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Introduction

To treat in the same manner, by
means of axioms, those physical
sciences in which already today
mathematics plays an important part.

David Hilbert’s 6th problem

T he text in hand is build up by three main parts and is concerned with a special class
of homogeneous spaces and their application. The first part contains some old and
new facts about Riemannian homogeneous spaces. The second part contains a

classification result for Riemmanian homogeneous spaces in dimension three. And in the
third part we will use those 3–dimensional manifolds and the theory of general relativity
to construct homogeneous but non-isotropic cosmological models.

A Riemannian homogeneous space is a pair (M,G) where M is a manifold and G a smooth
Lie group acting on M effectively, transitively and with compact isotropy groups. The last
property allows M to admit Riemannian metrics which are invariant under the action of G,
thus all elements of G may be regarded as isometries. As a consequence many geometric
quantities are already determined by their values in a certain point, e.g. the curvature of a
homogeneous metric. We will discuss some of those properties at the beginning of the first
chapter. After that we study a special class of vector fields on a Riemannian homogeneous
space which we will call homogeneous vector fields. Those vector fields arise if the isotropy
representation has a non trivial eigenspace to the eigenvalue 1. They can be also described
as vector fields which are invariant under the induced action of G on the tangent bundle
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of M. The set of homogeneous vector fields is in natural way a finite dimensional vector
space and therefore it induces an involutive distributionD on M. This gives a foliation of
M which turns out to have the structure of a principal bundle. The main theorem can be
stated as follows

Theorem 1. Let (M,G) be a Riemannian homogeneous space andD defined as above. Then there
is a group H acting freely and properly on M such that π : M → B := M/H is an H–principal
bundle over a homogeneous space B. Moreover the fibers of π are the maximal connected integral
manifolds ofD and G acts on B such that π is an equivariant map.

This principal bundle inherits a natural connection H which can be constructed as
the orthogonal complement to D with respect to a G–invariant metric. This horizontal
distribution is unique in the sense, that for every G–invariant metric H is the orthogonal
complement toD.

Finally in the end of the first chapter we study extensions and semidirect products of
Lie groups which we will use in the classification of Riemannian homogeneous spaces in
dimension three. We are going to develop techniques to determine all possible extensions
1→ K→ G→ H→ 1 where K and H are known. One way to face this extension problem is
to linearize it, i.e. to determine first the extension 1→ k→ g→ h→ 1 of their Lie algebras.
In certain circumstances those extensions are encoded in a second cohomology H2(h; k) of h
with coefficients in k.

In addition we would like to point out that we used examples sparingly in the first
chapter since the following part will contain of a lot them as well as application for the
results of Chapter 1.

In the second chapter we classify the Riemannian homogeneous spaces (M,G) such that
M is simply connected and dim M = 3. Some of those spaces gained much popularity in
the last decades. In [Thu97] William Thurston classified the Riemannian homogeneous
spaces which admit compact quotients, i.e. there is a discrete cocompact group Γ ⊂ G.
The maximal ones are known as the eight Thurston geometries which became famous since
Thurston proposed in 1982 his geometrization conjecture and which was proven by Grigori
Perelmann in 2002. At this point we have to mention also Peter Scott’s beautiful article
[Sco83] where he explains in great detail all eight Thurston geometries.

Now it seems natural to ask what happens if we remove the condition about the existence
of cocompact discrete subgroups Γ. In [Sco83] there is a remark that Kulkarni carried out
the classification of Riemannian homogeneous spaces but which has not been published. In
general it seems hard to find any proof of the classification and even the proofs for the eight
Thurston geometries in [Thu97] and [Sco83] are a little sketchy and therefore we decided
to find a rigorous proof.
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Let us now give an overview how the classification works. For this let K be a compact
isotropy group in G. Since K is compact we have that K is a subgroup of SO(3) and we
obtain dim K ∈ {0, 1, 3} and thus dim G ∈ {3, 4, 6}. If dim K = 3 any G–invariant metric µ has
constant sectional, hence (M, µ) is isometric to either the sphere with its round metric, the
euclidean three dimensional space or to the three dimensional hyperbolic space.

If dim K = 1 things are more complicated. Because K is compact and connected it
has to be isomorphic to SO(2) and the isotropy action of K in a tangent space has a 1–
dimensional Eigenspace to the Eigenvalue 1. Applying Theorem 1, we obtain a principal
bundle π : M→ B over a surface B where the fiber group H is either R or SO(2). Moreover
B is a Riemmanian homogeneous space for itself, say (B,GB), and those are determined
very quickly as one can see by Lemma B.4 of Appendix B:

(S2,SO(3)), (R2,E0(2)), (D2,SO+(2, 1))

where E0(2) = R2 o SO(2) and SO+(2, 1) is the isometry group of the 3–dimensional
Minkowski space which preserves the future cone. Now the classification splits into two
cases: the one where the natural connection is flat and the other where the horizontal
distribution is not flat. In the flat case we obtain the extension

1 −→ GB −→ G −→ H −→ 1.

where GB ∈ {SO(2),E0(2),SO+(2, 1)} and H = R. After some work we will see (M,G) is
isomorphic to

(S2
×R,SO(3) ×R), (D2

×R,SO+(2, 1) ×R), (R2
×R,E0(2) ×R), (R2

×R,E0(2) o R)

where in the first three cases the action is obvious and the last case is explained in detail in
Example 2.16. The space which does not admit a compact quotient is this last space. On
the other side if the bundle is not flat one gets the central extension

1 −→ H −→ G −→ GB −→ 1.

Using results about the extension problem obtained in the first chapter we deduce (M,G)
is isomorphic to

(S3,U(2)), (D2
×R,Γ), (R2

×R,Nil o SO(2)).

We refer the reader to Propositions 2.24, 2.26 and 2.27 respectively for more informations
about those groups. All of the latter spaces admit compact quotients and therefore they
can be found in the classification in [Thu97] and in the discussion in [Sco83]. This finishes
the case dim K = 1.
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For the remaining case dim K = 0 we see that M has to be a simply connected Lie group
which are in one–to–one correspondence to 3–dimensional Lie algebras. This classification
has be done already by Luigi Bianchi in the 19th century, see [Bia02]. We would like to
mention also the Diploma thesis of Manuel Glas [Gla08] where he revisited Bianchi’s proof
in a more modern, coordinate–free way. Also John Milnor did classify in [Mil76] very
elegantly the 3–dimensional unimodular Lie algberas. In this work here we present an
alternative way to determine those Lie algebras which is more in the spirit of preceeding
sections.

If g is a Lie algebra and g′ its derived Lie algebra which is an ideal in g we obtain an
extension of Lie algebras

1 −→ g′ −→ g −→ h −→ 1

for h = g/g′. Since the dimension of g′ is invariant under isomorphisms we may sort the Lie
algebras by the dimension of their derived Lie algebras g′. If dim g′ = 0 then g is the abelian
Lie algebra. If dim g′ = 1 then g′ is the abelian Lie algebra R and it turns out that h has
to be the abelian two–dimensional Lie algebra R2. The extensions 0 → R → g → R2

→ 0
may be computed through the second cohomology H2(R2;R) where R2 acts on R through
a certain representations. The next case is dim g′ = 2 and again a short computations shows
that g′ has to be abelian and since dim h = 1 we obtain the extension 0→ R2

→ g→ R→ 0
which does always split since R is abelian, thus g = R2 oπ R for a certain representation
π : R→ GL(R2) which has to be determined. Finally dim g′ = 3 means that g is unimodular
and there we use Milnor’s idea in [Mil76]. The full list of 3– dimensional Lie algebras and
their groups together with a comparison to Bianchi’s list can be found after Proposition
2.32. At this point we forgo to list all 3–dimensional homogeneous Riemannian spaces and
refer the reader to the section The list of 3–dimensional geometries.

Finally the last chapter is about an application of Riemannian homogeneous spaces in the
field of cosmology. Since Einstein’s publication of his groundbreaking theory of gravitation
in 1916, the field of modern cosmology in physics began to grow rapidly and one aim of
this branch is to study the dynamics of the universe based on the laws of general relativity.
The mathematical ingredients of this theory consist of a Lorentzian manifold (L, h) and a
symmetric bilinear form T on L called the stress–energy tensor and it represents the energy
and the mass of the physical system which we would like to describe. For physical reasons
T has to be divergence free on (L, h). Einstein’s theory now demands to solve the equation

Ein := Ric − 1
2 Rh = T

on L where Ric is the Ricci curvature of h and R its scalar curvature. The physical system in
our situation is the whole universe and usually this is modeled as a perfect fluid or as a dust
cloud like in the Robertson–Walker cosmology, see [Bar83] for a nice and comprehensive
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introduction. Moreover nowadays one assumes that besides the visible matter like the
stellar objects the universe if filled up with so called dark matter and dark energy. The
latter objects make up to 95% on the content of the universe and in particular the dark
energy about 72% (see [Hin10]). Furthermore dark energy is modeled mathematically by a
cosmological constant Λ and therefore we would like to concentrate our studies to a universe
where there is no mass but a lot of dark energy. Thus the stress–energy tensor T simplifies to
T = Λh which is clearly divergence free. Note that Λ < 0 corresponds physically speaking
to a positive cosmological constant since usually the physicist do not see the cosmological
constant as part of T but rather as a separate term in the Einstein equation which stands on
the side of the geometric quantities.

Now solving the Einstein equation turns out to be a pretty hard task and therefore one
assumes symmetry conditions as it will be in our case. So we will consider L = I×M where
I is an interval inR and M is a simply connected 3–dimensional Riemannian homogeneous
space where G is the group acting on M. Moreover let µ : I→ S+ be a curve of Riemannian
homogeneous metrics on (M,G) and we are searching for those curves such that h :=
−dt2 + µ(t) fulfills the Einstein equation Ein = Λh. Since M is a homogeneous space and
µ(t) is a homogeneous metric the complicated partial differential equation for h reduces
to a second–order ordinary differential equation for µ on the phase space P = S+

× Sym
where Sym are the G–invariant symmetric bilinear forms on M. It is easy to see that P is a
symmetric space, hence a finite–dimensional manifold. Let V ⊂ P be set of (µ, κ) ∈ P such
that R + H2

− |κ|2 + 2Λ = 0 where R is the scalar curvature of (M, µ), H = tr µ(κ) and |κ| the
norm of κ with respect to the induced metric on Sym by µ. It depends on (M,G) whether
V is a smooth submanifold of P, however V is always a semialgebraic set. We have the
following result concerning solutions to the Einstein equation

Theorem 2. Suppose (µ0, κ0) ∈ V and divµ0κ0 = 0 then the maximal integral curve (µ(t), κ(t))
through (µ0, κ0) to the vector field

X(µ,κ) =

 −2κ
Ric + Λµ + Hκ − 2κ2


on P, where Ric is the Ricci curvature of (M, µ), is a solution to Ein = Λh on L = I ×M where
h = −dt2 + µ(t).

The quantity H(t) has a nice geometric interpretation: it is the mean curvature of (t ×
M, µ(t)) ⊂ (L, h) and its physically interpretation is that it is the Hubble constant. Now the
maximal interval I where the solution µ(t) lives on, depends on the behavior of H, namely
we have that solutions exists as long as H is bounded, see Proposition 3.10.

Finally we show the following result concerning the asymptotic behavior of the so-
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lution µ(t) on a special Riemannian homogeneous space. If (M,G) = (S3,U(2)) and
Λ = −3 (note again that this means a positive cosmological constant) then the round
metric β with scalar curvature R = 6 lies in V as (β, 0). Clearly β is U(2)–invariant
and (cosh2(t)β,− cosh(t) sinh(t)β) for t ∈ R is a solution to X through (β, 0). The metric
h = −dt2 + cosh2(t)β is known as the De–Sitter solution. In [Wal83] Robert Wald showed that
a positive cosmological constant isotropize an initially expanding universe meaning that
the solution looks on late times locally like the De–Sitter solution. We will try to make this
statement more precise in terms of dynamical systems and show that for all initial expand-
ing solutions with initial volume big enough, the De–Sitter solution is a good candidate for
an attractor. More precisely: letA = {(cosh2(t)β,− cosh(t) sinh(t)β) : t ∈ R} ⊂ V be the set of
the De–Sitter solution. Then we obtain

Theorem 3. The function L : V → R, L(µ, κ) := v
2
3 ( 2

3 H2
− 6) is a Lyapunov function for the

dynamical system induced by X and the global minima of L are given by the setA.

Now if (µ(t), κ(t)) is a solution ofX on V starting at (µ0, κ0) ∈ V such that the volume of µ
is bigger than 1 and tr µ0κ0 < 0, then L(µ(t), κ(t)) converges to inft L(µ(t), κ(t)) and therefore
it is reasonable to conjecture that inft L(µ(t), κ(t)) = min L.

Finally there are of course other approaches to homogeneous cosmological solutions
which are popular among physicist. Usually they use as homogeneous spaces the Bianchi
Lie groups which may be regarded as the minimal geometries in the spirit of William
Thurston (in comparison to the maximal geometries in [Thu97]). It turns out that every
Riemannian homogeneous space except (S2

×R,SO(3)×R) contains a 3–dimensional sub-
group acting transitively on M, such that it is enough to know the dynamics of this minimal
geometry. For an introduction to this approach we recommend [WJ97].
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1
Homogeneous Riemannian Spaces

T his first chapter is intended to develop the necessary tools and techniques for ho-
mogeneous Riemannian spaces which are the central objects of this work. Although
some of the following statements are true for general homogeneous spaces, we will

not mention this explicitly. We will start with the basic theory of Riemannian homogeneous
spaces and their geometric properties. We will proceed to discuss some special vector fields
and the consequences of their existence. The next step will be to study (central) extensions
of Lie groups and their relation to semidirect products and we close the chapter with a
discussion about the set of homogeneous metrics.

Throughout this chapter the letters G,K and H will denote smooth Lie groups, where
smooth means C∞ and with g, k and h we denote their Lie algebras respectively. In general
all differentiable objects in this work are smooth if not otherwise stated. Furthermore M will
always be a smooth, connected manifold of dimension dM and we fix a point m0 ∈ M. If G
acts from the left on M in a smooth way, then the action will be denoted byθ : G×M→M and
we abbreviate θ(g,m) =: g.m. Finally we denote by Diff(M) the group of diffeomorphisms
of M equipped with the compact–open topology.

Introduction to homogeneous Riemannian spaces

A homogeneous Riemannian space is a special homogeneous space endowed with Rie-
mannian metrics which are invariant under some transitive action of a Lie group. Hence
those spaces possess many symmetries.

Definition 1.1. A pair (M,G) is a homogeneous Riemannian space, if G acts on M smoothly,
transitively and effectively with compact isotropy groups. Henceforth (M,G) will always

1



Homogeneous Riemannian Spaces

denote a Riemannian homogeneous space if not otherwise stated.

Remark 1.2.

(a) Since G acts effectively on M we have an injective homomorphism δ : G → Diff(M),
g 7→ (m 7→ g.m). And because the action is smooth (in particular continuous), we
have that δ is continuous. Often, we will not distinguish between G and its image
δ(G) and we will show later, that δ(G) is closed in Diff(M). Therefore we can see G as
a transformation group of M.

(b) The action θ induces a fiber wise linear action on the tangent bundle π : TM→M. We
define Θ : G×TM→ TM, by Θ(g, ξ) := Dθ(g,π(ξ))(ι(ξ)), where D denotes the differential
and ι is the natural inclusion of TMπ(ξ) in T(G×M)(g,π(ξ)) � TGg ⊕TMπ(ξ). It is easy to
see that Θ(g, ξ) = (Dg)π(ξ)(ξ). We will write g.ξ for (Dg)π(ξ)(ξ) and although we used
this abbreviation for the action θ there will be no confusion which action is meant,
since it will be clear from the context.

(c) We will denote the (compact) isotropy group of G acting on M in m0 by K. By a well–
known theorem M is diffeomorphic to G/K and G is a K–principal fiber bundle over M
with projection map p : G→M, g 7→ g.m0 and therefore we set P := (Dp)e : g→ TMm0 .
Of course P induces an isomorphism from g/k to TMm0 .

(d) One could define a Riemannian homogeneous space in purely ‘algebraic’ terms, i.e.
we say a pair (G,K) is an algebraic Riemannian homogeneous space if K is a compact
subgroup of G. Of course (G/K,G) is a Riemannian homogeneous space and vice versa
a Riemannian homogeneous space by our first definition is an algebraic Riemannian
homogeneous space just by taking K as in (c). Hence both definitions are equivalent.

Examples 1.3.

(a) Consider the pairs (Rn,E(n)), (Sn,O(n)) and (Dn,H(n)), where E(n), O(n) and H(n) are
the (maximal) isometry groups of the standard metrics on Rn, on the n–dimensional
sphere and on the n–dimensional hyberbolic disk respectively.

(b) Every Lie group G is a Riemannian homogeneous space given by (G,G) where G acts
on itself by left-multiplication.

(c) Let (Mi,Gi), i ∈ {1, . . . ,n} be Riemannian homogeneous spaces. Then the product
(M1 × · · · ×Mn,G1 × · · · ×Gn) is a Riemannian homogeneous space as well (equipped
with the obvious action).

2



Introduction to homogeneous Riemannian spaces

Now we would like to prove, that the space of Riemannian metrics, which are invariant
under G ⊆ Diff(M) is not empty. Indeed, we will see later, that the space of such metrics
is a symmetric space, hence finite–dimensional. Moreover these metrics will be a useful
tool to prove different statements about geometric topics for Riemannian homogeneous
spaces. Although the following proposition is well–known, we would like to recall the
proof anyways.

Proposition 1.4. There exists a G–invariant Riemannian metric µ on (M,G), i.e. for all g ∈ G we
have g∗(µ) = µ, where g∗(µ) is the pullback of the metric µ by g seen as a diffeomorphism of M.

Proof. Note that K acts linear on TMm0 by Remark 1.2. First let sK be a K–invariant euclidean
inner product on TMm0 . We will prove at the end the existence of such inner products. Of
course set now µm0(ξ1, ξ2) := sK(ξ1, ξ2) for ξ1, ξ2 ∈ TMm0 and for m ∈M we define

µm(η1, η2) := µm0(g.η1, g.η2)

for g ∈ G such that g.m = m0. This is well–defined, since for any other g′ ∈ G with g′.m = m0

we have g′g−1
∈ K and because sK is K–invariant. This makes µ to an inner product at every

point m ∈ M. So it remains to show, that µ is smooth. Around every point in M there is
an open neighborhood U, such that there is a section σ : U → G of p : G → M. Suppose
X,Y are vector fields on U. Then the map m 7→ µm0(σ(m)−1.Xm, σ(m)−1.Ym) is smooth on U.
Obviously µ is G–invariant, hence it remains to show that there exists such an sK.

Let s be an arbitrary euclidean inner product on TMm0 and let dk be a right–invariant
volume form on K. For ξ1, ξ2 ∈ TMm0 define

sK(ξ1, ξ2) :=
∫

K
s(k.ξ1, k.ξ2)dk,

which is well–defined, since K is compact. Obviously sK is K–invariant (since dk is K–
invariant) and defines an euclidean inner product on TMm0 . �

Corollary 1.5. There is an embedding of K into O(n), hence K is a Lie subgroup of O(n).

Proof. Let µ be a G–invariant metric. Then the map Φ : K → Aut(TMm0), k 7→ (Dk)m0

is a smooth group homomorphism. But by Proposition 1.4 Φ(k) is a linear isometry of
(TMm0 , µm0), hence Φ(k) ∈ O(TMm0 , µ) � O(n). Note that every element of K is uniquely
determined by the linear map (Dk)m0 , therefore Φ is injective, and since K is compact, Φ is
an embedding. �
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Homogeneous Riemannian Spaces

Remark 1.6. (a) In the proof of Proposition 1.4 we saw, that every K–invariant scalar
product on TMm0 induces a G–invariant metric on M. Of course vice versa every
G–invariant metric gives a K–invariant inner product on TMm0 . This will be the key
to see that the space of G–invariant metrics on M is a symmetric space.

(b) Let µ be a G–invariant metric for a Riemannian homogeneous space (M,G). Then
by [MS39] the group of isometries I(M, µ) ⊆ Diff(M) equipped with the CO–topology
carries a finite–dimensional Lie group structure. Furthermore it follows from [KN63,
p.48] that I(M, µ) is closed in Diff(M). We will show that G is closed in I(M, µ), so
we can see G as a closed Lie subgroup of the group of isometries of the Riemannian
manifold (M, µ). Of course it follows then that G is closed in Diff(M) as well.

Proposition 1.7. Let µ be any G–invariant metric on (M,G). Then G is a closed subgroup of
I(M, µ).

Proof. Here we want to distinguish between G and its image under δ (see Remark 1.2),
because there are two different topologies involved in the proof, namely that of G and
that of I(M, µ) ⊂ Diff(M). Let (gn)n be a sequence in G such that (δ(gn))n converges in
I(M, µ), i.e. in the CO–topology. Let g ∈ G be such that fδ(g)(m0) = m0 and let C be a
compact neighborhood around m0. By Remark 1.2 G is a principal fiber bundle over M
with compact fiber, hence p−1(C) is compact. Now furthermore we have that (see again
e.g. in [Sch08, p.15]) (gng).m0 converges to m0 and hence, we can assume (gng).m0 ∈ C and
therefore gng ∈ p−1(C) for all n ∈ N. Because p−1(C) is compact we can assume that gng
converges to some k0 ∈ K in G. By Remark 1.2 δ is continuous and we may compute

fδ(g) = lim
n→∞

δ(gng) = δ
(

lim
n→∞

gng
)

= δ(k0),

hence f lies in the image of δ. �

Corollary 1.8. The action θ of G on M is a proper action.

Proof. For a definition of proper action see Definition B.1 in Appendix B. From [Sch08]
we have that I(M, µ) is acting proper on M for a G–invariant metric µ. Since the action of
G ⊂ I(M, µ) is the restricted action of the full isometry group of µ and G ×M is a closed
subspace of I(M, µ) ×M, we have that G acts properly on M (because restriction of proper
maps on closed subsets are again proper maps). �
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We mentioned before that G is closed in Diff(M), which follows now from Proposition 1.7
and the fact that isometry groups are closed in Diff(M). Moreover the proposition above
shows, that δ is an embedding of G in an isometry group of a G–invariant metric.

One aim of this work will be to classify the homogeneous Riemannian spaces in dimen-
sion 3. This means we must determine the possible pairs (M,G). Note that G must not
be connected, but it will be easier to look first at the connected component of the identity
of G which is a closed subgroup and acts still transitive on M. After this is done, one
has to deduce the whole group G which can act on M, such that (M,G) is a Riemannian
homogeneous spaces. But first we would like to give a definition, when two Riemannian
homogeneous spaces are isomorphic in order to speak about a classification. This leads to
the next

Definition 1.9. Let (Mi,Gi) i = 1, 2 be two Riemannian homogeneous spaces . Then
we say that (M1,G1) is isomorphic or equivariant diffeomorphic to (M2,G2), if there exists a
diffeomorphism F : M1 → M2 and a group isomorphism f : G1 → G2, such that for all
m1 ∈M1 and g1 ∈ G1 we have F(g1.m1) = f (g1).F(m1).

And as mentioned above we have the

Proposition 1.10. If G0 is the connected component of G which contains the neutral element e,
then G0 is a closed Lie subgroup of G and (M,G0) is a Riemannian homogeneous space with the
restricted action of G on M to G0.

Proof. It is clear that G0 is closed in G. Hence, to show that G0 is a Lie subgroup of G, it
is sufficient to show that G0 is a subgroup. Let g1, g2 ∈ G0 and let α be a smooth curve
connecting e with g2. Then the curve α−1 lies entirely in G0 again and connects e with g−1

2 ,
hence g−1

2 ∈ G0. Furthermore the curve g1α connects g1 with g1g2 and therefore g1g2 ∈ G0.
Now we restrict the action of G on M to G0, which is of course still effective. Since

isotropy groups are closed and since K is compact, we have that the isotropy group of G0

in m0, which is given by G0 ∩ K, is compact as well. So it remains to show that G0 acts
transitively on M. Because p : G → M is an open map, we have that G0.m0 is open in M.
Let R := M/G0 be the set of all disjoint orbits by the action of G0 on M, which are all open
sets (to see that, note that if m = g.m0 for some g ∈ G, then G0.m = p(G0g), which is clearly
an open set). Since M is connected and M = ∪̇O∈RO we deduce that M = G0.m0. �

Remark 1.11. We showed that G0 is a subgroup, but indeed G0 is actually a normal
subgroup of G: take g ∈ G, then gG0g−1

⊆ G0, since in gG0g−1 lies the element e, and
the conjugation with g is a diffeomorphism of G meaning that gG0g−1 must be a connected
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Homogeneous Riemannian Spaces

component again. Hence G/G0 possesses a group structure which is as a set equal to π0(G),
where πi(M) is the i–th (i ∈ N0) homotopy group of the manifold M. Therefore π0(G) has
a group structure. Then it is easy to see, that the long exact homotopy sequence of fiber
bundles (see in [Hat02, p. 376] for a very general version) can be continued in terms of
exactness of groups to the 0–th homotopy. We obtain with Remark 1.2 the

Lemma 1.12. For the fiber bundle p : G→M induced by (M,G) we have a long exact sequence of
groups

. . . → πn(K, e)→ πn(G, e)→ πn(M,m0)→ πn−1(K, e)→ . . .

. . . → π1(M,m0)→ π0(K, e)→ π0(G, e)→ 1

This implies a useful

Corollary 1.13. For (M,G) with M simply connected we conclude by Lemma 1.12 π0(K) � π0(G)
and since K is compact there are only finitely many connected components of G. Furthermore if G
is connected, so is K.

Example 1.14. Suppose now (M,G0) = (Sn,SO(n + 1)). Hence the isotropy group K is a
closed subgroup of O(n) and has the same dimension. Then of course K0 = SO(n) and the
only other possibility for K is O(n) and therefore we have that (M,G) is isomorphic to either
(Sn,SO(n + 1)) if G0 = G or (Sn,O(n + 1)) otherwise.

Finally we would like to phrase and prove a well–known proposition which concerns
the orientability of Riemannian homogeneous spaces .

Proposition 1.15. (M,G) is orientable if K is connected. Furthermore if there is an orientation Ω

on M and µ a G–invariant metric, then the Riemannian volume form vol is G–invariant.

Proof. Choose a non–zero n–form Ωm0 ∈
∧d(TM∗m0

) (d := dM = dim M). Then since K is
a connected subgroup of SO(d) the action of K on

∧d(TM∗m0
) leaves Ωm0 invariant. For

a g ∈ G with g.m = m0 where m ∈ M we define Ωm := g∗
(
Ωm0

)
. This definition is

well–defined, since for any g′ ∈ G with g′m = m0 there is a k ∈ K with g′ = kg. Hence
(g′)∗(Ωm0) = g∗(k∗(Ωm0)) = g∗(Ωm0). As in Proposition 1.4 a local section of the K–principal
bundle p : G → M shows that Ω is a smooth d–form on M and obviously Ω has no zeros.
Hence the bundle

∧d TM∗ is trivial and Ω represents an orientation on M. If Ω is an
orientation on (M,G) and µ a G–invariant metric, then the Riemannian volume form is
defined by vol = ∗(1), where ∗ is the Hodge star operator on the oriented Riemannian
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manifold (M, µ) with orientation Ω and 1 is the constant function with value 1 on M.
Since g ∈ G is an isometry on (M, µ) the star operator commutes with the action of g,
i.e. g∗(∗η) = ∗(g∗(η)) for η ∈

∧ j TM∗, j = 0, . . . ,n. Clearly the constant function 1 on M is
G–invariant and therefore vol is G–invariant. �

Geometry of Riemannian homogeneous spaces

Now let us proceed with Riemannian homogeneous spaces equipped with G–invariant
metrics. The geometric intuition for Riemannian homogeneous spaces should be the fol-
lowing: geometric objects (e.g. tensors which depend on a G–invariant metric) do depend
only by their value in a single point. To support this geometric intuition we prove first the

Proposition 1.16. Let µ a G–invariant metric for (M,G). Then (M, µ) is a complete Riemannian
manifold.

Proof. It is sufficient to prove that there is an ε > 0 such that for all m ∈M and all η ∈ TMm

with |η| = 1 the geodesic through m with tangent vector η, denoted by γη lives at least on
the interval (−ε, ε).

Suppose first, that this statement is true. Then all geodesics γη with |η| = 1 are defined on
the reals R. Let γη be a geodesic with unit vector η and let (t−, t+) be the maximal interval
on which γη is defined. If t+ < ∞ then choose t0 < t+ such that t+ − t0 < ε/2. The geodesic
γ with γ(0) = γη(t0) and γ̇(0) = γ̇η(t0) (which is a vector of unit length) lives at least on the
interval (−ε, ε). By the uniqueness of geodesics γη lives at least on (t−, t+ + ε/2), which is a
contradiction to the maximality of t+. Same argument holds for t−. If γη is a geodesic such
that η , 0 is not of unit length and if (t−, t+) is the maximal interval of existence, then the
geodesic γη/|η| is defined on (t−|η|, t+|η|) = R, hence γη is defined on the entire real line.

Now it remains to show the claim at the beginning of the proposition. By [Car92, p.64]
the claim is true for m0 and all ξ ∈ TMm0 of unit length. Let γη be a geodesic starting at
m ∈M with unit vector η ∈ TMm defined on the interval I. Then there is a g ∈ G and a unit
vector ξ ∈ TMm0 such that g.m0 = m and g.ξ = η. Since g maps geodesics into geodesics it
follows that g.γξ is a geodesic which is defined at least on the interval (−ε, ε). So we have
now g.γξ(0) = m and the tangent vector of g.γξ in 0 is g.ξ = η, hence by uniqueness of
geodesics g.γξ = γη and (−ε, ε) ⊆ I. �

Definition 1.17. For p ∈ N0 we defineMp as the set of (0, p)–tensor fields on M. We call a
tensor T ∈ Mp on (M,G) G–invariant if for all g ∈ G we have g∗(T) = T. The set of all those
G–invariant p–linear forms on (M,G) will be denoted byMG

p . Furthermore if a group K is
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acting linear on a vector space V, we denote byMK
p (V) the set of all K–invariant p–linear

forms on V.

Proposition 1.18. On (M,G) we haveMG
p �M

K
p (TMm0) as vector spaces.

Proof. Define the R–linear evaluation map Φ : MG
p → M

K
p (TMm0) by T 7→ Tm0 . First Φ is

well–defined since T is G-invariant and therefore Φ(T) is invariant by the linear action of
K on TMm0 . Clearly Φ is injective, since if Φ(T) = 0 then by the G–invariance we conclude
that T = 0. Copying the first part of the proof of Proposition 1.4 shows that Φ is onto. �

Next we show that taking traces of G–invariant tensors with respect to G–invariant
metrics gives us G–invariant tensors back.

Proposition 1.19. Let T ∈ MG
p (p ≥ 2) and let tr k,l

µ T (k, l ≤ p) be the trace of T in the k-th and
l-th entry with respect to µ. Then tr k,l

µ T ∈ MG
p−2.

Proof. Let m ∈ M and (e1, . . . , ed) an orthonormal basis for (TMm, µm) (recall d = dM =

dim M). Let ξ1, . . . , ξp−2 ∈ TMm and set tr T := tr k,l
µ T, where we assume for simplicity

k = 1, l = 2. Observe that (g.e1, . . . g.ed) is an orthonormal basis for (TMg.m, µg.m) and
therefore

g∗(tr T)(ξ1, . . . , ξp−2) =

d∑
i=1

T(g.ei, g.ei, g.ξ1, . . . , g.ξp−2)

=

d∑
i=1

g∗(T)(ei, ei, ξ1 . . . , ξp−2)

=

d∑
i=1

T(ei, ei, ξ1 . . . , ξp−2) = tr T(ξ1, . . . , ξp−2),

for g ∈ G. �

Corollary 1.20. Let µ be a G–invariant metric for (M,G). Then the Ricci curvature Ric of µ is
G–invariant and the scalar curvature R is constant on M.

Proof. Let Rm ∈ M4 be the Riemann tensor of µ. We show Rm ∈ MG
4 and the corollary

follows with Proposition 1.19. Let ∇ be the Levi–Civita connection of µ. Then, since g
is an isometry, we have for X,Y vector fields on M, ∇g∗Xg∗Y = g∗ (∇XY) where g∗X is the
pushforward of X by the diffeomorphism g ∈ G and of course we have

[
g∗X, g∗Y

]
= g∗[X,Y].
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Then clearly we have Rm(g∗X, g∗Y, g∗W, g∗Z) = Rm(X,Y,W,Z) ◦ g−1 for vector fields X,Y,W
and Z on M. In addition we can write g∗(Rm)(X,Y,W,Z) = Rm(g∗X, g∗Y, g∗W, g∗Z) ◦ g and
the corollary follows. �

Proposition 1.21. Let T ∈ MG
p and ∇ the Levi–Civita connection to µ. Then we have ∇T ∈ MG

p .

Proof. Let ξ, η1, . . . , ηp ∈ TMm and let X,Y1, . . . ,Yp be continuations on M respectively. If
g ∈ G and g∗(Y) denotes the pushforward of a vector field Y we obtain T(g∗(Y1), . . . , g∗(Yp)) =

T(Y1, . . . ,Yp) ◦ g−1 as functions on M since T is G–invariant. It follows that

g∗(∇T)(ξ, η1, . . . ηp) = (∇g∗(X)T)(g∗(Y1), . . . , g∗(Yp))(g.m)

and

(∇g∗(X)T)(g∗(Y1), . . . , g∗(Yp)) = g∗(X)(T(g∗(Y1), . . . , g∗(Yp)) −
p∑

i=1

T(g∗(Y1), . . . ,∇g∗(X)g∗(Yi), . . . ,Yp)

= g∗(X)(T(g∗(Y1), . . . , g∗(Yp)) −
p∑

i=1

T(Y1, . . . ,∇XYi, . . . ,Yp) ◦ g−1

= X(T(Y1, . . . ,Yp)) ◦ g−1
−

p∑
i=1

T(Y1, . . . ,∇XYi, . . . ,Yp) ◦ g−1

hence

g∗(∇T)(ξ, η1, . . . ηp) = (∇g∗(X)T)(g∗(Y1), . . . , g∗(Yp))(g.m) = (∇XT(Y1, . . . ,Yp))(m)

= (∇ξT)(η1, . . . , ηp)

�

A crucial fact for Riemannian homogeneous space is that geometric quantities induced
by a G–invariant metric depend not alone on a single point but even more on the algebraic
structure of G, i.e. on Lie algebra g. But to understand this we have to make some
observations first.

Proposition 1.22. For the adjoint representation of G, Ad: G→ Aut(g) we have P ◦Adk = k ◦P
for all k ∈ K, where P is defined in Remark 1.2

Proof. Let g : (−ε, ε)→ G be a curve with g(0) = e. Then for k ∈ K we have for all t

p(kg(t)k−1) = kg(t).m0 = k.(p(g(t))).

Taking the derivative at t = 0 on both sides proves the proposition. �
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Proposition 1.23. There is a linear, AdK–invariant subspace p of g such that p is a complement
for k.

Proof. Since K is compact and acts linear on g via Ad, we can - as in Proposition 1.4 -
construct an AdK–invariant scalar product sK on g. Taking p := k⊥ completes the proof. �

Remark 1.24. For this section we want to fix once and for all such a p, which is via P
isomorphic to TMm0 . Now every G–invariant tensor T corresponds to an AdK–invariant
tensor t on p: If T ∈ MG

p is given, then set t := P∗(Φ(T)) and with Proposition 1.22 we have
for all k ∈ K

Ad∗kt = (P ◦Adk)∗T̂ = (k ◦ P)∗T̂ = P∗T̂ = t.

where T̂ = Φ(T). Vice versa given an AdK–invariant tensor t on p, the tensor Tm0 :=
((P|p)−1)∗t is K–invariant, since

k∗Tm0 = ((P|p)−1
◦ k)∗t = (Adk ◦ (P|p)−1)∗t = Tm0 .

by Propostition 1.22 again and with Proposition 1.18 this tensor defines a G–invariant tensor
T on M. Consequently a G–invariant metric µ on M defines a AdK–invariant scalar product
P∗µ on pwhich we will denote henceforth by s.

And finally for the formulas for the curvatures (which we will not prove, since there are
complete proofs given in [Bes08]) we have to introduce some basic notations for Lie groups.

Definition 1.25. We define for v,w ∈ g the Killing–Cartan form by B(v,w) := tr (adv ◦ adw),
where ad: g → Aut(g) is the adjoint representation of the Lie algebra of g, adv(w) = [v,w].
For a Riemannian homogeneous space (M,G) we let z ∈ p such that s(z, v) = tr (adv) for all
v ∈ p.

And this leads to
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Lemma 1.26 (see Ch. 7C in [Bes08]). Let (M,G) be a Riemannian homogeneous space and µ
a G–invariant metric on M. Let Ric be the Ricci–tensor of µ, which is a G–invariant symmetric
tensor. By Remark 1.24 let ric the corresponding AdK–invariant symmetric bilinear form on p.
Then we have for all v ∈ p and z ∈ p like in the definition above

ric(v, v) = −
1
2

p∑
i=1

∣∣∣[v, ei]p
∣∣∣2 − 1

2
B(v, v) +

1
4

p∑
i, j=1

s
(
[ei, e j]p, v

)2
− s

(
[z, v]p, v

)
where [v,w]p means the p–component of [v,w] with respect to the decomposition g = k ⊕ p and
where (e1, . . . , ep) is an orthonormal basis of (p, s) with p := dim p.

As noticed in Remark 1.24 the scalar curvature R of µ is constant on M and is given by

R = −
1
4

p∑
i, j=1

∣∣∣[ei, e j]p
∣∣∣2 − 1

2
tr sB − |z|2

where tr s is the trace taken with respect to the scalar product s.

Homogeneous vector fields

There are two special kinds of vector fields on a Riemannian homogeneous space . One
kind which is called the fundamental vector field and can always be defined for a smooth
transformation group. The other type we will call homogeneous vector field which exists in
general not on every Riemannian homogeneous space unless it is the zero vector field. Let
us start with the definition of the fundamental vector fields.

Definition 1.27. For v ∈ g we define the corresponding fundamental vector field Xv of v on
M by

(Xv)m :=
d
dt

∣∣∣∣∣
t=0

(
e−tv.m

)
for m ∈M where v 7→ ev is the exponential map of G.

Proposition 1.28. Let v ∈ g and Xv its fundamental vector field on M.

(a) The map Φ : g→V(M), Φ(v) := Xv is an injective Lie algebra homomorphism, whereV(M)
is the space of vector fields on M.

(b) For any G–invariant metric µ the fundamental vector fields are Killing fields on (M, µ).

11
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Proof. For m ∈ M define the map θm : G→ M as θm(g) := g−1.m. First let us note, that Xv is
smooth, since it is the vector field to the flow (t,m) 7→ e−tv.m. Furthermore by definition we
have (Xv)m = D(θm)e(ve) and therefore we see that Φ is a linear map, where we consider v as
a left invariant vector field on G. But Φ is injective since Xv = 0 implies that every point of
the flow of Xv is a stationary point, hence e−tv.m = m for all t ∈ R and all m ∈M. And since
G acts effectively on M we have e−tv is equal to the neutral element of G for all t ∈ Rwhich
forces v to be zero. This shows that Φ is an injective homomorphism of vector spaces. For
g ∈ G we compute (Lg : G→ G shall denote the left translation on G by g)

D(θm)g(vg) = D(θm
◦ Lg)e(ve) = D(θg−1.m)e(ve) = (Xv)g−1.m

and this shows that v and Xv are θm–related which for w ∈ g implies (X[v,w])m = [Xv,Xw]m

for all m ∈ M. Hence Φ is a Lie homomorphism and g is embedded inV(M) via Φ as a Lie
subalgebra. This completes the proof of (a).

For (b) just choose a G–invariant metric. Since G is a closed subgroup of the isometry
group of this G–invariant metric we have, that the flows of the fundamental vector fields
are isometries. Hence the corresponding vector fields are Killing fields. �

Let us now discuss the other class of special vector fields on a Riemannian homogeneous
space .

Definition 1.29. We call a vector field X ∈ V(M) a G–invariant vector field or a homogeneous
vector field on (M,G) if for every g ∈ G we have g∗(X) = X, i.e. g∗(X)m = (Dg)g−1.m(Xg−1.m) =

Xm for all m ∈M (or equivalently g.Xm = Xg.m). Furthermore we denote the vector space of
homogeneous vector fields byVG(M).

Remark 1.30. Of course a non–trivial homogeneous vector field has no zeros and if a
G–invariant metric is chosen, it has constant length. Hence the tangent bundle gives a
restriction to the existence of homogeneous vector fields. For example every such tangent
bundle has therefore vanishing Euler class if we choose an orientation with Proposition
1.15 and consequently some Riemannian homogeneous space like the even–dimensional
spheres do not possess such non–trivial vector fields. As always for Riemannian homoge-
neous spaces the existence of such vector fields can be expressed in algebraic terms.

Proposition 1.31. We haveVG(M) � ∩k∈KEig(k, 1), where Eig(k, 1) is the eigenspace of the linear
map k : TMm0 → TMm0 with eigenvalue 1. With Proposition 1.22 we conclude that VG(M) �
∩k∈KEig(Adk|p, 1) ⊆ p.
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Proof. Consider the R–linear evaluation map Φ : VG(M)→ TMm0 , X 7→ Xm0 . Then Φ(X) is
K–invariant which means kΦ(X) = Φ(X) for all k ∈ K hence Φ(X) ∈ Eig(K, 1) := ∩k∈KEig(k, 1).
If Φ(X) = 0 then X = 0 by the G–invariance. On the other hand if ξ ∈ Eig(K, 1) the map
m 7→ Xm := g.ξ for g ∈ G with g.m0 = m defines a vector field on M. It is well–defined since
ξ is K–invariant and X is smooth if we pick a local section like in the proof of Proposition
1.4. Hence Φ is an isomorphism onto Eig(K, 1). �

Proposition 1.32. Let (Mi,Gi) for i = 1, 2 be two Riemannian homogeneous spaces which are
isomorphic. If f : M1 → M2 is the diffeomorphism corresponding to the isomorphism and X a
homogeneous vector field on M1 then the pushforward of X under f , f∗(X) is a homogeneous vector
field on M2.

Proof. Let F : G1 → G2 denote a Lie group isomorphism such that f (g1.m1) = F(g1). f (m1)
for m1 ∈ M1 and g1 ∈ G1. For g2 ∈ G2 there is a g1 ∈ G1 let F(g1) = g2 thus g2 ◦ f = f ◦ g1.
Therefore we obtain

(g2)∗( f∗(X)) = (g2 ◦ f )∗(X) = ( f ◦ g1)∗(X) = f∗((g1)∗(X)) = f∗(X).

for each g2 ∈ G2.
�

Proposition 1.33. Homogeneous vector fields are complete and their flow commute with elements
of G.

Proof. Let X be a homogeneous vector field on (M,G). Like in the proof of Proposition 1.16
it is sufficient to find an ε > 0 such that every integral curve of a homogeneous vector field
exists at least on the interval (−ε, ε). Clearly there is an ε > 0 such that α : (−ε, ε)→M with
α(0) = m0 fulfills α̇ = X ◦ α. Let m ∈ M be a arbitrary point and g ∈ G such that g.m0 = m.
Then for β := g ◦ α we have

β̇(t) = g.Xα(t) = Xg.α(t) = (X ◦ β)(t)

for all t ∈ (−ε, ε). Hence β is a solution to X with β(0) = m which exists at least on (−ε, ε).
This also shows that the flow ϕt of X commutes with a g ∈ G, i.e. g◦ϕt = ϕt

◦ g for all t ∈ R.
�

Note that every homogeneous vector field defines by Proposition 1.31 a vector v ∈ p ⊆ g
but the corresponding fundamental vector field V must not coincide with the homogeneous
vector field. The obstruction is that the corresponding flow has to be a family of isometries
for some G–invariant metric.

13



Homogeneous Riemannian Spaces

Proposition 1.34. Let v ∈ g. If Xv is a homogeneous vector field then v lies in the center of g. If G
is connected the converse is also true. Moreover if Z(G) denotes the center of G and z its Lie algebra,
then there is an embedding of z into VG(M), namely sending z ∈ z to its fundamental vector field
Xz on M.

Proof. Suppose that Xv is a homogeneous vector field and let Xw be the fundamental vector
field for w ∈ g. Since Xv is homogeneous the flow of Xv commutes with all elements of G,
in particular with the flow of Xw. Hence [Xv,Xw] = 0 which implies [v,w] = 0 for all w ∈ g.

Now suppose G is connected and v ∈ z. There are open neighborhoods U′ and U in g
and G respectively such that the exponential map is a diffeomorphism from U′ to U with
0 ∈ U′. Then for every g ∈ U there is a w ∈ U′ such that ew = g and it follows, since
[v,w] = 0, that getvg−1 = ewetve−w = etv for all t ∈ R. Hence etv commutes with all elements
of U and since G is connected, U generates G and therefore etv commutes with all elements
of G, i.e. etv

∈ Z(G) for all t ∈ R. Clearly the flow of Xv commutes with the action of G on
M and this implies, that Xv is a homogeneous vector field. This shows also that z embeds
intoVG(M). �

Corollary 1.35. If dim Z(G) > 0, thenVG(M) is non–trivial.

Remark 1.36.

(a) Suppose VG(M) is not empty. Then, since VG(M) has finite dimension, say d, we
choose a basis X1, . . . ,Xd. The distribution D := spanR(X1, . . . ,Xd) of TM do not
depend of the chosen basis, hence TM possess a d–dimensional trivial subbundle
associated to theR–vector space of homogeneous vector fieldsVG(M). Thereby note
that D is an involutive distribution: first, if g ∈ G then g.[Xi,X j] = [g∗Xi, g∗X j] ◦ g =

[Xi,X j]◦g, hence the Lie bracket of homogeneous vector fields is again a homogeneous
vector field and therefore [Xi,X j] takes values in D. If X is now an arbitrary vector
field with values inD then X =

∑d
i=1 fiXi for smooth functions fi on M. And of course

one has that [ fiXi, f jX j] = fi f j[Xi,X j] + fiXi( f j)X j + f jX j( fi)Xi takes values inD as well.
If we sum up the previous arguments we have that the Lie bracket [X,Y] of vector
fields X and Y with values inD takes values inD henceD is involutive. By [War83, p.
48] there exists through every point m ∈M a maximal connected integral manifold of
D.

At this point we want to emphasize the different notions of submanifolds. We call
a pair (S, σ) where S is a manifold and σ : S → M is a smooth injective immersion
simply a submanifold of M. If σ is an embedding, i.e. a one–to–one immersion, which
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is also a homeomorphism, then we call (S, σ) an embedded submanifold of M. If we say
that a subset S ⊂ M is a (embedded) submanifold we will always mean that the pair
(S, i), where i : S→M is the inclusion is a (embedded) submanifold.

(b) For m ∈ M we have Dm = Eig(Km, 1) where Km is the isotropy group in m by the
action of G on M and Eig(Km, 1) = ∩k∈KmEig(k, 1). To see this choose a ξ ∈ Dm and a
homogeneous vector field X such that Xm = ξ. Surely there is a g ∈ G with g.m = m0

and therefore we obtain Km = gKg−1. But this implies for all k ∈ Km

k.Xm = (kg).Xm0 = (gk′).Xm0 = Xm

for a k′ ∈ K and we see thatDm ⊂ Eig(Km, 1). On the other hand if ξ ∈ Eig(Km, 1) then
the vector g.ξ ∈ TMm0 is invariant under K as the computation

k.(g.ξ) = (kg).ξ = (gk′).ξ = g.ξ

shows. For the homogeneous vector field X with Xm0 = g.ξ we have Xm = ξ and this
implies Eig(Km, 1) ⊂ Dm.

(c) Fix m ∈ M and let Fix(Km) ⊂ M be the fixed point set of the elements of the isotropy
group in m, namely Km, i.e. Fix(Km) = {m′ ∈M : k.m′ = m′ for all k ∈ Km}. Then Fm is a
d–dimensional closed embedded submanifold of M. To see this choose a G–invariant
metric µ on (M,G) then by [Kob95, p. 59] all connected components of Fm are closed,
totally geodesic, embedded submanifolds of (M, µ).

Theorem 1.37. We apply the notations of Remark 1.36 and we supposeD is not empty. Then the
connected component F of Fix(Km) with m ∈ F is the maximal connected integral manifold for D
through m. Moreover the following holds:

(a) The normalizer of Km in G, namely NG(Km) acts transitively on Fix(Km) with isotropy group
Km in m.

(b) There is a closed subgroup NF of NG(Km) such that NF acts transitively on F with isotropy
group Km in m. Hence NF has the same dimension as NG(Km) but maybe different connected
components. If Km is connected then NF is the identity component of NG(Km).

(c) Since Km is normal in NF the action of NF on F descends to a free and transitive action of
H := NF/Km on F.

Proof. By Remark 1.36 F is a closed embedded submanifold of M. First, let us show that F
is indeed an integral manifold for D through m. Choose a m′ ∈ F, ξ′ ∈ TFm′ and a curve
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α : (−ε, ε) → F (ε > 0) such that α̇(0) = ξ′. Hence α is invariant under Km, i.e. k ◦ α = α

for all k ∈ Km and this implies k.ξ′ = ξ′ for all k ∈ Km. Set ξ := g−1.ξ′ for a g ∈ G with
g.m = m′. Now observe that Km fixes the point m′ and since both are conjugated to each
other as well as Km ⊂ Km′ we get Km = Km′ . But on the other hand Km is conjugated to Km′ ,
say Km = g−1Km′g, which implies Km = g−1Kmg for every g ∈ G with g.m = m′ and hence g
lies in the normalizer of Km in G. Now for all k ∈ Km we obtain

k.ξ = kg−1.ξ′ = g−1k′.ξ′ = ξ

and therefore there is a homogeneous vector field X with Xm = ξ. But this means that ξ′ =

g.ξ = g.Xm = Xg.m ∈ Dm′ and consequently TFm′ ⊂ Dm′ . It remains to showDm′ ⊂ TFm′ . So
take an arbitrary ξ′ ∈ Dm′ and a corresponding homogeneous vector field X with Xm′ = ξ′.
Let α be the integral curve of X through m. Choose again a g ∈ G with g.m = m′ and as
seen already before g ◦ α is the integral curve of X through m′. Now we conclude with
Proposition 1.33 that k ◦ α = α for all k ∈ Km, hence

k ◦ g ◦ α = (kg) ◦ α = (gk′) ◦ α = g ◦ α

for a k′ ∈ Km and this implies that the image of g ◦ α lies in F, since F is a connected
component and m′ ∈ F. Therefore ξ′ ∈ TFm′ and this verifies the claim that F in an integral
manifold forD through m.

As mentioned in Remark 1.36 there is a maximal integral manifold (S, σ) through m for
D. Of course this must not be an embedded submanifold, which means, that σ(S) must
not have the subspace topology of M. Following [War83, p.48] we have F ⊂ σ(S) by the
maximality of S and since we showed that F is an integral manifold for D through m.
We would like to show σ(S) ⊂ F. Note we proved already that an integral curve of a
homogeneous vector field starting at a point in F stays in F. Therefore we will show that
every point in σ(S) can be connected by a broken integral path to m (see Appendix A for a
definition of broken integral paths). Choose homogeneous vector fields X1, . . . ,Xd which
span the distribution D and Y1, . . . ,Yd vector fields on S such that Dσ(Y j) = X j ◦ σ for all
j = 1, . . . , d. Since σ is an immersion the vector fields Y1, . . . ,Yd trivialize the tangent bundle
of S. By Lemma A.3 of the appendix we can connect every point s ∈ S to s0 ∈ S with a
broken integral path for Y1, . . . ,Yd where s0 is the unique point with σ(s0) = m. Therefore
every point in σ(S) can be connected by a broken integral path for X1, . . . ,Xd with m and
this implies that σ(S) ⊂ F since the integral curves of homogeneous vector fields lie in F if
we start those at a point in F. Finally this proves that σ(S) = F and F is the unique (up to
equivalence of submanifolds) maximal integral manifold forD through m.

We proceed proving part (a) of the theorem. First, NG(Km) is indeed a closed Lie subgroup
of G since Km is closed. Now we point out that NG(Km) acts on Fix(Km). If g ∈ NG(Km)
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then we have for m′ ∈ Fix(Km) that k.g.m′ = g.k′.m′ = g.m′ for a k′ ∈ Km and this implies
g.m′ ∈ Fix(Km). As we have seen before if g ∈ G maps m to a point in Fix(Km) we have that
gKmg−1 = Km, i.e. g ∈ NG(Km) and since G acts transitively on M it follows that NG(Km) acts
transitively on Fix(Km). Clearly, by definition we have that Km ⊂ NG(Km), thus the isotropy
group of NG(Km) in m is Km. This proves part (a).

Define now the subset N := NF := {g ∈ G : g.m ∈ F}. We will show that N is a closed
subgroup of NG(Km) hence a closed subgroup of G as well. Clearly by the above discussion
N is a subset of NG(Km) since every element of N maps m into F ⊂ Fix(Km). To prove that
N is a indeed a group, we choose a G–invariant metric µ and with Remark 1.36 we have
that F is a totally geodesic closed submanifold of M. Obviously F equipped with the metric
induced by µ is a complete Riemannian manifold, since (M, µ) is complete. Now take g ∈ N
and a geodesic γ : [0, 1] → F connecting m and g.m ∈ F. Define γ−(t) := γ(1 − t), which
is again a geodesic and therefore g−1

◦ γ− is a geodesic as well connecting m with g−1.m.
We have to show g−1.m ∈ F. There is a homogeneous vector field X with Xg.m = γ̇(1) and
therefore the derivative of g−1

◦ γ− at t = 0 is given by −g−1.Xg.m = −Xm and since F is
totally geodesic we conclude that g−1

◦ γ− lies completely in F thus in particular g−1.m. If
we take another element ĝ ∈ N, then the geodesic ĝ ◦ γ connects ĝ.m with ĝg.m and since γ
lies in F and ĝ ∈ N the curve ĝ ◦ γ lies in connected component of Fix(Km) which contains
m, namely F. This shows that ĝg.m ∈ F and finally N is indeed a subgroup of NG(Km) or G
either. Let (gn) be a sequence in N which converges in NG(Km) say to g0. Then we conclude
that gn.m converges to g0.m which lies in F because F is closed. Hence g0.m ∈ F and g0 ∈ N.
Indeed N acts on F since every point in F is given by g.m for a suitable g ∈ N and since N is
a group we have an action of N on F. This argument show also that N acts transitively on
F. Clearly Km is a subgroup of NF and as above the isotropy group of N in m is exactly Km.
This shows that NG(Km) and N have the same dimension but possibly different connected
component where NG(Km) is the bigger group. If Km is connected it follows from Lemma
1.12 that N is connected, since F is connected too. Then N must be the identity component
of NG(Km). This completes the proof of part (b). In addition we would like to note that the
definition of N does not depend on m, since it easily seen that NF = {g ∈ G : im (g|F) ⊂ F}.

Clearly Km is a normal subgroup of N and therefore H := N/Km is a group again. Since
Km is the isotropy group of N acting on F it follows that this action descends to a free and
transitive action of the quotient H on F. This ends the proof of the theorem above. �

Because the action of H = NF/Km on F is free we would like to have, that this groups
acts on the other integral manifolds of D free and transitive and properly as well, hence
we can pass to the induced H–principal fiber bundle, where the base space is given by the
orbit space of the H–action. But even if this is true, it is not clear in the case where H is not
compact that the orbit space is a nice manifold, e.g. it can loose the Hausdorff property. We
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would like to discuss these questions in the following propositions and corollaries.

Proposition 1.38. Let D be non–trivial. Then there is a free and proper action of the group
H := NF/K (notations as in Theorem 1.37) on M, such that the orbits are the maximal connected
integral manifolds ofD, where F is the maximal connected integral manifold through m0 and K its
isotropy group.

Proof. We shall use the notation of Theorem 1.37. Let F1 and F2 be two maximal connected
integral manifolds forD. Let Ki denote the isotropy group of Fi (i = 1, 2) and denote by Ni

the group NFi of Theorem 1.37, hence Fi � Ni/Ki induced by the action of Ni on Fi. First
we show that if a g ∈ G maps a point of F1 into F2, then g maps all points of F1 into F2.
For this choose a G–invariant metric µ on (M,G) and remember that Fi is a totally geodesic
and complete submanifold of (M, µ). Suppose that g.m1 = m2 for mi ∈ Fi (as always for
i = 1, 2) and take an arbitrary m ∈ F1, hence we would like to show g.m ∈ F2. Since F1 is
complete there is a geodesic γ : [0, 1] → F1 connecting m1 with m and furthermore there is
a homogeneous vector field X such that Xm1 = γ̇(0). Now g is an isometry of (M, µ) and
therefore g◦γ is a geodesic starting at m2 with tangent vector g.γ̇(0) = g.Xm1 = Xm2 ∈ T(F2)m2 .
Hence g◦γ lies completely in F2 and the endpoint is given by g.m, which proves our claim.

This helps us to show that N1 is conjugated to N2 in G. Let cg : N1 → G be the conjugation
map by g restricted to N1. Since N1 and N2 have the same dimension and are closed
subgroups it is sufficient to show cg(N1) ⊂ N2, i.e. cg(g1).m2 ∈ F2 for g1 ∈ N1. Let g ∈ G
be an element which maps F1 into F2 then we see indeed cg(g1).m2 ∈ F2. Since all isotropy
groups of G acting on M are conjugated to each other we have with the same g that
cg(K1) = K2. But this means that H1 is isomorphic to H2, where Hi = Ni/Ki, thus it seems
now possible that there a single group acting on M such that the orbits are the maximal
connected integral manifolds forD.

Let F be the maximal integral manifold through m0 and K its isotropy group. Now define
the map

η̃ : NF ×M→M, (gF,m) 7→ θ(cg(gF),m) = cg(gF).m

for a g ∈ G with g.m0 = m. First of all this map is well–defined, since any other g′ with
g′.m0 = m differs from g by an element of K, i.e, g′ = gk for k ∈ K. But then we have

gkgFk−1g−1.m = gkgFg−1.m = ggFg−1.m

since g−1.m ∈ F and gFg−1.m ∈ F. The map η̃ is smooth, which can been seen easily by
taking a local section of the bundle p : G→M. This map is indeed an action of H on M since
θ is an action and the conjugation is a homomorphism. Now let us pass to the induced
map η : H ×M → M given by η(h,m) = η̃(gF,m) for a gF ∈ NF representing h in H. This is
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again well–defined, since any other representative differs from gF by an element of K and
the same computation as above shows that the definition does not depend on the choice of
gF. Clearly η is smooth and is an action for H on M.

Finally it remains to show, that the orbits of H on M are the maximal connected integral
manifolds for D. Since the action is free and proper we have that H.m is an embedded
submanifold of M diffeomorphic to H and therefore it is sufficient to show that H.m = Fm

where Fm is the maximal connected integral manifold through m ∈ M. But we have
H.m = gNFg−1.m = NFm .m = Fm by Theorem 1.37 and the statements proven above in this
proposition (note that the dots represent different actions on M). �

Corollary 1.39. The action of H on M from Proposition 1.38 induces an H–principal fiber bundle
π : M → B = M/H such that B is diffeomorphic to the homogeneous space G/NF. More precisely,
G commutes with the action of H on M and descends to an action of G on B with isotropy group
isomorphic to NF, such that π is G–equivariant.

Proof. By Theorem B.3 of Appendix B and Proposition 1.38 we have that the orbit space
B = M/H is indeed a smooth manifold. Now we show that the actions of G and H on M
commute. Let m ∈ M, h ∈ H, g ∈ G and choose a gF ∈ NF which represents h. Then we
have g.θ(h.ηm) = g.(cg0(gF).m) for g0.m0 = m or equivalently (gg0gFg−1

0 ).m. Set m′ := gg0.m0,
then NFm′ = (gg0)GF(gg0)−1 by the proof of Proposition 1.38, hence (gg0)gF = g′(gg0) for a
g′ ∈ GFm′ . This leads to (gg0gFg−1

0 ).m = g′g.m′ which can be written as (gg0)gF(gg0)−1.(g.m)
and since gg0.m0 = m′ = g.m we have that (gg0)gF(gg0)−1.(g.m) = h.η(g.θm). It follows that
the action of G on M descends to an action on B: Define θ′ : G × B→ B as θ′(g, b) := π(g.m)
for a m ∈ M with π(m) = b. This map is well–defined since any other m′ with π(m′) = b is
related to m by m′ = h.m for h ∈ H. Then we have π(g.m′) = π(g.h.m) = π(h.g.m) = π(g.m)
(note again the different action denoted by the dots), hence θ′ is well–defined. The action
is smooth because π : M → B is a principal fiber bundle and the involved actions are
smooth too. Moreover θ′ acts on B transitive, since θ acts on M transitive and therefore
B is diffeomorphic to G modulo the isotropy group of θ′ in a point of B, say b0 := π(m0).
Thus suppose g.b0 = b0 for a g ∈ G then g.(h.m0) = m0 or equivalently ggF.m0 = m0 for a
gF ∈ NF, thus g = g−1

F k ∈ NF for a k ∈ K ⊂ NF and it follows that G/NF is diffeomorphic to
B = M/H. �

Remark 1.40. Note that G/NF is merely a homogeneous space, since it is not clear whether
NF is compact. Note moreover, that the action of G on B has not to be effective. But if C
denotes the maximal normal subgroup of G contained in NF, we have that G/C acts on B
effectively with isotropy group NF/C.
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Corollary 1.41. The Lie algebra of fundamental vector fields of H acting on M is isomorphic to the
Lie algebraVG(M). Hence the Lie algebra of H is isomorphic toVG(M).

Proof. Clearly the Lie algebra h of H has the same dimension asVG(M) and since the actions
of G and H commute, we have that the fundamental vector fields of h are G–invariant. Since
the map sending a Lie algebra element to its fundamental vector field is an injective Lie
homomorphism we conclude that h is isomorphic toVG(M). �

Equivariant principal bundles

As we saw in the previous section a Riemannian homogeneous space which allows homo-
geneous vector fields comes with a principal bundle between homogeneous spaces such
that the projection map is equivariant. Here we would like to study the properties of those
objects more precisely.

Definition 1.42. Let π : M → B be an H–principal bundle where H is a Lie group and B a
smooth manifold. We say that π : M→ B is an G–equivariant H–principal bundle (or simply
equivariant principal bundle) if the actions of G and H commute. Therefore we regard the
action of H on M as a right action defined by m.h := h−1.m.

Although many of the statements below would work for equivariant principal bundles
in general, we would like to restrict our attention to those which arise from Corollary 1.39.
Henceforth we will discuss only such equivariant principal bundles.

In the following lines we would like to deal with connections on equivariant principal
bundles. As one could expect there is a G–invariant connection on the H–principal bundle
π : M → B. But before proving the existence of such a connection we have to phrase an
elementary proposition in linear algebra.

Proposition 1.43. Let (V, σ) be a euclidean vector space. We denote the linear isometries of (V, σ)
by O(V). Suppose K ⊂ O(V) is a closed subgroup and that the subspace Eig(K, 1) := ∩k∈KEig(k, 1)
has positive dimension. Suppose furthermore that f ∈ Aut(V) normalizes K, i.e. f K f−1

⊂ K. Set
U := Eig(K, 1) and W := U⊥ then f respects the orthogonal decomposition of V.

Proof. First we show that f maps U into itself. For a u ∈ U we see that k f (u) = f k̂(u) = f (u)
for all k ∈ K as well as for some k̂ ∈ K and therefore f (u) ∈ Eig(K, 1). We denote by f ∗

the adjoint map of f with respect to σ. Note that k∗ = k−1
∈ K for every k ∈ K. Then f ∗

normalizes K as well as can be seen by the computation

f ∗k = (k∗ f )∗ = ( f k̂∗)∗ = k̂ f ∗
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for all k ∈ K and some k̂ ∈ K; hence f ∗ maps U into itself too. From this we conclude that

σ
(
u, f (w)

)
= σ

(
f ∗(u),w

)
= 0

for w ∈W and for all u ∈ U since f ∗(u) ∈ U. Therefore f (w) ∈ U⊥ = W. �

Proposition 1.44. There is a G–invariant connection on the equivariant principal bundle π : M→
B, i.e. there is a distribution H on M such that H is in every point a complement to the tangent
space of orbits of H and is invariant under the actions of G and H. The connection is unique in the
sense, thatH is the orthogonal complement ofD for every G–invariant metric.

Proof. Let D be the distribution defined in Remark 1.36. Then D along an orbit of H is
exactly the tangent space of this orbit as seen in Proposition 1.38. Choose a G–invariant
metric µ of (M,G) and defineH := D⊥ which is clearly a smooth distribution on M. Since
D is defined through G–invariant vector fields we have thatD is invariant under the action
of G on TM. And because the elements of G are isometries it follows that every g ∈ G
preserves the orthogonal splitting of TM = D ⊕ H ; in particular H is G–invariant. The
definition of a connection requires now that H is invariant under H. Let m0 ∈ M, h ∈ H
and g ∈ G such that g.m0.h = m0. Let F : M→ M be the diffeomorphism F(m) := g.m.h and
f the derivative of F in m0 which is an automorphism of TMm0 . Set K := Km0 , Fm0 := H.m0

and we see that g maps m0 into Fm0 , which means that g normalizes K. It follows that f
normalizes K since k(g.m0.h) = m0 and by the chain rule k f = f k̂ for k, k̂ ∈ K. Since Hm0

is the orthogonal complement of Eig(K, 1) = Dm0 in (TMm0 , µm0) we can apply Proposition
1.43 to see that f respects the orthogonal decomposition TMm0 = Dm0 ⊕Hm0 . Now since G
respects the orthogonal splitting of TM = D⊕H and because ξ.h = g−1

◦ f (ξ) for ξ ∈ Hm0

we see that ξ.h ∈ Hm0.h. Hence Hm0 .h ⊂ Hm0.h and because the derivative of h seen as a
diffeomorphism on M is injective we conclude Hm0 .h = Hm0.h. Therefore H is invariant
under H, henceH is indeed a connection on π : M→ B.

Now let µ0 be a G–invariant metric on M beside µ. We have to showH ⊂ D⊥0 where ⊥0

indicates the orthogonal complement with respect to the metric µ0. SinceH is G–invariant
and G acts by isometries on M for the metrics µ and µ0 we have merely to showHm0 ⊂ D

⊥0
m0

.
Let f0 be the self–adjoint automorphism of TM0 such that µ0(ξ1, ξ2) = µ( f0(ξ1), ξ2) for
ξ1, ξ2 ∈ TMm0 . For η ∈ Dm0 and all ξ ∈ TMm0 as well as all k ∈ K we have

µ(k f0(η), ξ) = µ( f0(η), k−1ξ) = µ0(η, k−1ξ) = µ0(η, ξ) = µ( f0(η), ξ),

since µ, µ0 are invariant under K and Dm0 is fixed by K. This implies k. f0(η) = f0(η) and
hence f0(η) ∈ Eig(K, 1) = Dm0 for all η ∈ Dm0 . Now if η ∈ Dm0 and ξ ∈ Hm0 we see that

µ0(η, ξ) = µ( f0(η), ξ) = 0
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since f0(η) ∈ Dm0 = H⊥m0
and this impliesH ⊂ D⊥0 .

�

Remark 1.45.

(a) We denote by Ωk(M,V) := Ωk(M,R) ⊗ V the k–forms on M with values in a vector
space V. If H is acting on M from the right we denote by (α)h∗ the pullback of α by h,
i.e. for tangent vectors ξ1, . . . , ξk on TMm we have

((α)h∗)m(ξ1, . . . , ξk) = αm.h(ξ1.h, . . . , ξk.h).

(b) There is a unique connection form ω ∈ Ω1(M, h) for the connection H on π : M → B
of Proposition 1.44 (see e.g. [Bau09, p.77]) such that kerω = H and for every h ∈ H
we have (ω)h∗ = AdH(h−1) ◦ ω as well as ω(Xw) = w for w ∈ h.

Proposition 1.46. The connection form ω of Remark 1.45 is G–invariant. Conversely every
G–invariant connection form on π : M→ B defines a G–invariant connectionH .

Proof. First we have to show that g∗(ω) = ω for every g ∈ G. Let ξ ∈ TMm for m ∈ M. Then
there is a uniquely determined decomposition of ξ = ξD +ξH with ξD ∈ Dm and ξH ∈ Hm.
Surely there is a fundamental vector field Xw on M for w ∈ h such that (Xw)m = ξD and such
that Xw is G–invariant (since G and H commute). Hence

g∗(ω)m(ξ) = ωg.m(g.ξ) = ωg.m(g.ξD) = ωg.m((Xw)g.m) = w = ωm(Xw) = ωm(ξ).

On the other side, if ω is a G–invariant connection form on π : M→ B then setH := kerω.
Since ω is a connection form, H is connection. If ξ ∈ Hm then ωg.m(g.ξ) = 0 since ω is
G–invariant. Hence g.ξ ∈ Hg.m and it follows that g.Hm = Hg.m. �

Remark 1.47.

(a) Let α ∈ Ωk(M,V) and V a vector space. If V = R then we have the usual exterior
derivative dα : Ωk(M,R) → Ωk+1(M,R). We can extend d to map d : Ωk(M,V) →
Ωk+1(M,V) by setting d(α ⊗ v) := dα ⊗ v for α ∈ Ωk(M,R), v ∈ V and using the
universal property of tensor product we extend this to Ωk(M,R) ⊗ V.

(b) Suppose l is a Lie algebra with Lie bracket denoted by [·, ·]. Then [·, ·] is a bilinear
map l × l → l which fulfills the Jacobi identity. We use the Lie bracket to define the
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commutator of forms on M with values in l. Consider α ∈ Ωk(M,R) and β ∈ Ωl(M,R)
as well as v,w ∈ l. Then define

[(α ⊗ v) ∧ (β ⊗ w)] := α ∧ β ⊗ [v,w]

and extend this to a map [· ∧ ·] : Ωk(M, l) × Ωl(M, l) → Ωk+l(M, l) using again the
universal property of tensor products.. Directly from the definition we have the
following properties for α ∈ Ωk(M, l) and β ∈ Ωl(M, l)

(i) [α ∧ β] = (−1)kl+1[β ∧ α],

(ii) d[α ∧ β] = [dα ∧ β] + (−1)k[α ∧ dβ].

(c) Let ω be the connection form of Remark 1.45. There is an h–valued 2–form Fω ∈
Ω2(M, h) called the curvature of ω which is defined by

Fω := dω +
1
2

[ω ∧ ω].

We shall call a connection ω on a principal bundle with Fω = 0 a flat.

The integrability of the horizontal distribution is determined by the curvature Fω of
the connection form ω. Let πD : TM → D be the vertical projection, then for Y1 and Y2

horizontal vector fields we have

πD
(
[(Y1,Y2)]m

)
= Xv

where Xv is the fundamental vector field to v = −Fω((Y1)m, (Y2)m) ∈ hwhich follows from

Fω(Y1,Y2) = dω(Y1,Y2) = −ω([Y1,Y2])

since Y1 and Y2 are horizontal. ThereforeH is integrable if ω is flat.

Extensions of Lie Groups and Semidirect Products

Here we would like to discuss some properties of short exact sequences of connected Lie
groups and their relation to semidirect products of Lie groups. Therefore let us start with a

Definition 1.48. Let K,G and H be Lie groups as well as i : K → G a monomorphism and
π : G→ H an epimorphism. We say G is an extension of K by H (or simply an extension) if

1 −→ K i
−→ G π

−→ H −→ 1

is a short exact sequence of Lie groups and we will indicate an extension like this by (i, π).
We shall say an extension π splits if there is a section σ : H→ G of π : G→ H, i.e. π◦σ = idH.
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Clearly every epimorphism π : G→ H induces an extension of Lie groups

1 −→ kerπ −→ G −→ H −→ 1,

where we take the inclusion of kerπ into G as the monomorphism. And every extension
is determined by an epimorphism modulo the isomorphism class of the kernel. Two
extensions of K by H say (i1, π1) and (i2, π2) are isomorphic or equivalent if there are ψ : G1 →

G2, τ ∈ Aut(K) and ϕ ∈ Aut(H) such that the following diagram commutes

1 −−−−−→ K
i1

−−−−−→ G1
π1
−−−−−→ H −−−−−→ 1y τ

y ψ
y ϕ

y y
1 −−−−−→ K

i2
−−−−−→ G1

π2
−−−−−→ H −−−−−→ 1

and by the five–lemma ψ is an isomorphism.
Every extension of Lie groups like in the definition above may be seen as a K–principal

bundle π : G → H. Thus the splitting map corresponds to a global section of this bundle,
hence G is diffeomorphic to the product manifold K × H (even more we have that the
principal bundle is the trivial one). But the crucial fact is that G has not to be the product
group in general. However it is nearly a product of groups which we will call a semidirect
product. In the purely algebraic setting there no subtlety to define a semidirect product,
but in the case of Lie groups we have to be more careful since there is a Lie group structure
involved there. Now let us first phrase the definition and discuss afterwards what we have
to do to understand the definition more precisely.

Definition 1.49. Let G and H be Lie groups such that G is connected and ρ : H → Aut(G)
a homomorphism of groups, such that the map H ×G→ G, (h, g) 7→ ρh(g) is smooth. Then
the semidirect product of Lie groups G oρ H is given as follows: take the manifold G ×H and
define a group structure by

(g1, h1)(g2, h2) = (g1ρh1(g2), h1h2).

A straightforward computation shows that G oρ H is indeed a Lie group.

Remark 1.50. The crucial part of this definition is the group Aut(G). Clearly in algebraic
terms it is a group, but if G is a Lie group the question arises if there is a natural Lie group
structure on Aut(G). One of the reasons is that it would be more comfortable to define ρ as
a Lie group homomorphism.

In [War83, p. 119] Aut(G) can be given a Lie group structure if G is simply connected. In
that case we have an isomorphism of groups between Aut(G) and Aut(g) which is a closed
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subgroup of the group of invertible endomorphism of g and therefore we may transfer the
Lie group structure of Aut(g) onto Aut(G) via this isomorphism. Of course the question
now is how to install a Lie group structure in the case where G is not simply connected.

Let G be a connected group and G̃ its universal cover group with π : G̃→ G the covering
homomorphism. As is generally known the kernel of π is isomorphic to the fundamental
group π1(G) of G which in turn is isomorphic to the group of decktransformations of the
universal covering π : G̃→ G. Define

Aut(G̃,G) := {ϕ̃ ∈ Aut(G̃) : ϕ̃(π1(G)) = π1(G)}

which is a closed subgroup of Aut(G̃) hence itself a Lie group. We claim that Aut(G̃,G) is
isomorphic to Aut(G) as a group. First define the map F : Aut(G̃,G) → Aut(G) as follows:
for ϕ̃ ∈ Aut(G̃,G) and g ∈ G let F(ϕ̃)(g) := π◦ϕ̃(g̃) for a g̃ ∈ π−1(g). This map is well–defined
since ϕ̃ is a homomorphism and sends π1(G) into itself. We would like to abbreviate F(ϕ̃) as
ϕ. Then the diagram below is commutative and clearly ϕ is a Lie group homomorphism.

G̃
ϕ̃

−−−−−→ G̃

π
y yπ
G

ϕ
−−−−−→ G

Hence F is well–defined. Moreover F is a group homomorphism because

F(ϕ̃1 ◦ ϕ̃2)(g) = π ◦ ϕ̃1 ◦ ϕ̃2(g̃) = ϕ1 ◦ ϕ2(g)

since the above diagram commutes. We will show that F is bijective. If ϕ ∈ Aut(G) then
since G̃ is simply connected we may lift ϕ ◦ π : G̃ → G to a unique map ϕ̃ : G̃ → G̃ such
that ϕ̃(ẽ) = ẽ where ẽ is the neutral element of G̃. Therefore the above diagram commutes
again and ϕ̃ is indeed a smooth automorphism. For an element g̃ ∈ π1(G) = kerπ we
compute that π ◦ ϕ̃(g̃) = ϕ ◦ π(g̃) = e, i.e. ϕ̃(π1(G)) ⊂ π1(G) and since ϕ is bijective and F a
group homomorphism we conclude ϕ̃(π1(G)) = π1(G) and finally we obtain ϕ̃ ∈ Aut(G̃,G).
Moreover since the diagram commutes F(ϕ̃)(g) = π ◦ ϕ̃(g̃) = ϕ ◦ π(g̃) = ϕ(g) hence F is
onto. If F(ϕ̃) = idG then ϕ̃ has to be a decktransformation such that ϕ̃(ẽ) = ẽ which implies
that ϕ̃ = idG̃. Thus F is bijective and we carry the Lie group structure of Aut(G̃,G) over to
Aut(G).

Hochschild showed in [Hoc52] that the topology of Aut(G) defined above coincide with
the natural compact–open topology on it. Furthermore he showed in the same article, that
if π0(G) is finitely generated then Aut(G) has still a Lie group structure which underlying
topology coincides with the compact–open topology. Therefore if H × G → G is smooth
as in the definition of the semidirect product then, in the case where π0(G) is finitely
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generated, the map ρ : H → Aut(G) is a Lie group homomorphism. As we have to deal
mostly with Lie groups where π0(G) is finitely generated, we assume henceforth without
further mentioning that π0 is finitely generated for any group.

Proposition 1.51. Let 1→ K→ G π
→ H→ 1 be an extension which splits via a map σ : H→ G.

We see K as a closed subgroup of G. Then G is isomorphic to K oρ H, where the ρ : H→ Aut(K) is
given by ρh(k) := σ(h)kσ(h)−1. Therefore we write also KoσH since σ determines the representation
ρ.

Proof. Define ρ(h)(k) := σ(h)kσ(h)−1 which lies indeed in K since π(ρ(h)(k)) = hh−1 = e.
Clearly the map H × K → K, (h, k) 7→ ρh(k) is a smooth homomorphism and we consider
the map Φ : K oρ H→ G, Φ(k, h) := kσ(h) which is a smooth map. And we compute

Φ((k1, h1)(k2, h2)) = Φ(k1ρh1(k2), h1h2) = k1ρh1(k2)σ(h1)σ(h2)

= k1σ(h1)k2σ(h2) = Φ(k1, h1)Φ(k2, h2).

which shows that F is a homomorphism. On the other side define Ψ : G → K oρ H to
be Ψ(g) := (gσ(π(g−1)), π(g)). We have π(gσ(π(g−1)) = e hence gσ(π(g−1) ∈ K and Ψ is a
well–defined smooth map. The computation

Ψ(g1g2) = (g1g2σπ(g2)−1σπ(g1)−1, π(g1)π(g2))

= (g1σπ(g1)−1σπ(g1)g2σπ(g2)−1σπ(g1)−1, π(g1)π(g2))

= (g1σπ(g1)−1, π(g1))(g2σπ(g2)−1, π(g2)) = Ψ(g1)Ψ(g2).

shows that Ψ is a homomorphism as well. We claim that Ψ is the inverse map for Φ. We
show this by conducting the following two boring computations.

Ψ ◦Φ(k, h) = Ψ(kσ(h)) = (kσ(h)σ(h)−1, h) = (k, h)

and
Φ ◦Ψ(g) = Φ(gσπ(g−1), π(g)) = gσπ(g−1)σπ(g) = g.

�

Suppose we have that G acts on M and H acts on a manifold N and suppose furthermore
that there is a representation of H on G, i.e. there is a Lie group homomorphism ρ : H →
Aut(G). Now we are interested how the semidirect product G oρ H may act on M ×N. We
say Goρ H acts semidirect on M×N if there is an action of H on M by diffeomorphisms such
that ch(g) := h ◦ g ◦ h−1 = ρh(g). Then the action of G oρ H on M × N may be defined as
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(g, h).(m,n) := (gh.m, h.n), where gh is the composition of the diffeomorphism g and h on M.
Indeed this is an action since (e, e).(m,n) = (m,n) and

(g1, h1).
[
(g2, h2).(m,n)

]
= (g1, h1)(g2h2.m, h2.n) = (g1h1g2h2.m, h1h2.m)

= (g1h1g2h−1
1 h1h2.m, h1h2.n) = (g1ρh1(g2)h1h2.m, h1h2.n)

= (g1ρh1(g2), h1h2).(m,n) = (g1, h1)(g2, h2).(m,n).

As a first consequence we would phrase some statements about equivariant principal
bundles with flat connection.

Remark 1.52. Let π : M → B be the G–equivariant H–principal bundle from Corollary
1.39 and suppose that the connection of Proposition 1.44 is flat. Suppose moreover that
M is simply connected and G is connected. Then by Lemma 1.12 the isotropy group K
in m0 ∈ M is connected and with Theorem 1.37 we conclude that H is connected. Using
this and the long exact homotopy sequence of Lemma 1.12 again we see that B has to be
simply connected. Therefore the H–principal bundle has to be H–equivariant isomorphic
to B × H with H acting by right–multiplication on the second factor and the connection to
be the trivial connection. Observe that H has to be simply connected since M and B are. If
Ψ : M→ B ×H is this H–equivariant isomorphism we are to able to define an G–action on
B × H which commutes with H and is a G–equivariant isomorphism between (M,G) and
(B ×H,G). We define this action θ̃ of G on B ×H such that the diagram

G ×M θ
−−−−−→ M

id×Ψ

y yΨ

G × (B ×H) θ̃
−−−−−→ B ×H

becomes commutative.

Proposition 1.53. We assume the conditions of Remark 1.52. In that case there is an extension

1 −→ GB −→ G Φ
−→ H −→ 1,

where GB is a connected and closed Lie subgroup of G acting on B × e = B effectively, transitively
with isotropy group K in (b0, e).

Proof. We may assume that Ψ(m0) = (b0, e) where b0 ∈ B and e the neutral element of
H. Denote by πH the projection B × H → H and if g ∈ G let gH denote the composition
πH ◦ g : B × H → H. But the map gH can be seen as a map from H to itself since we
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will show that it does not depend on the B–factor. We choose a fixed h ∈ H and a curve
α : (−ε, ε)→ B× h where α̇(0) is a horizontal vector in T(B×H)(b,h). Since g maps horizontal
vectors into horizontal vectors and the differential of πH maps horizontal vectors to zero,
we have that

d
dt

∣∣∣∣∣
t=0

gH ◦ α = 0

(note that we used that the principal bundle B × H → B is equipped with the trivial flat
connection). Hence the map b 7→ gH(b, h) is constant on B which means that gH does not
depend on B. Therefore define the map Φ : G → H by Φ(g) := gH(b, e) for a b ∈ B. We
claim that Φ is a group homomorphism. Let g1, g2 ∈ G and let hi := Φ(gi) for i = 1, 2. Now
g2(b, e) = (b2, h2) for some b2 ∈ B, i.e. that h2 = πH ◦ g2(b, e). Then we compute that

Φ(g1g2) = πH(g1(b2, h2)) = πH(g1(b2, e).h2) = h1h2 = Φ(g1)Φ(g2),

since the actions of G and H commute and πH is H-equivariant. Moreover Φ is smooth
since Φ is composed through smooth maps, more precisely Φ is the composition of the
evaluation map and πH. If h ∈ H then there is a g ∈ G such that g(b0, e) = (b0, e).h = (b0, h)
and consequently Φ(g) = h therefore Φ is an epimorphism.

Every element of GB = ker Φ acts clearly on B × e. The group acts effectively since
if g(b, e) = (b, e) for all b ∈ B then g(b, h) = (b, h) for all (b, h) ∈ B × H since g(b, h) =

g(b, e).h = (b, e).h = (b, h). The kernel acts transitively since for (b, e) ∈ B × e we have a
g ∈ G such that g(b0, e) = (b, e) which means by definition g ∈ GB. Since H is simply
connected and G is connected we use again Lemma 1.12 to conclude that GB is connected.
Same arguments apply to see that the isotropy group K′ in (b0, e) of GB is connected. And
since dim K = dim K′, K ⊂ K′ and the fact that K as well as K′ is connected we have that
K = K′. �

Theorem 1.54. Suppose σ : H → G splits the extension of Proposition 1.53. Then (B × H,G) is
equivariant isomorphic to (B ×H,GB oσ H) with a semidirect action of GB oσ H on B ×H.

Proof. From Proposition 1.51 G is the semidirect product GB oσ H and the action of H on GB

is given by the map ρ : H→ Aut(GB), ρ(h)(g) = σ(h)gσ(h)−1. By definition the group GB acts
on B× e. The action of σ(h) on B×H in the H–factor is given as left–multiplication by h. This
can be easily seen as one computes πH ◦ σ(h)(b′, h′) = hh′. Hence the element σ(h)(b, e)h−1

lies in B× e and therefore there is a map f : H→ Diff(B) such that ( f (h)(b), e) = σ(h)(b, e)h−1.
Since GB is a subgroup of Diff(B) we have f (h) ◦ g ◦ f (h)−1 = ρ(h)(g) and this defines a
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semidirect action of GB oσ H on B ×H: for (g, h) ∈ GB oH this action is given by

(g, h)(b, h′) = g( f (h)(b), e)hh′

= gσ(h)(b, e)h−1hh′

= gσ(h)(b, e)h′

= gσ(h)(b, h′)

= Φ(g, h)(b, h′)

where Φ : GB oH → GB oH is the map from Proposition 1.51, hence this defines the same
action. Finally we choose the identity map id: B ×H → B ×H as a diffeomorphism to see
that the identity is Φ–equivariant. �

A direct product of groups may be considered as a trivial semidirect product if we choose
ρ : H → Aut(K) to be the trivial representation, i.e. ρ(h) = idK for all h ∈ H. However,
sometimes a direct product can appear as a non–trivial semidirect product as the following
simple example shows. As we know SO(2n + 1) is a normal subgroup of O(2n + 1) and thus
we obtain an extension

1 −→ SO(2n + 1) −→ O(2n + 1) −→ Z2 −→ 1,

where we have the determinant to be the epimorphism from O(2n + 1) toZ2. Then we may
take two splitting maps into account. First σ1 : Z2 → O(2n + 1), σ1(−1) = −E2n+1, where
E2n+1 is the identity matrix inR2n+1 which is clearly a splitting map. But the corresponding
representation ρ1 : Z2 → Aut(SO(2n + 1)) is the trivial one since −E2n+1 commutes with
all elements of SO(2n + 1) and therefore O(2n + 1) = SO(2n + 1) ×Z2. On the other hand
σ2 : Z2 → O(2n + 1) defined by σ2(−1) = diag(−1, 1, . . . , 1) =: D splits the exact sequence
as well but the representation does not act by the identity on SO(2n + 1). Hence we have
also O(2n + 1) = SO(2n + 1) oσ2 Z2. The reason for this is that the representation ρ2 is
equal to a representation by inner automorphisms, more precisely for S ∈ SO(2n + 1) we
have DSD−1 = −DS(−D−1) and −D ∈ SO(2n + 1). We will show below that a semidirect
product with a representation by inner automorphisms is isomorphic to the direct product
of groups.

But first let us say a few words about the groups of inner and outer automorphisms of a
connected Lie group K. The inner automorphism of K are defined by

Inn(K) := {ϕ ∈ Aut(K) : ∃ k ∈ K, ϕ = ck}

where ck : K → K is the conjugation map. If ϕ ∈ Aut(K) then ϕckϕ
−1 = cϕ(k) hence Inn(K)

is a normal subgroup of Aut(K) and the quotient Out(K) = Aut(K)/Inn(K) is called outer
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automorphism group. Thus this induces an extension

1 −→ Inn(K) −→ Aut(K) −→ Out(K) −→ 1.

Moreover the conjugation map c : K→ Inn(K), k 7→ ck is clearly onto and the kernel is Z(K)
the center of K, and again we obtain an extension

1 −→ Z(K) −→ K −→ Inn(K) −→ 1.

Note that Inn(K) is connected if K is. The next proposition will show us that representations
which are given by inner automorphisms create semidirect products which are trivial.

Proposition 1.55. Suppose ρ : H→ Inn(K) is a representation of H on K. Assume that there is a
homomorphism λ : H → K which is a lift of ρ for c : K → Inn(K), i.e. ρh = cλ(h). Then K oρ H is
isomorphic to K ×H.

Proof. Define the smooth map Φ : K ×H → K oρ H by Φ(k, h) := (kλ(h)−1, h). We claim that
Φ is a homomorphism.

Φ ((k1, h1)(k2, h2)) = Φ(k1k2, h1h2) = (k1k2λ(h1h2)−1, h1h2) = (k1k2λ(h2)−1λ(h1)−1, h1h2)

= (k1λ(h1)−1λ(h1)k2λ(h2)−1λ(h1)−1, h1h2)

= (k1λ(h1)−1ρh1(k2λ(h2)−1), h1h2)

= (k1λ(h1)−1, h1)(k2λ(h2)−1, h2)

= Φ(k1, h1)Φ(k2, h2).

The inverse map is given by Ψ : K oρ H → K × H, Ψ(k, h) = (kλ(h), h). First Ψ is clearly
smooth and Ψ is the inverse map of Φ:

Ψ ◦Φ(k, h) = Ψ(kλ(h)−1, h) = (k, h)

and
Φ ◦Ψ(k, h) = Φ(kλ(h), h) = (k, h).

�

We say a Lie group is complete if the center of K is trivial and Aut(K) = Inn(K), thus
Inn(K) � K via the conjugation map. In addition we say that K is almost complete if the
center is trivial and the connected component of the identity Aut0(K) of Aut(K) consists
only of inner automorphisms.
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Proposition 1.56. Assume that we have an extension

1 −→ K −→ G −→ H −→ 1

such that K is a complete group. Then the sequence splits and we have G � K × H with H being
isomorphic to the centralizer of K in G. If K is almost complete and G connected the we obtain the
same statement.

Proof. Consider the conjugation map c : G→ Aut(K), g 7→ cg which can be considered as a
map from G → K since K is complete. The kernel of this map is the centralizer CG(K) of K
in G. Therefore we obtain another extension

1 −→ CG(K) −→ G −→ K −→ 1.

Now the inclusion map from K into G is a splitting map. But conjugation on CG(K) by
elements of K yields a trivial representation of K on CG(K) and we conclude G � CG(K)×K.
Finally we have CG(K) � G/K � H.

If K is almost complete and G connected then the image of G under the conjugation map
lies in Aut0(K). Repeating the arguments from above we obtain the proposition. �

Central Extensions

A central extension is a special case of an extension, but nevertheless we would like to ded-
icate an extra section for those short exact sequences. One reason is that central extensions
are classified through a second cohomology group with abelian groups as coefficients.

Definition 1.57. An extension (i, π) with i : K→ G andπ : G→ H is called a central extension
if i(K) lies in the center of G (in particular K has to be abelian).

Example 1.58. If G is a connected Lie group and G̃ is its universal covering group we obtain
the natural central extension

1 −→ π1(G) −→ G̃→ G→ 1

since fundamental groups of Lie groups are discrete subgroups of the center of its universal
cover group. Clearly every group with non–trivial center forms a (non–trivial) central
extension. A concrete example is given as follows: let i : U(1)→ U(2) be given by mapping
a z ∈ U(1) to the diagonal matrix z · E2 and π : U(2) → (SU(2)/ ± E2) by A 7→ [det(A)−

1
2 A]

which is a well–defined Lie homomorphism since the root of a complex number is unique
modulo ±1. But SU(2)/±E2 is isomorphic to SO(3) which can been seen by the orthogonal
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representation of SU(2) (or just note that the both groups have the same Lie algebras,
hence – since SU(2) is simply connected – SU(2) is the universal cover group of SO(3)
and since π1(SO(3)) = Z2 we have clearly SU(2)/ ± E2 = SO(3)). Apparently U(1) is
abelian and im i lies in the center of U(2) since every matrix commutes with multiples of
the identity. Moreover π(z · E2) = [±E2] thus im i ⊂ kerπ. Otherwise if π(A) = [±E2] then
A = ±

√
det AE2 ∈ im i which finally proves that (i, π) is a central extension.

Proposition 1.59. If a central extension 1 −→ K −→ G −→ H −→ 1 splits, then G � K ×H.

Proof. If σ : H → G is a splitting map, the associated representation ρ : H → Aut(K) given
by ρh(k) = σ(h)i(k)σ(h)−1 is the trivial one, since i(k) lies in the center of G. �

We assume henceforth in this section that all Lie groups are connected. Suppose K and H
are given, we would like to determine the group G which fits to such a central extension as
in the definition above. We cannot expect that such an extension will split, like the central
extension of Example 1.58

1 −→ U(1) −→ U(2) −→ SO(3) −→ 1

shows. Say if the extension would split the group U(2) would be isomorphic to U(1)×SO(3)
which cannot be since the fundamental group of U(2) is isomorphic to Z and that of
U(1)× SO(3) is isomorphic toZ×Z2. One method to crack this extension problem is to go
though the universal cover of G. The (abelian) fundamental groups of K, H and G build a(n)
(central) extension for their own and thus knowing the fundamental group of G together
with the knowledge of the universal cover group, as well as how π1(G) lies in G̃ determines
the group G uniquely. All these facts are already encoded in a central extension as the
next proposition shows us. Although this proposition works for extensions in general, we
would like to put it nevertheless in this section about central extensions since we will use
it solely for central extensions.
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Proposition 1.60. Let 1 −→ K i
−→ G π

−→ H −→ 1 be an extension. Denote by πK : K̃ → K,
πG : G̃ → G and πH : H̃ → H the universal coverings of K, G and H respectively. Let ĩ and π̃ be
the lifts of the maps i and π respectively. Then the following diagram commutes

1 1 1y y y
1 −−−−−→ π1(K)

i∗
−−−−−→ π1(G)

π∗
−−−−−→ π1(H) −−−−−→ 1y y y

1 −−−−−→ K̃ ĩ
−−−−−→ G̃ π̃

−−−−−→ H̃ −−−−−→ 1

πK

y πG

y πH

y
1 −−−−−→ K i

−−−−−→ G π
−−−−−→ H −−−−−→ 1.y y y

1 1 1

and is exact in every horizontal as well as in every vertical direction where the fundamental groups
are identified naturally with the kernels of the covering homomorphisms and i∗ as well as π∗ are the
restricted maps of ĩ and π̃ respectively.

Proof. First, the vertical directions are clearly (central) extensions which are induced by the
covering homomorphisms. By Lemma B.7 of Appendix B the corresponding subdiagrams
commute which implies that the whole diagram commutes. Thus it remains to check the
exactness of the horizontal sequences. Since the groups are connected π0(K) = 1 and by
Lemma B.11 of Appendix B we have π2(H) = 1, thus by Lemma 1.12 the upper horizontal
sequence is exact.

If we extend the diagram at the top and at the bottom commutatively by adding the
trivial map 1 7→ 1 we obtain with the two four–lemmas that ĩ is injective and π̃ is surjective.
Hence the last thing to check is im ĩ = ker π̃. The map π̃ ◦ ĩ : K̃→ H̃ is uniquely determined
by its derivative in the neutral element since K̃ is connected (see [War83, p. 101]). But the
derivative in the neutral element of π̃ ◦ ĩ is the same as the derivative of π ◦ i. And the map
π ◦ i is the constant homomorphism thus π̃ ◦ ĩ is the constant homomorphism as well. We
conclude im ĩ ⊂ ker π̃. But the homomorphism ĩ : K̃ → ker π̃ has an injective derivative in
the neutral element and since K has the same dimension as ker π̃ the derivative is actually
an isomorphism. Thus ĩ is a covering map from K̃ to ker ˜pi, but K̃ is simply connected and
we conclude im ĩ = ker π̃. �

We say a central extension 1 −→ K −→ G π
−→ H −→ 1 acts on a K–principal bundle
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p : M → B, if G acts on M such that restricted to K ⊂ G we get the action of K on the
principal bundle and H acts on B with the property that p(g.m) = π(g).p(m) for all m ∈ M
and g ∈ G. Note moreover that if G is acting on M then any cover group of G acts on M
through the covering homomorphism.

Proposition 1.61. Suppose 1 −→ K −→ G π
−→ H −→ 1 acts on the trivial K–principal bundle

p : B × K → B and suppose futhermore that the central extension has a trivial universal cover
extension (described in Proposition 1.60). Then G is isomorphic to (K̃× H̃)/π1(G) and the action of
G on B × K is induced by the component wise action of H̃ × K̃ on B × K.

Proof. If the universal cover extension of 1 −→ K −→ G π
−→ H −→ 1 splits then clearly G is

isomorphic to (H̃ × K̃)/Γ where Γ := kerπG � π1(G) (we adopt the notation of Proposition
1.60). The action of H̃ × K̃ is given through the covering homomorphisms πG : H̃ × K̃ → G
as described above. And since H̃ × K̃ is a direct product, we have to check the actions of
(h̃, e) and (e, k̃) on M = B × K for h̃ ∈ H̃ and k̃ ∈ K̃. First note that (e, k̃).(b, k) = πG((e, k̃)).(b, k)
for (b, k) ∈ B × K by definition. Chasing through the diagram of 1.60 we see

πG((e, k̃)) = πG ◦ ĩ(k̃) = i ◦ πK(k̃)

which implies (e, k̃).(b, k) = i ◦πK(k̃).(b, k) = (b, i ◦πK(k̃)k) since i ◦πK(k̃) ∈ K and the action of
G restricted to K is exactly the action of K on the trivial K–principal bundle p : B × K → B.
Now let (h̃, e) ∈ K̃ × H̃ then again (h̃, e).(b, k) = πG(h̃, e)).(b, k). Using the commutativity of
the diagram im Proposition 1.60 we get

p(πG(h̃, e).(b, k)) = π(πG(h̃, e)).b = πH(π̃(h̃, e)).b = πH(h̃).b

hence, since p is the projection to the B–factor, we get finally

(h̃, e)(b, k) = (πH(h̃).b, k).

Thus to sum up, the action of H̃ × K̃ is the component wise action on B × K induced by the
covering maps. Therefore the action of [h̃, k̃] ∈ H̃ × K̃/Γ on (b, k) is given by (h̃.b, k̃.k) for any
representative (h̃, k̃) of [h̃, k̃]. �

Central Extensions of Lie algebras

Given a central extension of Lie groups Proposition 1.60 yields another central extension of
simply connected groups. But those can be fully understood if one understands the central
extension of the corresponding Lie algebras. We will prove that their isomorphism classes
are given by the elements of a finite dimensional vector space.
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Definition 1.62. Let i : k → g and π : g → h be Lie algebra homomorphisms. We shall say
the pair (i, π) or the sequence

0 −→ k i
−→ g

π
−→ h −→ 0

is a central extension of k by h (or simply a central extension) if the sequence is exact, i is
injective, π surjective and i(K) lies in the center of g.

As in the case of extensions of Lie groups sometimes we will not distinguish between k
and its image ı(k) in g. We say two central extensions are isomorphic if there is a Lie algebra
homomorphism Φ : g→ g′ such that the following diagram commutes

0 −−−−−→ k
i

−−−−−→ g
π

−−−−−→ h −−−−−→ 0yid
yΦ

yid

0 −−−−−→ k
i′

−−−−−→ g′
π′
−−−−−→ h −−−−−→ 0

Note that Φ has to be an isomorphism by the five lemma. Let E(k, h) be the set of central
extensions 0 −→ k −→ g −→ h −→ 0 modulo isomorphisms.

Finally let us note that, in this section, we regard k as the trivial hmodule (see Appendix
B, section Cohomology of Lie Algebras).

Remark 1.63. Let σ : h→ g be a linear map for the extension 0 −→ k −→ g π
−→ h −→ 0 such

that π ◦ σ = idh (and we regard k as a subliealgebra of g). We define a map ωσ : h × h → k
by ωσ(x, y) := [σ(x), σ(y)] − σ

(
[x, y]

)
. Indeed we have π ◦ ωσ(x, y) = [π ◦ σ(x), π ◦ σ(y)] − π ◦

σ
(
[x, y]

)
= 0, since π is a Lie algebra homomorphism, thusωσ has values in k. Obviouslyωσ

is a 2–form with values in k and ωσ is the trivial map iff σ is a splitting map for the central
extension. For x, y, z ∈ hwe have

ωσ([x, y], z) + ωσ([y, z], x) + ωσ([z, x], y) = 0.

To see this we remark first that

ωσ([x, y], z) + ωσ([y, z], x) + ωσ([z, x], y) = [σ([x, y]), σ(z)] + [σ([y, z]), σ(x)] + [σ([y, z]), σ(x)]

since the other terms vanish due to the linearity of σ and the Jacobi identity in h. Writing
σ([x, y]) = [σ(x), σ(y)] − ωσ(x, y) as well as noticing that ωσ(x, y) is a central element of
g we conclude by using the Jacobi identity in k that the right hand side of the equation
above vanishes. Thus ωσ defines an element c ∈ H2. The class c is independent of σ: let
σ′ : h→ g be another map such that π ◦ σ′ = idh and set α := σ − σ′ which is an element of
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Hom(h, k) = C1 (using the notations of Appendix A). Further

ωσ(x, y) − ωσ′(x, y) = [σ(x), σ(y)] − [σ′(x), σ′(y)] − α([x, y])

= −[α(x), α(y)] + [α(x), σ(y)] + [σ(x), α(y)] − α([x, y])

= −α([x, y]) = (δ1α)(x, y)

since α takes values in the center of g, which shows c is independent of the linear map σ.

If 0 −→ k −→ g′ π′
−→ h −→ 0 is an isomorphic central extension via a map Φ : g→ g′, then

its cohomology class in H2(h; k) is equal to c from above. To see this, let ωσ : h × h → k be
a representative of c where σ : h → g is as above. Then ωΦ◦σ is a cocycle representing the
central extension of g′. But clearly ωΦ◦σ = Φ ◦ ωσ and Φ is the identity on k by definition of
isomorphism of central extensions, which implies in fact ωΦ◦σ = ωσ.

Corollary 1.64. Define a map Ψ : E(k, h) → H2(h; k) as follows: If e ∈ E(k, h) and choose a
representative, i.e. a central extension representing e and let Ψ(e) be the cohomology class c ∈ H2(h; k)
as in Remark 1.63. There we showed also that this map is well–defined, i.e. it does not depend on
the chosen representative of e.

Proposition 1.65. Let ω ∈ C2 = Hom(∧2h, k) be a cochain (see Appendix A). Then the vector
space k ⊕ h together with the vector–valued 2–form

[(x1, y1), (x2, y2)] := (ω(y1, y2), [y1, y2]).

is a Lie algebra denoted by k ×ω h. Moreover there is a central extension of k by h

0 −→ k −→ k ×ω h −→ h −→ 0

with the natural inclusion and natural projection as Lie homomorphisms. Additionally if 0 −→
k −→ g

π
−→ h −→ 0 is a central extension and σ : h → k a linear map such that π ◦ σ = idh, then

0 −→ k −→ g −→ h −→ 0 and 0 −→ k −→ k×ωσ h −→ h −→ 0 are isomorphic, where ωσ is defined
as in Remark 1.63.

Proof. Surely the sequence 0 −→ k −→ k ⊕ h −→ h −→ 0 is an exact sequence of vector
spaces. It remains to show that k ⊕ h with the Lie bracket defined above is indeed a Lie
algebra and that the natural maps are Lie algebra homomorphisms. Let x1, x2, x3 ∈ k and
y1, y2, y3 ∈ h. Then[

[(x1, y1), (x2, y2)], (x3, y3)
]

=
[
(ω(y1, y2), [y1, y2]), (x3, y3)

]
=

(
ω([y1, y2], y3),

[
[y1, y2], y3

])
.
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Using that ω is a cochain and the Jacobi identity on h we obtain the claim. Since the Lie
bracket of vectors (x1, 0) and (x2, 0) vanish and since k is abelian, the natural inclusion is a
Lie algebra homomorphism. If π : k ⊕ h→ h is the natural projection we compute

π
(
[(x1, y1), (x2, y2)]

)
= [y1, y2] = [π(x1, y1), π(x2, y2)]

which shows that π is a Lie homomorphism.
We consider the linear map Φ : k ×ωσ h→ g, Φ(x, y) = x + σ(y) and we compute

Φ([(x1, y1), (x2, y2)]) = Φ(ωσ(y1, y2), [y1, y2]) = ωσ(y1, y2) + σ([y1, y2]) = [σ(y1), σ(y2)]

= [x1 + σ(y1), x2 + σ(y2)] = [Φ(x1, y1),Φ(x2, y2)].

Hence since Φ(x, 0) = x and π ◦Φ(0, y) = y the diagram

0 −−−−−→ k −−−−−→ k ×ωσ h −−−−−→ h −−−−−→ 0yid
yΦ

yid

0 −−−−−→ k −−−−−→ g
π

−−−−−→ h −−−−−→ 0

commutes which implies that those two extensions are isomorphic. �

Proposition 1.66. The map Ψ : E(k, h) → H2(h; k) is bijective. The inverse map is given by
Proposition 1.65, i.e. given a c ∈ H2(h; k) choose a cochain ω ∈ Hom(∧2h, k) representing c and
take the isomorphism class of the central extension induced by ω as in Proposition 1.65.

Proof. Let Ψ−1 : H2(h; k) → E(k, h) be the map introduced in this proposition. First we
show Ψ−1 is well–defined. Thus let ω′ be another cochain such that there is a linear map
α ∈ Hom(h, k) with ω′ = ω+ δ1(α). Define Φ : k×ω h→ k×ω′ h as Φ(x, y) := (x +α(y), y) which
is obviously an isomorphism of vector spaces. Moreover Φ respects the Lie bracket

Φ([(x1, y1), (x2, y2)]) = Φ(ω(y1, y2), [y1, y2]) = (ω(y1, y2) − α([y1, y2]), [y1, y2])

= (ω′(y1, y2), [y1, y2]) = [(x1 + α(y1), y1), (x2 + α(y2), y2)]

= [Φ(x1, y1),Φ(x2, y2)].

Finally this map induces an isomorphism between the two extensions determined by ω
and ω′, thus Ψ−1 is well–defined.

It remains to check, that Ψ−1 is the inverse map to Ψ. Let e ∈ E(k, h) and let 1 −→ k −→
g −→ h −→ 1 be a representative of e. Take σ : h→ g such that π ◦ σ = idh and define ωσ as
in Remark 1.63. Then Ψ(e) = [ωσ] ∈ H2(h; k) and by Proposition 1.65 Ψ−1([ωσ]) = e. On the
other side for c ∈ H2(h; k) write c = [ω]. The isomorphism class of Ψ−1(c) is represented by
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the central extension 1 −→ k −→ k ×ω h −→ h −→ 1. Choose σ : h → k ×ω h by σ(y) := (0, y)
and we obtain ωσ(y1, y2) = (ω(y1, y2), 0), thus ωσ = ω since k is embedded as x 7→ (x, 0)
hence Ψ([ωσ]) = c. �

Corollary 1.67. The zero element in H2(h, k) corresponds under the bijection of Proposition 1.66
to the trivial central extension.

Proof. The zero class is represented by the trivial map ω = 0 and k ×ω h is the product Lie
algebra. �

Example 1.68. Let k = R and e(2) the Lie algebra of the isometry group of the euclidean
plane. The latter Lie algebra is given by a semidirect product R2 o R where

t 7→

0 −t
t 0


is the action of R on R2, see Appendix A in the section Lie Algebras for the definition
of semidirect products of Lie algebras. To see that this is the Lie algebra of E(2) we use
Lemma A.6 of Appendix A. We would like to compute H2(e(2);R) where again R is the
trivial e(2)–module. Let e1, e2, e3 be the standard basis of R2 o R seen as R2

×R = R3. The
Lie bracket is given by

[e1, e2] = 0, [e1, e3] = −e2, [e2, e3] = e1.

Every ω ∈ C2 = Hom(∧2(e(2)),R) is given in the standard basis by the matrix (where ω is
seen as a bilinear form on e(2))

(ωi j) =


0 ω12 ω13

−ω12 0 ω23

−ω13 −ω23 0

 .
with ωi j = ω(ei, e j). Clearly δω is a 3–form and since e(2) is 3–dimensional, the space of
3–forms is one–dimensional thus we have only to check the value δω(e1, e2, e3). But

δω(e1, e2, e3) = ω([e1, e2], e3) + ω([e2, e3], e1) + ω([e3, e1], e2) = 0.

If α ∈ C1 = Hom(e(2),R) and α = (α1, α2, α3) where αi = α(ei) its coordinate representation,
the 2–form δα is then given by

δα =


0 0 α2

0 0 −α1

−α2 α1 0

 .
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This implies that for every element of H2(e(2);R) there is a unique representative of the
form

ωλ =


0 λ 0
−λ 0 0
0 0 0


for a λ ∈ R and therefore H2(e(2);R) � R via the isomorphism λ 7→ [ωλ]. The respective
central extensions are given by the Lie algebras R ×ωλ e(2) with the natural inclusion of
R and natural projection onto the e(2)–factor. Let e0, e1, e2, e3 be the canonical basis of
R ×ωλ e(2) = R ×R3 = R4 where e1, e2, e3 are chose as above. The Lie bracket is given then
by

[e0, ei] = 0, i = 1, . . . , 3

[e1, e2] = λe0, [e1, e3] = −e2, [e2, e3] = e1.

Finally from here we may compute H1(e(2);R) easily, since the image δ(C1) is two–
dimensional (see above), hence the cocycles has to have dimension one. Moreover δ : C0

→

C1 is the zero map and this implies e(2)/[e(2), e(2)] = H1(e(2);R) = R.

For our purposes it is sufficient to have a weaker notion of isomorphism classes. We shall
say that two central extensions are weakly isomorphic if the following diagram commutes

0 −−−−−→ k −−−−−→ g −−−−−→ h −−−−−→ 0y y y
0 −−−−−→ k −−−−−→ g′ −−−−−→ h −−−−−→ 0

where the vertical maps are isomorphisms. For two cochainsω1 andω2 we shall say thatω1

is (weakly) isomorphic to ω2 if their central extensions are. The set of those isomorphism
classes shall be denoted byW(k, h). Obviously isomorphic central extensions are weakly
isomorphic and therefore computing the second cohomology gives us an ’upper bound’ for
W(k, h). So as a next step we would like to clarify the relation between H2(h; k) andW(k, h).

Proposition 1.69. Let (ϕ,ψ) ∈ A := Aut(k) × Aut(h) and ω ∈ Hom(∧2h, k) be a cochain. The
2–form

((ϕ,ψ).ω)(x, y) := ϕ(ω(ψ−1(x), ψ−1(y)))

is a cochain again. This defines a linear action of A on H2(h; k).

Proof. It is pretty clear that (ϕ,ψ).ω is a cochain again sinceϕ andψ are Lie homomorphisms
and ω a cochains. Let ω′ ∈ [ω] and α ∈ Hom(h, k) such that ω = ω′ + δα. Then (ϕ,ψ).ω =
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(ϕ,ψ).ω′ + (ϕ,ψ).(δα) and

(ϕ,ψ).(δα)(x, y) = ϕ ◦ δα(ψ−1(x), ψ−1(y)) = −ϕ ◦ α([ψ−1(x), ψ−1(y)])

= δ(ϕ ◦ α ◦ ψ−1)(x, y)

thus [(ϕ,ψ).ω] = [(ϕ,ψ).ω′]. This defines a linear action, since the action on the cochain
level is already linear. �

Proposition 1.70. There is a bijection betweenW(k, h) and H2(h; k)/A.

Proof. Let Φ : H2(h; k)→W(k, h) be the map which assigns a representative ω of c ∈ H2(h; k)
its isomorphism class w = [ω] in W(k, h). This is well–defined, since any other ω′ ∈ c is
weakly isomorphic to ω hence ω′ ∈ w. Clearly Φ is surjective; see Proposition 1.65. Now
assume that Φ(c1) = Φ(c2) and let ωi ∈ ci be representatives for i = 1, 2 thus ω1 and ω2 are
weakly isomorphic. Hence there is (ϕ,ψ) ∈ Aut(k) × Aut(h) and Φ : k ×ω1 h → k ×ω2 h such
that the diagram

0 −−−−−→ k −−−−−→ k ×ω1 h −−−−−→ h −−−−−→ 0yϕ yΦ

yψ
0 −−−−−→ k −−−−−→ k ×ω2 h

π
−−−−−→ h −−−−−→ 0

commutes. By the commutativity of the diagram there is an α ∈ Hom(h, k) such that
Φ(x, y) = (ϕ(x) + α(y), ψ(y)). Moreover

Φ([(x1, y1), (x2, y2)]) = Φ(ω1(y1, y2), [y1, y2]) = (ϕ ◦ ω1(y1, y2) + α([y1, y2]), ψ([y1, y2]))

and on the other side

[Φ(x1, y1),Φ(x2, y2)] = [(ϕ(x1) + α(y1), ψ(y1)), (ϕ(x2) + α(y2), ψ(y2))]

= (ω2(ψ(y1), ψ(y2)), [ψ(y1), ψ(y2)])

Thus (ϕ,ψ). ◦ ω1 = ω2 + δ(α ◦ ψ−1) and this implies of course (ϕ,ψ).c1 = c2. �

Remark 1.71. Back to our Example 1.68. There we have computed that H2(e(2);R) = R

and now by Proposition 1.70 A := R∗ × Aut(e(2)) where R∗ = R \ {0}. Since the action is
linear, the trivial central extensions is an orbit. Except for the trivial orbit there is one other
orbit given by R∗. If λ ∈ H2(e(2);R) with λ , 0 choose the automorphism (λ−1, id) and
this shows that every λ is equivalent to 1 ∈ R under the action of A. Hence |W(k, h)| = 2
by Proposition 1.70 and the Lie algebras are determined by ω0 and ω1 of Example 1.68.
The corresponding simply connected Lie group to ω0 is given by R × Ẽ(2) where Ẽ(2) is
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the universal cover group to E(2). The group for ω1 is a bit more complicated. Let Nil
denote the 3–dimensional Heisenberg group which is simply connected. We regard Nil as
R3 equipped with a special multiplication (see [Sco83, p. 467] for more details). We define
an action of R on Nil as in [Sco83, p. 467]: for θ ∈ R and (x, z) ∈ Nil set

θ.(x, z) := (ρθ(x), z + 1
2 s(cy2

− cx2
− 2sxy))

where ρθ(x) rotates x through θ, x = (x, y), s := sinθ and c := cosθ. Set Ñ := NiloθRwhich
is simply connected and its Lie algebra is R ×ω1 e(2) (see Appendix B).

The Space of Homogeneous Metrics

In general the space of Riemannian metrics on an arbitrary manifolds is very big and is
always infinite dimensional. But if G is acting on M transitively with compact isotropy
groups there is a nice finite dimensional submanifold in the space of Riemannian metrics
such that every element there is a G–invariant metric. Let RM denote the space of Rieman-
nian metrics on the manifold M. Then G is acting by pullbacks on RM, i.e. g.µ := g∗(µ).
Denote by S+ the fixed–point set of this action.

Definition 1.72. We shall call S+ the space of G–invariant metrics. This set contains by
definition Riemannian metrics which are invariant under the action of G which means that
the elements of G are isometries for those metrics.

Remark 1.73. Let S+
K be the space of K–invariant scalar products on TMm0 . Then there is

a bijection between S+
K and S+ (see Remark 1.6). The space S+

K carries a nice geometric
structure, indeed it is a symmetric space.

Let V be a real vector space of finite dimension and K a compact group acting faithfully
and linear on V. Therefore we may regard K as a proper closed subgroup of GL(V). Let
S+(V) be the space of euclidean products on V which is an open cone in a real vector
space of finite dimension, thus in particular a finite dimensional manifold. This space is
a homogeneous space itself: the group GL(V) acts on V∗ ⊗ V∗ naturally and this action
descends to a transitive action of GL(V) on S+(V). The isotropy group is in µ0 ∈ S

+(V)
is O(V, µ0) hence S+(V) = GL(V)/O(V, µ0) which is a symmetric space in particular a
Riemannian homogeneous space.

This space has a tautological Riemannian metric: the tangent bundle of S+(V) is given
by the manifold S+(V) × Sym(V) where Sym(V) is the vector space of symmetric bilinear
forms. Let µ ∈ S+(V) and σ1, σ2 ∈ TS+(V)µ = Sym(V). Denote by σ] the endomorphism of
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V given by µ(σ](v),w) = σ(v,w) where σ ∈ Sym(V). Then define

〈σ1, σ2〉µ := tr (σ]1 ◦ σ
]
2)

which is a euclidean scalar product on Sym(V) for every µ. If (e1, . . . , en) is an orthonormal
basis of (V, µ), then we obtain by definition

〈σ1, σ2〉µ =

n∑
i, j=1

σ1(ei, e j)σ2(ei, e j)

and therefore

|σ|2µ := 〈σ, σ〉µ =

n∑
i=1

λ2
i

where the λi are the eigenvalues of σ]. Finally the euclidean scalar product in the tangent
space TS+(V)µ = Sym(V) is the induced product from µ on V∗ ⊗ V∗ restricted to the
symmetric bilinear forms.

Proposition 1.74. The metric 〈·, ·〉 is a GL(V)–invariant metric on S+(V).

Proof. Let g ∈ GL(V) and µ ∈ S+(V) and let g∗(〈·, ·〉) be the pullback of the metric by the
diffeomorphism g : S+(V)→ S+(V). For σ1, σ2 ∈ TS+(V)µ we have

g∗(〈·, ·〉)µ(σ1, σ2) = 〈Dg(σ1),Dg(σ2)〉g.µ

and note that Dg(σ) = g.σ is the action of GL(V) on V∗⊗V∗. Let (g.σi)\ be the endomorphism
of g.σi with respect to g.µ and σ]i the endomorphism of σi with respect to µ. Then

(g.µ)((g.σi)\(v),w) = g.σi(v,w) = σi(g−1(v), g−1(w)) = µ(σ]i (g−1(v)), g−1(w))

= (g.µ)(g(σ]i (g−1(v))),w)

for all v,w ∈ V, hence (g.σi)\ = g(σ]i )g−1 and consequently

〈g.σ1, g.σ2〉g.µ = tr ((g.σ1)\(g.σ2)\) = tr (gσ]1g−1gσ]2g−1) = tr (σ]1σ
]
2) = 〈σ1, σ2〉µ.

�

Let S+
K(V) be fixed–point set of the induced K–action on S+(V). Then we obtain the
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Corollary 1.75. The space S+
K(V) is an embedded, totally geodesic and closed submanifold of S+(V)

and therefore a symmetric space as well.

Proof. The group K acts on (S+(V), 〈·, ·〉) by isometries. Using the theorem in [Kob95, p.59]
like Remark 1.36 we obtain the claim (since the submanifold is totally geodesic, it inherits
the geodesics symmetries from the big space). �

So our space S+
K from the beginning of this section is a symmetric space. Since S+

K(V)
is convex it is contractible and therefore the tangent bundle is trivial, say P := TS+

K(V) =

S
+
K(V) × SymK(V) where SymK(V) are the symmetric bilinear forms on V invariant under

the induced action of K on V∗ ⊗ V∗. Thus the topology of P is the relative topology of
Sym(V)× Sym(V). Further we are interested to determine compact sets in P and therefore
we will use a certain norm on SymK(V).

Remark 1.76. Let β be a background metric on V and κ ∈ Sym(V). Then we define the
maximum norm of κ by

|κ|∞ := sup
||v||β=1

||κ\(v)||

where ||v||2 = β(v, v) for v ∈ V and κ\ is the self–adjoint endomorphism to κ with respect to
β. Obviously |κ|∞ = |λmax| where |λmax| := maxi{|λi| : λi is Eigenvalue of κ\}. If we denote
by |κ|β := 〈κ, κ〉β we obtain

|κ|∞ ≤ |κ|β.

Let µ ∈ S+(V) ⊂ Sym(V) and (e1, . . . , en) be an orthonormal basis for (V, β) such that
µ\(ei) = λiei for all i, hence λi are positive real numbers. The vectors (

√
λ1
−1e1, . . . ,

√
λn
−1en)

are an orthonormal basis of (V, µ) and thus we compute

|κ|2β =

n∑
i, j=1

κ(ei, e j)2 =

n∑
i, j=1

λiλ jκ
(√
λi
−1ei,

√
λ j
−1e j

)2

≤ |µ|2∞|κ|
2
µ

which sums up to
|κ|∞ ≤ |κ|µ|µ|∞.

Example 1.77. Let K = SO(2) acting linear on a three dimensional vector space V. Using
Proposition 1.4 let β be a K–invariant scalar product on V. Then Proposition 2.8 tells us that
there are subspaces L and U of V such that dim L = 1, L ⊕ U = V, kl = l for all l ∈ L and L
is the orthogonal complement to U with respect to β. If u ∈ U we see that β(ku, l) = 0 for all
l and therefore k ∈ K maps U to itself. Thus V = L ⊕U is a decomposition into irreducible
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subspaces. Let µ be another K–invariant scalar product on V and µ\ as above. Then µ] is
K–equivariant since

β(µ\(kv),w) = µ(kv,w) = µ(v, k−1w) = β(µ\(v), k−1w) = β(kµ\(v),w)

and therefore µ] respects the decomposition L ⊕U. By Schur’s Lemma µ] is given asλ1idL 0
0 λ2idU


for λ1, λ2 > 0 since µ is positive–definite. If l ∈ L with β(l, l) = 1 then there is a diffeomor-
phism between S+

k (V) and R>0 ×R>0 given by

µ 7→ (µ(l, l), tr β(µ) − µ(l, l)) = (λ1, 2λ2).

As a symmetric space S+
K(V) is given by the subgroupR>0 ×R>0 ×K of GL+(V) acting on V

by (r1, r2, k)(l + u) = r1l + r2ku. In particular this group is abelian and by Lemma 1.26 S+
K(V)

is flat if we restrict the metric from S+(V) to S+
K(V). Analogous we may identify SymK(V)

with R ×R.
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Homogeneous Three–Manifolds

L ike in the last chapter we would like to fix some notations. As usual we denote
by (M,G) a Riemannian homogeneous space and we denote the isotropy group
in m0 ∈ M by K. Furthermore we demand that M is simply connected and of

dimension three. We already noticed in the introduction that we are going to classify the
simply-connected 3–dimensional Riemannian homogeneous spaces.

Preliminary Considerations

First, the maximal dimension dG of G cannot exceed 6 since the maximal dimension of the
isotropy group is 3 which is the dimension of O(3) (see Corollary 1.5). Accordingly we
have 3 ≤ dG ≤ 6 but we can exclude one case due to the Lie group structure of O(3).

Proposition 2.1. There is no two dimensional subgroup of O(3).

Proof. Suppose K is a Lie subgroup of O(3) of dimension two. Hence there is a two
dimensional Lie subalgebra k of the Lie algebra of O(3) which is isomorphic to R3 with the
cross product denoted by ×. Let (b1, b2) be a basis of k, then b1 × b2 lies in the orthogonal
complement of kwith respect to the euclidean product onR3. There we have a contradiction
to the fact that k has to be a Lie subalgebra. �

And this leads us to the following definition.

Definition 2.2. Let (M,G) be a Riemannian homogeneous space with dim M = 3 and M
simply connected which we will call henceforth a geometry. We shall say a geometry (M,G)
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is isotropic if dim G = 6, rotationally symmetric if dim G = 4 and otherwise we call (M,G) a
Bianchi group.

In order to classify the geometries it is very useful to work with a connected Lie group
G. As we saw in Proposition 1.10 the connected component of the identity G0 of G acts
still transitive on M. After knowing this component one has to deduce the possible other
components. For that one could ask what is the biggest group of the same dimension where
G0 lies as the identity component.

Definition 2.3. Let (M1,G1) and (M2,G2) be two Riemannian homogeneous spaces . We
say (M1,G1) is contained in (M2,G2), indicated by (M1,G1) ≤ (M2,G2), if there is a dif-
feomorphism F : M1 → M2 and a monomorphism of Lie groups f : G1 → G2 such that F
is f –invariant, i.e. F(g1.m1) = f (g1).F(m1) for all g1 ∈ G1 and m1 ∈ M1. We say (M∗,G∗)
is maximal if for every (M,G) with (M∗,G∗) ≤ (M,G) we have that (M,G) is isomorphic to
(M∗,G∗). Furthermore we shall say that (M∗,G∗) is maximal in a fixed dimension if for every
(M,G) with (M∗,G∗) ≤ (M,G) with dim G = dim G∗ we have that (M,G) is isomorphic to
(M∗,G∗).

Proposition 2.4. If (M,G) is an isotropic geometry, then G can only have one or two components.
If (M,G) is a rotationally symmetric geometry the number of possible components are 1, 2 or 4.

Proof. Since M is simply connected we have by Lemma 1.12 that π0(K) is isomorphic to
π0(G). Hence if (M,G) is isotropic then K is a subgroup of O(3) with the same dimension.
It follows that K can have only one or two components. Now let us turn to the case where
(M,G) is rotationally symmetric. If K ∩ (O(3) \ SO(3)) , ∅ then K1 := K ∩ SO(3) lies in K
with index two. This follows from the short exact sequence

1 −→ SO(3) −→ O(3) −→ π0(O(3)) −→ 1

where π0(O(3)) � Z2. Hence we have an exact sequence for K

1 −→ K1 −→ K −→ Z2 −→ 1

since K∩(O(3)\SO(3)) , ∅. Therefore it is sufficient to understand the number of connected
components of K1. Now suppose K ⊂ SO(3) and dim K = 1. Clearly we have K0 � S1 and
π0(K) is finite, since K is compact. And obviously SO(3)/K0 is a two–sphere which induces
a covering π : S2

→ SO(3)/K with fiber π0(K), hence SO(3)/K � S2/π0(K). Using Lemma
A.8 we obtain that S2/π0(K) is either diffeomorphic to S2 or to the projective plane (observe
that π0(K) is compact and therefore it acts properly on S2). Hence π0(K) is either trivial or
of order two. �
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Isotropic geometries

This section is devoted to classify the isotropic geometries. Before stating the main theorem
for this section we would like to introduce the isometry groups of the Riemannian spaces
of constant sectional curvature.

Example 2.5. (a) We start with the Riemannian manifold (M, µ) = (Rn, δ) where δ is the
standard euclidean metric on Rn. Suppose f : Rn

→ Rn is an isometry of (Rn, δ) then
the map x 7→ f (x) − (0) is still an isometry and fixes the origin. Thus we may assume
f (0) = 0. Set A := (D f )0 ∈ O(n) (see Corollary 2.21) where (D f )0 : TRn

0 → TRn
0 is the

derivative of f in 0. But the map fA : Rn
→ Rn, fA(x) = A · x is an isometry which

fixes the origin and has same derivate in 0 as f . Thus f = fA and if f (0) =: a we have
f (x) = Ax + a.

Let G be the isometry group of (Rn, δ). The argument above shows that there is
a surjective map π : G → O(n) which assigns every isometry its linear part, i.e. if
f (x) = Ax + a for A ∈ O(n) and a ∈ Rn we have π( f ) = A. Since we regard G as a
subgroup of Diff(Rn) we obtain that π is a homomorphism. Clearly the kernel of π is
isomorphic to Rn where we identify a ∈ Rn in kerπ with a translation on Rn by the
vector a. This shows that we get the extension

1 −→ Rn
−→ G −→ O(n) −→ 1,

thereby the group O(n) is the isotropy group of G in 0 ∈ Rn. This extension splits via
the map σ : O(n) → G, σ(A) = fA where fA(x) = Ax for A ∈ O(n) and x ∈ Rn. Thus
with Proposition 1.51 we obtain G � Rn oρ O(n) where ρ : O(n)→ GL(Rn) is given by

ρA(a) = σ(A)aσ(A)−1

and as a diffeomorphism of Rn we get

ρA(a)(x) = σ(A)aσ(A)−1(x) = σ(A)(A−1x + a) = x + Aa

thus the translation is given by A · a and ρ : O(n)→ GL(Rn) is the standard action of
O(n) on Rn. We define E(n) := Rn oρ O(n).

(b) Let (M, µ) = (Sn, µS) where µS is the round metric on Sn and G its full isometry group.
We could have used the following method also in part (a), however we believe that
the method above fits better in the context of this thesis.

Obviously we have O(n + 1) ⊂ G, where the orthogonal group acts by the standard
action of Sn. If g ∈ G and N is the north pole of Sn then there is a A ∈ O(n+1) such that
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g ◦ A(N) = N. The derivative (Dg ◦ A)N : TSn
N → TSn

N lies in O(n), therefore there is a
K ∈ O(n) such that g ◦ A = K (observe that we used here that O(n) may be identified
with the isotropy group in N from the action of O(n + 1) on Sn). Hence G ⊂ O(n + 1)
and therefore G = O(n + 1).

(c) In the last example we would like to introduce the hyperbolic space with its isometry
group. Let first 〈·, ·〉 be an inner product on Rn+1 with Lorentzian signature such that
we have 〈en+1, en+1〉 = −1 for en+1 = (0, . . . , 0, 1) ∈ Rn+1. Let O(n, 1) be the group of
linear automorphisms of Rn which preserve 〈·, ·〉 and let Dn be the set of all x ∈ Rn+1

such that 〈x, x〉 = −1 and xn+1 > 0 where x = (x1, . . . , xn+1). Using the stereographic
projection of Dn through the point (0, . . . ,−1) we obtain that Dn is diffeomorphic to
the unit ball in Rn. The subgroup O+(n, 1) of O(n, 1) which preserves the sign of the
last coordinate acts transitively on Dn and the prove goes analogous to that one of
O(n) acting on Sn transitively. The connected component of O+(n, 1) are given by the
linear maps of determinant equal to 1 and we denote this group by SO+(n, 1). The
isotropy group of the point en+1 ∈ Dn is isomorphic to O(n). The restriction of 〈·, ·〉 to
Dn induces a Riemannian metric µD on Dn of constant sectional curvature equal to
−1 and is invariant under O+(n, 1). Same arguments as in part (b) show that O(n, 1)
is the full isometry group of (Dn, µD).

Theorem 2.6. Let (M,G) be an isotropic geometry with G connected. Then (M,G) is isomorphic
to one of the following geometries:

(R3,E0(3)), (S3,SO(3)), (D3,SO+(3, 1)).

Proof. First we define (M•,G•) to be one of the Riemannian homogeneous spaces mentioned
in the theorem. Let µ be a G–invariant metric. Since K is isomorphic to SO(3), we have that
µ has constant sectional curvature. Because M is simply connected there is an isometry
F : (M, µ) → (M•, µ•) where µ• is the standard metric of M•. Observe that G• is equal to
the connected isometry group of (M•, µ•). Now define a group homomorphism f : G→ G•
by f (g) := F ◦ g ◦ F−1 which is well–defined, since g and F are isometries. First note that
f is continuous. If (gn) is a convergent sequence of isometries in G with limit g ∈ G, then
f (gn) converges pointwise on M• to f (g) since gn converges pointwise on M. Hence f (gn)
converges in the topology of G• to f (g). Since f is a continuous homomorphism between
Lie groups we have that f is smooth, and since f−1 is smooth as well ( the inverse map is
conjugating every element in G• with F−1) it follows that f is an isomorphism. Obviously
F is f –equivariant and the theorem is proven. �
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Corollary 2.7. The maximal isotropic geometries are given by

(R3,E(3)), (S3,O(4)) and (D3,O+(3, 1))

Proof. Every isotropic geometry is contained in one of the above geometries. This follows
because those groups are exactly the isometry groups of the standard metrics on the re-
spective manifolds. And as seen in Theorem 2.6 every 6–dimensional geometry induces a
metric of constant sectional curvature and the group in question must be a closed subgroup
of those which are specified in this corollary. �

Thus we have completed the classification of the isotropic geometries in dimension three.

Rotationally symmetric geometries

The rotationally symmetric geometries have a one–dimensional isotropy group. We sup-
pose first that G is connected. Since M is simply connected it follows by Lemma 1.12 that K
is connected too. Hence K is a connected, one–dimensional, compact group and therefore
K is isomorphic to SO(2). Moreover K fixes the point m0 and so K acts linear on the tangent
space TMm0 . We choose for this section once and for all a G–invariant metric µ on M and
therefore K acts by linear isometries on the euclidean vector space (TMm0 , µm0). Before we
collect some useful properties in order to classify the geometries in this section, we would
like to mention that we combine ideas from the first chapter and from [Thu97].

Proposition 2.8. A linear, effective and isometric action of SO(2) on a three–dimensional euclidean
vector (V, 〈, 〉) space has a unique rotation axis, i.e. there is a unique one–dimensional subspace L of
V such that every element of K fixes every point on L.

Proof. Surely there is an elementary proof of this fact just by using some linear algebra,
but we would like to show a different way to prove this proposition. Since the action of
K := SO(2) is isometric it acts (effectively) on the two–sphere S2 of the euclidean vector
space V. Let X denote a fundamental vector field of this action on S2. Then X has to have
a zero and it follows that the corresponding flow has a fixed point say s0 ∈ S2. But since K
is the image of R under the exponential map, it follows that every element in K fixes this
point s0. It remains to show that the linear subspace L := Rs0 is the unique rotation axis
mentioned in the proposition. But a non–trivial element of K ⊂ SO(3) can have at most a
one–dimensional eigenspace to the eigenvalue 1. �
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Corollary 2.9. A rotationally symmetric geometry (M,G) posses a one–dimensional space of ho-
mogeneous vector fields. This follows by Proposition 1.31 and by Remark 1.36 we have a one–
dimensional involutive distributionD on M.

Corollary 2.10. A rotationally symmetric geometry (M,G) is an R or an SO(2) principal–bundle
π : M→ B over a smooth surface B.

Proof. By Corollary 1.39 we have that M is a H–principal bundle over a smooth surface
since theD is one–dimensional. Since K is connected we have again by Theorem 1.37 that
NF must be a two–dimensional, connected Lie group. Hence H = NF/K is connected and
therefore the fiber group is either R or SO(2). �

Proposition 2.11. The extension of Theorem 1.37 for rotationally symmetric geometries

1 −→ SO(2) −→ NF −→ H −→ 1,

where F is the maximal connected integral manifold forD through m0 is a central extension.

Proof. This is actually a general fact of an extension of SO(2) and there is no special property
of the rotationally symmetric geometries involved there as long as NF is connected. As usual
we regard SO(2) as a closed Lie subgroup of NF. Then since SO(2) lies normal in NF the
conjugation c : NF → Aut(SO(2)) by elements of NF yields an automorphism of SO(2). But
the automorphism group of SO(2) is Z2 and since c is continuous and NF connected we
obtain cg = idSO(2) for all g ∈ NF. This implies of course that SO(2) lies in the center of
NF. �

The comfortable situation here is that the integral manifolds of D are given by the flow
of a G–invariant vector field. Therefore it makes sense to study first some properties about
G–invariant vector fields on rotationally symmetric geometries.

Proposition 2.12. Let X be a homogeneous vector field of a rotationally symmetric geometry. If µ
is a G–invariant metric on (M,G) the flow lines of X are geodesics.

Proof. Let ∇ denote the Levi-Civita connection for the metric µ. We would like to show
∇XX = 0. Fix a point m ∈ M and denote by Km the isotropy group m of G acting on M. By
Remark 1.36 Xm is invariant under the action of Km and since those elements are isometries
for µ we obtain for all k ∈ Km

k∗
(
∇XmX

)
= ∇XmX
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where k∗(X) is the pushforward of the vector field X by k. The last computation shows
that ∇XmX ∈ Dm, hence there is a λ ∈ R with ∇XmX = λXm, since D is a one–dimensional
distribution and X is a non–zero vector field. But on the other side ∇XmX lies in the
orthogonal complement of Dm as the following lines show. Clearly the norm of X with
respect to µ is a constant function on M and therefore we obtain

µm(∇XmX,Xm) = Xm
(
|X|2

)
− µm(Xm,∇XmX) = −µm(∇XmX,Xm).

which again implies µm(∇XmX,Xm) = 0. We conclude λ = 0 and since m was arbitrary the
proposition follows. �

Proposition 2.13. Let X be a G–invariant vector field on (M,G). Let divX be the divergence of
X with respect to the G–invariant metric µ. Then divX is a constant function on M and does not
depend on the G–invariant metric. Finally divX = 0 iff X is a Killing field such that the flow is a
one–parameter subgroup of G.

Proof. By Proposition 1.15 M is orientable. Therefore divX can be expressed by

LXvol = div(X) · vol

for a Riemannian volume form vol (different Riemannian volume forms on orientable
manifolds differ only by a sign, which does not affect the divergence). Since vol is a 3–form
we deduce LXvol = d(iXvol) and therefore if g ∈ G we obtain

g∗ (LXvol) = g∗(d(iXvol)) = d(g∗(iXvol))

but iXvol is G–invariant since G acts on (M, µ) by isometries and X is a homogeneous vector
field, hence the above Lie derivative is G–invariant. We conclude that div(X) · vol has to
be G–invariant as well and this implies that div(X) is a constant function on M. If vol′

is a Riemannian volume form with respect to another G–invariant metric µ′, then by the
G–invariance there is a λ ∈ R with λ , 0 and vol′ = λ · vol which does not affect the value
of divX.

By Proposition 1.18 the tensor LXµ is fully determined by its bilinear form β =
(
LXµ

)
m0

on TMm0 . Let X , 0 and e1, e2, e3 be an orthonormal basis such that e1 = Xm/|Xm| and
e2, e3 ∈ Hm0 = D⊥m0

. Note that K acts on the unit circle inHm0 transitively. First we observe
that ie1β = 0 since

ie1β(ei) = (LXµ)(e1, ei) = µm0

(
∇e1X, ei

)
+ µm0

(
e1,∇eiX

)
= 0
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because ∇e1X = 0 by Proposition 2.12 and

µm0

(
e1,∇eiX

)
=

1
2|Xm|

ei
(
µ (X,X)

)
= 0.

The form β is clearly symmetric and we saw above that β(e1, ei) = 0. Therefore we may
assume that β is diagonal in the basis e1, e2, e3 with eigenvalues λ1 = 0, λ2 and λ3. But since
β is K–invariant and K acts on the unit circle of Hm0 transitively we have λ2 = λ3 =: λ.
Finally we get

divX =
1
2

tr
(
LXµ

)
= λ,

hence divX = 0 iff LXµ = 0.
Suppose X is a Killing field and ϕt its flow. Let g : R → G be a smooth curve such that

gt ◦ ϕt(m0) = m0 for all t ∈ R. Then gt ◦ ϕt is an isometry and let ft : TMm0 → TMm0 denote
its derivative in m0 which is a linear isometry of (TMm0 , µm0). By the G–invariance of X we
conclude ft(Xm0) = Xm0 and det ft = 1 for all t ∈ R, since ft is an isometry, f0 is the identity
map and ft depends smoothly on t. Therefore ft acts on X⊥m0

orientation preserving and
isometrically, hence it must be an element kt of K and we finally conlcude ϕt = (gt)−1kt ∈ G
for kt ∈ K. �

Remark 2.14. Let ω be the induced G–invariant connection form on π : M → B from
Proposition 1.46. Since the Lie algebra of R and SO(2) is R, we consider ω as a scalar
1–form on M. Observe that by Proposition 1.18 the space of G–invariant one–forms is one
dimensional, since they are fixed points under the induced action of K on TM∗m0

via the
G–invariant metric µ.

As a next step we would like to deduce how the G–invariant metrics on rotational
geometries look like, since this will help us to understand the group G better.

Proposition 2.15. Let Xl be a fundamental vector field of H where l , 0 is an element of the Lie
algebra h = R (observe that Xl is a homogeneous vector field by Proposition 1.41). Ifϕ : R×M→M
denotes the flow of Xl on M and Π : TM → TM the fiberwise linear map which maps a tangent
vector into its horizontal component, then we have

(ϕt)∗(µ) =
λ2

l2
ω ⊗ ω + eκt (Π∗(µ)

)
where λ := |Xl| and κ = divXl.

Proof. Both sides of the equation in the proposition are G–invariant and therefore it is
sufficient to prove the equality only in one point, say in m0. Set X := Xl and let g : R → G
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be a smooth curve such that gt ◦ϕt(m0) = m0 for all t ∈ R. It follows, since gt is an isometry
for every t, that

(gt ◦ ϕ
t)∗(µ) = (ϕt)∗(µ),

and if ft : TMm0 → TMm0 denotes the derivative of gt ◦ ϕt in m0 we may write

(ϕt)∗(µ)m0 = ( ft)∗(µm0).

Let us set σ := µm0 and V := TMm0 as well as U to be the span of Xm0 in V. Note that
gt ∈ NF where F is the orbit of m0 under the action of the fiber group. By Proposition 2.11
gt commutes with every element of K and therefore ft commutes as well with K. Using
Proposition 1.43 ft respects the orthogonal decomposition V = U⊕W where W = U⊥. With
respect to this orthogonal decomposition ft is given by1 0

0 Ft


and Ft is a an invertible endomorphism of W. Note that det ft > 0 since f0 = idV and this
implies det Ft > 0 for all t ∈ R. Moreover in the orthogonal decomposition an element of K
is given by 1 0

0 S


for S ∈ SO(W, σW), where σW is the induced scalar product on W from (V, σ). Thus Ft

commutes with all S ∈ SO(V, σW) and preserves every orientation of W. By the polar
decomposition of endomorphisms there is an St ∈ SO(V, σW) such that FtSt is a self–adjoint
endomorphism which commutes with SO(V, σW). But this implies that FtSt is a multiple of
the identity and therefore there is an εt > 0 and a St ∈ SO(V, σW) such that Ft = εtSt with ε2

t =

det Ft. Note that all t–dependences are smooth. Let Dt : TMm0 → TMϕt(m0) be the differential
of ϕt in m0. If (e1, e2, e3) is an orthonormal basis of (V, σ) then (Dt(e1),Dt(ε−1

t e2),Dt(ε−1
t e3)) is

an orthonormal basis of (TMϕt(m0), µϕt(m0)) since Dt = (gt)−1 ft. Furthermore differentating
both sides of (ϕt)∗(µ)m0 = ( ft)∗(µm0) with respect to t yields

(ϕt)∗
(
LXµ

)
m0

(w1,w2) = 2εtε̇tσ(w1,w2)

for w1,w2 ∈ W. If we take the trace of the left side in (W, σW) we obtain 2ε2
t divX since we

have seen in Proposition 2.13 that LXµ(X,X) = 0. Taking the same trace of the right side
yields 4εtε̇t so we end up to solve the differential equation

ε̇t =
divX

2
εt

with ε0 = 1. We conclude εt = e
1
2 divX·t.
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Finally we have for w1,w2 ∈W

(ϕt)∗(µ)m0(Xm0 ,Xm0) = λ2 =
λ2

l2
ωm0 ⊗ ωm0(Xm0 ,Xm0)

as well as
(ϕt)∗(µ)m0(Xm0 ,w1) = 0

and
(ϕt)∗(µ)m0(w1,w2) = eκtσ(w1,w2) = eκt (Π∗(µ)

)
m0

(w1,w2)

�

The curvature Fω from Remark 1.47 is equal to dω (where d is the usual exterior deriva-
tive of forms) since the commutator [ω ∧ ω] vanishes because the Lie algebra is abelian.
Consequently we have to study the case where ω is closed, i.e. the bundle is flat and where
dω is not closed. We will handle the flat case first.

But before we hop into the classification of rotational geometries with flat bundles we
have to study a certain class of geometries in order to complete the proof Theorem 2.17.

Example 2.16. Let κ ∈ R and set Gκ := E0(2) oρκ R where ρκ : R → Aut0(E0(2)) is given
by (ρκ)s(a,A) := (e−

1
2κsa,A) for s ∈ R and (a,A) ∈ E0(2) = R2 o SO(2). For the sake of

convenience we omit the subscript κ for ρκ and Gκ but keep in mind that this map is
determined by a fixed κ. The map ρs is indeed an automorphism of E0(2) and it remains to
check that ρ is a homomorphism. For s, r ∈ R we compute

ρs+r(a,A) = (e−
1
2κ(s+r)a,A) = ρs(e−

1
2κra,A) = ρs ◦ ρr(a,A).

Since ρ is continuous with respect to the compact–open topology we obtain that ρ is a Lie
group homomorphism.

Consider the manifold M = R2
× R and denote by (x, t) a point in M where x ∈ R2 and

t ∈ R. Then E0(2) acts on R2 in the natural way and R on R by translations. Define an
action of R on R2 by s.x := e−

1
2κsx and thus we regard s ∈ R as a diffeomorphism of R2 by

this action. If c : R→ Diff
(
R2

)
is defined by cs to be the conjugation by the diffeomorphism

s in the diffeomorphism group Diff
(
R2

)
then we obtain

cs(a,A)(x) = s.(a + e
1
2κsAx) = e−

1
2κsa + Ax = ρs(a,A)(x).

Thus according to the paragraph before, G can act semidirectly on M which is induced by
the action of R on M. Consequently the action of G on M is given by

(a,A, s).(x, t) :=
(
e−

1
2κsAx + a, t + s

)
.
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First we show that (M,G) is a rotationally symmetric geometry. The group G acts on M
transitively since every point (x, t) is the image of (0, 0) by the group element (x,E2, t) and it
acts effectively since (a,A, s).(x, t) = (x, t) for all (x, t) ∈ R2

×R implies s = 0 and Ax + a = x
hence a = 0 as well as A = E2. Surely M is simply connected and of dimension 3 and G is a
4–dimensional Lie group.

We fix the point (0, 0) ∈ R2
× R and we would like to compute the isotropy group K in

that point. We are done if we show that K is isomorphic to SO(2). Observe that K has to be
connected and of dimension one and so the only possibilities are SO(2) or R and therefore
it is sufficient to show that K has a subgroup isomorphic to SO(2). But the elements (0,A, 0)
for all A ∈ SO(2) fix the point (0, 0). Altogether this shows that (M,G) is a rotationally
symmetric geometry.

But now we do not know if some of the (M,Gκ) are equivariant isomorphic to each other.
Indeed we have (M,Gκ) is isomorphic to (M,G1) if κ , 0 as Lemma B.6 of Appendix B
shows.

If we choose the global chart induced by the coordinates (x, t) ∈ M we define a metric in
this chart by

µ(x, t) =

eκ·tE2 0
0 1

 .
This Riemannian metric is invariant under G since the Jacobian of a diffeomorphism
(a,A, s) ∈ G in a point (x, t) is given by e−

1
2κ·sA 0
0 1

 .
The Riemannian volume form vol to µ with respect to the standard orientation dx ∧ dt is
clearly vol(x, t) =

√
detµ(x, t) dx ∧ dt = eκ·tdx ∧ dt. With that in mind we would like to

compute the divergence of the global, G–invariant vector field ∂t. The flow is given by
ϕε(x, t) = (x, t + ε) and therefore (ϕε)∗(vol)(x, t) = eκ(t+ε)dx∧dt. Differentating this equation
in ε = 0 yields

L∂tvol = κ · vol

hence div∂t = κ.
Lemma B.6 of Appendix B shows that (M,Gκ) is equivariant diffeomorphic to (M,G1) for

κ , 0. Moreover (M,G0) and (M,G1) cannot be isomorphic since G0 has a non–trivial center
and G1 is centerless, see Lemma B.18 of Appendix B. The main difference between these
two geometries is that on the one hand G0 has a subgroup isomorphic to R3 which still
acts transitively; thus all homogeneous metrics are flat and on the other hand the geometry
(M,G1) admits an hyperbolic metric, hence G1 is a subgroup of H(3). To see the last assertion
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we consider the metric

µ(x,t) =

etE2 0
0 1


onR2

×Rwhich is invariant under G1. Define H := R2
×R>0 and M = R2

×R as well as the
diffeomorphism F : H→M, (x, s) 7→ (2x,−2 ln(s)). The Jacobian DF of F in (x, s) is given as2E2 0

0 −
2
s


and therefore the pulled back metric F∗(µ) in (x, s) has the form

DFµDFT =

2E2 0
0 −

2
s

  1
s2 0
0 1

 2E2 0
0 −

2
s

 =
4
s2

E2 0
0 1


which is the standard hyperbolic metric on H.

Theorem 2.17. Let π : M → B be the bundle obtained by Corollary 2.10 and ω the G–invariant
connection form mentioned above. Suppose that Fω = dω = 0. Then (M,G) is equivariant
isomorphic to one of the following Riemannian homogeneous spaces :

(S2
×R, SO(3) ×R),

(D2
×R, SO+(2, 1) ×R),

(R2
×R, E0(2) ×R),

(R2
×R, E0(2) o1 R),

where the last Riemannian homogeneous space is the one of Example 2.16 for κ = 1.

Proof. In Remark 1.52 we saw that the fiber group has to be simply connected which exclude
the case of an SO(2)–bundle, hence the fiber group is R. The extension of Proposition 1.53
splits, since R is abelian and simply connected and therefore we may apply Theorem 1.54.
It follows that (M,G) is equivariant isomorphic to (B×R,GBoR). Furthermore we conclude
with Proposition 1.53 that (B,GB) is a Riemannian homogeneous space such that B is simply
connected, GB connected and dim GB = 3. But those spaces can be easily classified as one
may see with Lemma B.4. Hence (B,GB) is equivariant isomorphic to (S2,SO(3)), (R2,E0(2))
or (D2,SO+(2, 1)) and this implies that (M,G) is isomorphic to either (S2

×R,SO(3)oR), or
(R2
× R,E0(2) o R) or (D2

× R,SO+(2, 1) o R) for some representations for the semidirect
product. The final step of this proof is to study all possible representations such that (M,G)
is a Riemannian homogeneous space . By Lemma B.5 of Appendix B we have that SO(3)
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is a complete group and SO+(2, 1) is almost complete. Using Proposition 1.56 and the fact
that G has to be connected, we deduce that there are no semidirect products which are not
isomorphic to direct products.

It remains to check the case (R2
× R,E0(2) o R) where we have to answer the question

what semidirect structure the group possess. For that we go a step back to the extension
1 −→ GR2 −→ G π

−→ R −→ 1 where we recall from Theorem 1.54 that the value of π
indicates the translation in the fiber. Hence we have to find a splitting map σ : R → G
which corresponds to a one–parameter subgroup of G and is a translation in the second
argument. Note that two different splitting maps gives us two semidirect products which
are isomorphic and therefore it is sufficient to find any splitting map. Furthermore observe
that the group structure on G have to coincide with the composition of diffeomorphism of
R2
× R. Finding such a splitting map σ : R → G means to know that σs for s ∈ R is an

isometry and contained in G. Finally this is what we aiming for in the next section.

We choose the canonical global chart forR2
×R such that a point there is given by the pair

(x, t) where x = (x1, x2) ∈ R2 and t ∈ R. Since the principal bundle is trivial we have ω = dt
and a fundamental vector field of the action of the fiber group is given by the coordinate
vector field ∂t where ϕε(x, t) = (x, t + ε) is its flow. We may assume |∂t| = 1 by rescaling µ
and clearly we have ω(∂t) = 1. If we denote by ∂i (i = 1, 2) the coordinate vector fields of
the x–coordinate and if we use Proposition 2.15 we deduce for i, j = 1, 2

µ(x,t)(∂t, ∂t) = 1, µ(x,t)(∂t, ∂i) = 0, µ(x,t)(∂i, ∂ j) = eκt(µ(x,0))i j.

for some κ ∈ R. But the restriction of µ on R2
× 0 has to be invariant under E0(2) which

means that µ is a multiple of the euclidean flat metric on R2 and we assume by rescaling µ
in the R2–direction once more, that ∂i has length equal to one. To sum up the metric µ has
the coordinate representation

µi j(x, t) =


eκt 0 0
0 eκt 0
0 0 1

 .
Let σs : R2

×R→ R2
×R be given by σs(x, t) = (e−

κ
2 sx, t + s). The Jacobian of σs is given by

(Dσs)(x,t) =


e−

κ
2 s 0 0

0 e−
κ
2 s 0

0 0 1
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and σs is an isometry since

((σs)∗(µ))i j(x, t) =


e−

κ
2 s 0 0

0 e−
κ
2 s 0

0 0 1



eκ(s+t) 0 0

0 eκ(s+t) 0
0 0 1



e−

κ
2 s 0 0

0 e−
κ
2 s 0

0 0 1


=


eκt 0 0
0 eκt 0
0 0 1

 = µi j(x, t).

Moreover σs is contained in G since it commutes with the flow of ∂t which means that the
derivative of σs maps ∂t into itself and this implies that σs ∈ G (every isometry which maps
∂t to ∂t is an element of G). For s1, s2 ∈ R we compute

σs1 ◦ σs2(x, t) = (e−
κ
2 (s1+s2)x, t + s1 + s2) = σs1+s2(x, t)

and this shows σ : R → G, s 7→ σs is a Lie group homomorphism. (Note that σ is at least
continuous in the CO–topology of Diff(R2

×R) and has image in G. Thus σ is a continuous
map between Lie groups hence smooth.) Finally and obviously σ is a splitting map for π.
Thus G � E0(2) oσ R where the representation of R on E0(2) is given by

ρs(a,A) = σs ◦ (a,A) ◦ σ−s = (e−
1
2κsa,A)

and by Theorem 1.54 the action of G on R2
×R is given by

(a,A, s).(x, t) = (e−
1
2κsAx + a, t + s).

And we conclude that this geometry (R2
× R,E0(2) oσ R) is precisely the geometry of

Example 2.16. �

Thus the remaining rotational geometries are determined by dω , 0 which we will
assume henceforth. Since the pullback of a diffeomorphism g ∈ G commutes with exterior
derivative of forms we conclude dω is G–invariant since ω is. This means as usual that the
form is determined by a 2–form δ on the vector space TMm0

Proposition 2.18. With respect to the decomposition TMm0 = Dm0⊕Hm0 the 2–form δ from above
is given by 0 0

0 ∆


where ∆ is a non–degenerated 2-form onHm0 .
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Proof. SinceDm0 is one–dimensional we obtain δ(ξ1, ξ2) = 0 for all ξ1, ξ2 ∈ Dm0 . Thus fix a
ξ ∈ Dm0 and η ∈ Hm0 . Suppose furthermore that Y is a local horizontal extension of η and
X the homogeneous vector field with X(m0) = ξ. Then we obtain

dω(X,Y) = X(ω(Y)) − Y(ω(X)) − ω([X,Y]) = −ω([X,Y]).

Since ωmeasure theD–component of tangent vectors we have to compute that component
for [X,Y]. With ∇ being the Levi–Civita connection to µ we may rewrite the Lie bracket to
[X,Y] = ∇XY − ∇YX. Since the decomposition TMm0 = Dm0 ⊕Hm0 is an orthogonal one for
µ we will check the term µ(X,∇XY − ∇YX) to determine theD–component. First we see

µ(X,∇XY) = X(µ(X,Y)) − µ(∇XX,Y) = 0,

because ∇XX = 0 by Proposition 2.12 and µ(X,Y) = 0 around m0. And clearly we have

µ(X,∇YX) = 1
2 Y|X|2 = 0

since X is homogeneous and has therefore constant length with respect to µ. This implies
dω(X,Y) = 0 around m0 and then of course δ(ξ, η) = 0. We assumed dω , 0, thus δ
restricted to the 2–dimensional planeHm0 has to be non–degenerated otherwise we would
have dω = 0. �

Let X be a homogeneous vector field on M such that ω(X) = 1. By rescaling µ the metric
remains G–invariant and we may achieveωm(ξ) = µm(Xm, ξ) for all ξ ∈ TMm and all m ∈M.
The very first step to handle the case dω , 0 is to show that X is a Killing field.

Proposition 2.19. If dω , 0 then divX = 0 and by Proposition 2.13 X is a Killing field.

Proof. Note that the flow of X on M is given by ϕt(m) = m.et·1 for t ∈ R and m ∈ M since
ω(X) = 1 (Note: in that context here e denotes the exponential map of H ∈ {R,SO(2)}).
Since H is abelian the adjoint representation Ad: H → Aut(h) is the trivial one. Thus
(ϕt)∗ω = (ω)∗(et·1) = ω for all t ∈ R and this implies LXω = 0. Since pullbacks commutes
with the exterior derivatives of forms we deduce LXdω = 0. On the other side we saw in
the proof of Proposition 2.15 that the derivative Dt : Hm → Hϕt(m) of ϕt restricted to the

horizontal plane field is given by Dt = εtgtkt for some gt ∈ G, kt ∈ K and εt = e
1
2κ·t where

κ = divX with respect to µ. Putting all this together we obtain for η1, η2 ∈ Hm0

(ϕt)∗(dω)(η1, η2) = ε2
t (gtkt)∗(dω)(η1, η2) = ε2

t dω(η1, η2) = ε2
t ∆(η1, η2)

for ∆ from Proposition 2.18. Due to that

0 = (LXdω)(η1, η2) = −κ ∆(η1, η2)

and since ∆(η1, η2) , 0 for η1 and η2 linear independent we conclude κ = 0. �
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Corollary 2.20. Let ∇ be the Levi–Civita connection of a G-invariant metric µ of (M,G) and X a
homogeneous vector field such that ω(X) = 1. If vol is a volume form of (M, µ) and × the vector
product of TM induced by vol and µ then there exists a δ , 0 such that

∇ξX =
δ

2|X|
(Xm0 × ξ)

for all ξ ∈ TMm0 . In particular ∇ξX is horizontal.

Proof. Let e0 := |X|−1Xm0 and choose e1, e2 ∈ Hm0 such that (e0, e1, e2) is a positively oriented
orthonormal base of (TMm0 , µm0) (which is possible since e0 is orthogonal toHm0). Moreover
let E1,E2 be horizontal extensions of e1, e2 respectively. Since X is a Killing field∇X is a self–
adjoint endomorphism on TMm0 with respect to µ. First ∇ξX is horizontal since ξ|X|2 = 0
and therefore ∇e1X has to be a multiple of e2 since ∇X is a skew self–adjoint. We compute

2µ(∇e1X, e2) = µ(∇e1X, e2) − µ(∇e2X, e1)

= −µ(Xm0 ,∇e1E2) + µ(Xm0 ,∇e2E1)

= µ(Xm0 ,∇e2E1 − ∇e1E2)

= −µ(Xm0 , [E1,E2]m0)

= −|X|2ω([E1,E2]m0) = |X|2dω(e1, e2) =: δ

and δ , 0 since ω is not flat. Hence ∇e1X = δ
2 e2 = δ

2|X|
(
Xm0 × e1

)
. And since ∇X is skew

self–adjoint we get further ∇e2X = − δ2 e1 = δ
2|X| (Xm0 × e2) �

Corollary 2.21. The abelian group H is a closed subgroup of the center Z(G) of G. The extension
of Proposition 2.11 splits, i.e. NF is isomorphic to K ×H, where F is the orbit of H through m0.

Proof. By Proposition 2.19 the group H acts on (M, µ) by isometries. Note that by Corollary
1.41 the homogeneous vector fields are precisely the fundamental vector fields of H acting
on M. Thus if X is a homogeneous vector field we have h∗(X) = X for all h ∈ H. Choose
a g ∈ G such that g.m0.h = m0 and let f denote the derivative of the map m 7→ g.m.h in
m0. Then f is an isometry of (TMm0 , µm0) and f (Xm0) = Xm0 . Therefore there is a k ∈ K
such that f = k and this implies that H is contained in G (observe that we used that G and
H are subgroups of the diffeomorphism group of M). H is closed since it acts on (M, µ)
by isometries and since the orbits are closed (see Theorem 1.37 and Proposition 1.38). By
Proposition 1.34 H is a subgroup of the center of G (note that G is connected). Hence H is a
subgroup of NF (see Theorem ?? for the definition of NF) and therefore the central extension
of Proposition 2.11 splits and with Proposition 1.59 the claim follows. �
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Recall from Corollary 1.39 that the group G acts on B transitive with isotropy group NF

in the point b0 := π(m0) thus B is diffeomorphic to G/NF. Then there is an action of G/H on
B induced by the action of G. More precisely if gH ∈ G/H then define (gH).b := π(g.m) for
m ∈M with π(m) = b. Since H lies in the center of G this action is well–defined.

Proposition 2.22. The group G′ := G/H acts on B effectively, transitively with isotropy group K′

isomorphic to K. Thus (B,G′) is a Riemannian homogeneous space and π : M→ B is an equivariant
map. Moreover the projection map π : G→ G′ restricted to K is an isomorphism from K to K′.

Proof. Clearly G′ acts on B transitively since G does. For g′ ∈ G′ suppose g′.b = b for all
b ∈ B. If g ∈ G represents g′ and g′.b0 = b0 then there is an h ∈ H such that g.m0 = h.m0

where π(m0) = b0 (note since H lies in the center of G it does not matter if H acts from the
right or from the left). Thus g = hk for a k ∈ K which fixes the fiber over b0. But since g and h
map points of a fiber into the same fiber, then the same holds for k. And gh acts on B as the
identity and thus k has to act on B as the identity. Let k : TMm0 → TMm0 be the derivative of
k in m0 acting on M. Therefore π ◦ k = π and if ξ ∈ Hm0 we conclude Dπm0(k.ξ) = Dπm0(ξ).
But Dπm0 restricted toHm0 is an isomorphism to TBb0 and this implies k.ξ = ξ. Since k fixes
the vectors ofDm0 we obtain that k is the identity map of TMm0 and by Corollary 1.5 k has
to be the identity map on M. Finally this shows that g = h and thus G′ = G/H acts on B
effectively with isotropy group NF/H. By Corollary 2.21 NF/H is isomorphic to K and π

restricted to K maps K into NF/H = K′. �

Corollary 2.23. There is a G′–invariant volume form vol′ on B such that π∗(vol′) = λdω for a
λ , 0.

Proof. If µ is a G–invariant metric on (M,G) then, since H is a subgroup of G there is a
G′–invariant metric µ′ on (B,G′) such that π is a Riemannian submersion. Let vol′ be a
G′–invariant Riemannian volume form on (B,G′). Then π∗(vol′) is a G–invariant 2–form on
M. Let us compute this 2–form with respect to the orthogonal decomposition Dm0 ⊕Hm0 .
Clearly we have

π∗(vol) =

0 0
0 ∆′


where ∆′ = λ∆ for a λ , 0 and ∆ from Proposition 2.18 (since the space of 2–forms on
Hm0 is one–dimensional). And because π∗(vol′) and dω are G–invariant we conclude
π∗(vol′) = λdω. �

Now since G′ is a 3–dimensional connected group and B is simply connected, the space
(B,G′) is equivariant diffeomorphic to either of one the geometries determined in Lemma

61



Homogeneous Three–Manifolds

B.4 of Appendix B. Moreover some of the base spaces are contractible which is a strong
restriction to the topology of the fiber bundle π : M → B as well as for the fiber group H.
Therefore if G′ and H is known, the group G fits into an extension of H by G′. This means,
that we have to determine the extensions 1 −→ H −→ G −→ G′ −→ 1 where G′ and H is
known. We will treat each case of (B,G′) separately and we will begin with the spherical
geometry.

Proposition 2.24. Let (B,G′) be equivariant diffeomorphic to (S2,SO(3)). Then (M,G) is isomor-
phic to (S3,U(2)).

Proof. First we would like to determine the fiber group H. Suppose H = R. There is a
global section s : S2

→ M (see [Bau09, p. 47]) of the H–principal bundle π : M → S2. Thus
s∗(ω) is a 1–form on S2 such that d(s∗(ω)) = s∗(dω). Pick a G′–invariant volume form vol′ on
S2 like in Corollary 2.23, thus π∗(vol′) = λdω. Hence

d(s∗(ω)) = s∗(dω) = 1
λ (π ◦ s)∗(vol′) = 1

λvol′

and we see that vol′ has to be exact. But using Stokes’ theorem we conclude that no volume
form on a closed manifold is exact and we obtain a contradiction to the assumption H = R

thus H = SO(2).
Next we compute the fundamental group of G. We have two fibrations here to use; the

one is given by H −→ M −→ B and the other by K −→ G −→ M. Using Lemma 1.12 and
put in the given data B = S2 and H = SO(2) = K we obtain the exact sequences

... −→ π2(SO(2)) −→ π2(M) −→ π2(S2) −→ π1(SO(2)) −→ π1(M) −→ ...

and
... −→ π2(M) −→ π1(SO(2)) −→ π1(G) −→ π1(M) −→ ...

which imply first the extension

1 −→ π2(M) −→ Z −→ Z −→ 1.

Henceπ2(M) has to be a subgroup ofZ thus of the form nZ but sinceZ/π2(M) is isomorphic
to Z we decduce n = 0 and π2(M) is trivial. Plugging this into the second sequence we
obtain the exact sequence

1 −→ Z −→ π1(G) −→ 1

thus π1(G) = Z. In addition following Proposition 2.22 we obtain the central extension

1 −→ SO(2) −→ G −→ SO(3) −→ 1
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and if G̃ denotes the universal cover group of G there is an another central extension given
by

1 −→ R −→ G̃ −→ SU(2) −→ 1

from Proposition 1.60. We claim that this extension splits. So as to find such a splitting map
we may linearize this problem since SU(2) is simply connected. Thus we have to check if
the induced central extension 1 −→ R −→ g −→ so(3) −→ 1 splits. But so(3) is semi–simple
and by Whitehead’s second lemma (cf. [Wei97, p. 246]) H2(so(3);R) = 0 which means that
the central extension of Lie algebras splits, hence G̃ is isomorphic to R × SU(2) and the
related central extension is the trivial one. The group G is isomorphic to R × SU(2)/π1(G)
and therefore we have to determine how π1(G) lies in the center Z(R × SU(2)) = R × Z2.
Let (c,±1) ∈ π1(G) denotes a generator. By Proposition 1.60 the maps of the extension

1 −→ π1(SO(2)) −→ π1(G) −→ π1(SO(3)) −→ 1

are given as the restriction of the natural inclusion i : R → R × SU(2) and as the natural
projection π : R × SU(2)→ SU(2), since the central extension

1 −→ R −→ G̃→ SU(2) −→ 1

splits. Therefore a generator of π1(G) must be of the form (c,−1) ∈ R ×Z2 = Z(R × SU(2)).
Finally c , 0 since otherwise π1(G) would be isomorphic to Z2. With Lemma B.12 we
deduce that G is isomorphic to U(2) and with Lemma B.13 of Appendix B the proposition
follows. �

Remark 2.25. For the next Proposition it is usefull to introduce briefly the group ˜SL(2,R) =:
S̃L. For a more geometric and detailed discussion about this group see [Sco83]. We
start with the group SL(2,R) which is defined as a matrix group and we define S̃L as
the universal cover group of SL(2,R). The center of SL(2,R) is isomorphic to Z2 and
the quotient PSL(2,R) := SL(2,R)/Z2 is isomorphic to SO+(2, 1). Since (D2,SO+(2, 1)) is
a Riemannian homogeneous space with isotropy groups isomorphic to SO(2) the group
PSL(2,R) � SO+(2, 1) may be identified as a manifold with the circle bundle of the standard
hyperbolic space which is diffeomorphic to D2

× S1. Therefore π1(PSL(2,R)) � Z.

The group S̃L is also the universal covering group of PSL(2,R) since SL(2,R) is a covering
group for PSL(2,R) and with Lemma B.9 of Appendix B we see that Z(S̃L) � π1(PSL(2,R)) �
Z because PSL(2,R) is centerless.
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Proposition 2.26. Let (B,G′) be equivariant diffeomorphic to (D2,SO+(2, 1)). Then (M,G) is
isomorphic to (D2

× R,Γ) where Γ := (R × S̃L)/Z), S̃L is the universal cover group of SL(2,R)
and Z is lying in Z(R × S̃L) = R × Z as Z(1, 1). The action of Γ on D2

× R is induced by the
componentwise action of R × S̃L on D2

×R (note that since S̃L is the universal covering group of
PSL(2,R) � SO+(2, 1) it acts on D2 through the action of SO+(2, 1) on D2 and compare Proposition
1.61).

Proof. Since the base space of the principal bundle π : M → D2 is contractible, it has to
be trivial. Therefore we exclude the case of the SO(2) as fiber and conclude that M is
isomorphic to the trivial R–bundle D2

× R. Hence π2(M) = 0 and applying Lemma 1.12
on the SO(2)–principal bundle SO(2) −→ G −→M we deduce π1(G) � Z. Proposition 1.60
yields the central extension

1 −→ R −→ G̃ −→ S̃L −→ 1

where G̃ is the universal cover group of G. Again like in Proposition 2.24 the Lie algebra
sl(2) of SO+(2, 1) is semi–simple and hence by Whitehead’s Lemma the respective extension
of Lie algebras splits which means that the central extension above is the trivial one. We
conclude G̃ is isomorphic to R × S̃L and thus G � (R × S̃L)/π1(G). The fundamental group
π1(G) is a subgroup of the center R × Z. Since the fundamental group of SO+(2, 1) =

PSL(2,R) is exactly the center of S̃L (see Remark 2.25) a generator of π1(G) has to have
the form (c, 1) ∈ R × Z where 1 is a generator of Z. If c = 0 G would be isomorphic to
SO+(2, 1)×Rwith component wise action on D2

×R (see Proposition 1.61). By Proposition
1.44 the horizontal distribution is given as the orthogonal complement to the fibers {x} ×R
for x ∈ D2 by a R × SO+(2, 1)–invariant metric. But then clearly the horizontal distribution
is integrable and therefore flat which contradicts the assumption of non–flatness. Hence
c , 0. Consider the automorphism ϕ ∈ Aut(R × S̃L) given by ϕ(r, g) := ( r

c , g). This maps
π1(G) to the subgroupZ(1, 1) ofR×Z and the quotients by those subgroups of G̃ = R× S̃L
are isomorphic, cf. Lemma B.8. �

Proposition 2.27. Let (B′,G) be equivariant diffeomorphic to (R2,E0(2)). Then (M,G) is isomor-
phic to (R2

×R,Nil o SO(2)).

Proof. As in the previous Proposition the bundle π : M → R2 is trivial and therefore an
R–principal bundle. Repeating the arguments of Proposition 2.26 we obtain π1(G) � Z and
the central extension

1 −→ R −→ G̃ −→ Ẽ0(2) −→ 1
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with associated central extension of Lie algebras

0 −→ R −→ g −→ e(2) −→ 0.

In Example 1.71 we computed the weak isomorphism classes of this extension which are
given by the Lie algebras R × e(2) and R ×ω1 e(2) with their canonical central extensions.
Suppose first the central extension is weakly isomorphic to

0 −→ R −→ R × e(2) −→ e(2) −→ 0.

Therefore the central extension of simply connected groups is induced byR× Ẽ0(2) with its
canonical maps. Then the center is isomorphic toR×Z (see Lemma B.16 of Appendix B for
the center of Ẽ0(2)) embedded as (t, l) 7→ (t, 0, 2πl) and a generator γc of π1(G) has to be of
the form (c, 0, 2π) for c ∈ R. The groups Gc := (R × Ẽ0(2))/(Zγc) are all isomorphic to each
other. According to Lemma B.8 we have to find an automorphismϕc : R× Ẽ0(2)→ R× Ẽ0(2)
such that ϕc(γc) = γ0. Choose ϕc as the linear map defined by the matrix

1 0 −c/2π
0 E2 0
0 0 1

 .
in the standard basis ofR4 = R× (R2oR). A simple calculation shows thatϕc is a Lie group
isomorphism. Thus here we have to deal with the group G0 = R × E0(2) with the product
action on R × R2 (see Proposition 1.61). But then the horizontal distribution is integrable
by Proposition 1.44, which contradics the assumption of non–flatness.

Therefore we are concerned with the central extension of R ×ω1 e(2). The group Nil o R
from Remark 1.71 is up to isomorphism the simply connected group to the Lie algebra
R ×ω1 e(2). The projection Nil o R → Ẽ0(2) is given by the map (x, z, θ) 7→ (x, θ) as can be
deduced by the central extension of the Lie algebras. The center of Nil o R is isomorphic
toR×Z (see B.17) embedded as (z, l) 7→ (0, z, 2πl). The generator of π1(G) in NiloR has to
have the form γc := (0, c, 2π) for a c ∈ R. But as above the groups Gc := (Nil o R)/(Zγc) are
all isomorphic to each other. Let ϕc : Nil oR→ Nil oR be the linear map from R4 to itself
given by 

E2 0 0
0 1 −c/2π
0 0 1

 .
Obviously ϕc(γc) = γ0 and ϕc is a Lie group isomorphism. So the group here is given by
G � Nil o SO(2) and by Proposition 2.22 the group K is given by the SO(2) part. �

Now that we found all possible rotationally symmetric geometries we have to check
which geometries are isomorphic.
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Theorem 2.28. Let (M,G) be a rotationally symmetric geometry. Then (M,G) is equivariant
diffeomorphic to exactly one of the following seven geometries

Flat Connection Non-Flat Connection

(S2
×R, SO(2) ×R) (S3, U(2))

(D2
×R, SO+(2, 1) ×R) (D2

×R, Γ)
(R2
×R, E0(2) oκ R), κ = 0, 1 (R2

×R, Nil o SO(2))

Proof. We will begin to show that a rotationally symmetric geometry with flat connection
cannot be isomorphic to one with a non–flat connection. Suppose (M,G) and (M′,G′) are
isomorphic geometries, i.e. there are isomorphism F : G → G′ and f : M → M′ such that
f is equivariant with respect to F. Then M and M′ are principal bundles over surfaces B
and B′ respectively. Let X be a fundamental vector field of the bundle π : M → B, hence
X is G–invariant. The pushforward f∗(X) is G′–invariant as can be seen by the following
computation: it is sufficient to choose a point m′0 ∈ M′ and to show that f∗(X) is invariant
under the isotropy group K′ in that point since f is F–equivariant. Let K be the isotropy
group of (M,G) in the point m0. Then it follows that F(K) =: K′ is the isotropy of f (m0) =: m′0.
For all k′ ∈ K′ we obtain

k′.( f∗(X)m′0
) = k′.(D fm0(Xm0)) = D(k′ ◦ f )m0(Xm0) = D( f ◦ k)m0(Xm0) = D fm0(Xm0) = f∗(X)m′0

for k ∈ K with k′ = F(k). Thus f∗(X) is a fundamental vector field of the principal bundle
π′ : M′ → B′. On the other hand if µ′ is a G′–invariant metric then µ := f ∗(µ′) is G–invariant.
From Proposition 1.44 we know that the connection H of π : M → B and the connection
H
′ of π′ : M′ → B′ are the orthogonal complements of RX and R f∗(X) respectively for any

invariant metric. But then f maps H into H ′ isomorphically, since for all ξ ∈ Hm and
m′ := f (m)

µ′
(
D fm(ξ), f∗(X)m′

)
= µ′(D fm(ξ),D fm(Xm)) = µ(ξ,Xm) = 0.

This implies that the pushforward f∗(XH) of a horizontal vector field XH on M is a horizontal
vector field on M′. Suppose H ′ is flat and X1,X2 are horizontal vector fields of H . Since
the derivative of f is a Lie algebra isomorphism from the vector fields on M to those on M′

we see that f∗([X1,X2]) = [ f∗(X1), f∗(X2)] is horizontal henceH is flat as well.
We start to check the flat case first. The geometry of S2

× R is surely not isomorphic to
the other flat ones because of the topological type of the manifold. To compare the other
geometries, we will show that the Lie groups cannot be isomorphic. This in turn can be
determined through their Lie algebras. We will use two invariants of isomorphism classes
of Lie algebras, namely its derived algebras and its center.
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If g is a Lie algebra, denote by g′ = [g, g] its derived Lie algebra. Let g1 be the Lie algebra
of SO+(2, 1)×R and gκ2 the Lie algebra of E0(2)oκR. We already showed that the geometries
E0(2) oκ R for κ ∈ {0, 1} are non-isomorphic to each other. Hence we have to compare the
Lie algebra g1 with gκ2 . We have g1 = R × sl(2), where the R–factor is the center of the Lie
algebra. Thus g1 cannot be isomorphic to gκ2 for κ = 1 since by Lemma B.18 of Appendix B
the corresponding simply–connected group of the latter Lie algebra has trivial center. Write
g2 := g0

2 = R × e(2) and we see that g′2 = [e(2), e(2)] since R is the center of g2. Same holds
for g′1 = [sl(2), sl(2)]. But since sl(2) is unimodular we have sl(2)′ = sl(2) and e(2)′ is only
two–dimensional since H1(e(2);R) = e(2)/e(2)′ = R (see Example 1.68). Thus g′1 cannot be
isomorphic to g′2 and therefore the geometries are distinct.

Let us turn our attention to the non–flat cases. The geometry of U(2) cannot be isomorphic
to the other two since the group is compact. The group Γ has Lie algebra g1. Denote by
g3 = R ×ω1 e(2) the Lie algebra of Nil o SO(2). Let e0, . . . , e3 be the canonical basis for g3 if
we regard it asR4, where e0 spans the center of g3. The first derivative g′3 is spanned by the
elements of the form [ei, e j] for i, j = 0, . . . , 3. Thus g′3 = 〈e0, e1, e2〉 (see Example 1.68) and
this implies g′′3 = 0 whereas g′′1 = sl(2). �

Bianchi groups

Here the isotropy group is trivial which means that G is 3–dimensional and is acting freely
on M and thus we may assume that M is a 3–dimensional simply connected Lie group. To
understand those groups it is sufficient to know the zoo of 3–dimensional Lie algebras, since
they are in one-to-one correspondence to simply connected groups modulo isomorphisms.

There were many successful attempts to determine the 3–dimensional Lie algebras. First,
we would like to mention Bianchi’s classification [Bia02] and [Gla08] for a revisited, more
modern version of Bianchi’s proof. Second, Milnor classified in [Mil76] all 3–dimensional
unimodular Lie groups with a very nice proof. Of course there are many other articles on
3–dimensional Lie algebras which can by found though the literature and the internet very
easily.

We would like to give here an alternative proof which is a bit more in the flavor of
this work. Our approach will be through extensions of Lie algebras by their derived Lie
algebra g′ = [g, g]. If g1 and g2 are isomorphic Lie algebras then its first derivatives g1 and
g2 are isomorphic as well which makes the dimension of g′ an invariant. Hence we may
classify the 3–dimensional Lie algebras based on the dimension of its first derivatives. In
the following gwill always denote a 3–dimensional Lie algebra.

But before plunging into the classification we develop a notation for 3–dimensional
Lie algebras. If (e1, e2, e3) is a Basis of g then the Lie algebra is fully determined by the
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vectors [ei, e j]. Write [ei, e j] = Ck
i jek and furthermore write i for ei. Then [i, j] = Ck

i jk and

the only interesting combinations are Ck
12k, Ck

13k and Ck
23k. We denote this Lie algebra by

b(Ck
12k,Ck

13k,Ck
23k). For example, suppose the Lie brackets are given by

[e1, e2] = he2 − e3, [e1, e3] = e2 + he3, [e2, e3] = 0

for h ≥ 0. We would denote this Lie algebra by b(h2 − 3, 2 + h3, 0).

Proposition 2.29. Suppose g′ = 0, then g = R3 is the abelian 3–dimensional Lie algebra b(0, 0, 0).

Proof. If g′ = 0 then [g, g] = 0, hence g is abelian. �

Proposition 2.30. Suppose g′ is 1-dimensional, hence isomorphic toR. Then g is isomorphic either
to b(1, 0, 0) or b(0, 0, 1).

Proof. The condition dim g′ = 1 implies the extension

1 −→ R −→ g −→ h −→ 1

where h = g/g′. Then, since g′ is an ideal in g, h is a 2–dimensional Lie algebra. There are
only two types of them: the abelian oneR2 and then one, which is not abelian but solvable.
We name the latter one by h2 where R2 is the underlying vector space and if e1 and e2 are
the canonical basis of R2 the Lie bracket is given by [e1, e2] = e1. We saw in Proposition
1.66 that isomorphism classes of central extensions are encoded by the second cohomology

of that extension. The same proposition is true for extensions 0 → i → g
p
→ h → 0 where

i is abelian (see [Kna88, pp. 161]). As to compute that cohomology we need to regard i
as an h–module in the following way: Let π : h → gl(i) given by π(X)(Y) := [X′,Y] where
p(X′) = X. This is well–defined since i is abelian and the Jacobi identity shows that π is
indeed an action of h on i. We will denote the corresponding k–th cohomology group by
H2(h; iπ) (cf. Appendix A, in Cohomology of Lie Algebras). Thus every extension comes
with such a π and so does the extension

1 −→ R −→ g −→ h −→ 1.

Suppose first h = R2. Since gl(R) is abelian, π has to be simply a 1–form on R2. Moreover
C2 = Hom(∧2R2,R) which is isomorphic to R via

λ 7→ ωλ :=

 0 λ

−λ 0
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so we conclude that all elements of C2 are cocycles since there are no non–trivial 3–forms
on R2. The coboundary map δ : C1

→ C2 (for the definition see Appendix A) is given by
δ(α) = π ∧ α. We distinguish two cases whether π is trivial or not.

(a) If π is not trivial, then δ is surjective and consequently H2(R2;Rπ) = 0. The zero
element in the second cohomology represents the extension induced by the semidirect
product of Lie algebras R oπ R2 (note that in this case π is a map from R2 into the
derivations of R which is gl(1) and therefore π induces a semidirect product, see
Appendix A in LieAlgebras). Let A ∈ GL(R2) such thatπ◦A(e1) = 1 andπ◦A(e2) = 0
and denote this map by π0. Then every R oπ R2 is isomorphic to R oπ0 R

2 as Lie
algebras by the linear map id × A : R ×R2

→ R ×R2. Regarding R oπ0 R
2 as R3 and

if (e1, e2, e3) is the canonical basis of R3 such that g′ is spanned by e1 we obtain the
relations

[e1, e2] = e1, [e1, e3] = 0, [e2, e3] = 0

and we seeRoπ0 R
2 is isomorphic to h2

×R. This Lie algebra is not unimodular since
tr ade2 , 0.

(b) Suppose π is trivial. Then the extension is central and δ : C1
→ C2 is the trivial map.

Thus H2(R2;R) = R via the isomorphism given above. From Proposition 1.65 we
deduce the extensions which come in question are those induced by the Lie algebras
R ×ωλ R

2. We may assume λ , 0 since otherwise we would obtain the abelian Lie
algebra R3. Let fλ : R2

→ R2 be the linear map determined by fλ(e2) = λ−1e2 and
fλ(e3) = e3. Then id× fλ : R×ω1R

2
→ R×ωλR

2 is a Lie algebra isomorphism. Choosing
(e1, e2, e3) like above we obtain the relations

[e1, e2] = 0, [e1, e3] = 0, [e2, e3] = e1.

Since all adei are trace free we conclude that this Lie algebra is unimodular and
therefore it is not isomorphic to the previous one.

Assume now h = h2 hence there is a basis (e2, e3) of h2 such that [e2, e3] = e2. We claim
that there is no Lie algebra g such that g′ is 1–dimensional and g/g′ = h2. Let therefore
p : g→ h2 be the Lie epimorphism from the extension. Choose εi ∈ p−1(ei) for i = 2, 3. Then
by assumption [ε1, ε2] ∈ g′ = ker p but p([ε2, ε3]) = e2 , 0. �

Proposition 2.31. Let g′ be 2–dimensional. Then g is isomorphic to either b(0, 1, λ2) for λ ∈
[−1, 1] \ {0} or b(0, 1, 1 + 2) or b(0, h1 − 2, 1 + h2), h ≥ 0.
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Proof. The assumption implies the extension

0 −→ g′ −→ g −→ R −→ 0

which is a splitting extensions, since R is 1–dimensional. Thus using Lemma A.7 we have
g = g′ oπ R for a π : R → Der(g′) and π determines the Lie bracket between elements of
R and g′. Choose a non–zero element e3 ∈ R, then π(e3)(X) = [e3,X] where we regard e3

as e3 ∈ g
′ o R. This means that π(e3) is the adjoint map ade3 =: f (all the other brackets

are known in the semidirect product). Therefore f : g′ → g′ is well–defined linear map.
Note that g′ has to be abelian. Suppose g′ � h2 from above. Then there is a basis (Y1,Y2)
of g′ such that [Y1,Y2] = Y1 and adY2 is not tracefree since adY2(Y1) = −Y1. But this is a
contradiction as Lemma A.5 shows.

Hence we may assume that g′ is the abelian Lie algebra R2. Then f has to be an
isomorphism. If there would be a Y1 ∈ g

′ such that f (Y1) = 0 then choose another non–
zero vector Y2 such that (Y1,Y2) is a basis for g′. Hence g′ is spanned by [Yi, e3] = f (Yi)
and this implies that g′ would have dimension smaller then 2, which contradicts the
assumption. Furthermore if A ∈ GL(R2) and 0 , λ ∈ R then the map A×λ : g′oR→ g′oR,
(Y, x) 7→ (A(Y), λx) is an isomorphism between the Lie algebras induced by the maps f and
λ−1cA( f ), where cA is the conjugation of f by A in GL(R2). Thus we have to examine the
conjugacy class of f ∈ GL(R2). We will distinguish between the eigenvalues of f ∈ GL(R2):

(a) f is semi–simple, say with real eigenvalues λ1, λ2, which are not zero since f is an
isomorphism. Hence there is an eigenvector basis of f , say (e1, e2), of R2 where ei is
an eigenvector of λi. Since we may multiply f with a λ , 0 while staying in the same
isomorphism class of Lie algebras we may go over to λ−1

1 f . Thus the relations for the
Lie bracket are given by

[e3, e1] = e1, [e3, e2] = λe2, [e1, e2] = 0.

for λ = λ2/λ1 and we call that map fλ. Moreover let b(λ) be the Lie algebra defined
by fλ for λ , 0. The next step will be to check what b(λ) are isomorphic. Set bi = b(λi)
for i = 1, 2 and λ1 , λ2. Suppose Φ : b1 → b2 is an Lie algebra isomorphism, then Φ

restricted to b′1 is an isomorphism between b′1 and b′2. Hence Φ|b′1 =: A ∈ GL(R2) and
for v ∈ R2 we obtain on the one hand

[Φ(e3),Φ(v)]b2 = Φ([e3, v]b1) = A fλ1(v)

and on the other hand

[Φ(e3),Φ(v)]b2 = k · [e3,A(v)]b2 = k · fλ2A(v)

70



Bianchi groups

where 0 , k ∈ R and Φ(e3) = ke3 + w, w ∈ b′2 (observe that k cannot be zero since
otherwise Φ would be singular). Thus fλ2 is conjugated to k−1

· fλ1 in GL(R2). Therefore
those maps must have the same eigenvalues and that is why we deduce k = λ2 and
λ2λ1 = 1. On the other side if λ2 = λ−1

1 then the following change of basis

e3 7→ −λ1e3, e1 7→ −e2, e2 7→ −e1

shows that b(λ2) is isomorphic to b(λ1). To sum up, b1 is isomorphic to b2 iff λ1λ2 = 1.
We remark that b(0, 1, λ2) becomes b(1, 0, 0) for λ = 0.

(b) f has an eigenvalue λ , 0 of multiplicity two, but f is not a multiple of the identity.
Hence there is a basis (e1, e2) such that f is given by the matrixλ 1

0 λ

 .
We conclude that the relations here are given by

[e3, e1] = λe1, [e3, e2] = e1 + λe2, [e1, e2] = 0.

These Lie algebras are isomorphic to the one given by the relations

[e1, e3] = e1, [e2, e3] = e1 + e2, [e1, e2] = 0.

We see this, if we consider the linear map induced by the following change of basis

e1 7→ −e1, e2 7→ −λe2, e3 7→ −λ
−1e3

(c) In the latter cases, the characteristic polynom of f had a real zero. Thus the remaining
case is where f has a complex non–real eigenvalue λ, but since f is a real automor-
phism the complex conjugate λ̄ is as well an eigenvalue. Therefore there is a complex
eigenvector basis (z,w) of C2 such that

f c(z) = λz, f c(w) = λ̄w,

where f c
∈ GL(C2) is the complexification of f ∈ GL(R2), since λ is not real and

therefore λ , λ̄. Observe that f c(z̄) = λ̄z̄, hence we may choose (z, z̄) as an eigenvector
basis, where z and z̄ is linear independent because λ , λ̄. Write z = e1 + ie2 for
e1, e2 ∈ R2, then (e1, e2) is a basis for R2 since otherwise (z, z̄) is not a basis for C2.
Moreover write λ = α + iβ (β , 0) then λz = (αe1 − βe2) + i(βe1 + αe2) and

f (e1) = Re( f c(z)) = Re(λz) = αe1 − βe2

f (e2) = Im( f c(z)) = Im(λz) = βe1 + αe2.
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As mentioned above β−1 f induces the same Lie algebra as f . Thus the Lie bracket
relations are given by

[e3, e1] = he1 − e2, [e3, e2] = e1 + he2, [e1, e2] = 0.

for h := α/β ∈ R and we write b(h) for this Lie algebra. This Lie algebra is isomorphic
to

[e1, e2] = 0, [e1, e3] = he1 − e2, [e2, e3] = e1 + he2

by the linear transformation ei 7→ −ei for i = 1, 2, 3. Moreover the linear map of R3

defined by

e1 7→ e2, e2 7→ e1, e3 7→ −e3

shows that b(h) isomorphic to b(−h). As a last step, let us show that b(h1) is not
isomorphic to b(h2) for hi ≥ 0 and h1 , h2. Suppose they are isomorphic. Then as in
(b) the matrices h1 1

−1 h1

 and

kh2 k
−k kh2


have to be similar for a k , 0, thus they must have the same eigenvalues. The eigen-
values of the first matrix are h1 ± i and of the second kh2 ± ki which is a contradiction
to hi ≥ 0 and h1 , h2.

We note that the cases (a), (b) and (c) cannot be isomorphic to each other since the corre-
sponding representations lie in different conjugacy classes as the following lines show (see
also part (a)). If Φ : b1 → b2 where bi := R2 o fi R is an isomorphism then Φ|b′1 : b′1 → b

′

2 is an
Lie algebra isomorphism but since b′i is abelian we have A := Φ|b1 ∈ GL(R2). Furthermore
observe that for e3 ∈ b1 as above we have Φ(e3) = λe3 + y for a non–zero λ ∈ R (since
otherwise Φ would map b1 onto b′2) and y ∈ b′1. Now we may compute for x ∈ b′1

Φ([e3, x]) = Φ ◦ f1(x) = A ◦ f1(x).

On the other since Φ is a Lie algebra homomorphism we obtain

Φ([e3, x]) = [Φ(e3),Φ(x)] = λ[e3,Φ(x)] = λ f2 ◦ A(x)

and this shows that f2 = λ−1cA( f1). �

Proposition 2.32. If g′ = g then g is isomorphic to sl(2) or so(3).
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Proof. g is unimodular by Lemma A.5. We know for so(3) = (R3,×) we have so(3)′ = so(3).
Following [Mil76] sl(2) is the only other 3–dimensional unimodular Lie algebra such that
sl(2)′ = sl(2). To see this, choose a scalar product on g and define the vector product × on g
such that (g,×) � so(3). The self–adjoint map L : g→ g, L(x × y) = [x, y] has to be invertible
and this implies that g � so(3) or g � sl(2). �

We would like to compare those Lie algebras with the unimodular ones which was found
and named in [Mil76] as well as with those from the Bianchi list. In the first row we indicate
the simply connected Lie groups instead of the Lie algebras like in [Mil76].

Milnor Bianchi b(∗, ∗, ∗)

R ⊕R ⊕R I b(0, 0, 0)
Heisenberg group II b(0, 0, 1)

– III=VI−1 b(1, 0, 0)
– IV b(0, 1, 1 + 2)
– V b(0, 1, λ2), λ = 1

E(1, 1) VI0 b (0, 1, λ2), λ = −1
– VIh, −1 , h , 0 b (0, 1, λ2), λ = 1+h

1−h
Ẽ(2) VII0 b(0, h1 − 2, 1 + h2), h = 0

– VIIh, h > 0 b(0, h1 − 2, 1 + h2), h > 0
S̃L(2) VIII sl(2)
SU(2) IX so(3)

Finally as the last step in this section we would like to determine the simply connected
groups B(∗, ∗, ∗) to the Lie algebras b(∗, ∗, ∗). We will give the list of groups without calculating
their Lie algebras, since this is an easy task to accomplish. Some of them are pointed out in
the table above.

(1) b(0, 0, 0): this is clearly the abelian Lie group R3.

(2) b(0, 0, 1): the Heisenberg group, see e.g. in [Sco83].

(3) b(1, 0, 0): Let ρλ : R→ Aut(R2) be the group homomorphism

ρλz :=

ez 0
0 eλz


for λ ∈ R. Define the group B(0, 1, λ2) =: B(λ) := R2 oρλ R. Then the Lie algebra of
B(0) is isomorphic to b(1, 0, 0).
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(4) b(0, 1, 1 + 2): Here define the group homomorphism ρ : R→ Aut(R2) by

ρz :=

ez zez

0 ez


and the group B(0, 1, 1 + 2) := R2 oρ R.

(5) b(0, 1, λ2): the associated group is given by B(λ), see (3).

(6) b(0, h1 − 2, 1 + h2): here we have perhaps the most complicated semidirect product.
Define ρh : R→ Aut(R2) by

ρh
t := eht

 cos t sin t
− sin t cos t


for h ≥ 0 and finally B(h2 − 3, 2 + h3, 0) := R2 oρ R.

(7) sl(2), so(3): of course the groups here are S̃L(2) and SU(2) respectively.

The list of 3–dimensional geometries

We would like to sum up the 3–dimensional geometries and discuss some connections
among them. First let us start with an overview.

(i) isotropic geometries (dim K = 3).

(R3,E0(3)) (S3,SO(4) (D3,H0(3))

(ii) rotationally symmetric geometries (dim K = 1).

flat non–flat

(S2
×R,SO(3) ×R) (S3,U(2))

(D2
×R,SO+(2, 1) ×R) (D2

×R,Γ)
(R2
×R,E0(2) oκ R), κ = 0, 1 (R2

×R,Nil o SO(2))

(iii) Bianchi Groups (dim K = 0). We sort the groups by the dimension of its derived Lie
algebra.

dim b′ 0 1 2 3

R3 Nil B(λ), λ , 0, |λ| ≤ 1 so(3)
B(0) B(0, h1 − 2, 1 + h2), h ≥ 0 sl(2)

B(0, 1, 1 + 2)
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First note that S2
×R cannot carry any Lie group structure. It is easy to see that there is no

3–dimensional Lie subgroup of SO(3) × R which acts transitive on S2
× R, but to exclude

that there is no Lie group structure on S2
× R we utilize the topological fact that for a Lie

group G we have π2(G) = 0, but π2(S2
×R) = Z.

Any other geometry admits a 3–dimensional subgroup which acts on M transitive. How-
ever every geometry except (S2

×R,SO(3)×R) owns a 3–dimensional subgroup which acts
transitively on M. The universal cover of this group has to be a Bianchi group. Thus we
may assign to every geometry a 3–dimensional Lie algebra, but not in a unique way.

Let us recall the Thurston–Geometries. These are geometries (M,G) which admit a compact
quotients, i.e. there is discrete subgroup Γ ⊂ G which acts free and properly discontinuously
on M such that M/Γ is compact. Such groups Γ are called cocompact groups. Moreover the
geometry (M,G) should be maximal in the sense that there is no bigger group G′ such that
G is a subgroup of G′ and (M,G′) a geometry with the restricted action. But the maximality
condition is not important for us and therefore we would like to focus on the geometries
with compact quotients. As one may take from [Thu97], [Sco83] and [Mil76] the list of
geometries with compact quotients is given by

dim K
3 (R3,E0(3))

(S3,SO(4))
(D3,SO+(3, 1))

1 (S2
×R,SO(3) ×R))

(D2
×R,SO+(2, 1) ×R)

(R2
×R,E0(2) ×R)
(S3,U(2))

(D2
×R,Γ)

(R2
×R,Nil o SO(2))

0 R3

Nil
B(−1) = E0(1, 1)

Ẽ0(2)
S̃L(2)
SU(2)

where B(−1) is also known as the Sol–geometry (note that a Lie group is unimodular if it
admits a compact quotient). The group listed in the case of dim K = 0 are also called of class
A. This comes from the Bianchi classification where one distinguish between unimodular
(class A) and non–unimodular (class B) groups. From [Mil76, Lemma 6.2] we see that
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the class B Lie groups cannot admit compact quotients since otherwise they would be
unimodular. The only other geometries to question are the spaces (R2

×R,E0(2) oκ R) for
κ > 0 (clearly the isotropic geometries possess compact quotients). The next Proposition
clarifies the situation

Proposition 2.33. Let X be a homogeneous vector field on a geometry (M,G). If (M,G) admits
compact quotients then divX with respect to a G–invariant metric is zero.

Proof. Suppose Γ ⊂ G is a cocompact group and M̌ := M/Γ is the induced compact manifold.
Since X is G–invariant thus in particular Γ–invariant we may define a vector field

X̌m̌ := (Dπ)m(Xm)

where π : M → M̌ is the covering map and π(m) = m̌. This is well–defined by the Γ–
invariance of the vector field X. Let µ be a G–invariant metric on (M,G) and µ̌ the induced
metric on M̌. Then divµX = π∗(divµ̌X̌). To see this let U be an open subset of M such that
p := π|U is a local isometry. We choose local orthonormal fields (E1,E2,E3) on U and then
clearly p∗(Ei) for i = 1, 2, 3 are orthonormal vector fields on Ǔ := p(U). Furthermore note
that p∗(X) = X̌ and hence we obtain

divµ̌X̌ =
∑

i

µ̌(∇̌p∗(Ei)X̌, p∗(Ei)) =
∑

i

µ̌(p∗(∇EiX), p∗(Ei)) =
∑

i

µ(∇EiX,Ei) ◦ p−1

on Ǔ. Since π is a local isometry we deduce divµX = π∗(divµ̌X̌) and so divX̌ is constant on
M̌. Using Stokes’ theorem we obtain divX̌ = 0, hence divX = 0 �

In Example 2.16 we saw that ∂t is a homogeneous vector field for (R2
×R,E0(2)oκR) and

there we computed that div∂t = κ, hence for κ > 0 those geometries can not admit compact
quotients.

Definition 2.34. We shall call a geometry (M,G) of class A if it admits compact quotients.
Hence it has to be one of the list above.

We remark that all groups G of a class A geometry are unimodular which means that
G admit a biinvariant volume form. Moreover we see that most Lie algebras are given as
g = h ×R where h is unimodular and R is the center of g (then clearly adx is trace–free for
all x ∈ g).
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M any phenomenons in physics on big scales involve Einstein’s general theory of
relativity as for example to describe the dynamics of the universe. Using general
relativity, we have to solve a very complicated partial differential equation on

a manifold. For that reason we may impose symmetry conditions in order to simplify the
problem.

We do not want to explain at this point how the theory of general relativity in detail works
but rather discuss some cornerstones. From the mathematical viewpoint general relativity
is very quickly introduced. The basis is always a 4–dimensional Lorentzian manifold, say
(L, h). Suppose we would like to model a physical system such as a star or a whole universe.
All physical objects in that system which may interact with the gravitational field will be
packed into a symmetric, divergence free tensor T (the divergence with respect to h). Define
the Einstein–Tensor by Ein(h) := Ric (h) − 1

2 R(h)h where Ric is the Ricci–curvature of h and
R(h) is the scalar curvature of h. The objects which we would like to determine depend on
the problem: sometimes the manifold L as well as the metric h is wanted, sometimes L is
given and h is wanted. Suppose L and T are given (like it will be in our case), then we try
to find a Lorentzian metric h which solves the equation

Ein(h) = T.

Note that T can depend on h as well. Moreover, unlike in physics, we would like to
put the possibly cosmological constant into the tensor T. If T = Λh where 0 , Λ ∈ R

is called cosmological constant and the equation Ein(h) = Λh is equivalent to the equation
Ric (h) = −Λh.

Our aim will be to model the universe where physics are based on the laws of general
relativity. The classical models are known among others under the name Robertson–Walker
models where the universe (stars, galaxies, clusters of galaxies) are assumed to behave like
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a perfect fluid. Moreover there is made the assumption that the universe looks isotropic
which means geometrically that there are so many symmetries such that the sectional
curvature of the spatial parts of the spacetimes are constant (this implies in particular that
that the spatial parts are homogeneous). We will try to extend these models. But in contrast
to the Robertson–Walker model we will deal solely with the case where there is no matter
but a lot of dark energy. Therefore the word ’extend’ is maybe not a precise description,
but here we mean to extend the models in the sense that we drop the isotropy condition,
however, we retain the homogeneity of the spatial parts.

The first attempts in that field were made by Gödel and Taub in the late 50’s where
they used the Bianchi groups and the so called Kantowski–Sachs geometry to model a
homogeneous but anisotropic universe. They originally used that models to reveal some
interesting causality effects of general relativity. Surely there are more physical reasons to
examine those models but from a mathematical viewpoint they are interesting too, since
they provide a class of solutions to the Einstein equations which are in general really hard
to solve. The key fact is that by the symmetries the complicated partial differential equation
system reduce to a (still hard but treatable) ODE system.

Homogeneous cosmologies

The name homogeneous spacetime is maybe misleading since we mean that a spacetime
should be merely spatially homogeneous. We make this precise in the following definition.
On a first glimpse this definition looks a little weird but we will explain afterwards why
the naming is reasonable.

Definition 3.1. Let (M,G) be a geometry1 and µ : I → S+ a curve of G–invariant metrics
where I is an interval in R (for the definition of S+ consider the section the space of
homogeneous metrics of Chapter 1). We call (M,G, µ) a homogeneous spacetime.

Remark 3.2. We are able to craft a Lorentzian manifold from the data (M,G, µ). Set L := I×M
and h := −dt2 + µ(t) as the Lorentzian metric where t is the standard time–function on
I ⊂ R, i.e. t is the projection from I ×M onto the first factor. The group G is acting on L by
id× g : I×M→ I×M for g ∈ G. Then the submanifolds t×M are Riemannian homogeneous
spaces by the action of G and t ×M is equipped with the metric µ(t) which turns it into a
Riemannian manifold. Thus t ×M are spatial submanifolds of (L, h). We denote with T the
vector field to the flow ϕs(t,m) = (t + s,m) on I ×M and it follows that h(T,T) = −1. Let κ(t)

1Recall that a geometry is a Riemannian homogeneous space, such that the manifold is simply connected and
of dimension 3
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be the second fundamental form of (t ×M, µ(t)) ⊂ (L, h) with respect to T, H(t) := tr µ(t)κ(t)
its mean curvature. By definition we have κ(t)(ξ, η) = −h(ξ,∇ηT) where∇ is the Levi–Civita
connection of h. Then T is invariant under the action of G on L and T lies always orthogonal
with respect to h on the slices t ×M. Finally this implies that κ(t) is a G–invariant tensor
M and therefore κ : I → SymG(M) � SymK(TMm0) where SymG(M) are the G–invariant
symmetric 2–tensors on M and SymK(TMm0) are the K–invariant symmetric bilinear–forms
on TMm0 where m0 ∈ M and K is the isotropy group of m0. The shape operator S(t) of κ(t) is
defined as κ(t)(ξ, η) = h(S(t)(ξ), η) and this implies that µ(t)(S(t)(ξ), η) = κ(t)(ξ, η) as well as
S(t)(ξ) = −∇ξT. We will write more intuitively κ(t)] for S(t).

Clearly as a consequence of Proposition 1.19 the mean curvature H(t) is constant on t×M
and therefore solely a time–dependent geometric quantity. Let us fix some more notation
at this point: we shall describe with Ric (t) the Ricci–curvature and R(t) the scalar curvature
of (t ×M, µ(t)) =: M(t). We regard those objects always as quantities on M rather on t ×M.
More precisely we have a curve Ric : I → SymG(M) since Ric (t) is G–invariant and R(t) is
a constant function on M(t). And if an object, like Ric (t), is G–invariant we would like to
identify it with the object which is given in a standard point m0 ∈ M. Thus in the case of
Ric (t) ∈ SymG(M) we may pass over to the symmetric bilinear form Ric (t)m0 ∈ Sym(TMm0)
on TMm0 but mark it again with Ric (t).

Definition 3.3. A homogeneous spacetime (M,G, µ) is a (homogeneous) cosmological model
with (cosmological) constant Λ if Ein(h) = Λh on (L, h) for a Λ ∈ R (see Remark 3.2 for (L, h)).

The manifold (L, h) is merely build by objects from the triple (M,G, µ) and therefore we
expect that the condition Ric (h) can be reformulated to conditions for the triple (M,G, µ).
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Proposition 3.4. A homogeneous spacetime (M,G, µ) is a homogeneous cosmological model with
constant Λ iff the following conditions are fullfilled for all t ∈ I

(a) R(t) + H(t)2
− |κ(t)|2 + 2Λ = 0

(b) divµ(t)κ(t) = 0

(c) µ̇(t) = −2κ(t)

(d) κ̇(t) = Ric (t) + Λµ(t) + H(t)κ(t) − 2(κ(t)])2

where |κ(t)|2 = 〈κ(t), κ(t)〉µ(t) and κ(t)] is the self–adjoint shape operator given byµ(t)(κ(t)](v),w) =

κ(t)(v,w) (see after Remark 1.73). With (κ(t)])2 we would like to denote the symmetric bilinear
form of the endomorphism κ(t)] ◦κ(t)] with respect to µ(t), thus (κ(t)])2(v,w) = µ(t)((κ])2(v),w) =

µ(t)(κ(t)](v), κ](w)). Moreover observe with our convention of Remark 3.2 these equations are
regarded in an arbitrary but fixed point m0 ∈M since of their G–invariance.

Proof. See [Zeg11] for a proof. It is a straightforward computation using the Gauss and
Codazzi equations for the submanifolds M(t) ⊂ (L, h). Part (a) is (Ein(h) − Λh)(T,T) = 0,
part (b) are the mixed directions (Ein(h) − Λh)(T,X) = for a spatial vector field, i.e. X has
no T–component and finally the last two equations are given by (Ein(h) −Λh)(X,Y) = 0 for
X,Y spatial vector fields on L. �

These four equations may be interpreted as the flow lines of a vector field on a subset of
the tangent bundle of S+(TMm0) which is isomorphic to P := S+(TMm0)×Sym(TMm0). The
tangent space in a point (µ, κ) ∈ P is given by Sym(TMm0) × Sym(TMm0). Thus a vector
field X on P in (µ, κ) is given by a pair of symmetric bilinear forms on TMm0 . Moreover
since P is for itself a tangent bundle we may equip TP with a natural Riemannian metric:
for (σ1, σ2), (τ1, τ2) ∈ TP(µ,κ) define

〈〈(σ1, σ2), (τ1, τ2)〉〉(µ,κ) := 〈σ1, τ1〉µ + 〈σ2, τ2〉µ.

Definition 3.5. Let (M,G) be a Riemannian homogeneous space. For a Λ ∈ R we call the
vector field XΛ on P given by

X
Λ
(µ,κ) := (−2κ,Ric (µ) + Λµ + Hκ − 2(κ])2)

the Einstein vector field (to the constant Λ) where H = tr µκ and κ] are taken with respect to
µ and its flow the Einstein flow (note that Ric (µ) is the Ricci curvature of µ as a G–invariant
metric).

80



Homogeneous cosmologies

If t 7→ (µ(t), κ(t)) is a flow line of XΛ then the curve t 7→ µ(t) fullfills condition (c) and (d)
of Proposition 3.4. Let us study now condition (a) of Proposition 3.4 more precisely. Define
the smooth function FΛ : P → R, FΛ(µ, κ) := R(µ) + H2

− |κ|2 + 2Λ, where R(µ) is the scalar
curvature of µ is (seen as G–invariant metric on M) and |κ| is the norm of κ with respect to
µ. Let us stipulate to omit the superscript Λ.

Proposition 3.6. Suppose (M,G) is a Riemannian homogeneous space and let F : P → R be the
function defined above for an arbitrary Λ ∈ R. Moreover we assume that the homogeneous vector
fields are divergence free with respect to a (and therefore any) G–invariant metric. Then 0 is a
regular value of F if Λ , 0 or if Λ = 0 and (M,G) does not admit a G–invariant Ricci–flat metric.

Proof. Letα : I→ Pbe a smooth curve where 0 ∈ I ⊂ R is an interval. Writeα(t) = (µ(t), κ(t)),
α(0) = (µ, κ) and α̇(0) = (σ1, σ2). Then DF(µ,κ)(σ1, σ2) = d

dt F ◦ α(0). First consider the scalar
curvature as a function of P into the reals, i.e. (µ, κ) 7→ R(µ), which does not depend on
κ. Consider the curve µ(t) now as a curve of Riemannian metrics on M globally. Then
by [Bes08, p. 63] we obtain in t = 0

d
dt

R(α(t)) =
d
dt

R(µ(t)) = ∆µ(tr µ(σ1)) + divµ(divµσ1) − 〈Ric (µ), σ1〉µ

where all objects are globally defined on M. Proposition 1.19 implies that tr µσ1 is a constant
function since σ1 is G–invariant, hence ∆tr σ1 = 0.

Using Proposition 1.21 and Proposition 1.19 divσ1 is a G–invariant 1-form and therefore
there is a homogeneous vector field X which is the dual to divσ1 with respect to µ. From
the definition we have div(divσ1) = divX and by Proposition 2.13 divX is a constant
which is zero because of the assumption (for every G–invariant metric). We sum up and
conclude that div(divσ1) vanishes. Observe that 〈Ric (µ), σ1〉µ is constant as well, since it is
G–invariant and therefore the gradient of R with respect to 〈〈·, ·〉〉 is given by

(∇R)(µ,κ) = (−Ric (µ), 0)

(note that we passed again from the global object Ric (µ) to Ric (µ)m0 and ∇R is a vector field
on P).

Next we differentiate the function (µ, κ) 7→ H2 = (tr µκ)2. Obviously H = tr µ(κ) = tr (κ])
where κ] is taken with respect to µ. Thus

d
dt

tr µ(t)κ(t) = tr
( d
dt
κ(t)]

)
where µ(t)(κ(t)](ξ), η) = κ(t)(ξ, η) so κ(t)] means always that we take the ] of κ(t) with
respect to µ(t). This gives us a possibility to compute d

dtκ(t)] by differentating both sides in
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t = 0. We end up with the equation

σ1(κ](ξ), η) + µ
( d
dt
κ(t)]t=0(ξ), η

)
= σ2(ξ, η)

and this yields
d
dt
κ(t)]t=0 = σ]2 − σ

]
1κ
]

(where all ] are taken with respect to µ). And therefore we obtain

d
dt

tr (κ]) = tr
( d
dt
κ(t)]

)
= tr (σ]2) − tr (σ]1κ

]) = 〈µ, σ2〉 − 〈κ, σ1〉 = 〈〈(−κ, µ), (σ1, σ2)〉〉,

so the gradient of the function (µ, κ) 7→ H2 = tr µ(κ)2 in (µ, κ) is given by

2H∇H(µ,κ) = 2H(−κ, µ).

The last function is given by (µ, κ) 7→ |κ|2 = tr ((κ])2). Thus

d
dt

(κ(t)])2
t=0 = κ]

d
dt
κ(t)]t=0 +

d
dt
κ(t)]t=0κ

]

= κ]σ]2 − κ
]σ]1κ

] + σ]2κ
]
− σ]1κ

]κ]

and taking the trace yields

d
dt

tr ((κ(t)])2)t=0 = 2tr (κ]σ]2) − 2tr ((κ])2σ]1)

= 2〈κ, σ2〉 − 2〈(κ])2, σ1〉

and we conclude
∇|κ2
|(µ,κ) = 2(−(κ])2, κ).

So finally the gradient of F is given by

∇F(µ,κ) = (−Ric (µ) − 2Hκ + 2(κ])2, 2Hµ − 2κ)

which vanishes exactly at the points (µ, 0) where µ is a Ricci-flat metric, since the last row
implies κ = 0 which implies Ric (µ) = 0 from the first row. �

Remark 3.7. Proposition 3.6 shows that under the conditions there, the set (µ, κ) ∈ P
such that R(µ) + H2

− |κ|2 + 2Λ = 0 is a closed embedded hypersurface. We denote the
set V := F−1(0) where the V stands for variety. Now let us discuss the assumptions of
Proposition 3.6.
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(a) If a geometry (M,G) admits a Ricci–flat metric µ then since M is 3–dimensional the
sectional curvature of (M, µ) is fully determined by its Ricci–tensor and therefore µ
has constant sectional curvature equal to zero. This implies that M = R3 and µ is the
standard euclidean metric on R3 which forces G to be a subgroup of E0(3) (since by
Proposition 1.7 G has to be a closed subgroup of I(M, µ) = E(3)).

(b) For class A geometries (Definition 2.34) the divergence of homogeneous vector fields
is always zero, see Proposition 2.33. Thus under the assumption that (M,G) is a class
A geometry and Λ , 0 or Λ = 0, but without a homogeneous Ricci–flat metric the set
V is a smooth embedded manifold. In those cases the vector field X lies tangential,
since

dF(µ,κ)(X(µ,κ)) = 2〈Ric (µ), κ〉 + 4H|κ|2 − 4〈(κ])2, κ〉 + 2HR(µ) + 6HΛ + 2H3

− 4H|κ|2 − 2〈κ,Ric (µ)〉 − 2HΛ − 2H|κ|2 + 4〈(κ])2, κ〉

= 2H(R(µ) + H2
− |κ|2 + 2Λ) = 2H · F(µ, κ)

hence for (µ, κ) ∈ V X is tangential to V. Moreover this means that for any geometry
the integral curve ofXwith starting point (µ, κ) ∈ V stays in V, i.e. the flow preserves
the condition V . However, we will show in Proposition 3.8 that the conditions F = 0
and divµκ = 0 are preserved by using the contracted second Bianchi identity.

Proposition 3.8 (Lemma 2.4 in [EW00]). Let (M,G) be a geometry and (µ(t), κ(t))t∈I an integral
curve of XΛ such that (µ0, κ0) := (µ(0), κ(0)) ∈ V and divµ0κ0 = 0, then (µ(t), κ(t)) ∈ V and
divµ(t)κ(t) = 0 for all t ∈ I.

Proof. Set L := I ×M and h := −dt2 + µ(t) and choose a point (t0,m0) ∈ L. Let us fix some
notations
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∇ the Levi–Civita connection of (L, h)
∇

t the Levi–Civita connection of (M, µ(t))
S scalar curvature of h
Ric the Ricci–curvature of (L, h)
Ric (t) the Ricci curvature of (M, µ(t))
X a vector field on M
X̂ the spatial lift of X, i.e. X(t,m) = Xm

T the vector field ∂t on L
e0 T(t0,m0)

β a background metric on M
v(t) defined as

√
detµ(t), where the determinant is with respect ot β

(e1, e2, e3) an orthonormal base in TMm0 with respect to µ(t0)
Ei local parallel continuations of ei on M with respect to µ(t0)

and we may not distinguish between vectorsξ ∈ TMm0 andξ ∈ TL(t0,m0). Clearly (e0, e1, e2, e3)
is an orthonormal base of (L, h) in the point (t0,m0). Moreover note that S is constant along
t0 ×M, since G acts isometrically on L and transitive on M. Thus the contracted Bianchi
identity divRic = 1

2 dS yields for ξ := X̂(t0,m0) (where X is a local parallel continuation of
ξ ∈ TMm0 with respect to µ(t0))

0 = divRic (ξ) = −(∇e0Ric )(e0, ξ) +

3∑
i=1

(∇eiRic )(ei, ξ)

(mind the minus sign due to the Lorentzian signature of h). Further we see

(∇e0Ric )(e0, ξ) = e0(Ric (T, X̂)) − Ric (∇e0T, ξ) − Ric (e0,∇e0X̂)

= e0(Ric (T, X̂)) + Ric (e0, κ(t0)](ξ))

since ∇e0T = 0 and [X̂,T] = 0 as well as ∇ξT = −κ(t0)](ξ). For i = 1, 2, 3 we obtain

(∇eiRic )(ei, ξ) = ei(Ric (Êi, X̂)) − Ric (∇eiÊi, ξ) − Ric (ei,∇eiX̂)

and we recall

Ric (ei, e j) = Ric (t)(ei, e j) − κ̇(t)(ei, e j) + H(t)κ(t)(ei, e j) − 2(κ(t)])2(ei, e j),

see e.g. Fact 9.3 of [Zeg11]. Since (µ(t), κ(t)) is an integral curve of XΛ we obtain

Ric (ei, e j) = −Λµ(t0)(ei, e j).
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which implies
ei(Ric (Êi, X̂)) = −Λei(µ(t0)(Ei,X)) = 0.

Furthermore we have ∇eiÊi = ∇̂t0
ei

Ei − κ(t0)(ei, ei)e0 = −κ(t0)(ei, ei)e0. All this implies

3∑
i=1

(∇eiRic )(ei, ξ) = H(t0)Ric (e0, ξ) + Ric (κ(t0)](ξ), e0).

From the contracted second Bianchi identity we therefore get

∂t(Ric (T, X̂)) = e0(Ric (T, X̂)) = H(t0)Ric (e0, ξ).

Moreover note

d
dt

v(t) =
1

2
√

detµ(t)

d
dt

det(µ(t)) =
1

2
√

detµ(t)
tr µ(t)(−2κ(t)) det(µ(t)) = −H(t)v(t)

and if we sum up we obtain

∂t(v · Ric (T, X̂)) = −HvRic (T, X̂) + v∂t(Ric (T, X̂)) = 0

but since Ric (e0, ξ) = divµ(t0)κ(t0)(ξ) and Ric (T(0,m0), X̂(0,m0)) = divµ(0)κ(0)(X̂(0,m0)) = 0 we
have Ric (T, X̂) ≡ 0 which implies divµ(t)κ(t) = 0 for all t ∈ I.

Since S = tr hRic = −Ric (T,T) − 3Λ we obtain dS(e0) = −(∇e0Ric )(e0, e0) and using the
contracted Bianchi identity again as well as Ric (T, X̂) = divκ(X) = 0 we end up with

1
2

(∇e0Ric )(e0, e0) =

3∑
i=1

(∇eiRic )(ei, e0) = −

3∑
i=1

(
Ric (∇eiÊi, e0) + Ric (ei,∇eiT)

)
=

3∑
i=1

(
κ(t0)(ei, ei)Ric (e0, e0) + Ric (ei, κ(t0)](ei)

)
=

3∑
i=1

(
κ(t0)(ei, ei)Ric (e0, e0) −Λµ(t0)(κ(t0)](ei), ei)

)
= H(t0)Ric (e0, e0) −ΛH(t0)

= H(t0)(Ric (e0, e0) −Λ)

hence

∂t((Ric (T,T) −Λ)v2) = T(Ric (T,T))v2
− 2(Ric (T,T) −Λ)Hv2

= 2H(Ric (T,T) −Λ)v2
− 2H(Ric (T,T) −Λ)v2

= 0
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and we conclude (Ric (T,T) − Λ)v2 is constant in t. On the other hand we have from the
Gauss equation

S + 2Ric (T,T) = R + H2
− |κ|2

and this combines to
Ric (T,T) −Λ = R + H2

− |κ|2 + 2Λ

hence R + H2
− |κ|2 + 2Λ = 0 for all t ∈ I since it is zero at t = 0. �

Thus the homogeneous cosmological model (M,G, µ) is determined by the data (M,G, µ(0), µ̇(0)).
Vice versa every (M,G, µ0, κ0) with divµ0κ0 = 0 and (µ0, κ0) ∈ V induce clearly a homoge-
neous model in the following way.

Definition 3.9. Let (M,G) be a Riemannian homogeneous space and ∆(M,G) := ∆ :=
{(µ, κ) ∈ P : divµκ = 0}. If (µ, κ) ∈ V ∩∆ then we call (M,G, µ, κ) an initial data set. To every
initial data set we assign a homogeneous cosmological model with cosmological constant
Λ by the following construction: let (µ(t), κ(t)) be the maximal integral curve of XΛ and
using Proposition 3.4 we see that (M,G, µ(t)) is a homogeneous cosmological model.

The Einstein flow

Let Φ : Ω → V ∩ ∆ be the Einstein flow of XΛ where Ω :=⊂ R × (V ∩ ∆) and we will often
denote Φ(t, (µ, κ)) by Φt(µ, κ). We write I(µ, κ) = (t−, t+) for the maximal interval of the
integral curve of X through (µ, κ) and I+(µ, κ) := [0, t+) as well as I−(µ, κ) := (t−, 0].

Proposition 3.10. Suppose (µ, κ) ∈ ∆∩V for a Λ ∈ R and let (µ(t), κ(t)) the integral curve of the
Einstein vector field through (µ, κ). If H(t) := tr µ(t)κ(t) and

sup
t∈I+(µ,κ)

H(t) < ∞

then t+ = ∞.

Proof. We are following the arguments in [Ren94]. Suppose t+ < ∞ and fix a background
metric β on TMm0 . First we compute the evolution equation for H(t) = tr µ(t)κ(t) and there
we obtain

d
dt

tr µ(t)κ(t) =
d
dt

tr (κ(t)]) = tr
( d
dt
κ(t)]

)
and from the proof of Proposition 3.6 we get

d
dt
κ(t)] = κ̇(t)] + 2(κ(t)])2
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hence

Ḣ(t) = tr µ(t)κ̇(t) + 2|κ(t)|2 = R(t) + 3Λ + H(t)2
− 2|κ(t)|2 + 2|κ(t)|2 = R(t) + 3Λ + H(t)2

and since (µ(t), κ(t)) ∈ V we end up with

Ḣ(t) = |κ(t)|2 + Λ. (3.1)

Furthermore we conclude

H(t) = H(0) + tΛ +

∫ t

0
|κ(s)|2ds

and since t+ as well as sup H < ∞ is finite we conclude

C0 := sup
t∈I+(µ,κ)

∫ t

0
|κ(s)|2ds < ∞.

Let d be the Riemannian distance of the symmetric space S+(TMm0) endowed with the
complete (Proposition 1.16) tautological Riemannian metric from Remark 1.74. Using the
Cauchy–Schwarz inequality we obtain

d(µ, µ(t)) ≤
∫ t

0

√
〈µ̇(s), µ̇(s)〉µ(s)ds = t

∫ t

0
|µ̇(s)|2ds

= 4t
∫ t

0
|κ(s)|2ds ≤ C1 < ∞

since t+ is finite. Thus the curve µ(t) stays in a bounded and closed and therefore compact
subset of S+(TMm0).

Moreover we have µ(t), κ(t) ∈ Sym(TMm0) thus we can integrate the curves component
wise (in any basis). This yields

µ(t) = µ(0) − 2
∫ t

0
κ(s)ds.

We use the norm | · |∞ of Remark 1.76 such that we obtain

|µ(t)|∞ ≤ |µ|∞ + 2
∫ t

0
|κ(s)|∞ds

(note that |µ(t)|∞ is continuous in t) and again with Remark 1.76

|µ(t)|∞ ≤ |µ|∞ + 2
∫ t

0
|κ(s)|µ(s)|µ(s)|∞ds.
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Applying Gronwall’s Lemma yields

|µ(t)|∞ ≤ |µ|∞ exp
(
2
∫ t

0
|κ(s)|µ(s)ds

)
≤ C2 < ∞

for all t ∈ [0, t+), which implies that all eigenvalues of µ(t) are uniformly bounded from
above. On the other hand if v(t)2 = detβ(µ(t)) and λ1(t) ≤ λ2(t) ≤ λ3(t) are the eigenvalues
of µ(t) then from Proposition 3.8 we have

v(t) = v(0) exp
(
−

∫ t

0
H(s)ds

)
≥ C4 > 0

since H is bounded from above. Thereforeλ1λ2λ3 ≥ C4 > 0 for all t ∈ [0, t+) and we combine
this to

1
λ1
≤

1
C4
λ2λ3 ≤

1
C4
λ2

3 ≤
C2

2

C4
< ∞

for all t ∈ [0, t+). We use this to show that R(t) is bounded from above: from Lemma 1.26 we
have R(t) ≤ −1

2 tr µ(t)B where B is the Killing–Cartan–form of G restricted to a complement
of the isotropy group and pulled over to TMm0 . If (e1, e2, e3) is an β–orthonormal basis such
that µ(t)](ei) = λi(t)ei where µ(t)] is taken with respect to β then

|tr µ(t)B| =

∣∣∣∣∣∣∣
3∑

i=1

β(B](µ(t)])−1(ei), ei)

∣∣∣∣∣∣∣ ≤ 1
λ1(t)

3∑
i=1

|B(ei, ei)| ≤ C|B|∞

hence R(t) is bounded from above. The equation R + H2
− |κ|2 + 2Λ = 0 implies then that

|κ(t)|2 is bounded uniformly and finally this yields

|κ(t)|∞ ≤ |κ(t)| · |µ(t)|∞ < ∞.

Hence the solution (µ(t), κ(t)) of X stays in a compact set of P which contradicts the
assumption t+ < ∞. �

Rotationally symmetric cosmological models

Now we would like to study the Einstein flow for rotational symmetric geometries of
class A. The reason to choose class A models is that the space of G–invariant metrics
is two dimensional, as we will show next, and this makes the analysis of the Einstein
flow a lot easier. Remember from Proposition 2.33 that a homogeneous vector field X is
divergence free with respect to any G–invariant metric and therefore it is a Killing field (for
any homogeneous metric), see Proposition 2.13. Moreover Proposition 2.10 tells us that a
rotational symmetric geometry (M,G) induces a principal fiber bundle π : M→ B with fiber
R or SO(2) over a surface B. The fibers are given by the integral curves of a homogeneous
vector field. Let ω be the connection 1-form of Remark 2.14.
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Proposition 3.11. Let (M,G) be a class A geometry and µ a G–invariant metric on (M,G). Then
there is a metric µB on B of constant curvature and there is a G–invariant 1–form α on M such that

µ = α ⊗ α + π∗(µB).

In particular π : (M, µ)→ (B, µB) is a Riemannian submersion.

Proof. Let X be a homogeneous Killing field with µ(X,X) = 1. Thus the flow is a one–
parameter curve of isometries lying in G. This allows us to define µB on B as follows: if
b ∈ B then for all m ∈ π−1(b) we have that Φm := Dπm : Hm → TBb is an isomorphism. For
η1, η2 ∈ TBb define then

(µB)b(η1, η2) := µm(Φ−1
m (η1),Φ−1

m (η2))

for an m ∈ π−1(b). Since any points of the fiber over b can be connected by the flow of X
which are isometries we see that the definition above is well–defined. Recalling Proposition
2.22 the group G acts transitive on B as well since elements of G commute with the flow
of X, i.e. g.b := π(g.m) for an m ∈ π−1(b). Then µB is invariant under G since for g ∈ G,
m ∈ π−1(b), η1, η2 ∈ TBb we compute

g∗(µB)b(η1, η2) = µg.m(Φ−1
g.m(g.η1),Φ−1

g.m(g.η2)) = µg.m(g.Φ−1
m (η1), g.Φ−1

m (η2))

= µm(Φ−1
m (η1),Φ−1

m (η2)) = (µB)b(η1, η2)

and we conclude that µB has constant curvature. Since TMm = Dm ⊕ Hm and Hm is
orthogonal to Dm (see Proposition 1.44) we have µ(ξ, ζ) = 0 if ζ ∈ Hm and ξ ∈ Dm. For
all ζ1, ζ2 ∈ Hm we have obviously µm(ζ1, ζ2) = π∗(µB)m(ζ1, ζ2). Then λ := ω(X) , 0 and we
have

µ(X,X) = 1 =
1
λ2ω ⊗ ω(X,X)

and therefore we set α := 1
λω. Finally µ(Xm, ζ) = 0 = α ⊗ α(X, ζ) + π∗(µB)(Xm, ζ) for all

ζ ∈ Hm. �

The Riemannian submersion of Proposition 3.11 will help us to compute the Ricci cur-
vature of (M,G) equipped with a G–invariant metric. We will not use Lemma 1.26 since
we would need a good knowledge of G. Of course we know all possible groups G and we
could compute the curvature case by case but we would like to keep things as general as
possible. On the contrary using the form of the metric in Proposition 3.11 and the fact that
π is a Riemannian submersion onto a surface of constant curvature, the Ricci curvature is
fully determined by the curvature of the surface and the curvature of the principal bundle
π : M→ B. Since µB has constant curvature there is a c ∈ R such that Ric (µB) = cµB.
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Remark 3.12. Especially the metric βc := ω⊗ω+π∗(µB) is G–invariant where µB is a metric
of constant curvature such that Ric (µB) = c · µB on B. We see that the fundamental vector
field X with ω(X) = 1 has length 1 in this metric.

Remark 3.13. The curvature formulae for Riemannian submersions may be found origi-
nally in [O’N66] and summarized in [Bes08, Ch. 9]. We will use the notation of the latter
book. Let µ = α2 + π∗(µB) be a G–invariant metric like in Proposition 3.11 and let X be a
homogeneous vector field with ω(X) = 1. We recall the definitions of the tensors A and T:
For a vector field W on the principal bundle π : M → B with connection H we denote by
WV and by WH the vertical and the horizontal component of W respectively. Then we have

AW1W2 := (∇WH
1

WV
2 )H + (∇WH

1
WH

2 )V

and

TW1W2 := (∇WV
1

WV
2 )H + (∇WV

1
WH

2 )V.

For all vector fields W and horizontal fields Z we see TZW = 0. Since the fibers are geodesics
we have TXX = 0. And if Z is horizontal we obtain TXZ = 0 as we can see if we use again
that the fibers are geodesics:

µ(TXZ,X) = µ(∇XZ,X) = −µ(Z,∇XX) = 0.

And since T is a tensor we conclude T = 0. From Proposition 9.24 of [Bes08, p. 240] we
obtain for horizontal vector fields Z1 and Z2 that 2(AZ1Z2) is the vertical component of
[Z1,Z2]. Furthermore observe ω(Y)|X|2 = µ(X,Y) for all vector fields Y on TM since the
decomposition TM = D⊕H is orthogonal. But with this we compute

µ(AZ1Z2,X) = 1
2µ(X, [Z1,Z2]) = 1

2 |X|
2ω([Z1,Z2]) = − 1

2 |X|
2dω(Z1,Z2)

hence

AZ1Z2 = −1
2 dω(Z1,Z2)X.

Since the fiber group is abelian, the two–form dω is the curvature of the bundle. Let
e1, e2 ∈ Hm0 ⊂ TMm0 be such that they are orthonormal with respect to µ and δµ :=
δ := |dω|µ =

√
dω(e1, e2)2 (observe that δ depends on the metric). Set e0 := Xm0/|X| and

complement it with e1, e2 to an orthonormal base (e0, e1, e2) of TMm0 .
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Proposition 3.14. Let µ = α2 + π∗(µB) be a G–invariant metric on (M,G) with Ric (µB) = c · µB

on B and X a homogeneous vector field such that ω(X) = 1. With the notations of Remark 3.13 the
Ricci curvature Ric of µ is given by

Ric (Xm0 ,Xm0) = 1
2δ

2
|X|4

Ric (Xm0 , ζ) = 0

Ric (ζ1, ζ2) =

(
c −

δ2

2
|X|2

)
µB(ζ1, ζ2)

for ζ, ζ1, ζ2 ∈ Hm0 and we identify ζ ∈ Hm0 with Dπ(ζ) ∈ TBπ(m0). In particular the scalar
curvature of µ is given as

R = R(µ) = 2c −
δ2
|X|2

2
.

Proof. Set ξ := Xm0 . From Proposition 9.36 in [Bes08, p.244] we obtain

Ric (ξ, ξ) = |Ae1ξ|
2 + |Ae2ξ|

2.

If E1 and E2 are horizontal continuations of e1 and e2 respectively then we have for i, j = 1, 2

µ(Aeie j, ξ) = µ(∇eiE j, ξ) = −µ(e j,∇eiX) = −µ(e j,Aeiξ),

using Remark 3.13 we end up with

Ae1ξ =
δ|ξ|2

2
e2 and Ae2ξ = −

δ|ξ|2

2
e1

thus Ric (ξ, ξ) = 1
2δ

2
|ξ|4. By the formula of Ric (e0, e j) in [Bes08] we see those terms are zero.

For the last term we have

Ric (ei, e j) = c · δi j −
2
|ξ|2

µ(Aeiξ,Ae jξ) =

(
c −

δ2

2
|ξ|2

)
δi j.

This shows the statement for the Ricci curvature. Further we have

R(µ) = Ric (e0, e0) + Ric (e1, e1) + Ric (e2, e2) =
δ2
|ξ|2

2
+ 2

(
c −

δ2
|X|2

2

)
= 2c −

δ2
|ξ|2

2
.

�

Remark 3.15. We see from Proposition 3.14 that the only rotational symmetric geometry
which admit an Einstein metric is (R2

× R,E0(2) × R) or (S3,U(2)). If δ = 0 then it follows
from the horizontal directions c = 0 and (M,G) has to be (R2

×R,E0(2)×R). If δ , 0 then we
conclude c = δ2

|X|2 > 0 which means that the principal bundle is not flat and the base space
has to admit a metric with constant positive curvature, i.e. B = S2 and therefore (M,G) has
to be (S3,U(2)).
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Fix now a background metric β := ω2 + π∗(βB) for every rotational symmetric geometry.
Clearly we cannot use the same β for all geometries since µB depends on the base space B.
Note that β(X,X) = 1.

Remark 3.16. The isotropy group K of (M,G) is isomorphic to SO(2) and acts on V = TMm0

linear. Recalling Example 1.77 we see that S+
K is two dimensional. We will now identify

S
+
K with R>0 ×R>0 like in Example 1.77 with respect to the background metric β. Thus for

every G–invariant metric µ there are x, y > 0 such that

µ = xω2 + yπ∗(βB).

Furthermore the tangent space in every point of S+
K(V) is canonically given by SymK(V)

and we identify it with R2 as follows: If κ ∈ SymK(V) then there are w, z ∈ R such that

κ = wω2 + zπ∗(βB).

From now on we fix δ0 := |dω|β and c0 ∈ R is such that Ric (βB) = c0 · βB.

Proposition 3.17. If µ = xω2 + yπ∗(βB) then with the above identification Ric (µ) is given by
wω2 + zπ∗(βB) where

w = δ2
0

x2

2y2

z = c0 −
δ2

0x
2y

and the scalar curvature can be expressed by

R =
2c
y
−
δ2

0x

2y2 .

Proof. First let us transform the constants δ and c to δ0 and c0. If (e1, e2) is a basis ofHm0 with
respect to π∗(βB) then (

√
y−1e1,

√
y−1e2) is an orthonormal basis of Hm0 with respect to µ,

thus δ2 = y−2δ2
0. Further Ric (yβB) = Ric (βB) = c0y−1(yβB) thus c = coy−1. Using Proposition

3.14 we see w = δ2
0

x2

2y2 and

Ric (ei, e j) =

c0

y
−
δ2

0x

2y2

 yδi j

hence z = c0 −
δ2

0x
2y . �
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Proposition 3.18. If κ is a G–invariant symmetric bilinear form on a rotational symmetric geom-
etry of class A then for every G-invariant metric µ we have divµκ = 0.

Proof. In m0 there are w, z ∈ R such that κ = wω2 + zπ∗(βB) and since both sides are G–
invariant this equation holds globally on M. Let e0 := Xm0 and let e1, e2 be on orthonormal
basis of Hm0 with respect to π∗(βB) such that (e0, e1, e2) is an orthonormal basis of TMm0

for β. Suppose furthermore µ = xω2 + yπ∗(βB) for x, y > 0. Let E1 and E2 be horizontal
extensions of e1 and e2 respectively. The 1–form divκ is fully determined by divκ(e0) since
it is G–invariant. We obtain

divκ(e0) =
1
x

(∇e0κ)(e0, e0) +
1
y

2∑
i=1

(∇eiκ)(ei, e0).

Further we have
(∇e0κ)(e0, e0) = e0(κ(X,X)) − 2κ(∇e0X, e0) = 0

and for i = 1, 2

(∇eiκ)(ei, e0) = ei(κ(Ei,X)) − κ(∇eiEi, e0) − κ(ei,∇eiX) = 0

since κ(Ei,X) = 0, κ(∇eiEi, e0) = wβ(Aeiei, e0) = 0 and κ(ei,∇eiX) = zβ(ei,Aeie0) = 0 �

Theorem 3.19. Let (M,G) be a rotational symmetric geometry of class A. The dynamical system
on P induced from X is equivalent to the dynamical system on R>0 ×R>0 ×R ×R defined by the
vector field

X(x, y,w, z) =


−2w
−2z

δ2
0

x2

2y2 + Λx − w2

x + 2 zw
y

c0 − δ2
0

x
2y + Λy + zw

x


and V ∩ ∆ is given as the zero set

2cxy − 1
2δ

2
0x2 + 2z2x + 4ywz + 2Λxy2 = 0.

Proof. Let µ] and κ] be the self–adjoint endomorphism of µ with respect to β, then H =

tr µκ = tr β((µ])−1κ]). Suppose µ = xω2 + yπ∗(βB) and κ = wω2 + zπ∗(βB), then H = w
x + 2 z

y

and the bilinear form (κ])2 is given as w2

x ω
2 + z2

y π
∗(βB). Further we have |κ|2 = w2

x2 + 2 z2

y2 and
by Proposition 3.18 ∆ is the whole space P = S+

K(TMm0) × SymK(TMm0). Plugging all this
together gives the formulae stated in the theorem. �
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Remark 3.20. As a next step we would like to study the dynamics of a specific geometry
and for that we choose the geometry (S3,U(2)). We regard of course S3

⊂ C2 as the set of
unit vectors with respect to the hermitian inner product. Consider the real inner product
(z1, z2) · (w1,w2) = Re(z1w1 +z2w2) which is the standard real euclidean product onC2 = R4.
Surely S3 = {(z1, z2) ∈ C2 : (z1, z2) · (z1, z2) = 1} and the induced Riemannian metric on the
sphere ist the round one with curvature equal to 1 which we will denote by β. Moreover
the sectional curvature of β is constant and equal to one, which implies Ric (β) = 2β. Clearly
β is invariant under U(2) since it is invariant under SO(4) and the S1–principal bundle
π : S3

→ S2 is given by the action of center H = U(1) = {z · E2 : z ∈ S1
}, thus it is the

Hopf–fibration. A homogeneous vector field is the fundamental vector field of 1 ∈ S1 by
the action H on S3 is given as by X(z1,z2) = i(z1, z2) ∈ TS3

(z1,z2). Thus its length with respect
to β is |z1|

2 + |z2|
2 = 1. This data is sufficient to determine the curvature of the connection

induced the isotropy group: apparently the 1–form ω(ξ) := β(X(z1,z2), ξ) where ξ ∈ TS3
(z1,z2)

is U(2)–invariant such that ω(X) = 1 and with Proposition 3.14 and the fact that Ric (β) = 2β
we see δ2

0 = 4 and therefore c0 = 4.

Corollary 3.21. The Einstein vector field of (S3,U(2)) on R>0 ×R>0 ×R ×R is given by

X(x, y,w, z) =


−2w
−2z

2 x2

y2 + Λx − w2

x + 2 zw
y

4 − 2 x
y + Λy + zw

x


and V is the zero set

8xy − 2x2 + 2z2x + 4ywz + 2Λxy2 = 0.

Remark 3.22. We choose Λ = −3 since then we have the feature that (1, 1, 0, 0) ∈ V which
represents the pair (β, 0) ∈ P. If Ric (β) = 2β then R = 6 hence for (β, 0) we have R+H2

−|κ|2−

6 = 0. This gives the possibility to construct a special solution: suppose µ(t) = f 2(t)β for a
smooth positive function f on an interval I then κ = − ˙f fβ. Then we obtain the condition

8 f 4
− 2 f 4 + 2 ˙f 2 f 4 + 4 ˙f 2 f 4

− 6 f 6 = 0

since x = y = f 2 and w = z = − ˙f f . This simplifies to ( ˙f )2 = f 2
− 1 since f > 0. We consider

now the ordinary differential equation

˙f =

√
f 2 − 1
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such that f (1) = 1. The constant function f = 1 and the function f (t) = cosh(t) where I = R

are solutions of the ODE with f (1) = 1 (observe that x 7→
√

x2 − 1 is not Lipschitz at x = 1
and therefore there is no uniqueness).

For Λ = −3 the constant curve (β, 0) is not an integral curve of X. But the curve
(cosh2(t)β,− 1

2 sinh(2t)β) is an integral curve of X. We denote the image of that curve
by A since the set will be a good candidate for an attractor for the dynamical system of
X. We remark finally that the solution µ(t) = cosh2(t) · β is known as the De–Sitter solution.
This is also the solution to the dynamical system of XΛ on the geometry (S3,SO(4)) with
Λ < 0. Also note that the value of Λ can be choose freely as long as the scalar is negative.
By rescaling the metrics one may obtain solutions for all Λ ∈ R with Λ < 0.

Definition 3.23. Let L : V → R be the function L(µ, κ) := v
2
3

(
2
3 H2
− 6

)
where v :=

√
detβ µ

and H := tr µκ. We will show that L is a Lyapunov function for X on a certain subset of V.

Proposition 3.24. If (µ(t), κ(t)) is an integral curve of X on V then

d
dt

L(µ(t), κ(t)) = 2
3 v

2
3 H(t)|κ̊(t)|2

where κ̊(t) is the trace free part of κ(t) with respect to µ(t).

Proof. We know v̇ = −Hv and Ḣ = |κ|2 − 3, see the proofs of Proposition 3.8 and 3.10
respectively. So we compute

d
dt

L = 2
3 v−

1
3 v̇

(
2
3 H2
− 6

)
+ v

2
3
(

4
3 HḢ

)
= 2

3 v
2
3 H

(
−

2
3

H2 + 6
)

+ 2
3 v

2
3 H

(
2|κ|2 − 6

)
= 4

3 v
2
3 H

(
|κ|2 −

1
3

H2
)

= 4
3 v

2
3 H|κ̊|2

�

We will show in the next lines that under certain circumstances if H(0) < 0 then H(t) < 0
for all t ∈ I+ and in that case Proposition 3.24 shows that L is a Lyapunov function.
Furthermore the set A represents the absolute minima of the function L. To show these
facts we start with a proposition about the scalar curvature.
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Proposition 3.25. In the case of (S3,U(2)) the scalar curvature can be estimated by

R(µ) ≤
6

3
√

v(µ)2

where v(µ) =
√

detβ µ.

Proof. We use the identification S+
K(V) with N := R>0 × R>0 thus we have R(x, y) = 8

y −
2x
y2

and the volume element is given as v(x, y) =
√

xy2. For c0 > 0 the equation v(x, y) = c0

defines a smooth one–dimensional submanifold S of N and we will prove that R has a
maximum along v(x, y) = c0. On S we have

R(x, y) = R
(
x,

c0
√

x

)
= R(x) =

8
c0

√
x −

2
c2

0

x2

and the first derivative is

R′(x) =
4
c2

0

(
c0
√

x
− x

)
and therefore x0 = c

2
3
0 is the only zero of R′. The second derivative is

R′′(x) = −4

 1

2c0x
3
2

+
1
c2

0

 < 0

and this implies x0 is a maximum. Thus the point
(
c

2
3
0 , c

2
3
0

)
∈ S is the maximum of R along

S, which represents the round metric on S3 of volume c0. Hence for all (x, y) ∈ S we have

R(x, y) ≤ R(x0, y0) =
6

c
2
3
0

�

Proposition 3.26. If (µ0, κ0) ∈ V such that v0 =
√

detβ µ0 ≥ 1 and H0 := tr µ0κ0 < 0, then
if (µ(t), κ(t)) is the integral curve of X starting at (µ0, κ0) then H(t) = tr µ(t)κ(t) < 0 for all
t ∈ I+(µ0, κ0). Therefore t+ = ∞.

Proof. In this proof we are following the ideas in [Wal83]. Suppose there is a smallest
t0 ∈ I+(µ0, κ0) such that H(t0) = 0 (otherwise we are done). Then at that point we have
0 = |κ|2 + 6 − R since the solution lies on V and with Proposition 3.25 we obtain

0 ≥ |κ|2 + 6
(
1 −

1
3√

v2

)
≥ 6

(
1 −

1
3√

v2

)
.
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Further we saw in the proof of Proposition 3.10 that v(t) = v0 exp
(
−

∫ t
0 H(s)ds

)
and by

assumption we have H(t) < 0 for all 0 ≤ t < t0 which implies v(t0) > v0. Finally this leads to

0 ≥ 6
(
1 −

1
3√

v2

)
> 6

1 −
1

3
√

v2
0

 ≥ 0

and that is a contradiction to H(t0) = 0. Proposition 3.10 tells us that t+ = ∞. �

Remark 3.27. With Proposition 3.25 L is bounded from below:

L = v
2
3
(

2
3 H2
− 6

)
= v

2
3
(
|κ̊|2 − R

)
≥ −v

2
3

6

v
2
3

≥ −6

and the minima are attained by elements of A. If (µ, κ) ∈ A then µ = cosh2(t)β and

κ = − cosh(t) sinh(t)β for t ∈ R which leads to v
2
3 = 3

√
detβ µ =

3
√

cosh6(t) = cosh2(t) and

H = −3
sinh(t) cosh(t)

cosh2(t)
= −3 tanh(t)

and therefore in (µ, κ) we have

L = cosh2(t)
(2
3

9 tanh2(t) − 6
)

= −6 cosh2(t)(1 − tanh2(t)) = −6 cosh2(t)
1

cosh2(t)
= −6.

It remains to show that if L(µ, κ) = −6 then (µ, κ) ∈ A. However observe that L is not
bounded from above.

Proposition 3.28. The critical points of L are contained inA.

Proof. Let Φ be defined as L but on the whole space P. Furthermore let ∇Φ be the gradient
of Φ with respect to the tautological metric on P, see after Proposition 3.4. We compute

∇Φ =
2
3

v−
1
3∇v

(2
3

H2
− 6

)
+

4
3

v
2
3 H∇H.

The derivative of the volume form v in µ in the direction of h is given as dvµ(h) = 1
2 vtr µh

and hence the function (µ, κ) 7→ v(µ) has in (µ, κ) ∈ R the gradient

∇v =
1
2

v
(
µ

0

)

97



Homogeneous Cosmological Models

since tr µ(h) = 〈µ, h〉µ. In Proposition 3.6 we saw

∇H =

(
−κ
µ

)
.

This yields

∇Φ =
2
3

v
2
3


(

1
3 H2
− 3

)
µ − 2Hκ

2Hµ

 .
On the other hand V is the zero set of F from Proposition 3.6 and there we computed

∇F =

(
−Ric − 2Hκ + 2(κ])2

2Hµ − 2κ

)
.

The critical points of Φ on V are given by those points (µ, κ) ∈ V such that there is a λ ∈ R
and

∇Φ = λ∇F.

Suppose first that H , 0 then from the second row we deduce(
1 −

2
3λ

v
2
3

)
Hµ = κ

and this implies λ = v
2
3 . If we put this into the first row we obtain

Ric = 2
(
1 −

1
9

H2
)
µ,

thus µ and κ have to be a multiple of β. Thus suppose µ = f 2β and κ = hβ and since
(µ, κ) ∈ V we obtain

f 2(1 − f 2) + h2 = 0.

First this shows that f ≥ 1 since otherwise 1 > f 2 > 0, h2 > 0 (since H , 0) as well
as (1 − f 2) > 0 therefore h = 0 which is a contradiction. Now there is a t ∈ R such
that f = cosh(t) and this yields f 2(1 − f 2) = − cosh2(t) sinh2(t) so h = ± sinh(t) cosh(t).
If h = − cosh(t) sinh(t) we are done otherwise go from t to −t since cosh is a symmetric
function and thus (µ, κ) ∈ A.

If H = 0 then we see from above κ = 0 and

Ric = 2µ

Therefore µ is an Einstein metric with sectional curvature 1 hence µ = β. So (β, 0) ∈ A for
t = 0. �
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Remark 3.29. If (µ, κ) ∈ L−1(−6) then (µ, κ) is a minimum of L and therefore a critical point.
Hence (µ, κ) ∈ A.

Moreover with Proposition 3.24 we see that L(µ(t), κ(t))→ infs∈I(µ,κ) L(µ(s), κ(s)) ≥ −6 for
t → ∞ if v(µ) ≥ 1 and tr µκ < 0. It seems therefore reasonable to conjecture that A is (at
least locally) an attractor.
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A
Miscellaneous Topics

I n this appendix, we want to provide some lemmas which are helpfull to prove some
statements in the sections of the preceeding chapters.

Homogeneous vector fields

Definition A.1. Let e1, . . . , ed be the canonical basis for Rd. We say a curve γ : [0, 1] → Rd

is an edge path if γ(0) = 0 and the following holds

(a) there are closed intervalls I j = [t−j , t
+
j ] ⊂ [0, 1] ( j = 1, . . . , l, t−j < t+

j ) with t−1 = 0, t+
j = t−j+1

( j = 1, . . . , l − 1) and t+
l = 1 (hence [0, 1] is the union of all I j).

(b) for every j there is a k j ∈ {1, . . . , d} such that γ | I j is given by t 7→ γ(t−j ) + (t − t−j )ek j for
t ∈ I j.

Obviously every point in an open connected neighboorhood of 0 ∈ Rd can be connected
with 0 by an edge path, since the set of such points is open and closed.

Now let S be a d–dimensional connected smooth manifold and let X1, . . .Xk be vector
fields on S. Ifϕ j denotes the local flow of X j and s0 ∈ S then there is an open neighboorhood
V of 0 ∈ Rk, such that the map

Φs0 : V →M, Φs0(t1, . . . , tk) := ϕt1
1 ◦ · · · ◦ ϕ

tk
k (s0)

is well–defined.

Definition A.2. Let S be a d–dimensional connected smooth manifold and X1, . . . ,Xk vector
fields on S. We say a curve α : [0, 1] → S is a basic broken integral path of X1, . . . ,Xk if α is
given as the image of a edge path γ under the map Φα(0), i.e. α = Φα(0) ◦ γ. Furthermore
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we call α a broken integral path of X1, . . . ,Xk if α is a concatenation of basic broken integral
paths of those vector fields.

Lemma A.3. Let S be a d–dimensional connected manifold with trivial tangent bundle TS. Suppose
X1, . . . ,Xd are trivializations of TS. Fix a point s0 ∈ S. Then every point in S can be joined by a
broken integral curve of X1, . . . ,Xd starting at s0.

Proof. Let Σ be the set of points of S which can be joined by a broken integral path of
X1, . . . ,Xd with s0. Of course Σ , ∅ and we show that Σ is clopen which concludes the
proof, since S is connected. For s ∈ Σ there is the map Φs : V → M described above where
V ⊂ Rd is a open neighboorhood of the origin. Moreover we have

∂Φs

∂t j
(0, . . . , 0) = X j(s)

hence the derivative DΦs(0, . . . , 0) is invertible, since the vector fields X1, . . . ,Xd trivialize
the tangent bundle and by the inverse function theorem there is a open neighboorhood
U ⊂ V of 0 ∈ Rd such that Φs : U → Φs(U) is a diffeomorphism. We can assume that U is
connected and hence every point in U can be connected to 0 by an edge path, which means
that we can connect s with every point in Φs(U) by an basic broken integral path. Hence we
have that the open set Φs(U) is contained in Σ and this proves that Σ is open. Otherwise if
s′ ∈ S\Σ then there is as well an open neighboorhood Φs′(U′) of s′with the same properties.
If Φs′(U′) ∩ Σ , ∅ we could connect s′ to s with a broken integral path. Therefore we have
that Σ is closed. �

Cohomology of Lie algebras

Suppose g is a Lie algebra over a field K and V a K–vector space. We say V is a g–module
if there is a homomorphism of Lie algebras θ : g→ gl(V) with gl(V) as the Lie algbra of the
invertible linear endomorphisms of V. As for groups we would like to write x.v for the
action θ(x, v) where x ∈ g and v ∈ V. Suppose henceforth that V is a g–module.

For k ∈ Z and k ≥ 0 define the vector spaces Ck := Hom(∧kg,M) and Ck = {0} for k < 0.
Moreover consider the linear maps δk : Ck

→ Ck+1 defined as

δk(α)(x0, . . . , xk) :=
k∑

i=0

(−1)ixi.α(. . . , x̂i, . . . ) +

k∑
i=0

i−1∑
j=0

(−1) j+iα([x j, xi], . . . , x̂ j, . . . , x̂i, . . . )

for k ≥ 0 and δk the zero map if k < 0 where x̂i means we omit the vector xi in the i− th entry.
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Lemma A.4. The pair (Ck, δk)k∈Z is a cochain complex.

The k–th cohomology Hk(g,V) of the Lie algebra g with values in the g–module V is the
k-th cohomology induced by the cochain complex (Ck, δk) of Lemma A.4.

As an example we would like to determine the meaning of the zeroth and first cohomol-
ogy group with values in the trivial g–module R. Clearly C0 = R and δ0 is the zero map as
well as δ−1, hence H0(g;R) = R. For α ∈ C1 = g∗ we have

(δ1α)(x, y) = −α
(
[x, y]

)
and thus α is a cocycle iff α

(
[x, y]

)
= 0 for all x, y ∈ g. Here H1(g;R) is just the set of cocycles

in C1 since δ0 is the trivial map. The map (g/[g, g])∗ → H1(g;R), α 7→ (x 7→ α([x]) where [x]
is the projection of x into g/[g, g] is well–defined and an isomorphism. And since (g/[g, g])∗

is natural isomorphic to g/[g, g] we have

H1(g;R) � g/[g, g].

Lie algebras

This section answers the purpose all around Lie algebras. Let g be a Lie algebra of arbitary
dimension over the reals. We denote by g′ the derived algebra of g, hence g′ := [g, g].

Lemma A.5. For every x ∈ g′ the adjoing map adx is tracefree. In particular every algebra with
g′ = g is unimodular.

Proof. If x ∈ g′ then they are y1, y2 ∈ g such that x = [y1, y2]. This leads to

adx = ad[y1,y2] = ady1ady2 − ady2ady1

where the right hand side is clearly tracefree. �

Let k and h be two Lie algebras and let Der(k) be the Lie algebra of Derivations of k, i.e.
for f ∈ Der(k) and k1, k2 ∈ kwe have

f [k1, k2] = [ f (k1), k2] + [k1, f (k2)].

If ρ : h→ Der(k) is a Lie algebra homomorphism then we may define the semidirect product
k oρ h of k and h with respect to ρ by the following: as a vector space k oρ h is given by k ⊕ h
where we regard k and h as vector spaces. The Lie bracket is defined by

[(k1, h1), (k2, h2)] :=
(
[k1, k2] + h1 · k2 − h2 · k1, [h1, h2]

)
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where k1, k2 ∈ k, h1, h2 ∈ h and where hi · k j = ρ(hi)(k j) (i, j ∈ {1, 2}). It is easy to see, that this
gives a Lie bracket on k⊕ h, and we define koρ h := (k⊕ h, [·, ·]). If K is simply connected then
let Φ : Aut(K) → Aut(k) denotes the natural isomorphism ϕ 7→ (Dϕ)e from Remark 1.50.
We obtain the

Lemma A.6. Suppose K and H are Lie groups, K simply connected and let r : H → Aut(K) be a
smooth homomorphism. Define G := Kor H and let g be its Lie algebra. Then g is isomophic to koρ h
where k, h are the Lie algebras of K, H respectively and ρ : h→ Der(k) is given as ρ := D(Φ ◦ r)e

Proof. Note that the Lie algebra of Aut(K) is Der(k): We have Aut(K) � Aut(k) via Φ

since K is simply connected and the Lie algebra of the latter one is Der(k). Therefore
ρ = D(Φ ◦ r)e : h → Der(k) since Φ ◦ r(e) = idk. Moreover g is k ⊕ h as a vector space since
K×H is the underlying manifold of G and if η1, η2 ∈ k, ξ1, ξ2 ∈ h then [(η1, 0), (η2, 0)] = [η1, η2]k
as well as [(0, ξ1), (0, ξ2)] = [ξ1, ξ2]h since K× e and e×H are subgroups of Kor H. It remains
to check the term [(η, 0), (0, ξ)]. Let (α(t), e) and (e, β(s)) be curves on G through (e, e) tangent
to (η, 0) ∈ g and (0, ξ) ∈ g respectively. Then

[(η, 0), (0, ξ)] = −
∂2

∂s∂t
(β(s), e)(α(t), 0)(β−1(s), 0)

in (s, t) = (0, 0). But
(β(s), e)(α(t), 0)(β−1(s), 0) = (rβ(s)(α(t)), e)

and taking the t–derivative in t = 0 yields

D(rβ(s))e(η) = (Φ ◦ r)(β(s))(η)

and finally taking the s–derivative in s = 0 gives us

[(η, 0), (0, ξ)] = −D(Φ ◦ r)e(ξ)(η) = −ρ(ξ)(η) = −ξ · η.

From the bilinearity of the bracket we obtain the formula above for a semidirect product
k oρ hwhere the identity map is an Lie algebra isomorphism between g and k oρ h. �

As for groups we obtain a splitting theorem for extensions of Lie algebras.

Lemma A.7. Suppose 0 → k → g π
→ h → 0 is short exact sequence of Lie algebras and let

σ : h → g be a splitting map, i.e. it is a Lie homomorphism such that π ◦ σ = idh. Then the map
ρ : h → Der(k), ρ(X)(Y) := [σ(X),Y] is well–defined and a Lie algebra homomorphism and g is
isomorphic to k oρ h.
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Proof. First we prove that ρ is well–defined, i.e. ρ(X) ∈ Der(k) for all X ∈ h. For Y ∈ k and
X ∈ hwe see ρ(X)(Y) ∈ k since π([σ(X),Y]) = 0. We compute by using the Jacobi identity

ρ(X)[Y1,Y2] = [σ(X), [Y1,Y2]] = −[Y1, [Y2, σ(X)]] − [Y2, [σ(X),Y1]]

= [[σ(X),Y1],Y2] + [Y1, [σ(X),Y2]] = [ρ(X)(Y1),Y2] + [Y1, ρ(X)(Y2)],

for X ∈ h and Y1,Y2 ∈ k. Moreover ρ is a Lie algebra homomorphisms since for X1,X2 ∈ h

and Y ∈ k

ρ([X1,X2])(Y) = [σ([X1,X2]),Y] = [[σ(X1), σ(X2)],Y]

= [σ(X1), [σ(X2),Y] − [σ(X2), [σ(X1),Y]]

= ρ(X1) ◦ ρ(X2)(Y) − ρ(X2) ◦ ρ(X1)(Y)

= [ρ(X1), ρ(X2)](Y)

where we used that the Jacobi identity again and that σ is a Lie algebra homomorphism.
We define the linear map Φ : koρ h→ g, Φ(Y,X) := σ(X)+Y. Further Φ is an isomorphism

of vector spaces: if Φ(Y,X) = 0 then σ(X) = −Y applying π on both sides yields X = 0
which then implies Y = 0. Hence Φ is bijective. It remains to check that Φ is a Lie algebra
homomorphism. If (Y1,X1), (Y2,X2) ∈ k oρ h then

Φ([(Y1,X1), (Y2,X2)]) = Φ(([Y1,Y2] + X1 · Y2 − X2 · Y1, [X1,X2])

= [Y1,Y2] + X1 · Y2 − X2 · Y1 + [σ(X1), σ(X2)]

= [Y1,Y2] + [σ(X1),Y2] + [Y1, σ(X2)] + [σ(X1), σ(X2)]

= [σ(X1) + Y1, σ(X2) + Y2]

= [Φ(Y1,X1),Φ(Y2,X2)].

�

Smooth quotients of S2

Suppose Γ ⊂ Diff(S2) is a discrete subgroup which acts properly and freely on S2, i.e.
N := S2/Γ is a smooth surface. Then we obtain the following result.

Lemma A.8. The space N is either diffeomorphic to S2 or to the projective plane, i.e. Γ = {idS2} or
Γ = {±idS2}.

Proof. Let π : S2
→ N be the covering map induced by the action of Γ on S2. Since N is a

smooth surface it admits a Riemannian metric of constant curvature say µN and thusπ∗(µN)
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has constant curvature on S2, which shows that Γ ⊂ O(3). If Γ = {id} we are done, so we
assume that Γ contains more elements than the identity map. Let γ ∈ Γ \ {id} then there is
a line L in R3 such that γ(l) = ±l for all l ∈ L. Since γ acts freely it has no fixed point and
therefore γ(l) = −l. But this implies that γ2 = id since otherwise an l ∈ L would be a fixed
point of γ. Let E := L⊥ then γ|E has to be a rotation since otherwise it would have again a
fixed point. But then γ|E = −idE because of γ2, hence γ = −id. Thus N is diffeomorphic to
either S2 if Γ = {id} or to the projective plane if Γ = {±id}. �
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Lie Groups

T his appendix is devoted to the properties of Lie groups and their actions on mani-
folds. Here, the letter G will denote always a smooth Lie group. The letter M shall
be a smooth manifold, where G acts (from the left) on M, i.e. we have a smooth

map θ : G×M→M and we write g.m for θ(g,m). In general we want to denote any actions
of G always with a dot.

Transformation groups

Definition B.1. We call θ a proper action of G on M if the map G ×M → M ×M, (g,m) 7→
(m, g.m) is a proper map, i.e. the preimage of any compact set is compact.

Lemma B.2. The following statements are equivalent

(a) θ is a proper action of G on M

(b) If (mk)k∈N is a convergent sequence in M and (gk)k∈N a sequence in G such that (gk.mk)k∈N

converges in M then there is a subsequence (gkl)l∈N of (gk)k∈N which converges in G.

Proof. See [Lee03, p. 216] for a proof. �

Theorem B.3. Suppose that G acts properly and freely on M. Then the orbit space M/G is a
topological manifold of dimension dim M − dim G, and has a unique smooth structure with the
property that the quotient map π : M→M/G is a smooth submersion.
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Proof. See [Lee03] for a proof. �

Lemma B.4. Let M be a two–dimensional simply connected surface and G a connected three–
dimensional group such that (M,G) is a Riemannian homogeneous space . Then (M,G) is equivariant
isomorphic to one of the following Riemannian homogeneous spaces .

(S2,SO(3)), (R2,E0(2)), (D2,SO+
0 (2, 1)).

Proof. Let µ be a G–invariant metric on M. Since G acts transitively the Gaussian curvature
is constant and after rescaling the metric, the curvature is equal to 1, 0 or −1. It follows that
(M, µ) is isometric to either S2, R2 or D2 equipped with their standard metric. Following
the arguments of Theorem 2.6 we obtain the claim of this lemma. �

Complete groups

We recall that a connected group K is called a complete group if K is centerless and Aut(K) =

Inn(K) � K and K is called almost complete if it is centerless and Aut0(K) = Inn(K). We
would like to show now two examples of complete groups.

Lemma B.5. The Lie group SO(3) is complete and SO+(2, 1) is almost complete.

Proof. The Lie algebra so(3) of SO(3) may be identified with (R3,×), where × is the cross
product of R3. The universal cover group of SO(3) is SU(2) and the fundamental group
of SO(3) is isomorphic to Z2. But the fundamental group has to be a subgroup of the
center of SU(2) which is isomorphic to Z2 and embedded in SU(2) by ±E2 where E2 the
identity matrix on C2. Hence the fundamental group of SO(3) can be identified with
{±E2} ⊂ SU(2). We saw in Remark 1.50 that Aut(SU(2)) is isomorpic to Aut(so(3)) and
Aut(SO(3)) to Aut(SU(2),SO(3)). Thus consequently the first step is to compute Aut(so(3)).

For v,w ∈ R3 we have that v×w = ∗(v∧w), where ∗ is the star operator with respect to the
standard euclidean inner product 〈·, ·〉 and the standard orientation given by the canonical
basis (e1, e2, e3) ofR3 to be positive oriented. For an endomorphism f ofR3 we denote by f ∗

the adjoint endomorphism of f with respect to 〈·, ·〉. Let v,w, z ∈ R3 and set ω = e1 ∧ e2 ∧ e3

be the standard form. Then the computation

〈 f ∗( f (v) × f (w)), z〉ω = 〈 f (v) × f (w), f (z)〉ω = 〈∗( f (v) ∧ f (w)), f (z)〉ω

= f (v) ∧ f (w) ∧ f (z) = (det f )(v ∧ w ∧ z)

= 〈(det f ) ∗ (v ∧ w), z〉ω = 〈(det f )(v × w), z〉ω.
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shows that f ∗( f (v) × f (w)) = det f (v × w). If f is non–singular we have f (v) × f (w) =

det f ( f ∗)−1(v×w) and hence if f ∈ Aut(so(3)) then f f ∗ = det f · id. The last equation implies
det f = 1 and therefore f is an orthogonal map. Thus we figured out that Aut(so(3)) = SO(3)
since obviously every element of SO(3) respects the cross product. As we have seen in
Remark 1.50 since SO(3) is connected the automorphism group Aut(SO(3)) is build by
those automorphisms of SU(2) which maps the fundamental group of SO(3) into itself. But
π1(SO(3)) is exactly the center of SU(2) and since automorphisms map the center into itself
bijectively we obtain Aut(SO(3)) � SO(3). Now, since SO(3) is centerless,

SO(3) � Inn(SO(3)) ⊂ Aut(SO(3)) � SO(3).

which shows Inn(SO(3)) = Aut(SO(3)) and we conclude that SO(3) is indeed complete.
The universal cover group of SO+

0 (2, 1) is ˜SL(2,R) and as above π1(SO+(2, 1)) is the
center of ˜SL(2,R). The Lie algebra so+(2, 1) of SO+(2, 1) is isomorphic to (R3,×) where
v×w := ∗(v ∧ w) and the star operator is taken with respect to the standard Lorentzian
metric on R3 with standard orientation defined by the canonical basis. Following the
arguments above we obtain that an automorphism of so+(2, 1) has to satisfy the condition
f f ∗ = id where f ∗ is the adjoint map of f with respect to the standard Lorentzian metric
on R3. Therefore we get in the same way as above Aut(so+(2, 1)) = SO(2, 1) which is a
non–connected group. Since the center of ˜SL(2,R) is isomorphic to the fundamental group
of SO+(2, 1) we conclude Aut(SO+(2, 1)) � SO(2, 1). Therefore Aut0(SO+(2, 1)) � SO+(2, 1).
Since SO+(2, 1) is centerless we argue as above to obtain Aut0(SO+(2, 1)) = Inn(SO+(2, 1))
and this shows SO+(2, 1) is almost complete. �

The Spaces (R2
×R,E0(2) oκ R)

Lemma B.6. The Riemannian homogeneous spaces (R2
×R,E0(2)oκR) and (R2

×R,E0(2)o1 R)
for κ , 0 from Example 2.16 are equivariant isomorphic.

Proof. Set M := R2
×R and Gκ := E0(2)oκR and denote a point of M by (x, t) for x ∈ R2 and

t ∈ R. Define the maps f : M → M, f (x, t) := (x, κt) and F : Gκ → G1, F(a,A, s) := (a,A, κs).
Clearly f is a diffeomorphism of M and F is a homomorphism as the computation

F
(
(a,A, s) ·κ (b,B, r)

)
= F

(
a + e−

1
2κsAb,AB, s + r

)
=

(
a + e−

1
2κsAb,AB, κs + κr

)
= (a,A, κs) · (b,B, κr)

= F(a,A, s) · F(b,B, r)
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shows. By Example 2.16 we know how Gκ acts on M and therefore we obtain

f
(
(a,A, r).(x, t)

)
= f (e−

1
2κrAx + a, t + r)

= (e−
1
2κrAx + a, κt + κr)

= (a,A, κr).(x, κt)

= F(a,A, r). f (x, t).

The map F−1 : G1 → Gκ, (a,A, s) 7→ (a,A, κ−1s) is the inverse map to F. �

Universal covering group

Suppose we have a homomorphism of connected Lie groups ϕ : G→ H and let πG : G̃→ G
as well as πH : H̃ → H the universal coverings of G and H respectively. Then, since G̃ and
H̃ are simply connected, there is a unique lift ϕ̃ : G̃ → H̃ of ϕ : G → H such that it is a Lie
homomorphism and the diagram

G̃
ϕ̃

−−−−−→ H̃yπG

yπH

G
ϕ

−−−−−→ H

commutes. Furthermore it is well–known that there is a canonical isomorphism of groups
π1(G)→ kerπG which is given by [α] 7→ α̃(1) where α : [0, 1]→ G is a closed path and α̃ its
lift such that α̃(0) = ẽG.

Lemma B.7. The following diagramm is commutative

1 −−−−−→ π1(G) −−−−−→ G̃
πG
−−−−−→ G −−−−−→ 1y yϕ∗ yϕ̃ yϕ y

1 −−−−−→ π1(H) −−−−−→ H̃
πH
−−−−−→ H −−−−−→ 1

where the fundamental groups are identified with the kernels of the covering homomorphisms as
described above and where ϕ∗ : π1(G) → π1(H) is the homomorphism on the fundamental groups
induced by ϕ.

Proof. Clearly by construction we have ϕ ◦ πG = πH ◦ ϕ̃. Note that this implies that ϕ̃
restricted to the kerπG maps into kerπH. Denote this restricted map again by ϕ̃. Then the
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diagramm

π1(G)
ϕ∗
−−−−−→ π1(H)yiG

yiH

kerπG
ϕ̃

−−−−−→ kerπH

commutes, where the vertical maps are given by the isomophism described at the beginning
of this section. To see this take a homotopy class [α] ∈ π1(G) where α : [0, 1]→ G is a closed
curve representing the chosen class. Then iH ◦ϕ∗([α]) = ϕ̃ ◦ α(1). If we go the other way we
obtain ϕ̃◦ iG([α]) = ϕ̃◦ α̃(1). But the curves ϕ̃ ◦ α and ϕ̃◦ α̃ are both lifts of the curveϕ◦α for
the coveringπH : H̃→ H (observe ϕ̃◦α̃(0) = ϕ̃ ◦ α(0) = ẽH andπH◦ϕ̃◦α̃ = ϕ◦πG◦α̃ = ϕ◦α),
thus ϕ̃ ◦ α̃(1) = ϕ̃ ◦ α(1). We conclude that the last diagramm commutes which completes
the proof. �

The next lemma clarifies when two discrete subgroups of the center of a simply connected
group induce isomorphic quotients. It is not sufficient to know the isomorphism class of
the discrete subgroup as the example of G = R × SU(2) shows: the center is isomorphic to
R ×Z2 and the subgroups Z(1, 1) and Z(1,−1) are both isomorphic to Z (we consider Z2

as a multiplicative abelian group) but the quotients are S1
× SU(2) and U(2) (see Lemma

B.12) respectively which are not isomorphic, since e.g. the centers are not isomophic.

Lemma B.8. Let G̃ be a simply connected Lie group and Γ1,Γ2 ⊂ Z(G̃) two discrete subgroups.
The quotients G1 := G̃/Γ1 and G2 = G̃/Γ2 are isomorphic iff there is an automorphism ϕ̃ ∈ Aut(G̃)
such that ϕ̃(Γ1) = Γ2.

Proof. Suppose first there is an isomorphismϕ : G1 → G2 and letπi : G̃→ Gi be the covering
homomorphism for i = 1, 2. Since G̃ is simply connected we may lift the homomorphism
ϕ ◦ π1 : G̃→ G2 to a homomorphism ϕ̃ : G̃→ G̃ such that the diagram

G̃
ϕ̃

−−−−−→ G̃

π1

y yπ2

G1
ϕ

−−−−−→ G2

commutes. For ϕ−1 we may proceed as for ϕ, however we have π1 ◦ ϕ̃−1 = ϕ−1
◦ π2. We

claim that ϕ̃ ∈ Aut(G̃) and ϕ̃−1 = ϕ̃−1. Consider therefore map the F : G̃→ G̃,

F(g̃) := g̃−1
·

(
ϕ̃−1 ◦ ϕ̃(g̃)

)
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which is smooth and has image in Γ1 ⊂ G̃:

π1 ◦ F(g̃) = π1(g̃−1) ·
(
π1 ◦ ϕ̃−1 ◦ ϕ̃(g̃)

)
= π1(g̃−1) ·

(
ϕ−1
◦ ϕ ◦ π1(g̃)

)
= e.

Since Γ1 is discrete and F(e) = e we conclude ϕ̃−1 ◦ ϕ̃ = idG̃. A similar argument provides
ϕ̃ ◦ ϕ̃ = idG̃. If γ1 ∈ Γ1 then π2 ◦ ϕ̃(γ1) = ϕ(e) = e hence ϕ̃(γ1) ∈ Γ2 and also ϕ̃−1(γ2) ∈ Γ1 for
γ2 ∈ Γ2. This shows ϕ̃(Γ1) = Γ2.

If ϕ̃ ∈ Aut(G̃) such that ϕ̃(Γ1) = Γ2 then define a mapϕ : G1 → G2,ϕ([g̃]1) := [ϕ̃(g̃)]2, where
we regard Gi = G̃/Γi. This map is well–defined since ϕ̃(Γ1) = Γ2 and is a homomorphism
since ϕ̃ is one. Note that ϕ̃−1(Γ2) = Γ1 and therefore the map ϕ−1([g̃]2) := [ϕ̃−1(g̃)]1 is
well–defined and the inverse map to ϕ. Hence ϕ is an isomorphism. �

Lemma B.9. Let G be a connected Lie group and G̃ its universal covering group. Then Z(G) �
Z(G̃)/π1(G), where Z(G) denotes the center of G.

Proof. Let π : G̃ → G denote the covering homomorphism. We have π1(G) = kerπ ⊂ Z(G̃)
and the restriction of π to Z(G̃) has image in Z(G), therefore p := π|Z(G̃) : Z(G̃) → Z(G) is
well–defined. If z ∈ Z(G) and z̃ ∈ π−1(z) then we claim that z̃ ∈ Z(G̃). For that consider the
smooth map Φ : G̃→ G̃, Φ(g̃) := g̃z̃g̃−1z̃−1 and we see that π◦Φ(g̃) = e since π(z̃) = z ∈ Z(G),
thus Φ(g̃) ∈ kerπ = π1(G). The fundamental group is a discrete subgroup of G̃ and
since Φ(ẽ) = ẽ we obtain z̃ ∈ Z(G̃) and this shows that p is onto. Clearly if p(z̃) = e then
z̃ ∈ kerπ = π1(G), hence Z(G) � Z(G̃)/π1(G). �

About homotopy groups of Lie groups

The Lie group structure of a connected Lie group G makes it possible to elicit some properties
of its homotopy groups, namely that π2(G) vanishes. We would like to give an outline how
this can be proven.

First let us start with the observation that we have the fibration ΩG → PG π
→ G, where

PG is the space of all paths in G starting at the neutral element e and π : PG → G is the
map which assigns to each element of PG its endpoint on G. The space ΩG is the fiber of
π over e, i.e. it is the loop space of G in the point e. Both ΩG and PG are equipped with
the compact–open topology and this makes π a indeed to a fibration. The path space PG is
contractible and the long homotopy–sequence of the fibration

· · · → πk(PG)→ πk(G)→ πk−1(ΩG)→ πk−1(PG)→ . . .
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implies
πk−1(ΩG) � πk(G).

Moreover note that if G is simply connected we have π0(ΩG) = 1 since PG is contractible.
Now with a theorem of R. Bott using Morse theory, cf. [Mil63, p. 116], we see that we have
some knowledge about the CW–strucure of ΩG:

Lemma B.10. Let G be a compact, simply connected Lie group. Then the loop space ΩG has the
homotopy type of CW–complex with no odd dimensional cells.

This shows that π1(ΩG) = 1 using the cellular approximation theorem and therefore
π2(G) � π1(ΩG) = 1 for G compact and simply connected. Indeed if we are interested
solely on the homotopy groups of G, we may assume without loss of generality that G is
compact and simply connected as the following lines will show us.

First, it is easy to see that πk(G̃) � πk(G) for k ≥ 2 where G̃ is the universal cover of G. So
we may assume that G is simply connected. Second, Theorem 6 of [Iwa49] states that every
Lie group contains a compact subgroup K which is a deformation retract of G and therefore
K is simply connected and compact with same homotopy groups as G. This finally leads
to the

Lemma B.11. For every connected Lie group G the second homotopy group π2(G) vanishes.

The group U(2)

We show that the universal cover group of U(2) is R × SU(2) and we will determine some
quotients by one–dimensional subgroups.

Lemma B.12. Let c ∈ R such that c , 0. Furthermore define the subgroup Z := Z(c,−E2) ⊂
R × SU(2) which is discrete and lies in the center of R × SU(2). Then U(2) is isomophic to
(R × SU(2)/Z) and therefore R × SU(2) is the universal cover group of U(2).

Proof. Consider the homomorphism Φ : R × SU(2) → U(2), (x,S) 7→ eiπ x
c S. Φ is onto since

if U ∈ U(2) then det U ∈ U(1) and there is an x ∈ R such that ei2πx/c = det U. The pair
(x, e−iπx/cU) lies in R × SU(2) and its image under Φ is U. Next we would like to show that
the kernel of Φ is given by Z(c,−E2). Therefore if eiπx/cS = E2 we deduce by applying the
determinant ei2πx/c = 1 thus x = kc for a k ∈ Z and S = e−iπkE2 = (−1)kE2. We conclude
(kc, (−1)kE2) ∈ Z(c,−E2) and the kernel lies in Z. On the other hand Z is clearly a subset of
the kernel of Φ. �
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Lemma B.13. Suppose K is a closed subgroup of U(2) isomorphic to U(1). The only homoge-
neous space on which U(2) acts transitively and effectively with isotropy group K is equivariantly
diffeomorphic to S3

⊂ C2 (where U(2) acts through the restricted linear action of C2).

Proof. We would like to work with the linear (faithful) representation of U(2) on C2. The
quotients U(2)/K and U(2)/K′ are equivariantly diffeomorphic if K′ is a conjugated subgroup
of K in U(2). An element of U(2) is after a conjugation in U(2) given by the matrixz1 0

0 z2

 =: diag(z1, z2)

where z1, z2 ∈ U(1). Now since K is abelian we may diagonalize every element in K by
a conjugation with the same matrix of U(2). Thus without loss of generality we assume
that the elements of K are given by diagonal matrices (which means that every subgroup
isomorphic to U(1) of U(2) is conjugated to a subgroup of a torus in U(2)). Suppose
Φ : U(1) → K is an isomorphism. Then there have to be homomorphisms Φ1,Φ2 : U(1) →
U(1) such that Φ(z) = diag(Φ1(z),Φ2(z)). But homomorphisms U(1) → U(1) are given by
z 7→ zn for n ∈ Z. Clearly Φ : K → U(2) is an isomorphism onto its image if n = 0 and
m = 1 or n = 1 and m = 0. Therefore suppose n , 0 , m. Then Φ is an isomorphism
iff gcd(n,m) = 1. To see this suppose d := gcd(m,n) , 1 and let l1, l2 ∈ N such that

n = l1d as well as m = l2d, in particular l1 < n. Then z0 := e2πi
l1
n is an nth root of unity

as well as an mth root of unity since zm
0 = e2πi

l1
n m = e2πi

l1
l1

l2 = e2πil2 = 1, hence Φ is not
injective. Now on the other side suppose gcd(n,m) = 1 where n,m are non–zero and let
1 , z0 ∈ ker Φ. Thus zn

0 = 1 and we may assume n > 0. Hence z0 = e2πi l
n for an integer

0 < l < n. Moreover we have zm
0 = 1 which means e2πi l

n m = 1 and this implies n | lm. But
then n = gcd(lm,n) = gcd(l,n) gcd(m,n) = gcd(l,n) and since l < n this is a contradiction to
z0 , 1. We conclude that ker Φ is trivial.

Clearly if K ∩ Z(U(2)) , {E2} then U(2) is not acting effectively on U(2)/K therefore we
exclude first the case n = m = 1. Now suppose n , 0 , m and gcd(n,m) = 1. We may write
an element of K as zndiag(1, zm−n) where m − n , 0. The number z0 = e2πi 1

m−n is an |m − n|th
root but zn

0 , 1 since gcd(m − n,n) = gcd(m,n) = 1 and therefore n
m−n is not an integer. We

conclude that the element diag(zn
0 , z

m
0 ) lies in K ∩ Z(U(1)) and this implies that in that case

U(2) would not act effectively on U(2)/K. The remaining cases are n = 0 and m = 1 or the
other way around. Here K ∩ Z(U(2)) = {E2} and the quotient U(2)/K is diffeomorphic to
S3
⊂ C2 with the canonical action of U(2) on S3.

�
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The Lie Algebra of Nil o R

We defined NiloR in Remark 1.71. The diffeomorphism type isR4 and the neutral element
is given by 0 ∈ R4. We recall the multiplicative structure of Nil o R. Write (x, z, θ) for an
element of Nil o R where x = (x1, x2) and (x, z) belongs to the Nil part. Define a curve of
quadratic forms β̃ : R→ Bil(R2) such that β̃θ is given in the standard basis of R2 by

1
2

s

−c −s
−s c


where s = sinθ and c = cosθ and let βθ be its quadratic form. Finally define for x,y ∈ R2

another bilinear form n(x,y) := x1y2. With this notation the multiplication in Nil o R may
be described as

(x, z, θ) · (y,w, φ) = (x + ρθ(y), z + w + βθ(y) + n(x, ρθ(y)), θ + φ).

Let g be its Lie algebra. We define

Ei :=
d
dt

∣∣∣∣∣
t=0

(tei, 0, 0)

for i = 1, 2 where ei is the i–th canonical basis vector of R2 and

E3 :=
d
dt

∣∣∣∣∣
t=0

(0, t, 0), E4 :=
d
dt

∣∣∣∣∣
t=0

(0, 0, t).

To compute the Lie brackets of the Ei’s we have to know the inverse elements of the defining
curves. If GoH is a semidirect product the inverse of (g, e) and (e, h) is given by (g−1, e) and
(e, h−1) respectively. Thus the inverse of (0, 0, t) is (0, 0,−t). The inverse of the remaining
curves are given by (−tei, 0, 0) and (0, t, 0) (one way to see this very quickly is to look at the
linear representation of Nil given by the Heisenberg group). We compute

(te1, 0, 0) · (re2, 0, 0) · (−te1, 0, 0) = (re2, rt, 0)

(te1, 0, 0) · (0, r, 0) · (−te1, 0, 0) = (0, r, 0)

(te1, 0, 0) · (0, 0, r) · (−te1, 0, 0) = (te1 − ρr(te1),−t2βr(e1) − t2n(e1, ρr(e1)), r)

(te2, 0, 0) · (0, r, 0) · (−te2, 0, 0) = (0, r, 0)

(te2, 0, 0) · (0, 0, r) · (−te2, 0, 0) = (te2 − ρr(te2),−t2βr(e2) − t2n(e2, ρr(e2)), r)

(0, t, 0) · (0, 0, r) · (0,−t, 0) = (0, 0, r).
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Deriving those equation first with respect to r in r = 0 then with respect to t in t = 0 we
obtain the Lie brackets

[E1,E2] = E3

[E1,E3] = 0

[E1,E4] = −E2

[E2,E3] = 0

[E2,E4] = E1

[E3,E4] = 0

The linear map Φ : R ×ω1 e(2)→ g defined by

e0 7→ E3

e1 7→ E1

e2 7→ E2

e3 7→ E4

is obviously a Lie algebra isomorphism.

The center of semidirect products

Let G and H be arbitary groups and G o% H the semidirect product of G and H where
% : H → Aut(G) is a representation of H in G. Define Γ := ∩h∈HFix(%h) ⊂ G where Fix(%h) is
the fixed point set of the automorphism %h : G → G. Clearly Γ is a subgroup of G. Further
define ∆ := %−1(im (c|Γ)) which is a subgroup of H where c : G→ Inn(G) is the conjugation
map g0 7→ (g 7→ g0gg−1

0 ). Obviously Γ × ∆ is a subgroup of G o% H.

Lemma B.14. The map Φ : Γ × ∆→ Inn(G), Φ(g, h) := %hcg is a homomorphism of groups.

Proof. For (g0, h0) ∈ Γ × ∆ the elements %h0 and cg0 commute in Inn(G) since have

%h0cg0 = c%h0 (g0)%h0 = cg0%h0

since g0 ∈ Γ = ∩h∈HFix(%h). Thus for (gi, hi) ∈ Γ × ∆ (i = 1, 2) we obtain

%h1h2cg1 g2 = %h1%h2cg1cg2 = %h1cg1%h2cg2

which shows that Φ is a homomorphism. �
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Lemma B.15. For Ψ := Φ|(Γ × (∆ ∩ Z(H))) we have Z(G o% H) = ker Ψ.

Proof. Let (g0, h0) ∈ ker Ψ which means %h0 = c−1
g0

. Then for all (g, h) ∈ G o% H

(g0, h0)(g, h) = (g0%h0(g), h0h) = (g0g−1
0 gg0, hh0) = (gg0, hh0) = (g%h(g0), hh0) = (g, h)(g0, h0),

thus (g0, h0) ∈ Z(G o% H). On the other hand if (g0, h0) ∈ Z(G o% H) then we obtain the
equations

hh0 = h0h, g0%h0(g) = g%h(g0)

for all (g, h) ∈ G o% H. The first equations implies h0 ∈ Z(H). Choosing g = e in the second
equations yields g0 = %h(g0) for all h ∈ H, hence g0 ∈ Γ. On the other side choosing h = e in
the same equation yields %h0(g) = g−1

0 gg0 = c−1
g0

(g). Hence h0 ∈ ∆∩Z(H) and %h0cg0 = idG. �

We would like to compute the center of some semidirect products.

Lemma B.16. The center of E := Ẽ0(2) is isomorphic to Z and is embededd like l 7→ (0, 2πl) ∈ E.

Proof. The group E is the semidirect product R2 o% R where the action % : R → Aut(R2)
is given by θ.a := %θ(a) = ρθ(a) (we recall that ρθ is the rotation in R2 around the origin
with rotation angle θ). If θ.a = a for all θ ∈ R then a = 0 (θ = π) and Γ is trivial. Then by
definition ∆ is the kernel of % which 2πZ ⊂ R. �

Lemma B.17. The center of Nil oθ R from Example 1.68 is isomorphic to R×Z and is embedded
as (z, l) 7→ (0, 0, z, 2πl).

Proof. The representation of R in Nil is given by

θ.(x, z) := %θ(x, z) = (ρθ(x), z + βθ(x)).

Let (x, z) ∈ Nil such that θ.(x, z) = (x, z) for all θ ∈ R. Then ρθ(x) = x for all θ ∈ R. This
forces x to be zero and therefore z can be an arbitrary real number. Thus Γ = {(0, 0, z) : z ∈ R}
which is exactly the center of Nil and therefore im (c|Γ) ⊂ Inn(Nil) is trivial. This means
that ∆ is given as the kernel of % which is 2πZ ⊂ R. �
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Lemma B.18. The center of E0(2) oκ R from Example 2.16 is trivial for κ > 0.

Proof. The representation here of R in E0(2) is given by

t.(a,A) := (e−
1
2κta,A)

for (a,A) ∈ E0(2) = R2 o SO(2) and t ∈ R. The group Γ contains elements of E0(2) which
fulfill (e−

1
2κta,A) = (a,A) for all t ∈ R. Since κ > 0 we deduce a = 0. The inner automorphism

of (0,A) on E0(2) is given by

(0,A)(b,B)(0,A−1) = (Ab,B).

We conclude t.(b,B) = c(0,A)(b,B) iff (e−
1
2κtb,B) = (Ab,B) which forces t = 0. Thus ∆ = {0} and

the kernel of Φ : Γ × ∆ → Inn(E0(2)) is given by the elements of (0,A) ∈ Γ such c(0,A) is the
identity on E0(2). This implies Ab = b for all b ∈ R2, hence A is the identity which leads to
the claim. �
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