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Another group of SM-Iβ rescue mice (5-7 months old) was used to investigate CORT levels in the 

evening, when plasma CORT levels reach their maximum due to their circadian secretion pattern 

(Figure 15 A). Basal CORT levels in SM-Iβ rescues and litter-matched controls were again 

measured in the morning (2 h after lights on) and this time also in the evening (1 h before lights 

off). In this experiment, blood was taken via tail nick to make repetitive blood sampling in the 

same mouse possible. Again, morning levels did not differ between the genotypes (63.23 ± 10.18 

ng/ml in SM-Iβ rescues vs. 63.74 ± 11.64 ng/ml in controls). However, plasma CORT levels taken 

in the evening were significantly lower (p=0.033) in SM-Iβ rescues (148.02 ± 17.02 ng/ml) 

compared to controls (217.88 ± 24.31 ng/ml) (Figure 15 B).  

 

Figure 15: Basal plasma CORT levels in 5-7-month-old SM-Iβ rescue mice and litter-matched controls. 

 (A) Ultradian variation in CORT levels in nocturnal rodents. In the early morning hours plasma CORT 

concentrations are at their nadir and peak in the late afternoon shortly before the onset of the activity 

phase in mice. Red arrows mark the time of blood sampling by tail nick. (B) Unstimulated plasma CORT 

levels in the morning (2 h after lights on) and evening (1 h before lights off) in SM-Iβ rescues (open bars; 

n=11♀) compared to litter-matched controls (black bars; n=13♀). *, p<0.05. 

Basal and stimulated plasma catecholamine levels 

Not only CORT, but also catecholamines are released from the adrenal gland into the blood 

circulation in response to stress. It was long believed that the cortex of the adrenal gland (where 

CORT is produced) and the medulla (where catecholamines are produced) act completely 

independent of each other, but numerous studies have shown that there is a close bidirectional 

relationship between the two of them (Ehrhart-Bornstein et al., 1998). Therefore, catecholamine 

levels in cGKI-deficient mouse lines before and after exposure to restraint stress (10 min.) were 

measured (Figure 16, Table 4). Blood was collected via retro-orbital puncture in the morning. In 

total cGKI KO mice, adrenaline and noradrenaline levels were elevated in the basal and in the 

stimulated state (restraint) compared to wild type controls. For noradrenaline this difference 

reached significance in both states (Figure 16 A).  

In cGKI brain-KO mice, the adrenaline values are difficult to interpret since only in a few mice 

adrenaline concentration were above the detection limit. Noradrenaline levels in cGKI brain KO 
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are extremely low when compared to the other cGKI-deficient mouse lines. Therefore, it is 

doubtful whether the restraint stress was successful and effectively stimulated the SNS. 

Nevertheless, cGKI brain-KO mice have higher noradrenaline levels compared to controls, but 

this difference was not statistically significant, probably due to the low animal number 

(Figure 16 B).  

Adrenaline levels in SM-Iβ rescue mice were higher in both states, basal and after restraint. 

However, noradrenaline levels were lower in the basal state in SM-Iβ rescues than in controls. 

After stimulation, noradrenaline levels in the SM-Iβ rescue mice were higher than in controls. 

Again this difference did not reach significance, probably due to low animal numbers 

(Figure 16 C). Values for each group are listed in Table 4.  

 

   

Figure 16: Catecholamine measurements in cGKI-deficient mouse lines before (basal) and after 10 min. 

restraint stress. Blood was collected in the morning via retro-orbital puncture.  (A) cGKI KO mice 
(5-8 weeks old; open bars) compared to wild type controls (black bars). (B) Catecholamine levels in 

8-12-month-old female brain-KO mice (open bars) compared to controls (black bars). (C) Adrenaline and 
noradrenaline levels have been determined in 2-3-month-old female SM-Iβ rescue mice. HPLC 

measurements were kindly performed by S. Hasanovic, Central laboratory, Tuebingen.  *, p<0.05; 

**p<0.01. 
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Table 4: Catecholamine levels in cGKI-deficient mouse lines before and after 10 min. restraint. Significant 
differences are indicated by asterisks. *, p<0.05; **, p<0.01. 

 
Mouse line 

Adrenaline [ng/dl] Noradrenaline [ng/dl] 

basal restraint basal restraint 

cGKI KO 74.33 ± 38.34 151.43 ± 46.83 323.67 ± 58.36* 860.33 ± 160.96** 

wild-type controls 41.58 ± 10.38 62.65 ± 15.8 163.09 ± 15.22 361.88 ± 41.71 

cGKI brain-KO 44.0 115.25 104.75 ± 52.38 304.20 ± 152.10 

controls 77.85 70.83 ± 40.90 69.00 ± 28.7 218.15 ± 89.06 

SM-Iβ rescues 63.67 ± 7.84 754.00 ± 596.82 220.20 ± 40.22 1557.25 ± 404.50 

controls 24.00 272.50 399.67 ± 217.80 978.50 

 

Bassal plasma IL-6 levels 

HPA axis activation can be influenced by cytokines and most of them have a stimulatory effect on 

the stress response system (Dunn, 2000). It was recently observed that SM-Iβ rescue mice have 

elevated plasma IL-6 levels with increasing age (Lutz et al., 2011). Therefore, IL-6 plasma levels 

were determined in an unstimulated group of SM-Iβ rescue mice having the same age 

(5-7 months) as the mice used in the in vivo HPA axis stimulation experiments. As expected, at 

this age SM-Iβ rescues had significantly elevated IL-6 levels (11.45 ± 1.58 pg/ml) compared to 

controls (1.68 ± 0.36 pg/ml) (Figure 17). Only 3 out of 15 SM-Iβ rescue females had low IL-6 

levels at this age. The remaining 12 animals displayed moderately elevated IL-6 levels (ranging 

from 9.12 to 26.94 pg/ml).  

 

  

Figure 17: IL-6 levels in plasma samples of unstimulated SM-Iβ 

rescue mice. Blood was collected via decapitation in the morning. 

SM-Iβ rescues (n=15♀; 5-7 months old) had significantly higher 
basal IL-6 levels (open bar) than litter-matched controls (black bar; 

n=15♀; 5-7 months old). ***, p<0.001.  
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a younger group of mice (3 months old) selected for normal plasma IL-6 levels was also tested in 

the restraint stress paradigm. Again CORT levels after 30 min. restraint stress were attenuated in 

the SM-Iβ rescues compared to controls (Figure 19 C). These results indicate that the observed 

phenotype in SM-Iβ rescues is independent of the type of stressor and independent of the 

elevated plasma IL-6 levels in older mice. Additionally, plasma ACTH levels were determined in 

both age-groups (Figure 19 B, D). Mice of the 7-months-old group had a tendency to higher 

plasma ACTH levels compared to controls (p=0.056) (Figure 19 B). Values of the restraint stress 

experiment are given in Table 6. 

 

    

Figure 19: Effect of 30 min. restraint stress on plasma ACTH (B,D), CORT and IL-6 levels (A,C). Plasma of 
SM-Iβ rescue mice (open bars) and controls (black bars) was assayed for CORT and IL-6. Mice were 

grouped according to their age and plasma IL-6 levels. (A) “old mice” (7 months old) with high (>15 pg/ml) 

IL-6 levels and (C) “young mice” (3 months old) with low (<15 pg/ml) IL-6 levels. For statistical analysis a 
student’s t-test was performed. *, p<0.05; **, p<0.01; ***, p<0.001. 
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Immunoreactive signals for SM22α were additionally detected in the vessels of the medulla and in 

parts of the capsule. Neither SMα-actin nor SM22α was detectable in the cGKI-positive cells 

scattered in the cortex. Vimentin, which has been used as a myofibroblast marker in some 

studies (Gabbiani, 1981, 1996), gave an immunoreactive signal in small fibers in the cortex, 

which were often part of branches from cGKI-positive cells (Figure 37 C). Positively stained fine 

cellular structures were hardly distinguishable from the high background staining, thus detection 

of double-positive cells was extremely difficult. Additionally, only few cells stained positive for 

vimentin, whereas cGKI immunoreactivity was more abundant.  

C.3.1.6. Gene expression in adrenal gland and liver 

Using semi-quantitative RT-PCR, mRNA levels of the cGKI isoforms in wild type adrenal glands 

were investigated. Both isoforms were present in the adrenal gland (Figure 38).  

 

 

Figure 38: Semi-quantitative RT-PCR for cGKIα and cGKIβ mRNA expression levels in the adrenal gland 

of a 7-week-old wild type mouse. Samples were taken at the indicated cycles.  

In order to reveal potential deficits in CORT synthesis in SM-Iβ rescue mice, RT-PCRs for genes 

involved in steroidogenesis were performed (Figure 39). Neither mRNA expression levels of 

enzymes involved in CORT synthesis (MC2R, the ACTH receptor; StaR, which is the rate limiting 

enzyme in this process; Cyp11A1 and Cyp11B1) nor of those involved in CORT transport in the 

blood (corticosterone binding globulin=CBG) were significantly different between SM-Iβ rescue 

and control mice. Also mRNA levels of the lipoprotein receptors LDLR (low density lipoprotein 

receptor) and SR-BI (scavenger receptor BI for high density lipoproteins), which regulate the 

substrate availability for CORT synthesis by modulating cholesterol influx in adrenal cells, were 

similar in mutant and control mice. Another enzyme that is critically involved in active CORT 

production is the 11β-hydroxysteroid dehydrogenase (11β-HSD1), which converts the inactive 

dehydrocortisone and cortisone into active glucocorticoids. Again, mRNA levels reflecting its gene 

expression were similar between mutant and control mice. Some of the enzymes are expressed 
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Shipston, 1995), the latter being more likely. Even though, a direct effect of IL-1β on pituitary 

corticotrophs has been discussed; the main route of IL-1β action on HPA axis activation is 

believed to be via afferent nerves projecting to the NTS, which in turn projects to the PVN 

(Turnbull and Rivier, 1999). Therefore, the main effect of i.p. IL-β injection is at the level of the 

brain by increasing CRH release (Berkenbosch et al., 1987; Sapolsky et al., 1987). Furthermore, 

NO has been shown to interfere with this process by inhibiting the IL-1β induced CRH and AVP 

release in hypothalamic explants (Costa et al., 1993; Yasin et al., 1993). Consequently, to test if 

the lack of cGKI in the central and peripheral nervous system is the reason for the observed 

phenotype, cGKI brain-KO mice were also injected with IL-1β. Neither CORT nor ACTH levels 

were different between mutant and control mice (Figure 18 A, B). Thus, we concluded that cGKI 

expression in the central and peripheral nervous system does not contribute to the modulation of 

the HPA axis response after IL-1β injection. Yet, when interpreting in vivo data from 

tissue-specific KO mice generated with the Cre/loxP-technology, one needs to be cautious due to 

the limitations of this method (see A.1.1.2). Incomplete recombination and thus a few cells still 

expressing the protein could mask an existing phenotype. The rat Nestin promoter and enhancer, 

which was used for the generation of the Nes-Cre mouse line (Tronche et al., 1999), is much less 

active in the PNS than in the CNS (Zimmerman et al., 1994). Therefore, possible cGKI 

expression in the PNS, contributing to the innervation of the adrenal gland, might not be 

completely eliminated. Nevertheless, regarding cGKI expression in the brain, analysis of brains 

from cGKI brain-KO mice revealed the complete loss of cGKI expression in the PVN and other 

nuclei of the hypothalamus (Dr. Susanne Feil, personal communication). Hence, cGKI expression 

in the PVN seems not to contribute to the observed phenotype in SM-Iβ rescue mice after IL-1β 

injection.  

In addition to the common stress response activated by all types of stressors, there are also 

differences in the neuroendocrine circuits activated by diverse stressor types (see A.2.4). To test 

whether the role of cGKI in HPA axis modulation is restricted to IL-1β injection, an immunological 

challenge and thus a physical stressor type, another stressor was applied. Restraint stress can 

be seen as a mixed physical and psychological stressor (Pacak and Palkovits, 2001). In 7-month-

old as well as in 3-month-old SM-Iβ rescue mice the rise in CORT levels following restraint stress 

was diminished compared to controls (Figure 19). These results suggest that the observed 

phenotype is independent of the applied stressor. Thus, the role of cGKI in the modulation of HPA 

axis response is conserved across diverse stressor types. The reason for the use of two groups 

of mice (old and young) in the restraint stress paradigm was that elevated plasma IL-6 levels had 

been observed in older SM-Iβ rescue mice (Lutz et al., 2011). The constant presence of the 

cytokine circulating in the plasma could influence HPA axis activation, since a close bidirectional 

relationship between cytokines and HPA axis is well established (Gaillard, 2001). But, as IL-1β, 

IL-6 rather stimulates the HPA axis and increases CORT secretion (Mastorakos and Ilias, 2006; 

Perlstein et al., 1991). This is in contrast to the observed phenotype of lower CORT levels in SM-

Iβ rescue mice. On the other hand, during long-term stress such as sepsis, IL-6 is able to 
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Even though, no differences in basal ACTH levels were found, and elevated ACTH levels after 

IL-1β induced stress in SM-Iβ rescues are most likely a consequence of the reduced CORT levels 

(drawback), analysis of pituitary gland-specific cGKI KO mice would be worthwile, since cGKI is 

highly expressed in the pars intermedia and a defect at the level of the pituitary gland should be 

excluded. These mice are generated by crossing POMC Cre mice (Akagi et al., 1997), in which 

expression of Cre recombinase is under the control of the proopiomelanocortin (POMC) 

promoter, to “floxed” cGKI mice. POMC expression is restricted to the pars intermedia and few 

cells in the pars distalis of the pituitary gland as well as to the arcuate nucleus in the 

hypothalamus (Schmidt et al., 2009). So far, only preliminary data could be obtained from this 

mouse line, because very few mice were available due to the bad breeding performance of these 

mutants. 

Furthermore, an isoform specific effect can currently not be excluded, since all experiments were 

performed in SM-Iβ rescue mice. Due to breeding problems not enough SM-Iα rescue mice were 

available for the experiments. Nevertheless, analysis of SM-Iα rescue mice could provide 

important information about the mechanism of reduced CORT levels. cGKIα can, in contrast to 

cGKIβ, additionally be activated in an NO/cGMP-independent manner via hydrogenperoxide-

induced dimerisation (Burgoyne et al., 2007). Therefore, NO/cGMP-independent vasorelaxation 

might provide another possibility for regional blood flow regulation influencing adrenocortical 

output. Since only SM-Iβ rescue mice, in which the cGKIβ isoform is restored in smooth muscle 

cells, were used in this study, the observed phenotype might be due to the lack of cGKIα in 

smooth muscle cells. According to the mRNA expression levels, both cGKI isoforms are present 

in wild type adrenal glands (C.3.1.6). cGKIα might be more important than cGKIβ in the well 

vascularised adrenal gland since it can additionally be activated NO/cGMP independently. 

D.3.2. Deciphering the role of cGKI in thermogenesis 

The obtained results represent just the beginning of this project, and numerous experiments are 

needed to further characterise cGKI function in thermoregulation and the underlying mechanism. 

As in the adrenal gland, the cGKI-positive cells in BAT need to be further characterised. 

Morphologically the cells resemble mesenchymal stem cells (MSCs). Also in their study, Haas et 

al. (2009) isolated MSCs from cGKI KO mice and showed deficits in their differentiation potential 

into adipocytes. As multipotent adult stem cells, MSCs are additionally able to differentiate into 

cells of the osteogenic, myogenic and chondrogenic lineage (Zuk et al., 2002). Hence, it would be 

interesting to see, if these differentiation processes are also impaired in cGKI KO mice. One 

possibility are impedance measurements, since it was shown that differentiation of adipose-

derived stem cells into osteoblasts and adipocytes can be distinguished using impedance sensing  

(Bagnaninchi and Drummond, 2011).To prove that cGKI-positive cells in BAT are indeed MSCs is 

rather complicated, because no marker exclusively for MSCs exists (Chamberlain et al., 2007; 

Docheva et al., 2008). Nestin is a potential marker shown to be expressed in bone-marrow 



Discussion 

 

 

98 

derived MSCs under certain culture conditions (Wislet-Gendebien et al., 2005). However, usually 

a combination of several surface markers, e.g. CD29, CD44, CD105, and Sca-1, is used for the 

identification of MSCs (Sung et al., 2008). Antibodies against these surface markers can also be 

used to isolate MSCs from BAT via MACS (magnetic activated cell sorting) or FACS (fluorescent 

activated cell sorting). The isolated cells could then be investigated in terms of cGKI expression 

and differentiation potential.  

Further analysis of BAT from SM-Iβ rescue mice and cGKI brain-KO mice in terms of genes 

involved in thermogenesis and BAT differentiation like UCP-1, PPARγ (peroxisome proliferator-

activated receptor γ), and PGC-1α (PPARγ coactivator-1α) would also be interesting, since 

protein levels of UCP-1 and PPARγ, for example, have been shown to be reduced in BAT of cGKI 

KO mice (Haas et al., 2009). 

To learn more about the role of cGKI in the noradrenergic innervation of BAT, tissue and plasma 

samples have been taken after the cold stress experiments, and these can now be analysed in 

terms of catecholamine content. Additionally norepinephrine injections could be used to test the 

capacity for non-shivering thermogenesis in SM-Iβ rescue and cGKI brain-KO mice. An increase 

in the response to NE injections is considered to be equivalent to an increase in thermogenic 

capacity (Cannon and Nedergaard, 2011; Jansky, 1973). 

Cold stress has also been shown to increase the accumulation of 18-Fluorodeoxyglucose 

(18F-FDG) in BAT (Tatsumi et al., 2004) and this accumulation is associated with increased 

thermogenesis (Carter et al., 2011). Therefore, positron emission tomography (PET) 

measurements of 18F-FDG uptake in BAT of cold-stressed cGKI brain-KO mice are currently 

performed. Furthermore, BAT temperature as an indicator of BAT thermogenesis might also be 

measured directly with DSI transmitters (model TA-F40 W/TP*) in parallel with core body 

temperature and activity. With this method, recruitment of BAT during cold stress could be 

distinguished from non-shivering thermogenesis. 
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E Summary 

The cGMP-dependent protein kinase type I (cGKI) represents an important downstream 

component of nitric oxide/cyclic guanosine monophosphate (NO/cGMP) signalling. It mediates 

many physiological effects of NO such as smooth muscle relaxation and platelet inhibition. The 

expression of cGKI in various other tissues suggests additional functions that still need to be 

elucidated. In the present work, a potential role of cGKI in the stress response and in 

thermogenesis was investigated. 

Previous work indicated that NO/cGMP signalling modulates the activity of the hypothalamic-

pituitary-adrenal (HPA) axis, the main mediator of the stress response. However, it is unknown 

whether these effects are mediated by cGKI. Within the scope of this project, cGKI expression 

was demonstrated in tissues of the HPA axis including the hypothalamic paraventricular nucleus, 

pituitary and adrenal glands. A potential physiological function of cGKI in HPA axis regulation was 

investigated in two cGKI-deficient mouse models: (1) cGKI smooth muscle-specific rescue mice 

(SM-Iβ rescue mice), in which expression of the cGKIβ isoform has been restored selectively in 

smooth muscle cells of cGKI knock-out (KO) mice, and (2) neuron-specific cGKI KO mice 

(referred to as cGKI brain-KO mice) generated via Cre/loxP technology. Stimulation of the HPA 

axis was obtained by injection of interleukin-1β (IL-1β). IL-1β injections resulted in increased 

plasma concentrations of adrenocorticotropic hormone (ACTH) and corticosterone (CORT) in 

SM-Iβ rescue and cGKI brain-KO mice. cGKI brain-KO mice responded like control mice 

demonstrating that cGKI in neurons is most likely not involved in IL-1β induced activation of the 

HPA axis. However, SM-Iβ rescue mice showed after IL-1β stimulation significantly higher ACTH, 

but lower CORT levels than control littermates indicating a reduced sensitivity of their adrenal 

glands to ACTH. The altered stress response was not limited to an immunological challenge, 

because also restraint stress, a mixed physical and psychological stressor, led to a diminished 

rise in CORT levels in SM-Iβ rescue mice. The restraint stress experiment additionally revealed 

that the reduced CORT levels were independent from elevated plasma IL-6 levels in older 

(7-month-old) SM-Iβ rescue mice. The adrenal glands of SM-Iβ rescue mice appeared 

morphologically and histologically inconspicuous. Interestingly, cGKI expression was not 

detectable in parenchymal steroidogenic cells, but in fibroblast-like cells located between the 

CORT-producing cells of the zona fasciculata suggesting a paracrine effect of these cGKI-

positive cells on CORT production and/or secretion. The potentially reduced sensitivity of adrenal 

glands of SM-Iβ rescue mice to ACTH was analysed both in vitro and in vivo. ACTH-induced 

CORT secretion was not significantly different in adrenal slices and primary cells derived from 

SM-Iβ rescue and control mice demonstrating that, in vitro, steroidogenic cells of SM-Iβ rescue 

mice respond normally to the tested concentrations of ACTH. In vivo stimulation of SM-Iβ rescue 

mice with different doses of ACTH caused controversial results. Thus, it is unclear whether the in 

vivo sensitivity to ACTH is disturbed in SM-Iβ rescue mice or whether cGKIs’ influence on the 

plasma CORT levels is independent of ACTH. 
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In the second part of this work, the function of cGKI in thermogenesis, which is involved in the 

response to cold and fasting stress, was investigated in vivo in SM-Iβ rescue and cGKI brain-KO 

mice. Indeed, cGKI expression in brown adipose tissue (BAT), the main site of heat production 

during non-shivering thermogenesis, could be demonstrated. Within BAT, cGKI was detected in 

the vasculature, peripheral nerves and distinct cells, which need to be further characterised. The 

adipocytes were not stained for cGKI. Core body temperature was measured telemetrically at 

room temperature and during cold and fasting stress. At room temperature, SM-Iβ rescue mice 

showed during the light phase a significantly lower core body temperature than controls. Since 

cGKI brain-KO mice had core body temperatures indistinguishable from controls, the function of 

cGKI in thermoregulation at room temperature is probably not localised in the nervous system. 

However, following cold and fasting stress, core body temperature dropped more rapidly in cGKI 

brain-KO mice than in control mice. These data show that cGKI-dependent pathways stimulate 

thermogenesis in vivo. Whether this function is due to a role of cGKI in brain nuclei involved in 

thermoregulation or reflects a function of cGKI in BAT, in which cGKI is also reduced in brain-KO 

mice, is presently not clear.  

In summary, this study demonstrates a role for cGKI in the modulation of the HPA axis as well as 

in thermogenesis in mice, but the underlying cellular and molecular mechanisms need to be 

further deciphered. In the future, cGKI might provide an interesting target for the treatment of 

diseases caused by HPA axis dysregulation such as depression or for BAT-dependent treatment 

of adipositas. 
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I Appendix 

I.1. Chemical, equipment and consumables 

Reagent name, company and order number are given in alphabetical order. Substances not listed 

here were purchased from Roth.  

Chemicals and reagents  

ACTH1-24 Bachem H1150 

AffiniPure Fab Fragment Goat Anti-

Rabbit IgG (H+L) 
dianova #111-007-003 

Agarose LE Biozym #840001 

3,3’-Diaminobenzidine (DAB) Sigma D8001 

DMEM GlutaMAX™ Gibco®/LifeTechnologies #10566-032 

1 Kb DNA ladder Invitrogen/LifeTechnologies #15615016 

FCS, heat-inactivated Gibco®/LifeTechnologies #10500-064 

Gentamicin Gibco®/LifeTechnologies #15750-037 

Hoechst 33258 Sigma #861405 

Na-L-Glutamat Monohydrat Merck #1.06445.1000 

Normal Rabbit Serum dianova #011-000-001 

Oil Red O Sigma O0625 

PageRuler™ Prestained Protein 

Ladder 
Fermentas/ThermoScientific #26616 

Penicillin-Streptomycin, liquid Gibco®/LifeTechnologies #15140-122 

Pure Taq DNA Polymerase Peqlab #01-9130 

Recombinant murine IL-6 PreproTech #216-16 

Recombinant mouse IL-1β R&D Systems 401-ML-005 

Toluidine Blue O Sigma T3260 

Trypan Blue Stain Gibco®/LifeTechnologies #15250061 
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8-Br-cGMP Biolog #B004E 

 

Enzymes 

Collagenase Sigma #C7926 

Papain Sigma P5762 

Proteinase K Roth #7528.1 

Taq-Polymerase Peqlab #01-1040 

 

Commercially available kits 

   

ECL Advance Western Blotting Detection 

Kit 
GE Healthcare #RPN2135 

ImmuChem™ double antibody 

corticosterone RIA 
MP Biomedicals #07120102 

Quantikine®  ELISA mouse IL-6 

immunoassay 
R&D systems #M6000B 

Nucleospin® RNA XS Kit Macherey-Nagel #740902.10 

Total Protein Kit, Micro Lowry, 

Peterson’s Modification 
Sigma #TP0300 

Vectastain® ABC-AP Kit Vectorlabs #AK5000 

Vectastain® Elite® ABC Kit Vectorlabs #PK6100 

Vector Blue Alkaline Phosphatase 

Substrate Kit 
Vectorlabs #SK5300 
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Equipment is listed in alphabetical order. Device designation, manufacturer and unique type 

reference is given.  

Equipment 

Autoclave SANOclav La-Va 

 MMM GmbH Ventilab S3000 

Balance Sartorius Excellence 

 Mettler AM50 

Binocular light Schott KL 1500 LCD 

Camera Allied Vision Technologies GmbH Marlin F-046C 

 Cybertech CS1 

 SONY Cyber-shot VX DSC-W17 

 Logitech WebcamPro9000 

Centrifuge (cell culture room) Eppendorf Centrifuge 5804R (A-4-44) 

Centrifuge (lab) Eppendorf Centrifuge 5417C(F35-40-11) 

Clean bench Thermo Scientific HERA safe 

Cryostat MicromInternational HM525 

Digital imaging system Biozym Scientific GmbH FluorChem® FC3 

Gel preparing system BioRad Mini-Protean® 3 

Freezer (−20 °C) Liebherr Premium No Frost 

Freezer (−80 °C) Revco Technologies Model # ULT2186-3-V35 

Fridge-Freezer Liebherr Comfort No Frost 

Fluorescence microscope ZEISS Axioskop 20 

Heating block Eppendorf Thermomixer compact 

 Neolab neoBlock Duo 2-2504 

Homogeniser MP Biomedicals FastPrep®-24 

Incubator New Brunswick Scientific Innova® CO-170 
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Infrared light Philips InfraPhil100W, HP1511 

Light microscope ZEISS Axiovert 40C 

Manual cell counter Neolab _ 

Microplate photometer Thermo Scientific Multiskan EX 

Microtome MicromInternational HM335E 

Power supply Biometra Standard Power Pack P25 

 BioRad 200/2.0 Power Supply 

Scanner Epson Epson Perfection 4990 Photo 

Shaker Biometra WT12 

Stereoscopic  microscope ZEISS Stemi 2000-CS 

Telemetry device Data Sciences International (DSI) PhysioTel®TA-F20 transmitter 

  RPC-1 receiver 

  Data Exchange Matrix 

  C10T temperature converter 

  C10l light converter 

Thermocycler Peqlab Primus 96 advanced 

 Peqlab peqSTAR 2X 

UV-Transilluminator Vilber-Lourmat TFX-20M 

Vibratome MicromInternational HM650V 

Vortex-Mixer neolab Vortex Mixer 

Water bath Memmert _ 

 Medax _ 

Western blotting device Roth MAXI-Semi-Dry-Blotter 

γ-counter Berthold technologies Multi Crystal LB 2111 

 

All consumables (pipette tips, cell culture flasks, reaction tubes, falcons) used in this project were 

purchased from one of the following companies: Corning, Sarstedt and Roth. 
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I.2. Buffers and solutions 

I.2.(a) Buffers and solutions for PCR-based genotyping: 

Reagent (stock concentration)   final concentration  volume 

DNA lysis buffer: 

10x reaction buffer S (Peqlab)  3 μl 

Proteinase K (50 mg/ml) 10 mg/ml 1  μl 

ddH20  ad 50 μl  

 

10x PCR buffer (store at −20 °C): 

KCl (1 M)  5 ml 

Tris-HCl (1 M) 100 mM 1 ml 

MgCl2  (1 M ) 15 mM 150  μl 

dNTPs (100 mM) 2 mM 200 μl 

ddH2O  ad 10 ml 

 

6x DNA loading dye (store at 4 °C): 

Bromophenol blue 0.125% 5 ml 

Xylene cyanol 0.125% 6 mg 

Sucrose 40% 2 g 

1x TBE  ad 5 ml 
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I.2.(b) Solutions for cell and organ culture: 

Cell culture medium (store at 4 °C): 

DMEM with GlutaMAX™ 

(Dulbecco’s modified eagle medium, 

LifeTechnologies) 

 500  ml 

FCS (fetal calf serum) 

(LifeTechnologies, heat-inactivated) 
~10% 50 ml 

100x Penicillin/Streptomycin 

(10,000 U/ml/10,000 μg/ml) 
100 U/ml/100 µg/ml 5 ml 

Ca2+-free medium, pH 7.4 (store at 4 °C) 

Na-L-Glutamat Monohydrat (Merck) 85 mM 15.91 g 

NaCl  60 mM 3.5 g 

HEPES 10  mM 2.38 g 

KCl 5.6  mM 0.42 g 

MgCl2 • 6 H20 1 mM 0.20 g 

ddH2O  ad 1 l 

→ autoclave   

 

BSA (bovine serum albumin) (store at −20 °C) 

BSA 100 mg/ml 500 mg 

Ca2+-free medium, pH 7.4  ad 5 ml 
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DTT (Dithiothreitol) (store at -20 °C) 

DTT 100 mg/ml 500 mg 

Ca2+-free medium, pH 7.4  ad 5 ml 

 

Enzyme working solution A (prepare freshly; warm to 37 °C before use) 

Collagenase (10 mg/ml, Sigma) 0.5 mg/ml 50 μl 

BSA (100 mg/ml)  1 mg/ml 10 μl 

Ca2+-free medium, pH 7.4  Ad 1 ml 

Enzyme working solution B (prepare freshly; warm to 37 °C before use) 

Papain (7 mg/ml, Sigma) 0.7 mg/ml 100 μl 

BSA (100 mg/ml)  1 mg/ml 10 μl 

DTT (100 mg/ml) 1 mg/ml 10 μl 

Ca2+-free medium, pH 7.4  Ad 1 ml 

 

1x Trypsin/EDTA (store at 4 °C) 

10x Trypsin/EDTA (5 g/l/2 g/l, LifeTechnologies)  3 ml 

PBS, pH 7.4  ad 30 ml 

 

 

ACTH stock solution (10 μM; store at -80 °C)  

ACTH1-24 (Bachem) 10 μM 1 mg 

ddH20  34.1 ml 
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1% BSA-PBS (store at -20 °C) 

Bovine serum albumin (BSA; Roth)  0.1 g 

PBS, pH 7.4  10 ml 

4% low melt agarose  

Agarose low melt  (#6351.1; Roth) 4% 0.8 g 

PBS, pH 7.4  ad 20 ml 

Organ culture medium (store at 4 °C) 

DMEM with GlutaMAX™ (LifeTechnologies)  50 ml 

FCS (LifeTechnologies, heat-inactivated) ~2% 1 ml 

100x Pen/Strep (10,000 U/ml/100 μg/ml) (200 U/ml/2 μg/ml) 1 ml 

Gentamicin (LifeTechnologies) (50 mg/ml) 0.1% 50 μl 

β-Mercaptoethanol (50 mM) 50 μM 50 μl 

8-Br-cGMP stock solution (100 mM; store at -20 °C) 

8-Br-cGMP (#B004E; Biolog) 100 mM 50 mg 

ddH20  1.12 ml 
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I.2.(c) Solutions for IL-1β and ACTH injections: 

5% EDTA solution, pH 7.4 (store at 4 °C) 

EDTA (Ethylenediaminetetraacetic acid) 171 µM 10 g 

PBS, pH 7.4  200 ml  

→ adjust pH to 7.4 with NaOH 

IL-1β stock solution (0.5 μg/ml; 30 nM; store at -20 °C) 

recombinant mouse IL-1β                      

(401-ML-005; R&D Systems) 
 5 μg 

0.1% BSA-PBS  10 ml 

 

ACTH stock solution, 0.5 mg/ml (store at -80 °C) 

ACTH1-24 (#H-1150, Bachem)  5 mg 

ddH20  10 ml  

→ dilute 1:500 (1:50) in 0.1% BSA-PBS for injection of 10 µg/kg (100 µg/kg) 
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I.2.(d) Solutions for transmitter implantation: 

Anesthesia mixture (3 components anesthesia) (store at 4 °C) 

Fentanyl citrate (Fentanyl-ratiopharm®) (50 µg/ml) 50 µg /ml  200 μl 

Midazolam hydrochloride (Midazolam-ratiopharm®)  

(5 mg/ml) 
0.5 mg/ml 200 μl 

Medetomidine hydrochloride (Domitor®, Pfizer) (1 mg/ml) 0.05 mg/ml 100 µl  

0.9% NaCl  ad 2 ml 

→ inject 0.1 ml/10 g body weight i.p. 

Antidote mixture (store at 4 °C) 

Naloxon hydrochloride (Curamed) (0.4 mg/ml) 0.12 mg/ml  670 μl 

Flumazenil (Anexate®, Roche) (0.1 mg/ml) 0.05 mg/ml 1000 μl 

Atipamezole hydrochloride (Antisedan®, Pfizer) (5 mg/ml) 50 µg/ml 100 µl  

0.9% NaCl  ad 2 ml 

→ inject subcutaneously 0.1 ml/10 g body weight to reverse anesthesia 

Carprofen dilution (store at 4 °C) 

Carprofen (Rimadyl®, Pfizer) (50 mg/ml) 16 mg/ml 0.1 ml 

0.9% NaCl  2.9 ml  

→ inject subcutaneously 0.1 ml/per mouse ~20 min. before anesthesia reversal 
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I.2.(e) Solutions for protein analysis: 

SDS protein lysis buffer (prepare freshly before use) 

Tris-HCl, pH 8.0 (1M) 21 mM 210 μl 

SDS (10%) ~0.7% 670 μl  

β-Mercaptoethanol 1.7% 170 μl 

PMSF (100 mM) 0.2 mM 20 μl 

ddH20  ad 10 ml 

5x Lämmli sample buffer (store at -20°C) 

Tris, pH 6.8 (1M) 32% 3.2 ml 

Glycerol 40% 4 ml 

SDS  15% 1.5 g  

Bromphenol blue 0.1% 10 mg 

β-Mercaptoethanol 25% 2.5 ml 

ddH20  ad 10 ml 

4x Tris/SDS (pH 8.8)(store at 4 °C) 

Tris 1.5 M 18.2 g 

SDS 0.4% 0.4 g 

ddH20  ad 100 ml 

→ adjust pH with 10 M NaOH   
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4x Tris/SDS (pH 6.8)(store at 4 °C) 

Tris 0.5 M 3.02 g 

SDS 0.4% 0.2 g 

ddH20  ad 50 ml 

→ adjust pH with 10 M NaOH   

10x SDS running buffer (store at room temperature) 

Tris 0.25 M 15.1 g 

Glycine 2 M 72.0 g 

SDS 1% 5 g 

ddH20  ad 500 ml 

Coomassie stainer (store at room temperature) 

Coomassie Brilliant Blue R-250 2.5g/l 2.5 g 

Methanol 50% 500 ml 

Acetic acid 10% 100 ml 

ddH20  ad 1 l 

Coomassie destainer (store at room temperature) 

Methanol 20% 200 ml 

Acetic acid 20% 200 ml 

Isopropanol 20% 200 ml 

ddH20  ad 1 l 
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Anode buffer I (pH 10.4, store at room temperature) 

Tris 0.3 M 36.3 g 

Methanol 20% 200 ml 

ddH20  ad 1 l 

→ adjust pH to 10.4, if necessary   

Anode buffer II (pH 10.4, store at room temperature) 

Tris 0.025 M 3.03 g 

Methanol 20% 200 ml 

ddH20  ad 1 l 

→ adjust pH to 10.4, if necessary   

Cathode buffer (pH 7.6, store at room temperature) 

Tris 0.025 M 3.03 g 

6-amino-hexanoic-acid 40 mM 5.2 g 

Methanol 20% 200 ml 

ddH20  ad 1 l 

→ adjust pH to 7.6    

5% milk powder in TBS-T (store at 4 °C) 

Milk powder (blotting grade) 5% 25 g 

TBS-T  ad 500 ml 
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I.2.(f) Solutions for cryosectioning: 

Cell fix (store at 4 °C) 

Formaldehyde (37%) 2% 27 ml 

Glutaraldehyde (25%) 0.2% 4 ml 

PBS, pH 7.4  ad 500 ml 

 

Heparin solution (store at 4 °C) 

Heparin Natriumsalz (≥180 U/mg) 40,000 U/l 26 mg 

PBS, pH 7.4  ad 100 ml 

4% Paraformaldehyde (PFA, prepare freshly) 

Paraformaldehyde (reinst) 4% 12 g 

PBS, pH 7.4  ad 300 ml 

→ solve by heating to 57-59 °C with constant stirring until solution becomes clear 

→ filter and store at 4 °C until usage 

30% sucrose solution 

D-Sucrose 30% 150 g 

PBS, pH 7.4  ad 500 ml 

I.2.(g) Solutions for Cresyl violet stain: 

Cresyl violet acetate  (Sigma) 0.1% 0.1 g 

ddH2O  100 ml 
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I.2.(h) Solutions for X-gal staining: 

X-gal stock solution (store at -20 °C in aliquots à 1 ml) 

X-gal (5-bromo-4-chloro-3-indolyl-β-D-

galactopyranoside) 
40 mg/ml 400 mg 

DMSO (Dimethylsulfoxide)  10  ml 

X-gal staining solution (store in the dark at RT) 

K4Fe(CN)6 2,5 mM 0.83 g 

K3Fe(CN)6 2,5 mM 1.07 g 

MgCl2 (1M) 2 mM 1 ml 

PBS, pH 7.4  ad 500 ml 

→ right before usage:  add X-gal stock solution( final concentration: 1 mg/ml)  to   

the staining solution     

I.2.(i) Solutions for Oil Red O staining: 

0.5% Oil Red O solution (store at RT) 

Oil Red O 0.5% 0.5 g 

100% Propylene glycol (1,2-Propanediol)  ad 100 ml 

→ heat under constant stirring carefully to 95-100 °C 

→ do not allow to go over 110 °C (high background staining) 

→ filter solution  
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I.2.(j) Solutions for immunohistochemistry: 

Peroxidase blocking solution 

H2O2 (30%) ~10% 300 µl 

10% methanol  in PBS ~1% 130 µl 

PBS, pH 7.4  1 ml 

Citrate buffer, pH 6.0 (store at RT) 

Citric acid monohydrate (C6H8O7 • H20) 10 mM 2.1 g 

ddH20  ad 1 l 

→ adjust pH to 6.0 with NaOH   

ABC reagent (VECTASTAIN® Elite ABC Kit, Vectorlabs) 

Solution A  12 μl 

Solution B  12 μl 

PBS, pH 7.4  ad 600 μl  

→ add 600 μl TBS-T right before use 

ABC reagent (VECTASTAIN® Standard ABC-AP Kit, Vectorlabs) 

Solution A  50 μl 

Solution B  50 μl 

PBS, pH 7.4  ad 5 ml  

DAB (3,3‘-Diaminobenzidine) staining solution 

DAB stock solution 0.1% 0.05% 800 μl 

PBS, pH 7.4  800 μl  

→ add 1 μl H2O2 right before use 
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Vector Blue Alkaline Phosphatase substrate kit 

Substrate 1  2 drops 

Substrate 2  2 drops  

Substrate 3  2 drops 

100 mM Tris-HCl, pH 8.2  ad 5 ml 

→ mix well after adding each substrate 

I.2.(k) Solutions for immunofluorescence: 

Permeablization buffer (store at 4 °C) 

Triton-X-100 0.5% 200 μl 

PBS, pH 7.4  ad 40 ml  

Reaction buffer (store at 4 °C) 

NaCl 2% 800 μl 

Triton-X-100 0.1% 40 μl  

PBS, pH 7.4  ad 40 ml 

normal serum  

(from the host species of the secondary antibody) 
1% 400 μl 

→ prepare reaction buffer without serum, and add serum just before use 

Fab fragment solution (prepare fresh; stock solution stored at 4 °C) 

AffiniPure Fab Fragment Goat Anti-Rabbit IgG (H+L) 

(Dianova) (1.3 mg/ml) 
13 µg/ml 20 µl 

PBS, pH 7.4   2 ml  
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Hoechst stock solution (store in small aliquots at -20 °C, in the dark) 

Hoechst 33258 (Sigma) 1 mg/ml 100 mg 

ddH20  100 ml  

I.2.(l) Solutions for RT-PCR: 

DEPC-treated water (store at RT) 

DEPC (Diethylpyrocarbonate)  0.1% 1 ml 

ddH20  1 l  

→ stir overnight at RT   

→ autoclave to inactivate DEPC   

3 M Sodium acetate, pH 5.2 (store at RT) 

Sodium acetate (NaOAc)  3 M 40.8 g 

ddH20  ad 100 ml  

→ dissolve NaOAc first in 70 ml ddH20 and adjust pH to 5.2 with glacial acetic acid 

→ add ddH20 to bring to a total volume of 100 ml 

 

 

 

 

 

 

 

 

 



Appendix 

 

 

xix 

I.3. Primer sequences 

I.3.1. Genotyping 

Primer sequences 

Table 9: Primer sequences for genotyping PCRs 

primer sequence 5’-3’ gene 

RF53 CCT GGC TGT GAT TTC ACT CCA cGKI_forward 

RF118 AAA TTA TAA CTT GTC AAA TTC TTG cGKI_reverse 

RF125 GTC AAG TGA CCA CTA TG cGKI_reverse 

Cre800 GCT GCC ACG ACC AAG TGA CAG CAA Cre_forward 

Cre1200 GTA GTT ATT CGG ATC ATC AGC TAC AC Cre_reverse 

RF67 CTC AGA GTG GAA GGC CTG CTT SMIα/β/WT_forward 

RF90 CAC ACC ATT CTT CAG CCA CA WT_reverse 

SW8 AAC TCC AGC TCC AGC TCG SMIβ_reverse 

SW12 CCT CCT TGA GCA TGA GAA TCT TG SMIα_reverse 

 

I.3.2. RT-PCR 

Table 10: Primer concentrations and conditions for RT-PCR 

gene conc. 
[pmol/μl] 

GAPDH/HPRT 
[pmol/μl] 

annealing temp. 
touch-down [°C] 

annealing temp. 
[°C] 

amplicon size 

MC2R 0.08 0.1 HPRT 61 55 580 

Cyp11A1 0.1 0.1 HPRT 61 55 224 

StAR 0.25 0.125 GAPDH 66 60 188 

SR-BI 0.1 0.2 HPRT 61 55 121 

CBG 0.125 0.05 GAPDH 61 55 182 

LDLR 0.25 0.125 GAPDH 66 60 68 

11β -HSD1 0.25 0.25 HPRT 61 55 133 

cGKIα 0.25 0.125/0.25 61 55 533 

cGKIβ 0.25 0.125/0.25 61 55 574 
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Primer sequences 

Table 11: Sequences of RT-PCR primers  

primer sequence 5’-3’ gene Tm [°C] source 

AG1_fwd CAT CTT GCC GAG AAA GAT CCT A MC2R 58.4 Chida et al., 2007 

AG1_rev AGG ATG AAC ATG CAG TCA ATG AT  

57.1 pga.mgh.harvard.ed
u/cgi-
bin/primerbank 
primerID:31560668
b2 

AG2_fwd GAC CTG GAA GGA CCA TGC A Cyp11A1 58.8 Qiao et al., 2009 

AG2_rev ACT GCA GGG TCA TGG AGG T  58.8 Chida et al., 2007 

AG3_fwd CGG GTG GAT GGG TCA AGT TC StAR 61.4 

http://pga.mgh.harv
ard.edu/cgi-
bin/primerbank/ 
primerID:11813013
8b1 

AG3_rev GCA CTT CGT CCC CGT TCT C  61.0  

AG4_fwd AGC GTG GAC CCT ATG TCT ACA SR-BI 59.8 

http://pga.mgh.harv
ard.edu/cgi-
bin/primerbank/ 
primerID:14389422
b3 

AG4_rev CCA TGC GAC TTG TCA GGC T  58.8  

AG5_fwd AGA CCT GGA TAG TTC AGC CAC CBG 59.8 

http://pga.mgh.harv
ard.edu/cgi-
bin/primerbank/ 
primerID:11813121
6b2 

AG5_rev TCG CCG AAT CAC GAA AGT AAC  57.9  

AG6_fwd CTG TGG GCT CCA TAG GCT ATC T LDLR 62.1 Hoekstra et al., 
2009  

AG6_rev GCG GTC CAG GGT CAT CTT C  61.0  

AG7_fwd GAA GAG TCA TGG AGG TCA AC 11β- HSD1 57.3 
Schmid et al., 2011  

(adapted for mouse) 

AG7_rev GCA ATC ATA GGC TGG GTC AT  57.3  

GAPDH_fwd ACT CAC GGC AAA TTC AAC GGC ACA G GAPDH 64.6 Davies et al., 2007 

GAPDH_rev TGG TCA TGA GCC CTT CCA CAA TGC C  66.3  

QG197 GTA ATG ATC AGT CAA CGG GGG AC HPRT 62.4 
Diploma thesis  

Ruth Ferstl 2005 
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QG198 CCA GCA AGC TTG CAA CCT TAA CCA  62.7  

RM50 CGC CAG GCG TTC CGG AAG T cGKIα 70.0 
Diploma thesis  

Ruth Ferstl 2005 

RM44 TCC TCT TGC ACC CTG CCT GAT  66.6  

RM52 CTC CGC GGA AGC CCA CCG CCT cGKIβ 76.9 
Diploma thesis 

Ruth Ferstl 2005 

RM44 TCC TCT TGC ACC CTG CCT GAT  66.6  

 

 

 

  

  

I.4. Antibody dilutions 

Primary antibodies 

Table 12: Dilutions of pimary antibodies 

antibody origin application/dilution company 

βIII-tubulin monoclonal mouse IF/1:500 Promega (#G7121) 

  IHC/1:2,000  

CD31 (Pecam-1) (V-16) polyclonal goat IF/1:100 Santa Cruz (#sc-31045) 

cGKIα (N-16) polyclonal goat WB/1:500 Santa Cruz (#sc-10335) 

cGKIβ (E-20) polyclonal goat WB/1:500 Santa Cruz (#sc-10342) 

cGKIc polyclonal rabbit WB/1:5,000 Valtcheva et al., 2009 

  IF/1:1,500  

  IHC/1:1,500  

GAPDH (14C10) monoclonal rabbit WB/1:5,000 Cell signaling (#2118) 

Mac2 monoclonal rat WB/1:3,000 Cedarlan (#CL8942AP) 

  IF/1:200  

Phospho-Akt (Ser473) polyclonal rabbit WB/1:1,000 Cell signaling (#9271) 

SMα-actin monoclonal mouse IF/1:800 Sigma (#A-2547) 

SM22α polyclonal rabbit IF/1:200 abcam (#ab14106) 

SOCS3 (L210) polyclonal rabbit WB/1:1,000 Cell signaling (#2932) 

Vimentin polyclonal chicken IF/1:2,000 LS Biosciences (#LS-B291) 
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Secondary antibodies 

Table 13: Dilutions of secondary antibodies  

antibody origin application/dilution company 

anti-goat-HRP donkey WB/1:5,000 Santa Cruz (#2056) 

anti-rabbit-HRP goat WB/1:5,000 Cell signaling (#7074) 

anti-rat-HRP goat WB/1:5,000 Santa Cruz (#2065) 

biotinylated anti-mouse horse IHC/1:250 Vectorlabs (#BA-2000) 

biotinylated anti-rabbit goat IHC/1:200 Vectorlabs (#BA-1000) 

anti-chicken-AlexaFluor555 goat IF/1:500 LifeTechnologies 
(#A21437) 

anti-goat-AlexaFluor594 donkey IF/1:500 LifeTechnologies 
(#A11058) 

anti-mouse-AlexaFluor555 goat IF/1:500 LifeTechnologies 
(#A21127) 

anti-rabbit-AlexaFluor488 goat IF/1:500 LifeTechnologies 
(#A11008) 

anti-rabbit-AlexaFluor595 goat IF/1:500 LifeTechnologies 
(#A11012) 

anti-rat-AlexaFluor594 rabbit IF/1:500 LifeTechnologies 
(#A21211) 
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I.5. Raw data 

I.5.1. Temperature 

I.5.1.1.Core body temperature during normal conditions 

Table 14: Core body temperature and lococmotor activity in cGKI-deficient mice and controls. Statistically 
significant differences are marked with asterisks. *, p<0.05; **, p<0.01; ***, p<0.001. 

 SM-Iβ rescues controls SM-Iβ rescues controls 

Time 
ZT [h] 

Temperature [°C] Temperature [°C] activity [counts/min] activity [counts/min] 

6 36.56 ± 0.06** 36.95 ± 0.12 2.5 ± 0.26 2.65±0.67 

9 36.41 ± 0.06* 36.72 ± 0.12 1.86 ± 0.24 1.17±0.18 

12 36.37 ± 0.05** 36.74± 0.10 1.62 ±0.21 1.3±0.08 

15 36.6 ± 0.05** 36.95 ± 0.10 2.01 ±0.26 1.6±0.26 

18 37.35 ± 0.06 37.56 ± 0.03 3.81 ±0.55 3.8±0.62 

21 37.41 ± 0.05 37.54 ± 0.03 3.41 ±0.45 3.05±0.23 

24 37.39 ± 0.05 37.53 ± 0.06 3.6 ±0.5 3.35±0.53 

3 37.23 ± 0.06 37.52 ± 0.10 4.17 ±0.55 4.57±0.52 

 cGKI brain-KO controls cGKI brain-KO controls 

Time 
ZT [h] 

Temperature [°C] Temperature [°C] activity [counts/min] activity [counts/min] 

6 36.44 ± 0.10 36.6 ± 0.05 2.41 ± 0.27 1.86±0.28 

9 36.36 ± 0.10 36.29 ± 0.05 2.24 ± 0.22 1.48±0.19 

12 36.37 ± 0.11 36.33± 0.04 2.19 ±0,22 1.41±0.19 

15 36.75 ± 0.09 36.62 ± 0.03 3.28 ±0,32 1.7±0.23 

18 38.03 ± 0.16 37.73 ± 0.04 24.19 ±4.83*** 8.86±1.37 

21 37.71 ± 0.14 37.61 ± 0.07 14.65 ±2.53 7.79±1.66 

24 37.70 ± 0.12 37.41 ± 0.04 14.17 ±2.75 6.17±0.79 

3 37.14 ± 0.08 37.1 ± 0.04 7.49 ±0.68 5.19±0.64 
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I.5.1.2.Core body temperature under cold stress 

Table 15: Temperature and activity during cold stress (starting at ZT 14 h) in cGKI-deficient mice and 

controls. Statistically significant differences are marked with asterisks. *, p<0.05; **, p<0.01; ***, p<0.001. 

 SM-Iβ rescues controls SM-Iβ rescues controls 

Time 
ZT [h] 

Temperature [°C] Temperature [°C] activity [counts/min] activity [counts/min] 

14 37.1 ± 0.26 37.40 ± 0.38 14.7 ± 0.25 13.14±1.01 

14.5 36.87 ± 0.40 36.96 ± 0.43 9.23 ± 0.90 9.18±1.63 

15 37.01 ± 0.25 37.07± 0.33 7.08 ±1.53 8.59±2.75 

15.5 36.40 ± 0.26 36.74 ± 0.36 3.89 ±0.83 5.12±1.77 

16 36.49 ± 0.10 36.55 ± 0.31 4.07 ±0.69 3.48±0.79 

16.5 36.09 ± 0.16 36.32 ± 0.23 1.7 ±0.33 1.74±0.42 

17 35.77 ± 0.16 36.02 ± 0.24 1.23 ±0.4 1.36±0.59 

17.5 35.52 ± 0.23 35.75 ± 0.32 0.93 ±0.21 0.91±0.27 

18 35.93± 0.27 36.40± 0.26 6.01 ±1.97 6.34±0.02 

18.5 36.08± 0.23 36.74± 0.15 6.33 ±2.6 7.15±2.49 

19 35.79± 0.29 36.34± 0.34 1.81 ±0.43 2.71±0.51 

19.5 36.42± 0.38 36.24± 0.95 1.91 ±0.28 1.22±0.46 

 cGKI brain-KO controls cGKI brain-KO controls 

Time 
ZT [h] 

Temperature [°C] Temperature [°C] activity [counts/min] activity [counts/min] 

14 37.13± 0.30 37.39 ± 0.15 10.06 ± 2.99 7.26±0.91 

14.5 36.96 ± 0.36 37.47 ± 0.19 11.53 ± 2.44 8.31±1.36 

15 36.63± 0.43 37.42± 0.20 12.22 ±2.36 12.13±2.89 

15.5 35.89± 0.79 37.23 ± 0.29 11.42 ±2.07 8.89±1.55 

16 34.91± 1.13 37.04 ± 0.33 12.39 ±2.41 7.86±1.61 

16.5 33.67± 1.77 36.91 ± 0.37 11.91 ±3.10 5.97±1.88 

17 32.62± 2.19 36.61 ± 0.44 7.77 ±2.84 6.57±2.21 

17.5 32.07± 2.15 35.99 ± 0.64 5.50±1.78 3.79±1.46 

18 31.32± 2.15* 35.67 ± 0.84 9.74±5.79 6.28±1.69 

18.5 30.71± 2.20* 35.21 ± 1.24 7.09±2.62 4.79±1.77 
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I.5.1.3.Core body temperature under fasting stress 

Table 16: Temperature and activity during fasting stress (starting at ZT 17 h) in cGKI-deficient mice and 

controls. Statistically significant differences are marked with asterisks. *, p<0.05; **, p<0.01; ***, p<0.001. 

 SM-Iβ rescues controls SM-Iβ rescues controls 

Time 
ZT [h] 

Temperature [°C] Temperature [°C] activity [counts/min] activity [counts/min] 

17 37.59 ± 0.13 37.96 ± 018 7.82 ± 1.53 8.89±1.14 

19 37.16 ± 0.27 37.72 ± 0.24 6.73 ± 2.01 6.85±1.60 

21 36.77 ± 0.23 37.38± 0.28 5.32 ±1.17 5.77±1.03 

23 35.52 ± 0.51 36.18± 0.50 3.88±0.87 4.49±1.22 

01 33.35 ± 0.98 34.31 ± 0.57 2.94 ±1.04 1.59±0.46 

03 31.72 ± 0.97* 34.68 ± 0.58 1.39 ±0.46 3.21±0.84 

05 29.14 ± 1.08* 32.19 ± 1.19 0.47 ±0.24 0.62±0.33 

07 31.07 ± 1.53*** 35.35 ± 0.28 0.88 ±0.33 1.48±0.77 

09 36.74± 0.12 37.22± 0.09 2.37 ±1.04 2.86±0.87 

11 36.44± 0.09 36.89± 0.09 1.29 ±0.39 2.07±0.22 

 cGKI brain-KO controls cGKI brain-KO controls 

Time 
ZT [h] 

Temperature [°C] Temperature [°C] activity [counts/min] activity [counts/min] 

19 38.13± 0.10 38.27 ± 0.24 42.71 ± 7.01 23.90±2.71 

21 37.84 ± 0.14 38.27 ± 0.24 56.11 ± 13.38* 29.85±4.01 

23 37.60± 0.19 38.26± 0.24 52.71 ±5.74 31.94±4.32 

01 37.48± 0.22 38.23 ± 0.25 49.54 ±3.40 31.81±4.91 

03 37.27± 0.24 37.91 ± 0.22 48.96 ±5.42 28.66±5.30 

05 36.34± 0.70 37.15 ± 0.28 35.76 ±5.61 20.31±5.55 

07 34.91± 1.31* 36.87± 0.34 17.16 ±5.93 12.76±4.26 
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I.5.2. Weight of adrenal glands 

Controls 

Mouse # Age 
[months] 

Body weight [g] Adrenal gland weight 
[mg] 

AG [μg]/BW[g] 

1 7 28.5 7.8 273.7 

2 7 25.3 5.8 229.6 

3 7 25.7 6.7 261.1 

4 7 24.1 7.9 328.5 

5 7 25.1 6.5 259.5 

6 7 25.5 7.4 290.2 

7 9 26.3 5.5 209.5 

8 9 26.5 6.2 234.4 

9 9 29.8 4.8 161.3 

10 9 30.1 4.6 189.5 

SM-Iβ rescues 

Mouse # Age 
[months] 

Body weight [g] Adrenal gland weight 
[mg] 

AG [μg]/BW[g] 

1 7 19.4 6.5 335.1 

2 7 21.0 4.0 190.2 

3 7 21.4 3.9 182.2 

4 7 23.9 5.0 209.2 

5 7 23.9 5.2 217.6 

6 7 21.0 5.7 271.6 

7 9 25.3 5.4 213.4 

8 9 23.9 3.8 159.0 

9 9 25.1 4.2 167.3 

10 9 26.5 5 188.7 

 

 

 

 



 

 

 
 


