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Sparse Registration
3D Reconstruction from Pairs of 2D Line Scans

Benjamin Huhle · Timo Schairer · Sebastian Herholz · Andreas

Schilling · Wolfgang Straßer

Abstract We address a new registration problem: Us-

ing a coupled pair of 2d scanners, we capture range data

by freely moving the system through the scene. The

registration with regard to six degrees of freedom be-

comes solvable due to the fact that first, the pair of line

scanners has different orientation, and second, we use

a volume-oriented algorithm instead of commonly used

surface-oriented approaches. We present a method that

is based on the idea of preserving the free space rep-

resented in each of the scans. The proposed algorithm

is evaluated with real range data associated with ori-

entation estimates from an inertia sensor. Additionally,

we provide quantitative results with simulated data. In

both cases, the algorithm is capable to recover from

large translational and moderate rotational errors in

the initial configuration.

Keywords registration · scan matching · 3d acquisi-

tion

1 Introduction

Existing solutions to the registration task of 3D point

data assume that each of the separate point sets repre-

sents a set of surface patches of certain extents. In this

paper, we address a novel registration problem, where

we are given a set of scans and each of these single scans

only comprises sparse range information: We use a com-

bination of two 2D scanners. This means that each of

the two scanners captures a linear array of distance val-

ues measured along rays that lie in a common plane.

WSI/VC
Universität Tübingen
Sand 14
72076 Tübingen
Germany
E-mail: schilling@uni-tuebingen.de

Such 2D laser scanners can work at comparably high

frequency and therefore allow for a continuous form of

scanning, in contrast to the so-called stop-scan-go pat-

tern which is mostly applied when using laser-based

3D scanners. In this paper, we provide a proof of con-

cept, namely that the registration with regard to six

degrees of freedom, i.e., unconstrained motion in 3D, is

possible with data from 2D laser range finders.

To overcome the high ambiguity of the pose of sin-

gle 2D scans, we consider a combination of two scanners

with different orientations integrated into a single ac-

quisition device, i.e., the resulting scans are pairwise

rigidly coupled. An illustration of the output of such a

setup is depicted in Figure 1.

In the following, by the term scan, we will refer to

such a combined scan pair. In the illustrations, how-

ever, we will only show single scans in favor of a better
understanding.

As mentioned before, the common registration tech-

niques that work on point data rely implicitly (Iterated

Closest Point, ICP [3,4]) or explicitly (Normal Distri-

butions Transform, NDT [12]) on the fact that the cap-

tured points locally represent a smooth surface. Sur-

faces, however, are not well captured in single 2D scans,

and therefore, these algorithms are not directly applica-

ble on the described type of data. The underlying idea

of the novel registration algorithm proposed here is to

enforce the preservation of empty space. This means

that we register the scans by avoiding or resolving all

mutual intrusions.

If we assume that the scans are densely sampled,

then each line segment connecting two neighboring scan

points together with the origin of the scan spans a tri-

angle of free space. Two line segments of a pair of cor-

rectly registered scans may intersect. However, if a line

segment of one scan intersects the triangle of free space

of another one, this indicates an incorrect registration
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Fig. 1 Illustration of scans acquired with the proposed setup (from left to right): 1. Registered sequence of scans of a cube
model with linear motion. Scan origins are depicted in blue. 2. dito, yet rotating during acquisition. 3. Sequence of 100 scans,
acquired with the B-Spline motion model (cf. Section 6.2). 4. dito, with position information discarded.

Fig. 2 If we assume that triangles spanned by two neighboring scan points and the origin of the scan represent free space, then
scans that do not comply with this rule (as in the right subplot) indicate an incorrect registration. The proposed algorithm
tries to resolve such intersections to achieve a configuration as depicted in the left subplot. (Note that, for simplicity, the
illustration only shows single scans instead of the coulpled pairs used by the system.)

of the scans (cf. Figure 2). By means of an iterative al-

gorithm, we register the scans by applying rigid-body

transformations that resolve these intersections.

2 Related Techniques

The registration of 3D point data with regard to six

degrees of freedom is a well studied topic. The iterated

closest point algorithm (ICP, [3,4,9]) is a very popular

method that works well if the point clouds have signif-

icant overlap or if the initial pose estimate is close to

the solution. An alternative that also works on 3D point

data, is the normal distributions transform (NDT, [12])

which performs comparably [20]. The acquisition of 3D

models with these techniques, using a stop-scan-go pat-

tern of the sensor platform, was studied successfully,

e.g., in [10,13,18]. In the last few years, approaches to a

more continuous form of 3D scanning (“scanning while

moving”) were taken. Cole and Newman [17] present a

system that captures 3D data continuously using odom-

etry information. They segment the data stream into

chunks of smaller 3D point clouds and register these in

order to improve the measured transformations. Since

they assume horizontal movements exclusively, they use
an additional 2D SLAM technique. Harrison and New-

man [19] presented another approach whose idea is to

correct the transformations such that planes that are

vertical in the real world are enforced to be exactly

vertical in the model. Stoyanov and Lilienthal [21] ap-

plied loop closure using ICP and a multi-level relaxation

scheme to 3D scans acquired with a rotating 2D laser

scanner.

Very good registration results have also been achieved

by using feature points with descriptors based on 3D

geometry (e.g. [6,15]) or with descriptors derived from

additionally available image data (e.g. [14,22]).

In contrast to these works, we directly register sin-

gle 2D scan lines and use a volumetric approach similar

to the idea of space carving [8] in image based mod-

eling. With this approach, we permit full six degrees

of freedom motions as opposed to systems in the spirit

of Früh and Zakhor [11], where the acquisition device

only moves in the horizontal plane. A volumetric ap-
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proach was also used by Tubić et al. [1] who proposed

an integrated solution to the registration and surface

reconstruction problem, yet relying on dense range im-

ages, in contrast to single 2D scans as in our case.

3 Preservation of Free Space

As indicated in the introduction, we generalize the idea

that the space along the ray of a range measurement is

not occupied by any object in the scene. Consequently,

intersections of a scan line segment of an intruder scan

with triangles spanned by a line segment and the origin

of a reference scan indicate an inexact registration. This

assumption holds true as long as the local sampling

density is high, i.e., as long as the scan line represents

a line on the captured surface. In this case, the proposed

algorithm tries to resolve all intersections by correcting

the relative poses of the scans.

In order to reduce the computational complexity,

the scans are simplified in a preprocessing step. We

apply the Douglas-Peucker algorithm [2] that approxi-

mates the scan by a subset of the points with a specified

maximum error, which can be set according to the noise

level of the range values.

Iteratively, the intersecting reference and intruder

line segments are determined and the intrusions are

minimized. The minimization problem can either be

solved by a variational formulation or with a more illus-

trative physically motivated approach. We use a mass-

spring model where the springs are in state of rest when

the intruding line segment intersects with the line seg-

ment of the reference scan, i.e., with one boundary of

the reference triangle.

Note that, in general, the problem is only solvable

offline in batch-mode, also called n-scan matching, since

smaller subsets of the scans (such as used in an in-

cremental registration) do not provide enough spatial

constraints for a robust registration and a sufficient

sampling of the scene is necessary to align 2D scan

lines. However, we believe that it is also possible to use

this method to improve existing pre-registered models,

which could be investigated in future research.

4 The Mass-Spring Model

In the following, we describe some extensions to the

above model that are well allegeable from the rigid body

dynamics point of view. For simplification, we omit the

units of measurement in the following equations and

assume respective scene units. A well comprehensible

introduction to the simulation of rigid body dynamics

can be found in [5].

Fig. 3 A scan pair that intersects twice. Here, a global near-
est neighbor search is misleading. The intersection marked
with ”X” is never resolved since a segment pair with smaller
distance (marked with a circle) is always found.

4.1 Data Association

At a single intersection, it is necessary to not only con-

sider the involved reference and intruder line segment

but to search for a nearest neighbor pair of line seg-

ments on the reference and intruder scan. Attaching a

spring to these two closest line segments in the model

means that we effectively minimize their distance. This

way, the optimization tends to be less local which is

mandatory when the current configuration is not yet

close to the correct solution. However, the radius of the

nearest neighbor search around the intersection needs

to be restricted when the expected remaining error be-

comes smaller. Otherwise, it could happen that out of

two intersections of a scan pair, only one is effectively

resolved (cf. Figure 3). We choose to couple the search

radius r
(t)
NN at time step t to the maximum of the forces

(see below) from the last iteration:

r
(t)
NN = 2 ‖F (t−1)

max ‖2 . (1)

4.2 Sampling Density

In cases where the sampling density is rather low, or

where parts of the scene are occluded in one scan, in-

tersections may also occur when the scans are perfectly

registered (cf. Figure 4). We therefore scale the spring

rate

κ = exp

(
−
[

2 θ

3π
− 1

3

]2)
(2)

with regard to the scan angle θ of the intruder scan

(cf. Figure 5). This results in a full application of the

force of the spring in cases where the sampling density
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Fig. 4 Intersections may occur not only due to misalignment,
but also due to occlusions and undersampling.

is maximal (θ = π/2) and a force close to zero where

the scan ray hits the surface in an acute angle (θ ≈ 0).

Thus, we obtain the force f = κ d that acts on both

scans, where the vector d denotes the distance of the

line segments.

4.3 Elastic Collisions

Each spring effects the reference and the intruder scan

with the same force. Assuming that the scans have a

certain weight, we can determine which scan should be

effected to a greater or lesser extent — equivalent to an

elastic collision. We equip those scans that already fit

well into the 3D model with a great mass. A good fit is

indicated by many intersections with other scans that

only induce small forces. In each iteration, we compute

a notional mass that linearly depends on the mean of

the squared spring forces. Let f
(`)
i denote the force on

scan i which originates from intersection ` and let Ii
denote the set of intersections in which the scan i is

involved as either intruder or reference. For the corre-

sponding mass, we obtain

mi =
|Ii|∑

`∈Ii ‖f
(`)
i ‖22

. (3)

Since the spring forces also produce a rotational move-

ment, the distribution of the mass needs to be modeled

as well for each scan. We choose to equally distribute

the mass among the scan points, which leads to an in-

ertia tensor I that has constant structure in the coordi-

nate frame of the scan and only scales with the actual

mass.

Fig. 5 Scan angle θ. A small value indicates low sampling
density and potential occlusions.

4.4 Clustering Forces

For a homogeneously sampled scene, it would be correct

to sum up the forces f
(`)
i , ` = 1, . . . , n, of all springs

which are connected to a scan i in order to compute the

overall force acting on this scan. Since we are dealing

with imperfectly sampled scenes, we need to decouple

the simulation from the sampling process that produced

the scans. From Figure 6, it can be observed that the

force caused by a certain registration error scales with

the number of intersections. We compensate for these

repeated collisions by clustering the forces with regard

to their directions. For a set of cluster representatives

ck, k = 1, . . . ,m, we scale the contribution to a cluster

by the length p
(`)
i,k of the projection

p
(`)
i,k = c>k f

(`)
i , (4)

and obtain an overall force

Fi =

m∑
k=1

1

Zi,k

(∑
`∈Ii

w
(`)
i,k p

(`)
i,k

)
ck, (5)

acting on scan i, with weights

w
(`)
i,k =

∣∣∣∣∣ 1

‖f (`)i ‖2
p
(`)
i,k

∣∣∣∣∣ (6)

and normalizer

Zi,k =
∑
`∈Ii

w
(`)
i,k . (7)

Analogously, we compute the overall torque as

τi =

m∑
k=1

1

Zi,k

∑
`∈Ii

w
(`)
i,k p

(`)
i,k

(
ck × r(`)i

)
, (8)

where r
(`)
i is the vector from the barycenter of the scan

to the intersection point of the line segment and the

reference triangle.
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Fig. 6 Coupling of sampling and simulation: Depending on
the local sampling density, a constant registration offset in-
duces a different number of instances of the same force.

4.5 Regularization

In order to avoid local minima and to improve the

robustness of the method, we incorporate additional

springs into the system, i.e., we apply external regular-

ization forces attached to the scan. Let si and qi denote

the origin and the orientation (in quaternion represen-

tation) of scan i. From its neighbors in time i− and i+,

and based on the original orientation measurement q̃i,

we compute a force

F reg
i = κreg

[
1

2
(si−1 + si+1)− si

]
, (9)

and a torque

τ regi = κreg I ωi, (10)

that are applied to each scan i. The angular velocity ωi
is computed as the axis-angle representation of the devi-

ation from the orientation measurement q∆ = q−1i ⊗ q̃i,
where ⊗ denotes quaternion multiplication.

Both for the linear and angular regularization, we

use a fixed spring rate starting at κreg = 1.0 and we

anneal the system by lowering its value whenever the

system meets a convergence criterion.

5 Solving the System

We solve the mass-spring model with an explicit Euler

method using a large damping constant. The resulting

solver is very similar to a steepest gradient descent of a

variational least squares formulation of the problem. We

experienced that a full minimization of the intrusions

in one iteration of the algorithm is not preferable. This

is due to the fact that the minimization problem very

often changes from one iteration to the next one since

different intersections occur. Apart from that, for the

registration problem, it is necessary that a great per-

centage of the scan pairs intersect. Methods that exploit

the sparseness of a problem are therefore not applica-

ble and a full minimization in each iteration would be

very costly. Therefore, it is reasonable to only perform

1. detect intrusions

- test all scans pairwise

2. search nearest neighbor line segments

- distances represent the forces via f = κ d

3. compute the scan masses

- cf. Equation 3

4. apply forces

- partition onto both scans (elastic collision)

- accumulate & normalize forces for each scan (Eq. 5)

- add regularization (Eqs. 9, 10)

- perform one Euler step

goto 1.

Table 1 Brief summary of the registration algorithm.

small updates on the poses of the scans — as it is done

with the explicit Euler method — before evaluating the

intersections once again.

A summary of the iterative algorithm is given in

Table 1.

5.1 Accelerating the Registration

As mentioned earlier, at a single intersection, we not

only take into account the involved reference and in-

truder line segments but search for a nearest neighbor

pair of line segments of the reference and the intruder

scan. Considering the large number of intersections that

can occur at each time step, the potential complexity is

in O
(
m2n2

)
for a scene consisting of m scans of which

each scan comprises n line segments.

Due to the computational load of the algorithm, we

compute the nearest neighbor search and the distances

of the line segments on the GPU using CUDA: One

could perform partitioning of the input data, i.e., assign

a single scan to each task and compute the correspond-

ing intersections. This type of decomposition, however,

introduces synchronization issues since a single scan not

only potentially intersects many other scans, but it can

also intersect other scans several times. We therefore

perform partitioning on the output data, i.e., with re-

gard to intersections: In a first step, the intersections

are computed on the CPU efficiently by applying vari-

ous culling techniques. Searching for the nearest neigh-

bor in a brute-force implementation on the GPU, how-

ever, still is two orders of magnitude faster than a CPU-

based implementation that makes use of diverse hierar-

chical data structures.
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5.2 Parallel Implementation

During initialization, scan IDs, initial scan poses, and

range data in the local coordinate frame of the respec-

tive scanner are uploaded to the GPU.

At every iteration, intersections of scans are com-

puted on the CPU and uploaded to the GPU. Accord-

ingly, a set of reference and intruder scans is provided

for each CUDA kernel that transforms the local range

data to the world coordinate frame using the current

pose information. Each kernel then loops over the line

segments of the reference and intruder scans to com-

pute the pair of line segments with minimum distance

while keeping to the search radius rNN . After a pair of

line segments has been identified, the distance vector

between the segments, i.e., the force vector f , is calcu-

lated along with the intersection point in world space.

After each iteration, the indices of the nearest neigh-

bor line segments, the corresponding forces, and the in-

tersection points are downloaded from the GPU.

6 The Data

We show results of the registration algorithm applied

to real data that we acquired using a prototype system.

Here, no ground truth is available, but the performance

can be evaluated by qualitative inspection of the result-

ing models.

For a quantitative investigation of the presented reg-

istration problem, we use simulated data for additional

experiments. In this case, perfect ground truth data is

available for quantifiable results and comparisons. Fur-

thermore, we do not have to deal with time synchro-

nization issues between the sensors.

The sensor model and the motion model, i.e., as-

sumptions on how the sensors are moved through the

scene while recording, are the same for both real and

simulated data: We assume motion with moderate speed

and 2D scanners working at high frequency, such that

the ego-motion during the acquisition of single 2D scans

can be neglected. Further, we expect that an initial

guess of the orientation of each scan is available.

6.1 Real Data

To acquire real data, we use a prototype system com-

prising two SICK LMS200 scanners, an XSense inertia

sensor and a Matrix BlueFox color camera with fish-eye

lens. This setup is depicted in Figure 7. During acquisi-

tion, the device is moved and rotated smoothly through

the scene by hand. Registration is performed using the

laser-based range data and the orientation readings of

Fig. 7 Prototype system of the proposed setup consisting
of two 2D laser scanners and an XSense inertia sensor. The
prototype additionally includes a color camera with fisheye
lens to capture texture information.

the inertia sensor as initial rotation estimates. In order

to colorize the models, we calibrated the camera using

the OCamCalib Toolbox [16] and project the 3D points

into the camera image for a bilinear color lookup.

6.2 Simulating the Acquisition

We tried to simulate the acquisition as realistically as

possible in order not to change the problem itself. There-

fore, we employ a sensor model that reproduces differ-

ent real world error sources of the scanning process.

The registration process is started with an initial

guess of the orientation for each scan. Accordingly, we

apply random noise to the ground truth orientation

(uniformly distributed axes and normally distributed

angles).

The acquisition of the range data is simulated by

computing scan ray distances to the mesh-based 3D test

models. To account for the systematic and the statistic

errors of the sensor, in direction as well as in range, we

add Gaussian noise to the depth values (σ = 1.0cm).

Furthermore, we simulate the effect of flying pixels, that

occurs whenever the spot of the scan ray covers surfaces

at different distances as it happens on edges of objects.

We use Monte Carlo integration with 50 samples of the

scan cone and restrict the integration area to the length

of the measurement impulse. The maximum range of

the scanner is taken into account, i.e., measurements

where less than half of the samples hit a surface of the

model, are marked as max range readings. The choice

of parameters is exemplarily based on the specifications

of the SICK LMS200 range finder [23,24].

The linear motion of the sensor is modeled with a

B-Spline curve that interpolates randomly chosen con-
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(a) Living Room (b) Lab

(c) Roman Temple (d) Office

(e) Kyoto Shelter

Fig. 8 Virtual scenes used for the simulation. Mod-
els (a)–(d) courtesy of PYTHA Lab GmbH, model (e) of
www.3dchaya.com.

trol points in 3D. For the rotation of the sensor, we

use the same interpolation applied in the exponential

chart [7], i.e., the axis-angle representation, relative to

the first control point of the respective interval. The

control points of the quaternion curves represent ran-

dom orientations, i.e., two consecutive control points

may have completely different orientation.

7 Experiments

We present first results using a real prototype system,

and we also tested our algorithm on various synthetic

data sets. Table 2 lists the specifications of the 3D mod-

els as well as the simulated scan data, and Figure 8 gives

an impression of the scenes.

7.1 Settings

In all experiments using simulated data, the registra-

tion starts with orientation values that are obtained by

perturbing the correct orientation by noise with stan-

dard deviation σ = 3◦. The position information is com-

pletely discarded, i.e., all scans are reset to the scene

origin. To account for this disparity of the errors, we

decrease the torque in the mass spring model by an ad-

ditional factor of 0.3 with regard to the translational

step size.

For the normalization (Eq. 5), we achieved the best

results when using an arbitrarily oriented basis of three

orthogonal cluster representatives.

The annealing scheme applied to the regularization

leads to increased run times of the algorithm, yet con-

tributes considerably to its robustness. We use the non-

monotony of the sum of squared forces
∑
i ‖Fi‖22 as con-

vergence criterion and, each time it is met, we decrease

the spring rate by a factor of 1.2.

The simulated acquisition processes in the tests are

of two different types: For the first one (Temple 1, Ky-

oto Shelter), we used smooth B-Spline curves for the

trajectories as well as for the course of the orientation

by choosing a low ratio of control points to number

of scans. In the second mode (Living Room, Lab, Tem-

ple 2, Office), the speed of the motion and of the change

of orientation varies drastically due to a high number of

control points. We run this second simulation in order

to validate that a successful registration is also possible

when the underlying assumptions of the regularization

and the actual motion differ significantly.

7.2 Results using Real Data

Results of the registration algorithm using our real pro-

totype system are depicted in Figures 9 and 10. Note

that the scan masses (cf. Eq. 3) provide a good indica-

tion of how likely a scan can be considered an outlier.

Here, we removed the 10 scans with lowest weight.

7.3 Results using Virtual Data

The quantitative reconstruction results are shown in

Table 3 and different views of the resulting point clouds

are presented in Figure 11.

As a measure for the quality of the reconstruction,

one can look at the remaining offset of the scan origin

and its orientation. In certain configurations, however,

there is no unique correct pose for the scan, e.g., it can

be translated along a certain direction without altering

the model quality. Additionally, offsets in position and

orientation can compensate each other to some degree.

Therefore, in Table 3, we present the average and the

maximum point-to-surface distance (PSD), i.e., the dis-

tance of each scan point to the nearest triangle of the

mesh. Note that noise and flying pixels lead to a non-

zero PSD also for the perfectly registered ground truth

models.

Additionally, the sum of squared distances (SSD)

of the reconstructed scanner positions is provided since
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Name # vertices dimensions [m] # scans # control
points

Living Room 72,791 8 × 7.5 × 3.2 300 75

Lab 125,805 20.9 × 6.5 × 3.2 300 75

Roman Temple 1 190,227 21.5 × 15 × 9.5 300 30

Roman Temple 2 300 75

Office 269,039 25.5 × 16.8 × 8.6 300 75

Kyoto Shelter 1,547 4.5 × 4.3 × 4.5 200 20

Table 2 Simulated datasets.

initial ground truth reconstructed

Name # iter. SSD PSD PSD PSD SSD

Living Room 3289 58.30 0.16 (max 1.09) 0.005 (max 0.17) 0.011 (max 0.22) 0.54

Lab 3123 51.00 0.16 (max 1.46) 0.004 (max 0.29) 0.012 (max 0.53) 0.89

Temple 1 7939 205.5 0.31 (max 1.99) 0.004 (max 0.12) 0.007 (max 0.56) 0.07

Temple 2 8162 45.79 0.15 (max 1.74) 0.004 (max 0.11) 0.013 (max 1.64) 0.87

Office 4364 58.30 0.16 (max 1.77) 0.004 (max 0.18) 0.022 (max 2.48) 0.39

Kyoto Shelter 2166 25.24 0.08 (max 0.62) 0.004 (max 0.16) 0.006 (max 0.21) 0.08

Table 3 Registration results: The barycenter and the average orientation of the scans of the reconstruction and initial config-
uration are aligned to ground truth before evaluation.

based on the PSD, large offsets may be underestimated.

This is due to the fact that the association of a point

and the originally captured surface is not taken into

account.

Especially, the Temple and the Kyoto Shelter scenes

were chosen as very challenging scenes, yet both are reg-

istered precisely. In the first one, the occlusions from

the columns are obviously well handled by scaling the

spring rate with regard to the scan angle (cf. Eq. 2). In

the latter one, the simulated laser range finder returns
a large amount of invalid range readings, since a ma-

jor part of the shelter is open. However, the model is

successfully reconstructed with a precision close to the

original noise level.

Obviously, the robustness of the registration depends

on the coverage of the scans. Invariably, it can hap-

pen that a few scans (often < 10) are registered less

exact and contribute heavily to the overall error. This

can occur due to insufficient constraints imposed by the

surrounding scans, especially when the sampling in the

acquisition process is not dense enough. Or, depend-

ing on the structure of the scene, scans get stuck in

local minima during optimization. Therefore, it should

be helpful to integrate an outlier detection step of some

sort and to discard single perturbing scans during reg-

istration. As additional experiments with manually re-

moved outliers have shown, this can lead to a signifi-

cantly improved overall performance, while loosing only

a marginal amount of information about the scene.

8 Conclusion

We presented a novel algorithm that allows to regis-

ter single pairs of 2D scans with regard to six degrees

of freedom. The volume-oriented method resolves mu-

tual intrusions of the scans, in contrast to popular algo-

rithms, like ICP or NDT, that maximize the congruence

of the captured surfaces. The computationally intensive

algorithm is feasible due to the increased performance

of modern hardware and due to a fast GPU-based im-

plementation.

We present a first proof of concept with promising

results. We apply our method to data captured from

real scenes and show that the proposed algorithm is ca-

pable of reconstructing correctly registered models. Ad-

ditionally, we modeled the acquisition process of depth

data to validate our approach based on simulated data

where ground truth data is available. We present quan-

titative results which show that the registration is solv-

able with fair accuracy.
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(a) Office Room I (initial configuration, simplified) (b) Office Room I (simplified)

(c) Office Room II (initial configuration) (d) Office Room II (simplified)

Fig. 9 Reconstructed point clouds from real range data. Blue and red dots indicate the reconstructed scan origins. The
simplified version of the point clouds is the same as is used for the registration.

(a) Office Room I (textured) (b) Office Room II (textured)

Fig. 10 Reconstructed point clouds from real range data, textured.
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(a) Living room (initial configuration,
simplified)

(b) Living room (c) Living room (simplified)
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Fig. 11 Reconstructed point clouds from simulated range data. Blue and red dots indicate the reconstructed scan origins. The
simplified version of the point clouds is the same as is used for the registration.
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