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Summary

Premature labor and delivery is a major cause of infant mortality and

morbidity. Advances in the fields of medicine and engineering together

with a better understanding of the preterm birth related risk factors

have successfully reduced their incidence. Despite such advances, in most

developed countries the preterm birth rate is still high, accounting for

about 85% of infant mortality and more than 50% of the surviving infant’s

morbidity. The timely prediction of premature labor and delivery can

improve the effectiveness of the required treatments. Unfortunately, the

techniques employed in current obstetrical practice proved to be inaccurate

for the prediction of premature labor and delivery.

The contractile element of the uterus is the myometrium, which consists

of smooth muscle cells. The electrical activity (always accompanied by

magnetic activity) in form of action potentials (AP) propagates through the

myometrial cells causing the contraction of the uterus. Magnetomyography

(MMG) is the noninvasive measurement of the uterine magnetic activity

by means of equally spaced magnetic sensors arranged in a concave array.

The MMG recordings display advantages which renders them suitable for

the analysis and characterization of the uterine activity. Compared to

electromyography signals, the MMG signals are detectable outside the

boundary of the skin without making any contact with the body. Also

they are independent on conductivity geometry, i.e. tissue conductivity.

The measured electrical activity arises from volume currents flowing (in the

body) to the electrode sites and not directly due to the primary current

generators.

The current work presents a set of methods designated to identify and

characterize uterine contractile activity and its dynamics in MMG signals.

The basic process controlling the uterine contraction is the underlying

electrical activity in the form of APs which propagate between muscle cells

and open ion channels allowing the influx of calcium ions to produce a



contraction. APs occur in groups and form a burst of activity which in

humans can last more than a minute. The ultimate goal is to provide a

timely prediction of delivery. More precisely, a multi-sensor analysis of the

spatial propagation properties of the MMG signals is carried out to identify

time segments of uterine burst activity. This type of analysis is of particular

relevance because the spreading of magnetic activity in the myometrium

results in coordinated contractions (close to term), capable to push the

fetus into the birth canal and ultimately lead to delivery. Therefore, the

analysis of the spatial propagation properties (within segments of contractile

activity), i.e. conduction velocity (CV), could provide a fundamental

contribution for the prediction of delivery.

First, a multi-stage approach is introduced wherein Hilbert and Wavelet

transforms are employed to automatically identify uterine contraction

bursts in MMG data. The signals are decomposed by wavelet analysis into

multilevel approximate and detail coefficients. In each level, the signals

are reconstructed using the detail coefficients followed by the computation

of Hilbert transform, a procedure referred to as the Hilbert transform of

the wavelet decomposition (HTWD). To increase the signal to noise ratio,

the Hilbert amplitude of the reconstructed signals from different frequency

bands (0.1 - 1 Hz) is integrated over all the sensors. Using the affinity

propagation clustering technique the contractile bursts are distinguished

from the noise level and a single marker for the contractile events is created.

The method is applied on simulated MMG data, using a simple stochastic

model, to determine its robustness and to seven MMG datasets.

Second, to characterize the dynamics of the contractile activity, a novel

approach to calculate the CV of the uterine contraction bursts in MMG

signals is introduced. For this purpose, the sensor space is partitioned

(according to the x and y coordinates) into four different quadrants (Q) and

the contractile bursts are identified at the level of individual sensors using

the previously described HTWD approach. The identification is performed

within a non-overlapping window and if within the inspection window

contractile burst is identified in a quadrant pair (e.g., Q1-2) then the center

of gravity (CoG) is computed in each quadrant for each time point (the sum

of the product of the sensor coordinates with the Hilbert amplitude of the

MMG signals normalized by the sum of the Hilbert amplitude of the signals

over all sensors). Following this, the delay between the CoGs is computed



using the high dimension cross-correlation (HDCC) function. This approach

is validated by simulating a stochastic model based on independent second-

order autoregressive processes (AR2). The proposed approach is applied to

serial MMG recordings. The outcomes show an increase in the CV as the

subjects approach labor and that it can be considered as a possible predictor

of preterm labor.

To conclude, it could be shown that the HTWD approach can be used for

the successful identification of uterine contractions. To mark the contractile

intervals, a discrete-time binary decision signal was created in each magnetic

sensor. The information provided by this approach was further used to

determine the CV of the uterine contraction bursts and it was shown

that the increase in the CV can be considered as a possible predictor of

preterm labor. Significant benefits could be expected from the introduction

of MMG signal analysis for routine contraction monitoring. Further clinical

validations are required to assess the robustness of the presented methods

and to account for physiological differences among subjects.





Zusammenfassung

Frühgeburt ist die Hauptursache für Säuglingssterblichkeit und Säuglings-

morbidität. Die Inzidenz der Frühgeburt konnte durch Fortschritte in der

biomedizinischen Forschung und ein besseres Verständnis der Risikofaktoren

erfolgreich reduziert werden. Trotz solcher Erfolge, ist die Häufigkeit der

Frühgeburt auch in entwickelten Ländern noch hoch und erklärt etwa 85%

der Säuglingssterblichkeit und mehr als 50% der überlebenden Säuglings-

morbidität. Eine zeitliche Vorhersage des Eintretens einer Frühgeburt kann

die Effektivität der benötigten Behandlungen erhöhen, jedoch sind die

gegenwärtig eingesetzten Methoden für die Vorhersage der Frühgeburt zu

ungenau.

Das kontraktile Gewebe der Gebärmutter ist das Myometrium, das aus

einer glatten Muskulatur besteht. Die elektrische Aktivität (immer begleitet

von einer magnetischen Aktivität) in Form von Aktionspotentialen (AP)

breitet sich entlang der myometrischen Zelloberfläche aus und verur-

sacht Kontraktionen des Uterus. Die Magnetomyographie (MMG) ist

eine nicht invasive Methode für die Messung der magnetischen Aktivität

des Uterus. Dabei werden hochsensitive magnetische Sensoren eingesetzt,

die es erlauben magnetische Aktivität über das gesamte Abdomen einer

Schwangeren zu registrieren. Aus den biomagnetischen Signalen kann

die kontraktile Aktivität des Uterus extrahiert werden. Im Vergleich zu

elektromyographischen Signalen können MMG Signale auch ohne direkten

Kontakt mit der Hautoberfläche erfasst werden. Zusätzlich werden die MMG

Signale nicht von der Leitfähigkeit des Gewebes beeinflusst und können auch

referenzfrei registriert werden.

In der vorliegenden Arbeit wurden mehrere Methoden entwickelt, imple-

mentiert und validiert, die für die Identifizierung und Charakterisierung

der kontraktilen Aktivität des Uterus und seiner Dynamik geeignet sind.

Das Hauptziel der Arbeit war die Entwicklung eines Methodensets, das die

zeitliche Vorhersage der Geburt ermöglichen kann. Dabei wurde die kontrak-

tile Aktivität anhand einer Multi-Sensor Analyse der räumlich-zeitlichen



Muster der MMG Signale untersucht. Die Ausbreitung der magnetischen

Aktivität im Myometrium verursacht koordinierte Kontraktionen (kurz vor

der Geburt), die den Fötus in den Geburtskanal drücken und schließlich zur

Geburt führen.

In einem ersten Analyseschritt wurden Hilbert und Wavelet Transforma-

tionen zur Identifizierung der Gebärmutterkontraktionshäufung im MMG

Signal eingesetzt. Das Signal wurde mit einer Wavelet Analyse in einem

Mehrstufenverfahren in approximierte und detaillierte Koeffizienten zerlegt.

Innerhalb jeder Stufe, wurden die Signale mit den detaillierten Koeffizienten

rekonstruiert und deren Hilbert Transformation berechnet. Diese Vorge-

hensweise wurde unter Hilbert-Transformation der Wavelet-Dekomposition

(HTWD) zusammengefasst. Um das Signal-Rausch Verhältnis zu erhöhen,

wurden die Hilbert-Amplituden der rekonstruierten Signale in unterschied-

lichen Frequenzbereichen (0.1 - 1 Hz) über alle Sensoren integriert.

Eine Affinity Propagation Clustering Klassifizierung wurde eingesetzt,

um die Kontraktionsaktivität vom Rauschen zu differenzieren und einen

eigenen Marker für das kontraktile Ereignis zu setzen. Um die Robustheit

der Methode zu untersuchen, wurde sie an einem stochastischen Modell

mit simulierten MMG Daten getestet. Zusätzlich wurde die Methode an

Messdaten von sieben schwangeren Frauen erprobt.

Um die Dynamik der kontraktilen Aktivität zu charakterisieren, wurde

im nächsten Schritt ein neuer Ansatz zur Berechnung der Ausbreitungs-

geschwindigkeit (conduction velocity - CV) der kontraktilen Aktivität

über den Uterus aus den MMG Signalen eingeführt. Dabei wurde der

Sensor Raum in vier unterschiedliche Quadranten (Q) aufgeteilt (anhand

x und y Koordinaten) und mit Hilfe des vorher erwähnten HTWD

Methodenansatzes die Kontraktionsaktivität identifiziert. Die Identifikation

wurde in nicht überlappenden Fenstern fester Größe durchgeführt. Wurde

innerhalb die Inspektion Fenster Kontraktionsaktivität in einem Quadrant

paar (e.g., Q1-2) gefunden, so wurde der Aktivitätsschwerpunkt (center of

gravity - CoG) für jeden Quadrant und jeden Zeitpunkt berechnet (die

Multiplikation zwischen jede Sensorkoordinate und die Hilbertamplitude

des MMG Signals wurde summiert und dann durch die summierte Hilbert

Amplitude aller Sensoren geteilt). Danach wird die Verzögerung zwischen

den CoGs unter Verwendung der hoch dimensionalen Kreuzkorrelations-

funktion (high dimension cross-correlation - HDCC) berechnet. Dieser



Ansatz wurde durch Simulation eines stochastischen Modells validiert,

der auf unabhängigen autoregressiven Prozessen zweiter Ordnung (AR2)

basiert. Der vorgeschlagene Ansatz wurde auf serielle MMG Aufnahmen

angewandt. Die Ergebnisse zeigten einen Anstieg in der CV in späteren

Schwangerschaftswochen. Es wurde auch gezeigt, dass die CV als möglicher

Prädiktor für vorzeitige Wehen betrachtet werden kann.

Zusammenfassend wurde gezeigt, dass der HTWD Ansatz für eine erfolgrei-

che Identifizierung der Wehentätigkeit im MMG Signal verwendet werden

kann. Um die kontraktilen Abständen zu markieren, wurde ein zeitdiskretes,

binäres Auswahlsignal in jedem magnetischen Sensor erzeugt. Die von

diesem Ansatz zur Verfügung gestellten Informationen wurden weiter

verwendet, um die CV der kontraktilen Aktivität im Uterus zu bestimmen.

Es wurde auch gezeigt, dass die CV als möglicher Prädiktor für vorzeitige

Wehen betrachtet werden kann. Der Einsatz der MMG Signalanalyse

für die routinemäßige Überwachung der Wehentätigkeit im klinischen

Setting könnte wichtige medizinische Nutzen zeigen. Weitere klinische

Validierungen, die die physiologische Unterschiede zwischen Probanden

berücksichtigen, sind erforderlich, um die Robustheit der vorgestellten

Methoden zu bewerten.





To my son and my wife.
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1

Introduction

It is said that the present is pregnant with the future.

-Voltaire

Premature labor and delivery is an important public health problem as it represents

a major and often preventable cause of morbidity and mortality in newborns.

Prematurity, often associated with permanent neurodevelopmental disability, occurs

when a baby is born before the 37th week of gestation. As a consequence, the immature

newborn may require long-term neonatal intensive care at a substantial emotional and

financial cost to families and hospitals. According to the European Perinatal Health

Report, preterm birth rates varied widely among European countries and ranged from

5.5 to 11.4%, meaning that about half a million babies are born prematurely in Europe

every year (Euro-Peristat Project, 2004). The highest percentage of preterm births was

registered in Austria (11.4%), followed by Germany (8.9%) and was lowest in Ireland

(5.5%) and Lithuania (5.3%). The variation in very preterm births, before 32 weeks

of gestation, was less pronounced, and rates for most countries fell within a range of

0.9 to 1.1%. Some of the variation between countries may be due to differences in the

way that gestation is determined. According to a previous study, about 85% of infant

mortality is accounted for by preterm labor (Maul et al., 2003).

One of the major challenges faced by obstetricians is a proper diagnosis of labor

which could be especially useful in the prediction of labor for patients at high risk

for premature delivery. To date there is no accurate and objective method available

for MMG to predict the onset of labor or to distinguish between false and true

labors (Arulkumaran et al., 1991; Garfield et al., 2001; Iams, 2003; Peaceman et al.,

1



1. Introduction

1997; Rabotti et al., 2010a). The objective assessment of uterine activity could also

significantly contribute to the timely recognition of eventual complications.

A high percentage of preterm births are the result of either (i) induced delivery or

delivery by Caesarean section, also called C-section1, (ii) spontaneous preterm labor

with intact membranes or (iii) preterm premature rupture of the membranes. Common

reasons for these types of deliveries are the intrauterine growth restriction (IUGR)

or hypertensive disorders of pregnancy, i.e., pre-eclampsia and eclampsia (Goldenberg

et al., 2008). IUGR refers to the poor growth of a fetus while still in the mother’s uterus.

Pre-eclampsia is a medical condition characterized by pregnancy-induced hypertension

in the mother accompanied by proteinuria (an excess of serum proteins in the urine).

Eclampsia, usually occurring in a patient who already developed pre-eclampsia, is an

acute life threatening complication of the pregnancy characterized by the appearance

of tonic-clonic seizures.

At present, little is know about the pathogenesis of preterm labor. It is speculated

that preterm labor might be the result of either an early idiopathic activation of

the normal labor process or the result of pathological insults (Goldenberg et al.,

2008; Leman et al., 1999; Maner et al., 2003). To reduce the incidence of preterm

delivery, current obstetric interventions focus on inhibiting premature contractions by

the administration of tocolytic agents, which temporarily delay the delivery. However,

tocolytic therapy involving agents to control the contractibility of the myometrium,

e.g. magnesium sulfate and others, is expensive and exposes the patient to unnecessary

risks. Therefore, most physicians rely on cervical change before initiating this therapy.

In a recent study the use of tocolytic agents is questioned, as their administration fails to

demonstrate improvements in neonatal outcome (Kenyon and Peebles, 2011). Instead,

the progesterone has been suggested as a future therapeutic candidate to reduce the

risk of early birth (Fonseca et al., 2007; Kenyon and Peebles, 2011). However, there

is a lack of studies to demonstrate a long-term reduction in neonatal morbidity and

mortality from administration of progesterone.

In a review conducted by Garfield and colleagues studies showed that the uterus

(myometrium) and cervix pass through a conditioning step in preparation for labor.

This step consists of changes in the electrical properties that make muscles more

excitable and responsive to produce forceful coordinated contractions (Garfield et al.,

2001). At a certain point this process becomes irreversible and delivery cannot be

delayed for more than a few days even with tocolytic agents (Garfield et al., 2001).

Preterm labor management is of an even greater concern. Early treatment may result in

1For all nomenclatures and abbreviations see the glossary on page 103.
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more effective suppression of preterm labor. This often leads to unnecessary treatment

and hospitalization of patients who are not in true preterm labor. Accurate diagnosis of

preterm labor is only possible through cervical changes such as dilation or effacement.

However, even noticeable dynamic cervical change may not be an accurate indicator of

true labor, because a high percentage of women with established cervical change do not

deliver pre-term when not treated with tocolytics (Cox et al., 1990; Maner et al., 2006).

In addition, hospital admissions during false labor are associated with considerably high

costs.

Therefore, the development of assessment tools to identify and characterize the course

of labor, as well to support accurate prediction of the delivery, would be of great help

to physicians.

In order to improve knowledge about the mechanism involved in labor, it is essential to

understand the physiological mechanisms that regulate uterine contractions, identify

parameters in order to track the stages of labor and relate the changes in such

parameters to clinical outcomes.
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1. Introduction

1.1 The physiology of uterine contractions

1.1.1 Anatomy and biology of the uterus

The uterus is part of the female reproductive system, located inside the pelvis, dorsal

to the urinary bladder and ventral to the rectum. The uterus has an important role in

the development of the fetus, by providing a safe environment throughout the gestation

and later, as term approaches, in the expelling of the fetus through intense contractions.

Figure 1.1: Anatomical structure of the non-pregnant uterus. Adapted from the
Wikimedia Commons. http://commons.wikimedia.org/wiki/File:Illu_cervix.jpg.

The anatomical structure of the human non-pregnant uterus is presented in Figure

1.1. The uterus has a length of approximately 8 cm. Two fallopian tubes enter near

its top, dividing the uterus in two parts: the fundus (above the fallopian tubes) and

the body (below the fallopian tubes). The narrower, lower end, of the body of the

uterus is called the cervix and is made of fibrous connective tissue, with a much firmer

consistency compared to the body of the uterus.

The uterine wall (see Figure 1.1) consists of a well-differentiated (i) innermost lining

layer also called the endometrium, (ii) a thick muscular inner layer called the

myometrium and (iii) an outer layer named the serosa or perimetrium (Chard, 1994).
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1.1. The physiology of uterine contractions

The myometrium is composed of (i) the outer longitudinal muscle layer and (ii) the

inner circular layer. The longitudinal layer consists of bundles of smooth muscle cells

which are aligned with the long axis of the uterus. The muscle cells of the circular layer

are arranged concentrically but more diffusely around the longitudinal axis of the uterus

(Chard, 1994; Csapo, 1954). Early studies have shown that the longitudinal layer is

continuous with the circular one and that during pregnancy a coordinated contraction

of both layers occurs (Osa and Katase, 1975; Tomiyasu et al., 1988).

For the current work, the particular layer of interest is the myometrium which is

responsible for the induction of uterine contractions (Garfield et al., 1998).

1.1.2 Organization of the smooth muscle cell

To understand uterine contractility, a review of the morphology and the electrophysi-

ology of the uterus is necessary.

The myometrium, located between the endometrium and perimetrium, mainly consists

of uterine smooth muscle cells (see Figure 1.2), also known as uterine myocytes,

arranged in overlapping tissue-like bands (the exact arrangement is still a highly

debated topic). In addition, this type of smooth muscle can maintain force for

prolonged time periods with very little energy expenditure. In regard to smooth

muscles, physiologists point out that, important differences exists between various

smooth muscle tissues of the same species and between anatomically and functionally

comparable smooth muscles of related species (Fischer, 1944). While striated muscles

are organs with a comparable locomotive function and consist of only muscle tissue,

smooth muscles are generally, only with few exceptions, elements contributing together

with other tissues to the anatomy of the whole organ.

The smooth muscle is composed of small fibers, usually 5 to 10 µm in diameter and

approximately 20 to 500 µm in length. In most organs, smooth muscle cells are

functionally connected by the so called gap junctions (functional syncytium, see Figure

1.3). The gap junction is a structure composed of two symmetrical portions of the

plasma membrane from two different adjacent cells.

Three types of filaments have been identified in the uterine smooth muscle cells (i) a

thick filament consisting of myosin molecules, (ii) a thin filament consisting of actin

molecules and (iii) an intermediate filament which consists mainly of desmin molecules

(see Figure 1.3).

The actin and myosin filaments possess different striated arrangements compared to

skeletal muscles and have a high number of actin filaments which are attached to dense

5



1. Introduction

Figure 1.2: Uterine smooth muscle tissue. From http://commons.wikimedia.

org/wiki/File%3AGlatte_Muskelzellen.jpg. By User:Polarlys (Own work) [GFDL
(www.gnu.org/copyleft/fdl.html), CC-BY-SA-3.0 (www.creativecommons.org/licenses/by-
sa/3.0/) or CC-BY-2.5 (www.creativecommons.org/licenses/by/2.5)], via Wikimedia
Commons.

portions of smooth muscle, known as dense bodies (Chard, 1994). The dense bodies

are connected by intermediate filaments, which form an elastic cytoskeleton coupled

to the extracellular connective tissue. In addition, the actin and myosin filaments are

organized in so called sarcomeres (see Figure 1.3) which are not aligned inside the

smooth muscle due to the irregular arrangement of the dense bodies. The amount of

actin filaments which are surrounding a myosin filament is variable, but larger compared

to those found in the skeletal muscle.

The basic structure of the smooth muscle actin filaments is similar to the structure

of actin filaments found in the skeletal or heart muscle. However, the smooth muscle

actin filament is considerably longer. Similarly, the smooth muscle myosin filaments are

longer compared to their skeletal or heart muscle counterparts and display a rectangular

cross-section (Klinke et al., 2009). The myosin molecules are linearly arranged and are

characterized by an antiparallel assembly rather than a helical geometry (see Figure

1.3).
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1.1. The physiology of uterine contractions

b) Actin and myosin organization
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Figure 1.3: Smooth muscle cell organization. a) smooth muscle cells with gap
junctions. b) the organization of actin and myosin filaments in sarcomeres. Illustration
inspired after (Klinke et al., 2009).

1.1.3 Contractile apparatus of the uterine myometrium

1.1.3.1 Action potential

Cells typically exhibit a voltage potential difference with the inside of the cell being

more negative than the outside due to the concentration of potassium (K+) ions within

the cell. In other words, they maintain a voltage difference across the cell’s plasma

membrane, known as the membrane potential. An excitable patch of membrane has two

levels of membrane potential (i) the resting potential, which is the value the membrane

potential maintains as long as nothing perturbs the cell, and (ii) a higher value called

the threshold potential (Wikipedia contributors, 2012).

While most cells remain at a constant potential and do not vary with time, two types
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1. Introduction

of cells, smooth muscle and neuronal, are electrically active. Early cell experiments

indicated that ionic current flow is voltage dependent (Anderson, 1969). The short-

lasting event in which the electric membrane potential of a cell rapidly raises and falls

is called an action potential (AP).

For a better understanding of the uterine contractile activity, in the following section,

a description of the mechanisms eliciting the AP of the individual smooth muscle cell

will be provided.

Figure 1.4 illustrates the ideal AP for typical cells (the actual recordings of APs can be

distorted compared to the schematic view due to variations in the electrophysiological

assessment techniques). In general, a cell’s resting potential is approximately -70 mV

due to the K leakage currents and remains at that value until a stimulus is applied.

When a stimulus of sufficient magnitude (above the threshold of -55 mV ) is applied,

the membrane voltage depolarizes. Voltage-gated channels then open and cause quick

inward currents of natrium (Na+) and calcium (Ca2+) ions. This rapid inward flow

of positive ions is responsible for reversal of the voltage polarity and contributes to

the rising phase of the AP. At approximately +40 mV the Na voltage-gated channels

close and voltage-gated K channels open causing the falling phase of the process or

repolarization. Because of the large K currents leaving the cell, a transient negative

shift known both as hyperpolarization or as a refractory period occurs. This mechanism

prevents an action potential from travelling back towards the way it came. Once the

voltage-gated K channels close, Na and K pumps continue to balance the ion flow

until the resting potential is reestablished (Lodish et al., 2007). The same terminology

can be used to describe the activation of the uterine cells. A more detailed description

is provided in the following sections.

1.1.3.2 Cell activation

The contractile effort of the myocytes is periodic and arises from the propagation of the

electrical activity through the muscle cells in the form of action potentials. The APs

are a result of ionic current flow into and out of the cell membrane. The exchange of

Na+, K+, and Ca2+ ions across the cell membrane constitute the ionic currents. Their

unequal distribution across the cell membrane creates a potential difference. The ions

can be pumped across the cell membrane, against the concentration gradient, by energy

that is supplied by the breakdown of adenosine triphosphate (ATP) into adenosine

diphosphate (ADP). ATP is a multifunctional nucleoside triphosphate, often referred

to as the molecular unit of currency of intracellular energy transfer (Knowles, 1980).
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1.1. The physiology of uterine contractions

Its main role is to transport energy for metabolism within cells. ATP is produced by

photophosphorylation and cellular respiration and is used by enzymes and structural

proteins in many cellular processes including muscle action (Knowles, 1980).

At rest, the uterine smooth muscle cell has the following ionic distribution (i) the

concentration of Na+ and Ca2+ ions is higher outside the cell (compared to inside)

and (ii) the concentration of K+ ions is higher inside the cell (Chard, 1994). This

distribution of ions corresponds to the resting membrane potential. The myometrial
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Figure 1.4: Schematic representation of the ideal action potential. Changes of
the membrane potential across time (bottom) are shown as a function of the efflux and
influx of ions into the smooth muscle cell (top).
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1. Introduction

cell’s resting potential can range from -40 to -60 mV due to the hormonal state

(Parkington and Coleman, 2001; Sims et al., 1982). It has been shown that the uterine

myometrial cells are electrically coupled by the so-called gap junctions which consist

of proteins (Garfield et al., 1995; Maner et al., 2006). When grouped, these proteins

create channels of low electrical resistance between cells that facilitate pathways for the

efficient conductance of action potentials. There are a few of these channels throughout

pregnancy, indicating a poor coupling and decreased electrical conductance. However,

as women approach term, the gap junctions increase and form an electrical syncytium

which is a prerequisite for proper contractions (Garfield et al., 1995).

The contraction of the myometrium is mainly governed by changes of the Ca2+

concentration between extra and intracellular space and by the release of Ca2+

from intracellular depots. Specifically, that involves a rise in the intracellular Ca2+

concentration from a resting level of about 10−7 M to approximately 10−5 M .

The source of Ca2+ can be (i) intracellular, where Ca2+ ions are released from

intracellular depots, (ii) extracellular, where Ca2+ ions flow into the cell following their

electrochemical gradient in response to a change in membrane permeability or (iii) a

combination of both (Chard, 1994). Conversely, a reduction of intracellular free Ca2+

ions terminates the contraction. The reduction of Ca2+ ions occurs either as a result

of re-uptake into cellular depots or efflux into the extracellular space (Chard, 1994).

However, because the sarcoplasmatic reticulum of the smooth muscle cell is poorly

developed, the source of Ca2+ causing the contraction is mainly extracellular (Sanborn,

2000). Consequently, diffusion of Ca2+ into the cell occurs when the concentration of

Ca2+ in the extracellular fluid exceeds 10−3 M . The average time required for the

diffusion is between 200-300 ms (approximately 50 times longer than the diffusion

measured in skeletal muscle fibers) (Guyton and Hall, 2010).

Compared to skeletal muscle, smooth muscle cells have many more voltage-gated Ca

channels and much fewer voltage-gated Na channels. As a consequence, the generation

and propagation of APs in smooth muscle is mainly regulated by Ca channels (in

skeletal muscles this activity is mainly regulated by the Na channels) which open and

close significantly slower compared to the Na channels. This slow acting mechanism

accounts for the slow onset of contraction and relaxation of the smooth muscle tissue

in response to the electrical stimulus.

The dynamic of Ca2+ concentration is controlled by voltage and receptor controlled

channels. This implies that the contraction process of the myometrium can be

influenced by changes in the electrical properties and/or the receptor environment.

As action potentials propagate over the surface of a myometrial cell, the depolarization
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1.1. The physiology of uterine contractions

causes voltage-dependent Ca2+ channels to open. When this occurs, Ca2+ enters the

muscle cell traveling down its electro-chemical gradient to activate the myofilaments

and elicits a contraction by increasing the size and/or number of actual portals for

Ca2+ entry (Aguilar et al., 2010). Thus, the increase in Ca2+ is considered to be the

primary catalyst of the chemomechanical process of smooth muscle contraction.

The repolarization is the result of both the K+ ion efflux and the inactivation of

Na+ channels. Figure 1.4 shows the relationship between the membrane AP and the

inward/outward ion flux in the cell. The inward current carried by Na+ and Ca2+

ions is responsible for the cell polarization and the outward current carried by K+ and

Ca2+ ions induces the cell repolarization.

1.1.3.3 Cell coupling

Previous studies have also established that the myometrial electrical activity governs

myometrial mechanical contractions (Maner et al., 2006; Tezuka et al., 1995). This

behavior was demonstrated in electromyogram (EMG) recordings of the human uterus

during pregnancy (Devedeux et al., 1993). Contraction bursts that occur prior to the

onset of labor are often perceived by the mothers as periods of perceived contractility.

Studies have shown that in various species the gap junctions are sparse throughout

pregnancy but increase during delivery (Garfield and Hayashi, 1981; Garfield et al.,

1977, 1978; Lodge and Sproat, 1981; Miller et al., 1989; Miyoshi et al., 1998). It was

also observed that these gap junctions disappeared within 24 hours of delivery. Gap

junction proteins are thought to align themselves and create low-resistant channels (of

approximately 1 nm) between the cytoplasm of adjacent cells (see Figure 1.3) to form

a pathway for the passage of APs (Garfield et al., 1998, 1977; Miller et al., 1989). The

increase in the gap junctions and their electrical transmissions provides better coupling

between the cells, resulting in synchronization and coordination of the contractile events

of the various myometrial regions in the uterus. The results provide clear evidence that

the propagation of the electrical activity over the entire myometrium due to the increase

in gap junction areas at term is related to successful progress of labor and delivery of

the fetus.

The distribution of gap junctions is not necessarily homogeneous in tissue and the

relation between the junction pattern and intercellular communication is poorly

understood. The most studied gap junction subunit is the connexin 43 (Cx43), a 43-kD

protein expressed in myocardium and myometrium as well as in other cells. The results

suggest that transcription of the Cx43 is induced by activating the proteine kinase
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C (PKC) in human myometrial cells (Garfield et al., 1998). The PKC is involved in

controlling the function of other proteins through phosphorylation and can be activated

by an increased concentration of Ca2+ (more details are given in section 1.1.3.4).

Studies conducted by Garfield and colleagues have demonstrated that throughout the

pregnancy gap junctions are present at a very low density providing an indicator of

poor coupling and limited electrical conductance (Garfield et al., 1977). Conversely,

contractile uterine activity during term or pre-term labor is characterized by the

presence of a large amount of gap junctions between the myometrial cells (Garfield

et al., 1977; Miller et al., 1989). In addition, a study carried out by the same group has

shown that the presence of gap junctions is controlled by the regulation of progesterone

and estrogen in the uterus. Specifically, progesterone down-regulates and estrogen up-

regulates the myometrial gap junction density (Miller et al., 1989).

As previously described, smooth muscle cell voltage-dependent Ca2+ channels open as

depolarization occurs, allowing Ca2+ ions to enter the muscle. Once voltage-dependent

Ca2+ channels open, a single action potential can initiate a twitch contraction (quick

shortening of the muscle) as shown in Figure 1.3. A twitch contraction does not develop

force, instead the repeated discharge of the APs contributes to the increase in amplitude

of the contraction. In other words, the increments in tension (which are triggered by

individual APs) will accumulate as a result of the intracellular free Ca2+ ions when

APs are discharged at a rate higher than 1 Hz (Marshall, 1962).

The contraction of skeletal muscles is initiated by the nervous system: the moto-neuron

triggers an action potential which propagates through the neuromuscular junction

to the muscle plate, causing the contraction of the muscle fiber (Guyton and Hall,

2010). Interestingly, neuromuscular junctions that are present in the skeletal muscle

do not occur in smooth muscle. In the myometrium the mechanism by which an AP is

generated is different. It is believed that the AP burst can originate from any uterine

cell. The initiating cells are referred to as pacemaker cells and they can shift from one

contraction to another (Lodge and Sproat, 1981).

The concept of a pacemaker in the myometrium has been considered and investigated

for many years. It has been suggested that the uterus is myogenic in that it contracts

in vivo and in vitro without the need for external stimuli and that any myometrial

cell is capable of acting either as a pacemaker or pace-follower (Kao, 1959). However,

research employing a variety of histological techniques have not yielded clear evidence

of the presence of cells with the histological and electrophysiological properties of a

functional pacemaker (Gherghiceanu and Popescu, 2005; Hinescu et al., 2006; Hinescu

and Popescu, 2005; Suciu et al., 2007). The key issue about the origin of the electrical
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1.1. The physiology of uterine contractions

impulse, which initiates the myometrial contraction and the regulation of its direction

of propagation, remains unclear in both the pregnant or non-pregnant uterus (Aguilar

et al., 2010).

1.1.3.4 Contraction of the smooth muscle cell

The molecular basis of the smooth muscle contraction is represented by the cyclic

interaction between the myosin head and the actin filament. During contraction the

myosin heads tilt and drag the actin filament (over a small distance of approximately

10 nm), while during relaxation the actin filaments are released. Later on, the myosin

heads can rebind to another part of the actin filament and slide along further. A

schematic representation is given in Figure 1.3. This mechanism is also known as

the cross-bridge cycle, during which the hydrolysis of ATP occurs (Word, 1995). The

chemical energy released by the ATP-hydrolysis is transformed by the myosin molecule

into active muscular strength. Hence, myosin is regarded as the motor protein of the

muscle (Klinke et al., 2009).

In addition, cross-bridges also allow the myosin to pull an actin filament in one direction

while simultaneously pulling another actin filament in the opposite direction. As a

consequence, smooth muscle cells can contract as much as 80% of their length (skeletal

muscles can contract less than 30% of their length) (Guyton and Hall, 2010).

The myosin heads are made of heavy and light protein chains. It has been shown

that the contraction and relaxation are regulated by phosphorylation (acquisition of a

phosphate group) and dephosphorylation (removal of a phosphate group by hydrolysis)

of the myosin light protein chain. Phosphorylation of the regulatory light chain

of myosin by Ca2+/CaM - dependent myosin light-chain kinase (MLCK) plays an

important role in smooth muscle contraction (Word, 1995). In particular, contraction is

initiated by a phosphorylation of myosin by which ATP is degraded into ADP (Guyton

and Hall, 2010; Word, 1995). Relaxation is characterized by a low concentration of

Ca2+ ions, inactivation of MLCK and dephosphorylation of the myosin light chain

(Guyton and Hall, 2010).

As already described in the previous sections, compared to skeletal muscle cells, smooth

muscle cells have a larger amount of voltage-gated Ca channels and fewer voltage-gated

Na channels. Therefore, the generation and propagation of APs in smooth muscle is

mainly regulated by Ca channels which open and close significantly slower compared

to the Na channels. As a result, there is a very short onset time for contraction

and relaxation of the smooth muscle in response to the electrical stimulus (Csapo and
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Goodall, 1954). This also corresponds to a slow cycling speed of the myosin cross-

bridges in smooth muscle, which is 10 to 300 times slower than in the skeletal muscle

(Guyton and Hall, 2010).

To summarize, the myometrium is composed of smooth muscle cells. The basic process

controlling the uterine contraction is the underlying electrical activity in the form of

APs. APs propagate between muscle cells and open ion channels allowing the influx

of calcium ions to produce a contraction. APs occur in groups and form a burst of

activity which in humans can last more than a minute (Garfield et al., 2005) with the

burst frequency around 0.1 Hz. The AP frequency within a burst has been reported

to range between 0.1 - 10 Hz (Devedeux et al., 1993) but most of the studies focus on

the frequency range 0.1 - 3 Hz (Leman et al., 1999; Marque et al., 1986) or 0.3 - 1 Hz

(Garfield et al., 2005; Maner et al., 2003; Rabotti et al., 2010a, 2009). The number of

bursts in a given time determines the frequency of a uterine contraction. Consequently,

the duration of a burst determines the duration of the uterine contraction and the force

generated by the whole uterus is determined by the propagation of APs from cell to

cell and the amount of muscle mass involved (Garfield, 1984; Marshall, 1962). Each

burst stops before the complete relaxation of the uterus (Marshall, 1962). The electrical

properties and the excitability of the myometrial cells can be altered by agents that

directly stimulate or inhibit uterine contractions.
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1.2. Measurement of uterine contractile activity

1.2 Measurement of uterine contractile activity

1.2.1 Clinical assessment

To date, several different prognostic techniques have been developed to measure uterine

contractions. The most commonly used clinical approaches are (i) the tocography

(TOCO) see Figure 1.5 (Smyth, 1957), (ii) the intrauterine pressure catheter (IUPC),

(iii) the use of biomarkers such as fetal fibronectin (fFN), white blood-cell count (WBC),

or corticotropin releasing hormone (CRH) and (iv) the Bishop Scoring System.

Figure 1.5: Assessment of uterine contractions by tocography. Image freely
available from http://gallery.hd.org. c© Damon Hart-Davis.

The TOCO is the most commonly used non-invasive technique to measure the

mechanical deflections produced by the uterine contractions. It is very simple to use

and risk free for both, the mother and fetus. The tocodynamometer, a strain-gauge

based measurement device, records the deflection of the maternal abdomen during a

uterine contraction. The strain on the tensometric transducer, which is strapped on

the patient’s abdomen, is proportional to the strength of the contraction. The TOCO

technique, typically performed in the third trimester of the pregnancy, is widely used

by physicians in over 90% of women admitted to labor and delivery units. However,

the information obtained is limited, may not detect all uterine contractions and can
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not differentiate contractions that will subside spontaneously from those that will lead

to delivery. In addition, the frequency of contractions does not reflect the force of

the labor (Buhimschi et al., 2003). Another major drawback of this instrument is the

susceptibility to maternal motion artifacts. As a consequence of these uncertainties,

patients will be either all treated as having preterm contractions or their treatment

will be delayed until cervical change occurs (Garfield et al., 1998). In addition,

tocodynamometric assessment of uterine contractile activity is very difficult in obese

patients.

The IUPC represents a golden standard in the current obstetrical practice as it can

provide an accurate assessment of uterine contractions. The IUPC is an invasive method

that measures the intrauterine pressure via a catheter (Devedeux et al., 1993). It can

be used only after a certain dilatation of the cervix is reached (late stages of pregnancy,

close to delivery). A change in pressure inside the uterus is reflected by displacement

of the fluid in the catheter.

While the IUPC is more reliable and accurate than TOCO, it is an invasive procedure

that requires the rupture of the amniotic membranes, thus limiting its use to patients

with complicated delivery. Therefore, the risk that complications might occur when

using the IUPC increases significantly. Due to the poor predictive power of the TOCO

and the invasive nature of the IUPC, neither technique has been beneficial in the

accurate prediction of preterm labor or the diagnosis of true labor at term.

The predictive power of biomarkers was also investigated. The fFN is a fibronectin

protein produced by fetal cells, found in the birth canal of pregnant women, between

the chorion and the decidua. The use of fFN has been proposed for the prediction of

preterm labor and the management of women with symptoms of preterm labor. Some

studies reported successful use of fFN in the prediction of actual premature birth (Iams,

2003; Lockwood, 2001), while others suggest that fFN has limited predictive value and

conclude that there is no sufficient evidence to recommend its use (Berghella et al.,

2008; Garfield et al., 2001; Hellemans et al., 1995; McNamara, 2003).

In a recent study, Hill and colleagues used recursive partitioning to identify gestational

age-specific threshold values for infectious and endocrine biomarkers to predict preterm

delivery (Hill et al., 2008). They have found that according to gestation age, two

biomarkers, namely corticotropin releasing hormone (CRH) and white blood-cell count

(WBC), provide a relatively high prediction accuracy for preterm delivery. Although

studies of biomarkers have improved the understanding of the mechanisms of disease

leading to spontaneous preterm birth, most potential biomarkers (of preterm birth)

investigated in women with predisposition to preterm labor are similar with respect
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to diagnostic performance and accuracy (Goldenberg et al., 2005). That is, negative

predictive values are superior to positive predictive values and the tests are usually more

specific than sensitive (Berghella et al., 2008; Hill et al., 2008; McGregor et al., 1995).

A high negative predictive value has also been observed for salivary estriol (McGregor

et al., 1995).

The Bishop Scoring System is a pre-labor scoring system to assist in predicting whether

induction of labor will be required (Bishop, 1964). The total score is achieved by

assessing the following five components during vaginal examination: position of the

cervix, cervical dilatation, cervical effacement, cervical consistency and fetal station.

However, the Bishop score was not found to contribute to a reduction in preterm labor

(Garfield and Maner, 2007).

The current state-of-the-art in labor monitoring can be summarized as follows (i)

intrauterine pressure catheters provide the best information but with limited usability

due to their invasive nature (rupture of the amniotic membranes), (ii) presently

available uterine monitors such as TOCO are uncomfortable, less accurate and depend

on the examiner for proper placement, and (iii) the predictive power of biomarkers is not

sufficient for a successful diagnosis and (iv) the Bishop Scoring System has not lead to

a reduction in preterm labor. While cervical change and the frequency of contractions

are probably the two most frequently used clinical methods for assessing labor, there

is still a high amount of controversy regarding the best way to evaluate and quantify

the uterine contractile activity.
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1.2.2 Electrophysiological assessment

Two methods are currently employed to record the electrophysiological activity of

uterine contractions: (i) the electromyography/electrohysterography (EMG/EHG),

recorded by electrodes attached to the abdomen and (ii) a newly established method,

the magnetomyography (MMG), based on recordings of the magnetic fields that

correspond to electrical fields. These techniques measure the electrical/magnetic

activity on the surface of the maternal abdomen, which is a result of a sequence of

bursts or groups of action potentials that are generated and propagated in the uterine

smooth muscle tissue - the myometrium. The term EHG is more specific, as it strictly

refers to the electrical activity of the myometrial cells. However, in the context of

uterine activity, the terms EHG and EMG are often used to described the same activity.

Therefore, for the sake of simplicity, the term EMG will be used throughout this thesis

to refer to the electrical activity of the uterus.

1.2.2.1 Electromyography

The uterine electrical activity, which reflects the original process of muscle fiber

excitation due to the propagation of the APs, can be measured by means of internal and

abdominal surface electrodes. The EMG recordings of uterine activity date back to 1931

when Otto Bode used a galvanometric device to record the activity of the human uterus

during labor for the first time (Bode, 1931). His work unveiled a technique with great

potential as it provides a non-invasive and inexpensive assessment of uterine contractile

activity. However, decades later, EMG measurements are still not adopted in obstetric

practice, despite sustained scientific evidence that the EMG signal is representative of

the electrophysiological changes occurring in the myometrium (Buhimschi et al., 1997;

Buhimschi and Garfield, 1996; Buhimschi et al., 2003; Garfield et al., 2005; Maner et al.,

2003).

Noninvasive EMG recordings have been extensively studied with an emphasis on both

time (Buhimschi et al., 1998; Duchene et al., 1990; Verdenik et al., 2001) and frequency

domain (Doret et al., 2005; Garfield et al., 2005) parameters for the prediction of labor.

Garfield and colleagues performed simultaneous recording of the EMG activity directly

from the uterus and the abdominal surface of rats (Buhimschi and Garfield, 1996).

They were able to conclusively show that the signals recorded from the abdominal

surface correspond to those generated in the uterus, suggesting that similar techniques

can be used in humans. The recording of EMG activity on the human uterus using

abdominal electrodes was also reported (Garfield et al., 1998).
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1.2. Measurement of uterine contractile activity

Other studies have shown that the power density of uterine EMG bursts in patients

during active labor peaked at 0.71 ± 0.05 Hz as compared to non-laboring term (0.48

± 0.03 Hz) patients (Garfield et al., 2005, 1998; Maner et al., 2006). In addition, the

power density peak values were comparatively low for non-labor patients with respect to

patients in active labor. The EMG has a high temporal resolution. However, because of

the differences in the conductivities of tissue layers, the EMG signals are often filtered

during their propagation to the surface of the abdomen.

1.2.2.2 Magnetomyography

All electrophysiological phenomena that occurs inside the human body are characterized

by the flow of ion currents which can be detected by a measurement of potentials

inside or on the surface of the human body (Baumgartner, 1995; Preissl, 2005; Rogalla

and Barker, 1991). While the EMG technique allows successful assessment of uterine

contractions, another method of observing biomagnetic signals is magnetomyography

(MMG). MMG, the magnetic counterpart of the EMG, is a noninvasive technique that

measures the magnetic fields associated with APs (see Figure 1.6).

MMG measurements are conducted externally, using sensitive magnetic sensors called

superconducting quantum interference devices (SQUID). A SQUID is a very low noise

magnetic field sensor, which converts the magnetic flux threading a pickup coil into

voltage allowing the detection of weak magnetic signals. Since the SQUIDs rely on the

physical phenomena found in superconductors they require cryogenic temperatures for

proper operation. Therefore, the array of SQUIDs is immersed and cooled in liquid

helium (at approx. −270◦ C), in a special vessel called a dewar.

The MMG recordings possess some important properties which renders them suitable

for the analysis and characterization of the human biomagnetic activity. Compared

to EMG signals, the MMG signals are detectable outside the boundary of the skin

without making any contact with the body. Also they are independent of conductivity

geometry, i.e. tissue conductivity. The measured electrical activity arises from the

volume currents flowing (in the body) to the electrode sites and not directly due to

the primary current generators. Therefore, the uterine EMG signals suffer from some

degree of attenuation by the time they reach the surface of the maternal abdomen. By

contrast, magnetic field recordings are more strongly coupled to the primary currents

and are much less dependent on tissue conductivity boundaries. Thus, compared to

the electric field, the magnetic field observed outside the human body offers a much

more precise representation of the underlying activity.
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Figure 1.6: Magnetic field generation. Magnetic fields are generated by different
biological processes such as fetal magnetocardiogram, fetal magnetoencephalogram, uterine
contraction, maternal magnetocardiogram or bladder contraction. The image is courtesy
of UAMS, Sara Research Center.

During a MMG recording detection of the signal is made outside the boundaries of

the skin, that is, without any electrical contact with the body. Further, the MMG

recordings provide a higher spatio-temporal resolution compared to EMG, as the spatio-

temporal resolution obtained from the abdominal surface electrode recordings is limited

based on the electrical properties of the abdomen and the practical difficulties of placing
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1.2. Measurement of uterine contractile activity

Figure 1.7: The strength of magnetic fields. Image kindly provided by J. Vrba,
Vancouver.

numerous electrodes on the mother (Eswaran et al., 2009). In addition, the MMG

recordings are independent of any kind of references, which ensure that each sensor

mainly records localized sources.

MMG measurements span a frequency range from about 10 mHz to 1 kHz and field

magnitudes from about 10 fT for spinal cord signals to about several pT for brain

rhythms.

Figure 1.7 illustrates a few examples of magnetic field strength to provide the reader

information regarding the magnitude of the MMG signals. It should be noted that the

Earth field magnitude is about 0.5 mT and the urban magnetic noise about 1 nT to

1 T . This corresponds to a factor of 1 million to 1 billion larger than the MMG signals.

Such large differences between signal and noise requires a very high accuracy of noise

cancellation. Therefore, the system must be placed in a magnetically shielded room, to

avoid the interference of the strong environmental noise and external magnetic fields

with the biomagnetic fields generated by human organs.

First MMG recordings of spontaneous uterine activity were reported by Eswaran

21



1. Introduction

and colleagues, demonstrating the feasibility of the technique (Eswaran et al., 2002).

The measurements were carried out with a system called SARA (SQUID array for

reproductive assessment), CTF Systems Inc. Port Coquitlam Canada (see Figure 1.8).

The system consists in primary superconductive quantum interference device (SQUID)

magnetic sensors that are spaced approximately 3 cm apart in a concave array that

covers the maternal abdomen from the pubic symphysis to the uterine fundus and

laterally over a similar span. The surface of the array is curved to match the shape of

Figure 1.8: The SARA I system. Left: General view of the system. Right: the
concave array of sensors. The image is courtesy of UAMS, Sara Research Center, Little
Rock, USA and CTF Corporation, Canada.

the gravid abdomen. To allow SQUIDs to record the MMG signals, the mother must

simply lean forward against the smooth surface of the array. Thus the SARA system

is capable of obtaining electrophysiological data from the entire fetus and maternal

reproductive system in a passive, consistent and non-invasive manner.

Because strong environmental noise and external magnetic fields can interfere with

the human biomagnetic fields, SARA was installed in a magnetically shielded room

(Vakuumschmelze; Hanau, Germany).

There are currently two such systems installed worldwide. The first SARA system,

called SARA I, is operational since May 2000 at the University of Arkansas for Medical

Sciences (UAMS), at the SARA Research Center, Little Rock, USA. As of September

2008 a second SARA system, called SARA II, is in operation at the University of
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1.2. Measurement of uterine contractile activity

Tübingen, fMEG Center, Tübingen, Germany. Compared to the system installed

at the UAMS, SARA II provides a slightly better coverage of the perineal region,

consequently covering a slightly larger surface of the gravid abdomen. For an overview

of the organization and labeling of the magnetic sensors in both systems refer to the

Appendix, Figure A.1.
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1.3 Automatic detection of uterine contractile activity

The automatic detection of uterine contractions has been attempted by different studies.

Radhakhrishnan and colleagues attempted to detect uterine contractions in EMG using

higher-order zero-crossing analysis (Radhakrishnan et al., 2000).

Figure 1.9: Application of the zero-crossing method. (a) EMG data of a subject
in the 38th week of gestation. (b) The peaks of the first-order normalized zero-crossing
counts. (c) The TOCO recording of the subject. Image from (Radhakrishnan et al., 2000),
c© 2000 IEEE.

In addition to EMG measurements the authors performed TOCO and IUPC recordings

on the investigated datasets to compare the outcomes of their proposed method. They

have observed that the discriminating power of the higher-order crossing counts D(i)

decreased as the order i increased (i > 2).

The method was applied to a subject, in non active labor, in the 38th week of gestation,
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1.3. Automatic detection of uterine contractile activity

see Figure 1.9. In (a) the processed uterine EMG is presented. In (b) the peaks of the

normalized first-order zero-crossing (FOZC) counts coincide with the segments where

contraction occurs. Figure 1.9 (c) presets the TOCO recording from the same subject.

The authors discuss the feasibility of this technique and conclude that (i) the first-

order zero crossing method is the most suitable to discriminate between contractile and

non-contractile events and (ii) the results are consistent with the TOCO and IUPC

recordings. However, the method lacks threshold detection and does not take into

account the frequency characteristics of the signal.

Based on the assumption that the uterus remains quiescent throughout most of

the pregnancy but close to the time of delivery its electrical activity increases, a

generalized synchronization index, as an indicator to track the spatial patterns of

uterine myometrial activity, was proposed by Ramon and colleagues in (Ramon et al.,

2005). The synchronization of a sensor pair was inferred from a statistical tendency to

maintain a constant phase difference over a given period of time (one should note that

during that same time frame the analytic phase of each sensor may change markedly).

Figure 1.10: Synchronization index. Figure from (Ramon et al., 2005). Permission to
reuse granted according to the terms of the BioMed Central Open Access license agreement.
http://www.biomedcentral.com/about/license.

The phase differences between two sensors were computed by subtracting the cumula-

tive linear phase (the unwrapped phase of the analytic signal) of one sensor from the

other. Synchronization between the phases of two signals was computed using Shanon’s

Entropy Function (Shannon and Weaver, 1998).

e(t) = −
N∑
i=1

pi ln pi (1.1)
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Figure 1.11: Spatial patterns of the synchronization indices across the inspected
windows. The synchronization indices are computed within 20 sec stepping windows.
Figure from (Ramon et al., 2005). Permission to reuse granted according to the terms
of BioMed Central Open Access license agreement. http://www.biomedcentral.com/

about/license.

where pi is the relative frequency of finding the phase difference modulus of 2π in the

ith bin (N represents the number of bins). To compute the phase difference in a 20 s

stepping window, a total of N = 100 bins were used. Because e(t) can vary between zero

and emax = ln(N), further normalization was necessary which yielded the generalized

synchronization index (see Figure 1.10).

q(t) =
emax − e(t)

emax
(1.2)

The authors computed the generalized synchronization index in regional coil-pairs for

six pregnant women with a gestational age (GA) ranging from 29 to 40 weeks. For

any given coil, the coil-pair consisted of the surrounding six coils. This resulted in 21

unique combinations of coil pairs and synchronization indices.

The index was computed for a 4 minute segment (which included at least two

contractions) and at points when the subjects reported perceivable contractions. For a
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1.3. Automatic detection of uterine contractile activity

comparative analysis, the magnetic field data was randomly shuffled in each channel and

followed by the computation of the synchronization indices. The authors show that the

synchronization indices of the unshuffled (original) data are much higher compared to

the synchronization indices of the randomly shuffled data (red horizontal line in Figure

1.10) and conclude that the synchronization indices (see Figure 1.10) and their spatial

distributions describe uterine contractions. Figure 1.11 shows the spatial patterns of

the synchronization indices across the inspected windows and computed within a 20 s

stepping window. The intensity scale is normalized in the range of zero (blue) to one

(red), with red areas indicating higher synchronization.

In a recent study La Rosa and colleagues used a multiple change-point estimator along

with the K-means clustering algorithm to detect uterine contractions in selected regions

(see Figure 1.12) of a SQUID sensor array (La Rosa et al., 2008). The channels were

modeled by a time varying auto regressive (AR) model. A segmentation algorithm

based on the Schwarz Information Criterion (SIC) was used to estimate the time-

instants of changes in the parameters. To discriminate contractions, features such as

the time segment power, i.e., root mean square (RMS), and the dominant frequency

component, i.e., first-order zero-crossing (FOZC), were evaluated. A discrete-time

binary decision signal, indicating the presence of a contraction, was created by applying

an unsupervised clustering algorithm to classify the RMS values. The detection of

multiple change points was performed using a binary search algorithm. Figure 1.13 (a)

illustrates a down sampled and filtered (0.2 - 0.4 Hz) MMG signal with vertical grid

lines indicating the estimated change points. In Figure 1.13, (b) and (c) show the RMS

and FOZC computed on the estimated time segments. It can be observed that the

FOZC poorly estimates the presence of a contraction in the investigated frequency

range. Figure 1.13 (d) presents the clusters obtained after applying the K-means

algorithm on the RMS values. Figure 1.13 (e) shows the binary decision signal and

in (f) the time-intervals are illustrated where the mother reported the presence of a

contraction.

However, in practice, the approach performed well only for a group of channels from the

same patient, suggesting that a different model for segmentation should be attempted.

Moreover, this approach does not take into account information from all of the sensors.

In addition, the K-means clustering technique needs a-priori specification of the number

of clusters in the data. The authors use three cluster centroids to discriminate the

contractions from noise. From the very nature of this setting, this approach will always

erringly identify some segments as contractions even though they may not be present
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Figure 1.12: Sensor array with selected regions. Complete circles indicate the group
of channels G1, G2, G3 and the dotted lines indicate the group of channels G4. Figure
from (La Rosa et al., 2008), c© 2008 IEEE.

in the data. On the other hand, if the dataset contains a long single contraction, by

construction, their approach will label some parts of the uterine contraction as noise.

Finally, since the frequency content of the electrical burst activity corresponding to the

uterine contractions changes with time (Garfield et al., 2005), a simple spectral analysis

(RMS for this particular case) may not be sufficient to objectively capture the uterine

contractile activity.
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1.3. Automatic detection of uterine contractile activity

Figure 1.13: Steps in obtaining the discrete-time binary decision signal. (a)
Preprocessed channel with grid lines indicating the estimated change points, (b) RMS
in each time segment, (c) first-order zero-crossing in each time segment, (d) cluster
groups using RMS features, (e) estimated contractions segments, (f) time segments with
contractions according to the patient feedback. Figure from (La Rosa et al., 2008), c© 2008
IEEE.
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Aim of the work

The present work is mainly motivated by the need for noninvasive tools in the

assessment of uterine contractions and in the accurate prediction of labor. This need

is raised, one one hand, due to a compromise between accuracy and invasiveness - a

compromise which is still present in the monitoring methods currently used in clinical

practice. On the other hand, there is a lack of methods available for MMG which can

provide a better understanding of the process leading to labor. Knowledge about the

nature of contractions will ultimately allow a timely treatment of premature labor.

Based on the underlying physiological processes described in the previous chapter, the

current work introduces a set of signal processing methods, developed with the purpose

to improve the interpretation of current MMG measurements for the perspective of

clinical applications. Though the techniques developed here are demonstrated on MMG

signals, they can be easily applied to multisensor EMG signals as well.

The main goal of the thesis is to develop a new method for the analysis of MMG signals

which allows the uterine contraction monitoring and preterm delivery prediction during

pregnancy.

A major part of the thesis is dedicated to the detection and identification of the uterine

contractile activity measured using a magnetic sensor array. A novel multi-stage

method is introduced which takes into account the signal’s properties from different

frequency bands.

Another important objective of the thesis is to characterize the dynamics of the

contractile activity to provide a timely prediction of delivery. In particular, a multi-

sensor analysis of the spatial propagation properties of the MMG signals is carried

out. This type of analysis is of particular relevance because the spreading of magnetic

activity in the myometrium results in coordinated way in order to develop sufficient
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2. Aim of the work

force to expel the fetus. Therefore, the analysis of the spatial propagation properties,

i.e., conduction velocity, could provide a fundamental contribution to the prediction of

delivery.

2.1 Methods developed for the dissertation

The goal of this dissertation was to develop a set of methods that would allow

the automatic detection of uterine contractile activity and the computation of the

conduction velocity (CV) of the propagating MMG signals. The methods were

evaluated both on synthetic data and on serial MMG recordings collected from healthy

pregnant women.

2.1.1 Automatic detection of uterine contraction bursts

To date there is no accurate and objective method available for MMG to automatically

detect the uterine contraction bursts or to predict the onset of the labor. Currently

available methods for the detection of uterine contractile activity in MMG recordings

do not take into account the variations of the frequency content of the electrical burst

activity with time. It has been shown that the power density of uterine bursts in

subjects during active labor peaked at 0.71 ± 0.05 Hz as compared to non-laboring

term patients 0.48± 0.03 Hz suggesting a shift in the power of the signal from lower-

frequency to higher-frequency (Garfield et al., 2005, 1998; Maner et al., 2006). A time-

frequency analysis could be employed to identify the burst locations. However, such

an analysis would be sensitive to the amplitude modulation of the signal hindering the

reliable and objective detection of bursts with low amplitude. Hence a simple spectral

analysis may not be adequate to capture the uterine contractile activity. To overcome

this inconvenience the current work introduces a new multi-stage approach for the

automatic detection of uterine contractile activity, which is based on the combination of

Hilbert-wavelet transforms and model based threshold fitting. By design, the method

will always take into account information coming from the frequency band with the

highest power. Expressed differently, it keeps track of the shift in the power of the signal

(from lower to higher frequency bands) with the progression of gestation. Therefore,

it is expected that the proposed approach will provide a more accurate estimate of

the contractile events compared to current approaches. A schematic representation

of the developed method is shown in Figure 2.1. The green area highlights the steps

representing the own contribution to the development of the method.
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Feature extraction

 MMG signal acquisition

Preprocessing

Filtering Downsampling

Model based
thresholding

Contraction
estimate

Parameter estimation

Integration

AP clustering

Hilbert - Wavelet 
transform

Figure 2.1: Methodology for the detection of uterine contractions. The detection
algorithm is applied to multi-sensor MMG signals. The green area highlights the steps
representing the own contribution to the development of the method.

Multi-sensor MMG signals will be recorded with the SARA system. The acquired

signals will be preprocessed according to section 3.4, downsampled, partitioned in

30 s disjoint inspection windows and analyzed in the time-frequency domain using the

second order Daubechies discrete wavelet db2 . The variance of the wavelet coefficients

will be computed as an equivalent to the spectral power and can be used to characterize

the underlying dynamics. However, as higher decomposition levels are reached, fewer

coefficients will be available and as a consequence the spectral power cannot be reliably

computed. To overcome this impediment, the signal will be reconstructed using

the wavelet coefficients (at each level of decomposition) and to quantify the power

in each frequency band the Hilbert transform of the reconstructed signals will be

computed. The MMG power will be clustered into different components by using

the affinity propagation (AP) clustering technique. The aim is to identify and discard

the noise components. The definition of noise level is however ill defined in the MMG

data. Therefore, another novelty introduced in the current work is a model based

thresholding. The outcomes of the AP together with the threshold derived from

the proposed model will be used to delineate contractile bursts from the background

activity. Based on this information, a single discrete-time binary decision signal or

contraction marker will be created to indicate the presence or absence of a contraction

during a MMG recording.
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2.1.2 Conduction velocity of the uterine contraction

The spreading of the coordinated electrical activity (and the resulting magnetic

activity) in the myometrium is a prerequisite for effective contractions (Garfield

et al., 1988). The CV of the propagating MMG signal could provide a fundamental

contribution for the prediction of delivery. The fourth chapter of this thesis introduces,

for the first time, a method to compute the CV in MMG signals. Because the

computation of CV needs information from the level of individual sensors, the approach

presented in the previous section will be extended to encompass all magnetic sensors.

That is, for each sensor a contraction marker will be computed using the power

information from the respective sensor. By creating a marker for every sensor, it is

likely that the contraction detection method becomes more susceptible to artifacts

introduced by movement of the subject. To overcome this inconvenience, the current

work introduces an artifact detection method, which relies on the analysis of the

maternal magnetocardiogram (mMCG) signal. Figure 2.2 presents the methodology

of the movement artifact identification.

In a next step, the detection of the uterine contractile activity will be performed

Get R-peaks
(from mMCG)

Partition MMG signals
(3 min disjoint windows)

dCoG(i) > mCoG + 3σ(dCoG)

ArtifactNo artifact

Compute mCoG, 
dCoG, σ(dCoG)

No Yes

Figure 2.2: Schematic representation of the movement detection algorithm.
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in each sensor within a 30 s sliding non-overlapping window. Samples labeled as

movement artifact will be discarded from further analysis. The sensor space will be

subdivided (according to the 2D coordinates of the sensors) into four quadrants (Q)

or regions. Such partitioning would also allow to investigate the interaction between

different regions of the uterus. To compute the delay (i) pairwise combinations of

quadrants will be investigated (e.g., Q1-2, Q1-3, etc.), (ii) the inspection windows

wherein contractile activity simultaneously occurs in any given quadrant pair will be

further analyzed (the algorithm will perform further operations only if the number of

active sensors (NAS), that is, the amount of sensors wherein contractions were detected,

exceeds the preset value of ten sensors) and (iii) the delay between the center of gravities

(CoG), that correspond to different quadrants in a pair, will be computed using the

high dimension cross-correlation function (HDCC) described by (Smilde et al., 2009).

Figure 2.3 presents the schematic representation for the computation of CV.

Once the delay is assessed the CV can be easily computed by dividing the euclidean

distance between CoGs that belong to different quadrants in a pair, and the amount

of time by which they are delayed. The performance of HDCC will be assessed and

validated by means of event based simulation, wherein a stochastic model (based on a

second order autoregressive process) is evaluated. Finally, the relationship between the

gestational age and the CV computed in serial MMG recordings will be investigated

by means of statistical analysis.

Partition sensor coordinates
in quadrant pairs

Contraction marker
(individual sensors)

NAS > 10

Mark quadrant
 pair as 'inactive'

CoG Delay
(HDCC)

Delay ~= 0

Discard Conduction 
velocity

No Yes

YesNo

Figure 2.3: Methodology for the computation of the conduction velocity.
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3

Uterine contraction identification

by global power

This chapter provides a description of the method which was developed to automatically

identify and mark the uterine contractile activity. Identification is performed using

the information collected from MMG multi-sensor data. The first two sections

provide the basic theory of the Hilbert and wavelet transform and highlight some of

their important properties. Important details regarding the Hilbert transform of the

wavelet decomposition (HTWD) are given in section three. According to this new

approach uterine contraction bursts can be successfully identified in MMG signals.

The combination of HTWD introduced in this chapter was published in (Furdea et al.,

2009).
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3.1 Introduction

In early gestation the uterine myometrial activity is infrequent and is characterized

by low amplitude values. The quiescence of the uterus during the early gestational

age is due to the poor electrical coupling among the smooth muscle cells. As subjects

approach term, the increase in the number of gap junctions (see section 1.1) leads to the

formation of an electrical syncytium - a prerequisite for proper contractions (Garfield

et al., 1995).

Low resistance electrical paths are formed which allow the propagation of electrical

activity from cell to cell in the form of an action potential (AP) (Buhimschi and

Garfield, 1996; Garfield and Hayashi, 1981). Thus, the uterine contractile activity

results from the excitation and propagation of the electrical activity in form of APs

which occur in groups and is referred to as burst. As subjects approach term and

especially during labor, the bursts become more frequent with higher amplitude values.

It has been shown that the changes of the electrophysiological properties of the uterine

smooth muscle tissue also correlate with the increase of the intrauterine pressure (IUP)

(Garfield and Maner, 2007).

The frequency content of the electrical burst activity corresponding to the uterine

contractions changes with time (Garfield et al., 2005). A time-frequency analysis could

be employed to identify the burst locations. However, such an analysis would be

sensitive to the amplitude modulation of the signal. As a consequence, a reliable and

objective detection of bursts with low amplitude can not be performed. Hence a simple

spectral analysis may not be adequate to capture the uterine contractile activity. In the

present chapter, a combination of Hilbert-wavelet transforms (time frequency analysis)

and affinity propagation clustering (APC) algorithm (Frey and Dueck, 2007) followed

by threshold fitting are introduced with the aim to identify the uterine contractions.

While wavelet transform decomposes the MMG signals into different frequency bands,

the Hilbert transform quantifies the power in each frequency band. After this step, the

APC technique and threshold fitting are applied on the Hilbert amplitude to create a

discrete-time binary decision signal that would indicate the presence of a contraction.

For the sake of simplicity, the discrete-time binary decision signal will be further referred

to as marker.
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3.2 Hilbert transform

The Hilbert transform represents the only singular operator in one dimension rendering

it one of the the most important linear operators in harmonic analysis. The Hilbert

transform has a profound impact on several theoretical and physical problems across a

wide range of disciplines (e.g. theory of modulation, problems in Fourier convergence,

complex analysis, etc.). In signal processing the Hilbert transform (HT) is a linear

operator which takes a given signal x(t) and produces a function h(t) within the same

domain, simultaneously providing the analytic representation of x(t). The HT has

become a basic tool in Fourier analysis, offering a concrete means for realizing the

conjugate of a given series. For a signal x(t), the HT h(t) is defined by the following
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Figure 3.1: An example of phase slip - A sine wave with a periodicity of 0.5 sampled
at 250Hz was used. The dashed line indicates the result of phase slip at −π/2. τ (1)

corresponds to the periodicity of the sine wave and represents the difference between
consecutive phase slips.

convolution integral:

h(t) =
1

π
PV

∫ ∞
−∞

x(τ)

(t− τ)
dτ (3.1)

where PV denotes Cauchy’s principal value (Pandey, 1996). The representation as a

complex analytical signal for x(t) together with its HT h(t) is given by:

f(t) = x(t) + i · h(t) (3.2)
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where i =
√
−1, t = n/SF , n is the sample number and SF is the sampling frequency

of the signal in Hz. The Hilbert transform of a signal with non-zero mean has zero

mean (Mertins, 1999).

Equation 3.2 also allows to define the Hilbert phase (HP) as:

ϕ(t) = tan−1
h(t)

x(t)
(3.3)

and thus, renders possible the study of the instantaneous phase of the signal. When

the magnitude of successive phase differences

|ϕ(ti+1)− ϕ(ti)| (3.4)

exceeds π the HP exhibits slips, as presented in Figure 3.1.

3.3 Wavelet transform

A signal can be expressed as the sum (possibly infinite) of a series of simple oscillating

functions (sines and cosines), also known as a Fourier expansion. The Fourier transform

characterizes the global frequency content of the signal and hence the time varying

nature of the frequency can not be reliably studied with this approach.

Wavelets can overcome this impediment in that they are able to represent the signal

in the time and frequency domain at the same time. The wavelet analysis procedure is

to adopt a wavelet prototype function ψ(t) sometimes called mother wavelet, which is

confined in a finite interval. Temporal analysis is performed with a contracted, high-

frequency version of the mother wavelet, while frequency analysis is performed with a

dilated, low-frequency version of the same wavelet, that is, daughter wavelets ψ(a,b)(t)

are formed by translation b and contraction a. The pair (a, b) defines a point in the

right half plane R+ × R. An individual wavelet can be defined as follows:

ψ(a,b)(t) = |a|−1/2ψ
( t− b

a

)
(3.5)

The projection of a function x on the subspace of scale a can be represented as:

xa(t) =

∫
R
WTψ

{
x
}

(a, b) · ψ(a,b)(t)db (3.6)
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where ψ has a zero integral. The continuous wavelet transform of the finite energy

function of x is the family of coefficients WT defined by:

WTψ{x}(a, b) = 〈x, ψa,b〉 =

∫
R
x(t)ψa,b(t) dt (3.7)

with a ∈ R+ and b ∈ R (Misiti et al., 2007).

To obtain the discrete wavelet transform, instead of the family of wavelets introduced

in 3.5 one can use the family of wavelets indexed by Z:

ψ(p,n)(t) = a
−p/2
0 ψ(a−pt0 − nb0) (3.8)

with a0 > 1, b0 > 0 fixed and p, n ∈ Z. The discrete wavelet transform of the function

x can be defined by:

WTψ{x}(p, n) = 〈x, ψp,n〉 =

∫
R
x(t)ψp,n(t) dt (3.9)

with p, n ∈ Z (Misiti et al., 2007).

Because the original signal or function can be represented in terms of a wavelet

expansion (using coefficients in a linear combination of the wavelet functions), data

operations can be performed using just the corresponding wavelet coefficients. In

addition if the wavelet coefficients are truncated below a certain threshold, a sparse

representation of the data can be obtained.
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3. Uterine contraction identification by global power

3.4 Global power based contractile activity identification

The duration of a uterine contraction varies between 40 and 60 s (Devedeux et al., 1993;

Maner and Garfield, 2007) with MMG activity typically preceding the contraction.

Based on the results reported in earlier studies (Garfield et al., 2005, 1998; Maner

et al., 2006) the focus was set on the following two frequency bands (i) low frequency

0.1 - 0.4 Hz and high frequency 0.4 - 1 Hz. In order to obtain these two frequency

bands via wavelet analysis, the signals were down sampled to 32 Hz. The downsampling

operation significantly reduces the computational time required by the subsequent

analysis and is performed without aliasing due to the high rate at which MMG signals

are sampled (usually over 1 kHz).

To effectively capture the low frequency activity, it is essential to remove artifacts

such as maternal/fetal magnetocardiography (mMCG, fMCG) and maternal breathing.

For this purpose, the data is band pass filtered between 0.1 - 1 Hz to eliminate

the mMCG/fMCG and further notch filtered between 0.25 - 0.35 Hz to suppress the

prominent signal induced by the maternal breathing. For all filtering purposes a fourth

order Butterworth filter with zero phase distortion is used.

The preprocessed signals are partitioned in 30 s disjoint inspection windows and a

small portion at the end of the signal which is not integer multiple of the inspection

window is discarded from the analysis. Data xi(t) from the ith sensor are convoluted

with second order Daubechies discrete wavelet db2 to produce approximate and detail

coefficients as follows:

Wx(u, 2j) =

N−1∑
t=0

x(t)ψ∗j,u(t) (3.10)

where Wx(u, 2j) contains the wavelet coefficients (approximate cj(u) and detail dj(u))

at time u at scale 2j in jth level of decomposition. Detail coefficients dj(u) can also be

independently computed as follows:

dj(u) =

∫
φj+1,u(t)x(t)dt (3.11)

where ψ(t) and φ(t) represent the mother and father wavelet, respectively and ψ(t) is

represented as the linear combination of φ(t).

In broad sense, the approximate coefficients correspond to the low-pass coefficients

and capture the trend in the data whereas the detail coefficients correspond to the

high-pass coefficients and keep track of the fluctuations in the data. Most of the

wavelets frequency decompose the signals in a dyadic fashion. Thus, at (j + 1)th level
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3.4. Global power based contractile activity identification

of decomposition the wavelet coefficients become half in number compared to jth level.

This is equivalent to downsampling the data into half compared to the previous level.

Based on this argument if we consider SF as the sampling frequency in Hz, at jth level

of decomposition, we will have frequencies ranging between SF/2j+1 and SF/2j (this

is analogous to band pass filtering the signal in the frequency bands of SF/2j+1 and

SF/2j). In wavelet analysis, the signal in a desired frequency band can be obtained by

performing inverse wavelet transform using only the detail coefficients that correspond

to the frequency band. Nine levels of decomposition are used which allow to focus on

the frequency of the uterine contraction (0.1 - 1 Hz).

In addition to time-frequency decomposition property, the db wavelets also effectively

remove the (linear or nonlinear) trends in the data. The order of the wavelets determine

the order of the trends (first, second, etc.) up to which it can remain orthogonal.

Because the MMG data are trend free the inclusion of higher order terms is not

necessary and the db2 approach is sufficient (Hussain et al., 2009).

Usually, the variance of the wavelet coefficients is computed as an equivalent to the

spectral power and is used to characterize the underlying dynamics. However, as

higher decomposition levels are reached, fewer coefficients will be available and as

a consequence the spectral power cannot be reliably computed. To overcome this

impediment, the signal is reconstructed using the wavelet coefficient (at each level of

decomposition) and finally in each band the Hilbert transform of the reconstructed

signals is computed. In the chosen 30 s inspection window the mean value of the

amplitude of the analytic signal is computed as an equivalent to the power of the

signal. Let yj,s(k) represent the power of the signal from the sensor s at the jth level

of decomposition where k is the average of the inspection time window. To improve

the signal level, in the next step yj,s(k) are integrated over all the sensors and from

all the frequency bands. To discriminate between the contraction and non contraction

periods, y(k) is partitioned using the algorithm described in (Frey and Dueck, 2007)

and in section 3.4.1.

Prior to the Hilbert transform of the wavelet decomposition (HTWD) approach, two

additional methods were considered as possible candidates for the identification of the

uterine contractile activity, see Appendix B.

3.4.1 Affinity propagation

Clustering data by identifying a subset of representative examples allows the detection

of patterns in data and the processing of sensory signals. Most methods, including
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3. Uterine contraction identification by global power

the popular k-means clustering technique, use the data to learn a set of centers such

that the sum of squared errors between data points and their nearest center is small.

These methods (MacQueen, 1967) require the a priori specification of the number of

exemplars which are then assessed by iterative refinement starting from a random initial

choice. However, these techniques are sensitive to the initial selection and they work

well only when the number of clusters is small and chances are good that at least one

random initialization is close to a good solution.

The affinity propagation clustering (APC) algorithm introduced in (Frey and Dueck,

2007) takes a different approach. The method recursively transmits real-valued

messages along edges of the network until a good set of exemplars and corresponding

clusters emerges. Messages are updated on the basis of simple formulae that search

for minima of an appropriately chosen energy function. At any point in time, the

magnitude of each message reflects the current affinity that one data point has for

choosing another data point as its exemplar. Figure 3.2 illustrates how clusters

gradually emerge during the message-passing procedure.

Two kinds of messages are exchanged between data points and these messages can be

combined at any stage to decide which points are exemplars and which are the points

that belong to exemplars. The evidence for how appropriate is point k to serve as

the exemplar for point i is given by the responsibility r(i, k). The availability a(i, k)

provides the evidence for how suited would be for point i to choose point k as its

exemplar.

In the context of uterine contraction detection, the inputs for the APC are the

similarities s(i, q) = −‖yi − yq‖2 between data points yi and yq, set to negative squared

error (Euclidean distance). The APC does not require the a priori specification of the

number of clusters. Instead, the algorithm takes as input a real number s(k, k) for

each data point k so that data points with larger values of s(k, k) are more likely to

be chosen as exemplars. These values are referred to as preferences. The values of the

input preferences as well as the message-passing procedure can influence the amount

of identified exemplars (number of clusters).

Real-valued messages are exchanged between data points of y(k) until the optimal

number of exemplars (equivalent to the cluster centroid in K-means algorithm) and

corresponding clusters are found.

The rules for the computation of the responsibilities and availabilities are given below

as in (Frey and Dueck, 2007) :

r(i, k)← s(i, k)−maxk′ 6=k{a(i, k′) + s(i, k′)} (3.12)
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3.4. Global power based contractile activity identification

Figure 3.2: Affinity propagation. The figure shows an illustration for two-dimensional
data points where negative Euclidean distance (squared error) was used to measure
similarity. Each point is colored according to the current evidence that it is a cluster
center (exemplar). The darkness of the arrow directed from point i to point k corresponds
to the strength of the transmitted message that point i belongs to exemplar point k.
(Figure from Frey, B. J. and Dueck, D. (2007). Clustering by passing messages between
data points. Science (New York, N.Y.), 315(5814):972-976. PMID: 17218491. Reprinted
with permission from AAAS)

a(i, k)← min{0, r(k, k) +
∑

i′ 6∈{i,k}

max{0, r(i′, k)}} (3.13)

where i′ and k′ denote candidate exemplars.

To separate the clusters representing the contractions from clusters of non-contractile

regions, the signal to noise ratio (SNR) is computed following:

SNR = max

(
y(k)

min(y)

)
(3.14)

A certain percentage of SNR is defined as a threshold (a detailed description is given in

section 3.4.2) and the clusters above this threshold are quantified as contractile bursts

and the rest as non-contractile bursts. A contraction marker is constructed by defining

one in the instances corresponding to the exemplars (i.e., integrated average power

values) that exceeded the threshold and zero at all other instances.

45

http://www.ncbi.nlm.nih.gov/pubmed/17218491
http://www.ncbi.nlm.nih.gov/pubmed/17218491


3. Uterine contraction identification by global power

3.4.2 Threshold fitting

A proper selection of threshold is a crucial part as it will determine the sensitiv-

ity/specificity of the algorithm and it mainly depends on how one decides to base

the algorithm.

If one desires the algorithm to operate highly sensitive, more bursts will be quantified

at the expense of identifying erroneous burst patterns. On the other hand if one wants

the algorithm to operate highly specific only the prominent bursts will be identified at

the expense of losing a few real bursts which are in the noise region. In this study the

algorithm was set to operate highly specific. To estimate a threshold for the current

study a stochastic model, based on the second order autoregressive process (AR2), is

proposed:

s(t) = a1s(t− 1) + a2s(t− 2) + η(t) (3.15)

where a1 = 1.81 and a2 = −0.9 are the parameters of the AR2 process and η is the

Gaussian white noise. The estimation of the two parameters (a1 and a2) of the second

order autoregressive model (AR2) was performed as follows. For a particular dataset

(MMGT202 39w0d) the MMG data from each sensor was fitted using the second order

autoregressive process. This resulted in different realizations (matching the amount of

primary magnetic sensors) for each, first and second, parameter describing the process.

In the next step, the median of all the realizations was considered and the resulting

coefficients were used in the proposed stochastic model.

Next, s(t) is simulated for a duration of 30 min with a sample frequency of 32 Hz.

Further, the following two variables are considered for the proposed model: (i) θ, which

determines the percentage of occurrence of the bursts in the data and (ii) ρ, which

modulates the amplitude to the desired level. As done in MMG data analysis, s(t) is

divided into disjoint 30 s windows. In order to determine the burst locations, random

numbers uniform distribution are generated for each window. If the random number

generated for a window is less than or equal to θ a burst is inserted in that window.

To model the contraction the data is separated from the window (in which the burst is

to be inserted) and band pass filtered in the frequency band of 0.25 - 0.5 Hz using 4th

order Butterworth filter with zero phase distortion. In the next step the filtered data

is inserted at the place of the original data. This procedure is repeated individually for

all windows that are chosen for the insertion of bursts and denote the modified signal
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3.4. Global power based contractile activity identification

as s′(t). The SNR of s′(t) is modified as follows:

F (t) = s′(t) + z(t) · var(s′(t))

var(z(t)) · ρ
(3.16)

where z(t) represents the Gaussian white noise and var denotes variance.

3.4.3 Threshold selection

For the model described in 3.16 two parameters are varied:

- θ, which determines the percentage of occurrence of the bursts in the data

- ρ, which modulates the amplitude to the desired level

θ runs from 0.1 to 0.9 in steps of 0.1 (i.e., the inserted windows cover from 10 to 90%

of the signal length in steps of 10%) and ρ runs from 1.2 to 9 in steps of 0.2 which

yields SNRs similar to those observed in the real MMG data. F (t) is processed using

the same approach as performed for MMG data using the HTWD approach. For each

value of θ, 40 different realizations of the data are synthesized by varying ρ between the

specified range. In the next step, for each realization a threshold value is determined

so that only true contractile regions are picked. That is, different threshold values

are tried until all or a minimal number of the events are picked. This resulted in 40

different intermediate threshold values. In addition to that the SNR is also computed in

that particular realization as performed for the MMG data (see equation 3.14). After

this step, the mean of the thresholds, denoted with T and the mean of the SNRs,

denoted with S, are computed for each ρ value. To this end T and S are modeled

as an exponential decay function (see Figure 3.3) using equation 3.17, solved for the

coefficients numerically using Newton-Raphson approach and obtain the coefficients

a = 1.179 and b = −0.273.

T = a·eb·S (3.17)

Figure 3.4 (a) presents the case in which the first parameter θ was set to 0.1 (i.e., ten

percent of the data - six windows - containing bursts ) and the second parameter ρ was

at its minimum value, that is, low SNR is produced. Figure 3.4 (b) presents the data

simulated from the model for θ = 0.1 and ρ = 9. The instances at which contractions

are inserted are shown with thin dashed lines. Additionally, the marker computed

based on the manually chosen threshold value that yielded the highest specificity is

plotted over the synthetic signal.
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Figure 3.3: Threshold decay modeling. Mean of the thresholds and signal-to-noise
ratios modeled as an exponential decay.
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Figure 3.4: Example of low and high SNR. (a) low SNR, (b) high SNR in the
synthetic signal that was created to compute the threshold. Figure from (Furdea et al.,
2009).
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3.4. Global power based contractile activity identification

From the simple model (see equation 3.17), we clearly note that for SNR = 1 one

has to select all the exemplars that are greater than 90% of SNR (0.9·SNR) as a burst

pattern. However, this cannot reflect the real scenario. Hence, if the SNR ≤ 1 we

set the algorithm not to mark any burst regions and consider this scenario as the

limiting case of the method. For MMG signals, the SNR obtained using equation 3.14

is substituted in equation 3.17 to compute the threshold and identify the burst regions.

3.4.4 Comparison to IUPC data

Due to the need for a comparison with a gold standard, in a parallel study,

a simultaneous IUPC/MMG recording was carried out with special arrangements

to minimize interferences between the two systems (Eswaran et al., 2009). The

performance of the HTWD approach was tested by applying it to the gold standard

data set (obtained from the simultaneous IUPC/MMG recording) from the SARA

database. A significant cross-correlation has been found between the IUPC signal

and the contractile instances detected by the HTWD approach, r = 0.83, p < 0.001,

with a delay of −9.72 s. The result indicates that the delayed mechanical activity,

displayed by the IUPC signal, follows the activity observed in the magnetic signal, see

Figure 3.5. To further assess the degree of agreement in the contractions detected with

the IUPC and HTWD methods, the rate of true positives (TP), true negatives (TN),

false positives (FP) and false negatives (FN) was computed. The obtained values,

TP = 0.71, TN = 0.92, FP = 0.08 and FN = 0.29 indicate a high degree of sensitivity

and specificity between the two approaches. In addition, it was also shown that in parts

of the data, the proposed method can also identify low-amplitude contraction, which

mothers can not perceive (Eswaran et al., 2009).

49



3. Uterine contraction identification by global power

Figure 3.5: Comparison of the IUPC data with the outcomes of the HTWD
algorithm. The delayed mechanical activity, displayed by the IUPC signal, follows
the activity observed in the magnetic signal. Reprinted from the European Journal of
Obstetrics & Gynecology and Reproductive Biology, Vol 144, Supplement 1, Eswaran,
H., Govindan, R. B., Furdea, A., Murphy, P., Lowery, C. L., Preissl, H. - Extraction,
quantification and characterization of the uterine magnetomyographic activity - A proof of
concept case study, pages S96-S100, c©2009, with persimisions from Elsevier.
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3.5. Preliminary conclusions

3.5 Preliminary conclusions

A new method for the automatic detection of uterine contractile activity was

introduced. MMG signals from a multi-sensor array are decomposed by wavelet

analysis into multilevel approximate and detail coefficients. In each level, the signals

are reconstructed using the detail coefficients followed by the computation of Hilbert

transform. The Hilbert amplitude of the reconstructed signals from frequency bands

ranging between 0.1 - 1 Hz is integrated over all sensors and frequency bands to increase

the signal to noise ratio. The procedure is referred to as the Hilbert transform of the

wavelet decomposition (HTWD). Using the affinity propagation clustering technique

the contractile bursts are separated from the noise level and a single marker for the

contractile events is created. The proposed technique has the advantage to capture

the dominant frequency information, thus providing an accurate estimation of the

contractile activity throughout the gestational age.

To determine its robustness, the method was applied on simulated MMG data, using

a simple stochastic model. A comparison of the proposed HTWD approach with data

obtained from IUPC revealed a significant correlation of the two measures. In addition,

the method was applied to serial MMG recordings obtained from pregnant women

with gestational age ranging between 36 and 41 weeks. The results are presented and

discussed in chapter 5.

During a MMG recording, which typically lasts 30 min, subjects are instructed to

sit still and try to avoid movement. However, during a session slight or sudden

changes in the positioning of the body are inevitable. These movements lead to

sporadic and spurious artifacts which remain blind to the filtering technique. The next

chapter (4) presents a method, that relies on the computation of the center of gravity

(CoG), developed to identify and discard MMG segments that are contaminated with

movement artifacts.
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4

Conduction velocity

The first section of this chapter presents the methodology to identify the uterine

contractions using the power information obtained from individual sensors. The method

described in chapter 3 was extended to provide a contraction marker for each magnetic

sensor. The second section provides a description of an algorithm to identify and discard

artifacts introduced by the movement of the subject. The last section introduces a

novel approach to compute the conduction velocity (CV) of the multidimensional MMG

signals (Furdea et al., 2011).
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4.1 Introduction

The method described in chapter 3 has the advantage to capture the dominant

frequency information, allowing the computation of a marker that labels the contractile

events in a MMG recording. However, a single contraction marker is created for all

sensors. This has the inconvenience that if one decides to investigate specific sensors, in

some of them one might find instances labeled as contractile pattern although in reality

there is no activity. Therefore, the approach presented in chapter 3 was extended

to encompass all magnetic sensors, that is, for each sensor a contraction marker is

computed using the signal power information from the respective sensor.

To compute the contraction marker (the label for the contractile events) in individual

sensor data the procedure presented in section 3.4 was modified. More precisely, the

mean value of the analytic signal (described in section 3.4) was integrated only over

the decomposition levels leading thus to y(k, s). In a next step y(k, s) was partitioned

using the APC algorithm as described in section 3.4.1 followed by the steps described

in 3.4.2 and 3.4.3 to finally obtain the contraction markers for individual sensors.

By integrating over the frequency decomposition levels (and not over the sensors), the

method becomes more susceptible to artifacts introduced by movement of the subject.

Therefore, a new approach was adopted to identify and discard the time instances

where such movement artifacts occurred.

4.2 Artifact rejection

SARA allows the recording of the magnetic fields that are associated to different biolog-

ical processes such as fetal magnetocardiogram (fMCG), fetal magnetoencephalogram

(fMEG), magnetomyogram (MMG) or maternal magnetocardiogram (mMCG) and

voluntary contraction of the abdominal muscles. A previous study has shown that

the activity associated to uterine contraction is mainly localized in the 0.1 - 1 Hz

frequency band (Garfield and Maner, 2007).

When compared to the uterine contractile activity, some of the previously mentioned

physiological processes, namely the fMEG and voluntary abdominal muscle contraction

are high frequency by their nature (Buhimschi et al., 1997; Vrba et al., 2012). Therefore,

in the context of the current work, the artifacts introduced by these processes can be

easily removed (or at least attenuated to a level at which they become negligible) by

using the available basic filtering techniques (i.e., by setting the appropriate parameters

of a band-pass filter). After band-pass filtering, the MMG signals are confined to a band
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Figure 4.1: Example of an artifact in the mMCG introduced by subject
movement∗.
∗ two-dimensional representation

which is upper bounded by the frequency of the fetal and maternal heart rate (in the

range of 1.1 - 2 Hz).

During a measurement, which typically lasts between 20 and 30 min, the subjects are

requested to sit still and avoid any kind of movement as much as possible. However,

slight adjustments of the body position are inevitable. The slight movement of the

body is low frequency in nature (see Figure 4.1), similar to the uterine contractile

activity, thus rendering the removal of motion artifacts (by current filtering techniques)

inefficient. The elimination of such artifacts are of particular concern if one decides to

extend the analysis to the level of individual sensors. The following sections introduce

and describe a method to identify and discard the artifacts introduced by the movement

of the subject. In particular, the detection of slow frequent movement artifacts is

targeted.
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4.2.1 Center of gravity of the R-peaks

To overcome the issue of artifacts introduced by the subject’s movement the time

segment, wherein a movement artifact occurs, is identified and rejected from the

analysis. For this purpose, the R-peaks are extracted from the mMCG (Govindan

et al., 2011; Ulusar et al., 2009) of an entire recording (see Figure 4.2).
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Figure 4.2: Example of R-peaks detected in the mMCG. Red circles represent the
detected R-peaks.

In a next step the signals are partitioned into 3 min disjoint windows and in each

window the center of gravity (CoG) for the R-peaks is computed.

The jth sample of the R-peaks vector at kth sensor is denoted as Sjk and the

corresponding amplitude is represented as Ajk where j = 1 ... m and m is the number

of primary magnetic sensors. We define the CoG for the jth sample as follows:

CoGj =

∑m
k=1(xk, yk, zk) ·A

j
k∑m

k=1A
j
k

, (4.1)

In any given inspection window, the average CoG is computed and denoted with mCoG.

In a next step, the pairwise distance from each R-peak’s CoG to the mCoG is computed

and denoted with dCoG. Whenever in the 3 min inspection window dCoG exceeds a

certain threshold, defined as

dCoG(i) > mCoG + 3 · std(mCoG) (4.2)
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where std denotes the standard deviation, the corresponding sample is marked as

movement artifact (see Figure 4.4). Empirical observations have shown that equation

4.2 provides a fairly good discrimination of the peaks that correspond to maternal

movement. This was also in agreement with the protocol recordings that were carried

out during each measurement. Later on, whenever a sample marked as movement

artifact is encountered in the analysis of the biological signals the corresponding

inspection window is discarded from further analysis. A schematic representation of

the movement detection algorithm is provided in Figure 4.3.

The algorithm for computing the uterine contractile activity marker was complemented

with the movement detection algorithm and it represents the last preprocessing step

prior to the computation of the HTWD (see Figure 4.5).

Get R-peaks
(from mMCG)

Partition MMG signals
(3 min disjoint windows)

dCoG(i) > mCoG + 3σ(dCoG)

ArtifactNo artifact

Compute mCoG, 
dCoG, σ(dCoG)

No Yes

Figure 4.3: Schematic representation of the movement detection algorithm.
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Figure 4.4: Example of movement detection in a 30 min recording. The grey
surface corresponds to the 3D coordinates of the primary magnetic sensors. Red dots
show the center of gravity of the R-peaks (detected in the mMCG) and green diamonds
represent the center of gravity for the R-peaks (detected in the mMCG) identified as
movement artifact.
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Figure 4.5: Schematic representation of the complemented uterine contraction
detection algorithm. The movement detection (highlighted with green) was added to
the preprocessing stage.
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4.3 Conduction velocity

The propagation of AP through an adequate number of smooth muscle cells results in

coordinated contractions of the myometrium. These contractions can simultaneously

induce a progressive cervical dilatation and an increase of the internal uterine pressure

which are both prerequisites for a successful delivery.

Several studies investigated the use of either EMG or MMG signals for the prediction of

labor and for the discrimination of contractions leading to preterm delivery. Both time

(Buhimschi et al., 1998; Verdenik et al., 2001) and frequency domain (Buhimschi et al.,

1998; Doret et al., 2005; Eswaran et al., 2009; Garfield et al., 2005; Maner et al., 2003,

2006) parameters were analyzed and the most significant observable characteristic is

the shift of the burst frequency components from low (in early gestational age) to higher

frequencies (close to term and during labor). Such spectral changes were observed close

to delivery (Eswaran et al., 2009; Vinken et al., 2009).

The spreading of the coordinated electrical activity (and the resulting magnetic

activity) in the myometrium is a prerequisite for effective contractions (Garfield et al.,

1988). The prediction of preterm labor on the basis of MMG signal frequency content

could be tackled by means of a multichannel analysis. Therefore the conduction velocity

(CV) of the propagating MMG signal could provide a fundamental contribution for the

prediction of delivery. Muscle fibre CV has been considered an important physiological

parameter as it reflects the membrane muscle fibre properties and thus the modifications

of the peripheral properties of the neuromuscular system as a consequence of either

pathology, fatigue, pain or exercise (Farina and Merletti, 2004).

The CV of electrical events in the myometrium is a concept that goes back to 1948

(Bozler, 1948). Early studies report that sheets of smooth muscle cells behave as a

syncitium in the transmission of electrical activity. No direct protoplasmic connexions

exist but several types of intercellular junction have been shown by electron microscopy.

Areas of adjacent cells are parallel and separated by a gap between 0 to 30 nm where

as much as 6% of the cell surface area can be involved (Duthie, 1974).

CV has been studied by many authors and there is a wide range of values that depend

on the species and the equipment used (Lucovnik et al., 2011a; Miller et al., 1989;

Miyoshi et al., 1998; Rabotti et al., 2010b; Vinken et al., 2009).

Early studies showed increased CV of the uterine myometrial cells before delivery and

this has been attributed to the increase in the gap junction between the myometrial cells

(Miller et al., 1989; Miyoshi et al., 1998). Garfield and colleagues have measured cell-to-

cell conduction after they noted the presence of gap junctions (which are low-resistance
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contacts for current spread) between myometrial cells during term and preterm labor

(Garfield et al., 1977). A more recent study has shown that the power spectrum peak

frequency of the uterine EMG, along with CV can identify more accurately true preterm

labor than current clinical methods (Lucovnik et al., 2011a). The authors used a bipolar

electrode setup and the electrode arrangement was standardized as follows (i) 2.5 cm

electrode-electrode vertical and horizontal separation distances (measured from center

to center), (ii) in a square-shaped pattern about the navel and with each electrode

positioned in the vertex of each of the four corners of the square yielding a bipolar setup.

This setup has the advantage (over a monopolar setup) of better signal quality, which in

turn allows to identify individual uterine voltage peaks more accurately. However, the

disadvantage of a bipolar setup is that purely vertical propagation produces a minimal

measurement because of the common mode rejection of the amplifiers. Purely horizontal

waves are registered, and these horizontally moving waves impinge at adjacent upper

and lower pairs in rapid succession. This results in an underestimation of the signal time

of arrival interval between electrodes and produces a poor CV estimation (Lucovnik

et al., 2011b).

Recent studies also advanced the hypothesis that the analysis of the CV in combination

with other parameters that are derived by the electrohysterogram (EMG) has potential

value for discriminating between productive and unproductive uterine contractions

(Rabotti et al., 2010b; Vinken et al., 2009). EMG analysis poses demanding

requirements with respect to the number and relative position of the recording channels

that are used for deriving the value of CV, that is, the value of velocity along the

propagation direction. As an example, the use of two recording channels may lead

to inaccurate CV values that do not correspond to the actual values (Rabotti et al.,

2011).

At this time the prognostic capability of the CV has only been evaluated by means

of EMG (Lucovnik et al., 2011a; Rabotti et al., 2011). The MMG technique has the

potential to provide a better estimate of the CV mainly because when using magnetic

signals the inconvenience related to the spatial location and distribution of the recording

sensors is eliminated. Earlier studies suggest that there might be a preferential direction

of propagation in the human uterus (Planes et al., 1984; Wolfs and Rottinghuis, 1970).

For geometrical and physical reasons, this could result in the expulsion of the fetus given

that, during active labor, contractions propagate generally from the fundus toward the

isthmus. This would also support the idea that although there may not be a specific type

of individual pacemaker cell, there may be general pacemaker regions later in gestation

(Garfield and Maner, 2007). But again, no clear direct evidence of pacemaker cells has
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4.3. Conduction velocity

been found in humans.

To study the CV in MMG signals, first the contractile patterns are detected and

marked. The detection is performed within a 30 s sliding non-overlapping window,

in each sensor as described in (Furdea et al., 2009) and section 4.1. Second, the sensor

space is subdivided into four quadrants (Q) or regions (see Figure 4.6). To compute

the delay (i) pairwise combinations of quadrants are created (e.g., Q1-2, Q1-3, Q1-4,

etc.), (ii) inspection windows are identified wherein contractile activity simultaneously

occurs in any given quadrant pair and (iii) the delay between the center of gravities

(CoG), that correspond to different quadrants in a pair, is computed using the high

dimension cross-correlation function (HDCC) (see section 4.3.2). Once the delay is

computed the CV can be easily calculated by dividing the euclidean distance between

CoGs that belong to different quadrants in a pair, and the amount of time by which

they are delayed (the index k at which the euclidean distance between the two CoGs

is computed is given by the same index at which the delay occurs).

CV =
‖CoGi,k − CoGj,k‖2

tk
, where i 6= j (4.3)
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Figure 4.6: Partitioning of the sensor space in four quadrants according to
their x and y coordinates. Diamonds, crosses, asterisks and squares are marking the
sensor coordinates that belong to the first, second, third and fourth quadrant, respectively.
Black circles mark the sensors in which the AR2 processes are modified. Adapted from
(Furdea et al., 2011), c© 2011 IEEE.

61
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4.3.1 Center of gravity and Hilbert amplitude

The jth sample of the MMG signal at kth sensor is denoted as Sjk and the corresponding

amplitude of the Hilbert transform is represented as Hj
k where j = 1 ... n with n

representing the number of primary magnetic sensors. The center of gravity (CoG) for

the jth sample is defined as follows:

CoGj =

∑n
k=1(xk, yk, zk) ·H

j
k∑n

k=1H
j
k

, (4.4)

The Hilbert transform of the MMG signal at kth sensor can be easily computed using

the MATLAB (Mathworks Inc.) built-in function. The function returns a complex

signal as a linear combination of the original signal with its Hilbert transform (see

equation 3.1).

4.3.2 High dimension cross-correlation function (HDCC)

To compute the delay between pairs of CoGs (where each CoG is represented as a

3-dimensional vector) time shifted correlation analysis is performed. For this purpose

CoGs from one of the quadrants are held constant and the CoGs from the second

are shifted (back in time) by τ samples. The last τ samples are discarded from the

CoGs that are held constant in order to match the number of samples in the later. To

this end the correlation coefficient is computed between these two CoGs. However, in

this approach there is an element of bias as the correlation coefficient is computed for

different number of samples for each shift. To avoid this bias and thereby to quantify the

correlation correctly, for each shift τ , the same number of data points (that corresponds

to number of samples minus the maximum lag) are discarded from both CoGs. The

maximum lag up to which the correlation analysis is performed is therefore set to 15 s

of data. For each shift, the correlation is quantified using the equation introduced in

(Smilde et al., 2009):

C =
tr(XtY )√

tr(XtX)tr(Y tY )
, (4.5)

where Xt and tr(X) represents the transpose, respectively the trace (the sum of diagonal

elements) of the matrix X.
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4.3. Conduction velocity

4.3.3 Modeling

A stochastic model based on the second order autoregressive process (AR2) is proposed:

X(t) = a1X(t− 1) + a2X(t− 2) + η(t) (4.6)

where the initial parameters of the AR2 process are computed as in (Furdea et al.,

2009). The purpose of the proposed stochastic model is to mimic the amplitude of the

MMG signals by modifying the parameters of the model. This model is just sufficient to

understand the limitation of the approach as to capture the delay between the selected

sensors. Moreover, this model cannot explain the different frequency characteristic that

may be present in the measured MMG signals.

0 100 200 300 400 500 600
−4

−2

0

2

4
x 10

−13

A
m

p
lit

u
d
e
(T

e
s
la

)

Signals in the 5th window are delayed

 

 

0 100 200 300 400 500 600
−5

0

5
x 10

−13

Time(seconds)

A
m

p
lit

u
d
e
(T

e
s
la

)

Signals in the 9th window are delayed

 

 

signal from Q1

signal from Q2

signal from Q2

signal from Q4

Figure 4.7: An example of the modeled signals. Top: signals belonging to Q1 (blue)
and Q2 (red), note that in the fifth active window the signal in Q2 is delayed with respect
to the signal in Q1. Bottom: signals belonging to Q2 (blue) and Q4 (red), note that in the
ninth active window the signal in Q4 is delayed with respect to the signal in Q2. Figure
from (Furdea et al., 2011), c© 2011 IEEE.

To match the total number of magnetic sensors, n different realizations of the AR2

process are created for a duration of 9.5 min with a sampling frequency of 250 Hz.

The sensor space is divided into four quadrants and in each quadrant ten sensors are

chosen where burst activity will be inserted. For the actual data analysis the algorithm

will perform further operations only if the number of active sensors (NAS), that is, the

amount of sensors wherein contractions were detected, exceeds the preset value of ten

sensors. Next, X(t) is divided into disjoint windows and alternate every 30 s between

active and rest periods. During the active periods the signals in the ten selected sensors
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4. Conduction velocity

are replaced with a filtered (bandpass filter at 0.35 - 0.8 Hz) and amplified version of

the corresponding original AR2 processes. The first four active periods the signal is

modified only in one quadrant, that is, in the first active period signals are modified

in Q1, in the second active period in Q2, etc. Starting with the fifth active period

the signal is modified in quadrant pairs, that is, in the fifth active period, signals are

modified in Q1-2, in the sixth period in Q1-3, etc. In addition, whenever signals are

modified in quadrant pairs, a delay of 5± 1 seconds is introduced in the signals of the

second quadrant of the pair. The duration of the delay was arbitrarily chosen and the

values were drawn from a Poisson random distribution. For a schematic representation

of the model with the modified signals see Figure 4.7.

The results of the event based simulation and the results obtained by applying the

conduction velocity approach are presented in chapter 5.
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Application to biological data

This chapter discusses the application of the different methods described in the third

and fourth chapter and to characterize the uterine contraction signals. In the first

section, serial MMG recordings, obtained from six subjects in different gestational age,

were investigated with the aim to automatically identify and mark the time segments

which are corresponding to uterine contractile activity.

The second section presents the results of the conduction velocity analysis in 45 serial

MMG recordings obtained from nine subjects.
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5. Application to biological data

5.1 Contraction burst identification using the global power

of multisensor data

Six healthy pregnant women, one of pre-term and five of term, at gestational ages

between 36 and 41 weeks were investigated (a total of seven datasets). Table 5.1

presents subject and recording related information.

Subject ID GA [days] Duration Type of delivery

MMGP201 252 15 min normal
MMGT201 273 20∗ min normal
MMGT202 273 20 min normal
MMGT203 262 20 min normal
MMGT204 265 20 min normal
MMGT205 281 20 min normal
∗ recording split in two separate datasets

Table 5.1: Contraction marker computation: overview of the investigated
datasets

The uterine activity was recorded with the 151 channel SARA system installed at

University of Arkansas for Medical Sciences, Little Rock, USA. Each recording session

was designed to last 20 min at a sampling rate of 250 Hz. Based on comfort of the

pregnant women, the recording on the preterm subject MMGP201 36w0d lasted only

for 15 min and for one term subject MMGT201 39w0d two shorter duration recordings

with a break in between were performed. The resulting two data sets were analyzed

and presented separately. The study was approved by the Institutional Review Board

and all subjects signed the informed consent prior to participation.

For a typical data set, MMGt205 40w1d, Figure 5.1 presents in (a-d) the mean of the

Hilbert-wavelet transform (in each 30 s non-overlapping inspection window) integrated

across all sensors in four different frequency bands that range between 0.0625 - 1 Hz. It

can be observed that, despite the notch filter, the 0.25 - 0.5Hz band is the highest active

band. However, MMG activity can also be seen in the neighboring bands suggesting, for

this particular case, a spread of contractions through the entire 0.125 - 1 Hz range. In

addition, Figure 5.1 e) depicts the integrated signal y(k) (see section 3.4) over all sensors

in the four frequency bands Figure 5.1 a) - d). Red diamonds represent the instances

that exceed the threshold (see section 3.4.2) and received the contractile pattern label.

Figure 5.2 illustrates the estimated contractions in the seven datasets. For each dataset,

the contraction marker is plotted over the pre-processed signal, obtained from one
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Figure 5.1: Example of the mean Hilbert-wavelet transform. The mean values are
computed in each 30s non-overlapping inspection window. Dataset MMGt205 40w1d: (a-
d) The mean of the Hilbert-wavelet transform integrated across all sensors in four different
frequency bands ranging between 0.0625 - 1 Hz. (e) The integrated signal y(k). Red
diamonds represent the instances that exceed the threshold. Figure from (Furdea et al.,
2009).

representative sensor with the highest SNR.

Here, the APC algorithm is applied on the integrated Hilbert amplitude from all

the sensors and from all the frequency bands. As a result the contraction marker

incorporates information from all the investigated frequency bands (0.1 - 1 Hz).

Moreover, by using this approach the contractions which are identified are characteristic

of the highest active frequency band. For the same dataset, MMGt205 40w1d, Figure

5.3 presents the spatial distribution of the Hilbert-wavelet amplitude (averaged over

the 0.0625 - 1 Hz frequency band). It can be observed that there is an agreement

between the peaking activity and the contraction marker (see Figure 5.2 and 5.3).
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Figure 5.2: Estimates of the contractions detected in seven data sets. The
contraction marker (red) is plotted over the pre-processed MMG signal (black). An
agreement between the bursty activity and the contraction marker can be observed. The
MMGP and MMGT prefixes indicate the preterm and term patients, respectively. The
prefixes are followed by the patient code and gestational age (week and day). The first
and second recordings of MMGT201 39w0d are marked with 1 and 2, respectively. Figure
from (Furdea et al., 2009).
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Figure 5.3: Isofield map of the spatial distribution of the mean Hilbert-wavelet
amplitude. The mean values are computed for every sensor in each 30s non-overlapping
inspection window and integrated over four frequency bands ranging between 0.0625 - 1 Hz.
The data is presented for subject MMGt205 40w1d. Warm colors indicate high and cold
colors indicate low mean Hilbert-wavelet amplitude, respectively.
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5.1.1 Contraction burst identification in serial MMG data

The contraction burst detection algorithm was applied to biological datasets using

the methods described in chapter 3. Artifacts introduced by the movement of the

subject were exclded prior to the computation of the contraction marker (see Figure

4.5). Table 5.2 provides a summary of the serial MMG recordings. The first column of

the table contains the subject ID, the second columns shows the amount of recordings

performed with one subject. Column three and four indicate the gestational age (GA) in

weeks wherein the first and last recording were performed. The fifth column displays

the approximate duration of one recording. The last column of the table indicates

whether the delivery was performed normally or by C-section. In all subjects the time

to delivery was greater than 24 hours. The term gestational age is related to the

age of a fetus and it indicates the amount of time a baby has been in the uterus. It is

counted from the subject’s last menstrual period and in the clinical practice it is usually

expressed in completed weeks plus the number of day in the current week, e.g., 37w2d.

However, because the statistical analysis required continuous data, the gestational age

was converted to days.

Subject ID
Recording

Type of delivery
Total First [days] Last [days] Duration

L001 14 161 266 30 min normal
L002 5 217 259 30 min C-section
I021 4 224 260 10 min normal
I022 4 224 252 10 min normal
I023 4 224 273 10 min normal
I029 4 238 287 10 min normal
I035 4 196 238 10 min normal
I012 3 231 280 10 min C-section
I028 3 224 260 10 min normal

Table 5.2: Overview of the serial MMG recordings.

The HTWD method proposed for the detection of contractile events is applied on

the MMG signals collected from the subjects listed in table 5.2. For subject L001,

typical results obtained from the time-frequency decomposition are presented in Figure

5.4 and 5.5. The figures illustrate the contour maps of the mean HTWD derived from

recordings that correspond to the 23rd (161 days) and 37th (260 days) week of gestation,

respectively. The mean HTWD values are computed in each 30 s non-overlapping

inspection window. In each figure the contraction marker is displayed at the bottom
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of the top-right subplot. It can be observed that in early gestation the bursts have a

longer duration and a smaller amplitude but as the subject approaches term the bursts

tend to become shorter with higher amplitude.
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Figure 5.4: Mean HTWD of data collected in the 23rd week of gestation. Data
is presented for subject L001 in the four frequency bands ranging between 0.0625 - 1 Hz.
Mean values of the HTWD computed in 30s non-overlapping inspection windows are
plotted for each sensor. The discrete-time binary decision signal which marks the
contractile events is shown at the bottom of the top-right subplot.
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Figure 5.5: Mean HTWD of data collected in the 37th week of gestation. Data
is presented for subject L001 in the four frequency bands ranging between 0.0625 - 1 Hz.
Mean values of the HTWD computed in 30s non-overlapping inspection windows are
plotted for each sensor. The discrete-time binary decision signal which marks the
contractile events is shown at the bottom of the top-right subplot. Notice the increase
in power compared to data collected in the 23rd week of gestation.
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In a next step, the mean burst duration (BD) along with the standard deviation of BD

and the median of BD are computed to study their variation with the GA. In addition,

for the same purpose, the mean burst frequency (BF) along with the standard deviation

of the BF and the median BF are computed. Table 5.3 presents the mean BD, std(BD)

and GA for subject L001.

Subject L001
mean BD [s] std(BD) [s] GA [days]

70.9 93.2 161
130.0 168.4 168
106.7 113.4 175
37.5 13.9 182
120.0 195.1 196
105.0 90.8 203
63.0 62.4 217
42.0 21.0 224
40.0 15.0 231
36.0 12.7 245
36.0 13.4 252
50.0 49.7 259
45.0 30.0 260
37.5 15.0 266

Table 5.3: Mean BD (in seconds), std(BD) (in seconds) and GA (in days). Data
computed for subject L001.

Negative significant correlations were found between the mean BD and GA, p(two-tailed)

< 0.01, r = −0.679 (see Figure 5.6). The interaction between std(BD) and GA showed

also a negative correlation which was significant at p(two-tailed) < 0.05, r = −0.653.

Similarly, the median BD correlated negatively with the GA, p(two-tailed) < 0.05, r =

−0.554. No significant correlations were found between GA the mean BF, std(BF ) or

median BF.

Due to insufficient amount of available recordings, no statistical test were carried out

on the data of the remaining subjects. However, in participant L002, I012, I021 and

I023 descriptive statistics show, similarly to the observations made in subject L001, a

decrease in the mean BD and std(BD) with the increase of GA (see Table 5.4).

The availability of several longitudinal recordings in subject L001 (see Table 5.2)

rendered possible the analysis of the power density of the uterine MMG bursts. Many

studies carried out on EMG signals collected from pregnant women have shown that the

power density of uterine bursts in subjects during active labor peaked at 0.71±0.05 Hz
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Subject L002 Subject I012
mean BD [s] std(BD) [s] GA [days] mean BD [s] std(BD) [s] GA [days]

158.6 198.0 217 110.0 113.6 231
51.0 37.5 224 60.0 52.0 260
78.7 47.9 231 45.0 21.2 280
72.0 83.9 238
36.7 20.0 259

Subject I021 Subject I023
mean BD [s] std(BD) [s] GA [days] mean BD [s] std(BD) [s] GA [days]

130.0 121.3 224 97.5 115.9 224
70.0 45.8 245 50.0 17.3 238
50.0 34.6 248 50.0 17.3 252
45.0 21.2 260 30.0 0.0 273

Table 5.4: Mean BD, std(BD) and GA. Data computed for subjects L002, I012, I021
and I023.

as compared to non-laboring term patients 0.48± 0.03 Hz (Garfield et al., 2005, 1998;

Maner et al., 2006).

Due to the limitations imposed by the dyadic decomposition of the db2 wavelet, the

decompositions closest to those reported by Garfield et al. were (i) low frequency

0.25 - 0.5 Hz and (ii) high frequency 0.5 - 1 Hz. Based on this, the time-frequency

analysis on the spatial-temporal data obtained from uterine MMG recordings was

performed to understand the variation of frequency of the process as a function of
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Figure 5.6: Decrease of mean BD with GA in subject L001. A linear fit is
computed and overlaid on the data collected along the gestational age.
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time. To quantify the power, the average of the Hilbert amplitude in both bands was

computed.

In order to understand the shift in the power from lower-frequency to higher-frequency,

the ratio of the power (high to low) was computed in the two bands. This ratio was

calculated for MMG signals from each SARA sensor in the instances where contraction

was detected. Figure 5.7 shows for subject L001 a contour diagram of the power ratio

overlaid on the magnetic sensor array covering the maternal abdomen. For the sake of

simplicity, the power ratio in the first three (top) and last (bottom) three recordings is

presented. The top row shows, from left to right, the ratio of power (high to low) in

the data collected between the 23rd and 25th week of gestation. Similarly, the bottom

row illustrates (from left to right) the ratio of power (high to low) in the data collected

between the 37th and 38th week of gestation (subject L001 underwent two recording

sessions in the 37th week of gestation). The frequency content of the MMG bursts is

color coded and the contour plot is overlaid on the magnetic sensor map to show the

spatial distribution. Warm colors indicate an increase in the power ratio of the MMG

signals.

The map reflects the progression of change in the power shift towards higher-frequency

starting from the first recording (23rd week of gestation) to the last recording (38th

week of gestation) before the subject went into active labor. In addition, based on the

enhanced SARA spatial resolution, a wider distribution of the increased MMG power

ratio can be observed over larger sensor area as the uterus prepares to approach towards

labor.
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Figure 5.7: The ratio of power in higher-frequency (0.5 - 1 Hz) to lower-
frequency (0.25 - 0.5 Hz) bands. Typical data is provided for subject L001. Top
row shows the ratio of power in the first three recordings (collected between the 23rd and
25th week of gestation) and the bottom row presents the ratio of power in the last three
recordings (collected between the 37th and 38th week of gestation). The frequency content
of the MMG bursts is color coded and the contour plot is overlaid on the magnetic sensor
map to show the spatial distribution.
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5.2 Conduction velocity

5.2.1 Event based simulation

Results of the event based simulation which was described in subsection 4.3.3 are

summarized in Table 5.5. As a reminder for the reader, the event based simulation was

necessary to evaluate whether the high-dimension cross-correlation (HDCC) is able to

capture the delay between CoGs belonging to different quadrant pairs. For this purpose

the MMG signals were modeled using an AR2 model. The purpose of the proposed

stochastic model was to mimic the amplitude of the MMG signals by tweaking the

parameters of the model. The model is just sufficient to understand the limitation of

the approach as to capture the delay between the selected sensors and it cannot explain

the different frequency characteristic that may be present in the measured MMG signals

(see subsection 4.3.3 for more details).

The first row in Table 5.5 contains the average delay that was inserted in the preselected

ten sensors. The duration of the delay was arbitrarily chosen (±5 s) and the values

were drawn from a poisson random distribution. The second row shows the delay

as computed by the HDCC function. The results show that the HDCC which was

described in section 4.3.2 is able to reliably capture the delay between the CoGs of the

simulated data.

Delay
Quadrant pair

Q1-2 Q1-3 Q1-4 Q2-3 Q2-4 Q3-4

Inserted 5.09 4.90 5.04 4.93 4.98 4.98
Detected 5.31 4.91 5.13 4.75 5.09 4.94

Table 5.5: Event based simulation results. The delay as inserted in the stochastic
model (first row) and as captured by the high-dimension cross-correlation function (second
row). Table from (Furdea et al., 2011), c© 2011 IEEE.
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5.2.2 Conduction velocity estimation in serial MMG data

To estimate the CV the contraction burst detection algorithm described in chapter 3

was applied to biological datasets, followed by the approach described in chapter 4.

Again, the rejection of the artifacts introduced by the movement of the subject was

performed prior to the computation of the contraction marker (see Figure 4.5).

Figure 5.8 shows the CV in the nine investigated subjects, obtained from the analysis

of each quadrant pair over the gestational age.

A total of 45 recordings were investigated (see Table 5.2). The values for each day were

obtained as follows: for any given quadrant pair, in each active inspection window (see

section 4.3.3) the delay between corresponding CoGs was computed using the HDCC.

In a next step, a bootstrap test was conducted. Here, the null hypothesis was that the

delay identified in the original data was due to random chance and it was tested against

the alternate hypothesis that the delay was not due to a random process, i.e., the CoGs

represent delayed versions of the same process. In order to test the null hypothesis,

surrogate data was generated by shuffling blocks of data, followed by the computation

of HDCC (as done for the original data) on the block-shuffled data. By using block-

shuffling instead of random-shuffling, the (two-point) correlations properties of the

original signals remain preserved (Govindan et al., 2008). This property is necessary to

correctly address a certain type of null hypothesis that is related to biological signals

as presented here.

Based on earlier work of Schreiber and Schmitz (Schreiber and Schmitz, 2000), to

reject the null hypothesis at α = 0.05 level, a total of N = 100 different surrogates

were synthesized, wherein data were block-shuffled. If the delay in the original data

was greater than the Kth maximum or less than the Kth minimum of the delay of all

the surrogates then the null hypothesis could be rejected, that is, the detected delay

was significantly different compared to the delay coming from a block-shuffling process.

In a next step, the velocity (for inspection windows wherein contraction was detected)

was calculated as the ratio of the distance between CoGs (belonging to different

quadrants) and the delay between the same CoGs. In case of negative delay, its absolute

value was used (at this point the focus was the temporal separation rather than the

direction of information flow).

Finally, for a given dataset the CV is quantified by taking its highest value from

all quadrant pairs. Table 5.6 presents the CV values which were obtained in the

45 investigated recordings (that belong to the nine subjects). The delay values that

correspond to the CV values presented in Table 5.6 are summarized in Table 5.7.
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GA [days]
Conduction velocity values [cm/s]

Subject
L001 L002 I021 I022 I023 I029 I035 I012 I028

161 6.02
168 4.06
175 5.68
182 6.91
196 5.07 1.45
203 10.37
210 2.29
217 10.20 9.40
224 10.94 13.49 1.74 2.02 NaN 11.57 NaN
231 16.92 8.93 4.97
238 9.24 1.64 3.51 8.63 NaN
245 12.57 NaN
250 13.16 22.31 4.41
252 9.64 15.34 1.32
259 7.83 4.25
260 18.03 38.49 3.16 5.97
266 53.29
273 85.02 2.59
280 38.31 1.46
287 3.30

NaN - the CV computation did not yield any result

Table 5.6: Conduction velocity values (in cm/s) in the nine investigated
subjects. The values for each day of recording represent the maximum velocity that
occurred in all quadrant pairs.

The two-tailed bivariate correlation analysis performed at the level of the entire

group revealed a positive significant relationship between CV and gestational age,

p < 0.05, r = 0.348, that is, an increase in the CV can be observed with the

advancement of the pregnancy.

The grand-averaged CV and estimated delay across subjects indicates a signal

propagation speed of 11.98 cm/s and an average delay of 4.57s.
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GA [days]
Estimated delay values [seconds]

Subject
L001 L002 I021 I022 I023 I029 I035 I012 I028

161 2.38
168 4.06
175 2.31
182 4.16
196 3.72 7.84
203 4.64
210 8.84
217 1.41 5.79
224 2.98 7.29 6.91 1.09 NaN 1.72 NaN
231 5.42 6.39 4.81
238 6.45 8.50 3.69 4.98 NaN
245 4.43 NaN
250 5.63 0.72 4.53
252 2.00 3.83 13.06
259 5.67 5.58
260 3.67 0.38 5.41 3.38
266 3.06
273 0.06 4.25
280 0.59 7.25
287 4.99

NaN - the computation of the delay did not yield any result

Table 5.7: Estimated delay values (in seconds) for the nine investigated
subjects.
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Figure 5.8: Conduction velocity values in the nine investigated subjects. The
values for each day of recording represent the maximum velocity that occurred in all
quadrant pairs. Black thick line shows the average trend in the analyzed data.
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Discussion

The quantitative assessment of the uterine contractile activity throughout pregnancy

can have an important role in the timely identification of complications and preterm

labor. The detection of acute risks along with a more accurate prediction of preterm

delivery would allow timely medical intervention and consequently would improve the

effectiveness of the required treatments.

The current state-of-the-art in labor monitoring employed in the clinical practice

is either inaccurate or has an invasive nature. Present uterine monitors, such as

tocography (TOCO), are uncomfortable, less accurate and depend on the examiner

for proper placement (Arulkumaran et al., 1991; Iams, 2003; Peaceman et al., 1997).

Similarly, the predictive power of biomarkers is not sufficient for a successful diagnostic

and the use of Bishop scoring has not lead to a reduction in preterm labor either

(Garfield and Maner, 2007). While the evaluation of cervical change is probably the

most frequently used clinical method for assessing labor, there is still a high amount

of controversy regarding its prognostic value. However, contractions are routinely

monitored in the last stage of pregnancy and during labor. The intrauterine pressure

catheter (IUPC), the current golden standard for contraction monitoring, provides the

most accurate quantitative assessment of the uterine contractions but with limited

usability due to its invasive nature (rupture of the amniotic membranes) (Rabotti,

2010). Therefore the use of the IUPC is generally limited to patients in whom delivery

is necessary or it presents complications.

The uterine magnetic activity which reflects the original process of muscle fiber

excitation due to the propagation of the action potentials (AP) can be non-invasively

measured by means of magnetomyography (MMG). Therefore, the magnetomyographic

signal has great potential for uterine contraction monitoring both during pregnancy (for
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the prediction of preterm labor) and during delivery (for the detection of complications).

6.1 Contraction identification

From a cellular level, the uterine contractions are results of the transmission of action

potentials in the myometrial cells of the uterine muscle. This electrical activity is

transmitted to the different regions of the uterus through the coupling of the myometrial

cells by means of gap junctions. It has been postulated by Garfield and colleagues that

the gap junction increases during the labor in various species (Garfield et al., 1977).

Further, spectral analysis of EMG shows an increase in power around 0.7 - 0.8 Hz

for subjects in labor compared to the non-laboring subjects (Garfield et al., 2005). A

global synchronization of the electrical activity over the entire uterus has been related

to successful progress of labor and delivery of the fetus. In the past, uterine contractile

activity has been successfully measured by means of MMG (Eswaran et al., 2002).

However, to further understand the uterine dynamics and to identify the contractions

(bursts) in the MMG signals a more sophisticated method would be required. As uterine

contraction is not a continuous process, to correctly understand the uterine dynamics,

the spectral analysis has to be done exactly in the time window where the contraction

has occurred. This is a tedious process as one has to manually score the contraction

patterns prior to the application of the spectral analysis. Instead, a time-frequency

approach to localize the contractile patterns is attempted in this work using Hilbert

and wavelet transforms.

Based on the approach introduced in chapter 3 the MMG power is classified into signal

and noise components by using the affinity propagation clustering technique. However,

the definition of noise level is ill defined in the MMG data. Hence, based on the SNR

obtained by processing the MMG using the algorithm, a stochastic model is proposed to

understand the performance of the approach. The data simulated using the model was

processed in the same manner as performed for the real MMG data and the SNR was

computed. To this end an appropriate threshold was chosen to identify the contractions

incorporated in the model. In this procedure, the threshold has been chosen to operate

highly specific to identify the true contractile events in the model. Based on this

simulation, it can be observed that the threshold used to identify the contraction,

decays exponentially with the SNR. To quantify this behavior an exponential model

was fitted and it’s parameters were identified. This model was then used to compute the

threshold for the SNRs obtained for the MMG datasets. It was shown that the proposed

method is able to accurately identify the beginning and the end of the contractile burst
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activity (see Figure 5.2).

This thesis presents a novel time-frequency approach, based on the Hilbert transform of

the wavelet decomposition (HTWD), to identify the contractile burst in MMG signals.

In order to aid the approach in distinguishing MMG burst patterns from noise, a

stochastic model was introduced. The threshold derived based on the model is used to

delineate contractile bursts from the background activity.

This is the first step in the analysis process of making this technique a clinically viable

tool. Once the events have been accurately identified one can further process the burst

duration, or number of bursts per minute, or the frequency content of the burst and

spatial-temporal spread of the burst across the sensor space. Using spectral analysis

Garfield and colleagues have shown that the power spectral density (PSD) of uterine

EMG bursts in patients during active labor peaked at 0.71± 0.05 Hz as compared to

non laboring term (0.48 ± 0.03 Hz) patients (Garfield et al., 2005). Also, the PSD

peak values were comparatively low for patients not in labor with respect to patients in

active labor. Further the number of burst per minute and spread of the burst across the

sensors will increase as the pregnant mother approaches active labor. All these factors

in a certain combination can be potential indicators for the clinical diagnosis of labor.

The proposed method provides an accurate temporal evaluation of the occurrence of

contractile activity.

In a recent study, Hill and colleagues used recursive partitioning to identify gestational

age specific and threshold values for infectious and endocrine biomarkers to predict

preterm delivery (Hill et al., 2008). The results indicate that, according to gestational

age, two biomarkers provide high accuracy in predicting preterm delivery within 48

hours. These are the corticotropin releasing hormone (CRH) and white blood-cell count

(WBC). However, most potential biomarkers of preterm birth investigated in women

with threatened preterm labor are similar, with respect to diagnostic performance and

accuracy. That is, negative predictive values are superior to positive predictive values

and the tests are usually more specific than sensitive (Berghella et al., 2008; Hill et al.,

2008; McGregor et al., 1995). Therefore, to predict preterm labor with the current

approach and thus to achieve a practical use in the clinical setting, future studies

should also concentrate on correlation analysis between MMG outcomes of contractile

activity and bio-physiological measures.
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6.1.1 Contraction burst identification in serial MMG data

The current work shows that the uterine myometrial burst activity can be successfully

identified using the HTWD approach. Statistical analysis carried out on the data

collected from subject L001 shows a significant decrement in the mean burst duration

(BD) as the subject reaches advanced gestational age (38th week of gestation). The

other measures, that is, the standard deviation of the burst duration (std(BD)) and in

the median BD also displayed a significant decrement with respect to the progression

of the pregnancy. Similar behavior was observed in the MMG signals collected from

four other participants, namely subject L002, I012, I021 and I023.

An earlier EMG study carried out on a larger population also showed that the mean

BD can be used as a parameter that discriminates between preterm contractions that

lead to preterm delivery and those that do not, at 2.5 to 4 weeks before delivery (Leman

et al., 1999).

The results obtained in the current work are in agreement with earlier findings of

Maner and colleagues who also used the standard deviation of the BD in combination

with neural networks with good results in terms of sensitivity and negative predictive

value (Maner and Garfield, 2007). The authors observed a decrease in the standard

deviation of the BD of EMG signals with the progression of pregnancy, in other words,

the duration of a contraction is more stable in advanced gestation and during labor.

The results of Maner and colleagues as well as the outcomes of the current work are in

agreement with observed physiology, as contractions should be more coordinated and

synchronous during the labor that precedes delivery (Demianczuk et al., 1984; Eswaran

et al., 2004; Garfield and Maner, 2007). However, due to the low energy of the signal,

contractions are more difficult to detect in the early gestation than in later pregnancy

or during labor. As a consequence, the accuracy of BD detection can be hindered, thus

affecting their interpretation. Therefore, the greater variability of BD found in early

gestation might be related to inaccurate assessment of the duration itself (which can

be highly influenced by the low signal to noise ratio).

One of the most investigated parameters with respect to the timely prediction of

delivery is the PSD. The shift of the burst frequency components from low frequencies,

during pregnancy, to higher frequencies, during labor, is one of the most significant and

one of the earliest observable characteristics (Doret et al., 2005; Garfield and Maner,

2007; Vinken et al., 2009). EMG studies carried out on both humans and animals show

shifting of the EMG signal power to higher frequencies as subjects approach delivery.

Similar spectral changes, as delivery approaches in both term and preterm deliveries,
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were observed in both EMG and MMG studies (Eswaran et al., 2009; Garfield et al.,

2005; Vinken et al., 2009).

An explanation of the shift is provided by the underlying physiology: the frequency of

APs within one burst is a direct measure of the rate of the depolarization/repolarization

process (largely governed by Ca2+ influx across ion channels) in the myometrial cells

(Sanborn, 2000). The uterus becomes more excitable and the signal propagation

distance and contraction strength increase when the modifications in the myometrial

cell’s plasma membrane ion channel initiate labor (Vinken et al., 2009), thus, resulting

in higher frequency cycles within bursts of activity (Maner and Garfield, 2007; Maner

et al., 2003).

The current work has shown that the proposed method, besides the identification of

instances wherein contraction bursts occur, is also suited to keep track of the shift of

burst frequency components. However, this could be shown in only one subject due to

the lack of available longitudinal recordings. Future clinical studies should validate the

predictive capabilities of the proposed approach (and PSD shift) on a larger population.
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6.2 Conduction velocity

Currently there is a lack of studies which address the issue of signal conduction velocity

in MMG multisensor recordings. However, few dedicated studies exist which investigate

the EMG signal conduction properties by multichannel recordings (Euliano et al., 2009;

Rabotti et al., 2010b, 2009, 2011). These studies investigated the conduction on a large

scale by analyzing the EMG bursts on the whole uterine muscle. A similar approach

has also been attempted by multichannel tocography (Spaetling et al., 1997).

A recent study has shown a better performance in predicting the preterm labor using the

conduction velocity in combination with the peak frequency compared to the standard

clinical methods such as Bishop score, contractions, and cervical length (Lucovnik et al.,

2011a).

In a previous study (Fele-Zorz et al., 2008) the authors investigated several linear and

non-linear signal processing methods on groups of term and pre-term delivery records

recorded before and after the 26th week of gestation. The authors emphasize that their

goal was not to predict the beginning of labor nor following the changes in spectra prior

to delivery but to differentiate these groups early during the pregnancy. The authors

conclude that when using a 0.3 - 3 Hz filter two methods (i) the median frequency

of the power spectrum and (ii) the sample entropy provide best discrimination for the

investigated groups. For their term recordings the authors observe a slight decrease

in the median frequency of the power spectrum as time of gestation progresses, while

other studies show an increase in the power spectra distribution (Maner et al., 2003,

2006). The decrease is later explained by the difference in the processing of the recorded

data. Fele-Zorz and colleagues processed entire records, the entire electrical activity

of the uterus, while in those other studies individual contractile events, i.e., the bursts

associated to contractions, were processed. The authors also conclude, that if entire

records are processed and records are taken more than seven weeks prior to delivery, a

slight decrease of the power spectra distribution is observed for term records.

As both uterine contractile activity and artifacts due to subject movement are low

frequency processes, contamination of the myometrial activity by movement artefacts

might occur, thus hindering the interpretation of the result. Therefore, in the context

of CV analysis, the detection of movement artifacts is necessary to avoid the possible

interference of the two processes.

This thesis was able to show that the conduction velocity is positively correlated with

the gestational age. The two-tailed bivariate correlation analysis carried out on the

pooled data revealed a significant positive relationship between the two measures,
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p < 0.05, r = 0.348. Therefore, it is safe to assume that, at the level of the entire

group, this correlation can be attributed to the gradual increase in the gap junction

between the myometrial cells during pregnancy. Indeed, subject L001 delivered within

two weeks from the last study. In some of the remaining subjects, descriptive statistics

(due to insufficient amount of available data) show an increase of CV with the increase

of GA as well. These are subjects I021, I022, I023, I035 and I028. In all other

participants, no clear trend is seen between conduction velocity and gestational age,

which could be either due to (i) an insufficient amount of available recordings or to

(ii) no significant change in the uterine dynamics at the time of the measurement.

Subject L002 delivered within four days from the last study but by C-section mode.

In addition, the computation of the average CV led to a value of 11.98 cm/s which is

within the expected physiological range. Various estimates of the CV in the human

uterus during labour are in the same range as the estimate values reported for different

animal species: 1 - 6 cm/s for the pregnant rabbit uterus, 6 - 12 cm/s for the pregnant

cat uterus and 4 - 9.6 cm/s for the pregnant rat uterus (Wolfs and Leeuwen, 1979).

Miller and colleagues reported CV values in rats which ranged between 7.9± 3.0 cm/s

and 13.5 ± 4.2 cm/s at preterm and during delivery (Miller et al., 1989). In future

work this should be investigated on a larger population, i.e., on preterm and term

subjects, and compare CV with the traditionally used clinical measures in predicting

the term/preterm labor.

To conclude, the results show that the proposed method is suitable for the three

dimensional estimation of the MMG surface AP conduction velocity. Additionaly, the

proposed method can be employed for the analysis of other types of signal, in particular,

when the direction of propagation is a priori unknown.
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6.3 Conclusions and future directions

This thesis provides sustained evidence that, in multi sensor MMG recordings, the

proposed method is able to reliably capture patterns of activation that are characteristic

of uterine contractile activity. In addition, it has been also shown that the relative

strength of the MMG burst frequency components increased from early gestational age

(as early as 23rd week of gestation) as compared to recordings of advanced gestational

age (close to term). Similar behavior was observed in patients in active labor (cervical

dilatation > 3 cm) as compared to patients with contractions in non-active labor (both

term and preterm) (Eswaran et al., 2009, 2004). These findings are inline with those

reported in several EMG studies, that is, the shift of the burst frequency components

(from lower towards higher frequencies) represent the earliest and most significant

variation in term and preterm delivery (Doret et al., 2005; Garfield et al., 2005; Vinken

et al., 2009). However, despite these observations, a proper frequency threshold for an

accurate contraction discrimination and delivery prediction could not be determined.

Future MMG studies should investigate, in a large population, the presence of such

threshold.

The development of the proposed method for MMG conduction analysis followed

according to knowledge of the physiological background and was specifically tailored

to the analysis of spatial temporal MMG signals. Nevertheless, the methods proposed

in the current work can be applied to other applications related to the detection of

propagating electrophysiological signals, provided the presence of an invariant distance

between recording sites.

Due to the limited amount of analyzed data, further clinical validations are required

to assess the robustness of the method and also to account for physiological differences

among subjects. Such validations are of particular importance for the perspective of

introducing the proposed methods in the daily clinical practice.

The current work provides a quantitative characterization of the uterine activity during

pregnancy and delivery. The methods proposed for the analysis of the MMG signals

provide an accurate characterization of the uterine contractile activity, which in turn,

can result in a better interpretation of parameters with clinical relevance. Therefore,

with regard to the medical challenges faced by obstetricians and the inconveniences

presented by the current monitoring and assessment methods, the current work creates

new perspectives for clinical applications and studies. A thorough understanding of the

processes underlying the onset of labor will advance obstetrical monitoring technologies
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and will not only reduce the incidence of preterm birth but will also improve the

perinatal outcome.

Previous studies highlighted the potential prognostic and diagnostic value of EMG

signal analysis and investigated the possibility of accurately estimating the intra uterine

pressure from noninvasive EMG recordings (Rabotti et al., 2008). Also, important

issues like the effect of the tissues interposed between the uterus and the skin (volume

conductor) on EMG recordings have been recently studied (Rabotti et al., 2010a).

However, when compared to MMG recordings, EMG signal interpretation has been

typically based on measurements wherein information is conveyed from a relative small

area. The use of a magnetic sensor array that can cover a much larger area has the

potential to convey additional (better) information with respect to the estimation of

intra uterine pressure or the distribution and dynamics of the electrical activation and

can ultimately lead to a better prediction of delivery.

The concept of pacemaker cells in the myometrium has been considered by many

and it has engaged several research groups. It has been suggested that the uterus

is myogenic in that it can contract without the need of external stimuli. In addition,

any myometrial cell is capable of acting either as a pacemaker or pace-follower (Kao,

1959). However, studies using a variety of histological techniques failed to provide

clear evidence for the presence of cells with the histological and electrophysiological

properties of a functional pacemaker. Perhaps the concept of pacemaker cells, along

with the conduction direction, needs to be revised, with targeted and extensive

studies which investigate the fundus vs. isthmus regions of the uterus, looking for

regional differences (e.g., gap junction density) or for preferred propagation pathways.

Hormonal or protein concentration differences in the different regions of the uterus

may be also held responsible for the onset of the signal propagation in late gestation

(Kumar and Barnes, 1961). Therefore it would be of a great advantage if future

studies will take into account and combine the knowledge gained from histological and

electrophysiological outcomes. For such purpose, the SARA system represents an ideal

candidate, as the arrangement of the magnetic sensors permits to investigate all the

possible CV directions along the abdominal plane by conveying accurate information

from a relatively large surface (approximately 1, 400 cm2).

The method presented for the estimation of CV can be further improved by the fine

tuning or the regularization of some of the processing parameters, e.g., the maximum

lag allowed for the computation of HDCC, maximum distance between sensors over

which the CV can be computed.

Another important aspect which needs to be mentioned is that the MMG signal, which
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is characteristic for the uterine contractile activity, can also originate and propagate

from the dorsal part of the uterus and thus cannot be directly monitored. Therefore,

future work could also focus on the computation of uterine activation maps which are

related to pacemaker regions situated on the dorsal side of the uterus.

Smooth muscle fibre CV represents an important physiological parameter because

it reflects the membrane muscle fibre properties and thus the modifications of the

peripheral properties of the neuromuscular system as a consequence of pathology,

fatigue or exercise (Farina and Merletti, 2004). Therefore, the assessment of the CV

might have a major clinical relevance as it could facilitate an objective quantification

of the labor’s progression and provide, in the same time, an accurate separation of a

normal, physiological development of labor from a pathological one.

However, the underlying physiological mechanism of the uterine contraction is only

partially understood and it is believed that substantial increase in the knowledge of this

field could be gained by improving the computational and analysis techniques available

for the SARA recording system. This advancement could lead to the establishment of

this technology as a clinical tool by providing the linkage between the electrophysiology

of the uterine contractions and the data acquired using the SARA system.

92



Appendices

93





Appendix A

A.1 Organization and labeling of the magnetic sensors

The magnetic sensor arrangement of the SARA I and SARA II systems is depicted in

Figure A.1. In both systems the sensors are organized in nearly straight rows (in x-y

projection) with labels roughly corresponding to the geometrical sensor positionLowery

et al. (2006); Robinson et al. (2001). The prefixes L, R indicate the sensors on the left

and right side of the mother (front view), respectively. The prefix C indicates the

sensors on the center line (maternal body axis). Row A is in the perineal region and

row Q is at the top of the maternal abdomen.

A.2 Analysis tool for the uterine contraction

In an effort to make the contraction analysis tools available to the medical personnel, a

graphical user interface (GUI) has been created. A snapshot of the uterine contraction

analysis tool is provided in figure A.2. The GUI is subdivided in four panels. The top

left panel contains the editing windows and buttons which allow the modification of

the parameters needed for the computation of the contraction marker, (i.e., band pass

filter cutoff, downsampling frequency, inspection window size, notch filter cutoff and

the sensitivity of the algorithm).

The top right panel groups the editing windows and button which are necessary for

the computation of the conduction velocity, (i.e., number of quadrants, maximum lag

for the HDCC and the interval to be discarded from the velocity analysis - to avoid

divide by zero errors). The bottom panels provide information regarding the loaded

dataset(s) (bottom left) and information regarding the status of the analysis (bottom

right).

At start up, the edit boxes of the graphical user interface are filled with default values,

95



A.

Figure A.1: Organization and labeling of the magnetic sensors. Left: front view
of the SARA I sensor layout, installed at the University of Arkansas for Medical Sciences,
Little Rock, USA. Right: the layout of the SARA II system, installed at the University of
Tübingen, Germany.

which can be further customized by the user.

The user has the possibility to load the MMG signals either from Matlab binary files

(multiple selection of .mat files is also possible) or from a ctf directory (only one .ds

directory can be opened at a time).

Once the required variables are found and successfully loaded, the Contraction marker

button becomes active allowing the analysis of the loaded data. During the analysis the

operations presented in Figure 4.5 are performed. After the analysis has completed,

the variables are saved to a .mat file which can be further used for the computation of

the conduction velocity.

Pressing the Conduction velocity button allows the computation of the conduction

velocity which follows the steps presented in Figure 2.3. In addition, instead of

the standard sensor partitioning (corresponding to quadrants) the user can provide

customized sensor partitioning schemes, which would allow the analysis of a different

amount of quadrants.
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Appendix B

B.1 Additionally investigated methods

Prior to the HTWD approach, two additional methods were considered as possible

candidates for the identification of the uterine contractile activity. These were the short-

time Fourier transform (STFT) and the root mean square (RMS). The application of

these methods on MMG signals is described in the following subsections.

B.1.1 Short-time Fourier transform

The short-time Fourier transform (STFT) was also investigated as an alternative to

perform time-frequency analysis on the MMG signals. For a given signal x(t) the STFT

can be used to determine the sinusoidal frequency and phase content of local sections

of x(t). In the continuous-time case, the function to be transformed is multiplied by a

window function which is nonzero for only a short period of time. The Fourier transform

of the resulting signal is taken as the window is slid along the time axis, resulting in a

two-dimensional representation of the signal.

Mathematically, this can be expressed as:

x(t) =

∫ ∞
−∞

x(t)w(t− τ)e−jωtdt (B.1)

where w(t) represents the window function and x(t) the signal that is transformed.

The STFT is more similar to the wavelet transform, in that it is also time and frequency

localized, but there are issues with the frequency/time resolution trade-off. Wavelets

often give a better signal representation with balanced resolution at any time and

frequency. Compared to the discrete wavelet transform STFT is also computationally

more complex.

The STFT employs spectral estimation procedure. To capture the low-frequency
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Figure B.1: HTWD processing of MMG data for the MMGt205 40w1d dataset.
The figure shows the contour map of the mean HTWD computed in 30s non-overlapping
windows in four different frequency bands (0.0625 - 1 Hz range).

contraction burst in a 30 s window, one has to use a Fast Fourier Transform (FFT)

length of at least 10 s to get a frequency resolution of 0.1 Hz. On the other hand, if one

decides to use a longer FFT window, one will get a good estimation of the spectrum but

will not get the desired frequency range of 0.1Hz. Thus, if high frequency resolution

is desired, one will have to compromise for the reliability in the estimation. Hence, the

use of this technique may not allow to correctly characterize the spectral properties of

the signals. Figures B.1 and B.2 show the contour maps obtained after applying both

methods (HTWD and STFT) to a selected dataset. To obtain the same frequency

resolution in STFT as in HTWD the spectrum was estimated in a 60 s window. As

discussed above, this results in a good frequency resolution but a poor estimation of the

100



B.1. Additionally investigated methods
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Figure B.2: STFT processing of MMG data for an exemplary dataset MMGt205
40w1d. The figure shows the contour map of the mean STFT computed in 60 s non-
overlapping windows in four different frequency bands (0.0625 - 1 Hz range). To obtain
the same frequency resolution the STFT window was set twice the length of the HTWD
window.

spectrum. Figure B.2 shows spuriously higher power in the 0.5 - 1 Hz. This may be due

to the residual power because of improper truncation of bandpass filtering. However,

the HTWD is able to correctly localize the power (0.25 - 0.5 Hz band) and therefore

the STFT approach was not further explored.

B.1.2 Root mean square

The root mean square (RMS) or the quadratic mean is a statistical measure of a varying

quantity. For a continuous signal x(t) defined over an interval T1 ≤ t ≤ T2 the RMS
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can be computed as follows (Cartwright, 2007):

xRMS =

√
1

T2 − T1

∫ T2

T1

[f(t)]2dt (B.2)

In the context of the current work the computation of RMS of the signal was also

considered. The procedure is equivalent to quantifying the power of the signal in the

time domain. However, this method proved to be inadequate for the purpose of the

current work because the frequency of the uterine contraction varies dynamically. Such

behavior has been observed in (Garfield et al., 2005) and (Eswaran et al., 2009). This

dynamic variation cannot be reliably captured by studying the integral plot of the

squared MMG signal.

Furthermore, the integral part of the squared signal provides the global power of the

signal and hence it is not possible to understand from which frequency component the

power came. This represents a strong reason for not to choose the RMS approach.
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Glossary

ADP adenosine diphosphate, the product of adenosine triphos-

phate dephosphorylation.

AP action potential.

APC affinity propagation clustering.

AR autoregressive model.

AR2 second order autoregressive model.

ATP adenosine triphosphate, a multifunctional nucleoside triphos-

phate used in cells as a coenzyme.

BD burst duration.

BF burst frequency.

chorion one of the membranes that exist during pregnancy between

the developing fetus and mother.

CoG center of gravity.

CRH corticotropin releasing hormone.

C-section a surgical procedure in which one or more incisions are made

through a mother’s abdomen and uterus to deliver the baby.

CV conduction velocity.

db2 Daubechies second-order discrete wavelet.

decidua term used for the endometrium during pregnancy.

dephosphorylation the removal of a phosphate group from a protein.

dewar a special insulating storage vessel meant to keep its contents

cooler than its surroundings.
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Glossary

EHG electrohysterography/electrohysterogram.

EMG electromyography/electromyogram.

fFN fetal fibronectin.

FFT fast Fourier transform.

fMCG fetal magnetocardiography/magnetocardiogram.

fMEG fetal magnetoencephalography/magnetoencephalogram.

FOZC first-order zero-crossing.

fundus the top portion of the uterus, opposite from the cervix.

GA gestational age.

gap junction a specialized intercellular connection between a multitude of

cell types.

GUI graphical user interface.

HDCC high dimension cross correlation.

HT Hilbert transform.

HTWD Hilbert transform of the wavelet decomposition.

isthmus the inferior-posterior part of uterus, on its cervical end.

IUGR intrauterine growth restriction, refers to the poor growth of

a fetus.

IUP intrauterine pressure.

IUPC intrauterine pressure catheter.

MLCK myosin light-chain kinase.

mMCG maternal magnetocardiography/magnetocardiogram.

MMG magnetomyography/magnetomyogram.

NAS number of active sensors.
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Glossary

phosphorylation the addition of a phosphate group to a protein.

PKC proteine kinase C, a family of protein kinase enzymes involved

in controlling the function of other proteins through the

phosphorylation.

PSD power spectral density.

RMS root mean square.

SARA SQUID array for reproductive assessment.

SIC Schwarz information criterion.

SNR signal to noise ratio.

SQUID super quantum interference device.

std standard deviation.

STFT short-time Fourier transform.

syncytium a multinucleate cell which can result from multiple cell fusions

of uninuclear cells.

TOCO tocography, technical means of recording the uterine

contractions.

tr(X) trace of matrix X.

var variance.

WBC white blood-cell count.
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