) Follows from 5).

Next we need to show that the injectivity radius has a lower bound at
interior points as well as the existence of a normal collar. The arguments
for this use results of Kodani [39] for compact manifolds with boundary to
obtain local but uniform estimates on the injectivity radius. The reasoning
of Kodani is based on a comparison theorem of Heintze and Karcher [32].
We give a brief review of the ideas to make the following proofs more
transparent.
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Given a compact, connected Riemannian manifold it is a classical result
due to Klingenberg that the injectivity radius is the smaller of the con-
jugate radius and the length of the shortest closed and smooth geodesic
in M [57, lemma 5.8.4]. If the maximum of the sectional curvature in M
is K, the distance of two conjugate points in M is at least π/

√
K. Now

assume M has volume V , diameter d and a closed geodesic γ of length L.
Then the exponential map restricted to the normal bundle of γ is surjec-
tive ontoM , sinceM is compact and every point p ∈M is connected to γ
by a minimising curve, which is a geodesic that meets γ orthogonally. This
remains true if we further restrict the exponential map to those normal
vectors of γ with length less than d. By estimating the volume distortion
of the exponential map and integrating over the vectors in Nγ of length
less than d, Heintze and Karcher obtain an inequality [32, theorem 2.3] of
the form

V ≤ Lf(d,K) .

This shows that L cannot be arbitrarily small. Kodani applies these ideas
to compact manifolds with boundary and extends them to obtain esti-
mates for the length of geodesics that connect two points on the bound-
ary. A crucial point is that surjectivity of the exponential map on Nγ is
not always fulfilled. If however the boundary is convex, meaning that the
second fundamental form is positive on the interior normal, surjectivity
still holds. The intuition behind this is that positivity means curves in the
boundary may be shortened by deforming them into the interior. Kodani
manages to go beyond this case by estimating the volume of the region
that is not reached by the exponential map using Jacobi fields.

Lemma A.7. Let (M, g), (N,h) and Φ be as in lemma A.5 and let q ∈ N
have injectivity radius ri(q) ≥ L. There is a constant C, depending only
on L, Φ and the curvature bounds of h, such that the g-injectivity radius
of p := Φ−1(q) is at least C.

Proof. Choose an orthonormal basis of TqN . We may modify this so
that g(p) is diagonal in the pulled back basis of TpM since Φ∗g can be
diagonalised by orthogonal transformations. Let r ≤ L and x:B(r, q) →
B(r, 0) be geodesic coordinates for h using the basis chosen before. Then
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x∗h is the euclidean metric up to errors of order |x|2. The coordinate
vector fields are bounded with their derivatives because of the curvature
bounds of h. Thus the coordinate vector fields of

x ◦ Φ: Φ−1(B(r, q))→ B(r, 0)

are also bounded and gkl = g(p)kl +O(|x|), where the remainder depends
on Φ and the curvature of h. Since g(p)kl = a2

kδkl this means that the
sets Φ−1(B(r, q)) are increasingly close to ellipsoids for g as their radius
decreases. The second fundamental form scales like 1/r for small r, so
the boundary of Φ−1(B(r, q)) will be convex eventually. More precisely,
since mink a2

k and maxk a2
k can be bounded in terms of Φ∗, Φ∗, there is

a constant c(Φ) for which the second fundamental form of ∂Φ−1(B(r, q))
satisfies

(c(Φ)/r +O(1)) g(X,X) ≥ II (X,X) ≥ (c(Φ)/r +O(1)) g(X,X) ,

for any vector field X tangent to the boundary of Φ−1(B(r, q)). Conse-
quently there exists r0(Φ, h) > 0, such that for r ≤ r0 the boundary of
Φ−1(B(r, p)) is convex for the metric g.
Volume and diameter of Φ−1(B(r0, q)) have lower and upper bounds in

terms of Φ (cf. (A.2), (A.3)), and the sectional curvature of g is bounded
by lemma A.5, whence C is given by Kodani’s bound [39, proposition 6.1]
for Φ−1(B(r0, q)).

Lemma A.8. Let (M, g), (N,h) and Φ be as in lemma A.5. Assume the
second fundamental form of ∂N is bounded and that ∂N has injectivity
radius ri(∂N) as well as a normal collar of width rc. Then there is a
constant C, depending on Φ, rc, the curvature and second fundamental
form of (N,h), such that (M, g) has a boundary collar of width at least
C.

Proof. First of all corollary A.6 shows that the second fundamental form
of ∂M is bounded by S(Φ, ι∂N ).
Now assume such a constant C does not exist. Then there is a sequence

(pn, qn, sn) ∈ ∂M2 × (0, 1) with pn 6= qn, exppn(snνg) = expqn(snνg) and
sn → 0, where νg is the inward pointing unit normal of ∂M . Choose an
orthonormal basis of TΦ(pn)N for which g is diagonal in the pulled back
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basis as in the proof of A.7. For r < min{ri(∂N), rc} we have normal
coordinates (A.1) at Φ(pn)

bn:B(r, 0) ∩ {〈x, νh〉 ≥ 0} → Un ⊂ N .

Fix r0 and assume, without loss of generality, that the curves γ1
n(t) :=

exppn(tsnνg), γ2
n(t) := expqn(tsnνg), t ∈ [0, 1] are contained in Φ−1Un.

Let g̃n = b∗nΦ∗g be the metric on B(r0, 0)∩{〈x, νh〉 ≥ 0} induced by these
coordinates. By the choice of coordinates and the bounds on Φ and bn
these metrics satisfy (g̃n)kl = a(n)2

kδkl +O(|x|), where the remainder and
the numbers a(n) are bounded uniformly in n. Now let λ ≤ 1, restrict
these metrics to B(λr0, 0)∩{〈x, νh〉 ≥ 0} and then rescale lengths by λ−1

to obtain a family g̃n,λ of metrics on B(r0, 0)∩{〈x, νh〉 ≥ 0}. These satisfy
(g̃n,λ)kl = a(n)2

kδkl+O(λ |x|) uniformly in n. Choose a compact manifold
Ω with smooth, connected boundary

B(r0/2, 0) ∩ {〈x, νh〉 ≥ 0} ⊂ Ω ⊂ B(r0, 0) ∩ {〈x, νh〉 ≥ 0} ,

that is convex for the euclidean metric. Then there is a constant c(Φ,Ω)
for which the second fundamental form of ∂Ω with respect to g̃n,λ satisfies

c(Φ,Ω)g̃n,λ (X,X) ≥ II (X,X)n,λ ≥ −λ (S + c(Φ,Ω)) g̃n,λ (X,X) ,

for any X tangent to the boundary of Ω. By the hypothesis on Φ and the
boundary collar of (N,h) the manifolds (Ω, g̃n,λ) have diameter at most
d(r0,Φ), volume at least V (r0,Φ, h) (cf. (A.2), (A.3)) and sectional cur-
vatures bounded by K(Φ, h) (lemma A.5). By the result of Kodani [39,
proposition 6.2] there exists λ− (d, V,K, c(Φ,Ω)) < 0 satisfying the follow-
ing: if the second fundamental form of the boundary is bounded below by
λ−, then there is r∂ > 0 such that (Ω, g̃n,λ) has a boundary collar of width
at least r∂ . Thus there is λ0 > 0 such that (Ω, g̃n,λ) has a boundary collar
of width r∂ > 0 for all λ ≤ λ0. But the images of the curves γ1

n, γ2
n, under

Φ, b−1
n and rescaling by λ−1

0 , are normal geodesics contained in (Ω, g̃n,λ0)
for sn ≤ λ0r0/4. They intersect at distance sn/λ0 to the boundary, which
is a contradiction since sn tends to zero and this is eventually less than
r∂ .

This completes the proof of proposition A.4. We consider the rescaled
family (M, gε) so our analysis will require constants for the whole family
and independent of ε.
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Proposition A.9. Let M π→ B be uniformly locally trivial and F com-
pact. Then (M, gε) = (M, gF + ε−2π∗gB) satisfies definition A.1 or A.2
with the same constants {rc, ri(∂M), ri, C(k) : k ∈ N} as (M, g).

Proof. The submersion π: (M, gε)→ (B, ε−2gB) is uniformly locally triv-
ial with the same trivialisations as for ε = 1. Thus (M, gε) is of bounded
geometry in the appropriate sense by proposition A.4. It remains to show
uniformity of the constants in ε. In view of the lemmata A.5, A.7 and A.8
we only need to control the curvature bounds and injectivity radii in the
product metric g0 × ε−2gB and the bounds on Φ∗, Φ∗ as well as their
gε-covariant derivatives uniformly in ε to prove the claim. The intuition
behind the proof is that the constants can only become better with de-
creasing ε, since those pertaining to (F, g0) stay unchanged, while those
depending on horizontal quantities shrink (cf. lemma 1.6).
The normal collar of (U ×F, g0 × ε−2gB) is the same for all ε since the

metric on F is unchanged. The injectivity radius in the interior can only
grow larger for smaller ε, since it equals the minimum of ri(F, g0) and
ri(B, ε−2gB) = ε−1ri(B, gB). The curvature tensor of the product metric
splits into that of (F, g0) and that of (B, ε−2gB). If X,Y, Z ∈ Γb(U) are
vector fields of gB-length one, then εX, εY, εZ have length one for ε−2gB
and

ε−2gB (R(εX, εY )εZ,R(εX, εY )εZ) = ε4gB (R(X,Y )Z,R(X,Y )Z) .

Thus the norm of the curvature tensor and its derivatives scales like ε2.
As to Φ we only prove the bounds for Φ∗ as the proof for Φ∗ is similar,

and actually a bit simpler. We estimate the pointwise value of ε∇kΦ∗ at
p ∈ M by inserting k + 1 vector fields, that have g0 × ε−2gB-length one
and are parallel at p, and then estimating the gε-length of the resulting
vector field T εk .
First let T εk be the vector field obtained from ε∇kΦ∗ by inserting k+ 1

vertical vector fields. The vertical part (T εk )F can be calculated using
only data of the fibre. The covariant derivatives can be expressed, by
the Koszul formula, in terms of derivatives of lengths and Lie brackets
of vertical vector fields. These Lie brackets are again vertical fields since
TF is integrable. Thus no horizontal data and hence no dependence on ε
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enters into the calculation, so (T εk )F = TFk is completely independent of
ε.

Now let Y be a vertical field and compute (ε∇Y T εk )H , which equals
(T εk+1)H since we have chosen the vector fields to be parallel at p, by
splitting T εk = (T εk )F + (T εk )H into its vertical and horizontal parts. Let
(Xi)i≤d be a gB-orthonormal frame of U . By the Koszul formula we have

ε−2(π∗gB)(ε∇Y (T εk )F , εX∗i )

= −1
2
(
εX∗i gF (Tk, Y ) + gF ([Y, εX∗i ], Tk) + gF ([Tk, εX∗i ], Y )

)
= ε(π∗gB)(∇Y (Tk)F , X∗i ) ,

and

ε−2(π∗gB)(ε∇Y (T εk )H , εX∗i )
= ε−2Y (π∗gB)(T εk , εX∗i )− ε−2(π∗gB)(T εk ,ε∇Y εX∗i ) .

Using

ε∇YX∗i = ε2

2
∑
j≤d

gF (Y, [X∗j , X∗i ])X∗j = ε2

2
∑
j≤d

gF (Y,Ω(Xj , Xi))X∗j

we can combine these to get the expression for (T εk+1)H

(T εk+1)H(p) =
∑
i≤d

ε2gB(π∗∇Y TFk , Xi)X∗i + (Y gB(π∗T εk , Xi))X∗i

− ε2
∑
j≤d

(π∗gB)
(
(T εk )H , X∗j

)
gF
(
Y,Ω(Xj , Xi)

)
X∗i .

Now note that (T ε0 )H = TH0 = Φ∗Y = 0 since π∗Φ∗ = pr1∗. Hence this
relation implies that gε((T εk )H , (T εk )H) = O(ε2) by induction on k.
If we insert any horizontal field into ε∇kΦ∗ we get an expression of the

form

ε2gε(ε∇kX,Y1,...,Yk−1
Φ∗Yk,ε∇kX,Y1,...,Yk−1

Φ∗Yk) ,

that can easily be estimated by that for ε = 1, again using the Koszul
formula. Therefore ε∇kΦ∗ is bounded by the same constants for every
ε ≤ 1.
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A.2 Sobolev spaces and elliptic regularity
Among the technically most important properties of bounded geometry
is the existence of an atlas of normal coordinates with a subordinate par-
tition of unity that has convenient properties. This allows for a local
definition of Sobolev norms that is consistent with global expressions,
satisfying for example∫

M

|f |2 + g(df, df) volg ≤ C ‖f‖2W 1 .

These Sobolev spaces will be particularly important for the study of el-
liptic differential operators on M , since the Sobolev norm of their or-
der is essentially the graph-norm. On a manifold with boundary it is of
course not sufficient to specify a differential operator, one must also give
boundary conditions. Elliptic boundary value problems on a ∂-manifold
of bounded geometry are discussed in depth by Schick [62]. Here we re-
formulate some of the results in our setting and give a short review of
their derivation. We also introduce a slightly modified definition of the
Sobolev norms, adapted to our ε-dependent family of uniformly locally
trivial submersions, and relate it to the original definition.

Lemma A.10. We may choose an atlas U = {(Uν , κν) : ν ∈ Z} in the
following way: Let rU < 1

3 min{ri, ri(∂M), rc}. For every ν ∈ Z, Uν is
either empty or

• if ν < 0 there is a point pν ∈ ∂M so that Uν = bpν
(
B(rU, 0) ×

[0, 1
2rc)

)
is the image of the normal collar map (A.1) and κν = b−1

pν ;

• If ν ≥ 0 there is pν ∈ M with dist(pν , ∂M) > 2
3rc and Uν =

B(rU, pν). The coordinates κν on Uν are given by geodesic coor-
dinates at pν .

• There is N(U) ∈ N, which is the maximum number of patches Uν
with non-empty intersection. That is, for every ν ∈ Z the set
{µ ∈ Z : Uµ ∩ Uν 6= ∅} has at most N(U) elements.

Subordinate to this atlas we have a partition of unity {χν : ν ∈ N} with
uniformly bounded derivatives, i.e. the set {κ∗νχν : ν ∈ Z} ⊂ C∞0 (Rm)

130



A.2 Sobolev spaces and elliptic regularity

is bounded in the Fréchet topology. The multiplicity of this partition is
bounded by N(U).

The case without boundary is presented in [65, lemma A1.2, A1.3] and
extended to manifolds with boundary in [62, lemma 3.22]. Using this atlas
we may define the Sobolev norm of ψ ∈ C∞0 (M) by

‖ψ‖2Wk,2(M,g) :=
∑
ν

‖χνκ∗νψ‖
2
Wk,2(κ−1

ν Uν) . (A.9)

The uniformity conditions assure that using a different atlas and parti-
tion of unity, satisfying the same conditions, gives equivalent norms with
control of the constants [62, lemma 3.24]. The Sobolev space W k(M) :=
W k,2(M) is then defined as the completion of C∞0 (M) under this norm
and W k

0 (M) is the completion of C∞0 (M \ ∂M).
We will use a slightly modified definition that makes the different and

ε-dependent scaling of the vertical and horizontal directions in (M, gε)
more transparent.

Let U be an atlas of B with the properties listed above, with Uν = ∅
for ν < 0 because ∂B = ∅. Let {χν : ν ∈ N} be the subordinate
partition of unity and {Φν : ν ∈ N} a uniform family of trivialisations
Φν :π−1(Uν)→ Uν×F in the sense of definition A.3. Then {π∗χν : ν ∈ N}
is a partition of unity on M subordinate to the cover {π−1(Uν) : ν ∈ N}
and has uniformly bounded derivatives. Let {Xν

i : i ∈ {1, . . . , d}} be
the orthonormal frame of Uν obtained by parallel transport, of the basis
defining the geodesic coordinates, along radial geodesics. This is a set of
smooth sections, uniformly bounded in i and ν, because of the bounded
geometry. We fix the data {Uν , χν ,Φν , Xν

i : ν ∈ N, i ≤ d} for later use
and simply refer to it as U.

Define the Sobolev spaces W k(F, g0) as in equation A.9. Using the
trivialisation Φν we relate this norm to that on a fibre Fx and define the
norms on W k(M) in form of a direct integral. In this way the ε-scaling
may be introduced in a natural way.

Definition A.11. Let ρ2
ν be the density (Φν∗volFx)/volg0 on F . For

ψ ∈ C∞(Fx) and k ∈ N put

‖ψ‖Wk
ν (Fx) := ‖(Φ∗ψ)ρν‖Wk(F,g0) .
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Let α ∈ Nd be a multiindex. Define

‖ψ‖2Wk
ε (M) :=

∑
ν

∑
|α|≤k

∫
Uν

∥∥∥ε|α|∏
i≤d

(Φ∗νXν
i )αiχνψ

∥∥∥2

W
k−|α|
ν (Fx)

volgB (dx)

(A.10)

and the Sobolev space W k
ε as the completion of C∞0 (M) under this norm.

Define W k
0,ε(M) as the closure of C∞0 (M \ ∂M) in W k

ε (M).

The virtue of this definition is that it uses the same coordinate maps
for every ε. It is thus clear that these norms are equivalent for different
values of ε, albeit with constants that depend on ε. The norms defined in
this way are also equivalent to those of (M, gε), constructed directly from
local coordinates. The constants are independent of ε up to a rescaling
by εd, since in defining the norm (A.10) we used the volume measure of
gB rather than ε−2gB .

Lemma A.12. For every k ∈ N there is a constant C(k,U) > 0 such that
for every ψ ∈W k

ε (M)

C−1 ‖ψ‖Wk
ε (M) ≤ ε

d ‖ψ‖Wk(M,gε) ≤ C ‖ψ‖Wk
ε (M) .

Proof. Choose coverings {(Vi, τi) : i ∈ I} of (F, g0) and {(W ε
j , κ

ε
j) :

j ∈ J} of (M, gε) by normal coordinate charts. The latter has data
{rc, ri(∂M), ri, C(k) : k ∈ N} independent of ε by proposition A.9, so we
can choose the subordinate partition of unity with derivatives and multi-
plicity bounded independently of ε. The coordinate changes
((expε−2gB

xν )−1, τi) ◦ Φν ◦ κ−1
j induce operators in L (W k(Rm),W k(Rm)).

The norms of these are uniformly bounded in ν, i, j by the definition of the
coordinates and the prerequisites on Φ. They are bounded independently
of ε since in (A.10) we used εΦ∗Xν

i , which extends to a gε-orthonormal
basis at every pj ∈ π−1(Uν), so the change of coordinates is an orthogo-
nal map at first order and higher derivatives are bounded by A.9 and the
construction of the coordinates.

Thus if we expand both norms into their local expressions, and rescale
the volume measure properly, they are related by globally bounded maps.
These local estimates can be patched together again using the calculations
of [62, lemma 3.24], because of the bounded multiplicity.
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Remark A.13. In particular W 0
ε (M) = L2(M, gε=1) = H with ε-

independent, equivalent norms, since

‖ψ‖2W 0
ε

=
∑
ν

∫
B

∫
F

|Φν∗χνψ|2 ρ2
ν volg0 volB =

∑
ν

∫
M

|χνψ|2 volM

≤
∑
µ,ν

∫
M

χµχν |ψ|2 volM = ‖ψ‖2L2(M) ,

and

‖ψ‖2L2(M) =
∑
µ,ν;

Uν∩Uµ 6=∅

∫
M

|ψ(x)|2 χνχµ volM (dx)

≤
∑
µ,ν;

Uν∩Uµ 6=∅

∫
M

|ψ(x)|2 1
2
(
χ2
ν + χ2

µ

)
volM (dx)

≤ N(U)
∑
ν

∫
M

χ2
ν |ψ|

2 volM (dx) = N(U) ‖ψ‖2W 0
ε
.

The following theorem is a reformulation of results of Schick [62] for the
special case of the Laplacian and Dirichlet boundary conditions.

Theorem A.14 ([62]). Let ψ ∈ W 2
ε (M) ∩ W 1

ε,0 and ∆gεψ ∈ W k
ε (M).

Then ψ ∈W k+2
ε (M) and there is a constant C(k) > 0 such that

‖ψ‖2Wk+2
ε
≤ C(‖∆gεψ‖

2
Wk
ε

+ ‖ψ‖2H ) .

The main statement of the theorem is given in [62, theorem 4.15]. The
condition there is that ∆gε be uniformly elliptic in the sense of an elliptic
boundary value problem [62, definition 4.7]. The boundary operator for
the Dirichlet Laplacian is given by

p : W 2
ε (M)→W 3/2

ε (∂M) , ψ 7→ ψ|∂M .

The ellipticity condition requires existence of local fundamental solutions
to the boundary value problem ∆gεψ = f , ψ|∂M = g, that satisfy global
bounds. For our application we also need these bounds to be independent
of ε. Uniform ellipticity of this boundary value problem is discussed in [62,
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Appendix A Bounded geometry

proposition 5.14]. The point is that, written in normal coordinates, the
local problems give a family of boundary value problems on B(r, 0) and
B(r, 0)× [0, rc/2). The coefficients of these differential operators depend
only on the expressions gij in normal coordinates and form a bounded
set in C∞(Rm). Thus this family consists of uniformly elliptic boundary
value problems that have common bounds on coefficients and ellipticity
constants (because gij(0) = δij in all of these systems). These bounds
depend only on the local expressions, so by proposition A.9 they can be
chosen independently of ε.
The regularity result is then obtained by proving regularity of the fun-

damental solutions [62, lemma 4.10], patching together local estimates and
finally interpolation for Sobolev norms [62, theorem 4.15]. These steps all
explicitly preserve the uniformity of the constants in ε.
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Appendix B

Constructions of vector bundles

B.1 Vector bundles of functions associated
with a fibration

We review some constructions of vector bundles of possibly infinite rank.
For this we will need the notion of an infinite dimensional manifold, in
which we mostly follow Lang [45]. However we will also allow manifolds
modelled on normed spaces that are not complete and we use a slightly
weaker definition of vector bundle. At this level of basic constructions the
proofs easily carry over to this case and nothing is changed. Although we
generally only work with smooth objects we need to make an exception
here because in infinite dimensional vector spaces differentiability is too
strong of a property.

Definition B.1. Let M be a topological (smooth) manifold of finite di-
mension and X a normed vector space. A continuous (smooth) vector
bundle over M with fibre X is a manifold E and a continuous (smooth)
map π:E →M with the following properties:

1) There exist an open covering (Ui)i∈I of M and homeo- (diffeo-) mor-
phisms ϕi for which the diagram

π−1(Ui)
ϕi - Ui ×X

Ui

pr1�
π -

commutes.
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Appendix B Constructions of vector bundles

2) For p ∈ Ui ∩Uj the map ϕi ◦ ϕ−1
j |{p}×X is a linear isomorphism of X.

Note that this does not fix a norm on the fibres Ep but only the topology.
Different trivialisations yield equivalent but not identical norms.
This definition clearly implies continuity of the transition maps

ϕi ◦ ϕ−1
j : (Ui ∩ Uj)×X → (Ui ∩ Uj)×X .

As a consequence, the map p 7→ (ϕiϕ−1
j )(p, ·) is strongly continuous. If

X is a Banach space the uniform boundedness principle makes these two
notions of continuity equivalent. It is weaker however than the continuity
of p 7→ (ϕiϕ−1

j )(p) in the topology of the operator norm.
The transition functions uniquely determine a vector bundle:

Lemma B.2 ([45]). Let (Ui)i∈I be an open covering of M . Suppose we
have continuous (smooth) maps

ϕij : (Ui ∩ Uj)×X → (Ui ∩ Uj)×X (B.1)

that commute with the projection onto the first factor and satisfy the co-
cycle condition

ϕkj ◦ ϕji = ϕki . (B.2)

Then there exists a unique vector bundle π:E →M that has a trivialising
covering (Ui, ϕi) with these transition functions.

One can construct many vector bundles using operations on vector
spaces such as forming duals or tensor products. This may be formal-
ized by showing that functors on the category of vector spaces carry over
to bundles over a fixed manifold. Let F be a functor of normed vector
spaces. we say that F is continuous (smooth) if it preserves this property
for morphisms. More precisely (for a functor of one variable) let U be a
manifold, X,Y normed vector spaces and f a continuous (smooth) map

f :U ×X → Y (B.3)

with f(p) ∈ L (X,Y ). F is continuous (smooth) if the map F(f), defined
by F

(
f
)
(p) := F

(
f(p)

)
, is continuous (smooth).
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B.1 Vector bundles of functions associated with a fibration

Proposition B.3 ([45]). Let F be a continuous (smooth) functor. Then
for every manifold M there exists a unique functor FM on vector bundles
over M satisfying:

1) FM (E)p = F(Ep).

2) FM
(
f
)
(p) = F

(
f(p)

)
.

3) If E is trivial, so is FM (E).

4) If ϕ:N →M is a continuous (smooth) map, then

FN (ϕ∗E) = ϕ∗FM (E) . (B.4)

For a bundle π:E →M and a continuous (smooth) bundle map f .

Of course this also holds for functors of severable variables.

The fibre bundle structure M π→ B induces a vector bundle π̃:E → B

whose fibres are isomorphic to C∞(F ). Take U ⊂ B with a trivialisation
Φ:π−1(U)→ U × F and define transition functions

f 7→ f ◦ Φi ◦ Φ−1
j . (B.5)

Choosing a norm on C∞(F ) for which these are continuous (smooth)
uniquely determines E as a continuous (smooth) vector bundle. The bun-
dle charts Φ̃:U × C∞(F ) → π̃−1(U) are given by (x, f) 7→ f ◦ Φ|Fx . It
is easy to see that these maps are continuous for a variety of norms (e.g.
‖·‖∞, ‖·‖L2). Their derivatives however include derivatives of f , so they
do not define bounded operators on these spaces. Thus we obtain continu-
ous vector bundles for these norms and denote them by C∞(F, ‖·‖ ;π), or
just C∞(F ;π) whenever the norm is obvious or irrelevant. We will want to
complete C∞(F ) with respect to various norms in order to obtain bundles
with different function spaces as fibres.

Lemma B.4. Let X be a separable normed vector space. The completion
X 7→ X̄ defines a continuous functor.
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Appendix B Constructions of vector bundles

Proof. Completion is a functor since for normed vector spaces X,Y and
a continuous linear map f :X → Y there is a unique continuous extension
g: X̄ → Ȳ to the completions.
Let Y be a normed space and f :U × X → Y continuous with f(p) ∈

L (X,Y ). We need to show that the extension g of f to the completion X̄
remains continuous. By the uniform boundedness principle this is equiva-
lent to strong continuity of the map g:U → L (X̄, Y ). Choose a sequence
pn ∈ U converging to p ∈ U . Let x ∈ X̄ be arbitrary. For every ε > 0 we
find x̃ ∈ X with ‖x− x̃‖X < ε and we have

‖(g(pn)− g(p))x‖Y ≤ ‖(g(pn)− g(p)) (x− x̃)‖Y +‖(f(pn)− f(p))x‖Y .

Since f is continuous we may choose n large enough for the second term
to be less than ε. Thus it is sufficient to prove that g(pn) is bounded.
Suppose there exists a subsequence (nk)k∈N with ‖g(pnk)‖L (X̄,Y ) > k2.

Then for every k we can choose xk ∈ X with unit norm such that
‖f(pnk , xk)‖X = ‖g(pnk)xk‖X ≥ k2. Now the sequence zk := k−1xk
converges to zero, but ‖f(pnk , zk)‖X ≥ k, so this does not converge to
f(p, 0) = 0 in contradiction to the continuity of f .

This allows us to construct various vector bundles using B.3. The ones
we will use most frequently are L2(F ;π) =: HF and the completions
with respect to the Sobolev norms, Wm(F ;π) and Wm

0 (F ;π). Another
important construction is that of continuous linear maps.

Lemma B.5. Let X,Y be Banach spaces. The functor (X,Y ) 7→ L (X,Y )
is continuous.

Proof. Let Z,Z ′ be Banach spaces, f :U × Z → X and g:U × Y → Z ′

continuous functions with f(p) ∈ L (Z,X), g(p) ∈ L (Y,Z ′). The induced
map (f, g):U ×L (X,Y )→ L (Z,Z ′) is continuous by the equation

g(pn)Tf(pn)− g(p)Tf(p) = g(pn)T
(
(f(pn)− f(p)

)
−
(
g(pn)− g(p)

)
Tf(p) ,

for fixed T ∈ L (X,Y ), and the uniform boundedness principle.
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B.2 The eigenspace bundle E

When the structure is induced by a fibre bundle we have the equivalent
notations L (X,Y ;π) = L ((X;π), (Y ;π)). Functions on M can alter-
natively be viewed as sections of vector bundles, the fibres of which are
spaces of functions on F . For example:

Corollary B.6. We have an isomorphism L2 (L2(F ;π)
) ∼= L2(M).

Proof. Let X = Γ0(C (F ;π)) be the space of continuous, compactly sup-
ported sections of C (F, ‖·‖L2 ;π). Obviously X and Γ0

(
L2(F ;π)

)
can

be embedded into L2(M) as dense subspaces. Now these maps can be
uniquely extended to maps on the completions L2(M) and L2 (L2(F ;π)

)
of X and Γ0

(
L2(F ;π)

)
, respectively. This gives us the diagram

X - Γ0
(
L2(F ;π)

)
- L2 (L2(F ;π)

)

L2(M)
? φ

-

-

and φ is an isomorphism because φ and φ−1 are given as the unique
extensions to the completion of the different embeddings.

B.2 The eigenspace bundle E
Here we prove regularity of the eigenfunctions of HF , as functions on
π−1(U) for U ⊂ B, in the presence of a spectral gap (condition 3). This
leads to regularity of the eigenspace bundle E spanned by these functions.

Proposition B.7. If λ satisfies the gap condition the eigenspace bundle
E has a differentiable structure such that Γ(E) ⊂ C∞(M,C). With this
structure it is a bundle of bounded geometry over B.

Proof. We show that E has such a differentiable structure in lemma B.9,
so for now take this as given.

Since Γ(E) ⊂ C∞(M,C) we have a smooth metric connection given by
∇E := ∇B − 1

2 η̄ (cf. section 2.2.1). The curvature of this connection is is
given by

RE(X,Y ) = P0Ω(X,Y )P0 + P0
[
[Y ∗, P0], [X∗, P0]

]
P0

− 1
2 (∇X η̄) (Y ) + 1

2 (∇Y η̄) (X) .
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Appendix B Constructions of vector bundles

By A.6 and 2.8 this is bounded with all its derivatives. This implies exis-
tence of trivialisations with bounded transition functions, that is bounded
geometry of E , as shown in [28, theorem 36].

We now need to show the existence of a differentiable structure with
Γ(E) ⊂ C∞(M,C). This amounts to proving that locally we can choose
eigenfunctions φk of HF with eigenvalue λ(x) that are smooth functions
on π−1(U). Such eigenfunctions are always elements of C∞(Fx) for fixed
x by elliptic regularity, so we need to establish differentiability in the
horizontal directions, using the regularity of P0. As a tool we need the
following, unpublished, lemma due to Wachsmuth.

Lemma B.8 ([70]). Let f ∈ L2(Rd × Rn) and

f ∈ L∞(Rd,C 0,1(Rn)) ∩ C 0,1(Rd, L2(Rn)) .

Then there is f̃ ∈ C (Rd ×Rn) which coincides with f almost everywhere.

Proof. Let gk := (k
√
π)−1e−x2/k2 ∈ C∞(Rd×Rn), which converges weakly

to the distribution δ0 for k → ∞. Let fk := f ? gk be the convolution.
Then it is well known that fk ∈ C (Rd × Rn) and fk → f in L2. This
means that a subsequence, again denoted by fk, converges pointwise al-
most everywhere. We prove that locally

‖fk‖C 0,α(Rd×Rn) ≤ C

with α = (1 + n/2)−1. Then the Arzelà-Ascoli theorem implies that fk
converges uniformly to f̃ ∈ C 0,α

loc (Rd × Rn) and since the pointwise limit
is unique, f = f̃ almost everywhere.
Now to show boundedness in the Hölder norm first note that

‖fk‖L∞(Rd,C 0,1(Rn)) ≤ C1 , ‖fk‖C 0,1(Rd,L2(Rn)) ≤ C2

uniformly, by standard estimates on the convolution. Let
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B.2 The eigenspace bundle E

(x0, y0) ∈ Rd × Rn be arbitrary. Using the triangle inequality we obtain

sup
(x,y)

fk(x, y)− fk(x0, y0)
(|x− x0|2 + |y − y0|2)2/α

≤ sup
(x,y)

(
|fk(x, y0)− fk(x, y0)|

(|x− x0|2 + |y − y0|2)2/α
+ |fk(x, y0)− fk(x0, y0)|

(|x− x0|2 + |y − y0|2)2/α

)

≤ sup
(x,y)

|fk(x, y0)− fk(x, y0)|
|y − y0|α

+ sup
x

(
|fk(x, y0)− fk(x0, y0)|1/α

|y − y0|

)α
.

The first term is bounded by the C 0,α(Rn)-norm for fixed x, so it is
bounded by C1. The second term can be bounded by Cα2 , if we can
control the numerator by the L2-integral over Rn.
Define F (x, y) := |fk(x, y)− fk(x0, y)| and δ = F (x, y0). Then notice

that F is uniformly Lipschitz, |F (x, y)− F (x, y0)| ≤ 2C1 |y − y0|. Thus
F (x, y) ≥ δ/2 on the ball B(δ/(4C1), y0) ⊂ Rn. Then we have

F (x, y0)1/α = δ1+n/2 ≤ C3δVol(B(δ/(4C1), y0))1/2

≤ 2C3

(∫
B(δ/(4C1),y0)

F (x, y)2 dy
)1/2

≤ 2C3 ‖F (x, ·)‖L2(Rn)

≤ 4C3C2 ,

with C3 depending only on C1 and the volume of the unit ball in Rn. This
yields the claim, as explained above.

We apply this lemma locally to an appropriate choice of eigenfunctions
of HF over U ⊂ B to prove regularity of E .

Lemma B.9. For every x0 ∈ B there is r > 0 and functions {φj ∈
C∞(π−1B(r, x0)) : 1 ≤ j ≤ rank(E)} that span Ex for very x ∈ B(r, x0).
These functions give a family of trivialisations that determine a differen-
tiable structure of E for which Γ(E) ⊂ C∞(M,C).

Proof. Let R < ri(B), x0 ∈ B, U := B(R, x0) and Φ:π−1U → U × F
be a trivialisation with bounded derivatives in the sense of A.3. As in
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Appendix B Constructions of vector bundles

lemma 2.7 let W :L2(U × F ) → L2(π−1U) be the unitary given by com-
position with Φ. Now for fixed x ∈ U the image of P (x) = W ∗P0W

consists of eigenfunctions of −∆gFx
+ Φ∗V , with Dirichlet boundary con-

ditions, with eigenvalue λ. These are smooth functions on F by elliptic
regularity A.14. The x-dependent family of operators has uniform bounds
on their coefficients and ellipticity constants, when expressed in a fixed
system of normal coordinates {(Vi, κi) : i ∈ I} for (F, g0). Thus these
eigenfunctions form a bounded set in C∞(F ). If we can choose such an
eigenfunction with φ ∈ C 0,1(U,L2(F )), local application of lemma B.8
should give φ ∈ C (U × F ).
Let Φ∗φ ∈ Ex0 have unit norm and introduce geodesic normal coordi-

nates at x0. Since P (x) is continuous, as shown in lemma 2.9, we can
adjust R to ensure that ‖(P (x)− P (x0))φ‖ ≤ 1/2 for dist(x, x0) ≤ R.
Now define

φ(x) = P (x)φ ‖P (x)φ‖−1
L2(F,gFx ) ,

which is a section of Φ∗EU of unit norm. Observe that because P0 ∈ A0,
by lemma 2.8, φ(x) ∈ C∞(U,L2(F )) .
Choose r > 0 small enough that r < ri(B)/2, ‖(P (x)− P (x0))φ‖ ≤ 1/2

for dist(x, x0) ≤ 2r and B(r, y) ⊂ Vi for every y ∈ F and some i for the
chosen normal coordinate system (cf. [62, lemma 3.19] for this property of
normal coordinates). For x ∈ B(r, x0) and any y ∈ F we take coordinates
κ̃ := (exp−1

x , κi) on B(r, (x, y)) ⊂ U × F . Map φ to κ̃∗φ and if necessary
extend it past past the boundary to a smooth function. Then choose a
function f ∈ C∞0 (Rd+n) with support in the ball of radius r and equal to
one in the ball of radius r/2. The product f(v, w−κi(y))κ̃∗φ(v, w) yields
a function that satisfies the conditions of lemma B.8 and equals κ̃∗φ in
the ball of radius r/2 around (0, κi(y)). Thus φ is continuous at (x, y).
Since (x, y) was an arbitrary point we obtain φ ∈ C (B(r, x0)× F ).

In order to prove differentiability of φ we will need to obtain these
properties for all the partial derivatives of φ, expressed in some coordinate
system of U ×F . Let 1 ≤ i ≤ d and let ∂xi be a coordinate vector field of
the normal coordinates on U . Then we have

(W ∗HFW − λ)) ∂xiφ(x) = [W ∗HFW,∂xi ]φ(x) + (∂xiλ)φ(x) .
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B.2 The eigenspace bundle E

Note that in the proof of lemma 2.7 we see that [W ∗HFW,∂xi ] is a
smooth differential operator on F and that ∂xiφ(x) = 0 on ∂F . P0 ∈ A0

H

(lemma 2.8) implies that ∂xiφ ∈W 2(F ). Thus ∂xiφ(x) is a solution of the
Dirichlet problem

(
−∆gFx

+ Φ∗V − λ
)
f = g in F , f = 0 on ∂F , with a

smooth function g. Consequently ∂ixφ ∈ L∞(U,Cm(F )) for every m ∈ N,
because we have bounds on [W ∗HFW,∂xi ] and ∂xiλ from 2.7, 2.9.
Now let α ∈ Nd be a multiindex, then since (W ∗HFW − λ)φ = 0 we

have

(W ∗HFW − λ)) ∂αxφ = [(W ∗HFW − λ)) , ∂αx ]φ , (B.6)

where the right hand side may be expressed by derivatives of φ of order
strictly less than |α|, iterated commutators withW ∗HFW and derivatives
of λ. Thus by induction on the order of α we get ∂αxφ ∈ L∞(U,Cm(F ))
for every m ∈ N.
Now assume we have φ ∈ Cm(B(r, x0) × F ) for some m ∈ N. We will

show that φ ∈ Cm+1(B(r, x0) × F ) by proving continuity of the partial
derivatives of order m+ 1.
First let α ∈ Nd be a multiindex of order m and 1 ≤ i ≤ d. Then ∂ix∂αxφ

exists because φ ∈ C∞(U,L2(F )) and defines an element of L∞(U,C 1(F ))
because it solves the differential equation (B.6). Thus we may argue as
for continuity and obtain ∂ix∂αxφ ∈ C (B(r, x0)× F ).

Next take y ∈ F and denote by ∂yj the coordinate vector fields of (V, κ)
with B(r, y) ⊂ V . Let α ∈ Nd, β ∈ Nn be multiindices with |α|+ |β| = m.
Since φ ∈ Cm(B(r, x0)× F ) we may rearrange any derivative of order m
into the form ∂βy ∂

α
xφ. Let 1 ≤ j ≤ n, then ∂yj∂

β
y ∂

α
xφ ∈ L∞(U,C 1(V )),

since ∂αxφ ∈ L∞(U,C 2+|β|(F )). We now have to show that the expression
is Lipschitz in x, in the L2-sense. Let x1 ∈ U and calculate

lim sup
x→x1

∥∥∂yj∂βy ∂αxφ(x)− ∂yj∂βy ∂αxφ(x1)
∥∥
L2(V )

|x− x1|

≤
∥∥∂yj∂βy ∥∥L (W |β|+1(V ),L2(V )) lim sup

x→x1

∥∥∥∥∂αxφ(x)− ∂αxφ(x1)
x− x1

∥∥∥∥
W |β|+1(F )

.

This is bounded since ∂αxφ is differentiable in x and its derivative is
an element of L∞(U,W k(F )) (for arbitrary k ∈ N) by elliptic regular-
ity A.14 and equation (B.6). Thus ∂yj∂βy ∂αxφ ∈ C 0,1(U,L2(V )) and we
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can again apply lemma B.8 to show that this expression is continuous on
B(r, x0)× V .
This is sufficient to show φ ∈ Cm+1(B(r, x0)× F ) by Schwarz’ theorem,

hence φ is smooth. Now choose an orthonormal basis {φj : 1 ≤ j ≤ k} of
the range of P (x0). We can construct the functions φj ∈ C∞(B(r, x0)× F )
element by element. The resulting functions span the image of P (x) since
it can be mapped unitarily to that of P (x0) using the Sz.-Nagy construc-
tion (2.12). Finally, pulling the functions back to π−1B(r, x0) with Φ
preserves smoothness.

144



Appendix C

Technical lemmata

Energy cut-offs

Here we provide key tools for dealing with energy cut-offs. These need
to sufficiently regular, in particular they should not have zeros of finite
order.

Definition C.1. A function f : R→ [0, 1] is a regular cut-off if for every
s ∈ (0,∞) the power fs ∈ C∞0 (R) .

Our treatment of these cut-offs relies on the Helffer-Sjöstrand formula
for the functional calculus (see [13, chapter 2]). Let f ∈ C∞0 (R). We
choose an extension f̃ of f to C with support in R× [−i,+i], satisfying
|∂z̄ f̃ | ≤ C(f)(=z)3 and call it an almost analytic extension. The func-
tional calculus is then given by

f(H) = i
2π

∫
C

∂f̃(z)
∂z̄

(H − z)−1 dz ∧ dz̄ . (C.1)

Lemma C.2. Let H be self-adjoint on D(H) ⊂ H . Let T ∈ L (H ) ∩
L (D(H)) be self-adjoint on H . If χ is a regular cut-off and

‖[T,H]‖L (D(H),H ) = O(ε)

‖[T,H]χs(H)‖L (H ) = O(εk) ,

for some k ∈ N and all s ∈ (0,∞), then

1) ‖[T, χ(H)]‖L (H ,D(H)) = O(εk);

2) If additionally T is a projection

‖χ(THT )− Tχ(H)T‖L (H ,D(H)) = O(εk) .
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Proof of 1. Using the second hypothesis and the Helffer-Sjöstrand for-
mula (C.1) we get (see [69, lemma 3.5a] for details)

‖[T, χs(H)]χs(H)‖L (H ,D(H)) = O(εk) (C.2)

for every s > 0. Now

‖[T , χs(H)]‖L (H )

= ‖[T, χs/2(H)]χs/2(H) + χs/2(H)[T, χs/2(H)]‖L (H ) = O(εk) ,

since the first term is of this order by equation (C.2) and the second term
equals minus its adjoint. This implies

‖χs(H)[T, χs(H)]‖L (H ,D(H))

≤ ‖χs‖L (H ,D(H)) ‖[T, χ
s(H)]‖L (H ) = O(εk) .

Setting s = 1/2 here and in (C.2) proves the claim.

Proof of 2. Let HD = THT + (1 − T )H(1 − T ). By the first condition
‖HD −H‖L (D(H),H ) ≤ α < 1 for ε small enough. This implies that HD

is self-adjoint on D(H) and the induced norms are equivalent (see [68,
lemma 3]) with

c(α)−1 ‖ψ‖D(H) ≤ ‖ψ‖D(HD) ≤ c(α) ‖ψ‖D(H) .

The Helffer-Sjöstrand formula (C.1) together with the resolvent for-
mula (2.6) gives us

χ(THT )− Tχ(H)T

= i
2π

∫
C
∂z̄χ̃

(
T
(
(THT − z)−1 − (H − z)−1)T)dz ∧ dz̄

= i
2π

∫
C
∂z̄χ̃

(
(THT − z)−1 (H − THT ) (H − z)−1

T
)

dz ∧ dz̄

= i
2π

∫
C
∂z̄χ̃

(
(THT − z)−1

T [T,H] (H − z)−1
T
)

dz ∧ dz̄ . (C.3)

As an intermediate step we use this to deduce

‖χ(THT )− Tχ(H)T‖L (H ,D(H)) = O(ε2) . (C.4)
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Since T is a projection, T [H,T ]T = 0 (cf. 2.12), so
the operator under the integral equals

T [T,H] (H − z)−1
T = T [T,H] [(H − z)−1

, T ]T

= T [T,H] (H − z)−1 [T,H] (H − z)−1
T

= T
(
([T,H] (H − z)−1 )2

T

Because of the equivalence of norms induced by H and HD we have

‖(THT − z)−1
T‖2L (H ,D(H)) ≤ c(α)2‖

(
HD − z

)−1
T‖2L (H ,D(HD))

≤ c(α)2(2 + (1 + 2 |z|2)/=z2) .
Thus

‖(THT − z)−1T [T,H] (H − z)−1
T‖L (H ,D(H))

=
∥∥ (THT − z)−1

T
(
[T,H]

(
H − z

)−1 )2∥∥
≤ ‖(THT − z)−1

T‖2L (H ,D(H))|[T,H](H − z)−1‖2L (H )

≤ Cε2(2 + (1 + 2 |z|2)/=z2)3/2 .
So with the properties of χ̃ the integrand is bounded by a constant times
ε2 and has compact support, which gives the a bound of O(ε2) on the
integral (C.3). In the presence of a cut-off χ we can use the same reasoning
together with the second hypothesis to deduce

‖(χ(THT )− Tχ(H)T )χs(H)‖L (H ,D(H)) = O(εk) , (C.5)

for every s > 0. The same estimate also holds with the reverse order of
the terms as χs(H)[T,H] = − ([T,H]χs(H)))∗ = O(εk).

Now take m ≥ k/2 and let A := χ1/m(THT ), B := Tχ1/m(H)T . Ap-
plication of equations (C.4), (C.5) to these functions gives A−B = O(ε2)
and (A−B)B = O(εk). Now

(A−B)m = O(ε2m)

= (A−B)m−1
A− (A−B)m−1

B︸ ︷︷ ︸
=O(εk)

= (A−B)Am−1 +O(εk) .
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So because 2m ≥ k we have Am = BAm−1 +O(εk) which means

χ(THT ) = Tχ1/m(H)Tχ(m−1)/m(THT ) +O(εk) .

Application of (C.5) with s = 1/m to χ1/m(H)χ(m−1)/m(THT ) and part
one of the lemma finally gives

χ(THT ) = Tχ1/m(H)Tχ(m−1)/m(H)T +O(εk)
= Tχ(H)T + T [χ1/m(H), T ]︸ ︷︷ ︸

=O(εk)

χ(m−1)/m(H)T +O(εk)

Energy-dependent derivative estimates

This lemma proves the α-dependent estimates on derivatives needed in
section 3.2. We use here the notation and conditions of that section.

Lemma C.3. Let X ∈ Γb(TB), A ∈ {H,Ha} and denote by D2
α(A) the

domain of ε−2αA2 with the graph-norm. There exists a constant C > 0
depending on the bounds on X and its derivatives such that

‖εP0X
∗‖L (D2

α(A),D(H)) ≤ Cε
α/2 .

Additionally, the operator H1 satisfies ‖H1P0‖L (D2
α(A),D(H)) = O(εα/2).

Proof. 1) The case A = H:
Ignore the bounded operator P0 for the moment. For ψ ∈ D2

α(H) we have

‖εX∗ψ‖2H =
∫
M

ε2 |X∗ψ|2 volM =
∫
M

|π∗gB(X∗, gradψ)|2volM

≤
∫
M

gB(X,X)ε2π∗gB(dψ̄,dψ)volM

≤ ‖gB(X,X)‖∞
∫
M

ε2π∗gB(dψ̄,dψ)volM

= ‖gB(X,X)‖∞
∫
M

ψ̄(−ε2∆hψ)volM . (C.6)
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Since HF ≥ 0 we also get〈
ψ,−ε2∆hψ

〉
≤ |〈ψ,Hψ〉|+ ε |〈ψ,H1ψ〉| .

We take ψ satisfying ‖ψ‖2D2
α

= 1, which implies ‖Hψ‖2H = O(ε2α) , and

‖εX∗ψ‖2H ≤ ‖gB(X,X)‖∞
(
|〈ψ,Hψ〉|+ ε |〈ψ,H1ψ〉|

)
≤ C ‖ψ‖

(
‖Hψ‖H + ε ‖H1ψ‖H

)
. (C.7)

Now assume for the moment that we have ‖H1P0‖L (D2
α,H ) = O(ε2β) for

some β ≥ 0. Then (C.7) and P0 ∈ A0,0
H imply

‖εP0X
∗‖L (D2

α(A),H ) = ‖εX∗P0‖+O(ε) = O(εmin{α/2,1/2+β}) . (C.8)

We will see that β = α/4 after looking at the estimate for the norm of
L (D2

α, D(H)). Let ψ ∈ D2
α(H) and use A.14 to get

‖εP0X
∗ψ‖2W 2

ε
≤ Cε2( ‖P0X

∗ψ‖2H + ‖∆gεP0X
∗ψ‖2H

)
≤ 2Cε2(‖X∗ψ‖2H + ‖X∗∆gεψ‖

2
H

+ ‖([∆gε , P0]X∗ + P0[∆gε , X
∗])ψ‖2H

)
.

The operator [∆gε , P0]X∗ is a second order differential operator whose
norm in L (W 2

ε ,HF ) is bounded independently of ε because P0 ∈ A0,0

and [P0, HF ] = 0 (see also (2.2)). The same holds for [∆gε , X
∗] by direct

calculation, because commutators of X∗ with vertical fields are vertical
(see 1.4). Thus the second line is bounded by a constant times ‖ψ‖D(H) ≤
‖ψ‖Dα(H) by theorem A.14. Concerning the second term of the first line
we have

‖X∗∆gεψ‖
2
H = ‖X∗(H + Λ0 + εH1)ψ‖2H
≤ 3
(
‖X∗Hψ‖2H + Λ2

0 ‖X∗ψ‖
2
H + ‖X∗εH1ψ‖2H

)
.

Now take ψ with ‖ψ‖D2
α

= 1, then we get inequalities for the individual
terms

‖X∗Hψ‖2H ≤ C ‖X
∗‖2L (W 2

ε ,H ) ‖Hψ‖
2
D(H) ≤ C ‖X

∗‖2L (W 2
ε ,H ) ε

2α ,

‖X∗εH1ψ‖2H ≤ Cε
2 ‖X∗‖ ‖H1‖L (D(H2),W 2

ε ) ‖ψ‖
2
D(H2) .
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From (C.6) it is clear that ‖εX∗‖2L (W 2
ε ,H ) = O(1), so putting all of these

terms together with (C.8) we get

‖εP0X
∗ψ‖2W 2

ε
≤ Cεmin{α,1+2β} +O(ε2) = O(εmin{α,1+2β}) . (C.9)

We now use this to show that β = α/4. Since we are assuming that
condition 5 holds, H1 has the form H1 = −ε2 divSε + O(ε). By the
argument of remark 2.4 we can estimate

∥∥ε2 divSεP0
∥∥

L (Dα,H ) by the
local norms

∥∥ε2 divSεP0|π−1(Uν)
∥∥

L (Dα,H ). On Uν ∈ U we express divSε,
denoting by ξi the dual one-form to Xi and suppressing ν,

ε2 divSε|π−1(U) (C.10)

=
∑
i,j≤d

(
εX∗i π

∗gB
(
S(ξj , ·), X∗i

)
− επ∗gB

(
S(ξj , ·), (∇XiXi)∗

))
εX∗j .

By boundedness of Sε the term in the bracket defines a bounded operator
from W 1

ε to H while our intermediate result (C.9) gives∥∥εX∗j P0
∥∥2

L (D2
α,W

2
ε ) = O(εmin{α,1+2β}) .

Consequently β satisfies the equation 4β = min{α, 1 + 2β, 2}. Since
α ≤ 2 this simplifies to β = α/4 and the proof for A = H is complete.
This estimate can be improved to an estimate of H1P0 in the norm of
L (D2

α, D(H)) using the same procedure as for X∗P0.

2) The case A = Ha:
The proof for in this case is similar. Instead of the elliptic estimates A.14
on M it uses the corresponding estimates for the operator −∆B on E ,
which is a bundle of bounded geometry by proposition B.7. With this
in mind the basic calculations are identical to those above, only now we
have to bound the individual terms by Ha instead of H. The only term
for which this makes any difference is

[∆gε , P0X
∗]P0 = [∆gε , P0]X∗P0 + P0[∆gε , X

∗]P0

= [∆gε , P0]∇BX + P0
(
[∆gε , P0][X∗, P0] + [∆gε , X

∗]
)
P0 .

The term in the bracket defines a second order differential operator on
E whose coefficients are bounded since P0 ∈ A0

H . Hence it is bounded
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by the graph norm of the elliptic operator −ε2∆B and is an element of
L (D(H), L2(E)). By (3.13a), (3.13b) the first term can be expressed as
a second order operator on E with coefficients in L (H ) that are off-
diagonal with respect to P0. Thus by the same argument it is an element
of L (D(H),H ). With this in mind the proof can be carried out following
the steps of the case A = H.

A concentration estimate using the Sobolev norm

Lemma C.4. Let d ∈ N and f ∈W 1(Rd). There is a constant C(d) > 0
such that

ε−d
∫

B(ε,0)

|f(x)|2 dx ≤ Cθd(ε) ‖f‖2W 1 ,

with θ1(ε) = 1, θ2(ε) = − log ε and θd(ε) = ε2−d for d ≥ 3.

Proof. Let f̂ denote the Fourier transform of f . Then for any R ≥ 0∫
B(ε,0)

|f(x)|2 dx = 1
(2π)d

∫
B(ε,0)

∣∣∣∣ ∫
Rd

eikxf̂(k)dk
∣∣∣∣2dx

≤ 2
(2π)d

∫
B(ε,0)

∣∣∣∣ ∫
|k|≤R

eikxf̂(k) dk
∣∣∣∣2 +

∣∣∣∣ ∫
|k|>R

eikxf̂(k) dk
∣∣∣∣2dx .

The the integral over k ≤ R satisfies∣∣∣∣ ∫
|k|≤R

eikxf̂(k) dk
∣∣∣∣2 ≤ ( ∫

|k|≤R

1√
1 + k2

√
1 + k2|f̂ |dk

)2

≤ ‖f‖2W 1,2

∫
|k|≤R

1
1 + k2 dk .

For the second term we use Parseval’s identity on the function
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1(R,∞)(|k|)f̂(k) ∈ L2(Rd)

1
(2π)d

∫
B(ε,0)

∣∣∣∣ ∫
|k|>R

eikxf̂(k) dk
∣∣∣∣2dx ≤ 1

(2π)d

∫
Rd

∣∣∣∣ ∫
|k|>R

eikxf̂(k) dk
∣∣∣∣2dx

≤
∫
|k|>R

|f̂(k)|2 dk

≤
∫
|k|>R

k2

R2 |f̂(k)|2 dk

≤ R−2 ‖f‖2W 1 .

Combining these terms again we get∫
B(ε,0)

|f(x)|2 dx ≤ C
(

Vol(B(ε, 0))
∫
|k|≤R

1
1 + k2 dk +R−2

)
‖f‖2W 1 .

If d = 1 we may let R → ∞ to obtain the result. For d > 1 we put
R = ε−1 and estimate

∫
|k|≤ε−1

1
1 + k2 dk ≤ C

(
1 +

ε−1∫
1

rd−3dr
)
,

which yields the correct behaviour.
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Index of Symbols

Symbol Explanation Page
N Natural numbers including zero.
(B, gB) A complete, connected d-dimensional Rieman-

nian manifold of bounded geometry.
14, 35

M
π→ B A fibre bundle over B. 14, 35

F The fibre of π, a compact n-dimensional mani-
fold with boundary.

14, 35

TF Vertical subbundle of TM . 15
NF Horizontal subbundle of TM . 15
gε Rescaled Riemannian submersion metric on M . 17
gF Restriction of gε to TF . 15
X∗ Horizontal lift of X ∈ Γ(TB). 16
Ω(X,Y ) Integrability tensor of the horizontal subbundle. 17
ϕ∗ Differential of the map ϕ. 14
LX Lie-derivative along the vector field X. 20
H Hilbert space of square integrable, complex val-

ued functions on (M, g)
36

W k Sobolev space of functions with weak derivatives
of order up to k in L2.

131

W k
0 Subspace of W k of functions vanishing on the

boundary.
131

W∞ Sobolev space of functions with infinitely many
weak derivatives.

W k
ε (M) Sobolev Space adapted to (M, gε). 36, 131

Γ(E) Space of smooth sections of the vector bundle E. 16
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Γb(E) Fréchet space of smooth and bounded sections
of E.

118

C k Fréchet space of k-times differentiable functions.
C k
b Banach space of C k-bounded functions.

C∞0 Fréchet space of smooth functions with compact
support.

C∞, C∞b Fréchet spaces of smooth and C∞-bounded func-
tions.

HF Hermitian vector bundle over B with fibre
L2(F ).

38, 138

HF The fibre Hamiltonian. 37, 81
D(HF ) Hermitian vector bundle over B with fibre

W 2(F ) ∩W 1
0 (F ).

38

E Eigenspace bundle of HF . 38, 139
L (X,Y ) Space of continuous linear maps between vector

spaces X and Y .
L (E,E′) Bundle of continuous bundle maps between vec-

tor bundles E and E′.
A An algebra of differential operators on the vector

bundle HF .
40

AH Elements of A with image in D(HF ). 40
D2
α(A) Domain of ε−2αA2 with the graph-norm. 84

P0 Projection to an eigenband of HF . 38, 45
Pε Super-adiabatic projection for an eigenband of

HF .
49

Uε Unitary map on H intertwining P0 and Pε. 57
∆g Laplace-Beltrami operator of the metric g.
ε2∆h Horizontal part of ∆gε . 18
∇B Berry connection on E . 62
∆B Laplacian of the Berry connection. 63
H Hamiltonian defined on D(H) ⊂H . 36, 80
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H1 Lower order perturbation in H. 36, 83
Heff Effective operator. 57
Ha Adiabatic operator P0HP0. 63, 80
H0 Leading order approximation of Ha 96, 100
U Atlas of normal coordinate neighbourhoods of B. 39, 131
N(U) Local multiplicity of the cover U. 130
B(r, p) Metric ball of radius r around a point p.
Vol(S) Volume of the set S.
volg Volume measure associated with the Rieman-

nian metric g.
II (X,Y ) Second fundamental form of a submanifold.
η Mean curvature vector of F . 17
η̄ Projection of η to E . 62
N (ϕ) Nodal set of the eigenfunction ϕ. 32
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