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Abstract

Complex cells in the primary visual cortex are the first cells to exhibit geometrical invari-
ance, namely they are insensitive to the phase of a stimulus. It has been suggested that
complex cells learn this property from the statistics of their input. Two differing unsuper-
vised learning paradigms have mainly been used: slowness and redundancy reduction.
This thesis provides a quantitative comparison of slowness objective and redundancy re-
duction objective with respect to their ability to account for complex cell properties. Both
objectives have been proposed as principle underlying the formation of complex cell fea-
tures, however, we show that—contrary to widespread belief—the two objectives lead to
quite different predictions for the receptive field properties. For this, we compare both
objectives on a population and a single cell level. The redundancy reduction objective is
represented by independent subspace analysis (ISA) and the slowness objective by slow sub-
space analysis (SSA). We show that SSA is favorable over the better known slow feature
analysis (SFA) algorithm, as SFA is unable to reproduce key properties of complex cell re-
ceptive fields and SSA uses the same energy model structure as ISA. We find that slowness
leads to global receptive fields in both single cell and population approaches. The recep-
tive field size is only limited by the patch size and SSA can be seen as a generalization
of the Fourier transform. Redundancy reduction, in contrast, leads to clearly localized
receptive fields but with spatial frequency and aspect ratio higher than those found in
physiological studies. We also find that in a combined optimization of slowness and re-
dundancy reduction the filters obtained resemble those found with redundancy reduction
alone even though the individual optima are quite different. In summary, both slowness
and redundancy reduction cannot account for all complex cell properties evaluated here,
but would require additional constraints such as wiring length to lead to physiologically
plausible receptive fields. However, studying the quite opposing demands of both objec-
tives can lead to a better understanding of the computational strategy employed in the
visual system.

i



ii



Contents

1 Introduction 1
1.1 Physiology of the early visual system . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Cell Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.1.2 Visual Adaptation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Invariance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2.1 Steerable filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2.2 Lie groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3 Invariance Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.3.1 Redundancy Reduction . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.3.2 Slowness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.3.3 Combination of slowness and redundancy reduction . . . . . . . . 15

1.4 Receptive field model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.4.1 Gabor filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.4.2 Hermite filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.4.3 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.5 Goals of this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2 Slowness and sparseness have diverging effects on complex cell learning 21
2.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2 Author Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.6 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.6.1 Slow Subspace Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.6.2 Independent Subspace Analysis . . . . . . . . . . . . . . . . . . . . 38
2.6.3 Data Collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.6.4 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.7 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

iii



Contents PhD thesis

3 What is the Computational Goal of Complex Cell Coding in V1? 41
3.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.5 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.5.1 Energy model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.5.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.5.3 Data sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.6 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4 Slow Feature Analysis versus Slow Subspace Analysis 61
4.1 Slow Feature Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.2 Spike-triggered covariance analysis of SFA . . . . . . . . . . . . . . . . . . 63
4.3 Average slowness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.4 Optimal quadratic feature . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5 Discussion 71
5.1 Slowness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.2 Redundancy Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.3 Combining slowness and redundancy reduction . . . . . . . . . . . . . . . 74
5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.5 How to continue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

Bibliography 79

iv



1 Introduction

Less than 50 years ago, the complexity of visual processing in the brain was largely under-
estimated. In 1966, artificial intelligence pioneer Marvin Minsky proposed the project of
designing a computer vision system as a summer project to one of his undergraduate stu-
dents. Today, in 2013, the vision system is still in development. We made tremendous ad-
vantages and countless researchers dedicated their career to extend the knowledge about
the visual system. Experts in neurophysiology, psychophysics, signal processing, or ma-
chine learning, to name a few, worked together and recorded cell responses, mapped out
cell connectivity, and developed computational models to explain the found properties.
From my point of view particularly interesting is the early visual system, which can be
reasonably well modeled as signal processing network. More specifically, complex cells
in the primary visual cortex exhibit invariance to stimulus position, and invariance is an
interesting and well-studied subject in dynamical systems. There are different models
which explain invariance and other complex cell properties; an important question to ask
is why do the models find these properties. And this is the crucial question of this thesis.
To provide an introduction to complex cell models, I divided the first chapter of my the-
sis in three major sections. First, I give a short introduction into the physiology and cell
models of the early visual system on a coarse level. In the next section, I introduce the
concept of invariance from a theoretical point of view. Finally, I combine the physiolog-
ical models and the invariance theory in presenting how invariance can be learned in a
neuronal framework.

1.1 Physiology of the early visual system

The ability to see fascinates humans for centuries. Basic understanding of optics goes
back to Greek philosophers like Euclid or Aristotle almost 3000 years ago. The first fun-
damental publication on optics was the seven volume treatise Book of Optics written by the
Arabic scientist Alhazen around 1000 AD (Verma, 1969). Alhazen put forward the hypoth-
esis that visual perception takes place in the brain rather than in the eye. More recently,
the computational role of the brain was also emphasized when Herrmann Von Helmholtz
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Chapter 1. Introduction PhD thesis

(1867) found that given the rather poor optical properties of the eye, the brain must do
some kind of inference to evoke the high quality perception that humans have. He called
this idea unconscious inference. At the end of the 19th century, scientists found that the
visual signal from the retina travels through the lateral geniculate nucleus (LGN) to the
primary visual cortex in the occipital lobe (Henschen, 1893; Flechsig, 1896). An illustra-
tion of the visual pathway is shown in Figure 1.1. After the visual information reaches the
primary visual cortex, it passes though the extrastriate visual cortical areas (V2, V3, V4,
and V5) before it is split into two processing streams: the dorsal stream, which represents
the spatial position of objects, and the ventral stream, which represents the identity of an
object (Mishkin and Ungerleider, 1982; Ettlinger, 1990; Goodale and Milner, 1992).

A milestone in vision was the Nobel price awarded findings of Hubel and Wiesel in the
primary visual cortex of cats (Hubel and Wiesel, 1962, 1963) and monkeys (Hubel and
Wiesel, 1968). Until then it was known that cells in the retina and LGN respond to bright
spots on dark background or vice versa (Kuffler, 1953), but response properties of cortical
cells were unknown. By probing cells in the striate cortex while flashing oriented bars in
the visual field of the animal, they found that the V1 cells respond to oriented bars instead
of single spots. Further they found that the cells can be separated into two different classes
according to their response properties: simple cells and complex cells. A cell is classified as
simple cell if its receptive field can be subdivided into distinct excitatory and inhibitory
regions with linear summation (Hubel and Wiesel, 1962). All cells which failed to comply
with any of the criteria were called complex cells. In the following years, the primary visual
cortex has been the most studied visual area in mammalian brain (for reviews see e.g.
Callaway (1998); Bruce and Green (2003); Carandini et al. (2005)).

The basic response properties of simple cells can be described by a linear receptive field
with a point-wise output nonlinearity (Movshon et al., 1978b; Andrews and Pollen, 1979).
At more detail, the responses vary largely with stimulus contrast, which can be explained
by contrast gain control mechanisms that incorporate the responses of neighboring cells
(Heeger, 1992a,b; Carandini and Heeger, 1994; Carandini et al., 1997). However, these
output nonlinearities do not alter the linear feature detection carried out by the simple
cell (Smyth et al., 2003).

The response properties of complex cells are generally nonlinear and therefore more diffi-
cult to identify. A quantitative study by Movshon et al. (1978a) showed that complex cells
can be described as the integration of the output of several simple cell subunits. Spike trig-
gered covariance (STC) (de Ruyter van Steveninck and Bialek, 1988; Touryan et al., 2002;
Rust et al., 2005) analysis allowed a flexible estimation of the linear subunits of a complex
cell. In STC, the stimuli which elicit a spike are collected and the covariance matrix of
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Temporal

Temporal

Pulvinar nucleus

Lateral geniculate
nucleus

Superior colliculus

Optic radiation

Nasal

Optic chiasm

Primary visual cortex

Figure 1.1. Primary visual pathway. The visual information from the visual field passes through
the eye and stimulates the receptors on the retina. The retinal cells transmit the signal through
the optic nerve to the lateral geniculate nucleus and then to the primary visual cortex in the
occipital lobe in the back of the brain.
From COGNITIVE NEUROSCIENCE: THE BIOLOGY OF THE MIND, THIRD EDITION by
Michael S. Gazzaniga, Richard B. Ivry, and George R. Mangun. Copyright ©2009, 2002, 1998 by
Michael S. Gazzaniga, Richard B. Ivry, and George R. Mangun. Used by permission of W.W.
Norton & Company, Inc. (Gazzaniga et al., 2009)

these stimuli is computed. The eigenvectors of this covariance matrix with eigenvalue
significantly larger or smaller than the eigenvalues of the covariance matrix over all stim-
uli reveal the linear subunits of the complex cell. STC analysis has shown that complex
cells consist of very few subunits with clear orientation selectivity, localization and band-
pass filtering (Touryan et al., 2005; Rust et al., 2005; Chen et al., 2007). Besides the extensive
characterization of simple and complex cell response properties, the proposed classifica-
tion of V1 cells into simple and complex is still debated. Instead of two distinct classes
there is rather a continuum ranging from cells with more simple cell-like responses to
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cells with more complex cell-like responses (Dean and Tolhurst, 1983; Chance et al., 1999;
Priebe et al., 2004). Mechler and Ringach (2002) provide an overview of various quanti-
tative studies with evidence for and against a segregation into two distinct classes. More
recently Fournier et al. (2011) found that the ratio of complex cells to simple cells also de-
pends on the kind of stimulus used for classification rather than being a property of the
cell itself.

1.1.1 Cell Models

For the description of simple cells it is common to use a parsimonious model consisting
of two stages (Daugman, 1980; Carandini et al., 1997, 1998): a linear filter followed by a
nonlinear output stage (Figure 1.2 A). Marcelja (1980) found that the static filter properties
of simple cells can be described by a two-dimensional Gabor function (Gabor, 1946a,b,c).
A Gabor function provides orientation tuning and spatial frequency tuning which, given
the right set of parameters, lies within the range of physiological data (Kulikowski et al.,
1982; Field and Tolhurst, 1986; Kulikowski and Bishop, 1981b; Jones and Palmer, 1987a).
The nonlinear stage consists of a static half-wave rectification or squaring, allowing for
positive outputs only. An important extension of the simple linear-nonlinear model is
the addition of contrast gain control mechanisms. The most common contrast gain con-
trol model is divisive normalization (Albrecht and Hamilton, 1982; Bonds, 1989; Heeger,
1992a; Geisler and Albrecht, 1992; Carandini et al., 1997).

Adelson and Bergen (1985) proposed a parsimonious model for complex cells: the energy
model. It consists of two Gabor filters with identical orientation, spatial frequency, and
Gaussian envelope, but a 90° phase offset. In contrast to the simple cell model, the out-
put nonlinearities are not half-wave rectifications but quadratic functions. The contrast
gain control mechanism for complex cells is commonly modeled just like for simple cells
(Ohzawa et al., 1982, 1985).

1.1.2 Visual Adaptation

Following David Marr, the visual system can be analyzed on three different levels: (1)
the computational goal or objective to achieve, (2) the algorithm and the representation
of its in- and output, and (3) the (biophysical) substrate within which it is implemented
(Marr and Poggio, 1976). All these levels are largely independent (Marr, 1982), just like a
software designer should not have to care about the details of the underlying hardware.
However, most models incorporate more than one level (Serre and Poggio, 2011). Marr
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A

B

Figure 1.2. Computational model for simple and complex cells. The simple cell model (A)
consists of one Gabor filter succeeded by a rectification nonlinearity. The filter output can be
fed back for contrast gain control. The complex cell model (B) consists of two Gabor filters
which only differ by a phase difference of 90°. The filter outputs are squared and summed up
to produce the complex cell response. Adapted from Carandini et al. (2005).

particularly emphasizes that there is a strong relationship between algorithm and repre-
sentation. Whether a representation is useful or not depends on the algorithm. For exam-
ple, Arabic numbers are well suited for addition or multiplication while Roman numbers
are not.

For the early visual system, the representation of the input is likely to reflect the scene
statistics of the natural environment surrounding us. It is reasonable to assume that neu-
ral systems, especially sensory systems, are highly adapted to the statistics of the input
signal (Attneave, 1954; Barlow, 1961; Field, 1987; Simoncelli and Olshausen, 2001). The
dynamics of this adaptation may take place on different timescales: evolutionary over
several generations, developmental during the forming of an individual, and behavioral
at any point during the lifespan of an individual (Simoncelli and Olshausen, 2001). An ex-
ample for evolutionary adaption to the input statistics would be the distribution of blue-
and green-sensitive cones in mice (Nikonov et al., 2006; Baden et al., 2013), where blue-
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sensitive photoreceptors are mainly in the lower part and green-sensitive photoreceptor
cells are mainly in the upper part of the retina, as the mouse field of view usually consists
of plants on the bottom and sky on top. Contrast adaptation is an example of fast adap-
tation process that correlates with behavioral time scales. In contrast adaptation, the re-
sponse to a low contrast stimulus is attenuated if the same stimulus with high contrast has
been presented in the preceeding history (Kohn, 2007). Finally, the characteristic features
of the primary visual cortex, like orientation tuning or bandpass filtering, are learned
or at least refined during development (Hirsch and Spinelli, 1970, 1971; Blakemore and
Cooper, 1970; Löwel and Singer, 1992; Wong, 1999; Albert et al., 2008). Kittens raised in
an environment purely defined by vertical black and white stripes are virtually blind to
horizontal bars, or vice versa. Even months after the kittens have been living in a natural
environment, the selective blindness was still present and receptive fields selective to the
non-exposed orientation were not found in their visual cortices.

Barlow (1981) stated that an important factor in understanding how the visual system
works is understanding what limitations are imposed on it. These limitations can be
within the system or external. Examples for limitations within the system are limited
bandwidth of nerve fibers or different temporal response times of different cell types. Ex-
ternal limitations are those depending on the habitat of animal, such as the large average
viewing distance of a bird of prey high up in the sky or the refraction on the water surface
for a fish hunting for above-surface food. Field (1987) and Burton and Moorhead (1987)
were the first who took a detailed look at the statistics of natural images to gain a better
understanding why neurons favor Gabor-shaped receptive fields. Based on the statement
of Gibson (1950) that one must understand the nature of the environment to understand
the nature of visual processing, Field investigated what the optimal code for natural im-
ages might be. He found that, in contrast to what was commonly believed, natural image
statistics are not random but exhibit common properties independent of the scene. Nat-
ural images have a 1/f2 power spectrum, i.e. the power within one octave is constant over
all frequencies (Kretzmer, 1952; Deriugin, 1956). Gabor filters with a bandwidth of 0.5 -
1.5 octaves showed to be optimal to encode natural images with the least amount of filters.
This is very well within the range of physiological data (Ringach, 2002).

In order to adapt to the statistics of the input without additional guidance, the visual
system has to have some kind of unsupervised learning mechanism implemented (Barlow,
1997). This closes the loop to Marr’s tri-level hypothesis, as the unsupervised learning
mechanism can be seen as the algorithmic level. The substrate level concerns the anatomy
and biophysics of cells and will not be covered in this thesis. Here, the main question
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concerns the computational goal of complex cell representations which will be covered in
detail later.

1.2 Invariance

Invariant feature representations are believed to be a key building block for high level
vision tasks such as object detection and recognition. The appearance of objects changes
dramatically with lighting, pose, and orientation. This requires a representation which
is invariant to the infinite number of possible lighting and viewing conditions. In the
visual system, invariance is believed to be constructed hierarchically (Riesenhuber and
Poggio, 1999). Starting from the image on the retina, every stage creates a more invariant
representation of the input (Figure 1.3). While retina and LGN, omitted in Figure 1.3,
create brightness and contrast invariance, the complex cell layer is the first layer with
geometrical invariance. To be precise, the complex cells provide invariance to the phase
and thus, to some extent, the spatial position of the stimulus. This can be seen as an
invariance under local transformations built from shifts. The Neocognitron was an early
example of such a network model proposed by Fukushima (1980).

Evidence for a view-invariant object representation in the brain was found by Bieder-
man and Cooper (1991) and several findings were recently reviewed by Biederman et al.
(2009). However, there is still a big controversy if view-invariant (Biederman et al., 2009)
or view-based (Tarr and Bülthoff, 1998) representations are used by the visual system. The
interested reader is referred to extensive reviews on that topic (Logothetis and Sheinberg,
1996; DiCarlo et al., 2012).

1.2.1 Steerable filters

Transformation invariance is an extensively studied research area mathematics and ma-
chine learning. A well known example for a transformation invariant representation is
the Fourier power spectrum of a signal. The Fourier power spectrum is invariant under
global shifts with periodic boundary conditions, as these change only the phase of the
Fourier components but not their (squared) amplitude. Essentially this invariance results
from the well-known identity

(sin kx)2 + (cos kx)2 = 1 ∀x. (1.1)

7
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view-tuned cells

simple cells (S1)

complex cells (C1)

complex composite cells (C2)

composite feature cells (S2)

input signal

Figure 1.3. Model of hierarchical structure of the visual cortex. With each layer the
representation of the feature becomes more invariant. While the first layer (S1, simple cells)
does not have any geometrical invariance, the second layer (C1, complex cells) already shows
spatial invariance with further increasing complexity of the object. The model can be extended
further up to provide view-invariant object representations.
Adapted by permission from Macmillan Publishers Ltd: Nature Neuroscience. Riesenhuber
and Poggio (1999) Figure 2, copyright 1999

Since all signals, for which a Fourier transform exists, can be represented as a combination
of (possibly infinitely many) sine waves, the Fourier power spectrum provides an invariant
representation under periodic shifts.

The field of steerable filter theory follows an analytical approach to invariance. First pio-
neered by Knutsson and Granlund (1983) and then refined and popularized by Freeman
and Adelson (1991) and Granlund and Knutsson (1995), steerable filter theory provides
a method to synthesize filters with certain properties from a set of basis filters. This al-
lows an efficient computation of filter responses with arbitrary precision compared to
a predefined filter bank (Perona, 1991, 1995). The simplest example of a steerable filter
would be a sine wave pair, where two filters with identical spatial frequency but a phase
offset of 90° are combined like in Eq 1.1 above to achieve a phase invariant response. Fil-
ters with identical spatial frequency and orientation which only differ in phase by 90°
are called quadrature pair. The main motivation for steerable filters was orientation steer-
ability (Freeman and Adelson, 1991), such that a small set of basis filters can synthesize
any arbitrary orientation. The classical example is the two-dimensional isotrope Gaus-
sian function G(x, y) = e−(x

2+y2) and its directional derivatives G
(1)
x = ∂

∂xG(x, y) and
G

(1)
y = ∂

∂yG(x, y) along the x- and y-axis, respectively. The two directional derivatives are

8



Jörn-Philipp Lies 1.2. Invariance

the basis functions which can be used to synthesize the directional derivative along any
direction θ via

G
(1)
θ = cos (θ)G(1)

x + sin (θ)G(1)
y (1.2)

with cos θ and sin θ as interpolation functions. In general, all functions which are a combi-
nation of a polynomial and a radially symmetric windowing function are steerable (Free-
man and Adelson, 1991). Further, the steerable filters can be used in a multi-scale rep-
resentation known as the steerable pyramid, which is widely used in image processing
(Simoncelli and Freeman, 1995).

A couple of studies investigated how steerable filters can be learned in an unsupervised
way (Rao and Ruderman, 1999; Miao and Rao, 2007; Bethge et al., 2007; Wang et al., 2009;
Sohl-Dickstein et al., 2010).

1.2.2 Lie groups

Continuous transformation groups or Lie groups, named after Norwegian mathematician
Sophos Lie who introduced them at the end of the 19th century, are a set of transforma-
tions which fulfill the algebraic group properties1 and are differentiable. For every Lie
group there exists a Lie algebra which is the tangent space at the identity element of the
Lie group with the exponential map mapping the Lie algebra into the Lie group. The full
theory and capabilities of Lie groups, Lie algebras and their wide variety of applications
goes far beyond the scope of this thesis. In the following, I will give an intuition how Lie
groups can be used for invariance learning. A complete and comprehensible introduction
can be found in (Gilmore, 2008).

The interesting feature of a Lie group is that the complete group, i.e. all transformations it
contains, can be generated from infinitesimal generators. A simple examples is the special
orthogonal group SO(2), the Lie group of all rotations around the origin in R2:(

cosφ − sinφ

sinφ cosφ

)
︸ ︷︷ ︸

rotation of angle φ

= exp
(
φ

(
0 −1

1 0

)
︸ ︷︷ ︸

infinitesimal generator

)
(1.3)

1The characteristic properties of an algebraic group (G, ·) are

associativity f · (g · h) = (f · g) · h

identity element f · e = f = e · f

inverse f · f−1 = e = f−1 · f

9
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The scalar φ determines the angle of rotation, thus allowing to create any arbitrary ro-
tation with the generator and the matrix exponential2 only. This principle generalizes
to all Lie groups in arbitrary dimensions, which makes them interesting with respect to
transformation learning.

Lie groups have been used in various fields of computational vision (Hoffman, 1966; Dod-
well, 1983; Nordberg et al., 1994; Van Gool et al., 1995) but mainly with predefined gen-
erators. Rao and Ruderman (1999) were the first who specified only a general Lie group
structure but learned the specific operators from the data. They were able to learn Lie
group operators in an unsupervised learning framework for infinitesimal 2D rotations
and 1D translations which were artificially introduced to the data. To overcome the re-
striction on infinitesimal transformation, Miao and Rao (2007) extended the framework
and learned a Taylor approximation of the generator, which was able to learn transforma-
tions from natural movie sequences as well, but was computationally expensive. Instead
of learning the generator directly, Sohl-Dickstein et al. (2010) learned the eigenvectors
and eigenvalues of the Lie group operator separately, reducing the matrix exponential to
a simple exponential.

1.3 Invariance Learning

The visual system extracts invariant features from its input without an external supervi-
sory signal. This requires some kind of unsupervised learning mechanism. In this thesis, I
focus on normative models for unsupervised learning.

The main focus of normative models is answering why neurons respond as they do, thus
providing valuable insight into the emergence of features. This is usually achieved by
finding the optimal filters for a given objective function. Different objective functions
make different predictions for the filter shapes. One can obtain hints about the underlying
computational goal by verifying which of the filter shapes is more consistent with neural
data. A further advantage is the interpretability and applicability of the results (Serre
and Poggio, 2011). As the models emerged from signal processing and machine learning
methods with simple structures their filter properties can be analyzed easily. For the same
reason, although not directly neuroscience related, the gained insight can be transfered to
applications like image/video compression. While normative models ignore many details
about the biophysics of the neurons (for a list of biophysically plausible mathematical

2The matrix exponential is defined as exp (M) =
∑∞

k=0
1
k!
Mk
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operations see (Koch, 1999)), this abstraction may be acceptable as suggested by Marr’s
independence assumption regarding the three explanatory levels.

The number of possible objectives for normative models is infinitely large. For the pur-
pose of this thesis, I focus on two distinct objective classes which have been proposed
in the context of learning in the early visual system; the redundancy reduction objective
(Barlow, 1961) aims to model the detailed statistical structure of the signal, and the slow-
ness objective (Hinton, 1989) maximizes temporal stability or minimizes variations in the
output over time. Both objective classes will be explained in the following sections.

1.3.1 Redundancy Reduction

The idea to explain neural representations based on a redundancy reduction principle was
first proposed by (Barlow, 1961). Based on the concepts of information theory (Shannon
and Weaver, 1949), he suggested that the visual system tries to remove redundant infor-
mation from its internal representation of the environment. The inputs and outputs of
neurons are therefore treated as random variables and the transformation is determined
by the goal of minimizing the redundancy in the output. The statistical measure of re-
dundancy between two random variables is the mutual information. It quantifies (in bits)
how much information both random variables share, is strictly positive and 0 only if both
random variables are statistically independent (Cover and Thomas, 1991). The extension
to n random variables is called multi information. It is important to stress the difference be-
tween correlation and dependence or their counterparts uncorrelation and independence.
Two random variables can be uncorrelated, i.e. have 0 covariance, but still be dependent.
On the other hand, independent random variables are always uncorrelated.

The simplest approach to reduce redundancy is removing the second-order correlations
from the input such that the covariance becomes a diagonal matrix. Decorrelation on
natural images has successfully reproduced properties of the early visual system. It has
been shown that decorrelation of the red, green, and blue color channels of natural im-
ages leads to the color opponency found in the retina (Buchsbaum and Gottschalk, 1983;
Ruderman et al., 1998). Spatial and spatio-temporal decorrelation of natural images lead
to bandpass filters similar to those found in LGN and retina (Atick and Redlich, 1990,
1992; van Hateren, 1992, 1993; Dong and Atick, 1995). However, decorrelation cannot ex-
plain the oriented filters found in the primary visual cortex nor the nonlinear features of
complex cells or higher visual areas.

A classical approach to maximize statistical independence of the model output is indepen-
dent component analysis (ICA). First proposed by Jutten and Herault (1991) in the context
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of blind source separation and later popularized by Comon (1994) and Bell and Sejnowski
(1995), ICA is searching for a linear transformation of the input such that statistical depen-
dencies of the output components are minimal. Formally, ICA assumes that the signal is
a mixture of several independent sources plus noise. The mixture of independent com-
ponents is defined in the mixture matrix. The ICA matrix is (up to scale and order of the
components) identifiable under the assumptions that the output components are statis-
tically independent, have non-Gaussian distributions and the matrix is square (Comon,
1994). When the input to the ICA matrix is white, i.e. decorrelated and with unit vari-
ance, the optimization is reduced to the set of orthogonal matrices, which significantly
simplifies the optimization. Several methods have been proposed to find the orthogonal
matrix, such as minimizing the multi information (Comon, 1994) or maximum likelihood
estimation (Pham and Garat, 1997). Hyvärinen and Oja (2000) give a comprehensive tu-
torial on ICA including various methods to find the independent components with an
update published recently (Hyvärinen, 2013).

On a practical level, maximizing the independence of filter responses can be described
as maximizing the sparseness of the filter outputs. For a random variable, such as the
output of a filter, sparseness is defined as being more likely to take very small absolute
values or very large absolute values than a Gaussian random variable with identical vari-
ance. Distributions with this property are called sparse, super-Gaussian, or leptokurtotic. An
example for a sparse distribution is the Laplacian distribution, which is shown together
with a Gaussian distribution in Figure 1.4. The Laplacian (red) has a higher peak at the
mean but then drops off faster than the Gaussian (blue). For large values, however, the
Gaussian converges faster towards 0 than the Laplacian. One measure of sparseness is
kurtosis, which is the 4th moment of the distribution divided by the squared variance.

Sparseness in neuron ensembles can be seen in two ways; a single neuron which is only
active very rarely shows lifetime sparseness, while a population of neurons where only few
neurons are active at any point in time exhibits population sparseness (Willmore and Tol-
hurst, 2001). A favorable side eddect of the sparseness objective is that low activity levels
yields low energy consumption (Lennie, 2003).

An intuition about a link between sparseness and independence can be shown with the
central limit theorem (CLT). The CLT says that if we add up infinitely many independent
random variables, we would end up with a Gaussian random variable. More specifically,
it holds that the sum of two independent random variables is more Gaussian, i.e. less
sparse, than each of the two independent ones. Hence, if the data one generated is a
linear mixture of independent components, then the maximally sparse components must
be the independent components (Hyvärinen et al., 2009).

12
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Figure 1.4. Gaussian vs Laplacian distribution. Both distributions have equal mean and
variance. The Laplacian distribution (red) has a higher peak at the mean than the Gaussian
distribution (blue). The Laplacian first drops off faster but at long distance from the mean the
Laplacian converges slower towards 0 than the Gaussian, resulting in a higher probability for
large values. Distributions with these properties are called sparse, leptokurtotic, or
super-Gaussian.

Olshausen and Field (1996, 1997) used sparseness maximization on natural images in an
overcomplete representation and obtained simple cell-like receptive fields. Plain ICA,
where it is assumed that the number of independent sources equals the number of dimen-
sions in the data, was first applied to natural images by Bell and Sejnowski (1997), who
showed that the obtained filters have simple cell properties as well. Van Hateren and col-
leagues did a quantitative analysis of the filter properties obtained from still images (van
Hateren and van der Schaaf, 1998) and image sequences (van Hateren and Ruderman,
1998) and compared them to simple cell recordings from macaque visual cortex.

As all redundancy reduction models in this thesis have been linear models so far, they can-
not account for the nonlinear complex cell features. Hyvärinen and Hoyer (2000) were the
first to show that complex cell like features can be learned via redundancy reduction using
independent subspace analysis (ISA). ISA uses the same objective as ICA but instead of a lin-
ear filter the objective is evaluated on the squared radial component of an n-dimensional
subspace (Kohonen, 1996). This corresponds to ICA on the output of the energy model
(Adelson and Bergen, 1985) with n linear filters.

Hyvärinen et al. (2001) introduced a relaxation of the hard separation into n-dimensional
subspaces via a topographical organization of the components. The output space is or-
ganized on a 2D grid with each node representing the squared output of one linear ICA
filter. This can be seen as a simple cell layer. On top of the simple cell layer is a second
layer, the complex cell layer, which pools over a topographically local area of simple cell
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outputs. With the pooling area fixed, the complex cell layer output is used as input for
the unsupervised learning of the ICA filters. The obtained complex cell responses are not
only phase invariant, but the topographical organization also resembles the organization
in cortex (Hyvärinen et al., 2001).

1.3.2 Slowness

The classical motivation for slowness is the observation that one looks at an object such as
a zebra and the animal moves perpendicular to the viewing direction, the local light inten-
sities vary largely between the stripes but the global percept is still a zebra. The position
of the animal over time changes a lot slower than the light intensities of single receptors
on the retina. Thus the visual system could try to extract the perceptually stable struc-
ture within the rapidly varying input stream by searching for the slowest components.
Therefore “slowness”, “temporal stability”, or “temporal smoothness”, may serve as an
objective function for invariant representation learning.

The idea of using slowness as a learning objective was first stated by Hinton (1989) in the
context of learning in neural networks. The first implementation in a neural network was
given by Földiák (1991) and is called the trace rule. The trace rule was able to obtain shift
invariance for simple moving bar stimuli. Slowness has also been used to learn invariant
subspaces (Kayser et al., 2001; Körding et al., 2004) using the energy model (Adelson and
Bergen, 1985) similar to ISA (Hyvärinen and Hoyer, 2000). Their objective is minimiz-
ing the variance of the temporal derivative of the squared subspace response divided by
the variance of the subspace response. The learned subspaces were phase and position
invariant, similar to V1 complex cells.

The best known implementation of the slowness principle is Slow Feature Analysis (SFA)
(Wiskott and Sejnowski, 2002). The algorithm has been applied to image sequences with
artificial induced transformations to obtain features which reproduce complex cell prop-
erties (Berkes and Wiskott, 2005). The objective of SFA is very similar to the objective
defined by Kayser et al. (2001) but instead of the subspace energies SFA uses a nonlin-
ear expansion of the feature space. The maximally slow features in the nonlinear feature
space are then defined as generalized eigenvectors as in oriented PCA (Diamantaras and
Kung, 1994; Bethge et al., 2007). This allows one to use standard eigenvector solvers to
find the SFA components. For complex cell learning the nonlinear expansion is the ex-
pansion into the quadratic feature space, the space of all monomials of degree 1 and 2.
This roughly squares the input dimensionality and is thus usually combined with signif-
icant dimensionality reduction. SFA has also been used in hierarchical networks, where
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each layer applies SFA to the outputs of the previous SFA layer. With hierarchical ap-
proaches, SFA was able to reproduce properties like place and grid cells (Franzius et al.,
2007) or invariant object recognition (Franzius et al., 2011). Sprekeler et al. (2007) showed
that SFA is in fact identical to the trace rule used by Földiák (1991). For a recent review
on SFA and all its applications see (Wiskott et al., 2011).

Hurri and Hyvärinen (2003) provide a slightly different definition of slowness. Their ob-
jective is called temporal coherence and is defined as the correlation between the model
outputs of consecutive time steps, which has to be maximized. The model consists of
a simple linear filter with static point-wise nonlinear function. If the temporal distance
between the two time steps approaches 0, temporal coherence becomes identical to ICA
with kurtosis maximization as objective. The significant difference to the previous slow-
ness approaches is that the temporal coherence principle is a forth-order rather than a
second-order objective function and thus leads to simple cell properties.

1.3.3 Combination of slowness and redundancy reduction

A straight forward idea is to combine both, the redundancy reduction and slowness objec-
tive. The approach of Einhäuser et al. (2002) is a three-layer neural network where the first
layer are the input pixel, the middle layer optimizes for sparseness, and the top layer for
slowness. The middle layer showed classical simple cell receptive field properties while
the top layer was largely invariant under phase and position of a stimulus.

A direct combination of sparseness and temporal correlation is the bubbles framework by
Hyvärinen et al. (2003). The framework consists of two layers, the first layer are spatial or
spatio-temporal linear filters and a second pooling layer whose nodes pool over a prede-
fined spatio-temporal area. The filter outputs are optimized for three different objectives
simultaneously; temporal coherence is the correlation of the squared outputs of the same
filter in time, energy correlation is the correlation of the squared output of two different
filters at the same point in time, and a sparseness objective on each filter. This leads to
an extension of topographical ICA (Hyvärinen et al., 2001) from spatially active circles
to spatio-temporal activity bubbles. While the first layer corresponds to simple cells, the
second layer, called bubble detector, corresponds to complex cells.

Closely related to the bubbles framework is the study by Berkes et al. (2009). Their model
consists of binary identity variables which indicate the presence or absence of a certain fea-
ture in the scene. Each feature is a mixture of linear filters where the mixture weights are
called attributes. All 3 parameter sets - filters, identities, and attributes - are learned from
natural image sequences using a Bayesian optimization where the prior was defined such
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that the components are spatially independent and temporally smooth. This approach
differs from the bubbles framework in so far as here the identity is binary while its coun-
terpart the bubble detector is a continuous variable, and the attributes are continuous
while their counterpart, the pooling area, has fixed weights of 1. Further, the filters of the
attributes are neither topographically ordered nor overlapping, but every attribute has its
independent set of filters of variable size.

Cadieu and Olshausen (2008, 2009, 2012) used a different approach. They propose a two-
layer model where the first layer represents local features and the second layer groups
the local features to encode form and motion. As form and motion are beyond V1, the
first layer is of interest here. The first layer consists of a complex-valued sparse coding
layer where the amplitudes of the complex-valued output are optimized for sparseness
and slowness simultaneously. The real and imaginary part of the filter correspond to the
two filters of the energy model (Adelson and Bergen, 1985) and resemble complex cell
receptive fields.

1.4 Receptive field model

Receptive fields of cells in the primary visual cortex are mapped out using, for example,
reverse correlation, spike-triggered average, or spike-triggered covariance. But to work
with the obtained receptive field, we have to find a compact mathematical description.
Movshon et al. (1978b) found that the V1 simple cell receptive fields compute weighted
sums of their input. Shortly after that Marcelja (1980) showed that 1D Gabor functions
(Gabor, 1946a,b,c) are well suited to describe the weighting profile of simple cells. Daug-
man (1980, 1985) extended the model to 2D Gabor functions which have been used in
countless studies since. An alternative to the Gabor function is the Gaussian Derivative
or Hermite function (Young, 1978; Young et al., 2001; Young and Lesperance, 2001). I will
present both models with their individual advantages and disadvantages in the following
subsections and motivate why the Gabor model is used in this thesis.

1.4.1 Gabor filter

Gabor filters have been defined by Gabor (1946a,b,c) in the context of radio transmission
as intermediate representation between frequency and spatio-temporal representations.
They are defined as the product of a sinusoidal carrier wave and a Gaussian envelope,

g (x|ω, σ, x0, ϕ) = cos (2πω (x− ϕ)) e−
(x−x0)

2

2σ2 , (1.4)
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where ω and ϕ are the spatial frequency and phase, and σ and x0 are the width and spatial
position, respectively. In the Fourier domain, the Gabor filter is the convolution of delta
peaks at ±ω with a Gaussian envelope of width 1/σ, resulting in a frequency spectrum
of two Gaussians with envelope size 1/σ at ±ω. Gabor filters are widely used in image
processing, e.g. Lee (1996); Daugman (1988); Jain and Bhattacharjee (1992); Weldon et al.
(1996); Hamamoto et al. (1998); Kamarainen et al. (2006) to name a few.

The simplicity of the Gabor filter is one of its main advantages. The parameters ω and
σ provide intuitive understanding of the shape and properties of the filter. They further
allow any combination of parameters to create an arbitrary tiling of the space-frequency
domain. This allows perfect tuning to the requirements of any signal processing task.

However, Gabor filters also have notable downsides. Depending on the spatial frequency
and envelope size, Gabor filters can have a significant DC component. This means that the
filter contains information about the mean value of the input. This can be addressed by
removing the DC component from the filter but this naturally changes the filter properties.
Further, Gabor filters of identical spatial frequency and envelope size but with an offset
of 90°, i.e. a quadrature pair, are not perfectly orthogonal.

1.4.2 Hermite filter

Hermite filters are the combination of Hermite polynomials (Hermite, 1864) with a Gaus-
sian envelope. Hermite polynomials are defined by

Hn(x) = (−1)nex
2 dn

dxn
e−x2

. (1.5)

To ensure orthogonality the Hermite polynomials have to be normalized, which leads to
the Hermite filter definition of Martens (1990, 1997):

dn(x) =
(−1)n√
n!2nπσ2

Hn

(x
σ

)
e

−x2

σ2 (1.6)

where n is the degree of the Hermite polynomial and σ is the width of the envelope.
Young (1978) showed that 1D Hermite filters match 1D representations of V1 receptive
fields and later Young (1986) extended this concept to 2D Hermite filters.

Intuitively, Hermite filters are the n-th order derivative of a Gaussian function

gn(x) =
dn

dxn
e−

x2

2 (1.7)
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Figure 1.5. Example of Gabor and Hermite function in pixel and Fourier space. The left side
shows an even-symmetric Gabor function with three visible subfields - the peak at the center
pixel and the two side troughs. Below the Gabor is the amplitude spectrum of its Fourier
transform with the DC component at 0 on the abscissa. The baseline of the amplitude
spectrum corresponds to 0 energy at that frequency. On the right side is a 2nd degree Hermite
function and its amplitude spectrum for comparison. In pixel space, the differences are quite
minimal. If we look closely, there is a small bump next to the troughs for the Gabor function.
The Hermite function does not show this bump. The difference is more prominently visible in
the amplitude spectrum. While the position and the width of both peaks are comparable, the
Gabor function has a value significantly larger than 0 for the DC component, i.e. the function
conveys information about the average value of the filtered signal. In contrast, the amplitude
spectrum of the Hermite function drops to 0 at the DC component thus only conveys
information around the peak spatial frequency.

with appropriate scaling. However, Gaussian derivative filters are not identical to Her-
mite filters but differ by a scale factor.

The advantage of Hermite filters is that the DC component is 0 for all filters with degree
larger than 0. This is illustrated in Figure 1.5. On the left side is a Gaussian function in
pixel space and its amplitude spectrum and on the right side a 2nd degree Hermite func-
tion and its amplitude spectrum. While both pixel space representations look quite simi-
lar, the amplitude spectrum reveals that the Gabor function conveys a significant amount
of information about the DC component while the amplitude spectrum of the Hermite
function drops to 0 at the DC component. Also, Hermite filters of different degrees are
always orthogonal due to the normalization. This allows to create a perfectly orthogonal
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filter basis. One disadvantage of Hermite filters is that the frequency selectivity around
the peak spatial frequency ω is slightly antisymmetric, thus the filter does not respond
equally to stimuli with frequency ω + ϵ and ω − ϵ. Further, Hermite filters are computa-
tionally more complex and less intuitive in the interpretation of their parameters.

1.4.3 Comparison

A comparison of Hermite and Gabor filters for cortical data has been published by Young
et al. (2001); Young and Lesperance (2001) and a theoretical comparison between Hermite
and Gabor filters has been published by Rivero-Moreno and Bres (2003). The studies
found that the performance of both models is comparable and lead to very satisfactory
approximations of V1 receptive fields.

In preliminary simulations of our complex cell model with both receptive field models,
we also found comparable results with marginally better performance of the Gabor fil-
ters. Further, the Hermite models require more complex computations and provide less
intuitive insight into the filter properties. For example, the Hermite polynomial requires
the computation of the factorial function

Hn(x) = (−1)nex
2 dn

dxn
e−x2

= n!

⌊n/2⌋∑
m=0

(−1)m

m!(n− 2m)!
(2x)n−2m (1.8)

which is computationally more complex and less numerically stable than the multiplica-
tion of a cosine and an exponential. Also, the concept of envelope size and peak spatial
frequency allows easier comparisons than degree and envelope size.

Given that there was no significant difference and the more intuitive and less computa-
tionally complex design of the Gabor filter we decided to use Gabor receptive field models
in this thesis.

1.5 Goals of this thesis

The main goal of this work is to provide a quantitative comparison of the two unsuper-
vised learning paradigms redundancy reduction and slowness with respect to complex cell
properties. Both objectives have been proposed as principle underlying the formation of
complex cell receptive fields in the primary visual cortex. However, it turns out that the
two objectives lead to rather different predictions for the filter properties.
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To compare both objectives on common ground, I present how the slowness principle
can be used in a subspace framework to learn invariant representations from artificial
translations and natural movies. So far, the different studies on redundancy reduction
and slowness varied largely in data sets, preprocessing, experimental parameters, feature
space, evaluation methods, and many more details. The framework I use is identical to the
one used by ISA (Hyvärinen and Hoyer, 2000) and physiologically well motivated (Pollen
and Ronner, 1983). This allows a fair comparison between the redundancy reduction ob-
jective and the slowness objective as both are working with the same model structure
on the identical feature space. I show how slowness and redundancy reduction lead to
completely different filter sets when optimized under the same conditions. Subsequently
I present a weighted combination of slowness and redundancy reduction objective and
show how the filter sets change with the weighting factor.

Slowness has mainly been used through the implementation of SFA. However, while SFA
has advantages in cases where, for example, a closed-form solution is required, Slow Sub-
space Analysis (SSA) as defined by Kayser et al. (2001) has several advantages over SFA.
I show the differences and commonalities of SFA and SSA and discuss why SSA is favor-
able for complex cell modeling. Therefore SSA is our algorithm of choice for a comparison
with redundancy reduction.

Localization is a key feature of complex cells in the primary visual cortex and a feature
found by both redundancy reduction and slowness studies. However, steerable filter the-
ory suggests that global filters are perfect for translations. Therefore, it is worthwhile to in-
vestigate if slowness or redundancy reduction can account for localization. Further phys-
iological properties found in monkey (Ringach, 2002) and cat (Jones and Palmer, 1987a)
are the scaling of preferred spatial frequency with envelope size (wavelet scaling) and the
aspect ratio of the envelope. These three features form an interesting set of receptive field
properties which have not been quantitatively evaluated for slowness and redundancy
reduction at the same time.

To compare both objectives with physiological data, I use an approach similar to Field and
Tolhurst (1986) for simple cells. The idea is to model the V1 complex cells by the energy
model with two quadrature phase Gabor filters with fixed position, orientation and spatial
frequency. The remaining free parameters are the horizontal and vertical Gaussian enve-
lope size. If we now maximize the objective of the respective paradigm we can compare
the optimal envelope size parameters with empirically found parameters. The advantage
of the single cell approach is avoiding mutual influence, thus providing a clearer insight
into the truly optimal filter for both objectives.
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2 Slowness and sparseness have
diverging effects on complex cell
learning

This article is joint work of Jörn-Philipp Lies, Ralf M. Häfner, and Matthias Bethge. It was
submitted on 21 April 2013 to PLoS Computational Biology. All simulations and compu-
tations as well as the documentation of methods and results including figures were done
by JPL. The design of the experiments, the evaluation of the results and the discussion
were jointly done by all 3 authors.

The article is contained as submitted with only 3 changes, namely the citation style (using
author name and year instead of numbers), the figures are at the position in the text where
they are referenced instead of at the end of the article, and the bibliography is at the end
of the thesis. All changes are for enhanced readability only and do not alter the content.

2.1 Abstract

A key question in visual neuroscience is how neural representations achieve invariance
against appearance changes of objects. In particular, complex cells are often interpreted as
a signature of an invariant coding strategy. Following earlier studies which showed that a
sparse coding principle may explain the receptive field properties of complex cells, it has
been concluded that the same properties may be equally derived from a slowness princi-
ple. Here we show that—contrary to widespread belief—slowness and sparsity drive the
representations towards substantially different receptive field properties. To do so, we
present complete sets of basis functions learned with slow subspace analysis (SSA) in case
of natural movies as well as translations, rotations, and scalings of natural images. SSA
directly parallels independent subspace analysis (ISA) with the only difference that SSA
maximizes slowness instead of sparsity. We find a large discrepancy between the filter
shapes learned with SSA and ISA. We argue that SSA can be understood as a generaliza-
tion of the Fourier transform where the power spectrum corresponds to the maximally
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slow subspace energies in SSA. Finally, we investigate how much performance can be
achieved if one optimizes for both slowness and sparsity simultaneously and how this
trade-off effects the filter shapes.

2.2 Author Summary

A key question in visual neuroscience is how neural representations achieve invariance
against appearance changes of objects. In particular, invariance of complex cell responses
against small translations is commonly interpreted as a signature of an invariant coding
strategy possibly originating from an unsupervised learning principle. Various models
have been proposed to explain the response properties of complex cells using a sparsity
or a slowness criterion and it has been concluded that physiologically plausible receptive
field properties can be derived from either criterion. Here, we show that the effect of
the two objectives on the resulting receptive field properties is in fact very different. We
conclude that slowness alone cannot explain the filter shapes of complex cells and discuss
how both slowness and sparsity may be two signatures of a representation that is adapted
to a complex generative model of vision for which we still need to gain a much better
understanding.

2.3 Introduction

The appearance of objects in an image can change dramatically depending on their pose,
distance, and illumination. Learning representations that are invariant against such ap-
pearance changes can be viewed as an important preprocessing step which removes dis-
tracting variance from a data set in order to improve performance of downstream classi-
fiers or regression estimators (Burges, 2005). Clearly, it is an inherent part of training a
classifier to make its response invariant against all within-class variations. Rather than
learning these invariances for each object class individually, however, we observe that
many transformations such as translation, rotation and scaling apply to any object inde-
pendent of its specific shape. This suggests that signatures of such transformations exist
in the spatio-temporal statistics of natural images which allow one to learn invariant rep-
resentations in an unsupervised way.

Complex cells in primary visual cortex are commonly seen as building blocks for such in-
variant image representations (e.g. (Riesenhuber and Poggio, 1999)). While complex cells,
like simple cells, respond to edges of particular orientation they are less sensitive to the
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precise location of the edge (Hubel and Wiesel, 1962). A variety of neural algorithms have
been proposed that aim at explaining the response properties of complex cells as compo-
nents of an invariant representation that is optimized for the spatio-temporal statistics of
the visual input (Hyvärinen and Hoyer, 2000; Hyvärinen et al., 2001; Berkes and Wiskott,
2005; Karklin and Lewicki, 2009; Berkes et al., 2009; Kayser et al., 2001; Einhäuser et al.,
2002; Kayser et al., 2003; Körding et al., 2004).

The two main objectives used for the optimization of the neural representations are sparse-
ness and slowness. At first sight, the slowness objective seems to be more directly related
to invariance learning than the sparsity objective: While for natural signals it may be
impossible to find perfectly invariant representations, one seeks to find features that at
least change as slowly as possible under the appearance transformations exhibited in the
data (Sutton and Barto, 1981; Klopf, 1982; Földiák, 1991; Mitchison, 1991; Stone and Bray,
1995; Stone, 1996; Wallis and Rolls, 1997; Kayser et al., 2001; Wiskott and Sejnowski, 2002;
Einhäuser et al., 2002; Kayser et al., 2003; Hurri and Hyvärinen, 2003; Körding et al., 2004;
Berkes and Wiskott, 2005; Spratling, 2005; Maurer, 2006; Turner and Sahani, 2007; Masque-
lier et al., 2007; Maurer, 2008).

In contrast to sparse representation learning which is tightly linked to generative mod-
eling, many slow feature learning algorithms follow a discriminative or coarse-graining
approach: they do not aim at modeling all variations in the sensory data but rather classify
parts of it as noise (or some dimensions as being dominated by noise) and then discard
this information. This is most obvious in case of slow feature analysis (Wiskott and Se-
jnowski, 2002). It can be seen as a special case of oriented principal component analysis
which seeks to determine the most informative subspace under the assumption that fast
changes are noise (Bethge et al., 2007). While it is very likely that some information is
discarded along the visual pathway, throwing away information in modeling studies re-
quires great caution. For example, if one discards all high spatial frequency information
in natural images one would easily obtain a representation which changes more slowly
in time. Yet, this improvement in slowness is not productive as high spatial frequency
information in natural images cannot be equated with noise but often carries critical in-
formation.

Thus, for better comparability of different unsupervised learning algorithms it is often
useful to exclude the possibility of information reduction. More specifically, if we want to
compare the effect of slowness and sparseness on complex cell learning this can be done
most easily by comparing complete sets of filters learned with slow subspace analysis (SSA)
(Kayser et al., 2001) and independent subspace analysis (ISA) (Hyvärinen and Hoyer, 2000),
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respectively. The two algorithms are completely identical with the only difference that
SSA maximizes slowness while ISA maximizes sparsity.

While for sparseness it is common to show complete sets of filters this is not so in case of
slowness. Based on the analysis of a small subset of filters, it has been argued that SSA
may generally yield similar results to ISA (Kayser et al., 2001). In contrast, we here arrive
at quite the opposite conclusion: by looking at the complete representation we find a large
discrepancy between the filter shapes derived with SSA and those derived with ISA.

Complete representations optimizing slowness have previously been studied only for
mixed objective functions that combined slowness with sparseness (Hyvärinen et al., 2003;
Cadieu and Olshausen, 2009, 2012; Berkes et al., 2009) but never when optimizing exclu-
sively for slowness alone. Here we systematically investigate how a complete set of filters
changes when varying the objective function from a pure slowness objective to a pure
sparsity objective by using a weighted mixture of the two and gradually increasing the
ratio of their respective weights. From this analysis we will conclude that the receptive
field shapes shown in (Hyvärinen et al., 2003; Cadieu and Olshausen, 2009, 2012; Berkes
et al., 2009) are mostly determined by the sparsity objective rather than the slowness ob-
jective. That is the receptive fields would change relatively little if the slowness objective
was dropped but it would change drastically if the sparsity objective was removed. These
findings changes our view of the effect of slowness and raises new questions that can
guide us to a more profound understanding of unsupervised complex cell learning.

2.4 Results

The main take home message of the paper is the observation that the effect of the slow-
ness objective on complex cell learning is substantially different from that of sparseness.
Most likely this has gone unnoticed to date because previous work either did not derive
complete representations from slowness or combined the slowness objective with a spar-
sity constraint which masked the genuine effect of slowness. Therefore, we here put large
effort into characterizing the effect of slow subspace learning on the complete set of filter
shapes under various conditions. We first study a number of analytically defined trans-
formations such as translations, rotations, and scalings before we turn to natural movies
and the comparison between slowness and sparseness.

The general design of SSA is illustrated in Figure 2.1. We apply a set of filters to the input
x(t) and square the filter responses. Two filters form a 2-dimensional subspace (gray box
in Figure 2.1) and the sum of squared filter responses of these two filters yield the subspace
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Figure 2.1. Illustration of slow subspace analysis (SSA). This Figure shows the energy model
structure of SSA. The input signal, e.g. a movie sequence, is applied to several filters. Two
filters form a subspace. The output of the filters are passed through a quadratic nonlinearity
before the responses of the filters within one subspace are summed up. The output
corresponds to the radial component of the 2D subspace. The n/2 responses zi(t) then form
the multidimensional output signal z(t). If the filters are the discrete Fourier transform basis
where each subspace consists of the two filters which only differ in phase, then the output z(t)
is the power spectrum of the input signal x(t).

energy response. This can be seen as the squared radial component of the projection of
the signal into the 2D subspace formed by the two respective filters. For example, if the
filters are taken from the Fourier basis and grouped such that the two filters within each
subspace have the same spatial frequency and orientation and 90◦ phase difference, the
SSA output z(t) at a fixed time instant t is the power spectrum of the image x(t). As
input x(t) we used 11× 11 image patches sampled from the van Hateren image database
(van Hateren and van der Schaaf, 1998) and from the video database (van Hateren and
Ruderman, 1998), vectorized to 121-dimensions, and applied SSA to all remaining 120 AC
components after projecting out the DC component.

In the first part of our study, the input sequence consisted of translations. As time-varying
process for the translations, we implemented a two-dimensional random walk of an 11×11

window over the full image. The shift amplitudes were drawn from a continuous uniform
distribution between 0 and 2 pixels, allowing for subpixel shifts. The filters obtained are
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shown in Figure 2.2A. Each row contains the filter pairs of 6 subspaces, sorted by descend-
ing slowness from left to right and top to bottom. The filters clearly resemble global sine
wave functions. The wave functions differ in spatial frequency and orientation between
the different subspaces. Within each subspace, orientation and spatial frequency are al-
most identical, but phases differ significantly. In fact, the phase difference is close to 90◦

(90.2◦±3.8◦), resembling quadrature pairs of sine and cosine functions as it is the case for
the two-dimensional Fourier basis. Accordingly, the subspace energy output z(t) of the
resulting SSA representation is very similar to the power spectrum of the image x(t).

In fact, one can think of SSA as learning a generalized power spectrum based on a slowness
criterion. While the power spectrum is known to be invariant against translations with
periodic boundary conditions, perfect invariance—or infinite slowness—is not achieved
for the translations with open boundary conditions studied here (see Figure 2.2 B). The
slowness criterion is best understood as a penalty of fast changes since it decomposes into
an average over penalties of fast changes for each individual component (see methods).
Therefore, we will always show the inverse slowness v for each component such that the
smaller the area under the curve the better the average slowness.

The decrease in v, i.e. the increase in slowness, is substantial: the average inverse slowness
⟨v⟩ decreases approximately by a factor of three. The low frequency subspaces are clearly
the slowest subspaces, and slowness decreases with increasing spatial frequency. At the
same time, however, the inverse slowness of all learned subspaces is still larger than 0, i.e.
even for the slowest components, perfect invariance is not achieved. This is not surprising,
as perfect invariance is impossible whenever unpredictable variations exist as it is the case
for open boundary conditions.

In Figure 2.2 C, we show that SSA can indeed find perfectly invariant filter starting from
a random initial filter set if one imposes periodic boundary conditions. To this end, we
created 11 × 11 pink noise patches with circulant covariance structure, i.e. the pixels on
the left border of the image are correlated with pixels on the right border as if they were
direct neighbors. As time-varying process, we implemented a random walk with cyclic
shifts where the patches were translated randomly with periodic boundary conditions.
As in the previous study, the shift amplitudes were drawn from a continuous uniform
distribution between 0 and 2 pixels. Since the Fourier basis is the eigenbasis of the cyclic
shift operator it should yield infinite slowness for the cyclic boundary conditions. Indeed,
the filters learned from these data recover the Fourier basis with arbitrary precision. Per-
fect invariance is equivalent with the objective function converging to 0. This means that
the response of each subspace is identical for all shifts. Figure 2.2D shows the inverse
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Figure 2.2. SSA on translations with open and cyclic boundary conditions. The complete set of
filters learned from translated images with open and cyclic boundary conditions are shown in
(A) and (C), respectively. Each row shows the filters of 6 subspaces with 2 dimensions. The
subspaces are ordered according to their slowness, with the slowest filter in the upper left
corner and decreasing slowness from left to right and top to bottom. The inverse slowness v for
the individual subspaces after learning (black dots) and for the initial random filters (gray
squares) is shown in (B) and (D), respectively. For open boundary conditions (B), the inverse
slowness does not converge to 0, hence perfect invariance is not achieved. For cyclic shifts,
however, the inverse slowness approaches 0 with arbitrary precision (D), indicating
convergence to perfect invariance.

slowness v of the individual components. For all filters, v is very small (< 10−3), close to
perfect invariance and infinite slowness.

Given that the SSA representation learned for translations is very similar to the Fourier
basis and since the Fourier basis achieves perfect invariance for cyclic shifts we proceeded
to investigate whether the Fourier basis is optimal even for non-cyclic translations as well.
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We created three different data sets, with random translations as in the first study, but the
maximal shift amplitude of the 2D random walk was 1, 2, and 3 pixels, respectively. As
initial condition, we used the Fourier basis (Figure 2.3, ‘F ’) instead of a random matrix.
The optimized bases are denoted as Ui where i indicates the maximal shift amplitude.
We show the 2D-Fourier amplitude spectrum of the filters rather than the filters in pixel
space because it is easier to access the differences between the different bases. The DC
component is located at the center of the spectrum.

Fourier basis optimized basis
training test training test

1 pixel shift 0.17838 0.17725 0.13801 0.15359
2 pixel shift 0.29469 0.29185 0.24680 0.27570
3 pixel shift 0.41521 0.41943 0.36569 0.40423

Table 2.1. Control for overfitting. Objective on training and test set for optimized filters and
Fourier basis.

During optimization, the basis slightly departs from the initial condition but remains very
localized in the Fourier domain (Figure 2.3, ‘U1’). The low frequency filters become sensi-
tive to higher frequencies while the high frequency filters become also sensitive to lower
frequencies as the initial filters blur out towards the border or center, respectively. The
objective function is improved for the optimized filters not only on the training but also
on the test set (cf. Table 2.1). The slowness of the 60 individual components zi evaluated
on identically created test sets (x1, x2, and x3, respectively) is shown in Figure 2.3. The
Fourier filters are slower than the optimized filters for the first 20-30 components, then
about equal for 10 components, and significantly faster for the remaining components.

Figure 2.3 (facing page). Deviations from the Fourier basis for translations with open
boundary conditions. Here, we started the optimization with the Fourier basis (F ) as initial
condition. We used 3 different data sets sampled from the van Hateren image database using
2D translations with a shift amplitude of maximally 1, 2, or 3 pixels. The optimized filters Un,
where n is the maximal shift amplitude, do not deviate dramatically from the initial condition.
The amplitude spectra of all filters are shown in the upper panel with the DC component being
at the center. The amplitude spectra of the optimized filters blur out towards the lower
frequencies except for the lowest frequencies, which blur out towards the higher frequencies.
Only the highest frequencies show additional sensitivity at the lowest spatial frequencies
which cannot be explained by spatial localization. The slowness of the individual components
is shown in the lower panel. The black lines indicate the performance of the Fourier basis
applied to test data with shift amplitudes of up to 1 (solid), 2 (long dashes), or 3 (short dashes)
pixels. The gray lines show the performance of the optimal filters. SSA sacrifices slowness on
the slower filters to gain a comparatively larger amount of slowness on the faster filters. In this
way, overall SSA achieves better slowness.
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Figure 2.4. SSA filters for local rotation and scaling. Illustration of the filters obtained from
patch-centered rotation sequences (A,B) and patch-centered scaling sequences (C) with the
slowness of the individual filter subspaces before (random) and after the optimization (learned).
The filters are ordered in ascending inverse slowness v (row-wise) with the slowest feature in
the upper left and the fastest feature in the lower right corner. The data in (A) and (C) consist
of 11× 11 square patches from the van Hateren data set while the data for (B) consist of
121-dimensional round patches which are, for visualization, embedded in a 14x14 square
patch. The rotation filters match those found in steerable filter theory (Bethge et al., 2007). The
filters of the patch-centered anisotropic scaling exhibit localized edge filters centered towards
the patch boundaries.

Apparently, the SSA objective sacrifices a little bit of the slowness of the low frequency
components to get a comparatively larger gain in slowness from modifying the high fre-
quency components. The optimization of average inverse slowness in contrast to search-
ing for a single maximally slow component is a characteristic feature of SSA.

Even though we expect changes in natural movies to be dominated by local translations,
it is instructive to study other global affine transforms as well. Therefore, we applied SSA
to 3 additional data sets: The first data set contains 11× 11 patches from the van Hateren
image set which were rotated around the center pixel. The second data set consists of
14× 14 patches from the van Hateren image set which were also rotated around the cen-
ter pixel but where we kept only the pixels within a predefined circle. Specifically, we
reduced the number of dimensions again to 121 pixels by cutting out the corners which
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Figure 2.5. Filters of slowness, independence and mixture objective learned on movies. The
lower panel shows the performance with respect to both the slowness objective Eslow (blue)
and the sparsity objective Esparse (red) and the upper panel displays four sets of filters as
obtained for different values for the trade-off parameter β: The leftmost case (β = 0) is
equivalent to SSA and the rightmost case (β = 1) is equivalent to ISA. There is a large
difference between the two that can easily be grasped by eye. The example for β = 0.5 reflects
the crossing point in performance (see lower panel) meaning that the representation performs
slightly better than 80% of its maximal performance with respect to both objectives
simultaneously. The case β = 0.15 was hand-picked to represent the point where the filters
perceptually look similarly close to ISA and SSA.

left an 11× 11 circular image patch. The patches in the third data set were sampled with
sizes ranging from 9 × 9 to 13 × 13 pixels and then rescaled to 11× 11 pixels, in order to
obtain a patch-centered anisotropic scaling transformation. The preprocessing was iden-
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tical to the previous studies and the initial filter matrix was a random orthonormal matrix.
The filters and the objective of the individual subspaces of the 11 × 11 rotation data are
shown in Figure 2.4A. The filters resemble the rotation filters found with steerable filter
theory (Bethge et al., 2007). The slowness of all components is significantly larger than for
random filters, but with clearly decreasing slowness for the last subspaces. Notably, the
last subspaces have no systematic structure. This can be explained by the fact that when
rotating a square patch, the pixels in the 4 corners are not predictable unless for multiples
of 90◦ rotations. Therefore the algorithm cannot find meaningful subspaces that would
preserve the energy for the pixels in the corners. The filters in Figure 2.4B from the disc
shaped patches do not show these artifacts. Here, all filters nicely resemble angular wave
functions as expected from steerable filter theory and also exhibit better slowness. Finally,
the scaling filters are shown in Figure 2.4C. All filters resemble windowed wave functions
that are localized towards the boundaries of the patch. This indicates that a scaling can be
seen as a combination of local translations which go inward for downscaling and outward
for upscaling. All subspaces defined by the learned filters are significantly slower than
the random subspaces.

After characterizing the result of slow subspace learning for analytically defined trans-
formations we now turn to natural movies and the comparison between slowness and
sparseness. Specifically, we compare slow subspace analysis (SSA) to independent sub-
space analysis (ISA) in order to show how the slowness and the sparsity objective have
different effects on the receptive field shapes learned. To this end, we combine the two ob-
jectives to obtain a weighted mixture of them for which we can gradually tune the trade-off
between the slowness and the sparseness objective. In this way, we obtain a 1-parametric

Figure 2.6 (facing page). Trade-off in the performance with respect to slowness and sparsity.
When optimizing the filter set for a weighted superposition of the slowness and sparsity
objectives the performance with respect to Esparse decreases monotonically with Eslow (upper
left). The steepness of decay indicates the impact of the trade-off. The different colors
correspond to different datasets (see legend). While the performance with respect to Esparse

for the rotation data falls off quickly (green), the differences between scaling, translation and
movie data (cyan, blue, red) are not significant. The concave shapes of the curves indicate a
rather gentle trade-off. The dashed diagonal line indicates the break even point where both
objectives are reduced by the same factor relative to their optimal performance. The
corresponding filters are shown in the adjacent panels: The ISA filters are shown in (A) which
are independent of the temporal statistics. The ISSA filters at the break even point are shown
in (B) for movies, in (C) for translations, in (D) for rotations, and in (E) for scalings. The last
row shows the SSA filters in the same order: (F) for movies, in (G) for translations, in (H) for
rotations, and in (I) for scalings.
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family of objective functions

Eβ := βEsparse + (1− β)Eslow (2.1)

for which the parameter β determines the trade-off between slowness and sparseness.
Specifically, we obtain SSA in case of β = 0 and ISA for β = 1. As one can see in Figures 2.5
the filters learned with SSA (β = 0) look very different from those learned with ISA (β =

1). This finding contradicts earlier claims that the filters learned with SSA are comparable
to those learned with ISA. The most obvious difference is that the slowness objective works
against the localization of filters that is brought forward by the sparsity objective.

For 0 < β < 1 we will refer to the resulting algorithm as independent slow subspace analysis
(ISSA). If a representation is optimized forEβ its performance with respect to the slowness
objective Eslow decreases monotonically with β. At the same time, its performance with
respect to Esparse increases with β. Remarkably, it is possible to derive a representation
which performs reasonably well with respect to both sparseness and slowness simultane-
ously. At the crossing point where both objectives, Eslow and Esparse, are reduced by the
same factor the performance is still larger than 80% for each. Interestingly, for this opti-
mal trade-off the receptive fields look quite similar to those obtained with ISA. This may
explain why previous work on unsupervised learning with combinations of sparseness
and slowness did not reveal that the two objectives drive the receptive fields towards very
different shapes.

The trade-off in performance with respect to slowness and sparsity for natural movies,
translation, rotation, and scaling is summarized in Figure 2.6. It shows the ISA filters (A),
the ISSA filters at the break even point of slowness and sparsity performance for natural
movies (B), translation (C), rotation (D), and scaling (E) and in the same order the SSA
filters in (F,G,H,I). The concave shape of the curves (upper left) indicates that the trade-off
between the two objectives is rather graceful such that it is possible to achieve a reasonably
good performance for both objectives at the same time.

2.5 Discussion

Unsupervised learning algorithms are a widespread approach to study candidate com-
putational principles that may underly the formation of neural representations in sensory
systems. Slowness and sparsity both have been suggested as objectives driving the for-
mation of complex cell representations. More specifically, it was widely believed that the
filter properties obtained from slow subspace analysis would resemble those obtained
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with independent subspace analysis. Here, we showed that there is a striking difference
between the sets of SSA and ISA filters: While the sparsity objective of ISA facilitates lo-
calized filter shapes, maximal slowness can be achieved only with global receptive fields
as found by SSA.

The difference between slowness and sparseness in their effect on filter shapes is most
salient for the high spatial frequency filters. For low spatial frequency filters the number
of cycles is small because clearly it cannot get larger than the product of spatial frequency
and envelope size. Since previous studies have inspected only low spatial frequency fil-
ters the different effect of sparseness and slowness has gone unnoticed or at least not suffi-
ciently appreciated. A signature of the drive towards global filters generated by slowness
can be found in the bandwidth statistics presented in (Berkes and Wiskott, 2005). Global
filter shapes correspond to small bandwidth. While the authors mention that the frac-
tion of small bandwidth filters exceeds that found for physiological receptive fields they
rather suggested that this may be an artifact of their preprocessing specifically referring to
dimensionality reduction based on principal component analysis. However, the opposite
is the case: the preprocessing rather leads to underestimation of the fraction of small band-
width filters. Principal component analysis will always select for low spatial frequency
components and thus reduce the fraction of small bandwidth filters because it is the high
spatial frequency components which have the smallest bandwidth.

Also analytical considerations suggest that slowness is likely to generate global filters with
small bandwidth. For small image patches it is reasonable to assume that the spatio-
temporal statistics is dominated by translational motion. Thus, it is not surprising that
the filter properties of SSA found for natural movies resemble those for translations. In
computer vision, there is a large number of studies which derive features that are invari-
ant under specific types of transformations such as translations, scalings and rotations.
An analytical approach to invariance is provided by steerable filter theory (Knutsson and
Granlund, 1983; Freeman and Adelson, 1991) which allows one to design perfectly invari-
ant filters for any compact Lie group transformation (Hel-Or and Teo, 1998). The best
known example is the power spectrum which is perfectly invariant under translations
with periodic boundary conditions (Bethge et al., 2007). For the other Lie group trans-
formations studied in this paper, the symmetry was broken due to discretization and
boundary effects. In these cases the representations found with SSA can be seen as a gen-
eralization of the Fourier transform whose subspace energies are not perfectly invariant
anymore but at least maximally stable under the given spatio-temporal statistics.

The receptive fields of complex cells determined from physiological experiments rarely
exhibit multiple cycles as predicted by SSA. This indicates that complex cells in the brain
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are not fully optimized for slowness. It may still be possible though that slowness plays
some role in the formation of complex cells. The trade-off analysis with the mixed objec-
tive has shown that giving up some sparsity allows one to achieve both relatively large
sparsity and slowness at the same time with localized receptive fields.

The deeper principle underlying both sparsity and slowness is the idea of generative mod-
eling (Turner and Sahani, 2007). From a generative modeling perspective, one is most
concerned about modeling the precise shape of all variations in the data rather than just
optimizing some fixed architecture or feature space to be as invariant or sparse as possi-
ble. More specifically, in a generative modeling framework all ingredients of the model
are formalized by a density model and thus the likelihood becomes the natural objec-
tive function. This holds also true for the studies which combined the slowness objective
with a sparsity objective in the past (Hyvärinen et al., 2003; Cadieu and Olshausen, 2009,
2012; Berkes et al., 2009). The generative power of these models, however, still needs to
be significantly improved in order to be able to explain object recognition performance of
humans and animals. A better understanding of the partially opposing demands of slow-
ness and sparseness on the response properties of visual neurons will help us understand
the computational strategy employed by the visual system in reaching that performance.

2.6 Methods

2.6.1 Slow Subspace Analysis

The algorithm of slow subspace analysis (SSA) has previously been described by Kayser et
al (Kayser et al., 2001). Just like in independent subspace analysis (Hyvärinen and Hoyer,
2000) also in SSA the N -dimensional input space is separated into M = N

K independent
subspaces of dimensionality K and the (squared) norm of each subspaces should vary as
slowly as possible. The output function of the i-th subspace is then defined as

zi(t) = gi(x(t)) =
K−1∑
k=0

(
u⊤
iK+kx(t)

)2
, (2.2)

where K is the dimensionality of the subspace, m the number of the subspace, and U =

[u0, . . . ,uN−1] is the orthonormal filter matrix. It is important to notice that, for an input
signal x(t) with zero mean and unit variance, z(t) has mean K. For K = 2, the set of
squared subspace norms corresponds to the power spectrum of the Fourier transform if
the set of filters are the discrete Fourier transform.
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The objective function of SSA has been called “temporal smoothness” objective by Kayser
et al. (Kayser et al., 2001) and is given by

Eslow(U) =
1

M

M−1∑
i=0

v (zi) =
1

M

M−1∑
i=0

Var [żi]
Var [zi]

=
1

M

M−1∑
i=0

⟨
ż2i
⟩
t
− ⟨żi⟩2t⟨

z2i
⟩
t
− ⟨zi⟩2t

. (2.3)

Note, however, that Eslow increases with the amount of rapid changes and is minimized
subject to UU⊤ = I . To find the optimal set of filters U under the given constraints we
use a variant of the gradient projection method of Rosen (Luenberger, 1969) which was
successfully used for simple cell learning before (Hurri and Hyvärinen, 2003).

In order to compute the gradient of the objective function we have to compute the tempo-
ral derivative of the output signal z(t) first, using the difference quotient as approxima-
tion:

ż(t) = z(t+∆t)− z(t)
∆t

. (2.4)

As we use discrete time steps, we can set ∆t = 1 which leads to ż(t) = z(t + 1) − z(t).
This simplifies the objective function (2.3) as the temporal difference mean ⟨żi⟩2t = 0. The
objective function can be further simplified by using the fact that

⟨(
u⊤x(t)

)2⟩
t
= 1 for

||u||22 = 1 and x(t) having zero mean and unit variance, which leads to ⟨zi⟩t = K. The
complete objective function is then

Eslow(U) =
1

M

M−1∑
i=0

⟨[∑K−1
k=0

(
u⊤
iK+kx(t+ 1)

)2 −∑K−1
k=0

(
u⊤
iK+kx(t)

)2]2⟩
t⟨[∑K−1

k=0

(
u⊤
iK+kx(t)

)2]2⟩
t

−K2

(2.5)

For every iteration, the gradient of the objective function is computed, scaled by the step
length α, and subtracted from the current filter set

Ûi+1 = Ui − α∇f (Ui) . (2.6)

The partial gradient with respect to uiK+k is

∂Eslow(U)

∂uiK+k
=

2 ⟨[zi(t+ 1)− zi(t)] [z
′
i(t+ 1)− z′i(t)]⟩t

[⟨
zi(t)

2
⟩
t
−K2

]
− 2 [zi(t+ 1)− zi(t)]

2 ⟨zi(t)z′i(t)⟩
M [⟨zi(t)2⟩t −K2]2

(2.7)
with

z′i(t) =
∂zi(t)

∂uiK+k
=

⟨[
K−1∑
k=0

(
u⊤
iK+kx(t)

)2]
u⊤
iK+kx(t)x(t)⊤

⟩
t

. (2.8)
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The matrix containing the resulting filter set is then projected onto the orthogonal group
using symmetric orthogonalization (Löwdin, 1950)

Ui+1 = Ûi+1

(
Û⊤
i+1Ûi+1

)−0.5
, (2.9)

yielding the closest orthonormal matrix with respect to the Frobenius norm (Fan and Hoff-
man, 1955). Along this gradient a line search is performed where the initial step length
α is reduced until the objective function on Ui+1 is smaller than Ui before the iteration
proceeds.

The optimization is initialized with a random orthonormal matrix U0. As stopping cri-
terion the optimization terminates when the change in the objective function is smaller
than the threshold ϵ = 1e − 8. In all our simulations we used a subspace dimension of
K = 2. A python implementation of the algorithm can be found as part of the natter
toolbox http://bethgelab.org/software/natter/ (Sinz et al., 2013).

2.6.2 Independent Subspace Analysis

Independent subspace analysis (ISA) has originally been proposed by Hyvärinen and
Hoyer (Hyvärinen and Hoyer, 2000). The only difference between SSA and ISA is the ob-
jective function. Generally speaking, ISA is characterized by a density model for which the
density factorizes over a decomposition of linear subspaces. In most cases the subspaces
all have the same dimension, and in case of natural images the marginal distributions over
the individual subspaces are modeled as sparse spherically symmetric distributions. Like
Hyvärinen and Hoyer (Hyvärinen and Hoyer, 2000) we chose the spherical exponential
distribution

log p (zi(t)) = −α [zi(t)]
0.5 + β (2.10)

where zi is the subspace response as defined in Equation 2.2, α is a scaling constant and
β the normalization constant. Correspondingly, the objective function reads

Esparse(U) =
1

M

M−1∑
i=0

⟨
[zi(t)]

0.5
⟩
t
=

1

M

M−1∑
i=0

⟨[
K−1∑
k=0

(
u⊤
iK+kx(t+ 1)

)2]0.5⟩
t

. (2.11)

The scaling and normalization constantsα and β can be omitted. This leads to the gradient

∂Esparse(U)

∂uiK+k
= 0.5

⟨
[zi(t)]

−0.5 z′i(t)
⟩
t

(2.12)
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with z′i(t) as defined in Equation 2.8. The optimization is identical to SSA where only
objective and gradient are replaced. For the numerical implementation of ISA we used a
python translation of the code provided by the original authors at
http://research.ics.aalto.fi/ica/imageica/.

2.6.3 Data Collection

The time-varying input signal x(t)was derived from the van Hateren image database (van
Hateren and van der Schaaf, 1998) for translations, rotations and scalings and the van
Hateren movie database (van Hateren and Ruderman, 1998) for movie sequences. The
image database contains over 4000 calibrated monochrome images of 1536× 1024 pixels,
where each pixel corresponds to 0.1deg of visual angle. We created a temporal sequence
by sliding a 11×11window over the image. Step length and direction for translation, angle
for rotation and anisotropic scaling factors were sampled from a uniform random process.
If not stated otherwise, the translation was sampled independently for x- and y direction
from a uniform distribution on [−2; 2], the rotation angle from a uniform distribution on
[−180; 180) and the scaling factors independently for x- and y-direction from a uniform
distribution on [0.8; 1.2]. The movie database consists of 216 movies of 128 × 128 pixels
with a duration of 192 s and 25 frames per second. The images were taken in Holland and
show the landscape consisting mostly of bushes, trees and lakes with the occasional streets
and houses. The video clips were recorded from Dutch, German and British television
with mostly wildlife scenes but also sports and movies. For each stimulus set we sampled
120, 000 patches.

2.6.4 Preprocessing

The extracted 11×11 image patches were treated as vectors by stacking up the columns of
the image patches, resulting in a 121-dimensional input vector x(t). We projected out the
DC component, i.e. removed the mean from the patches, and applied symmetric whiten-
ing to the remaining 120 AC components. No low pass filtering or further dimensionality
reduction was applied. All computations were done in the 120-dimensional whitened
space and the optimized filters then projected back into the original pixel space.
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3 What is the Computational Goal of
Complex Cell Coding in V1?

This article is joint work of Jörn-Philipp Lies, Ralf M. Häfner, and Matthias Bethge. It
is a draft prepared to be submitted to PLoS Computational Biology. All simulations and
computations as well as the documentation of methods and results including figures were
done by JPL. The design of the experiments, the evaluation of the results and the discus-
sion were jointly done by all 3 authors.

The article is contained as submitted with only 3 changes, namely the citation style (using
author name and year instead of numbers), the figures are at the position in the text where
they are referenced instead of at the end of the article, and the bibliography is at the end
of the thesis. All changes are for enhanced readability only and do not alter the content.

3.1 Abstract

We seek to identify the computational goal underlying the response properties of complex
cells which are ubiquitous in primary visual cortex. They have localized and orientation
selective receptive fields (RF) but, in contrast to simple cells, are insensitive to phase. This
property can be useful to encode information about the contrast statistics of the visual
input. More specifically, the response properties of complex cells have been derived from
the redundancy reduction principle using independent subspace analysis (ISA). Slow fea-
ture analysis (SFA) provides an alternative model for complex cell learning which seeks
to make the neural responses as invariant to fast changes in the input as possible. Here
we set out to evaluate the slowness and redundancy reduction objectives with respect to
three important empirical findings about of complex cell RFs: 1) locality (i.e. finite, non-
zero RF size), 2) the linear relationship between RF size and RF spatial frequency (wavelet
scaling), and the aspect ratio of the RF envelope. We first use an approach similar to that
employed by Field 1986 for sparse coding. Instead of single Gabor functions we use the
energy model of complex cells. We evaluate the objective function of SFA and ISA on the
energy model responses to motion sequences of natural images for different RF spatial fre-
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quencies, RF envelope sizes and patch sizes. We find that SFA and ISA lead to completely
different optima. The objective function of SFA grows without bound for increasing en-
velope size and is in simulations only limited by a finite patch size. Consequently, SFA
learning by itself cannot explain spatially localized RFs but would need other mechanisms
such as anatomical wiring constraints to limit the RF size. In contrast, the objective func-
tion of ISA yields a clear optimum for RFs of finite, non-zero envelope size, regardless of
assumed patch size. However, ISA leads to physiologically unlikely large aspect ratios,
such that neither objective alone can explain all compared physiological RF properties.

3.2 Introduction

Neurons in the primary visual cortex are commonly classified into two different types:
simple cells and complex cells (Hubel and Wiesel, 1962). While both cell types are sensi-
tive to orientation and spatial frequency, only complex cells are invariant to phase. Ac-
cordingly, complex cell representations are often seen as an important building block for
higher-order visual tasks, such as object recognition (Riesenhuber and Poggio, 1999).

A variety of neural algorithms have been proposed that aim at explaining the response
properties of complex cells as components of an invariant representation that is optimized
for the spatio-temporal statistics of the visual input (Hyvärinen and Hoyer, 2000; Hyväri-
nen et al., 2001; Berkes and Wiskott, 2005; Cadieu and Olshausen, 2009, 2012; Karklin and
Lewicki, 2009; Kayser et al., 2001; Körding et al., 2004; Hyvärinen et al., 2003). The ob-
jective functions used for the optimization can coarsely be separated into two different
approaches. The first approach comes from the observation that the visual information
is highly redundant and thus the visual system should remove these redundancies to ob-
tain a robust and efficient code (Attneave, 1954; Barlow, 1961). Redundancy reduction
by means of sparseness maximization (Olshausen and Field, 1996) or independent com-
ponent analysis (ICA) (Bell and Sejnowski, 1997; Comon, 1994; Hyvärinen, 1997) led to
Gabor-shaped filters which resemble the receptive fields of V1 simple cells. Independent
subspace analysis (ISA) (Hyvärinen and Hoyer, 2000) finds complex cell properties, how-
ever, a quantitative comparison to physiological data has never been made. ISA combines
the independence objective (Jutten and Herault, 1991; Comon, 1994; Hyvärinen, 1997)
with the subspace pooling of the energy model of complex cells (Adelson and Bergen,
1985). The energy model is a parsimonious model for complex cells with invariance to
the phase of the stimulus but sensitive to orientation and spatial frequency.

The slowness objective, as defined in slow feature analysis (SFA) (Wiskott, 2003), provides
an alternative model for complex cell learning (Berkes and Wiskott, 2005) which seeks to
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A B

Figure 3.1. Filters learned using slowness (left) and redundancy reduction (right) objective on
two different datasets. Filters in (A) are learned on the van Hateren movie dataset while (B)
are image patches with 2D translations obtained from the van Hateren image database. For
both data sets, the filters learned under the slowness objective (Slow Subspace Analysis, left)
resemble the Fourier basis with global filters of all spatial frequencies and orientations. The
filters learned under the redundancy reduction objective (Independent Subspace Analysis,
right) are localized and resemble receptive fields recorded from cells in the primary visual
cortex. Both filters were learned on the identical data set and identical initial random filter
matrix, only with different objectives.

make the neural responses as invariant to fast changes in the input as possible. To obtain
complex cell features SFA requires the expansion of the input into the quadratic feature
space. Computationally, this expansion is costly. Slow Subspace Analysis (SSA) (Kayser
et al., 2001; Lies et al., 2013) combines the slowness objective with the same subspace pool-
ing as in ISA (Adelson and Bergen, 1985). Therefore, using SSA facilitates the comparison
of both objectives.

The filters obtained with SSA (left) and ISA (right) are shown in Figure 3.1. The filters in
(A) are learned on movie sequences sampled from the van Hateren movie dataset (van
Hateren and Ruderman, 1998) and the filters in (B) are learned on patches sampled from
the van Hateren image database (van Hateren and van der Schaaf, 1998) with 2D trans-
lations. In both cases, the filters of SSA and ISA are very different. SSA leads to global,
Fourier-like filters while ISA produces localized, Gabor-shaped filters.
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Here we set out to further examine the differences in the slowness and redundancy reduc-
tion objective with respect to three important empirical properties of complex cell RFs: 1)
locality (i.e. finite, non-zero RF size), 2) the relationship between RF size and RF spatial
frequency (wavelet scaling), and 3) the RF aspect ratio. We first use an approach similar
to that employed by (Field and Tolhurst, 1986) for sparse coding. Instead of single Ga-
bor functions we use the energy model of complex cells (Adelson and Bergen, 1985). We
evaluate both objectives on the energy model responses to motion sequences of natural
images for different spatial frequencies and envelope sizes with patch sizes ranging from
16×16 to 256×256. Patch sizes of 64×64, 96×96, and 128×128 are assumed to be the more
physiologically plausible patch sizes given the receptor density in the retina (van Essen
and Anderson, 1995) and the RF sizes in V1 (Gattass et al., 1981; Freeman and Simoncelli,
2011). The receptive field size increases similar to cone spacing with eccentricity, thus V1
receptive fields pool over roughly 5,000 to 15,000 cones.

3.3 Results

The general design of the simulations is shown in Figure 3.2. The model consists of two
static linear filters in quadrature phase whose responses are squared and summed, which
corresponds to the energy model (Adelson and Bergen, 1985). The filters are even and
odd symmetric Gabor filters with vertical orientation selectivity (i.e. 0◦) and centered at
the patch center. The four parameters which we varied throughout the experiments are
wavelength λ, envelope width σx, envelope height σy, and image patch size. The two
orthogonal filters form a 2-dimensional subspace and the output z(t) can be seen as the
squared norm (i.e. the radial component) of the 2D subspace. The input consists of image
patches sampled from the van Hateren image database (van Hateren and van der Schaaf,
1998). As temporal transformation we simulated a random walk by randomly shifting
the sampling window over the image with shift amplitudes drawn from a continuous
uniform distribution on [−2, 2], allowing for subpixel shifts.

We optimized the subspace responses z(t) for two different objectives: slowness and re-
dundancy reduction. The slowness objective is defined as maximizing the signal-to-noise
ratio (SNR)

SNR (z(t)) =
⟨z(t)⟩2

⟨ż(t)⟩2
. (3.1)

where the instantaneous variance ⟨z(t)⟩2 of the output z(t) is used to determine the signal
energy and the variance ⟨ż(t)⟩2 of the temporal changes defines the noise energy. With
z(t) being the output of the energy model, this optimization is identical to the optimiza-
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Figure 3.2. Schematic of the simulation. (A) The general design of the simulations. The
time-varying input x(t) is passed through an even and odd symmetric Gabor filter and the
filter responses are squared and summed up to form the energy model (or complex cell)
response z(t). (B) shows the varied parameters of the Gabor filters: wavelength λ, envelope
width σx, envelope height σy , and the filter size. The position of the Gabor is fixed at the center
of the patch and the preferred orientation is 0◦ for all simulations.

tion of slow subspace analysis (SSA) (Kayser et al., 2001; Lies et al., 2013). In the case of
independent subspace analysis (ISA) (Hyvärinen and Hoyer, 2000) we fit an elliptically
contoured gamma distribution to the response z(t) of the energy model and maximize
its negentropy, which is the difference of the entropy of a Gaussian distribution and the
entropy of the elliptically contoured gamma distribution with identical variance. Maxi-
mizing the negentropy of a distribution is one way to maximize its sparseness. For details
see Methods section.

For the first simulation we fixed the patch size to 96 × 96 and the aspect ratio σy/σx to
1.5, both lie within the physiologically plausible range (Ohzawa and Freeman, 1997; van
Hateren and van der Schaaf, 1998; Ringach, 2002; Gattass et al., 1981; van Essen and An-
derson, 1995). We computed the negentropy and the SNR for 12 different wavelengths,
from 4 pixels per cycle to 48 pixels per cycle in steps of 4, and 24 envelope widths σx of 2
to 48 in steps of 2. The SNR in dB and negentropy in nats are shown in Figure 3.3 A and
B, respectively, with the maxima marked with ×.

The SNR is maximized by an envelope size which increases slowly linear with wavelength.
Very small and very large envelope sizes are significantly worse than envelope widths
σx between 16 and 32 for the patch size used here. The optimal receptive field shape
with wavelength 48 pixels per cycle and envelope size σx = 26 and σy = 39 is shown in
Figure 3.3 C. The Gabor filter extends over the complete image patch in both vertical and
horizontal direction and expresses 2 and 3 subfields in the odd and even symmetric cases,
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Figure 3.3. Optimal complex cell receptive fields comparison of slowness and redundancy
reduction. Slowness (A) and redundancy reduction (B) of patch size 96× 96 with envelope
aspect ratio σy/σx = 1.5 computed on 1,000,000 image sequences. Slowness is quantified as
SNR in dB, redundancy reduction as negentropy in nats. The energy landscape is quite
different for both objectives: the slowness optimum is at high wavelengths and larger envelope
size, the redundancy reduction optimum is at low wavelengths and small envelope size. The
maxima are marked with ×. The optimal RF for slowness (C) resembles complex cell RFs
found in primary visual cortex. The optimal RF for redundancy reduction (D), however, does
not resemble physiological RFs.

respectively. The receptive fields resemble those found in physiological studies (Ringach,
2002; Jones and Palmer, 1987b; DeAngelis et al., 1993a,b).

The negentropy behaves quite differently. The optimal envelope size increases more rapidly
with wavelength for negentropy (0.15λ for SNR, 0.3λ for negentropy) and more strikingly
the optimum is at the lower end of the wavelengths and for significantly smaller recep-
tive field size. The best receptive field (within our test set) with wavelength 4 pixels per
cycle, envelope width σx = 10 and envelope height σy = 15 is shown in Figure 3.3 D. The
filters extend almost to the border in vertical direction but are further away from the bor-
der in horizontal direction. The number of visible subfields is 23 and 24 for the odd and
even symmetric cases, respectively. Receptive fields with such a large number of visible
subfields are incompatible with current empirical findings.
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In the second simulation, we investigated how the energy landscape changes if we remove
the subspace with the optimal filter dimension from the data (Figure 3.4). For this we
projected the data onto the (96×96 minus 2)-dimensional space orthogonal to the optimal
filter pair for slowness and redundancy reduction, respectively. The SNR after project-
ing out the slowest filter is shown in Figure 3.4 A. All filters with similar envelope size
and wavelength have reduced SNR, such that the new optimum (marked with ×) has a
significantly smaller wavelength of 20 pixel per cycle (Figure 3.4 C). The receptive field
still covers the complete patch but with smaller wavelength, resulting in more visible sub-
fields. The filters no longer resemble the classical receptive field shape with low subfield
number.

The negentropy of the remaining filters after projecting out the sparsest filter (Figure 3.4
B) does not change much. Therefore the next sparsest filter has the identical wavelength
(4 pixels per cycle) but slightly larger envelope (Figure 3.4 D, σx = 16). This increases the
number of visible subfields even more such that the filter does not resemble physiological
receptive fields.

In a second step, we then projected out the new slowest and sparsest filters and repeated
the simulation on the remaining (96×96 minus 4)-dimensional data to obtain the third
optimal filter set. For the slowness objective, as before, all filters with similar wavelength
and envelope size to the removed filter have lower SNRs (Figure 3.4 E). The new optimum
has a wavelength of 8 pixels per cycle and an envelope size of σx = 18 and σy = 27 (Figure
3.4 G). While the envelope size stayed roughly constant for the three slowest filters, the
wavelength decreased significantly such that only the slowest filter resembles receptive
fields found in V1.

The changes in the negentropy are again rather small (Figure 3.4 F). Just like the previous
two filter sets, the third sparsest filter set hast a wavelength of 4 pixels per cycle but a
smaller envelope size of σx = 8 and σy = 12 (Figure 3.4 H). However, the envelope size is
still too large compared to the wavelength to resemble physiologically plausible receptive
fields.

The slowest filters found in the previous simulation (Figure 3.3 B) extended over the com-
plete image patch, just as all filters in the complete SSA filter set (Figure 3.1 A & B, left).
We therefore ran simulations for 3 patch sizes (64× 64, 128× 128, and 256× 256), 3 wave-
lengths λ (8, 12, and 16 pixels per cycle), 6 aspect ratios (1.0, 1.5, 2.0, 3.0, 4.0, 6.0), 16
envelope widths σx of 2 to 32 in steps of 2 for 64× 64, 32 envelope widths σx of 2 to 64 in
steps of 2 for 128× 128, and 32 envelope widths σx of 2 to 128 in steps of 4 for 128× 128 to
verify if the SNR maximum scales with patch size. The SNR as a function of envelope size
is shown in Figure 3.5 A, B, and C for wavelengths 8, 12, and 16 pixels/cycle, respectively.
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The optimal σx as well as the maximum SNR increase with patch size for the slowness ob-
jective while wavelength shows little influence on envelope size and SNR. For 64×64 (blue
lines) the optimal envelope size is between 14 and 16 with a SNR of 42 dB, for 128 × 128

(red lines) the optimal envelope size is between 24 and 28 with a SNR of 53 dB, and for
256 × 256 (green lines) the optimal envelope size is between 46 and 50 with a SNR of 65
dB. The aspect ratio (different curves of same color) does not have a significant influence
on the optimal σx as the differences in SNR at the optimum are minimal (SD < 1). The
optimal aspect ratio is 1.5 for all but one configuration, where 1.0 and 1.5 have equal SNR.
This shows that the slowness objective leads to physiologically plausible aspect ratios but
the envelope size is only restricted by the patch size.

Receptive fields in the primary visual cortex have a similar number of subfields indepen-
dent of their eccentricity while the receptive field size increases substantially with eccen-
tricity (Ringach, 2002). From the equal increases of envelope size and wavelength follows
that the bandwidth of the filter is constant. This property is known as wavelet scaling. For
Gabor filters, the normalized bandwidth can be computed as Bdf =

√
2 ln 2π−1n−1

x where
nx = σx/λ (Thompson and Tolhurst, 1979; Kulikowski et al., 1982). The ratio nx = σx/λ

is widely used in physiological studies as scale-invariant receptive field property (Ku-
likowski and Bishop, 1981a,b; Jones and Palmer, 1987a; Ringach, 2002; Thompson and Tol-
hurst, 1979) which is proportional to the number of subfields for Gabor filters. In monkey
and cat nx is smaller than 0.8 (Ringach, 2002; Jones and Palmer, 1987a). Figure 3.5 showed
that the optimal envelope size under the slowness objective is defined by the patch size
and does not scale with wavelength. This implies that Bdf scales with inverse patch size
and λ but is independent of aspect ratio. We computed the optimal bandwidth for differ-
ent wavelengths, patch sizes and aspect ratios to verify this (Figure 3.6 A). Here, constant
bandwidth for all wavelengths represents a filter with perfect wavelet scaling properties.
The optimal filter under the slowness objective scales in fact perfectly with λ and patch

Figure 3.4 (facing page). Slowness and negentropy after removing the best complex cell
subspaces. The setup is identical to Figure 3.3. (A) and (B) are the slowness and redundancy
reduction objective, respectively, after projecting out the corresponding optimal complex cell
subspace defined by 3.3 C and D. The new optimal complex cell RF for slowness (C) has a
lower wavelength (48 to 22 pixels/cycle) but similarly large envelope size (26 to 22) while the
new optimal RF for redundancy reduction (D) has the identical wavelength (4 pixels/cycle)
but larger envelope size (10 to 16). The feature space was then reduced by the subspaces
spanned by C and D, respectively, and the SNR and negentropy were computed again. For the
slowness objective (E) the optimum has an even lower wavelength now (22 to 8 cycles/pixel)
while the envelope size decreased only slightly (22 to 18). The redundancy reduction objective
(F) has the maximum at the same wavelength as the previous two RFs (4 pixels/cycle) but a
smaller envelope size (16 to 8). The maximally slow RF (G) and maximally sparse RF (H) both
do not resemble RFs found in the primary visual cortex.
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size and is only for large wavelengths (relative to patch size) within the physiologically
plausible range ofBdf > 0.44 (gray area) (Ringach, 2002; De Valois et al., 1982). Thus slow-
ness does not exhibit any wavelet scaling property. The aspect ratio has no influence, as
the solid (aspect ratio of 1.5) and dashed (aspect ratio of 6) lines coincide. For redun-
dancy reduction (Figure 3.6 B) the aspect ratio has significant influence on the optimal
bandwidth. For an aspect ratio of 1.5 (solid line) and small wavelengths, the bandwidth
is not within the physiological range and scales with λ. However, for an aspect ratio of 6
the bandwidth does not scale significantly with λ and patch size. Since the bandwidth is
approximately constant the redundancy reduction filter with an aspect ratio of 6 exhibits
wavelet scaling properties.

To further investigate how well the two objectives can explain physiological data we com-
pared the optimal filters of slowness and redundancy reduction to the receptive field
properties from (Ringach, 2002) and Gabor fits to 16 × 16 ISA filter (Figure 3.7). The pa-
rameters are similar to the previous simulations: 8 different patch sizes (16× 16, 24× 24,
32× 32, 64× 64, 96× 96, 128× 128, 196× 196, and 256× 256), 7 aspect ratios (0.5, 1.0, 1.5,
2.0, 3.0, 4.0, 6.0), 3 wavelengths λ (8, 12, and 16 pixels per cycle), and envelope width σx

from 2 to half patch size in steps of 2. Figure 3.7 shows ratio nx = σx/λ at the optimum
as a function of the aspect ratio (data of 256×256 with nx > 4 for all configurations not
shown for clarity of the figure).

The aspect ratio of the Ringach data (cyan circles) is clustered between 0.5 and 2 and nx

between 0 and 1. The optimal nx for slowness (gray and green, green for physiologically
plausible patch size, shaded area variation over wavelengths) is invariant under the aspect
ratio, as to be expected from the previous simulation. However, only for patch sizes of
16× 16 and 24× 24 the optimal nx lies within the physiological data. The optimal nx for
larger patch sizes are significantly larger than those found in monkey.

For the redundancy reduction objective (red line, shaded area variation over wavelengths
and patch sizes) the aspect ratio has strong influence on the optimal nx while patch size

Figure 3.5 (facing page). Slowness increases with patch size. The three plots show the slowness
as SNR in dB for wavelengths 8 (top), 12 (middle), and 16 (bottom) cycles per patch, patch sizes
64×64 (blue), 128×128 (red), and 256×256 (green), and aspect ratios 1.0, 1.5, 2.0, 3.0, 4.0, and
6.0 as set of curves with identical color. The SNR scales with patch size from 42 dB for 64×64
to 65 dB for 256×256. The variation with wavelength or aspect ratio is around 1 dB. While the
variation with aspect ratio is rather small, the optimal aspect ratio is always between 1.0 and
1.5. The optimal envelope width scales significantly with patch size and to a lesser extend with
wavelength. The circle, square, and diamond mark the maximum of blue, red, and green set of
curves, respectively, with the exact values for SNR, aspect ratio and envelope width given in
the legend.
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Figure 3.6. Wavelet scaling of slowness and redundancy reduction. Optimal normalized
bandwidth Bdf as function of λ for patch sizes 64×64 (blue), 96×96 (red), and 128×128 (green)
and aspect ratios σy/σx 1.5 (solid) and 6.0 (dashed). The slowness optimal RFs (A) scale with λ
and inverse patch size. The aspect ratio has no influence on the optimum, as the dashed and
solid lines coincide. Only for large λ (relative to patch size) the bandwidth of the optimal filter
is within the physiologically found range (gray area). For redundancy reduction (B) the
optimal bandwidth scales with λ and inverse patch size for small aspect ratios and small λ. For
large aspect ratios patch size and wavelength have no strong influence, the filter bandwidth is
within the physiologically plausible range and the bandwidth of the optimal filters is constant,
i.e. the filters exhibit wavelet scaling properties.

and wavelength have no significant influence. The optimal nx is around 2.0 for an aspect
ratio of 0.5 (i.e. double as wide as long) and it approaches 0.5 for aspect ratios larger
than 3. This means that ISA leads to filters which have either physiologically plausible
envelope sizes or aspect ratios but not both. This is supported by the parameters of the
Gabors fitted to 16 × 16 ISA filters trained on van Hateren data (magenta diamonds).
The Gabor fits cluster densely around the redundancy reduction optimum with minimal
overlap with the physiological data. Fits to a complete SSA filter basis are not provided
for the following reason: SSA filters converge to the Fourier basis as shown in (Lies et al.,
2013). The best fitting Gabor filter to a Fourier filter has the identical orientation, phase,
and spatial frequency with an infinitely large envelope. Thus numerical fitting of SSA
filters leads to unreliable results in envelope size and was not included in the evaluation.
These results show that neither slowness nor redundancy reduction can explain all tested
properties of physiologically found receptive fields.

52



Jörn-Philipp Lies 3.4. Discussion

0 1 2 3 4 5 6
aspect ratio

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

n x

16x16
24x24
32x32

64x64

96x96

128x128

192x192

Ringach data ISA 16x16 fit slowness slowness redundancy reduction

Figure 3.7. Optimal receptive field size and aspect ratio of slowness, redundancy reduction
and physiological data. The cyan circles are receptive field data from monkey V1 (Ringach,
2002). The gray and green shaded areas are the ranges of slowness optimal RFs of patch size
16×16 to 192×192. The green areas represent patch sizes with a comparable number of pixels
as cones in a V1 receptive field, gray areas have significantly more or less pixels. The red area
are the redundancy reduction optimal RFs for all patch sizes. The magenta diamonds are fits
to the filters obtained from ISA on 16×16 patches. The optimum under the slowness objective
does not vary with aspect ratio. Only for very small patch sizes slowness is within the
physiological range. The redundancy reduction objective leads to RFs which either have a
physiologically plausible aspect ratio but too many subfields or the correct number of
subfields but with a physiologically implausible aspect ratio. The Gabor fits to the ISA filter
supports this finding as they cluster around the redundancy reduction curve. A fit to SSA
filters is not shown as SSA filters are close to the Fourier basis and a Gabor fit to a Fourier filter
has aspect ratio 1.0 but infinitely envelope size.

3.4 Discussion

The central question we wanted to answer here is: given the energy model with Gabor
filters, can the slowness and redundancy reduction principles account for complex cell
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receptive field properties found in physiological studies? Both principles have been used
to obtain complex cell properties in the past, however, both approaches used different
feature spaces and data sets and were never directly compared. We brought both princi-
ples together with identical feature spaces and data sets such that the only difference was
the objective function itself.

Here, we evaluated the slowness and redundancy reduction objectives by their ability
to explain three important empirical findings of complex cell receptive fields: locality,
wavelet scaling, and aspect ratio. We found that neither of the two objectives could explain
all three criteria. The redundancy reduction objective led to receptive fields with wavelet
scaling properties which were localized orthogonal to the preferred orientation (i.e. along
σx) but required implausibly large aspect ratios. The slowness-optimized receptive fields
had an aspect ratio well within the physiologically plausible range but were only limited
in extend by the patch size hence did not show wavelet scaling properties. Moreover,
we found that the optima are in principle different. While slowness prefers large, square,
full-field waves, redundancy reduction favors localized, elongated, high-frequency filters.

Previous studies on SFA used image sequences with patch sizes of 16 × 16 patches and
low pass filtering of two patches to the first 100 principal components (Berkes and Wiskott,
2005), effectively reducing the patch size to 50 dimensions per patch. In natural images
with their characteristic 1/f2 power spectrum, low frequencies convey more information
than high frequencies, thus PCA retains mostly low frequency components. Our results
show that for these parameter, finding physiologically plausible receptive field properties
is not surprising. The findings suggest that slowness prefers Gabor filters with large en-
velopes and of varying spatial frequency with preference to low frequencies. This limits
the range of possible ratios nx thus may lead to physiologically more plausible parameter.

An important note is that patch size and discretization is not a true physiological param-
eter. It is a necessary artifact of the numerical simulations, however, one can estimate the
patch size, or resolution, where a single pixel becomes undetectable. Every V1 complex
cell pools over approximately 5,000-15,000 receptors in the retina based on the findings
of V1 receptive field size (Gattass et al., 1981; Freeman and Simoncelli, 2011) and recep-
tor density in the retina (van Essen and Anderson, 1995). This sets an upper limit on the
spatial frequency theoretically available to V1. However, all physiological studies found
receptive fields with rather low spatial frequencies far from the upper limit. This could
be an artifact of the mapping procedure where cells with high frequency receptive fields
would be more sensitive to eye movements and more likely discarded due to their insta-
bility.
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The redundancy reduction objective prefers filters with high spatial frequency, large as-
pect ratio and a limited range of spatial bandwidth. The high frequency selectivity of
redundancy reduction implemented in ISA is well known and was already stated by the
original authors (Hyvärinen and Hoyer, 2000). Also the clear localization has been present
in previous studies, but the tendency to create rather large aspect ratios has not been re-
ported. This behavior is plausible within our findings, as there is a trade-off between
aspect ratio and envelope size, as depicted in Figure 3.7, which leads to physiologically
plausible aspect ratios but implausibly large envelope sizes.

One question that remains open is what the effect of a combined objective to the recep-
tive field would be. A combination of slowness and redundancy reduction has been used
in the bubbles framework (Hyvärinen et al., 2003), topographical ICA (Hyvärinen et al.,
2001), the structured model from video (Berkes et al., 2009), the multi-layer invariance
model of (Cadieu and Olshausen, 2009, 2012), and a simple linear combination of ISA
and SSA (Lies et al., 2013). All models were able to learn filters similar to those obtained
with ISA, i.e. localized and elongated. This indicates that the redundancy reduction ob-
jective dominates the slowness objective in the combined objective thus leading to filters
closer to the pure redundancy reduction optimum. Given the energy landscapes of both
objectives, a simple linear combination should not lead to physiologically plausible re-
ceptive fields but rather a bimodal energy landscape with the maximum depending on
the mixing factor and possibly a very narrow range of intermediate optima when shifting
from the slowness optimum to the redundancy reduction optimum. However, both objec-
tives are not directly numerically comparable. Negentropy and SNR are two completely
different measures with different dynamical ranges.

We found that neither objective alone can explain the response properties of V1 complex
cells. Both objectives can explain a subset of the features but would require additional con-
straints, such as wiring length constraints, to produce physiologically plausible receptive
fields.

3.5 Methods

The methods section is separated in three parts. The first part briefly describes the energy
model (Adelson and Bergen, 1985) on an abstract level and presents the framework of our
simulations. The second part describes the two different objective functions we apply to
the output of the energy model. The last part describes the data sets we used throughout
this paper. A python implementation is available on our website at
http://www.bethgelab.org/code/LiesEtAl2013b.
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3.5.1 Energy model

The model underlying all experiments in this paper is the energy model (Adelson and
Bergen, 1985) known from steerable filter theory (Gattass et al., 1981; Freeman and Adel-
son, 1991). The energy model was successfully used in complex cell modeling before
(Hyvärinen and Hoyer, 2000; Körding et al., 2004; Lies et al., 2013). The structure of the
energy model is depicted in Figure 3.2 A. It consists of two static linear filters ue and uo

whose responses are squared and summed to form the energy model response

z(x(t)) =
(

u⊤
e x(t)

)2
+
(

u⊤
o x(t)

)2
. (3.2)

The two filters form a quadrature pair, i.e. are orthonormal and have a phase difference of
π/2. They span a 2-dimensional subspace and the energy model response is the squared
norm (i.e. radial component) of the response of this subspace. The energy model is a
parsimonious model for complex cells in the primary visual cortex, as it provides invari-
ance to stimulus phase and, to some extend, spatial position. As linear filters we use
even and odd symmetric Gabor filters centered at the center of the patch. The preferred
orientation is always 0◦, i.e. vertical. The remaining parameters of the Gabor filters are
wavelength λ, envelope height σy, envelope width σx, and the size of the filter in general.
An illustration of the parameters is shown in Figure 3.2 B. To quantify the filter proper-
ties we compute the ratio nx = σx/λ where σx is the envelope width orthogonal to the
preferred orientation and λ is the preferred wavelength of the Gabor filter. nx is propor-
tional to the number of antagonistic subregions within the Gaussian envelope, which is
widely used as measure in physiological studies (Kulikowski and Bishop, 1981a,b; Jones
and Palmer, 1987a; Ringach, 2002; Thompson and Tolhurst, 1979). The normalized band-
width (Thompson and Tolhurst, 1979; Kulikowski et al., 1982) of the Gabor filter can be
derived directly from nx through

Bdf =
fu − fl

f0
=

√
2 ln 2

πnx
(3.3)

where Bdf is the normalized bandwidth, f0 is the frequency with maximum response,
and fu, fl are the frequencies above and below f0, respectively, where the response has
dropped to 50% compared to the maximum. The bandwidth converges to 0 ornx increases
without bounds, respectively, if the Gaussian envelope of the Gabor filter increases for
constant wavelength.
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The bandwidth in octaves for a Gabor can be computed from the normalized bandwidth

Boct = log2

[
1 +

Bdf

2

1− Bdf

2

]
(3.4)

under the constraint that Bdf < 2 or nx >
√
0.5 ln 2π, respectively, as the bandwidth in

octaves converges to infinity and is not defined for Bdf > 2. As the data from (Ringach,
2002) do not fulfill the constraint we used the normalized bandwidth.

For each configuration of λ, σx, σy, and patch size we computed the model response to
1,000,000 image sequences. These responses were then evaluated according to the objec-
tives presented in the following section.

To find the second best filter we project the data onto the n-2-dimensional subspace or-
thogonal to the two filters ue and uo. The input x(t) is reduced to x̂(t) = Wx(t) where W

is the n− 2-dimensional subspace. This procedure is repeated with first and second best
filter pair to obtain the third best filters on the remaining n-4-dimensional subspace.

3.5.2 Objectives

Slowness objective

The general idea behind the slowness objective (Hinton, 1989) is the observation that ob-
jects, on a coarse scale, vary only slowly over time while the light intensity of a single
pixel changes rapidly. The responses of cells should therefore be invariant to the fast
pixel variations and represent the slowly moving object. The best-known implementa-
tion of the slowness objective is Slow Feature Analysis (SFA) (Wiskott and Sejnowski,
2002). In SFA, the objective is to find for a multi-dimensional time-varying input sig-
nal x(t) = (x0(t), . . . , xN−1(t))

⊤ , t ∈ [0, T − 1] a real-valued (nonlinear) output function
z(t) = g (x(t)), g : RN 7→ RM which minimizes the temporal variance

∆(zi) :=
⟨
ż2i
⟩
t

(3.5)

under the constraints that the output signal has zero mean, unit variance, and the output
dimensions are uncorrelated

⟨zi⟩t = 0 (3.6)⟨
z2i
⟩
t
= 1 (3.7)

⟨zizj⟩t = 0 ∀i ̸= j. (3.8)

57



Chapter 3. Complex Cell Coding in V1 PhD thesis

Here, ⟨·⟩t is the temporal average and żi the temporal derivative. We dropped the explicit
notation of the temporal dependence of zi to make the equations more readable. Con-
straint 3.6 is merely for convenience to keep the following constraints simpler. Constraint
3.7 ensures that the trivial solution g (x(t)) = 0 is not feasible and constraint 3.8 enforces
that the output encodes different information in each dimension. Note, however, that g(x)
could be a mapping that entirely ignores x2, . . . , xn by using a set of nonlinear functions
{gk(x1)}k that all only depend on x1 and that Constraint 3.7 also precludes the possibil-
ity to model perfect invariances as otherwise possible in the case of compact Lie groups.
Constraints 3.7 and 3.8 can be combined into⟨

zz⊤
⟩
t
= 1 (3.9)

where 1 is the identity matrix of matching dimensionality.

From a machine learning point of view, SFA is equivalent to oriented PCA where the static
variance (Eq. 3.9) is interpreted as signal energy, the temporal variance (Eq. 3.5) as noise
energy, and the goal is to maximize the signal-to-noise ratio (SNR)

SNR (zi) =
Var [zi]
Var [żi]

. (3.10)

If the temporal variance Var [żi] converges to 0, i.e. the signal is perfectly invariant, the
SNR converges to infinity. In this paper, the output function g(·) is the energy model
z(x (t)) =

(
u⊤
e x (t)

)2
+
(
u⊤
o x (t)

)2 defined in Eq. 3.2 in the previous section. Maximizing
the SNR of energy model outputs is known as Slow Subspace Analysis (SSA) (Kayser
et al., 2001; Lies et al., 2013). Here, we use only one complex cell, thus z(t) = z0(t) is a
one-dimensional output signal.

Reduncancy reduction objective

The idea that the visual system might apply a redundancy reduction objective roots in the
observation that the visual pathway has only limited capacity and cells therefore want to
remove redundant information in their responses (Attneave, 1954; Barlow, 1961; Atick and
Redlich, 1990).

One mean of achieving redundancy reduction is to make the model responses as statisti-
cally independent as possible, for example using independent component analysis (ICA)
(Jutten and Herault, 1991; Comon, 1994; Bell and Sejnowski, 1995). As independence max-
imization is not defined for a one-dimensional output, we optimize z(t) for sparseness
(Olshausen and Field, 1996). For a detailed explanation how independence and sparse-
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ness are linked see e.g. (Hyvärinen, 2010). Note that, even though we use a time-varying
input x (t), the redundancy reduction objective used here does not require temporal cor-
relations between following time steps. In fact, any permutation of the time series would
lead to the same results as the objective does not contain a temporal component.

A widely used measure of sparseness of a distribution is the negentropy (Comon, 1994;
Hyvärinen, 1997). The negentropy of a distribution is defined as the difference of its en-
tropy to the entropy of a Gaussian distribution with the same covariance Σ, i.e. it quan-
tifies the non-Gaussianity of the distribution. To compute the negentropy we need to fit
a distribution to the filter outputs of our simulation data. We chose the elliptically con-
toured Gamma distribution as it matches the fact that the energy model response is the
squared radial component of the 2-dimensional linear subspace spanned by its filters. We
estimated the shape parameter a and scale parameter b using standard maximum likeli-
hood estimation implemented in SciPy.

For the elliptically contoured gamma distribution with shape parameter a, scale parame-
ter b, and of dimension q, the entropy can be computed analytically (Hosseini and Bethge,
2013):

H (XECG) = +
1

2
log2 (|Σ|)− log2

(
Γ (q/2)

π
q
2Γ (a) ba

)
− (a− q/2)

(
Ψ(a) + log2 (b)

)
+ a. (3.11)

whereΨ is the digamma function. Given the entropy of a Gaussian distributionH (XGauss),
the resulting negentropy objective is

J (XECG) = H (XGauss)−H (XECG) (3.12)

= log2

(
πeσ2√
|Σ|

)
+ log2

(
Γ (q/2)

π
q
2Γ (a) ba

)
− (a− q/2)

(
Ψ(a) + log2 (b)

)
+ a.

(3.13)

This approach corresponds to Independent Subspace Analysis (ISA) (Hyvärinen and Hoyer,
2000) with only one subspace, the elliptically contoured gamma distribution as target dis-
tribution, and dimensionality q = 2.

3.5.3 Data sets

The time-varying input signal x (t) was derived from the van Hateren image database
(van Hateren and van der Schaaf, 1998). The image database contains over 4000 calibrated
monochrome images of 1536×1024 pixels with 12 bit pixel depth. Each pixel corresponds
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to 0.1deg of visual angle. We created a temporal sequence by sliding a window of size
16× 16, 24× 24, 32× 32, 64× 64, 96× 96, 128× 128, 196× 196, and 256× 256, respectively,
over the image. Step length and direction for translation were sampled from a continu-
ous uniform distribution on [−2; 2], allowing for subpixel shifts. For each patch size we
sampled 1, 000, 000 image patch pairs (before and after translation).

The filters in Figure 3.1 (A) were learned on 11×11 patches obtained from the van Hateren
movie dataset (van Hateren and Ruderman, 1998) and the filters in (B) were learned on
11 × 11 patches sampled identically from the van Hateren image database mentioned
above with identical translations.
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4 Slow Feature Analysis versus Slow
Subspace Analysis

This chapter contains results obtained in the process of developing the previous two arti-
cles but which have not been published (yet). The main focus here lies on the differences
and commonalities of Slow Feature Analysis (SFA) (Wiskott and Sejnowski, 2002) and
Slow Subspace Analysis (SSA) (Kayser et al., 2001; Lies et al., 2013).

In the following, I will first give a short introduction into SFA and subsequently discuss
3 studies on the differences of SFA and SSA and how SSA is better suited for explaining
physiological propertied of V1 complex cells.

4.1 Slow Feature Analysis

The general idea is for a given multi-dimensional, time-varying input signal

x(t) = (x0(t), . . . , xN−1(t))
⊤ , t ∈ [0, T − 1] (4.1)

to find a real-valued output function z(t) = g (x(t)) ,g : RN 7→ RM which minimizes the
temporal variance

∆(zi) :=
⟨
ż2i
⟩
t

(4.2)

under the constraints that the output signal has zero mean, unit variance, and the output
dimensions are uncorrelated

⟨zi⟩t = 0 (4.3)⟨
z2i
⟩
t
= 1 (4.4)

⟨zizj⟩t = 0 ∀i ̸= j. (4.5)

Here, ⟨·⟩t is the temporal average and żi the temporal derivative. We dropped the explicit
notation of the temporal dependence of zi to make the equations more readable. Con-
straint 4.3 is merely for convenience to keep the following constraints simpler. Constraint
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4.4 ensures that the trivial solution g (x(t)) = 0 is not feasible and constraint 4.5 enforces
that the output encodes different information in each dimension. Note, however, that g(x)
could be a mapping that entirely ignores x2, . . . , xn by using a set of nonlinear functions
{gk(x1)}k that all only depend on x1 and that Constraint 4.4 also precludes the possibility
to model perfect invariances as otherwise possible in case of compact Lie groups. Con-
straints 4.4 and 4.5 can be combined into⟨

zz⊤
⟩
t
= 1 (4.6)

where 1 is the identity matrix of matching dimensionality.

The common approach (Wiskott and Sejnowski, 2002; Berkes and Wiskott, 2005) is to de-
compose the transformation g(x(t)) into a nonlinear stage followed by a linear transfor-
mation

z(t) = g (x(t)) = U⊤h(x(t)). (4.7)

with U ∈ RQ×M and h : RN 7→ RQ. In the following, we write h instead of h (x (t))
to improve readability. If we assume that, without loss of generality, ⟨hi⟩t = 0 then the
constraint (4.3) is fulfilled trivially. Constraints (4.4) and (4.5) can be combined and then
take the form of

⟨zizj⟩t =
⟨(

u⊤
i h
)(

u⊤
j h
)⟩

t
= u⊤

i

⟨
hh⊤

⟩
t
uj

= u⊤
i Chuj (4.8)

where Ch is the covariance of h (x (t)). Similarly, temporal variance can be rewritten as

∆(zi) =
⟨
ż2i
⟩
t
=

⟨(
u⊤
i ḣ
)2⟩

t

= u⊤
i

⟨
ḣḣ⊤

⟩
t
ui

= u⊤
i Cḣui. (4.9)

From a machine learning perspective, SFA can be seen as a special case of oriented prin-
cipal component analysis (PCA) (Diamantaras and Kung, 1994; Bethge et al., 2007) where
the static variance (Eq. 4.8) is interpreted as signal energy and the temporal variance (Eq.
4.9) as noise energy and the goal is to maximize the signal-to-noise ratio (SNR) or identi-
cally minimize its inverse

v (zi) =
Var [żi]
Var [zi]

=

⟨
ż2i
⟩
t⟨

z2i
⟩
t

=
u⊤
i Cḣui

u⊤
i Chui

. (4.10)
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It is well known that this type of optimization problem can be solved by solving the gen-
eralized eigenvalue problem (Golub and Van Loan, 1996):

ChUV = CḣU, (4.11)

where U is the matrix of the generalized eigenvectors and V is the diagonal matrix of
the generalized eigenvalues. The smallest eigenvalue corresponds to the smallest inverse
SNR, i.e. the largest slowness, and the corresponding eigenvector describes the slowest
direction in feature space.

For the learning of complex cells (Berkes and Wiskott, 2005) the algorithm has been ap-
plied in the full quadratic feature space, i.e. the expansion of the input into the space of
all monomials of degree 2. One potential shortcoming of this expansion is that it leads
to a drastic increase in the dimensionality of the data, which presents a computational
challenge. Moreover, it weakens the link between the representation and the raw-data,
which may cause the representation to focus on irrelevant aspects.

4.2 Spike-triggered covariance analysis of SFA

In this first study we show that SFA fails to reproduce the characteristic findings of spike-
triggered covariance (STC) analysis for real neurons. For STC analysis (de Ruyter van
Steveninck and Bialek, 1988; Bialek and van Steveninck, 2005), the neuron is presented
with a series of stimuli which are then grouped into the set of stimuli which elicited a spike
in the neuron and the set of all stimuli. To evaluate which features of the stimuli drove
the cell the eigendecomposition of the covariance matrix of the spike set Cspike and the
complete set Call is computed. The eigenvectors of Cspike with eigenvalues significantly
larger or smaller than the range of eigenvalues of Call define the subspace of excitatory
and inhibitory features, respectively. In contrast to spike-triggered average (STA) where
only the average excitatory stimulus is computed, STC allows for more complex features.
The range of eigenvalues of Call is called the noise level.

Applied to recordings from real neurons, spike-triggered covariance indicates that only
a small fraction of dimensions are necessary to predict the neural responses (Rust et al.,
2005; Chen et al., 2007), the quadratic forms learned with slow feature analysis, however,
have very broad eigenspectra. This implies that a large fraction of dimensions is necessary
to predict the neural responses in the SFA model. In order to compare the theoretically
derived SFA features to the STC data, we generated Poisson spike responses with matched
firing rates and an identical time window.
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We computed SFA filters on the quadratic feature space of the 100 lowest Fourier com-
ponents of 11 × 11 image patches sampled from the van Hateren image database (van
Hateren and van der Schaaf, 1998). As temporal transformation we applied a 2D transla-
tion with shift amplitudes drawn from a 2D uniform continuous distribution on [−2 : 2]

to the data. Subsequently, we applied exactly the same STC analysis in (Chen et al., 2007;
Rust et al., 2005) to the model data. We applied a sequence of 50000 Gaussian white noise
patterns to the SFA filter. The filter responses were centered at their respective median
and split in two firing rate sets, the excitatory from all positive responses (i.e. larger than
median) and the inhibitory from the absolute value of all negative responses (i.e. smaller
than median). The firing rates were then used to generate Poisson spike counts. Given
spike counts and stimuli, we computed the spike triggered covariance (STC) for 100 dif-
ferent noise stimulus sets per SFA filter. To determine which eigenvectors are significant,
we computed the STC with shuffled spike counts as control.

We obtained a very large numbers of significant eigenvalues, in clear contradiction to
the experimental data shown in Figure 4.1. The first row shows the eigenspectrum of
the STC matrix of a complex cell recorded in monkey (A, replotted from (Chen et al.,
2007)) and the eigenspectrum of the SFA STC matrix (B). The dashed lines correspond
to mean noise level ± 4.4 SD, which corresponds to a confidence interval of p < 10−4

for Gaussian distributed eigenvalues. The number of eigenvalues which are significantly
larger or smaller than the noise level (big circles) is larger for SFA than for the monkey cell.
This becomes most obvious when looking at the histogram of significant excitatory (larger
than noise level) and inhibitory (smaller than noise level) eigenvectors. For 130 monkey
cells (C, replot from (Chen et al., 2007)) there are only few significant eigenvectors while
for 980,000 SFA cells (D), out of the 100 eigenvectors almost all are significant when using
the same criterion and a matched noise level.

For SSA, the number of significantly larger eigenvalues is given by design. The number of
eigenvalues is equal to the dimensionality of the energy model, i.e. 2 for all simulations
shown here. This is because the SSA model only responds to stimuli within the subspace
spanned by its simple cell receptive fields. Therefore, the covariance matrix would have
non-zero eigenvalues for the basis vectors of the responsive subspace and zero for all
non-responding feature dimensions. Note, that the eigenvectors need not be exactly the
simple cell receptive fields of the energy model but can be any basis of the feature space.
However, for the 2D energy model with quadrature pair Gabor filters this would only
lead to an offset in the phase for the two filters.
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Figure 4.1. Model complex cells derived with SFA fail to reproduce the small numbers of
significant eigenvalues found empirically with STC analysis. The spectrum of eigenvalues
(eigenspectrum) of the STC matrix of one cell recorded from V1 in an awake monkey (Chen
et al., 2007) is shown in (A), the eigenspectrum of the STC of one SFA filter is shown in (B). The
dashed lines correspond to the mean noise level ± 4.4 SD, which corresponds to a confidence
interval of p < 10−4 for Gaussian distributed eigenvalues. One clear difference is the number
of significant eigenvectors. While for the V1 cell, only a few eigenvectors are significant, for the
SFA model almost all eigenvectors are significant. The histogram of the number of significant
excitatory and inhibitory eigenvectors is shown in (C) for the physiological data and in (D) for
the SFA model. While the V1 cells have only few significant eigenvectors for all 130 recorded
cells, the 980000 cells of the SFA model have on average 80 significant excitatory and inhibitory
eigenvectors out of the 100 dimensions. The histogram bins with 0 entries were not plotted for
clarity of the figure.

4.3 Average slowness

In the following study, we compare the slowness, i.e. v defined in Equation 4.10, of SSA to
SFA. Strictly speaking, Equation 4.10 defines the inverse slowness, this means the smaller
v the “slower” are the filter responses. A meaningful comparison can only be carried out
with respect to the same feature space. Therefore, we chose as feature space the squared
filter responses of the optimized SSA filters y(t) =

(
U⊤x (t)

)2, where U is the filter matrix
learned with SSA, which spans a subspace in the full quadratic feature space. We then
applied linear SFA to the feature vectors y(t) to obtain the SFA filter matrix QSFA. The
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SSA filter matrix QSSA has the following structure

QSSA =



1 0 · · · 0

1 0 · · · 0

0 1 · · · 0

0 1 · · · 0
...

... . . . ...
0 0 · · · 1

0 0 · · · 1


(4.12)

which simply sums up the squared filter responses and preserves only half of the dimen-
sions.

Figure 4.2 shows the cumulative sum of the objective

v (zi(t)) =
Var [żi]
Var [zi]

, (4.13)

with zi(t) = Q⊤yi(t) and Q being QSFA for linear SFA (dashed), QSSA for SSA (solid), and
a random filter matrix (dotted). SFA clearly finds the slowest feature, but for more than
the first few components, the SFA filters are on average less slow, i.e. have larger v and
are therefore “faster”, than the SSA filters. These findings are consistent for translation
(Figure 4.2A), rotation (Figure 4.2B), scaling (Figure 4.2C), and natural movie sequences
(Figure 4.2D). The effect is the strongest on natural movie sequences, with the SFA filters
being 56% “faster” on average than the SSA filters and only slightly slower than random
filters.

4.4 Optimal quadratic feature

To further evaluate how SFA and SSA differ we compared the 8 slowest filters of SSA and
SFA over the complete quadratic feature space. We therefore applied SFA and SSA to the
quadratic feature space over the 16 lowest Fourier components of the circulant pink noise,
2D translation, and movie data set used in Chapter 2 (Lies et al., 2013). The filters in Figure
4.3 show the quadratic feature space where the diagonal are the squared components
and the off-diagonal entries are the product of component i and j. Since the matrix is
symmetric, only the upper triangular part was used for training. The filters are ordered
in decreasing slowness from top to bottom.
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Figure 4.2. Linear Slow Feature Analysis (SFA) learns faster filters than SSA. Linear SFA
applied on the squared filter responses of the SSA filters obtained in Figures 2.2 and 2.4,
shown as inlays. The panels show the cumulative sum of the objective v of SFA (dashed line),
SSA (solid line), and a random filter matrix (dotted line). (A) shows the results of translation,
(B) of patch-centered rotation, (C) of anisotropic scaling and (D) of the van Hateren movie
sequences. SFA is slower than SSA for the first few components, but SSA has the better overall
slowness for all 4 data sets.

Both SSA and SFA recover the quadrature pairs of the Fourier power spectrum for the
ideal case of shifts with periodic boundary conditions (A). For all filters only two squared
components are active which correspond to the Fourier components with equal spatial
frequency and orientation. For translation (B) and movie data (C) SSA still finds the
quadrature pairs as slowest components, although not as noise-free as for the circular
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Figure 4.3. Comparison of quadratic features learned with SSA and SFA. Each column
visualizes the features learned with SSA and SFA for three different cases: shifts with periodic
boundary conditions (A), shifts without periodic boundary conditions (B), and van Hateren
movie (C). Within a column each patch shows the weights in the full quadratic feature space
spanned by all pairwise products of sixteen Fourier basis coefficients. In the ideal case of shifts
with periodic boundary conditions, the learned features of both SSA and SFA perfectly
resemble the quadrature pairs of the Fourier power spectrum (A). However, SFA extracts
completely different features if the artificially imposed periodic boundary conditions are
dropped, whereas the features of SSA are still similar to the quadrature pairs of the Fourier
power spectrum (B). The same is true for the case of the van Hateren movie (C).

data. SFA, in contrast, no longer finds the quadrature pairs. The greedy optimization
strategy of SFA over the full quadratic feature space determines the total image variance
as the slowest feature, since the slowest filter pools over all quadratic components. Also,
the following features are not selective for a characteristic subspace but integrate over a
large set of dimensions for both data sets.

4.5 Conclusion

The conclusion from these studies is that the simple subspace energy model underlying
SSA provides a more suitable framework to learn transformation invariances than the
quadratic feature space approach of SFA, because it better resembles the structure found
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in primary visual cortex. Furthermore, employing the full quadratic feature space leads
to a rapid inflation of the number of parameters—growing as O(n4)—because the input
dimensionality increases from n to (n2 + n)/2 dimensions. While still tractable for small
dimensions, SFA learning becomes quickly impracticable and noise sensitive for increas-
ing n. SSA, in contrast, makes use of a principled inductive bias borrowed from steerable
filter theory to set up the feature space. By working directly on the input (pixel) space,
the number of parameters to optimize is in O(n2) and all information is preserved by
providing a complete filter set over the input space.

While these results indicate that SFA has a lot of drawbacks it still has clear advantages
such as providing a closed-form solution and very effective dimensionality reduction. The
focus here is clearly on the ability to explain physiologically found properties of complex
cells and the ability to extract Lie group operators, for which SSA is an advantageous
choice over SFA.

As a final difference between SSA and SFA that I investigated in the course of studying
the slowness objective is the average “slowness” of the obtained filters. In the case of
slowness optimization over the complete space of squared filter responses, SSA exhibits
better overall slowness while SFA finds the slowest features. This means that for finding
the one or two slowest components, e.g. for extracting a single source from a noisy signal,
SFA is the better choice. However, for building a complete and slow representation of the
feature space, SSA finds the on average slower features thus providing a more invariant
representation.
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5 Discussion

The main conclusions of this work are 1) that slowness and redundancy reduction are con-
tradictory objectives with completely different optima and 2) neither can solely account
for the different complex cell properties. I will discuss the individual findings in detail in
the following sections.

5.1 Slowness

We found that slowness, as defined by Kayser et al. (2001) or Wiskott and Sejnowski (2002),
leads to global, Fourier-like receptive fields in an energy model framework. This result
holds for a range of stimuli from periodic shifts to natural movie sequences. By opti-
mizing the envelope size of Gabor filters we found that the optimal size is limited only
by the patch size and boundary effects independent of the spatial frequency of the Ga-
bor. This stands in contrast to previous findings who all found complex cell properties.
Kayser et al. (2001) used undercomplete SSA, Körding et al. (2004) used overcomplete SSA,
Berkes and Wiskott (2005, 2002) used SFA on the quadratic feature space, and Kayser et al.
(2003) used SSA but learned the exponent of the energy model. All these previous stud-
ies found localized receptive fields with physiologically plausible bandwidths. However,
my findings suggest that this is not surprising but rather caused by the choice of simu-
lation parameters. As shown in Figure 3.7 in the previous chapter, for small patch sizes
up to 24 × 24 pixels, the bandwidths of the optimal Gabors are within the physiologi-
cal range. Kayser et al. (2001) used 10 × 10 patches without dimensionality reduction,
Kayser et al. (2003) used two 30 × 30 patches windowed by a Gaussian and then reduced
to the first 120 principal components (out of 1800) and Körding et al. (2004) used only
99 principal components. Berkes and Wiskott (2005) reduced two 16 × 16 patches to the
first 100 principal components before they expanded the quadratic feature space and ran
two 10 × 10 patches without dimensionality reduction as control. All these data lie well
below the minimum patch size where the lack of localization would become imminent.
While the two studies by Kayser et al. (2003) and Körding et al. (2004) use relatively large
image patches of 30 × 30, the significant dimensionality reduction using PCA reduces
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the input signal to the low frequency components thus truncating the high frequency
components which could lead to narrow bandwidth filters. A repetition of the aforemen-
tioned studies should lead to receptive fields dissimilar to complex cells when patches of
at least 64 × 64 become computationally feasible as input data, as suggested by my find-
ings. However, 64 × 64 patches require optimization over SO(4096) with approximately
50 million patches to fully determine the 4096 × 4096 SSA filter matrix. For SFA, the ex-
pansion of the 4096-dimensional input space into the quadratic feature space would lead
to a feature space in the regime of 107 dimensions thus requiring the eigenvalue decompo-
sition of a covariance matrix with more than 1014 degrees of freedom. Computationally,
such a large feature space is beyond what is reasonable today. The use of such large fea-
ture spaces would also pose an enormous challenge for the early visual system. The com-
plete human primary visual cortex has approximately 1.4 · 108 cells (Leuba and Kraftsik,
1994) and each cell receives input from 1,000 to 10,000 cells and its receptive field covers
approximately 5,000 to 15,000 photo receptors. Thus if the visual system would use the
quadratic feature space expansion it would have to use only a subspace of the complete
feature space. However, even if we take the lower bound on the number of receptors a V1
cell pools over, patch sizes of 24 × 24 or below largely underestimate the “physiological”
patch size and thus inducing a bias towards low frequency components.

Not only dimensionality reduction but also the attempt to avoid edge effects and aniso-
tropy of square patches significantly shifts the results towards a regime in which complex
cell-like results are seen. As an example I repeated the simulation of Figure 2.2 A where
SSA was applied to planar shifts but applied the windowing used by Körding et al. (2004),
in which patchs were multiplied with a Gaussian to attenuate the pixels further away
from the center. Patch and window size were chosen as in (Körding et al., 2004). While
the filters without the Gaussian envelope are clearly the Fourier basis (Figure 5.1, left),
the filters learned on the preprocessed image patches exhibit localization and resemble
V1 receptive fields (Figure 5.1, right). This shows that preprocessing can introduce a bias
towards physiological receptive field properties even though the image statistics might
not give rise to them otherwise.

Sprekeler and Wiskott (2011) realized recently that SFA does not depend on the (static)
statistics of the input images but only on the transformational information. Similar to
Bethge et al. (2007) they showed in a theoretical framework that SFA learns Lie gener-
ators where their derivation is independent of the spatial statistics of the input signal
and depends only on the transformation applied to it. Complex cell properties like side-
and end-inhibition, as found by Berkes and Wiskott (2005), can be explained within the
framework of Sprekeler and Wiskott (2011) as breaking the translation invariance induced
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Figure 5.1. SSA on planar shifts with and without preprocessing. The filters are learned using
SSA on van Hateren image patches with planar shifts as in Figure 2.2. The only difference
between the two sets of filters is that the left filters are learned without special preprocessing
while the right filters were filtered by a Gaussian envelope as done by Körding et al. (2004).
While the left filters clearly resemble the Fourier basis, the right filters largely resemble V1
receptive fields. Thus the preprocessing induced a bias towards physiological receptive field
appearance.

by the finite data. However, the independence of the spatial statistics makes it difficult
for the slowness objective to account for degenerations in receptive field properties due to
changes in the environment (Hirsch and Spinelli, 1970, 1971; Blakemore and Cooper, 1970;
Löwel and Singer, 1992; Wong, 1999; Albert et al., 2008), for example as introduced by rais-
ing kittens in an environment consisting purely of vertical or horizontal bars (Blakemore
and Cooper, 1970).

5.2 Redundancy Reduction

Redundancy reduction has been successfully used to derive bandpass filtering proper-
ties in retina and LGN (Buchsbaum and Gottschalk, 1983; Ruderman et al., 1998; Atick
and Redlich, 1990, 1992; van Hateren, 1992, 1993; Dong and Atick, 1995) as well as to de-
rive localization and orientation selectivity in V1 simple cells (Olshausen and Field, 1996,
1997; Bell and Sejnowski, 1997; van Hateren and van der Schaaf, 1998; van Hateren and
Ruderman, 1998) and phase invariance in V1 complex cells (Hyvärinen and Hoyer, 2000).
Here, we investigated the explanatory power of redundancy reduction for V1 complex cell
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properties by means of sparseness maximization. We used the ISA framework (Hyvärinen
and Hoyer, 2000) and modeled the subspace responses as elliptically contoured Gamma
distributions. The objective was the negentropy, i.e. the non-Gaussianity, of the subspace
responses which can be computed analytically (Hosseini and Bethge, 2013).

We compared the optimal filters with different physiological properties and found that
redundancy reduction can only explain some of them. The optimal bandwidth of the
filters showed a clear finite optimum within the range of physiological data (Ringach,
2002; Jones and Palmer, 1987a) but only for unphysiologically large aspect ratios of the
Gaussian envelope. Furthermore, the preferred spatial frequency was as high as possible
and only limited to the Nyquist frequency defined by the discretization of the image patch.
We also found wavelet scaling properties, i.e. the Gaussian envelope of the Gabor filter
increased proportionally to its wavelength. This property is also found in cells in the
primary visual cortex of monkey (Ringach, 2002) and cat (Jones and Palmer, 1987a).

The redundancy reduction objectives used here have no temporal component, i.e. only
depend on the spatial statistics of the image. Thus taking a natural image sequence and
shuffling the frames and destroying the temporal correlations would lead to exactly the
same results. Destroying (parts of the) temporal correlations with strobe rearing in cats
leads to receptive field deformations (Humphrey and Saul, 1998; Crémieux et al., 1987).
However, the strobe lighting not only destroys temporal correlations but also alters the
spatial lighting in the scene. It is not clear to what extent the receptive field changes are
caused by the temporal disruptions or by the lighting changes of the scene. Thus the
redundancy reduction objective could be able to explain the receptive field changes.

5.3 Combining slowness and redundancy reduction

A straightforward approach to combining the advantages of slowness and redundancy
reduction is a joint optimization. Several models with combined slowness and redun-
dancy reduction objective have been published (Hyvärinen et al., 2003; Berkes et al., 2009;
Einhäuser et al., 2002; Masquelier et al., 2007; Cadieu and Olshausen, 2009, 2012), but
the effect of slowness and redundancy reduction individually on the resulting filters has
never been investigated. Here, I present some of the most recognized studies and how
they relate to our findings.

Einhäuser et al. (2002) and Masquelier et al. (2007) presented a multi-layer model with a
simple cell layer and a complex cell layer as proposed by Riesenhuber and Poggio (1999).
In their 3-layer model, the first layer is the input, the second layer learns simple cell prop-
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erties and the third layer learns complex cell properties. Einhäuser et al. (2002) derived an
interesting prediction from their neural network model; they found that the simple cell
layer optimizes sparseness while the complex cell layer optimizes slowness. Based on this
observation, they predicted that temporal disruptions of the input at about 3 Hz would
destroy the formation of complex cell properties in their network but not simple cell prop-
erties. Masquelier et al. (2007) verified this with their model. However, Crémieux et al.
(1987) carried out an experiment where they found contradictory results. They raised
cats in stroboscopic environments with 2 Hz frequency and light pulse duration of 200
µs. According to their data, the number of complex cells as well as their properties are
comparable between strobe-reared cats and normal cats. The alterations found, for ex-
ample increases in receptive field size or decreases in number of direction selective cells,
were comparable between all cell types. This indicates that the formation of complex cells
is not disturbed by temporal disruptions. However, the different findings of the physio-
logical and computational studies could be caused by the slightly different experimental
conditions, i.e. the difference in strobe frequency and duration.

If simple cells and complex cells use different objectives to obtain their properties, they
would have to be two different cell classes. Yet, the segregation into simple cells and
complex cells is still a matter of debate (Dean and Tolhurst, 1983; Chance et al., 1999;
Mechler and Ringach, 2002; Priebe et al., 2004). Further, Fournier et al. (2011) found that
the ratio of complex cells to simple cells depends on the stimulus used to classify them.
This would require that the cells have both learning paradigms implemented in parallel
to obtain simple and complex cell properties depending on the input statistics.

The bubbles framework (Hyvärinen et al., 2003) and the similar framework of (Berkes
et al., 2009) offer joint optimization of slowness and redundancy reduction. Simple and
complex cells have the same objective thus making the bubbles framework more likely to
be able to explain the shift from complex cell to simple cell response as found by Fournier
et al. (2011). The spatial filters largely resemble those from ISA (Hyvärinen and Hoyer,
2000), or its extension to topographical ICA (Hyvärinen et al., 2001), which uses only in-
dependence as objective. This leaves the question how much the slowness objective con-
tributes to the final form of the receptive fields.

The temporal coherence objective (Hurri and Hyvärinen, 2003) is not identical to the slow-
ness objective of Wiskott (2003) and Kayser et al. (2001), as temporal coherence maximizes
the product of the responses r(·) of consecutive time steps

max
t

ftc(t) ∝ r(t)r(t− 1) (5.1)
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while SFA and SSA minimize the variance of the difference between consecutive time steps

min
t

fsfa(t) ∝ (r(t)− r(t− 1))2 . (5.2)

Assuming that the variance of r(t) and r(t − 1) over t is identical (i.e. r(·) is a stationary
process), we see that

fsfa(t) ∝ (r(t)− r(t− 1))2 = 2r(t)2 − 2r(t)r(t− 1) ∝ r(t)2 − ftc. (5.3)

This means that the slowness objective is the difference of response variance (if the re-
sponse has zero mean) and temporal coherence objective.

Cadieu and Olshausen (2008, 2009, 2012) proposed a two-layer model where the first layer
represents local features, i.e. simple and complex cell-like features, and the second layer
encodes higher order functionality like form and motion, as found in higher visual ar-
eas. The first layer learns complex-valued filters where the filter response amplitudes are
optimized for sparseness and slowness simultaneously. Real and imaginary part form a
two-dimensional energy model (Adelson and Bergen, 1985). The filters resemble complex
cell receptive fields, in agreement with our findings (Lies et al., 2013).

While all models presented here combine slowness and redundancy reduction in quite
different ways, the optimal filters are perceptually similar and resemble those found with
ISA, i.e. with redundancy reduction alone. Our results show that even if the filters in a
combined objective are perceptually closer to the redundancy reduction objective, their
performance with respect to both objectives can be larger than 80%. This can explain why
the combined models find ISA-like receptive fields. However, as the filter differences are
only marginal, the combined models do not explain what advantage the combined objec-
tives provide compared to the simpler redundancy reduction only objective or how much
their performance would change if the slowness objective would have been dropped.

5.4 Conclusion

We compared the redundancy reduction and slowness objective on two levels: first on the
level of complete filter sets (or a population level) and subsequently on a single cell level.
In both cases we found that the objectives have quite opposing optima.

Contrary to previous experimental findings, we found that the slowness objective leads
to global receptive fields. The size of the receptive fields is only limited by the patch
size and edge effects. Therefore the envelope size did not depend on the wavelength and
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thus slowness did not exhibit wavelet scaling properties. The optimal aspect ratio of the
envelope was between 1 and 1.5 and therefore within the physiologically plausible range.
However, this could be caused by the fact that our simulations were run on square patches
only, i.e. the aspect ratio of the patches was 1. If patches with, for example, an aspect ratio
of 2 would be used it is not clear if the optimal receptive fields would be global with an
aspect ratio around 2 or localized in one direction with an aspect ratio between 1 and 1.5.

The slowness optimization over the complete space led to Fourier-like receptive fields
for translation data and natural movies and led to circular Fourier-like receptive fields
for rotation data. This underlines the pre-dominance of translations in small-scale trans-
formations as previously shown by Wang and Simoncelli (2005). Our findings suggest
that slowness would require external constraints, for example wiring length constraints,
to limit the extent of the receptive field to a physiologically plausible size. The retina
provides this kind of constraint, as the receptive field size is limited and increases with
eccentricity.

For the redundancy reduction objective our results are mostly in agreement with previ-
ous findings. Redundancy reduction leads to localized, high-frequency filters with large
aspect ratios. The optimal aspect ratios are larger than any aspect ratios found in monkey
or cat visual cortex. The optimal bandwidth of the filters depends only on the content,
not on the size of the filter. It is also independent of the underlying spatial frequency,
thus exhibiting wavelet scaling properties. The optimal spatial frequency is as high as
possible and only limited by the discretization in the single cell simulation and the re-
quirement of all filters to cover the complete space in the population approach. Receptive
fields with very high frequencies have never been recorded in the visual cortex. Therefore
redundancy reduction would require physiological constraints which limit the upper fre-
quency available to the primary visual cortex in order to explain low frequency receptive
fields. An alternative explanation is that the experimental techniques are not able to map
high frequencies and obtain low frequency receptive fields due to undersampling.

A combination of slowness and redundancy reduction has successfully been used in sev-
eral studies (Hyvärinen et al., 2003; Berkes et al., 2009; Einhäuser et al., 2002; Masquelier
et al., 2007; Cadieu and Olshausen, 2009, 2012); however, the optimal filters always re-
sembled more those obtained with redundancy reduction only. We found that the com-
bination of slowness and redundancy reduction leads to better performance than both
objectives alone but the redundancy reduction objective dominates the filter shape at the
point of equal performance. However, one cannot simply ignore the opposing demands of
slowness and redundancy reduction on the complex cell responses. More work is needed
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to further investigate how both objectives interact and why the combined objective is per-
ceptually closer to redundancy reduction than to slowness.

In summary, both objectives—redundancy reduction and slowness—have its advantages
and disadvantages but neither can explain all complex cell properties evaluated in this
thesis. Even though they have been seen as equal candidates for complex cell coding,
the respective optima are quite different. In models with combined objectives the re-
dundancy reduction seems to dominate the filter shapes. One way to achieve a better
understanding of the computational strategy embedded in the visual system could be a
better understanding of the quite opposing demands of slowness and sparseness on the
response properties of neurons in the visual cortex.

5.5 How to continue

There are several options how to further investigate the role of slowness and redundancy
reduction in the emergence of complex cell properties and thus proceed with the line of
research presented in this thesis.

The lack of computational power and memory to cope with high-dimensional input data
might be resolved by increase in available memory and computational power e.g. of spe-
cialized numerical GPUs. However, currently with state-of-the-art systems an experiment
of this dimension would require an unreasonably large amount of time for algorithmic
design and execution.

Even though the model used here, as most V1 models, assumes a clear segregation into
simple and complex cells, the physiological evidence suggests that there is rather a con-
tinuum ranging from more linear, simple cell like responses to more non-linear, complex
cell like responses (Dean and Tolhurst, 1983; Chance et al., 1999; Priebe et al., 2004; Mech-
ler and Ringach, 2002). The classification of a cell into more simple or more complex can
even depend on the experimental stimulus (Fournier et al., 2011). Using a redundancy
reduction or slowness measure on recorded cell responses could provide an alternative
classification method. For example computing the negentropy of the responses of sev-
eral cells which are stimulated with natural movies and comparing the negentropy with
“classical” simple/complex classification methods. Or does the negentropy classification
change with the statistics of the input, as shown for classical methods by Fournier et al.
(2011)? And what about the slowness objective? Investigating in that direction would
present an interesting experimental project.
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