Untersuchungen *in vivo* und *in vitro* zu oxidativem Stress und Mutationen der mitochondrialen DNA im Alterungsprozess.

Dissertation

der Mathematisch-Naturwissenschaftlichen Fakultät
der Eberhard Karls Universität Tübingen
zur Erlangung des Grades eines
Doktors der Naturwissenschaften
(Dr. rer. nat.)

vorgelegt von
Diplom-Biologin Jennifer Knoch
aus Stuttgart

Tübingen
2013
Tag der mündlichen Qualifikation: 17.09.2013
Dekan: Prof. Dr. Wolfgang Rosenstiel
1. Berichterstatter: Prof. Dr. Mark Berneburg
2. Berichterstatter: Prof. Dr. Olaf Rieß
Einleitung

A ZUSAMMENFASSUNG .. 5

B EINLEITUNG .. 6

1. CHRONOLOGISCHES ALTERN – THEORIEN UND MARKER ... 6
 1.1 Der Alterungsprozess allgemein ... 6
 1.2 Altern und mitochondriale Schäden ... 7
 1.3 Funktionsprinzip der Deletions-PCR: ... 9

2. UVA-induzierte DNA-Schäden ... 10

3. Defekte DNA-Reparatur und vorzeitiges Altern ... 11
 3.1 Cockayne-Syndrom ... 11

4. Zusammenfassung Versuche ... 16

C MATERIAL UND METHODEN ... 17

1. Geräte ... 17
2. Materialien ... 18
 2.1 Kits .. 18
 2.2 Enzyme .. 18
 2.3 Primer .. 18
 2.4 Puffer und Medien .. 19
 2.5 Chemikalien .. 19
 2.6. Gebrauchsmaterialien .. 22
 2.7 PC-Programme .. 22

3. Zellen und Zelllinien ... 23
 3.1 Fibroblasten ... 23

4. Zellkultur .. 24
 4.1 Zellkultur und Konservierung .. 24

5. Molekularbiologische Methoden .. 26
 5.1 DNA-Isolation .. 26
 5.2 PCR .. 26
 5.3 Real-Time-PCR ... 28
 5.4 Agarosegelelektrophorese ... 28
 5.5 FACS (Fluorescence-activated-cell-sorting) .. 29
 5.6 In-vivo Untersuchungen in der Maus .. 29
 5.7 Oxidativer-Stress in Fibroblasten ... 31

D ERGEBNISSE .. 33

1. Verteilung der D17 Deletion in muriner Haut ... 33
 1.1 Wildtyp ... 33
 1.2 XPG-knockout -Mäuse .. 57
Einleitung

1.3 TLR2 knockout-Mäuse .. 59
1.4 Zusammenfassung der Ergebnisse zu Maushaut und Fett .. 61

2. Auswirkung von UVA-Stress auf CSA- und CSB-defiziente Zellen im Vergleich zu Wildtyp-Zellen ... 65
 2.1 Apoptose und Nekrose .. 67
 2.2 Common-Deletion .. 71

3. Verlauf von Wasserstoffperoxid-Stress in Fibroblasten ... 73
 3.1 Im Medium von Fibroblasten ... 73
 3.2 In den Zellen .. 75

E DISKUSSION .. 77

1. Murine D17-Deletion in Maushaut ... 77
 1.1 Wildtyp-Mäuse .. 77
 1.2 XPG-knockout-Mäuse ... 80
 1.3 TLR2-knockout-Mäuse ... 81
 1.4 Diskussion der Methode ... 82

2. Oxidativer Langzeitstress und seine Auswirkungen auf WT und CS-defiziente Fibroblasten ... 83
 2.1 Apoptose und Nekrose ... 83
 2.2 Common-Deletion ... 84

3. Wasserstoffperoxid-Stress ... 87
 3.1 Stress im Medium .. 87
 3.2 Stress im Zellinneren ... 88

F ABKÜRZUNGEN ... 89

G QUELLENANGABEN ... 92

H. ANHANG .. 98

1. Erklärung zum Eigenanteil ... 98
2. Lebenslauf ... 99
 Persönliche Daten ... 99
 Schulbildung .. 99
 Hochschulausbildung .. 99

3. Danksagung .. 100
A Zusammenfassung

Der Alterungsprozess kann in zwei Qualitäten unterteilt werden, intrinsisches und extrinsisches. Während beim intrinsischen Altern, auch genannt chronologisches Altern, vermehrt genetische und endogene Stoffwechselprozesse eine Rolle spielen, kann beim extrinsischen Altern die ultraviolette Strahlung eine Ursache darstellen.

Da es sich bei der Alterung um langwierige Prozesse handelt, sind genetische Erkrankungen mit vorzeitiger Alterung wichtige Modellsysteme. Hierzu gehört auch die Erkrankung Cockayne-Syndrom, die einen Defekt in der Nukleotidexzisionsreparatur aufweist.

Am Beispiel des Cockayne-Syndroms konnten wir und andere zeigen, dass sowohl extrinsische als auch intrinsische Alterungsprozesse beobachtet werden können. Weiter zeigte sich bei dieser Erkrankung, dass Mutationen der mitochondrialen (mt) DNA vermehrt im Alterungsprozess zu beobachten sind und dies vor allem im subkutanen Fett der Haut zu beobachten ist, das alterabhängig reduziert ist.

Aus diesen Vorarbeiten heraus haben wir untersucht, wo über den Körper normaler Mäuse verteilt Mutationen der mt DNA in Epidermis, Dermis und subkutanem Fett vermehrt zu beobachten sind und ob dies über oxidativen Stress zum Verlust des subkutanen Fettgewebes führt, wie in Vorarbeiten untersucht.

In der Tat konnten wir zeigen, dass im subkutanen Fett gealterter Mäuse mitochondriale Deletionen akkumulieren, die in jungen Mäusen nicht vorhanden sind. Diese Deletionen können auch in Zellkulturen durch den oxidativen Stress einer repetitiven UV-Bestrahlung induziert werden.

B Einleitung

1. Chronologisches Altern – Theorien und Marker

1.1 Der Alterungsprozess allgemein

Beispielsweise wurde bei einem Vergleich der Genome von über 95-jährigen im Vergleich zu jüngeren Menschen gehäuft eine bestimmte Variante des Gens FOXO3A (Forkhead box O3A) festgestellt (1). Dieses Protein ist wichtig für den Umgang der Zelle mit Stress (2).

Replikative Seneszenz hingegen ist ein Effekt, den Calvin Harley et al. im Jahr 1990 veröffentlichte. Er stellte fest, dass die Telomere von Fibroblasten mit der Häufigkeit der Teilungen kürzer werden und folgerte daraus, dass die Fähigkeit der Zelle sich zu replizieren durch die Länge der Telomere limitiert wird (3). Es hat sich dann gezeigt, dass die Länge der Telomere nicht einfach nur von der Anzahl der Teilungen einer Zelle abhängt, sondern dass oxidativer Stress sich direkt auf die Länge der Telomere auswirkt (4). Telomere dienen dabei als Schadenssensor und tragen durch Interaktion mit Proteinen der Doppelstrangreparatur und den Checkpoint-Proteinen dazu bei, dass die Zelle, im Fall von beispielsweise oxidativem Stress, seneszent wird (5).

Die wahrscheinlich größte Quelle für ROS in einer Zelle sind die Mitochondrien, in denen bekannterweise durch fehlgeleiteten Elektronenfluss in der Atmungskette als Nebenprodukte ROS entstehen können (7-10). Etwa 0,1% des Sauerstoffs aus der Atmungskette werden zu ROS (11). Mit Hilfe der Superoxid-Dismutase (SOD) werden sie zu H₂O₂ umgewandelt, das über die Fenton-Reaktion zum Hydroxyl-Radikal (OH⁻) umgewandelt werden kann. Dies ist eine der aggressivsten Formen von ROS und da OH⁻ eine extrem kurze Lebensdauer aufweist, bleibt die Entstehung dieser Form von ROS nicht ohne Konsequenzen in Form von oxidativer Schädigung für seine nächste Umgebung, die innere Mitochondrienmembran oder die mitochondriale (mt) DNA (11, 12).

Um nun zumindest die weniger reaktiven ROS wieder abzufangen oder die durch ROS entstandenen Schäden wieder zu reparieren, stehen der Zelle mehrere Mechanismen zur Verfügung. Mehrere, sogenannte DNA-Reparaturmechanismen sind für die Reparatur von
Einleitung

Schäden an DNA verantwortlich (13), Enzyme wie z.B. Katalasen und Superoxiddismutassen oder die Glutationperoxidase in Kombination mit dem Peptid GSH (Glutathion) stehen direkt für die Reduktion bzw. die Reparatur von ROS-induzierten DNA-Schäden zur Verfügung (14). Diese werden später im Detail beschrieben.

Sind solche Reparaturproteine oder Radikale fangenden Enzyme in irgendeiner Weise gestört, so führt dies häufig entweder zur Entstehung von Krebs- oder zu Alterungsphänotypen (13).

1.2 Altern und mitochondriale Schäden

Mitochondrien enthalten ihr eigenes genetisches Material, die mt DNA. Den Zusammenhang zwischen mt DNA-Schäden und (vorzeitigem) Altern hat vor allem die Arbeit von Trifunovic et al aufgeklärt (13).

Eine weitere Untersuchung dieser Mäuse erbrachte, eine Akkumulation von Schäden der mt DNA. Des Weiteren zeigte sich, dass die Atmungskette in den Mitochondrien dieser Mäuse, nicht gut funktionierte. Die Sauerstoffaufnahme war um 95% reduziert (16).

Einen weiteren Hinweis auf die Wichtigkeit der Integrität der mitochondrialen DNA im Alterungsprozess gibt uns die humane Common-Deletion (CD). Diese 4977 Basenpaare (bp) große Deletion der mt DNA steht in einem gewissen Zusammenhang mit dem chronologischen Altern, da die Inzidenz dieser Deletion der mt DNA mit zunehmendem Alter deutlich steigt (17, 18). Allerdings kann in der Haut eine gewisse Menge an Deletion nicht zu einem bestimmten Lebensalter korreliert werden, sondern die Menge der Deletion reflektiert eher die durch Strahlung (z.B. ultraviolette (UV)-Strahlung) induzierte Alterung, die individuell verschieden sein kann (19, 20). Dies wird dadurch bestätigt, dass die CD auch durch oxidativen Stress, wie beispielsweise durch repetitive UVA-Bestrahlung in der Haut, aber auch in Zellen induziert werden kann (20-22). Dabei wird die CD hauptsächlich in der Dermis, aber kaum in der Epidermis induziert. In der Haut können diese induzierten Deletionen auch noch lange Zeit später nachgewiesen werden (21).
Einleitung

Wie es zu solchen großen mt Deletionen kommt, ist nicht genau geklärt. Sie treten oft an Stellen auf, an denen sich direct repeats also gleichgerichtete Sequenzwiederholungen befinden (23). Die CD wird ebenfalls von solchen direct repeats flankiert, sie liegen im Bereich der Basenpaare 8470-8482 und 13447-13459. Es wird angenommen, dass Deletionen durch Rekombination oder durch falsche Basenpaarungen verursacht werden (24).

Im Fall von durch oxidativem Stress induzierter Deletion wäre es also möglich, dass sich im Bereich der direct repeats oxidative Basenaddukte wie 8-Hydroxy-Desoxyguanosin (8-OH-dG) bilden. Diese Addukte können durch Fehlpaarungen der Basen dazu führen, dass die während der Replikation auftretende Einzelstrangbildung einen Bruch der DNA und somit das Auftreten von Deletionen begünstigen (22, 25).

Lagern sich nämlich, nach der Einzelstrangbildung, die beiden Stränge im Bereich der direct repeats wieder aneinander an, kann sich dabei eine Schlaufe bilden, die bei der Replikation dann verloren gehen kann (22, 26, 27).

Große Deletionen der mt DNA finden sich sowohl in muriner, als auch in humaner mt DNA. Sie treten in der Haut von älteren, aber meist nicht in jungen Individuen auf. Die murine Entsprechung der CD, zumindest in Bezug auf die Lage und Größe der Deletion im mitochondrialen Genom, ist die D17-Deletion.

Um zu bestimmen, wie viele dieser Deletionen sich ereignen haben, wird eine semiquantitative PCR-Methode für die murine D17-Deletion genutzt, für die humane Common-Deletion eine Real-Time-PCR (20, 23).
Einleitung

1.3 Funktionsprinzip der Deletions-PCR:
Falls keine Deletion vorliegt, liegen die Bindungsstellen der Primer so weit voneinander entfernt, dass kein PCR Produkt entsteht. Eine Deletion rückt diese Bindungsstellen so nahe zusammen, dass ein PCR-Produkt entstehen kann (siehe Abb. 1).
Um die mt Common-Deletion in Relation zur Gesamtmenge der mt DNA zu setzen, wurde als interner Standard (IS) eine stabile Region des mt Genoms amplifiziert. Dies ist notwendig, da zum einen jede Zelle eine verschiedene Anzahl an Mitochondrien enthält und zum Zweiten, da in jedem Mitochondrium eine verschiedene Anzahl an Kopien der mt DNA enthalten sein kann.

Abb. 1 Entstehung der Common-Deletion bzw. der murinen D17 Deletion und ihr Nachweis: Im Normalzustand liegen die Primeransatzstellen zur Messung der CD weit auseinander, so dass eine PCR kein Produkt ergibt. Durch das Stattfinden der Deletion werden sie zusammengerückt und eine PCR ergibt ein Produkt, das mit der Produktmenge des IS-Primerpaares verglichen werden kann.
2. UVA-induzierte DNA-Schäden

Die Common-Deletion, die, wie zuvor beschrieben, durch Altern oder oxidativen Stress induziert wird, findet sich auch in durch Lichteinfluss vorzeitig gealterter Haut. In Experimenten zeigte sich, dass sie durch UVA-Strahlung induziert wird, sowohl in vivo als auch in vitro und dass sie in der Haut auch noch lange Zeit nach der Bestrahlung nachweisbar bleibt (7, 21).

UVA-Strahlung ist mit einer Wellenlänge von 320-400 nm in der Lage in tiefere Hautschichten vorzudringen als die kürzerwellige UVB-Strahlung (280-320 nm). Im Gegensatz zu UVB wird die DNA durch die Bestrahlung mit UVA meist nicht direkt geschädigt. Vielmehr entstehen durch die UVA-Bestrahlung ROS, die wiederum auf die Zelle und die DNA wirken (28, 29). Interessanterweise findet man die Induktion von ROS bereits bei niedrigen Dosen von UV-Strahlung (Wellenlängen entsprechend der Sonnenstrahlung) im Bereich von 2J/cm² (30).

Unter den durch ROS erzeugten Schäden finden sich Einzel- und Doppelstrangbrüche der DNA (SSBs und DSBs), Basenschäden wie 8-OH-dG oder 7,8-dihydro-8-oxoadenine (7,8-OH-dA), Basenverluste und T-G-Transversionen (33-36).

Weiterhin werden durch die UVA-Bestrahlung verschiedene Signale in den Zellen ausgelöst. Dies schließt Signalwege ein, die sich durch Apoptose, Zellzyklusarrest, Seneszenz, Transaktivierung von Stress-induzierbaren Genen (Entzündungsantwort), Hochregulierung antioxidativ wirkender Enzyme (z.B. Mangan-Superoxi-dismutase) oder Aktivierung der Matrixmetalloproteininasen (MMPs) auswirken (37-42).

Somit wirkt UVA-Strahlung sich auf mehreren Wegen auf die Alterung von Zellen und Geweben ein.

Die von UVA-Strahlung bzw. ROS induzierten DNA-Schäden werden von verschiedenen Reparatursystemen, wie der Doppel- und Einzelstrangbruchreparatur (DSBR, SSB), der Basenexzisionsreparatur (BER), der Nukleotidexzisionsreparatur (NER) oder der Mismatchreparatur (MMR) detektiert und so gut es geht wieder entfernt.
3. Defekte DNA-Reparatur und vorzeitiges Altern

Wie bereits beschrieben führen DNA-Schäden, auch in den Mitochondrien, zu Alterung. Diese DNA-Schäden werden normalerweise durch die Reparatursysteme der Zelle wieder entfernt oder ihre Ursachen wie z.B. ROS werden durch Enzyme wie Katalasen und Superoxiddismutasen oder Peptide wie GSH direkt abgefangen, so dass im normalen Alterungsprozess die Schäden nur langsam akkumulieren.

Im Fall von manchen Erkrankungen, den sogenannten Progerien, die als eines der Hauptsymptome vorzeitiges Altern aufweisen, sind häufig die Proteine, die zu den erwähnten Mechanismen beitragen, defekt.

Zwar unterscheiden sich Progerien in einigen Bereichen vom chronologischen Alterungsprozess, doch das Verständnis dieser Erkrankungen ermöglicht uns Einsichten in den mechanistischen Ablauf des normalen Alterungsprozesses.

3.1 Cockayne-Syndrom

Ein Beispiel für eine solche Erkrankung ist auch das Cockayne-Syndrom (CS).

Beim Cockayne-Syndrom, benannt nach dem Londoner Arzt Edward Cockayne, der es 1933 erstmals beschrieb, handelt es sich um eine autosomal-rezessiv vererbte Erkrankung mit einer Inzidenz von 1/250.000 Geburten (43). Betroffen ist eines von zwei Genen, entweder CSA (Cockayne-Syndrom A, auch ERCC8) in 20% der Fälle oder CSB (Cockayne-Syndrom B, auch ERCC6) im Fall der übrigen 80%.

Bei dieser Erkrankung treten folgende Symptome auf: Wachstumsverzögerung (besonders die Gewichtszunahme betreffend), Ataxien, Lichtempfindlichkeit der Haut, Gehörlosigkeit, vermindertes Unterhautfettgewebe, geistige Retardierung, Neurodegeneration, Mikrozephalie, Demyelinierung des Gehirnstamms, Altern, dünner Haarwuchs, Katarakte, früher Tod (44).

3.1.1 Nukleotidexzisionreparatur

Die Proteine CSA und CSB sind Teil der Nukleotidexzisionsreparatur (NER). Dieser Reparaturpfad wird in globale Genomreparatur (GGR) und transkriptionsgekoppelte Reparatur unterteilt. CSA und CSB gehören zur Transkriptionsgekoppelten Reparatur (TCR) (Abb.2). Hierbei wird die im Fall eines DNA-Schadens blockierte RNA-Polymerase II (POL II) von CSB erkannt, das sonst während der Transkription zusammen mit XPG (Xeroderma Pigmentosum G) dynamisch mit POL II interagiert. Die durch den DNA-Schaden blockierte POL II verstärkt ihre Interaktion mit CSB. Durch diese Interaktion von CSB und POL II werden die Histon-Acetyltransferase p300 (HAT p300), ein Komplex bestehend aus ROC1 (Ring-box1), CUL4A (Cullin 4A), DDB1 (DNA damage binding protein 1) und CSA, sowie der CSN Komplex (COP9-Signalosom-Komplex) rekruitiert. Der Komplex, zu dem auch CSA
Einleitung

gehört, besitzt eine inaktive E3-Ubiquitin-Ligase, die in Verbindung mit dem CSN-Komplex aktiv wird. Um dann die Proteine XAB2 (XPA-binding protein), HMGN1 (high mobility group nucleosome binding domain 1) und TFIIS (transcription elongation factor SII) zu rekrutieren werden sowohl CSA, als auch CSB benötigt. XAB2 ermöglicht nun die stabile Anlagerung des NER-Hauptkomplexes TFIIH (transcription factor IIH), sowie von XPA (Xeroderma Pigmentosum A) und RPA (Replication Protein A) an die beschädigte Stelle. CSB und POL II werden im Verlauf, durch den CSA enthaltenden Komplex ubiquitiniert und dadurch für den proteasomalen Abbau gekennzeichnet. An dieser Stelle vereinigt sich der Verlauf der TCR mit der globalen NER. Die Endonukleasen XPG (Xeroderma Pigmentosum G) und XPF (Xeroderma Pigmentosum F) assoziiert mit ERCC1 (DNA excision repair protein1) schneiden die DNA 5´ und 3´ vom Schaden ein, Polymerase ε oder δ füllen die Läsionslücke. Die DNA wird dabei durch einen PCNA-RPF-Komplex (Proliferating cell nuclear antigen-replication factor-c) stabil gehalten wird. Schlussendlich werden die DNA Stränge durch Ligase III in Verbindung mit XRCC1 (X-ray repair cross-complementing protein 1) oder seltener von Ligase I wieder ligiert. (45-48)

Einleitung

Die CS-Proteine erfüllen aber nicht nur Aufgaben in der NER. Besonders für CSB sind noch einige weitere Bereiche bekannt, in denen dieses Protein beteiligt ist.

3.1.2 Transkription

3.1.3 Chromatin-Remodelling

CSB ist weiterhin ein Hauptfaktor für die Erhaltung und Remodellierung von Chromatinstrukturen und könnte durch diese Eigenschaften weiteren Einfluss auf Transkriptionsprozesse haben (55).

3.1.4 Interaktion mit p53 / Apoptoseregulation

Einleitung

3.1.5 Ubiquitinierung

3.1.6 Basenexzisionsreparatur

3.1.7 Altern im Cockayne-Syndrom

Alle genannten Bereiche, in denen vor Allem CSB, aber auch CSA involviert sind, hängen bis zu einem gewissen Grad auch mit der Alterung zusammen. Zum Teil sogar sehr direkt, wie beispielsweise die Regulierung von p53 zeigt (3.1.4), einem Protein, das durch die Regulation der Apoptose auch zum Altern beitragen kann. Die Fähigkeit zur Ubiquitinierung (3.1.5) hängt ebenfalls mit der Regulation von p53 zusammen, allerdings auch mit der Nukleotidexzisionsreparatur. Die Interaktion der CS-Proteine mit anderen Proteinen der Nukleotidexzisionsreparatur und Basenexzisionsreparatur (3.1.6 und 3.1.1), ist nötig um die DNA intakt zu erhalten. Eine Störung kann schlimmstenfalls zur Apoptose beispielsweise von Gewebestammzellen führen und somit zum Altern des Gewebes.

Im selben Zusammenhang ist auch die Fähigkeit von CSB zur Remodellierung von Chromatin (3.1.3) zu sehen. Diese kann der Zugänglichkeit der DNA für Reparaturprozesse dienen.

Die Transkription (3.1.2) wird nach oxidativem Stress von CSB reguliert. So kann die Zelle zu ihren üblichen Prozessen zurückkehren. Ist die Zelle nicht in der Lage, die Transkription wieder zu initiieren, bedeutet dies auf Dauer vermutlich ihren Tod (52).

Alle diese Zusammenhänge zwischen Funktionen der CS-Proteine und dem vorzeitigen Altern sind jedoch nicht ausreichend, um den komplexen Phänotyp, der in CS-Patienten auftritt, zu erklären.
Einleitung

3.1.8 Mitochondriale Interaktion

Zunächst konnte kein Zusammenhang zwischen den beim Cockayne-Syndrom betroffenen Proteinen CSA und CSB und den Mitochondrien hergestellt werden.

Desweiteren konnte nachgewiesen werden, dass die beiden Proteine nach oxidativem Stress z.B. durch Wasserstoffperoxid induziert, in die Mitochondrien translozieren (64, 66). Dort interagieren CSA und CSB mit Proteinen, die zur mt BER (Basenexzisionsreparatur) gehören (64). Dies legt nahe, dass CSA und CSB eine Rolle im Schutz vor mt DNA-Schäden spielen. Wie genau sich die CS-Proteine auf diese Fähigkeit auswirken ist allerdings nicht geklärt.

Da wir und andere nachweisen konnten, dass im Alterungsprozess vermehrt Mutationen der mitochondrialen DNA auftreten, speziell im subkutanen Fett von CSBmim-Mäusen, und dass es im Bereich des subkutanen Fettes zu Verlusten von Zellen durch erhöhten Umsatz kommt (64), haben wir nun untersucht, wo in der Haut normaler, gealterter Mäuse vermehrt Mutationen zu beobachten sind, wie der erhöhten Zellumsatz beim Altern zustande kommt und welche Rolle oxidativer Stress bei diesen Vorgängen spielt.
4. Zusammenfassung Versuche

In dieser Dissertation wurde die Haut von Wildtyp-Mäusen verschiedenen Alters auf das Auftreten der mitochondrialen D17-Deletion untersucht. Diese Deletion liegt in etwa an der Postion, in der sich im humanen Mitochondrium die Common-Deletion befindet, die durch oxidativen Stress induziert werden kann (23, 67). Es sollte gezeigt werden, wie sich diese Deletion im chronologischen Altern unbehandelter Mäuse verhält, wann sie frühestens auftritt und auch, in welchen Körperbereichen und Hautsegmenten sie verstärkt zu messen ist. Dies bildet auch einen Hintergrund zu den in (64) veröffentlichten Daten.

Ebenso wurde untersucht, wie oxidativer Stress in Form von UVA-Bestrahlung sich auf die Zellen auswirkt. Es war bekannt, dass die mitochondriale Common-Deletion durch UV-Bestrahlung induziert wird. In einem Vorläufer-Experiment mit CSB-defizienten Zellen zeigte sich, dass auch die abgestorbenen Zellen des Überstandes viel CD aufwiesen. Deshalb sollte untersucht werden, wie lange die UVA-bestrahlten Zellen viabel bleiben oder wie schnell sie absterben. Im Fall des Zelltodes war zu klären, auf welche Art er stattfindet. Des Weiteren soll die Menge an mitochondrialer Common-Deletion als Marker für mitochondriale DNA Schäden und deren Verteilung und Häufigkeit in viablen, apoptotischen und nekrotischen Zellen gemessen werden.

Um des Weiteren mehr über die Vorgänge in Fibroblasten unter oxidativem Stress zu erfahren, wurde der zeitliche Verlauf von subletalem H$_2$O$_2$-Stress untersucht. Hierfür wurde untersucht, wie lange sich eine subletale Dosis von H$_2$O$_2$ im Medium befindet und wie viel davon sich im Zellinneren nachweisen lässt.
C Material und Methoden

1. Geräte

<table>
<thead>
<tr>
<th>Gerät</th>
<th>Modell</th>
<th>Firma</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brutschrank</td>
<td>Heracell 240</td>
<td>Thermo/Kendro, Dreieich/Hanau</td>
</tr>
<tr>
<td>Brutschrank Hypoxie</td>
<td>APT.line CB CO\textsubscript{2} Inkubator mit O\textsubscript{2}- Regelung</td>
<td>Binder, Tuttlingen</td>
</tr>
<tr>
<td>Geldokumentation, UV-Transilluminator</td>
<td>RH-5.1 darkroom hood, easy 442K Kamera</td>
<td>Herolab, Wiesloch</td>
</tr>
<tr>
<td>Drehteller</td>
<td>KDE 015; gebaut vom Hausmeisterdienst</td>
<td>MTE, Weinstadt-Endersbach/UKT, Tübingen</td>
</tr>
<tr>
<td>ELISA Reader</td>
<td>Multiscan Ex</td>
<td>Thermo, Waltham</td>
</tr>
<tr>
<td>FACS</td>
<td>BD FACS Calibur</td>
<td>BD; Heidelberg</td>
</tr>
<tr>
<td>FACS-Sorter</td>
<td>BD FACS Aria-Zellsorter</td>
<td>BD; Heidelberg</td>
</tr>
<tr>
<td>Fluoreszenzreader</td>
<td>Tristar LB 941</td>
<td>Berthold Technology, Bad Wildbad</td>
</tr>
<tr>
<td>Gelelektrophorese-Apparatur</td>
<td>Protean II, Modell 45-2020i</td>
<td>BioRad, München</td>
</tr>
<tr>
<td>Heizblock</td>
<td>Thermomixer Model Comfort LS2</td>
<td>Eppendorf, Hamburg</td>
</tr>
<tr>
<td>Mikroskope</td>
<td>Axiovert 25 Invers, Axiovert 200 Fluorescence, HBO 100</td>
<td>Zeiss, Jena</td>
</tr>
<tr>
<td>PCR Maschine</td>
<td>Primus 96 plus</td>
<td>MWG Biotech, Ebersberg</td>
</tr>
<tr>
<td>pH-Meter</td>
<td>CG842</td>
<td>Schott, Wertheim</td>
</tr>
<tr>
<td>Photometer</td>
<td>BioPhotometer 6131</td>
<td>Eppendorf, Hamburg</td>
</tr>
<tr>
<td>Pipetten</td>
<td>Research, Reference</td>
<td>Eppendorf, Hamburg</td>
</tr>
<tr>
<td>Pipettierhilfe</td>
<td>Pipette boy</td>
<td>Hirschmann, Eberstadt</td>
</tr>
<tr>
<td>Real Time PCR Maschine</td>
<td>LightCycler480/iCycler</td>
<td>Roche, Mannheim/BioRad, München</td>
</tr>
<tr>
<td>Sterilbank</td>
<td>Hera Safe KS 18</td>
<td>Heraeus, Frotscher</td>
</tr>
<tr>
<td>UVA-Lampe</td>
<td>Sellasol 1200</td>
<td>Sellas, Gevelsberg</td>
</tr>
<tr>
<td>Vortexer</td>
<td>Reax Top</td>
<td>Heidolph, Kelheim</td>
</tr>
<tr>
<td>Wasserbad</td>
<td>WB22 Funke</td>
<td>Medingen, Freital</td>
</tr>
<tr>
<td>Zentrifuge</td>
<td>Biofuge pico, Biofuge fresco/Heraeus, Multifuge 3S-R</td>
<td>Thermo Waltham/ Dreieich, Hanau</td>
</tr>
</tbody>
</table>

Tab. 1 Geräte
2. Materialien

2.1 Kits

<table>
<thead>
<tr>
<th>Kits</th>
<th>Hersteller</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annexin V-FITC Apoptosis Detection Kit I</td>
<td>BD Bioscience</td>
</tr>
<tr>
<td>QIAamp DNA-Mini Kit</td>
<td>QIAGEN, Hilden</td>
</tr>
<tr>
<td>Mitochondria Isolation Kit human</td>
<td>Miltenyi Biotec</td>
</tr>
<tr>
<td>Sso Fast EvaGreen Supermix</td>
<td>BioRad, München</td>
</tr>
<tr>
<td>SybrGreen Supermix</td>
<td>BioRad, München</td>
</tr>
</tbody>
</table>

Tab. 2 Kits

2.2 Enzyme

<table>
<thead>
<tr>
<th>Enzyme</th>
<th>Bezugsquelle</th>
</tr>
</thead>
<tbody>
<tr>
<td>DNase I</td>
<td>Sigma, Deisenhofen</td>
</tr>
<tr>
<td>Taq-DNA-Polymerase</td>
<td>QIAGEN, Hilden</td>
</tr>
</tbody>
</table>

Tab. 3 Enzyme

2.3 Primer

<table>
<thead>
<tr>
<th>Primer</th>
<th>Sequenz (5’-3’ Richtung)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD sense (68)</td>
<td>ACC CCC ATA CTC CTT ACA CTA TTC C</td>
</tr>
<tr>
<td>CD antisense (68)</td>
<td>AAG GTA TTC CTG CTA ATG CTA GGC T</td>
</tr>
<tr>
<td>IS sense (68)</td>
<td>GAT TTG GGT ACC ACC CAA GTA TTG</td>
</tr>
<tr>
<td>IS antisense (68)</td>
<td>AAT ATT CAT GGT GGC TGG CAG TA</td>
</tr>
<tr>
<td>PL 47 (23)</td>
<td>TGC TTA CCT TGT TAC GAC TTA</td>
</tr>
<tr>
<td>PL 48 (23)</td>
<td>CGC TCT ACC TCA CCA TCT CTT</td>
</tr>
<tr>
<td>PL 85 (23)</td>
<td>TAA GTC GTA ACA AGG TAA GC</td>
</tr>
<tr>
<td>PL 86 (23)</td>
<td>GAT GGT GGT AGG AGT CAA AA</td>
</tr>
</tbody>
</table>

Tab. 4 Primer
Material und Methoden

2.4 Puffer und Medien

2.4.1 Gelelektrophorese

TAE-Puffer (50x)
-242g Tris-base, 100ml 0,5M EDTA-Lösung (pH8), 57,1g Essigsäure, werden mit H$_2$O$_{bidest}$ auf 1l aufgefüllt.

Ladepuffer
-Glycerin und 1x TAE werden 1:1 gemischt, und 0,2% Farblösung (Orange G oder Bromphenolblau) sowie 1/10.000 Gel-Red werden hinzugefügt.

2% Agarosegel
-2% Agarose (w/v) wird mit der entsprechenden Menge 1x TAE-Puffer aufgefüllt und erhitzt.

2.4.2 Zellkultur

Kryopuffer
-60% Kulturmedium, 12% DMSO, 28% FCS, sterilfiltrieren.

2.5.3 Puffer für Maushautexperimente

Lösung B
-30mM Hepes, 4mM Glukose, 3mM KCl, 130mM NaCl, 1mM Na$_2$HPO$_4$, 0,25% Trypsin auf 500ml mit H$_2$O$_{bidest}$ auffüllen und sterilfiltrieren.

2.4.4 H$_2$O$_2$ Bestimmung

Natriumphosphat-Puffer
-0,25M Natriumphosphat werden in H$_2$O$_{bidest}$ gelöst und auf pH 7,4 eingestellt

2.5 Chemikalien

<table>
<thead>
<tr>
<th>Chemikalien und Materialien</th>
<th>Bezugsquelle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acrylamid/ Bisacrylamid (30%/ 0,8%)</td>
<td>Roth, Karlsruhe</td>
</tr>
<tr>
<td>Agarose</td>
<td>Roth, Karlsruhe</td>
</tr>
<tr>
<td>Albumin Bovine</td>
<td>Sigma, Deisenhofen</td>
</tr>
<tr>
<td>Amplex® Red reagent</td>
<td>Life technologies, Darmstadt</td>
</tr>
<tr>
<td>D (-) Mannitol</td>
<td>Roth, Karlsruhe</td>
</tr>
<tr>
<td>D (+) Sucrose</td>
<td>Fluka, Buchs</td>
</tr>
<tr>
<td>DAPI</td>
<td>Life technologies, Darmstadt</td>
</tr>
<tr>
<td>dNTP Set, PCR Grade</td>
<td>QIAGEN, Hilden</td>
</tr>
<tr>
<td>Material und Methoden</td>
<td></td>
</tr>
<tr>
<td>-----------------------</td>
<td></td>
</tr>
<tr>
<td>Dimethylsulfoxid (DMSO)</td>
<td>Sigma, Deisenhofen</td>
</tr>
<tr>
<td>Dinatriumhydrogenphosphat (Na$_2$HPO$_4$)</td>
<td>Fluka, Buchs</td>
</tr>
<tr>
<td>Dithionit</td>
<td>Fluka, Buchs</td>
</tr>
<tr>
<td>Dulbecco's PBS (1x)</td>
<td>PAA, Pasching</td>
</tr>
<tr>
<td>Eselsonerum</td>
<td>Jackson Immuno Research, Suffolk</td>
</tr>
<tr>
<td>Ethylenglycol tetra Essigsäure (EDTA)</td>
<td>Roth, Karlsruhe</td>
</tr>
<tr>
<td>Ethanol 100%</td>
<td>Merck, Darmstadt</td>
</tr>
<tr>
<td>Fetales Rinderserum (FCS)</td>
<td>Thermo, Waltham</td>
</tr>
<tr>
<td>Formaldehyd</td>
<td>Roth, Karlsruhe</td>
</tr>
<tr>
<td>GelRed</td>
<td>Biotium, Hayward</td>
</tr>
<tr>
<td>Glycin</td>
<td>Roth, Karlsruhe</td>
</tr>
<tr>
<td>Größenstandard, 100 bp Plus DNA-Leiter</td>
<td>Fermentas, St. Leon Rot</td>
</tr>
<tr>
<td>Horseradish Peroxidase (HRP) (EIA Grade)</td>
<td>Life technologies, Darmstadt</td>
</tr>
<tr>
<td>H$_2$O$_2$/ Wasserstoffperoxid</td>
<td>Roth, Karlsruhe</td>
</tr>
<tr>
<td>Kaliumchlorid (KCl)</td>
<td>Roth, Karlsruhe</td>
</tr>
<tr>
<td>Kaliumhydrogenphosphat</td>
<td>Roth, Karlsruhe</td>
</tr>
<tr>
<td>Kaliumhydroxid</td>
<td>Sigma, Deisenhofen</td>
</tr>
<tr>
<td>Minimum Essential Medium (MEM) ohne Phenolrot</td>
<td>Life technologies, Darmstadt</td>
</tr>
<tr>
<td>MEM with Earle's Salts and L-Glutamine</td>
<td>PAA; Pasching</td>
</tr>
<tr>
<td>Methanol</td>
<td>VWR, Darmstadt</td>
</tr>
<tr>
<td>Magnesiumchlorid (MgCl$_2$)</td>
<td>Fluka, Buchs</td>
</tr>
<tr>
<td>Magnesiumchlorid-Puffer (25mM)</td>
<td>QIAGEN, Hilden</td>
</tr>
<tr>
<td>Milchpulver</td>
<td>DM, Karlsruhe</td>
</tr>
<tr>
<td>Natriumcarbonat</td>
<td>Roth, Karlsruhe</td>
</tr>
<tr>
<td>Natriumchlorid</td>
<td>Merck, Darmstadt</td>
</tr>
<tr>
<td>Natriumfluorid</td>
<td>Roth, Karlsruhe</td>
</tr>
</tbody>
</table>
Material und Methoden

<table>
<thead>
<tr>
<th>Chemikalien</th>
<th>Hersteller/Ort</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natriumhydroxid</td>
<td>Merck, Darmstadt</td>
</tr>
<tr>
<td>Natriumphosphat</td>
<td>Sigma, Deisenhofen</td>
</tr>
<tr>
<td>Natriumpyruvat</td>
<td>Fluka, Buchs</td>
</tr>
<tr>
<td>Natriumdodecylsulfat</td>
<td>Fluka, Buchs</td>
</tr>
<tr>
<td>PCR-Puffer (10x)</td>
<td>QIAGEN, Hilden</td>
</tr>
<tr>
<td>Propanol</td>
<td>Merck, Darmstadt</td>
</tr>
<tr>
<td>Propionaldehyd</td>
<td>Fluka, Buchs</td>
</tr>
<tr>
<td>SDS Pellets</td>
<td>Roth, Karlsruhe</td>
</tr>
<tr>
<td>Streptomycin/ Amphotericin B</td>
<td>Life Technologies, Darmstadt</td>
</tr>
<tr>
<td>TEMED</td>
<td>Roth, Karlsruhe</td>
</tr>
<tr>
<td>Tris</td>
<td>Sigma, Deisenhofen</td>
</tr>
<tr>
<td>TritonX100</td>
<td>Roth, Karlsruhe</td>
</tr>
<tr>
<td>Trypanblau</td>
<td>Biochrom, Berlin</td>
</tr>
<tr>
<td>Trypsin</td>
<td>Life Technologies, Darmstadt</td>
</tr>
<tr>
<td>Trolox</td>
<td>Sigma, Deisenhofen</td>
</tr>
<tr>
<td>Tween 20</td>
<td>Roth, Karlsruhe</td>
</tr>
<tr>
<td>Urea</td>
<td>Roth, Karlsruhe</td>
</tr>
<tr>
<td>Vitamin C Pulver</td>
<td>DM, Karlsruhe</td>
</tr>
</tbody>
</table>

Tab. 5 Chemikalien
2.6. Gebrauchsmaterialien

<table>
<thead>
<tr>
<th>Materialien</th>
<th>Firma</th>
</tr>
</thead>
<tbody>
<tr>
<td>6-well-Platten</td>
<td>Greiner, Frickenhausen</td>
</tr>
<tr>
<td>24-well-Platten</td>
<td>Greiner, Frickenhausen</td>
</tr>
<tr>
<td>96-well-Platten</td>
<td>Greiner, Frickenhausen</td>
</tr>
<tr>
<td>96-well PCR Platten</td>
<td>Peqlab, Erlangen</td>
</tr>
<tr>
<td>Falcons</td>
<td>Greiner, Frickenhausen</td>
</tr>
<tr>
<td>Filtertips 0,5 - 10 µl</td>
<td>Greiner, Frickenhausen</td>
</tr>
<tr>
<td>Freezing Container „Mr Frosty“</td>
<td>Thermo, Waltham</td>
</tr>
<tr>
<td>Glaswaren</td>
<td>Schott AG, Mainz</td>
</tr>
<tr>
<td>Kryoröhrchen</td>
<td>Greiner, Frickenhausen</td>
</tr>
<tr>
<td>Küvetten</td>
<td>Ratiolab GmbH, Dreieich-Buchschlag</td>
</tr>
<tr>
<td>Nitrozellulosemembran</td>
<td>Millipore, Billerica</td>
</tr>
<tr>
<td>Objektträger SuperFrost Plus</td>
<td>R. Langenbrinck, Emmendingen</td>
</tr>
<tr>
<td>PCR Reaktionsgefäße</td>
<td>Biozym, Hessisch Oldendorf</td>
</tr>
<tr>
<td>Plastikpipetten (5 ml, 10 ml)</td>
<td>Costar, Fernwald</td>
</tr>
<tr>
<td>Plastikwaren für Zentrifugen, PCR</td>
<td>BD Bioscience, Heidelberg</td>
</tr>
<tr>
<td>Reaktionsgefäße (1 ml)</td>
<td>Eppendorf, Hamburg</td>
</tr>
<tr>
<td>Spritzen</td>
<td>Greiner, Frickenhausen</td>
</tr>
<tr>
<td>Sterilfilter (0,22µm)</td>
<td>Millipore, Billerica</td>
</tr>
<tr>
<td>T 75 Kulturflaschen</td>
<td>Greiner, Frickenhausen</td>
</tr>
<tr>
<td>Whatman-Papier</td>
<td>GE-Healthcare, Chalfont St. Giles</td>
</tr>
</tbody>
</table>

Tab. 6 Gebrauchsmaterialien

2.7 PC-Programme

<table>
<thead>
<tr>
<th>Programm</th>
<th>Hersteller</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microsoft Word XP</td>
<td>Microsoft</td>
</tr>
<tr>
<td>Microsoft Excel XP</td>
<td>Microsoft</td>
</tr>
<tr>
<td>Microsoft PowerPoint XP</td>
<td>Microsoft</td>
</tr>
<tr>
<td>Endnote X4</td>
<td>Thomson Reuters</td>
</tr>
<tr>
<td>Adobe Photoshop CS2</td>
<td>Adobe</td>
</tr>
<tr>
<td>iCycler</td>
<td>BioRad</td>
</tr>
<tr>
<td>Easy Win 32</td>
<td>Herolab</td>
</tr>
</tbody>
</table>

Tab. 7 PC-Programme
3. Zellen und Zelllinien

3.1 Fibroblasten

<table>
<thead>
<tr>
<th>Name</th>
<th>Genotyp</th>
<th>Herkunft</th>
</tr>
</thead>
<tbody>
<tr>
<td>FF3</td>
<td>Wildtyp / primär</td>
<td>AG Berneburg</td>
</tr>
<tr>
<td>F92</td>
<td>Wildtyp / primär</td>
<td>AG Berneburg</td>
</tr>
<tr>
<td>C5RO-WT</td>
<td>Wildtyp / primär</td>
<td>AG Prof. Leon Mullenders, Leiden NL</td>
</tr>
<tr>
<td>WT*31.3.03</td>
<td>Wildtyp / primär</td>
<td>AG Berneburg</td>
</tr>
<tr>
<td>WT*4.11.02</td>
<td>Wildtyp / primär</td>
<td>AG Berneburg</td>
</tr>
<tr>
<td>WT*01</td>
<td>Wildtyp / primär</td>
<td>AG Berneburg</td>
</tr>
<tr>
<td>WT*04</td>
<td>Wildtyp / primär</td>
<td>AG Berneburg</td>
</tr>
<tr>
<td>WT*10</td>
<td>Wildtyp / primär</td>
<td>AG Berneburg</td>
</tr>
<tr>
<td>CS3BE</td>
<td>CSA defizient / primär</td>
<td>AG Prof. Leon Mullenders, Leiden NL</td>
</tr>
<tr>
<td>CS6BR</td>
<td>CSA defizient / primär</td>
<td>AG Prof. Lehmann, Brighton UK</td>
</tr>
<tr>
<td>CS7PV</td>
<td>CSA defizient / primär</td>
<td>AG Prof. Stefanini, Paria, Italien</td>
</tr>
<tr>
<td>CS1AN</td>
<td>CSB- defizient / primär</td>
<td>AG Prof. Leon Mullenders, Leiden NL</td>
</tr>
<tr>
<td>CS1IAF</td>
<td>CSB-defizient / primär</td>
<td>AG Prof. Leon Mullenders, Leiden NL</td>
</tr>
<tr>
<td>CS12PV</td>
<td>CSB-defizient / primär</td>
<td>Italien</td>
</tr>
<tr>
<td>CS2TAN</td>
<td>CSB-defizient / primär</td>
<td>AG Prof. Mullenders, Leiden NL</td>
</tr>
<tr>
<td>CS4BR</td>
<td>CSB-defizient / primär</td>
<td>AG Prof. Lehmann, Brighton UK</td>
</tr>
<tr>
<td>CS1AN-S3G2</td>
<td>CSB-defizient-immortalisiert</td>
<td>AG Prof. Leon Mullenders, Leiden NL</td>
</tr>
<tr>
<td>CS3BE-S3G1</td>
<td>CSA-defizient-immortalisiert</td>
<td>AG Prof. Leon Mullenders, Leiden NL</td>
</tr>
</tbody>
</table>

Tab. 8 Liste der Zellen
4. Zellkultur

4.1 Zellkultur und Konservierung

4.1.1 Kultivierung von Fibroblasten

4.1.2 Isolation von Fibroblasten

Fibroblasten werden aus Hautstücken isoliert. Dafür wird das subkutane Fett grob entfernt, die Hautstücke in kleine Stücke geschnitten und mit der Epidermisseite nach unten in eine 6-well-Platte gelegt. Nach einer kurzen Antrocknungszeit werden die Hautstücke mit warmem Kulturmedium (MEM + 10% FCS + 1% Streptomycin/Amphotericin B) überschichtet und bei 37°C und 5% CO₂ inkubiert. Wenn Zellen aus den Hautstücken herauswachsen, können diese geerntet werden.

4.1.3 UVA-Bestrahlung von Zellen

Zellkulturmedium wird aus der Kulturschale abgenommen. Danach werden die Zellen mit PBS überschichtet und auf einem Drehteller unter die UV-Lampe gestellt. Nach der Bestrahlung wird das PBS abgesaugt und das Medium wieder in die Kulturschale gegeben. Die Bestrahlung der Zellen erfolgt repetitiv, 3-mal täglich mit einem Abstand von ca. 4h an insgesamt 5 Tagen in der Woche.

4.1.4 Zellzahlbestimmung mit der Neubauer-Zählkammer

5µl Zellsuspension werden mit ebenfalls 5µl Trypanblau gemischt und in die mit dem Deckplättchen abgedichtete Zählkammer gegeben. Danach werden die Zellen in den vier Eckquadraten der Zählkammer unter dem Mikroskop ausgezählt. Aus der gezählten Zahl wird dann der Mittelwert gebildet. Daraus kann dann die Zellzahl pro ml errechnet werden:

\[\text{Zellkonzentration [ml⁻¹] = Mittelwert gezählte Zellen x Kammerfaktor x Verdünnungsfaktor} \]
Durch die Tiefe der Kammer definiert beträgt der Kammerfaktor 10^4.

Die Gesamtzellzahl im gegebenen Volumen berechnet sich wie folgt:

\[
\text{Gesamtzellzahl} = \text{Mittelwert gezählte Zellen} \times \text{Kammerfaktor} \times \text{Verdünnungsfaktor} \times \text{Volumen des Mediums}
\]

4.1.5 Kryokonservierung von Zellen

Zellen werden geerntet, das Pellet in 1ml Kryokonservierungspuffer resuspendiert und mit Hilfe des Freezing Containers „Mr. Frosty“ langsam auf -80°C gebracht. Zellen werden später in Flüssigstickstoff gelagert.
5. Molekularbiologische Methoden

5.1 DNA-Isolation
DNA-Isolation erfolgt mit dem QIAamp DNA-Mini Kit von Qiagen nach Anleitung des Herstellers.

5.2 PCR
5.2.1 PCR zur Bestimmung mitochondrialer (mt) Deletionen
Um die amplifiizierte Deletionsmenge in Relation zur Gesamtmenge mitochondrialer DNA zu setzen wird zusätzlich DNA von einer Region des Mitochondriums als interner Standard (IS) amplifiiziert, von der bislang keine Deletionen bekannt sind. Die murine D17-Deletion entspricht in ihrer Position und Größe der humanen Common-Deletion. Zudem teilt sie auch andere Eigenschaften der CD (20, 23). Die murine D17-Deletion wird mit Hilfe einer semiquantitativen PCR gemessen. Das so entstandene PCR-Produkt kann für die murine D17-Deletion mittels eines Agarosegels nachgewiesen werden. Die Menge an Deletion kann danach durch densitometrische Messung am PC mit Photoshop verglichen werden. Um einen Vergleich zur Gesamtmenge der mt DNA in der Probe zu bekommen wird zeitgleich eine PCR einer stabilen Region der mt DNA vorgenommen, die in dieser Arbeit als mIS (muriner interner Standard) bezeichnet wird.
Material und Methoden

5.2.2 Ansätze
murine D17-Deletion: Primer: PL85/PL86, Größe des PCR-Produkts im Gel: 851 bp (Basenpaare).
Die PL85/86-Primer wurden ausgewählt, weil ihre Position der entspricht, die im humanen System von der Common-Deletion eingenommen wird (15).
zugehörige Housekeeping-Primer: PL47/48 (als interner Standard), Größe des PCR-Produkts im Gel: 355 bp.

<table>
<thead>
<tr>
<th>Ansatz</th>
<th>Menge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Puffer</td>
<td>5μl</td>
</tr>
<tr>
<td>H₂O</td>
<td>41,8μl</td>
</tr>
<tr>
<td>dNTPs</td>
<td>1,5μl</td>
</tr>
<tr>
<td>Primer1</td>
<td>0,75μl</td>
</tr>
<tr>
<td>Primer2</td>
<td>0,75μl</td>
</tr>
<tr>
<td>Taq</td>
<td>0,2μl</td>
</tr>
<tr>
<td>Template</td>
<td>5μl</td>
</tr>
<tr>
<td>Gesamt</td>
<td>55μl</td>
</tr>
</tbody>
</table>

Tab. 9 Ansatz D17-PCR

5.2.3 PCR-Programm

<table>
<thead>
<tr>
<th>Schritt</th>
<th>Temperatur</th>
<th>Zeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>95°C</td>
<td>2min</td>
</tr>
<tr>
<td>35x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>95°C</td>
<td>30s</td>
</tr>
<tr>
<td>3</td>
<td>56°C</td>
<td>30s</td>
</tr>
<tr>
<td>4</td>
<td>72°C</td>
<td>2min</td>
</tr>
<tr>
<td>Ende der Wiederholungen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>72°C</td>
<td>5min</td>
</tr>
</tbody>
</table>

Tab. 10 PCR-Programm D17-Deletion
Material und Methoden

5.3 Real-Time-PCR

5.3.1 Ansätze

humane Common-Deletion: Primer: CD1 und CD2

zugehörige Housekeeping-Primer: IS1 und IS2

<table>
<thead>
<tr>
<th>Ansatz</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>H₂O</td>
<td>11µl</td>
</tr>
<tr>
<td>SybrGreen-SuperMix / Sso Fast EvaGreen Supermix</td>
<td>12,5µl</td>
</tr>
<tr>
<td>Primer 1</td>
<td>0,2µl</td>
</tr>
<tr>
<td>Primer 2</td>
<td>0,2µl</td>
</tr>
<tr>
<td>Template</td>
<td>5µl</td>
</tr>
<tr>
<td>Gesamt</td>
<td>24µl</td>
</tr>
</tbody>
</table>

Tab. 11 Ansatz CD Real-Time-PCR

5.3.2 Real-Time-PCR-Programme

<table>
<thead>
<tr>
<th>Schritt</th>
<th>Temperatur</th>
<th>Zeit (SybrGreen / EvaGreen)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>95°C</td>
<td>2min / 2min</td>
</tr>
<tr>
<td>2</td>
<td>95°C</td>
<td>5s / 5s</td>
</tr>
<tr>
<td>3</td>
<td>58°C</td>
<td>30s / 15s</td>
</tr>
<tr>
<td>4</td>
<td>72°C</td>
<td>10s / -</td>
</tr>
</tbody>
</table>

Tab. 12 Programm CD Real-Time-PCR

5.4 Agarosegelelektrophorese

Agarose wird in TAE-Puffer (Tris-Acetic-Acid-EDTA-Puffer) mit Hilfe einer Mikrowelle erhitzt, bis alles gelöst ist. Flüssige Agarose wird in die vorbereitete Gelkammer gegossen und mit entsprechendem Kamm für Taschen versehen. Nach dem Abkühlen und Festigen des Gels wird dieses in die Laufkammer gelegt und mit TAE-Puffer überschichtet. Danach werden die mit Laufpuffer gemischten DNA-Proben in die Taschen eingefüllt und eine Spannung wird angelegt (100V). Nach ca. 20 min kann das Gel unter einer UV-Lampe analysiert werden.
Material und Methoden

5.5 FACS (Fluorescence-activated-cell-sorting)

5.5.1 Messung intrazellulärer Wasserstoffperoxidgehalt

50 μg von CM-H$_2$DCF-DA, einem Abkömmling von Dihydrofluorescein werden in 17,2 μl DMSO (Dimethylsulfoxid) gelöst. Dies entspricht 5 mM. Nach kurzem, vorsichtigem Vortexen, werden 600 μl PBS dazu gegeben und invertiert. In diese Lösung werden 7x106 Zellen gegeben und für insgesamt 45 min bei 37°C inkubiert. Zu den ungefärbten Kontrollzellen wird die gleiche Menge DMSO gegeben und gleichzeitig inkubiert. Alle 10 Minuten wird die Zellsuspension vorsichtig geschwenkt.

Nach der Inkubationszeit werden die Zellen für 5 Minuten bei 1500 rpm zentrifugiert und das Pellet zweimal mit 10 ml PBS gewaschen, dann in Medium (MEM + 10% FCS) resuspendiert. Die ungefärbten Zellen werden jeweils in zwei Aliquots aufgeteilt, die gefärbten in drei. Zu einem Aliquot der gefärbten und zu einem Aliquot der ungefärbten Zellen wird 25 μM H$_2$O$_2$ als Positivkontrolle gegeben zu einem anderen gefärbten Aliquot 200 μM H$_2$O$_2$. Bei den ungefärbten Zellen wird zu einem Aliquot ebenfalls 25 μM H$_2$O$_2$ gegeben, der übrige Teil wird als Negativkontrolle verwendet.

Zu verschiedenen Zeitpunkten nach Beginn des Stresses werden Zellen zur Messung des intrazellulären H$_2$O$_2$-Gehaltes entnommen und im FACS-Calibur gemessen.

5.5.2 Messung von Apoptose und Nekrose

5.6 In-vivo Untersuchungen in der Maus

5.6.1 Mausliste

<table>
<thead>
<tr>
<th>Genotyp</th>
<th>Hintergrund</th>
<th>Geschlecht</th>
<th>Alter</th>
<th>Bezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT</td>
<td>C57BL/6</td>
<td>männlich</td>
<td>3 Monate</td>
<td>3MI</td>
</tr>
<tr>
<td>WT</td>
<td>C57BL/6</td>
<td>weiblich</td>
<td>3 Monate</td>
<td>3MII</td>
</tr>
<tr>
<td>WT</td>
<td>C57BL/6</td>
<td>weiblich</td>
<td>3 Monate</td>
<td>3MIII</td>
</tr>
<tr>
<td>WT</td>
<td>C57BL/6</td>
<td>weiblich</td>
<td>9 Monate</td>
<td>9MI</td>
</tr>
<tr>
<td>WT</td>
<td>C57BL/6</td>
<td>weiblich</td>
<td>9 Monate</td>
<td>9MII</td>
</tr>
<tr>
<td>WT</td>
<td>C57BL/6</td>
<td>männlich</td>
<td>17 Monate</td>
<td>17MI</td>
</tr>
<tr>
<td>WT</td>
<td>C57BL/6</td>
<td>weiblich</td>
<td>24 Monate</td>
<td>24MI</td>
</tr>
<tr>
<td>WT</td>
<td>C57BL/6</td>
<td>männlich</td>
<td>24 Monate</td>
<td>24MII</td>
</tr>
<tr>
<td>WT</td>
<td>C57BL/6</td>
<td>weiblich</td>
<td>24 Monate</td>
<td>24MIII</td>
</tr>
<tr>
<td>WT</td>
<td>C57BL/6</td>
<td>männlich</td>
<td>24 Monate</td>
<td>24MIV</td>
</tr>
</tbody>
</table>
Tab. 13 Mausliste

5.6.2 Isolation einzelner Hautpartien und von Körperfett

Material und Methoden

5.6.3 Isolation des subkutanen Fettes
Zur Isolation des subkutanen Fettes werden Pinzetten und Skalpelle, idealerweise mit abgerundeter Klinge (z.B. Fig. 10), benötigt. Die Haut wird mit den Haaren nach unten auf eine saubere Unterlage (z.B. Petrischale) ausgebreitet. Während die Haut mit der Pinzette an einer Ecke festgehalten wird, löst man mit Hilfe des Skalpells durch vorsichtiges darüberfahren das subkutane Fett ab, wenn nötig unter mikroskopischer Kontrolle.

5.6.4 Auftrennung von Dermis und Epidermis
Um Dermis und Epidermis voneinander zu trennen wird nach dem Entfernen des subkutanen Fettes die übrige Haut mit der Epidermis (Fellseite) nach unten in eine Petrischale mit etwas Lösung B (siehe 2.5.3) gelegt und über Nacht bei 4°C inkubiert. Idealerweise wird die Haut in der Lösung noch etwas glatt gestrichen. Bei Bedarf können auch noch Fellhaare entfernt werden.
Am nächsten Tag kann die Epidermis mit Hilfe zweier Pinzetten durch leichtes Streichen von der Dermis abgenommen werden.

5.7 Oxidativer-Stress in Fibroblasten
5.7.1 H₂O₂-Messung im Medienüberstand
Zelllen werden in 6-well-Platten bis zur Konfluenz wachsen gelassen. Danach wird das Medium (MEM + 10% FCS + 1% Streptomycin/Amphotericin B, phenolrotfrei) gegen Medium mit nur 0,5% FCS ausgetauscht.
Amplex red sowie HRP werden im Dunklen auf Zimmertemperatur gebracht.
Zu gewissen Zeitpunkten wird dem Medium H₂O₂ zugegeben, so dass sich eine Gesamtkonzentration von jeweils 25µM ergibt.
Während der Inkubationszeit wird eine Verdünnungsreihe von H₂O₂ im Bereich zwischen 0 und 25 µM in Kulturmedium vorbereitet. Davon werden je 50µl in einer 96-well-Platte vorgelegt.
Nach Ablauf der Zeit werden aus jedem well 50µl Überstand abgenommen und ebenfalls in die 96-well-Platte gegeben.
Dann werden 4,85 ml 1x Natriumphosphat-Puffer mit 100µl HRP (10 U/ml) und 50µl Amplex-Red (10mM) invertiert und 50µl hiervon in jedes well gegeben.
Nach einer Inkubationszeit von einer halben Stunde im Dunkeln bei Raumtemperatur wird die 96-well Platte am Fluoreszenzreader gemessen.

emission/extinction: Amplex-Red: 530/590 nm
D Ergebnisse

1. Verteilung der D17 Deletion in muriner Haut

Cockayne-Syndrom Patienten weisen als eines der hervorstechendsten Merkmale reduziertes subkutanes Fett, insbesondere im Bereich des Gesichtes auf. Untersuchungen an 130 Wochen alten CSB^{mm}-Mäusen und an CSA^x-Mäusen ergaben deutlich erhöhte Mengen an muriner D17-Deletion im subkutanen Fett des Gesichtsareals. Die untersuchten CSB^{mm}-Mäuse wiesen denselben Phänotyp wie CS-Patienten mit reduziertem subkutanem Fett im bukkalen Bereich auf. Ursache hierfür war der durch Apoptose erhöhte Zellumsatz des subkutanen Fettess (64).

Der Verlust von subkutanem Fett im Gesichtsbereich ist auch ein Merkmal normalen Alterns. Um herauszufinden, ob das subkutane Fett auch in WT-Mäusen mit dem zunehmenden Alter steigende Raten mitochondrialer D17-Deletion aufweist und ob es dabei eine Verteilung über verschiedene Körperareale gibt, wurde die Haut verschiedener Mäuse in Areale unterteilt, entnommen, wiederum aufgeteilt in Dermis, Epidermis und subkutanem Fett und schließlich auf die enthaltene Menge D17-Deletion untersucht.

1.1 Wildtyp

Verwendet wurden Wildtyp-Mäuse mit dem Hintergrund C57BL/6, da dies der Mausstamm war, mit dem in Vorarbeiten gearbeitet wurde.

Mittels PCR wurde die Menge an D17-Deletion, der murinen Entsprechung der humanen Common-Deletion, im relativen Vergleich zum internen Standard der Maus (mIS), einem stabilen Teil der mt DNA, gemessen.

Ebenso wurden verschiedene Körperareale untersucht.

Ergebnisse

Die gewählten Areale sind:

Körperfett wurde an folgenden Stellen entnommen:

A) im unteren Bauchbereich, B) an den Flanken, C) vom Nacken, D) aus dem Achselbereich und E) vom seitlichen Hals.

Die Darstellung der D17-Deletion wird relativ zur Menge des internen Standards in Prozent in logarithmischer Skalierung angezeigt um auch die geringen Werte sichtbar zu machen. Die Linie markiert den Grenzbereich unter dem der Level der Deletion als nicht nachweisbar definiert wurde.
Ergebnisse

1.1.1 Stirn

a) Epidermis
In der Epidermis wurde im Stirnbereich von C57BL/6-Mäusen keine Deletion gemessen.

Abb. 4 D17-Deletion Stirn – Epidermis: In der Epidermis des Stirnbereiches wurde keine D17-Deletion gemessen.

b) Dermis
In der Dermis des Stirnbereichs von C57BL/6-Mäusen konnte keine D17-Deletion nachgewiesen werden.

Abb. 5 D17-Deletion Stirn – Dermis: In der Dermis des Stirnbereichs konnte keine D17-Deletion nachgewiesen werden.
c) Subkutanes Fett

Im subkutanen Fett der C57BL/6-Mäusen zeigt sich eine geringfügige Erhöhung der D17-Deletion bei den ältesten Mäusen im Vergleich zu den drei Monate alten Mäusen.

![Diagramm subkutanes Fett Stirn C57BL/6](image)

Abb. 6 D17-Deletion Stirn – subkutanes Fett: Die Maus 24 MV zeigt eine geringe Erhöhung der Deletion im Vergleich zu den 3 Monate alten Kontrollmäusen.

1.1.2 Wange

a) Epidermis

In der Epidermis der Wange von C57BL/6-Mäusen wurde keine D17 Deletion gemessen.

![Diagramm Epidermis Wange C57BL/6](image)

Abb. 7 D17-Deletion im Wangenbereich – Epidermis: In der Epidermis der Wangen wurde keine D17-Deletion gemessen.
b) Dermis
In der Dermis der Wange wurde keine deutliche Erhöhung der D17-Deletion gemessen.

![Dermis Wange C57BL/6](image)

Abb. 8 D17-Deletion im Wangenbereich – Dermis: In der Dermis der Wange wurde keine deutliche Menge der D17-Deletion gemessen.

c) Subkutanes Fett
Im subkutanen Fett der Wange zeigte sich ab einem Alter von 9 Monaten in einzelnen Arealen eine geringfügige Erhöhung der D17-Deletion.

![subkutanes Fett Wange C57BL/6](image)

Abb. 9 D17-Deletion im Wangenbereich - subkutanes Fett: Die Mäuse 9MI, 24MII und 24MIV zeigen eine teilweise, geringe Erhöhung der D17-Deletion im Vergleich zu jüngeren WT-Tieren.
1.1.3 Schulter

a) Epidermis

In der Schulter wurde in der Epidermis keine D17-Deletion gemessen.

b) Dermis

Nur Maus 9MI zeigte ein geringes Level D17-Deletion in der Dermis im Schulterbereich.

Abb. 10 D17-Deletion der Schulter – Epidermis: In der Epidermis der Schulter wurde keine D17-Deletion gemessen.

Abb. 11 D17-Deletion der Schulter – Dermis: In der Dermis des Schulterbereichs wurde keine deutliche D17-Deletion gemessen.
c) Subkutanes Fett
Ab einem Alter von 9 Monaten zeigte sich im subkutanen Fett der Schulter eine signifikante Erhöhung des Levels an D17-Deletion im Vergleich zu 3 Monate alten Mäusen.

Abb. 12 D17-Deletion der Schulter – subkutanes Fett: Im subkutanen Fett der Schulter zeigte sich ab einem Alter von 9 Monaten eine deutliche (außer Maus 24MI) und ab 17 Monaten eine signifikante Erhöhung der D17-Deletion im Vergleich zu 3-monatigen Mäusen.

1.1.4 unterer Rücken
a) Epidermis
In der Epidermis des unteren Rückenbereichs war keine D17-Deletion nachweisbar.

b) Dermis
Im Bereich des unteren Rückens war in der Dermis keine D17-Deletion messbar.

![Dermis unterer Rücken C57BL/6](image)

Abb. 14 D17-Deletion im unteren Rücken – Dermis: In der Dermis des unteren Rückens wurde keine D17-Deletion gemessen.

c) Subkutanes Fett
Im subkutanen Fett des unteren Rückens zeigt sich nur bei zwei der 2-jährigen Mäusen eine Erhöhung der D17-Deletion.

![subkutanes Fett unterer Rücken C57BL/6](image)

1.1.5 Brust

a) Epidermis

In der Epidermis der Brust zeigte sich keine messbare D17-Deletion.

Abb. 16 D17-Deletion im Brustbereich – Epidermis: In der Epidermis der Brust wurde keine D17-Deletion gemessen.

b) Dermis

Es konnte in der Dermis des Brustbereichs aller WT-Mäuse keine D17-Deletion nachgewiesen werden.

Abb. 17 D17-Deletion im Brustbereich – Dermis: In der Dermis des Brustbereichs wurde keine D17-Deletion gemessen.
c) Subkutanes Fett
Ab einem Alter von 9 Monaten weisen die WT-Mäuse eine Erhöhung der D17-Deletion im Brustbereich auf, ab 17 Monaten eine signifikante Erhöhung.

1.1.6 Bauch
a) Epidermis
Im Bauchbereich konnte in der Epidermis keine D17-Deletion nachgewiesen werden.

Abb. 19 D17-Deletion im Bauchbereich – Epidermis: In der Epidermis des Bauchbereiches wurde keine D17-Deletion gemessen.
Ergebnisse

b) Dermis
Im Bauchbereich der Dermis wurde keine D17-Deletion gemessen.

![Dermis Bauch C57BL/6](image)

Abb. 20 D17-Deletion im Bauchbereich – Dermis: In der Dermis des Bauchbereiches wurde keine D17-Deletion nachgewiesen.

c) Subkutanes Fett
Im Bauchbereich zeigen bereits die 9 Monate alten und mehr als die Hälfte der 2-jährigen Mäuse eine Erhöhung der D17-Deletion. Ab einem Alter von 17 Monaten ist diese signifikant.

![subkutanes Fett Bauch C57BL/6](image)

Abb. 21 D17-Deletion im Bauchbereich – subkutanes Fett: Die Mäuse 9MI, 9MII, 24MIII, 24MIV und 24MV zeigen eine erhöhte Menge D17-Deletion im Vergleich zu jungen Mäusen.
Ergebnisse

1.1.7 Vorderpfoten
a) Epidermis
In der Epidermis der Vorderpfoten wurde keine D17-Deletion gemessen.

Abb. 22 D17-Deletion in den Vorderpfoten – Epidermis: In der Epidermis der Vorderpfoten war keine D17-Deletion messbar.
Ergebnisse

b) Dermis

In der Dermis der Vorderpfoten zeigt sich bei einer der 9 Monate alten Mäusen (Maus 9MI) eine geringfügige Erhöhung der D17-Deletion.

Abb. 23. D17-Deletion in den Vorderpfoten – Dermis: Nur in Maus 9MI zeigt sich eine geringe Erhöhung der D17-Deletion
c) Subkutanes Fett
In den Vorderpfoten ist bereits in den drei Monate alten Mäusen D17-Deletion messbar. Diese erhöht sich mit dem Alter der Mäuse noch weiter. In den alten Mäusen ab 17 Monaten ist diese Erhöhung signifikant.

Ergebnisse

1.1.8 Hinterpfoten

a) Epidermis

In der Epidermis der Hinterpfoten konnte keine D17-Deletion gemessen werden.

Abb. 25 D17-Deletion in den Hinterpfoten - Epidermis In der Epidermis der Hinterpfoten wurde keine D17-Deletion gemessen.
b) Dermis

In der Dermis der Hinterpfoten war ebenfalls keine Deletion messbar.

Abb. 26 D17-Deletion in den Hinterpfoten – Dermis: In der Dermis der Hinterpfoten war keine D17-Deletion messbar.
c) subkutanes Fett
Im subkutanen Fett der Hinterpfoten ist in einem Fall bereits in einer 3 Monate alten Maus D17-Deletion messbar. Bei älteren Mäusen ist sie ebenfalls regelmäßig, teilweise sehr stark vorhanden. Ab einem Alter von 17 Monaten ist die D17-Deletion im Vergleich zu den 3 Monate alten Mäusen signifikant erhöht.

Ergebnisse

1.1.9 mittlerer Rücken

a) Epidermis

In der Epidermis des mittleren Rückens konnte keine D17-Deletion detektiert werden.

![Epidermis mittlerer Rücken C57BL/6](image1)

Abb. 28 D17-Deletion des mittleren Rückens – Epidermis: Die Epidermis des mittleren Rückens wies keine messbare D17-Deletion auf.

b) Dermis

Die Dermis des mittleren Rückens enthielt ebenfalls keine D17-Deletion.

![Dermis mittlerer Rücken C57BL/6](image2)

Abb. 29 D17-Deletion des mittleren Rückens - Dermis: In der Dermis des mittleren Rückens wurde keine D17-Deletion gemessen.
c) Subkutanes Fett
Im subkutanen Fett des mittleren Rückens weisen Mäuse die älter als 17 Monate alt sind eine signifikante Erhöhung der D17-Deletion auf.

![subkutanes Fett mittlerer Rücken C57BL/6](image)

Abb. 30 D17-Deletion des mittleren Rückens-subkutanes Fett: Ab einem Alter von 17 Monaten finden sich signifikant erhöhte Mengen D17-Deletion im subkutanen Fett des mittleren Rückens. Allerdings nicht bei allen gemessenen Mäusen.

1.1.10 Nacken
a) Epidermis
In der Epidermis des Nackens wurde keine D17-Deletion gemessen.

![Epidermis Nacken C57BL/6](image)

Abb. 31 D17-Deletion des Nackens -Epidermis: In der Epidermis des Nackens wurde keine D17-Deletion gemessen
Ergebnisse

b) Dermis
In der Dermis war im Nackenbereich in einer der 24 Monate alten Mäuse eine geringe Menge D17-Deletion messbar.

![Diagramm der Dermis Nacken C57BL/6](image)

Abbildung 32 D17-Deletion des Nackens - Dermis: In der Dermis des Nackens war in einem Fall eine geringe Menge D17-Deletion in einer 24 Monate alten Maus messbar.

c) Subkutanes Fett
Im Nacken war im subkutanen Fett ab einem Alter von 9 Monaten D17-Deletion vorhanden. Mit zunehmendem Alter steigerte sich auch die Menge an Deletion signifikant.

![Diagramm des subkutanen Fett Nacken C57BL/6](image)

Abbildung 33 D17-Deletion des Nackens - subkutanes Fett: Im subkutanen Fett des Nackens war ab 9 Monaten D17-Deletion messbar, die Menge steigerte sich mit zunehmendem Alter der Mäuse.
Ergebnisse

1.1.11 Ohren

Die Ohren wurden immer komplett ohne Unterteilung in Hautkompartmente gemessen. In den Ohren zeigte sich in keiner einzigen Maus D17-Deletion.

Die Untersuchung der verschiedenen Hautareale von C57BL/6 Wildtyp Mäusen unterschiedlichen Alters zeigte, dass im Bereich der Epidermis keine Erhöhung der D17-Deletion mit steigendem Alter stattfindet. Im Bereich der Dermis ließen sich vereinzelt relativ geringe Erhöhungen der D17-Deletion ab einem Alter von 9 Monaten messen, das Maximum lag hierbei jedoch nur bei annähernd 9% im Bereich der Vorderpfoten, ein Wert der in den Messungen des subkutanen Fettes desselben Bereiches um ein Vielfaches überschritten wird.

1.1.12 Zusammenfassung Haut WT

Es zeigt sich, dass insbesondere im subkutanen Fett die Menge an D17-Deletion sich mit steigendem Alter der Mäuse drastisch erhöht. Allerdings findet diese Erhöhung nicht in allen Arealen statt. Beispielsweise zeigt sich in den beiden Arealen im Gesicht der Maus, Stirn und Wange, kaum Erhöhung der Deletion mit dem Alter. Im subkutanen Fett der Stirn ist sogar nur bei einer der 24 Monate alten Mäuse (24MI) eine Erhöhung zu messen. Im Wangenbereich besteht bei einer der 9 Monate alten Mäuse und bei zwei der 24 Monate alten Mäuse eine Erhöhung der D17-Deletion auf bis zu 15%.

Im Vergleich dazu, erhöht sich in den Arealen mit starker Deletion die Rate auf bis zu 89% als Maximalwert der in den Pfoten von Maus 24MI auftritt.

Abb. 34 D17-Deletion in den Ohren von WT-Mäusen: In den Ohren zeigte sich bei Wildtyp-Mäusen in keinem Alter D17-Deletion.
Ergebnisse

Insgesamt gesehen (siehe Abb. 35) tritt die D17-Deletion im subkutanen Fett des Gesichtsbereichs nur geringfügig auf (1,56% bzw. 2,69 % in Stirn und Wange). Im subkutanen Fett von Bauch und mittlerem Rücken ist sie schon deutlich messbar und erreicht Werte von durchschnittlich 8,38% im Bauchbereich bzw. 6,49% im Bereich des mittleren Rückens. Eine weitere Steigerung zeigt das subkutane Fett im Nacken und im unteren Rückenbereich, wo sich die Deletion auf 12,52% (Nacken) und 12,74% (unterer Rücken) erhöht. Die Spitzenwerte an D17 Deletion erreichen im Durchschnitt des subkutanen Fettes die Brust (14,59%), die Schulter (15,41%), die Vorderpfoten (13,76%) und die Hinterpfoten (17,17%)

Abb. 35 Im subkutanen Fett alter Mäuse ist die Erhöhung der D17-Deletion in den verschiedenen Hautarealen unterschiedlich verteilt. Im Kopfbereich ist die Deletion kaum vorhanden, im Bauch und mittleren Rückenbereich ist sie schon deutlich erhöht, weiter steigert sie sich im Bereich des Nackens und des unteren Rückens, ihre Spitzenwerte finden sich im Bereich der Schulter, der Brust und der Pfoten. Die Steigerung von Stirn gegenüber Schulter, Brust, Vorder-und Hinterpfoten sowie mittlerem Rücken ist signifikant (p< 0,05).
1.1.13 Körperfett

Da sich die meisten D17-Deletion der WT-Mäuse im subkutanen Fett zeigte, wurde zum Vergleich auch das Körperfett der Mäuse mit untersucht. Die dabei gewählten Areale von denen das Körperfett entnommen wurde sind:

A) unterer Bauch, B) Nacken, C) Flanken, D) unter den Vorderpfoten, E) seitlich am Hals.
Es wurde immer das gesamte an diesen Stellen vorhandene Fett entnommen.

Abb. 36 Verteilung des entnommenen Körperfettes in der Maus: A) unterer Bauch, B) Flanken, C) Nacken, D) unter den Vorderpfoten, E) seitlich am Hals

Abb. 37 D17-Deletion im Körperfett von jungen WT-Mäusen: Im Körperfett junger Mäuse war keine D17-Deletion messbar.

Ergebnisse

Abb. 38 D17-Deletion im Körperfett von alten WT-Mäusen:

Im Bauch- und Flankenareal sind für alle Mäuse (24MI-24MV, 17MI) deutliche Mengen an D17-Deletion messbar, in den übrigen Arealen (Nacken, Achsel und Hals) ist keine Erhöhung im Vergleich zu jungen Mäusen messbar.

1.2 XPG-knockout -Mäuse

XPG ist, wie auch die CS-Proteine CSA und CSB in die NER involviert. Allerdings steht dieses Protein in keinem bekannten direkten Zusammenhang mit Mitochondrien. Somit war es interessant zu untersuchen, ob es in diesen Mäusen eine Beeinflussung der Integrität der mt DNA gibt. Dies war bei einer Untersuchung junger Tiere bis zu einem Alter von 13 Wochen nicht der Fall. Ein höheres Alter erreichen diese Tiere meist nicht (72).

In keiner der XPG-knockout Mäuse konnte in irgendeinem Areal oder Gewebe D17-Deletion gemessen werden.

a) Epidermis

In der Epidermis von 4 oder 13 Wochen alten XPG-knockout-Mäusen konnte keine D17-Deletion gemessen werden.
Ergebnisse

b) Dermis
Die Dermis der 4 oder 13 Wochen alten XPG-knockout-Mäuse enthielt ebenfalls keine D17-Deletion.

![Dermis XPG-ko 4 / 13 Wochen Mittelwerte](image)

Abb. 40 Dermis XPG-knockout-Mäuse 13 Wochen: Es wurde keine D17-Deletion gemessen.

c) Subkutanes Fett
Auch im subkutanen Fett dieser Mäuse konnte keine D17-Deletion gemessen werden.

![Subkutanes Fett XPG-ko 4 / 13 Wochen Mittelwerte](image)

Abb. 41 Subkutanes Fett XPG-knockout-Mäuse 13 Wochen: Es wurde keine D17-Deletion gemessen
1.3 TLR2 knockout-Mäuse

Da es sehr teuer ist, Mäuse über Jahre hinweg zu halten, war die Anzahl der alten Mäuse die für die Untersuchung auf D17-Deletion zu bekommen war begrenzt. Auf der Suche nach weiteren alten Mäusen im Tierstall der Uniklinik Tübingen, die beispielsweise bei der Zucht übersehen worden waren, ergab es sich, dass zwei 16 Monate alte TLR2-knockout-Weibchen mit Balb/c-Hintergrund gefunden wurden.

Da durch die genetische Veränderung keine Veränderung in der DNA-Reparatur zu erwarten war und eine Veränderung des ROS-Haushaltes durch TLR2 nur als Signal im Infektionsfall zu erwarten ist (73), konnte davon ausgegangen werden, dass sich die D17-Deletion bei diesen Mäusen so wie im WT verhalten würde.

a) Epidermis

In der Epidermis zeigt sich bei einer der 16 Monate alten TLR2-ko-Mäuse eine geringe Menge an D17-Deletion im Bereich der Wange.

Abb. 42 D17-Deletion in Epidermis von TLR2-knockout-Mäusen im Alter von 3 bzw. 16 Monaten Im Wangenbereich der Epidermis kann eine geringfügige Erhöhung der D17-Deletion in einer der beiden 16 Monate alten Mäuse gemessen werden.
b) Dermis

Abb. 43 D17 Deletion in Dermis von TLR2-knockout-Mäusen im Alter von 3 bzw. 16 Monaten. Im Fall der 16 Monate alten Mäuse kann eine geringe Erhöhung der D17-Deletion im Bereich des Rückens im Vergleich zu jungen Mäusen gemessen werden.

c) Subkutanes Fett

Ergebnisse

d) Körperfett und Ohren

Im Körperfett von TLR2-knockout-Mäusen zeigte sich D17 Deletion sowohl im Bereich des Bauches, wie auch in den WT-Mäusen, allerdings auch bei einer Maus im Halsbereich.

![Körperfett TLR2-ko-Mäuse](image)

Abb. 45 D17 im Körperfett von TLR2-knockout-Mäusen. Im Körperfett von TLR2-knockout Mäusen wurde D17-Deletion vor allem im Bauchfett, in einem Fall auch im Fett seitlich am Hals gemessen.

1.4 Zusammenfassung der Ergebnisse zu Maushaut und Fett

1.4.1 Wildtyp

In jungen C57BL/6 Mäusen mit einem Alter von 3 Monaten war dabei in keinem der untersuchten Hautareale in Dermis oder Epidermis D17-Deletion messbar. Lediglich im subkutanen Fett der Vorder- und Hinterpfoten der 3-monatigen Mäuse war eine geringe Menge D17-Deletion messbar (Abb. 24 + Abb. 27).

Dies entspricht auch den Erwartungen, die sich hauptsächlich auf Daten humanen Common Deletion (74-76) und auf die Ergebnisse mit Ratten und Mäusen (23, 77, 78) stützen.

Erwartet wurde dabei, dass die D17-Deletion, die in etwa der humanen Common-Deletion entspricht, im Gewebe der jungen Mäuse nicht oder fast nicht auftritt, sich mit dem Altern dann akkumuliert. Diese Akkumulation fand auch eindeutig statt und vergleicht man die Areale im subkutanen Fett junger und alter WT-Mäuse, so ist die Steigerung der CD-Menge in Schulter, Brust, Bauch, Vorder- und Hinterpfoten, mittlerem Rücken und Nacken signifikant (p<0,05).

In der Dermis dagegen fand man bereits geringe Mengen Deletion in den Bereichen Wange, Schulter und Vorderpfote, wobei in Wange und Schulter nur minimale Mengen D17-Deletion
Ergebnisse

bis ca. 3,5% (Deletionswerte immer relativ zu Housekeeping-Werten) gemessen wurden, in den Vorderpfoten bis zu knapp 9%. (Abb. 8, 11, 23)

Im subkutanen Fett von Wange, Schulter, Brust, Bauch, Vorder- und Hinterpfote und Nacken der 9-monatigen Mäuse ergab sich eine moderate Erhöhung der D17-Deletion auf maximal 20 %. (Abb. 9, 12, 18, 21, 24, 27, 33)

Wie in den Messungen der 9 Monate alten Mäuse, war auch bei den alten Mäusen der Hauptanteil der D17-Deletion im subkutanen Fett zu finden, der sich noch einmal stark erhöht hat. Ohne Ausnahme konnte in jedem Areal zumindest in einem Individuum eine Erhöhung der D17-Deletion des subkutanen Fettes festgestellt werden:

Im Stirn und Wangenbereich der alten Mäuse fällt diese allerdings trotzdem sehr gering aus. Im Stirnbereich liegt der einzige Messwert der Deletion bei etwa 8%, im Wangenbereich zwischen 3,5% beim niedrigsten und bis zu 13,3% beim höchsten Wert (ausgenommen sind bei diesen Angaben immer die Null-Werte ohne Deletion). Dies ist deshalb von Interesse, da die in (64) gemessenen Deletionswerte von CSBmin Mäusen gleichen Alters aus eben diesen Gesichtsbereichen stammen und deutlich stärker erhöht sind.

Die Mittelwerte aus den gemessenen Deletionswerten für den Wangen und Stirnbereich liegen logischerweise mit 2,69% und 1,56% im Mittel deutlich niedriger als die Werte in den übrigen Bereichen (Abb. 35).

Im Bereich der Schultern erreichte der Mittelwert aller Mäuse immerhin 15,41% (Abb. 35) wobei es hier Schwankungen von keiner Deletion über 3,2% als geringsten Messwert, bis hin zu 55,5% gab (Abb.12). Dabei gab es bei vier der Mäuse deutliche messbare Deletionswerte.

Im Bereich des unteren Rückens konnte ein Mittelwert von 12,74%. Der kleinste Deletionswert lag bei 14,69% und das Maximum bei 58,8%, alle anderen Werte lagen im
Ergebnisse

Bereich von Null. Wichtig ist hierbei, dass tatsächlich nur bei zwei der Mäuse in diesem Bereich Deletion messbar war (Abb. 15).

Der Brustbereich wies einen Mittelwert von 14,59% (Abb. 35) auf, der geringste Deletionswert dabei war 6,9% der höchste lag bei 57,1% (Abb. 18). In diesem Areal wiesen alle bis auf eine der Mäuse deutlich messbare Deletionswerte auf.

Im Bauchbereich ergab sich ein Mittelwert von 8,38% (Abb. 35). Das Deletionsminimum lag bei 4,1% das Maximum bei 16,1% (Abb. 21). Dabei zeigte sich bei der Hälfte der Mäuse messbare Deletion im subkutanen Fett des Bauchbereiches, die anderen ergaben bei der Messung Deletionswerte im Bereich von 0%.

Im den Bereichen der Vorder- und Hinterpfoten wurden ebenfalls sehr hohe Deletionswerte gemessen. Die Mittelwerte liegen in den Vorderpfoten bei 13,76% in den Hinterpfoten bei 17,17%, dem höchsten Mittelwert (Abb. 35). Die Deletionswerte lagen für die Vorderpfoten in Bereich zwischen 3,9% und 64,3% (Abb. 24) für die Hinterpfoten zwischen 3,6% und 89,2% (Abb. 27). In den Vorderpfoten war bei jeder Maus Deletion messbar, in den Hinterpfoten in vier der ausgewerteten Mäuse.

Der Mittlere Rücken enthält von allen gemessenen Arealen außerhalb des Gesichtes im subkutanen Fett den kleinsten Mittelwert. Er erreicht gerade 6,4% (Abb. 35) wobei die Deletionswerte im Einzelnen zwischen 4,1% und 22,6% liegen (Abb. 30). Hier konnte ebenfalls bei vier der Mäuse Deletion nachgewiesen werden.

Im Nackenbereich ergab sich ein ähnliches Bild wie im Bereich des unteren Rückens. Mit einem Mittelwert von 12,52% (Abb. 35) und einer Spannbreite zwischen 4,68% und 38,3% (Abb. 33). Der Nackenbereich wies bei allen gemessenen Mäusen, Deletion auf, aber nie so stark, wie beispielsweise in den Pfoten.

Für die Menge an Deletion im subkutanen Fett ergibt sich also aufsteigend folgende Reihenfolge:

Stirn < Wange < mittlerer Rücken < Bauch < Nacken < unterer Rücken < Vorderpfoten < Brust < Schultern < Hinterpfoten.

Bei den alten Mäusen war dabei der Unterschied in der Deletionsmenge im subkutanen Fett zwischen Stirn und Schulter, Brust, Vorder-, Hinterpfoten und mittlerem Rücken signifikant, sowie der Unterschied zwischen Wange und Schulter, Brust, Bauch, Vorder- und Hinterpfoten und der Unterschied zwischen Brust und Bauch. Das heißt, das subkutane Fett des Gesichtsbereichs unterscheidet sich signifikant (jeweils p<0,05) von vielen anderen Arealen alter Mäuse.

Keine der Mäuse, egal welchen Alters wies D17-Deletion im Bereich der Ohren auf.
Ergebnisse

Im nicht mit der Haut assoziierten Körperfett der Mäuse ergab sich sowohl eine altersabhängige, als auch eine das Areal betreffende, spezifische und signifikante Verteilung der Deletion (Abb. 37-38). In jungen Mäusen im Alter von 3 Monaten war im Körperfett keine D17-Deletion nachweisbar. In den alten Mäusen fand sich in jeder Maus im Fettgewebe des Bauch- und des Flankenbereiches eine signifikante Erhöhung der D17-Deletion (Bauch 22,86% (p=0,0018) und Flanken 32,12% (p=0,0003) im Mittel und gegenüber jungen Mäusen). Im Bereich des Nackens wurde bei einer Maus D17-Deletion gemessen (3,9% im Mittel mit den Werten ohne Deletion), im Bereich unterhalb der Vorderpfoten und im Halsbereich wurde keine D17-Deletion gemessen (0,76% bzw. 0,25%).

1.4.2 XPG-knockout-Mäuse

1.4.3 TLR2-knockout-Mäuse

Die Ergebnisse mit einem einzelnen Deletionswert in der Wange (6,02%) in der Epidermis (Abb. 42), zwei erhöhten Werten im Dermisbereich, unterer Rücken mit 7,4% und mittlerer Rücken mit 6,13% (Abb. 43) sowie Deletionen in Stirn (7,31%), Wange (12,67%), Schulter (8,96%), Pfoten (7,52% bzw. 4,7%) und Nacken (6,02%). im subkutanen Fett (Abb. 44) in den 16 Monate alten Mäusen und keiner Deletion in den jungen Mäusen entspricht dem, was an Ergebnissen erwartet worden war. Allerdings ist die Verteilung der Deletion in den beiden ausgewerteten Individuen unterschiedlich zu den bisher gemessenen WT-Mäusen mit C57BL/6-Hintergrund.

Im Körperfett der TLR2-knockout-Mäuse fand sich Deletion im Bauchbereich (6,06%) und in einem Fall im Halsbereich (4,44%) (Abb. 45). Zumindest was das Fett im Halsbereich angeht, unterscheidet sich diese Verteilung ebenfalls leicht von der im C57BL/6-Wildtyp (Abb. 38). Der Unterschied der Deletionsmenge im subkutanen Fett zwischen jungen und den älteren Mäusen war nur für den Bereich des unteren Rückens signifikant. Allerdings ist es schwierig, bei so wenigen Mäusen eine sinnvolle Statistik zu machen, zumal sie auch nicht das gleiche Alter wie die WT-Mäuse erreicht haben.
2. Auswirkung von UVA-Stress auf CSA- und CSB-defizierte Zellen im Vergleich zu Wildtyp-Zellen

In gealterten WT-Mäusen, sowie auch Mäusen mit mutierten CS-Proteinen zeigt sich eine Akkumulation mitochondrialer D17-Deletion zusammen mit durch Apoptose erhöhtem Zellumsatz (64). Mitochondriale Deletionen können auch durch oxidativen Stress in humaner Haut induziert werden (27). Um zu klären, ob diese induzierten Deletionen auch zum Zelltod beispielsweise in Form von Apoptose oder Nekrose in Hautzellen (Fibroblasten) von CS-defizienten Zellen und WT-Zellen führen, wurden sie oxidativem Stress ausgesetzt und danach wurde ausgewertet, ob Apoptose oder Nekrose induziert werden konnte und wie sich zeitgleich die CD verhält.

Eine Möglichkeit oxidativen Stress hervorzurufen ist, über UVA-Bestrahlung. Eine solche Bestrahlung muss repetitiv erfolgen, um messbare DNA-Schäden, zu denen auch die CD zählt, zu induzieren.

Abb. 46 CD nach UVA-Bestrahlung in CS4BR-Fibroblasten

A) CD gemessen an 1, 2 oder 3 Wochen lang repetitiv mit 6J/cm² bestrahlten CSB-defizienten Fibroblasten, nur adhärente Zellen. B) CD gemessen an 1, 2 oder 3 Wochen lang repetitiv mit 6J/cm² bestrahlten CSB-defizienten Fibroblasten, adhärente Zellen + abgestorbene Zellen aus dem Medienüberstand.

(Adaptiert aus „Mitochondrial DNA in cancer and aging of the skin“ von York Kamenisch)
Ergebnisse

In vorangehenden Experimenten konnte gezeigt werden, dass die CD in WT-Zellen nach einer Woche repetitivem oxidativen Stress, induziert durch UVA-Bestrahlung, zunimmt. Nach zwei Wochen erfolgt eine weitere Zunahme, ebenso nach drei Wochen (22). Im Vergleich dazu nimmt der Wert bei CSB-defizienten CS4BR-Fibroblasten nach der dritten Bestrahlungswoche wieder ab (Abb. 46). Wurden dann die abgestorbenen Zellen aus dem Überstand dazugenommen und die CD gemessen, so ergibt sich auch nach der dritten Woche doch wieder ein Anstieg der CD.

Dieses in Abb. 46 gezeigte Experiment zeigt, dass in den abgestorbenen Zellen, die sich im Medienüberstand befanden, viel CD messbar war. Um nun zu sehen, ob es eine echte Korrelation zwischen CD und Zelltod nach oxidativem Stress gibt und ob dabei eher Apoptose oder Nekrose stattfindet, wurden Fibroblasten (CSA und CSB-defizient bzw. WT) mit UVA repetitiv bestrahlt und anschließend wurde untersucht, welcher Anteil der Zellen apoptotisch, nekrotisch oder viable war und wie in diesen Anteilen die CD verteilt ist.

Um näher zu untersuchen, auf welche Art und Weise die verschiedenen Zellen durch UVA-Stress beeinflusst werden, wurde nun also zum einen gemessen, auf welchem Weg die Zellen sterben, zum anderen, ob sich dabei eine Erhöhung der mitochondrialen DNA-Schäden messen lässt.

2.1 Apoptose und Nekrose

Bei einer Bestrahlung über drei Wochen (W) ergeben sich die folgenden Ergebnisse:
Ergebnisse

Abb. 48 FACS-Sort – Ergebnisse nach einer (A), zwei (B) und drei (C) Wochen Bestrahlung.
Werden alle FACS-Sort Ergebnisse zusammengefasst, ergibt sich eine Zunahme von Apoptose und Nekrose in der ersten Woche, die Anzahl lebender Zellen nimmt zugleich ab.

Nach zwei Wochen Bestrahlung ist der Unterschied zwischen WT und defizienten Zellen nicht mehr eindeutig. Auch, weil Fibroblasten die lange Kultur nicht immer gut vertragen.

Abb. 50 Ab- und Zunahme der Viabilität verschiedener Zellen nach zwei Wochen UV-Bestrahlung. Die Anzahl lebender Zellen nimmt weiter ab. In der Differenz wird dieser Effekt nicht so deutlich, da auch in den Kontrollschalen die Viabilität abnimmt.
Nach dreiwöchiger Bestrahlung sind besonders die hohen Werte für Apoptose auffällig.

2.2 Common-Deletion

Die Inzidenz der Common-Deletion ist in UVA-bestrahlten Zellen erhöht. Allerdings ergibt sich dabei kein klares Muster. Diese Erhöhung zeigt sich nämlich sowohl in den viablen Zellen, als auch in nekrotischen und apoptotischen Zellen und ist zudem unbeständig (Abb. 52). Dies liegt vermutlich an vielen Faktoren, die auf sowohl die bestrahlten, als auch die Kontrollzellen einwirken.

Um wenigstens eine gewisse Tendenz der CD aufzuzeigen, wurde die Anzahl der Zelllinien mit erhöhter CD je Experiment und Woche gezählt und durch die Gesamtzahl der entsprechenden Zelllinien dividiert um Prozentwerte zu bilden, bei wie vielen Zelllinien die CD erhöht ist (Abbh. 52).

Nach einer Woche Bestrahlung weisen die Hälfte der lebendigen Zellen (aus P3), 37,5% der apoptotischen Zellen (aus P6) und ebenfalls 50% der nekrotischen Zellen aus P4+5 eine Erhöhung der CD auf. Dies bleibt im Fall der WT-Zellen in P3 auch nach zwei oder drei Wochen Bestrahlung gleich, in P4+5 steigt der Wert nach zwei Wochen auf 75%, nach drei Wochen auf 83,3%, während in P6 der Wert nach zwei Wochen auf 25% sinkt, dann auf 50%. Die lebenden CSA und CSB-Zellen zeigen nach einer Woche Bestrahlung geringfügig weniger Zelllinien mit erhöhter CD, nach zwei und drei Wochen jedoch deutlich mehr als die WT Zellen. Dasselbe Bild ergibt sich auch für apoptotische (P6) und nekrotische Zellen.
Ergebnisse

(P4+5). Nach einer Woche Bestrahlung liegt die Zahl von Zelllinien mit erhöhter CD ähnlich hoch, wie beim WT, nach zwei oder drei Wochen deutlich höher. (Siehe auch Abb. 52).

Abb. 52 Anzahl der Zellarten mit Common-Deletion-Erhöhung nach 1, 2 oder 3 Wochen in %. Die Werte für CD wurden für jede Woche gemessen und es wurde gezählt, welche der Zelllinien eine erhöhte Menge an CD aufwiesen. Diese wurden durch die Gesamtanzahl der Zelllinien dividiert um daraus Prozentwerte zu bilden. So wurde für jedes der gesorteten Felder (P3, P4+5, P6) gemessen, in wie vielen Zelllinien die CD zunimmt.
3. Verlauf von Wasserstoffperoxid-Stress in Fibroblasten

Um oxidativen Stress hervorzurufen und dadurch die Translokation der CS-Proteine in die Mitochondrien zu induzieren, wurden in unserer Arbeitsgruppe Fibroblasten durch Behandlung mit 25µM Wasserstoffperoxid gestresst. Diese Konzentration an H$_2$O$_2$ erwies sich in unseren Experimenten sowohl als wirksam, als auch als sublethale Dosis, insbesondere, da zum Teil auch längere Einwirkzeiten genutzt wurden. Höhere Dosen H$_2$O$_2$ ergaben Probleme mit der Viabilität der Zellen (79). Offen blieben dabei die Fragen, wie lange verbleibt H$_2$O$_2$ im Medium, wird es von der Zelle aufgenommen und kann dort womöglich DNA- oder sonstige Schäden hervorrufen oder wird diese geringe Menge an H$_2$O$_2$ rapide durch die Zelle abgebaut und nur eine Signalwirkung sorgt für die Translokation der CS-Proteine ins Mitochondrium.

3.1 Im Medium von Fibroblasten

3.1.1 Wildtyp-Zellen

In Wildtyp-Zellen zeigte sich, dass 25µM H$_2$O$_2$ innerhalb von einer Stunde aus dem Medium verschwunden sind, sofern sie sich über Zellen befinden. In Medium alleine wird H$_2$O$_2$ während dieser Zeit nicht messbar abgebaut.

![Überstände WT-Fibroblasten im Zeitverlauf](image)

Abb. 53 H$_2$O$_2$-Gehalt der Überstände von WT-Fibroblasten im Zeitverlauf nach Stress mit 25µM H$_2$O$_2$: Bereits nach 5 Minuten hat die Menge an H$_2$O$_2$ im Medienüberstand signifikant abgenommen. Nach einer Stunde ist kein Wasserstoffperoxid mehr im Medium vorhanden. In der Medienkontrolle zeigt sich, dass in Medium ohne Zellen keine schnelle Abnahme des H$_2$O$_2$ stattfindet.
Ergebnisse

3.1.2 CSA und CSB-defizienten Zellen
Auch in CSA und CSB-defizienten Zellen zeigt sich dasselbe Bild. Innerhalb einer Stunde wird das H$_2$O$_2$ im Medienüberstand von Zellen abgebaut.

Abb. 54 H$_2$O$_2$-Gehalt der Überstände von CSA-defizienten Fibroblasten im Zeitverlauf nach Stress mit 25μM H$_2$O$_2$: Der Verlauf des Abbaus von H$_2$O$_2$ im Medienüberstand von CSA-defizienten Zellen verläuft entsprechend der WT-Zellen. Nach einer Stunde ist hier ebenfalls kein H$_2$O$_2$ mehr messbar.

Abb. 55 H$_2$O$_2$-Gehalt der Überstände von CSB-defizienten Fibroblasten im Zeitverlauf nach Stress mit 25μM H$_2$O$_2$: Der Verlauf des Abbaus von H$_2$O$_2$ im Medienüberstand von CSB-defizienten Zellen verläuft entsprechend der WT-Zellen. Nach einer Stunde ist hier ebenfalls kein H$_2$O$_2$ mehr messbar.
3.2 In den Zellen

Um herauszufinden, ob und wie viel von den 25μM H₂O₂ im Zellinneren von Fibroblasten ankommen und wie der Zeitverlauf dabei aussieht, wurden Fibroblasten zuerst mit CM-H₂DCF-DA gefärbt dann mit 25μM H₂O₂ gestresst bzw. unbehandelt belassen und zuletzt im FACS ausgewertet.

Abb. 56 FACS-Daten intrazellulärer H₂O₂
E Diskussion

1. Murine D17-Deletion in Maushaut

Patienten mit CS sowie Mäuse mit CSB^{m/m}-Genotyp zeigen einen Phänotyp mit verringertem subkutanem Fett im Gesichtsbereich. Zudem ist dort, wie auch bei CSA^{+/}-Mäusen die murine D17-Deletion im Vergleich zum WT deutlich erhöht. Als Ursache für den Verlust des subkutanen Fettes in diesem Bereich, konnte ein durch Apoptose erhöhter Zellumsatz bestätigt werden (64).

Um herauszufinden, wie sich mitochondriale Deletionen in der Haut und in subkutanem Fett von chronologisch gealterten, unbehandelten WT-Mäusen verhalten, wurden verschiedene Areale der Haut von WT-Mäusen (C57BL/6) verschiedener Alters untersucht. Dabei wurden Dermis, Epidermis und subkutanes Fett voneinander getrennt und die Stärke der D17-Deletion in den verschiedenen Hautarealen und Körperfettbereichen (Abb. 3 und 36) gemessen.

1.1 Wildtyp-Mäuse

Im subkutanen Fett wurde in den meisten der untersuchten Areale eine signifikante Steigerung der D17-Deletion beim Vergleich von jungen und gealterten Mäusen gefunden (Abb. 35).
Hier die Reihenfolge mit stärker werdender Deletionslast. Ein * bedeutet hierbei Signifikanz gegenüber demselben Areal in jungen Mäusen:

Stirn< Wange< mittlerer Rücken*< Bauch*< Nacken*< unterer Rücken< Vorderpfoten*< Brust*< Schultern*< Hinterpfoten*.

Im Körperfett kommt es zu einem signifikanten Anstieg von D17-Deletion im Bauch- und Flankenbereich im Vergleich von jungen und alten Mäusen (Abb. 37 und 38).

Bei einem Vergleich mit vorherigen Daten unserer Arbeitsgruppe fällt zudem auf, dass die D17-Deletion im Gesichtsbereich der alten CSB^{m/m}-Mäuse stark erhöht ist (64). WT-Mäuse zeigen in diesem Bereich nur geringe Mengen D17-Deletion im subkutanen Fett (Abb. 6 und Abb. 9).
Die Frage, wie es in WT-Mäusen zu mitochondrialen Deletionen kommt und wie diese akkumulieren ist nicht eindeutig geklärt.
Die Entstehung von mt Deletionen ist wahrscheinlich abhängig von der Replikation der mt DNA und gleichzeitig an bestimmten Stellen vorliegenden DNA-Schäden (22, 24, 26, 27). Da die Reparatur von DNA-Schäden mit dem Alter nachlässt (84, 85), können auch in den direct-repeat Regionen der mt DNA mehr Schäden akkumulieren und so in älteren Individuen die Rate an neu entstehenden mt Deletionen steigern.
Des Weiteren ist die Rate oxidativer Schäden wie beispielsweise 8-oxo-G mit zunehmendem Alter erhöht, vermutlich durch einen Anstieg des oxidativen Stresses (86-90). Die in manchen Publikationen gezeigte Erhöhung der ROS-Produktion durch die Mitochondrien im Alter (88) ist allerdings umstritten (91). Die in dieser Arbeit gemessenen Deletionswerte sprechen auch für die von Harman postulierte „Free Radical Theory of Ageing“ (6). In CSB^{m/m}-Mäusen, in denen das mutierte CSB nicht wie im WT mit den Proteinen der mt DNA-Reparatur interagieren kann (64), ist es gut vorstellbar, dass bei der Replikation der mt DNA häufiger als im WT punktuelle Mutationen vorhanden sind, die eine Entstehung von Deletionen begünstigen. Dies würde erklären, warum die Deletionen in CSB-defizienten Individuen früher und in gealterten Individuen stärker auftreten als im WT.
Bei Untersuchungen des Fettgewebes von Mäusen verschiedenen Alters fanden sich folgende Merkmale: Der Fettanteil am Körperfett nahm ab einem Alter von einem Jahr kontinuierlich ab. Das Verhältnis von GSH zu seiner oxidierten Form GSSG im Fettgewebe
Diskussion

Zudem konnten die Autoren zeigen, dass oxidativer Stress im Fettgewebe zu einer veränderten Differenzierung von Adipozyten führt, indem die klonale Expansion unterdrückt wird (92). Dies wäre neben der Apoptose (71) eine zusätzliche Erklärung dafür, warum es in CS-Patienten und CS^{m/m}-Mäusen nur einen verringerten Anteil subkutanen Fettes gibt (71).

Eine weitere mögliche Erklärung, wieso es in den Zellen von subkutanem- und Körperfett zu einer Akkumulation mitochondrialer Schäden kommt, wäre beispielsweise die mit dem Alter verminderte Autophagie.

Die Autophagie, die auch schon im Zusammenhang mit CSB genannt wurde (93), hängt ebenfalls mit dem Alter zusammen (94). Durch Insulin wird die Makroautophagie, die auch für den Abbau beschädigter Mitochondrien verantwortlich ist, inhibiert, während Glucagon sie induziert (95). Mit zunehmendem Alter wird dabei der induzierende Effekt von Glucagon in der Leber von Nagetieren schwächer (80, 96). Zudem wurde gezeigt, dass oxidativer Stress sich auf die Regulation der Insulin-Signaltransduktion auswirken kann und somit die Autopagie-inhibierende Funktion von Insulin verlängert (94, 97).

Durch diese Effekte wird es mit zunehmender Abnahme der Autophagie wahrscheinlicher, dass geschädigte Mitochondrien nicht abgebaut werden und sowohl Schäden akkumulieren, als auch weitere Schäden verursachen.

Das subkutane Fett in Mäusen mit mutiertem CSB zeigt eine extrem erhöhte Akkumulation von D17-Deletion, selbst im Vergleich mit alten WT-Mäusen (64).

Diese Theorie würde auch dazu passen, dass die entsprechenden Mausmodelle und auch CS-Patienten stark reduziertes Fettgewebe aufweisen. Ist in Adipozyten die Autophagie gestört, so findet keine vollständige Differenzierung statt. Solche Zellen enthalten deutlich mehr Mitochondrien als normale Zellen des weißen adipösen Gewebes. Diese Fettzellen funktionieren dabei nicht so gut, wie normalerweise als Speicher für Lipide (98).

Dieser Phänotyp erinnert stark an den von CS^{mim}-Mäusen oder auch CS-Patienten, zumindest was das subkutane und Körperfett an unterschiedlichen Bereichen angeht. Auch bei diesem Phänotyp im CS gibt es eine extreme Reduktion des Fettes und keine Gewichtszunahme trotz entsprechender Diät. Möglicherweise liegt diesem Phänotyp im CS ebenfalls die gestörte Autophagie von Mitochondrien in Fettzellen zu Grunde. Dies müsste jedoch in weiteren Experimenten untersucht werden.

In WT-Mäusen zeigte sich neben der altersabhängigen Akkumulation der D17-Deletion zusätzlich auch eine Verteilung sowohl im subkutanen als auch im Körperfett. Die Bedeutung dieser Verteilung indes ist nicht geklärt.

In Untersuchungen des Fettgewebes zeigte sich, dass sich die Genexpression mit dem Alter verändert, jedoch auch depotabhängig ist (101). Zudem verändert sich die Verteilung des Fettes mit dem Altern dramatisch. Im fortgeschrittenen hohen Alter wird das Fett von subkutanen zu abdominalen Depots und ektopen Stellen umverteilt (102, 103). Diese Umverteilung ist mit einem erhöhten Risiko für das metabolische Syndrom verbunden (104, 105). Des Weiteren wurde auch gezeigt wurde, dass bei medikamenteninduzierter Lipozystrophe auch die Mitochondrien betroffen sind, genauer genommen, dass Verluste mitochondrialer DNA zu Lipozystrophe als Nebenwirkung führen (106, 107). In welchem Zusammenhang die mitochondrialen Deletionen und die jeweiligen Fettdepots stehen, ist insbesondere für das stark mit D17-Deletion belastete Körperfett von Bauch und Flanken eine interessante, jedoch offene Frage.

Interessant wäre herauszufinden, wie diese Vorgänge sich auf das Fettgewebe im Alterungsprozess von Mäusen und Menschen auswirken und inwiefern die Akkumulation von Deletionen diesen Prozess eventuell mitbeeinflusst.

1.2 XPG-knockout-Mäuse

Das XPG-Protein ist wie auch CSA und CSB Bestandteil der Nukleotidexzisionsreparatur. Weiterhin gibt es CS-Komplex-Erkrankungen, bei denen XPG-Mutationen Ursache sein
können. Wie genau die Veränderungen sind, die bei diesen Patienten vorliegen und wie es zum entsprechenden Phänotyp kommt ist indes unklar.
XPG-knockout Mäuse zeigen ein deutlich verringertes Wachstum und eine stark verkürzte Lebensspanne von 24 Tagen im Vergleich zu WT-Mäusen (108).
Dies weist darauf hin, dass allgemein die mitochondrialen Deletionen in Mäusen nicht die Ursache sondern eine Auswirkung der geschädigten Proteine sind, die entweder durch Basenschäden oder durch Alterungsproblematiken erst entstehen. In Mäusen, in denen die Reparatur möglicherweise zu Grunde liegender DNA-Schäden sowie der Abbau solcher Deletionen gestört ist (beispielsweise die Autophagie), akkumulieren mit der Zeit, je nach Gewebe, steigende Mengen der Deletion. Diesem Anstieg könnte ansonsten nur noch der Zelltod entgegenwirken, der in den einzelnen Geweben ja sehr unterschiedlich ist und möglicherweise in Mäusen mit CS-Phänotyp, wie den XPG-ko-Mäusen oder CSB mm – Mäusen dafür sorgt, dass es in der ersten Lebenszeit dieser Mäuse im subkutanen Fett keine Ansammlung der Deletion gibt.

1.3 TLR2-knockout-Mäuse
Bei den TLR-2-knockout-Mäusen war wie zuvor schon erwähnt, keine Veränderung im Vergleich zur WT entsprechenden Verteilung und Stärke der D17-Deletion erwartet worden. Vor allem, da TLR-2 nicht mit der DNA-Reparatur zusammenhängt und ROS nur im Infektionsfall beeinflusst (73).
Die Ergebnisse mit einem einzelnen Deletionswert in der Wange von 6,02% in der Epidermis (Abb. 42), zwei erhöhten Werten im Dermisbereich, unterer Rücken mit 7,4% und mittlerer Rücken mit 6,13% (Abb. 43) sowie Deletionen in Stirn (7,31%), Wange (12,67%), Schulter (8,96%), Pfoten (7,52% bzw. 4,7%) und Nacken (6,02%). im subkutanen Fett (Abb. 44) in den 16 Monate alten Mäusen und keiner Deletion in den jungen Mäusen entsprechen voll den Erwartungen. Allerdings ist die Verteilung der Deletion in den beiden ausgewerteten Individuen unterschiedlich zu den bisher gemessenen WT-Mäusen mit C57BL/6-Hintergrund.
Im Körperfett der TLR2-knockout-Mäuse fand sich Deletion im Bauchbereich (6,06%) und in einem Fall im Halsbereich (4,44%) (Abb. 45). Zumindest was das Fett im Halsbereich angeht, unterscheidet sich diese Verteilung ebenfalls leicht von der im C57BL/6-Wildtyp (Abb. 38).
Diskussion

Ob es bei den Mäusen Unterschiede in der Verteilung der Deletionen nur durch individuelle Unterschiede gibt oder ob es Zusammenhänge, wie beispielsweise den genetischen Hintergrund der Maus gibt, wäre eine Frage, die durch weitere Experimente zu klären wäre. Die hier gezeigten Ergebnisse sprechen dafür, dass die TLR2-knockout-Mäuse mit Balb/c-Hintergrund sich wie WT-Mäuse mit C57BL/6-Hintergrund verhalten. Die einzelnen Abweichungen sind geringfügig und dürften individuellen Unterschieden geschuldet sein.

1.4 Diskussion der Methode

1.4.1 Deletionsmessung

In verschiedenen Publikationen, in denen es um die Messung von Deletionen der mt DNA geht, sind die prozentualen Anteile der Deletion wesentlich geringer, als die in dieser Arbeit gemessenen Werte. (u.a.(20, 22, 23, 76, 109))

Auch durch das Messverfahren der murinen D17-Deletion aus Bildern von Agarosegelen ergaben sich einige Limitationen. Das Programm mit dem die densitometrische Dichte der Deletion gemessen wurde (Adobe Photoshop CS2) ist bei der Erkennung der Helligkeit von Banden an ein Maximum gebunden, das manchmal bei den Banden des Housekeeping-Produktes erreicht wurde. Hierdurch könnte es sein, dass diese Banden zu schwach bewertet wurden und deswegen die daraus errechnete Menge an Deletion stärker sein kann. Zusätzlich ist es möglich, dass je nach eingesetzter Menge DNA beim housekeeping die Plateau-Phase schneller erreicht wird. So würde die gesamte DNA-Menge als stärker eingeschätzt werden und dies würde wiederum die Werte für die Deletion erhöhen.

Dies wäre ein Ansatz, durch den erklärt werden könnte, warum die Werte der mitochondrialen Deletionen, sich in ihrer Höhe so stark unterscheiden.

Um dafür zu sorgen, dass keine Überstrahlung aus den benachbarten Bahnen einen Messwert für die Deletion erzeugt, wurde ein Grenzwert von 3% definiert. Alle berechneten Werte unter diesem wurden als „deletionsfrei“ gewertet. Dieser Prozentwert ergab sich bei der Auswertung dadurch, dass sich, wenn auch selten, geringe Werte von ca. 1% Deletion an Stellen ergaben, an denen auf dem Agarosegel definitiv keine Bande zu sehen war. Um solche durch Hintergrundlicht entstandenen Werte auszuschließen, wurde dieser Grenzwert definiert.

1.4.2 Unterschiede bei Individuen

Bei der Verteilung der D17-Deletion, besonders im subkutanen Fett ergaben sich viele Häufungen, allerdings auch deutliche individuelle Unterschiede innerhalb von altersgemachten Gruppen mit gleichem genetischem Hintergrund.

Besonders auffällig sind dabei die Unterschiede im subkutanen Fett gealterter Mäuse, die zwar das gleiche Alter und denselben genetischen Hintergrund aufwiesen, aber gleichzeitig
ein ganz unterschiedliches Verteilungsmuster der Deletion. Es bleibt ungeklärt, wie stark und durch welche Faktoren die Verteilung der D17-Deletion gesteuert wird.

2. Oxidativer Langzeitstress und seine Auswirkungen auf WT und CS-defiziente Fibroblasten

Verschiedene Veröffentlichungen zeigen, dass Apoptose in der Hautalterung eine Rolle spielt (110-112). Als Induktor für die Apoptose wurde mehrfach geschädigte mt DNA genannt (113). Solche Schäden der mt DNA können auch durch oxidativen Stress induziert werden (21). Da in unserer vorangehenden Publikation die Akkumulation mitochondrialer Schäden mit einer erhöhten Apoptose zusammenkam (64), interessierte uns, ob oxidativer Stress auch zu erhöhtem Zelltod führt und ob dabei auch Schäden der mt DNA eine Rolle spielen.

2.1 Apoptose und Nekrose

Dass UVA-Bestrahlung Apoptose induzieren kann wurde bereits in verschiedenen Veröffentlichungen bestätigt, allerdings wurden hierbei nicht mehrere Bestrahlungen in niedriger Dosis (6J/cm²) sondern einzelne Bestrahlungen mit hoher Dosis UVA (ab 20 J/cm²) verwendet (38, 41, 114). Somit konnte in dieser Arbeit gezeigt werden, dass langfristige,
Diskussion

repetitive Bestrahlung in einem als subletal angesehenen Bereich durchaus zum Zelltod in Form von Apoptose führen kann.

2.2 Common-Deletion

Ein anderes, vorangehendes Experiment zur Messung der CD nach repetitiver UVA-Bestrahlung von Fibroblasten ergab, dass bei CS4BR-defizienten-Fibroblasten in der dritten Bestrahlungswoche keine weitere Steigerung der CD zu finden ist, sondern eine Abnahme. Nimmt man aus diesem Experiment den Medienüberstand und isoliert daraus DNA, misst die CD und addiert die Ergebnisse, so ergab sich auch in der dritten Bestrahlungswoche wieder eine Erhöhung der CD (Abb. 46). Dieses Experiment warf die Frage auf, ob die CD dazu führt, dass die Zellen sterben oder ob es sich nur um einen gleichzeitigen Effekt handelt.

Der Basislevel an CD wird einmal durch die Passagenzahl beeinflusst, gleichzeitig auch durch eine negative Klonselektion betroffener Zellen (81, 82, 117).

Wie auch in anderen Publikationen (27) sind bei dem hier gezeigten Versuch die Level an CD auch im Vergleich zum Basislevel in vielen Zelllinien erhöht, insbesondere ab der zweiten Woche (Abb. 52). Es zeigt sich dabei jedoch kein Verteilungsmuster. Das heißt, die CD ist weder in der Fraktion der viablen, noch bei nekrotischen oder apoptotischen Zellen eindeutig stärker erhöht. Zwar ergeben sich immer wieder einzelne Peaks, doch im Gesamtbild keine Häufungen in den vorgegebenen Gruppierungen. Auch kann bei den
gesorteten Zellen die stetige Erhöhung der CD mit steigender Anzahl Bestrahlungen nicht mehr gezeigt werden.

Eindeutig ist also nur die Steigerung in der Anzahl der Zelllinien, die eine erhöhte CD aufweisen \((2^{\Delta Ct}>1\)). In der P3-Fraktion, also den viablen Zellen ist diese nur für CS-defiziente Zellen zu sehen, während die CD konstant in der Hälfte der bestrahlten Zelllinien erhöht ist. Allerdings liegt diese Erhöhung nicht immer in denselben Zelllinien vor.

In der P4+5 Fraktion steigt die Anzahl der Zellen, die eine Erhöhung der CD enthalten eindeutiger an, auch wenn die Erhöhung an sich nicht größer ist. Es muss jedoch angemerkt werden, dass die Auswertung der Fraktion mit nekrotischen Zellen zum Teil nur auf wenigen (>100) Zellen basiert.

In der apoptotischen Fraktion P6 steigt über drei Wochen die Zahl der Zelllinien mit erhöhter CD sowohl in den CS-defizienten Zellen, als auch in den WT-Zellen an, auch wenn es in der zweiten Woche einen Einknick bei den WT-Zellen gibt.

Diese Ergebnisse weisen also eher darauf hin, dass die Common-Deletion und der Zelltod oxidativ gestresster Zellen nicht in direktem Zusammenhang stehen. Zwar haben beide dieselbe Ursache, wie einmal das Experiment hier und auch unterschiedliche Veröffentlichungen zeigen, doch hängen sie nicht kausal zusammen. Die Zusammenhänge zwischen UVA-Bestrahlung und einer Steigerung der apoptotischen Zellfraktion könnte stattdessen beispielsweise durch ROS-abhängige Apoptosesignale hergestellt werden (118).

Insgesamt gesehen ist dieses Experiment vielen beeinflussenden Faktoren unterworfen, die es erschweren, die Daten eindeutig zu interpretieren. Dies beginnt bereits bei den verschiedenen primären Zelllinien, die von unterschiedlichen Donoren stammen und die sich deswegen alle in ihrer Reaktion auf Stress unterscheiden. Des Weiteren beeinflusst die Passagenzahl der Zellen die Menge an CD positiv, während die Probleme mit der Atmungskette, die betroffene Zellen aufweisen zu einer negativen Selektion führen (21, 82, 116).
Diskussion

Bekannterweise enthalten Mitochondrien nicht nur eine Kopie ihres Genoms, sondern mehrere. Auch dies erschwert es, die Bedeutung einer bestimmten Menge an CD zu erfassen (121, 122).

3. Wasserstoffperoxid-Stress

3.1 Stress im Medium

Viele der Experimente, die in unserer Arbeitsgruppe durchgeführt und auch veröffentlicht wurden, hatten als Grundlage oxidativen Stress von Fibroblasten, der durch direkte Zugabe von 25µM H₂O₂ zum Zellkulturmedium induziert wurde (79).

Dabei war nicht bekannt, wie lange das zugegebene H₂O₂ im Medium vorhanden ist. Geklärt werden sollte zum einen, ob es beispielsweise einen Unterschied macht, ob H₂O₂ bereits einige Zeit vorher zum Medium gegeben wird und dann die Zellen damit gestresst werden, oder ob diese Zugabe direkt erfolgen sollte. Außerdem sollte auch untersucht werden, nach welcher Zeit noch welcher Anteil des H₂O₂ im Medienüberstand über den Zellen zu finden ist.

3.1.1 Wildtyp-Fibroblasten

Bei der Messung des H₂O₂-Gehaltes nach Zugabe von 25µM H₂O₂ zu verschiedenen WT-Fibroblasten zeigte sich, dass das H₂O₂ überall dort, wo sich unter dem Zellkulturmedium auch Zellen befanden, nach der Zeit von 1h aus dem Medium verschwunden war. In gleichzeitig angesetzten Kontrollen konnte nach dieser Zeit noch in etwa die ursprünglich angesetzte Menge H₂O₂ nachgewiesen werden (Abb. 53).

Die Medienkontrolle zeigte, trotz leichter Schwankungen in manchen Versuchen, dass das H₂O₂ innerhalb dieser Zeit ohne Zellen nicht abgebaut wird. Wegen der vorhandenen Schwankungen (data not shown), bei denen unklar ist, ob sie durch das Messverfahren oder durch den Ansatz der H₂O₂-Lösung oder durch eventuelle, leichte Verluste von H₂O₂ im Verlauf der Zeit entstanden sind, sollte davon abgesehen werden, Medium mit H₂O₂ vor der Anwendung länger stehen zu lassen.

Nach einer Stunde war bei der Anwesenheit von Zellen kein H₂O₂ mehr im Medium messbar. Dies deutet auf zwei Möglichkeiten hin:

Entweder wurde das gesamte H₂O₂ in die Zelle aufgenommen und dort komplett oder teilweise abgebaut, oder er wurde außerhalb der Zelle abgebaut.

H₂O₂ ist zwar als ein Molekül bekannt, das die Zellmembran ohne Probleme passieren kann, allerdings ist das so nicht ganz richtig. H₂O₂ gelangt durch die Membranen in die Zellen, jedoch nicht unlimitiert (123). Somit ist weiterhin unklar, ob und wie schnell H₂O₂ ins Zellinnere gelangt und wie lange er im Zellinneren verbleibt.

3.1.2 CS-defiziente Fibroblasten

Sowohl in CSA-defizienten als auch in CSB-defizienten Fibroblasten ergaben sich nach Stress mit 25µM H₂O₂ dieselben Ergebnisse wie für WT-Fibroblasten. Innerhalb von einer
Diskussion

Stunde wurde das zugegebene H₂O₂ entweder abgebaut oder in die Zellen aufgenommen (Abb.54 und 55).

3.2 Stress im Zellinneren

Bei Messungen im Zellinneren zeigte sich, dass von 25μM H₂O₂ im Zellinneren mit dieser FACS-Färbung nichts zu messen ist (Abb. 49 und 50).

Die Ergebnisse, dass kein Wasserstoffperoxid im Zellinneren messbar ist, passt auch zu den Erkenntnissen anderer Gruppen, die zeigen konnten, dass bei externem Stress mit 30 μM H₂O₂ in Endothelzellen das Glutathion-Redoxsystem aktiviert wird und das H₂O₂ schnell abbaut (127). Unsere Messungen (Abb. 49 und 50) zeigen, dass auch in Fibroblasten das H₂O₂ schnell abgebaut ist. Vermutlich erfolgt der Abbau im Fall der Fibroblasten stärker über die Katalase. In Versuchen mit 100 μM extern zugegebenem H₂O₂ zeigte sich, dass ein Inhibitor für Katalase die Anzahl überlebender Zellen stark senkte, während ein Inhibitor für die Glutathion-Peroxidase, dem Enzym das für die Redoxreaktion zweier GSH mit z.B. OH⁻ zu GSSG und H₂O benötigt wird, keinen Einfluss auf die Zahl überlebender Zellen hat (128).

Zudem ist es nur logisch, dass die Zellen H₂O₂ schnell abbauen, da es ja auch zelluläre Signale gibt, die über H₂O₂ vermittelt werden. Um diese Signale trotz externem Stress durch H₂O₂ zu erhalten, muss dieser baldmöglichst abgebaut werden (123, 127).

Im Fall des Stresses mit 200μM H₂O₂ zeigte sich ein beständiger Rückgang der intrazellulären Menge H₂O₂ (Abb. 49).

Diese Erkenntnisse schließen allerdings nicht aus, dass die Signale, die durch die Zugabe von 25μM H₂O₂ induziert werden, durch Schäden beispielsweise der mt DNA hervorgerufen werden. Etwas wahrscheinlicher scheint allerdings, dass die Anwesenheit von H₂O₂ oder die Aktivierung der Enzyme, die H₂O₂ abbauen, allgemein zu einer Signalreaktion der Zelle führt.
F Abkürzungen

<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>8-OH-dG</td>
<td>8-Hydroxy-Desoxyguanosin</td>
</tr>
<tr>
<td>8-OH-dA</td>
<td>8-Hydroxy-Desoxyadenosin</td>
</tr>
<tr>
<td>aa</td>
<td>Aminosäure</td>
</tr>
<tr>
<td>Abb</td>
<td>Abbildung</td>
</tr>
<tr>
<td>APE1</td>
<td>Apurinic Endonuclease 1</td>
</tr>
<tr>
<td>APS</td>
<td>Ammoniumpersulfat</td>
</tr>
<tr>
<td>BER</td>
<td>Basenexzisionsreparatur</td>
</tr>
<tr>
<td>bp</td>
<td>Basenpaare</td>
</tr>
<tr>
<td>BSA</td>
<td>bovines Serumalbumin</td>
</tr>
<tr>
<td>bzw.</td>
<td>beziehungsweise</td>
</tr>
<tr>
<td>°C</td>
<td>Grad Celsius</td>
</tr>
<tr>
<td>CD</td>
<td>Common-Deletion</td>
</tr>
<tr>
<td>cm</td>
<td>Zentimeter</td>
</tr>
<tr>
<td>CSA</td>
<td>Cockayne-Syndrome-A</td>
</tr>
<tr>
<td>CSB</td>
<td>Cockayne-Syndrome-B</td>
</tr>
<tr>
<td>CSN</td>
<td>COP9-Signalosom</td>
</tr>
<tr>
<td>CUL4A</td>
<td>Cullin4A</td>
</tr>
<tr>
<td>(k)Da</td>
<td>(Kilo)Dalton</td>
</tr>
<tr>
<td>DNA</td>
<td>Desoxyribonucleinsäure</td>
</tr>
<tr>
<td>DDB1</td>
<td>DNA-damage binding protein 1</td>
</tr>
<tr>
<td>dNTPs</td>
<td>Desoxyribonukleotidtriphasate</td>
</tr>
<tr>
<td>DMSO</td>
<td>Dimethylsulfoxid</td>
</tr>
<tr>
<td>DSBR</td>
<td>Doppelstrangbruchreparatur (double-strand-break-repair)</td>
</tr>
<tr>
<td>ERCC1-8</td>
<td>Excision-repair-cross-complementing protein 1-8</td>
</tr>
<tr>
<td>evtl.</td>
<td>eventuell</td>
</tr>
<tr>
<td>FACS</td>
<td>Fluorescence-activated-cell-sorting</td>
</tr>
<tr>
<td>FCS</td>
<td>Fötales Kälberserum</td>
</tr>
<tr>
<td>FITC</td>
<td>Fluoresceinisothiocyanat</td>
</tr>
<tr>
<td>FOXO3A</td>
<td>Forkhead box O3</td>
</tr>
<tr>
<td>g</td>
<td>Gramm</td>
</tr>
<tr>
<td>G</td>
<td>Gauge</td>
</tr>
<tr>
<td>GSH</td>
<td>Glutathion</td>
</tr>
<tr>
<td>h</td>
<td>Stunde</td>
</tr>
<tr>
<td>H$_2$O$_2$</td>
<td>Wasserstoffperoxid</td>
</tr>
<tr>
<td>Abkürzung</td>
<td>Bedeutung</td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
</tr>
<tr>
<td>HAT p300</td>
<td>Histon-Acetyltransferase p300</td>
</tr>
<tr>
<td>HMGN1</td>
<td>high mobility group nucleosome binding domain 1</td>
</tr>
<tr>
<td>hOGG1</td>
<td>8-oxo-dG-glycosylase/apurinic lyase</td>
</tr>
<tr>
<td>HRP</td>
<td>Meerrettichperoxidase</td>
</tr>
<tr>
<td>IS</td>
<td>interner Standard</td>
</tr>
<tr>
<td>J/cm²</td>
<td>Joule pro Quadratzentimeter</td>
</tr>
<tr>
<td>kg</td>
<td>Kilogramm</td>
</tr>
<tr>
<td>ko</td>
<td>knockout</td>
</tr>
<tr>
<td>l</td>
<td>Liter</td>
</tr>
<tr>
<td>MEM</td>
<td>Minimal essential Medium</td>
</tr>
<tr>
<td>mg</td>
<td>Milligramm</td>
</tr>
<tr>
<td>µg</td>
<td>Mikrogramm</td>
</tr>
<tr>
<td>min</td>
<td>Minuten</td>
</tr>
<tr>
<td>mlS</td>
<td>muriner interner Standard</td>
</tr>
<tr>
<td>ml</td>
<td>Milliliter</td>
</tr>
<tr>
<td>µl</td>
<td>Mikroliter</td>
</tr>
<tr>
<td>mM</td>
<td>Millimolar</td>
</tr>
<tr>
<td>µM</td>
<td>Mikromolar</td>
</tr>
<tr>
<td>MMP</td>
<td>Matrix-Metalloproteinasen</td>
</tr>
<tr>
<td>MMR</td>
<td>Mismatchreparatur</td>
</tr>
<tr>
<td>mRNA</td>
<td>messanger-Ribonucleinsäure</td>
</tr>
<tr>
<td>mt</td>
<td>mitochondrial(e)</td>
</tr>
<tr>
<td>NADPH</td>
<td>Nikotinamidadenindinukleotidphosphat</td>
</tr>
<tr>
<td>NER</td>
<td>Nukleotidexzisionsreparatur</td>
</tr>
<tr>
<td>nm</td>
<td>Nanometer</td>
</tr>
<tr>
<td>Nr</td>
<td>Nummer</td>
</tr>
<tr>
<td>OH⁺</td>
<td>Hydroxyl-Radikal</td>
</tr>
<tr>
<td>%</td>
<td>Prozent</td>
</tr>
<tr>
<td>p53</td>
<td>Protein 53</td>
</tr>
<tr>
<td>PARP</td>
<td>Poly(ADP-Ribose)Polymerase</td>
</tr>
<tr>
<td>PBS</td>
<td>Phosphat-buffered Saline</td>
</tr>
<tr>
<td>PCNA-RPF</td>
<td>Proliferating cell nuclear antigen - replication-factor-c</td>
</tr>
<tr>
<td>PCR</td>
<td>Polymerase-Kettenreaktion</td>
</tr>
<tr>
<td>Pen/Strep</td>
<td>Penicillin/Streptomycin</td>
</tr>
<tr>
<td>PI</td>
<td>Propidiumiodid</td>
</tr>
<tr>
<td>POL I-III</td>
<td>RNA-Polymerase I-III</td>
</tr>
</tbody>
</table>
Abkürzungen

<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pol γ</td>
<td>Polymerase γ</td>
</tr>
<tr>
<td>PSU1, und</td>
<td>Pseudo-U1-RNA-gene locus</td>
</tr>
<tr>
<td>RN5S</td>
<td>rRNA-5S-gene locus</td>
</tr>
<tr>
<td>RNU1</td>
<td>small nuclear RNA U1-gene locus</td>
</tr>
<tr>
<td>RNU2</td>
<td>small nuclear RNA U2 gene locus</td>
</tr>
<tr>
<td>ROC1</td>
<td>Ring-box1</td>
</tr>
<tr>
<td>ROS</td>
<td>Reaktive Sauerstoffspezies</td>
</tr>
<tr>
<td>RPA</td>
<td>Replication Protein A</td>
</tr>
<tr>
<td>rpm</td>
<td>Rounds per minute</td>
</tr>
<tr>
<td>RT</td>
<td>Raumtemperatur</td>
</tr>
<tr>
<td>s</td>
<td>Sekunde</td>
</tr>
<tr>
<td>SDS</td>
<td>Sodium-Dodecylsulphat</td>
</tr>
<tr>
<td>SSBR</td>
<td>Einzelstrangbruchreparatur (single-strand-break-repair)</td>
</tr>
<tr>
<td>SOD</td>
<td>Superoxid-Dismutase</td>
</tr>
<tr>
<td>Tab</td>
<td>Tabelle</td>
</tr>
<tr>
<td>TAE</td>
<td>Tris-acetic-acid-EDTA-buffer</td>
</tr>
<tr>
<td>Taq-Polymerase</td>
<td>Thermophilus-aquaticus-Polymerase</td>
</tr>
<tr>
<td>TBS-(T)</td>
<td>Tris-buffered-Saline-(mit Tween)</td>
</tr>
<tr>
<td>TCR</td>
<td>Transkriptionsgekoppelte Reparatur</td>
</tr>
<tr>
<td>TEMED</td>
<td>Tetramethylethylendiamin</td>
</tr>
<tr>
<td>TFIIH</td>
<td>Transkriptionsfaktor IIH</td>
</tr>
<tr>
<td>TFIIS</td>
<td>Transkriptions-Elongationsfaktor II S</td>
</tr>
<tr>
<td>TLR2</td>
<td>Toll-like-receptor 2</td>
</tr>
<tr>
<td>u.a.</td>
<td>unter anderem</td>
</tr>
<tr>
<td>üN</td>
<td>über Nacht</td>
</tr>
<tr>
<td>UVA/UVB</td>
<td>ultraviolett-A oder B</td>
</tr>
<tr>
<td>V</td>
<td>Volt</td>
</tr>
<tr>
<td>W</td>
<td>Woche</td>
</tr>
<tr>
<td>WT</td>
<td>Wildtyp</td>
</tr>
<tr>
<td>XAB2</td>
<td>XPA-binding protein</td>
</tr>
<tr>
<td>XPA-XPG</td>
<td>Xeroderma Pigmentosum A-G</td>
</tr>
<tr>
<td>XRCC1</td>
<td>X-ray repair cross-complementing protein 1</td>
</tr>
<tr>
<td>z.B.</td>
<td>zum Beispiel</td>
</tr>
</tbody>
</table>

Tab. 14 Abkürzungen

72. J. Hoejimakers, personal communication.
75. K. Hattori et al., Age-dependent increase in deleted mitochondrial DNA in the human heart: possible contributory factor to presbycardia. Am Heart J 121, 1735 (Jun, 1991).
78. M. N. Gadaleta et al., Mitochondrial DNA copy number and mitochondrial DNA deletion in adult and senescent rats. Mutat Res 275, 181 (Sep, 1992).
79. Y. Kamenisch, personal communication.
94. A. M. Cuervo et al., Autophagy and aging: the importance of maintaining "clean" cells. Autophagy 1, 131 (Oct-Dec, 2005).
100. Y. Zhang et al., Adipose-specific deletion of autophagy-related gene 7 (atg7) in mice reveals a role in adipogenesis. Proc Natl Acad Sci U S A 106, 19860 (Nov 24, 2009).
104. B. H. Goodpaster et al., Association between regional adipose tissue distribution and both type 2 diabetes and impaired glucose tolerance in elderly men and women. Diabetes Care 26, 372 (Feb, 2003).
106. C. Deveaud et al., Site specific alterations of adipose tissue mitochondria in 3'-azido-3'-deoxythymidine (AZT)-treated rats: an early stage in lipodystrophy? Biochem Pharmacol 70, 90 (Jul 1, 2005).

H. Anhang

1. Erklärung zum Eigenanteil

Abb. 1 Diese Grafik wurde von Jennifer Knoch nach (23) adaptiert.

Abb. 2 Diese Grafik wurde von Jennifer Knoch erstellt.

Abb. 46 Diese Arbeit (Planung und Ausführung) wurde von Dr. York Kamenisch durchgeführt und in seiner Doktorarbeit veröffentlicht („Mitochondrial DNA in cancer und aging of the skin“)

Die Grafik wurde geringfügig von Jennifer Knoch adaptiert.

Abb. 52 Diese Arbeiten (Planung und Ausführung) wurden von Jennifer Knoch und Dr. York Kamenisch durchgeführt.

Abb. 56-57 Diese Arbeiten (Planung und Ausführung) wurden überwiegend von Jennifer Knoch mit Unterstützung von Dr. Mehrdad Ghashghaeinia durchgeführt.
3. Danksagung

Zuerst möchte ich mich bei allen, die zur Entstehung dieser Doktorarbeit beigetragen haben danken. Dies sind insbesondere:

Prof. Dr. Mark Berneburg für die Bereitstellung des Themas, die stets gute Zusammenarbeit und die hervorragende Betreuung als Doktorvater.

Prof. Dr. Olaf Rieß für das Erstellen des Zweitgutachtens

Prof. Dr. Martin Röcken für die Möglichkeit der Promotion an der Hautklinik Tübingen.

Dr. York Kamenisch für die praktische Seite der Betreuung, das Troubleshooting im Labor, hilfreiche Diskussionen und dafür, dass er stets ein offenes Ohr für alles hatte.

Dr. Mehrdad Ghashghaeinia Für die Unterstützung bei der Erstellung der FACS-Daten und ihrer Auswertung, sowie für die aufmunternden Worte und guten Ratschläge.

Dr. Martin Köberle Für die Hilfe bei der Auswertung der FACS-Daten.

Cornelia Grimmel für die FACS-Sort-Arbeiten.

Anna-Katharina von Thaler meiner Freundin und Kollegin, die den Weg zur Doktorarbeit mit mir gemeinsam gegangen ist, für die gute Zusammenarbeit, für viele Gespräche und für die gemeinsame Zeit.

Unsere Nachbarn Dr. Martin Wille und Christine Bosse für die mannigfaltige Hilfe auch als Babysitter und die gelegentliche Mitfahrgelegenheit.

Meine Kollegen im Röntgenweg 13/1 für das gute Arbeitsklima und die gute Zusammenarbeit.

Meine Eltern, Schwiegereltern und meine Schwestern, für ihre Unterstützung.