
 

Pharmacologic Investigation and Identification of Molecular 

Modes of Action of Defined Extracts and Components from 

Frankincense 

- 

Pharmakologische Untersuchung und Identifizierung von 

Wirkmechanismen definierter Extrakte und Komponenten 

des Weihrauchharzes 
 

 

 

 

 

 

Dissertation 

der Mathematisch-Naturwissenschaftlichen Fakultät 

der Eberhard Karls Universität Tübingen 

zur Erlangung des Grades eines  

Doktors der Naturwissenschaften  

(Dr. rer. nat.) 

 

 

 

 

vorgelegt von 

Moritz Verhoff 

aus Tübingen 

 

 

 

Tübingen 

2012  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Tag der mündlichen Qualifikation:  26.07.2012 

Dekan: Prof. Dr. Wolfgang Rosenstiel 

1. Berichterstatter: Prof. Dr. Oliver Werz 

2. Berichterstatter: Prof. Dr. Stefan Laufer 



 

Table of contents 

TABLE OF CONTENTS.................................................................................................... 3 

1 ABBREVIATIONS .................................................................................................... 9 

2 INTRODUCTION..................................................................................................... 13 

2.1 Inflammation..................................................................................................... 13 

2.1.1 General remarks ............................................................................................ 13 

2.1.2 Inflammation: A feature of general immune response.................................... 13 

2.1.3 Chronic inflammation ..................................................................................... 14 

2.2 Arachidonic acid signalling............................................................................. 14 

2.2.1 Arachidonic acid metabolism and the pathophysiological role of prostaglandins 

and leukotrienes............................................................................................. 14 

2.2.2 Phospholipases.............................................................................................. 18 

2.2.2.1 Classification .....................................................................................................18 

2.2.2.2 Pathophysiological role of cytosolic phospholipase A2α.....................................21 

2.2.2.3 Structure and catalysis of the cytosolic phospholipase A2α................................22 

2.2.2.4 Regulation of the cytosolic phospholipase A2α ..................................................23 

2.2.2.5 Inhibitors of the cytosolic phospholipase A2α .....................................................27 

2.2.3 Cyclooxygenases........................................................................................... 28 

2.2.3.1 Classification .....................................................................................................28 

2.2.3.2 Structure and catalysis of cyclooxygenases ......................................................29 

2.2.3.3 Regulation of cyclooxygenases .........................................................................30 

2.2.4 Prostaglandin E2 synthases ........................................................................... 31 

2.2.4.1 Classification of prostaglandin E2 synthases and their role in inflammatory 

diseases............................................................................................................31 

2.2.4.2 Structure and catalysis of microsomal prostaglandin E2 synthase-1 ..................32 

2.2.4.3 Regulation of microsomal prostaglandin E2 synthase-1 .....................................33 

2.2.5 Lipoxygenases ............................................................................................... 34 

2.2.5.1 General properties and classification of lipoxygenases......................................34 

2.2.5.2 Structure and catalysis of 5-lipoxygenase..........................................................34 

2.2.5.3 Regulation of 5-lipoxygenase ............................................................................35 

2.2.5.4 Inhibition of 5-lipoxygenase ...............................................................................37 

2.2.5.5 12- and 15-lipoxygenases .................................................................................38 

 



Table of contents 4 

2.3 Neutrophil proteases....................................................................................... 39 

2.3.1 Properties of cathepsin G and human leukocyte elastase ............................. 39 

2.3.2 Role of neutrophil proteases in inflammation ................................................. 39 

2.4 Glucocorticoid signalling................................................................................ 40 

2.5 Boswellia species ............................................................................................ 42 

2.5.1 Botany............................................................................................................ 42 

2.5.2 Composition of the oleo-gum resins from Boswellia species ......................... 42 

2.5.3 Isolated triterpenic acids from Boswellia spec. .............................................. 44 

2.5.4 Medical use of Boswellia preparations........................................................... 47 

2.5.4.1 Traditional use.................................................................................................. 47 

2.5.4.2 Clinical effectiveness and safety data of frankincense formulations.................. 47 

2.5.4.3 Molecular mechanisms affected by compounds isolated from Boswellia 

preparations ..................................................................................................... 49 

2.5.4.4 Pharmacokinetics ............................................................................................. 52 

2.6 Aim of this work ............................................................................................... 53 

3 MATERIALS AND METHODS ............................................................................... 55 

3.1 Materials ........................................................................................................... 55 

3.2 Extraction of Boswellia oleo-gum resins and separation in fractions ........ 56 

3.3 Fractionation of extracts by flash chromatography ..................................... 57 

3.4 Analysis of extracts by HPLC and structure elucidation of isolated 

compounds by MS and NMR........................................................................... 57 

3.5 Cells .................................................................................................................. 58 

3.6 Animals............................................................................................................. 60 

3.7 Induction of mPGES-1 in A549 cells and isolation of microsomes............. 60 

3.8 Determination of PGE2 synthase activity in microsomes of A549 cells...... 60 

3.9 Recombinant production of His-tagged cPLA2α in Sf9 cells ....................... 61 

3.10 Determination of arachidonic acid release from artificial vesicles ............. 61 

3.11 Expression and purification of human recombinant 5-LO from E. coli....... 62 

3.12 Determination of 5-LO product formation in purified recombinant 5-LO.... 62 

3.13 Determination of the activity of isolated COX-1 and -2 ................................ 63 



Table of contents 5 

3.14 Determination of CG and HLE activity............................................................ 63 

3.15 Arachidonic acid release from isolated blood cells...................................... 64 

3.16 Determination of 5-LO product and 12- and 15-HETE formation in human 

PMNL................................................................................................................. 64 

3.17 Determination of 5-LO product and 12-HETE, 15-HETE and 12-HHT 

formation in human monocytes...................................................................... 65 

3.18 Determination of 12-HHT and 12-HETE formation in washed human 

platelets............................................................................................................. 65 

3.19 Determination of 6-keto PGF1α synthesis in IL-1β-primed A549 cells ......... 66 

3.20 Determination of PGE2 formation in LPS-primed human monocytes.......... 66 

3.21 Platelet aggregation......................................................................................... 67 

3.22 Sample preparation for Western blot analysis from platelets...................... 67 

3.23 Subcellular fractionation of washed human platelets................................... 67 

3.24 Measurement of intracellular Ca2+ levels ....................................................... 68 

3.25 Dual-luciferase glucocorticoid receptor response element reporter assay 68 

3.26 Determination of PGE2 and 6-keto PGF1α formation in LPS-stimulated whole 

blood ................................................................................................................. 69 

3.27 Determination of 5-LO product, 12-HETE and 12-HHT formation in human 

whole blood ...................................................................................................... 69 

3.28 Carrageenan-induced pleurisy in rats ............................................................ 70 

3.29 Sodium dodecylsulphate polyacrylamide gel electrophoresis .................... 71 

3.30 Western blot analysis ...................................................................................... 71 

3.31 Statistical analysis ........................................................................................... 72 

4 RESULTS ............................................................................................................... 73 

4.1 Effect of lupeolic acids on cPLA2α activity.................................................... 73 

4.1.1 Effects of triterpenic acids on cPLA2α activity in a cell-free assay.................. 73 

4.1.2 Effects of lupeolic acids on arachidonic acid release in different isolated 

human blood cells .......................................................................................... 75 



Table of contents 6 

4.1.3 Impact of lupeolic acids on arachidonic acid metabolite formation in human 

blood cells...................................................................................................... 77 

4.1.4 Effects of lupeolic acids on arachidonic acid metabolite formation in human 

blood cells after stimulation with exogenous arachidonic acid....................... 81 

4.1.5 Collagen-induced, arachidonic acid-dependent platelet aggregation is 

influenced by 3-O-acetyl-28-hydroxy-lupeolic acid ........................................ 84 

4.1.6 Effects of lupeolic acids on arachidonic acid metabolite production in A23187-

stimulated human whole blood ...................................................................... 87 

4.1.7 Effects of 3-O-acetyl-28-hydroxy-lupeolic acid on cPLA2α activity are impaired 

by supplementation of BSA............................................................................ 88 

4.2 Modulation of arachidonic acid mobilization in human platelets by tirucallic 

acids.................................................................................................................. 90 

4.2.1 Effects of tirucallic acids on arachidonic acid release in platelets .................. 90 

4.2.2 Impact of tirucallic acids on arachidonic acid release in PMNL...................... 91 

4.2.3 Arachidonic acid metabolite production in platelets after treatment with 

tirucallic acids ................................................................................................ 92 

4.2.4 Effects of the cPLA2α inhibitor RSC-3388 on tirucallic acid-induced 

arachidonic acid metabolite production in platelets........................................ 95 

4.2.5 Subcellular distribution of cPLA2α in platelets after treatment with tirucallic 

acids .............................................................................................................. 97 

4.2.6 Impact of tirucallic acids on cPLA2α-driven arachidonic acid release in cell-free 

models ........................................................................................................... 98 

4.2.7 Calcium mobilization in platelets after treatment with tirucallic acids ........... 100 

4.2.8 Effects of tirucallic acids on p42/44, p38 and JNK MAPK and Akt signalling102 

4.2.9 Phosphorylation of cPLA2α at Ser505 after treatment of platelets with tirucallic 

acids ............................................................................................................ 104 

4.2.10 Effects of kinase inhibitors on tirucallic acid-induced arachidonic acid release 

and metabolite production............................................................................ 104 

4.3 Interaction of triterpenic acids and frankincense extracts with PGE2 

biosynthesis................................................................................................... 107 

4.3.1 Effects of triterpenic acids and extracts from different Boswellia species on 

mPGES-1 activity in a cell-free system........................................................ 107 

4.3.2 PGE2 synthesis in LPS-primed and AA-stimulated monocytes after treatment 

with triterpenic acids or extracts from different Boswellia species ............... 112 



Table of contents 7 

4.3.3 Effects of triterpenic acids and extracts from Boswellia species on PGE2 and 

6-keto PGF1α synthesis in LPS-stimulated whole blood ............................... 113 

4.3.4 Impact of triterpenic acids and extracts from Boswellia species on the activity 

of COX-1 and -2........................................................................................... 115 

4.3.5 Impact of triterpenic acids and extracts from Boswellia species on cPLA2 

activity .......................................................................................................... 119 

4.3.6 Effects of 3-oxo-tirucallic acid and an extract from B. papyrifera on 

carrageenan-induced pleurisy in rats ........................................................... 121 

4.4 Impact of triterpenic acids and extracts from Boswellia species on 5-LO 125 

4.4.1 Effects of triterpenic acids and extracts from Boswellia species on cell-free 

5-LO activity ................................................................................................. 125 

4.4.2 Effects of triterpenic acids from Boswellia species on 5-LO product formation 

in stimulated human neutrophils................................................................... 126 

4.4.3 Effects of triterpenic acids from Boswellia species on 5-LO product formation 

in stimulated human whole blood................................................................. 128 

4.5 Impact of triterpenic acids and frankincense extracts on neutrophil 

proteases CG and HLE .................................................................................. 130 

4.5.1 Effects of triterpenic acids and extracts from Boswellia species on 

Cathepsin G (CG) activity ............................................................................ 130 

4.5.2 Impact of triterpenic acids and extracts from Boswellia species on human 

leukocyte elastase (HLE) activity ................................................................. 133 

4.6 Effects of triterpenic acids from Boswellia species on glucocorticoid 

receptor signalling ......................................................................................... 135 

5 DISCUSSION........................................................................................................ 139 

5.1 Effect of lupeolic acids on cPLA2α activity and evaluation of the applied 

test systems ................................................................................................... 139 

5.2 Effects of tirucallic acids on arachidonic acid mobilization in human 

platelets........................................................................................................... 143 

5.3 Interaction of triterpenic acids and frankincense extracts with PGE2 

biosynthesis ................................................................................................... 147 

5.4 Impact of triterpenic acids and extracts from Boswellia species on 5-LO 151 



Table of contents 8 

5.5 Impact of triterpenic acids and frankincense extracts on neutrophil 

proteases CG and HLE.................................................................................. 154 

5.6 Effects of triterpenic acids from Boswellia species on glucocorticoid 

receptor signalling......................................................................................... 156 

6 SUMMARY ........................................................................................................... 159 

7 ZUSAMMENFASSUNG........................................................................................ 165 

8 REFERENCES ..................................................................................................... 171 

9 PUBLICATIONS................................................................................................... 209 

9.1 Original Publications ..................................................................................... 209 

9.2 Patents............................................................................................................ 210 

9.3 Oral presentations ......................................................................................... 210 

9.4 Poster presentations ..................................................................................... 210 

10 ACKNOWLEDGEMENTS .................................................................................... 211 

11 AKADEMISCHE LEHRER ................................................................................... 213 

 



 1 Abbreviations 9 

1 Abbreviations 

5-H(P)ETE   5(S)-hydro(pero)xy-6-trans-8,11,14-cis-eicosatetraenoic acid 

5(S),12(S)-diHETE  5(S),12(S)-dihydroxy-6,10-trans-8,14-cis-eicosatetraenoic acid 

3α-Ac-7,24-dien-TA  3α-O-acetyl-7,24-dien-tirucallic acid 

(3α-)Ac-(8,24-dien-)TA 3α-O-acetyl-8,24-dien-tirucallic acid 

3α-OH-(7,24-dien-)TA 3-α-hydroxy-7,24-dien-tirucallic acid 

3α-OH-8,24-dien-TA  3-α-hydroxy-8,24-dien-tirucallic acid 

3β-OH-(8,24-dien-)TA 3-β-hydroxy-8,24-dien-tirucallic acid 

3-oxo-TA   3-oxo-8,24-dien-tirucallic acid 

12-H(P)ETE   12(S)-hydro(pero)xy-10-trans-5,8,14-cis-eicosatetraenoic acid 

12-HHT   12(S)-hydroxy-5-cis-8,10-trans-heptadecatrienoic acid 

15-H(P)ETE   15(S)-hydro(pero)xy-13-trans-5,8,11-cis-eicosatetraenoic acid 

AA    arachidonic acid 

A-α-BA   3-O-acetyl-α-boswellic acid 

A-BA    3-O-acetyl-β-boswellic acid 

a. f.    acid fraction 

Ac-LA    3-O-acetyl-lupeolic acid 

Ac-OH-LA   3-O-acetyl-28-hydroxy-lupeolic acid 

AKBA    3-O-acetyl-11-keto-β-boswellic acid 

ATP    adenosine triphosphate 

(β-)BA    (β-) boswellic acid 

BAPTA-AM 1,2-bis(2-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid 

tetrakis(acetoxymethyl ester) 

BSA    bovine serum albumin 

C1P    ceramide-1-phosphate 

Ca2+    calcium (ions) 

CaMKII   Ca2+/calmodulin-modulated protein kinase II 

cAMP    cyclic adenosine monophosphate 

CDC    cinnamyl-3,4-dihydroxy-α-cyanocinnamate 

CG    cathepsin G 

COX    cyclooxygenase 

cPLA2    cytosolic phospholipase A2 

CysLT s   cysteinyl-leukotrienes 
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DH-NA   4(23)-dihydro-nyctanthic acid 

DH-(k-)RA   4(23)-dihydro-(11-keto-)roburic acid  

DMSO    dimethylsulphoxide 

EDC    N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride 

EDTA    ethylenediaminetetraacetate 

ERK    extracellular signal-regulated kinase 

FAF-BSA   essentially fatty acid-free bovine serum albumin 

FCS    foetal calf serum 

FLAP    5-LO activating protein 

fMLP    formyl-methionyl-leucyl-phenylalanine 

Fura-2-AM 1-[2-(5-carboxyoxazol-2-yl)-6-aminobenzofuran-5-oxy]-2-(2'-amino-

5'-methyl-phenoxy) ethane-N,N,N',N'-tetraacetic acid, pentaacetoxy-

methyl ester 

GFP  green fluorescent protein 

HEPES   4-(2-hydroxyethyl)-1-piperazineethanesulphonic acid 

HLE    human leukocyte elastase 

HPLC    high performance liquid chromatography 

IFNγ    interferon-γ 

Ig    immunoglobulin 

IKK    IκB kinase 

IL    interleukin 

iNOS    inducible nitric oxide synthase 

JNK    c-Jun N-terminal kinase 

KBA     11-keto-β-boswellic acid 

LA    lupeolic acid 

LO    lipoxygenase 

LPS    lipopolysaccharide 

LT    leukotriene 

MAPK    mitogen activated protein kinase 

MEK    MAPK/ERK kinase, MAPK kinase 

MMP    matrix metalloproteinase 

MNK1    mitogen-activated protein kinase interacting kinase 1 

MS    mass spectrometry 

MSK1    mitogen- and stress-activated protein kinase 1 



 1 Abbreviations 11 

(m)PGES(-1)   (microsomal) PGE2 synthase (-1) 

NA    nyctanthic acids 

n. f.    neutral fraction 

NF-κB    nuclear factor κ B 

NMR    nuclear magnetic resonance 

PAF    platelet activating factor 

PAGE    polyacrylamide gel electrophoresis 

PAPC    1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine 

PAPE    1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphoethanolamine 

PBMC    peripheral blood mononuclear cells 

PBS    phosphate buffered saline 

PG    prostaglandin 

PG buffer   PBS + glucose (1 mg/ml) 

PGC buffer   PBS + glucose (1 mg/ml) + CaCl2 (1 mM) 

PIP    polyphosphoinositide 

PLA2    phospholipase A2 

PMA    phorbol myristate acetate 

PMNL    polymorphonuclear leukocytes 

PMSF    phenylmethylsulphonylfluoride 

POG    1-palmitoyl-2-oleoyl-sn-glycerol 

PPAR    peroxisomal proliferator-activated receptor 

PRAK1   p38-regulated/activated protein kinase 1 

RA    roburic acid 

RE    raw extract 

RT    room temperature 

SDS    sodium dodecyl sulphate 

STAT    signal transducer and activator of transcription 

STI    soybean trypsin inhibitor 

TA    tirucallic acid 

TNFα    tumour necrosis factor α 

TX    thromboxane 
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2 Introduction 

2.1 Inflammation 

2.1.1 General remarks 

Inflammation is a pathophysiological reaction characterized by five cardinal signs: Rubor, the 

reddening of the skin; calor, a local warming of the affected area as result of an upregulated 

metabolic rate; tumor, the swelling of the tissue; dolor, the painful consequence of swelling and 

the generation of diverse mediators; and functio laesa, the loss of function of the affected organ. 

Acute inflammation results from stimuli that can be either external or internal. Mechanical stress 

(through injury or foreign bodies), physical factors (UV or ionizing radiation) and chemical or 

biological pollutants (acids, bases, heavy metals, bacterial toxins or allergens) represent external 

stimuli. Internal triggers are tumours, excessive levels of metabolites and physiologic mediators 

that are released upon stimulation by external stimuli or upon inappropriate regulation of the 

synthesizing enzymes [1]. 

2.1.2 Inflammation: A feature of general immune response 

Inflammation is the local emergence of an activated immune response that does not only include 

the tissue that is directly affected but also organs that are widespread in the whole body. The onset 

and regulation of the inflammatory reaction is a complex mechanism involving a multitude of cell 

types and can be classified in an innate and an adaptive component. Innate immunity is mainly 

mediated by phagocytes, natural killer cells and the complement system, which immediately 

respond to the stimulus. Macrophages are phagocytes that reside in the periphery, primarily in 

tissues that constantly get in contact with external influences. They recognize common conserved 

structures of bacteria (e.g. lipopolysaccharide, LPS) by means of surface receptors (toll-like 

receptors), followed by engulfment of the invader and secretion of cytokines, chemokines, tissue 

hormones (histamine and serotonin) and lipid mediators (e.g., prostaglandins or leukotrienes) [2]. 

All these mediators trigger the inflammatory onset in the infected tissue, leading to the cardinal 

symptoms and preparing optimal conditions for the functioning of successive events of the 

immune response. Neutrophil granulocytes make up the largest population of leukocytes in the 

blood (about 60%) and are the main cell type infiltrating the inflamed tissue at the onset of 

inflammation [1]. Like macrophages, they recognize structures of the bacterial surface and are able 

to neutralize large numbers of bacteria by phagocytosis. The absorbed bacteria are killed and 
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degraded in phagolysosomes by superoxide radicals, antimicrobial peptides (defensins) and serine 

proteases (cathepsin G, human leukocyte elastase and proteinase 3) [3].  

The regulation of adaptive immunity is even more sophisticated and more time-consuming. It 

comprises the specific combat of antigen structures by differentiated lymphocytes, which are able 

to kill infected cells or to neutralize antigens by means of specific antibodies [1].  

Collectively, all these mechanisms are highly regulated by intercellular communication through 

mediators such as interleukins, prostaglandins and leukotrienes, which represent potential targets 

of pharmacological intervention. 

2.1.3 Chronic inflammation 

An efficient immune response represents an essential tool to combat environmental assaults. 

Nevertheless, the complex immune system is vulnerable to dysregulation. Especially when it is not 

able to neutralize the stimulating noxa (for example in asbestosis or chronic hepatitis) or the body 

reacts hypersensitive in response to innocuous and omnipresent antigens (for example in bronchial 

asthma), the resolution of inflammation cannot be induced and the reaction perpetuates, resulting 

in chronic inflammation.  

Autoimmune disorders represent special chronic inflammatory diseases, characterized by an 

immune reaction to host antigens, i.e. to structures that are natural part of the body. Here, the 

immune response leads to persisting inflammation without effectual elimination of the antigen or 

to a loss of physiologic structures in case of successful elimination. Examples for autoimmune 

diseases are rheumatoid arthritis, type I diabetes mellitus and multiple sclerosis [1].  

Chronic inflammation can lead to severe damage of tissues, to loss of function of the affected 

organs or even to malign degeneration. Thus, when elimination of an inflammatory noxa is not 

possible, because it is a self antigen or the immune system is not able to face it, surgery or an anti-

inflammatory therapy are rational means to avoid long-term consequences [1, 4]. 

2.2 Arachidonic acid signalling 

2.2.1 Arachidonic acid metabolism and the pathophysiological role of 

prostaglandins and leukotrienes 

Arachidonic acid (AA) is a polyunsaturated fatty acid that is stored in the sn-2 position of 

phospholipids of cellular membranes and is liberated by hydrolysis through phospholipase A2 

(PLA2) [5]. AA serves as precursor of different groups of lipid mediators (prostaglandins, 
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thromboxanes and leukotrienes) collectively called eicosanoids, which critically control multiple 

events of the immune response. The types and proportions of eicosanoids that are produced depend 

on the enzymatic configuration of the specific cell type and the nature of the stimulus [6]. 

Naturally, AA supply through phospholipases A2 plays a central role in the activity of downstream 

enzymes (Figure 1 and Figure 2).  

Cyclooxygenases (COX) catalyze the first two steps in the synthesis of prostaglandins (PG) and 

thromboxanes (TX) and produce the unstable hydroperoxide prostaglandin G2 (PGG2) and its 

corresponding alcohol prostaglandin H2 (PGH2). PGH2 is a highly reactive intermediate and is 

further metabolized dependent on the availability of the respective synthases to thromboxane A2 

(TXA2), prostaglandin D2 (PGD2), prostaglandin F2α (PGF2α), prostaglandin E2 (PGE2) or 

prostaglandin I2 (PGI2) [7] (Figure 1). PGs predominantly exert their functions by activation of 

G protein-coupled receptors: PGD2 binds to DP1 and DP2 receptors, PGF2α, PGI2 and TXA2 to FP, 

IP and TPα/β receptors, respectively, and for PGE2 even four receptor subtypes (EP1-4) are 

pharmacologically defined [7].  

PGs are produced in a multitude of cells and tissues. In an inflammatory context, granulocytes, 

macrophages and endothelial cells in the peripheral tissue represent the most important sources 

leading to inflammatory symptoms and the expansion of the immune response. PGE2 is produced 

from PGH2 by different PGE2 synthases (see chapter  2.2.4) and plays a predominant role in 

oedema formation, pain sensitization and fever. In combination wit PGI2 and PGD2, PGE2 dilates 

blood vessels and thus participates in oedema formation [8]. Pain sensitisation is mainly driven by 

PGE2 and PGI2, which sensitize nociceptors in the periphery [9-10]. PGE2 not only elicits acute 

pain, it also enhances inflammatory hyperalgesia and along with PGD2 augments the processing of 

pain in the spinal cord (allodynia) [11-12]. Furthermore, PGE2 is a principal mediator of fever: 

Stimulation with cytokines that are liberated inter alia from stimulated macrophages is supposed 

to induce the microsomal PGE2 synthase-1 (mPGES-1) in central nervous structures, which 

subsequently produces PGE2 [13-14]. In the thermoregulatory centre in the hypothalamus, PGE2 

causes an increase of the set point of the body temperature and thereby gives rise to the generation 

of fever [14].  

Prostaglandin I2 (PGI2, prostacyclin) is produced by PGI2 synthase and promotes vasodilatation 

and anti-aggregatory effects in platelets [7]. Within minutes, non-enzymatic hydrolysis of PGI2 

leads to the inactive metabolite 6-keto PGF1α, which is commonly used for monitoring of COX or 

prostacyclin synthase activity [15]. Thromboxane A2 (TXA2) is formed from PGH2 by TXA2 

synthase and leads to artery constriction and platelet aggregation. It is inactivated within a half-life 

period of about 30 sec by non-enzymatic hydrolysis to thromboxane B2 (TXB2) [10]. TXA2 is the 
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functional antagonist of PGI2 and unbalanced thromboxane and PGI2 levels are supposed to be 

implicated in the cardiovascular side effects of selective COX-2 inhibitors [7, 16]. Another 

metabolite of thromboxane synthase is 12(S)-hydroxy-5-cis-8,10-trans-heptadecatrienoic acid 

(12-HHT) [17], which is also produced spontaneously or catalyzed by ferrous ions, haeme or 

cytochrome P450 enzymes [18-20]. Its synthesis is enhanced at the expense of PGs in the presence 

of high glutathione levels [21]. As an affine ligand of the leukotriene B4 (LTB4) receptor BLT2, it 

induces chemotaxis of mast cells [22]. 12-HHT can be quantified spectrometrically, which makes 

it a useful marker of COX activity.  

Leukotrienes (LTs) are produced from AA by the 5-lipoxygenase (5-LO) in several myeloid cells 

[23]. This enzyme introduces molecular oxygen into AA leading to 5(S)-hydroperoxy-6-trans-

8,11,14-cis-eicosatetraenoic acid (5-HPETE) and also catalyzes the subsequent reaction to the 

epoxide leukotriene A4 (LTA4). Alternatively, the unstable hydroperoxide 5-HPETE decomposes 

to the corresponding alcohol 5(S)-hydroxy-6-trans-8,11,14-cis-eicosatetraenoic acid (5-HETE) 

[24]. LTA4 can either be converted to LTB4 by LTA4 hydrolase in neutrophils and monocytes, or 

to leukotriene C4 (LTC4) under coupling of glutathione by LTC4 synthase in mast cells, 

macrophages, basophils and eosinophils [25]. Under successive hydrolysis of the peptide bonds, 

LTC4 is converted to leukotriene D4 (LTD4) and leukotriene E4 (LTE4), collectively referred to as 

cysteinyl-leukotrienes (CysLTs). LTB4 binds to G protein-coupled receptors; the high affinity type 

BLT1 and the low affinity type BLT2 [26], but it is also a ligand of the peroxisomal proliferator-

activated receptor α (PPARα) [27]. CysLTs bind to the G protein-coupled CysLT1 and CysLT2 

receptors [28].  

LTs can act as potent inflammatory mediators. LTB4 modulates the immune reaction as it attracts 

granulocytes to the inflammatory focus [29]. It increases leukocyte rolling, adhesion on venular 

endothelia and acts as a chemokine [30-31]. It also leads to enhanced degranulation of leukocytes 

resulting in the release of reactive oxygen species and lysosomal enzymes [32]. Furthermore, it 

attracts interleukin-5 (IL-5)-stimulated eosinophils [33] and stimulates the production of IL-5 in 

T lymphocytes [34]. LTB4 stimulates the differentiation of B lymphocytes leading to enhanced 

expression of immunoglobulin E (IgE) receptors and secretion of immunoglobulins [35-36]. Being 

a ligand of PPARα, LTB4 is also implicated in transcriptional signalling which possibly leads to 

anti-inflammatory effects [27]. In monocytes, LTB4 activates the expression of the pyrogen IL-6 

[37]. Moreover, LTB4 was reported to exhibit hyperalgesic effects [38]. CysLTs are predominantly 

known for the effective elicitation of brochoconstriction, mucus secretion and vascular leakage 

combined with enhanced recruitment of eosinophils [39-43]. These airway responses are mostly 

mediated by CysLT1 receptors. CysLT2-dependent signalling was observed in vascular smooth 
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muscle cells [44-45]. LTs also play a role in atherosclerosis [46]. Atherosclerotic plaques are 

commonly infiltrated by leukocytes that produce LTs and thereby sustain inflammatory conditions. 

5-HETE and its 5-oxo-metabolite are implicated in chemotaxis and cell proliferation [47-50]. 

Further lipoxygenases were identified in humans; namely two 12-lipoxygenase isoforms (12-LO, 

platelet- and epidermis-type), two 15-lipoxygenase isoenzymes (15-LO, leukocyte- and epidermis-

type) and the epidermis-type LO 3 [51-53]. 12- and 15-LO produce 12- and 15-HETE, 

respectively, and in combination with 5-LO lead to the production of lipoxins [51, 54]. 12-HETE 

was reported to enhance cell proliferation in pancreatic cancer cells [55] and to stimulate cellular 

mobility of melanoma cells [56]; it is responsible for renal angiotensin II-induced vasoconstriction 

[57] and acts pro-inflammatory on vascular endothelia [58]. 15-HETE levels are elevated in 

inflammation but different reports suggest an anti-inflammatory effect that limits an inflammatory 

overshoot [59]. Lipoxins are anti-inflammatory mediators implicated in the resolution of 

inflammation [54]. 

 

AA

membranous phospholipids

PGG2

PGH2

PGD2 PGF2α PGE2 PGI2TXA2

5-HPETE

LTB4 LTC4

15-HPETE12-HPETE

lipoxins12-HHT

5-HETE

TXB2

15-HETE12-HETE LTA4

LTD4

LTE46-keto PGF1αPGJ2

DP1/2 FP EP1-4TPα/β IP BLT1/2 CysLT1/2ALX

COX

12-LO
15-LO

5-LO

COX

5-LO

LTA
h.

4

LTC
s.4

TX s
.

P
G

D
s
.

P
G

F
s.

PGE
s.

PGI s.
glutamyl t.

LTD d.4

5
-L

O

12-LO

PLA2

lyso-PL PAF
PAF-AT

 

Figure 1: Arachidonic acid signalling. Lysophospholipid (lyso-PL), platelet activating factor (PAF), arachidonic 
acid (AA), prostaglandin (PG), leukotriene (LT), thromboxane (TX), 12(S)-hydroxy-5-cis-8,10-trans-
heptadecatrienoic acid (12-HHT), 5(S)-/12(S)-/15(S)-hydro(pero)xy-6-trans-8,11,14-cis-eicosatetraenoic acid (5-/12-
/15-H(P)ETE), cyclooxygenase (COX), lipoxygenase (LO), synthase (s.), LTA4 hydrolase (LTA4 h.), γ-glutamyl 
transpeptidase (glutamyl t.), LTD4 dipeptidase (LTD4 d.), PAF acetyl transferase (PAF-AT). 
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Figure 2: Biosynthesis of selected arachidonic acid metabolites. Arachidonic acid (AA), prostaglandin (PG), 
leukotriene (LT), thromboxane (TX), 12(S)-hydroxy-5-cis-8,10-trans-heptadecatrienoic acid (12-HHT), 
5(S)-hydro(pero)xy-6-trans-8,11,14-cis-eicosatetraenoic acid (5-H(P)ETE). 

 

2.2.2 Phospholipases 

2.2.2.1 Classification 

Phospholipases catalyze the cleavage of phospholipids from cellular membranes, with the family 

of phospholipase A2 (PLA2s) preferentially cleaving the acyl-moieties in the sn-2 position. This 

way, PLA2s release unsaturated fatty acids, where lysophospholipids remain, both of which can be 

metabolized into highly bioactive mediators [60]. Special lysophospholipids (lysoPAF) are 

acetylated by specific acetyltransferases, leading to the pro-inflammatory platelet activating factor 

(PAF, 1-O-alkyl-2-acetyl-sn-3-phosphocholine), a lipid that among other actions, induces platelet 

aggregation and anaphylaxis [61]. AA is one of the released fatty acids and represents the 

precursor of LTs, PGs and TXs (Figure 1).  

Up to now, fifteen groups of PLA2s, comprising different subgroups were characerized [5]. The 

numbering of these groups arose from the historical discovery, whereas the classification in five 

categories sheds light on their regulation and function (Table 1).  
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The secreted PLA2s (sPLA2s) represent the most diverse category, including the groups I, II, III, 

V, IX, X, XI, XII, XIII and XIV. They comprise various venoms from snakes, scorpions and bees, 

but also human PLA2s such as the pancreatic PLA2s (group IB and IID), PLA2s in macrophages 

(group V) and leukocytes (group X) and a PLA2 found in platelets and in synovial fluid from 

arthritic patients (group IIA) [60]. The sPLA2s are characterized by a low molecular weight and a 

Ca2+-dependent catalytic dyad composed of histidine and aspartic acid [62]. As indicated by the 

name, sPLA2s commonly act extracellularly. Group IIA and V PLs have been associated with 

inflammatory diseases [63-64], but they rather operate coordinated with cytosolic PLA2α 

(cPLA2α) activity than directly leading to AA release [5, 65-71]. Extracellularly, sPLA2s exhibit 

potent anti-bacterial properties [72-73]. An sPLA2 (group IIA) inhibitor was evaluated in clinical 

trials in the treatment of rheumatoid arthritis, but did not exhibit anti-inflammatory or anti-

rheumatic effects [74]. In contrast to group II sPLA2, group X sPLA2 features high affinity to 

mammal extracellular membranes [75-76], which accounts for its special role in AA supply for 

CysLT synthesis in bronchial asthma [77]. Part of the effects elicited by sPLA2s may be based on 

the specific binding to membranous receptors [68, 78].  

The Ca2+-independent PLA2s (iPLA2, group VI) not only cleave phospholipids but also show 

transacylase activity [79]. Presumably, their main function is the maintenance of membrane 

homoeostasis. Experiments in iPLA2 knockout mice revealed changes in bone formation [80], 

apoptosis [81], insulin secretion [82], sperm development [83] and susceptibility to obesity [84]. 

Furthermore, iPLA2β plays a role in chemotactic migration of monocytes [85]. 

The category of platelet activating factor acetylhydrolases/lipoprotein-associated phospholipases 

A2 (PAF-AH/LpPLA2) comprises enzymes that cleave acyl-moieties that are up to nine carbons 

long [86]. They cleave and inactivate PAF but also degrade lipids that comprise oxidized short 

acyl-moieties, which arose from oxidative stress [87]. PAF-AHs display anti-inflammatory actions 

in acute inflammation [88]. On the other hand, they are established biomarkers of coronary heart 

diseases [89-90]. A selective inhibitor of LpPLA2, darapladib (SB-480848), is currently subject of 

a phase III clinical trial (estimated completion date 10/2012 [91]) and is supposed to reduce 

cardiovascular risk arising from unstable atherosclerotic lesions. 

The most recently identified group of phospholipases (group XV) comprises one single enzyme, 

the lysosomal PLA2 (LPLA2). LPLA2 was found in alveolar macrophages, exhibits transacylase 

activity, synthesizes 1-O-acylceramides [92] and is associated with the catabolism of pulmonary 

surfactant [93-94]. 

The category of cytosolic PLA2s contains six members (cPLA2α – ζ). They are composed of a 

Ca2+-dependent lipid binding C2 domain and a catalytic hydrolase domain, except for the 



 2 Introduction 20 

constitutively membrane bound cPLA2γ [95], which lacks the C2 domain and the associated Ca2+-

dependency [96]. The subtype cPLA2α has been examined very extensively as it is expressed in a 

broad variety of cells and represents the only PLA2 that preferentially cleaves substrate containing 

AA in the sn-2 position [97-98]. It also possesses minor lysophospholipase and transacylase 

activity. Its regulation will be discussed in the following chapters. Enzyme activity of cPLA2β is 

inferior to cPLA2α [96, 99] and it is less selective for cleavage at the sn-2 position. cPLA2δ was 

originally discovered in the upper epidermis of psoriatic lesions, where it is supposed to play an 

essential role in lipid signalling [100].  

 

Table 1: Classification of phospholipases based on [60, 92, 101-103].  

group common sources
size

[kDa]
catalytic

mechanism
functional

classification

I A cobra, krait venom 13-15 His-Asp sPLA2

B mammal pancreas 13-15 His-Asp sPLA2

II A human synovial fluid, thrombocytes, rattlesnake,
viper venom

13-15 His-Asp sPLA2

B gaboon viper venom 13-15 His-Asp sPLA2

C rat, mouse testis 15 His-Asp sPLA2

D human, mouse pancreas / spleen 14-15 His-Asp sPLA2

E human, mouse brain / heart / uterus 14-15 His-Asp sPLA2

F human, mouse testis skin 16-17 His-Asp sPLA2

III bee, lizard, scorpion, human 15-18 His-Asp sPLA2

IV A human U937 cells, thrombocytes,
neutrophils; RAW 264.7, rat kidney

monocytes, 85 Ser-Asp cPLA2α

B human pancreas / liver / heart / brain 114 Ser-Asp cPLA2β

C human heart / skeletal muscle 61 Ser-Asp cPLA2γ

D mouse placenta, human psoriatic skin ~100 Ser-Asp cPLA2δ

E mouse thyroid / heart / skeletal muscle ~100 Ser-Asp cPLA2ε

F mouse thyroid ~100 Ser-Asp cPLA2ζ

V mammal heart / lung / macrophage 14 His-Asp sPLA2

VI A-1 P388D macrophages, CHO1 84-85 Ser-Asp iPLA2α

A-2 human B lymphocytes / testis 88-90 Ser-Asp iPLA2β

B human heart / skeletal muscle 88 Ser-Asp iPLA2γ

VII A human, mouse, porcine, bovine plasma 45 Ser-His-Asp PAF-AH

B human, bovine liver / kidney 40 Ser-His-Asp PAF-AH (II)

VIII A human brain 26 Ser-His-Asp PAF-AH Ib α1

B human brain 26 Ser-His-Asp PAF-AH Ib α2

IX snail venom (conodipine M) 14 His-Asp sPLA2

X human spleen / thymus / leukocyte 14 His-Asp sPLA2

XI A green rice shoots 12.4 His-Asp sPLA2

B green rice shoots 12.9 His-Asp sPLA2

XII mammal heart / kidney / skin / muscle 18.7 His-Asp sPLA2

XIII parvovirus < 10 His-Asp sPLA2

XIV symbiotic fungus / Streptomyces 13-19 His-Asp sPLA2

XV alveolar macrophages 45 Ser-His-Asp LPLA2  
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2.2.2.2 Pathophysiological role of cytosolic phospholipase A2α 

cPLA2α is supposed to be the main phospholipase accounting for AA release in inflammation [95], 

though further enzymes subordinately contribute to AA supply [68]. The participation of 

individual PLA2s in AA release is dependent on the status of the inflammatory progress [104] and 

the stimulus [105]. Interaction and mutual regulation of PLA2s even complicate the assessment of 

their individual contribution to overall PLA2 activity [65-67, 69-71]. However, a major role of the 

cPLA2α in inflammatory AA release is indisputable [95] and thus this enzyme represents a 

potential target for anti-inflammatory therapy (see chapter  2.2.2.5).  

cPLA2α knockout mice develop normally, apart from diminished fertility of female mice [106] and 

a defect of the renal concentration system [107]. Isolated macrophages of LPS-, calcium ionophore 

A23187- or casein-challenged cPLA2α-deficient animals are unable to produce PGE2, LTB4, 

CysLTs or PAF and the animals are resistant to collagen-induced arthritis [108] and less prone to 

artery occlusion-induced cerebral infarction, oedema formation and cerebral ischemia [109]. 

Ovalbumin-induced anaphylactic responses and methacholine-induced bronchial reactivity are 

significantly decreased [106], due to reduced reactivity of mast cells [110]. Bleomycin-induced 

pulmonary fibrosis [111], high-fat diet-induced fatty liver disease [112], sepsis- or acid-induced 

lung injury (adult respiratory distress syndrome) [113], small intestinal polyposis [114], PGE2-

mediated bone resorption [115] and experimental autoimmune encephalomyelitis (animal multiple 

sclerosis model) [116] are less severe or totally absent in cPLA2α
(-/-) mice. Collagen-induced TXB2 

formation in cPLA2α
(-/-) platelets is extensively reduced, accounting for reduced tendency to 

thromboembolism and increased bleeding times [117]. In an experimental sepsis model, peritoneal 

levels of PGF2α, PGD2, LTB4 and at later time points also IL-6 are diminished [118]. In contrast, 

colon tumourigenesis is increased in cPLA2α-deficient mice, an effect that is supposed to be due to 

reduced ceramide-mediated apoptosis [119]. 

A case report of a human patient with inherited cPLA2α deficiency revealed similar effects in 

humans [120]. The production of TXB2, 12-HETE and LTB4 in A23187-stimulated human whole 

blood were markedly reduced. Adenosine diphosphate- and collagen-induced platelet aggregation 

was diminished, whereas AA-induced platelet aggregation was not altered. Metabolite levels of 

PGE2, PGI2, PGD2 and TXA2 in the urine were reduced. Furthermore, the patient suffered from 

multiple small intestinal ulcers. 

In substance P- and carrageenan-induced hyperalgesia in rats, treatment with a common inhibitor 

of cPLA2α and iPLA2α blocks hyperalgesic reactions, which was associated with reduced 

intrathecal PGE2 levels [121]. The reduction of eicosanoid formation in whole blood experiments 
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and of PG synthesis in air pouch and carrageenan-induced paw oedema models after treatment 

with cPLA2α inhibitors (efipladib and WAY-196025) clearly illustrates the anti-inflammatory 

potential of these drug candidates [122] (see chapter  2.2.2.5). 

2.2.2.3 Structure and catalysis of the cytosolic phospholipase A2α 

cPLA2α is an 85 kDa-sized protein (749 amino acids) composed of an N-terminal Ca2+-binding C2 

domain (138 amino acids) and a C-terminal catalytic domain linked by a short and flexible tether 

(amino acids 139-143, Figure 3 A) [123-125].  
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Figure 3: Crystal structure of cPLA2α (A) and the assumed transition-state complex (B). [5, 125]. 

 

The C2 domain is responsible for the Ca2+-dependent targeting and binding of distinct 

membranes [126] (see chapter  2.2.2.4). It is composed of eight β-strands that are connected by 

three Ca2+-binding loops, which are able to coordinate two Ca2+ ions [127]. Ca2+ chelation enables 

lipophilic amino acid residues in two of these loops to penetrate the membrane [128-129] and 

allows polar amino acid residues of the Ca2+-binding loops to interact with the phospholipid head 

groups of the membrane [127-128, 130-131]. Furthermore, the C2 domain includes a binding site 

(cationic β-groove) for the sphingolipid ceramide-1-phosphate (C1P) (see chapter  2.2.2.4) [132]. 

The C2 domain does not contribute to the enzyme’s specificity for AA [126].  

The enzymatic activity of the catalytic domain itself is independent of Ca2+ [123]. A unique feature 

of the catalytic domain is a cap/lid region, which prevents the access of substrate to the active site 
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until activation [133-134]. A conformational change of the enzyme opens the lid, which is 

assumed to be induced by electrostatic repulsion of anionic residues of the lid on the one side and 

the phosphate- and anionic phospholipid-borne anionic membrane surface on the other side [135]. 

Upon opening, a lipophilic region is exposed and stabilized by interaction with the membrane, 

giving rise to the so-called interfacial activation of the enzyme.  

Some amino acid residues on the membrane-oriented surface of the catalytic domain are also 

implicated in membrane binding by interaction with lipids or proteins [136]. One cluster of basic 

residues was identified as binding site for polyphosphoinositides (PIPs) [137] (see chapter  2.2.2.4). 

As mentioned before, the cPLA2α specifically cleaves AA from phospholipids, which is attributed 

to the special architecture of the hydrophobic active site funnel system [125]. The spatial 

dimensions of this funnel allow the specific entering of AA due to its characteristic angulation that 

arises from the cis double bond in position C-5.  

The catalytic centre of the cPLA2α contains a catalytic dyad composed of Asp549 and Ser228 

(Figure 3 B) [138-139]. Arg200 was found to be essential for the enzyme’s activity [138], which is 

presumably due to a contribution to the binding of the substrate’s phosphate-moiety or to the 

stabilization the oxyanion transition state of the arachidonic acyl-moiety [125]. 

2.2.2.4 Regulation of the cytosolic phospholipase A2α 

As delineated below, cPLA2α is regulated on the transcriptional and post-transcriptional level. 

Principally, the post-transcriptional mechanisms may affect the affinity of the enzyme to 

membranes, which is prevalently driven by the C2 domain [128], or they directly change the 

enzymatic activity of the catalytic domain [140].  

Transcriptional regulation 

The gene encoding human cPLA2α is located on chromosome 1q25, next to the gene encoding 

COX-2 [141]. But unlike COX-2, cPLA2α is constitutively expressed in most cells and tissues 

[142-144]. Transcription is induced after stimulation with pro-inflammatory cytokines, such as 

IL-1α [145], tumour necrosis factor α (TNFα) [146], macrophage colony stimulating factor (M-

CSF) [147] and LPS [148]. Glucocorticoids repress the cytokine-induced upregulation of cPLA2α 

[145-146, 149]. The promoter of the cPLA2α gene contains several interferon-γ (IFNγ) response 

elements and two glucocorticoid response elements [150]. cPLA2α expression is induced by 

platelet-derived growth factor (PDGF) or thrombin through signal transducer and activator of 

transcription 3 (STAT3) [151-152] and by phorbol myristate acetate (PMA) through c-Jun/Sp1 and 

c-Jun/nucleolin complexes [153]. A co-repressor for homoeodomain transcription factors, the 

homoeodomain-interacting protein kinase-2 (HIPK2), was found to restrain cPLA2α transcription 
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[154]; increased HIPK2 levels might account for the generation of familial adenomatous 

polyposis, which results in colorectal cancer. Increased expression of cPLA2α was found in several 

types of cancer and was associated with the tumour-promoting role of PGE2 [155]. However, the 

role of cPLA2α in tumourigenesis is controversially disputed, indicating a tissue specific impact of 

dysregulated cPLA2α [95].  

Regulation by membrane binding and cellular trafficking  

cPLA2α does not only need phospholipids as substrate per se, but also an intact phospholipid 

membrane for interfacial activation [135]. cPLA2α is typically situated in the cytosol [97]. Upon 

stimulation with Ca2+-mobilizing agents, two Ca2+ ions are bound to the C2 domain, which leads 

to a conformational tightening of the C2 domain [134] and enhances the affinity to membrane 

surfaces by neutralizing the anionic charge of the Ca2+-chelating residues that accomplish 

electrostatic repulsion in the unbound state. Since the truncated C2 domain targets the same 

membranous structures as the entire cPLA2α protein, the catalytic domain seems not to be essential 

in Ca2+-dependent translocation [128]. Upon stimulation with Ca2+, cPLA2α usually translocates to 

the nuclear envelope, endoplasmatic reticulum and Golgi [156-160]. Low (100-125 nM) or 

transiently elevated Ca2+ levels provoke preferential translocation to the Golgi, whereas additional 

translocation to the endoplasmatic reticulum and perinuclear membrane occurs in case of sustained 

Ca2+ levels (> 210-280 nM) [156].  

The targeting of intracellular membranes is attributed to preferential binding of the Ca2+-triggered 

lipophilic Ca2+-binding loops to membranes that are rich in zwitterionic phosphatidylcholine, 

whereas membranes that contain important amounts of (an)ionic lipids (e.g. the plasma membrane) 

are disfavoured [161-162].  

As translocation of cPLA2α in cellular models already occurs at sub-micromolar Ca2+ levels but 

requires higher concentrations in cell-free models [163], additional mechanisms seem to potentiate 

the binding of natural membranes. Binding of C1P to the C2 domain was identified as 

supplementary binding principle [132] and increases cPLA2α activity [164]. C1P is produced by 

ceramide kinase, which is located in the Golgi [165] and siRNA-mediated downregulation of this 

enzyme blocks cPLA2α translocation, agonist-induced AA release and PG production [166-167]. 

Thus, targeting of the Golgi may be explained by binding of C1P in combination with the Ca2+-

induced raise in the C2 domain’s affinity for phosphatidylcholine membranes.  

cPLA2α translocation may also occur independently of Ca2+. AA induces the translocation of 

cPLA2α or its truncated C2 domain to phosphatidylcholine-rich intracellular membranes [168]. 

The concrete mechanism of this pathway has not been elucidated yet but it is seemingly not 

mediated by AA metabolites or through the activation of G protein-coupled receptors.  
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In some cases, cPLA2α also translocates to cellular plasma membranes; e.g. in PMA-stimulated 

glomerular epithelial cells [169]. Upon stimulation of granulocytes with PMA, zymosan or formyl-

methionyl-leucyl-phenylalanine (fMLP), cPLA2α transiently translocates first to the plasma 

membrane and then to the nuclear membrane [170]. In human platelets, mechanical or thrombin-

induced activation leads to cPLA2α translocation to the plasma membrane [171]. This membrane 

association is resistant to the Ca2+-chelating agent EGTA but is abolished upon de-polymerization 

of actin filaments. 

Regulation by phosphorylation 

Three phosphorylation sites have been identified in cPLA2α [172-173]; all of them are located in 

the catalytic domain. Ser505 is phosphorylated by the mitogen-activated protein kinases (MAPK) 

extracellular signal-regulated kinase-1/-2 (ERK-1/-2) [174], p38 [175] and c-Jun N-terminal 

kinase (JNK) [176-177], Ser515 is phosphorylated by Ca2+/calmodulin-dependent kinase II 

(CaMKII) [173], and Ser727 is phosphorylated by mitogen-activated protein kinase interacting 

kinase 1 (MNK1), mitogen- and stress-activated protein kinase 1 (MSK1) and p38-

regulated/activated protein kinase 1 (PRAK1) [178]. Completely dephosphorylated cPLA2α is 

catalytically active and phosphorylation at Ser505 leads to a 3-fold increase in enzymatic activity 

[179], whereas phosphorylation of irreversibly membrane-bound cPLA2α only increases AA 

release about 1.3-fold [180]. In platelets, phosphorylation at position Ser505 enhances the catalytic 

activity without reducing the requirement for Ca2+ [181]. However, more detailed experiments 

applying site-directed mutagenesis indicate that phosphorylation of Ser505 critically enhances the 

membrane attachment at physiological Ca2+ levels (in the submicromolar range) but does not 

affect cPLA2α translocation and activity at high Ca2+ levels [140]. DAS et al. suggested a 

conformational change of cPLA2α upon phosphorylation at Ser505, leading to membrane 

penetration of hydrophobic residues that are situated next to the active site, which sustains the 

membrane interaction even after decline of the Ca2+ levels.  

Ser727 is selectively phosphorylated by MNK1, MSK1 and PRAK1. These kinases are activated by 

ERK-1/-2 and p38 MAPK and therefore, phosphorylation of Ser505 is likely to be accompanied by 

phosphorylation at Ser727 [178, 182]. Phosphorylation of Ser727 leads to increased enzymatic 

activity of cPLA2α [183], which in analogy to phosphorylation of Ser505, is more distinctive at low 

Ca2+ levels but seems to be negligible at higher Ca2+ concentrations [140]. Recently, TIAN  et al. 

discovered that phosphorylation of Ser727 activates cPLA2α by disruption of the inhibitory complex 

of cPLA2α and A2t, a complex composed of p11 (S-100A10/calpactin I light chain) and annexin II 

[184]. 
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Regulation of cPLA2α by CaMKII appears to be complex and is not fully understood yet. 

Phosphorylation of Ser515 by CaMKII is associated with increased cPLA2α activity [173]. 

However, the suppressive effect of calmodulin or CaMKII inhibitors on cPLA2α activity is 

conserved in a S515A cPLA2α mutant [185], suggesting further regulatory mechanisms of 

CaMKII that are independent of Ser515 phosphorylation. CaMKII-mediated effects on cPLA2α 

activity are frequently accompanied by activation of MAPK and the associated phosphorylation of 

Ser505 [186-187]; nevertheless these pathways are not stringently connected [188-189].  

Interaction with proteins and lipids 

Several proteins have been identified interacting with cPLA2α, mostly regulating cPLA2α 

translocation and membrane binding. Vimentin [190-191], actin [171, 192], cPLA2α-interacting 

protein (PLIP) [193], cPLA2α-activating protein (PLAP) [194-198] and inducible nitric oxide 

synthase (iNOS) [199] increase cPLA2α activity in cellular systems. On the other hand, caveolin-1 

[200], p11/annexin II complex [184, 201-202], annexin I [203-204], annexin I/p11/cystic fibrosis 

transmembrane conductance regulator (CFTR) multiprotein complex [205], annexin III and V 

[202, 206] and annexin VI [207] are negative modulators of cPLA2α activity. 

cPLA2α exhibits a high specificity for AA in the sn-2 position of phospholipids [98]. Membranes 

that contain high levels of phosphatidylinositole or phosphatidylserine represent the main reservoir 

of sn-2-bound AA [208]. However, membrane binding is primarily carried out by the C2 domain, 

and thus membranes that are rich in phosphatidylcholine are preferentially targeted and provide the 

main share of AA [209]. Anionic lipids activate the enzymatic activity, an effect that is attributed 

to the electrostatic repulsion of the lid region during interfacial activation of the enzyme [135]. 

Anionic lipids in the membrane are also implicated in the binding of cationic patches of the 

catalytic domain, which enhances AA release especially at low Ca2+ levels [210]. On the other 

hand, anionic lipids that exceed a critical amount lead to repulsion of the lipophilic C2 domain 

[211].  

Some membranous lipids provoke enhanced cPLA2α activity by facilitating membrane 

accessibility. Ceramides and diacylglycerols disturb the lamellar structure of membranes to inverse 

hexagonal structures [212-213] and thereby may facilitate the access of the enzyme to its substrate 

[214-215]. Several studies demonstrated the stimulatory effect of ceramides and diacylglycerols in 

cell-free [211, 216] and various cellular models [216-221]. In addition, membrane-incorporated 

cholesterol was reported to stimulate cPLA2α activity in a cellular and non-cellular context [216, 

222]. 

The C2 domain of cPLA2α exhibits a binding site for C1P [132], which mediates preferential 

targeting of distinct membranes [167] (see chapter  2.2.2.3 and 2nd paragraph of this chapter); C1P 
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binding leads to enhanced cPLA2α activity and reduces the threshold level for Ca2+-induced 

activation [164, 166].  

Furthermore, the catalytic domain of cPLA2α contains a binding site for polyphosphoinositides 

(PIPs) [137] (see chapter  2.2.2.3). Phosphatidylinositol-4,5-bisphosphate (PIP2) is mainly 

integrated in the inner leaflet of plasma membranes and lower levels are found on the 

endoplasmatic reticulum, the nuclear envelope and the Golgi [223]. Binding of PIP2 decreases the 

Ca2+ concentration required for full activation of cPLA2α [211] and stimulates cPLA2α activity, 

distinctively exceeding the effect of other anionic lipids [224]. DAS et al. proposed a PIP2-induced 

conformational change of the C2 domain against the catalytic domain that optimally positions the 

catalytic centre in respect of its substrate [135]. Even in the absence of Ca2+, PIP2 enables cPLA2α 

to bind phosphatidylcholine membranes and to release AA [137]. In cellular models, stimulation 

or inhibition of PIP2 strikingly modulates cPLA2α activity [225-226].  

2.2.2.5 Inhibitors of the cytosolic phospholipase A2α 

AA-analogues like methoxy arachidonyl fluorophosphonate (MAFP) and the trifluoromethyl 

ketone AACOCF3 represent the first generation of cPLA2α inhibitors and irreversibly bind the 

Ser228-residue of the catalytic dyad [227]. These compounds possess IC50 values in the micromolar 

range in cellular models and are only little effective on sPLA2α (group IIA) [228]. However, they 

unselectively affect AA-metabolism in polymorphonuclear leukocytes (PMNL) [229] and feature 

high cytotoxicity that is most likely based on their amphiphilic structure [230].  

Several choline derivatives inhibit cPLA2α, acting by incorporation in the membrane and 

competing with phosphatidylcholine for binding of cPLA2α binding. These compounds exhibit 

IC50 values in the low micromolar range, have about 70-fold specificity for cPLA2α compared to 

sPLA2 (group IIA) and do not interfere with PLC, PLA1 or PLD [231].  

2-Oxoamide derivatives inhibit cPLA2α in cell-free, cellular and in vivo models [232] by binding 

in proximity to the active site [233]. Selected derivatives suppress PGE2 production in stimulated 

macrophages with IC50 values of 5 µM [232] and inhibit carrageenan-induced paw oedema in rats 

with ED50 values of 0.02 mg/kg [234]. Analgesic [234] and anti-hyperalgesic activity [121] were 

stated in pain models in rats.  

A variety of pyrrolidine (or pyrrophenone) derivatives inhibit cPLA2α with IC50 values in the 

nanomolar range in cellular and cell-free models [235] and in human whole blood [236]. 

Pyrrolidine 1 exhibits 17-fold selectivity for cPLA2α compared to cPLA2γ, more than 100-fold 

selectivity compared to iPLA2β and it does not perceivably affect sPLA2 activity (group IIA, V 

and X) [237]. Automated molecular docking studies and deuterium exchange mass spectrometry 
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revealed interaction of a pyrrolidine-type inhibitor with the active site Ser228 combined with 

numerous lipophilic binding events distal from the active site [233]. In collagen-induced arthritis 

in mice, pyrrolidine-type inhibitors markedly reduce the symptoms of arthritis, osseous 

destruction, the expression levels of cPLA2α, the production of PGE2 and LTB4 and the mRNA 

levels of matrix metalloproteinases (MMP-3, -8, -9, -13) and COX-2 [238]. It should be noted that 

the required doses for the effects were rather high (30 to 100 mg/kg twice per day). 

Another lead structure of modern cPLA2α inhibitors comprises an indole and a benzyl 

sulphonamide moiety, yielding the most common derivatives efipladib and WAY-196025, with 

submicromolar IC50 values in cell-free and human whole blood models [239-240]. They also 

display oral efficacy in rat carrageenan-induced air pouch and paw oedema models as well as in 

carbachol-induced bronchoconstriction in sheep. Nevertheless, these compounds offer poor 

bioavailability of maximally 16% after oral administration in dogs, which may be explained by 

their high molecular weight and lipophilicity [240].  

LEHR and co-workers developed different inhibitors based on an indolylpropanone scaffold [241] 

that inhibit cell-free or cellular cPLA2α activity in submicromolar concentrations [241-242]. 

However, they are extensively metabolized by liver microsomes [243] and offer poor availability 

upon peroral application in mice [244]. Intravenously applied drug is rapidly cleared from the 

plasma but the inflammatory reaction in a murine model of contact dermatitis was significantly 

suppressed after topical administration [244]. 

Only few natural compounds have been described as inhibitors of cPLA2α activity so far. 

Variabilin, a sesterterpene isolated from the marine sponge Ircinia variabilis was found to inhibit 

sPLA2 (group IIA) and cPLA2α in cell-free and cellular assays with IC50 values of 7 and 8 µM, 

respectively [245]. PMA-induced but not AA-induced mouse ear oedema was suppressed by 

topical administration of variabilin and peroral administration inhibited PGE2 and LTB4 formation 

in a murine air pouch model. Recently, lutein was found to inhibit cPLA2α with an IC50 value of 

14 µM and without affecting sPLA2 activity [246]. Abruquinone A, an isoflavanquinone from 

Abrus precatorius inhibits AA release and subsequent TXB2 and LTB4 production from A23187- 

and fMLP-stimulated rat neutrophils [247]. This inhibition is not due to direct inhibition of the 

catalytic domain, but is based on inhibition of ERK and the blockade of Ca2+ mobilization. 

2.2.3 Cyclooxygenases 

2.2.3.1 Classification 

Cyclooxygenases (COX) are haeme-dependent bis-oxygenases with peroxidase activity [248]. 

Although research on PGs and COX emerged in the 1930s, the existence of two distinct enzymes 
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was only identified in the early 90s [249]. The two isoenzymes share ~60% homology in their 

amino acid sequence, catalyze the same reactions by the same mechanism, exhibit similar 

conformation of the catalytic and substrate-binding regions and have a similar molecular mass of 

70 kDa [7]. They markedly differ in their transcriptional regulation, tissue distribution and the 

dimension of the COX substrate channel.  

2.2.3.2 Structure and catalysis of cyclooxygenases 

COX-1 and -2 are membrane-bound proteins composed of approximately 600 amino acids and 

reside as homodimers primarily on lumenal membranes of the endoplasmatic reticulum and inner 

and outer membranes of the nuclear envelope [250-252]. COX proteins contain four distinct 

domains; an N-terminal signalling peptide that is cleaved after synthesis and trafficking of the 

enzyme and three more domains responsible for dimerization, membrane binding and catalysis 

[248].  

The signalling peptides of COX-1 and COX-2 differ in length and lipophilicity, which was 

associated with differential targeting of the proteins after synthesis [10]. Dimerization only takes 

place within one isoform and occurs by non-covalent interactions of the dimerization domains of 

the monomers [10]. The membrane-binding domain is composed of four amphipathic helices with 

protruding aromatic residues that interact with one leaflet of the membrane bilayer [253]. The 

helices form an opening that represents the putative access for AA or inhibitors to the 

cyclooxygenase active site. The largest part of the enzyme is the C-terminal catalytic domain, 

which contains two distinct active sites for the peroxidase and the cyclooxygenase reaction [253].  

The cyclooxygenase active site is a hydrophobic channel with an opening faced to the membrane. 

Arg120 (all numbering refers to COX-1) in the channel is responsible for the binding of the 

substrate’s carboxylic group [254]. The catalytic pocket in the very end of the channel contains the 

Tyr385-residue that attacks AA as a tyrosyl radical, abstracts hydrogen thereby forming an 

arachidonyl radical, which undergoes cyclization and oxygenation to PGG2 [255-257]. The active 

site channel of the respective COX isoforms only differs by two amino acid residues (Ile523 and 

Ile434 in COX-1 and valine residues in COX-2), leading to a wider channel in COX-2, which was 

exploited for the development of COX-2-selective inhibitors [258]. Ser530 in the catalytic pocket 

plays an important role in the deactivation of COX by acetylsalicylic acid as it is irreversibly 

acetylated by the drug.  

The peroxidase site is situated remote from the membrane in a shallow cleft that also contains the 

binding site for haeme, which is fixed by His388 [253]. Peroxidase and cyclooxygenase activity are 

interrelated by the initial generation of the cyclooxygenase’s tyrosyl radical through the 
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peroxidase’s ferryl-oxo porphyrin radical intermediate [259-260]. This central step of the so-called 

branched chain model suggests the activation of the haeme by an endogenous oxidant (e.g. a 

hydroperoxide), which primarily activates the cyclooxygenase’s tyrosine residue. Thereby the 

cyclooxygenase cycle is activated and perpetuates the regeneration of its tyrosyl radical by itself.  

In the presence of sufficient substrate, COX enzymes undergo suicide inactivation within 1-2 min 

[10], presumably by self-destructive peroxidase side reactions of the ferryl-oxo haeme [261]. 

The kinetic properties, the turnover numbers, and the susceptibility to suicide inactivation of the 

COX isoforms are widely comparable [262-265]. However, in cells in which both isoforms are 

expressed, AA is preferentially converted by COX-2 [266]. This is most likely due to negative 

allosteric regulation that occurs at submicromolar AA concentrations for COX-1 but not for 

COX-2 [266-268]. The negative allosteric regulation is abolished in the presence of excess of 

hydroperoxide [269]. Regarding the kinetics of the peroxidase reaction, COX-2 was found to 

require only 10% of the hydroperoxide concentration that was needed for COX-1 activation [270]. 

2.2.3.3 Regulation of cyclooxygenases 

Transcriptional and translational regulation 

Transcription represents a central checkpoint in COX regulation and differentiates the roles of the 

respective isoenzymes. COX-1 is constitutively expressed in most tissues, prominently in 

endothelia, the renal collecting tubules, seminal vesicles, monocytes and platelets [248]. COX-1 

expression in these cells is induced during cell differentiation e.g. via Sp1 elements [271]. 

However, COX-1 appears to be inducible in the course of LPS-induced inflammation [272], 

though the underlying mechanism remains to be elucidated. 

In contrast, various pro-inflammatory cytokines, mediators and pathways control the transcription 

of COX-2 [248]. The COX-2 gene is responsive to IL-1α/β [273-274], TNFα [274], LPS [274-

276], PMA [249] and diverse growth factors and cytokines [248] whereas its transcription is 

suppressed by glucocorticoids [276] and anti-inflammatory cytokines (IL-4/-10) [277-278]. 

Nuclear factor κ B (NF-κB) [273], CCAAT enhancer binding protein (C/EBP) [279] as well as the 

MAPK p38 [280], ERK-1/-2 [275, 280] and JNK [281] are involved in the signal transduction. 

The promoter of the COX-2 gene contains regulatory elements for NF-κB, Sp1, C/EBP (nuclear-

factor for IL-6, NF-IL6) and an activating transcription factor/cyclic adenosine monophosphate-

responsive element (ATF/CRE) E-box [248]. Furthermore, COX-2 translation is regulated by 

mechanisms that control COX-2 mRNA stability [282-285]. Nevertheless, constitutive or 

inducible COX-2 expression contributes to homoeostasis of some cells or tissues without a 
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pathogenic background [248]. COX-2 is involved in reproduction [286], immunity [287], renal 

physiology [288], neurotransmission [289], bone resorption [290] and pancreatic secretion [291].  

Post-translational regulation and inhibition of cyclooxygenases 

The redox tone or the presence of oxidants regulates COX activity, since COX has to be activated 

for the initiation of the catalytic cycle [259-260] (see chapter  2.2.3.2). Hydroperoxides (e.g. PGG2, 

HPETEs) but also peroxynitrite that is formed by coupling of superoxide and NO, account for 

haeme activation [292-294]. 

COX activity depends on AA supply and inhibition of PG synthesis is clinically achieved by 

NSAIDs, which compete with AA for binding at the cyclooxygenase’s active site [253]. NSAIDs 

offer anti-inflammatory, analgesic and anti-pyretic properties [295]. The main drawback of 

unspecific COX inhibitors is their gastrointestinal toxicity [296]. This side effect may be explained 

by inhibition of COX-1-derived gastroprotective PGE2 [297] and was attenuated by the 

development of inhibitors that are highly selective for COX-2, the so-called coxibs [296]. 

Unfortunately, long-term therapy with these compounds is accompanied by increased 

cardiovascular risk that presumably results from reduced production of vascular epithelial PGI2 

[16]. 

2.2.4 Prostaglandin E2 synthases 

2.2.4.1 Classification of prostaglandin E2 synthases and their role in 

inflammatory diseases  

To date, three isoforms of prostaglandin E2 synthases (PGES) have been identified. mPGES-1 was 

the first isoform that was purified [298], cloned and characterized [299]. mPGES-1 is both, a 

constitutive and inducible protein and mPGES-1 mRNA was found in human placenta [299], 

prostate, testis, mammary gland and seminal vesicles [300] as well as in murine urogenital organs 

[301-302]. mPGES-1 protein is expressed in the lung, spleen, kidney and stomach of mice [303] 

and constitutive transcription of mPGES-1 mRNA was also reported in human PMNL [304] and 

rat Kupffer cells [305]. In contrast, in human monocytes and macrophages [304, 306] and rat heart, 

lung, colon and brain, mPGES-1 mRNA was not detected until stimulation with LPS [307]. Also 

in human heart and liver, the enzyme was only detected after infarction and hepatitis [308]. Co-

transfection experiments demonstrated preferential coupling of mPGES-1 with COX-2 [309].  

The second known isoform is the cytosolic PGES (cPGES, p23). This glutathione-dependent 

enzyme is constitutively expressed in several rat tissues (heart, thymus, liver, spleen, stomach, 

testis) with exception of the brain where it is induced after LPS challenge [310]. Moreover, cPGES 
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was isolated and cloned from human brain [311]. Co-transfection experiments of cPGES revealed 

preferential functional coupling with COX-1 [310]. The specific activity of cPGES is about 100-

fold lower than that of mPGES-1 [312]. 

Another membrane-bound PGES isoform (mPGES-2) was firstly isolated from bovine heart [313]. 

mPGES-2 mRNA was detected in human brain, heart, lymph nodes, skeletal muscle, kidney, 

trachea, foetal thymus and lung. Treatment of mice with LPS resulted in modest increase of 

mPGES-2 expression in liver and colon tissue whereas expression in brain, heart and lung 

remained on the constitutive level [308]. Exceptionally, mPGES-2 is active in the absence of 

glutathione, but thiol-reducing reagents increase its activity [314]. The specific activity of 

recombinant mPGES-2 (cloned from monkey DNA) is comparable to that of cPGES but markedly 

lower than that of mPGES-1 [312]. mPGES-2 equally metabolizes PGH2 provided by COX-1 and 

-2 [308]. mPGES-2 appears not necessarily to be membrane-bound as spontaneous cleavage of the 

N-terminal anchor sequence releases an active cytosolic protein [309].  

mPGES-1 is involved in many inflammatory diseases. Upregulation of mPGES-1 was detected in 

synovial tissue of patients suffering from rheumatoid arthritis [308, 315-316], in the cartilage of 

osteoarthritic patients [317] and in the intestinal mucosa in inflammatory bowel diseases [318]. 

Treatment of rats with IL-1β or LPS leads to expression of mPGES-1 in central nervous structures, 

which is associated with the development of fever and the processing of pain [13, 319-320]. Data 

from knockout mice suggest beneficial effects of mPGES-1 blockade in models on arthritis [321-

322], fever [13, 323], pain [321-322, 324], atherosclerosis [325] and stroke [326].  

In summary, the prominent specific activity of mPGES-1, its regulation by inflammatory 

mediators (see chapter  2.2.4.3), the mechanistic coupling to other pro-inflammatory enzymes and 

its involvement in diverse diseases reveals this PGES isoform as the major contributor in 

pathogenic PGE2 synthesis. Therefore, mPGES-1 was principally considered in the quest for novel 

anti-inflammatory enzyme inhibitors. However, experiments using siRNA-induced knock-down of 

mPGES-1 suggest that its activity may be compensated by alternative PGE2 synthases in some 

cells or tissues [327]. 

2.2.4.2 Structure and catalysis of microsomal prostaglandin E2 synthase-1 

mPGES-1 is a member of the membrane-associated proteins in eicosanoid and glutathione 

metabolism (MAPEG) superfamily, which also comprises the LTC4 synthase and 5-LO activating 

protein (FLAP) [328]. It is a 17 kDa-sized protein (152 amino acids) that is extremely unstable in 

the absence of glutathione (half life ~30 min) [298]. Recently, the crystal structure of mPGES-1 in 

its complex with glutathione was determined [329] (Figure 4 A). The crystallographic structure is 
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typical for MAPEG proteins: mPGES-1 is composed of four lipophilic transmembrane α-helices 

while one molecule of glutathione is coordinated in the cleft of an mPGES-1 homotrimer. These 

complexes are integrated in the membranes of the nuclear envelope and endoplasmatic reticulum 

with a central funnel-shaped opening facing the cytosolic side. Glutathione is fixed in this funnel 

by salt bridges of its carboxylate groups with arginine residues. The substrate is supposed to enter 

the funnel through a mobile cleft from the interior of the lipophilic membrane [329]. A proposed 

catalytic mechanism includes the attack of the PGH2 endoperoxide bridge by the glutathione 

thiolate (Figure 4 B) with Arg126 serving as proton donator/acceptor.  
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Figure 4: Structure (A) and putative molecular mechanism (B) of mPGES-1. [329] modified.  

 

2.2.4.3 Regulation of microsomal prostaglandin E2 synthase-1 

mPGES-1 is decisively regulated on the transcriptional level (see below). Nevertheless, mPGES-1 

activity is post-transcriptionally regulated by direct inhibition through different lipid mediators, 

e.g. AA and 15-deoxy-∆(12,14)-PGJ2 (IC50 = 0.3 µM) [330]. 

Although the mPGES-1 gene is co-regulated with COX-2 [331-333], their promoter regions are 

quite different. The mPGES-1 promoter contains response elements for the glucocorticoid 

receptor, AP-1 and two GC boxes [334-335]. Basal transcription of mPGES-1 is mediated by 

binding of Sp1 and Sp3 transcription factors to the GC boxes [336]. Dependent on the cell type, 

IL-1β [332, 337], TNFα [318, 331], LPS [338-339] and epidermal growth factor (EGF) [315] 

induce mPGES-1 via pathways involving JNK [331, 337], ERK and p38 MAPK [332] and the 

transcription factors early growth response gene 1 (Egr-1) [318, 337, 339], NF-IL6 [338] and 

NF-κB [331, 337, 339].  

On the contrary, both IL-1β- and TNFα-induced mPGES-1 expression are suppressed by 

dexamethasone [333]. PPARγ activation inhibits IL-1β-induced mPGES-1 expression [340]. The 
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direct inhibitor of mPGES-1, 15-deoxy-∆(12,14)-PGJ2 (see above) was also shown to be a PPARγ-

agonist leading to suppressed transcription of mPGES-1 [330, 341], which is potentiated by 

additional inhibition of the NF-κB pathway [342]. 

Recently, a mechanism of negative-feedback regulation of mPGES-1 was discovered in LPS-

stimulated neuronal tissue. Binding of mPGES-1-derived PGE2 to EP2 and EP4 receptors blocks 

LPS-induced TNFα production and mPGES-1 induction in vitro and in vivo [343]. 

2.2.5 Lipoxygenases 

2.2.5.1 General properties and classification of lipoxygenases 

Lipoxygenases (LOs) are non-haeme iron metalloproteins catalyzing the stereoselective insertion 

of molecular oxygen (dioxygenase) in unsaturated fatty acids [51]. The products are 

hydroperoxyeicosatetraenoic acids (HPETEs) that are reduced to the respective 

hydroxyeicosatetraenoic acids (HETEs) or are converted by downstream synthases to LTs or 

lipoxins [51, 54]. The common nomenclature categorizes human LOs dependent on the site of 

specific peroxidation (5-, 12- and 15-LO). Six distinct LOs have been identified in humans: 5-LO, 

12(S)-LO (platelet type), 12(R)-LO (epidermis type), 12/15(S)-LO (leukocyte/reticulocyte-type), 

15(S)-LO (epidermis-type) and the epidermis-type LO 3 [51, 53]. The molecular weight of animal 

LOs range between 75 and 80 kDa and they are composed of a C-terminal catalytic domain and an 

N-terminal β-barrel domain that is referred to as C2-like domain [51, 344].  

2.2.5.2 Structure and catalysis of 5-lipoxygenase 

Human 5-LO is a 78 kDa-sized protein of 674 amino acids in length [345]. Recently, the crystal 

structure of a stabilized mutant of human 5-LO was elucidated [344]. In analogy to cPLA2α, the 

C2-like domain mediates Ca2+-dependent binding of the cytosolic 5-LO to cellular membranes 

[346]. The binding is conferred by tryptophane residues of the putative Ca2+-binding loops that are 

able to interact with membranes upon binding of two Ca2+ ions [347]. Similar to cPLA2α, 

enzymatic interaction at the water-membrane interface was suggested as a general principle of 5-

LO activity [348] and phosphatidylcholine was found to provoke interfacial stimulation [349]. The 

catalytic domain (~550 amino acids) is characterized by iron that is ligated by three histidine 

residues and the C-terminal carboxylic group [51]. 

In the inactive enzyme, the iron exists in the ferrous state (Fe2+) and oxidation to ferric iron (Fe3+) 

is required for catalytic activity [350]. The oxidized iron subsequently abstracts doubly allylic 

hydrogen from AA, leading to ferrous iron and a radical that is stabilized by hyperconjugation 

[351-352]. Oxygen specifically attacks the pentadienyl radical leading to an iron-coordinated 
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peroxide radical that is converted to the hydroperoxide (5-HPETE) under regeneration of ferric 

iron. A part of 5-HPETE undergoes dehydration to the highly reactive epoxide LTA4 by the LTA4 

synthase activity of 5-LO [353]. 5-HPETE, that dissociates from 5-LO before metabolization to 

LTA4, is reduced to the corresponding alcohol 5-HETE. Like COX, 5-LO undergoes suicide 

inactivation within minutes after stimulation [354-355].  

2.2.5.3 Regulation of 5-lipoxygenase 

Transcriptional regulation 

The 5-LO promoter contains several consensus-binding sites for transcription factors like c-myb, 

activating protein 2 (AP-2), NF-κB, Sp1 [356], Sp3 [357], early growth response genes 1 and 2 

(Egr-1/-2) [358], retinoid Z receptor α (RZRα) [359] and retinoic acid receptor-related orphan 

receptor α (RORα). 5-LO expression prevails in myeloid cells, such as granulocytes, monocytes, 

macrophages, mast cells and B lymphocytes [360], which is commonly paralleled by FLAP 

expression. Transforming growth factor β (TGFβ) [361] and calcitriol [362] were found to induce 

5-LO expression in leukocyte cell lines during cell maturation. Granulocyte macrophage colony-

stimulating factor (GM-CSF) induces 5-LO expression and activity in PMNL [363] and monocytes 

[364]. Epigenetic regulation by promoter methylation or histone deacetylation is involved in 5-LO 

gene silencing in non-5-LO-expressing cells [365-366]. 

Calcium 

Calcium (Ca2+) increases the lipophilicity of the C2-like domain and thereby the affinity to the 

phosphatidylcholine-rich nuclear membrane [346-347]. Thus, Ca2+ mediates translocation of 5-LO 

to the substrate. In cell-free assays using exogenous AA as substrate, Ca2+ enhances the enzymatic 

activity of 5-LO in the presence of membrane structures [349] although Ca2+ is not necessary for 

catalytic activity per se  [367]. While micromolar concentrations of Ca2+ are necessary for 

increasing 5-LO activity in cell-free models, intracellular Ca2+ levels above 150 nM suffice for 

activation of cellular 5-LO [368]. The threshold Ca2+ level for cellular enzyme activation is 

dependent on additional regulatory mechanisms such as the redox tone [367].  

Adenosine triphosphate (ATP) 

Nucleotides, especially ATP, stimulate 5-LO activity [369]. The stimulation does not involve ATP 

cleavage, energy consumption or phosphorylation of 5-LO but is mediated by direct binding to 

residues in the C2-like and catalytic domain in a stoichiometry of one molecule of ATP per 

molecule 5-LO [370-371]. Cellular ATP levels in the micromolar range coincide with ATP 

concentrations that are necessary for activation [372]. 
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Oxidizing agents and lipids 

Oxidation of the ferrous iron is a prerequisite for 5-LO activity [350] (see chapter  2.2.5.2). 

Therefore, lipid peroxides e.g. 5-HPETE, 12-HPETE and 15-HPETE stimulate 5-LO activity in 

cell-free assays [373-374]. In addition, Fe2+ ions that promote lipid peroxidation excite 5-LO 

activity, whereas reducing agents, such as mercaptoethanol and glutathione inhibit 5-LO product 

formation [375].  

1-Oleoyl-2-acetylglycerol (OAG) stimulates 5-LO activity in the absence of Ca2+ via interaction 

with the C2-like domain [376]; this effect is abolished in the presence of phospholipids and 

cellular membranes. Besides being the substrate of 5-LO, AA Ca2+-dependently binds to an 

allosteric site of 5-LO and thereby suppresses its activity [377]. 

Phosphorylation 

Phosphorylation of 5-LO takes place at three serine residues: Ser271, Ser663 and Ser523, which are 

phosphorylated by MAPK-activated protein kinases 2 and 3 (MAPKAPK-2/-3) [378-379], ERK-2 

[380] and protein kinase A (PKA) [381], respectively. MAPKAPK-2/-3 are phosphorylated by p38 

MAPKs that in turn are activated by cellular stress or inflammatory mediators [382]. Ensuing 

phosphorylation of 5-LO at Ser271 increases its cellular activity [378] and site-directed mutagenesis 

of Ser271 to alanine blocks AA-induced MAPKAPK-2-mediated activation of 5-LO in transfected 

cells [379]. Cellular stress-induced activation of 5-LO occurs independently of Ca2+ [383]. 

Similarly, the AA-induced ERK-2-mediated phosphorylation of 5-LO at Ser663 stimulates its 

cellular activity, which does not occur in cells expressing mutated 5-LO-S663A [380]. These 

findings suggest a fundamental role of MAPK-driven phosphorylation events in 5-LO activation 

by stimuli that do not lead to increased Ca2+ levels (e.g. AA). Recently, phosphorylation at Ser271 

was found to hinder the nuclear export of 5-LO by exportin-1 [384]. 

On the contrary, PKA-induced phosphorylation of Ser523 leads to impaired 5-LO activity in cell-

free and cellular models [381, 385]. Furthermore, phosphorylation by PKA provokes the 

redistribution of 5-LO from the nucleus to the cytoplasm, which can be evoked by increasing 

levels of intracellular cyclic adenosine monophosphate (cAMP) [385] and can be prevented by 

unsaturated fatty acids (AA) or competitive 5-LO inhibitors [229].  

Thus, AA crucially regulates 5-LO translocation as it inhibits PKA-mediated redistribution of 5-

LO to the cytosol and stimulates translocation to the nuclear membrane via MAPK-induced 

phosphorylation at Ser271 and Ser663 [386].  
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Protein interactions 

5-LO activating protein (FLAP) is an 18 kDa-sized protein (161 amino acids) with three 

transmembrane-spanning α-helices and two hydrophilic loops [387-388] acting as a homotrimer 

[389]. FLAP is localized in the inner and outer nuclear membrane of macrophages, neutrophils and 

monocytes [390-391] and directly binds to 5-LO [392]. It binds cis-unsaturated fatty acids and is 

supposed to present AA from cellular membranes to 5-LO, leading to enhanced AA utilization 

[393-394]. FLAP appears to be necessary for cellular 5-LO activity if AA is produced 

endogenously [387, 395] but it is dispensable in the presence of exogenous AA [393]. In human 

leukocytes, the potent FLAP inhibitor MK-886 reduces A23187-induced 5-LO product formation, 

whereas 5-LO activity in cell-free 5-LO assays is not affected [396].  

Coactosin-like protein (CLP) is a 16 kDa-sized protein (142 amino acids) that can bind to human 

filamentous actin (F-actin) or alternatively to tryptophane residues of the ligand binding loops in 

the C2-like domain of 5-LO [397-398]. Like 5-LO, CLP is localized in the cytosol of resting cells 

and translocates to the nuclear membrane upon stimulation [398-399]. CLP enhances the activity 

of purified 5-LO, increases LTA4 production in the presence of phosphatidylcholine and the ratio 

of 5-HETE/5-HPETE [398]. Recent data suggests that CLP also stabilizes 5-LO in terms of 

preventing non-turnover enzyme inactivation [399]. 

2.2.5.4 Inhibition of 5-lipoxygenase 

For the direct suppression of 5-LO activity, three groups of inhibitors can be distinguished. Redox-

active compounds reduce the iron ion in the active site of the enzyme and thereby uncouple its 

catalytic cycle; many phenolic compounds such as flavonoids are classified in this group [400]. 

Another group, the iron ligand inhibitors, chelate the active site iron with a hydroxamic acid 

moiety; BWA4C [401] and zileuton [402] represent members of this group. The third group are 

the more heterogeneous non-redox type 5-LO inhibitors [25]. High hydroperoxide levels impair 

the efficiency of these inhibitors, and it was suggested that they compete with AA for binding to 

the 5-LO’s active site [403]. However, hyperforin [404-405] or boswellic acids (BAs) [406] 

represent non-competitive inhibitors that bind to another site than the AA binding site in the 

catalytic centre. Another strategy to inhibit 5-LO activity is the inhibition of FLAP. In a cellular 

environment without exogenous supply of AA, FLAP inhibitors were shown to be effective 

inhibitors of LT synthesis, e.g. MK-886 offering an IC50 value of 2.5 nM in intact neutrophils [25, 

407]. Clinically, the direct iron ligand 5-LO inhibitor zileuton and a variety of CysLT1-receptor 

antagonists (e.g. montelukast) are utilized in the therapy of bronchial asthma [44].  
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2.2.5.5 12- and 15-lipoxygenases 

Generally, the structure of 12-LOs is similar to that of 5-LO. They also consist of a C2-like and a 

catalytic domain, contain a non-haeme iron in the catalytic centre [408] and translocate to cellular 

membranes upon stimulation with Ca2+ [409-410]. The main product of 12-LO is 12-HPETE that 

is reduced to 12-HETE [18] or enzymatically converted to hepoxilins [411].  

12(R)-LO (epidermis type) was found in the skin of foremost psoriatic patients [412-414] but is 

also expressed in tonsils [415]. 

Leukocyte/reticulocyte-type 12/15(S)-LO is abundant in different cells and tissues such as 

reticulocytes [416], eosinophils [416-417], IL-4-treated monocytes [418-419], the tracheal 

epithelium [416] and atherosclerotic lesions [46]. 12/15(S)-LO is a rather unspecific enzyme in 

terms of its substrate specificity and the resulting products as it produces both, 12- and 15-HPETE 

[408]. Actually, the product profile is critically influenced by the dimension of the active site 

cavity in 12-LO and 15-LO [420-421]. Regarding the substrates, 12/15(S)-LO is able to convert 

AA but also other fatty acids such as linolenic acid and linoleic acid and even intact phospholipids 

[422-425]. 12/15(S)-LO undergoes suicide inactivation within a few minutes of activity [426]. 

Platelet-type 12(S)-LO is mainly located in platelets and the epidermis [427-428]. In contrast to 

leukocyte-type 12/15(S)-LO, platelet-type 12(S)-LO restrictively converts AA to the nearly 

exclusive product 12-HPETE [424]. A distinct feature is the lack of suicide inactivation of the 

enzyme [426]. 

Post-translational regulation of 12-LOs appears to be less prominent than in 5-LO as no 

phosphorylation events or protein interactions have been identified so far. Oxidative stress in 

human platelets shifts predominant 12-HETE production to the production of anti-inflammatory 

and anti-thrombotic hepoxilins [429-430].  

Besides the leukocyte/reticulocyte-type 12/15(S)-LO, another 15(S)-LO (epidermis-type, or 15-

LO-II) is expressed in the human body (skin, cornea); 15-LO-II mRNA was also found in prostate 

and lung tissue [431-432]. In contrast to the leukocyte/reticulocyte-type 12/15(S)-LO, this enzyme 

prefers AA to linoleic acid as substrate and exclusively produces 15(S)-H(P)ETE [431].  
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2.3 Neutrophil proteases 

2.3.1 Properties of cathepsin G and human leukocyte elastase 

The neutrophil proteases cathepsin G (CG), human leukocyte elastase (HLE) and proteinase 3 

(PR3) are serine proteases (30 to 35 kDa) with a conserved catalytic triad (Asp-His-Ser) [3]. The 

proteins are produced during myeloic maturation of neutrophils and stored in azurophil granules 

[433-434]. Upon neutrophil stimulation, they are excreted via exocytosis or released into 

intracellular phagolysosomes [435-436]. 

2.3.2 Role of neutrophil proteases in inflammation 

As delineated in chapter  2.1.2, neutrophils are the first leukocytes to arrive the peripheral tissue 

from the blood vessels upon stimulation by inflammatory mediators. One of their principal tasks is 

the neutralization of microorganisms by means of reactive oxygen species, anti-microbial peptides 

and proteases such as CG, HLE and PR3 [437]. Neutrophil proteases are essential for killing of 

several microorganisms [435, 438-439], but elevated neutrophil protease levels are also found in 

inflammatory diseases that lack a microbial background, e.g. in psoriatic lesions [440]. Upon 

excretion, neutrophil proteases degrade extracellular matrix proteins [441-442], which contributes 

to tissue destruction in chronic inflammation. Inhibition of neutrophil proteases attenuates the 

reaction in several in vivo models of inflammation, e.g. in collagen-induced arthritis in rats [443-

445]. In experimental arthritis, CG or HLE knockout mice exhibit a partial reduction of the 

inflammatory reaction and animals lacking both enzymes are almost totally resistant [446]. 

Besides anti-microbial activity and matrix degradation, neutrophil proteases regulate of a 

multitude of signalling pathways (Figure 5). They activate or inactivate several cytokines, 

chemokines and growth factors by cleavage of the respective precursors or the mediators 

themselves [437]. Furthermore, neutrophil proteases are able to activate cell surface receptors. In 

platelets, HLE activates αIIbβ3 [447] and CG stimulates the protease activated receptor 4 (PAR4) 

[448], both of which are associated with enhanced cell aggregation. Further PARs are substrates of 

neutrophil proteases and cleavage leads to deactivation or activation of these receptors, eliciting 

multiple effects in various cells [437, 449]. CG is a ligand of the G protein-coupled formyl peptide 

receptor (FPR), thereby acting as a chemokine on FPR-expressing monocytes and neutrophils 

[450]. PAR signalling is highly involved in the pathogenesis of arthritis and nociception/pain 

[451]. 
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Figure 5: Potential extracellular interactions of neutrophil proteases in inflammatory processes. [437] modified. 

 

2.4 Glucocorticoid signalling 

Glucocorticoids are frequently used in the therapy of acute and chronic inflammation. Unlike COX 

or 5-LO inhibitors, their mode of action cannot be reduced to the inhibition of one single enzyme. 

They influence several targets leading to both, rapid or delayed anti-inflammatory and 

immunosuppressive effects [452]. Actually, the molecular mechanism of glucocorticoids is only 

partly understood and the individual effects are more or less effective depending of the nature of 

the pro-inflammatory stimulus and the general context [453]. Most of these effects are likely based 

on the binding of glucocorticoids to the cytosolic glucocorticoid receptor (GR) that is arranged in a 

protein complex in its resting state [454]. Upon binding of glucocorticoids, the receptor undergoes 

a conformational change and dissociates from the protein complex [455]. The glucocorticoid-GR 

complex then translocates to the nucleus [456], where different scenarios may occur; firstly, 

glucocorticoid-GR complexes may dimerize and bind to glucocorticoid response elements (GREs) 
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to activate the transcription of responsive genes [456]. The glucocorticoid-induced expression of 

annexin I and p11/calpactin binding protein for example were reported to lead to inhibited AA 

release through interaction with sPLA2 and cPLA2 [457-459]. The original hypothesis that these 

mechanisms were the basis of the eicosanoid-suppressing action of glucocorticoids is no more 

accepted today [453].  

Another way of the glucocorticoid-GR complex to inhibit inflammation is the inhibition of pro-

inflammatory transcription factors [460]. This may occur by binding of the complex to negative 

GREs (nGRE) [461-462], by destabilization of other transcription complexes [463] or by 

downregulation [464] or direct blockade [465-467] of transcription factors such as NF-κB [465], 

AP-1 [466], STAT [463-464], nuclear factor of activated T cells (NFAT) [468], GATA-binding 

protein 3 [461], T-Bet [467] and cAMP response element-binding protein (CREB) [462]. Typical 

pro-inflammatory target genes of these transcription factors encode the interleukins IL-1β [469], 

IL-2 [468], IL-5 [470] and IL-6 [469], as well as COX-2 [471], iNOS [472], IFNγ [473], TNFα 

[474] and the intracellular adhesion molecule (ICAM) [475].  

Indirectly, the inhibition of cytokines leads to suppression of other inflammatory mediators or 

pathways, e.g. to reduced transcription of phospholipases [476]. Moreover, glucocorticoids 

indirectly suppress the activation of various MAPK (p38, ERK and JNK), e.g. by up-regulation of 

phosphatases such as MAPK phosphatase 1 (MKP-1), which leads to reduced levels of COX-2, 

TNFα and IL-1β in LPS-challenged murine macrophages [477]. The glucocorticoid-driven 

transcription of suppressors of cytokine signalling (SOCS) leads to inhibition of the Janus 

kinase/STAT (JAK/STAT) pathway [478].  

All these mechanisms include genomic interactions of the glucocorticoid-GR complex. 

Interestingly, glucocorticoid effects are obvious before genomic pathways are able to emerge. 

Glucocorticoids inhibit smooth muscle contraction within minutes, which is not responsive to the 

GR antagonist mifepristone [479]. In T cells, the binding of glucocorticoids to their receptor 

impairs T cell receptor signalling without including genomic mechanisms [480]. G protein-

coupled receptor and MAPK signalling were proposed to be implicated in these non-genomic 

effects [481]. 
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2.5 Boswellia species 

2.5.1 Botany 

Boswellia spec. are sparsely foliated trees that reach up to twelve metres in height [482]. They 

primarily grow in arid regions of the Horn of Africa, in the very south of the Arabian Peninsula, 

and in India. The genus Boswellia comprises about 20 species and is part of the Burseraceae 

family. The species that are commonly used for drug recovery are Boswellia sacra FLÜCK., which 

is distributed in the south of Arabia (Oman, Yemen) and the Horn of Africa (where it is 

traditionally named Boswellia carteri BIRDW.), Boswellia frereana BIRDW. and Boswellia 

papyrifera HOCHST., which grow in Africa (Ethiopia, Somalia, Eritrea, Sudan, Chad, Nigeria, 

Cameroon, Uganda and the Central African Republic) and Boswellia serrata ROXB., which 

originates from the northeast of India [482-483]. 

The resin is collected after incision of the bark; the leaking latex gums on the plant and the solid 

oleo-gum resin (frankincense) is tapped in intervals of several weeks [484]. 

2.5.2 Composition of the oleo-gum resins from Boswellia species  

The oleo-gum resin from Boswellia species is composed of an essential oil fraction, a mucilage 

fraction and a pure resin fraction [483, 485]. The essential oil represents the most diverse fraction, 

a complex mixture of monoterpenes, sesquiterpenes and diterpenes [486-487]. Its composition is 

highly dependent on the species and extraction method [488-489]. It makes up five to ten per cent 

(m/m) of the resin [483, 485] and accounts for the aromatic odour of frankincense. 

Pharmacological data on this fraction is scarce, but it was found to have anti-microbial [489-490], 

immunomodulatory [486] and tumour-specific cytotoxic activity [491]. The mucilage fraction 

amounts up to thirty percent of the oleo-gum resin and comprises polysaccharides composed of 

monomers such as arabinose and galactose [492]. This fraction was associated with 

immunomodulatory effects as well [492]. The pure resin fraction makes up about 60% (m/m) of 

the oleo-gum resin [485]. It consists of several neutral diterpenes but mainly of triterpenes, which 

feature pentacyclic ursane-, oleanane- or lupane-scaffolds, tetracyclic tirucallane-scaffolds or 

derivatives thereof [493]. Triterpenic acids usually represent about 50% (m/m) of the pure resin 

fraction [483, 485]. The quantities of the respective fractions differ depending on environmental 

fluctuations and the species; e.g. resins from B. frereana only contain diminutive amounts of 

triterpenic acids [494].  
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Extracts of the oleo-gum resins yielded by extraction with lipophilic solvents (ether, alcohols etc.) 

contain the pure resin and the essential oil fraction. Evaporation of the solvent partly eliminates the 

volatile compounds of the essential oil. Thus, these raw extracts contain mostly di- and triterpenes, 

which can be separated into an acid and a neutral fraction by liquid extraction. The neutral fraction 

is composed of non-acidic analogues of the triterpenic acids [494] and of diterpenes such as the 

cembrenes serratol, incensole and incensole acetate [495]. 
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2.5.3 Isolated triterpenic acids from Boswellia spec. 

Boswellic acids (BAs) represent major ingredients in Boswellia spec. oleo-gum resins. They are 

specific for the genus Boswellia and reach 14 to 25% (m/m) of the lipophilic extract from 

B. serrata oleo-gum resin [496-498]. BAs offer two pentacyclic triterpene scaffolds that differ in 

the constitution of the methyl groups in position 19 and 20; the oleanane scaffold is the basal 

structure of α-constituted BAs and the ursane scaffold originates the β-constituted BAs [497]. 

Derivatization of the skeletal structures at position 3 and oxidation of C-11 bring forth the acetyl- 

and keto-analogues, leading to β-boswellic acid (β-BA), 11-keto-β-boswellic acid (KBA), 3-O-

acetyl-β-boswellic acid (A-BA), 3-O-acetyl-11-keto-β-boswellic acid (AKBA) and the respective 

α-constituted derivatives α-boswellic acid (α-BA), 11-keto-α-boswellic acid (K-α-BA), 3-O-

acetyl-α-boswellic acid (A-α-BA) and 3-O-acetyl-11-keto-α-boswellic acid (AK-α-BA) (Figure 6).  
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Figure 6: Molecular structures of boswellic acids. 

 

Nyctanthic acids (NAs) and roburic acids (RAs) represent seco-derivatives of α- and β-constituted 

BAs that exhibit an open A-ring. Roburic acid (RA), 4(23)-dihydro-roburic acid (DH-RA), 4(23)-

dihydro-11-keto-roburic acid (DH-k-RA) and 4(23)-dihydro-nyctanthic acid (DH-NA) (Figure 7) 

were isolated as minor components from B. carteri [499-500].  
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Figure 7: Molecular structures of roburic and nyctanthic acids. 

 

Lupeolic acid (LA) was found in “African” frankincense [501] and the derivative 3-O-acetyl-

lupeolic acid (Ac-LA) was originally isolated from B. serrata resin [502] (Figure 8). In methanolic 

extracts from frankincense, these pentacyclic triterpenic acids represent minor components with 

less than 1% (m/m), respectively [497]. Recently, a derivative of these lupeolic acids (LAs) was 

isolated from B. carteri that offers a primary hydroxy-function in position C-28, namely 3-O-

acetyl-28-hydroxy-lupeolic acid (Ac-OH-LA) [500]. 
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Figure 8: Molecular structures of lupeolic acids. 
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Furthermore, Boswellia spec. comprise tetracyclic tirucallic acids (TAs) [503-504]. It should be 

noted that TAs or derivatives thereof are also part of further resinous drugs such as from Canarium 

[505], Protium [506] and Pistacia species [507]. TA derivatives mainly differ at the C-3 carbon 

depending of the oxidation state (secondary alcohol or ketone), the configuration of the contingent 

hydroxy-group and the acetylation of this moiety. Further derivatives arise from the positioning of 

the cyclic double bond that is located in position 7 or 8, leading to the derivatives 3-α-hydroxy-

8,24-dien-tirucallic acid (3α-OH-8,24-dien-TA), 3α-O-acetyl-8,24-dien-tirucallic acid (3α-Ac-

8,24-dien-TA or Ac-TA), 3-β-hydroxy-8,24-dien-tirucallic acid (3β-OH-8,24-dien-TA or 3β-OH-

TA) and 3-oxo-8,24-dien-tirucallic acid (3-oxo-TA), 3-α-hydroxy-7,24-dien-tirucallic acid (3α-

OH-7,24-dien-TA or 3α-OH-TA) and 3α-O-acetyl-7,24-dien-tirucallic acid (3α-Ac-7,24-dien-TA) 

(alternative abbreviations are used in chapter  4.2 for simplification reasons, Figure 9). Resins from 

B. papyrifera and B. serrata contain considerable amounts of TAs, especially 3-oxo-TA (Table 2). 
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Figure 9: Molecular structures of tirucallic acids.  

 

The contents of various compounds in the oleo-gum resin of B. papyrifera and B. serrata were 

quantified by M. Paul (University of Saarland, Saarbrücken) as part of a current research 

cooperation (Table 2). 



 2.5 Boswellia species 47 

 

Table 2: Content of the major triterpenic 
acids in oleo-gum resins from 
B. papyrifera and B. serrata. According to 
[498]. Amounts of the triterpenic acids after 
exhaustive Soxhlet extraction with diethyl 
ether of the oleo-gum resin from 
B. papyrifera or B. serrata are given as 
percentage (m/m) of the crude oleo-gum 
resin. Compounds were quantified by HPLC 
analysis of the extracts as described in the 
methods. The areas under the peaks were 
referred to calibration curves generated with 
the isolated compounds. 

 

 

 

 

 

2.5.4 Medical use of Boswellia preparations 

2.5.4.1 Traditional use 

Frankincense was already used as a herbal remedy in the ancient cultures of Egypt, Rome and the 

traditional medicine of the orient, China and India, with a focus on treatment of inflammation 

(arthritis, ulcers, skin diseases, fever, diabetes) [508-509]. Frankincense was listed in the German 

pharmacopoeia (DAB 1, 1872) and was used in the therapy of huskiness, abscesses and 

inflammations of the mouth, throat and ovaries [510]. With the emergence of synthetic drugs in 

modern medicine attention for phyto-pharmaceuticals vanished, manifest in the last entry of 

frankincense (or “Olibanum”) in the German pharmacopoeia in 1941. With the upcoming attention 

for alternative medicine, interest for the resin resurrected and frankincense re-appears in the 

European pharmacopoeia (Ph. Eur.) since edition 5.7. 

2.5.4.2 Clinical effectiveness and safety data of frankincense formulations 

Clinical data on frankincense formulations include pilot studies on arthritis, inflammatory bowel 

diseases, bronchial asthma and cancer, all of which are based on or associated with a chronic 

inflammatory background [508] (Table 3). On the other hand, the focus on chronic inflammation 

might result from convenient patient recruitment. Experiments in animal models suggest efficacy 

in some models of acute inflammation as well [511-512].  

compound
B. papyrifera

[% (m/m)]

B. serrata

[% (m/m)]

α-BA 0.936 1.58

A-α-BA 1.75 0.912

β-BA 1.32 4.08

A-BA 3.13 3.17

K-BA 0.276 0.337

AKBA 3.90 0.570

α-OH-8,24-dien-TA 0.544 1.34

β-OH-8,24-dien-TA 0.650 1.12

3-oxo-TA 2.23 2.64

3α-Ac-8,24-dien-TA 0.829 0.848

Ac-LA 0.454 0.208
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Table 3: Clinical studies on frankincense formulations. H15® lipophilic B. serrata extract, WokVelTM B. serrata 
extract standardized on 40% BAs, 5-Loxin® B. serrata extract standardized on 30% AKBA, Aflapin® B. serrata 
extract enriched in AKBA and non-volatile oil, “S-Compound” B. serrata preparation, MMP-3 matrix 
metalloproteinase 3. 

Disease Study design Outcome ���� comments 
Rheumatoid 
arthritis 
[513] 

Meta- analysis of 11 studies; H15® Reduction of pain and swelling of joints 
� Inhomogeneous study-design and lack of transparency void 
proper assessment 

[514] Placebo controlled; H15® (3,600 
mg/d for 12 weeks); 18 patients 
(verum), 19 patients (placebo) 

No significant beneficial effects on pain, swelling, blood 
sedimentation, c-reactive protein level, requirement of additional 
NSAIDs  
� Small number of patients and concomitant treatment with 
glucocorticoids and disease-modifying anti-rheumatic drugs limit 
the power of the outcome 

Osteo-
arthritis 
[515] 

Placebo controlled, crossed-over; 
WokVelTM (999 mg/d for 8 weeks); 
30 patients  

Reduction of pain and swelling of arthritic knees, increased knee 
flexion and walking distance, unchanged radiological results  

[516] Prospective, comparison of 
WokVelTM (999 mg/d) and 
valdecoxib (10 mg/d); 33 patients 
per group, 6 months 

Improvement of pain, stiffness and difficulty in performing daily 
activities in both groups 
� Effect appeared faster in valdecoxib group (1 month vs. 2 
months in WokVelTM group) but relapsed directly after abortion 
of the therapy, whereas WokVelTM effect persisted for ≥ 1 month 

[517] Randomized, placebo-controlled 
5-Loxin® (100 and 250 mg/d for 
90 d); 25 patients per group 

Dose-dependent amelioration of pain, physical functions and 
MMP-3 levels in the synovial fluid 

[518] Placebo-controlled, comparison of 
5-Loxin® and Aflapin® (both 
100 mg/d for 90 d); 20 patients per 
group 

Dose-dependent amelioration of pain, physical functions and 
MMP-3 levels in the synovial fluid in both verum groups with 
superiority of the Aflapin® group 

Morbus 
Crohn 
[519] 

Double-blind, comparison of H15® 
(3,600 mg/d, 44 patients) and 
mesalazine (4,500 mg/d, 39 
patients), 8 weeks 

Comparable efficacy of both treatments with respect to the Crohn 
disease activity index (CDAI) accompanied with superior 
tolerance of H15® 

Ulcerative 
colitis 
[520] 

Comparison of pulverized 
B. serrata resin (standardized on 
1.8% KBA and 1.4% AKBA, 
1,050 mg/d, 34 patients) with 
sulfasalazine (3,000 mg/d, 8 
patients) , 6 weeks 

Improvement of all tested parameters (stool properties, 
histopathology, haemoglobin, serum iron, calcium, phosphorus, 
proteins and total leukocyte and eosinophil counts) in both 
groups, remission of 82% and 75% of the patients in the 
Boswellia- and sulfasalazine-treated group, respectively 

Chronic 
colitis 
[521] 

Comparison of “S-Compound” 
(900 mg/d, 20 patients) with 
sulfasalazine (3,000 mg/d, 10 
patients), 6 weeks 

One or more of the parameters (stool properties, histopathology, 
haemoglobin, serum iron, calcium, phosphorus, proteins and total 
leukocyte and eosinophil counts) improved in 90% and 60% of 
the “S-Compound” and sulfasalazine group, respectively, with 
70% and 40% of the patients going into remission, respectively  

Collagenous 
colitis 
[522] 

Double-blind, placebo-controlled, 
B. serrata extract (standardized on 
80% acidic compounds, 
1,200 mg/d, 6 weeks) , 11 patients 
(verum), 15 patients (placebo) 

Remission of 64% of the patients in the verum group vs. 27% in 
the placebo group 

Bronchial 
asthma 
[523] 

Double-blind, placebo-controlled, 
“S-Compound” (900 mg/d, 6 
weeks) , 40 patients in both groups 

Improvement of the test parameters (dyspnoea, rhonchi, numbers 
of attacks, different lung function tests) in 70% of the “S-
Compound”-treated patients vs. 27% in the control group  

 
Several clinical studies using H15® were performed in patients suffering from intra-cranial 

tumours [524-526]. A direct anti-proliferative effect could not be confirmed, but improvement of 

intra-cranial oedema and related symptoms was observed. Nevertheless, small groups of patients, 

parallel medication and the lack of controls complicate the assessment of these studies. 
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Regarding the toxicological aspects of Boswellia preparations, only minor evidence of side effects 

has been reported in therapeutic dosage. In dosages exceeding therapeutic dimensions, no 

genotoxic activity of BAs (at 1,000 mg/kg) [527] or sub-chronic toxicity of B. papyrifera resin or 

5-Loxin® extract were found in rats [528-529]. Extremely high concentrations of B. papyrifera 

resin (1,000 mg/(kg × d) for 28 days or single administration of 5,000 mg/(kg × d)) led to toxic 

effects such as decreased body weight, weakness, reduced motion activity and variations of some 

of haematological and biochemical parameters in rats [528]. A study analysing the toxicity of the 

extract 5-Loxin® in rats found LD50s greater than 5,000 mg/kg (peroral) and 2,000 mg/kg (dermal) 

[529].  

In an aforementioned clinical study using H15®, substantial laboratory parameters were registered 

for the evaluation of toxicological effects (haemogram, creatinine, alkaline phosphatase, γ-

glutamyl transpeptidase, glutamic-pyruvic transaminase, urinalysis) [514]. None of these 

parameters was abnormally changed during the therapy [514]. Some of the clinical studies 

documented the occurrence of gastrointestinal disorders (nausea, abdominal pain and cramping, 

diarrhoea, pyrosis) [346, 515-516, 521-522]. A causative association of these side effects and the 

therapy with frankincense formulations could not definitely be passed because of the small number 

of events. In summary, frankincense formulations are promising tools in the therapy of 

inflammatory diseases featuring a favourable safety profile.  

2.5.4.3 Molecular mechanisms affected by compounds isolated from Boswellia 

preparations  

Traditional medicine and modern studies support the anti-inflammatory potential of frankincense 

formulations. Several molecular targets possibly underlying these effects have been identified in 

the last decades. 

The first target to be identified for frankincense extracts and BAs was 5-LO [530-531]. AKBA 

was found to be the most potent BA with an IC50 of 1.5 µM in A23187-stimulated rat peritoneal 

PMNL and the BAs turned out to be non-redox type inhibitors of 5-LO [531]. However, the IC50 

values for AKBA deviate markedly (1.5 – 50 µM) depending on the assay conditions [406, 532]. 

Additional interference with cellular pathways may account for enhanced potency of BAs in some 

cellular systems. The carboxylic group in ring A and the keto-function in the C-11 position 

enhance the 5-LO inhibitory potential. Non-inhibitory derivatives (e.g. ursolic acid, amyrin) are 

able to compete with AKBA for the binding site on 5-LO, which is different from the catalytic site 

[406, 533]. Binding of AKBA is Ca2+-dependent and competes with high concentrations of AA, 

suggesting a common allosteric binding site [534].  
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In a cellular context, frankincense formulations exhibit stimulatory effects on 5-LO activity as well 

[535]. Ethanolic extracts enhanced A23187-induced 5-LO product formation in PMNL in 

concentrations below 5 µg/ml, whereas product formation is inhibited at higher concentrations. 

AKBA itself only performs inhibitory effects in stimulated neutrophils. In resting PMNL, AKBA 

and KBA induce p38 and ERK-1/-2 MAPK activation, Ca2+ mobilization and the formation of 

reactive oxygen species, which leads to AA release and enhanced 5-LO product formation [536-

537]. Similar to frankincense extracts, the tetracyclic triterpene 3-oxo-TA stimulates A23187-

induced 5-LO product formation in PMNL at concentrations below 10 µM and acts inhibitory at 

concentrations above 10 µM [538]. In contrast, its derivative 3α-OH-8,24-dien-TA constantly acts 

inhibitory. 3-oxo-TA (but barely 3α-OH-8,24-dien-TA) induces MAPK/ERK kinase-1/-2 (MEK-

1/-2) phosphorylation, which is associated with enhanced translocation of 5-LO to the membrane 

compartment of the cell. 

Although BAs were primarily claimed to be exclusive inhibitors of 5-LO not affecting other 

enzymes of AA metabolism such as 12-LO and COX [531], inhibition of platelet-type 12-LO 

(p12-LO) [539] and COX-1 [540] was found in more recent analyses. Both COX-1 and p12-LO 

bind directly to immobilized BAs. COX-1 activity is inhibited by BAs in stimulated platelets with 

AKBA being the most potent compound (IC50 ~ 6 µM), and all tested BAs inhibited COX-1 (IC50 

~ 32 µM) in a cell-free assay [540]. The inhibition is reversible, competes with AA, and binding to 

the catalytic site was reproduced in an automated docking approach. Binding and inhibition of 

COX-2 is by far less prominent. AKBA (IC50 ~ 15 µM) and β-BA inhibit p12-LO in cell-free 

assays, but BAs stimulate 12-HETE production in platelets [539]. The stimulatory effect is 

preserved after deprivation of Ca2+ and is caused by cPLA2α-dependent AA supply, which, in the 

presence of Ca2+, is associated with PI3 and Src kinase activity [539, 541]. 

Most recently, the microsomal PGE2 synthase-1 (mPGES-1) was found to bind immobilized BAs 

in a target fishing approach [540]. Direct binding was confirmed by surface plasmon resonance 

spectroscopy and led to suppression of mPGES-1 activity with IC50 values of 3 to 10 µM in a cell-

free assay. PGE2 synthesis was also inhibited in stimulated A549 cells and LPS-challenged human 

blood, without impact on other COX-dependent metabolites. Carrageenan-induced pleurisy in rats 

and paw oedema in mice were inhibited by BAs, which was accompanied by reduced PGE2 

formation. β-BA was the most potent BA causing significant inhibition of pleurisy and PGE2 

formation after peroral administration of 1 mg/kg.  

Another molecular target of BAs is human leukocyte elastase (HLE) with an IC50 of 15 µM for 

AKBA in a cell-free assay [542]. The inhibition of HLE by triterpenic acids was already shown for 

ursolic acid (IC50 ~ 2 µM) and even for neutral triterpenes like amyrin [542-543]. 
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Recently, direct interaction of BAs with cathepsin G (CG) was demonstrated in a target fishing 

approach [544]. Automated docking suggests tight binding to the same site as an established CG 

inhibitor. Proteolytic activity of CG is inhibited at sub-micromolar concentrations of β-BA, AKBA 

and A-BA and functional effects of CG (chemoinvasion in matrigel, Ca2+ mobilization in platelets) 

are reduced upon treatment of neutrophils with BAs. Oral administration of frankincense extracts 

in a clinical study even inhibited CG activity in human blood. These results are in line with earlier 

observations that found the inhibition of inflammatory leukocyte migration in rats after treatment 

with frankincense extracts [545]. 

A-α-BA and AKBA inhibit IκB kinases α and β (IKK), suppress the phosphorylation of IκBα and 

p65 and thus hinder the translocation of the NF-κB complex to the nucleus [546]. This was 

associated with the suppression of LPS-stimulated induction of TNFα in human monocytes at BA 

concentrations in the low micromolar range. 

Further reports indicate interactions of frankincense preparations and BAs with the immune 

system, such as the inhibition of the C3-convertase [547], stimulation of mitogen-induced 

lymphocyte proliferation [548] and enhanced release of Th2-derived cytokines (IL-4, IL-10) along 

with reduced Th1-derived (IFNγ, IL-2) cytokine production in stimulated lymphocytes [549]. A 

recent study demonstrated the interference of AKBA with STAT3 signalling by induction of Src 

homology region 2 domain containing phosphatase 1 (SHP-1) [550]. The resulting inhibition of 

IL-6-induced transcription through STAT3 was associated with reduced proliferation of cancer 

cells [550] but might also inhibit the induction of pro-inflammatory cytokines such as IL-17 and 

IL-23 that are highly involved in chronification of inflammation [551].  

Many studies have been performed on anti-proliferative, pro-apoptotic and cell-differentiating 

effects of frankincense formulations (reviewed in [512]). Interaction of BAs (especially 3-O-

acetyl-derivatives) with topoisomerases I and IIα may partly account for these actions (IC50 values 

of 1 to 30 µM) [552-553]. Moreover, inhibition of IKK was shown to contribute to cell death and 

inhibition of prostate cancer cell proliferation [554]. As ERK is part of anti-apoptotic signalling in 

many cancer cells [555], inhibition of this kinase by AKBA may account for anti-proliferative 

effects as well [556]. 

Data on molecular targets of Boswellia-derived terpenes besides BAs is quite scarce. TA-induced 

MEK-driven activation of 5-LO activity in PMNL was already mentioned above [538]. 

Furthermore, TAs directly inhibit Akt1 and Akt2 (IC50 values of 0.1-1 µM for 

3β-Ac-8,24-dien-TA), which induces apoptosis of prostate cancer cells that exhibit constitutive 

Akt activity without affecting the NF-κB pathway or the viability of non-cancerous cells [557].  
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The extract of the gum resin from B. frereana, which contains diminutive amounts of acids, was 

shown to suppress MMP activation, as well as NO and PGE2 production in stimulated cartilage 

tissue, which was attributed to the major component lupeol [558]. The neutral compounds 

incensole and incensole acetate, which represent major components of the neutral fraction from 

B. papyrifera [488], are recent subjects of investigation. Both substances suppress TNFα- or LPS-

stimulated activation of the NF-κB pathway by inhibition of IKK phosphorylation [559]. 

Significant inhibition of carrageenan-induced paw oedema in mice was shown for incensole 

acetate. However, the applied dose was relatively high (50 mg/kg) and so was the IC50 for TNFα-

induced NF-κB activation in Jurkat cells (50 µM). Incensole acetate significantly inhibits the LPS-

induced NF-κB-mediated production of pro-inflammatory mediators (TNFα, IL-1β, IL-6 and 

PGE2) in human monocytes with IC50 values of 15 to 30 µM [560].  

2.5.4.4 Pharmacokinetics 

Pharmacokinetic parameters are crucial for assessment of the final efficacy of drugs in vivo, but 

data so far are only available for BAs. Transfer of these data to other triterpenic acids might serve 

as vague reference. Single dose application of 333 mg WokVelTM extract (B. serrata) peaks in 

plasma concentrations of about 3 µM KBA after 4.5 h and the elimination half-life is about 6 h 

[561]. Single administration of 1,600 mg of another B. serrata extract results in KBA peak 

concentrations of 1.7 µM within 1 h whereas AKBA is not detected [562]. Repeated 

administration of four daily doses of 786 mg extract (B. serrata) for 10 days leads to plasma levels 

of 10 µM β-BA, 2.4 µM A-BA, 0.34 µM KBA and 0.1 µM AKBA [563], which is approximately 

in line with another study [544].  

Food intake critically influences bioavailability of BAs. Peak plasma levels are increased 3- to 6-

fold when B. serrata extracts are administered with a high fat diet instead of fasted conditions 

[564]. Non-acetylated BAs are intensively oxidized within phase I metabolization whereas the 

acetylated derivatives are poorly transformed [565]. No phase I metabolization (including 

deacetylation) was observed for AKBA in vivo. Restricted permeability in Caco-2 models provides 

an explanation for the relatively poor bioavailability of 11-keto-BAs [566]. Moreover, 

11-keto-BAs interact with the organic anion transporter OATP1B3 and multi-drug resistance 

protein 2 (MRP2) but not with P-glycoprotein. Frankincense extracts from different B. species 

inhibit diverse cytochrome P450 enzymes, with BAs contributing to inhibition (IC50 values of 5-

100 µM) but undefined compounds being the major inhibitors [567]. 
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2.6 Aim of this work 

Extracts from the oleo-gum resin of Boswellia species have been used in the treatment of diverse 

diseases since ancient times [508]. In modern medicine, frankincense formulations first fell into 

oblivion but re-emerged in the 1980s with upcoming data supporting their therapeutic efficacy 

accompanied by exiguous toxicity. Recent clinical studies and experiments in animal models 

stated the therapeutic efficacy of frankincense formulations in inflammatory diseases such as 

osteoarthritis, inflammatory bowel diseases, bronchial asthma and cancer [508, 512]. From the 

beginning of modern investigation of the resin, a pivotal role was attributed to the genus-specific 

BAs. Several molecular targets of these compounds have been identified so far: 5-LO [530-531], 

platelet-type 12-LO [539], COX-1 [540], mPGES-1 [511], CG [544], HLE [542] and IκB kinase 

[546]. BAs represent a considerable part of the resin but other compounds, which make up about 

85% of the whole oleo-gum resin or about 50% of the acid fraction [483, 497] were neglected in 

former investigations. So far, only TAs were rudimentarily investigated and were shown to 

modulate 5-LO product formation in cellular models [538]. Furthermore, incensole and incensole 

acetate were demonstrated to interact with the NF-κB pathway [559]. The molecular targets 

identified for BAs, incensole and incensole acetate provide some explanation for the clinical 

efficacy of frankincense formulations. However, for some of these targets, the IC50 values are 

relatively high and the realization of the required plasma levels after administration of reasonable 

doses of frankincense extracts is uncertain. Moreover, BAs only represent a more or less random 

selection of the plethora of structurally diverse compounds comprised in the oleo-gum resin and 

thus might only contribute in part to the overall anti-inflammatory activity.  

This work is part of a joined project with the University of Saarland (Michael Paul, Johann Jauch) 

and the Aureliasan GmbH (Tübingen, Germany). The project is supposed to reveal the 

composition of frankincense extracts derived from different Boswellia species, to identify 

pharmacologically active principles besides BAs, and to evaluate the contribution of the individual 

compounds to the overall biological effects of extracts. The objective is to provide the raw 

material and extraction methods that yield an extract with optimized activity.  

The aim of the present part of this project is the pharmacological characterization of frankincense-

derived triterpenic acids besides BAs. Their impact on targets of BAs is assessed and compared to 

the results obtained for BAs. cPLA2α, 5-LO, COX-1 and -2, mPGES-1, CG, HLE and the 

glucocorticoid-glucocorticoid receptor interaction are central subjects of investigation.  
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3 Materials and Methods 

3.1 Materials 

[5,6,8,9,11,12,14,15-3H]-AA and MK-886 were from BIOTREND GmbH (Cologne, Germany), p-

anisidinium chloride, EDC (N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride), 

cPLA2α inhibitor (RSC-3388), JNJ-10311795, KN-62, KN-93, N-methoxysuccinyl (MeOSuc)-

Ala-Ala-Pro-Val-p-nitroanilide (human leukocyte elastase substrate), sivelestat and U46619 were 

from Calbiochem/Merck KGaA (Darmstadt, Germany) and BAPTA-AM (1,2-bis(2-

aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid tetrakis(acetoxymethyl ester)), CDC (cinnamyl-

3,4-dihydroxy-α-cyanocinnamate), fMLP, Fura-2-AM (1-[2-(5-carboxyoxazol-2-yl)-6-

aminobenzofuran-5-oxy]-2-(2'-amino-5'-methyl-phenoxy) ethane-N,N,N',N'-tetraacetic acid, 

pentaacetoxymethyl ester), okadaic acid and U0126 were purchased from Enzo life sciences 

GmbH (Lörrach, Germany). BSA (bovine serum albumin), cathepsin G (human, purified), EDTA 

(ethylenediaminetetraacetate, disodium salt dihydrate) and HEPES (4-(2-hydroxyethyl)-1-

piperazineethanesulphonic acid) were from Applichem GmbH (Darmstadt, Germany), COX-1 

(ovine), COX-2 (human, recombinant) and 11β-PGE2 were from Cayman Chemical Company 

(Ann Arbor, MI, USA) and DMSO (dimethylsulphoxide), β-mercaptoethanol, sodium dodecyl 

sulphate (SDS), Spectra/Por® Regenerated Cellulose Dialysis Membrane (Cut-off 25,000) and 

Tween 20 were obtained from Carl Roth GmbH & Co. KG (Karlsruhe, Germany). ATP was from 

Roche Diagnostics GmbH (Mannheim, Germany), HybondTM ECL membrane was from GE 

Healthcare Europe GmbH (Munich, Germany), indomethacin was from Fagron GmbH (Barsbüttel, 

Germany), collagen (Kollagenreagenz Horm®) from Nycomed Pharma GmbH (Wien, Austria), 

Ni-NTA agarose from Qiagen GmbH (Hilden, Germany), peqGold Protein Marker IV from 

peqLab Biotechnology GmbH (Erlangen, Germany), PGH2 from Larodan Fine Chemicals 

(Malmö, Sweden), SureFECTTM from SABiosciences corp. (Frederick, MD, USA) and Ultima 

GoldTM XR was from Perkin Elmer Inc. (Boston, MA, USA). λ-Carrageenan type IV was from 

Sigma-Aldrich S. r. l. (Milan, Italy) and AA, A23187, cholesterol, cytochalasin B, 2,7-

dichlorofluorescin diacetate, essentially fatty acid-free BSA (FAF-BSA), γ-linolenic acid, LPS 

(from Escherichia coli 026:B6), N-Suc-Ala-Ala-Pro-Phe-p-nitroanilide (cathepsin G substrate), 

PGB1 and thrombin were obtained from Sigma-Aldrich Chemie GmbH (Munich, Germany), as 

well as all other chemicals, which are not mentioned separately. 
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BWA4C, CV-4151, SB203580 and MD-52 were generous gifts by Dr. L. G. Garland (Wellcome 

Research Laboratories, Kent, UK), Prof. Dr. S. Laufer (University of Tübingen, Germany) and 

Prof. Dr. M. Schubert-Zsilavecz (University of Frankfurt, Germany), respectively. 

Anti-cPLA2-antibody was from Santa Cruz Biotechnology Inc. (Santa Cruz, CA, USA), anti-β-

actin-, anti-phospho-Akt-, anti-phospho-Ser505-cPLA2-, anti-phospho-p44/42 MAPK-, anti-

phospho-JNK- and anti-phospho-p38 MAPK-antibodies were from Cell Signaling Technology Inc. 

(Danvers, MA, USA). Secondary antibodies were from Sigma-Aldrich Chemie GmbH (Munich, 

Germany) (alkaline phosphatase- and peroxidase-coupled antibodies) and GE Healthcare Europe 

GmbH (Munich, Germany) (fluorescent dye-coupled antibodies). 

PGE2- and 6-keto PGF1α-ELISA kits were purchased from Assay Designs Inc. (Ann Arbor, MI, 

USA) and LTB4- and 6-keto PGF1α-ELISA kits for in vivo experiments were from Cayman 

Chemical Company (Ann Arbor, MI, USA). The PGE2 RIA used for in vivo experiments was from 

Sigma-Aldrich S. r. l. (Milan, Italy). The CignalTM GRE Reporter Assay Kit was provided by 

SABiosciences corp. (Frederick, MD, USA) and the dual-luciferase reporter assay system was 

from Promega GmbH (Mannheim, Germany). 

All cell culture media, LSM 1077 (Lymphocyte Separation Medium), trypsin/EDTA solution, 

glutamine, penicillin and streptomycin were from PAA Laboratories GmbH (Coelbe, Germany). 

All lipids for non-cellular cPLA2α assays (1-palmitoyl-2-arachidonoyl-sn-glycero-3-phospho-

ethanolamine (PAPE), 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine (PAPC) and 1-

palmitoyl-2-oleoyl-sn-glycerol (POG)) were from Avanti Polar Lipids Inc. (Alabaster, AL, USA). 

High performance liquid chromatography (HPLC) solvents were from Merck KGaA (Darmstadt, 

Germany). All plastic ware was from Greiner Bio-One GmbH (Frickenhausen, Germany). 

3.2 Extraction of Boswellia oleo-gum resins and separation in fractions 

The oleo-gum resins of Boswellia species were powdered, filled in cellulose tubes and extracted 

with dichloromethane in a Soxhlet extractor for 16 h. Removal of the solvent led to the raw extract 

(RE). For separation of the acidic compounds, RE was dissolved in diethyl ether and alkalized 

with potash lye (5%, m/v). The mixture was shaken in a separating funnel and the aqueous phase 

was washed thrice with diethyl ether. The ether phases were combined, washed with saturated 

common salt solution and dried with anhydrous magnesium sulphate. Evaporation of the ether 

yielded the neutral fraction (n. f.). After acidification of the potash lye-phase with hydrochloric 

acid to pH 2-3, the aqueous phase was extracted thrice with diethyl ether. The pooled organic 

phases were washed with saturated common salt solution and dried with anhydrous magnesium 

sulphate. Evaporation of the ether resulted in the acid fraction (a. f.).  
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3.3 Fractionation of extracts by flash chromatography  

Flash chromatography of extracts from the oleo-gum resin of Boswellia species was performed by 

Dr. S. Seitz and M. Paul (University of Saarland, Saarbrücken, Germany). 

The stationary phase (normal phase silica gel, particle size 40-63 µm, 1,400 ml, Merck KGaA, 

Darmstadt, Germany) was equilibrated in mobile phase (pentane-diethyl ether (8:1, v/v) and acetic 

acid 1%, v/v), degassed, and filled in a glass column (10 cm). The sample was dissolved in the 

appropriate amount of mobile phase and filled on the chromatographic bed. Elution was carried 

out by application of 1 bar and usage of a pentane-diethyl ether gradient from 8:1 to 1:2 (v/v). 

Fractions were collected each 10 sec. The fractions were analyzed by thin layer chromatography 

(silica gel 60, F254, Merck KGaA, Darmstadt, Germany, pentane-diethyl ether (2:1, v/v) plus acetic 

acid 1%, v/v) and fractions containing the same compounds were merged. 

3.4 Analysis of extracts by HPLC and structure elucidation of isolated 

compounds by MS and NMR 

Analysis of extracts from the Boswellia oleo-gum resins by HPLC and structure elucidation of 

isolated compounds by mass spectrometry (MS) and nuclear magnetic resonance (NMR) were 

performed by Dr. S. Seitz and M. Paul (University of Saarland, Saarbrücken, Germany). 

Analytical systems: The acid fraction (see chapter  3.2) and its subfractions (see chapter  3.3) were 

analyzed on a Nucleodur® C18 ec-column (250 × 4 mm, 5 µm particle size, Macherey & Nagel, 

Düren, Germany) or a YMC-Pack Pro C18 RS-column (250 × 4.6 mm, 5 µm particle size, YMC 

Co., Ltd., Kyoto, Japan), using a gradient from 85 to 100% methanol with 0.1% (v/v) 

trifluoroacetic acid (0.85 ml/min).  

Preparative systems: Isolated acids were obtained by preparative chromatography using a 

Nucleodur® C18 ec-column (250 × 21 mm, 5 µm particle size, Macherey & Nagel, Düren, 

Germany) or a YMC-Pack Pro C18 RS-column (250 × 20 mm, 5 µm particle size, YMC Co., Ltd., 

Kyoto, Japan), using a gradient from 85 to 100% methanol (23.4 ml/min).  

The separated compounds were detected by UV-detection at 210 nm, collected and characterized 

by MS (MAT 95 S (Bruker, Karlsruhe, Germany) and ZQ4000-ESI-MS (single quadrupole, 

Waters, Milford, MA, USA)) and NMR-spectroscopy (1H, 13C, DEPT 90, DEPT135, H, H-COSY, 

HMQC, HMBC, HMQC-COSY and NOESY, AV II 400 and AV 500-devices (Bruker, Karlsruhe, 

Germany)). The purity of the isolated compounds was > 98% as determined by DAD-HPLC.  
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3.5 Cells 

A549 cells 

A549 cells (human lung epithelial cell line) were obtained from Dr. O. Rådmark (Karolinska 

Institute, Stockholm, Sweden). HERAcell incubators (Thermo Fisher Scientific Inc., 

Langenselbold, Germany) were used (37 °C, 6% CO2) for culturing. Cells were cultured in 

DMEM/high glucose (4.5 g/l) medium supplemented with FCS (10%, v/v), penicillin (100 U/ml) 

and streptomycin (100 µg/ml). Confluent cells were split every 3 days after detachment with 

trypsin (0.5 mg/ml) / EDTA (0.22 mg/ml) solution and seeded out at 2 × 106 cells in 20 ml 

medium. 

Sf9 cells 

Insect cells from Spodoptera frugiperda (Sf9 cells) were obtained from Prof. Dr. J. Z. Haeggström 

(Karolinska Institute, Stockholm, Sweden). Cells were cultured at 27 °C in an incubator (Binder 

GmbH, Tuttlingen, Germany) in Erlenmeyer flasks under continuous stirring. For culturing, Insect 

Express Sf9-S2 medium that was supplemented with 10% FCS, penicillin (100 U/ml) and 

streptomycin (100 µg/ml) was used. Cells were split when the cell density exceeded 2 × 106 cells 

per ml and seeded out at 5 × 105 cells per ml.  

Human blood cells 

Blood cells were isolated from leukocyte concentrates (buffy coats) from the blood centre 

University Hospital Tübingen (Germany). Venous blood from healthy donors that did not take any 

medication for at least 7 days was taken and centrifuged at 4,000 × g, 20 min at room temperature 

(RT). The cell concentrate was then diluted with cold phosphate buffered saline (PBS) buffer (1:1, 

v/v). Erythrocytes were separated by dextran sedimentation (dextran solution 5% (m/v in PBS) 

was mixed with the cell suspension in a ratio of 1:4, v/v) for 30 min and the leukocyte concentrate 

was layered on LSM 1077 (leukocyte separation medium) cushions and centrifuged at 1,000 × g, 

10 min at RT. 

Pelleted PMNL were purified from resting erythrocytes by hypotonic lysis as described [383] and 

resuspended in the appropriate volume of PBS buffer supplemented with 1 mg/ml glucose (PG 

buffer, purity > 96-97%). 

Peripheral blood mononuclear cells (PBMC) were collected after density gradient centrifugation, 

washed thrice with cold PBS buffer and resuspended in PG buffer in the indicated density. 
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Monocytes were isolated from PBMC, which were resuspended in RPMI 1640 medium 

supplemented with 2 mM glutamine, 100 µg/ml streptomycin, 100 U/ml penicillin and 10% FCS 

and spread (2 × 107 cells /ml) in cell culture flasks for 2 h at 37 °C, 6% CO2. Suspended 

lymphocytes were removed by suction and repeated washing with PBS buffer. Adherent 

monocytes were gently detached and resuspended (2 × 106 cells /ml) in PG buffer.  

Platelets for AA metabolite studies, subcellular fractionation and Western blot analysis were 

isolated from supernatants (platelet rich plasma, PRP) after centrifugation of leukocyte 

concentrates on LSM 1077 cushions. PRP was mixed with PBS buffer (pH 5.9, 3:2, v/v) and 

centrifuged (2,000 × g, 10 min, RT), the pellet was resuspended in PBS (pH 5.9) / 0.9% NaCl (1:1, 

v/v), centrifuged again (2,000 × g, 10 min, RT) and was finally resuspended (1 × 108 cells /ml) in 

PG buffer.  

Platelets for AA release studies were directly obtained from PRP after centrifugation of leukocyte 

concentrates on LSM 1077 cushions and adjusted to 1 × 108 cells /ml in human plasma.  

Platelets for studies on platelet aggregation were isolated from freshly drawn blood (collected in 

Monovettes®, Sarstedt AG & Co, Nürnbrecht, Germany, 10.6 mM trisodium citrate) from healthy 

donors that did not take any medication for at least 7 days. After centrifugation (240 × g, 12 min at 

RT), PRP was collected, transferred into tubes containing 20% (v/v) ACD buffer (85 mM 

trisodium citrate, 65 mM citric acid, 100 mM glucose), mixed with PBS (pH 5.9) (1:2, v/v), 

centrifuged at 1,240 × g (7 min at RT) and the pellet was resuspended (2 × 108 /ml) in Tyrode’s 

buffer (129 mM NaCl, 8.9 mM NaHCO3, 0.8 mM KH2PO4, 0.87 mM MgCl2, 5.6 mM glucose, 

10 mM HEPES pH 7.4). 

Cell counting 

Cell counts were determined by trypan blue exclusion. The cell suspension was mixed in equal 

parts with trypan blue solution (0.2%, w/v) and cells were counted on a Bürker haemocytometer 

under a light microscope. 

Cell viability 

To exclude toxic effects of test compounds during incubation periods, PMNL and monocyte 

viability was analysed by light microscopy and trypan blue exclusion. Incubation with 30 µM of 

the isolated test compounds or 30 µg/ml of the extracts for 30 min at 37 °C caused no significant 

change in neutrophil or monocyte viability.  
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3.6 Animals 

Male adult Wistar Han rats (200-230 g, Harlan, Milan, Italy) were housed in a controlled 

environment and provided with standard rodent chow and water. Animal care complied with 

Italian regulations on protection of animals used for experimental and other scientific purpose 

(Ministerial Decree 116192) as well as with the European Economic Community regulations 

(Official Journal of E.C. L 358/1 12/18/1986). 

3.7 Induction of mPGES-1 in A549 cells and isolation of microsomes 

A549 cells (2 × 106 cells in 20 ml DMEM/high glucose (4.5 g/l) medium containing FCS (10%, 

v/v), penicillin (100 U/ml) and streptomycin (100 µg/ml)) were plated in flasks and incubated for 

16 h at 37 °C and 6% CO2. Subsequently, the medium was replaced by fresh medium containing 

2% (v/v) of FCS. Induction of mPGES-1 expression was started by addition of interleukin-1β (IL-

1β, 2 ng/ml) for 72 h (37 °C, 6% CO2). The cells were detached, washed in PBS and the pelleted 

cells were frozen in liquid nitrogen. Ice cold homogenization buffer (0.1 M potassium phosphate 

buffer pH 7.4, 1 mM phenylmethylsulphonylfluoride (PMSF), 60 µg/mL soybean trypsin inhibitor 

(STI), 1 µg/mL leupeptin, 2.5 mM glutathione and 250 mM sucrose) was added and after 15 min, 

the pellet was resuspended and sonicated on ice (3 × 20 sec). The homogenate was subjected to 

differential centrifugation at 10,000 × g for 10 min and at 174,000 × g for 1 h at 4 °C. The pellet 

(microsomal fraction) was resuspended in 1 ml homogenization buffer and the protein 

concentration was determined by Bradford protein quantification [568]. 

3.8 Determination of PGE2 synthase activity in microsomes of A549 cells 

Microsomal membranes of A549 cells were diluted to 100 µl in homogenization buffer (see 

chapter  3.7) and test compounds or vehicle (DMSO) were added. After 15 min at 4 °C, PGE2 

formation was initiated by addition of PGH2 (20 µM). After 1 min at 4 °C, the reaction was 

terminated by addition of 100 µl stop solution (40 mM FeCl2, 80 mM citric acid and 10 µM of 

11β-PGE2). PGE2 was separated by solid phase extraction on RP-C18 material using acetonitrile 

(200 µl) as eluent and analyzed by RP-HPLC (30% acetonitrile, 70% water and 0.007% 

trifluoroacetic acid (v/v), Nova-Pak® C18 column, 5 × 100 mm, 4 µm particle size, flow rate 

1 ml/min) with UV detection at 198 nm. 11β-PGE2 was used as internal standard to quantify PGE2 

product formation by integration of the area under the peaks. 
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3.9 Recombinant production of His-tagged cPLA2α in Sf9 cells  

The baculovirus, carrying the genetic information of the His-tagged cPLA2α protein was kindly 

provided by Dr. M. Hoffmann (University of Frankfurt, Germany) [569]. In brief, the sequence 

coding for the cPLA2α protein was cloned from pVL1393 into the pFastBacTM HT A vector 

containing a 6 × His-tag coding sequence. The vector was transformed and amplified in 

DH10BacTM E. coli and Sf9 insect cells were transfected with the purified recombinant bacmid 

DNA via Cellfectin® reagent. The generated baculovirus was amplified by further infections.  

For expression of His-tagged cPLA2α, Sf9 cells were infected with recombinant baculovirus. Cells 

were harvested 72 h after infection, resuspended in lysis buffer (50 mM NaH2PO4 (pH 8), 300 mM 

NaCl, 10% glycerol (v/v), 1 mM EDTA, 60 µg/ml STI, 1 µg/ml leupeptin, 300 nM okadaic acid) 

and lysed by sonification (Branson Sonifier cell disruptor B15, Danbury, CT, USA). Insoluble 

particles in the cell lysate were removed by centrifugation at 100,000 × g (70 min, 4 °C). After 

addition of 2 mM MgSO4 and 10 mM imidazole, the supernatant was incubated with Ni-NTA 

agarose beads for 1 h at 4 °C under continuous agitation. Beads were washed six times with wash 

buffer (50 mM NaH2PO4 buffer (pH 8), 300 mM NaCl, 10% glycerol (v/v)) containing 20 mM 

imidazole, and His-tagged cPLA2α was eluted with wash buffer containing 150 mM imidazole. 

The eluate was dialyzed over night against TGN buffer (10 mM Tris-HCl (pH 8), 300 mM NaCl, 

20% glycerol (v/v)) and the protein content was analyzed using a protein quantification test kit 

according to the manufacturer’s instructions (Roti® Nanoquant, Carl Roth GmbH & Co. KG, 

Karlsruhe, Germany).  

3.10 Determination of arachidonic acid release from artificial vesicles 

The cPLA2α activity assay was performed with large unilamellar vesicles (LUVs) containing 

PAPC (166.7 nmol per ml dispersion) and POG (83.3 nmol per ml dispersion). Alternatively, 

LUVs containing different ratios of PAPC and POG, PAPE or combinations of PAPC and 

cholesterol were used, always maintaining an overall lipid content of 250 nmol per ml dispersion. 

LUVs were produced by drying phospholipid solutions (in chloroform) under argon atmosphere. 

Vesicle buffer (134 mM NaCl, 20 mM Tris-HCl pH 7.4, with or without 1 mg/ml FAF-BSA was 

added and the lipid suspension was subjected to freeze-thaw cycles (liquid nitrogen / 37 °C). Lipid 

aggregates were disintegrated to LUVs by extrusion (100 nm pore diameter). LUVs (0.2 ml 

dispersion) were supplemented with EDTA 1 mM or CaCl2 1 mM and pre-incubated with test 

compounds 10 min (RT) prior to starting the reaction with 2.5 µg/ml of purified enzyme. After 1 h 
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at 37 °C, the reaction was stopped by addition of 1.6 ml methanol. 1 nmol of linolenic acid was 

added, samples were acidified with 40 µL HCl (1 M) and buffered with 1.6 ml PBS buffer. After 

solid phase extraction of the fatty acids (C18-columns, 100 mg, UCT, Bristol, PA, USA) the fatty 

acids were derivatized with p-anisidinium chloride using EDC and then analyzed by HPLC (Nova-

Pak® C18 column (5 × 100 mm, 4 µm particle size, Waters, Eschborn, Germany)) at 250 nm using 

gradient elution starting from aqueous methanol 85% plus 0.007% trifluoro acetic acid (v/v) to 

methanol 100% plus 0.007% trifluoroacetic acid (v/v). The amount of released and derivatized AA 

was determined by peak area integration using derivatized linolenic acid as internal standard.  

3.11 Expression and purification of human recombinant 5-LO from E. coli 

E. coli BL21 cells were transformed with pT3-5LO plasmid as described [570]. Cells were grown 

overnight at 37 °C in Luria-Bertani (LB) medium containing 100 µg/ml ampicillin. LB medium 

containing 10 µM FeSO4, 2 mM MgSO4 and 100 µg/ml ampicillin was inoculated with overnight 

culture (30 °C) and 5-LO expression was induced by 800 µM isopropyl-β-D-thiogalactopyranoside 

(IPTG), when the optical density (OD, 620 nm) exceeded 0.2. At an OD (620 nm) of 2.0 (ca. 16 h 

after addition of IPTG), the cells were harvested (7,700 × g, 15 min, 4 °C), lysed by incubation in 

lysis buffer (50 mM triethanolamine/HCl (pH 8.0), 5 mM EDTA, 60 µg/ml STI, 1 mM PMSF, 

2 mM dithiothreitol (DTT) and 500 µg/ml lysozyme) and homogenized by sonification (3 × 15 s) 

(Branson Sonifier cell disruptor B15, Danbury, CT, USA) on ice. The homogenate was 

centrifuged (40,000 × g, 20 min, 4 °C, Sorvall RC 5B plus, Thermo Fisher Scientific Inc., 

Newtown, CT, USA) and the supernatant was subjected to affinity chromatography on an ATP 

agarose column [362]. Elution was conducted with 20 mM ATP in PBS plus 1 mM EDTA and the 

eluate was used for activity assays on purified 5-LO. 

3.12 Determination of 5-LO product formation in purified  recombinant 

5-LO  

0.5 µg of purified recombinant 5-LO were diluted in 1 ml of cold PBS containing 1 mM EDTA 

and 1 mM ATP. Test compounds were added and after 10 min at 4 °C the samples were set to 

37 °C for 30 sec. The reaction was started by addition of 2 mM CaCl2 and 20 µM AA and stopped 

after 10 min by addition of 1 ml cold methanol. After addition of 200 ng PGB1, acidification with 

30 µl 1 M HCl and dilution with 500 µl PBS buffer, PGB1 and the 5-LO products (5(S)-HETE and 

the all-trans isomers of LTB4) were extracted via solid phase extraction on C18-columns (100 mg, 

UCT, Bristol, PA, USA). The extracted samples were analyzed via HPLC on a Nova-Pak® C18 
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column (5 × 100 mm, 4 µm particle size, Waters, Eschborn, Germany) using aqueous methanol 

76% plus 0.007% trifluoroacetic acid (v/v) as mobile phase. The amount of 5-LO product 

formation was determined by peak area integration of the chromatograms at 280 nm (PGB1 and the 

all-trans isomers of LTB4) and 235 nm (5-HETE), using PGB1 as internal standard [571].  

3.13 Determination of the activity of isolated COX-1 and -2 

Determination of the activity of isolated ovine COX-1 and human recombinant COX-2 was 

performed as described [572-573]. In brief, purified COX-1 (ovine, 50 units) or COX-2 (human 

recombinant, 20 units) were diluted in 1 ml of Tris buffer (100 mM, pH 8) supplemented with 

5 mM glutathione, 5 µM haemoglobin and 100 µM EDTA at 4 °C and incubated with the test 

compounds for 9 min. Samples were warmed up to 37 °C for 1 min and AA (5 µM for COX-1, 

2 µM for COX-2) was added to start the reaction. After 5 min at 37 °C, the reaction was stopped 

by addition of ice-cold methanol. After addition of 200 ng PGB1, acidification with HCl (30 µl 

1 M) and dilution with PBS buffer (500 µl), COX-1 product 12-HHT was extracted via solid phase 

extraction on C18-columns (100 mg, UCT, Bristol, PA, USA). The extracted samples were 

analyzed via HPLC on a Nova-Pak® C18 column (5 × 100 mm, 4 µm particle size, Waters, 

Eschborn, Germany) using aqueous methanol 76% plus 0.007% trifluoroacetic acid (v/v) as 

mobile phase. The amount of 12-HHT was determined by peak area integration of the 

chromatograms at 280 nm (PGB1) and 235 nm (12-HHT).  

3.14 Determination of CG and HLE activity 

Cathepsin G (CG) and human leukocyte elastase (HLE) were liberated from PMNL as described 

[574]. In brief, PMNL (2.5 × 107 /ml in PG buffer supplemented with 1 mM CaCl2 (PGC buffer)) 

were warmed up to 37 °C (2 min) and stimulated with 10 µM cytochalasin B for 5 min at 37 °C 

and 2.5 µM fMLP for further 5 min at 37 °C. The incubation was stopped on ice and the cells were 

spun down (1,200 × g, 5 min, 4 °C). The supernatant was used as source for CG and HLE, which 

are contained in concentrations of about 10 µg/ml each [574]. The protein content in the 

supernatant was determined by Bradford protein quantification [568] and adjusted to 150 µg/ml 

with PGC buffer, which corresponds to a final concentration of 7.5 µg/ml in the assay or an 

enzyme activity of about 0.5 mU/ml for CG and 1.5 mU/ml for HLE under the applied conditions 

(1 U hydrolyzes 1 µmole of substrate per minute). Alternatively, 1 µg/ml of purified human CG 

(Applichem GmbH, Darmstadt, Germany) were used, which corresponded to an activity of 1.4 mU 

per µg CG at the specified conditions. 
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Incubation was performed in a 96-well plate. 180 µl of assay buffer (100 mM HEPES pH 7.4, 

500 mM NaCl) were mixed with 10 µl of the enzyme solution and the test compounds or vehicle 

(DMSO) and incubated for 10 min on ice. The reaction was started by addition of 20 µl of the 

respective chromogenic substrate (10 mM N-Suc-Ala-Ala-Pro-Phe-p-nitroanilide as specific 

substrate for CG and 1 mM N-methoxysuccinyl-Ala-Ala-Pro-Val-p-nitroanilide as specific 

substrate for HLE, both diluted in DMSO). The absorption of p-nitroaniline was recorded at 

405 nm over a period of 60 min (CG) or 10 min (HLE) at RT in a multi-well scanning 

spectrophotometer (Victor3 plate reader, Perkin Elmer LAS GmbH, Rodgau-Jügesheim, 

Germany). Measurements deviating from a linear increase in absorption were rejected. The 

increase in absorption was adjusted by the blank control (substrate in buffer without enzyme 

solution) and all results were related to the vehicle control.  

3.15 Arachidonic acid release from isolated blood cells 

Monocytes (2 × 106 /ml) and PMNL (5 × 106 /ml) in RPMI 1640 were incubated with 5 nM [3H]-

AA, platelets (1 × 108 /ml) were incubated with 100 µM aspirin plus 10 nM [3H]-AA for 2 h at 

37 °C and 6% CO2. Monocytes and PMNL were washed twice with PG buffer containing 2 mg/ml 

FAF-BSA. Platelets were washed twice with PBS (pH 5.9) containing 1 mM MgCl2, 11.5 mM 

NaHCO3, 1 mg/ml glucose and 1 mg/ml FAF-BSA. Cells were resuspended in PG buffer (5 × 106 

monocytes /ml, 2 × 107 PMNL /ml and 1 × 108 platelets /ml) and supplemented with 1 mM CaCl2. 

After pre-incubation with the test compounds for 15 min at 37 °C, samples were stimulated with 

1 µM A23187 for 5 min at 37 °C. The incubation was stopped on ice (10 min) and cells were spun 

down (monocytes and PMNL at 1,200 × g, platelets at 5,000 × g, 10 min). Aliquots (300 µl) of the 

supernatants were mixed with 2 ml Ultima GoldTM XR and measured on a scintillation counter 

(Micro Beta Trilux, Perkin Elmer Inc., Waltham, MA, USA) to detect released [3H]-AA. 

3.16 Determination of 5-LO product and 12- and 15-HETE formation in 

human PMNL 

For determination of 5-LO products and 12- and 15-HETE formation in intact cells, PMNL 

(5 × 106 in 1 ml of PG buffer) were supplemented with 1 mM CaCl2 and pre-incubated with test 

compounds or vehicle (DMSO) for 15 min at 37 °C. After pre-incubation, the cells were 

stimulated at 37 °C either with 1 or 2.5 µM A23187 alone, or 2.5 µM A23187 plus 20 µM AA for 

5 or 10 min. The reaction was stopped by addition of 1 ml cold methanol and 200 ng PGB1, 30 µl 

1 M HCl and 500 µl of PBS buffer were added to the samples. All samples were centrifuged at 
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800 × g for 10 min at RT. PGB1 and the 5-LO products 5(S)-HETE, 5(S),12(S)-dihydroxy-6,10-

trans-8,14-cis-eicosatetraenoic acid (5(S),12(S)-diHETE), LTB4 and its all-trans isomers as well as 

the 12-/15-LO products 12-HETE and 15-HETE were extracted via solid phase extraction on C18-

columns (100 mg, UCT, Bristol, PA, USA). The extracted samples were analyzed via HPLC on a 

Nova-Pak® C18 column (5 × 100 mm, 4 µm particle size, Waters, Eschborn, Germany) using 

aqueous methanol 76% plus 0.007% trifluoroacetic acid (v/v) as mobile phase. The amount of 

5-LO products was determined by peak area integration of the chromatograms at 280 nm (PGB1, 

5(S),12(S)-diHETE, LTB4 and its all-trans isomers) and 235 nm (5(S)-HETE, 12- and 15-HETE), 

using PGB1 as internal standard [571].  

3.17 Determination of 5-LO product and 12-HETE, 15-HETE and 12-HHT 

formation in human monocytes 

For determination of 5-, 12- and 15-LO product formation in monocytes, cells (2 × 106 in 1 ml of 

PG buffer) were supplemented with 1 mM CaCl2 and pre-incubated with test compounds or 

vehicle (DMSO) for 15 min at 37 °C. After pre-incubation, the cells were stimulated with 1 µM 

A23187 or 1 µM A23187 plus 20 µM AA for 5 min at 37 °C. The reaction was stopped by 

addition of 1 ml of cold methanol and 200 ng PGB1, 30 µl 1 M HCl and 500 µl PBS buffer were 

added to the samples. The samples were centrifuged at 800 × g for 10 min at RT. PGB1, the 5-LO 

products 5(S)-HETE, 5(S),12(S)-diHETE, LTB4 and its all-trans isomers as well as the 15-LO 

product 15-HETE, the 12-LO product 12-HETE and the COX product 12-HHT were extracted via 

solid phase extraction on C18-columns (100 mg, UCT, Bristol, PA, USA). The extracted samples 

were analyzed via HPLC on a Nova-Pak® C18 column (5 × 100 mm, 4 µm particle size, Waters, 

Eschborn, Germany) using aqueous methanol 76% plus 0.007% trifluoroacetic acid (v/v) as 

mobile phase. The amount of 5-LO, 15-LO, 12-LO and COX products was determined by peak 

area integration of the chromatograms at 280 nm (PGB1, 5(S),12(S)-diHETE, LTB4 and its all-

trans isomers) and 235 nm (5(S)-HETE, 15-HETE, 12-HETE and 12-HHT), using PGB1 as 

internal standard.  

3.18 Determination of 12-HHT and 12-HETE formation in washed human 

platelets 

Freshly isolated platelets (108 in 1 ml PG buffer) were supplemented with CaCl2 1 mM and pre-

incubated with the indicated substances under the conditions specified in the respective 

experiment. After addition of the indicated stimuli, samples were incubated for 5 min at 37 °C and 
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the reaction was stopped by addition of ice-cold methanol. After addition of 200 ng PGB1, 

acidification with 30 µl 1 M HCl and dilution with 500 µl PBS buffer, samples were centrifuged 

(800 × g, 10 min, RT) and PGB1, COX-1 product 12-HHT and 12-LO product 12-HETE were 

extracted via solid phase extraction on C18-columns (100 mg, UCT, Bristol, PA, USA). The 

extracted samples were analyzed via HPLC on a Nova-Pak® C18 column (5 × 100 mm, 4 µm 

particle size, Waters, Eschborn, Germany) using aqueous methanol 76% plus 0.007% 

trifluoroacetic acid (v/v) as mobile phase. The amount of AA metabolites was determined by peak 

area integration of the chromatograms at 280 nm (PGB1) and 235 nm (12-HHT and 12-HETE).  

3.19 Determination of 6-keto PGF1α synthesis in IL-1β-primed A549 cells 

A549 cells (2 × 106 cells in 20 ml DMEM/high glucose (4.5 g/l) medium containing FCS (10%, 

v/v), penicillin (100 U/ml) and streptomycin (100 µg/ml)) were plated in flasks and incubated for 

16 h at 37 °C and 6% CO2. Subsequently, the medium was replaced by fresh medium containing 

2% (v/v) of FCS. Induction of COX-2 expression was started by addition of IL-1β (2 ng/ml) for 

72 h (37 °C, 6% CO2). After detachment, cells were washed twice with PBS buffer and 

resuspended (2 × 106 /ml) in PGC buffer. Cells were incubated with the respective test compounds 

for 10 min (37 °C) and the reaction was started by addition of 3 µM AA. After 15 min at 37 °C, 

the incubation was stopped in ice, the cells were spun down (800 × g, 4 °C, 5 min) and 6-keto 

PGF1α in the supernatant was determined using a 6-keto PGF1α ELISA kit (Assay designs, Ann 

Arbor, MI, USA) according to the manufacturer’s protocol. 

3.20 Determination of PGE2 formation in LPS-primed human monocytes 

Freshly isolated monocytes (106 cells in 1 ml RPMI 1640 medium supplemented with FCS (0.5%, 

v/v), penicillin (100 U/ml) and streptomycin (100 µg/ml)) were plated in 12-well plates and 

stimulated with LPS (1 µg/ml) for 20 h (37 °C, 6% CO2). Subsequently, the wells were washed 

thrice with cold PBS buffer and fresh medium was added (1 ml per well). After 30 min at 37 °C 

(6% CO2), the medium was changed again and the cells were incubated with the respective test 

compounds for 15 min (37 °C, 6% CO2). The reaction was started by addition of 1 µM AA. After 

30 min, the medium was collected from the wells, centrifuged (300 × g, 10 min, 4 °C) and PGE2 

formation was quantified directly in the cleared medium using a PGE2 ELISA kit (Assay designs, 

Ann Arbor, MI, USA) according to the manufacturer’s protocol. 
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3.21 Platelet aggregation  

Aggregation of washed human platelets was determined using a turbidimetric light-transmittance 

device (two-channel aggregometer, Chrono-Log Corp., Havertown, PA, USA). Platelets in 

Tyrode’s buffer (2 × 108 /ml) were prepared as described (see chapter  3.5) and pre-incubated with 

the test compounds for 15 min at 37 °C. The instrument was calibrated with unstimulated platelet 

suspension (0% aggregation) and the vehicle control 5 min after stimulation with the respective 

stimulus (100% aggregation). CaCl2 (1 mM) was added to the samples just before starting of the 

measurement. Turbidity was recorded under continuous stirring (1,000 rpm) at 37 °C for 5 min. 

Data are presented in percent of light transmission in the vehicle control after total aggregation. 

3.22 Sample preparation for Western blot analysis from platelets 

Washed human platelets (109 /ml) were resuspended in PG buffer and either pre-treated with 

1 mM EDTA and 30 µM BAPTA-AM (30 min prior to incubation, RT) or 1 mM CaCl2 (5 min 

prior to incubation). The samples were warmed to 37 °C 4 min prior to incubation and stimulated 

with the test compounds or vehicle (DMSO). The incubation was stopped by addition (1:1, v/v) of 

SDS loading buffer (2 ×) (20 mM Tris-HCl pH 8, 2 mM EDTA, 5% SDS (w/v), 10% β-

mercaptoethanol (v/v)) and the samples were heated for 5 min at 95 °C. After addition (20%, v/v) 

of bromophenol blue (0.05%, w/v in aqueous glycerol (50%, v/v)), the samples were subjected to 

SDS-PAGE and Western blot analysis as described (see chapters  3.29 and  3.30). 

3.23 Subcellular fractionation of washed human platelets  

Washed human platelets (5 × 109 /ml) were resuspended in translocation buffer (134 mM NaCl, 

15 mM Tris-HCl pH 7.6, 1 g/l glucose) and either pre-treated with 1 mM EDTA and 30 µM 

BAPTA-AM (30 min prior to incubation, RT) or 1 mM CaCl2 (5 min prior to incubation). Then, 

the temperature was increased to 37 °C (within 4 min) and the test compounds or vehicle (DMSO) 

were added. After 5 min, the incubation was stopped on ice. Protease inhibitors (10 µg/ml 

leupeptin, 60 µg/ml STI and 1 mM PMSF) were added and the cells were lysed by three freeze-

thaw cycles (liquid nitrogen/water bath at RT) and centrifuged at 100,000 × g (45 min, 4 °C). The 

supernatant (cytosolic fraction) was collected and the pellet (membranous fraction) was 

resuspended in translocation buffer with protease inhibitors. Both fractions were mixed (1:1, v/v) 

with SDS loading buffer (2 ×) (20 mM Tris-HCl pH 8, 2 mM EDTA, 5% SDS (w/v), 10% β-
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mercaptoethanol (v/v)) and heated for 5 min at 95 °C. A solution of bromophenol blue (0.05%, 

w/v) in aqueous glycerol (50%, v/v) was added (20%, v/v) and the samples were analyzed by 

Western blotting on cPLA2α. 

3.24 Measurement of intracellular Ca2+ levels 

Washed platelets (6 × 108 /ml) in PG buffer were incubated with 2 µM Fura-2-AM for 30 min at 

37 °C under light protection to avoid photobleaching. After washing out excessive dye with PG 

buffer, cells were resuspended (108 /ml) in PG buffer and incubated with the test compounds for 

15 min at RT. Subsequently, samples were transferred to a thermally controlled and constantly 

stirred fluorometer cuvette (37 °C) in a fluorospectrometer (Aminco-Bowman series 2, Thermo 

Fisher Scientific Inc., Rochester, NY, USA). CaCl2 (1 mM) was added 1 min prior to stimulation 

with the indicated stimuli. Fluorescence emission at 510 nm was measured after excitation at 

340 nm and 380 nm and intracellular Ca2+ was calculated according to Grynkiewicz et al. [575]. 

Maximal fluorescence was determined by lysing cells with 0.5% (v/v) Triton-X 100 and minimal 

fluorescence after chelation with 10 mM EDTA. 

3.25 Dual-luciferase glucocorticoid receptor response element reporter 

assay 

A549 cells (2 × 104 cells in 100 µl RPMI 1640 medium supplemented with 2% FCS) were 

transfected with a mixture of an inducible glucocorticoid receptor responsive firefly luciferase 

reporter construct and a constitutively expressing Renilla luciferase construct (100 ng) using the 

CignalTM GRE Reporter Assay Kit (SABiosciences corp., Frederick, MD, USA) and the 

transfection reagent SureFECTTM (SABiosciences corp., Frederick, MD, USA) according to the 

manufacturer’s instructions. The constitutively expressing Renilla luciferase construct serves as an 

internal control for normalizing transfection efficiency and monitoring cell viability. A negative 

control composed of a non-inducible firefly luciferase reporter construct and a constitutively 

expressing Renilla luciferase construct (100 ng) was carried out for each sample to exclude 

unspecific effects or spontaneous reporter activity. After 24 h (37 °C, 6% CO2), the medium was 

changed to RPMI 1640 medium supplemented with 10% FCS, 100 U/ml penicillin and 100 µg/ml 

streptomycin and the cells were allowed to recover for 16 h. Successful transfection was checked 

by fluorescence microscopy, monitoring the positive control, which constitutively expressed green 

fluorescent protein (GFP) along with firefly and Renilla luciferases. Then, the cells were treated 

with the test substances or vehicle (DMSO) for 6 h (37 °C, 6% CO2) and the incubation was 
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stopped by cell lysis. For passive cell lysis and differential determination of the luciferases’ 

activities, a dual-luciferase reporter assay system (Promega GmbH, Mannheim, Germany) was 

used according to the manufacturer’s instructions. Luciferase activity was measured in a 

luminometer (Victor3 plate reader, Perkin Elmer LAS GmbH, Rodgau-Jügesheim, Germany).  

3.26 Determination of PGE2 and 6-keto PGF1α formation in LPS-

stimulated whole blood 

Whole blood, freshly withdrawn by venipuncture from healthy adult donors, was obtained from 

the University Hospital of Tübingen. Blood was collected in Monovettes® (Sarstedt AG & Co, 

Nürnbrecht, Germany) containing 10-30 I.U. heparin/ml. Aliquots of 0.8 ml whole blood were 

treated with thromboxane synthase inhibitor CV-4151 (1 µM) and buffered with 0.2 ml potassium 

phosphate buffer (10 mM potassium phosphate buffer pH 7.4, 3 mM KCl, 140 mM NaCl and 

6 mM glucose). After pre-incubation with substances or vehicle (DMSO) for 10 min at RT, the 

samples were stimulated with LPS (10 µg/ml) for 5 h at 37 °C. The reaction was stopped on ice 

and the samples were centrifuged (2,300 × g, 10 min, 4 °C). 6-keto PGF1α formation was 

quantified directly in the plasma using a 6-keto PGF1α ELISA kit (Assay designs, Ann Arbor, MI, 

USA) according to the manufacturer’s protocol. For quantification of PGE2 formation, the 

supernatant was acidified with citric acid (30 µL, 2 M) and the plasma was centrifuged again 

(2,300 × g, 10 min, 4 °C). Solid phase extraction of the supernatant and HPLC analysis of PGE2 

was performed as described above (see chapter  3.8). The PGE2 peak, identified by co-elution with 

the authentic standard, was collected and acetonitrile was removed under a nitrogen stream. The 

pH was adjusted to 7.4 by addition of 10 × PBS buffer before PGE2 contents were quantified using 

a PGE2 ELISA kit (Assay designs, Ann Arbor, MI, USA) according to the manufacturer’s 

protocol.  

3.27 Determination of 5-LO product, 12-HETE and 12-HHT formation in 

human whole blood 

Whole blood, freshly withdrawn by venipuncture from healthy adult donors, was obtained from 

the University Hospital of Tübingen. Blood was collected in Monovettes® (Sarstedt AG & Co, 

Nürnbrecht, Germany) containing 10-30 I.U. heparin/ml. After pre-incubation of aliquots of 2 ml 

with the test compounds or vehicle (DMSO) for 10 min at 37 °C, samples were stimulated with 

A23187 (30 µM). After 10 min, the incubation was stopped on ice and the samples were 

centrifuged (600 × g, 10 min, 4 °C). 500 µl of the supernatant were mixed with 2 ml of methanol 
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and 200 ng PGB1. The samples were stored at -20 °C for 2 h and centrifuged again (600 × g, 

10 min, 4 °C) to spin down precipitated protein. The supernatants were mixed with 2.5 ml PBS 

buffer and 75 µl 1 M HCl. PGB1 and the 5-LO products 5(S)-HETE, 5(S),12(S)-diHETE and 

LTB4 and its all-trans isomers as well as the 12-LO product 12-HETE and the COX product 

12-HHT were extracted via solid phase extraction on C18-columns (100 mg, UCT, Bristol, PA, 

USA). The extracted samples were analyzed via HPLC on a Nova-Pak® C18 column (5 × 100 mm, 

4 µm particle size, Waters, Eschborn, Germany) using aqueous methanol 76% plus 0.007% 

trifluoroacetic acid (v/v) as mobile phase. The amount of 5-LO, 12-LO and COX products was 

determined by peak area integration of the chromatograms at 280 nm (PGB1, 5(S),12(S)-diHETE 

and LTB4 and its all-trans isomers) and 235 nm (5(S)-HETE, 12-HETE and 12-HHT) using PGB1 

as internal standard.  

3.28 Carrageenan-induced pleurisy in rats 

Test compounds were dissolved in DMSO, diluted in saline (1:25, v/v) and administered 

intraperitoneally (i.p.) in an overall volume of 1.5 ml 30 min before administration of carrageenan. 

The vehicle-treated group of rats received 1.5 ml of DMSO 4% in saline. Rats were anaesthetized 

with enflurane 4% (v/v) in a mixture of O2, 0.5 l/min and N2O, 0.5 l/min, and submitted to a skin 

incision at the level of the left sixth intercostal space. The underlying muscle was dissected, and 

saline (0.2 ml) or λ-Carrageenan type IV 1% (w/v) (0.2 ml) was injected into the pleural cavity. 

The incision was closed with wound clips and the animals were allowed to recover. At 4 h after the 

injection of λ-carrageenan, the animals were killed by inhalation of CO2. After opening of the 

abdominal wall, the pleural cavity was punctured and 2 ml of saline solution containing heparin 

(5 U/ml) were injected in order to wash the pleural cavity. The exudate and washing solution were 

removed by aspiration, and the total volume was measured using adjustable volume pipettes. Any 

exudate that was contaminated with blood was discarded. The amount of exudate was calculated 

by subtracting the injected volume (2 ml) from the total recovered volume. Leukocytes in the 

exudate were spun down (800 × g, 10 min) and resuspended in PBS for cell counting (see chapter 

 3.5). The amounts of PGE2, LTB4 and 6-keto PGF1α in the supernatant of centrifuged exudate were 

assayed by radioimmunoassay (PGE2, Sigma-Aldrich S. r. l., Milan, Italy) and ELISA (LTB4 and 

6-keto PGF1α, Cayman Chemical Company, Ann Arbor, MI, USA) according to the 

manufacturer’s protocol. The results of the eicosanoids are expressed in pg per rat, the exudate 

volume is expressed in µl per rat and the cell count in million per rat and represent the mean ± S.E. 

of 5 - 20 rats.  
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3.29 Sodium dodecylsulphate polyacrylamide gel electrophoresis 

Samples were analyzed per sodium dodecylsulphate polyacrylamide gel electrophoresis (SDS-

PAGE) after boiling in the same volume of 2 × SDS loading buffer (20 mM Tris-HCl pH 8, 2 mM 

EDTA, 5% SDS (w/v), 10% β-mercaptoethanol (v/v)) for 5 min at 95 °C, sonification and 

supplementation (20%, v/v) with bromophenol blue (0.05%, w/v in aqueous glycerol (50%, v/v)). 

10 µl of sample were loaded on polyacrylamide gels (8-12% polyacrylamide, depending on the 

molecular weight of the analyzed proteins) and discontinuous electrophoresis was performed using 

a Mini-PROTEAN system (Bio-Rad Laboratories Inc., Hercules, CA, USA) as described [576]. 

The molecular weight of the proteins was estimated by comparison with pre-stained broad range 

molecular weight marker peqGold Protein Marker IV (peqLab Biotechnology GmbH, Erlangen, 

Germany). 

3.30 Western blot analysis 

The gels from the SDS-PAGE were blotted to nitrocellulose membranes (HybondTM ECL 

membrane, GE healthcare, Munich, Germany) by the tank blotting method (Bio-Rad Mini Trans-

Blot® cell, Bio-Rad PowerpacTM Basic, Bio-Rad Laboratories Inc., Hercules, CA, USA) in transfer 

buffer (48 mM Tris-HCl, 40 mM glycine, 0.1 mM SDS, 20% methanol (v/v)). After electroblot, 

uniform protein loading was confirmed by staining with Ponceau S (5% (w/v) in 5% (v/v) acetic 

acid). The membranes were blocked with 5% BSA (w/v) in TBS-T buffer (50 mM Tris-HCl pH 

7.4, 100 mM NaCl, 0.1% Tween 20 (v/v)) for 1 h at RT. After washing in TBS-T, the membranes 

were incubated in the respective primary antibodies overnight at 4 °C (diluted in blocking buffer 

plus 0.05% NaN3 (w/v), Table 4). The membranes were washed in TBS-T and incubated in 

secondary antibody for 1-3 h at RT (diluted 1:1,000 (v/v) in TBS-T plus 5% FCS (v/v) for alkaline 

phosphatase-coupled antibodies, 1:2,500 (v/v) in TBS-T for fluorescent dye-coupled antibodies, 

1:10,000 (v/v) in TBS-T for peroxidase-coupled antibodies).  

After washing, alkaline phosphatase-coupled antibodies were visualized with nitro blue 

tetrazolium (NBT) and 5-bromo-4-chloro-3-indolylphosphate (BCIP) (0.4 mM each) in detection 

buffer (100 mM Tris-HCl pH 9.5, 100 mM NaCl, 5 mM MgCl2) and scanned on a flat bed scanner 

(AGFA SnapScan 1236, AGFA Graphics Germany GmbH & Co. KG, Düsseldorf, Germany). 

Fluorescent dye-coupled antibodies (Cy3- and Cy5-coupled) were dried after washing and scanned 

on a fluorescence scanner (EttanTMDIGE system, GE Healthcare Europe GmbH, Munich, 

Germany). 
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Peroxidase-coupled antibodies were treated with chemoluminescence substrate (Lumi-Light or 

Lumi-LightPlus, Roche Diagnostics GmbH, Mannheim, Germany), the membranes were exposed to 

an autoradiography film (Amersham Hyperfilm ECL, GE Healthcare GmbH, Munich, Germany) 

for 10 sec to 30 min and the film was developed (CP 1000, AGFA Healthcare N.V., Mortsel, 

Belgium). 

 

Table 4: Primary antibodies. 

Antigen of primary 
antibody Source Dilution 

(v/v) Provider 

Phospho-Akt (Ser473) Rabbit, 
polyclonal antibody 

1:1,000 Cell Signaling Technology Inc., 
Danvers, MA, USA 

β-actin Rabbit, 
monoclonal antibody 

1:1,000 Cell Signaling Technology Inc., 
Danvers, MA, USA 

cPLA2 Rabbit, 
polyclonal antibody 

1:200 Santa Cruz Biotechnology Inc., 
Santa Cruz, CA, USA 

Phospho-cPLA2 
(Ser505) 

Rabbit, 
polyclonal antibody 

1:1,000 Cell Signaling Technology Inc., 
Danvers, MA, USA 

Phospho-JNK 
(p.-Jun-amino-terminal 
kinase) (Thr183/Tyr185) 

Mouse,  
monoclonal antibody 

1:1,000 Cell Signaling Technology Inc., 
Danvers, MA, USA 

Phospho-p42/44 MAPK 
(p.-ERK-1/-2) 
(Thr202/Tyr204) 

Mouse, 
monoclonal antibody 

1:1,000 Cell Signaling Technology Inc., 
Danvers, MA, USA 

Phospho-p38 MAPK 
(Thr180/Tyr182) 

Rabbit, 
polyclonal antibody 

1:1,000 Cell Signaling Technology Inc., 
Danvers, MA, USA 

 

3.31 Statistical analysis 

Data are expressed as mean + standard error (S.E.) of a certain number of independent 

observations (n), unless stated otherwise. Statistical evaluation of data was performed by one-way 

analysis of variance (ANOVA) for independent or correlated samples followed by Tukey HSD or 

Tukey-Kramer post-hoc tests (GraphPad InStat, GraphPad Software Inc., La Jolla, CA, USA). A 

P-value of < 0.05 (*), < 0.01 (**) or < 0.001 (***) was considered significant.  

IC50 values were determined by fitting concentration response data to a four parameter logistic 

curve (SigmaPlot, Systat Software Inc., San Jose, CA, USA) or by graphic linear interpolation. 
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4 Results 

4.1 Effect of lupeolic acids on cPLA2α activity 

BAs have been shown to interfere with several target structures in AA metabolism (see chapter 

 2.5.4.3). This chapter highlights direct effects of triterpenic acids from Boswellia spec. on cPLA2α-

driven AA release. 

4.1.1  Effects of triterpenic acids on cPLA2α activity in a cell-free assay 

We first investigated the effect of triterpenic acids isolated from the resin of Boswellia species on 

isolated cPLA2α. Therefore, the human cPLA2α protein was recombinantly expressed in Sf9 cells 

and purified by affinity chromatography and dialysis. Artificial mixed vesicles composed of 

defined phospholipids were used as substrate. Palmitoyl-oleoyl-glycerol was added to the 

phosphatidylcholine lipids to alleviate the accessibility of the substrate and thereby enhance 

cPLA2α activity [211]. Incubation of recombinant cPLA2α with these vesicles led to marked 

mobilization of AA that was inhibited after withdrawal of Ca2+ by EDTA or by the well-

recognized synthetic cPLA2α control inhibitor RSC-3388 of the pyrrolidine family of cPLA2α 

inhibitors (“cPLA2α-i.”) [235]. In this test system, most of the triterpenic acids were only hardly 

effective at a concentration of 10 µM (Figure 10). The only compound showing discernable, 

concentration-dependent activity was Ac-OH-LA, an LA derivative that is hydroxylated in the 

C-28 position. Its impact on cPLA2α activity was even more obvious when BSA was omitted from 

the assay. Here, a divergent pattern for the LAs lacking the 28-OH group and the C-28-

hydroxylated analogue became evident (Figure 11). LA and Ac-LA only exhibited a maximal 

inhibition of 44.8% and 29.7% (at 30 µM), respectively, whereas Ac-OH-LA inhibited AA release 

comparably to the cPLA2α control inhibitor (82% inhibition) with an IC50 value of 3.0 µM. These 

data indicate that Ac-OH-LA is a direct inhibitor of cPLA2α. 
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Figure 10: Effects of triterpenic acids from Boswellia species on AA release from PAPC/POG vesicles by 
purified cPLA 2α. PAPC/POG-vesicles (lipid concentration 250 µM in TBS buffer containing 1 mg/ml FAF-BSA) 
were supplemented with CaCl2 (1 mM) and pre-incubated with vehicle (ctrl., DMSO), cPLA2α inhibitor (cPLA2α-i.) 
5 µM or triterpenic acids at the indicated concentrations for 10 min at RT. The reaction was started by addition of the 
purified cPLA2α enzyme (2.5 µg/ml) and maintained at 37 °C for 60 min. After derivatization, AA was analyzed by 
HPLC. Data are given as mean + S.E. of the percentage of the vehicle control (=100%), n = 3 – 6, * p < 0.05, ** p < 
0.01, *** p < 0.001 vs. ctrl., one-way ANOVA followed by Tukey-Kramer post hoc test. 
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Figure 11: Effects of lupeolic acids on AA release from PAPC/POG vesicles by purified cPLA2α. PAPC/POG-
vesicles (lipid concentration 250 µM in TBS buffer without BSA) were supplemented with CaCl2 (1 mM) and pre-
incubated with vehicle (ctrl., DMSO), 5 µM cPLA2α inhibitor (cPLA2α-i.) and LA, Ac-LA and Ac-OH-LA (10 µM in 
panel A, and at the indicated concentrations in panel B) for 10 min at RT. The reaction was started by addition of the 
purified cPLA2α enzyme (2.5 µg/ml) and maintained at 37 °C for 60 min. After derivatization, AA was analyzed by 
HPLC. Data are given as mean + S.E. of the percentage of the vehicle control, n = 3 – 5, * p < 0.05, ** p < 0.01, *** p 
< 0.001 vs. ctrl., one-way ANOVA followed by Tukey-Kramer post hoc test. 
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4.1.2 Effects of lupeolic acids on arachidonic acid release in different 

isolated human blood cells 

To pursue the inhibitory effect of LAs in a cellular environment, human blood cells were isolated, 

labelled with [3H]-AA, pre-incubated with LAs and stimulated with calcium ionophore A23187. 

A23187 leads to a massive influx of extracellular Ca2+ into the cell, which provokes translocation 

of the cPLA2α to its substrate in cellular membranes. In platelets, stimulation with A23187 (1 µM) 

enhanced AA release about threefold which was essentially prevented by pre-incubation with the 

cPLA2α control inhibitor (Figure 12 A). Again, LAs lacking the 28-OH group were less effective 

in inhibiting A23187-induced AA release (maximal inhibition of 50.1% and 37.7% for LA and 

Ac-LA, respectively at 10 µM), which was not enhanced by increasing concentrations (Figure 

12 A and B). On the other hand, Ac-OH-LA showed a concentration-dependent inhibition of 

stimulus-induced AA release with almost complete blocking at 30 µM and an IC50 value of 

1.9 µM. Also in A23187-stimulated monocytes (Figure 12 C and D), LAs lacking the 28-OH 

group did not affect AA release at concentrations up to 30 µM. However, at a concentration of 

10 µM, Ac-OH-LA inhibited AA release to the level of the unstimulated control or the cPLA2α 

control inhibitor (IC50 value of 4.7 µM). The same pattern of effects was observed in A23187-

induced AA release in PMNL (Figure 12 E). Here, stimulation with A23187 (1 µM) even led to 

sevenfold increase in the release of AA that was vastly inhibited by the cPLA2α control inhibitor 

again. At 10 µM, LAs lacking the 28-OH group did not affect AA release at all, but Ac-OH-LA 

showed inhibition of 87.5%. Together, A23187-induced AA release in various blood cells is 

prevented by treatment with Ac-OH-LA, whereas LAs lacking the 28-OH group are rather 

ineffective. 
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Figure 12: Effects of LAs on AA release from isolated human blood cells. [3H]-AA-labelled platelets (A and B, 
108 /ml in PGC buffer), monocytes (C and D, 5 × 106 /ml in PGC buffer), or PMNL (E, 2 × 107 /ml in PGC buffer) 
were pre-incubated with vehicle (ctrl., DMSO), 5 µM cPLA2α inhibitor (cPLA2α-i.), LA, Ac-LA and Ac-OH-LA 
(10 µM each in A, C and E and at the indicated concentrations in B and D) for 15 min at 37 °C. The cells were 
stimulated with 1 µM A23187 for 5 min at 37 °C. The reaction was terminated on ice, the samples were centrifuged 
and the supernatant was analyzed for [3H]-AA (and its derivatives) by scintillation counting. Data are given as mean + 
S.E. of the percentage of the vehicle control (+1 µM A23187) with (13.5 ± 1.50) × 103 cpm (A and B), (29.7 ± 3.42) × 
103 cpm (C and D) and (23.7 ± 1.14) × 103 cpm (E), n = 3 – 5, ** p < 0.01, *** p < 0.001 vs. ctrl., one-way ANOVA 
followed by Tukey-Kramer post hoc test. 
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4.1.3 Impact of lupeolic acids on arachidonic acid metabolite formation in 

human blood cells  

Because AA serves as substrate for the synthesis of several eicosanoids (e.g. PGs and LTs) we 

aimed to investigate whether Ac-OH-LA, which suppresses AA release, might also reduce the 

release of eicosanoids from the respective human blood cells. Stimulation of platelets with A23187 

led to a marked production of the COX-1 product 12-HHT and the 12-LO product 12-HETE, 

which was prevented by inhibition of cPLA2α (using cPLA2α-i.) or by inhibition of COX-1 or of 

12-LO by ibuprofen or CDC, respectively. Ac-OH-LA performed concentration-dependent 

inhibition of both 12-HHT (Figure 13 A and B) and 12-HETE formation (Figure 13 C and D). At 

10 µM, Ac-OH-LA blocked 12-HHT production to an extent that was comparable to the COX 

inhibitor ibuprofen (30 µM). Also blocking of 12-HETE formation by Ac-OH-LA (10 µM) was 

comparable to the effect of the 12-LO inhibitor CDC (10 µM). For both AA metabolites the IC50 

values were in the same range with 3.0 µM (12-HHT) vs. 3.5 µM (12-HETE). On the other hand, 

LAs lacking the 28-OH group did not show distinct effects on AA metabolite formation. 

Interestingly, the cPLA2α control inhibitor only partially inhibited 12-HHT production at a 

concentration of 15 µM, but almost totally blocked 12-HETE production. 
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Figure 13: Effects of LAs on A23187-induced 12-HHT and 12-HETE formation in human platelets. Platelets 
(108 /ml in PGC buffer) were pre-incubated with vehicle (ctrl., DMSO), 15 µM cPLA2α inhibitor (cPLA2α-i.), 30 µM 
ibuprofen, 10 µM CDC , LA, Ac-LA and Ac-OH-LA (10 µM in panels A and C and at the indicated concentrations in 
panels B and D) for 15 min at 37 °C. The cells were stimulated with A23187 1 µM for 5 min at 37 °C. The reaction 
was terminated and 12-HHT (A and B) and 12-HETE formation (C and D) were determined. Data are given as mean + 
S.E. of the percentage of the vehicle control with 91.0 ± 13.8 ng 12-HHT and 271 ± 34.1 ng 12-HETE per 108 cells, n 
= 3 – 4, ** p < 0.01, *** p < 0.001 vs. ctrl., one-way ANOVA followed by Tukey-Kramer post hoc test. 

 
Also in PMNL, A23187 led to extensive production of 5-LO products (5(S)-HETE, 5(S),12(S)-

diHETE, LTB4 and its all-trans isomers) (Figure 14 A and B), 12-HETE (Figure 14 C and D) and 

15-HETE (data not shown). The production of these metabolites was strongly dependent on 

cPLA2α as it was totally blocked by the control inhibitor cPLA2α-i. Ac-OH-LA completely 

prevented the metabolite production at a concentration of 10 µM as well. Of interest, LA partly 

inhibited 5-LO product formation (79.9% inhibition, Figure 14 A and B) without affecting the 

production of 12- or 15-HETE. 12- and 15-HETE formation were rather stimulated by the LAs 

lacking the 28-OH group (and the 5-LO control inhibitor BWA4C), which can be attributed to 

increased AA supply, resulting from inhibitory effects on other AA-metabolizing enzymes. 
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Figure 14: Effects of LAs on A23187-induced 5-LO product and 12-HETE formation in PMNL. PMNL (5 × 
106 /ml in PGC buffer) were pre-incubated with vehicle (ctrl., DMSO), 5 µM cPLA2α inhibitor (cPLA2α-i.), 0.3 µM 
BWA4C, LA, Ac-LA and Ac-OH-LA (10 µM each in panels A and C and at the indicated concentrations in panels B 
and D) for 15 min at 37 °C. The cells were stimulated with 1 µM A23187 for 5 min at 37 °C. The reaction was 
terminated and 5-LO product formation (5(S)-HETE, 5(S),12(S)-diHETE, LTB4 and its all-trans isomers, A and B) 
and 12-HETE formation (C and D) were determined. Data are given as mean + S.E. of the percentage of the vehicle 
control with 177 ± 18.4 ng 5-LO products and 30.9 ± 9.75 ng 12-HETE per 5 × 106 cells, n = 3, *** p < 0.001 vs. ctrl., 
one-way ANOVA followed by Tukey HSD post hoc test. 

 
Similarly, A23187 provoked metabolite production in monocytes solely dependent on cPLA2α. 

Like the cPLA2α control inhibitor, Ac-OH-LA (10 µM) completely inhibited the production of 

5-LO metabolites (5(S)-HETE, 5(S),12(S)-diHETE, LTB4 and its all-trans isomers, Figure 15 A 

and B) as well as 12-HETE (Figure 15 C and D), 12-HHT (Figure 15 E and F) and 15-HETE (data 

not shown). LAs lacking the 28-OH group did not affect the metabolite production except for the 

5-LO products. Especially LA inhibited 5-LO product formation, but was still less effective than 

Ac-OH-LA. 
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Figure 15: Effects of LAs on A23187-induced 5-LO product, 12-HETE and 12-HHT formation in human 
monocytes. Monocytes (2 × 106 /ml in PGC buffer) were pre-incubated with vehicle (ctrl., DMSO), 5 µM cPLA2α 
inhibitor (cPLA2α-i.), 0.3 µM BWA4C, 30 µM ibuprofen, LA, Ac-LA and Ac-OH-LA (10 µM each in panels A, C 
and E and at the indicated concentrations in panels B, D and F) for 15 min at 37 °C. The cells were stimulated with 
1 µM A23187 for 5 min at 37 °C. The reaction was terminated and 5-LO product formation (5(S)-HETE, 5(S),12(S)-
diHETE, LTB4 and its all-trans isomers, A and B), 12-HETE (C and D) and 12-HHT (E and F) formation were 
determined. Data are given as mean + S.E. of the percentage of the vehicle control with 82.9 ± 16.1 ng 5-LO products, 
189 ± 23.4 ng 12-HETE and 31.5 ± 3.66 ng 12-HHT per 2 × 106  cells, n = 3, * p < 0.05, *** p < 0.001 vs. ctrl., one-
way ANOVA followed by Tukey HSD post hoc test. 
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4.1.4 Effects of lupeolic acids on arachidonic acid metabolite formation in 

human blood cells after stimulation with exogenous arachidonic acid 

To trace the effects of Ac-OH-LA back to the inhibition of AA supply, platelets, PMNL and 

monocytes were pre-treated with LAs and stimulated with exogenous AA (alone or combined with 

A23187). The supply of exogenous AA is supposed to circumvent the necessity of endogenous 

AA release for the generation of 5-, 12-, and 15-LO products as well as COX metabolites. 

In platelets, stimulation with AA led to a strong loss of the inhibitory effect of Ac-OH-LA. Thus, 

12-HHT production was only moderately affected after pre-treatment with Ac-OH-LA (at 30 µM, 

52.2% inhibition after AA stimulation vs. 95.6% after stimulation with A23187, Figure 16 A and 

B). The 12-HETE production was nearly unaffected after pre-treatment with Ac-OH-LA (Figure 

16 C and D). A similar pattern was observed for the cPLA2α control inhibitor that led to about 

50% inhibition of 12-HHT formation, but rather stimulated 12-HETE formation.  
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Figure 16: Effects of Ac-OH-LA on AA-induced metabolite formation in human platelets. Platelets (108 /ml in 
PGC buffer) were pre-incubated with vehicle (ctrl., DMSO), 15 µM cPLA2α inhibitor (cPLA2α-i.), 30 µM ibuprofen 
or Ac-OH-LA (10 µM in panels A and C and at the indicated concentrations in panels B and D) for 15 min at 37 °C. 
The cells were stimulated with 5 µM AA for 5 min at 37 °C. The reaction was terminated and 12-HHT (A and B) and 
12-HETE formation (C and D) were determined. Data are given as mean + S.E. of the percentage of the vehicle 
control with 170 ± 18.4 ng 12-HHT and 1,052 ± 70.7 ng 12-HETE per 108 cells, n = 3 – 6, *** p < 0.001 vs. ctrl., one-
way ANOVA followed by Tukey-Kramer post hoc test. 
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In PMNL, supplementation of exogenous AA only partially reconstituted 5-LO product formation 

after pre-treatment with LA and Ac-OH-LA (Figure 17 A and B). Of interest, also the cPLA2α 

inhibitor suppressed 5-LO product formation in this approach. In contrast, 12-HETE (Figure 17 C 

and D) and 15-HETE formation (data not shown) was fully restored in the presence of exogenous 

AA. 
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Figure 17: Effects of LAs on AA- plus A23187-induced 5-LO product and 12-HETE formation in human 
PMNL. PMNL (5 × 106 /ml in PGC buffer) were pre-incubated with vehicle (ctrl., DMSO), 5 µM cPLA2α inhibitor 
(cPLA2α-i.), 0.3 µM BWA4C, LA, Ac-LA or Ac-OH-LA (10 µM each in panels A and C and at the indicated 
concentrations in panels B and D) for 15 min at 37 °C. The cells were stimulated with 20 µM AA plus 2.5 µM 
A23187 for 10 min at 37 °C. The reaction was terminated and 5-LO product formation (5(S)-HETE, 5(S),12(S)-
diHETE, LTB4 and its all-trans isomers, A and B) and 12-HETE formation (C and D) were determined. Data are given 
as mean + S.E. of the percentage of the vehicle control with 988 ± 163 ng 5-LO products and 129 ± 28.9 ng 12-HETE 
per 5 × 106 cells, n = 3 – 4, *** p < 0.001 vs. ctrl., one-way ANOVA followed by Tukey-Kramer post hoc test. 

 

The same pattern was observed for monocytes. Here, LA and Ac-OH-LA partly retained their 

inhibitory potential on 5-LO product formation after addition of exogenous AA as well (Figure 

18 A and B). In addition, Ac-OH-LA impaired 12-HHT formation at higher concentrations (Figure 

18 E and F). On the other hand, 12-HETE (Figure 18 C and D) and 15-HETE (data not shown) 

formation in Ac-OH-LA-treated monocytes was totally restored after supplementation of AA.  
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Figure 18: Effects of LAs on AA- plus A23187-induced 5-LO product, 12-HETE and 12-HHT formation in 
human monocytes. Monocytes (2 × 106 /ml in PGC buffer) were pre-incubated with vehicle (ctrl., DMSO), 5 µM 
cPLA2α inhibitor (cPLA2α-i.), 0.3 µM BWA4C, 30 µM ibuprofen, LA, Ac-LA or Ac-OH-LA (10 µM each in panels 
A, C and E and at the indicated concentrations in panels B, D and F) for 15 min at 37 °C. The cells were stimulated 
with 20 µM AA plus 1 µM A23187 for 5 min at 37 °C. The reaction was terminated and 5-LO product formation 
(5(S)-HETE, 5(S),12(S)-diHETE, LTB4 and its all-trans isomers, A and B), 12-HETE (C and D) and 12-HHT (E and 
F) formation were determined. Data are given as mean + S.E. of the percentage of the vehicle control with 44.0 ± 
4.79 ng 5-LO products, 183 ± 40.8 ng 12-HETE and 69.3 ± 5.30 ng 12-HHT per 2 × 106 cells, n = 3, * p < 0.05, ** p 
< 0.01, *** p < 0.001 vs. ctrl., one-way ANOVA followed by Tukey HSD post hoc test. 
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In conclusion, the inhibitory potential of Ac-OH-LA on AA release by cPLA2α is obviously 

influencing the production of AA metabolites in human blood cells. Nevertheless, additional 

effects (e.g. inhibition of 5-LO or COX enzymes) contribute to the overall inhibition of metabolite 

production. 

4.1.5 Collagen-induced, arachidonic acid-dependent platelet aggregation is 

influenced by 3-O-acetyl-28-hydroxy-lupeolic acid 

Human platelets are commonly stimulated by collagen after injury of blood vessels. Collagen 

binds to its receptor glycoprotein VI on the platelet’s membrane, and leads to activation of cPLA2α 

via phosphorylation cascades. The liberated AA is subsequently converted to PGH2 by COX-1 and 

then to TXA2 by thromboxane synthase [577]. TXA2 binds to its G protein-coupled receptor TPα 

on platelet membranes which leads to activation of phospholipase C (PLCβ) [578]. Thereby it 

activates protein kinase C (PKC) and induces Ca2+ release that finally leads to platelet aggregation 

[577-578]. Another way to activate platelet aggregation is the direct stimulation with TXA2 or its 

stable analogue U46619, which does not include cPLA2α activation [577]. To investigate 

functional effects of LAs on cPLA2α activity in a cellular system, platelets were pre-incubated 

with LAs (15 min, 37 °C) and stimulated with the stimuli U46619 or collagen. After stimulation 

with U46619, the control inhibitors indomethacin and cPLA2α-i. were ineffective as expected 

(Figure 19 A), highlighting the independence of U46619-induced platelet aggregation from the 

COX-1-cPLA2α axis. On the other hand, collagen-induced platelet aggregation was totally 

prevented by the control inhibitor indomethacin that inhibits TXA2 formation through inhibition of 

COX-1, (Figure 19 B). cPLA2α-i. reduced collagen-induced platelet aggregation to a large extent 

(84% reduction compared to the vehicle control) as well. 
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Figure 19: Effects of cPLA2α-i. and indomethacin on U46619- and collagen-induced platelet aggregation. 
Platelets (2 × 108 /ml in tyrode’s buffer) were pre-incubated with vehicle (ctrl., DMSO), 5 µM cPLA2α-i. or 20 µM 
indomethacin for 15 min at 37 °C, then supplemented with CaCl2 (1 mM) and stimulated with 1 µM U46619 (A) or 
0.6 µg/ml collagen (B). Light transmission was recorded over 5 min. Data are shown as percentage of the maximum 
aggregation after vehicle pre-incubation and stimulation with the appropriate stimulus. Results are representative for at 
least three experiments. 

 

Pre-treatment of platelets with Ac-OH-LA hardly affected U46619-induced platelet aggregation up 

to 10 µM (Figure 20 A) but led to considerable inhibition of collagen-induced aggregation at this 

concentration (Figure 20 B). Collagen-induced platelet aggregation was almost totally blocked by 

30 µM Ac-OH-LA, but also U46619-induced aggregation was partly affected at this concentration, 

pointing to an additional non-cPLA2α-dependent effect.  
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Figure 20: Effects of Ac-OH-LA on U46619- and collagen-induced platelet aggregation. Platelets (2 × 108 /ml in 
tyrode’s buffer) were pre-incubated with vehicle (ctrl., DMSO) or Ac-OH-LA (10 µM and 30 µM) for 15 min at 
37 °C, then supplemented with CaCl2 (1 mM) and stimulated with 1 µM U46619 (A) or 0.6 µg/ml collagen (B). Light 
transmission was recorded over 5 min. Data are shown as percentage of the maximum aggregation after vehicle pre-
incubation and stimulation with the appropriate stimulus. Results are representative for at least three experiments. 
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The two LAs that are not hydroxylated in the C-28 position showed an unexpected behaviour in 

this test system. In fact, LA and Ac-LA at 10 and 30 µM totally blocked platelet aggregation 

irrespective of the stimulus (collagen (Figure 21 B and D) or U46619 (Figure 21 A and C)). 
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Figure 21: Effects of LAs lacking the 28-OH group on U46619- and collagen-induced platelet aggregation. 
Platelets (2 × 108 /ml in tyrode’s buffer) were pre-incubated with vehicle (ctrl., DMSO), LA (10 µM and 30 µM, 
panels A and B) or Ac-LA (10 µM and 30 µM, panels C and D) for 15 min at 37 °C, then supplemented with CaCl2 
(1 mM) and stimulated with 1 µM U46619 (A and C) or 0.6 µg/ml collagen (B and D). Light transmission was 
recorded over 5 min. Data are shown as percentage of the maximum aggregation after vehicle pre-incubation and 
stimulation with the appropriate stimulus. Results are representative for at least three experiments. 

 
Concentration-response analyses revealed an IC50 value of about 8 µM for Ac-OH-LA in collagen-

induced platelet aggregation (Figure 22 B). At this concentration, Ac-OH-LA did not yet affect 

U46619-induced aggregation (Figure 22 A). In contrast, LA showed an IC50 value of about 3 µM 

after stimulation with either collagen or U46619. For Ac-LA the IC50 value after stimulation with 

U46619 was about 3 µM as well, whereas the IC50 value after stimulation with collagen shifted to 

about 1 µM. This suggests two different effects of LAs on platelet aggregation, one taking action 

upstream and the other one downstream of TXA2 synthesis. 
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Figure 22: Effects of LAs on U46619- and collagen-induced platelet aggregation. Platelets (2 × 108  /ml in 
tyrode’s buffer) were pre-incubated with vehicle (ctrl., DMSO) or LAs at the respective concentrations for 15 min at 
37 °C, then supplemented with CaCl2 (1 mM) and stimulated with 1 µM U46619 (A) or 0.6 µg/ml collagen (B). Data 
are given as mean + S.E. as percentage related to the vehicle-treated controls after stimulation with the appropriate 
stimulus for 5 min. n = 3 – 5, * p < 0.05, ** p < 0.01, *** p < 0.001 vs. ctrl., one-way ANOVA followed by Tukey-
Kramer post hoc test. 

4.1.6 Effects of lupeolic acids on arachidonic acid metabolite production in 

A23187-stimulated human whole blood 

In order to analyze the action of LAs on cPLA2α in a more physiological test system, human whole 

blood was pre-treated with LA or Ac-OH-LA and stimulated with A23187 (30 µM) to induce 

Ca2+-triggered mobilization of AA through cPLA2α. The formation of 5-LO products (Figure 

23 A), the 12-LO product 12-HETE (Figure 23 B) and the COX product 12-HHT (Figure 23 C) 

were analyzed. As expected, the control inhibitors BWA4C, CDC and ibuprofen clearly repressed 

the production of the respective AA metabolites. Surprisingly, Ac-OH-LA as well as LA did not 

impair the formation of any investigated metabolite at concentrations of 10 or 30 µM.  
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Figure 23: Effects of LAs on arachidonic acid metabolite production in human whole blood. Heparinized human 
whole blood was pre-incubated with vehicle (ctrl., DMSO), 3 µM BWA4C, 30 µM CDC, 100 µM ibuprofen, LA or 
Ac-OH-LA (10 and 30 µM) for 10 min at 37 °C. Samples were stimulated with A23187 (30 µM) for 10 min at 37 °C, 
the incubation was stopped on ice and the amount of 5-LO products 5(S)-HETE, 5(S),12(S)-diHETE and LTB4 and its 
all-trans isomers (A) as well as the 12-LO product 12-HETE (B) and the COX product 12-HHT (C) were determined. 
Data are given as mean + S.E. of the percentage of the vehicle control with 166 ± 50.0 ng 5-LO products, 485 ± 
177 ng 12-HETE and 99.0 ± 26.3 ng 12-HHT per ml blood, n = 3, * p < 0.05, ** p < 0.01, *** p < 0.001 vs. ctrl., one-
way ANOVA followed by Tukey HSD post hoc test. 

 

4.1.7 Effects of 3-O-acetyl-28-hydroxy-lupeolic acid on cPLA2α activity are 

impaired by supplementation of BSA  

The failure of test compounds in whole blood assays, despite the potent inhibition of certain 

pharmacological targets in non-cellular test systems or in isolated cells, is frequently associated 

with an increased tendency of these compounds to undergo protein binding. Accordingly, LAs 

may interact with albumin leading to strong albumin-binding. The inhibitory potential of 

Ac-OH-LA on cPLA2α activity in a cell-free model was attenuated after supplementation with 
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1 mg/ml BSA (Figure 24 A) compared to samples without BSA (Figure 24 B). Even though the 

difference was statistically not significant, after addition of BSA the IC50 value was approximately 

twice as high.  
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Figure 24: Effects of albumin on the inhibitory potency of Ac-OH-LA in cPLA2α-mediated AA release. 
PAPC/POG-vesicles (lipid concentration 250 µM in TBS buffer with (1 mg/ml, A) or without FAF-BSA (B)) were 
supplemented with CaCl2 (1 mM) and pre-incubated with vehicle (ctrl., DMSO), 5 µM cPLA2α inhibitor (cPLA2α-i.) 
or Ac-OH-LA at the indicated concentrations for 10 min at RT. The reaction was started by addition of the purified 
cPLA2α enzyme (2.5 µg/ml) and maintained at 37 °C for 60 min. After derivatization, AA was analyzed by HPLC. 
Data are given as mean + S.E. of the percentage of the vehicle control, n = 3 – 7.  

 
To summarize, Ac-OH-LA, a lupeolic acid derivative that is hydroxylated in the C-28 position, 

acts as a potent inhibitor of cPLA2α. This was demonstrated in a cell-free test system as well as in 

cell-based assays using different cell types. The inhibition of cPLA2α leads to diminished 

production of AA metabolites in these cells, and thereby results in functional cellular effects. 

However, the effect of Ac-OH-LA on cPLA2α cannot be observed in human whole blood, which 

might be attributed to the interaction with plasma proteins.  
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4.2 Modulation of arachidonic acid mobilization in human platelets by 

tirucallic acids  

TAs were already reported to entail activating properties on 5-LO product formation in neutrophils 

[538] and these effects were proposed to be responsible for pro-inflammatory effects of 

frankincense formulations [508]. However, also BAs were found to elicit stimulating properties in 

neutrophils and platelets [539, 579]. This chapter describes the TA-induced effects on AA release 

in platelets. 

4.2.1 Effects of tirucallic acids on arachidonic acid release in platelets 

In resting human platelets, resuspended in Ca2+-containing buffer (1 mM), treatment with TAs 

(10 µM, 5 min) led to a considerable release of AA, with 3α-OH-TA increasing AA release about 

threefold vs. vehicle control. 3β-OH-TA and 3-oxo-TA led to similar effects on AA release 

(Figure 25 A). Ac-TA was less potent and amplified AA release only about twofold. As expected, 

calcium ionophore A23187 (1 µM) massively induced AA release in the presence of Ca2+, whereas 

this stimulation was largely blocked after deprivation of extra- and intracellular Ca2+ with EDTA 

and BAPTA-AM (Figure 25 B). In contrast, chelation of Ca2+ by EDTA and BAPTA-AM did not 

impair the ability of the TAs (10 µM, 15 min) to induce AA release. Thus, 3α-OH-TA and 

3-oxo-TA increased AA liberation about fivefold, 3β-OH-TA and Ac-TA induced AA release 

about three- and sixfold, respectively. 
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Figure 25: Effect of tirucallic acids on arachidonic acid release in human platelets. [3H]-AA-labelled platelets 
(108 /ml in PG buffer containing 1 mg/ml FAF-BSA) were supplemented with CaCl2 1 mM (1 min, 37 °C, A) or pre-
treated with 1 mM EDTA and 30 µM BAPTA-AM for 15 min at RT and were pre-warmed to 37 °C for 1 min (B). The 
samples were stimulated with vehicle (ctrl., DMSO), 3α-OH-TA, 3β-OH-TA, 3-oxo-TA or Ac-TA (10 µM) or 
A23187 (1 µM) at 37 °C for 5 min (A) or 15 min (B). The incubation was stopped on ice and cells were spun down. 
Aliquots of the supernatants were mixed with scintillation cocktail and measured on a scintillation counter to detect 
released [3H]-AA. Data are given as mean + S.E. in cpm, n = 3, * p < 0.05, ** p < 0.01, *** p < 0.001 vs. ctrl., one-
way ANOVA followed by Tukey HSD post hoc test. 

 

4.2.2 Impact of tirucallic acids on arachidonic acid release in PMNL 

Treatment of [3H]-AA-labelled human PMNL with TAs (10 µM, 5 min) did not induce AA 

mobilization. None of the TAs significantly enhanced AA release; though AA mobilization was 

clearly responsive to stimulation with A23187 (1 µM, Figure 26).  
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Figure 26: Effect of tirucallic acids on arachidonic acid release in human neutrophils. [3H]-AA-labelled PMNL 
(2 × 107 /ml in PG buffer) were supplemented with 1 mM CaCl2 (1 min, 37 °C). The samples were stimulated with 
vehicle (ctrl., DMSO), 3α-OH-TA, 3β-OH-TA, 3-oxo-TA or Ac-TA (10 µM) or A23187 (1 µM) at 37 °C for 5 min. 
The incubation was stopped on ice and the cells were spun down. Aliquots of the supernatants were mixed with 
scintillation cocktail and measured on a scintillation counter to detect released [3H]-AA. Data are given as mean + S.E. 
in cpm, n = 4, *** p < 0.001 vs. ctrl., one-way ANOVA followed by Tukey HSD post hoc test. 

 

4.2.3 Arachidonic acid metabolite production in platelets after treatment 

with tirucallic acids  

In human platelets, AA release induced by TAs led to a manifest increase of AA metabolite 

production. In Ca2+-enriched buffer (1 mM), 12-HHT production was stimulated six- to 20-fold 

(Figure 27 A and Table 5); 12-HETE production was stimulated five- to twelve-fold (Figure 27 C 

and Table 5). After deprivation of Ca2+, the absolute 12-HHT production after TA-treatment 

declined to about 25 to 50%, but compared to the vehicle control 3α-OH-TA and Ac-TA 

stimulated 12-HHT production 18- to 40-fold (Figure 27 B and Table 5). After 3β-OH-TA and 

3-oxo-TA treatment, the relative stimulation of 12-HHT production remained about constant. 

12-HETE production was affected most vigorously after Ca2+ deprivation: the absolute 12-HETE 

formation of the vehicle control was largely blocked in the absence of Ca2+, but it remained stable 

after 3β-OH-TA, 3-oxo-TA, and Ac-TA treatment and was almost doubled after 3α-OH-TA 

treatment. Compared to the vehicle control, TAs increased 12-HETE formation 45- to 290-fold 

(Figure 27 D and Table 5).  

As expected, A23187 (1 µM) led to extensive metabolite production in Ca2+-containing buffer that 

was about four- to ten-fold more intense than after incubation with TAs. The potency was 

markedly attenuated after deprivation of Ca2+, but it was not totally blocked.  
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Figure 27: Effect of tirucallic acids on arachidonic acid metabolite production in human platelets. Platelets 
(108 /ml in PG buffer) were supplemented with 1 mM CaCl2 (1 min, 37 °C, panels A and C) or pre-treated with 1 mM 
EDTA and 30 µM BAPTA-AM for 15 min at RT and pre-warmed to 37 °C for 1 min (panels B and D). The samples 
were incubated with vehicle (ctrl., DMSO), 3α-OH-TA, 3β-OH-TA, 3-oxo-TA or Ac-TA (10 µM) or A23187 (1 µM) 
at 37 °C for 5 min. The reaction was terminated and 12-HHT (A and B) and 12-HETE formation (C and D) were 
determined. Data are given as mean + S.E. in ng per 108 cells. n = 7 – 9, * p < 0.05, *** p < 0.001 vs. ctrl., one-way 
ANOVA followed by Tukey-Kramer post hoc test. 



 4 Results 94 

Table 5: Absolute and relative production of 12-HHTand 12-HETE after treatment of human platelets with 
tirucallic acids. Platelets (108 /ml in PG buffer) were supplemented with 1 mM CaCl2 (1 min, 37 °C) or pre-treated 
with 1 mM EDTA and 30 µM BAPTA-AM for 15 min at RT and pre-warmed to 37 °C for 1 min. The samples were 
incubated with vehicle (ctrl., DMSO), 3α OH-TA, 3β-OH-TA, 3-oxo-TA or Ac-TA (10 µM) or A23187 (1 µM) at 
37 °C for 5 min. The reaction was terminated and 12-HHT and 12-HETE formation were determined. Absolute data 
are given as mean + S.E. in ng per 108 cells, relative data are given as proportional value related to the respective 
vehicle control. n = 7 – 9. 

sample

12-HHT production 12-HETE production

Ca (1 mM)
2+ EDTA / BAPTA-AM Ca (1 mM)

2+ EDTA / BAPTA-AM

[ng/
]

10
cells

8 relative
increase
vs. ctrl.

[ng/
]

10
cells

8 relative
increase
vs. ctrl.

[ng/
]

10
cells

8 relative
increase
vs. ctrl.

[ng/
]

10
cells

8 relative
increase
vs. ctrl.

ctrl. 1.83 ± 0.74 1 0.48 ± 0.26 1 5.34 ± 3.22 1 0.38 ± 0.29 1

3 -OH-TAα 17.9 ± 3.26 9.8 8.85 ± 1.59 18.4 66.1 ± 7.08 12.3 110.8 ± 18.6 289.0

3 -OH-TAβ 11.0 ± 1.95 6.0 2.48 ± 0.84 5.2 26.9 ± 2.52 5.0 17.6 ± 7.20 45.8

3 -TA-oxo 28.2 ± 4.78 15.4 6.71 ± 1.14 14.0 51.0 ± 5.74 9.5 57.0 ± 5.14 148.8

Ac-TA 35.0 ± 5.82 19.2 20.0 ± 3.24 41.7 57.6 ± 8.34 10.8 64.6 ± 6.86 168.7

A23187 127.4 ± 37.8 69.8 14.1 ± 3.49 29.3 278.6 ± 69.1 52.0 40.2 ± 6.89 104.9
 

 
Further analysis revealed concentration-dependency of the stimulatory effect of the TAs on 

12-HHT and 12-HETE formation (Figure 28 A and B). Significant metabolite production was 

obtained at 3 µM for Ac-TA. 3α-OH-TA and 3-oxo-TA induced significant AA metabolite 

production at 10 µM. 3β-OH-TA-induced metabolite production was not significantly elevated by 

concentrations up to 30 µM but a stimulatory potential was perceptible up from 10 µM. 
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Figure 28: Concentration dependency of arachidonic acid metabolite production in human platelets after 
treatment with tirucallic acids. Platelets (108 /ml in PG buffer) were supplemented with CaCl2 1 mM (1 min, 37 °C). 
The samples were incubated with vehicle (DMSO) or 3α-OH-TA, 3β-OH-TA, 3-oxo-TA and Ac-TA at the respective 
concentrations for 5 min at 37 °C. The reaction was terminated and 12-HHT (A) and 12-HETE formation (B) were 
determined. Data are given as mean + S.E. in ng per 108 cells, n = 4, * p < 0.05, *** p < 0.001 vs. vehicle control, one-
way ANOVA followed by Tukey-Kramer post hoc test. 
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Incubation of platelets with TAs (10 µM) for time intervals of 30 sec to 60 min revealed a 

differential pattern of 12-HHT and 12-HETE production. 12-HHT formation was rapidly induced 

and maximal production was achieved already after 2 min (Figure 29 A). At later time points, the 

12-HHT levels remained constant or even tended to decrease. In contrast, 12-HETE levels 

continuously increased within 60 min with moderate attenuation of velocity over time (Figure 

29 B). The effects of 3α-OH-TA, 3-oxo-TA and Ac-TA on 12-HHT and 12-HETE formation were 

almost alike, especially at later time points. In contrast, 3β-OH-TA led to a very modest increase 

in metabolite production. 
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Figure 29: Time-dependency of arachidonic acid metabolite production after treatment with tirucallic a cids in 
human platelets. Platelets (108 /ml in PGC buffer) were pre-warmed for 3 min to 37 °C. The samples were incubated 
with vehicle (ctrl., DMSO), 3α-OH-TA, 3β-OH-TA, 3-oxo-TA or Ac-TA (10 µM) for 30 sec, 2 min, 5 min, 15 min or 
60 min at 37 °C. The reaction was terminated and 12-HHT (A) and 12-HETE formation (B) were determined. Data are 
given as mean + S.E. in ng per 108 cells, n = 3. 

 

4.2.4 Effects of the cPLA2α inhibitor RSC-3388 on tirucallic acid-induced 

arachidonic acid metabolite production in platelets  

AA release in platelets is largely dependent on the activity of the cPLA2α, but can also be 

mediated by alternative mechanisms [580-581]. To assess the role of cPLA2α, platelets were pre-

treated with the established selective cPLA2α inhibitor RSC-3388 [235, 237] and then incubated 

with TAs (10 µM). In fact, the cPLA2α inhibitor (15 µM) effectively blocked TA- and A23187-

induced AA metabolite production to the level of the respective vehicle control (Figure 30 A-D). 

Interestingly, in Ca2+-containing buffer (Figure 30 A) and to a minor extent in Ca2+-deprived 

samples (Figure 30 B), absolute 12-HHT production was generally increased after treatment with 
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the cPLA2α inhibitor. This completely unexpected effect was less prominent for 12-HETE 

production (Figure 30 C and D).  
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Figure 30: Effect of cPLA2α inhibition on tirucallic acid-induced arachidonic acid metabolite production in 
human platelets. Platelets (108 /ml in PG buffer) were supplemented with 1 mM CaCl2 (1 min, 37 °C, panels A and 
C) or pre-treated with 1 mM EDTA and 30 µM BAPTA-AM for 15 min at RT and pre-warmed to 37 °C for 1 min (B 
and D). The samples were incubated with vehicle (DMSO) or cPLA2α inhibitor RSC-3388 (cPLA2α-i., 15 µM) for 
further 15 min at 37 °C and then treated with vehicle (ctrl., DMSO), 3α-OH-TA, 3β-OH-TA, 3-oxo-TA or Ac-TA 
(10 µM) or A23187 (1 µM) at 37 °C for 5 min. The reaction was terminated and 12-HHT (A and B) and 12-HETE 
formation (C and D) were determined. Data are given as mean + S.E. in ng per 108 cells. n = 3. 
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4.2.5 Subcellular distribution of cPLA 2α in platelets after treatment with 

tirucallic acids  

As translocation of the cPLA2α to the platelets’ membranes is the initial step leading to cPLA2α 

activity [135, 582] (see chapters  2.2.2.3 and  2.2.2.4), cPLA2α subcellular localisation was 

investigated by Western blot after treatment with TAs and subsequent subcellular fractionation in 

soluble and membranous portions. In Ca2+-containing buffer, treatment of platelets with thrombin 

(1 U/ml) provoked cPLA2α translocation from the cytosolic to the membranous fraction. In 

contrast, thrombin failed to induce translocation in the Ca2+-deprived approach (Figure 31). 

Although the relative occurrence of cPLA2α in the respective fractions after treatment with the 

different TAs was fluctuating in individual experiments, TAs clearly led to cPLA2α membrane 

translocation in Ca2+-containing buffer, with 3-oxo-TA and Ac-TA inducing the most potent 

effects. In contrast to the thrombin control, the TAs still effectively induced translocation in Ca2+-

deprived platelets (Figure 31, right panel) and the degree of membrane translocation paralleled the 

induction of eicosanoid formation, with 3α-OH-TA and Ac-TA being most efficient and 

3β-OH-TA as weakest inducer (compare Figure 27 and Figure 28 and Table 5). Especially in 

3α-OH-TA-treated samples, translocation seemed to be more distinct at low Ca2+ levels. 
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Figure 31: cPLA2α translocation in human platelets after treatment with tirucallic acids. Washed human 
platelets (5 × 109 /ml) in translocation buffer (134 mM NaCl, 15 mM Tris-HCl pH 7.6, 1 g/l glucose) were either pre-
treated with 1 mM EDTA and 30 µM BAPTA-AM (30 min prior to incubation, RT) or 1 mM CaCl2 (5 min prior to 
incubation). Then, the samples were pre-warmed to 37 °C for 4 min and the test compounds (10 µM), thrombin 
(1 U/ml) or vehicle (ctrl., DMSO) were added. After 5 min, the incubation was stopped on ice. Protease inhibitors 
(10 µg/ml leupeptin, 60 µg/ml STI and 1 mM PMSF) were added and the cells were lysed by freeze-thaw cycles and 
centrifuged at 100,000 × g (45 min, 4 °C). The supernatant (cytosolic fraction) was collected and the pellet 
(membranous fraction) was resuspended in translocation buffer with protease inhibitors. Both fractions were subjected 
to SDS-PAGE and Western blot analysis on cPLA2α and β-actin. Results are representative for four experiments. 
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4.2.6 Impact of tirucallic acids on cPLA2α-driven arachidonic acid release in 

cell-free models 

In order to evaluate potential direct interactions of the TAs and cPLA2α or membrane structures, 

cell-free assays on AA release from different artificial vesicles were performed. Since cPLA2α 

activity varies depending on the nature of the substrate and of course depending on the Ca2+ levels 

(Figure 32), TAs were tested in several setups using different compositions of membranous lipids 

in Ca2+-containing or Ca2+-deprived buffer. Vesicles composed of 1-palmitoyl-2-arachidonoyl-sn-

glycero-3-phosphocholine (PAPC) alone (Figure 33 A) or in combination with 1-palmitoyl-2-

oleoyl-sn-glycerol (POG, in a ratio of 2:1 n/n, Figure 33 B) or cholesterol (in ratios of 1:1 n/n, 

Figure 33 C or 4:1 n/n, Figure 33 D), or vesicles composed of 1-palmitoyl-2-arachidonoyl-sn-

glycero-3-phosphoethanolamine (PAPE, Figure 33 E) were used to obtain membranes with diverse 

characteristics in terms of rigidity, steric accessibility, and polarity or charge of the surface.  

Regardless of the presence of Ca2+, in none of the membrane models TAs appreciably intensified 

cPLA2α-induced AA release. In mixed vesicles from PAPC and POG and in PAPE vesicles, AA 

release was rather suppressed with increasing TA concentrations. TAs were also tested in the 

above-mentioned membranous models using 1 mM EDTA in place of Ca2+ (data not shown). The 

cPLA2α activity in the absence of Ca2+ was quite faint in some of the membrane models (see 

Figure 32); however, no increase in enzymatic activity was observed after treatment with TAs at 

concentrations from 3 to 30 µM. Thus, these data might exclude a direct stimulation of cPLA2α by 

TAs as possible mechanism underlying the stimulatory effects on cellular AA release. 

 

Figure 32: AA release by cPLA2α from various lipid 
vesicles. Vesicles composed of PAPC alone or in combination 
with POG (in a ratio of 2:1 n/n) or cholesterol (in ratios of 1:1 
n/n or 4:1 n/n), or vesicles composed of PAPE (lipid 
concentration 250 µM in TBS buffer with 1 mg/ml FAF-BSA) 
were supplemented with CaCl2 (1 mM) or EDTA (1 mM) and 
pre-incubated with vehicle (ctrl., DMSO) for 10 min at RT. The 
reaction was started by addition of the purified cPLA2α enzyme 
(2.5 µg/ml) and maintained at 37 °C for 60 min. After 
derivatization, AA was analyzed by HPLC. Data are given as 
mean + S.E. of the absolute release of AA in nmol per 2.5 µg 
cPLA2α, n = 1 – 5. 
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Figure 33: Effects of tirucallic acid on cPLA2α-induced AA release from lipid vesicles. Vesicles composed of 
PAPC alone (A) or in combination with POG (in a ratio of 2:1 n/n, B) or cholesterol (in ratios of 1:1 n/n, C or 4:1 n/n, 
D) or vesicles composed of PAPE (E) (lipid concentration 250 µM in TBS buffer with 1 mg/ml FAF-BSA) were 
supplemented with CaCl2 (1 mM) and pre-incubated with vehicle (ctrl., DMSO), 5 µM cPLA2α inhibitor (cPLA2α-i.) 
and 3α-OH-TA, 3β-OH-TA, 3-oxo-TA or Ac-TA at the indicated concentration for 10 min at RT. The reaction was 
started by addition of the purified cPLA2α enzyme (2.5 µg/ml, 37 °C, 60 min). After derivatization, AA was analyzed 
by HPLC. Data are given as mean + S.E. of the percentage of the vehicle control, n = 1 – 5. 
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4.2.7 Calcium mobilization in platelets after treatment with tirucallic acids 

Increase of the intracellular Ca2+ level is the major trigger for cPLA2α translocation to membranes 

[156]. To analyze, whether TA-induced cPLA2α translocation in Ca2+-containing buffer results 

from elevated intracellular Ca2+ levels, platelets were labelled with Fura-2, a Ca2+-sensitive dye, 

and Ca2+ levels were measured after treatment with TAs. Indeed, TAs conspicuously mediated 

Ca2+ mobilization in platelets (Figure 34). Compared to the vehicle control, 3-oxo-TA most 

potently elevated Ca2+ levels by about 150 nM within 30 sec; 3α-OH-TA, 3β-OH-TA and Ac-TA 

led to an increase of 70 nM, 35 nM and 100 nM, respectively (Figure 34 E). Nevertheless, the 

effect of the TAs on Ca2+ mobilization was much slighter than after stimulation with thrombin 

(0.5 U/ml, increase of 580 ± 53 nM), thapsigargin (0.1 µM, increase of 440 ± 158 nM) or A23187 

(1 µM, increase of 1090 ± 140 nM) but superior to the stimulatory effects of PAF (0.1 µM, 

increase of 90 ± 4 nM) or collagen (8 µg/ml, increase of 55 ± 8 nM). Ca2+ levels were not only 

transiently increased by the TAs but persisted on a plateau for a period of at least two minutes 

(Figure 34 A-D). This time response mostly resembled to that of thrombin. 
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Figure 34: Ca2+ mobilization in human platelets by tirucallic acids. Washed Fura-2-AM-labelled washed platelets 
(108 /ml in PG buffer) were incubated in a thermally controlled and constantly stirred fluorometer cuvette (37 °C) in a 
fluorospectrometer. CaCl2 (1 mM) was added 1 min prior to stimulation with vehicle (ctrl., DMSO, A-E), 3α-OH-TA 
(10 µM, A, E), 3β-OH-TA (10 µM, B, E), 3-oxo-TA (10 µM, C, E), Ac-TA (10 µM, D, E) or A23187 (1 µM, E). 
Fluorescence emission at 510 nm was measured after excitation at 340 nm and 380 nm and intracellular Ca2+ was 
calculated as described. A-D: Ca2+ levels after treatment with vehicle are illustrated in grey; black curves represent 
Ca2+ levels after stimulation with TAs. Results are representative for three to four experiments. E: ∆c represents the 
increase in intracellular free Ca2+ before and 30 sec after treatment with TAs, n = 3 – 4. 
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4.2.8 Effects of tirucallic acids on p42/44, p38 and JNK MAPK and Akt 

signalling 

cPLA2α activity is intensely regulated by phosphorylation [173, 178-179]. Amongst others, the 

phosphorylation of Ser505 by JNKs (p54/46) [176-177], p42/p44 (ERK-1/-2) [174] and p38 MAPK 

[583] modulates cPLA2α enzyme activity. It appeared reasonable to speculate that TAs could 

induce cPLA2α translocation and thus AA release by inducing cPLA2α phosphorylation. To 

analyze a potential impact of TAs on phosphorylation events, platelets were treated with TAs 

(10 µM) and then processed by SDS-PAGE and Western blot for analysis of phosphorylated JNK 

(p46/54), p42/44 and p38 MAPK. In contrast to thrombin, which intensively induced p42/p44 

phosphorylation in Ca2+-containing buffer, none of the TAs led to ERK activation within 90 sec 

(Figure 35) or 5 min (data not shown). Deprivation of Ca2+ did not increase the effect of the TAs 

but abrogated thrombin-induced ERK phosphorylation. In contrast, p38 MAPK was activated after 

treatment with thrombin as well as with TAs. Especially Ac-TA induced p38 phosphorylation, but 

also 3-oxo-TA and 3β-OH-TA led to an activation of this kinase. Phosphorylation of JNK 

paralleled the activation of p38 but the effect was markedly less obvious. After treatment with 

EDTA and BAPTA-AM, p38 phosphorylation was generally increased – also in the vehicle-

treated samples. 3α-OH-TA and Ac-TA marginally enhanced p38 phosphorylation, whereas an 

effect of the other TAs or thrombin was barely apparent due to the elevated basal phosphorylation 

state of the kinase. In the absence of Ca2+, no changes in JNK phosphorylation were perceptible 

after incubation with thrombin or TAs within 90 sec. 

Recently, interference of TAs with Akt-dependent cell proliferation was demonstrated in cancer 

cells [557]. Furthermore, BAs were shown to activate Akt in platelets [541]. To investigate 

whether Akt signalling is involved in effects of TAs in platelets, phosphorylation of Akt was 

analyzed by Western blot. Akt was not phosphorylated in quiescent platelets, neither in Ca2+-

containing buffer, nor in Ca2+-deprived cells. Thrombin intensively induced Akt phosphorylation 

in Ca2+-enriched environment, whereas TAs did not affect Akt phosphorylation. In Ca2+-deprived 

cells, Akt was not activated, neither by TAs nor by thrombin.  
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Figure 35: Effect of tirucallic acids on p42/p44 (ERK), p38, p46/54 (JNK) MAPK and Akt phosphorylation in 
human platelets. Washed human platelets (109 /ml) in PG buffer were either pre-treated with 1 mM EDTA and 
30 µM BAPTA-AM (15 min prior to incubation, RT) or 1 mM CaCl2 (3 min prior to incubation). The samples were 
pre-warmed to 37 °C for 3 min and the test compounds (10 µM), thrombin (1 U/ml) or vehicle (ctrl., DMSO) were 
added. After 5 min in case of Akt and 90 sec in case of the other kinases, the incubation was stopped by addition of 
SDS loading buffer. The samples were subjected to SDS-PAGE and Western blot analysis on phospho-p42/p44 
(ERK), phospho-p38 and phospho-p46/54 (JNK) MAPK and phospho-Akt. Ponceau S-stained protein bands (β-actin) 
were used as loading control. Results are representative for three or four experiments. 
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4.2.9 Phosphorylation of cPLA2α at Ser505 after treatment of platelets with 

tirucallic acids  

Activated MAPK lead to phosphorylation of cPLA2α at Ser505, which was also investigated in TA-

treated platelets by Western blot analysis. Unfortunately, stimulus-induced phosphorylation was 

only faintly perceivable. Nevertheless, in Ca2+-containing buffer, phosphorylation of cPLA2α was 

mainly induced after treatment with 3-oxo-TA and Ac-TA (Figure 36). After deprivation of Ca2+, 

also the other TAs led to phosphorylation at Ser505. 

 

ctrl.

3α-OH-TA

3 -OH-TAβ

3-oxo-TA

Ac-TA

+

-

-

-

-

-

+

-

-

-

-

-

+

-

-

-

-

-

+

-

-

-

-

-

+

+

-

-

-

-

-

+

-

-

-

-

-

+

-

-

-

-

-

+

-

-

-

-

-

+

Ca 1 mM
2+ EDTA / BAPTA-AM

phospho-cPLA2α

loading control

 

Figure 36: Phosphorylation of cPLA2α (Ser505) after treatment of human platelets with tirucallic acids. Washed 
human platelets (109 /ml) in PG buffer were either pre-treated with 1 mM EDTA and 30 µM BAPTA-AM (15 min 
prior to incubation, RT) or 1 mM CaCl2 (3 min prior to incubation). The samples were pre-warmed to 37 °C for 3 min 
and the test compounds (10 µM) or vehicle (ctrl., DMSO) were added. After 5 min, the incubation was stopped by 
addition of SDS loading buffer. The samples were subjected to SDS-PAGE and Western blot analysis on Ser505-
phosphorylated cPLA2α. Ponceau S-stained protein bands (β-actin) were used as loading control. Results are 
representative for three experiments. 

 

4.2.10 Effects of kinase inhibitors on tirucallic acid-induced arachidonic acid 

release and metabolite production 

For further evaluation of the impact of TAs on cPLA2α-phosphorylating kinases, platelets in Ca2+-

containing (Figure 37 A and B) or Ca2+-depleted buffer (Figure 37 C and D) were firstly treated 

with vehicle, p38 MAPK inhibitor SB203580 (10 µM), p42/p44 MAPK inhibitor U0126 (3 µM), 

and CaMKII inhibitors KN-62 (5 µM) and KN-93 (10 µM). After 15 min at 37 °C, cells were 

incubated with vehicle, TAs (10 µM) or thrombin (1 U/ml) for 5 min and 12-HHT (data not 

shown) and 12-HETE formation were determined. The effects on 12-HHT formation essentially 

paralleled those on 12-HETE production. Since the kinase inhibitors themselves modulated the 

metabolite production (Figure 37 A and C), the results were referred to the respective kinase 

inhibitor-treated controls (Figure 37 B and D). U0126 rather stimulated TA- and thrombin-induced 

12-HETE production; only in the absence of Ca2+, 12-HHT (but not 12-HETE) formation was 
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slightly suppressed by the ERK inhibitor. Of interest, both CaMKII inhibitors significantly 

suppressed TA-induced 12-HHT and 12-HETE production, in Ca2+-supplemented as well as in 

Ca2+-depleted cells. SB203580 potently inhibited TA-induced 12-HHT and 12-HETE production 

in EDTA/BAPTA-AM-treated platelets (Figure 37 D) but less strikingly repressed their formation 

in the presence of Ca2+ (Figure 37 B). Interestingly, thrombin-stimulated 12-HETE formation was 

increased by the p38- and ERK-inhibitors in the presence or absence of Ca2+. In contrast, both 

CaMKII-inhibitors suppressed thrombin-induced 12-HETE production, especially when Ca2+ was 

present. 
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Figure 37: Effects of kinase inhibitors on tirucallic acid-induced 12-HETE formation in human platelets. 
Platelets (108 /ml in PG buffer) were supplemented with 1 mM CaCl2 (1 min, 37 °C, panels A and B) or treated with 
1 mM EDTA and 30 µM BAPTA-AM (15 min prior to incubation, RT, panels C and D) and incubated with vehicle 
(ctrl., DMSO), 10 µM SB203580, 3 µM U0126, 5 µM KN-62 or 10 µM KN-93 for 15 min at 37 °C. The samples were 
treated with vehicle (ctrl., DMSO), 3α-OH-TA, 3β-OH-TA, 3-oxo-TA, Ac-TA (10 µM) or thrombin (1 U/ml) for 
5 min at 37 °C. The reaction was terminated and 12-HETE formation was determined. Data are given as mean + S.E. 
in ng per 108 cells (basal 12-HETE formation of the kinase inhibitor-treated vehicle controls, A and C) or as 
percentage of the respective kinase inhibitor-treated control (B and D). n = 3 – 5, * p < 0.05, ** p < 0.01, *** p < 
0.001 vs. the respective ctrl., one-way ANOVA followed by Tukey-Kramer post hoc test. 
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In addition, TA-induced AA release in platelets was analyzed after pre-treatment with the kinase 

inhibitors SB203580, KN-93 and KN-62. Unfortunately, the effects of the inhibitors were barely 

perceptible, which was due to the generally indistinct stimulatory effects of the TAs in these 

experiments (Figure 38). 3α-OH-TA most prominently induced AA release and thus, rudimentary 

suppression of 3α-OH-TA-mediated AA release by KN-93 was the only marked effect that could 

be noticed. SB203580 did not visibly suppress TA-induced AA release. 
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Figure 38: Effect of kinase inhibitors on tirucallic acid-induced arachidonic acid release from human platelets. 
[3H]-AA-labelled platelets (108 /ml in PG buffer) were supplemented with 1 mM CaCl2 (1 min, 37 °C) and incubated 
with vehicle (ctrl., DMSO), 10 µM SB203580, 10 µM KN-93 or 5 µM KN-62 for 15 min at 37 °C. The samples were 
stimulated with vehicle (ctrl., DMSO), 3α-OH-TA, 3β-OH-TA, 3-oxo-TA or Ac-TA (10 µM) or thrombin (1 U/ml) at 
37 °C for 5 min. The incubation was stopped on ice and cells were spun down. Aliquots of the supernatants were 
mixed with scintillation cocktail and measured on a scintillation counter to detect released [3H]-AA. Data are given as 
mean + S.E. in cpm, n = 3. 
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4.3 Interaction of triterpenic acids and frankincense extracts with PGE2 

biosynthesis  

Recently, BAs were identified as inhibitors of mPGES-1 in cell-free, cellular and in vivo studies 

[584]. This chapter evaluates the potency of different extracts from Boswellia species and single 

compounds isolated thereof on mPGES-1-driven PGE2 synthesis. Furthermore, the impact of the 

most potent mPGES-1 inhibitors on cPLA2α and COX isoforms is investigated to assess additive 

effects leading to reduced PGE2 levels.  

4.3.1 Effects of triterpenic acids and extracts from different Boswellia 

species on mPGES-1 activity in a cell-free system 

Extracts from the resin of different Boswellia species were analyzed in a cell-free mPGES-1 assay. 

For this purpose, the resins were extracted with lipophilic solvents (raw extract) and the acid 

compounds were separated (acid fraction, a. f.) from the neutral compounds (neutral fraction, 

n. f.). MK-886 (10 µM), possessing an IC50 value of 2 µM in a cell-free mPGES-1 activity assay 

[585], was used as reference compound and led to about 80% inhibition of human mPGES-1 

activity. The residual PGE2 formation was not suppressed by elevated concentrations of MK-886, 

indicating alternative routes mediating this basal PGE2 formation. The acid fractions of all the four 

tested species potently inhibited the enzyme activity at a concentration of 10 µg/ml (Figure 39 A). 

In contrast, the neutral fraction from B. carteri extract did not impair mPGES-1 activity. As 

expected, also the raw extracts from B. serrata and B. papyrifera were less potent than their 

respective acid fractions (data not shown). Concentration response analysis revealed IC50 values of 

1.9, 2.8, 1.6 and 0.42 µg/ml for the acid fractions of B. serrata, B. sacra, B. carteri and 

B. papyrifera, respectively (Figure 39 B). Particularly the acid fraction of B. papyrifera potently 

inhibited the enzyme activity with a maximal inhibition of 92% at 30 µg/ml, which was superior to 

the control inhibitor MK-886.  
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Figure 39: Effects of fractions derived from extracts of Boswellia spec. oleo-gum resin on mPGES-1 activity. 
Microsomal preparations of IL-1β-stimulated A549 cells were pre-incubated with vehicle (ctrl., DMSO), MK-886 
(10 µM), acid fractions (a. f.) or neutral fractions (n. f.) from extracts of B. papyrifera, B. serrata, B. sacra or B. 
carteri oleo-gum resins (10 µg/ml in panel A and at the respective concentrations in panel B for 15 min at 4 °C. The 
reaction was started by addition of 20 µM PGH2. After 60 sec at 4 °C, the reaction was terminated using a stop 
solution containing FeCl2. Data are given as mean + SEM, n = 3 – 4. 

 
The acid fraction of B. papyrifera was separated into subfractions by flash chromatography to 

identify the active principles of the extract. The subfractions were analyzed by normal silica phase 

thin layer chromatography and fractions with identical components were combined. This 

separation led to seven fractions, which were in turn tested in the cell-free mPGES-1 assay. All 

fractions showed inhibitory potential with 65 to 87% inhibition at 3 µg/ml. “Fraction 4” was the 

most potent fraction, inhibiting the enzyme nearly completely at this concentration. Thus, this 

fraction was further separated via preparative HPLC and the isolated single substances were 

analyzed by MS and NMR analytics. “Fraction 4” was found to contain 3-oxo-TA as main 

component along with 3α-Ac-8,24-dien-TA, β-BA, Ac-LA and A-BA as minor components.  

Since further triterpenic acids beyond BAs appear to be potent inhibitors of mPGES-1 activity, a 

variety of such terpenes isolated from Boswellia species were screened on their impact on 

mPGES-1 activity, including different TAs, RAs and LAs (Figure 40). At 10 µM, all TAs, 

DH-k-RA and Ac-OH-LA markedly inhibited PGE2 production. LA and Ac-LA were only 

moderately active and RA, DH-RA and DH-NA were nearly ineffective in this assay.  
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Figure 40: Impact of triterpenic acids from Boswellia spec. on mPGES-1 activity. Microsomal preparations of 
IL-1β-stimulated A549 cells were pre-incubated with vehicle (ctrl., DMSO), MK-886 (10 µM) and the respective 
triterpenic acids (10 µM) for 15 min at 4 °C. The reaction was started by addition of 20 µM PGH2. After 60 sec at 
4 °C, the reaction was terminated using a stop solution containing FeCl2. Data are given as mean + SEM, n = 3 – 6. 

 
The triterpenic acids exhibiting more than 60% inhibition at 10 µM were subjected to 

concentration-response analysis (Figure 41 A-H). The tested compounds, namely 

3α-OH-7,24-dien-TA, 3α-OH-8,24-dien-TA, 3β-OH-TA, 3-oxo-TA, 3α-Ac-7,24-dien-TA, 

3α-Ac-8,24-dien-TA, DH-k-RA and Ac-OH-LA show IC50 values of 0.4 to 3 µM (Table 1). 

Hence, these compounds are up to eightfold more active in this assay compared to the most potent 

BA β-BA. Just like MK-886, all compounds exerted a maximal inhibition of about 70 to 80%. 

Interestingly, only 3α-OH-8,24-TA was able to suppress PGE2 formation to about 96% (Figure 

41 B).  
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Figure 41: Concentration-response analysis for triterpenic acids from Boswellia spec. on mPGES-1 activity. 
Microsomal preparations of IL-1β-stimulated A549 cells were pre-incubated with 3α-OH-7,24-dien-TA (A), 3α-OH-
8,24-dien-TA (B), 3β-OH-TA (C), 3-oxo-TA (D), 3α-Ac-7,24-dien-TA (E), 3α-Ac-8,24-dien-TA (F), DH-k-RA (G) 
or Ac-OH-LA (H) at the indicated concentrations for 15 min at 4 °C. The reaction was started by addition of 20 µM 
PGH2. After 60 sec at 4 °C the reaction was terminated using a stop solution containing FeCl2. Data are given as mean 
+ SEM, n = 3 – 8. 
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Table 6: IC50 values of triterpenic acids on mPGES-1 activity in a cell-free model. Microsomal preparations of 
IL-1β-stimulated A549 cells were pre-incubated with the indicated compounds at concentrations of 0.1 to 30 µM for 
15 min at 4 °C. The reaction was started by addition of 20 µM PGH2. After 60 sec at 4 °C, the reaction was terminated 
using a stop solution containing FeCl2. IC50 values were determined by fitting concentration response data to a four 
parameter logistic curve. 

compound IC [µM]50 compound IC [µM]50 compound IC [µM]50

3 -OH-7,24-
dien-TA

α
3.0 3-oxo-TA 0.9 DH-k-RA 1.0

3 -OH-8,24-
dien-TA

α
1.1

3 -Ac-7,24-
dien-TA

α
0.4 Ac-OH-LA 0.9

3 -OH-TAβ 1.2
3 -Ac-8,24-

dien-TA
α

0.4
 

 
3-oxo-TA, the major compound in the most active fraction (“fraction 4”) of the extract from 

B. papyrifera (acid fraction) appears to contribute strongly to the inhibitory potential of the crude 

extract in this cell-free assay. Nevertheless, “fraction 4” and the acid fraction of the extract from 

B. papyrifera themselves were at least equally potent compared to 3-oxo-TA (Figure 42).  
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Figure 42: Comparison of the potency of the acid fraction of the extract from B. papyrifera, its subfraction 
“fraction 4” and its major component 3-oxo-TA for mPGES-1 inhibition. Microsomal preparations of IL-1β-
stimulated A549 cells were pre-incubated with the acid fraction of the extract from B. papyrifera (a. f. B. papyrifera), 
its most active fraction (“fraction 4” from a. f. B. papyrifera) and its major component 3-oxo-TA at the indicated 
concentrations for 15 min at 4 °C. The reaction was started by addition of 20 µM PGH2. After 60 sec at 4 °C, the 
reaction was terminated using a stop solution containing FeCl2. Data are given as mean + SEM, n = 3 – 8. 
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4.3.2 PGE2 synthesis in LPS-primed and AA-stimulated monocytes after 

treatment with triterpenic acids or extracts from different Boswellia 

species 

To evaluate the inhibition of mPGES-1 in a cellular model, monocytes were isolated from human 

whole blood and incubated with LPS for 20 h to stimulate the upregulation of mPGES-1. In fact, 

stimulation with LPS intensively induces mPGES-1 expression in human monocytes, while 

cPGES and mPGES-2 levels remain unaltered [586]. Subsequently, the monocytes were treated 

with the test compounds and PGE2 formation was induced by incubation with AA. Basal PGE2 

formation in monocytes, which were not treated with LPS or AA gave only about 10% of the 

entirely stimulated vehicle control (LPS + AA) (Figure 43). Without LPS-treatment, PGE2 was 

only sparsely synthesized after stimulation with AA (about 18% of the entirely stimulated vehicle 

control), representing the PGE2 that was seemingly produced independently of mPGES-1. After 

priming with LPS but without stimulation with AA, substantial PGE2 formation (about 60% 

compared to the entirely stimulated vehicle control) was detected. This basal PGE2 may mainly 

derive from mPGES-1, using endogenous AA provided by cellular phospholipases. The synthetic 

reference drug MD-52 (2 µM), a selective mPGES-1 inhibitor [587], inhibited PGE2 formation in 

stimulated (LPS + AA) monocytes by about 58%. Thus, selective inhibition of mPGES-1 

suppresses AA-induced as well as basal PGE2 formation in this test system. Similarly, the COX 

inhibitor indomethacin (10 µM) inhibited PGE2 formation by about 62%. As exogenous AA is a 

substrate of COX enzymes and only secondarily of mPGES-1, the impact of the test compounds 

on both enzymes is monitored in this assay.  

Some of the triterpenic acids were able to suppress PGE2 formation in this test system. At 10 µM, 

3α-OH-7,24-dien-TA, 3α-OH-8,24-dien-TA and 3β-OH-TA inhibited PGE2 formation by 20 to 

30%, with 3α-OH-8,24-dien-TA being the most potent inhibitor, which totally blocked the AA-

induced PGE2 formation at a concentration of 1 µM. Comparably, 3-oxo-TA effectively 

suppressed PGE2 formation at 1 and 3 µM but the inhibitory effect decreased at 10 µM. 

3α-Ac-7,24-dien-TA, DH-k-RA and Ac-OH-LA exhibited only little or no effectiveness in this 

model. Unexpectedly, 3α-Ac-8,24-dien-TA even stimulated PGE2 synthesis.  
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Figure 43: Impact of triterpenic acids on PGE2 formation in LPS-primed AA-stimulated monocytes. Human 
monocytes (106 /ml in 1 ml RPMI medium supplemented with FCS (0.5%, v/v), penicillin (100 U/ml) and 
streptomycin (100 µg/ml)) were primed with LPS (1 µg/ml, 20 h, 37 °C, 6% CO2, except “w/o LPS” samples) and 
incubated with vehicle (ctrl., DMSO), indomethacin (10 µM), MD-52 (2 µM) and the respective triterpenic acids at 
the indicated concentrations for 15 min (37 °C, 6% CO2) prior to addition of stimuli to induce PGE2 formation. The 
reaction was started by addition of 1 µM AA (except “w/o AA” samples). After 30 min, the medium was collected, 
centrifuged and the PGE2 content in the supernatant was determined by ELISA. Data are given as mean + S.E. of the 
percentage of the vehicle control with 1,606 ± 182 pg PGE2 per 106 cells. n = 3 – 7, ** p < 0.005, *** p < 0.001 vs. 
ctrl., one-way ANOVA followed by Tukey-Kramer post hoc test. 

 

4.3.3 Effects of triterpenic acids and extracts from Boswellia species on 

PGE2 and 6-keto PGF1α synthesis in LPS-stimulated whole blood  

The triterpenic acids were tested in a human whole blood model to evaluate their potency in a 

more physiological context, using an appropriate test system for differential assessment of 

COX-2/mPGES-1-derived PGE2 [585]. Therefore, human whole blood was buffered with 

potassium phosphate buffer and treated with thromboxane synthase inhibitor CV-4151. After 

treatment with the test compounds for 10 min at RT the samples were incubated with LPS 

(10 µg/ml) for 5 h at 37 °C. The content of PGE2 and 6-keto PGF1α in the plasma was quantified 

by ELISA. The parallel determination of 6-keto PGF1α allows the assessment of inhibitory effects 

that appear upstream of PGE2 synthesis itself, e.g. by inhibition of COX. Samples that were not 

stimulated with LPS produced about 35% of PGE2 compared to the stimulated vehicle control 

(Figure 44). Treatment with indomethacin (10 µM) led to PGE2 levels that were even lower as the 

non-stimulated control. The selective mPGES-1 inhibitor MD-52 (6 µM) only suppressed PGE2 

formation by about 33%, which may represent the maximal inhibition that can be achieved by 
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exclusive inhibition of mPGES-1 in this model. The triterpenic acids (10 µM) also partially 

inhibited PGE2 formation (Figure 44 A), with 3β-OH-TA, 3-oxo-TA, DH-k-RA and Ac-OH-LA 

being as potent as MD-52. The Ac-TAs and 3α-OH-TAs were less effective or totally failed to 

suppress PGE2 formation. 6-keto PGF1α production was significantly suppressed by indomethacin 

(leading to about 15% 6-keto PGF1α vs. the stimulated vehicle control), but it was not affected by 

any of the test compounds (data not shown). This implies that the test compounds inhibit PGE2 

formation by acting on mPGES-1 rather than on COX or PLA2 enzymes. 

Acid fractions of extracts from Boswellia species oleo-gum resin were tested in this whole blood 

assay as well (Figure 44 B). At 3 µg/ml, the acid fraction from B. papyrifera and B. serrata 

inhibited PGE2 formation comparably to MD-52. The extract a. f. B. sacra was less effective and 

a. f. B. carteri did not inhibit PGE2 formation. Interestingly, at higher concentrations, inhibition of 

PGE2 formation by a. f. B. papyrifera was less distinct (data not shown).  
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Figure 44: Impact of triterpenic acids and extracts from Boswellia species oleo-gum resins on PGE2 formation 
in LPS-stimulated human whole blood. Heparinized human whole blood was buffered with phosphate buffer (20%, 
v/v), treated with CV-4151 (1 µM) and incubated with vehicle (ctrl., DMSO), MD-52 (6 µM), indomethacin (10 µM) 
and the respective triterpenic acids (10 µM, panel A) or the acid fractions (a. f.) of extracts from Boswellia species 
oleo-gum resins (3 µg/ml, panel B) for 10 min at RT. The reaction was started by addition of 10 µg/ml LPS (except 
“unstim.” sample). After 5 h at 37 °C, the reaction was stopped on ice. The samples were centrifuged, the supernatants 
acidified with citric acid and centrifuged again. The supernatant was processed by SPE and HPLC, the PGE2 peaks 
were collected and the PGE2 content was determined by ELISA. Data are given as mean + S.E. of the percentage of 
the vehicle control with 3,836 ± 549 pg PGE2 per ml blood. n = 4 – 6, *** p < 0.001 vs. ctrl., one-way ANOVA 
followed by Tukey-Kramer post hoc test. 
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4.3.4 Impact of triterpenic acids and extracts from Boswellia species on the 

activity of COX-1 and -2  

To estimate the selectivity of the triterpenic acids, which performed the most potent inhibition of 

mPGES-1 activity, the impact on further enzymes participating in PGE2 synthesis was analyzed. In 

cell-free assays using purified ovine COX-1 (Figure 45 A) and purified recombinant human 

COX-2 (Figure 45 C), the triterpenic acids elicited inhibitory effects but these were much less 

intense than those found for the inhibition of mPGES-1. Significant inhibition was only 

accomplished by some of the tested compounds at very high concentrations (100 µM), namely by 

3-oxo-TA and Ac-OH-LA in COX-1 and COX-2 assays and DH-k-RA in the COX-2 assay. 

Interestingly, also the reference drug indomethacin (10 µM) only suppressed COX-1 activity to 

about 40%. Obviously, inhibition of 12-HHT formation beyond this level is barely feasible in this 

assay.  

In addition, acid and neutral fractions of extracts from the Boswellia species oleo-gum resins were 

tested (10 µg/ml) for their impact on COX-1 and -2 activity. The acid fractions - foremost those of 

B. papyrifera and B. carteri - exerted moderate inhibition of COX-1 (Figure 45 B), whereas the 

neutral fraction from B. carteri was ineffective. COX-2 activity was slightly suppressed by the 

acid fractions, with the acid fractions from B. serrata and B. sacra leading to significant inhibition 

of the isolated enzyme at 10 µg/ml (Figure 45 D). 
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Figure 45: Impact of triterpenic acids and extracts from Boswellia species on cyclooxygenase-1 and -2 activity 
in cell-free assays. Purified COX-1 (ovine, 50 units, panels A and B) or COX-2 (human recombinant, 20 units, panels 
C and D) in Tris buffer (100 mM, pH 8) supplemented with 5 mM glutathione, 5 µM haemoglobin and 100 µM EDTA 
were incubated with vehicle (ctrl., DMSO), indomethacin (10 µM) or celecoxib (10 µM), the indicated test 
compounds at concentrations of 100 µM and 10 µM (panels A and C) or the acid (a. f.) or neutral fraction (n. f.) of 
extracts from the indicated Boswellia species at 10 µg/ml (panels B and D) for 9 min at 4 °C. Samples were pre-
warmed at 37 °C for 1 min and AA (5 µM for COX-1, 2 µM for COX-2) was added. After 5 min at 37 °C, the reaction 
was stopped and 12-HHT formation was determined. Data are given as mean + S.E. of the percentage of the vehicle 
control with 443 ± 46.8 ng 12-HHT per 50 units COX-1 (A and B) and 220 ± 64.5 ng 12-HHT per 20 units COX-2 (C 
and D). n = 3 – 6, * p < 0.05, ** p < 0.005, *** p < 0.001 vs. ctrl., one-way ANOVA followed by Tukey-Kramer post 
hoc test. 

 
As the impact of COX inhibitors in cell-free approaches frequently deviates from the potency in 

cellular systems, the effects of the triterpenic acids were additionally analyzed in cell-based assays 

on COX activity. COX-1 activity was tested in human platelets after stimulation with AA (5 µM). 

In contrast to the cell-free model, indomethacin (10 µM) almost totally suppressed COX-1 activity 

here (Figure 46). The triterpenic acids also suppressed COX-1 activity, but only DH-k-RA led to 

more than 50% inhibition at 10 µM.  
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Figure 46: Effects of triterpenic acids on COX-1-dependent 12-HHT formation in human platelets. Platelets 
(108 /ml in PGC buffer) were pre-incubated with vehicle (ctrl., DMSO), indomethacin (10 µM) and the respective 
triterpenic acids (10 µM) for 4 min at RT and 1 min at 37 °C. The cells were stimulated with AA 5 µM for 5 min at 
37 °C. The reaction was terminated and 12-HHT formation was determined. Data are given as mean + S.E. of the 
percentage of the vehicle control with 163 ± 10.5 ng 12-HHT per 108 cells, n = 4, ** p < 0.01, *** p < 0.001 vs. ctrl., 
one-way ANOVA followed by Tukey HSD post hoc test. 

 
Cellular COX-2 activity was tested in IL-1β-primed, AA-stimulated A549 cells. Priming of A549 

cells with IL-1β leads to upregulation of COX-2 and mPGES-1 [333]; COX-1 is seemingly not 

expressed in A549 cells [588]. Thus, 6-keto PGF1α formation in consequence of stimulation with 

exogenous AA is an appropriate indicator for cellular COX-2 activity. AA-induced 6-keto PGF1α 

formation was blocked by pre-treatment with indomethacin (Figure 47). However, none of the 

analyzed triterpenic acids inhibited COX-2-driven 6-keto PGF1α formation at a concentration of 

10 µM.  
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Figure 47: Effects of triterpenic acids on COX-2-dependent 6-keto PGF1α formation in IL-1 β-primed, AA-
stimulated A549 cells. A549 cells (2 × 106 cells in 20 ml DMEM/high glucose (4.5 g/l) medium containing FCS 
(10%, v/v), penicillin (100 U/ml) and streptomycin (100 µg/ml)) were incubated for 16 h (37 °C, 6% CO2). The 
medium was replaced by fresh medium containing 2% (v/v) of FCS and induction of COX-2 was started by addition 
of IL-1β (2 ng/ml) for 72 h (37 °C, 6% CO2). The cells were detached, washed twice with PBS buffer and resuspended 
(2 × 106 /ml) in PGC buffer. Cells were incubated with vehicle (ctrl., DMSO), indomethacin (20 µM) and the 
respective triterpenic acids (10 µM) for 10 min (37 °C) and the reaction was started by addition of 3 µM AA and 
stopped on ice after 15 min (37 °C). The cells were spun down and 6-keto PGF1α in the supernatant was determined 
using a 6-keto PGF1α ELISA kit. Data are given as mean + S.E. of the percentage of the vehicle control with 386 ± 
50.7 pg 6-keto PGF1α per 2 × 106 cells, n = 3, *** p < 0.001 vs. ctrl., one-way ANOVA followed by Tukey HSD post 
hoc test. 

 
The production of COX-derived 12-HHT after treatment with triterpenic acids and stimulation 

with calcium ionophore A23187 was also tested in human whole blood. Stimulation with A23187 

led to about fourfold increase in 12-HHT production that was vastly inhibited by ibuprofen 

(100 µM) (Figure 48). Remarkably, the four tested TAs (10 µM) suppressed the A23187-

stimulated 12-HHT production to about 60%, though not significantly. DH-k-RA was less 

effective (20% inhibition) and Ac-OH-LA did not affect or rather stimulated 12-HHT production. 

Of interest, increasing concentrations of the TAs (30 µM) did not enhance their inhibitory 

potential on 12-HHT formation (data not shown). It should be noted that other eicosanoids (5-LO 

products and 12-HETE) were not or only marginally suppressed at a concentration of 10 µM (data 

not shown). 
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Figure 48: Effects of triterpenic acids on 12-HHT formation in A23187-stimulated human whole blood. 
Heparinized human whole blood was pre-incubated with vehicle (ctrl., DMSO), ibuprofen 100 µM, and the indicated 
triterpenic acids 10 µM for 10 min at 37 °C. Samples were stimulated with A23187 (30 µM) for 10 min (37 °C), the 
incubation was stopped on ice and the content of 12-HHT was determined by HPLC. Data are given as mean + S.E. of 
the percentage of the vehicle control with 75.5 ± 16.9 ng 12-HHT per ml blood, n = 3 – 6, ** p < 0.01, *** p < 0.001 
vs. ctrl., one-way ANOVA followed by Tukey-Kramer post hoc test. 

 

4.3.5 Impact of triterpenic acids and extracts from Boswellia species on 

cPLA2 activity  

The impact of the most potent mPGES-1-inhibiting triterpenic acids on cPLA2α activity was tested 

in a cell-free assay, using purified recombinant cPLA2α as enzyme source and PAPC/POG-

vesicles as substrate. AA release in this model was largely suppressed by the synthetic cPLA2α 

inhibitor (cPLA2α-i., RSC-3388). The TAs and DH-k-RA only moderately inhibited AA release 

with a maximal inhibition of about 30% after treatment with 3-oxo-TA or 3α-Ac-8,24-dien-TA (10 

and 30 µM) (Figure 49 A). Obviously, increasing concentrations of these compounds did not lead 

to enhanced inhibition. On the other hand, Ac-OH-LA potently inhibited the activity of cPLA2α 

(see chapter  4.1). The neutral fraction from B. carteri did not affect cPLA2α-induced AA release 

(Figure 49 B). The acid fractions from B. sacra and B. carteri were ineffective at this 

concentration as well. In contrast, the acid fractions from B. papyrifera and B. serrata significantly 

suppressed AA release to 54 and 72%, respectively. At higher concentrations (30 µg/ml), the 

inhibitory effect was not enhanced but remained at the same level (data not shown).  
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Figure 49: Effects of triterpenic acids and extracts from Boswellia species on AA release from PAPC/POG 
vesicles by purified cPLA2α. PAPC/POG-vesicles (lipid concentration 250 µM in TBS buffer containing 1 mg/ml 
FAF-BSA) were supplemented with CaCl2 (1 mM) and pre-incubated with vehicle (ctrl., DMSO), 5 µM 
cPLA2α  inhibitor (cPLA2α-i.), triterpenic acids (A) at the indicated concentrations or the acid (a. f.) or neutral fraction 
(n. f.) of extracts from the indicated Boswellia species oleo-gum resins at 10 µg/ml (B) for 10 min at RT. The reaction 
was started by addition of the purified enzyme (2.5 µg/ml) and maintained at 37 °C for 60 min. After derivatization, 
AA was analyzed by HPLC. Data are given as mean + S.E. of the percentage of the vehicle control, n = 3 – 6, * p < 
0.05, ** p < 0.01, *** p < 0.001 vs. ctrl., one-way ANOVA followed by Tukey-Kramer post hoc test. 

 
Using [3H]-AA-labelled platelets as cellular test system, the TAs further increased A23187-

induced AA release as expected, especially at higher concentrations (see chapter  4.2, Figure 50 A). 

As described in chapter  4.1, Ac-OH-LA concentration-dependently suppressed AA release. 

Interestingly, in contrast to the cell-free assay on cPLA2α activity, DH-k-RA effectively inhibited 

AA release in this cellular system. Nevertheless, this inhibition was markedly less potent than for 

Ac-OH-LA in an assay omitting BSA in the buffer (data not shown), where it stagnated on the 

half-maximal level that was reached by Ac-OH-LA or the cPLA2α control inhibitor. The acid 

fractions from B. papyrifera and B. serrata suppressed AA release at concentrations of 3 µg/ml, 

but suppression vanished when higher concentrations were applied. 
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Figure 50: Effects of triterpenic acids and extracts from Boswellia species on [3H]-AA release from A23187-
stimulated platelets. Labelled platelets (108 /ml in PGC buffer supplemented with FAF-BSA 1 mg/ml) were pre-
incubated with vehicle (ctrl., DMSO), 5 µM cPLA2α inhibitor (cPLA2α-i.), triterpenic acids (A) or the acid fraction (a. 
f.) of extracts from the indicated Boswellia species at the indicated concentrations (B) for 15 min at 37 °C. The cells 
were stimulated with A23187 1 µM for 5 min at 37 °C. The reaction was terminated on ice, the samples were 
centrifuged and the supernatant was analyzed by scintillation counting. Data are given as mean + S.E. of the 
percentage of the vehicle control (+ A23187 1 µM) with (9.64 ± 1.36) × 103 cpm, n = 3 – 6, * p < 0.05, ** p < 0.01, 
*** p < 0.001 vs. ctrl., one-way ANOVA followed by Tukey-Kramer post hoc test. 

 

4.3.6 Effects of 3-oxo-tirucallic acid and an extract from B. papyrifera on 

carrageenan-induced pleurisy in rats 

In order to investigate the inhibition of mPGES-1 in vivo, 3-oxo-TA and the acid fraction of the 

extracted resin from B. papyrifera (a. f. B. papyrifera) were tested in a carrageenan-induced rat 

pleurisy model. The extract (a. f. B. papyrifera) was selected as it was the most potent extract to 

inhibit mPGES-1 from all species that were tested. 3-oxo-TA was chosen, as TAs in general 

turned out to inhibit mPGES-1 activity more or less selectively and 3-oxo-TA represents the major 

TA in the extract from B. papyrifera [498]. The injection of carrageenan in the pleural cavity led to 

an intense inflammatory process including oedema formation, migration of leukocytes into the 

pleural space and the production of inflammatory mediators. As biomarkers of the inflammatory 

reaction, the volume of exudate and the number of infiltrated inflammatory cells in the pleural 

cavity were determined. PGE2 was analyzed to assess the impact on PGE2 synthases and another 

COX product, 6-keto PGF1α, was quantified to discriminate unspecific effects that arise from 

interference with structures upstream of COX or with COX itself. Production of LTB4 was 

determined to monitor effects on 5-LO (Figure 51). The COX inhibitor indomethacin (5 mg/kg), 

the FLAP inhibitor MK-886 (1.5 mg/kg) and the direct 5-LO inhibitor zileuton (10 mg/kg) were 
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used as control drugs. It should be noted that the IC50 value of MK-886 for inhibition of FLAP is 

clearly lower than for mPGES-1 [585, 589] and inhibition of mPGES-1 in not expected in the 

applied dosage. Vehicle, the control inhibitors, 3-oxo-TA and the extract were administered 

intraperitoneally 30 min prior to the injection of carrageenan, using DMSO (4% in 1.5 ml saline) 

as vehicle. Administration of vehicle alone had no effect on carrageenan-induced pleurisy 

compared to exclusive application of saline (430 ± 34.3 and 487 ± 28.7 µl of gathered exudate, 

respectively). The COX inhibitor indomethacin reduced the exudate volume to 25%, and only 35% 

of inflammatory cells infiltrated the pleural cavity. Reduction of PGE2 and 6-keto PGF1α synthesis 

to 10 and 6%, respectively, was extremely significant. LTB4 levels were not significantly reduced 

to about 84%. The effect of MK-886 (1.5 mg/kg) on the inflammatory symptoms was only sparse. 

The exudate volume was reduced to 63% and the cell count to 69%. As expected, the LTB4 levels 

were significantly suppressed to 25%, whereas the PGE2 and 6-keto PGF1α levels were not 

markedly affected. The direct 5-LO inhibitor zileuton (10 mg/kg) clearly diminished the exudate 

volume to 31% of the control; the cell count was also lowered, but only to 65%. Zileuton not only 

inhibited LTB4 production, but also the formation of the COX products 6-keto PGF1α and PGE2, 

which was recently investigated in detail [590]. Treatment with 3-oxo-TA (5 mg/kg), though not 

significantly, reduced the accumulation of exudate to about 78%. The migration of inflammatory 

cells into the pleural cavity was significantly attenuated to 70%. PGE2 was significantly reduced to 

71%, 6-keto PGF1α and LTB4 formation dropped to 65 and 77%, respectively. The extract (a. f. B. 

papyrifera, 10 mg/kg) barely affected the exudate volume. On the other hand, it significantly 

suppressed the number of inflammatory cells to 72%. The synthesis of PGE2 was suppressed to 

79%, thus less potently than after treatment with 3-oxo-TA. 6-keto PGF1α was significantly 

inhibited to 62%. Comparably to treatment with 3-oxo-TA, LTB4 declined to 76%. Apparently, 

both treatments, 3-oxo-TA and the extract, reduced more or less all of the analyzed parameters. 

Nevertheless, compared to the extract, 3-oxo-TA tended to exhibit more inhibitory activity on 

PGE2 formation than on 6-keto PGF1α production. However, the effects on the inflammatory 

reaction reflected by exudate formation, cell infiltration and the analyzed eicosanoids were less 

manifest than after treatment with the reference drugs. 
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Figure 51: Impact of 3-oxo-TA and of the extract a. f. B. papyrifera on carrageenan-induced pleurisy in rats. 
Indomethacin (5 mg/kg), MK-886 (1.5 mg/kg), zileuton (10 mg/kg), 3-oxo-TA (5 mg/kg) or the acid fraction of the 
extracted resin from B. papyrifera (a. f. B. papyrifera, 10 mg/kg) were dissolved in DMSO, diluted in saline (1:25, 
v/v) and administered intraperitoneally (i. p.) in an overall volume of 1.5 ml 30 min before administration of 
carrageenan. The vehicle-treated group of rats received 1.5 ml of DMSO 4% (v/v) in saline. Rats were anaesthetized 
and saline (0.2 ml) or λ-Carrageenan type IV 1% (w/v) (0.2 ml) were injected into the pleural cavity. At 4 h after the 
injection of λ-carrageenan, the animals were killed and the exudate in the pleural cavity was removed by aspiration. 
The exudate volume was measured (A), leukocytes in the exudate were spun down (800 × g, 10 min) and resuspended 
in PBS for cell counting (B). The amounts of PGE2 (C), 6-keto PGF1α (D) and LTB4 (E) in the supernatant of the 
exudate were determined by radioimmunoassay (PGE2) or ELISA (LTB4 and 6-keto PGF1α). The results are expressed 
as mean ± S.E. of 5 – 20 rats in µl per rat (A), inflammatory cells per rat (B) or pg per rat (C, D, E), * p < 0.05, ** p < 
0.01, *** p < 0.001 vs. ctrl., one-way ANOVA followed by Tukey-Kramer post hoc test.  
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Summing up, TAs, DH-k-RA and Ac-OH-LA potently inhibit mPGES-1 activity in a cell-free test 

system. The inhibitory potential of 3-OH-TAs and 3-oxo-TA on PGE2 formation was maintained 

in LPS-primed monocytes, whereas the Ac-TAs, DH-k-RA and Ac-OH-LA lost their effectiveness 

in this model. In human whole blood, DH-k-RA, Ac-OH-LA, 3β-OH-TA and 3-oxo-TA potently 

inhibited PGE2 formation comparably to the selective mPGES-1 inhibitor MD-52. Assays 

evaluating the activity of COX-1 and -2 showed only moderate effects of the triterpenic acids at 

concentrations of 10 µM, though COX-2 was not affected in cellular models. cPLA2α activity was 

potently suppressed by Ac-OH-LA, but only little effects were seen after treatment with TAs and 

DH-k-RA. In a carrageenan-induced pleurisy model in rats, 3-oxo-TA and the extract 

a. f. B. papyrifera significantly reduced the accumulation of inflammatory cells in the pleural 

cavity. The formation of PGE2, 6-keto PGF1α and LTB4 were moderately reduced. 
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4.4 Impact of triterpenic acids and extracts from Boswellia species on 

5-LO 

5-LO is the first pharmacological target that was identified for BAs [530]. Nonetheless, the 

contribution of other triterpenic acids than BAs to the inhibition of 5-LO by extracts from 

Boswellia species has been barely considered.  

4.4.1 Effects of triterpenic acids and extracts from Boswellia species on cell-

free 5-LO activity 

In a cell-free test system, using semi-purified human recombinant 5-LO, extracts from different 

Boswellia species were tested on their 5-LO-inhibiting potential. The synthetic 5-LO inhibitor 

BWA4C (0.3 µM) reduced 5-LO product formation to 36% remaining activity. The acid fractions 

of the extracts (10 µg/ml) considerably suppressed 5-LO product formation to levels of 54 to 67%, 

whereas the neutral fraction of B. carteri extract was clearly less potent (Figure 52). As the pattern 

of acids composing extracts from different species differs markedly, the comparable effects of the 

acid fractions might be due to a similar content of a few active compounds (e.g. BAs) or due to a 

broad variety of active components that result in similar potency. 
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Figure 52: Effects of extracts from Boswellia spec. on the activity of purified 5-lipoxygenase. 0.5 µg of purified 
recombinant 5-LO in cold PBS containing 1 mM EDTA and 1 mM ATP were incubated with vehicle (ctrl., DMSO), 
0.3 µM BWA4C or the acid fractions (a. f.) or neutral fraction (n. f.) of extracts from the indicated Boswellia species 
(10 µg/ml) for 10 min (4 °C). The samples were pre-warmed at 37 °C for 30 sec and the reaction was started by 
addition of 2 mM CaCl2 and 20 µM AA. After 10 min, the reaction was stopped and the 5-LO products 5(S)-HETE 
and the all-trans isomers of LTB4 were quantified by HPLC. Data are given as mean + SEM of the percentage of the 
vehicle control with 1,296 ± 378 ng 5-LO products per 0.5 µg 5-LO, n = 4 – 5. * p < 0.05, ** p < 0.01, *** p < 0.001 
vs. ctrl., one-way ANOVA followed by Tukey-Kramer post hoc test. 
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Next, the efficacy of triterpenic acids from different Boswellia species was assessed in the same 

cell-free system. First, compounds were analyzed at 10 µM and those that caused more than 25% 

inhibition were tested also at lower concentrations (Figure 53). The triterpenic acids were 

compared to the most common BAs (right side of the chart). Representatives of different structural 

subgroups, especially 3β-OH-TA, 3-oxo-TA, 3α-OH-8,24-dien-TA, DH-k-RA and Ac-OH-LA, 

significantly inhibited 5-LO activity and their potency was comparable to that of the BAs.  
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Figure 53: Impact of triterpenic acids from Boswellia spec. on isolated 5-lipoxygenase. 0.5 µg of purified 
recombinant 5-LO in cold PBS containing 1 mM EDTA and 1 mM ATP were incubated with vehicle (ctrl., DMSO), 
0.3 µM BWA4C or the indicated compounds for 10 min (4 °C). The samples were pre-warmed at 37 °C for 30 sec and 
the reaction was started by addition of 2 mM CaCl2 and 20 µM AA. After 10 min the reaction was stopped and the 
5-LO products 5(S)-HETE and the all-trans isomers of LTB4 were quantified by HPLC. Data are given as mean + 
SEM of the percentage of the vehicle control with 1,401 ± 120 ng 5-LO products per 0.5 µg 5-LO, n = 3 – 5. * p < 
0.05, ** p < 0.01, *** p < 0.001 vs. ctrl., one-way ANOVA followed by Tukey-Kramer post hoc test. 

 

4.4.2 Effects of triterpenic acids from Boswellia species on 5-LO product 

formation in stimulated human neutrophils  

To evaluate the effects of triterpenic acids on 5-LO in a cellular environment, PMNL from human 

whole blood were treated with the compounds (10 µM) and then stimulated with 2.5 µM A23187 

and 20 µM AA. This stimulation allows a relatively selective conclusion on the activity of 5-LO. 

A23187 induces the translocation and attachment of 5-LO to membranes and thereby enhances the 

catalytic activity of the enzyme. Exogenous AA renders 5-LO independent of AA supply through 

phospholipases and FLAP. The triterpenic acids that exhibited potent inhibition of 5-LO in the 

cell-free assay also potently inhibited 5-LO product formation in this cellular model (Figure 54). 

The effects at concentrations of 10 µM were even more evident in the cellular context. 
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Concentration-response analyses were carried out for the most potent compounds (Table 7) and 

revealed IC50 values that were comparable or even below those of the most potent BAs, namely 

AKBA (IC 50 = 3.2 µM) and KBA (IC50 = 2.8 µM). It was striking, that the most potent compound 

in this cellular assay (3α-OH-8,24-dien-TA) showed only moderate potency in the cell-free assay 

with an IC50 value that was about 20-fold increased.  
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Figure 54: Effects of triterpenic acids on 5-lipoxygenase product formation in AA- plus A23187-stimulated 
human PMNL. PMNL (5 × 106 /ml in PGC buffer) were pre-incubated with vehicle (ctrl., DMSO), 0.3 µM BWA4C 
or the indicated triterpenic acids (10 µM) for 15 min at 37 °C. The cells were stimulated with AA 20 µM and A23187 
2.5 µM for 10 min at 37 °C. The reaction was terminated and 5-LO product formation (5(S)-HETE, 
5(S),12(S)-diHETE, LTB4 and its all-trans isomers) was determined. Data are given as mean + S.E. of the percentage 
of the vehicle control with 889 ± 69.4 ng 5-LO products per 5 × 106  cells, n = 3 – 5, * p < 0.05, *** p < 0.001 vs. ctrl., 
one-way ANOVA followed by Tukey-Kramer post hoc test. 
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Table 7: IC50 values of triterpenic acids on 5-lipoxygenase product formation in AA- plus A23187-stimulated 
human PMNL. PMNL (5 × 106 /ml in PGC buffer) were pre-incubated with the indicated triterpenic acids for 15 min 
at 37 °C. The cells were stimulated with AA 20 µM and A23187 2.5 µM for 10 min at 37 °C. The reaction was 
terminated and 5-LO product formation (5(S)-HETE, 5(S),12(S)-diHETE, LTB4 and its all-trans isomers) was 
determined. IC50 values were determined by fitting concentration response data to a four parameter logistic curve. 

compound IC [µM]50 compound IC [µM]50

3 -OH-7,24-
dien-TA

α
2.9 DH-k-RA 4.3

3 -OH-8,24-
dien-TA

α
1.1 LA 4.0

3 -OH-TAβ 3.0 Ac-OH-LA 5.1

3-oxo-TA 7.1

3 -Ac-8,24-
dien-TA

α
26

 

 

4.4.3 Effects of triterpenic acids from Boswellia species on 5-LO product 

formation in stimulated human whole blood 

Human whole blood is commonly used to assess the inhibitory potential of 5-LO inhibitors in a 

physiologically relevant context. Human whole blood was treated with 3α-OH-8,24-dien-TA, 

3β-OH-TA, 3-oxo-TA, 3α-Ac-8,24-dien-TA, DH-k-RA, LA and Ac-OH-LA at concentrations of 

10 and 30 µM and stimulated with A23187 (30 µM). In contrast to their activity in isolated cells, 

no significant impact on 5-LO product formation was observed here (Figure 55). Not only the 

effectiveness of the test compounds on 5-LO activity vanished in the whole blood model, but also 

the cPLA2α-inhibiting effects of Ac-OH-LA (see chapter  4.1).  
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Figure 55: Effects of triterpenic acids on 5-lipoxygenase product formation in human whole blood. Heparinized 
human whole blood was pre-incubated with vehicle (ctrl., DMSO), 3 µM BWA4C and the indicated triterpenic acids 
(10 and 30 µM) for 10 min at 37 °C. The samples were stimulated with A23187 (30 µM) for 10 min at 37 °C, the 
incubation was stopped on ice and the content of 5-LO products (5(S)-HETE, 5(S),12(S)-diHETE, LTB4 and its all-
trans isomers) was determined by HPLC. Data are given as mean + S.E. of the percentage of the vehicle control with 
106 ± 34.9 ng 5-LO products per ml blood, n = 3 – 6, *** p < 0.001 vs. ctrl., one-way ANOVA followed by Tukey-
Kramer post hoc test. 
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4.5 Impact of triterpenic acids and frankincense extracts on neutrophil 

proteases CG and HLE  

4.5.1 Effects of triterpenic acids and extracts from Boswellia species on 

Cathepsin G (CG) activity 

CG was recently identified as a pharmacological target of BAs. As for 5-LO inhibition, the impact 

of other triterpenic acids on CG was only partially analyzed. For testing of the compounds, 

isolated human CG (1 µg/ml) was provided in HEPES buffered saline and the test compounds (10 

and 1 µM) were added. The reaction was started by addition of the chromogenic substrate of CG 

(N-Suc-Ala-Ala-Pro-Phe-p-nitroanilide, 1 mM) and formation of p-nitroaniline (pNA) over time 

was monitored spectro-photometrically. The activity of the enzyme was determined to be 

1.4 mU/µg in this setup. The synthetic CG inhibitor JNJ-10311795 almost totally suppressed pNA 

formation (Figure 56). However, after incubation with 10 µM β-BA, the protease’s activity was 

only repressed to 60% of the vehicle control, although β-BA was reported to inhibit CG with an 

IC50 value of 0.8 µM at the same conditions regarding enzyme amount and nature and 

concentration of the substrate [544]. Nevertheless, at 10 µM β-BA significantly inhibited CG and 

so did several other triterpenic acids, especially Ac-LA, which was markedly more potent than 

β-BA. 3-oxo-TA, 3α-Ac-7,24-dien-TA, DH-k-RA, DH-NA and LA inhibited CG to a similar 

extent as β-BA. 
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Figure 56: Impact of triterpenic acids on the activity of purified cathepsin G. 1 µg/ml of purified human CG in 
HEPES-buffered (100 mM) saline (500 mM) were incubated with vehicle (ctrl., DMSO), JNJ-10311795 (1 µM) or the 
indicated triterpenic acids (10 and 1 µM) for 10 min at 4 °C. The incubation was started by addition of 1 mM of the 
chromogenic substrate (N-Suc-Ala-Ala-Pro-Phe-p-nitroanilide) and the absorption of formed p-nitroaniline was 
recorded at 405 nm for 60 min (RT). Data are given as mean + S.E. of the percentage of the vehicle control with an 
activity of 1.4 ± 0.063 mU per µg CG. n = 3, * p < 0.05, ** p < 0.01, *** p < 0.001 vs. ctrl., one-way ANOVA 
followed by Tukey HSD post hoc test. 

 
CG is usually excreted by neutrophils upon stimulation e.g. with chemotactic stimuli. For this 

reason, PMNL were stimulated first with cytochalasin B, to facilitate the excretion and 

subsequently with the chemokine fMLP [574]. After stimulation, the cells were spun down and the 

supernatant was used as source of CG. This setup allows a more physiologic environment for CG. 

The substrate (N-Suc-Ala-Ala-Pro-Phe-p-nitroanilide) that was used in this assay is specifically 

cleaved by CG and therefore no cross-reactivity by other leukocyte-derived proteases is expected. 

The synthetic CG inhibitor JNJ-10311795 led to excessive suppression of CG activity here as well 

(Figure 57 A). A-BA, which was described to possess an IC50 of 1.2 µM on the purified enzyme 

[544], was used as representative control of the BAs. But again, the BA was less potent, leading to 

40% inhibition at a concentration of 10 µM. Especially the LAs and also 3-oxo-TA were more 

potent than A-BA, but only reduced CG activity to about 50 to 60% at 10 µM. As seen for the 

isolated enzyme, Ac-LA was the most potent triterpenic acid in this assay again. Although the 

enzymatic activity was lower in the protein mix excreted from PMNL, the inhibitory potential of 

the tested compounds was not markedly changed. 

The acid fractions of extracts from different Boswellia species oleo-gum resins were tested in this 

assay as well (Figure 57 B). The neutral fraction of B. carteri did not affect CG activity. In 

contrast, the acid fractions of all the tested extracts significantly inhibited the enzyme at 10 µg/ml. 

The most active extract was a. f. B. papyrifera, which was still significantly less potent than the 
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synthetic control inhibitor JNJ-10311795. At 10 µg/ml, a. f. B. serrata was markedly less potent 

than the respective extracts from the three other species. 
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Figure 57: Interference of triterpenic acids and extracts from Boswellia species with cathepsin G in a protein 
mix directly excreted from neutrophils. Neutrophils were stimulated with 10 µM cytochalasin B (5 min, 37 °C) and 
2.5 µM fMLP (5 min, 37 °C). After centrifugation, the protein content in the supernatant was determined and 7.5 µg 
protein per ml were diluted in HEPES-buffered (100 mM) saline (500 mM). This protein solution was incubated with 
vehicle (ctrl., DMSO), JNJ-10311795 (1 µM), the indicated triterpenic acids (10 µM, A) or the acid (a. f.) or neutral 
fraction (n. f.) of the extracts from the indicated Boswellia species oleo-gum resins (100 or 10 µg/ml, B) for 10 min at 
4 °C. The incubation was started by addition of 1 mM of the CG-specific chromogenic substrate (N-Suc-Ala-Ala-Pro-
Phe-p-nitroanilide) and the absorption of liberated p-nitroaniline was recorded at 405 nm for 60 min (RT). Data are 
given as mean + S.E. of the percentage of the vehicle control with an activity of 0.5 ± 0.056 mU per 7.5 µg proteins 
from PMNL excretion. n = 3 – 5, * p < 0.05, ** p < 0.01, *** p < 0.001 vs. ctrl., one-way ANOVA followed by 
Tukey-Kramer post hoc test. 

 



 4.5 Impact of triterpenic acids and frankincense extracts on neutrophil proteases CG and HLE 133 

4.5.2 Impact of triterpenic acids and extracts from Boswellia species on 

human leukocyte elastase (HLE) activity  

HLE is another protease that is secreted by leukocytes, e.g. upon stimulation with chemokines. 

AKBA and ursolic acid, another pentacyclic triterpenic acid, were reported to inhibit HLE activity 

with IC50 values of 15 and 2 µM, respectively [542]. The effect of several triterpenic acids and 

extracts from different Boswellia species on HLE activity was analyzed here. The same protein 

solution that was already used in the CG assay (see chapter  4.5.1) and that was obtained by 

stimulation of PMNL with cytochalasin B and fMLP, was used as source for HLE. For analysis of 

HLE activity, the specific substrate N-MeOSuc-Ala-Ala-Pro-Val-p-nitroanilide was used to avoid 

cross-reactivity of other leukocyte-derived proteases. The synthetic HLE inhibitor sivelestat 

(50 nM) potently inhibited the protease’s activity (Figure 58 A). In contrast, AKBA (10 µM) was 

rather ineffective and also ursolic acid (10 µM) only suppressed HLE activity to 57%, thus 

markedly less potent than reported. Most of the triterpenic acids that were tested showed more 

efficient inhibition of HLE activity than AKBA. The impact of 3α-Ac-8,24-dien-TA, RA and 

Ac-LA was similar to that of ursolic acid. Nevertheless, it was significantly differing from that of 

the control inhibitor sivelestat. In addition, several extracts form Boswellia species oleo-gum 

resins were tested in this assay (Figure 58 B). At high concentrations (100 µg/ml), the acid fraction 

of the extracts from B. papyrifera and B. serrata almost reached the inhibitory effect of sivelestat. 

However, at lower concentrations (10 µg/ml) the effect was clearly attenuated, though still 

significant. Interestingly, the neutral fraction of the extract from B. carteri caused significant 

inhibition of HLE at 100 µg/ml as well, which was comparable to the acid fraction of the same 

extract. 
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Figure 58: Interference of triterpenic acids and extracts from Boswellia species with human leukocyte elastase 
(HLE) in a protein mix directly excreted from neutrophils. Neutrophils were stimulated with 10 µM 
cytochalasin B (5 min, 37 °C) and 2.5 µM fMLP (5 min, 37 °C). After centrifugation, the protein content in the 
supernatant was determined and 7.5 µg protein per ml were diluted in HEPES-buffered (100 mM) saline (500 mM). 
This protein solution was incubated with vehicle (ctrl., DMSO), sivelestat (50 nM), the indicated triterpenic acids 
(10 µM, A) or the acid (a. f.) or neutral fraction (n. f.) of the extracts from the indicated Boswellia species oleo-gum 
resins (100 or 10 µg/ml, B) for 10 min at 4 °C. The reaction was started by addition of 0.1 mM of the HLE-specific 
chromogenic substrate (N-MeOSuc-Ala-Ala-Pro-Val-p-nitroanilide) and the absorption of liberated p-nitroaniline was 
recorded at 405 nm for 10 min (RT). Data are given as mean + S.E. of the percentage of the vehicle control with an 
activity of 1.5 ± 0.41 mU per 7.5 µg proteins from PMNL excretion. n = 4 – 6, * p < 0.05, ** p < 0.01, *** p < 0.001 
vs. ctrl., one-way ANOVA followed by Tukey-Kramer post hoc test. 
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4.6 Effects of triterpenic acids from Boswellia species on glucocorticoid 

receptor signalling 

Boswellia preparations are used in traditional and modern medicine to treat diseases with an 

inflammatory background – such as autoimmune diseases or chronic inflammation. The 

application widely coincides with that of glucocorticoids and structural similarities between 

glucocorticoids and certain triterpenic acids are obvious. This raised the question, whether 

compounds in extracts from Boswellia species could directly act as ligands of the glucocorticoid 

receptor. For this reason, a glucocorticoid receptor response element (GRE) luciferase reporter 

assay was performed. A549 cells were chosen to be transiently transfected with the reporter or 

control constructs, since the glucocorticoid receptor is highly involved in transcriptional signalling 

in this cell line [591]. Three approaches were performed to control proper transfection and readout 

of the luciferase activity. The first approach (positive control) contained constitutively expressing 

firefly and Renilla luciferase constructs and a constitutively expressing GFP construct. The second 

approach (reporter approach) contained the inducible glucocorticoid receptor responsive firefly 

luciferase reporter construct and a constitutively expressing Renilla luciferase construct. The third 

approach (negative control) resembled the second one, but contained a non-inducible firefly 

luciferase reporter lacking the transcriptional response element (GRE). The first approach was 

used to assure the successful transfection of the cells, which was checked by fluorescence 

microscopy for GFP in the intact cells and by assessing the activity of constitutively expressed 

firefly and Renilla luciferases after lysis of the cells (ratio of firefly to Renilla luciferase activity 

0.713 ± 0.0496). Actually, only part of the cells that were observed under the light microscope 

(Figure 59 A) could also be visualized by fluorescence microscopy (Figure 59 B) and thus were 

successfully transfected.  
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Figure 59: Expression of GFP in A549 cells after transfection with luciferase and GFP constructs. A549 cells (2 
× 104 cells in 100 µl RPMI 1640 medium supplemented with 2% FCS) were transfected with constructs (100 ng) 
constitutively expressing GFP and firefly and Renilla luciferases. After 24 h (37 °C, 6% CO2), medium was changed 
to RPMI 1640 supplemented with 10% FCS, 100 U/ml penicillin and 100 µg/ml streptomycin. After 16 h, the same 
sector of cells was examined under a light microscope (A) or by fluorescence microscopy (B) excitating at 470 nm and 
recording emission at 515 nm.  

 
After transfection and recovery of the cells, the test compounds were added and cells were further 

incubated for 6 h. For each reporter approach, one negative control was used containing the 

respective test compound to identify background reporter activity and unspecific effects that were 

not related to glucocorticoid receptor signalling. The incubation was stopped and the luciferases 

were released from the cells by passive cell lysis. The luciferases’ activity was determined using a 

dual-luciferase reporter assay system (Promega GmbH, Mannheim, Germany). Constitutively 

expressed Renilla luciferase served as internal control to normalize fluctuations in transfection 

efficiency and effects of the test compounds on cell viability. As expected, dexamethasone 

significantly stimulated the relative luciferase activity about 7.5-fold (ratio of the reporter 

luciferase activity to the constitutive luciferase activity related to the same ratio of the negative 

control) (Figure 60). On the contrary, none of the triterpenic acids significantly induced luciferase 

activity at a concentration of 30 µM. The neutral triterpene amyrin (30 µM) or the neutral fraction 

of the extract from B. carteri (30 µg/ml) were ineffective in modulating the activity of the 

glucocorticoid receptor on the transcriptional response element as well.  
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Figure 60: Relative glucocorticoid receptor response element-dependent luciferase activity in transfected A549 
cells after treatment with diverse triterpenes and the neutral fraction of the extract from B. carteri oleo-gum 
resin. A549 cells (2 × 104 cells in 100 µl RPMI 1640 medium supplemented with 2% FCS) were transfected either 
with 100 ng of a mixture of an inducible glucocorticoid receptor responsive firefly luciferase reporter construct and a 
constitutively expressing Renilla luciferase construct (reporter approach) or with a mixture of a non-inducible firefly 
luciferase reporter construct and a constitutively expressing Renilla luciferase construct (negative control). After 24 h 
(37 °C, 6% CO2), medium was changed to RPMI 1640 medium supplemented with 10% FCS, 100 U/ml penicillin and 
100 µg/ml streptomycin. After 16 h the cells were treated with vehicle (ctrl., DMSO), 100 nM dexamethasone, the 
indicated triterpenes (30 µM) or the neutral fraction of the extract from B. carteri oleo-gum resin (n. f. B. carteri, 
30 µg/ml). 6 h later, the reaction was stopped by rinsing the cells with PBS buffer and passive cell lysis. The 
luciferases’ activity was monitored using a dual-luciferase reporter assay system. Data are given as mean + S.E. of the 
relative luciferase activity (ratio of firefly luciferase activity to Renilla luciferase activity in the reporter approach 
related to the same ratio in the negative approach). n = 2 – 4, *** p < 0.001 vs. ctrl., one-way ANOVA followed by 
Tukey-Kramer post hoc test. 
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5 Discussion 

5.1 Effect of lupeolic acids on cPLA2α activity and evaluation of the 

applied test systems 

Inhibition of cPLA2α has been proposed as pharmacological strategy in the treatment of diverse 

inflammatory diseases like asthma [592], inflammatory skin diseases [244, 593-594] or arthritis 

[108, 595]. In fact, cPLA2α activity is upregulated during inflammation and inhibition of this 

enzyme leads to effective reduction of pro-inflammatory PGs, LTs and PAF, without affecting 

lipid homoeostasis that is predominantly driven by alternative phospholipases [596]. Although 

preclinical data with cPLA2α inhibitors were promising, the potential of these compounds as 

therapeuticals in inflammatory diseases could not be confirmed in clinical trials yet. This is at least 

partly due to the fact that many cPLA2α inhibitors are not drug-like substances. For instance, the 

first generation of inhibitors showed high cytotoxicity because of their amphiphilic structure [230]. 

The recently developed synthetic cPLA2α inhibitors are less cytotoxic but show only poor 

bioavailability [240].  

In this thesis, a rich variety of structurally distinct triterpenic acids from Boswellia species were 

tested in a cell-free assay on cPLA2α activity, including LAs, which have been discovered in 

frankincense only in the last decade [500-502] and whose pharmacological effects are widely 

unexplored. Assays using vesicular membranes as substrate are commonly utilized to illustrate 

direct inhibition of the cPLA2α-membrane interaction and the potency of established cPLA2α 

inhibitors in these test systems closely correlates with that in natural membrane models [597]. The 

screening of triterpenic acids highlighted the impact of Ac-OH-LA on cPLA2α. Other triterpenic 

acids, also LA analogues lacking the C-28-hydroxy moiety, were only partially effective. 

Obviously, the C-28-hydroxy-moiety essentially increases the interference with cPLA2α. Apart 

from being a lipophilic acid, Ac-OH-LA is structurally distinct from other known cPLA2α 

inhibitors. In particular with regard to its molecular weight, Ac-OH-LA is a rather small molecule. 

It should be noted that inhibition of isolated cPLA2α in a cell-free model does not prove direct 

inhibition of the catalytic activity of cPLA2α. Inhibition could also result from impaired interaction 

of the enzyme with the phospholipid interface, an effect that has been observed for Choline-type 

inhibitors for example [231]. As cPLA2α is an interface-activated enzyme (see chapter  2.2.2.4), 

inhibition might also result from allosteric binding to cPLA2α, which impairs interfacial activation 

of the enzyme. 
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Inhibition of cPLA2α by Ac-OH-LA was verified in platelets, monocytes and PMNL as cellular 

test systems. Upon stimulation with A23187, all these cells release AA in a cPLA2α-dependent 

manner [65, 228, 598], which was confirmed in the present work by the complete reversal of 

A23187-stimulated AA release by the cPLA2α control inhibitor. Similarly to the cell-free assays, 

also in the cellular models the inhibitory potential of Ac-OH-LA was higher in comparison to the 

LA analogues without C-28-hydroxy function. In the different cell types, a basal AA release was 

also observed in the absence of ionophore stimulation. This basal AA release was less pronounced 

in PMNL than in platelets or monocytes, probably as a result of cell-specific membrane-

remodelling processes. For example, sPLA2 (group II) activity [580] or indirect decomposition of 

membranous phospholipids through phospholipase C and diglyceride lipase [581] were identified 

as alternative mechanisms leading to AA release in platelets. Also in monocytes, AA can 

alternatively be supplied through sPLA2 [598]. However, the basal AA level was neither affected 

by Ac-OH-LA nor by the cPLA2α control inhibitor, which implies selectivity of Ac-OH-LA for 

AA release mediated by cPLA2α after stimulation and suggests no general interference with 

membrane homoeostasis.  

The inhibition of AA release by Ac-OH-LA resulted in the subsequent reduction of AA 

metabolites produced in A23187-stimulated platelets, PMNL and monocytes. This is reflected by 

similar IC50 values on the level of AA release and metabolite formation. Interestingly, unlike the 

other investigated metabolites, 12-HHT formation in platelets was only partially inhibited by the 

cPLA2α control inhibitor. We suggest that A23187-stimulated 12-HHT production by COX-1 does 

not exclusively depend on AA provided by cPLA2α, but also on alternative sources. On the 

contrary, Ac-OH-LA completely suppressed 12-HHT formation in a similar way as ibuprofen, 

which indicates an additional effect on COX-1 activity, as confirmed in a cell-free COX-1 assay 

(see chapter  4.3.4).  

The inhibition of AA metabolite production (e.g. 12-HHT and 12-HETE in platelets and 12-HETE 

in monocytes and PMNL) by Ac-OH-LA was significantly reversed by the addition of exogenous 

AA, which confirms inhibition of AA supply through cPLA2α. Interestingly, we found that 5-LO 

product synthesis in monocytes and PMNL was instead not fully restored by exogenous AA, 

which is apparently related to direct interference of Ac-OH-LA and LA with 5-LO (see chapter 

 4.4). Similarly, 12-HHT formation in Ac-OH-LA-treated platelets and monocytes was only 

partially restored by exogenous AA, which might be due to direct interference with COX-1 (see 

above and chapter  4.3.4). On the other hand, we observed that also the cPLA2α control inhibitor 

partially suppressed AA-stimulated 12-HHT formation. This might be due to unspecific 

interference of the cPLA2α inhibitor with COX-1 activity. Alternatively, it was shown that 
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reduction of prostanoid synthesis in monocytes could result from coordinated functioning of COX 

and cPLA2α [599]. Thus, uncoupling of cPLA2α and COX may not be completed by 

supplementation of exogenous AA (20 µM) and the inhibition of cPLA2α by Ac-OH-LA or the 

control inhibitor may still influence 12-HHT production here.  

Similarly, 5-LO product formation in PMNL after incubation with the specific cPLA2α control 

inhibitor and stimulation with A23187 plus AA (20 µM) was still inhibited by about 50%. This 

finding is in agreement with previous results with the related cPLA2α inhibitor pyrrophenone [600] 

and once again might be caused by the two phenomena: (i) the control inhibitor might directly 

inhibit 5-LO activity when applied in micromolar concentrations, as shown for pyrrophenone 

[600]; (ii) cPLA2α and 5-LO are not completely uncoupled by exogenous AA. We observed that 

the cPLA2α inhibitor (5 µM) suppressed 5-LO product formation by almost 50% in a cell-free 

assay, which indicates that the first hypothesis (direct inhibition of 5-LO) is correct. However, 

when monocytes were stimulated with A23187 plus AA, inhibition of 5-LO product formation by 

the cPLA2α inhibitor was not significant, which on the contrary suggests minor direct 5-LO 

inhibition in the cellular context. In analogy to the cPLA2α-COX coupling in platelets (see above), 

the differences observed in PMNL and monocytes might be based on differential coupling of 

phospholipases and 5-LO in these cell types. In fact, previous studies support the coupling of 5-LO 

to alternative sources of AA in monocytes [599], whereas 5-LO product formation in PMNL is 

prone to inhibition of cPLA2α [600]. Alternatively, the cPLA2α control inhibitor might 

unspecifically interfere with structures that regulate 5-LO product formation in a cell-specific 

manner.  

Aggregation measurements in platelets were carried out to assess the functional relevance of 

cPLA2α inhibition by Ac-OH-LA. Collagen stimulation in platelets involves cPLA2α-, COX-1- 

and TX synthase-dependent production of TXA2, which is required for the induction of receptor-

mediated aggregation [577] (Figure 61). In addition to collagen, we also used the TXA2 analogue 

U46619 as alternative stimulus to discriminate effects during TXA2 synthesis and effects 

downstream of TXA2 formation. As expected, the COX inhibitor indomethacin and the cPLA2α 

control inhibitor did not affect U46619-induced platelet aggregation. On the other hand, both 

inhibitors substantially diminished aggregation of collagen-stimulated cells. Interestingly, 

aggregation was totally blocked by inhibition of COX, whereas inhibition of cPLA2α still allowed 

minor aggregation. As stated above, this might be due to alternative, cPLA2α -independent supply 

of AA leading to COX-1 product (and thus TXA2) formation. After treatment of platelets with 

10 µM Ac-OH-LA (a concentration that led to extensive inhibition of AA release), collagen- but 

not U46619-induced aggregation was significantly inhibited, supporting the hypothesis that 
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Ac-OH-LA acts via inhibition of cPLA2α. Further increase of the Ac-OH-LA concentration 

decreased aggregation beyond the level of the cPLA2α control inhibitor, which was also 

accompanied by inhibition of U46619-induced aggregation. Apparently, elevated Ac-OH-LA 

concentrations suppress platelet aggregation by action on both cPLA2α and an additional target 

downstream of TXA2 synthesis. The IC50 value for inhibition of collagen-induced aggregation was 

higher than that found for inhibition of A23187-induced AA release. Though not immediately 

understood, this difference may be related to altered kinetic properties of cPLA2α resulting from 

phosphorylation events. In fact, in addition to elevation of intracellular Ca2+ levels, collagen 

increases cPLA2α activity by phosphorylation at Ser505 and Ser727 through p38 MAPK and 

MNK1/PRAK1, respectively [178, 578, 601]. Surprisingly, at concentrations of 10 µM or above 

LA and Ac-LA (lacking the C-28-hydroxy group) totally inhibited both collagen- and U46619-

induced aggregation. A similar behaviour was already found for 11-keto-BAs, which was 

attributed to inhibition of Ca2+ mobilization [602].  
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Figure 61: Collagen- and U46619-induced platelet aggregation. Thromboxane synthase (TX s.). 

 
Ac-OH-LA did not significantly inhibit AA metabolite production in A23187-stimulated human 

whole blood. Similarly, BAs failed to inhibit 5-LO in human whole blood, which was related to 

extensive protein binding of BAs [603]. High binding to plasma proteins might be reasonable for 

Ac-OH-LA as well. In fact, we observed a reduction of the inhibitory potential of Ac-OH-LA on 

isolated cPLA2α in the presence of BSA (starting at 1 mg/ml).  

In summary, Ac-OH-LA is a potent inhibitor of cPLA2α activity, leading to reduced AA release 

and AA metabolite production in different blood cells. Functionally, this interaction results in 

reduction of platelet aggregation. The effects on AA metabolite production were impaired in 

whole blood, probably due to plasma protein binding. In vivo studies so far were only performed 
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with preparations from Boswellia species, but their total content of Ac-OH-LA, though not yet 

quantified, is presumably rather low. Thus, the contribution of Ac-OH-LA to the anti-

inflammatory effects of frankincense extracts is probably limited. Nevertheless, the identification 

of Ac-OH-LA as cPLA2α inhibitor represents a significant advance in the field because it is both a 

natural compound and a relatively small molecule. It might serve as lead structure for the 

development of new synthetic cPLA2α inhibitors with improved pharmacokinetic properties. To 

this aim, investigation in a more physiological context (pharmacokinetic studies, in vivo models of 

inflammation) would be valuable.  

5.2 Effects of tirucallic acids on arachidonic acid mobilization in human 

platelets 

We show here that TAs cause massive release of AA from intact platelets by kinase- and Ca2+-

dependent activation of cPLA2α. TAs are tetracyclic triterpenes that make up about 14% and 23% 

of the acid fraction extracted from B. papyrifera and B. serrata resin, respectively, with 3-oxo-TA 

as major ingredient accounting for 7.5 to 10% [498]. Despite of their high abundance, only few 

reports addressed TAs. For example pro-apoptotic effects in cancer cells [557] and the modulation 

of 5-LO product formation in PMNL [538] by TAs were reported. TAs were shown to stimulate 

A23187-induced 5-LO product formation in intact PMNL when added right before challenge with 

A23187, which was attributed to direct activation of 5-LO via the MEK/ERK pathway. On the 

other hand, stimulatory effects on 5-LO product formation through ERK/p38 MAPK activation 

and Ca2+ mobilization were also found in BA-treated PMNL (AKBA), which was ascribed to 

enhanced AA supply instead of direct stimulation of 5-LO [536, 579]. Similar mechanisms may be 

assumed for TAs in PMNL as well. In platelets, BAs were shown to trigger Ca2+ mobilization and 

ERK, p38 MAPK and Akt phosphorylation [541]. β-BA caused cPLA2α-mediated AA release 

independently of Ca2+ and without direct interaction with cPLA2α. This AA release was 

suppressed by Src family kinase and PI3 kinase inhibitors but not by inhibitors of ERK or p38 

signalling, and only in the presence of Ca2+ [539].  

Similarly, we observed that the TA-induced AA release and subsequent metabolization in platelets 

occurred independently of Ca2+. Interestingly, relative AA release by TAs was even enhanced in 

the absence of Ca2+. Though the four analyzed TAs only slightly differ in their structure, this effect 

was particularly evident for Ac-TA. The differential efficacy of the respective TAs upon Ca2+ 

deprivation indicates the superposition of different mechanisms leading to AA release. On the AA 

metabolite level, the stimulatory effects were even more pronounced. Presumably, the two-hour 

labelling with [3H]-labelled AA in the AA release assay renders the cells in part refractory to 
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stimuli such as TAs or A23187. Upon incubation with TAs, the concentration-dependent 

metabolite production developed very fast with maximal stimulation of 12-HHT production after 

30 to 60 sec and time-dependent increase of 12-HETE formation over 1 h. As 12-HHT is a product 

of COX-1 and this enzyme undergoes auto-inactivation within a few minutes after substantial AA 

supply, the cessation of 12-HHT formation is a COX-specific observation [10]. The fact that auto-

inactivation emerged within the same time span irrespective of the intensity of the stimulus 

appears however unexpected. On the other hand, usually upon cell stimulation, only small subsets 

of COX enzymes are activated [248]. Thus, stimulation by each TA recruits a definite population 

of COX enzymes that are fully active in each case and thus undergo inactivation within similar 

time scales. Unlike COX or 5-LO, 12-LO does not show auto-inactivation [426]. Consequently, 

12-HETE formation is an appropriate indicator for sustained AA release generated by TAs. As 

TA-induced 12-HHT and 12-HETE formation were blocked after pre-treatment with the cPLA2α 

inhibitor RSC-3388, AA mobilization most likely is carried out by this phospholipase. On the 

other hand, cPLA2α-triggered stimulation of AA release through other PLA2s could also account 

for the efficacy of RSC-3388 [70]. But since fast and extensive mobilization of AA through iPLA2 

seems unlikely and sPLA2 is dependent on relatively high levels of Ca2+, their contribution to the 

fast and Ca2+-independent AA release elicited by TAs appears implausible.  

Surprisingly, 12-HHT formation in platelets was generally stimulated after treatment with the 

cPLA2α inhibitor. As already mentioned in the previous chapter, 12-HHT formation in platelets is 

only partially dependent on cPLA2α. After blocking of cPLA2α, alternative sources of AA 

predominate that seem to couple with COX-1 rather than with 12-LO, which might be due to the 

differential localization of COX and 12-LO at low intracellular Ca2+ levels.  

Investigations analyzing the subcellular distribution of cPLA2α confirmed the stimulatory effects 

of TAs on cPLA2α activity. Considerable translocation of cPLA2α to the membranous fraction 

indicates enhanced interaction of the enzyme with the membrane surface that is normally mediated 

by increased intracellular Ca2+ levels [128] or by phosphorylation of cPLA2α [140]. Membrane 

translocation correlated with the stimulatory effects on 12-HETE formation. 

The acylphloroglucinol hyperforin from Hypericum perforatum elicits similar effects in platelets 

as TAs: It induces cPLA2α-mediated, but Ca2+-independent AA release and cPLA2α translocation 

[569]. These effects were ascribed to the induction of cPLA2α phosphorylation and the insertion of 

hyperforin into membranes, facilitating the access of cPLA2α to its substrate. In fact, the structural 

resemblance of the TAs and cholesterol would support potential interference by membrane 

insertion. On the other hand, TAs carry a hydrophilic carboxylic group centrally located on their 

lipophilic scaffold, and therefore intercalation in the membrane might be thermodynamically 
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unfavoured. Anyway, the effect of TAs on cPLA2α activity was investigated using membranes 

featuring different rigidity and dissimilar phospholipid headgroups. Although cPLA2α activity 

varied considerably in these membrane models, TAs did not induce AA release in any system, and 

thus a noteworthy direct effect on polarity, accessibility or crystallinity of membranes seems 

improbable. Nevertheless, TAs may also interact with ceramides, diacylglycerol, C1P, PIPs or 

metabolizing enzymes thereof (see chapter  2.2.2.4). 

A crucial initiator of cPLA2α activity is the mobilization of intracellular Ca2+ (Figure 62), which 

was already shown to be effected by BAs in platelets [541] and might contribute to TA-induced 

cPLA2α activity – at least in the presence of Ca2+. In fact, TAs provoked a fast and sustained boost 

of intracellular Ca2+ levels, which approximately correlated with 12-HHT and 12-HETE formation 

in the presence of Ca2+. Compared to stimuli like A23187, thapsigargin or thrombin, these Ca2+ 

fluxes were modest, but definitely reached levels that are necessary for the induction of cPLA2α 

membrane translocation and cPLA2α activity, especially since the increase in the Ca2+ levels was 

sustained [156].  

Phosphorylation events are essential for cPLA2α activity in platelets upon stimulation with 

physiological stimuli such as collagen or thrombin [172] (Figure 62). As CaMKII- and 

MNK1/MSK1/PRAK1-induced phosphorylation of Ser515 and Ser727 are frequently linked to 

MAPK-induced phosphorylation of Ser505 [178, 182, 186-187], Western blot analyses 

concentrated on the activation of JNK, ERK and p38 MAP kinases. In Ca2+-containing buffer, 

stimulation with TAs led to phosphorylation of p38 and to a minor extent of JNK, indicating 

potential activation of cPLA2α via phosphorylation at Ser505. Nevertheless, the impact on p38 

phosphorylation after treatment with the different TAs did not exactly correlate with the increase 

in 12-HETE formation. Although the assessment of TA-induced p38 phosphorylation was 

impeded in EDTA- and BAPTA-AM-treated cells, at least 3α-OH-TA and Ac-TA visibly 

increased p38 phosphorylation, proposing effectiveness of this route of cPLA2α activation in a 

Ca2+-depleted environment as well. Similar to 12-HETE formation and cPLA2α membrane 

translocation, the effect of 3α-OH-TA on p38 phosphorylation was increased in the absence of 

Ca2+.  

Direct analysis of the phosphorylation of cPLA2α at Ser505 confirmed the phosphorylation after 

treatment with 3-oxo-TA and Ac-TA in a Ca2+-containing medium and after treatment with all 

TAs in the absence of Ca2+, which is in line with the activation of p38 and JNK MAPK.  

In a kinase inhibitor approach, we confirmed the involvement of p38 MAPK and additionally 

found CaMKII to mediate TA-induced AA metabolite production. The effect of the p38 MAPK 

inhibitor on TA-induced 12-HETE formation was even more pronounced after chelation of Ca2+. 
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Notably, the importance of MAPK-induced cPLA2α phosphorylation stringently depends on the 

intracellular Ca2+ levels. For instance, inhibitors of p38 or ERK do not affect cPLA2α activity in 

thrombin-stimulated platelets due to sustained Ca2+ mobilization [175, 601, 604], but 

phosphorylation of Ser505 by MAPK clearly controls cPLA2α activity at low Ca2+ levels [140, 

601]. CaMKII stimulates cPLA2α activity, which is accompanied by phosphorylation of Ser515 

[173] but also occurs independently of Ser515 [185]. As CaMKII activity is closely connected to 

Ca2+ signalling [605], its effect on cPLA2α activity after treatment with TAs might simply result 

from Ca2+ mobilization. On the other hand, the CaMKII inhibitors maintained their suppressive 

effect in Ca2+-deprived cells, suggesting Ca2+-independent effects to trigger CaMKII-driven 

activation of cPLA2α. In smooth muscle cells, CaMKII was shown to be linked to MAPK 

activation and thereby led to phosphorylation of cPLA2α at Ser505 [187]. However, TA-induced 

p38 phosphorylation was not blocked by the CaMKII inhibitor KN-93 in platelets (data not 

shown), which excludes a direct linkage of these kinases here.  

In summary, TAs Ca2+-independently induced the activation of cPLA2α in platelets, whereas no 

effect was seen in PMNL. This might be based on the fact that the threshold for activation of 

cPLA2α in PMNL is higher than in platelets. The four TAs tested affected Ca2+ mobilization and 

kinase cascades to different extents, both of which are known to induce cPLA2α activation. The 

stimulatory effect of TAs in platelets could be of physiologic relevance since TAs represent major 

compounds in extracts from B. papyrifera and B. serrata. Frankincense formulations are usually 

applied in chronic inflammatory diseases but the platelet-activating properties of TAs could abet 

unfavourable effects. For example, enhanced platelet activation is associated with inflammatory 

diseases such as atherosclerosis [606], rheumatoid arthritis [607], inflammatory bowel diseases 

[608] and psoriasis [609-610]. On the other hand, also BAs elicit stimulating effects on AA 

metabolism in platelets [539] and PMNL [579], but the inhibitory effects appear to dominate in 

more physiologic systems and in vivo. The same might apply to TAs as they also represent potent 

inhibitors of AA metabolizing enzymes (see chapters  4.3 and  4.4). For instance, in vivo application 

of 3-oxo-TA, the most abundant TA in B. papyrifera and B. serrata extracts, indicated 

preponderance of inhibitory effects on eicosanoid synthesis (see chapter  4.3.6). Also in stimulated 

monocytes or human whole blood, inhibitory effects of 3-oxo-TA mostly prevailed. Anyway, for 

conclusive evaluation of the relevance of stimulatory effects in vivo, the plasma levels of TAs after 

the application of frankincense extracts must be assessed.  
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Figure 62: Regulation of cPLA2α. 

 

5.3 Interaction of triterpenic acids and frankincense extracts with PGE2 

biosynthesis  

PGE2 is a central mediator in inflammation, governing oedema formation, pain sensitization and 

fever [8]. Anti-inflammatory actions of NSAIDs are essentially attributed to the suppression of 

inflammatory PGE2. Anyway, these commonly used drugs evoke severe side effects, especially 

when they are applied in the long-term therapy of chronic inflammatory diseases such as 

rheumatoid arthritis. Gastrointestinal toxicity is mediated by inhibition of COX-1-derived PGE2 in 

the gastric mucosa and was overcome by the development of selective COX-2 inhibitors. 

Unfortunately, selective inhibition of COX-2 favours the synthesis of COX-1-derived pro-

aggregatory TXA2, whereas PGI2 as anti-aggregatory and vasodilatory mediator is suppressed, 

leading to increased risk of cardiovascular complications [16]. As mPGES-1 is upregulated upon 

stimulation with pro-inflammatory cytokines and thereby essentially gives rise to PGE2 synthesis 

in inflammation, its inhibition promises efficient suppression of PGE2 synthesis in an 

inflammatory context, avoiding effects on other prostanoids or physiologic PGE2 synthesis [312]. 

Several natural compounds were identified as inhibitors of mPGES-1, such as curcumin [611], 

garcinol [612], myrtucommulone [613], epigallocatechin-3-gallate [614] and BAs [511]. Here, 

several extracts from different Boswellia species were assayed on their inhibitory potential on 

mPGES-1 activity in a cell-free approach. Since numerous established mPGES-1 inhibitors are 

lipophilic acids, special attention was paid to the acid fractions from frankincense extracts. In fact, 

the neutral fraction from B. carteri was ineffective, whereas all acid fractions demonstrated 

concentration-dependent inhibition of mPGES-1. Bio-guided fractionation of the most potent acid 

fraction (a. f.) from B. papyrifera revealed 3-oxo-TA as the most effective component. Other 
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triterpenic acids also showed inhibition of mPGES-1 activity with similar or even higher potency. 

However, in the extract from B. papyrifera, 3-oxo-TA was the most abundant of these potent 

inhibitors and thereby is most likely responsible for its superior efficiency. Nevertheless, the 

concentration-response-curve of 3-oxo-TA coincided with the one of the whole extract, which 

suggests the contribution of even more potent compounds to the effectiveness of the extract. While 

BAs were reported to have IC50 values of 3 µM or higher [511], several triterpenic acids that were 

analyzed in this study were more effective, with the two Ac-TA derivatives being the most potent 

compounds (IC50 = 0.4 µM). The potency of these Ac-TAs was unaffected by the conformational 

alteration of the tetracyclic ring system that results from relocation of the double bond from 

position 7 to 8. Regarding the 3α-hydroxy derivatives, this conformational shift led to different 

concentration-response curves, with the IC50 value of the flexed 7,24-diene derivative being higher 

than that of the 8,24-diene. Notably, the latter suppressed PGE2 formation with higher potency 

than the reference drug MK-886. Similar inhibition, though at high concentrations, was only 

accomplished by the a. f. from B. papyrifera extract. Residual PGE2 formation that is not 

suppressed by selective mPGES-1 inhibitors could arise from enzymatic synthesis through cPGES 

or mPGES-2 (Figure 63) or from non-enzymatic isomerisation of PGH2. Interference of 

3α-OH-8,24-dien-TA with spontaneous decay of PGH2 appears improbable. Thus, the additional 

inhibition of PGE2 synthesis most likely arises from interference with other PGE2 synthases. 

Interestingly, this property got lost in case of the 3β-hydroxy-derivative. DH-NA and the RAs 

(except of DH-k-RA) barely inhibited mPGES-1 activity although they represent seco-derivatives 

of the effective BAs. Obviously, the tight attachment of the carboxylic function to the A ring of 

BAs is essential for interference with mPGES-1, while the interaction of the seco-derivatives is 

reduced due to the positioning of the carboxylic group on a highly flexible tether. Notably, in 

contrast to DH-RA, the 11-keto-analogue DH-k-RA was highly effective, whereas the 11-keto-

derivatives of BAs rather showed lower efficacy [511]. LAs inhibited mPGES-1 activity as well, 

with decisively increased potency of Ac-OH-LA compared to analogues that are not hydroxylated 

in position C-28.  

In LPS-primed monocytes, the effectiveness of several triterpenic acids on PGE2 formation was 

hampered. The 3-OH-TAs and 3-oxo-TA inhibited PGE2 formation but the assessment of 

mPGES-1 inhibition by Ac-TAs, Ac-OH-LA and DH-k-RA was not feasible due to the induction 

of AA release (see chapter  4.2) or due to shunting mechanisms. As monocytes are capable to 

synthesize a broad array of eicosanoids [586], shunting of PGH2 to PGE2 synthesis may results 

from inhibition of other AA- or PGH2-metabolizing enzymes. For example, extensive shunting 

was also observed with the TX synthase inhibitor CV4151, which increased the PGE2 levels about 
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fivefold. Similarly, β-BA (30 µM) did not suppress PGE2 formation in stimulated monocytes, 

although it was reported to be a potent inhibitor of mPGES-1-mediated PGE2 synthesis in IL-1β-

treated A549 cells [511].  

Also in LPS-stimulated human whole blood, 3β-OH-TA and 3-oxo-TA potently suppressed 

mPGES-1-mediated PGE2 synthesis, whereas the Ac-TAs were markedly less effective. In contrast 

to monocytes, DH-k-RA and Ac-OH-LA inhibited PGE2 formation in whole blood, whereas the 

3α-OH-TAs were inactive. The proposed shunt mechanism that was assumed to be responsible for 

the failure of DH-k-RA and Ac-OH-LA in monocytes, appears to be less relevant in this assay, 

which could result from the small number of monocytes in whole blood and a differential 

behaviour in other cell types. The failure of 3α-OH-TAs to inhibit PGE2 formation in the whole 

blood assay might be due to concomitant induction of AA supply e.g. from platelets (see chapter 

 4.2) but remarkably, the 6-keto PGF1α levels were not increased. Also the extracts from Boswellia 

species inhibited PGE2 formation in whole blood, and again the a. f. from B. papyrifera was the 

most potent among all fractions. At higher concentrations, inhibition by this extract was hampered, 

which once again can be attributed to shunting of substrate or to AA mobilization through TAs.  
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Figure 63: Biosynthesis of PGE2. 

 

To assess the selectivity of triterpenic acids that effectively suppressed mPGES-1 activity, their 

potency on further enzymes that contribute to inflammatory PGE2 formation was analyzed (see 

Figure 63). As shown in chapter  4.1, Ac-OH-LA potently suppresses cPLA2α-driven AA release in 

cell-free and cellular assays. Although the acid fraction from B. papyrifera, 3-oxo-TA and 

3α-Ac-8,24-dien-TA significantly suppressed cell-free cPLA2α activity, inhibition did not exceed 

40%, even at high concentrations (30 µM or 30 µg/ml). This action may be related to unspecific 

membrane effects. Furthermore, TAs failed to suppress or rather stimulated AA release in a 

cellular context as discussed in chapter  5.2. On the contrary, DH-k-RA only suppressed AA 
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release in the cellular model, whereas it barely affected the isolated enzyme. Apparently, inhibition 

of AA release by DH-k-RA is due to interference with structures that regulate AA release rather 

than to direct interaction with cPLA2α itself. Similarly, the a. f. from B. papyrifera and B. serrata 

suppressed AA release in stimulated platelets at 3 µg/ml, although they were barely effective in the 

cell-free assay at this concentration. Again, the suppressive effect was not observed at higher 

concentrations, which is presumably due to the stimulatory effects of TAs.  

Considerable interaction with COX-1 activity was found for TAs, Ac-OH-LA and DH-k-RA in 

AA-stimulated platelets and direct inhibition of COX-1 was confirmed in a cell-free assay, though 

at higher concentrations. The reduction of 12-HHT formation in A23187-stimulated whole blood 

may be attributed to inhibition of COX-1 activity as well, since COX-2 is barely expressed in 

naïve blood. Impaired 12-HHT formation in platelets and whole blood might result also from 

interaction with intracellular signalling pathways such as p38 MAPK activation (see chapter 

 4.2.8). This would provide an explanation for the limited concentration-dependency of 12-HHT 

inhibition by TAs in whole blood and the minor efficacy in the cell-free assay. Although the test 

compounds moderately inhibited COX-2 in a cell-free system, no effect was found in a cellular 

model at concentrations up to 10 µM. Also in LPS-stimulated whole blood, where PGH2 is 

supplied by COX-2 [615], the COX-derived 6-keto PGF1α was not impaired by the test 

compounds. The interference of TAs, DH-k-RA and Ac-OH-LA with COX-1 potentially could 

mediate additional (adverse) effects as observed for NSAIDs, but mPGES-1 is suppressed at 

markedly lower concentrations. Thus, the effect on mPGES-1 is physiologically more relevant, 

especially in consideration of the plasma levels of the triterpenic acids. 

3-oxo-TA and the acid fraction of the extract from B. papyrifera showed significant anti-

inflammatory effects in vivo in a model of carrageenan-induced pleurisy in rats, as measured by 

reduction of inflammatory cells in the pleural cavity, reduced exudate volume and impaired levels 

of PGE2, 6-keto PGF1α and LTB4. However, these effects cannot exclusively be ascribed to 

inhibition of mPGES-1 since one would expect that reduced PGE2 levels are accompanied by 

constant 6-keto PGF1α levels. In contrast, all the tested parameters were reduced to a similar 

extent, which suggests that a common target may mediate the main effects in this model (e.g. 

inhibition of the invasion of inflammatory cells by interference with chemotaxis or extravasation). 

For instance, BAs were shown to interact with cathepsin G and thereby reduced chemoinvasion of 

PMNL in vitro [544], and TAs also inhibit cathepsin G with similar potency (see chapter  4.5.1). 

3-oxo-TA and the acid fraction of B. papyrifera extract were less effective than β-BA, which 

inhibits PGE2 formation in the same model by about 50% [511]. Reduced efficacy resulting from 

stimulatory effects on AA release appears unlikely since 3-oxo-TA did not induce such effects in 
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human whole blood and also because this would rather lead to an increase in 6-keto PGF1α. 

Possibly, the applied model does not evidently reflect an impact on mPGES-1. In fact, mPGES-1 

is only incompletely induced within 4 h after application of carrageenan [616], whereas cPGES 

and mPGES-2 are constitutively expressed in pleural leukocytes [617]. Therefore PGE2 synthesis 

in this first phase of pleurisy is only partly formed by mPGES-1 and the effects that can be 

achieved by exclusive blockade of this enzyme are limited. As demonstrated in mPGES-1 

knockout models, mPGES-1 plays a crucial role in in vivo models of chronic inflammation such as 

collagen-antibody-induced arthritis [322]. The assessment of mPGES-1 inhibitors in similar 

models promises results that are more distinct. The relatively small effect of the extract is in line 

with the results found for β-BA, since the administered dose corresponds to about 0.45 mg/kg 

β-BA, which only led to moderate effects in vivo [511].  

In summary, a broad variety of triterpenic acids from Boswellia species was investigated with 

respect to the novel target structure mPGES-1 and several compounds were found to inhibit 

mPGES-1 activity. Effectiveness was preserved in cellular models and in whole blood, though 

some compounds (Ac-TAs, DH-k-RA and Ac-OH-LA) were found to interact with additional 

targets in AA metabolism, leading to interferences in particular assays. Regarding the AA-PGH2-

PGE2 cascade, mPGES-1 was inhibited with IC50 values of 0.4 to 3 µM for the TAs, DH-k-RA and 

Ac-OH-LA, whereas COX and cPLA2α were only suppressed with IC50 values of 10 µM or higher. 

Thus, under appropriate dosage these compounds promise selective inhibition of PGE2 synthesis 

through mPGES-1, without affecting prostanoids that maintain physiologic functions. Though the 

pharmacokinetics of the investigated compounds are unknown, the IC50 values for inhibition of 

mPGES-1 are low and thus, required plasma levels might be reasonably achieved by standard 

dosage. For instance, the contents of TAs in extracts from B. papyrifera and B. serrata are almost 

comparable to those of BAs [498]. And for BAs, which possess similar structures as the analyzed 

compounds, steady-state plasma levels ranged from 0.1 µM for AKBA to 10 µM for β-BA after 

treatment with an extract from B. serrata in established dosage [563].  

5.4 Impact of triterpenic acids and extracts from Boswellia species on 

5-LO 

5-LO represents the first identified target for BAs and for a long time its inhibition was accepted as 

the principal molecular mode of action of frankincense formulations [512]. Today this opinion is 

debated and recent work has shown that 5-LO might be not of pharmacological relevance as target 

because of the unfavourable pharmacokinetic properties of BAs (i.e. high albumin binding), the 

marginal content of AKBA (the most potent 5-LO inhibitor) in extracts from B. serrata and the 
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loss of efficiency in whole blood [603]. Moreover, additional molecular targets were found to be 

inhibited by compounds that are more abundant in frankincense formulations or with lower IC50 

values (see chapter  2.5.4.3). However, the evaluation of 5-LO inhibition by extracts from different 

Boswellia species and by triterpenic acids besides BAs remained fragmentary so far. This study 

demonstrates the inhibition of purified 5-LO by all acid fractions of extracts from Boswellia 

species tested, whereas the neutral compounds from B. carteri showed no significant inhibition. 

Although Indian frankincense (B. serrata) was originally associated with this target [530], the 

effect on 5-LO was even more distinct for the extract from B. papyrifera. This observation is not 

surprising, considering the relatively high amount of the most potent BA (AKBA) in this extract 

(13.1%) compared to minor contents in the extract from B. serrata (2.2%) [498]. In fact, inhibition 

by AKBA alone could account for the effect exerted by the extract from B. papyrifera; a 

concentration of 10 µg/ml extract corresponds to about 2.5 µM AKBA, which matches its IC50 

value of 2.9 µM in this test system [603]. On the other hand, the calculated AKBA concentration 

in 10 µg/ml of extract from B. serrata is only 0.4 µM, therefore AKBA can only partially 

contribute to the potent 5-LO inhibition exerted by this extract. As KBA also represents a minor 

compound in this extract and the IC50 values of the more abundant 11-methylene-BAs even exceed 

30 µM, the contribution of other compounds to 5-LO inhibition appears plausible. The testing of 

diverse triterpenic acids revealed that some of them were similarly effective 5-LO inhibitors like 

AKBA or KBA. As all these triterpenic acids represent lipophilic acids and BAs were found to 

inhibit 5-LO through competition with AA at an allosteric binding site [534], an analogue 

mechanism may be assumed for the other triterpenic acids as well. As stated for BAs [533], the 

most potent inhibitors feature an additional hydrophilic function at a certain distance from the 

carboxylic moiety. 3-oxo-TA and 3β-OH-TA carry the 3-oxo- or 3β-hydroxy-moiety, respectively; 

DH-k-RA in analogy to KBA possesses the 11-keto-function and Ac-OH-LA presents the 

C-28-hydroxy-group. The corresponding analogues, which lack these functions or offer acetylated 

hydroxy-functions, are significantly less active. When the additional hydrophilic function is 

situated closely to the carboxylic group, the inhibitory potential decreases, as can be seen for β-BA 

and LA, and it is further diminished in the acetylated analogues again (e.g. in A-BA and Ac-LA). 

Interestingly, the 3α-OH-8,24-dien-TA is markedly less active than its 3β-hydroxy-analogue, and 

the flexion of the ring system resulting from displacement of the double bond from position 8 to 

position 7 even decreases the inhibitory effect. Presumably, the orientation of both hydrophilic 

groups to the same surface of the allosteric binding site is a prerequisite for effective inhibition. 

Ineffectiveness or incomplete inhibition of the enzyme by triterpenic acids that do not fit in this 

pattern does not implicate that these compounds do not bind 5-LO; as shown for the non-polar 
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amyrin, such substances still compete for the same binding site but simply do not exert intrinsic 

inhibitory activity [533]. 

In the cellular model of A23187- plus AA-stimulated PMNL, the effects of the triterpenic acids 

largely corresponded to those in the cell-free assay. It is noteworthy that the inhibitory effects of 

3α-Ac-8,24-dien-TA and 3-oxo-TA were not impaired in comparison to the cell-free assay. In a 

previous study, these TAs were shown to induce MEK activation in A23187-stimulated PMNL, 

which counteracted the inhibitory effects and led to increased 5-LO activity instead [538]. These 

stimulatory effects were supposed to result from ERK-mediated phosphorylation and activation 

of 5-LO (Figure 64). Alternatively, activation of MEK could mediate amplified AA release 

through ERK-mediated phosphorylation of cPLA2α [174] and thereby enhance 5-LO translocation 

and activation [229]. This is supported by the data in this work, since the stimulatory effects of 

TAs on 5-LO product formation vanished upon stimulation in the presence of exogenous AA and 

the inhibitory effects (resulting from direct inhibition of 5-LO) prevailed. Furthermore, a 

stimulatory effect on 5-LO activity through MEK/ERK-mediated phosphorylation of 5-LO is 

improbable in A23187-stimulated PMNL, but rather appears at low Ca2+ levels [380].  
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Figure 64: Regulation of 5-lipoxygenase product formation in stimulated PMNL by tirucallic acids. 

 

Interestingly, the 3-OH-TAs and DH-k-RA showed relatively low IC50 values. Given the complex 

regulation of 5-LO in a cellular context (e.g. by the cellular redox tone, protein phosphorylation 

etc., see chapter  2.2.5.3) further investigation is needed to disclose the underlying mechanisms of 

this additional inhibitory effect. 

As discussed for BAs [603], the relevance of the 5-LO-inhibitory effect of triterpenic acids in a 

pathophysiological context remains questionable. Like BAs, the most potent 5-LO inhibitors in 

this study also failed to suppress 5-LO product formation in a whole blood assay. As demonstrated 

for BAs, this is presumably due to the high affinity of triterpenic acids to plasma proteins, which 

prevails over the affinity to 5-LO. Actually, many pathological states that are successfully treated 
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with frankincense formulations lack a controlling role of LTs, which rather discloses a crucial role 

of 5-LO inhibition in the anti-inflammatory effects of frankincense [603, 618]. However, the 

herein presented triterpenic acids from frankincense extracts are potent direct inhibitors of 5-LO, 

most likely acting on the same allosteric binding site of the enzyme as BAs. The structure-activity 

relationship that was proposed for BAs can be expanded to the presented compounds and provides 

further insight into the structure of the allosteric AA binding site of 5-LO. 

5.5 Impact of triterpenic acids and frankincense extracts on neutrophil 

proteases CG and HLE 

The proteases CG, HLE and proteinase 3 are highly expressed in neutrophils and released in 

substantial amounts from azurophil granules upon stimulation e.g. with TNFα, LPS, PAF, PMA or 

fMLP [619]. Neutrophil proteases mediate a plethora of processes, which promote the 

inflammatory reaction in terms of cell infiltration, cytokine signalling, cell activation and 

apoptosis. But they also induce tissue injury, especially under chronic inflammatory conditions 

[437]. Thus, inhibition of CG or HLE was suggested in the therapy of rheumatoid arthritis, 

bronchial asthma and psoriasis [619-621], and all of these diseases are traditionally treated with 

frankincense formulations. Inhibition of HLE [542] and CG activity [544] by BAs was shown in 

previous studies.  

Direct binding of BAs to CG was demonstrated causing potent inhibition of the proteolytic activity 

with IC50 values in the submicromolar range [544]. BAs also suppressed functional effects of CG, 

such as chemoinvasion of neutrophils in matrigel and CG-mediated Ca2+ mobilization in platelets. 

Reduced CG activity in whole blood from patients treated with a frankincense extract supports the 

physiologic relevance of this interaction. Here, we assessed the inhibitory potential of further 

triterpenic acids from Boswellia species on CG and HLE and compared them with selected BAs. 

Even though the CG assays were performed according to the protocol described in literature [544], 

the inhibitory effect of β-BA was more than tenfold lower than reported. The control inhibitor in 

contrast functioned properly and even exceeded the effect demonstrated in literature. Deviation in 

the specific activity of the enzyme preparations may partially explain these differences. Almost all 

tested compounds effectively suppressed the enzyme activity, with 3-oxo-TA, 

3α-OH-7,24-dien-TA, DH-k-RA, DH-NA, LA and especially Ac-LA being even more potent than 

β-BA or A-BA. In an automated docking approach, BAs were demonstrated to bind to the active 

site cleft of CG [544]. In this model, the A, B and C rings are located on the protein surface and 

thereby allow some structural variation; hence, the binding of the BAs occurs with similar affinity, 

reflected by similar IC50 values. The seco-derivatives of BAs (RAs and NAs) exhibited similar 
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potency compared to β-BA, underlining the tolerance towards modifications in the A ring. LAs are 

structurally related to BAs, with variations in the E ring. Although the D an E rings are situated in 

a lipophilic pocket, this alteration does not impair the affinity to CG, as long as the lipophilic 

character and the spatial dimensions are widely preserved. Hydroxylation of C-28 in Ac-OH-LA 

increases the hydrophilicity of the rings D and E, thereby disfavours binding and consequently 

reduces the inhibitory effect. Despite the structural diversity of TAs and BAs, the former potently 

suppressed CG activity as well. The tested compounds had similar effects on purified enzyme or 

when the supernatant of stimulated PMNL was used as source of CG. The acid fractions from 

frankincense extracts also led to considerable inhibition of CG, whereas the neutral fraction 

isolated from B. carteri resin was ineffective, approving the necessity of an acidic function in 

inhibitors that mimic the control inhibitor JNJ-10311795 [544]. 

The inhibition of HLE by BAs was discovered in 1997 [542] and interaction with other triterpenic 

acids like ursolic acid was even found earlier [543]. Compared to ursolic acid, BAs are rather 

moderate inhibitors with an IC50 value of about 15 µM for AKBA. As already observed for CG, 

the inhibitory potential of test compounds fluctuates considerably depending on the assay 

conditions (specific activity of the enzyme). In this study, ursolic acid impaired HLE activity by 

about 55% at a concentration of 10 µM, although its IC50 value was reported to be 1 µM [542]. At 

10 µM, AKBA did not appreciably influence HLE activity, which is in line with literature data. 

However, at 10 µM all tested compounds were equally or more potent than AKBA and some 

triterpenic acids (3α-Ac-8,24-dien-TA, RA and Ac-LA) inhibited HLE activity as potent as ursolic 

acid. The structural requirements for inhibition of HLE are obviously distinct from those found for 

CG. For ursolic acid, binding to the enzyme’s binding pockets S3-5 was suggested, with 

interactions of the carboxyl moiety to Arg217 in S5 and further hydrophilic interactions of the 3-

hydroxy-moiety and S3 [543]. Analogue binding may be assumed for TAs since they present a 

similar distribution of the hydrophilic moieties, whereas BAs, RAs/NAs and LAs would require 

another orientation of their basal scaffold to allow an interaction of their carboxylic group with 

Arg217. In contrast to the interaction with CG, an acidic function is not obligatory for inhibition of 

HLE. Lipophilic triterpenes such as amyrin or lupeol were also reported to inhibit HLE activity 

[542, 619]. This was also reflected by the efficacy of the neutral fraction from the B. carteri 

extract, which displayed equal potency like the acid fraction of the same extract. The acid fractions 

from B. papyrifera and B. sacra were the most potent extracts, but even at concentrations of 

100 µg/ml, their inhibitory effect did not attain the potency of the recognized HLE inhibitor 

sivelestat. 
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Collectively, neutrophil proteases are targets of several triterpenic acids isolated from frankincense 

and inhibition of these enzymes may be relevant for the anti-inflammatory effects of frankincense 

formulations. At least regarding CG, the potency of BAs leads to functional cellular effects, which 

may likewise be achieved by other potent triterpenic acids. Clinically, the oral administration of 

frankincense extracts provides plasma levels of inhibitory triterpenes that are adequate to reduce 

CG activity in the blood [544]. The experiments in this study demonstrate that several 

quantitatively important triterpenic acids from frankincense are equally or more potent inhibitors 

of CG and HLE than BAs, and thereby may relevantly contribute to the therapeutic effects of 

frankincense extracts.  

5.6 Effects of triterpenic acids from Boswellia species on glucocorticoid 

receptor signalling 

Both, glucocorticoids and frankincense formulations are used in the treatment of chronic 

inflammatory diseases. Structurally, triterpenic acids (especially TAs) present similarities with 

glucocorticoids (Figure 65). On the other hand, the tirucallane-, lupane-, oleanane- and ursane-

scaffolds of the Boswellia triterpenes possess different configurations as compared to the 

conserved pregnane-scaffold of glucocorticoids. Also the different safety profiles of frankincense 

formulations (see chapter  2.5.4.2) and glucocorticoids (e.g. regarding the formation of oedema, 

hypertension and hypokaliaemia) do not support the interference of compounds from frankincense 

with glucocorticoid signalling.  

The hypothesis that frankincense-derived triterpenic acids may act on the classical glucocorticoid-

receptor-mediated transcription of glucocorticoid-responsive genes was assessed in this study. 

Since the genomic effects of glucocorticoids are relatively protracted and the tested compounds 

interact with several signalling pathways, a dual luciferase reporter approach in combination with 

the parallel assessment of a non-inducible dual luciferase approach was utilized to exclude 

unspecific biases resulting from varying transfection efficiency and effects on cell viability. In 

fact, some of the tested compounds mediated cell death in the utilized cancer cell line A549. For 

TAs, the induction of apoptosis of prostate cancer cell lines through inhibition of Akt was recently 

reported [557]. Multiple targets including topoisomerases, NF-κB and MAPK signalling were 

proposed as triggers of BA-induced apoptosis in numerous cancer cell lines (reviewed in [512]). 

However, for all of the tested compounds, cell viability was sufficient for proper translation of the 

luciferases. The calculation of the relative luciferase activity effectively corrected errors arising 

from such additional interferences. Although the compounds were tested in relatively high 

concentrations, none of them induced the reporter gene. Obviously, the structural analogy of the 
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triterpenic acids and glucocorticoids did not suffice to fulfil the stringent structural requirements of 

glucocorticoid receptor ligands. However, this finding does not exclude a possible interference of 

triterpenic acids from frankincense on non-genomic effects of glucocorticoids, which are also 

accepted as major mechanisms for the anti-inflammatory activity of glucocorticoids (though still 

poorly understood [481]). Furthermore, enzymes that are involved in the metabolism of 

glucocorticoids may represent possible indirect targets affecting glucocorticoid signalling/effects. 

For instance, glycyrrhetinic acid, the triterpenic acid aglycone of glycyrrhizin from liquorice 

(Glycyrrhiza glabra) was found to inhibit several steroid-metabolizing enzymes (e.g. 5β-reductase 

and 3α-, 3β- and 11β-hydroxysteroid dehydrogenases) and provokes the accumulation of active 

endogenous cortisol and the reduction of inflammation [622-624].  

 

OH

O
OH

OH

H

O

H H

O
H

HOOC

A B

 

Figure 65: Structure of cortisol (A) and 3-oxo-tirucallic acid (B). 





 6 Summary 159 

6 Summary 

Herbal remedies have made a decisive contribution to the development of modern treatment of 

diseases. Not only because they were the only drugs available in ancient medicines and still are in 

a multitude of cultures, but also since they led to the discovery of numerous pharmacological 

targets and served as lead structures for a plenty of synthetic drugs. Frankincense formulations, 

originating from the oleo-gum resin of Boswellia spec., are traditionally used in the treatment of 

various diseases with a primarily inflammatory background. Their beneficial effect in the 

treatment of inflammatory bowel diseases, osteoarthritis, bronchial asthma and cancer was 

confirmed in several clinical pilot studies but the principal mechanisms leading to this efficacy are 

still matter of investigation. As frankincense comprises substantial amounts of the genus-specific 

boswellic acids (BAs), these compounds were considered to be responsible for the pharmacologic 

effects and were included in the quest for molecular targets. Diverse target structures of BAs have 

been identified so far: 5-lipoxygenase (5-LO), platelet-type 12-lipoxygenase (p12-LO), 

cyclooxygenase-1 (COX-1), microsomal prostaglandin E2 (PGE2) synthase-1 (mPGES-1), 

cathepsin G (CG), human leukocyte elastase (HLE), IκB kinase and topoisomerases. The 

contribution of some of these BA-target-interactions to anti-inflammatory activity is debatable, as 

the plasma levels of the proposed bioactive BA derivatives after administration of conventional 

doses of frankincense extracts are too low to affect them. However, outstanding potency of the 

abundant BAs lacking the 11-keto moiety on mPGES-1 and CG activity suggests major roles of 

these targets, which is supported by in vivo data. Apart from BAs, investigation of other 

compounds in the oleo-gum resin was rather neglected. Thus, the resin comprises appreciable 

amounts of structurally diverse triterpenic acids and a vast plethora of neutral compounds. 

Actually, BAs only make up about 10% of frankincense resin. Comprehensive consideration of all 

major compounds in the respective test systems is essential for the assessment of different 

Boswellia species and extraction techniques with the objective to yield frankincense formulations 

with optimized properties.  

 

In this thesis, frankincense extracts from different Boswellia species and a variety of triterpenic 

acids isolated thereof were investigated in assays on 5-LO, COX-1 and -2, mPGES-1, HLE and 

CG activity and the impact of these compounds on the respective targets was compared to BAs. 

Moreover, the inhibitory and stimulatory effects of triterpenic acids on a novel target, the cytosolic 

phospholipase A2α (cPLA2α), were investigated. 
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In a cell-free assay, 3-O-acetyl-28-hydroxy-lupeolic acid (Ac-OH-LA) concentration-dependently 

inhibited cPLA2α activity, whereas diverse BAs, tirucallic acids (TAs), roburic/nyctanthic acids 

(RAs/NAs) and other lupeolic acids (LAs) failed in this respect. Obviously, the C-28-hydroxy-

moiety is crucial for the inhibitory activity. Ac-OH-LA exhibited an IC50 value of 3 µM. Also in 

A23187-stimulated platelets, monocytes and PMNL, Ac-OH-LA diminished arachidonic acid 

(AA) release in the low micromolar range. AA metabolite formation in these cells was reduced as 

well and with similar potency. In contrast, upon stimulation with exogenous AA, the inhibitory 

effect was markedly attenuated or totally abolished. The cPLA2α-dependent aggregation of 

platelets upon stimulation with collagen was suppressed by Ac-OH-LA, whereas no effect was 

seen after cPLA2α-independent stimulation with U46619. Unfortunately, in a test system using 

human whole blood to mimic more physiological conditions, inhibition of cPLA2α was hampered, 

most likely resulting from the high affinity of Ac-OH-LA to plasma proteins. After all, inhibition 

of cPLA2α by Ac-OH-LA will hardly contribute to the anti-inflammatory effects of frankincense 

formulations since Ac-OH-LA is a minor constituent of the resin and its affinity to the enzyme is 

possibly not sufficient to overcome affine plasma protein binding. However, Ac-OH-LA could 

represent a valuable lead structure for the development of simplified and safe cPLA2α inhibitors 

with improved bioavailability and lower toxicity compared to established cPLA2α inhibitors. 

 

Besides BAs, the TAs represent an abundant group of triterpenic acids in the resin from 

B. papyrifera and B. serrata. Here, TAs were found to induce AA release in platelets but not in 

neutrophils and this effect did not require the presence of Ca2+. As expected, the formation of the 

AA metabolites 12(S)-hydroxy-5-cis-8,10-trans-heptadecatrienoic acid (12-HHT) and 12(S)-

hydroxy-10-trans-5,8,14-cis-eicosatetraenoic acid (12-HETE) in platelets was significantly 

increased at TA concentrations above 3 to 10 µM, and 12-HETE synthesis was continuously 

elevated for at least 60 min. TA-induced metabolite production was largely suppressed by the 

selective cPLA2α inhibitor RSC-3388, and TAs induced cPLA2α translocation to the membranous 

compartment of platelets, which commonly correlates with cPLA2α activity. Stimulation of 

cPLA2α activity by TAs turned out to be induced by Ca2+ mobilization and the activation of p38 

mitogen activated protein kinase (MAPK) and c-Jun N-terminal kinase (JNK) signalling pathways, 

whereas no stimulating effect was seen in cell-free assays. Especially in Ca2+-depleted cells, TAs 

led to phosphorylation of cPLA2α at Ser505, which most likely was mediated by p38 or JNK. 

Moreover, Ca2+/calmodulin-modulated protein kinase II (CaMKII) inhibitors were found to inhibit 

TA-induced 12-HHT and 12-HETE formation. Together, TAs stimulate cPLA2α activity through 

different pathways in platelets: Ca2+ mobilization predominates in a Ca2+-containing environment, 
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whereas cPLA2α phosphorylation by p38 or JNK prevails after deprivation of Ca2+. Activation via 

CaMKII seems to promote cPLA2α activity independently of the presence of Ca2+.  

 

Recently, BAs were identified as potent inhibitors of PGE2 synthesis. Inhibition of mPGES-1 as 

the fundamental principle represents a smart approach to reduction of pro-inflammatory PGE2: 

The production of further prostanoids is barely affected and thus, typical side effects of COX 

inhibitors are largely avoided. In a screening of different extracts from Boswellia species on 

mPGES-1 activity in a cell-free assay, the acid fraction from B. papyrifera was the most potent 

fraction and 3-oxo-8,24-dien-TA (3-oxo-TA) was revealed as most potent ingredient. The analysis 

of different triterpenic acids yielded various TAs, as well as 4(23)-dihydro-11-keto-RA 

(DH-k-RA) and Ac-OH-LA as potent inhibitors of mPGES-1 (IC50 = 0.4 - 3 µM). Thus, their 

potency is superior to that of BAs (IC50 > 3 µM). Using lipopolysaccharide (LPS)-primed 

monocytes as cellular test system for mPGES-1 activity, 3-O-acetyl-TAs (Ac-TAs), DH-k-RA and 

Ac-OH-LA failed to inhibit PGE2 synthesis, presumably due to induction of AA release (see 

previous paragraph) or to shunting of substrate (AA or PGH2) resulting from interaction with 

further AA- or PGH2- metabolizing enzymes. 3-OH-TAs and 3-oxo-TA effectively suppressed 

PGE2 formation comparably to the selective mPGES-1 inhibitor MD-52. In human whole blood, 

3-β-hydroxy-8,24-dien-TA (3β-OH-TA), 3-oxo-TA, DH-k-RA and Ac-OH-LA inhibited LPS-

stimulated PGE2 synthesis without notably affecting other COX products (6-keto PGF1α); the 

3α-OH-TAs and 3-Ac-TAs were inefficient in this test system. Experiments evaluating the 

selectivity towards further enzymes participating in PGE2 synthesis showed that cPLA2α, COX-1 

and -2 were only inhibited by markedly higher concentrations of the triterpenic acids than 

mPGES-1. Furthermore, the effects on these enzymes were hampered in whole blood assays. For 

in vivo evaluation, 3-oxo-TA and the acid fraction of the extract from B. papyrifera were analyzed 

in a rat pleurisy model. Both treatments led to moderate inhibition of inflammation with 

significant reduction of inflammatory cells in the pleural cavity. Interestingly, the suppression of 

the PGE2 levels was paralleled by reduced 6-keto PGF1α levels. Thus, the anti-inflammatory 

effects cannot exclusively be attributed to inhibition of mPGES-1. In summary, triterpenic acids 

with diverse structural properties inhibit mPGES-1. In frankincense resin, some of these 

compounds, foremost 3-oxo-TA, are comprised in substantial amounts and show enhanced 

potency on mPGES-1 activity compared to BAs. Thus, considering the fact that inhibition of 

mPGES-1 is one of the most plausible rationales for the anti-inflammatory activity of frankincense 

extracts, these compounds may significantly contribute to the reduction of PGE2 synthesis and the 

anti-inflammatory efficacy of frankincense.  
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BAs exhibit a unique mode of action mediating inhibition of 5-LO. Even though inhibition of this 

target was recognized as the active principle of frankincense for a long time, more recent data 

negate a significant contribution to clinical anti-inflammatory effects. Anyway, other triterpenic 

acids were barely examined in terms of interaction with 5-LO. In a cell-free test system, several 

triterpenic acids inhibited 5-LO activity with some of them being as effective as the most potent 

BAs. Conspicuously, compounds that exhibit an additional hydrophilic moiety with the same 

orientation as the carboxylic group were the most potent inhibitors. The acid fractions of extracts 

from Boswellia species potently inhibited 5-LO activity, whereas the neutral fraction of an extract 

from B. carteri was barely active. The extract from B. papyrifera was most potent, which 

correlates with relatively high levels of 3-O-acetyl-11-keto-β-BA (AKBA) and 3-oxo-TA. In 

neutrophils, the inhibitory effects on 5-LO activity were preserved or were even increased in case 

of the 3-OH-TAs and DH-k-RA. As already found for BAs, the inhibition of 5-LO by TAs, 

DH-k-RA and LAs was hampered in a whole blood assay, which might be due to the high affinity 

of triterpenic acids to plasma proteins. Thus, 5-LO inhibition presumably does not significantly 

contribute to the clinical anti-inflammatory effects of frankincense, neither through BAs nor 

through other triterpenic acids.  

 

The neutrophil proteases HLE and CG are recognized targets of BAs. Functional cellular effects of 

CG inhibition by BAs and reduced CG activity in blood from patients that were treated with 

frankincense extracts suggest clinical relevance of this interaction. Several triterpenic acids besides 

BAs potently inhibited the activity of purified CG and of CG in a protein mixture excreted from 

stimulated neutrophils. The effects of 3-oxo-TA, 3α-OH-7,24-dien-TA, DH-k-RA, DH-NA, LA 

and especially 3-O-acetyl-LA (Ac-LA) were even more distinct than those of BAs. Obviously, the 

binding site on CG allows broad variation of the triterpenic scaffold, which is in line with results 

from automated docking studies with BAs. The most potent extract to inhibit CG was the acid 

fraction from B. papyrifera resin, whereas neutral compounds from B. carteri were ineffective. 

Most of the tested triterpenic acids inhibited HLE activity more potent than BAs with 

3α-Ac-8,24-dien-TA, RA and Ac-LA being the most effective compounds. The structural 

requirements for inhibition of HLE clearly differ from those of CG. Even the neutral fraction of 

the extract from B. carteri effectively inhibited HLE activity. 

Collectively, the inhibition of neutrophil proteases may at least partly account for the activity of 

frankincense formulations in diverse inflammatory diseases. The data of this work suggest a major 

contribution of other triterpenic acids besides BAs to these effects. 
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Similarities of glucocorticoids and triterpenes from Boswellia species in terms of their structure 

and medical indication raised the question if triterpenes could act by interaction with the 

glucocorticoid receptor. Therefore, a luciferase reporter assay on glucocorticoid receptor response 

element activity was performed. Interestingly, none of the broad variety of triterpenes effectively 

stimulated the luciferase activity. Also the neutral fraction of the extract from B. carteri was 

ineffective. Thus, compounds from Boswellia species do not act directly on glucocorticoid 

signalling. This does not rule out interaction with the metabolism of endogenous cortisol or with 

non-genomic pathways of glucocorticoids, even though the lack of typical side effects after 

administration of frankincense formulations does not support such interactions.  

 

Summing up, this work assesses the impact of numerous compounds isolated from Boswellia 

species on recognized targets of BAs, namely 5-LO, COX-1 and -2, mPGES-1, HLE and CG. This 

allows the evaluation of TAs, RAs/NAs and LAs with respect to their contribution to the overall 

anti-inflammatory effects of frankincense extracts. For all of the investigated target structures, the 

inhibitory potential of BAs was accomplished or even exceeded by several triterpenic acids. 

Especially TAs that make up substantial amounts in frankincense oleo-gum resins turned out to be 

potent inhibitors of mPGES-1 and CG. These are supposed to be the most relevant targets for the 

anti-inflammatory effects of frankincense formulations in vivo. The potent inhibition of mPGES-1 

and CG by TAs widely prevailed over the stimulating properties on AA release at higher 

concentrations. Unfortunately, pharmacokinetic data that are necessary for conclusive evaluation 

only exist for BAs yet. Anyway, this work suggests a pivotal role of triterpenic acids besides BAs 

to the evident anti-inflammatory actions of frankincense extracts. Thus, extraction procedures 

should tend to include these compounds rather than avoiding them. The most potent extract in all 

of the investigated target structures in this work was the acid fraction from B. papyrifera oleo-gum 

resin. The efficacy correlates with high contents of AKBA and 3-oxo-TA. Finally, Ac-OH-LA was 

identified as novel inhibitor of cPLA2α. Due to the minor content of Ac-OH-LA the inhibition of 

this additional target might not considerably contribute to the anti-inflammatory effects of 

frankincense extracts, but Ac-OH-LA may serve as lead structure in the quest for safe and 

bioavailable inhibitors of cPLA2α.   
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7 Zusammenfassung 

Pflanzliche Arzneistoffe haben die Entwicklung der heutigen Pharmakotherapie maßgeblich 

geprägt. Nicht nur weil sie früher die einzig verfügbaren Medikamente darstellten und heute in 

vielen Kulturkreisen immer noch darstellen, sondern auch weil sie zur Entdeckung zahlreicher 

pharmakologischer Zielstrukturen beitrugen und dadurch als Leitstrukturen für viele synthetische 

Arzneistoffe dienten. Weihrauchzubereitungen, gewonnen aus dem Harz von Boswellia-Arten, 

werden traditionell in der Behandlung von Krankheiten mit zumeist entzündlichem Hintergrund 

eingesetzt. Ihre positive Wirkung in der Therapie von entzündlichen Darmerkrankungen, 

Osteoarthritis, Asthma bronchiale und Krebserkrankungen wurde in mehreren klinischen Studien 

mit Pilotcharakter bestätigt. Dennoch sind die molekularen Hintergründe, welche zu dieser 

Wirksamkeit führen, immer noch Gegenstand der Forschung. Weihrauch enthält wesentliche 

Mengen an den artspezifischen Boswelliasäuren (BAs), weshalb diese Substanzen für die 

pharmakologischen Wirkungen verantwortlich gemacht wurden und auf der Suche nach 

molekularen Zielstrukturen als Basis dienten. Verschiedene Interaktionspartner wurden dabei 

identifiziert: 5-Lipoxygenase (5-LO), 12-Lipoxygenase (12-LO, Thrombozyten-Typ), 

Cyclooxygenase-1 (COX-1), mikrosomale Prostaglandin E2 (PGE2) Synthase-1 (mPGES-1), 

humane Leukozytenelastase (HLE), Cathepsin G (CG), IκB Kinase und Topoisomerasen. Für die 

Wechselwirkungen von BAs mit einigen dieser Zielstrukturen ist dabei fraglich, welchen Beitrag 

sie zur entzündungshemmenden Wirkung leisten, da die jeweils wirksamen BA-Derivate die 

benötigten Plasmaspiegel nach Gabe üblicher Weihrauchextraktdosen nicht erreichen. Eine 

Schlüsselrolle scheint hingegen die hochpotente Wirkung der häufigeren BA-Derivate ohne 

11-keto-Gruppierung auf mPGES-1 und CG innezuhaben, die auch durch in vivo Studien 

bekräftigt wurde. Die Erforschung anderer Substanzen des Harzes neben BAs wurde in der 

Vergangenheit eher vernachlässigt. So enthält Weihrauch beachtliche Mengen an strukturell 

vielseitigen Triterpensäuren und eine gewaltige Fülle an Neutralbestandteilen. Tatsächlich machen 

BAs nur etwa 10% des Weihrauchharzes aus. Die umfassende Berücksichtigung aller 

Hauptbestandteile in den entsprechenden Testsystemen ist jedoch für die Bewertung verschiedener 

Boswellia-Arten und Extraktionstechniken notwendig, um Weihrauchpräparate mit optimierten 

Eigenschaften zu erhalten.  

 

Im Rahmen dieser Arbeit wurden Weihrauchextrakte verschiedener Boswellia-Arten, sowie eine 

Reihe von daraus isolierten Triterpensäuren in Testsystemen auf 5-LO-, COX-1- und -2-, 

mPGES-1-, HLE- und CG-Aktivität untersucht und mit BAs verglichen. Außerdem wurden 
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hemmende sowie stimulierende Effekte von Triterpensäuren auf eine neuartige Zielstruktur, die 

zytosolische Phospholipase A2α (cPLA2α), untersucht.  

 

Im zellfreien System hemmte 3-O-Acetyl-28-Hydroxy-Lupansäure (Ac-OH-LA) 

konzentrationsabhängig die cPLA2α-Aktivität mit einem IC50-Wert von 3 µM, wohingegen 

verschiedene BAs, Tirucallensäuren (TAs), Robur- und Nyctanthinsäuren (RAs/NAs), sowie in 

Position C-28 nicht hydroxylierte Lupansäuren (LAs) weitgehend inaktiv waren. Auch in A23187-

stimulierten Thrombozyten, Monozyten und polymorphkernigen Leukozyten (PMNL) wurde die 

Arachidonsäure (AA)-Freisetzung durch Ac-OH-LA in Konzentrationen im unteren mikromolaren 

Bereich gehemmt. Die Bildung von AA-Metaboliten wurde mit vergleichbarer Potenz unterdrückt, 

wobei dieser Effekt durch Zugabe von exogener AA deutlich abgeschwächt wurde oder sogar 

vollständig verloren ging. Die cPLA2α-abhängige Thrombozytenaggregation nach Stimulation mit 

Kollagen wurde durch Ac-OH-LA gehemmt, wohingegen die cPLA2α-unabhängige Aggregation 

durch Stimulation mit U46619 nicht beeinflusst wurde. Leider ging die Hemmung der cPLA2α im 

physiologischeren Vollblutmodell verloren, was vermutlich mit der hohen Affinität von 

Ac-OH-LA zu Plasmaproteinen erklärt werden kann. Letztendlich trägt die Hemmung der cPLA2α 

durch Ac-OH-LA vermutlich kaum zur entzündungshemmenden Wirksamkeit von 

Weihrauchzubereitungen bei: Ac-OH-LA stellt einen Nebenbestandteil im Harz dar und seine 

Affinität zum Enzym reicht möglicherweise nicht aus, um die affine Plasmaproteinbindung zu 

überwinden. Hingegen könnte Ac-OH-LA eine wertvolle Leitstruktur in der Entwicklung sicherer 

und einfacher cPLA2α-Inhibitoren darstellen, die im Vergleich zu bisherigen Hemmstoffen eine 

verbesserte Bioverfügbarkeit bei geringer Toxizität versprechen. 

 

Neben den BAs stellen TAs eine quantitativ bedeutsame Gruppe von Triterpensäuren in Harzen 

von B. papyrifera und B. serrata dar. In dieser Arbeit wurde gezeigt, dass TAs die AA-Freisetzung 

in Thrombozyten verursachen. Dieser Effekt war unabhängig von Ca2+ und war in neutrophilen 

Granulozyten nicht zu beobachten. Die Bildung der AA-Metaboliten 12(S)-Hydroxy-5-cis-8,10-

trans-heptadecatriensäure (12-HHT) und 12(S)-Hydroxy-10-trans-5,8,14-cis-eicosatetraensäure 

(12-HETE) wurde ab TA-Konzentrationen von 3 bis 10 µM signifikant erhöht und dauerte im 

Falle von 12-HETE über mindestens 60 min an. Die TA-induzierte AA-Metabolitbildung wurde 

durch den selektiven cPLA2α-Inhibitor RSC-3388 weitgehend unterdrückt. Außerdem 

verursachten TAs die Translokation der cPLA2α zu Membranstrukturen der Thrombozyten, was 

üblicherweise mit erhöhter cPLA2α-Aktivität einhergeht. Als Ursache für die Stimulation der 

cPLA2α-Aktivität durch TAs wurde die Mobilisierung von Ca2+, sowie die Aktivierung von p38 
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Mitogen-aktivierte Proteinkinase (MAPK) und c-Jun N-terminale Kinase (JNK) Signalwegen 

erkannt, wohingegen keine stimulierenden Effekte in zellfreien Systemen gefunden wurden. Vor 

allem nach Chelatierung von Ca2+ wurde die cPLA2α nach TA-Behandlung an Ser505 

phosphoryliert, was vermutlich durch p38 oder JNK verursacht wurde. Darüber hinaus hemmten 

Inhibitoren der Ca2+/Calmodulin-modulierten Proteinkinase II (CaMKII) die TA-induzierte 

12-HHT- und 12-HETE-Bildung. Zusammengefasst stimulieren TAs die cPLA2α-Aktivität über 

verschiedene Wege: Ca2+-Mobilisierung dominiert in Ca2+-haltiger Umgebung, wohingegen die 

Phosphorylierung der cPLA2α durch p38 oder JNK nach Ca2+-Entzug zu überwiegen scheint. Die 

Aktivierung über CaMKII scheint unabhängig von Ca2+ die cPLA2α-Aktivität zu fördern.  

 

Kürzlich wurden BAs als hochwirksame Hemmstoffe der PGE2-Synthese entdeckt. Die zugrunde 

liegende Hemmung der mPGES-1 stellt einen viel versprechenden Ansatz in der Reduzierung von 

entzündungsförderndem PGE2 dar: Die Biosynthese anderer Prostanoide wird kaum beeinflusst, 

wodurch die für COX-Inhibitoren typischen Nebenwirkungen weitgehend vermieden werden. Aus 

der Testung verschiedener Extrakte aus Boswellia-Arten auf die mPGES-1-Aktivität in einem 

zellfreien Testsystem resultierte die Säurefraktion aus B. papyrifera als wirksamste Fraktion, mit 

3-Oxo-8,24-dien-TA (3-oxo-TA) als maßgeblich wirksamkeitsbestimmende Substanz. Die 

Untersuchung verschiedener Triterpensäuren stellte verschiedene TAs, sowie 

4(23)-Dihydro-11-Keto-RA (DH-k-RA) und Ac-OH-LA als hochpotente Hemmstoffe der 

mPGES-1 heraus (IC50 = 0,4 - 3 µM). Somit ist ihre Wirksamkeit derjenigen der BAs teilweise 

deutlich überlegen (IC50 > 3 µM). In einem zellulären Testsystem auf mPGES-1-Aktivität unter 

Verwendung Lipopolysaccharid (LPS)-vorstimulierter Monozyten war keine Hemmung der PGE2-

Bildung durch 3-O-Acetyl-TAs (Ac-TAs), DH-k-RA und Ac-OH-LA zu verzeichnen. Dies kommt 

vermutlich durch AA-Freisetzung (s. vorhergehender Abschnitt) oder Überschießen von Substrat 

(AA oder PGH2) als Folge der Hemmung von weiteren AA- oder PGH2-metabolisierenden 

Enzymen zustande. 3-OH-TAs und 3-oxo-TA hemmten die PGE2-Bildung mit vergleichbarem 

Effekt wie der selektive mPGES-1-Inhibitor MD-52. In humanem Vollblut hemmten 3-β-

Hydroxy-8,24-dien-TA (3β-OH-TA), 3-oxo-TA, DH-k-RA und Ac-OH-LA die LPS-stimulierte 

PGE2-Synthese, ohne dass andere COX-Produkte sichtbar beeinflusst wurden (6-Keto-PGF1α). Die 

3α-OH-TAs und Ac-TAs waren in diesem Testsystem inaktiv. Die Untersuchung der Selektivität 

gegenüber weiteren in die PGE2-Biosynthese verwickelten Enzymen zeigte, dass cPLA2α, COX-1 

und -2 erst bei deutlich höheren Triterpensäurekonzentrationen gehemmt wurden als die 

mPGES-1. Außerdem gingen die Effekte im Vollblutmodell verloren. 3-oxo-TA sowie die 

Säurefraktion des B. papyrifera-Extraktes wurden in vivo in einem Brustfellentzündungsmodell in 
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Ratten getestet. Beide Behandlungen bewirkten eine moderate Hemmung der Entzündung mit 

signifikantem Rückgang der Entzündungszellen im Pleuraspalt. Interessanterweise gingen die 

herabgesetzten PGE2-Spiegel mit reduzierten 6-Keto-PGF1α-Mengen einher. Deshalb können die 

entzündungshemmenden Effekte nicht allein einer Hemmung der mPGES-1 zugeschrieben 

werden. Zusammenfassend konnten mehrere strukturell unterschiedliche Triterpensäuren als 

Hemmstoffe der mPGES-1 identifiziert werden. In Weihrauch kommen einige dieser Substanzen – 

allen voran 3-oxo-TA – in beachtlichen Mengen vor, wobei sie im Vergleich zu BAs eine stärkere 

Potenz auf die mPGES-1 aufweisen. Da die Hemmung der mPGES-1 einer der plausibelsten 

molekularen Wirkmechanismen für die Entzündungshemmung durch Weihrauchextrakte ist, 

tragen diese Substanzen vermutlich maßgeblich zur Reduktion der PGE2-Bildung und damit zur 

anti-entzündlichen Wirksamkeit von Weihrauch bei.  

 

BAs weisen einen einzigartigen Mechanismus in der Hemmung der 5-LO auf. Obwohl die 

Hemmung dieser Zielstruktur lange Zeit als wirksamkeitsbestimmendes Prinzip von Weihrauch 

galt, ist nach neueren Studien eine bedeutsame Beteiligung an den klinischen 

entzündungshemmenden Eigenschaften zweifelhaft. Weitere Triterpensäuren wurden im Hinblick 

auf ihre Wechselwirkungen mit der 5-LO bisher kaum untersucht. Im zellfreien Testsystem 

hemmten mehrere Triterpensäuren die 5-LO-Aktivität, wobei manche so wirksam waren, wie die 

potentesten BAs. Auffälligerweise waren diejenigen Substanzen, die eine weitere hydrophile 

Gruppe mit ähnlicher Orientierung wie die Carboxylgruppe aufweisen, die wirksamsten 

Hemmstoffe. Auch die Säurefraktionen von Extrakten verschiedener Boswellia-Arten hemmten 

die 5-LO-Aktivität deutlich, wohingegen die Neutralbestandteile eines Extraktes aus B. carteri 

kaum wirksam waren. Der Extrakt aus B. papyrifera war am wirksamsten, was mit dem hohen 

Gehalt an 3-O-Acetyl-11-keto-β-BA (AKBA) und 3-oxo-TA korreliert. In neutrophilen 

Granulozyten blieb die Hemmung der 5-LO erhalten oder verstärkte sich im Falle der 3-OH-TAs 

und DH-k-RA sogar. Wie dies auch schon für BAs festgestellt wurde, ging die Hemmwirkung der 

TAs, LAs und DH-k-RA auf die 5-LO im Vollblutmodell verloren, was vermutlich auf die hohe 

Affinität der Triterpensäuren zu Plasmaproteinen zurückzuführen ist. Damit trägt die Hemmung 

der 5-LO durch BAs oder andere Triterpensäuren vermutlich nicht merklich zur klinischen 

entzündungshemmenden Wirkung des Weihrauchs bei. 

 

Die Proteasen HLE und CG aus neutrophilen Granulozyten sind anerkannte Zielstrukturen von 

BAs. Funktionelle zelluläre Effekte der CG-Hemmung durch BAs und eine herabgesetzte CG-

Aktivität im Blut Weihrauchextrakt-behandelter Patienten messen dieser Wechselwirkung 
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klinische Bedeutung bei. Neben BAs konnten verschiedene Triterpensäuren die Aktivität von 

aufgereinigtem CG oder CG aus einer Proteinmischung aus degranulierten Neutrophilen hemmen. 

Die Effekte von 3-oxo-TA, 3α-OH-7,24-dien-TA, DH-k-RA, DH-NA, LA und vor allem 

3-O-Acetyl-LA (Ac-LA) überstiegen sogar die der BAs. Offensichtlich lässt die Bindungsstelle an 

CG großzügige Veränderungen des Triterpengrundgerüstes zu, was mit den Daten aus Docking-

Studien mit BAs im Einklang steht. Als wirksamster Extrakt auf die CG-Aktivität stellte sich die 

Säurefraktion des Harzes aus B. papyrifera heraus, wohingegen die Neutralbestandteile aus 

B. carteri wirkungslos waren.  

Die meisten getesteten Triterpensäuren hemmten die HLE-Aktivität mit höherer Potenz als BAs, 

wobei 3α-Ac-8,24-dien-TA, RA und Ac-LA die wirksamsten Substanzen darstellten. Die 

strukturellen Voraussetzungen für die Hemmung der HLE unterscheiden sich deutlich von denen 

für CG. Sogar die Neutralbestandteile des Extraktes aus B. carteri hemmten die HLE-Aktivität. 

Die Hemmung von Proteasen aus neutrophilen Granulozyten scheint zumindest teilweise für die 

Wirksamkeit von Weihrauchzubereitungen bei verschiedenen entzündlichen Erkrankungen 

verantwortlich zu sein. Die Ergebnisse dieser Arbeit legen eine maßgebliche Beteiligung von 

weiteren Triterpensäuren neben BAs nahe.  

 

Die Ähnlichkeit von Glucocorticoiden und Triterpenen aus Boswellia-Arten, bezüglich ihrer 

Struktur sowie ihrer klinischen Anwendung, warf die Frage auf, ob Triterpene durch Interaktion 

mit dem Glucocorticoid-Rezeptor wirken könnten. Deshalb wurde im Rahmen dieser Arbeit ein 

Luciferase-Reporterassay auf die Aktivität von Glucocorticoid-Rezeptor-responsiven Elementen 

durchgeführt. Allerdings zeigte keines der Triterpene eine stimulierende Wirkung auf die 

Luciferase-Aktivität. Auch für den gesamten Neutralbestandteil-Extrakt aus B. carteri konnten 

keine Effekte verzeichnet werden. Damit wirken Substanzen aus Boswellia-Arten nicht direkt auf 

den klassischen Glucocorticoid-Signalweg. Dies schließt allerdings Wechselwirkungen mit dem 

Metabolismus endogenen Cortisols oder mit nicht-genomischen Signalwegen nicht aus. Jedoch 

liegen solcherlei Wechselwirkungen auf Grund des Ausbleibens typischer Nebenwirkungen nach 

der Behandlung mit Weihrauchzubereitungen nicht nahe. 

 

Diese Arbeit behandelt die Beeinflussung von anerkannten Zielstrukturen der BAs (5-LO, COX-1 

und -2, mPGES-1, HLE und CG) durch zahlreiche Inhaltsstoffe aus Boswellia-Arten. Dies erlaubt 

die Bewertung von TAs, RAs/NAs und LAs im Hinblick auf ihren Beitrag zur 

entzündungshemmenden Gesamtwirkung von Weihrauchextrakten. Die Wirksamkeit der BAs 

wurde für alle der untersuchten Zielstrukturen durch mehrere weitere Triterpensäuren erreicht oder 
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sogar übertroffen. Insbesondere TAs, welche beachtliche Anteile des Weihrauchharzes 

ausmachen, erwiesen sich als potente Hemmstoffe der mPGES-1 und des CG. Diese Zielstrukturen 

scheinen in vivo die größte Relevanz für die entzündungshemmenden Wirkungen von 

Weihrauchzubereitungen zu haben. Die potente Hemmung der mPGES-1 und des CG durch TAs 

überstieg dabei weitestgehend die stimulierenden Effekte auf die AA-Freisetzung, die erst bei 

höheren Konzentrationen auftraten. Leider wurden die für eine abschließende Beurteilung 

notwendigen pharmakokinetischen Daten bislang nur für BAs bestimmt. Dennoch legen die 

Erkenntnisse dieser Arbeit nahe, dass die Triterpensäuren neben BAs eine wesentliche Rolle in 

den anti-entzündlichen Wirkungen von Weihrauchextrakten spielen. Extraktionsverfahren sollten 

somit möglichst darauf abzielen, diese Substanzen zu erfassen anstatt sie auszuschließen. Der 

wirksamste Extrakt in allen hier behandelten Testsystemen war die Säurefraktion des Harzes aus 

B. papyrifera. Diese Wirksamkeit geht mit einem hohen Gehalt an AKBA und 3-oxo-TA einher. 

Ferner wurde Ac-OH-LA als neuartiger Hemmstoff der cPLA2α identifiziert. Aufgrund des 

geringen Gehalts an Ac-OH-LA mag die Hemmung dieser neuen Zielstruktur nicht merklich zur 

Entzündungshemmung durch Weihrauchextrakte beitragen, jedoch könnte Ac-OH-LA auf der 

Suche nach sicheren und bioverfügbaren Hemmstoffen der cPLA2α als Leitstruktur dienen.  
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