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1 Introduction

1.1 Solar System

1.1.1 Ancient developments

In ancient times, seamen used fixed stars to navigate their ships through the Mediterranean
Sea. However, they also noticed moving objects in the night skies, the planets. Planet
is Greek and stands for ’moving celestial body’. The planets visible to the naked eye
(Mercury, Venus, Mars, Jupiter and Saturn) were also linked to the names of gods in
ancient mythology.

During the time of Aristotle the first basic ideas of geocentrism were established, however
the system did become standard much later. In the 2nd century AD the astronomer
Claudius Ptolemaeus finally accomplished this task. His cosmological model was accepted
for over a millennium as correct by European and Islamic astronomers. Because of its
influence, the Ptolemaic system is sometimes considered to be identical with the geocentric
model. In these models, the Earth is believed to be at the centre of the Solar System and
the universe (see Fig. 1.1).

In the Ptolemaic system, each planet moves in a system of two circles. One circle, the
deferent, is a circle around Earth, while the other circle, the epicycle, describes a circular
motion of the planet on the deferent. A planet then moves along the epicycle while at the
same time the epicycle moves along the path marked by the deferent. The combination of
these two movements shows an effect that was long missing in the ancient greek cosmologi-
cal systems. In this epicycle model, a given planet seems to move closer to and farther away
from the Earth at different points in its orbit, which even makes the observers believe that
the planet slowed down, stopped, and even moved backwards (in a retrograde motion).
This was actually one of Ptolemy’s main reasons for creating the deferent epicycle model.
This model was not accurate by far, but it made observations and predictions much more
accurate than in all preceding systems.

1.1.2 Modern Ages

The first steps away from the geocentric model were taken in the 16th century, when
Nicolaus Copernicus published his book De revolutionibus orbium coelestium (On the Rev-
olutions of the Celestial Spheres) in 1543 just before his death. In his system, the Earth
and the other planets are revolving around the sun (heliocentric view). Copernicus was not
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1.1. SOLAR SYSTEM CHAPTER 1. INTRODUCTION

Figure 1.1: An illustration of the Ptolemaic geocentric system by Portuguese cosmographer
and cartographer Bartolomeu Velho, 1568 (Bibliothèque Nationale, Paris)

motivated by new observations, he invented his system on a philosophical and theological
base. This was not welcomed by the Roman-Catholic Church.

In 1609 Johannes Kepler (Fig. 1.2) published his Astronomia Nova where he suggested
that the planets move on ellipses around the sun. He obtained his results by analysing the
precise astronomical observations of Tycho Brahe and therefore cleared all the remaining
doubts about the heliocentric world view, at least in the scientific world. Kepler’s laws
give a description of the motion of planets around the sun. These laws are (the third one
published in 1619):

1. The orbit of every planet is an ellipse with the Sun at one of the two foci.

2. A line joining a planet and the Sun sweeps out equal areas during equal intervals of
time.

3. The square of the orbital period of a planet is directly proportional to the cube of
the semi-major axis of its orbit.

The Bible and religious dogmas could not stand against scientific facts any more. The
theory of heliocentrism therefore contributed to a revolution in philosophy: the age of
Enlightenment. Modern science was evolving with the aim of finding universal laws to
model the mechanics of the world. One of the most important ones is the gravitational
law expressed by Newton in 1687, from which the three Kepler laws can be derived math-
ematically.
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CHAPTER 1. INTRODUCTION 1.2. FORMATION OF PLANETS

Figure 1.2: Johannes Kepler, 1571-1630 (left), Immanuel Kant, 1724-1804 (middle) and
Pierre-Simon Laplace, 1749-1827 (right).

However, a scientific explanation how the solar system was created was still missing. In
the second half of the 18th century, Immanuel Kant and Pierre-Simon Laplace (Fig. 1.2)
published the idea of a collapsing nebula as the origin of the Solar System independent of
each other. In this theory, the Solar System could have formed from a cold disc of dust
and gas rotating in an ecliptic plane around the Sun. This would also explain why all
the planets in our Solar System have quasi-coplanar, prograde orbits. The discoveries of
Uranus (Herschel, 1781) and Neptune (Le Verrier, Adams and Galle, 1846) were consistent
with this theory as they also orbit close to the ecliptic in a prograde orbit. In this model,
Pluto, with an inclination of 17 degrees, would be a strange planet. However, Pluto is
simply one of hundreds of Kuiper Belt Trans Neptunian Objects and now belongs to the
category of “dwarf planets” since 2006.

Nevertheless, the model for the formation of the Solar System from a cold gas disc by
Kant and Laplace is still the most popular scenario among astronomers. For the last two
centuries this model has been observationally confirmed and theoretically refined. In the
following Sections, a brief overview over the formation of stars with discs (and planets)
around them is given.

1.2 Formation of planets

1.2.1 Star formation

Gas nebulae in the interstellar medium are the birth places of young stars. These clouds
mainly consist of Hydrogen and Helium, but also heavy elements (Carbon, Nitrogen, Oxy-
gen, Magnesium, Iron, . . .), which represent about one percent of the total mass. A massive
gas cloud, heavier than the critical value of the Jeans mass (a few solar masses (M�)), col-
lapses because of its self-gravitation into isolated systems. The gas clouds carry a certain
amount of angular momentum that is conserved through the whole process. The gas in the
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1.2. FORMATION OF PLANETS CHAPTER 1. INTRODUCTION

Figure 1.3: Protoplanetary discs in the Orion Nebula (M42). The young star is shining at
the centre surrounded by the disc. Credit: NASA/ESA and L. Ricci (ESO)

central part in the clouds undergoes fast compression and forms a core that will become a
star later on. Temperature and pressure in this core rise, until the first nuclear fusion sets
in and the protostar is born.

As the collapse of the core continues, the gas in the surrounding cloud is prevented from
infall by the angular momentum it is carrying. The angular momentum conservation limits
the contraction to a plane perpendicular to the rotation axis of the gas cloud, while the gas
can freely ’fall’ in the vertical direction. Therefore a torus around the protostar is formed
that later on becomes a thin disc with height H. The so called aspect ratio H/r, normally
a few percent, gives the ratio between the height of the disc and the distance to the central
star. As this disc is in time accreted onto the central star, it is named accretion disc.

The accretion disc is heated by the central star and emits an infrared flux. These discs
can be observed by space telescopes (see Fig. 1.3). As the dust and gas particles can only
be accreted onto the central star if they lose angular momentum, the angular momentum
must be carried away by other parts of the gas drifting outwards. As a result the protostar
and the discs radius are growing. The motion of the gas in these discs is determined by

4
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the gravity of the central star and is approximately Keplerian, so that the angular velocity
is given by Kepler’s third law:

Ω =

√
GM∗
r3

, (1.1)

where G is the Gravitational constant, M∗ the mass of the central star and r the distance
from the star. Using the total mass of the disc and the rotation law, the total angular
momentum of the disc can be calculated:

J =

∫ Rdisc

0

Σr2Ω2πrdr =
1

2
MdiscR

2
disc

√
GM∗ , (1.2)

with Σ = Σ0r
−1/2 being assumed the surface density profile. The radius of these discs can

be up to 1.000 Astronomical Units (AU) if the initial angular momentum of the nebula is
large enough. The Astronomical Unit represents the semi-major axis of the Earth’s orbit
around the sun: 1 AU = 150.000.000 km.

As the accretion disc dissipates within ten million years, it imposes a strong constraint for
the formation of planets. These planets have to be formed within this period of time. As
planet formation is supposed to occur in these discs, they are also called protoplanetary
discs.

1.2.2 Planet formation

The formation of a planetary system out of a molecular cloud is illustrated in Fig. 1.4,
where the formation is illustrated in 6 phases. The interstellar cloud collapses under its
gravity (a) and forms a protostar with an accretion disc (b). In this accretion disc, small
dust particles stick to each other and begin to form bigger objects (c). In time these
dust particles form planetesimals of several kilometres in size. Through collisions and
gas accretion these planetesimals become protoplanets (c-e). In time these protoplanets
become bigger objects, planets, and the gas is finally cleared from the disc, so that a solar
system is visible (f). This whole process takes several million years until completion.

The process by which molecular grains merge into planetesimals is not yet fully understood
and is still under research. The discussion of this process is therefore omitted. After
embryos are formed from planetesimals by runaway growth, they collide and merge into
bigger objects (planetary cores). During this formation process, these planetary cores can
scatter each other out of the system until a stable configuration in the system is achieved.

If the planetary core is massive enough, typically a few Earth masses, to accrete a gaseous
atmosphere from the disc gas, they can become giant gaseous planets like Jupiter and
Saturn (or even bigger). The main time consumption for this scenario is the slow accretion
of gas, after the formation of the core and before the runaway accretion of gas. The whole
process takes several million years to finish.

As the formation of massive planetary cores requires a lot of solids, it is favoured if water,
which is an abundant molecule, is in the form of ice instead of vapour. The temperature
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1.2. FORMATION OF PLANETS CHAPTER 1. INTRODUCTION

Figure 1.4: Illustration of the creation of a solar system. A detailed description is given in
the text.

in the accretion disc reduces with increasing distance from the central star, so beyond a
specific point in the disc, water condensates and within it water sublimates. This border
in the disc is called snow line. Around a star like our Sun, the snow line is located at about
3 to 5 AU. This also implies that the formation of massive planetary cores is easier just
outside the snow line, which is consistent with the planetary configuration in our Solar
System.

Giant gaseous planets can also be formed by gravitational instability processes in the
accretion discs (Boss, 1997, 2000). The formation time of giant gaseous planets in this
model is much shorter than in the core accretion model, but this model does not explain
the observed masses, obliquity and composition of the giant planets in our Solar System.
The presence of solid cores of a few Earth masses in Saturn, Uranus and Neptune are
actually in favour of the core accretion model. However, gravitational instability can easily
produce big planets far out in the disc. It seems that both theories are applicable to
different scenarios in planet formation.
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Figure 1.5: Schematics of the radial velocity detection method for planets (left) and radial
velocity variations of the star 51 Pegasi in meters per second, as a function of
planetary orbits (right). Right picture taken from Mayor and Queloz (1995).

1.2.3 Observation of Exoplanets

Exoplanets are planets observed outside our own Solar System, orbiting other sun-like
stars. Up until today there are several methods to observe planets orbiting around other
stars. The most successful method (in terms of detected Exoplanets) up to date, is the
measuring of the radial velocity. Observers measure the velocity of the star in respect to the
line of sight. If the star has a companion, both, star and companion, rotate around their
centre of mass. As the companion is rotating around the star, the star is moving either
away or towards the observer. This movement has a direct influence on the observed light
spectrum because of the Doppler effect. When the star is moving towards the observer, a
blue shift is measured, while a red shift is measured when the star is moving away from
the observer. An illustration of this process is given in the left panel of Fig. 1.5.

This method obviously works best, when the system of star and planet is viewed ’edge-
on’, while it does not work when the system is ’face-on’. From the amplitude of the
star’s motion, the mass of the planet can be determined, or more exactly M sin(i), as the
observed system mostly has an inclination i towards the observer. With the mass of the
star (determinable through luminosity and colour of the star), the orbital period gives a
direct relation towards the semi-major axis of the orbit of the planet (Kepler’s third law).

In 1995 the first Exoplanet was discovered around the star 51 Pegasi by Mayor and Queloz
(1995). The variations of the radial velocity as a function of time in normalised units is
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Figure 1.6: Semi-major axis against planetary mass for discovered Exoplanets (red). The
planets of the Solar System are highlighted in blue. Plot created with data
from exoplanets.eu.

shown in the right panel of Fig. 1.5, which is taken directly from Mayor and Queloz (1995).
The discovered planet has a mass of about one half of Jupiter and and orbital period of 4.23
days, which corresponds to about 0.056 AU, which is much smaller than Mercury’s semi-
major axis. The existence of a massive planet so close to the star is extremely surprising,
as the planet could not have formed at this position and must have somehow moved there.

Up until today, many more Exoplanets have been discovered (see Fig. 1.6). Most of the
observed Exoplanets are so called hot Jupiters, giant planets orbiting very close to their
parent star. Not all of these planets have been detected using the radial velocity method.
One other mechanism (among others), is the measurement of planetary transits. The
planet transits in front of its host star and a resulting diminution of luminosity of the
star can be detected and measured. This method additionally provides the radius of the
observed Exoplanet.

Considering the observations up to date, the Solar System seems to be an exception, which
is also illustrated in Fig. 1.6. Since the hot Jupiters are the easiest planets to detect, it is
no surprise that these planets are observed much more often. In fact, the present detection
methods are limited to massive close-in planets and are not able to detect terrestrial planets
or long-period giants because of resolution problems. Scientist hope to detect planets in
the habitable zone (a zone around the star where water is in its liquid form and therefore
life, as we know it, can exist) with the new Kepler telescope, which is able to find earth like

8
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planets in this zone. The Kepler telescope observes over 150.000 stars for planets at once,
using the transit detection method. So far, over 1.000 planet candidates (not confirmed
planets) detected by Kepler have been published.

According to the theories mentioned, the formation of planetary cores is much more likely
beyond the snow line. The cores then acquire their final mass while they are still embedded
in the disc. Because the hot Jupiters were not formed where they are observed now, there
has to be a process to get the planets from their birth place to the location we now observe
them. During the process of its creation the planet interacts with the disc it is embedded
in and moves in it. This movement is called migration and an overview over the different
types of migration will be given in the next Section. The theory of migration is therefore
a key element to explain the existence of hot Jupiters.

1.3 Planet-disc interactions

This Section gives an overview of the nature of planet-disc interactions. The theory and
different kinds of planetary migration are briefly discussed. A more detailed presentation
of type-I-migration is given in Chapter 2.

The heliocentric frame is centred on the central star and the planets and the disc fluid
elements rotate around it with an angular velocity Ω, which is defined by Keplers’s law
(Eq. 1.1). Consider a right-hand-side orthogonal coordinate system centred on the central
star, but with the x axis always pointing at the planet and the z-axis always in the direction
of the angular momentum vector of the planet. If this coordinate system rotates with the
same speed as the planet in the heliocentric frame, then the planet is motionless in this
coordinate system. This system is called corotating frame. The angular velocity of fluid
elements then is Ω−ΩP , where P refers to the planet. A synodic period is the period that
corresponds to the time between two conjunctions with the planet. The synodic period
is equal to 2π/|Ω − ΩP |. Fluid elements on orbits larger than the planetary orbit have a
smaller angular velocity in the heliocentric frame than ΩP . Therefore, these fluid elements
have a negative angular velocity in the corotating frame, meaning that these elements
seem to move backwards in the corotating frame. This is the reason for the absolute value
symbol in the expression of the synodic period.

1.3.1 Angular momentum

Consider an initially axisymmetric disc with an embedded planet. This planet, with mass
MP , disturbs the gas particles and fluid elements in the disc because of its gravitational po-
tential. The fluid elements in the disc begin to oscillate around their initially unperturbed
circular orbit. The interferences of these oscillations lead to the formation of a one-armed
spiral wave, which is called wake. The wake is a pressure supported density wave (visible
in the left panel in Fig. 1.7). The wake is directed forwards in the inner disc and backwards
in the outer disc (from the planets location in the direction of rotation).

9



1.3. PLANET-DISC INTERACTIONS CHAPTER 1. INTRODUCTION

This structure results in a gravitational attraction between the planet and the wake’s over-
density (compared to the normal density of the disc). Therefore the planet experiences
a force from the inner part of the disc, which is directed in the direction of motion, thus
leading to an increase of the planet’s angular momentum. This angular momentum ac-
celerates the planet and pushes the planet radially outwards. The planet also experiences
a force from the outer part of the disc, which is directed in the opposite direction. The
planet is slowed down and pushed radially inwards from the outer disc.

On the other hand, the planet exerts a force on the disc as well. The planet exerts a
torque on the inner disc, slowing it down and pushing it towards the central star. The
planet also exerts a torque on the outer disc, accelerating it and pushing it away from
the star. Angular momentum is therefore transported in both directions. As a result, the
planet stays in between the inner and outer disc. Planet and disc are transferring angular
momentum to and from each other, as symbolised below:

inner disc
a.m. transfer⇔ planet

a. m. transfer⇔ outer disc (1.3)

The torques acting on planet and disc are proportional to the mass of the planet and to
the amplitude of the wake, as planet and wake are gravitationally attracting each other.
As the wake is created due to the gravitation of the planet, the amplitude of the wake
is proportional to the mass of the planet. Therefore the torques are proportional to the
planet mass squared, Γ ∝M2

P .

The torque exerted from the outer disc on the planet is always bigger than the torque
exerted from the inner disc on the planet. Therefore the planet experiences a total negative
torque, which is proportional to M2

P . The reason for this phenomenon will be discussed
in Section 2.1. Thus, the planet loses angular momentum at a rate proportional to the
planet’s mass. The angular momentum and it’s change in time is:

j = r2Ω =
√
GMr ⇒ dj

dt
=

1

2

√
GM

r

dr

dt
=

1

2
rΩ

dr

dt
. (1.4)

As the angular momentum decreases at a rate proportional to the distance from planet
to star, rp, so does the radius itself. This process is called type-I-migration. A planet
corresponding to the linear type-I-migration regime is shown in the left panel in Fig. 1.7.
The planet is clearly embedded in the disc.

The torques exerted by the planet push the outer disc farther away from the star and the
inner disc inwards, resulting in a splitting of the disc in an inner and an outer disc. However,
the gas of the disc tends to spread into the void regions, cleared by the planet before. These
two effects are competing. As the torques exerted by the planet are proportional to the
planet’s mass squared, a more massive planet is much more effective in pushing the gas
away from its orbit. If the planet is massive enough, it opens up a gap in the disc around
its orbit. In protoplanetary discs, gas giants are able to do so. In the right panel in Fig. 1.7,
a Jupiter mass planet in a protoplanetary disc is shown. The planet clearly opens a gap
inside the disc.

10
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Figure 1.7: Surface density of 20MEarth planet (left) and a Jupiter mass planet (right)
embedded in a protoplanetary disc. The disc is rotating in both pictures coun-
terclockwise. The planet is located at (1, 0) in the (x, y) coordinate system.
Please note the different colour scaling for the surface density. Plots taken
from simulations from Kley et al. (2009).

If a massive planet obrits around a star in a gap in the accretion disc, it is locked in the gap
(Fig. 1.7). If the planet moves towards the outer part of the disc, it feels a larger negative
torque, which repels the planet inwards. If the planet approaches the inner part of the
disc, it gets a larger positive torque, which pushes the planet outwards again. The planet
can not move in the gap and the disc, which was still possible in the type-I-migration
regime. The disc is still evolving because of its own viscosity. As the inner part of the
disc is accreted onto to the central star, the outer parts of the disc are moving outwards
because of the conservation of angular momentum. The planet has to follow the evolution
of the disc, as it is locked in it. The migration is therefore only dependent on the viscosity
of the disc, so that the migration rate is proportional to the viscosity of the disc (Ward,
1997). This process is called Type-II-migration.

If the planet only opens up a partial gap in the disc, the outer and inner disc are not fully
separated, so that the planet is still able to move inside the disc. If the planet now moves
inwards in the disc, it will first enter a region of the disc that has still some gas left. To
sustain the dip in the gas (caused by the planetary potential), the planet moves gas from
the inside outwards. The planet is transferring angular momentum to the gas that moves
outwards. But a loss of angular momentum accelerates the inward migration of the planet.
Under certain conditions this can lead to an exponentially growth of the migration rate.
This runaway migration is called type-III-migration. However, in this migration regime,
the planet can migrate inwards or outwards, depending on the initial conditions. The effect
is so strong that it can completely modify the orbital radius of the planet in a few orbits.

11



1.3. PLANET-DISC INTERACTIONS CHAPTER 1. INTRODUCTION

1.3.2 Problems of planetary migration

As pointed out above, the process of creating a massive Jupiter size planet takes several
million years by the core accretion model. In this model, first a core of several earth masses
is created. However, a core of several earth masses is prone to type-I-migration and the
migration time scale for a planet in this regime is much shorter than the lifetime of the disc.
This means that the planet drifts towards the central star in about a hundred thousand
years, which is much shorter than the time needed to accrete an gaseous atmosphere (which
takes several million years). With this high migration rates, the core accretion model is
unable to account for giant gaseous planets. The planetary core has to be stopped at some
point in the disc, in order for the model to work.

Population synthesis models try to explain the distributions of Exoplanets (see Fig. 1.6).
These models use theoretical migration rates for the evolution of planets. In order to match
the observed distributions, the migration rate in these models has to be a factor of 10 to
1000 smaller than in the type-I-migration regime (Alibert et al., 2004; Ida and Lin, 2008;
Mordasini et al., 2009). With this adjusted migration rate, population synthesis models
show indeed a quite good match for the distribution of Exoplanets.

That indeed migration is present in accretion discs can be seen in the observed Kepler-9
System (Holman et al., 2010). In this three planet system, two Saturn size objects are
orbiting the central star on close-in orbits. The gravitational interactions of these two
planets are near the 2 : 1 mean motion resonance (MMR). This means, while the outer
planet makes one orbit around the star, the inner planet makes exactly two orbits around
the star. The planets migrated into this configuration, as the creation of these planets in
such a resonance seems highly unlikely.

In order to slow down the migration time scale of planetary cores, several ideas were
suggested and discussed in the community. One idea might be the introduction of surface
gradients in discs, so that the planetary core is trapped in the disc (Morbidelli et al.,
2008). Another, more promising idea, is the inclusion of radiation transport in the disc,
which allows to slow down the migration rate (Paardekooper and Mellema, 2006). This
process and how the torque acting on an embedded planet is created and influenced will
be discussed in Chapter 2.

12



2 Interactions

When a planet is embedded in a disc, several mechanisms can influence its motion. In
order to explain how orbital elements of planets can be changed, a brief overview over
these mechanisms is given here.

• Planet-gas interactions. As mentioned before, a planet embedded in a gaseous disc
experiences a torque. The variation of the planet’s semi-major axis is referred to
as planetary migration. The rate of migration depends on the planetary mass. For
low-mass planets, which do not open gaps in the disc, this migration is inwards and
proportional to the planet’s mass squared (type-I-migration) as described in Ward
(1997). If the planet is massive enough and opens up a gap in the disc, the planet is
locked in this gap. As the disc is accreted onto the star on a viscous time scale, the
planet is moving with the disc (type-II-migration). The migration speed for type-II
is much slower than for the type-I-migration.

• Planet-planetesimal interactions. As planets form by the collision of planetesimals, it
is logical to assume that even as the first planets are formed in a disc, planetesimals
are still present in the disc. The planetesimals also interact with the planet, so
that they may significantly alter the planets motion in the disc. The change of
the planet’s semi-major axis is referred to as planetesimal driven migration. This
mechanisms has been investigated in great detail for the Solar System, where Jupiter
might have drifted slightly inwards, whereas Saturn, Uranus and Neptune might have
significantly moved outwards. This could also explain the location of the Kuiper Belt
(Levison and Morbidelli, 2003). It also can give a nice explanation of the Late Heavy
Bombardment of terrestrial planets (Tsiganis et al., 2005; Gomes et al., 2005).

• Planet-planet interactions. As planets migrate, caused by interactions with the gas
or with planetesimals, they can become locked in a mean motion resonance (MMR).
Jupiter and Saturn in the Solar System are close to the 5:2 MMR and also some
exoplanetary systems are locked in MMR (for example the Kepler-9 System (Holman
et al., 2010)). Planets locked in the MMR can significantly increase their eccentricity
or inclination. Also, planets locked in MMR can, under certain conditions, migrate
outwards in discs (Crida et al., 2009).

In this Chapter, and in this thesis, the focus is on planet-gas interactions and the inter-
actions of planets with planetesimals and other planets are discarded. In Section 2.1 the
linear Lindblad torque and its influence on planetary migration is discussed. In Section 2.2
the corotation torque and its influence on planetary migration is described. Additionally
non linear effects on the torque are discussed in Section 2.3. In Section 2.4 the isothermal
assumption is dropped and planetary migration in fully radiative discs is discussed.
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2.1 Linear Lindblad torque

In this Section, the influence of the gas disc on an embedded low-mass planet is described.
Low-mass planet means in this Section that the disc’s response to the planetary potential
is linear and can be studied in a linear analysis up to a few Earth masses. For the analysis
presented here, the disc is assumed to be two dimensional (2D), non-selfgravitating and
locally isothermal (fixed temperature profile on cylinders around the central star). The
planet is therefore assumed to be in midplane of the disc and on a fixed circular orbit. As
the planet is not able to move in the disc (fixed orbit), the torque acting on the planet
is used to estimate its change in orbital elements. A positive torque implies outward
migration, while a negative torque indicates inward migration.

2.1.1 Lindblad resonances

When a planet is embedded in a gaseous disc, the planetary potential acts as a disturbance.
The gravitational potential of the planet is given by

Φ = −GMP

d
, (2.1)

where d denotes the distance from the planet. In polar coordinates centred on the star,
Φ(r, φ) is a 2π periodic function in φ, where φ is the azimuthal angle. The planetary
potential is a disturbance in the disc and it can be decomposed into a Fourier series of the
variable (φ − φP ), where φP is the azimuth of the planet. As the planet is on a circular
orbit, φP = ΩP t, and the Fourier series reads:

Φ(r, φ, t) =
∑
m

Φm(r) exp(im(φ− φP )) =
∑
m

Φm(r) exp(im(Ω− ΩP )t) , (2.2)

where Φm represents the mth component of the planetary potential. The imaginary part
of the expansion does not play a role, as the interest lies in the real part. Therefore the
series simplifies to:

Φ(r, φ, t) =
∑
m

Φm(r) cos[m(Ω− ΩP )t] . (2.3)

The perturbing frequency can be denoted as ω = m(Ω − ΩP ), which means that the
resonances correspond to

m(Ω− ΩP ) = ±Ω ⇔ Ω =
m

m± 1
ΩP . (2.4)

These resonances are called Lindblad resonances. The resonance with m
m−1 is the inner

Lindblad resonance (ILR), while the resonance with m
m+1

is the outer Lindblad resonance
(OLR). Kepler’s third law can be used to get the location of the Lindblad resonances:

rILR = rp

(
m

m− 1

)−2/3
, rOLR = rp

(
m

m+ 1

)−2/3
(2.5)
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CHAPTER 2. INTERACTIONS 2.1. LINEAR LINDBLAD TORQUE

Please note that for m = 1 no inner Lindblad resonance exists, but for higher m two
Lindblad resonances exist. For m → ∞, the resonances move closer to the planet and
converge at rp. The fluid elements at a Lindblad resonance are in mean motion resonance
with the planet, while they take m orbits around the central star, the planet describes
m± 1 orbits.

The torque exerted by the planet on the disc corresponds to the exchange of angular
momentum. This is also equal to the torque of the disc on the planet (Newton’s third
law). For the remainder of the thesis, the term ’torque’ describes the torque of the disc
acting on the planet. The torque determines the migration rate ȧ. The time variation of
the planet’s angular momentum J̇ matches the torque Γ exerted on the planet. As the
planet is on a circular orbit, J = Mpa

2Ω and J̇ = 0.5aȧΩMP = Γ.

In a gaseous disc, pressure waves (the spiral waves as seen in Fig. 1.7), transport the angular
momentum away from Lindblad resonances. These waves obey the dispersion relation

ω̃2 = Ω2 + c2sk
2 , (2.6)

where cs is the sound speed and k the wave number. Pressure (p = RGasΣT/µ) can there-
fore shift the Lindblad resonances, so that the Lindblad torque is changed (Artymowicz,
1993). The effective location of the Lindblad resonances (where r satisfy the dispersion
relation) is given by:

rL ≈ rP

(
1 + ε

√
1 +m2h2P/m

)2/3

, (2.7)

with ε = −1 for the ILR and ε = +1 for the OLR. When m tends to infinity (m → ∞),
the Lindblad resonances are located at:

rL = rP ± 2/3HP , (2.8)

where HP is the discs thickness at the planets location and hp = HP/rP . This finite
distance causes the potential to decrease with increasing m.

The total torque acting on the planet is the sum of the torques exerted at each Lindblad
resonance. The total torque reads:

Γ =
∑
m

ΓmLR , (2.9)

where ΓmLR is the mth torque component of the Lindblad resonance. The individual com-
ponents of the torque ΓmLR can be derived with some mathematical knowledge. This has
been done by Goldreich and Tremaine (1979) and Meyer-Vernet and Sicardy (1987). Their
result is:

ΓmLR = ±π
2Σ0A(rm)2

3ΩmΩP

, (2.10)

where Σ0 is the surface density, Ωm the angular velocity at the mth resonance and A(rm) =
∓rmdΦm/dr+2Ω/(Ω−ΩP )Φm. This results in a negative torque exerted at outer Lindblad
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2.1. LINEAR LINDBLAD TORQUE CHAPTER 2. INTERACTIONS

Figure 2.1: Inner (triangles) and outer (diamonds) torques |ΓmLR|, normalised to Γ0 =
πq2Σr4pΩ

2
Ph
−3, for two different aspect ratios (h = H/r). Figure taken from

Masset (2008a).

resonances and a positive torque exerted at inner Lindblad resonances. The components
of ΓmLR for different m are shown in Fig. 2.1. For small m, ΓmLR increases, but then declines.
This drop off is referred to as torque cut-off. This is because of the fact that for large m,
rm does not tend to rp (for m→∞), but to rP + 2/3HP , while Φm

P (r) peaks at rP .

The sum over the components of the outer Lindblad resonances is referred to as outer
Lindblad torque and the sum over the components of the inner Lindblad resonances is
referred to as inner Lindblad torque. Each of these components is also referred to as
one-sided Lindblad torque.

2.1.2 Differential Lindblad torque

The outer and inner Lindblad torques are not exactly equal, as has been shown by Ward
(1986). The torque exerted by the outer mth Lindblad resonance is larger in absolute value
than the inner one, for three reasons (Ward, 1997):

1. The outer resonances are located closer to the planetary orbit as the inner resonances
(see Eq. 2.7). But as the potential Φm

P declines symmetrically away from the planet,
the coefficient A(rm) in Eq. 2.10 is enhanced.

2. The ± sign in A(r) makes A(r) larger for the outer resonances, even if the inner and
outer resonances of the same order were symmetric with respect to the planet.
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3. In the expression of ΓmLR (Eq. 2.10) the angular velocity at the location of the res-
onance (Ωm) appears in the denominator. As Ωm is larger for the inner resonances
than for the outer resonances, this favours the latter.

If the slope of the surface density in the disc would be increased, the surface density Σ
would be larger in the inner disc compared to the outer disc. This would also increase
the pressure gradient in the disc, as the pressure is proportional to the surface density.
The angular velocity in the disc would decrease, as this effect partially counterbalances the
gravity of the central star. As a result, the resonances are shifted inwards, which increases
the strength of the outer resonances with respect to the inner resonances. This effect is
referred to as pressure buffer.

In Fig. 2.1 the difference between |ΓmLR| at the inner (triangles) and outer resonances
(diamonds) for different m and two different aspect ratios is displayed. It seems that the
difference between inner and outer resonances increases with increasing aspect ratio H/r.
Clearly visible is the afore mentioned torque-cut-off, which appears as a decrease of |ΓmLR|
as m increases for larger m. The torque-cut-off appears for smaller m for higher aspect
ratios.

The total torque exerted by the disc on the planet, is the sum of each torque component
ΓmLR at both resonances (ILR and OLR). This is the differential Lindblad torque, which
is denoted as ∆ΓLR. The differential Lindblad torque scales with the aspect ratio H/r.
As the one-sided Lindblad torque scales with (H/r)−3, the differential Lindblad torque is
proportional to (H/r)−2.

A linear estimate for the torque acting on an embedded low-mass planet in the linear
regime in isothermal discs is given by Tanaka et al. (2002). Their formula reads:

∆ΓLR = −CLRq2ΣPΩ2
P r

4
Ph
−2
P , (2.11)

with q = MP/M∗ and

CLR = 2.340− 0.099α in 3D , CLR = 3.200 + 1.468α in 2D , (2.12)

where α is the slope of the density profile Σ ∝ r−α (approximated by a power law). Both,
the 2D and 3D estimate have the same dependence in surface density and planet mass.
The negative torque exerted on the planet leads to inward migration. The migration rate
is proportional to the planet mass, as the torque is proportional to the square of the planet
mass.

Even as the total torque features other components (see Section 2.2), it is useful to deter-
mine the migration rate only for the differential Lindblad torque. The migration rate is
defined as τmigI = a/ȧ. Using the definition of the angular momentum and of its derivative,
it yields:

τmigI =
a

ȧ
=

J

∆ΓLR
=
a2PΩPMP

∆ΓLR
=

(H/r)2

4Cqµ(rP )

2π

ΩP

, (2.13)

with µ(r) = Σπr2/M∗ being the reduced disc mass and C from above. For a planet with
10 Earth masses, 10MEarth, embedded at 5.0 AU in a Minimum Mass Solar Nebular with
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Figure 2.2: Schematic of acoustic (pressure) wave propagation in a gas disc involving an
inner Lindblad resonance, outer Lindblad resonance and corotation resonance.
Figure taken from Lubow and Ida (2010).

H/r = 0.07 and µ = 1.4 10−3 the migration is a few thousand orbits, which corresponds to
a few ten thousand years. This is at least one order of magnitude smaller than the lifetime
of the accretion disc! As planets migrate inwards, this may account for the Hot Jupiters,
but for big planets embedded farther out in the disc (like Jupiter in our Solar System),
this mechanism is too fast. In the next Sections processes to slow down this rapid inward
migration are explained.

2.2 Linear corotation torque

2.2.1 Corotation resonances

In the previous Section, the torques at the Lindblad resonances have been derived. How-
ever, as the Lindblad resonances do not reach all the way to the planet (Eq. 2.8), there
is an area in between the inner and outer Lindblad resonances, which corresponds to the
corotation resonance, see Fig. 2.2, taken from Lubow and Ida (2010). At the Lindblad
resonances, spiral waves are launched and propagate away from the orbit of the planet.
The corotation region is evanescent (no pressure waves are launched).

In linear analysis of the planetary potential of an embedded planet (Eq. 2.3), the corota-
tion resonances occur when Ω = ΩP , which means that they are located directly at the
planets radius. The corotation torque in the linear regime does not excite a pressure wave
to transport the angular momentum away, it rather accumulates at corotation. The cor-
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responding torque appears as a discontinuity in the angular momentum flux at corotation
(Goldreich and Tremaine, 1979).

Under the linear analysis, the components of the corotation torque can be derived. Tanaka
et al. (2002) showed that the mth component of the corotation torque exerted on a per-
turber in an isothermal disc is:

ΓC,m = −mπ
2

2

[
|Φm + Ψm|2

dΩ/dr

d

dr

(
Σ

B

)]
rc

, (2.14)

where Ψm is the mth component of the perturbed gas enthalpy. The perturbed gas enthalpy
is equal to the perturbed pressure divided by the unperturbed surface density. The torque
expression in (Goldreich and Tremaine, 1979) is obtained for |Ψm| � |Φm|. This holds,
when the thermal energy is a small fraction of the total energy, depending on the gas
temperature and on the strength of the perturbing potential. However, this approximation
is incorrect for typical discs and planet parameters (Tanaka et al., 2002).

In Eq. 2.14 the radius rc is the corotation radius with Ω(r) = ΩP . For a disc with power law
approximations for surface density Σ(r) ∝ r−α and temperature T (r) ∝ r−β, the corotation
radius can be evaluated:

rC ≈ rP
[
1− (α− β)h2/3

]
. (2.15)

If the pressure decreases with r, which is satisfied for α − β > 0 as p ∝ ΣT , rC is slightly
smaller than the planetary radius rP . The sign of Eq. 2.14 is determined by B/Σ with
B the second Oort’s constant (Ω/4 in Keplerian discs), which scales as r−3/2 in Keplerian
discs. The total linear corotation torque, which is the sum over all m elements of ΓC,m, is
therefore proportional to 3/2− α for an isothermal disc. Interestingly, this means that for
large negative surface density gradients, the corotation torque would be positive, which is
not possible for the Lindblad torque, which is always negative. However, for the typical
MMSN models with α = 3/2, the corotation torque cancels out.

As B is also half the vertical component ω of the flow vorticity, the corotation torque scales
with the gradient of (the inverse of) the flow vortensity ω/Σ, which describes the ratio of
vorticity to density of a rotating fluid. From the Navier-Stokes equations, the governing
equation of the vortensity can be obtained:

D

Dt

(ω
Σ

)
= −∇p×∇Σ

Σ3
· ez + ν∆

(ω
Σ

)
. (2.16)

In a locally isothermal disc without viscosity (an inviscid disc), the right-hand side of this
equation is proportional to dT/dr. For uniform temperatures, D(ω/Σ)/Dt = 0 and the
vortensity is conserved along fluid element paths. This is also true for barotropic discs, as
p = p(Σ) and is independent of the temperature.

2.2.2 Inviscid discs

Gas close to the embedded planet is in the coorbital region. It does not pass the planet,
it is trapped in so called librating orbits in the corotating frame of the planet as can be
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Figure 2.3: Trajectories of fluid elements perturbed by a large mass planet held on a fixed
orbit in the corotating frame. The left plot displays the trajectories as white
lines over a density map in Cartesian (x, y) coordinates, while in the right plot,
polar coordinates (φ, r) are used. The shaded area in the right hand plot marks
the coorbital region. Picture taken from Masset (2008b).

seen in Fig. 2.3. The gas trapped in librating orbits moves in horseshoe shaped orbits in
the coorbital region (left in Fig. 2.3), the orbits are therefore named horseshoe orbits. The
librating fluid elements in the horseshoe region are separated from the circulating fluid
elements outside the coorbital region by the seperatrix.

Let us follow the motion of a particle in a librating orbit in the horseshoe region in an
inviscid disc (left in Fig. 2.3). When the particle is on an orbit smaller than the planet’s
orbit, its angular velocity Ω is larger. The particle therefore moves faster in the disc and
gains on the planet, until it finally approaches the planet from behind. When the particle is
close to the planet, the planet pulls the particle outside by transferring angular momentum
to it. During this transfer of angular momentum, the particle describes a U-turn motion in
the disc. As the particle is now on a wider orbit than the planet, it moves more slowly. The
planet then gains on the particle again until it is approached. The particle then transfers
angular momentum to the planet and is moved by another U-turn type of motion into an
inner orbit again. As the particle follows a periodic orbit in the frame of the planet, the
angular momentum over a complete period of motion does not change.

The corotation torque acting on an embedded planet has its origin in the horseshoe type
motion of the gas (Ward, 1991). As the horseshoe region is a closed system in this case,
the particles can only give a finite amount of angular momentum to the planet. Even if the
particles on different radii were initially lined up to encounter the planet at the same time
and give a large amount of angular momentum to the planet, they drift apart in azimuth
(phase) and encounter the planet at different times in the next orbits. After a while, when
one particle gives an amount of angular momentum to the planet, another particle takes
exactly this amount of angular momentum from the planet. This so called phase mixing
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leads to a flattening of the vortensity profile, which results in a vanishing torque acting
on the planet after the gas has made several horseshoe orbits. This process is also called
saturation of the corotation torque.

The horseshoe region in the disc is characterised by its width and by the libration time
scale.

• The half-width of the horseshoe region xs can be approximated for an isothermal disc
by (Masset et al., 2006):

xs = 1.16 aP

√
q

(H/r)
, (2.17)

where q is the planet-star mass ratio, MP/MStar, and aP the planetary distance to
the star. For a 20MEarth planet in H/r = 0.037 disc, the half width of the horseshoe
region is xs = 4, 67 ·10−2aP . As the half-width of the horseshoe region is quite small,
one needs very fine grids to resolve the corotation region for small mass planets.

• The libration time scale τlib gives the period between particle-planet encounters. It
depends on the separation from the corotation radius:

τlib =
8πrP

3ΩPxs
, (2.18)

which is ≈ 180 planetary orbits for the above case of a 20MEarth planet.

One should be aware that only global simulations (if possible with high resolution) can
correctly determine the corotation torque. A local description, either a box or a wedge, will
prevent saturation for inflow/outflow boundary conditions in azimuth as the ’new’ material
will be injected with an unperturbed density and velocity profile. Periodic boundary
conditions will artificially shorten the libration time scale.

A linear estimate for the corotation torque acting on an embedded low-mass planet in the
linear regime in isothermal, inviscid discs is given by Tanaka et al. (2002). Their formula
reads:

∆ΓCR = −CCRq2ΣPΩ2
P r

4
Ph
−2
P , (2.19)

with q = MP/M∗ and

CCR = 0.976− 0.640α in 3D , CCR = 2.040 + 1.360α in 2D , (2.20)

where α is the slope of the density profile Σ ∝ r−α (approximated by a power law). The
combination of the Lindblad torque, eq. 2.11, and the corotation torque, eq. 2.19, gives the
total torque acting on the planet in the linear regime. Even with the consideration of the
corotation torque, the total torque acting on an embedded small mass planet is negative,
indicating inward migration at a too fast rate.

2.2.3 Viscous discs

However, in a real accretion disc, viscosity is present. In Fig. 2.4 the streamlines in a
viscous disc are plotted. In the left hand plot a toy model to illustrate the movement of
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Figure 2.4: Horseshoe streamlines in the corotating frame for a viscous disc. The left-hand
plot describes a toy model presented in the text, while the right-hand shows
streamlines from a numerical simulation of a planet in the disc. The grey
shaded area marks fluid elements trapped in the coorbital region of the disc,
while the white region represents the path of fluid elements that are initially
circulating in the outer disc, make a horseshoe U-turn and then circulate in the
inner disc. Figures taken from Masset (2001)

particles is displayed, while the right hand plot shows the result of numerical simulation
with an embedded planet. The description of the toy model follows Masset (2001).

In a viscous disc with uniform viscosity ν and surface density Σ, the velocity of the fluid
elements in the corotating frame is given by

ẋ = −3

2

ν

rp
, φ̇ = −3

2

ΩP

rP
x , (2.21)

which integrates to

φ =
1

2

ΩP

ν
x2 + φ0 . (2.22)

The streamlines are therefore parabolic arcs, as can be seen in the left hand plot in Fig. 2.4.
Following a fluid element starting form the outer disc, it first follows a circular trajectory
and approaches progressively the coorbital zone of the planet. Finally the fluid element
reaches the point A′, which is slightly beyond the coorbital region (its distance is greater
than xs). The fluid element at this point is not sent to the other side through a horseshoe
U-turn. However, as the fluid element progresses on its orbit towards A, it crosses the
horseshoe boundary and is now inside the coorbital region of the disc. When the fluid
element reaches A, it is sent through a horseshoe U-turn to B, giving a positive amount
of angular momentum to the planet. The fluid element loses that amount of angular
momentum. It then flows towards B′, which is outside the horseshoe region. Therefore the
fluid element keeps circulating inwards in the inner disc and eventually gets accreted onto
the primary.
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This schematic picture gives a first clue about what is going on in a real accretion disc.
The streamlines for that case are displayed in the right hand plot in Fig. 2.4. In this case,
again, a set of closed streamlines in the coorbital region is visible. This region is quite
similar to that obtained in the toy model (left in Fig. 2.4). Material is also able to flow
from the outer disc to the inner disc as in the toy model.

In the viscous accretion disc, still a set of closed librating streamlines is present in the
coorbital region, enclosed by the seperatrix. This material will not accrete onto the primary
star, but as the outer and inner disc can now communicate, material can flow from the
outer disc to the inner disc, which exerts a positive torque on the planet. However, for
decreasing viscosities, the librating region becomes more rectangular shaped, as in the
inviscid case (see right in Fig. 2.3). If the viscosity is too low, the effect of transporting
angular momentum from the outer disc onto the planet ceases to exist.

Maintaining a non zero-coorbital torque over long time scales requires a process that per-
mits exchanges between inner and outer disc. This process is, as described above, viscosity.
In sufficiently viscous discs (with a viscosity probably too high for real accretion discs),
the viscous diffusion and radial transport of material across the horseshoe region prevent
the saturation of the corotation torque and keep the gradient in vorticity alive. If the
viscous diffusion time scale, τvisc = x2s/ν across the coorbital region is larger than the
horseshoe libration time (eq. 2.18), then no corotation torque is acting on the planet. On
the other hand, if the viscous diffusion time scale is shorter than the libration time scale,
the corotation torque reaches its maximum value (Masset, 2001).

The linear analysis of perturbed circular orbits around corotation resonances is called linear
corotation torque. However, non-linear effects have an influence on the torque acting on
embedded planets as well.

2.3 Non linear effects

The linear analysis shown above (in Section 2.1 and 2.2) was based on the assumption
that a low-mass planet only induces linear perturbations. In fact, introducing a planet in
a disc results in a singular perturbation at the corotation radius, which suggests that the
corotation torque can differ from its linear value.

Basically, there are two ways to look at the corotation torque. In the first way (see
Section 2.2), a linear analysis of perturbed circular orbits around the corotation resonance
is performed. Alternatively, one can look at the expected pattern of the streamlines close to
the planet (see Fig. 2.3) and analyse the torque exerted from material executing horseshoe
turns (Ward, 1991). The torque obtained from linear analysis is called linear corotoation
torque, while the torque resulting from streamline analysis is called horseshoe drag. The
horseshoe drag is sometimes also referred to as non-linear coorbital torque. Please keep in
mind that in linear theory no horseshoe drag exists. This torque is a strictly non-linear
phenomenon, as will be shown below.

In an isothermal disc with conserved specific vorticity along streamlines, the density
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Figure 2.5: Total torque acting on the planet in an isothermal, inviscid disc with hP = 0.05
and q = 1.26 10−5 for different surface density profiles. The horizontal lines
indicate the linear torque for increasing α from top to bottom. Picture taken
from Paardekooper and Papaloizou (2009b).

changes in the corotation region, when the material is executing the U-turns. As the
material is undergoing the U-turn and moves to a different orbit, it changes vorticity. But
a change in vorticity is followed by a change in density. On the two sides of the planets,
the direction of the U-turn is opposite, resulting in an change of density that is directly op-
posite for the two U-turns. As a result, the planet feels a torque. This torque is dependent
on the width of the horseshoe region (Ward, 1991) and is:

ΓC,HS =
3

4

(
3

2
− α

)
x4sΣP r

4
PΩ2

P , (2.23)

with xs being the half-width of the horseshoe region. Please note that xs ∝
√
q/h,

so that the horseshoe drag scales exactly the same way as the linear corotation torque
(Paardekooper and Papaloizou, 2009b). This also indicates, that the differences between
these two torques may only lie in the magnitude of them.

In Fig. 2.5 (taken from Paardekooper and Papaloizou (2009b)) the total torque acting on
planets with q = 1.26 10−5 in an isothermal, inviscid disc with hP = 0.05 with different
surface density profiles (α) is displayed. The horizontal lines indicate the linear torque
estimate for the embedded planet. As the linear torque estimate depends on the surface
density gradient, the linear results differ from each other.

Taking a look at eq. 2.23, it is not surprising that the torque for the α = 3/2 disc is
identical with the linear estimate, as the horseshoe torque vanishes. However, for planets
in discs with α 6= 3/2 the horseshoe torque does not vanish, and the corresponding torque
in the simulations differs from the linear estimate. The sign of the difference from linear
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theory is dictated by the vortensity gradient. This indicates that the corotation torque is
enhanced with respect to the linear value (Paardekooper and Papaloizou, 2009b).

The evolution of the total torque in the simulations is another interesting feature. In the
beginning of the simulations, after about 2 orbits, the torques are nearly identical to the
linear estimate, but as time evolves the torques depart from the linear estimate. This
indicates that the linear theory is only valid at early times in the evolution. The linear
torque is then replaced by the non-linear torque, the horseshoe drag, which takes about 20
orbits to develop in this case.

The replacement of the linear torque with the horseshoe drag also implies that both torques
do not exist at the same time. The material can either follow a perturbed circular orbit or
execute a horseshoe turn. At early times after inserting the planet in the disc, linear theory
is valid, as the material did not have time to make horseshoe U-turns. When the material
starts to execute horseshoe turns, the linear corotation torque is replaced by the non-
linear horseshoe drag. The development for the linear corotation torque follows no definite
time scale (it is developed after about one planetary orbit). However, the horseshoe drag
needs a fraction of the libration time scale (see eq. 2.18) to develop, which is about 2hP τlib
(Paardekooper and Papaloizou, 2009b). The development of the horseshoe drag is also
faster for higher planetary masses, as xs ∝

√
q.

This result also confirms that non-linear effects in the corotation region play a role, even
for a small planet mass, contrary to the original assumption for the linear analysis. The
horseshoe drag is also in general much stronger than the linear torque (as can be seen in
Fig. 2.5). One also notices that the total torque approaches zero for slightly positive surface
density gradients (remember Σ ∝ r−α). For surfaces density gradients with α ≈ −1, the
total torque can become positive, indicating outward migration.

In inviscid discs, the corotation torque becomes non-linear, but saturates after a few libra-
tion cycles, so that only the Lindblad torque remains. For the linear corotation torque, a
sufficiently large enough viscosity can act to prevent the corotation torque from saturation.
In that case the horseshoe drag is decreased to the linear estimate of the corotation torque.
This also depends on the planetary mass, which is show in Fig. 2.6.

In this figure, a schematic overview over the possibilities (in log q and log ν) of the corotation
torque is given (following Paardekooper and Papaloizou (2009b)). The boundaries between
the three regimes is given by two lines. The boundary between the non-linear torque
maintained by viscosity (non-linear, sustained in the picture) and the non-linear saturated
regime is given approximately by the condition that viscous diffusion across the coorbital
region occurs in one libration cycle. The line separating the sustained horseshoe drag
regime from the linear regime is expected to occur where viscous effects become large
enough to disrupt horseshoe turns.

Interestingly, the linear regime is only present in a small fraction of the plotted parameter
space. Also, the boundaries between the different regimes are not razor sharp, but may
contain slight wiggles as the non-linear torque can be partially saturated or reduced by
viscosity. Nevertheless, the corotation torque is almost always a non-linear phenomenon.
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Figure 2.6: Overview over the different migration regimes. Depending on the viscosity in
the disc, a low-mass planet will either experience a linear, unsaturated torque,
a non-linear, unsaturated torque or a non-linear, saturated torque. Picture
taken from Paardekooper and Papaloizou (2009b).

2.4 Non isothermal discs

In the above Sections, the torque acting on low-mass planets in isothermal discs has been
described. The isothermal assumption is only valid, when the disc is able to radiate away
all excess energy efficiently. But, as density is increasing and therefore opacity as well,
less energy can be radiated away, and the cooling time scale becomes then much longer
than the dynamical time scale in the dense inner regions of the disc, so that the isothermal
assumption might not be valid any more. This is especially the case for high-mass discs. In
this Section, the influence of a proper treatment of thermodynamics on planetary migration
is discussed.

2.4.1 First results

First pointed out by Paardekooper and Mellema (2006), the inclusion of radiative transfer
can cause a reduction of the migration speed and even reverse migration from inwards
to outwards. In their letter, they treated radiative transfer in the flux-limited diffusion
approach (Levermore and Pomraning, 1981) with a flux limiter of Kley (1989). In 3D
hydrodynamical simulations in inviscid (to filter out effects of viscous heating) discs, they
showed that for high density discs, the torque acting on an embedded 5MEarth planet can
be positive (Fig. 2.7).

In Fig. 2.7 the influence of density on the torque acting on an embedded 5MEarth planet is
shown. When varying the density in midplane of the disc, the initial temperature profile is
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Figure 2.7: Total torque acting on a 5MEarth planet as function of time for different mid-
plane densities in radiative discs and for an isothermal disc. The torques are
normalised to the analytical value found by Tanaka et al. (2002). The picture
is taken from Paardekooper and Mellema (2006).

fixed in order to study different cooling regimes (Paardekooper and Mellema, 2006). For low
opacities (and low densities), the planet still migrates inwards. For very low densities the
isothermal limit can be reached. For large opacities (and densities), the planet experiences
a positive torque and is thus migrating outwards. The magnitude of this outward migration
is about a factor of 2 smaller than the magnitude of migration in the isothermal case.

The difference in the torque acting on the planet in these discs with different thermody-
namic systems is originated in a region close to the planet, mainly 0.95 ≤ rP ≤ 1.05.
Including radiative diffusion resulted in a change, more correct, in an asymmetry, in the
temperature profile near the planet, that in return induced a density asymmetry in the
region near the planet. This density asymmetry leads to a positive contribution to the
torque, resulting in outward migration. But this is only valid, if the disc can not radiate
away heat efficiently. This is possible as long as the libration time scale is larger than the
radiative diffusion time scale in the disc. In this case the asymmetry in temperature and
density can be maintained.

On one hand, the torque in the coorbital region is enhanced and generates a large positive
contribution to the total torque. On the other hand, the Lindblad torque is reduced
in strength (but still negative). The compression of material at the turn-over point of
the horseshoe orbits generates a warm region behind the planet, but as the disc tries to
maintain the pressure equilibrium, the density behind the planet is reduced (p ∝ ΣT ),
leading to a positive contribution to the corotation torque. It has been shown, that this
effect is supported by a gradient in entropy (Baruteau and Masset, 2008).
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2.4.2 Energy equation

In numerical hydrodynamic simulations, the inclusion of radiation transport has direct
influences on the energy equation compared to isothermal simulations. The energy equation
for a 2D disc (as in Kley and Crida (2008)) is:

∂ΣcV T

∂t
+∇ · (ΣcV Tu) = −p∇ · u +D −Q− 2H∇ · F , (2.24)

where u = (ur, uφ) is the 2D velocity, Σ the density, p the pressure, T the mid-plane
temperature of the disc and cV is the specific heat at constant volume. The first term on
the right hand side describes compressional heating, D the (vertically averaged) dissipation
function, Q the local radiative cooling from the two surfaces of the disc and F denotes the
2D radiative flux in the (r, φ)-plane. The discs thickness H is calculated from the sound
speed H(r) = cs/ΩK(r) with cs =

√
γp/Σ and γ = 1.43 being the adiabatic index. The

2D pressure is given by p = RgasΣT/µ with the mean molecular weight µ = 2.35.

The radiative transport in the plane is treated by the flux-limited diffusion approximation,
where the flux is given by:

F = −λc 4aRT
3

ρκ
∇T , (2.25)

with c the speed of light, aR the radiation constant, ρ = Σ/(2H) the mid-plane density
and λ the flux-limiter (Kley, 1989) and κ the opacity.

When only the first term on the right hand side of Eq. 2.24 is used, the disc is adiabatic.
When only the last term is omitted, it is a disc with local heating and cooling. If the
full energy equation is used, the disc is fully radiative. For isothermal discs, the radial
temperature distribution is maintained constant and no energy equation is solved at all.
For the isothermal simulations the result is well known, an embedded low-mass planet
migrates inwards.

2.4.3 Adiabatic and fully radiative discs

The time evolution of torques acting on embedded 20MEarth planets in 2D discs with
different treatments of the energy equation are displayed in Fig. 2.8. In the isothermal
case, the torque acting on the planet is negative, indicating inward migration. Let us now
focus on the adiabatic simulation first.

In the initial phase of the torque evolution, right after the insertion of the planet, the torque
is positive, indicating outward migration in the adiabatic case. But as time progresses, the
torque becomes negative and settles at a value of about 40% of the isothermal case. It
seems that the torque in the adiabatic case is first unsaturated, but then, as time evolves,
it begins to saturate, so that the total torque becomes negative (Baruteau and Masset,
2008; Paardekooper and Papaloizou, 2008).

In order to bring more detail into the evolution and origin of the torques acting on em-
bedded planets, it is useful to define the torque density Γ(r) in such a way, that the total
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Figure 2.8: Time evolution of the specific total torque exerted by the disc on an embedded
protoplanet of 20MEarth for various approximations to the energy equation
(picture taken from Kley and Crida (2008)).

torque is given by:

Γtot =

∫ rmax

rmin

Γ(r) dr , (2.26)

where rmin and rmax define the inner and outer edge of the simulated disc. In Fig. 2.9 the
torque density acting on planets in 3D discs with different thermodynamics is displayed.
These results have been adopted from Kley et al. (2009). The individual parameters of the
disc’s properties differ a little bit from Kley and Crida (2008), but only the general picture
is of interest here.

Comparing the torque density of the isothermal with adiabatic simulations (Fig. 2.9),
two main differences are clearly visible. First, the Lindblad torques are reduced for the
adiabatic case compared to the isothermal case and, second, the torque density reduces
in time for the adiabatic simulations because of satuartion of the torque, which is not the
case for isothermal simulations. Please note here that the total torque is constant in time
(Fig. 2.8). This reduction in the torque density can also be seen in the evolution of the
total torque in time (Fig. 2.8), as the torque in the adiabatic disc is first positive and then
becomes negative in time.

Even without the effects of saturation, the torque density is smaller in the adiabatic disc
compared to the isothermal disc because of a different sound speed. The Lindblad torque
is therefore reduced by a factor of γ in the adiabatic disc compared to the isothermal disc
(Paardekooper and Papaloizou, 2008).

In contrast to the adiabatic models, both radiative models show a constant positive torque
acting on the embedded planet (see Fig. 2.8). In the fully radiative case, the torque is
about 25% smaller than for the local heating and cooling model. It seems that the torque
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Figure 2.9: Torque density acting on 20MEarth planets embedded in 3D discs with different
variations of the energy equation. The picture is derived from Kley et al. (2009).

remains unsaturated in a fully radiative disc, resulting in a long term outward migration.

This behaviour is also seen in the torque density distribution (Fig. 2.9) as the torque density
in the fully radiative case does not change over time. There is another interesting feature
in the torque density distribution for the fully radiative disc. In contrast to the isothermal
and adiabatic simulations, a small spike overlaying the Lindblad torque density is visible.
This spike in the torque density has its origin in a change in the density structure near
the planet (Kley et al., 2009). A change in the density structure has also be observed in
Paardekooper and Mellema (2006); Kley and Crida (2008); Paardekooper and Papaloizou
(2008).

The density structure of embedded planets in isothermal and fully radiative discs is shown
in Fig. 2.10. In the isothermal model, a higher mass concentration in the Roche lobe of
the planet can be observed. In the fully radiative model the spiral arms have a slightly
larger opening angle and a reduced density because of the higher temperature in the disc.
Less density in the spiral waves results in a reduction of the Lindblad torque.

The density in the inner half of the horseshoe region ahead of the planet (below the planet
in Fig. 2.10) is denser in the radiative case compared to the isothermal case. This has
also been observed in Baruteau and Masset (2008); Paardekooper and Papaloizou (2008).
Symmetrically, the outer half of the horseshoe region is depleted slightly behind the planet.

In order to explain the change of density ahead and behind the planet, let us consider the
movement of a particle on a horseshoe orbit, see right in Fig. 2.10. The particle makes
a horseshoe turn from the outer disc (r > 1 and φ > 180◦) to the inner disc (r < 1).
The radial temperature and density gradients imply a gradient in entropy, S ∝ p/ργ.
Caused by this gradient in entropy, a parcel coming from outside has a lower density than
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Figure 2.10: Surface density in the vicinity of a 20MEarth planet in an isothermal (left) fully
radiative (right) disc with indicated directions of flow for the fully radiative
disc. Plots taken from Kley et al. (2009).

the inner disc which it is entering. Assuming that the entropy does not change in this
short distance and that the pressure is nearly constant as well, the entropy law implies an
increase in density. At the same time, the density is decreased behind the planet (r > 1
and φ < 180◦) by the same reasoning.

Resulting from these changes in the density structure is a reduction of the Lindblad torque
and an enhancement of the entropy related corotation torque. In total these changes give
a positive total torque acting on the planet, indicating outward migration. To maintain
this density structure or, more exactly, the unsaturated torque, the libration time scale
must be comparable to the cooling times (Baruteau and Masset, 2008; Paardekooper and
Papaloizou, 2008). In an adiabatic disc, this effect disappears in time, as the material
in the horseshoe region begins to interact with itself and density and entropy will be
smeared out because of the mixing, and saturation of the torque sets in. Radiative diffusion
(with viscosity) prevents torque saturation and keeps the entropy related corotation torque
unsaturated, thus sustaining the outward migration of low-mass planets.

The positive torque acting on the embedded planet is a result of the cooling properties
of the disc. When the disc is not able to radiate away energy efficiently, the isothermal
approximation is not valid any more. The inclusion of radiative transport then results
in a positive torque acting on the embedded planet. When the planetary mass increases,
planets start to open gaps in the disc and the density around the planet therefore decreases.
But, as the density decreases, the disc is able to radiate energy away more efficiently, thus
preventing outward migration. This can clearly be seen in Fig. 2.11.

In Fig. 2.11 the specific torque acting on embedded planets is displayed. In the fully
radiative case, planets up to about 50MEarth are prone to outward migration. Bigger
planetary cores migrate inwards. In the isothermal case, planets migrate inwards at a rate
predicted by Tanaka et al. (2002).

Outward migration of protoplanets will not continue forever. In Paardekooper and Mellema
(2006), the influence of the opacity on low-mass planets in radiative discs is investigated
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Figure 2.11: Specific torque exerted on an embedded protoplanet for isothermal and fully
radiative models. An analytic curve is superimposed. Plot taken from Kley
and Crida (2008).

(see Fig. 2.7). For lower densities, the planets migrate inwards, even in the radiative case.
As the density is reduced with increasing distance to the central star for accretion discs,
outward migration will stop at some point in the disc. This so called zero-torque radius
defines a region in the disc, where planets migrating from inside out and planets migrating
from outside in stop. As the disc is slowly accreted onto the star, this zero-torque radius
moves inwards as well, but on the much longer viscous time scale (like type-II-migration).
This way, low-mass planets can be saved from the too fast inward migration (Paardekooper
and Mellema, 2006). This is also investigated in much more detail in Bitsch and Kley
(2011).
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3 Work in context

In this Chapter, I will put the work and publications done in my Ph.D.-Thesis in context
with ongoing and future research. The publications written during my research are then
presented in Chapter 4.

Fully radiative discs

In isothermal discs, low-mass planets migrate inwards at a rate proportional to the planets
mass (linear type-I-migration). In this migration regime, the planets migrate inwards at a
rate way too fast to account for Hot-Jupiter type planets. The planetary core migrates so
fast that it might be lost in the central star, before it has time to accrete gas from the disc
to form such a planet. This has been discussed in Chapter 2.

In recent years, the linear estimate of the Lindblad and corotation torque was proven to be
incomplete for low-mass planets, and non-linear effects have been taken into account. These
effects resulted in a reduction of inward migration. Planets could even migrate outwards,
if the radial surface density gradient in the disc is positive by a factor of α < −1, with
Σ ∝ r−α. However, in realistic discs, low-mass planets are still prone to inward migration
at a rate that is too fast to form giant gaseous planets near the host star, let alone farther
out in the disc.

As pointed out first by Paardekooper and Mellema (2006), the inclusion of radiative transfer
can cause a strong reduction in the migration speed. The process has been subsequently
investigated by several groups (Baruteau and Masset, 2008; Paardekooper and Mellema,
2008; Paardekooper and Papaloizou, 2008; Kley and Crida, 2008), who show that the
migration process can indeed be slowed down or even reversed for sufficiently low-mass
planets. This new effect occurs in non-isothermal discs and scales with the gradient of the
entropy (Baruteau and Masset, 2008), hence entropy-related torque. However, in a strictly
adiabatic situation after a few libration time scales, the entropy gradient will flatten within
the corotation region caused by phase mixing. This will lead to saturation (and subsequent
disappearance) of the part of the corotation torque that is caused by the entropy gradient in
the horseshoe region (Baruteau and Masset, 2008; Paardekooper and Papaloizou, 2009a).
To prevent saturation of this entropy-related torque, some radiative diffusion (or local
radiative cooling) is required (Kley and Crida, 2008).

Since for genuinely inviscid flows, the streamlines in the horseshoe region will be closed
and symmetric with respect to the planet’s location, some level of viscosity is always
necessary to avoid torque saturation (Masset, 2001; Ogilvie and Lubow, 2003; Paardekooper
and Papaloizou, 2008, 2009a). This applies to both the vortensity- and entropy-related
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corotation torques. The maximum planet mass for which a change of migration may occur
because of this effect lies for typical disc masses in the range of about 40 earth masses,
beyond which the migration rate follows the standard (isothermal) case, as gap formation
sets in, which reduces the corotation effects (Kley and Crida, 2008). Most of the above
simulations have studied only the two-dimensional case, while three-dimensional models
including radiative effects have been presented only for very low masses (Paardekooper and
Mellema, 2006), or for Jupiter type planets (Klahr and Kley, 2006).

In (Kley et al., 2009), we investigate planet-disc interactions in fully radiative discs, using
3D radiation hydrodynamic simulations of protoplanetary accretion discs with embedded
planets for a variety of planetary masses, which has not been investigated in that detail in
3D to that date. In Kley and Crida (2008) planets with up to ≈ 45MEarth could migrate
outwards in fully radiative discs in 2D. In 3D, only planets up to ≈ 33MEarth are prone
to outward migration (Kley et al., 2009). The differences between 2D and 3D simulations
have several reasons beside the inclusion of another dimension.

In isothermal discs, a different aspect ratio leads to a different migration speed (Tanaka
et al., 2002). There seems to be no reason, why this should change in fully radiative discs.
In Kley and Crida (2008), the aspect ratio of the disc was slightly higher compared to
(Kley et al., 2009) ([H/r]2D = 0.045 > 0.037 = [H/r]3D). Also the smoothing of the
planetary potential is treated differently. In 2D simulations the ε potential is used, while
in Kley et al. (2009) the cubic potential is used (Klahr and Kley, 2006). Using the cubic
potential results in a deeper planetary potential, which results in a higher density around
the embedded planet, as the planet is able to accumulate more mass.

When a planet is inserted in a viscous fully radiative disc, the material near the planet
starts its horseshoe type of motion. This process leads to an increase of density in front
of the planet and to a decrease behind the planet (Paardekooper and Mellema, 2006;
Kley and Crida, 2008; Paardekooper and Papaloizou, 2008), resulting in a positive torque
acting on the embedded planet. This density structure is very sensitive, and even very
small disruptions might destroy the effect of outward migration.

Eccentric orbits

Even in the Solar System none of the planets is on a perfect circular orbit. All planets
feature a small, but non-zero eccentricity (eEarth = 0.0167). Exoplanets, on the other
hand, have a high mean eccentricity ≈ 0.29 (Udry and Santos, 2007). There are several
explanations to account for the discrepancy in eccentricity between the Solar System and
exoplanet systems.

The interactions between planet and discs are typically considered in explaining the migra-
tion process, but it may be possible that this process influences the planetary eccentricity
as well (Goldreich and Tremaine, 1980). Under certain conditions, in linear analysis, the
planets eccentricity can be increased through planet-disc interactions (Goldreich and Sari,
2003; Sari and Goldreich, 2004; Moorhead and Adams, 2008). They estimate that eccentric
Lindblad resonances can cause eccentricity growth for gap-forming planets. Also, a Kozai-
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type interaction between the embedded planet and an inclined planet has been considered
to increase eccentricity (Terquem and Ajmia, 2010).

However, numerical simulations tend to show eccentricity damping by the disc for various
planetary masses (Cresswell et al., 2007; Moorhead and Ford, 2009). On the other hand,
very massive planets can induce an eccentric instability in the disc (Kley and Dirksen,
2006). Then, in turn, the disc can possibly increase the planetary eccentricity (Papaloizou
et al., 2001; D’Angelo et al., 2006). However, this process only applies for very massive
planets (≈ 5− 10MJup). Through mutual gravitational interactions between two or more
planets in the system, eccentricity of the planets can rise through this scattering process.
The resulting eccentricity distribution matches the observed one reasonably well (Adams
and Laughlin, 2003; Jurić and Tremaine, 2008; Ford and Rasio, 2008). Similar results can
be found by the fly-by of a nearby star (Malmberg and Davies, 2009).

Theoretical analysis of planets on eccentric orbits mainly focus on low eccentric planets
and predict exponential decay on short time scales τecc ≈ (H/r)2τmig, where H/r is the
aspect ratio of the disc and τmig and τecc the migration and eccentricity damping time
scale, respectively (Tanaka and Ward, 2004). For larger values of e, Papaloizou and Lar-
wood (2000) found an extended eccentricity damping time scale such that de/dt ∝ e−2 if
e > 1.1H/r. Cresswell and Nelson (2006) have performed hydrodynamical simulations of
embedded small mass planets and find good agreement with the work by Papaloizou and
Larwood (2000). These 2D results have been confirmed by Cresswell et al. (2007) using
fully 3D isothermal simulations.

All these simulations and theories so far have only considered an isothermal disc. In Kley
et al. (2009) it is stated that the inclusion of radiative transport changes the direction of
migration from inwards to outwards. Therefore, in Bitsch and Kley (2010), we investigate
the effects of a fully radiative disc on planets on eccentric orbits. In fully radiative discs,
eccentricity is damped at a similar rate as in isothermal discs. However, even very small
eccentricities destroy the very sensitive density structure near the planet, so that it migrates
inwards again. This density structure is only maintained for very small eccentricities. Only
planets on very small eccentric orbits are therefore still prone to outward migration (Bitsch
and Kley, 2010).

Inclined orbits

The planets in our Solar System do not all move in the same plane, they are inclined to the
ecliptic. The inclination for most planets is small (Mercury with the highest inclination of
i = 7.01◦), but some dwarf planets feature high inclinations (e.g. Pluto at i = 17◦, or Eris
at i = 44.2◦). The low inclination of planets is taken as a an indication that planets form
within the flattend protoplanetary disc. The high inclination of the dwarf planets is then a
result of scattering processes in the early evolution of the Solar System. However, discov-
eries have shown that close-in Exoplanets can feature a high inclination (see e.g. Triaud
et al., 2010). This means that inclination has to be taken into account, when investigating
planet-disc interactions in numerical simulations and theoretical considerations.
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However, 3D simulations of inclined planets require a lot of computation time, so that
not many studies have been done up to date covering this topic. Linear analysis has
shown that inclination is damped. The inclination of low inclined planets is damped at an
exponential rate, but the results are formally only valid for i � H/r (Tanaka and Ward,
2004). Numerical simulations of low-mass planets in isothermal discs have shown that the
exponential damping is in fact supported up to i ≈ 2H/r (i in radians). For higher inclined
orbits, inclination is still damped, but at a much slower rate of di/dt ∝ i−2 (Cresswell et al.,
2007). In these studies only planets with a mass of 20− 30MEarth were considered. Higher
mass planets, e.g. Jovian mass planets, lose their inclination and eccentricity at a much
faster rate (Marzari and Nelson, 2009). However, when the high-massive planet enters the
disc again, it starts to open up a gap in it. When the gap is complete, eccentricity and
inclination damping occurs at a much slower rate.

These simulations so far have only considered the isothermal assumption. In a typical
accretion disc the density falls off above and below the midplane such that the migration
of an inclined planet might be substantially different compared to a planet embedded
directly in the midplane of the disc. In Bitsch and Kley (2011) we investigate the evolution
of inclined planets on circular and eccentric orbits in isothermal and fully radiative discs.
Damping of inclination occurs on roughly the same time scale in isothermal and fully
radiative discs, but only in a fully radiative disc planets are prone to outward migration.
The inclination also has an effect on the magnitude of migration. A higher inclination
leads to slower inward migration, until the migration is about zero for i ≥ 4.5◦ (Bitsch and
Kley, 2011). For lower inclinations, low-mass planets on circular orbits can still migrate
outwards. For isothermal discs, the linear results of Tanaka and Ward (2004) and the
simulations of Cresswell et al. (2007) could be confirmed.

Migration time scales

On of the main problems to form Jovian mass planets is the long time scale. In the
isothermal regime, the planets migrate inwards, so that the planetary core would be lost
in the star before it could accrete gas to form such a planet. In a fully radiative disc, the
planetary cores can migrate outwards. However, it is not clear how far planets migrate
outwards in discs. Paardekooper and Mellema (2006) stated that outward migration should
stop at a point in the disc, where the disc does not support outward migration any more.
In this region in the disc, planetary cores would accumulate and eventually merge to bigger
cores. Radiation transport could therefore serve as a mechanism to form planetary traps
in the disc at a so called zero-torque radius. This can also be achieved through surface
density gradients in the disc (Morbidelli et al., 2008), but it is not clear how realistic these
jumps in the surface density gradients are.

The inclusion of radiative transport, and therefore taking into account unsaturated torques,
can solve the problem of forming big cores in discs. The concept of an equilibrium radius
(zero torque radius) for planetary embryos in fully unsaturated discs has been stated in
Lyra et al. (2010) as well and it could easily act as a feeding or collection zone for planetary
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embryos. In Sándor et al. (2011) it is shown in N-body simulations that caused by the
inclusion of unsaturated type-I-migration (Paardekooper et al., 2010) big planetary cores
(up to 10MEarth) can form in protoplanetary discs well before the disc is accreted onto the
star.

Up until now, several theoretical formulae to capture the effects of unsaturated torques have
been derived (Paardekooper et al., 2010, 2011; Masset and Casoli, 2010). These formulae
have only been tested against 2D simulations to check their validity. In 3D simulations the
torque acting on the embedded planet differs from 2D simulations (Kley et al., 2009). In
Bitsch and Kley (2011), we numerically determine the zero-torque distance to the central
star and check the validity of the torque formulae. Overall agreement of the torques acting
on embedded low-mass planets is reasonable with Paardekooper et al. (2011).

Disc physics

This is extremely important for population synthesis models, where it is tried to explain
the distribution of exoplanets (Alibert et al., 2004; Ida and Lin, 2008; Mordasini et al.,
2009). These models also required a much shorter time scale for type-I-migration compared
to the isothermal migration regime. The inclusion of outward migration in these models
with a so called zero-torque radius is implemented in (Mordasini et al., 2010), which shows
very promising results.

The influence of the disc mass is also discussed in Bitsch and Kley (2011). The mass of
the disc changes not only the structure of it, but it is also needed to form bigger planets,
as the planets in the disc can not become more massive than the disc to begin with. This
is also a key point in population synthesis models, as planets with different masses have
to be formed. On the other hand, in a more massive disc, convection can arise because of
the increased heating in the midplane. Convection then disturbs the motion of a planet
embedded in the disc in such a way that the movement of the planet becomes very hard
to predict. On the other hand, the zero-torque radius is farther out from the central star
compared to less massive discs (Bitsch and Kley, 2011).

The structure of a fully radiative disc is determined through viscous heating and radiative
transport/cooling. If the viscosity in the disc changes, the structure of the disc changes
as well. But not only the structure changes, but the torque acting on a planet as well. A
certain viscosity is needed to sustain the unsaturated torques (Chapter 2.3) and therefore
outward migration (Chapter 2.4). In isothermal discs, the torque acting on an embedded
planet becomes smaller with decreasing viscosity (Bitsch and Kley, 2010). If the viscosity
is too low in fully radiative discs, outward migration can no longer be supported. This
is discussed in Bitsch et al. (2011). A change in the disc structure also changes the tem-
perature and density profiles and the aspect ratio of the disc. These properties of the
disc influence the torque acting on an embedded planet as well, which is also the case for
isothermal discs (Tanaka et al., 2002).

The disc structure is also determined by the adiabatic index of gas, as it changes the
pressure of the gas. Boley et al. (2007) stated that the adiabatic index of the gas is
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CHAPTER 3. WORK IN CONTEXT

dependent on the temperature of the disc. This dependence has its origins in the behaviour
of the gas for different temperatures. It also changes when a different gas mixture is
assumed (e.g. ortho-para mixed gas or an equilibrium gas with equal ortho and para
hydrogen). As the adiabatic index can vary between γ = 1.3 and γ = 1.67, there can be
huge differences in the structure of the disc, which influences the migration of an embedded
planet as well. This is also discussed in Bitsch et al. (2011).
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4 Publications

In the following, the five publications written during my thesis are presented. The first
three papers (Kley et al., 2009; Bitsch and Kley, 2010; Bitsch and Kley, 2011) are all
accepted by Astronomy and Astrophysics and published there. The fourth paper (Bitsch
and Kley, 2011) is currently in review in Astronomy and Astrophysics. The last paper
(Bitsch et al., 2011) is in preparation and will therefore most probably change in the
following weeks. Nevertheless, all five publications are included in the following.
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ABSTRACT

Context. The migration of growing protoplanets depends on the thermodynamics of the ambient disc. Standard modelling, using
locally isothermal discs, indicate an inward (type-I) migration in the low planet mass regime. Taking non-isothermal effects into
account, recent studies have shown that the direction of the type-I migration can change from inward to outward.
Aims. In this paper we extend previous two-dimensional studies and investigate the planet-disc interaction in viscous, radiative discs
using fully three-dimensional radiation hydrodynamical simulations of protoplanetary accretion discs with embedded planets, for a
range of planetary masses.
Methods. We use an explicit three-dimensional (3D) hydrodynamical code NIRVANA that includes full tensor viscosity. We have added
implicit radiation transport in the flux-limited diffusion approximation, and to speed up the simulations significantly we have newly
adapted and implemented the FARGO-algorithm in a 3D context.
Results. First, we present results of test simulations that demonstrate the accuracy of the newly implemented FARGO-method in 3D.
For a planet mass of 20 Mearth, we then show that including radiative effects also yields a torque reversal in full 3D. For the same
opacity law, the effect is even stronger in 3D than in the corresponding 2D simulations, due to a slightly thinner disc. Finally, we
demonstrate the extent of the torque reversal by calculating a sequence of planet masses.
Conclusions. Through full 3D simulations of embedded planets in viscous, radiative discs, we confirm that the migration can be
directed outwards up to planet masses of about 33 Mearth. As a result, the effect may help to resolve the problem of inward migration
of planets that is too rapid during their type-I phase.

Key words. accretion, accretion disks – hydrodynamics – radiative transfer – planets and satellites: formation

1. Introduction

The process of migration in protoplanetary discs allows forming
planets to move away from the location of creation and finally
end up at a different position. The cause of this change in dis-
tance from the star are the tidal torques acting from the disturbed
disc back on the protoplanet. These can be separated into two
parts: i) the so-called Lindblad torques that are created by the
two spiral arms in the disc and ii) the corotation torques that are
caused by the co-orbital material as it periodically exchanges an-
gular momentum with the planet on its horseshoe orbit. For com-
prehensive introductions to the field, see for example Papaloizou
et al. (2007) or Masset (2008), and references therein. The
Lindblad torques, caused by density waves launched at Lindblad
resonances, quite generally lead to an inward motion of the
planet explaining the observed hot planets very nicely (Ward
1997). The corotation torques are mainly caused by two ef-
fects, first by a gradient in the vortensity (Tanaka et al. 2002)
and second by a gradient in the entropy (Baruteau & Masset
2008). For typical protoplanetary discs, both contributions can
be positive, possibly counterbalancing the negative Lindblad
torques (Paardekooper & Mellema 2006; Baruteau & Masset
2008). For the typically considered locally isothermal discs
where the temperature only depends on the radial distance
from the star, the net torque is negative, and migration is di-
rected inwards for typical disc parameters (Tanaka et al. 2002).
Through planetary synthesis models, the inferred rapid inward
migration of planetary cores has been found to be inconsis-
tent with the observed mass-distance distribution of exoplanets

(Alibert et al. 2004; Ida & Lin 2008). Possible remedies are the
retention of icy cores at the snow line or a strong reduction in
the speed of type-I migration (of embedded low-mass planets).
Here we focus on the latter process.

Different mechanisms for slowing down the too rapid in-
ward migration have been discussed (Masset et al. 2006; Li
et al. 2009), but including more realistic physics seems to be
particularly appealing. As pointed out first by Paardekooper &
Mellema (2006), the inclusion of radiative transfer can cause
a strong reduction in the migration speed. The process has
been subsequently investigated by several groups (Baruteau &
Masset 2008; Paardekooper & Mellema 2008; Paardekooper &
Papaloizou 2008; Kley & Crida 2008), who show that the mi-
gration process can indeed be slowed down or even reversed
for sufficiently low-mass planets. This new effect occurs in
non-isothermal discs and scales with the gradient of the en-
tropy (Baruteau & Masset 2008), hence entropy-related torque.
However, in a strictly adiabatic situation after a few libration
time scales, the entropy gradient will flatten within the corotation
region due to phase mixing. This will lead to saturation (and sub-
sequent disappearance) of the part of the corotation torque that is
caused by the entropy gradient in the horseshoe region (Baruteau
& Masset 2008; Paardekooper & Papaloizou 2009). To prevent
saturation of this entropy-related torque, some radiative diffu-
sion (or local radiative cooling) is required (Kley & Crida 2008).
Since for genuinely inviscid flows, the streamlines in the horse-
shoe region will be closed and symmetric with respect to the
planet’s location, some level of viscosity is always necessary to
avoid torque saturation (Masset 2001; Ogilvie & Lubow 2003;
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Paardekooper & Papaloizou 2008, 2009). This applies to both
the vortensity- and entropy-related corotation torques. The max-
imum planet mass for which a change of migration may occur
due to this effect lies for typical disc masses in the range of
about 40 earth masses, beyond which the migration rate fol-
lows the standard (isothermal) case, as gap formation sets in
which reduces the corotation effects (Kley & Crida 2008). Most
of the above simulations have studied only the two-dimensional
case, while three-dimensional models including radiative effects
have been presented only for very low masses (Paardekooper &
Mellema 2006), or for Jupiter type planets (Klahr & Kley 2006).
A range of planet masses has not yet been studied systematically
in full 3D.

In this paper we investigate the planet-disc interaction in
radiative discs using fully three-dimensional radiation hydro-
dynamical simulations of protoplanetary accretion discs with
embedded planets for a variety of planetary masses. For that pur-
pose we modified and substantially extended an existing multi-
dimensional hydrodynamical code Nirvana (Ziegler & Yorke
1997a; Kley et al. 2001) by incorporating the FARGO-algorithm
(Masset 2000a) and radiative transport in the flux-limited diffu-
sion approximation (Levermore & Pomraning 1981; Kley 1989).
The code Nirvana can in principle handle nested grids which
allows us to zoom-in on the detailed structure in the vicinity of
the planet (D’Angelo et al. 2002, 2003), however in the present
context we limit ourselves to single grid simulations. We present
several test cases to demonstrate first the accuracy of the FARGO-
method in 3D. We then proceed to analyse the effects of radia-
tive transport on the disc structure and torque balance. For our
standard planet of 20 Mearth, we find that the effect of torque
reversal appears to be even stronger in 3D than in 2D for an oth-
erwise identical physical setup. We have a more detailed look at
the implementation of the planet potential and show that it has
definitely an influence on the strength of the effect. Finally, we
perform simulations for a sequence of different planet masses
to evaluate the mass range over which the migration may be re-
versed. The consequence for the migration process and the over-
all evolution of planets in discs is discussed.

2. Physical modelling

The protoplanetary disc is treated as a three-dimensional (3D),
non-self-gravitating gas whose motion is described by the
Navier-Stokes equations. The turbulence in discs is thought to
be driven by magneto-hydrodynamical instabilities (Balbus &
Hawley 1998). Since we are interested in this study primarily on
the average effect the disc has on the planet, we prefer in this
work to simplify and treat the disc as a viscous medium. The
dissipative effects can then be described via the standard viscous
stress-tensor approach (e.g. Mihalas & Weibel Mihalas 1984).
We assume that the heating of the disc occurs solely through
internal viscous dissipation and ignore in the present study the
influence of additional energy sources such as irradiation from
the central star or other external sources. The internally produced
energy is then radiatively diffused through the disc and eventu-
ally emitted from its surfaces. To describe this process we utilise
the flux-limited diffusion approximation (FLD, Levermore &
Pomraning 1981) which allows to treat approximately the tran-
sition from optically thick to thin regions near the disc’s surface.

2.1. Basic equations

Discs with embedded planets have mostly been modelled
through 2D simulations in which the disc is assumed to be

infinitesimal thin, and vertical integrated quantities are used to
describe the time evolution of the disc with the embedded planet.
This procedure saves considerable computational effort but is
naturally not as accurate as truly 3D simulations, in particular
the radiation transport is difficult to model in a 2D context.

In this work we present an efficient method for 3D disc sim-
ulations based on the FARGO algorithm (Masset 2000a). For ac-
cretion discs where material is orbiting a central object the best
suited coordinates are spherical polar coordinates (r, θ, ϕ) where
r denotes the radial distance from the origin, θ the polar angle
measured from the z-axis, and ϕ denotes the azimuthal coordi-
nate starting from the x-axis.

In this coordinate system, the mid-plane of the disc coincides
with the equator (θ = π/2), and the origin of the coordinate sys-
tem is centred on the star. Sometimes we will need the radial
distance from the polar axis which we denote by a lower case s,
which is the radial coordinate in cylindrical coordinates.

For a better resolution of the flow in the vicinity of the planet,
we work in a rotating coordinate system which rotates with the
orbital angular velocityΩ, which is identical to the orbital angu-
lar velocity of the planet

ΩP =

[
G (M∗ + mp)

a3

]1/2

(1)

where M∗ is the mass of the star, mp the mass of the planet, and
a the semi-major axis of the planet. Only for testing purposes for
our implementation of the FARGO-method we let the planet move
under the action of the disc.

The Navier-Stokes equations in a rotating coordinate system
in spherical coordinates read explicitly:
a) Continuity equation

∂ ρ

∂t
+ ∇ · (ρu) = 0. (2)

Here ρ denotes the density of the gas and u = (ur, uθ, uϕ) its
velocity.
b) Radial momentum

∂ ρur

∂t
+ ∇ · (ρ ur u) = ρ

u2
θ

r
+ ρr sin2 θ (ω + Ω)2

+ρar − ∂p

∂r
− ρ ∂Φ
∂r
+ fr. (3)

Here ω is the azimuthal angular velocity as measured in the
rotating frame, p is the gas pressure, and Φ denotes the grav-
itational potential due to the star and the planet. The vector
a = (ar, aθ, aϕ) represents inertial forces generated by the ac-
celerated origin of the coordinate system. Specifically, a equals
the negative acceleration acting on the star due to the planet(s).
c) Meridional momentum

∂ ρruθ

∂t
+ ∇ · (ρruθu) = ρr2 sin θ cos θ (ω + Ω)2

+ρr aθ − ∂p

∂θ
− ρ ∂Φ
∂θ
+ r fθ. (4)

d) Angular momentum

∂ ρht

∂t
+ ∇ · (ρ ht u) = ρr sin θ aϕ − ∂p

∂ϕ
− ρ ∂Φ
∂ϕ
+ r sin θ fϕ, (5)

where we defined the total specific angular momentum (in the
inertial frame)

ht = r2 sin2 θ (ω + Ω) ; (6)
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i.e. the azimuthal velocity in the rotating frame is given by uϕ =
ω r sin θ.

The Coriolis force in Eq. (5) for uϕ (or ht) has been incorpo-
rated into the left hand side. Thus, it is written in such a way as to
conserve total angular momentum best. This conservative treat-
ment is necessary to obtain an accurate solution of the embedded
planet problem (Kley 1998).

The function f = ( fr, fθ, fϕ) in the momentum equations
denotes the viscous forces which are stated explicitly for the
three-dimensional case in spherical polar coordinates in Tassoul
(1978). For the description of the viscosity we use a constant
kinematic viscosity coefficient ν.
e) Energy equation (internal energy)

∂ρcvT

∂t
+ ∇ · (ρ cvTu) = −p∇ · u + Q+ − ∇ · F. (7)

Here T denotes the gas temperature in the disc and cv is the spe-
cific heat at constant volume. On the right hand side, the first
term describes compressional heating, Q+ the viscous dissipa-
tion function, and F denotes the radiative flux. In writing Eq. (7)
we have assumed that the radiation energy density E = aRT 4 is
always lower than the thermal energy density e = ρcvT . Here,
aR denotes the radiation constant. Furthermore, we utilise the
one-temperature approach and write for the radiative flux, using
flux-limited diffusion (FLD)

F = −λc 4aRT 3

ρ(κ + σ)
∇T , (8)

where c is the speed of light, κ the Rosseland mean opacity,σ the
scattering coefficient, and λ the flux-limiter. Using FLD allows
us to perform stable accretion disc models that cover several ver-
tical scale heights. We use here the FLD approach described in
Levermore & Pomraning (1981) with the flux-limiter of Kley
(1989). Its suitability for protostellar discs has been shown in
Kley & Lin (1996, 1999), and for embedded planets in Klahr &
Kley (2006). In this work we use for the Rosseland mean opacity
κ(ρ, T ) the analytical formulae by Lin & Papaloizou (1985) and
set the scattering coefficient σ to zero. To close the basic sys-
tem of equations we use an ideal gas equation of state where the
gas pressure is given by p = RgasρT/µ, with the mean molecular
weight µ and gas constant Rgas. For a standard solar mixture we
assume here µ = 2.35. The speed of sound is calculated from

cs =
√
γp/ρ with the adiabatic index γ = 1.43.

2.2. Planetary potential

The total potential Φ acting on the disc consists of two contribu-
tions, one from the star Φ∗, the other from the planet Φp

Φ = Φ∗ + Φp = − GM∗
r
− Gmp√

(r − rp)2

,

where rp denotes the radius vector of the planet location. The
embedded planet is modelled as a point mass that orbits the cen-
tral star on a fixed circular orbit. In numerical simulations the
planetary potential has to be smoothed over a few gridcells to
avoid divergences.

Typically in 2D simulations the planetary potential is mod-
elled by an ǫ-potential

Φǫp = −
Gmp√
d2 + ǫ2

, (9)
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Fig. 1. The gravitational potential of a 20 Mearth planet with different
smoothings applied, see Eqs. (9) and (10). The distance d from the
planet is given in units of ap (here aJup), and the smoothing length rsm in
units of the Hill radius of the planet which refers here to RH = 0.0271ap .
Note that the data points are drawn directly from the used 3D com-
putational grid and indicate our standard numerical resolution (see
Sect. 2.4).

where we denote the distance of the disc element to the planet
with d = |r − rp| and ǫ is the smoothing length. In a 2D con-
figuration a potential of this form is indeed very convenient, as
the smoothing takes effects of the otherwise neglected vertical
extent of the disc into account. To account for the finite disc
thickness H which depends on the temperature in the disc, an
often used value for the smoothing length in 2D-simulations is
ǫ = rsm = 0.6H. The obtained 2D torques are then found to be
in reasonable agreement with three-dimensional analytical esti-
mates of the torques, that do not include a softening length for
the planet potential.

However in a 3D configuration the same approach is not
necessary and would lead to an unphysical “spreading” of the
potential over a large region. Hence, we apply a different type
of smoothing, follow Klahr & Kley (2006) and use a cubic-
potential of the form

Φcub
p =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−mpG

d

[(
d

rsm

)4 − 2
(

d
rsm

)3
+ 2 d

rsm

]
for d ≤ rsm

−mpG

d
for d > rsm.

(10)

This potential is constructed in such a way as to yield for dis-
tances d greater than rsm the correct 1/r potential of the planet,
and inside that radius (d < rsm) the potential is smoothed with
a cubic polynomial such that at the transition radius rsm the po-
tential and its first and second derivative agree with the analytic
outside 1/r-potential. To illustrate the various types of smooth-
ing, we display in Fig. 1 the behaviour of the different forms
of the planetary potential. Clearly the ǫ-potential leads for the
same values of rsm to a much wider and shallower potential
than our cubic-approach. For the often used value ǫ = 0.6H the
ǫ-potential is felt way outside the Hill radius

RH = ap

(
mp

3 M∗

)1/3

,

and leads to a significant underestimate of the potential depth
already at rsm. The cubic-potential (Eq. (10)) will always be
accurate down to d = rsm and is inside much deeper than
the ǫ-potential, and hence more accurate. In the simulations
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presented below we study in detail the influence that the po-
tential description has on the value of the torques acting on the
planet.

We calculate the gravitational torques acting on the planet by
integrating over the whole disc, where we apply a tapering func-
tion to exclude the inner parts of the Hill sphere of the planet.
Specifically, we use the smooth (Fermi-type) function

fb(d) =

[
exp

(
−d/RH − b

b/10

)
+ 1

]−1

(11)

which increases from 0 at the planet location (d = 0) to 1 outside
d ≥ RH with a midpoint fb = 1/2 at d = bRH, i.e. the quan-
tity b denotes the torque-cutoff radius in units of the Hill radius.
This torque cutoff is necessary to avoid first a large, possibly
very noisy contribution from the inner parts of the Roche lobe,
and second to disregard material that is gravitationally bound
to the planet. The question of torque cutoff and exclusion of
Roche lobe material becomes very important when i) the disc
self-gravity is neglected, and ii) there exists material bound to
the planet (e.g. a circumplanetary disc). This issue should defi-
nitely be addressed in the future. Here, we assume a transition
radius of b = 0.8 Hill radii (see Crida et al. 2008, Fig. 2). For ref-
erence we quote the width of the horseshoe region which is given
for an isothermal disc approximately by (Masset et al. 2006)

xs = 1.16 ap

√
q

(H/r)
(12)

with the mass ratio q = mp/M∗ and the local relative disc thick-
ness H/r. For an adiabatic disc H has to be replaced by γH
(Baruteau & Masset 2008).

2.3. Setup

The three-dimensional (r, θ, ϕ) computational domain consists of
a complete annulus of the protoplanetary disc centred on the star,
extending from rmin = 0.4 to rmax = 2.5 in units of r0 = aJup =
5.2 AU. In the vertical direction the annulus extends from the
disc’s midplane (at θ = 90◦) to about 7◦ (or θ = 83◦) above
the midplane. In case of an inclined planet the domain has to
be extended and cover the upper and lower half of the disc. The
mass of the central star is one solar mass M∗ = M⊙, and the total
disc mass inside [rmin, rmax] is Mdisc = 0.01 M⊙. For the present
study, we use a constant kinematic viscosity coefficient with a
value of ν = 1015 cm2/s, a value that relates to an equivalent
α = 0.004 at r0 for a disc aspect ratio of H/r = 0.05, where
ν = αH2ΩK . In standard dimensionless units we have ν = 10−5.

The models are initialised with a locally isothermal config-
uration where the temperature is constant on cylinders and has
the profile T (s) ∝ s−1, where s is related to r through s = r sin θ.
This yields a constant ratio of the disc’s vertical height H to
the radius s. The initial vertical density stratification is approxi-
mately given by a Gaussian:

ρ(r, θ) = ρ0(r) exp

[
− (π/2 − θ)2 r2

2H2

]
· (13)

Here, the density in the midplane is ρ0(r) ∝ r−1.5 which leads
to a Σ(r) ∝ r−1/2 profile of the vertically integrated surface
density. The vertical and radial velocities, uθ and ur, are ini-
tialised to zero. The initial azimuthal velocity uϕ is given by
the equilibrium of gravity, centrifugal acceleration and the ra-
dial pressure gradient. In case of purely isothermal calculations
this setup is equal to the equilibrium configuration (in the case

of closed radial boundaries). For fully radiative simulations the
model is first run in a 2D axisymmetric mode to obtain a new
self-consistent equilibrium where viscous heating balances ra-
diative transport/cooling from the surfaces (see Sect. 4.1 below).
This initialisation through an axisymmetric 2D phase (in the r−θ
plane) reduces the required computational effort substantially, as
the evolution from the initial isothermal state towards the radia-
tive equilibrium takes about 100 orbits, if the disc is started with
an isothermal equilibrium having constant H/r. After reaching
the equilibrium between viscous heating and radiative trans-
port/cooling, we extend this model to a full 3D simulation, by
expanding the grid into the φ-direction, and the planet is embed-
ded.

2.4. Numerics

We adopt a coordinate system, which rotates at the orbital
frequency of the planet. For our standard cases, we use an
equidistant grid in r, θ, ϕ with a resolution of (Nr,Nθ,Nϕ) =
(266, 32, 768). To minimise disturbances (wave reflections) from
the radial boundaries, we impose, at rmin and rmax, damping
boundary conditions where all three velocity components are re-
laxed towards their initial state on a timescale of approximately
the local orbital period. The radial velocities at the inner and
outer radius vanish. The angular velocity is relaxed towards the
Keplerian values. For the density and temperature, we apply re-
flective radial boundary conditions. In the azimuthal direction,
periodic boundary conditions are imposed for all variables. In
the vertical direction we apply outflow boundary conditions. The
boundary conditions do not allow for mass accretion through the
disc, such that the total disc mass remains nearly constant dur-
ing the time evolution, despite a possible small change due to
little outflow through the vertical boundaries and the used den-
sity floor (see below).

The numerical details of the used finite volume code
(NIRVANA) relevant for these planet disc simulations were de-
scribed in Kley et al. (2001) and D’Angelo et al. (2003). In the
latter paper the usage of the nested grid-technique is described in
more detail as well. The original version of the NIRVANA code,
on which our programme is based upon, has been developed
by Ziegler & Yorke (1997b). The empowerment with FARGO is
based on the original work by Masset (2000a). Our implemen-
tation appears to be the first inclusion of the FARGO-algorithm
in a 3D spherical coordinate system. More details about the im-
plementation are given in the appendix. The basic algorithm of
the newly implemented radiation part in the energy Eq. (7) is
presented in the appendix as well. To avoid possible time step
limitations this part is always solved implicitly.

3. Test calculations

3.1. The FARGO-algorithm

To test the 3D implementation of the FARGO-algorithm in our
NIRVANA-code we have run several models with planets on cir-
cular, elliptic and inclined orbits with and without the FARGO-
method applied. Here, we follow closely the models presented
in Cresswell et al. (2007) and consider moving planets in 3D
discs. As the tests are dynamically already complicated we use
here only the isothermal setup. The different setups gave very
similar results in all cases, and we present results for one com-
bined case of a 20 Mearth planet embedded in a locally isother-
mal disc with an initial non-zero eccentricity (e = 0.2) and
non-zero inclination (i = 5◦). All physical parameters of this
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Fig. 2. Evolution of semi-major axis, eccentricity and inclination as a
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run are identical to those described in Cresswell et al. (2007),
and we compare our results to the last models presented in
that paper (their Fig. 16). The outcome of this comparison is
shown in Fig. 2, where we display the results of a standard non-
Fargo run with the resolution (Nr,Nθ,Nφ) = (264, 80, 800) with
the data taken from Cresswell et al. (2007) (where a different
code has been used) to two runs having a lower resolution of
(Nr ,Nθ,Nϕ) = (128, 34, 384), one with FARGO and the other
one without. We can see that all 3 models (obtained with two
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different codes, methods and resolutions) yield very similar re-
sults. The scatter of the data points is slightly reduced in the
FARGO-run.

3.2. The radiation algorithm

To obtain an independent test of the newly implemented radia-
tion transport module in our NIRVANA-code we performed a run
with the standard setup as described above but with no embed-
ded planet. Hence, this setup refers to an axisymmetric disc with
internal heating and radiative cooling. For a fixed, closed compu-
tational domain it is only the total mass enclosed that determines
the final equilibrium state of the system, once the physics (vis-
cosity, opacity, and equation of state) have been prescribed. The
radial dependence of the vertically integrated surface density and
the midplane temperature are displayed in Fig. 3, and the corre-
sponding vertical profiles at a radius of r = 1.44 in Fig. 4. First
of all, these new results obtained with NIRVANA agree very well
with those obtained with the completely independent 2D-code
RH2D used in the r − θ mode, such as presented for example in
Kley et al. (1993), which are not shown in the figures, however.
As the final configuration of the system is given by the equilib-
rium of internal (viscous) dissipation and radiative transport, this
test demonstrates the consistency of our implementations.

To relate our 3D results to previous radiative 2D runs which
use vertically integrated quantities, and hence can only use
an approximative energy transport and cooling (Kley & Crida
2008), we compare in Fig. 3 the results obtained with the two
methods. Both models are constructed for the same disc mass
and identical physics. The label “flat” in the figure refers to the
flat 2D case (obtained with RH2D, see Kley & Crida 2008) and
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the “stratified” label to our new 3D implementation presented
here. The left graph displays the vertically integrated surface

density distribution, here Σ(r) = fΣ
∫ θmin

θmax
ρr sin(θ)dθ, with fΣ = 1

for two-sided and 2 for one-sided discs. Our result is well repre-
sented by a Σ ∝ r−1/2 profile as expected for a closed domain and
constant viscosity. Interesting is the irregular structure at radii
smaller than r ≈ 1.0 in the full 3D stratified case, and we point
out that these refer to the onset of convection inside that radius.
To model convection is of course not possible in a flat 2D ap-
proach. The temperature distribution for the full 3D case follows
approximately a T ∝ r−1.7 profile. Here, the approximate flat-
disc model leads to midplane temperatures that are about 40%
higher for the bulk part of the domain than in the true 3D case.
Possibly a refined modelling of the vertical averaging procedure
and the radiative losses in the flat 2D case could improve the
agreement here, but in the presence of convection we may ex-
pect differences in any case.

In Fig. 4 we display the vertical stratification of the disc at
a specific radius in the middle of the computational domain at
r = 1.44. Two simple approximations are over-plotted as dashed
lines. Note, that in these plots the stratification is plotted along
the r = const. lines which deviates for thin discs only slightly
from z = r cos θ. Taking z0 = 0.08, the Gaussian curve for

the density refers to ρ0 exp
[
−(z/z0)2

]
and the temperature fit to

T (z) = T0[1 − 0.4 (z/z0)2]. These simple formulae are intended
to guide the eye rather than meant to model exactly the struc-
ture at this radius which depends on the used opacities. Given
the simplicity of these, it is interesting that they approximate the
true solution reasonably well within one scale height.

3.3. Density floor

By expanding the computed area in the θ-direction beyond the
90◦ to 83◦ region of our standard model, the code would have
to cover several orders of magnitude in the density. Thus, many
more grid cells would be required to resolve the physical quanti-
ties. In order to avoid this and save computation time, we apply
a minimum density function (floor) for the low-density regions
high above the equatorial plane of the disc. It reads

ρ =

{
ρ for ρ > ρmin

ρmin for ρ ≤ ρmin.
(14)

Of course, applying a density floor like this will create mass in-
side the computed domain. The density floor ρmin has now to
be chosen such that: firstly the computation is not handicapped
by too low values and secondly the inner (optically thick) parts
of the disc are not influenced. To test the sensitivity of the disc
structure against the density floor we performed a series of test
calculations, and show the results of simulations with different
ρmin in Fig. 5. These runs cover θ = 90◦ to 70◦, a range about
3 times as large as before. The density and temperature profiles
in these simulations do not differ for the regions near the equa-
torial plane, because the density is too high for the minimum
density to take effect. Indeed, all curves are nearly indistinguish-
able in the region for optical depths greater than τ = 1.0, with

τ(z) =

∫ ∞

z

ρκdz. (15)

Please note, that in the plot we do display the results along lines
of constant (spherical) radius. Moving further away from the
equatorial plane, one can see in the density profile the different
minimum densities, but in the temperature profile there is hardly
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temperature (bottom) at a radius of r = 1.00 for a simulation covering
the θ = 90◦ to 70◦ region. The optical depth τ = 1.0 is reached at about
z = 0.055.

any difference at all. Above a certain distance from the equatorial
plane the temperature remains constant. The little fluctuations
visible in the profile are due to oscillations in the temperature
for the low mass regions.

By applying a minimum density the code is capable of re-
solving large distances above the equatorial plane with a reason-
able number of grid cells. Also note that it is not necessary to use
a minimum density for calculations covering only the θ = 90◦ to
83◦ regions, as the density is always high enough.

4. Models with an embedded planet

For all the models with embedded planets we use our stan-
dard disc setup as described in Sect. 2.3 with the corresponding
boundary conditions in Sect. 2.4. Here, we briefly summarise
some important parameter of the setup. The three-dimensional
(r, θ, ϕ) structure of the disc extends form rmin = 0.4 to rmax = 2.5
in units of r0 = aJup = 5.2 AU. In the vertical direction the an-
nulus extends from the disc’s midplane (at θ = 90◦) to about
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7◦ (or θ = 83◦) above the midplane. For our chosen grid size
of (Nr,Nϕ,Nθ) = (266, 32, 768) this refers to linear grid reso-
lution of ∆ ≈ 0.008 at the location of the planet, which corre-
sponds to 3.3 gridcells per Hill radius, and to about 5 gridcells
per horseshoe half-width for a 20 Mearth planet in a disc with
H/r = 0.05. In this configuration the planet is located exactly at
the corner of a gridcell. In the fully radiative disc, the tempera-
ture at the disc surface is kept at the fixed ambient temperature
of 10 K. This simple “low-temperature” boundary condition en-
sures that all the internally generated energy is liberated freely at
the disc’s surface. It is only suitable for optically thin boundaries
and does not influence the inner parts of the optically thick disc
(see Fig. 5). The disc has a mass of 0.01 M⊙, and an aspect ratio
H/r = 0.05 in the beginning.

4.1. Initial setup

Before placing the planet into the 3D disc we have to bring it
first into a radiative equilibrium state such that our results are
not corrupted by initial transients. As described above this ini-
tial equilibration is performed in an axisymmetric 2D setup that
is then expanded to full 3D. Tests with our code have shown that
we reach the 3D equilibrium state (a constant torque) in a cal-
culation with embedded planets about 50% faster when starting
first with the 2D radiative equilibrium disc.

In Fig. 6 the 2D density and temperature distributions for
such an equilibrated disc are displayed. In the equilibrium state
of the fully radiative model the disc is much thinner than the
isothermal starting case, see Fig. 7. Consequently, the density is
increased in the equatorial plane, leaving the areas high above
and below the disc with less material. Apparently, for this disc
mass and the chosen values of viscosity and opacity, the balance
of viscous heating and radiative cooling reduces the aspect ratio
of the disc from initially 0.05 to about 0.037 in the radiative
case. Had we started with an initially thinner disc, the difference
would of course not be that pronounced.

After successfully completing the equilibration we now em-
bed a 20 Mearth planet into the disc. The planet is held on a fixed
orbit and we calculate the torques acting on it through integrat-
ing over the whole disc taking into account the above tapering
function with a cutoff rtorq = 0.8RH, which refers to b = 0.8
in Eq. (11). In addition to this value of the torque cutoff we
have tested how the obtained total torque changes when using
b = 0.6. For our standard 20 Mearth planet presented in the fol-
lowing we found that for the isothermal cases the results change
by about 10% and in the radiative case by about 30%, which
can be considered as a rough estimate of the numerical uncer-
tainties of the results. The deviation is greater in the radiative
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situation because in this case important (corotation) contribu-
tions to the total torque originate from a region very close to
the planet, which is influenced stronger by the applied torque
cutoff. Here, cancellation effects caused by adding the negative
Lindblad and the positive corotation torque may explain part of
the larger relative uncertainty in the radiative case. We note, that
our applied torque cutoff is not hard but refers to the smooth
function (11). Keeping in mind that there are only 3.3 gridcells
per Hill radius, lower values for b are not useful.

4.2. Isothermal discs

Due to the applied smoothing, we expect the planetary potential
to modify the density structure of the disc near the planet and
subsequently change the torques acting on the planet. First, we
investigate the influence of the planetary potentials (see Fig. 1)
on the disc and torques in the isothermal regime. The 2D surface
density distribution in the disc’s midplane at 100 planetary or-
bits corresponding to our two extreme planetary potentials (the
shallowest and the deepest) is displayed in Fig. 8, where we used
a cutoff for the maximum displayed density to make both cases
comparable. As expected, a deeper planetary potential results in
a higher density concentration inside the planetary Roche lobe
and to a slightly reduced density in the immediate surroundings.
This accumulation of mass near the planet for deeper potentials
is illustrated in more detail in Fig. 9. For our deepest rsm = 0.5
cubic potential the maximum density inside the planet’s Roche-
lobe is over an order of magnitude greater than in the shallowest
rsm = 0.8 ǫ-potential.

In Fig. 10 we show the specific torques acting onto the planet
using different potentials for the case of H/r = 0.05. The total
torque is continuously monitored and plotted versus time in the
upper panel. The radial torque density Γ(r) for the same models
is displayed in the lower panel. Here, Γ(r) is defined such that
the total torque T tot acting on the planet is given by

T tot =

∫ rmax

rmin

Γ(r) dr. (16)
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Fig. 8. Surface density distribution for isothermal simulations with
H/r = 0.05 at 100 planetary orbits. Displayed are results for the shal-
lowest and deepest potential. Top: ǫ-potential with rsm = 0.8, bottom:
cubic with rsm = 0.5.

The time evolution of the total torque displays a characteristic
behaviour. Starting from the axisymmetric case, a first interme-
diate plateau is reached at early times between t ≈ 5–10, after
which the torques settle on longer timescales towards their final
equilibria. The initial plateaus correspond to the values of the
torques shortly after the disc material has started its horseshoe-
type motion in the co-orbital region. The level of this so-called
unsaturated torque depends on the local disc properties and on
the applied smoothing of the potential, as indicated clearly in the
top panel of Fig. 10. In the following evolution, the material in
this horseshoe region will be mixed thoroughly, the torques de-
cline and settle eventually to their final equilibria, here reached
after about 40 orbits. This process of phase mixing inside the
horseshoe region is called torque saturation, and it occurs on
timescales of the order of the libration time, which is given by

τlib =
4 ap

3 xs

Pp (17)

where Pp is the orbital period of the planet, and xs the half-
width of the horseshoe region (see Eq. (12)). In our case (for
q = 6 × 10−5 and H/r = 0.05) the libration time is about 30P.
The different initial values of the unsaturated torques depend
on the form of the potential (e.g. smoothing length), but note
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tary potentials used.

that the timescale to reach equilibrium is similar in all cases.
This particular time behaviour of the torques and the process
of saturation has been described recently for isothermal discs
by Paardekooper & Papaloizou (2009), see also Masset et al.
(2006).

The two runs with the ǫ-potential result in the most neg-
ative torque values, i.e. the fastest inward migration (lower
two curves in the upper panel). While the total torques of the
two ǫ-potentials are nearly identical, in the corresponding ra-
dial torque distribution the cases are clearly separated, a fact
which is due to cancellation effects when adding the inner (posi-
tive) and outer (negative) contribution. The slightly deeper cubic
rsm = 0.8 potential leads to a marginally decreased (in magni-
tude) torque compared to the simulations with ǫ-potential. For
the cubic rsm = 0.5 potential we obtain an even less negative
equilibrium torque compared to all the other isothermal simula-
tions. As most of the corotation torque is generated in the vicin-
ity of the planet, a change in the density structure there (by deep-
ening the potential) may have a significant impact on the torque
values. We can compare our values of the torque with the well
known formulae for the specific torque in a 3D strictly isother-
mal disc as presented by Tanaka et al. (2002)

T tot
0 = − fΓ q

(
H

r

)−2
⎛⎜⎜⎜⎜⎜⎝
Σa2

p

M∗

⎞⎟⎟⎟⎟⎟⎠ a2
pΩ

2
p (18)

with

fΓ = (1.364 + 0.541αΣ) (19)

where αΣ denotes the radial gradient of the surface density
through Σ ∝ r−αΣ . For our standard parameter this formula gives
about T tot

0
= −2.5 10−5a2

pΩ
2
p, which is, in absolute value, about a

factor 1.4–2.2 times greater than our results. We note however,
that Eq. (18) has been derived for constant temperature, inviscid
disc. The influence of viscosity on the torque has been studied by
Masset (2002), who found that a reduction of the viscosity from
our used value of 10−5 to zero will fully saturate the (vortensity-
related) corotation torque, leading easily to a reduction of the to-
tal torque by a factor of two. Additional simulations with much
lower viscosity (not shown here) indicate indeed that then the
equilibrium torque is in good agreement with Eq. (18).

It seems at first surprising and unpleasing that the torques
depend so much on the treatment of the planetary potential.
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However, an ǫ-potential has an influence far beyond the Roche-
radius of the planet and certainly will change the torques act-
ing on the planet. Here the corotation torques are affected most
prominently and become more and more positive as the smooth-
ing length is lowered (see also Paardekooper & Papaloizou
2009). Nevertheless, in two-dimensional simulations it has be-
come customary to rely on ǫ-potentials for the purpose to
take into account the finite thickness of the disc. In a three-
dimensional context, the more localised cubic-potential with its
finite region of influence may be more realistic. But for the
isothermal case the increased potential depth leads to a very
large accumulation of mass, as seen in Fig. 9. In such a case
it will be very difficult to achieve convergence. In the more re-
alistic radiative case the situation is eased somewhat through a
temperature increase near the planet, as outlined below.

To check numerical convergence we performed additional
runs using a larger number of gridcells. In Fig. 11 we display
the total torque versus time and the radial torque density Γ(r) for
different grid resolutions, again for the isothermal disc case. In
contrast to the previous plot we use here a slightly cooler disc
with H/r = 0.037, as this matches more closely the results from
the fully radiative calculations presented below. In this case the
initial unsaturated torques reach even positive values due to the
smaller thickness of the disc. The grid resolution seems to be
sufficient for resolving the structures near the Roche-lobe. For
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Fig. 11. Specific torque acting on the planet using different grid res-
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the displayed Γ(r) distribution in the lower panel both cases are
very similar and the higher resolution case is a bit smoother.

4.3. Fully radiative discs

The simulations are started from the radiative disc in equilibrium
as described above, and are continued with an embedded planet
of 20 Mearth. The obtained equilibrium configuration for the sur-
face density and midplane-temperature is displayed in Fig. 12
after an evolutionary time of 100 orbits. As in the isothermal
case the density within the Roche lobe of the planet is strongly
enhanced for the deeper potentials, displayed are the two ex-
treme cases of our different potentials. Comparing with the cor-
responding density maps of the isothermal case in Fig. 8, one can
also observe slightly smaller opening angles of the spiral arms in
the radiative case. For identical H/r the sound speed would be√
γ times larger in the radiative case leading to a bigger open-

ing angle. Here, the effect is overcompensated by the reduced
temperature (lower thickness) in the radiative case. A different
opening angle of the spiral arms will affect the corresponding
Lindblad torques acting on the planet.

At the same time, a slight density enhancement is visible
“ahead” of the planet (ϕ > 180◦) at a slightly smaller radius
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Fig. 12. Surface density (upper two panels) and temperature in the equa-
torial plane (lower two) for fully radiative simulations at 100 planetary
orbits. Displayed are results for the shallowest and deepest potential.
Upper panels refer to the ǫ-potential with rsm = 0.8, and lower to the
cubic-potential with rsm = 0.5, respectively.

(r <∼ 1). This feature that is not visible in the isothermal case
is caused by including the thermodynamics of the disc. Let us
consider an adiabatic situation just after the planet has been in-
serted into the disc, and follow material on its horseshoe orbit
(in the co-rotating frame) as it makes a turn from the outer disc
(r > 1, ϕ > 180◦) to the inner (r < 1). The radial temperature
and density gradient imply for our ideal gas law a gradient in the
entropy function S in the disc through

S ∝ p

ργ
·

As shown above, in our simulations we find for the surface den-
sity Σ ∝ r−1/2 as due to the assumption of a constant viscosity,
and the midplane temperature follows T ∝ r−1.7. Due to this gra-
dient in S a parcel (coming from outside) has in our case a lower
entropy than the inner disc which it is entering. Now the entropy
remains constant on its path, due to the adiabatic assumption.
Additionally, dynamical equilibrium requires that the pressure
of the parcel does not change significantly upon its turn, and en-
tropy conservation then implies that the density has to increase.
At the same time the density “behind” the planet (ϕ < 180◦ and
r >∼ 1) will be lowered by similar reasoning. Both components
produce a positive contribution to this entropy-related corota-
tion torque that acts on the planet, and which adds to the neg-
ative Lindblad torque and the positive vortensity-related coro-
tation torque. In truly adiabatic discs this effect will disappear
after a few libration times (Baruteau & Masset 2008; Kley &
Crida 2008) because the material, being within the horseshoe re-
gion, will start interacting with itself, and the density and entropy
will be smeared out due to the mixing, leading to the described
torque saturation process. Adding radiative diffusion will pre-
vent this and keep the entropy-related torques unsaturated, and a
non-zero viscosity is also required.

In this fully radiative case the temperature within the Roche
radius of the planet has also increased substantially due to com-
pressional heating of the gas (lower two panels in Fig. 12). In
addition, the temperature in the spiral arms is increased as well
due to shock heating.

The density and temperature runs in the disc midplane along
a radial line at ϕ = 180◦ cutting through the planet are displayed
in Fig. 13. As in the isothermal case, deeper potentials lead to
higher densities within the Roche lobe. The increase is some-
what lower because now the temperature is higher as well due
to the compression of the material. The higher pressure lowers
the density in comparison to the isothermal case. Interesting is
that the maximum temperature is substantially higher than in the
ambient disc even for this very low mass planet of 20 Mearth.
Considering accretion onto the planet the increase in temperature
might be even stronger due to the expected accretion luminosity.

4.4. Torque analysis for the radiative case

In the upper panel of Fig. 14 we display the time evolution of the
total specific torque acting on a 20 Mearth planet for the full radia-
tive case. In contrast to the isothermal situation, all four poten-
tials result now in a positive total torque acting on the planet. As
in the previous isothermal runs, the torques reach their maximum
shortly after the onset of the simulations (between t ≈ 10−20)
and then settle toward their final value. In the corresponding
isothermal case with H/r = 0.037 the difference between the
initial positive unsaturated torque and the final saturated value
has been very pronounced (see Fig. 11). In contrast, in this fully
radiative case the inclusion of energy diffusion and the subse-
quent radiative cooling of the disc will prevent saturation of the
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Fig. 13. Radial density (top) and temperature (bottom) distribution in
the equator along a ray through the location of the planet for all 4 plan-
etary potentials used, for the fully radiative case.

entropy-related corotation torque, resulting in a positive equi-
librium torque. Very similar results have been found previously
in the fully radiative regime in 2D simulations (Kley & Crida
2008). It is important to notice, that the two cubic-potentials
(which are more realistic in the 3D case) yield very similar re-
sults. The more unrealistic ǫ-potentials show rather strong devi-
ations because, due to their extended smoothing of the potential,
they tend to weaken in particular the corotation torques which
originate in the close vicinity of the planet. In the lower panel of
Fig. 14 the radial torque distribution is displayed for the same
4 potentials. In comparison to the corresponding plot for the
isothermal H/r = 0.037 case (see Fig. 11) we notice that the reg-
ular Lindblad part is slightly reduced in the radiative case due to
the higher sound speed.

Additionally, clearly seen is the additional positive contribu-
tion just inside r = 1 which appears to be responsible for the
torque reversal. This feature is caused by an asymmetric distri-
bution of the density in the very vicinity of the planet, see also
Fig. 17 below. It pulls the planet gravitationally ahead, increas-
ing its angular momentum, leading to a positive torque. Above
we argued that this effect may be due to the entropy-related coro-
tation torque of material moving on horseshoe orbits (see also
Baruteau & Masset 2008). Due to the symmetry of the problem
one might expect a similar feature caused by the material mov-
ing from inside out. However, there is no sign of this present
in the lower panel of Fig. 14. To analyse this asymmetry, we
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Fig. 14. Specific torques acting on a 20 Mearth planet for different numer-
ical potentials in the fully radiative case. Top: evolution of total torque
with time. Bottom: radial variation of the specific torque for t = 80 or-
bits.

performed additional simulations varying the grid resolution and
disc thermodynamics. That the feature is not caused by lack of
numerical resolution is demonstrated in Fig. 15, where results
obtained with two different grids are displayed. Both models
show the same characteristic torque enhancement just inside the
planet. In Fig. 16 we compare the radial torque density of the
isothermal and a new adiabatic model for H/r = 0.037 with the
fully radiative model, all for the cubic potential with rsm = 0.5
at intermediate resolution. For the adiabatic case we show Γ(r)
at two different times. The first at t = 10 when the torques are
unsaturated, and the second at t = 80 after saturation has oc-
curred. Please note, that the isothermal and adiabatic models
start from the same initial conditions (locally isothermal), while
the radiative model starts from the radiative equilibrium without
the planet. While the adiabatic model at t = 10 shows signs of
the enhanced torque just inside the planet, there is no sign of
a similar feature at a radius just outside of the planet. Hence,
this asymmetry of the entropy-related corotation torque is visi-
ble in both the adiabatic and radiative case. Outside of the planet
the adiabatic model and the radiative agree very well as H/r is
similar, while the isothermal model deviates due to the different
sound speed. Whether the location of the maximum in the torque
density is identical in the radiative and adiabatic case is hard to
say from these simulations because in 3D adiabatic runs the peak
appears to be substantially broader with respect to corresponding
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Fig. 15. Specific torque acting on the planet using different grid res-
olutions for the fully radiative case. In all cases the cubic potential
with rsm = 0.5 has been used. Top: evolution of total torque with time.
Bottom: radial variation of the specific torque density at t = 50 orbits.

2D cases. It has been argued by Baruteau & Masset (2008) that
it should occur exactly at the corotation radius, which is shifted
(very slightly) from the planet’s location due to the pressure gra-
dient in the disc. In our radiative simulations it seems that the
maximum is slightly shifted inwards, an effect which may be
caused by adding radiative diffusion to the models and consider
discs in equilibrium. An issue that certainly needs further inves-
tigation.

In Fig. 17 we present additional results of supporting 2D
simulations for the fully radiative case, as shown for lower reso-
lution in Kley & Crida (2008). All physical parameter are iden-
tical to our 3D fully radiative case. The top panel shows the sur-
face density distribution next to the planet. Seen is the density
enhancement just inside and ahead of the planet, and some in-
dication for a lowering outside and behind. Please note, that the
planet moves counter-clockwise into the positive φ-direction. i.e.
upward in Fig. 17. In the lower panel we display for each grid-
cell the net torque (Γ̃±) acting on the planet. It is constructed by
adding each cell’s individual contribution to the torque and that
of the symmetric cell with respect to the planet location, i.e.

Γ̃±i, j = ±
[
Γ(ri, φplanet + φ j) + Γ(ri, φplanet − φ j)

]
. (20)

Hence, in absolute values the bottom half of the plot (with
φ < φplanet) resembles exactly the top half (φ > φplanet). The
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Fig. 16. Radial variation of the specific torque acting on the planet using
different thermodynamical disc models. In all cases the cubic potential
with rsm = 0.5 and standard resolution have been used. The adiabatic
model at t = 10 corresponds to the time where the corresponding total
torque has its maximum. The models at t = 80 have all reached their
equilibria.

colours are chosen such that blue refers to negative Γ̃±
i, j and yel-

low/red to positive values. The signs of Γ̃±
i, j are chosen such that

the top left and lower right quadrant have the correct sign (+)
and the other two are just reversed. Due to this redundancy in
the plot, only the upper left and lower right quadrant should be
taken into account to estimate global effects. The mirroring pro-
cess at the φ = π-line (with the mirroring of the colour scale)
allows an easy evaluation and comparison of the individual con-
tributions. One can notice that the net torque will be positive due
to excess material just ahead and inside of the planet. From the
plot it is also clear that there exists indeed an asymmetry of the
torques induced by horseshoe material coming from outside-in
versus material turning inside-out. In the figure, there is only a
weak indication of a marginal positive contribution just below
the planet. In additional simulations for purely adiabatic discs
with different (positive and negative) entropy gradients which
have either constant density or temperature it has become ap-
parent that the asymmetry is caused by the entropy gradient. In
the case of a negative entropy gradient (as in our fully radiative
model) the positive excess torque comes from inside/ahead the
planet, while for a positive gradient the negative excess torque
comes from outside/behind the planet. Whether the maximum
of Γ(r) lies at corotation (Baruteau & Masset 2008) or is slightly
shifted when radiative effects are considered may deserve further
studies.

In Fig. 18 we show the perturbed entropy and density in the
2D fully radiative model in equilibrium, for a larger domain.
Caused by the flow in the horseshoe region, there is an entropy
minimum for larger φ inside of the planet, and a maximum for
lower φ outside, for r + rp. Both lie inside the horseshoe region
and close to the separatrix. The overall entropy distribution is
very similar to that found by Baruteau & Masset (2008) for adi-
abatic discs shortly after the insertion of the planet. Due to the in-
cluded radiative diffusion this effect does not saturate in our case,
and we clearly support their findings even for the long term evo-
lution. The disturbed entropy shows in fact a slight asymmetry
(in amplitude) with respect to the planet, that reflects back on to
to the density distribution (bottom panel).
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Fig. 17. Results of a 2D fully radiative model using a resolution of
512 × 1536 gridcells. The gray dot indicates the location of the planet,
and the curve its Roche lobe. The solid black lines show the stream-
lines. Top: perturbed surface density with respect to the case without an
embedded planet. The values are scaled as Σ1/2. Bottom: the net torque
acting on the planet caused by the mass in each individual gridcell us-
ing the prescribed smoothed torque cutoff function with b = 0.8, see
explanation in text. The values are scaled as (Γ̃±)1/2.

4.5. Planets with different planetary masses

Following the results obtained in the previous sections we adopt
now the cubic rsm = 0.5 planetary potential assuming that it
is closest to reality, and study the effects of planets with vari-
ous masses in fully radiative discs. Starting from the 2D radia-
tive equilibrium state (see Sect. 4.1) we now place planets with
masses ranging from 5 up to 100 Mearth in the initially axisym-
metric 3D disc. The numerical parameters for these simulations
are identical to those discussed above.

In recent 2D simulations of radiative discs with embedded
low mass planets the torque acting on the planet depends on the

Fig. 18. Perturbed entropy (top) and perturbed density (bottom) for
the 2D fully radiative equilibrium model using a resolution of 512 ×
1536 gridcells. The values are scaled as Σ1/2 and S 1/2, respectively.

planetary mass in such a way that for planets with a size lower
than about 40 earth masses the total torque is positive implying
outward migration (Kley & Crida 2008). For large masses the
forming gap reduces the contribution of the corotation torques,
and the results of the radiative simulations approach those of the
fixed temperature (locally isothermal) runs. Our 3D simulations
show indeed very similar results for planets in this mass regime,
see Fig. 19. Planets in the isothermal regime migrate inward
with a torque proportional to the planet mass squared, as pre-
dicted for low mass planets undergoing Type-I-Migration. Note,
that we use in these models the temperature distribution for a
fixed H/r = 0.037. The values for the three lowest mass planets
(with 5, 10, 15 Mearth) are not as accurate due to the insufficient
grid resolution, remember the “kink” in Fig. 11 which refers to
20 Mearth at standard resolution. For the fully radiative disc the
planets up to about 33 Mearth experience a positive torque, while



984 W. Kley et al.: Planet migration in three-dimensional radiative discs

-0.00012

-0.0001

-8e-05

-6e-05

-4e-05

-2e-05

 0

 2e-05

 4e-05

 6e-05

 8e-05

 0  25  50  75  100

7.5e-05 1.5e-04 2.25e-04 3.0e-04

T
o

rq
u

e

Planet Mass [Earth Mass]

Planet/Star Mass ratio

isothermal
full radiative

Kley and Crida, 2008

Fig. 19. Specific torques acting on planets of different masses in the
fully radiative (blue crosses) and isothermal (red plus signs) regime.
Note, that the isothermal models are run for a fixed H/r = 0.037. All
torque values are displayed at a time when the equilibrium has been
reached.

-0.003

-0.002

-0.001

 0

 0.001

 0.002

 0.003

 0.004

 0.8  0.85  0.9  0.95  1  1.05  1.1  1.15  1.2

 0.984

T
o
rq

u
e

r

5 Earth Masses
10 Earth Masses
15 Earth Masses
20 Earth Masses
25 Earth Masses

Fig. 20. Radial torque distribution in equilibrium for various planet
masses. The vertical dotted line indicates the location of the maximum.

larger mass planets migrate inward, due to the negative torque
acting on them.

When comparing the 3D torques to the corresponding 2D
values as obtained by Kley & Crida (2008) for the same disc
mass and opacity law, we note two differences: i) the absolute
magnitudes of the torques in the radiative case are enhanced in
the 3D simulations with respect to the corresponding 2D results,
resulting in even faster outward migration of the planets. This
result can be explained by the reduced temperature (i.e. verti-
cal thickness) of the 3D disc with respect to the 2D counterpart
(cf. Fig. 3), as a reduction in H typically increases the torques
(Tanaka et al. 2002); ii) the turnover mass from positive to neg-
ative torques is reduced in the 3D simulations. This effect is
caused again by the reduced disc thickness, as now the onset
of gap formation (RH ≈ H) occurs for lower planetary masses.
The different form of the potential and the softening length may
also play a role in explaining some of the differences observed
between the 3D and 2D results.

Finally, in Fig. 20 we show that the position of the maximum
of the radial torque density is independent of the planet mass,
and is therefore a result of the underlying disc physics.

5. Summary

We have investigated the migration of planets in discs using
fully three-dimensional numerical simulations including radia-
tive transport using the code NIRVANA. For this purpose we have
presented and described our implementation of implicit radia-
tive transport in the flux-limited diffusion approximation, and
secondly our new FARGO-implementation in full 3D.

Before embedding the planets we studied the evolution of
axisymmetric, radiative accretion discs in 2D. Starting with an
isothermal disc model having a fixed H/r = 0.05, we find that for
our physical disc parameter the inclusion of radiative transport
yields discs that are thinner (H/r = 0.037 at r = 1). We note
that in the isothermal case the disc thickness is a chosen input
parameter, while in the fully radiative situation it depends on
the local surface density and the chosen viscosity and opacity.
Interesting is here the direct comparison to the equivalent 2D
models using the same viscosity, opacity and disc mass (Kley &
Crida 2008), as displayed in Fig. 3. Here, our new 3D disc yields
lower temperatures (by a factor of 0.6–0.7) than the 2D runs.
Since the 2D simulations have to work with vertically averaged
quantities, it will be interesting whether it might be possible to
adjust those as to yield results in better agreement to our 3D
results.

Concerning planetary migration we have confirmed the oc-
currence of outward migration for planetary cores in radiative
discs. As noticed in previous research, the effect is driven by a ra-
dial entropy gradient across the horseshoe region in the disc, that
is maintained by radiative diffusion. Our results show that plan-
ets below the turnover mass of about m ≈ 33 Mearth migrate out-
ward while larger masses drift inward. The reduced temperature
in the 3D versus 2D runs has direct influence on the magnitude of
the resulting torques acting on the planet. As the disc is thinner
in 3D the resulting torques, corotation as well as Lindblad, are
also stronger. The turnover mass from outward to inward migra-
tion is slightly reduced as well for the 3D disc since the smaller
vertical thickness allows for gap opening at lower planet masses.
Due to the reduced temperature in the 3D case, the spiral waves
have a slightly smaller opening angle compared to the isothermal
case.

Another interesting, partly numerical, issue that we have ad-
dressed concerns the influence that the smoothing of the plane-
tary potential has on the density structure in the vicinity of the
planet and the speed of migration. We have compared the stan-
dard ǫ-potentials in contrast with so-called cubic-potentials. The
results indicate, that a deeper (cubic) potential results in a higher
density inside the planet’s Roche lobe for isothermal, as well as
radiative discs. Since the potential depth influences the density
in the immediate vicinity of the planet the resulting torques show
some dependence on the chosen smoothing length. We note that
for the more realistic cubic-potential, changing the smoothing
from 0.8 to 0.5 does not alter the results for the fully radiative
simulations considerably, and runs at different numerical resolu-
tions have indicated numerical convergence. Hence, we believe
that this value is suitable for performing planet disc simulations
in 3D. The usage of an ǫ-potential cannot be recommended in
3D. Outside of the planet’s Roche lobe one can hardly notice
a difference in the density structure. Since the cubic-potential
agrees with the true planetary potential outside of the smoothing-
length rsm, it is of course desirable to choose this transition
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radius as small as possible, but the achievable numerical resolu-
tion always will set a lower limit. We found rsm = 0.5 a suitable
value for our grid resolution and used that in our parameter stud-
ies for different planet masses. We note, that independent of the
chosen form of the potential the outward migration of planetary
cores seems to be a robust result for radiative discs. As the mag-
nitude (and direction) of the effect depends on the viscosity and
opacity, further studies, investigating different radial locations in
the disc, will be very interesting.

The outward migration of planet embryos with several earth
masses certainly represents a solution to the too rapid inward mi-
gration found in this mass regime of classical type-I migration.
Growing planets can spend more time in the outer disc regions
and move then later via type-II migration towards the star. On
the other hand it may be difficult to reconcile this finding with
the presence of the discovered Neptune-mass planets that reside
closer to the central star (a ≈ 0.1 AU), but still too far away to
be ablated by stellar irradiation.

As seen in our simulations, parts of the disc can display
convection due to the form of the opacity law used. It will be
certainly interesting in the future to analyse what influence the
convective motions have on the migration properties of the em-
bedded protoplanets. Additionally, fully radiative 3D-MHD sim-
ulations are definitely required to judge the efficiency of this pro-
cess in turbulent discs.
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Appendix A: Fargo algorithm

Multi-dimensional simulations of accretion discs that include
the ϕ-direction typically suffer from severe timestep limitations.
This is due to the fact that the azimuthal velocity uϕ is Keplerian
and falls off with radius. Hence, the innermost rings determine
the maximum timestep allowed even though the region of in-
terest lies much further out. One suggestion to resolve this is-
sue is given by the FARGO algorithm which stands for “Fast
Advection in Rotating Gaseous Objects” (Masset 2000a). It has
originally been developed for 2D disc simulations in a cylin-
drical coordinate system, for details of the implementation see
Masset (2000a,b). Here, we briefly describe our extension to
three spatial dimensions in spherical polar coordinates.

The basic method relies on a directional splitting of the ad-
vection part, where first the radial and meridional (in θ direction)
advection are performed in the standard way. To calculate the az-
imuthal part we follow Masset (2000a) and split the angular ve-
locity into three parts: From the angular velocity of each grid cell
ωi, j,k = (uϕ)i, j,k/ri first an average angular velocity ω̄i is calcu-
lated for each radial ring i, which is obtained here by averaging
over the azimuthal (index k) and vertical (index j) direction

ω̄i =
1

Nϕ Nθ

∑

j,k

ωi, j,k (A.1)

where the summation runs of all azimuthal and meridional grid-
cells, and Nϕ,Nθ denote the number of these gridcells, respec-
tively. We note, that the summation over the vertical direction

with index j is not required at this point. In our case, for a thin
disc where the angular velocity does not vary much with height,
the vertical averaging simplifies matters somewhat. From this,
one calculates an integer-valued shift quantity

ni = Nint (ω̄i∆t/∆ϕ) , (A.2)

where Nint denotes the nearest integer function. This corre-
sponds to a transport by the angular “shift velocity”

ωSH
i = ni

∆ϕ

∆t
· (A.3)

Then we calculate the constant residual velocity of each ring

ωcr
i = ω̄i − ωSH

i , (A.4)

and finally the residual velocity for each individual gridcell

ωres
i, j,k = ωi, j,k − ω̄i. (A.5)

Rewritten, we find for the angular velocity the following expres-
sion

ωi, j,k = ω
res
i, j,k + ω

cr
i + ω

SH
i . (A.6)

The advection algorithm in the ϕ-direction proceeds now in three
steps. In the first two steps all quantities are advected using the
standard advection routine with the transport velocities ωcr

i
and

ωres
i, j,k and then all quantities are shifted by the integer values ni

in each ring i which corresponds to a transport velocity ωSH
i

.
Using this splitting, the transport velocities in the advection part
are given by the two residual velocities ωcr

i
and ωres

i, j,k, which are

typically much lower than ωi, j,k. Hence, the time step limitation
for the azimuthal direction is determined by the local variation
from the mean azimuthal flow in the disc which is typically much
lower than the Keplerian value. In our case of a 3D disc the time
step criterion is first given by the normal CFL-criterion as pre-
sented for example in Stone & Norman (1992) where the angu-
lar velocity ωi, j,k is just replaced by the residual cell values ωres

i, j,k

and ωcr
i

. This change provides the major reduction in the trans-
port velocity and a substantial increase in the time step size. An
additional time step limitation is given by the requirement that
the shift should not disconnect two neighbouring grid cells in the
radial and in the meridional direction (Masset 2000a). Here, this
additional limit on the time step reads

∆tshear = 0.5 min
i, j,k

⎧⎪⎪⎨⎪⎪⎩
∆ϕ∣∣∣ωi, j,k − ωi−1, j,k

∣∣∣ ,
∆ϕ∣∣∣ωi, j,k − ωi, j−1,k

∣∣∣

⎫⎪⎪⎬⎪⎪⎭ · (A.7)

The second restriction is only necessary in the case, where the
above vertical averaging in Eq. (A.1) has not been performed.
The sequencing of the advection sweeps in the FARGO algorithm
has to be such that the azimuthal sweep comes at the end, hence
in our simulations we use always: radial, meridional, and finally
azimuthal.

In a staggered mesh code such as our NIRVANA code, that
is essentially based on the ZEUS method, an additional com-
plication arises in the straightforward application of the FARGO
method, due to the fact that the velocity variables are located at
the cell interfaces and not at the centres. Hence, the correspond-
ing “momentum cells” for the radial and meridional momenta
(ρur and ρruθ) are shifted with respect to the standard density
cells by half a gridcell in the radial or meridional direction, re-
spectively. To apply the FARGO method one has first to split all
the momentum cells in two halves, use the algorithm outlined
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above on each of the halves, and then combine them again after-
wards to calculate from the updated momenta the new velocities
on the interfaces. This leads of course to an overhead in the simu-
lation cost which is counterbalanced however by the much larger
time step.

Appendix B: Radiative transport

Here, we outline briefly the method to solve the flux-limited dif-
fusion equation in 3D. Radiative transport is treated as a sub-step
of the integration procedure. In equilibrium viscous heating is
balancing radiative diffusion and to ensure this also numerically
we incorporate the dissipation into this sub-step. Using the ap-
propriate parts of the energy Eq. (7) and the flux (8) we obtain a
diffusion equation for the gas temperature.

∂T

∂t
=

1

cvρ

[∇ · D∇T + Q+
]

(B.1)

where the diffusion coefficient is given by

D =
λc4aRT 3

ρ(κ + σ)
, (B.2)

and Q+ denotes the viscous dissipation that is added to the sys-
tem. The flux-limiter λ depends on the local physical state of the
gas and approaches λ = 1/3 in the optically thick parts and re-
duces the flux to F = caRT 4 in the optically thin parts. Here we
use an expression for λ as given in Kley (1989).

A straight forward finite difference form of Eq. (B.1) in
Cartesian Coordinates is given by

T n+1
i, j,k − T n

i, j,k

∆t
=

1

(cvρ)i, j,k
(B.3)

×
[

1

∆x

(
D̄x

i+1, j,k

Ti+1, j,k − Ti, j,k

∆x
− D̄x

i, j,k

Ti, j,k − Ti−1, j,k

∆x

)

+
1

∆y

(
D̄
y
i, j+1,k

Ti, j+1,k − Ti, j,k

∆y
− D̄

y
i, j,k

Ti, j,k − Ti, j−1,k

∆y

)

+
1

∆z

(
D̄z

i, j,k+1

Ti, j,k+1 − Ti, j,k

∆z
− D̄z

i, j,k

Ti, j,k − Ti, j,k−1

∆z

)]
·

In orthogonal curvilinear coordinates additional geometry terms
have to be added in the above equation. Here D̄x

i, j,k denotes

D̄x
i, j,k =

1

2

(
Di, j,k + Di−1, j,k

)
(B.4)

and so forth.

The grid structure from which Eq. (B.3) follows is outlined
in the two-dimensional case in Fig. B.1. One has to keep in mind
that the temperature (being a scalar) is defined in the cell centre,
while the values of D̄x

i, j,k are defined at the cell interfaces.

In Eq. (B.3) no time levels are specified on the right hand
side. For explicit differencing the time level should be tn such
that the new temperature on the left T n+1 is entirely given by the
old values T n at time tn. This might lead to very small timesteps
since the timestep limitation is approximately given by

∆t ≤ min
i, j,k

(
∆x2,∆y2,∆z2

D̃i, j,k

)
(B.5)

where D̃ is given by D/(ρcv).
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Fig. B.1. The grid structure used in a staggered grid code for a two-
dimensional example. Shown is the cell i, j where the coordinates of
the cell centre [xc

i , y
c
j] is given by [1/2(xi, j + xi+1, j), 1/2(yi, j + yi, j+1)].

The temperature Ti, j is located at the cell centre where also the diffu-
sion coefficient D is defined. The averaged diffusion coefficients D̄ are
defined at the cell interfaces.

Hence, often an implicit version of the equation has to be
used, where all the temperature values Ti, j,k on the r.h.s. are eval-

uated at the new time tn+1 or an arithmetic mean between new
and old times. Even though the diffusion coefficients may de-
pend on temperature, we always evaluate those at the old time
tn. Otherwise this would lead to a non-linear matrix equation.

Collection all the terms in Eq. (B.3) this leads to a linear
system of equations with the form

Ax
i, j,kTi−1, j,k +Cx

i, j,kTi+1, j,k + A
y
i, j,kTi, j−1,k +C

y
i, j,kTi, j+1,k

Az
i, j,kTi, j,k−1 +Cz

i, j,kTi, j,k+1 + Bi, j,kTi, j,k = Ri, j,k (B.6)

where the superscript n+1 has been omitted on the left hand side.
The coefficients Ax

i, j,k to Cz
i, j,k can be obtained straightforwardly

from Eq. (B.3). The right hand side is given by

Ri, j,k = T n
i, j,k +

1

(cvρ)i, j,k
Q+i, j,k.

Written in matrix notation Eq. (B.6) reads

MTn+1 = R. (B.7)

Obviously the matrix M is a sparse matrix with a banded struc-
ture. Usually M is diagonally dominant but in situations with
extended optically thin regions this property will be lost.

Equation (B.7) can in principle be solved by any linear
equation package. For simplicity and testing purposes we work
presently with a standard SOR solver. Using an optimised relax-
ation parameter ω̃ we need about 130 iterations per timestep in
the initial phase which is far from equilibrium and only 80 itera-
tions at later times near equilibrium.

The radiation module of the code has been tested extensively
in different coordinate systems in Bitsch (2008), and we have
compared our new results on radiative viscous discs obtained
with the 3D version of NIRVANA in detail with those of the exist-
ing 2D code RH2D.
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ABSTRACT

Context. With an average eccentricity of about 0.29, the eccentricity distribution of extrasolar planets is markedly different from the
solar system. Among other scenarios considered, it has been proposed that eccentricity may grow through planet-disc interaction.
Recently, it has been noticed that the thermodynamical state of the disc can significantly influence the migration properties of growing
protoplanets. However, the evolution of planetary eccentricity in radiative discs has not been considered yet.
Aims. In this paper we study the evolution of planets on eccentric orbits that are embedded in a three-dimensional viscous disc and
analyse the disc’s effect on the orbital evolution of the planet.
Methods. We use the three-dimensional hydrodynamical code NIRVANA that includes full tensor viscosity and implicit radiation
transport in the flux-limited diffusion approximation. The code uses the FARGO-algorithm to speed up the simulations. First we measure
the torque and power exerted on the planet by the disc for fixed orbits, and then we let the planet start with initial eccentricity and
evolve it in the disc.
Results. For locally isothermal discs we confirm previous results and find eccentricity damping and inward migration for planetary
cores. For low eccentricity (e <∼ 2H/r) the damping is exponential, while for higher e it follows ė ∝ e−2. In the case of radiative discs,
the planets experience an inward migration as long as its eccentricity lies above a certain threshold. After the damping of eccentricity
cores with masses below 33 MEarth begin to migrate outward in radiative discs, while higher mass cores always migrate inward. For
all planetary masses studied (up to 200 MEarth) we find eccentricity damping.
Conclusions. In viscous discs the orbital eccentricity of embedded planets is damped during the evolution independent of the mass.
Hence, planet-disc interaction does not seem to be a viable mechanism to explain the observed high eccentricity of exoplanets.

Key words. accretion, accretion disks – planets and satellites: formation – hydrodynamics – radiative transfer –
planet disk interactions

1. Introduction

One of the surprising orbital characteristics of extrasolar plan-
ets is their high mean eccentricity ≈0.29 (Udry & Santos 2007).
Several explanations have been put forward to explain this dis-
crepancy in comparison to the solar system. Planet-disc inter-
actions are typically invoked to explain the planetary migra-
tion towards the central star that has occurred during the early
formation phase. In addition to the change in semi-major axis,
it is to be expected that the planet’s eccentricity will be in-
fluenced through this process as well (Goldreich & Tremaine
1980). It has then been suggested, by performing linear analy-
sis, that the planetary eccentricity can be increased through the
planet-disc interaction under some conditions (Goldreich & Sari
2003; Sari & Goldreich 2004; Moorhead & Adams 2008). They
estimate that eccentric Lindblad resonances can cause eccen-
tricity growth for gap-forming planets. Recently, a Kozai-type
effect between the disc and an inclined planet has been con-
sidered (Terquem & Ajmia 2010). Numerical simulations, how-
ever, tend to show predominantly eccentricity damping for a va-
riety of masses (Cresswell et al. 2007; Moorhead & Ford 2009).
Additionally, the existence of resonant planetary systems with
relatively low eccentricities (such as the system GJ 876) seems
to indicate a damping action of the disc on planetary eccentricity
rather than an enhancement (Lee & Peale 2002; Kley et al. 2005;
Crida et al. 2008).

On the other hand, very high-mass planets can induce an ec-
centric instability in the disc (Kley & Dirksen 2006). In turn,
the eccentric disc can possibly increase the planetary eccentric-
ity (Papaloizou et al. 2001; D’Angelo et al. 2006). However,

this process can only explain the eccentricity of very mas-
sive (≈5−10 MJup) planets. Alternatively, planet-planet scatter-
ing seems to be a viable mechanism for increasing eccentricities
through mutual gravitational interactions between the planets.
The resulting eccentricity distribution matches the observed one
reasonably well (Adams & Laughlin 2003; Jurić & Tremaine
2008; Ford & Rasio 2008). Another option is the fly-by of a
nearby star (Malmberg & Davies 2009).

Planet-disc interactions have so far been studied mostly in
the locally isothermal approach, where the temperature only de-
pends on the distance from the central star. In this case for typ-
ical disc parameters, a negative torque is acting on the planet,
and it migrates inward (Tanaka et al. 2002). However, recently it
has been shown that the torque acting on an embedded planet de-
pends on the thermodynamics of the disc. Following the pioneer-
ing work of Paardekooper & Mellema (2006), various groups
have now analysed the effect of the equation of state on the mi-
gration properties (Baruteau & Masset 2008; Paardekooper &
Papaloizou 2008; Paardekooper & Mellema 2008; Kley & Crida
2008). Through full 3D radiative simulations of embedded plan-
ets, we have recently confirmed that including of radiation trans-
port can produce a positive torque acting on low-mass planets
embedded in protoplanetary discs (Kley et al. 2009), because
through its action the required radial entropy gradient can be
maintained in the disc. This results in slowing down the inward
migration, and under some conditions it may indeed be possible
to reverse the inward migration process.

The linear estimates of the eccentricity evolution of embed-
ded planets (Artymowicz 1993; Ward & Hahn 1994; Tanaka
& Ward 2004) concentrate on low eccentricities and predict
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exponential decay on short timescales τecc ≈ (H/r)2τmig, where
H/r is the aspect ratio of the disc and τmig and τecc the migration
and eccentricity damping timescale, respectively. Papaloizou &
Larwood (2000) have also considered larger values for e and
they find an extended eccentricity damping timescale such that
de/dt ∝ e−2 if e > 1.1H/r. Cresswell & Nelson (2006) have per-
formed hydrodynamical simulations of embedded small mass
planets and find good agreement with the work by Papaloizou
& Larwood (2000). These 2D results have been confirmed by
Cresswell et al. (2007) using fully 3D isothermal simulations.

As mentioned above, the thermodynamics of protoplane-
tary discs is a crucial parameter for the torque acting on the
planet (Paardekooper & Mellema 2006). Including radiation
transport/cooling in a disc will give rise to positive torques act-
ing on a planet embedded in such a disc, which indicates out-
ward migration. In our previous work (Kley et al. 2009) we have
shown that the inclusion of radiation transport/cooling in simula-
tions with embedded low mass planets in three-dimensions (3D)
can result in outward migration. So far these simulations have
been limited to planets on fixed circular orbits. Now we extend
this work and focus on the evolution of planets on eccentric or-
bits for both, the isothermal and fully radiative regime. We focus
first on low-mass planets and study the influence of the thermo-
dynamics of the disc on eccentricity damping as well as on the
evolution of the planet inside the disc. First we estimate the the-
oretical migration and eccentricity damping rate for planets on
fixed eccentric orbits. Secondly, we let the planets evolve in the
disc and finally we investigate the influence of the planet mass
on the change in eccentricity and semi-major axis.

2. Physical modelling

The protoplanetary disc is modelled as a three-dimensional
(3D), non-self-gravitating gas whose motion is described by the
Navier-Stokes equations. We treat the disc as a viscous medium,
where the dissipative effects can then be described via the stan-
dard viscous stress-tensor approach (e.g. Mihalas & Weibel
Mihalas 1984). We also assume that the heating of the disc oc-
curs solely through internal viscous dissipation and ignore the
influence of additional energy sources (e.g. irradiation form the
central star). This internally produced energy is then radiatively
diffused through the disc and eventually emitted from its surface.
For this process we use the flux-limited diffusion approximation
(FLD, Levermore & Pomraning 1981), which allows us to treat
the transition form optically thick to thin regions approximately.
The viscous forces used in our code are stated explicitly for
the three-dimensional case in spherical coordinates in Tassoul
(1978). We use a constant kinematic viscosity coefficient ν with
a dimensionless value of ν = 10−5 (in code units, see below).
This relates to the typically used α-parameter through ν = αcsH,
where cs is the sound speed and H the vertical thickness of the
disc. A more detailed prescription of the modelling and the nu-
merical methodology is described in our previous paper (Kley
et al. 2009). We now extend the simulations, compared to our
previous paper, by including planets on eccentric orbits with dif-
ferent masses.

2.1. General setup

An important issue in modelling planetary dynamics in discs
is the gravitational potential of the planet since this has to be
artificially smoothed to avoid singularities. We have shown in
(Kley et al. 2009) that the physics of embedded planets can be
described better by a cubic-potential rather than the often used

ǫ-potential. Hence, we use in this work the following form for
the planetary potential throughout

Φcub
p =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−mpG

d

[(
d

rsm

)4 − 2
(

d
rsm

)3
+ 2 d

rsm

]
for d ≤ rsm

−mpG

d
for d > rsm

(1)

here mp is the planetary mass, d = |r− rP| denotes the distance of
the disc element to the planet and rsm is the smoothing length of
the potential measured in units of the Hill radius. The construc-
tion of the planetary potential is in such a way that for distances
larger than rsm the potential matches the correct 1/r potential and
is smoothed inside that radius (d < rsm) by a cubic polynomial.
The parameter rsm is equal to 0.5 in all our simulations, unless
stated otherwise.

The gravitational torques acting on the planet are calculated
by integrating over the whole disc, where we apply a tapering
function to exclude the inner parts of the Hill sphere of the
planet. Specifically, we use the smooth (Fermi-type) function

fb(d) =

[
exp

(
−d/RH − b

b/10

)
+ 1

]−1

(2)

which increases from 0 at the planet location (d = 0) to 1 outside
d ≥ RH with a midpoint fb = 1/2 at d = bRH, i.e. the quantity b
denotes the torque-cutoff radius in units of the Hill radius. This
torque-cutoff is necessary to avoid large, probably noisy contri-
butions from the inner parts of the Roche lobe and to disregard
material that is gravitational bound to the planet (Crida et al.
2009). Here we assume (as in our previous paper) a transition
radius of b = 0.8 Hill radii.

2.2. Initial setup

The three-dimensional (r, θ, φ) computational domain consists
of a complete annulus of the protoplanetary disc centred on
the star, extending from rmin = 0.4 to rmax = 2.5 in units of
r0 = aJup = 5.2 AU. In the vertical direction the annulus extends
from the disc’s midplane (at θ = 90◦) to 7◦ (or θ = 83◦) above
the midplane for the simulations of planets with eccentric orbits
in the midplane of the disc. Here θ denotes the polar angle of
our spherical polar coordinate system measured from the polar
axis. The central star has one solar mass M∗ = M⊙, and the total
disc mass inside [rmin, rmax] is Mdisc = 0.01M⊙. For the isother-
mal simulations we assume an aspect ratio of H/r = 0.037 for
the disc, in very close agreement with the fully radiative models
of our previous studies. For the radiative models H/r is calcu-
lated self-consistently from the equilibrium structure given by
the viscous internal heating and radiative diffusion. The isother-
mal models are initialised with constant temperatures on cylin-
ders with a profile T (s) ∝ s−1 with s = r sin θ. This yields a
constant ratio of the disc’s vertical height H to the radius s. The
initial vertical density stratification is approximately given by a
Gaussian:

ρ(r, θ) = ρ0(r) exp

[
− (π/2 − θ)2 r2

2H2

]
· (3)

Here, the density in the midplane is ρ0(r) ∝ r−1.5 which leads
to a Σ(r) ∝ r−1/2 profile of the vertically integrated surface den-
sity. In the radial and θ-direction we set the initial velocities to
zero, while for the azimuthal component the initial velocity uφ is
given by the equilibrium of gravity, centrifugal acceleration and
the radial pressure gradient. This corresponds to the equilibrium
configuration for a purely isothermal disc.
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For our fully radiative model we first run a 2D axisymmetric
model (starting from the given isothermal equilibrium) to ob-
tain a new self-consistent equilibrium where viscous heating
balances radiative transport/cooling from the surfaces. After
reaching that equilibrium, we extend this model to a full 3D
simulation, by expanding the grid into φ-direction. The result-
ing disc for this model has H/r ≈ 0.037 so we choose that value
for our isothermal runs.

2.3. Numerical setup

Our coordinate system rotates at the initial orbital frequency of
the planet (at r = r0). We use an equidistant grid in r, θ, φ with
a resolution of (Nr,Nθ,Nφ) = (266, 32, 768) active cells for our
simulations. At rmin and rmax we use damping boundary condi-
tions for all three velocity components to minimise disturbances
(wave reflections) at these boundaries. The velocities are relaxed
towards their initial state on a timescale of approximately the lo-
cal orbital period. The angular velocity is relaxed towards the
Keplerian values, while the radial velocities at the inner and
outer boundaries vanish. Reflecting boundary conditions are ap-
plied for the density and temperature in the radial directions. We
apply periodic boundary conditions for all variables in the az-
imuthal direction. In the vertical direction we set outflow bound-
ary conditions for θmin (the surface of the disc) and symmetric
boundary conditions at the disc’s midplane (θmax = π/2). We
use the finite volume code NIRVANA (Ziegler & Yorke 1997)
with implicit radiative transport in the flux-limited diffusion ap-
proximation and the FARGO extension as described in Kley et al.
(2009).

2.4. Simulation setup

In the first part of our model sequence we consider the orbital
evolution of a planet with a fixed mass (20 MEarth) on eccen-
tric orbits using different initial eccentricities. For comparison
we consider isothermal and fully radiative models. Using radia-
tive discs here is a direct extension of a previous study under
purely isothermal disc conditions using the same planet mass
(Cresswell et al. 2007). We distinguish two different approaches
for these 20 MEarth models: first, a model sequence where the
planet stays on a fixed eccentric orbit and secondly where the
planet is free to move inside the computational domain under
the action of the planet-disc gravitational forces. For the second
models we insert the planet in the disc and let it move imme-
diately, but using a time-dependent mass growth of the planet
(through the planetary potential) until it reaches its destination
mass. For the first set of models the 20 MEarth planet is inserted
as a whole in the disc at the start of the simulation. Initially the
planet starts at a distance r = aJup = 5.2 AU from the central star.
For the fully radiative simulations we set the ambient tempera-
ture to a fixed value of 10 K at the disc surface (at θmin), which
ensures that all the internally generated energy is liberated freely
at the disc’s surface. This low temperature boundary condition
works very well at optically thin boundaries and does not ef-
fect the inner parts of the optically thick disc (Kley & Lin 1999;
Kley et al. 2009). In the second part of the project we consider
sequences of models for a variety of planet masses. We note,
that a 20 MEarth planet has in our simulations using our standard
resolution a Roche radius of about 3.3 grid cells. As we will see
later in the results section, there is indication that for small mass
planets and isothermal runs (using the cubic-potential) a higher
resolution is required.

3. Models with an embedded planet on fixed

eccentric orbits

In this section we consider planets remaining on fixed eccen-
tric orbits embedded in either isothermal or fully radiative discs.
From the disc forces acting on the planet we calculate its the-
oretical migration rate and eccentricity change. Below we will
compare this directly to moving planets in the isothermal and
fully radiative regime.

3.1. Torque and power

From the gravitational forces acting on the planet we can cal-
culate the torque and energy loss (power) of the planet. These
can be used to estimate the theoretical change of the eccentricity
and the semi-major axis of the planet. Here we follow Cresswell
et al. (2007).

The angular momentum Lp of a planet on an eccentric orbit
is given by

Lp = mp

√
GM∗a

√
1 − e2. (4)

In our particular case, for non-inclined planets Lp = Lz. We can
then obtain the rate of change of the semi-major axis and the
eccentricity by

L̇p

Lp

=
1

2

ȧ

a
− e2

1 − e2

ė

e
=

Tdisc

Lp

, (5)

where Tdisc is the total torque exerted by the disc onto the planet

Tdisc =

∫

disc

(rp × F) |z dV. (6)

Here rp denotes the radius vector from the star to the planet, F

the (gravitational) force per unit volume between the planet and
a disc element (at location r from the star), and dV the volume
element. Equation (5) implies that a positive torque may also re-
sult in eccentricity damping rather than outward migration. This
is actually the observed result for our moving planets.

The energy change per time (power) of the planet due to the
work done by the gravitational forces of the disc is given by

Pdisc =

∫

disc

rp · F dV. (7)

The energy of the planet depends only on the semi-major axis a
of the planet and is given by

Ep = −1

2

GM∗mp

a
· (8)

We can now obtain for the energy loss and semi-major axis
change

Ėp

|Ep| =
ȧ

a
=

Pdisc

|Ep| · (9)

From Eqs. (9) and (5) we can calculate the theoretical change of
the semi-major axis and the eccentricity for planets on a fixed
eccentric orbit for the isothermal and fully radiative cases. We
find for the theoretical change of the semi-major axis

ȧ

a
=

Pdisc

|EP| =
2a

GM∗mp

Pdisc (10)

and for the change of eccentricity

ė

e
=

1 − e2

e2

(
1

2

ȧ

a
− Tdisc

LP

)
(11)

with our calculated ȧ.
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Fig. 1. Time dependence of the torque for different isothermal models
with planets on fixed orbits. Top: circular planets for different values
of the viscosity. The curves are ordered from high to small viscosity.
For smaller viscosities the settling towards equilibrium takes longer.
Bottom: evolution for our standard viscosity (ν = 10−5) for different
eccentricities. Due to the large time variability of the torque for eccen-
tric orbits these curves use sliding time averaged values with a window
width of 1 period.

Our simulations with planets on a fixed eccentric orbit fea-
ture eccentricities ranging from e0 = 0.0125 to e0 = 0.4. To in-
vestigate a possible change in the orbital elements of a planet we
first analyse the torques and power acting on the planet for fixed
eccentric orbits. The time evolution of the torques for different
models is displayed in Fig. 1. The top panel refers to planets on
circular orbits for different viscosities, as quoted in the caption.
For the smallest viscosity (ν = 10−7) the torque is unsaturated
and evolves through long period oscillations towards the equilib-
rium value. The timescale of the oscillation is comparable to the
libration time of a particle near the edge of the horsehoe region
(see Appendix A). For larger viscosity the equilibration time be-
comes shorter as the the viscous diffusion time shortens. The
results are in very good agreement with existing 2D simulations
(Paardekooper & Papaloizou 2009; Paardekooper et al. 2010),
and confirm clearly that viscosity is a necessary ingredient for
torque saturation. Additionally, this result indicates that the in-
trinsic (numerical) diffusivity is much smaller than that given by
our standard physical viscosity. In the lower panel of Fig. 1 we
display similar curves for eccentric planets and the standard vis-
cosity ν = 10−5. Due to the strong variability of the torque on the
orbital timescale for eccentric orbits (see Cresswell et al. 2007,
and below) we display time averaged torques.

In Fig. 2 we display the torque and power acting on such
a planet for isothermal and fully radiative runs in dependency
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Fig. 2. Torque (top) and power (bottom) acting on a planet on a fixed
eccentric orbit in dependency of the eccentricity and thermodynamics of
the planet. The torque and the power have been averaged over 20 orbits,
taken from t = 140 to t = 160 orbits for the isothermal (solid red line)
and from t = 120 to t = 140 for the fully radiative simulation (dashed
blue line).

of the eccentricity of the planet. As only every 10th time step
was plotted in our output file we averaged the torque over 20 or-
bits to minimise the numerical fluctuations due to this procedure.
For eccentricities smaller than 0.1 the planet experiences a neg-
ative torque in the isothermal simulations, while for higher ec-
centricities the planet feels a positive torque. The torque reaches
a maximum at e = 0.175 and settles down to a nearly constant
value for larger eccentricities, which is in good agreement with
Cresswell et al. (2007). The differences in the absolute values of
their torque compared to ours have their origin in the aspect ratio
H/r of the disc. Our torque is generally higher, as a result of our
lower H/r = 0.037 compared to their H/r = 0.05 disc.

The torque acting on the planet is in general higher for the
fully radiative simulations than for the isothermal ones. This
phenomenon was observed in various simulations in the past for
planets staying on fixed circular orbits, so it is no surprise that the
torque for the fully radiative simulation is higher for planets on
eccentric orbits as well. For low eccentric planets the fully radia-
tive simulation yield positive torques (and power) in agreement
with our previous results for planets on purely circular orbits. On
circular orbits, inclusion of radiation transport/cooling, gives rise
to a positive torque, which implies outward migration in contrast
to the isothermal simulations. The effect is caused by corotation
region that gives rise to a positive contribution to the torque in
the case of a positive entropy gradient. Interesting is the nar-
row range in eccentricity of this outward migration. Already for
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Fig. 3. Theoretical rate of change of the semi-major axis (ȧ/a) for ec-
centric planets on fixed orbits. For eccentricities smaller than about
0.025 we find a positive migration rate for the fully radiative disc, which
indicates outward migration. This can actually been observed for mov-
ing planets later in the text.

e ≈ 0.03 the direction of migration is directed inward again. This
effect is caused by the spatially narrow region that contributes to
the positive torque on the planet (Kley et al. 2009). For larger ec-
centricities the isothermal and radiative results match reasonably
well, but the radiative results are always slightly larger than the
isothermal ones. Different effects can contribute to this offset:
the difference in sound speed, the spatially varying H/r for the
radiative runs in contrast to the constant value for the isothermal
runs, or a difference in the corotation torques.

In the bottom diagram of Fig. 2 the displayed power of the
planet follows the trend of the diagram of the torque acting on
the planet with one big difference: the power of the planet is
always negative for the isothermal simulations (implying inward
migration), while it is positive for low eccentric planets in the
fully radiative scheme. For small e the torque and power are very
similar for both cases, since they must be identical for e = 0.

The consequences for the inferred change in semi-major axis
and eccentricity are displayed in Figs. 3 and 4. The theoreti-
cal migration rate (Eq. (10)) for planets on fixed eccentric or-
bits (Fig. 3) reflects our assumptions. When a planet has a high
initial eccentricity (e > 0.2) the migration rate is nearly con-
stant and inward for the isothermal and fully radiative case, but
as soon as the eccentricity gets damped to a value smaller than
e = 0.2 the inward migration increases by a factor of 2 to 3. The
fastest inward migration is seen for planets with an eccentricity
of e ≈ 0.125 for both thermodynamic cases. If the eccentricity
evolves to lower values this rapid inward migration is slowed
down in the isothermal case. In the fully radiative case this pro-
cess is even stronger, so that planets with a very low eccentricity
(e ≤ 0.025) have a positive migration rate, indicating outward
migration. The positive migration rate is a consequence of the
positive torque and power acting on the planet. This confirms
very well our previous work of low-mass planets on circular or-
bits in fully radiative discs migrating outward (Kley et al. 2009).
The causes for this outward migration are the same as for circular
orbits, as we will see later on. The migration rate in the isother-
mal case is faster for low eccentric planets (with e ≈ 0.125) and
a little bit slower for high eccentric planets compared to the zero
eccentricity case.

The theoretical damping of eccentricity in the isothermal
case (Fig. 4) indicates eccentricity damping for all values of e,
in agreement with our results for moving planets (see Fig. 13
below). For low eccentric planets (e ≤ 0.10) the damping of
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Fig. 4. Theoretical rate of change of the eccentricity (ė/e) for eccentric
planets on fixed orbits.

eccentricity is much faster than for high eccentric planets. As
soon as the eccentricity of high eccentric planets is damped to a
low eccentricity, the damping of eccentricity becomes faster, but
will then come to a constant value. In the fully radiative case,
the damping of eccentricity is slower for low eccentric planets
(e ≤ 0.10) compared to the isothermal simulations but is nearly
the same for high eccentric planets. This means the damping rate
for eccentric planets is somewhat bigger in the fully radiative
case compared to the isothermal case. For very small eccentric-
ities we even get a positive value for the change of eccentricity
(cut off in the figure) in the fully radiative case. In the isothermal
case we note the opposite effect: for very small eccentricities
the change of eccentricity is somewhat larger than for slightly
higher eccentricities. This phenomenon might have its origin in
a numeric feature: for small eccentricities the calculations of the
migration rate and the change of eccentricity become very sensi-
tive. Interestingly the slower change in eccentricity for the fully
radiative simulations results in a lower final eccentricity. For ec-
centricities smaller than about 0.025 we find a positive eccentric-
ity change in the fully radiative case, which is actually not seen
in our simulations of moving planets, and is a result of small nu-
merical inaccuracy combined with the division by e in Eq. (11).

3.2. Torque analysis

To understand the behaviour of the total torque in more detail we
analyse now the space-time variation of the torque and power
of the planet. For that purpose we introduce the radial torque
density Γ(r), which is defined in such a way that the total torque
T tot acting on the planet is given by

T tot =

∫ rmax

rmin

Γ(r) dr. (12)

The radial torque density has been a very useful tool to investi-
gate the origin of the torques in our previous work on planets on
fixed circular orbits. In Fig. 5 we display Γ(r) for a selection of
our planets. All the snapshots were taken when the planet was
located at apoastron. Note, that Γ(r) changes during the orbit, as
the planet moves on an eccentric orbit.

On can clearly see, that the major contribution to the torque
originates at larger radii for larger eccentricities by construction,
as the planets location is at apoastron and its distance from the
central star is r = a + e, with a = 1.0. For eccentricities smaller
than e = 0.1 Fig. 5 suggests a negative total torque, while for
larger eccentricities a positive torque is assumed, which can be
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Fig. 5. Torque density acting on a planet on a fixed eccentric orbit in
dependency of the eccentricity of the planet embedded in an isothermal
disc (top) and a fully radiative disc (bottom). The snapshots are taken at
t = 150 orbits for the isothermal simulations and at t = 100 orbits for
the fully radiative simulations. The planet is located at apoastron in all
cases.

clearly seen in Fig. 2. One might also argue, that the torque act-
ing on the planet for eccentricities larger than e = 0.1 should
be much higher than shown in Fig. 2. But keep in mind that the
torque acting on the planet changes during one orbit as the planet
moves on eccentric orbits, see Fig. 6.

In Fig. 6 the planet has initially a distance of r = 1.1 to
the central star (the planet is located at apoastron) and after half
an orbit it is nearest to the central star (at r = 0.9, the planet
is located at periastron) and moves then further away from the
central star to r = 1.1 again. The motion of the planet in respect
to the central star is the reason for the change in the Γ(r)-function
with respect to time.

In Fig. 7 we display the surface density of planets moving
on fixed eccentric orbits with e = 0.025, e = 0.05, e = 0.10
and e = 0.20 in isothermal discs. These plots are taken at t =
150 orbits. For all surface densities displayed the planet is at
apoastron, meaning the x value of the planet is −(a + e), with
a = 1.0, while the y value of the planet is 0 for all cases.

Despite the fact that for eccentric orbits the density struc-
ture and flow patterns appear and disappear periodically in phase
with the orbit, one can see for the e = 0.025 case clearly two spi-
ral waves exerted from the planet (one in the outer disc (r > rp)
and one in the inner disc (r < rp)). The spiral wave structure is
comparable to the zero eccentric case.

For higher eccentricities (e = 0.05 and e = 0.10) the outer
spiral wave is more pronounced. At the time the snapshot was
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Fig. 6. Torque density acting on a planet on a fixed eccentric orbit
(e = 0.10) during the time of one planetary orbit in an isothermal disc
(top) and in a fully radiative disc (bottom). One can clearly see that the
torque changes according to the position of the planet to the central star,
making it clear why the torques have to be averaged.

taken, the planet lies in apoastron where it moves more slowly
through the gas, meaning that it is overtaken by disc matter on
orbits that lie both inside and outside the planetary location. We
also note a significant density enhancement close to the vicin-
ity of the planet, which lies in front of the planet and will drag
the planet forward, exerting a positive torque, see Fig. 5. The
reason for this phenomenon lies in the flow lines, which are dis-
torted by the planet’s gravitational potential, and come to a focus
in front of the planet. The corresponding azimuthally averaged
density is displayed in Fig. 8. Interestingly, for higher eccentric-
ities there is no gap visible anymore in the averaged Σ-profile
due to the complex structure of the spiral arms. These are actu-
ally the reason for the high torque density displayed in Fig. 6 (for
t = 150 orbits). At periastron this effect is reversed, leading to a
negative torque acting on the planet. For e = 0.20 we even see a
stronger distortion in the density structure at apoastron. A more
eccentric orbit of the planet will reduce the speed of it at apoas-
tron more and leads thus to a more distorted density structure,
compared to the zero eccentricity case.

Comparing the torque density of the fully radiative simula-
tion (see Fig. 5) with the isothermal torque density one notices
only small differences for the different eccentricities. The torque
acting on the planet is slightly larger for the fully radiative sim-
ulation compared for the isothermal simulation. For smaller ec-
centricities the reason for this phenomena lies in the spiral waves
exerted from the planet. For very low eccentric planets, the argu-
ments for a positive torque acting on the planet are the same as
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Fig. 7. Displayed are the surface density maps for planets on fixed
eccentric orbits at t = 150 orbits for isothermal simulations with
H/r = 0.037. The plots feature eccentricities of e = 0.025, e = 0.05,
e = 0.10 and e = 0.20 from top to bottom. The planet is located at
apoastron, meaning (xp, yp) = (−(a + e), 0), for each displayed eccen-
tricity.
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Fig. 8. Azimuthally averaged surface density for planets on fixed eccen-
tric orbits in the isothermal case. The displayed densities correspond to
the surface maps displayed in the previous Fig. 7.
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Fig. 9. Torque acting on the planet during the time of 2 planetary or-
bits for planets on fixed eccentric orbits in the isothermal case. The
displayed torques correspond to the surface density maps displayed in
Fig. 7.

for planets moving on fixed circular orbits, which are explained
in much detail in Kley et al. (2009).

In Fig. 6 we plot the change of torque density during one
orbit for the fully radiative case for a planet on a fixed eccentric
orbit with e = 0.1. The orbital evolution of the torque density
Γ(r) for the fully radiative simulation does not differ much from
the isothermal one. One exception is the absolute value of the
torque density at the location of the planet during the time of
evolution in one orbit, which is higher for the isothermal case.
The change of the torque density during one planetary orbit has
the same reasons as for the isothermal case. In Fig. 9 we display
the torque acting on planets on stationary eccentric orbits in the
isothermal case. The eccentricities of the planet correspond to
those shown in Fig. 7 for the surface density. One can clearly see
that planets with a higher eccentricity (to about e ≈ 0.10) show a
higher amplitude in the torque acting on the planet, but for even
higher eccentricities the amplitude is being reduced. One should
also keep in mind that the averaged torque acting on the planet
is negative for small eccentricities while it is positive for larger
(e ≥ 0.10) eccentricities. During periapses (t = 99.5 and 100.5)
the planet also experiences a large energy loss (not displayed
here), which follows in trend the same structure as the torque
profile (e.g. the energy loss is greatest for e ≈ 0.10). This leads
to an enhanced inward migration for planets with an eccentricity
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around e ≈ 0.10, as can be seen in Fig. 3 for the calculated
migration rate.

The top figure in Fig. 10 displays the surface density for an
e = 0.025 planet on a fixed eccentric orbit in a fully radiative
disc. The surface density distribution shown in this figure is very
similar to those found for fixed circular orbits (see Kley et al.
2009). For higher eccentricities the spiral wave structure can no
longer be observed as clearly as for the low eccentricity case, no
matter whether we are in the isothermal or fully radiative regime.
The overall surface density structure for high eccentric planets
for the fully radiative case matches nearly the corresponding
structure in the isothermal case. As we calculate the torque act-
ing on the planet due to the interaction with the disc material it
is not surprising that the torques acting on the planet for high
eccentric planets are very similar for the isothermal and fully
radiative simulations. The corresponding azimuthally averaged
density is displayed in Fig. 11. The profiles look very similar to
those of the isothermal case, where for larger eccentricities the
gap becomes invisible in the Σ-profile.

In Fig. 12 we display the torque acting on planets on station-
ary eccentric orbits in the fully radiative case. The eccentricities
of the planet correspond to those shown in Fig. 10 for the sur-
face density. One can clearly see that planets with a higher initial
eccentricity (to about e ≈ 0.10) show a higher amplitude in the
torque acting on the planet, but for even higher eccentricities the
amplitude is being reduced. One should also keep in mind that
the averaged torque acting on the planet is positive for very small
eccentricities (e ≤ 0.025) and negative for 0.025 < e < 0.10
while it is positive for larger (e ≥ 0.10) eccentricities. During
periapses (t = 99.5 and 100.5) the planet also experiences a large
energy loss (not displayed here), which follows in trend the same
structure as the torque profile (e.g. the energy loss is greatest for
e ≈ 0.10). This leads to an enhanced inward migration for plan-
ets with an eccentricity around e ≈ 0.12, as can be seen in Fig. 3
for the calculated migration rate.

4. Moving planets on initial eccentric orbits

To study eccentricity damping of a planet embedded in a proto-
planetary disc dynamically we now change our configuration in
such a way, that the planet is able to evolve its orbit in time. In the
beginning of the simulation we put the planet in the disc, and let
the mass of the planet grow in such a way that the planet reaches
its final mass of mp = 20 MEarth at t = 10 orbits. This way we
do not disturb the density distribution of the disc as much as by
putting the planet with its full mass immediately into the unper-
turbed disc.

4.1. Isothermal discs

The eccentricity evolution of various planets with individual
starting eccentricity can be seen in Fig. 13. Planets with an initial
eccentricity lower than about e ≈ 0.10 experience an exponen-
tial damping of eccentricity (as soon as the planet has reached
its destined mass), while planets with larger initial eccentric-
ity adopt initially a slower damping. As soon as planets with a
higher initial eccentricity reach an eccentricity of about e ≈ 0.10
they undergo an exponential damping of eccentricity as well. For
eccentricities 0.10 < e < 0.15 the damping of eccentricity is
accelerated compared to the damping for higher eccentricities.
This was expected as a result of our calculations of the change
of eccentricities for planets on fixed eccentric orbits (see Fig. 4).
In the end all planets have settled to about the same value of ec-
centricity (e ≈ 0.02), independent of their starting eccentricity.

Fig. 10. Displayed are the surface density maps for planets on eccentric
orbits on fixed orbits at t = 100 orbits for fully radiative simulations.
The plots feature eccentricities of e = 0.025, e = 0.05, e = 0.10 and
e = 0.20 from top to bottom. The planet is located at apoastron, meaning
(xp, yp) = (−(a + e), 0), for each displayed eccentricity.
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Fig. 12. Torque acting on the planet during the time of 2 planetary or-
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Using linear analysis for small eccentricities Tanaka & Ward
(2004) find that the mean eccentricity change (averaged over one
planetary orbit) is given by

de/dt

e
= −0.780

twave

(13)

with the characteristic time

twave = q−1

(
ΣPa2

M∗

)−1 (
cs

aΩP

)4
Ω−1

P , (14)

where q denotes the mass ration between the planet and the
star and ΣP the local surface density at the planetary orbit. For
our 20 MEarth planet at 5.2 AU in the isothermal H/r = 0.037
disc we find the characteristic time to be twave = 7.70 or-
bits, which gives an eccentricity damping time scale of about
τecc = twave/0.78 = 9.88 orbits. Apparently, this theoretically
estimated decay time scale does not match the fitted value of
τecc = 29 as obtained from our numerical results. This exponen-
tial decay time is indicated by the black dashed lines in Fig. 13.
As will be seen below, this strong difference occurs only for the
isothermal case and is much reduced in the fully radiative mod-
els. In previous simulations on the evolution of eccentric planets
in isothermal discs the agreement between theory and numer-
ics has been much better (Cresswell et al. 2007). We attribute
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Fig. 13. Time evolution of eccentricity of planets embedded in isother-
mal discs with H/r = 0.037 and individual starting eccentricity. The
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ponential decay with a fitted τecc = 29 shifted to obtain a match for
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Fig. 14. Time evolution of the semi-major axis of planets embedded in
isothermal discs with H/r = 0.037 and individual starting eccentricity.

the difference to two effects, a smaller H/r and the usage of the
steeper more realistic cubic-potential instead of the more shal-
low ǫ-potential that was used in Cresswell et al. (2007). Indeed,
an additional run for the e0 = 0.20 case with the ǫ potential using
rsm = 0.8 yields a fitting parameter of τecc = 17. This is much
closer to the theoretical computed value.

But not only the eccentricity evolves in time on a moving
planet, but also the semi-major axis of the planet as can be seen
in Fig. 14. The reduction of the semi-major axis is in direct corre-
lation with the damping of eccentricity. For planets with initially
low eccentricity (lower than e = 0.12), we see a immediately re-
duction of the semi-major axis on a fast rate. This rapid inward
migration is then reduced to a very slow migration rate when the
planets reach their final value of eccentricity (e ≈ 0.02). Planets
with higher initial eccentricity first migrate inward at a slower
rate as their low eccentric counterparts, but at the time their ec-
centricity reaches the above mentioned point of e ≈ 0.10 their
migration rate changes and they undergo a rapid inward migra-
tion, as their eccentricity damps exponentially. This rise in the
migration rate was actually expected from the calculations of
the theoretical migration rate for planets on fixed eccentric or-
bits (see Fig. 3). When the eccentricity damping then changes
to a slower decay the migration rate becomes nearly linear and
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Fig. 15. Time evolution of the semi-major axis (top) and eccentricity
(bottom) of a 20 MEarth planet in an isothermal H/r = 0.05 disc. The
black dashed lines indicate an exponential decay of eccentricity with
τecc = 35 for e0 = 0.1, 0.2 and 0.3.

the planets move inward with a constant rate again. The planet
starting with a zero eccentricity attains a low eccentricity dur-
ing time and is also the planet migrating inward with the slowest
speed. These results lead to the conclusion that planets on eccen-
tric orbits do migrate inward at a slightly faster speed compared
to their circular counterparts and that planets starting from initial
higher eccentricity migrate inward faster than those with a lower
initial eccentricity.

But not only the initial eccentricity of the planet changes
the evolution of the planet, but also the disc parameters. Our
above shown simulations used a H/r = 0.037 in the isother-
mal case. We now compare these results with isothermal simu-
lations featuring H/r = 0.05. In Fig. 15 we display the change
of the semi-major axis and the eccentricity of 20 MEarth plan-
ets in an isothermal H/r = 0.05 disc. The other disc parameters
are the same as for the H/r = 0.037 planets. On the one hand
the overall trend that the planet starting from a zero eccentricity
orbit has the slowest inward migration is also true for the simu-
lations with H/r = 0.05. On the other hand the inward migration
in a H/r = 0.05 disc is faster for all initial eccentricities. In a
H/r = 0.037 disc the planets with an initial eccentricity lower
than e0 = 0.20 end up with a very slow inward migration, while
in the H/r = 0.05 case all planets end up with nearly the same
migration rate, even the planets with an initial high eccentricity.
These findings are in very good agreement with the results of
Cresswell et al. (2007).
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Fig. 16. Time evolution of eccentricity for planets with individual start-
ing eccentricity for the fully radiative case. The black dashed lines in-
dicate an exponential decay with τecc = 25 for e0 = 0.1, 0.2, 0.3 and
0.4.

From our disc-data we estimate a theoretical exponential de-
cay time for eccentricity damping timescale as τecc = 32.95 or-
bits. This value is larger than the previous one for the lower
H/r = 0.037 case by a factor of (0.05/0.037)4. Numerically we
obtain τecc = 35, see the black dashed curves in Fig. 15. Hence,
the numerical exponential decay in the simulations matches
quite well to the theoretical damping rate. We attribute this better
match to the smoothing effect of the higher pressure in the disc.

4.2. Fully radiative discs

If we now let the planet evolve its orbit with time for the fully ra-
diative case, we obtain a very similar behaviour to the isothermal
case for the evolution of eccentricity (see Fig. 16), but a quite dif-
ferent behaviour concerning the semi-major axis evolution (see
Fig. 17). The damping of eccentricity for the fully radiative discs
proceeds on a comparable timescale to the two previous results,
and we find for the exponential behaviour τecc = 25.

The inclusion of radiation transport/cooling seems to have
only a little effect on the damping of eccentricity. The damp-
ing of eccentricity is somewhat slower in the fully radiative case
compared to the isothermal simulations. For planets with ec-
centricities lower than about e = 0.10 the damping of eccen-
tricity follows approximately an exponential law. The eccentric-
ity damping for high eccentric planets is first slower, until the
eccentricity reaches a value of about e = 0.10 and is then in-
creased to an exponential value (see the fit in Fig. 16). This rise
in the speed of eccentricity damping is expected from the calcu-
lation of the theoretical change of the migration rate for planets
on fixed eccentric orbits (see Fig. 4). The reduction rate of ec-
centricity slows down when it reaches e ≈ 0.05. In the end, as
for the isothermal case, the eccentricity reaches the same value
for all starting eccentricities, but the absolute value of eccentric-
ity for the isothermal case (e ≈ 0.02) is about a factor of five
higher as for the fully radiative case (e ≈ 0.004). The charac-
teristic time for eccentricity damping in our fully radiative disc
for the embedded 20 MEarth planet is twave = 15.1 orbits, leading
to a eccentricity damping time scale of τecc = 19.37 orbits, if
we use H/r = 0.037 and an adiabatic sound speed. The black
dashed lines in Fig. 16 indicate the exponential decay for our
fitting, τecc = 25. This is not exactly matching our theoretical
results but the agreement is satisfactory. Note that as soon as
the eccentricity of our simulations reaches e ≈ 0.05 we observe
a difference between our numerical results and the theoretical
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Fig. 17. Time evolution of the semi-major axis of planets with individ-
ual starting eccentricity for the fully radiative case for 20 MEarth planets.

eccentricity damping. The damping in the simulations is much
slower than the theoretical damping, as the planet stops inward
migration at this point and stays on an orbit with nearly constant
semi-major axis, which might slow down eccentricity damping.

The density structure near the planet is smoothed for the fully
radiative case. As the mass in the disc and near the planet is able
to cool, it will give a smoother density profile. If the eccentricity
is damped to a small enough value, the effects of radiation trans-
port/cooling can set in, and will give rise to a positive torque,
which results in outward migration (see plot of the semi-major
axis Fig. 17). As long as the eccentricity of the planet is higher
than ≈0.03 the planet will migrate inward, even for the fully ra-
diative simulations, but with a rate smaller than the correspond-
ing isothermal simulations. When the eccentricity reaches the
critical value of e ≈ 0.10 we observe a bump in the semi major
axis of the planet. We expected this as the migration rate deter-
mined by planets on fixed eccentric orbits (see Fig. 3) has its
minimum there.

Starting from a zero eccentricity planet, which will not gain
much eccentricity during its evolution, one can see direct out-
ward migration, as predicted in our paper (Kley et al. 2009) for
planets moving on circular orbits. Planets starting from a higher
initial eccentricity will have to damp their eccentricity to a very
low value to feel a positive torque acting on them and thus lead-
ing them to outward migration. The eccentricity needed for out-
ward migration is the same for all planets in our simulations
(independent of the starting eccentricity) with a average value
e ≈ 0.03 for reversal. As soon as the e-damping is complete the
planet experiences a positive torque and will migrate outward,
even for the highest initial eccentricity in our simulations.

The inclusion of radiation transfer/cooling in disc for embed-
ded low mass planets on eccentric orbits will result in outward
migration as soon as the eccentricity of the planet is damped to
a value near the circular eccentricity. If the planet reaches low
eccentric orbits which are nearly circular, the density structure
will also become nearly like the one of a planet on a circular
orbit. The planet will then migrate outward as if it was on a cir-
cular orbit. This outward migration will then be stopped as soon
as the planet reaches regions in the disc where the density and
temperature are too low to support outward migration.

Looking at Fig. 17 it seems, that the outward migration is
stopped for all planets at a certain critical radius in the disc.
Even though at some point one might expect a termination of
the outward migration depending on the local disc conditions,
we note that in our case this feature appears to be a result of

insufficient numerical resolution. For more information about
this, see Appendix A.

5. Higher mass planets on eccentric orbits

As was shown in many previous works the migration rate of a
planet embedded in a protoplanetary disc does not only depend
on the disc’s structure and thermodynamics, but also on the plan-
etary mass (e.g. Kley et al. 2009). In our previous work we found
that planets up to about 33 MEarth experience a positive torque
(which indicates outward migration), while higher mass planets
experience a negative torque (indicating inward migration). It is
now very interesting to investigate the evolution of planets with
higher masses on eccentric orbits. In this chapter we focus on
the eccentricity change and migration of planets ranging for 30
to 200 earth masses in the isothermal and fully radiative regime.
We focus here directly on migrating planets, and we do not pro-
vide a torque analysis as we did for the 20 MEarth planet.

5.1. Isothermal discs

In the isothermal regime using the cubic rsm = 0.5 potential may
cause numerical problems (as described above) which become
even more severe when the moving planets have a higher mass.
The potential becomes just too deep for higher mass planets to
consider our results as correct for the grid resolution we use for
moving planets. A deeper planetary potential will give rise to a
much higher density distribution near the planet which will be-
come unrealistic in the isothermal case as the disc is not able to
heat up upon compression. So we use in this section the com-
mon ǫ-Potential with rsm = 0.8 for planets with higher mass (as
described in Kley et al. 2009), which will give us smoother and
more realistic results in this case. Again, we let the planet reach
its final mass during a time of 10 orbits. By this way the distur-
bances in the disc are not as big as by inserting the planet with
its full mass at once. As the mass of the inserted planets becomes
higher this feature becomes more and more important.

In Fig. 18 we display the evolution of the semi-major axis
for planets with 30, 50, 80, 100 and 200 MEarth in the isothermal
case for e0 = 0.10 and e0 = 0.40. The high mass planets (M ≥
50 MEarth) migrate inward at the same rate, in contrast to the
30 MEarth planet, when starting with e0 = 0.10. The planets seem
all to migrate inward on a linear scale. However when the planets
start with e0 = 0.40 we observe a different picture; now only
the 80, 100 and 200 MEarth planets migrate inward at the same
speed and faster than the planets with lower mass. The migration
speed is faster in the beginning for the planets starting with e0 =
0.10 compared to those starting with e0 = 0.40, meaning that
a high initial eccentricity tends to slow down the initial inward
migration for planets with a higher mass (M ≥ 30 MEarth) which
is in contrast to the results found for the 20 MEarth planet. As the
eccentricity is damped during time the migration speed for the
planets starting with e0 = 0.4 becomes faster than for the e0 =
0.1 planets. The observed bumps in the evolution of the semi-
major axis occur for all planetary masses at the same time when
we observe a change in the damping of eccentricity (displayed
in the bottom figure of Fig. 19).

In Fig. 19 we display the time evolution of eccentricity for
planets starting with e0 = 0.10 and e0 = 0.40. The eccen-
tricity drops immediately at the start of the simulation for the
e0 = 0.10 case for all planetary masses, but the damping seems
slowest for planets with higher mass, and in the end all high mass
planets (M > 50) end up with an eccentricity below e = 0.02.
In the e0 = 0.4 case the eccentricity damping sets in as soon as
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Fig. 18. Time evolution of the semi-major axis for planets in an isother-
mal disc (H/r = 0.037) with 30, 50, 80, 100 and 200 Earth masses. In
the top graph the planets have an initial eccentricity of e0 = 0.10 and in
the bottom plot the initial eccentricity is e0 = 0.40.

the planets have reached their final mass (after 10 orbits). The
200 MEarth planet experiences initially the fastest eccentricity
damping until e ≈ 0.22 and then the damping is slowed down
to a nearly linear damping. The smaller planets follow in prin-
cipal the same trend in eccentricity damping, only that the ini-
tial damping is slower compared to the 200 MEarth planet and
terminates at a lower eccentricity. After the eccentricity reaches
e ≤ 0.17 the 100 and 200 MEarth planet have a very similar sub-
sequent eccentricity and semi-major evolution; at e ≤ 0.15 the
80 MEarth planet joins this evolution.

The initial damping of eccentricity for planets with a high
initial eccentricity (e0 = 0.40) depends on the planetary mass,
meaning the eccentricity for planets with higher mass is damped
faster. This faster eccentricity damping is accompanied by a
faster inward migration for higher mass planets. This trends
seems to stop as soon as the planets have cleared their gap
and the eccentricity damping and evolution of the semi-major
axis is nearly the same for all the different high mass planets.
Figure 20 shows the azimuthally averaged surface density at the
time of 200 planetary orbits for the two different initial starting
eccentricities. The profiles after 200 orbits look very similar, the
largest difference occurs for the 200 MEarth model which displays
clearly a wider gap and slower migration in the long run. For the
models with 80 and 100 Earth masses it appears that the migra-
tion is slightly faster for the high eccentric case. However, the
averaged profile does not give a clear hint toward the cause.
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Fig. 19. Time evolution of the eccentricity for planets in an isothermal
disc (H/r = 0.037) with 30, 50, 80, 100 and 200 Earth masses. In the
top figure the planets have an initial eccentricity of e0 = 0.10 and in the
bottom figure the initial eccentricity is e0 = 0.40.

5.2. Fully radiative discs

In the fully radiative regime we can use our suggested cubic po-
tential without problems for higher mass planets as the inclusion
of radiation transport/cooling in a disc prevents a large density
build-up near the planet, as the temperature near the planet rises
and stops further mass accumulation.

In Fig. 21 we display the change of the semi-major axis and
eccentricity over time of a 30 MEarth planet for different initial ec-
centricities. One can clearly see that the outward migration starts
when the eccentricity is damped to a small value as we already
expected from our results of the 20 MEarth planet. The damping
of eccentricity is about 50% faster than for the 20 MEarth planet.
This speed up in the damping of eccentricity is due to the in-
crease of the planet’s mass. We also observe a change in the
damping rate of the eccentricity as soon as the planet reaches
e ≈ 0.10, as for our previous simulations. For an initial low ec-
centricity (e0 = 0.05) we observe an earlier outward migration
until the planets semi-major axis reaches the aforementioned
barrier of outward migration in our discs. This barrier is depen-
dent on the planets mass, as the final semi-major axis is slightly
smaller for the 30 MEarth planet compared to the 20 MEarth planet
(see Appendix A).

In our previous work we obtained a limiting planet mass of
about 33 MEarth for the occurrence of outward migration (see
Kley et al. 2009). This implies that planets with a higher mass
will not migrate outward but inward in a fully radiative disc. In
Fig. 22 we display the evolution of the semi-major axis of planets
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Fig. 20. Azimuthally averaged surface density after 200 orbits for
isothermal models with different planet masses. Top: initial e0 = 0.1,
and bottom: initial e0 = 0.4.

with 20, 30, 50, 80, 100 and 200 Earth masses for planets with
an initial eccentricity of e0 = 0.10 and e0 = 0.40. In Fig. 23 we
display the eccentricity for the same set of parameters.

For the planets with 20 and 30 Earth masses we observe
outward migration as soon as the eccentricity is damped to a
small value (e ≤ 0.02). As this damping is only achieved for the
e0 = 0.1 simulations during the run-time of our simulations, we
can not see outward migration in the e0 = 0.40 figure, but we
have seen it for the 20 MEarth planet in Fig. 17.

The planets with 50, 80, 100 and 200 Earth masses migrate
always inward, independent of the initial eccentricity value.
However the inward migration is much slower for the 50 MEarth

planet compared to the high mass counterparts. The 80, 100 and
200 MEarth planets migrate inward with the fastest rate, but the
relative speed of inward migration for these three planets does
not differ that much as it does for the 50 and 80 MEarth. If high
mass planets (M > 50 MEarth) have an initial higher eccentric-
ity they migrate inward a little bit slower than their low eccen-
tric counterparts. As an eccentric orbit disrupts the typical spiral
wave structure of a circular orbit the migration rate of a planet
on an eccentric orbit is altered compared to the migration rate
of a planet on a nearly circular orbit. Having reached a nearly
circular orbit the effects of radiation transport/cooling set in and
the planet can (if its mass is low enough) migrate outward.

In Fig. 23 we display the eccentricity evolution for planets
starting with e0 = 0.1 and e0 = 0.4. The eccentricity damping
for planets starting with e0 = 0.10 seems to be independent of the
planet’s mass, if MP ≥ 25 MEarth. The damping sets in immedi-
ately after the planets reach their final mass and the eccentricity
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Fig. 21. Time evolution of the semi-major axis (top) and eccentricity
(bottom) of a 30 MEarth planet in a fully radiative disc. The eccentricity
shrinks in the same fashion as for a 20 MEarth planet, but about 50%
faster. The semi-major axis increases also in the same trend, but the
outward migration starts about 50% later than in the 20 MEarth case. The
outward migration is then stopped at a radius slightly smaller than for a
20 MEarth planet.

is damped to nearly the same value for all simulations. The
planet’s mass seems to have little effect on eccentricity damping
for planets with a low initial eccentricity. The 100 and 200 MEarth

planet show little fluctuations in the eccentricity when the eccen-
tricity reaches zero. These fluctuations have their origin in the
fact that this planet lies very close to the inner boundary of our
simulation (we use reflective boundary conditions at the inner
boundary) and thus interacts with it which give rise to the fluc-
tuations in the eccentricity. These fluctuations are also enhanced
by the planet’s mass.

On the other hand, if the planets have an initial high eccen-
tricity (e.g. e0 = 0.40), we observe a quite different damping
rate of the eccentricity. The damping is faster for planets with
higher mass, but the final eccentricity reached is the same for
all planetary masses in our simulations. As soon as the 100 and
200 MEarth planet reach an eccentricity of e ≈ 0.3 they loose half
their eccentricity in a time of a few orbits, which also affects the
migration rate of the planet, as we can observe a little bump at
the same time. As in the isothermal case the initial damping rate
of eccentricity is reduced for smaller mass planets. Interestingly,
all planets experience a similar ė-rate once the eccentricity has
dropped below about 0.1–0.15.

As for planets with 20 MEarth an initial eccentricity influences
the migration of planets with higher masses. In case the planet
is small enough to undergo outward migration the effect of an
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Fig. 22. Time evolution of the semi-major axis for planets in a fully
radiative disc with 20, 30, 50, 80, 100 and 200 Earth masses. In the top
figure the planets have an initial eccentricity of e0 = 0.10 and in the
bottom figure the initial eccentricity is e0 = 0.40.

initial eccentricity is a halting of outward migration to the point
the eccentricity is damped to a very small value so that the effects
of radiation transport/cooling can take effect as if the planet was
moving on a circular orbit. For planets with a mass so high that
they will not undergo outward migration an initial eccentricity
can slow down the inward migration process by only a very small
amount.

5.3. The criterion for outward migration

In the previous simulations we have seen that planets can migrate
outward only for sufficiently small orbital eccentricities. The oc-
currence of outward migration is linked to the detailed structure
of the horse-shoe region since the torques originate from a re-
gion with a very small radial extent (Kley et al. 2009). It is to
be expected that eccentric orbits will destroy the detailed bal-
ance, and this is what we see in our simulations. Nevertheless, it
is interesting to estimate the value of eccentricity at which this
reversal of migration can occur. For that purpose we have run ad-
ditional series of test simulations in only two spatial dimensions
but with identical physical disc parameter for various planetary
masses. We measured the limiting value of the eccentricity with
two alternative methods. In the first set we performed simula-
tions with planets on fixed orbits for different eccentricities and
masses. The point of migration reversal (equivalent to a sign-
reversal of the power) has then been determined from the time
averaged torque and power measured after 100 orbits. The time
averaging has been done over 5 orbits. In the second alternative
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Fig. 23. Time evolution of the eccentricity for planets in a fully radiative
with 20, 30, 50, 80, 100 and 200 Earth masses. In the top figure the
planets have an initial eccentricity of e0 = 0.10 and in the bottom figure
the initial eccentricity is e0 = 0.40.
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Fig. 24. The critical eccentricity for reversal of migration obtained using
2D and 3D simulations for fully radiative discs. Only planets having
eccentricities below this curve are prone to outward migration.

we followed the orbital evolution of the planet in the disc start-
ing with an initial eccentricity of e0 = 0.10. As demonstrated
above all planets reduce this initial eccentricity and will migrate
outward in a radiative disc after the eccentricity has dropped be-
low a certain value. From the time evolution we determine this
critical eccentricity. This second method is used for our full 3D
disc as well.

The results obtained using these procedures are displayed
in Fig. 24 for the three sets of simulations. While the general
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trend is similar in all three series there are nevertheless differ-
ences. The 2D results have an average value of ecrit = 0.027
with a drop for smaller mass planets. The values are systemati-
cally larger than those of the 3D runs with ecrit = 0.015. This ef-
fect may be caused by the slightly higher temperature in the disc
([H/r]2D ≈ 0.045) compared to the 3D runs or due to genuine
flow differences in 2D and 3D geometry. Due to this larger H/r
planets may experience outward migration for higher masses as
well in a 2D geometry (Kley & Crida 2008). Within the 2D
runs the results obtained for fixed stationary orbits yield slightly
larger values for smaller masses and drop below the results for
evolving planets for masses above 25 MEarth. In Kley et al. (2009)
we have observed that the location of the torque maximum re-
sponsible for the outward migration lies slightly offset of the
planet location at r ≈ 0.984. Interestingly, for an eccentricity of
e = 0.015 the apoastron lies close to this position, and we expect
a destruction of this effect. So the planet can only migrate out-
ward if its eccentricity is smaller than the distance to the offset
in the torque distribution, which explains why the fully radia-
tive effects do not turn the planet to outward migration if it has a
high eccentricity. This eccentricity has to be damped below this
value before the planet can undergo outward migration. The off-
set distance appears to be relatively insensitive to the mass of
the planet (Kley et al. 2009) and does not scale directly with the
planet’s Hill radius. Baruteau & Masset (2008) even suggest a
torque maximum directly at the location of the planet. Our sim-
ulations seem to indicate a dependence on the thermodynamic
structure of the disc, such as radiative diffusion and temperature
(entropy) gradients. This issue still requires resolution.

6. Summary and conclusions

We have performed full 3D radiation hydrodynamical simu-
lations of accretions discs with embedded planets of different
masses on eccentric orbits. In a first sequence of simulations we
have analysed in detail the dynamics of a planet with a given
mass of 20 MEarth for the isothermal as well as fully radiative
case. In the isothermal situation we studied the cases H/r = 0.05
(a value often used in planet-disc simulations) and H/r = 0.037
(the value that matches the fully radiative case). In both cases we
find similar behaviour for the eccentricity and semi-major axis
evolution, and results that match those of Cresswell et al. (2007)
very well. Small eccentricities (with e <∼ 2H/r) are damped ex-
ponentially with a time scale given approximately by the linear
results (Ward & Hahn 1994). Larger eccentricities are damped
initially according to ė ∝ e−2 in agreement with Papaloizou &
Larwood (2000) and Cresswell et al. (2007). The final value of
the eccentricity does not depend on the initial eccentricity of the
planet.

The planet migrates inward in the isothermal regime. Low
mass planets (e.g. 20 MEarth) on eccentric orbits with large ec-
centricity (e > 0.20) have a slower migration rate as their low
eccentric counterparts in the isothermal regime. As soon as the
damping of eccentricity proceeds to smaller values the migration
rate is pumped up as if the planet had started with a low eccen-
tricity. The maximum inward migration rate occurs at e ≈ 2H/r.
In the fully radiative regime high eccentric planets (e > 0.20)
with 20 MEarth migrate inward on a rate comparable with the
isothermal regime. The corresponding eccentricity damping rate
for the fully radiative scheme is about the same as for the isother-
mal simulations, taking into account the different sound speeds.

But as soon as the eccentricity becomes small enough the
planets undergo a change in the direction of migration. The in-
clusion of radiation transport/cooling in discs with embedded

low mass planets will give rise to a change in the direction of
migration for planets whose initial eccentricity has been damped
to a nearly circular orbit. The maximum eccentricity a planet
can have to still undergo outward migration seems to be deter-
mined by the torque maximum in our Γ(r) function. This torque
maximum has a slight offset compared to the planets location
as demonstrated in Kley et al. (2009), corresponding to a limit-
ing eccentricity of about 0.015–0.025. If the eccentricity of the
planet is larger than this value it will migrate inward, while it will
migrate outward if its eccentricity is smaller (see Fig. 24). For
very small planet masses the maximum eccentricity is reduced.
For planets on nearly circular orbits the effects of radiation keep
the positive torques acting on the planet unsaturated, which im-
plies continuous outward migration. Moving planets experience
this result directly, and do indeed migrate outward in the disc in
contrast to planets in the isothermal regime.

Eccentric planets with higher mass are slowed down in their
migration at the beginning if they have a high initial eccentric-
ity (e0 ≥ 0.20) in the isothermal as well as in the fully radia-
tive scheme. If e ≥ 0.02 all planets move inward independent
of their mass, even those embedded in a fully radiative disc.
When the eccentricity is damped further the high mass planets
(M ≥ 50 MEarth) still move inward for both regimes, as they open
a gap in the disc and migrate as Type II. The eccentricity damped
30 MEarth planet moves outward in the fully radiative scheme as
we expected from our previous results (Kley et al. 2009).

Independent of the discs thermodynamics and planet mass,
we find that an embedded planet with a given initial eccentricity
will lose this eccentricity in time. The rate of the eccentricity loss
depends on the value of the initial eccentricity but is much faster
than the migration time. Hence, according to our results planet-
disc interaction cannot be the cause of the observed high mean
eccentricity of extrasolar planets. This finding is supported by
the fact that the existence of planetary systems in mean-motion
resonance with small libration angles require damping of eccen-
tricity (Lee & Peale 2002; Kley et al. 2005). A solution to this
problem might be planet-planet interaction, which we have not
considered here.

While performing our studies we noticed that numerical res-
olution is a serious issue in these type of simulations. As shown
in the appendix, only for very high numerical resolution or in
an adapted rotating coordinate system which rotates with the
present location of the planet, can we observe the outward mi-
gration. Finally, as the origin of this outward migration for plan-
ets below Mp ≈ 33 MEarth is created by a delicate balance of
torques which is destroyed by even a very small eccentricity of
the planet, the question arises how this effect can persist under
realistic conditions. It remains to be studied what effect the tur-
bulent motions within the disc have on the corotation torque of
the planet.
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Appendix A: Numerical features for moving planets

In Fig. 17 we have noticed that the outward migration of the
moving 20 MEarth planet terminates at a well defined radius inde-
pendent of its initial eccentricity. To determine theoretically the
extent of outward migration from our disc properties it seems
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Fig. A.1. Timescales in dependence of the distance from the central star.
To compute the timescales we used the density and temperature of the
midplane at the beginning of the fully radiative simulations.

useful to compare different timescales: the libration time and
the radiation time scale of the disc. The necessary unsaturated
torques needed for sustained outward migration require approx-
imately equal libration and cooling time (see Baruteau & Masset
2008; Paardekooper & Papaloizou 2008). For the latter we use
in our case the radiative diffusion time scale. We define

τrad =
s2

Drad

(A.1)

with s = H and

Drad =
4caT 3

3cvρ2κ
· (A.2)

The libration time is (as in Baruteau & Masset (2008))
τlib = 8πrP/(3ΩK xs) with the half-width of the horseshoe-orbit

xs = 1.16rP

√
q/(H/r). To compute the timescales we use the

density and temperature at the midplane of the disc at the begin-
ning of the simulations. The timescales are displayed in Fig. A.1.
The timescales seem to be comparable to about r = 1.4, so the
planet should be able to migrate outward at least to this point and
should not stop at r = 1.23 as observed in Fig. 17. In the plot we
also show additionally the viscous timescale τvisc = s2/ν which
should be comparable to the radiative time for accretion discs in
equilibrium. Apparently, this relation is well fulfilled.

The migration of the planet inside the disc is calculated via
the torque acting on the planet. In our previous work (Kley et al.
2009) we found that the calculated torque acting on the planet
appears to be converged already for our standard resolution if the
simulation is performed in a rotating coordinate system where
the planet is fixed for circular orbits. If the planet is allowed to
move freely inside the disc, for example due to the disc’s grav-
itational force, this is no longer possible, as the planet changes
its semi-major axis during time. If the planet moves to an orbit
with larger radius the rotating frame will not be able to keep the
planet at the same point in the grid, as the rotation frequency of
the frame is not linked to the planet anymore.

To investigate this, we performed a series of simulations with
a 20 MEarth planet on a fixed circular orbits placed at various dis-
tances from the star. In each of the runs the coordinate system
rotated with the orbital period of the planet such that the planet
did not move through the grid. In Fig. A.2 we display the torques
acting on this planet in the fully radiative scheme. The planets
are placed in a disc, corresponding to our standard model, at dif-
ferent planetary radii ranging from rp = 0.8 rJup to rp = 2.0 rJup.

Fig. A.2. Torque for planets on fixed circular orbits with distances rp =
0.8 rJup to rp = 2.0 rJup. In each simulation the coordinate system is
rotated with the planet.

As the rotation frequency of the planet matches the rotation fre-
quency of the coordinate system, the planet remains at a fixed
location in the grid during the whole simulations. Clearly, the
torque acting on these planets is positive for planets with rp up
to rp = 1.9 rJup, indicating that a planet at these radii should still
migrate outward. The positive torques are contrary to the results
of the moving planets in Fig. 17, where the planets stop their
outward migration already at about r = 1.23.

The torques acting on theses planets indicate, that a planet in
the disc should migrate outward until at least r = 1.9. Or possi-
bly even further, if not stopped by our finite computational do-
main where numerical effects from the outer boundary may dis-
turb its way. To test this hypothesis we calculated the evolution
of a 20 MEarth planet starting at r = 1.5 with a rotation frequency
of the grid matching the rotation frequency of the planet at this
distance (r = 1.5). Indeed, as Fig. A.3 shows, the planet now
migrates outward as the torques presented in Fig. A.2 suggested.
Note that the mass of the planet has been increased gradually
within the first 10 orbits. Again, this result is in contradiction to
the stopped outward migration in Fig. 17.

May this effect be caused by the difference in the rotation fre-
quency of the planet and the numerical grid? To answer this, we
first place a 20 MEarth planet at rp = 1.5 with a rotation frequency
corresponding to a r = 1.0 and let it evolve in the disc. The evo-
lution of the semi-major axis is displayed in Fig. A.4. Secondly,
we started an identical planet at rp = 1.0 with the same rota-
tion frequency of the numerical grid. In the end of the evolution
both planets comes to a halt at the same radius. Obviously, the
chosen rotation frequency of the numerical grid has an influence
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of the migration of the planet inside the disc. The reason lies
in the increased numerical diffusion that occurs if matter moves
with a fast speed through the disc. The implemented FARGO al-
gorithm helps to solve this problem but cannot fully eliminate
it. The problem is enhanced in our situation because it is the de-
tailed fine structure in the flow near the planet that determines
the outcome of migration.

Being caused by numerical diffusion, the effect may be (par-
tially) cured by increasing the resolution of the grid. We now
double the grid size to 532 × 64 × 1532 active cells in r, θ, φ
direction and let a planet fixed at rp = 1.5 evolve with a rota-
tion frequency corresponding to r = 1.0. The torque acting on
the planet is displayed in Fig. A.5 and is clearly positive, indi-
cating outward migration. Over-plotted is the torque of a planet
at rp = 1.5 with matching rotation frequency and our standard
resolution (the same as in Fig. A.2).

Hence, it seems that the rotation frequency of the numerical
grid influences the migration of the planet in the disc, if the nu-
merical resolution of the grid is too small and the planet moved
to a radius where its rotation frequency differs by more than 25%
from rotation frequency of the grid. In that way, our results de-
termined in the main article are correct, as the planets have mi-
grated inside the disc only by a little bit before their eccentric-
ity is damped and they start their outward migration. The ob-
tained limit of r = 1.23 for the outward migration seems to be a
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Fig. A.5. Torque acting on a 20 MEarth planet at rp = 1.5. Red solid
line: The rotation frequency of the grid matching the Keplerian rotation
frequency at r = 1.0, and the grid resolution has been doubled compared
to our standard simulations. Blue dotted line: Standard resolution with
grid velocity equal to the planet.

numerical artefact, however. To obtain an accurate migration for
planets under these conditions it seems best to perform the simu-
lations in a coordinate system that rotates always with the speed
of the planet. For multiple planetary systems this is not possible
and a higher resolution is required.
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ABSTRACT

Context. While planets in the solar system only have a low inclination with respect to the ecliptic there is mounting evidence that
in extrasolar systems the inclination can be very high, at least for close-in planets. One process to alter the inclination of a planet is
through planet-disc interactions. Recent simulations considering radiative transport have shown that the evolution of migration and
eccentricity can strongly depend on the thermodynamic state of the disc. So far, this process has only been studied for a few selected
planet masses using isothermal discs.
Aims. We extend previous studies to investigate the planet-disc interactions of fixed and moving planets on inclined and eccentric
orbits. We also analyse the effect of the disc’s thermodynamic properties on the orbital evolution of embedded planets in detail.
Methods. The protoplanetary disc is modelled as a viscous gas where the internally produced dissipation is transported by radiation.
To solve the equations we use an explicit three-dimensional (3D) hydrodynamical code NIRVANA that includes full tensor viscosity,
as well as implicit radiation transport in the flux-limited diffusion approximation. To speed up the simulations we apply the FARGO-
algorithm in a 3D context.
Results. For locally isothermal discs, we confirm previous results and find inclination damping and inward migration for planetary
cores. For low inclinations (i <∼ 2H/r), the damping is exponential, while it follows di/dt ∝ i−2 for larger i. For radiative discs,
the planetary migration is very limited, as long as their inclination exceeds a certain threshold. If the inclination is damped below this
threshold, planetary cores with a mass up to ≈33 MEarth start to migrate outwards, while larger cores migrate inwards right from the
start. The inclination is damped for all analysed planet masses.
Conclusions. In a viscous disc an initial inclination of embedded planets will be damped for all planet masses. This damping occurs
on timescales that are shorter than the migration time. If the inclination lies beneath a certain threshold, the outward migration in
radiative discs is not handicapped. However, only planets with a mass up to ≈33 MEarth are prone to this outward migration. Outward
migration is strongest for circular and non-inclined orbits.

Key words. accretion, accretion disks – planets and satellites: formation – hydrodynamics – planet-disk interactions –
radiative transfer

1. Introduction

Planets in our solar system do not all move in the same plane,
but are inclined with respect to the ecliptic. The inclinations
are in general small. The highest inclined planet is Mercury
(i = 7.01◦), and only some of the dwarf planets are inclined
much higher (e.g. Pluto at i = 17◦, or Eris at i = 44.2◦). This
low inclination with respect to the ecliptic is typically taken as
an indication that planets form within a flattened protoplanetary
disc. The observed high i for smaller objects are then a result of
gravitational scattering processes in the early solar system evo-
lution. Recently, it has been discovered that a relatively large
number of transiting close-in planets in extrasolar systems can
be inclined significantly with respect to the stellar rotation axis
(see e.g. Triaud et al. 2010). This discovery makes it necessary to
take inclination into consideration in both numerical simulations
and theoretical considerations of planet-disc interaction.

Starting from early work (Goldreich & Tremaine 1980;
Papaloizou & Lin 1984; Ward 1986), the effect a protoplan-
etary disc has on the migration of the planets has been anal-
ysed intensively after the discovery of hot Jupiters close to the
star (for a review see Papaloizou et al. 2007). Numerical sim-
ulations of planet-disc interactions are a valuable tool for a

better understanding. Two-dimensional (2D) studies have been
performed for example by Bryden et al. (1999); D’Angelo
et al. (2002) and later fully three-dimensional (3D) simulations
(D’Angelo et al. 2003; Bate et al. 2003) followed. All these
simulations only considered isothermal discs. However, recent
studies (starting with the work of Paardekooper & Mellema
2006) have shown that including radiation transport in planet-
disc interaction studies resulted in a slowed down or even re-
versed migration (Baruteau & Masset 2008; Paardekooper &
Papaloizou 2008; Paardekooper & Mellema 2008; Kley & Crida
2008; Ayliffe & Bate 2010). All authors agree that the inclusion
of radiative transfer is important and that it strongly affects the
migration properties of low mass planets (type-I-migration) in
discs, even though there are differences in the magnitude of the
effect. It also affects whether it actually leads to reversal of mi-
gration or only to a slow down.

Recently, we have analysed the disc’s influence on the or-
bital eccentricity (Bitsch & Kley 2010) for planets of differ-
ent masses in fully radiative discs. We showed that planet-disc
interaction leads quite generally (for all planet masses) to a
damping of planetary eccentricity on shorter timescales than
the migration timescale. Additionally, planets on eccentric orbits
embedded in fully radiative discs only migrate outwards, when
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the eccentricity is damped to a nearly circular orbit. Clearly, ec-
centricity destroys the very sensitive corotation torques near the
planet, which results in inward migration until the orbit is circu-
larised again.

The effect of disc-planet interaction on inclination has not
yet been studied in any wide extent, owing to the heavy compu-
tational requirements. Tanaka & Ward (2004) analysed the influ-
ence of the disc on the inclination of low mass planets in linear
studies. They find an exponential damping for any non-vanishing
inclination, but their results are only formally valid for i ≪ H/r.
Numerical simulations of inclined planets with higher inclina-
tions than H/r (inclination in radians) have shown that exponen-
tial damping may be valid up to i ≈ 2H/r. For planets on higher
initial inclined orbits, the damping rate deviates from being ex-
ponential, and it can be fitted best with a di/dt ∝ i−2 function
(Cresswell et al. 2007). Only low mass planets with a mass of
about 20−30 earth masses were considered in these studies. The
influence on an inclined Jupiter type planet has been considered
by Marzari & Nelson (2009). They find that highly inclined and
eccentric planets with Jovian masses lose their inclination and
eccentricity very fast (on a timescale of order of 103 years), when
entering the disc again. Since a highly inclined planet is only dis-
turbed in a small way by the accretion disc (and vice versa), such
a planet is only able to open a gap in the disc, when the inclina-
tion drops to i < 10.0◦. Terquem & Ajmia (2010) considered
inclination evolution utilising a Kozai-type of effect for planets
on high inclined and eccentric orbits in the presence of the disc.

In the present work we will extend the work on inclined plan-
ets and analyse the effect of planet-disc interaction on embedded
planets of all masses. In fully three-dimensional hydrodynamical
simulations we will consider isothermal as well as fully radiative
discs and study the change in inclination of an embedded planet.

In Sect. 2 we give a short overview of our code and numerical
methods. In Sect. 3 we measure the change of inclination and
semi-major axis for 20 MEarth planets on fixed circular inclined
orbits and then let these planets evolve their orbits in the disc
due to the torque acting on the planet form the disc in Sect. 4.
In Sect. 5 we study the influence of the planetary mass on the
evolution of planets on inclined orbits. In Sect. 6 we follow the
evolution of 20 MEarth planets on eccentric and inclined orbits.
In Sects. 3 to 6 we also point out the differences between the
isothermal and fully radiative simulations. Finally we summarise
and conclude in Sect. 7.

2. Physical modelling

The protoplanetary disc is modelled as a 3D, non-self-
gravitating gas whose motion is described by the Navier-Stokes
equations. We treat the disc as a viscous medium, where the
dissipative effects can then be described via the standard vis-
cous stress-tensor approach (e.g. Mihalas & Weibel Mihalas
1984). We also assume that the heating of the disc occurs solely
through internal viscous dissipation and ignore the influence
of additional energy sources (e.g. irradiation form the central
star). This internally produced energy is then radiatively dif-
fused through the disc and eventually emitted from its surface.
For this process we use the flux-limited diffusion approximation
(FLD, Levermore & Pomraning 1981), which allows us to treat
the transition from optically thick to thin regions as an approx-
imation. A more detailed description of the modelling and the
numerical methodology is provided in our previous papers (Kley
et al. 2009) and (Bitsch & Kley 2010). Compared to our previ-
ous papers, we now extend the simulations by including planets
with different masses on inclined orbits.

2.1. General setup

An important issue in modelling planetary dynamics in discs is
the gravitational potential of the planet since this has to be arti-
ficially smoothed to avoid singularities.

While in two dimensions a potential smoothing takes care of
the otherwise neglected vertical extension of the disc, in three
dimensional simulations the most accurate potential should be
used. As the planetary radius is much smaller than a typical grid
cell, and the planet is treated as a point mass, a smoothing of the
potential is required to ensure numerical stability. In Kley et al.
(2009) we have discussed two alternative prescriptions for the
planetary potential. The first is the classic ǫ-potential

ΦǫP = −
GmP√
d2 + ǫ2

· (1)

Here mP is the planetary mass, and d = |r − rP| denotes the dis-
tance of the disc element to the planet. This potential has the
advantage that it leads to very stable evolutions when the param-
eter ǫ (stated in units of the Hill radius) is not too small, i.e. is
a significant fraction of the Roche-lobe size. The disadvantage
is that for smaller ǫ, which would yield a higher accuracy at
larger d, the potential becomes very deep at the planetary po-
sition. Additionally, due to the long range nature, the potential
differs from the exact one even for medium to larger distances d
from the planet.

To resolve these problems at small and large d simultane-
ously, we have suggested the following cubic-potential (Klahr &
Kley 2006; Kley et al. 2009)

Φcub
P =

⎧⎪⎪⎨⎪⎪⎩
−mPG

d

[(
d

rsm

)4 − 2
(

d
rsm

)3
+ 2 d

rsm

]
for d ≤ rsm

−mPG

d
for d > rsm.

(2)

Here, rsm is the smoothing length of the potential in units of the
Hill radius. The construction of the planetary potential is in such
a way that for distances larger than rsm the potential matches the
correct 1/r potential. Inside this radius (d < rsm) it is smoothed
by a cubic polynomial. This potential has the advantage of exact-
ness outside the specified distance rsm, while being finite inside.
The parameter rsm is equal to 0.5 in all our simulations, unless
stated otherwise. The value of the smoothing length of the plan-
etary potential rsm was discussed in great detail in Kley et al.
(2009), where we compared different smoothing lengths and po-
tential types, resulting in our choice of rsm = 0.5. In this work
we use the cubic-form for the planetary potential for all fully ra-
diative simulations and for the isothermal simulations with plan-
ets on fixed orbits. We note that for ǫ = 0.25 the depth of the
ǫ-potential at the position of the planet, d = 0, is identical to the
cubic-potential with rsm = 0.5. However, the difference reaches
a maximum of about 20% at d = 0.25, is 10% at d = 0.5, and
slowly diminishes for larger d.

Our simulations for moving planets in isothermal discs have
shown that in this case the rsm = 0.5 cubic potential yields
unstable evolutions. This is due to the relatively steep centre
which leads to a significant density enhancement for isothermal
discs. Hence, we used in this case directly the much smoother
ǫ-potential with ǫ = 0.8 instead, which has been used before in a
similar context (Cresswell et al. 2007), without having explored
other choices here.

The gravitational torques and forces acting on the planet
are calculated by integrating over the whole disc, where we
apply a tapering function to exclude the inner parts of the
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Hill sphere of the planet. Specifically, we use the smooth (Fermi-
type) function

fb(d) =

[
exp

(
−d/RH − b

b/10

)
+ 1

]−1

(3)

which increases from 0 at the planet location (d = 0) to 1 out-
side d ≥ RH with a midpoint fb = 1/2 at d = bRH, i.e. the
quantity b denotes the torque-cutoff radius in units of the Hill
radius. This torque-cutoff is necessary to avoid large, probably
noisy contributions from the inner parts of the Roche lobe and
to disregard material that is possibly gravitationally bound to the
planet (Crida et al. 2009). Here we assume (as in our previous
paper) a transition radius of b = 0.8 Hill radii, as a change in b
did not influence the results significantly (Kley et al. 2009).

2.2. Initial setup

The three-dimensional (r, θ, φ) computational domain consists
of a complete annulus of the protoplanetary disc centred on
the star, extending from rmin = 0.4 to rmax = 2.5 in units
of r0 = aJup = 5.2 AU. In the vertical direction the annu-
lus extends 7◦ below and above the disc’s midplane, meaning
83◦ < θ < 97◦. Here θ denotes the polar angle of our spherical
polar coordinate system measured from the polar axis. The cen-
tral star has one solar mass M∗ = M⊙, and the total disc mass
inside [rmin, rmax] is Mdisc = 0.01 M⊙. For the isothermal simu-
lations we assume an aspect ratio of H/r = 0.037 for the disc,
in very close agreement with the fully radiative models of our
previous studies. For the radiative models H/r is calculated self-
consistently from the equilibrium structure given by the viscous
internal heating and radiative diffusion. The isothermal models
are initialised with constant temperatures on cylinders with a
profile T (s) ∝ s−1 with s = r sin θ. This yields a constant ratio
of the disc’s vertical height H to the radius s. The initial vertical
density stratification is approximately given by a Gaussian:

ρ(r, θ) = ρ0(r) exp

[
− (π/2 − θ)2 r2

2H2

]
· (4)

Here, the density in the midplane is ρ0(r) ∝ r−1.5 which leads to
a Σ(r) ∝ r−1/2 profile of the vertically integrated surface density.
In the radial and θ-direction we set the initial velocities to zero,
while for the azimuthal component the initial velocity uφ is given
by the equilibrium of gravity, centrifugal acceleration and the ra-
dial pressure gradient. This corresponds to the equilibrium con-
figuration for a purely isothermal disc.

For our fully radiative model we first run a 2D axisym-
metric model (starting from the given isothermal equilibrium)
to obtain a new self-consistent equilibrium where viscous heat-
ing balances radiative transport/cooling from the surfaces. After
reaching that equilibrium, we extend this model to a full 3D sim-
ulation, by expanding the grid into φ-direction. The resulting
disc for this model has H/r ≈ 0.037 so we choose that value
for our isothermal runs.

2.3. Numerical setup

Our coordinate system rotates at the initial orbital frequency of
the planet (at r = r0). We use an equidistant grid in r, θ, φ with
a resolution of (Nr,Nθ,Nφ) = (266, 64, 768) active cells for our
simulations. At rmin and rmax we use damping boundary condi-
tions for all three velocity components to minimise disturbances
(wave reflections) at these boundaries. The velocities are relaxed

towards their initial state on a timescale of approximately the lo-
cal orbital period. The angular velocity is relaxed towards the
Keplerian values, while the radial velocities at the inner and
outer boundaries vanish. Reflecting boundary conditions are ap-
plied for the density and temperature in the radial directions. We
apply periodic boundary conditions for all variables in the az-
imuthal direction. In the vertical direction we set outflow bound-
ary conditions for θmin = 83◦ and θmax = 97◦ (the surfaces of the
disc). We use the finite volume code NIRVANA (Ziegler & Yorke
1997) with implicit radiative transport in the flux-limited diffu-
sion approximation and the FARGO (Masset 2000) extension as
described in Kley et al. (2009).

2.4. Simulation setup

In the first part of our model sequence we consider the or-
bital evolution of a planet with a fixed mass (20 MEarth) on in-
clined orbits using different initial inclinations. For comparison
we consider isothermal and fully radiative models. Using radia-
tive discs here is a direct extension of a previous study under
purely isothermal disc conditions using the same planet mass
(Cresswell et al. 2007). We distinguish two different approaches
for these 20 MEarth models: first, a model sequence where the
planet stays on a fixed inclined orbit and secondly where the
planet is free to move inside the computational domain under
the action of the planet-disc gravitational forces. For the sec-
ond models we insert the planet in the disc and let it move
immediately, but using a time-dependent mass growth of the
planet (through the planetary potential) with a typical switch
on time of 10 planetary orbits. For the first set of models the
20 MEarth planet is inserted at the nominal mass in the disc at
the start of the simulation. Initially the planet starts at a distance
r = aJup = 5.2 AU from the central star. For the fully radia-
tive simulations we set the ambient temperature to a fixed value
of 10 K at the disc surface (at θmin and θmax), which ensures
that all the internally generated energy is liberated freely at the
disc’s surface. This low temperature boundary condition works
very well at optically thin boundaries and does not effect the
inner parts of the optically thick disc (Kley & Lin 1999; Kley
et al. 2009). In the second part of the project we consider se-
quences of models for a variety of planet masses. We note that
a 20 MEarth planet has in our simulations, using our standard res-
olution, a Roche radius of about 3.3 grid cells. In the last part
we limit ourselves to a 20 MEarth planet and simulate the evolu-
tion of planets with an initial eccentricity and inclination. For all
isothermal simulations, which allow the planet to move freely
inside the disc, we use the ǫ-potential. Only for isothermal sim-
ulations of planets on fixed inclined orbits, the cubic potential is
used. Additionally, the cubic potential is used for all fully radia-
tive simulations as well.

3. Models with an embedded planet on fixed

circular inclined orbits

In this section we consider planets on fixed circular and in-
clined orbits embedded in either isothermal or fully radiative
discs. From the disc forces acting on the planet on the fixed or-
bit we calculate its change of inclination and its migration rate.
In this section all simulations use the cubic potential, featuring
MPlanet = 20 MEarth, and a semi-major axis of a = 1.0. Our simu-
lations only cover up to 7◦ above and below the equatorial plane,
as the disc gets very thin for these regions. However, we in-
vestigate the motion of planets for higher inclinations (for fixed
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planets up to 15◦). The results are not influenced by our limited
vertical extent of our computational grid, as the density is very
low in the upper layers of the disc.

3.1. Change of inclination

To determine the change of orbital elements for planets on fixed
inclined orbits, we follow Burns (1976). If a small disturbing
force dF (given per unit mass) due to the disc is acting on
the planet, the planet changes its orbit. This small disturbing
force dF may change the planetary orbit in size (semi-major
axis a), eccentricity e and inclination i. The inclination i gives the
angle between the orbital plane and some arbitrary fixed plane,
which is in our case the equatorial (θ = 90◦) plane, which corre-
sponds to the midplane of the disc. Only forces lying in the orbit
plane can change the orbits size and shape, while these forces
can not change the orientation of the orbital plane. In Burns
(1976) the specific disturbing force is written as

dF = R + T + N = ReR + TeT + NeN , (5)

where the e’s represent an orthogonal unit vector triad. The per-
turbing force can be split in these components: R is radially out-
wards along r, T is transverse to the radial vector in the orbit
plane (positive in the direction of motion of the planet), and N is
normal to the orbit planet in the direction R × T.

Burns (1976) finds for the change of inclination

di

dt
=

aN cos ξ

H
, (6)

where the numerator is the component of the torque which ro-
tates the specific angular momentum H = r× ṙ about the line of
nodes (and which thereby moves the orbit plane). The specific
angular momentum H is defined as

H =
√

GMa(1 − e2). (7)

The angle ξ is related to the true anomaly f in the following way
f = ξ − ω, with ω being the argument of periapsis. ξ describes
the angle between the line of nodes and the planet on its orbit
around the star. For our case of circular orbits the argument of
periapsis ω is zero.

In the simulations the planet’s inclination spans from i =
0.5◦ to i = 15.0◦, in the isothermal as well as in the fully radia-
tive regime. In Fig. 1 we display the rate of change of inclination
for planets on fixed inclined orbits in the isothermal and fully ra-
diative scheme, after we average di/dt over 2 planetary orbits,
after 150 orbits. As the angle ξ changes after every time step,
one needs to average the quantity of di/dt over the time of a
planetary orbit to determine an exact value for the change of in-
clination of the planetary orbit. For both thermodynamic systems
the change in inclination is nearly identical and always negative,
meaning that moving planets with a non zero inclination lose
their initial inclination at a rate according to the current inclina-
tion. At i = 4.0◦ the loss of inclination is at it’s maximum and
is reduced for higher and lower inclinations. For high inclined
planets (i > 6.0◦) this loss is di/dt ∝ i−2, as indicated by the
short-dashed fit in black in Fig. 1, and for lower inclined planets
(i < 4.0◦) the inclination is damped with an exponential decay as
indicated by the linear fits in light blue and purple in Fig. 1. This
is identical to the behaviour found in Cresswell et al. (2007) and
is also confirmed by our simulations of moving planets below.

From our measured di/dt for planets on fixed orbits, we can
calculate the inclination damping timescale τinc according to

di/dt

i
= − 1

τinc

(8)
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Fig. 1. Calculated rate of change of the inclination (di/dt) for inclined
20 MEarth planets on fixed circular orbits. Results for the isothermal (red)
and fully radiative simulations (dark blue) are shown. Overlayed are
in light blue and purple fits for the exponential decay of inclination
for small inclinations and in black for the decay di/dt ∝ i−2 for larger
inclinations.

with i being the inclination of the planet. In the exponential,
small i regime we obtain for the isothermal simulations τinc =
27 orbits and for the fully radiative simulations τinc = 20 orbits.
Below we compare this to the linear results of Tanaka & Ward
(2004) and moving planets.

3.2. Change of semi-major axis

The power on the planet determines the change in semi-major
axis of the planet, while the torque represents a change in both
eccentricity and semi-major axis (Bitsch & Kley 2010). For cir-
cular orbits torque and power are identical. For that reason we
display and refer only to the torque acting on the planet, instead
of mentioning the power as well. A positive torque indicates
outward migration, while a negative torque represents inward
migration.

In Fig. 2 we display the torque acting on the planet for both
thermodynamic systems. The torque is positive for the fully ra-
diative disc and negative for the isothermal disc. In the fully ra-
diative scheme the torque has its maximum at i = 0.0◦ with a
massive loss towards higher inclinations until about i ≈ 4.5◦,
when the torque is about zero. For even higher inclinations the
torque remains at about zero level. In the isothermal case the
torque is negative and nearly constant for all inclinations, but
with an increase towards higher inclinations.

As for circular orbits the torque determines the change of
semi-major axis for our embedded planets, we expect a positive
migration rate for planets in a fully radiative disc and a negative
migration rate for planets in an isothermal disc. To determine
a migration rate for planets on fixed orbits, we follow Burns
(1976) again:

da

dt
=

2

(GM∗)1/2
a3/2(1 − e2)−1/2 [R e sin f + T (1 + e sin f )

]
, (9)

where a is the semi-major axis, e the eccentricity, f = ξ − ω the
true anomaly and R and T are radial and tangential directions
of the disturbing force, see Eq. (5). Please note that only forces
lying in the orbit plane can change the orbit size, and that for
circular orbits the specific total torque on the planet is simply
given by Γtot = aT , with Ḣ = Γtot.
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Fig. 3. Calculated rate of change of the semi-major axis (ȧ/a) for in-
clined 20 MEarth planets on fixed, circular orbits. For inclinations lower
than i ≤ 4.5◦ we observe a positive migration rate, which suggest that
low inclinations do not stop outward migration, while we observe a neg-
ative migration rate for the isothermal case.

The rate of migration is displayed in Fig. 3. In the fully ra-
diative scheme the planet experiences a positive migration rate
(outward migration) for all inclinations smaller than i ≤ 4.5◦, but
with a strong increase towards lower inclinations (about a factor
of 10 for the difference between i = 4.0◦ and i = 1.5◦). For in-
clinations lower than i ≈ 1.5◦ the migration rate stays approx-
imately constant. Planets with an inclination of 4.5◦ and higher
seem to be stalled and migrate neither inwards nor outwards. The
effects responsible for outward migration seem to be only valid
in the small inclined case.

In the isothermal case the migration rate is nearly constant
and negative with a slight increase towards higher inclinations,
suggesting that an inclined planet will move inwards in the
isothermal regime for low inclined planets. Higher inclined plan-
ets will move inwards only at a very small rate compared to
their low inclined counterparts. For large i the change of semi-
major axis approaches zero, as the planet’s orbit is high above
the dense regions of the disc, which are capable of influencing
the planet’s orbit.
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Fig. 4. Torque density acting on a planet on a fixed inclined orbit in
dependency of the inclination of the planet embedded in an isothermal
H/r = 0.037 disc (top) and a fully radiative disc (bottom). The snap-
shots are taken at t = 90 orbits for the isothermal simulations and at
t = 150 orbits for the fully radiative simulations. At this time planet-
disc interactions are in equilibrium and the planet is at its lowest point
in orbit (lower culmination).

From these results we conclude that a planet with a non-zero
initial inclination will lose this inclination in time. This incli-
nation loss has in principal no effect on the trend of migration,
so a planet in a fully radiative disc will migrate outwards, while
a planet in an isothermal disc will migrate inwards. In one of the
next chapters we will observe moving planets with a non-zero
inclination, which will do exactly that.

3.3. Torque analysis

To understand the behaviour of the total torque in more detail we
now analyse the space-time variation of the torque of the planet.
For that purpose we introduce the radial torque density Γ(r),
which is defined in such a way that the total torque Γtot acting
on the planet is given by

Γtot =

∫ rmax

rmin

Γ(r) dr. (10)

The radial torque density has been a very useful tool to inves-
tigate the origin of the torques in our previous work on planets
on fixed circular orbits. Even though the planet may be on an in-
clined orbit, this does not alter our definition of the radial torque
density Γ(r) which is calculated in any case with respect to the
orbital plane of the planet. In Fig. 4 we display Γ(r) for a selec-
tion of our planets in the isothermal and fully radiative regime.
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upper (lower) culmination. At the intermediate quarterly orbit times the
planet moves through the nodal line.

In the isothermal case the Γ(r)-function follows the same
trend for all displayed inclinations. The only difference is near
the planet, around the r = 1.0 region. The torque of the low
inclined planets declines constantly, while the higher inclined
planets (2.0 ≤ i ≤ 4.0) form a little spike in the Γ(r) dis-
tribution, which disappears for even higher inclinations again.
For higher inclinations the Lindblad-Torques become less and
less pronounced, as can be seen in Fig. 4 (top panel). Please keep
in mind that for the inclined planets the torque density changes
during one orbit, as can be seen from the change in the total
torque acting on the planet (top panel in Fig. 6). This is also il-
lustrated in Fig. 5 for the planet with i = 2.0◦. It can been seen
that for symmetry reasons Γ(r) is identical at upper and lower
culmination, and at the crossings of the nodal line, respectively.

In Fig. 6 the torque acting on planets (please note that for
circular orbits torque and power are identical) with different in-
clinations on fixed circular orbits (top) and the normal compo-
nent of the disturbing force dF (bottom) for fully radiative discs
is displayed. The torque acting on the planets oscillates with
time, making two oscillations every orbit. The planet starts at
the highest point in orbit (upper culmination) and evolves to the
lowest point in orbit (lower culmination) in the time of half an
orbit. Then the planet moves to the upper culmination again and
reaches it at the end of the orbit. The planets with a lower inclina-
tion (i < 4.0◦) have clearly a positive average torque, while for
the planets with higher inclinations positive and negative con-
tributions approximately cancel out such that the average total
torque is very small (see Fig. 2). Higher inclinations also trigger
higher amplitudes in the torque distributions. These amplitudes
in the torque distribution suggest oscillations in the evolution of
the semi-major axis of the planet (to a small degree), which are
visible when the planet is allowed to move freely inside the disc
(see Figs. 12, 13 and 15).

In the lower panel in Fig. 6 the normal component of the dis-
turbing force N cos ξ is displayed. N cos ξ oscillates also twice
in every orbit, as the torque, but it is slightly shifted with respect
to the torque. Negative values indicate a reduction of inclina-
tion, while a positive force indicates an increase of inclination.
The oscillations in N cos ξ indicate oscillations in the inclination,
when the planet is allowed to move freely in the disc. Indeed,
in case the planet moves inside the disc, these oscillations in the
inclination become visible at the beginning of the simulations
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Fig. 6. In the top panel we display the evolution of the torque acting on
planets in a fully radiative disc on fixed circular, inclined orbits in time.
In the bottom panel the normal component of the disturbing force dF,
N cos ξ as to be used Eq. (6), is displayed in dependency of time.

(see Figs. 11, 13 and 14 below). On average the normal compo-
nent of the disturbing force N cos ξ is negative, which indicates
inclination damping for all simulated inclinations, see Fig. 1.

For simulations in the isothermal regime, the results are
nearly identical, with only one exception: the overall torque is
negative, which results in inward migration. The normal compo-
nent of the disturbing force, N cos ξ, is also very similar com-
pared to the results in the fully radiative regime. We therefore
forgo to discuss the isothermal results in detail at this point.

To illustrate the dynamical impact of the planet on the disc,
we display the surface density of planets with i = 1.0◦ and i =
4.0◦ in Fig. 7.

The surface density of the i = 1.0◦ planet is very similar to
that of a non inclined planet (not displayed here, but compared to
bottom picture of Fig. 8 in Kley et al. 2009), and the torque den-
sity Γ(r) is nearly identical. The surface density also shows no
disturbances for the i = 1.0◦ planet, so that we only observe the
Lindblad Torques in the isothermal case, see Fig. 4. However,
the surface density of the higher inclined planet (i = 4.0◦) shows
density disturbances near the planet. For the i = 1.0◦ we also ob-
serve a higher density in the planets surroundings and a stronger
pronounced spiral wave compared to higher inclined planets.
The less pronounced spiral wave for the higher inclined planets
leads to a smaller Lindblad Torque for these planets compared
to the low inclined planets, which can be seen clearly in Fig. 4.

In Fig. 8 the density of a r− θ slice through the planets in the
isothermal H/r = 0.037 disc is display. The planets are at their
lowest point in orbit when the snapshot was taken. On the one
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Fig. 7. Surface density for 20 MEarth planets on fixed circular inclined
orbits embedded in an isothermal H/r = 0.037 disc with i = 1.0◦ (top)
and i = 4.0◦ (bottom). The planet is at its lowest point in orbit (lower
culmination) at the time of the snapshot.

hand, the i = 1.0◦ planet (top) has accumulated more mass in its
vicinity as the i = 4.0◦ planet (bottom), as the density in the mid-
dle of the disc is higher and thus it is easier to accumulate mass.
On the other hand, the higher inclined planet seems to disturb
the density structure of the disc stronger than the lower inclined
planet. This distortion in the density distribution in the r−θ plane
reflects in the distorted surface density structure, displayed in the
bottom picture of Fig. 7.

In the fully radiative case, the torque density (Fig. 4) shows
the well discussed spike in the torque distribution at r = 0.984
(see Kley et al. 2009). This spike is more pronounced for lower
inclinations (i ≤ 2.0◦) and is reduced for the higher inclinations.
This reduction for the torque density at r = 0.984 causes the total
torque to decrease for higher inclinations, see Fig. 2. For higher
inclinations the Lindblad Torques are also reduced compared to
the lower inclined planets.

In Fig. 9 the surface density of 20 MEarth planets in a fully
radiative disc with i = 1.0◦ and i = 4.0◦ are displayed. The over-
all surface density distribution of the i = 1.0◦ planet is nearly
identical with the surface density distribution of a non inclined
planet (see Fig. 12 in Kley et al. 2009), which is also supported
by the identical torque density distributions. The surface density
for the higher inclined planet (i = 4.0◦) on the other hand shows
some differences. The density ahead of the planet (r < 1.0 and
φ > 180◦) is reduced and the density behind the planet (r > 1.0
and φ < 180◦) is increased compared to the density distribu-
tion of the low inclined (i = 1.0◦) planet. This loss and gain of
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Fig. 8. Density (in g/cm3) of a r − θ-slice through the isothermal H/r =
0.037 disc with embedded 20 MEarth planets on fixed circular inclined
orbits with i = 1.0◦ (top) and i = 4.0◦ (bottom). The planet is at its
lowest point in orbit (lower culmination) at the time of the snapshot.

density results directly in a reduced spike (at r = 0.984) in the
torque density (Fig. 4), which reduces the total torque. The den-
sity inside the planet’s Roche lobe is also reduced in the high
inclined case, as the planet can not accumulate as much mass
as a lower inclined planet. This feature was also visible in the
isothermal case, but keep in mind that the planet in the isother-
mal case accumulates more mass than in the fully radiative disc.
Also the density in the spiral waves is reduced in the high in-
clined case, which results in lower Lindblad Torques compared
to the low inclined case, see Fig. 4.

In Fig. 10 the density through the fully radiative disc
(a r − θ slice) at the planets location for i = 1.0◦ and i = 4.0◦
is displayed. Clearly the higher inclined planet accumulated less
mass than the lower inclined planet, as the density in the sur-
roundings of the high inclined planet is reduced compared to the
discs midplane. Also the higher inclined planet seems to disturb
the disc’s density more than the lower inclined planet, which
results in small fluctuations in the surface density, see Fig. 9.
The little fluctuations in the surface density are less compared to
the isothermal case, as the radiative transport/cooling smoothes
the density in the disc and the planet does not accumulate as
much mass as in the isothermal case, which disturbs the density
structure as well.

In the r − θ slices of the disc, the difference in the mass ac-
cumulation of the planet in the isothermal and fully radiative
regime is very obvious. This effect is caused by the thermody-
namics of the disc, as the isothermal disc is unable to heat and
cool, the planet can accumulate more mass as in the fully radia-
tive regime. Nevertheless, only in the fully radiative regime the
calculated change of semi-major axis predicts outward migration
for planets on fixed orbits with i0 ≤ 4.5◦.
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Fig. 9. Surface density for 20 MEarth planets on fixed circular inclined
orbits embedded in a fully radiative disc with i = 1.0◦ (top) and i = 4.0◦

(bottom). The planet is at its lowest point in orbit (lower culmination)
at the time of the snapshot.

4. Moving planets on initially inclined orbits

In the previous section we calculated the change of inclination
and semi-major axis for 20 MEarth planets on fixed inclined orbits
in the isothermal and fully radiative regime. The results stated
that the planets will lose their inclination in time and will mi-
grate inwards in the isothermal and outwards in the fully ra-
diative scheme (for i0 ≤ 4.5◦). We now want to confirm these
results by allowing the planets to move freely inside the disc.
For the following simulations we use our standard resolution,
with a 20 MEarth planet embedded at r = 1.0 with different in-
clinations i. The discs thickness is H/r = 0.037. In the first
10 orbits of the planetary evolution the mass of the planet will
rise until it reaches its desired mass of 20 MEarth after 10 plan-
etary orbits. This way the disc will not be disturbed as much
as by putting a planet with its full mass inside the disc at once.
By monitoring inclination and semi-major axis at the same time
for a given planet, we can easily observe what influence the incli-
nation has on the migration of the planet. The planets embedded
in the isothermal disc are modelled with the ǫ-potential, using
rsm = 0.8, while the planets embedded in the fully radiative disc
are modelled using the cubic potential with rsm = 0.5.

4.1. Isothermal disc

Our disc only extends 7◦ above and below the discs midplane,
so when simulating a planet with a higher inclination than that,
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Fig. 10. Density (in g/cm3) of a r − θ-slice through the fully radiative
disc with embedded 20 MEarth planets on fixed circular inclined orbits
with i = 1.0◦ (top) and i = 4.0◦ (bottom). The planet is at its lowest
point in orbit (lower culmination) at the time of the snapshot.

it is not fully embedded in the disc any more. As the disc’s mate-
rial is concentrated mainly in the middle of the disc, the material
high above or below the disc’s midplane will only have a small
effect on the planet anyway. Test calculations with an extended
θ region of the disc (10◦ above and below the discs midplane)
and an i0 = 8.0◦ 20 MEarth planet have shown that we do not need
such a high extension above and below the disc. The aspect ratio
for the disc is H/r = 0.037 in the isothermal case, as this aspect
ratio corresponds to the aspect ratio of the fully radiative disc.

In Fig. 11 the evolution of inclination of a 20 MEarth planet
in an isothermal H/r = 0.037 disc is displayed. After the plan-
ets have reached their final mass after 10 orbits, the inclination
begins to drop immediately. Up to i = 4.0◦ the planet’s loss of
inclination is increasing, while for even higher inclinations the
damping of inclination is slowed down again (see Fig. 1). High
inclined planets will first lose inclination at a quite slow rate,
but as their inclination is damped the damping rate increases un-
til the inclination reaches ≈4.0◦ and will slow down after that
until the planets inclination is damped to zero. This results con-
firms our results for planets on fixed orbits.

When the planet remains in the main body of the disc for
i < H/r (i in radians), the damping of inclination is exponen-
tial: di/dt ∝ −i. By following Tanaka & Ward (2004) the linear
damping rate for a small planet mass and a small inclination can
be obtained:

di/dt

i
= − 1

τinc

= −0.544

twave

(11)

with the characteristic time

twave = q−1

(
ΣPa2

M∗

)−1 (
cs

aΩP

)4
Ω−1

P . (12)
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Fig. 11. Time evolution of inclination for 20 MEarth planets with in-
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Table 1. Exponential damping rate τinc (in orbits), obtained from our
isothermal and fully radiative simulations for three studied cases of
planets in discs compared with the linear rate, as given by Tanaka &
Ward (2004).

Linear 3D Fixed orbit Moving orbit

iso H/r = 0.037 14.2 27 23
iso H/r = 0.05 47.25 − 53
fully radiative 27.7 20 26.5

Notes. Shown are results for planets on fixed orbits and for moving
planets.

In Table 1 we display τinc for the isothermal and fully radia-
tive simulations. We compare the linear estimate according to
Eqs. (11) and (12) with our full non-linear results from the fixed
and moving planet simulations.

For our isothermal H/r = 0.037 simulations we estimate a
linear damping time scale of τinc = 14.2 orbits, which is about
a third smaller than our obtained result τinc = 23 for planets
on moving orbits (see fits in Fig. 11). The difference between
our actual fit and the linear value can be caused by the rela-
tively small aspect ratio of the disc (H/r = 0.037), because
the linear theory is formally valid only for embedded planets
with H ≫ RHill. Below, we present additional result for an
H/r = 0.05 disc and find indeed better agreement of linear
and fully non-linear results. However, our obtained τinc = 23
for moving planets is very close to the predicted damping time
scale of τinc = 27 for planets on fixed orbits, demonstrating the
consistency of our results.

The exponential damping law should be only valid up to i ≈
H/r, but Cresswell et al. (2007) stated that it is valid up to i ≈
2H/r, which in fact reflects our findings. The higher inclined
planets do not lose inclination with an exponential rate at the
beginning of the simulations, but with di/dt ∝ i−2. This is also
indicated through the black dotted line in Fig. 11 for the i0 =
8.0◦ planet. As the planets lose their inclination, the damping
becomes exponential again (at about i ≈ 3.0◦).

In Fig. 12 the evolution of the semi-major axis in an isother-
mal H/r = 0.037 disc is displayed. After a few orbits the semi-
major axis decreases for all planets. During time the semi-major
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Fig. 12. Time evolution of semi-major axis for 20 MEarth planets with
individual starting inclinations ranging from i = 1.0◦ to i = 8.0◦ in an
isothermal H/r = 0.037 disc. The dashed black line indicates a fit to the
results with a slope of −3.45 × 10−4/orbit. The change of semi-major
axis follows the trend of the change determined for planets on fixed
orbits, see Fig. 3.

axis shrinks more and more, as you would expect from low mass
planets in an isothermal disc. In the beginning the planets with
i0 = 8.0◦ and i0 = 6.0◦ have a slower inward migration rate than
the other planets, but as the inclination is damped in time, the in-
ward migration settles for the same rate for all planets, although
it takes about 80 orbits for the i0 = 8.0◦ planet. The initial higher
inclination just delays the inward migration for a few planetary
orbits, as could be expected from our results for planets on fixed
orbits, see Fig. 3.

The observed migration rate for all planets is constant af-
ter the inclination has been damped. The black dashed line in
Fig. 12 indicates a linear fit for the evolution of the semi-major
axis with ȧ = −3.45 × 10−4/orbit. This decrease of semi-major
axis from planets on moving orbits is within 15% of the result
for planets on fixed orbits in Fig. 3. The slight difference may
be just due to the different setup, stationary versus moving and
cubic versus epsilon potential. Additionally, the fit in Fig. 12 is
for a later evolutionary time, where the planet has already lost
a few percent of its semi-major axis.

In our past simulations we found a dependence of the migra-
tion rate/torques due to the aspect ratio of the disc (Kley et al.
2009; Bitsch & Kley 2010). It is now logical to assume that the
aspect ratio of a disc will change the damping of inclination for
inclined planets as well. In Fig. 13 we display the evolution of
the semi-major axis (top) and inclination (bottom) of planets em-
bedded in an isothermal H/r = 0.05 disc.

The inward migration of the planets in the H/r = 0.05 disc
is slower compared to planets embedded in a H/r = 0.037 disc,
which is in agreement with Tanaka et al. (2002). The inclination
damping is slower in the H/r = 0.05 disc by a factor of 2 to 3.
Nevertheless, the final outcome is the same, an initially high in-
clination reduces the inward migration in the beginning, but as
inclination is damped, the inward migration settles for the same
rate for all the inclinations (but with different rates for different
aspect ratios).

The theoretical, linear damping of inclination obtained by
following Tanaka & Ward (2004) is τinc = 47.25 orbits (Eq. (12)),
which is slightly smaller than our fitted value of τinc = 53 orbits
(Fig. 13, bottom). The numerically obtained ratio of the migra-
tion rates (53/23 ≈ 2.3) differs from the theoretical linear ratio
of (0.05/0.037)4 ≈ 3.3. As the colder disc makes linear theory
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Fig. 13. Time evolution of the semi-major axis (top) and inclination
(bottom) of a 20 MEarth planet in an isothermal H/r = 0.05 disc. The
planets initial inclinations reach from i0 = 1.0◦ to i0 = 8.0◦. The dashed
black line in the top panel indicates a linear fit to the results with a slope
of −2 × 10−4/orbit. The black dotted lines in the evolution of inclination
(bottom) indicate our manual fitting with τinc = 53.

less applicable in these circumstances, we can infer that the re-
sults obtained for the larger H/r = 0.05 disc are more accurate.
The numerical exponential decay in the simulations with mov-
ing planets matches our estimated rate for planets on fixed orbits
quite well. The higher pressure inside the disc seems to have a
smoothing effect on the damping, resulting in more accurate re-
sults for discs with higher aspect ratio.

For the moving planets, the measured migration rate (da/dt)
for the H/r = 0.037 disc is approximately larger by a factor
of (0.05/0.037)2 compared to the H/r = 0.05 disc (see dashed
black line fit in Fig. 13, top), which is to be expected in the linear
case.

In an isothermal disc, inclined planets lose inclination and
semi-major axis immediately after they are released in the disc,
as predicted by our calculations of the change of inclination and
semi-major axis for planets on fixed orbits. The migration rate
is the same for all initial inclinations, a higher inclination just
delays the inward migration for a few orbits.

4.2. Fully radiative disc

In the fully radiative regime we simulate planets to an inclination
up to i = 8.0◦. As always we use a 2D model in r − θ direction
in the radiative equilibrium for the starting configuration of our
3D fully radiative disc. This procedure is described in more de-
tail in (Kley et al. 2009). As in the isothermal case, the planet
needs 10 planetary orbits to reach its full mass.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0  20  40  60  80  100  120  140  160  180  200

In
c
lin

a
ti
o
n

Time [Orbits]

i0 = 1.0
i0 = 2.0
i0 = 3.0
i0 = 4.0
i0 = 6.0
i0 = 8.0

Fig. 14. Time evolution of inclination for 20 MEarth planets with indi-
vidual starting inclinations ranging from i = 1.0◦ to i = 4.0◦ in a fully
radiative disc. The damping of inclination follows the trend of change of
inclination for planets on fixed orbits, see Fig. 1. The black dotted lines
indicate our manual fitting with τinc = 26.5 for planets with i0 = 2.0◦,
4.0◦, 6.0◦ and i0 = 8.0◦, which seems very good in the beginning/middle
phase of the inclination damping. In the i0 = 8.0◦ case an additional fit
provides for a di/dt ∝ i−2 fit in the beginning of the evolution.

In Fig. 14 the change of inclination for moving planets in a
fully radiative disc is displayed. The inclinations range from i0 =
1.0◦ to i0 = 8.0◦. The planets inclination reduces as soon as the
planet is released in the disc according to the rate found in Fig. 1.
After about 160 orbits the inclination of all planets has reached
zero, so that the planet is now orbiting in the equatorial plane.

The estimated linear value for the damping of inclination in
the radiative disc is τinc = 27.76 orbits (Eq. (12)), which lies
within about a few percent of our fitted value of τinc = 26.5 orbits
for moving planets. The difference with the calculated damping
timescale τinc = 20 orbits for planets on fixed orbits is slightly
larger in this case (see Table 1). But one should keep in mind as
well that the exponential fit is valid for very low inclinations in
the isothermal case as well, while it is only valid down to ≈0.5◦
in the fully radiative scheme.

On the other hand, the decay of inclination for initially high
inclined planets fits even a little better than in the isothermal
case, and the trend of an di/dt ∝ i−2 decay is clearly visible.

In Fig. 15 the evolution of the semi-major axis of plan-
ets with initial inclination is displayed. After the planets have
reached their final mass at 10 planetary orbits, the initially lower
inclined (i up to 4.0◦) planets start to migrate outwards as ex-
pected from Fig. 3. The migration rates for planets on fixed or-
bits also matches nicely with the determined migration rate of
1.35 × 10−3/orbit for planets on moving orbits. The two higher
inclined planets first stay on their initial orbit before they start
their outward migration. It seems that the planet has to lose a cer-
tain amount of inclination before it can start to migrate outwards.
This result is in agreement with our observations for planets on
fixed inclined orbits. A higher inclination weakens the torque
responsible for outward migration and if the inclination is too
high, the outward migration stops.

The planets seem to migrate outwards at nearly the same
speed for all initial inclinations up to 4.0◦. But before the plan-
ets start to migrate outwards their initial inclination is damped by
about 25% for all initial inclinations, which explains the similar
migration speed for these planets, see Fig. 3.

Low inclinations seem to have only little effect on the migra-
tion of planets in the fully radiative scheme, but if the inclination
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Fig. 15. Time evolution of semi-major axis for 20 MEarth planets with
individual starting inclinations ranging from i = 1.0◦ to i = 8.0◦ in a
fully radiative disc. The change of semi-major axis follows the trend
of change for planets on fixed orbits, see Fig. 3. The dashed black
line in the top panel indicates a linear fit to the results with a slope
of 1.35 × 10−3/orbit.

of the planet is so high that its orbit is at some times high above
the midplane of the disc, the disc becomes so thin that outward
migration is not possible any more.

5. Planets with different masses

Small inclinations seem to have no big effect on migration for
a 20 MEarth planet on a circular orbit in the isothermal or fully
radiative scheme. The planet’s inclination is reduced in both
thermodynamic systems and it migrates inwards in the isother-
mal and outwards in the fully radiative scheme. In our previous
work we found that planets up to ≈33 MEarth migrate outwards
in a fully radiative disc (Kley et al. 2009). Planets with higher
planetary masses migrate inwards, and considering our previous
results it is unlikely that inclination changes this. Nevertheless
we here present simulations of planets with masses ranging
from 20 up to 100 MEarth in an isothermal H/r = 0.037 disc
and in a fully radiative disc. We only present results for moving
planets with our usual tool for increasing the planetary mass to
its designated mass during the first 10 orbits.

For all simulations we limit ourselves to the cases of i0 =
1.0◦ and i0 = 4.0◦ for all planetary masses, in the isother-
mal H/r = 0.037 disc as well as in the fully radiative disc.
Additionally, we display Jovian mass planets with inclinations
up to 15◦ in the isothermal case. For the isothermal case, we
again use the ǫ-potential with a smoothing length of rsm = 0.8,
as it turned out to be more stable in the isothermal case than the
cubic potential, while we use the cubic rsm = 0.5 potential for
the fully radiative simulations.

In all simulations displayed in this section the planet is in-
serted in the disc and starts to move immediately. This means
that a massive planet will open a gap in time in the initially un-
perturbed disc. If the planet were allowed to open a gap before it
starts to move in the disc, the evolution of the planet, especially
the evolution of inclination, would be slower since an open gap
slows down migration and inclination damping.

5.1. Isothermal disc

In Fig. 16 the evolution of inclination for planets with i0 = 1.0◦
(top) and i0 = 4.0◦ (bottom) for different planetary masses in an
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Fig. 16. Time evolution of the inclination for planets with i0 = 1.0◦ (top)
and i0 = 4.0◦ (bottom) for different planetary masses in an isothermal
H/r = 0.037 disc.

isothermal H/r = 0.037 disc is displayed. The inclination drops
immediately after the planet reaches its destined mass at nearly
the same rate for all planetary masses in both cases, for the
i0 = 1.0◦ and i0 = 4.0◦ case. It seems that a higher planetary
mass results in a slightly faster damping rate for the inclination.
However, when the inclination reaches about 20% of the initial
inclination, the 80 and 100 MEarth planets stop their fast inclina-
tion damping for a few orbits. After about 150 orbits the inclina-
tion of all planets is damped to zero, even for the initially more
highly inclined planets.

In Fig. 17 we display the surface densities for planets with
different masses for the i0 = 1.0◦ (top) and i0 = 4.0◦ (bottom)
cases after 60 planetary orbits. The two surface density profiles
are very similar, although the planets have a different starting in-
clination i0 and a different inclination at the time of the snapshot.
As the inclination of the i0 = 4.0◦ and i0 = 1.0◦ planets evolves
very similar (in the trend), it seems not surprising that the sur-
face densities reflect this behaviour. On the other hand, the sur-
face density profiles after 60 orbits do not give a clear hint to
explain the slowed down inclination damping for the high mass
planets when they reach ≈20% of the initial inclination. As ex-
pected, higher mass planets clear deeper and wider gaps inside
the disc.

The measured damping time scale τinc for planets with dif-
ferent planetary masses is displayed in Fig. 18. Starting from the
smallest planet in our calculations, the 20 MEarth, the damping
time scale reduces until the planets mass is 40 MEarth. For higher
mass planets the damping time scale increases again. The in-
crease for the 80 and 100 MEarth planets should be handled with
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Fig. 17. Surface density for planets on initial inclined, circular orbits
with i0 = 1.0◦ (top) and i0 = 4.0◦ (bottom) after 60 planetary orbits.
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Fig. 18. Measured inclination damping time scale τinc for planets with
different planetary masses in the isothermal and fully radiative regime.

care, as the measurement for these planets is quite difficult due
to the bump in the evolution of inclination. If we do not in-
clude these two planets in our thoughts, we can safely conclude,
that the inclination damping increases with the planetary mass.
The inclination of a more massive planet will be damped faster
than the inclination of a smaller planet, even more so for radia-
tive discs.

In Fig. 19 the evolution of the semi-major axis for the above
mentioned planets is displayed. Interestingly it seems that the
evolution of the semi-major axis does not depend on the in-
clination for circular orbits. All planets with equal masses fol-
low the same evolution independent of the initial inclination.
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Fig. 19. Time evolution of the semi-major axis for planets with i0 =
1.0◦ (top) and i0 = 4.0◦ (bottom) for different planetary masses in an
isothermal H/r = 0.037 disc.

For the 20 MEarth planet we found that the migration rate in the
isothermal case does not depend much on the inclination of the
planet, see Fig. 3. For higher mass planets this feature seems
to be true as well. Of course, the planets migrate inwards at a
speed dependent on the planetary mass. A higher planetary mass
results in a more rapid inward migration of the planet, as it is
predicted by linear theory (Tanaka et al. 2002), although the the-
ory formally applies only for an unperturbed disc. Our discs,
however, show clear signs of perturbation in the surface density
profile (Fig. 17).

In Fig. 20 the evolution the inclination for planets with a
Jovian mass (and for an additional planet with 20 MEarth) in
isothermal discs with different aspect ratios is displayed. The
damping of inclination follows the predicted trend that the in-
clination of planets embedded in discs with smaller aspect ratio
(H/r = 0.037) is damped faster than the inclination of planets
embedded in discs with higher aspect ratio (H/r = 0.05), which
was the result for smaller mass planets in our previous isother-
mal simulations as well. Marzari & Nelson (2009) stated that
inclination damping of higher mass planets (e.g. Jovian mass) is
considerably faster than for low mass planets (e.g. 20 MEarth).
Figure 20 shows clearly the same result for high inclinations
(i0 = 15.0), as the 20 MEarth planet loses inclination at a much
slower rate.

However, for low inclinations (i < 4.0◦) the damping of in-
clination for Jovian mass planets is considerably slower than for
low mass planets. The damping time scales obtained by fitting
our simulations are considerably higher for Jovian mass planets
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inclination plot. The black dotted lines indicate a fit with τinc = 120 for
a Jovian mass planet in an H/r = 0.037 disc and a fit with τinc = 145
for a Jovian mass planet in a H/r = 0.05 disc.

in isothermal discs, in the H/r = 0.037 disc τinc,Jup = 120 >
23 = τinc,20ME

as well as in the H/r = 0.05 disc τinc,Jup = 145 >
53 = τinc,20ME

. The i0 = 10.0◦ planet with 20 MEarth reflects this
behaviour very well. First the damping of inclination is slower
than for a Jovian mass planet, then the damping of inclination
increases and the planet ends up in the midplane of the disc. The
damping of inclination strongly depends on the interactions be-
tween disc and planet. As the Jovian mass planet opens a gap in
the disc during the time of its evolution, the interactions between
planet and disc are reduced, when the gap is opened. Therefore
the damping of inclination of a Jovian mass planet is slowed
down compared to a 20 MEarth planet, when the inclination is
already damped to about i ≈ 4.0◦ after the planet has evolved
for about 120 orbits. After the gap has opened, only little mass
remains adjacent to the planet to provide continuing damping.
In the beginning of the simulations the gap has not opened yet
and inclination damping is faster.

Overall, the damping of inclination starting from high in-
clinations (i0 = 15◦) is faster for planets with a Jovian mass
compared to small mass planets (20 MEarth) as the damping time
of inclination at high inclinations is much slower for low mass
planets, which overcompensates the faster damping at low incli-
nations. This is in agreement with the statement of Marzari &
Nelson (2009).

Inclination seems to have no visible effect on the migration
of planets inside an isothermal disc, as long as the planet’s orbit
is circular. Eccentric orbits, on the other hand, tend to change the
migration rate of the planet. Later on, we also investigate planets
on inclined and eccentric orbits at the same time.

5.2. Fully radiative disc

In Fig. 21 the evolution of inclination for planets with i0 = 1.0◦
(top) and i0 = 4.0◦ (bottom) for different planetary masses in
a fully radiative disc is displayed. The inclination is damped for
all planetary masses, but a higher planetary mass favours a faster
damping of inclination for both starting inclinations. After about
150 orbits the inclination of all planets with both individual start-
ing inclinations is damped to approximately zero. The damping
rate of the inclination is about the same for the fully radiative
and the isothermal H/r = 0.037 disc.
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Fig. 21. Time evolution of the inclination for planets with i0 = 1.0◦

(top) and i0 = 4.0◦ (bottom) for different planetary masses in a fully
radiative disc.

In Fig. 18 the measured damping time scale τinc is dis-
played for isothermal and fully radiative simulations. In the
fully radiative case, the damping time scale is reduced for in-
creasing planetary masses. If the planet reaches a certain mass
(about 80 MEarth), the damping time scale is not reduced any
more. As the planets start to open gaps in the disc, the damp-
ing of inclination is not further accelerated. It seems that gap
opening planets do not only migrate inwards at the same speed,
independent of the planets mass, but also damp their inclination
at the same speed.

In Fig. 22 the evolution of the semi-major axis for planets
with i0 = 1.0◦ (top) and i0 = 4.0◦ (bottom) for different planetary
masses in a fully radiative disc is displayed. As expected from
our previous simulations (Kley et al. 2009) only planets with
a planetary mass of MP ≤ 33 MEarth migrate outwards, while
heavier objects migrate inwards. The 35 and 40 MEarth planets
seem to migrate inwards just a little bit, before their migration is
nearly stopped. The higher mass planets (50, 80 and 100 MEarth)
migrate inwards at nearly the same speed as the planets inside
the isothermal H/r = 0.037 disc. These observations are inde-
pendent of the planets inclination.

The outward migrating low mass planets travel outwards at
a slightly faster speed in the i0 = 1.0◦ case compared to the
i = 4.0◦ simulations. This can be expected, as the calculated mi-
gration rate for 20 MEarth planets on fixed orbits is about a factor
of 5 to 8 higher in the low inclined case. The higher migration
rate for the lower inclined planets results in a faster outward mi-
gration. Finding the observed difference in the semi-major axis
being so small after about 150 orbits is a result of inclination
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Fig. 22. Time evolution of the semi-major axis for planets with i0 = 1.0◦

(top) and i0 = 4.0◦ (bottom) for different planetary masses in a fully
radiative disc.

damping. As the inclination is damped, the migration rate in-
creases significantly until the inclination is ≈2.0◦, which takes
only a few orbits starting from i0 = 4.0◦. In this little time frame,
the planet is not able to migrate a large distance, so we only ob-
serve a small difference in the evolution of the semi major axis.

6. Inclined and eccentric planets

Inclination did not change the direction of migration for plan-
ets on circular orbits. Eccentricity on the other hand stopped the
outward migration of low mass planets in fully radiative discs,
as long as the eccentricity of the planet is higher than e = 0.02
(Bitsch & Kley 2010). However, planets with lower eccentric-
ity migrate outwards in the fully radiative scheme. If an inclined
planet surrounds a star on an eccentric orbit, in what way will
these two properties of the orbit influence each other? To find
an answer, simulations of a low mass planet (20 MEarth) on an
inclined and eccentric orbit in an isothermal H/r = 0.037 and in
a fully radiative disc are computed.

6.1. Isothermal disc

Our recent work with planets on eccentric orbits has shown that
for isothermal simulations with moving planets on eccentric or-
bits the cubic potential (for the planetary potential) should be
replaced by the ǫ-potential. In the following, isothermal simu-
lations of planets on eccentric and inclined orbits we use the
ǫ-potential with a smoothing length of rsm = 0.8.
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Fig. 23. Time evolution of semi-major axis (top), eccentricity (middle)
and inclination (bottom) for planets (20 MEarth) with different eccentric-
ity and inclination in an isothermal H/r = 0.037 disc.

In this work we limit ourselves to planets with an initial ec-
centricity of e0 = 0.1, e0 = 0.2 and e0 = 0.4 and with an initial
inclination of i0 = 2.0◦ and i0 = 4.0◦. In Fig. 23 the evolution
of the semi-major axis (top), the eccentricity (middle) and incli-
nation (bottom) for planets in an isothermal H/r = 0.037 disc is
displayed.

The planets migrate inwards (loss of semi-major axis) as ex-
pected for low-mass planets in an isothermal disc. For planets
with an initial inclination of i0 = 4.0◦, the planets migrate in-
wards at a slower rate compared to the lower inclined cases. A
lower initial eccentricity results in a faster inward migration in
the beginning of the simulation for all inclinations. This faster
inward migration seems to be in a direct correlation with the
planet’s eccentricity (Bitsch & Kley 2010). When the planets
eccentricity reaches about e ≈ 0.1, the planet undergoes a short
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rapid inward migration and a more rapid loss of eccentricity,
compared to the loss of eccentricity at different eccentricities.
As soon as the e0 = 0.2 planet’s eccentricity is damped to
about e ≈ 0.1, the planet undergoes a rapid inward migration
leading to nearly the same evolution of semi-major axis as the
e0 = 0.1 planet from this time on, again for both inclinations.
Interestingly, a lower starting inclination results in a faster in-
ward migration, when the planets have an initial eccentricity,
compared to planets on circular orbits, where the inclination
seems to have no effect on the migration. A higher initial incli-
nation (i = 4.0◦) seems to result in the opposite: a slower inward
migration of the planet. We have observed a similar effect for
eccentricities: planets with a lower initial eccentricity seem to
migrate inwards at a slower rate compared to their highly eccen-
tric counterparts (Bitsch & Kley 2010).

The initial eccentricity is damped for all these simulations
with only two small differences. Planets with an initially higher
eccentricity need a longer time to be damped to zero and plan-
ets with the same eccentricity but a higher inclination also need
a longer time to damp their eccentricity. As the eccentricity is
damped to lower values, at e ≈ 0.1 we observe a more rapid
loss of eccentricity compared to the loss of eccentricity at other
times. At this point the planet loses about 50% of its (actual) ec-
centricity in the time of a few orbits. At this point in time we
also observe a faster inward migration of the planet. This depen-
dency of a rapid drop of eccentricity and a resulting decrease of
semi-major axis in the isothermal regime is in agreement with
the results found in Cresswell et al. (2007) and Bitsch & Kley
(2010)

The evolution of the inclination for the low eccentric planet
(e0 = 0.1) follows nearly the evolution of a planet on circular
orbit. The damping time is in fact marginally longer for the ec-
centric case, but besides this effect there is no difference. For the
e0 = 0.2 case the inclination starts to oscillate slightly in the be-
ginning of the simulation until it is damped to about i ≈ 3.0◦ or
i ≈ 1.5◦. Then the inclination follows approximately the damp-
ing rate of a planet on a circular orbit (see Fig. 11) until it is
damped to about zero. The high eccentric case (e0 = 0.4) shows
even more and stronger oscillations in the inclination. In the be-
ginning the planets inclination is pumped up to about ≈5.0◦,
which is 25% more than the starting inclination. In time, the am-
plitude of the oscillations becomes smaller and the frequency
higher while the overall inclination dissipates in time. These os-
cillations are observed in Cresswell et al. (2007) as well. The
time until the inclination reaches zero is about 4 times as large
as in the zero eccentricity case.

By comparing the migration rate of the inclined and eccen-
tric planet with only an eccentric planet (migrating in midplane
with a zero inclination), we observe nearly the same migration
rate for both planets. Due to these results, it seems that inclina-
tion does not influence the migration in an isothermal disc at all.

6.2. Fully radiative disc

For the fully radiative simulations we rely on our cubic rsm =
0.5 potential again. For comparison, the starting eccentricity and
inclination for the fully radiative simulations match those of the
isothermal simulations. In Fig. 24 the evolution of the semi-
major axis (top), the eccentricity (middle) and inclination (bot-
tom) for planets in a fully radiative disc are displayed.

In the beginning of the simulations all planets migrate in-
wards in the same way as in the isothermal simulations, but in
contrast to the isothermal simulations the planets reverse their
inward migration and migrate outwards after about ≈100 orbits
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Fig. 24. Time evolution of semi-major axis (top), eccentricity (middle)
and inclination (bottom) for planets (20 MEarth) with different eccentric-
ity and inclination in a fully radiative disc.

in the low eccentric case (e0 ≤ 0.2). The high eccentric case
(e0 = 0.4) takes a much longer time to reverse its inward mi-
gration. A higher initial eccentricity results in a later outward
migration of the planet. The evolution of the semi-major axis
contains at some point a quite fast loss of semi-major axis for the
initial low eccentric planets. This loss of semi-major axis corre-
lates to the eccentricity. As soon as the eccentricity is damped
to ≈0.1, the fast loss of the semi-major axis sets in. The incli-
nation of the planet seems to play no significant role in the mi-
gration process of these simulations, as for the e0 = 0.1 case the
higher inclined planet (i0 = 4.0◦) migrates outward first, while
for the e0 = 0.2 case the lower inclined planet (i0 = 2.0◦) mi-
grates outward first.

The initial eccentricity is damped for all planets, but for plan-
ets with the same starting eccentricity, the time needed to damp
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the eccentricity is longer for the higher inclined planets, see the
middle of Fig. 24. As the eccentricity is damped to ≈0.1, it is
damped with an exponential decay, which seems to result in a
faster loss of semi-major axis at the same time in the evolution
of the planet. The damping for the initial low eccentric planets
(e ≤ 0.2) takes about 120 planetary orbits, while a higher initial
eccentricity (e0 = 0.4) takes about three times longer.

The inclination damping follows in principle the evolution of
inclination of the isothermal simulations. As soon as the planet
is released in the disc, the inclination is damped as long as the
eccentricity is very low (e0 = 0.1). Higher eccentricities seem to
affect the inclination in such a way that the inclination begins to
oscillate. This oscillation is already visible in the e0 = 0.2 case,
but becomes much stronger for even higher eccentricities. The
oscillations begin to dissipate as soon as the planets eccentric-
ity is damped to about e ≤ 0.1. During time these oscilla-
tions lose amplitude and gain frequency (as we can see from
the e0 = 0.4 simulation). A higher eccentricity seems to cause a
higher and more frequent oscillation of the inclination. These os-
cillations have been observed in Cresswell et al. (2007) as well.

7. Summary and conclusions

We performed full 3D radiation hydrodynamical simulations of
accretion discs with embedded planets of different masses on in-
clined orbits. In a first sequence of simulations we have analysed
in detail the dynamics of a planet with a given mass of 20 MEarth

for the isothermal as well as the fully radiative case. For plan-
ets on fixed orbits we calculate the expected change of inclina-
tion and semi-major axis of an inclined planet on a circular orbit
embedded in the disc, which we confirm subsequently through
simulations of moving planets. For the isothermal (H/r = 0.037
and H/r = 0.05) as well as for the fully radiative simulations
the inclination is damped in time. The damping time scale in
isothermal discs depends on the disc’s thickness (H/r), as the in-
clination is damped faster for discs with lower aspect ratio than
in discs with higher aspect ratio. A smaller H/r also results in a
faster inward migration compared to a higher H/r. Our simula-
tion results agree in this respect with Tanaka et al. (2002).

For planets on inclined orbits we confirm the outward migra-
tion. Our results for planets on fixed orbits agree very well with
the simulations of planets moving inside the disc. We find that
outward migration interestingly occurs over a relatively large
range of inclination, up to about (i = 4.5◦), with a faster outward
migration for lower inclined planets. For higher inclined planets
the migration seems to be stalled in general. In our simulations,
the damping of inclination is slower in the fully radiative disc
(τinc = 26.5) compared to the isothermal disc having the same
scale height (τinc = 23), a difference that may be attributed to the
different sound speeds, isothermal versus adiabatic.

As recent studies showed, planets in a fully radiative disc
only migrate outwards if they do not exceed a certain critical
mass (Kley et al. 2009), beyond which gap formation sets it.
This outward migration does crucially depended on the shape of
the orbit of the planet in the disc, as discussed in Bitsch & Kley
(2010); Kley et al. (2009). Here, we extended those studies to
inclined planets and found that planets on circular and inclined
orbits migrate inwards in the isothermal case, and migrate out-
wards (if the planetary mass is low enough and the inclination
of the planet is below the threshold of i ≈ 4.5◦) in the fully ra-
diative case. For higher mass planets, our previous results have
been confirmed in the expected way. Planets with a mass up
to ≈33 MEarth migrate outwards and planets with higher masses
migrate inwards in the fully radiative scheme. In the isothermal

case, planets migrate inwards as predicted by linear theory
(Tanaka et al. 2002). When evolving planets with higher plan-
etary masses, the simulations started from unperturbed discs,
which changes the damping rate of inclination compared to plan-
ets starting in perturbed discs (by the presence of the embedded
planet). This was also stated for inclined high mass planets in
isothermal discs by Marzari & Nelson (2009). After the inclina-
tion is damped in time, the direction of migration only depends
on the thermodynamics of the disc and on the planetary mass.

For eccentric and inclined low mass planets we observe a
quite different behaviour. Eccentricity seems to slow down the
inward migration of planets in the isothermal regime and pre-
vents outward migration in the fully radiative scheme (for low
mass planets which would normally migrate outwards). Since
eccentricity is damped with time, this leads to slightly faster
inward migration in the isothermal regime and to a reverse of
the migration direction in the fully radiative scheme. The ori-
gin of this outward migration is created by the delicate density
structure near the planet, which is destroyed by even a very low
amount of eccentricity (Bitsch & Kley 2010). A high initial ec-
centricity gives rise to oscillations in the inclination, which be-
come weaker and more frequent in time, as the eccentricity is
damped. These oscillations seem to be responsible for a slower
damping of inclination compared to low eccentric planets.

The results by Marzari & Nelson (2009) for Jovian mass
planets indicated that inclination and eccentricity is damped in a
very short time compared to low mass planets. We can confirm
their results for inclination damping in discs with two different
aspect ratios, however this is only true for the damping of high
inclinations. For low inclinations (i ≤ 10◦) the damping of incli-
nation for low mass planets is faster than for high mass planets.
However, when considering the total time needed to damp the
inclination of a planet starting from i0 = 15.0◦, the damping is
much faster for high mass planets, which confirms the results by
Marzari & Nelson (2009). A Jovian mass planet with high in-
clination evolves more rapidly as its interactions with the disc is
stronger if no gap has opened yet.

Our results indicate that the inclination as well as the ec-
centricity of single planets are damped by the disc. At the end
of our simulations the planets end up in midplane, meaning
they have no remaining inclination. While this is in agreement
with the very flat solar system, it seems to be in contradiction
to the observed highly inclined exoplanets (Triaud et al. 2010).
However, it is known that higher eccentricities as well as incli-
nations can be produced via planet-planet interaction. For a pair
of planets embedded in discs convergent migration processes
can excite eccentricity to high values depending on the damp-
ing action of the disc (Crida et al. 2008). Stronger scattering
events can be induced in case of a multiple planet system still
embedded in the disc (Marzari et al. 2010). During the subse-
quent longterm evolution these initially excited system may then
evolve into configurations with very high eccentricity as well
as inclination (Chatterjee et al. 2008; Matsumura et al. 2010).
Thus, the combination of initial planet-disc interaction with sub-
sequent scattering processes and tidal interaction with the central
star is one pathway towards the observed strongly tilted systems
(Winn et al. 2010). On the other hand, systems such as Kepler-9
(Holman et al. 2010) seem to show clear evidence for continued
migration towards the star.
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Preprint online version: July 16, 2011

ABSTRACT

Context. The migration of planets plays an important role in the earlyplanet-formation process. An important problem has been that
standard migration theories predict very rapid inward migration, which poses problems for population synthesis models. However,
it has been shown recently that low-masss planets (20-30MEarth) that are still embedded in the protoplanetary can migrate outwards
under certain conditions. Simulations have been peformed mostly for planets at given radii for a particular disc model.
Aims. Here, we plan to extend previous work and consider different masses of the disc to quantify the influence of the physical disc
conditions on planetary migration. The migration behaviour of the planets will be analysed for a variety of positions inthe disc.
Methods. We perform three-dimensional (3D) radiation hydrodynamical simulations of embedded planets in protoplanteary discs.
We use the explicit-implicit 3D hydrodynamical codeNIRVANA that includes full tensor viscosity, and implicit radiation transport. For
planets on circular orbits at various locations we measure the radial dependece of the torques for three different planetary masses.
Results. For all considered planet masses (20-30MEarth) in this study we find outward migration within a limited radial range of
the disc, typically from about 0.5 up to 1.5-2.5aJup. Inside and outside this intervall, migration is inward andgiven by the Lindblad
value for large radii. Interestingly, the fastest outward migration occurs at a radius of aboutaJup for different disc and planet masses.
Because outward migration stops at a certain location in thedisc, there exists a zero-torque distance for planetary embryos, where
they can contineu to grow without moving too fast. For higherdisc masses (Mdisc > 0.02M⊙) convection ensues, which changes the
structure of the disc and therefore the torque on the planet as well.
Conclusions. Outward migration stops at different points in the disc for different planetary masses, resulting in a quite extended
region where the formation of larger cores might be easier. In higher mass discs, convection changes the disc’s structure resulting in
fluctuations in the surface density, which influence the torque acting on the planet, and therefore its migration rate. Because convection
is a 3D effect, 2D simulations of massive discs with embedded planets should be handled with care.

Key words. accretion discs – planet formation – hydrodynamics – radiative transport – planet disc interactions

1. Introduction

Planetary migration of embedded low-mass planets in isother-
mal discs indicates inward migration, so that the planet might be
lost in the star before the accretion disc is gone (Tanaka et al.
2002). Recent studies (starting with the work of Paardekooper
& Mellema (2006)) have shown that the inclusion of radiation
transport in planet-disc interaction studies resulted in aslowed
down or even reversed migration (Baruteau & Masset 2008a;
Paardekooper & Papaloizou 2008; Paardekooper & Mellema
2008; Kley & Crida 2008; Kley et al. 2009; Ayliffe & Bate 2010,
2011).

All authors agree that the inclusion of radiation transportis
an important effect that should be considered, however, not all
authors find outward migration. The efficiency of outward mi-
gration depends on the magnitude of positive corotation torques.
These are determined by the local entropy and vortensity gradi-
ents. For isothermal and adiabatic discs these gradients cannot
be maintained and so-called torque saturation reduces the coro-
ration effects. However, the inclusion of radiative transport and
viscosity prevents saturation, and the negative Lindblad torques
(caused by the spiral arms) can be overwhelmed by the posi-
tive contributions from the corotation region. The magnitude of
the effect depends on the planetary mass (Kley & Crida 2008;

Send offprint requests to: B. Bitsch,
e-mail:bertram.bitsch@uni-tuebingen.de

Kley et al. 2009) and the temperature gradient in the disc. For
example, Ayliffe & Bate (2011) found for temperature slopes of
β > 1.0 (with T ∝ r−β) that outward migration is possible even
for planets with up to 50MEarth in 3D simulations. The migra-
tion rate increases with an increasing temperature slope. These
results are also reflected by the theoretical analysis from Masset
& Casoli (2010). Recently, improved theoretical torque formu-
lae for low-mass planets embedded in an adiabatic disc have
been presented by Masset & Casoli (2009) and Paardekooper
et al. (2010). The most recent improvements consider the nec-
essary inclusions of radiative diffusion and viscosity (Masset &
Casoli 2010; Paardekooper et al. 2011). These have been devel-
oped for 2D discs where the diffusive effects can operate only in
the discs’s plane. Interestingly, radiative cooling alonecan lead
to similar, even stronger effects (Kley & Crida 2008).

A very important open question is how far the planet will
move outwards in a fully radiative disc. When the protoplanets
are stopped from migrating outwards at a certain point in the
disc, a protoplanet moving inwards from farther out will stop
at the same location in the disc. Therefore, a planetary trapin-
side the disc can be created, which can act as an area of plane-
tary mergers, leading to larger cores. A planetary trap inside the
disc created by surface density changes can function as a feeding
zone to planetary cores (Morbidelli et al. 2008), but it is unclear
how realistic these surface density changes are. The inclusion of
radiation transport/cooling in a disc might provide such a trap in

1
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a normal disc structure, at least for planets within a given mass
range.

In Sándor et al. (2011) the authors show in N-body sim-
ulations that because of the inclusion of unsaturated type-I-
migration (Paardekooper et al. 2010) large planetary cores(up
to 10MEarth) can form in protoplanetary discs well before the
disc is accreted onto the star.

In population synthesis models that include the standard mi-
gration prescription for isothermal discs the migration istoo
fast, such that the outcome distribution does not match the ob-
served one. Specifically, the type-I-migration rate shouldbe 10
to 1000 times slower than expected from linear analysis (Alibert
et al. 2004; Ida & Lin 2008; Mordasini et al. 2009). As pointed
out above, this could be provided by the inclusion of radiation
transport in hydrodynamical type-I-migration simulations. An
updated version of the type-I-migration, by using the formula
from Paardekooper et al. (2010), in population synthesis models
shows very promising results (Mordasini et al. 2010), but addi-
tional simulations are needed to verify these assumptions.

In our previous simulations and studies (Kley et al. 2009;
Bitsch & Kley 2010; Bitsch & Kley 2011) we have only con-
sidered one standard disc model with a given mass. In reality,
of course, protoplanetary discs can have a variety of masses. A
fully radiative disc will settle in an equilibrium state between
viscous heating and radiative transport/cooling. Given that all
other physical parameters are fixed, the resulting disc structure
only depends on the disc’s mass and viscosity, because a more
massive or more viscous disc is able to heat the disc more effec-
tively. A more massive disc therefore influences the migration
rate of embedded planets. Here we focus on low-mass planets
that can undergo outward migration in fully radiative discs.

In this paper we extend previous studies and investigate the
possible radial range over which outward migration can occur
and analyse the influence of the disc’s mass on the migration in
detail. An important effect is the onset of convection in the disc,
whichs becomes stronger for more massive discs.

In Section 2 we give a short overview of our code and nu-
merical methods, where more details can be found in (Kley et al.
2009). The influences of the distance of the embedded planet
to the central star is discussed in Section 3. We then analyse
the influence of the disc’s mass on the disc’s structure (density,
temperature, aspect ratio) and then the influence on migration of
embedded low-mass planets in Section 4. Convection in the disc
is also briefly discussed in Section 4. We then summarize and
conclude in Section 5.

2. Setup of the simulations

The protoplanetary disc is modelled as a three-dimensional
(3D), non-self-gravitating gas whose motion is described by the
Navier-Stokes equations. We treat the disc as a viscous medium,
where the dissipative effects can then be described via the vis-
cous stress-tensor approach. We also assume that the heating of
the disc occurs solely through internal viscous dissipation and
ignore the influence of additional energy sources (e.g. irradia-
tion form the central star). This internally produced energy is
then radiatively diffused through the disc and eventually emitted
from its surface. For this process we use the flux-limited diffu-
sion approximation, which allows us to treat the transitionfrom
optically thick to thin regions as an approximation. A more de-
tailed description of the modeling and the numerical methodol-
ogy is provided in our previous papers (Kley et al. 2009; Bitsch
& Kley 2010; Bitsch & Kley 2011), and for that purpose we limit
ourselves here to present only the most necessary information.

2.1. Physical setup

We solve the Navier-Stokes equations numerically using a spa-
tially second order finite volume method based on the code
NIRVANA (Ziegler & Yorke 1997), with implicit radiative trans-
port in the flux-limited diffusion approximation and theFARGO
(Masset 2000) extension as described in Kley et al. (2009). We
use a spherical polar coordinate system (r, θ, φ), where the com-
putational domain consists of a complete annulus (0≤ φ ≤ 2π)
of the protoplanetary disc centred on the star, extending from
rmin to rmax, which are determined by the location of the planet.
For symmetry reasons and because we only use non-inclined
planets, we restrict ourselves in the standard setup to the up-
per half of the disc. Hence, in the vertical direction the annulus
extends from the equator up to 7◦ above the disc’s midplane,
meaning 83◦ < θ < 90◦. Hereθ denotes the polar angle of our
spherical polar coordinate system measured from the polar axis.
For the study of convection we use in addition a two-sided disc,
see below. The central star has one solar massM∗ = M⊙, and
the total disc mass inside [rmin, rmax] is Mdisc = 0.01M⊙, un-
less stated otherwise in Section 4. For our radiative modelsthe
temperature and subsequentlyH/r is calculated self-consistently
from the equilibrium structure given by the viscous internal heat-
ing and radiative diffusion. We note that for given physics (equa-
tion of state, opacity, viscosity) the structure of the discis solely
dependent on its mass, and this is one aspect that we will inves-
tigate in this paper.

For the radiative transport we use a one-temperature ap-
proach and apply the flux-limited diffusion approximation using
analytic Rosseland opacities, for details see Kley et al. (2009).
To close the basic system of equations we use an ideal gas equa-
tion of state with constant mean molecular weightµ = 2.35 for
a standard solar mixture. The adiabatic index isγ = 1.4. For
the present study, we use a constant kinematic viscosity coef-
ficient with a value ofν = 1015 cm2/s, a value that relates to
an equivalentα = 0.004 at 5.2AU for a disc aspect ratio of
H/r = 0.05, whereν = αH2ΩK . In standard dimensionless units
with r0 = aJup = 5.2AU andt0 = ΩK(r0)−1 we haveν = 10−5.

2.2. Calculation setup

Our coordinate system rotates at the initial orbital frequency of
the planet (atr = rP). We use an equidistant spherical grid
in r, θ, φ with a resolution of (Nr ,Nθ,Nφ) = (266, 32, 768) ac-
tive cells for our simulations. Atrmin andrmax we use damping
boundary conditions for all three velocity components to min-
imize disturbances (wave reflections) at these boundaries.The
velocities are relaxed towards their initial state on a timescale of
approximately the local orbital period. The angular velocity is
relaxed towards the Keplerian values, while the radial velocities
at the inner and outer boundaries vanish. Reflecting boundary
conditions are applied for the density and temperature in the ra-
dial directions. We apply periodic boundary conditions forall
variables in the azimuthal direction. In the vertical direction we
set outflow boundary conditions forθmin = 83◦ (the surface of
the computational domain).

In our previous work, we have discussed the calculation of
the torque acting on a planet in great detail. Outward migration
seems only possible and is strongest when the planet is on nearly
circular orbits in the midplane of the disc (Bitsch & Kley 2010;
Bitsch & Kley 2011). Additionally, we stated in Bitsch & Kley
(2011) that the measured migration rate from planets on fixed
orbits is equivalent to the migration rate determined from mov-
ing planets in discs. Hence, we consider here primarily planets
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on fixed circular orbits in the midplane of the disc, and calculate
the torque acting on the planet, because the torque represents a
direct measurement of migration in this case. For a one-sided
disc we use symmetric boundaries atθmax = 90◦ (the disc’s mid-
plane). To correctly see the influence of convection in the disc
we use two-sided discs for some high-mass discs. For these sim-
ulations we used outflow boundaries for bothθmin andθmax.

The models are initialized with constant temperatures on
cylinders with a profileT (s) ∝ s−1 with s = r sinθ. The ini-
tial vertical density stratification is approximately given by a
Gaussian where the radial surface density follows aΣ(r) ∝ r−1/2

profile. In the radial andθ-direction we set the initial velocities to
zero, while for the azimuthal component the initial velocity uφ is
given by the equilibrium of gravity, centrifugal acceleration, and
the radial pressure gradient. This corresponds to the equilibrium
configuration for a purely isothermal disc. Before embedding the
planet, we bring the disc into radiative equilibrium by perform-
ing first 2D axisymmetric simulations in ther − θ plane. This
takes about 100 orbits. We then extend this model to a full 3D
simulation by expanding the grid into theφ-direction, and the
planet is embedded.

For the gravitational potential of the planet we utilize the
cubic potential, where the potential is exact beyond a transi-
tion (smoothing) radiusrsm and smoothed by a cubic polyno-
mial inside (Klahr & Kley 2006; Kley et al. 2009). Here we use
rsm = 0.5RH, whereRH is the Hill radius of the planet.

The torques acting on 20, 25, and 30MEarth planets are calcu-
lated to determine the direction of migration. The gravitational
torques acting on the planet are calculated by integrating over the
whole disc, where we apply a tapering function to exclude thein-
ner parts of the Hill sphere of the planet (Crida et al. 2008).This
torque-cutoff is necessary to avoid strong, probably noisy contri-
butions from the inner parts of the Roche lobe and to disregard
material that is gravitationally bound to the planet (Cridaet al.
2009). Here we assume (as in our previous papers) a transition
radius of 0.8 Hill radii.

3. Range of outward migration

Previous simulations by several authors (Baruteau & Masset
2008a; Paardekooper & Papaloizou 2008; Paardekooper &
Mellema 2008; Kley & Crida 2008; Kley et al. 2009) indicated
that outward migration of low-mass planets may be possible dur-
ing an early evolutionary state of planet formation. However,
because the simulations dealt mostly with planets at a givendis-
tance from the star, typically 5.2 AU, the radial range over which
the migration may be directed outwards has not been addressed
in great detail. In Bitsch & Kley (2010) we obtained some re-
sults for moving planets but the extent of the outward migration
remained unclear.

In order to address this problem, we simulate 20, 25, and
30MEarth planets on fixed circular orbits embedded in fully ra-
diative discs at various distances from the host star. The planet’s
semi-major axisrp lies in a range of 0.6 ≤ rP ≤ 5.0r0, where
r0 = rJup = 5.2AU. With increasing distance from the star, the
density and temperature of the disc decrease and at some point
in the disc the conditions for outward migration might not be
fulfilled anymore.

For this set of simulations with different planet locations we
use a disc setup with a density profile such that the total disc
mass equalsMDisc = 0.01M⊙ for a planet atrp = 1 andrmin = 0.4
andrmax = 2.5 in units ofr0. The planets are embedded in a way
that the distance to the inner edge is always the planets loca-
tion divided by 2.5, while the distance to the outer edge is the

planet’s location to the star multiplied by 2.5. This setup ensures
that the radial boundaries are always far enough away so theydo
not influence our results of embedded planets. Since the overall
surface density profile (Σ ∝ r−0.5) of the different disc models
refers to the same physical situation, the total disc mass inthe
computational domain changes in the same way as the computed
domain changes its size. The surface density at a given distance
to the central star is constant for all disc models. The rotation
frequency of the grid matches the rotation speed of the planet,
so that the planet remains at a fixed position inside the computa-
tional grid at all times.

In Fig. 1 the specific torque acting on the three planetary
masses at different distance from the central star is displayed. For
all planet masses the most extended positive torque (indicating
outward migration) is aroundr ≈ 1.0rJup. At longer distances to
the central star, the torque acting on the planets decreasescon-
tinuously to negative torques, and this transition from positive
to negative torques occurs at longer distances for lower planet
masses. For the lowest mass planet with 20MEarth the transi-
tion is atr ≈ 2.4rJup (zero-torque distance to the central star).
With even longer distances the torques remain negative but with
diminishing strength, indicating inward migration. For higher
planetary masses (25 and 30MEarth) the zero-torque distance is
decreasing (1.9 and 1.4rJup). For shorter distances to the central
star, inside the maximum, the torque acting on the planet is re-
duced again until it reaches about zero forrP = 0.5rJup for all
planetary masses.

In Fig. 2 the torque for the 20MEarth planet is again displayed
together with semi-analytical results from Paardekooper et al.
(2010, 2011). The blue crosses refer to the torque formula pre-
sented in Paardekooper et al. (2010), which applies for the usat-
urated torques in adiabatic discs. It is given by

γΓtot/Γ0 = −2.5− 1.7β + 0.1α + 1.1(1.5− α) + 7.9ξ/γ , (1)

with α andβ being the slope of the radial surface density and
midplane temperature profile, respectively

Σ(r) ∝ r−α, T (r) ∝ r−β. (2)

In the plot we useα = 0.5 andβ = 1.7, as given by our disc
model (Kley et al. 2009). For this case the slope of the entropy
profile isξ = β − (γ − 1)α = 1.5. The torque is normalized to

Γ0 =

(q
h

)2
ΣPr4

pΩ
2
P ,

with q the planet/star mass ratio,h the relative disc height (H/r),
ΣP the surface density at the planet’s location andΩP the rotation
frequency of the planet in the disc.

At r = 1.0rJup the formula from Paardekooper et al. (2010)
agrees well with our 3D simulations. However, as seen from
Eq. (1), the theoretical torque can never become negative, be-
cause all contributions (α, β, ξ) are constant. Hence, at larger
radii it remains positive and does not show a zero torque equi-
librium radius. Forr < 1.0rJup, the torque formula gives much
more extended torques acting on the planet than our simulations.
It should be noted that Eq. (1) includes Lindblad and corotation
torques where the latter include contributions from the vortic-
ity as well as entropy gradient. One should also be aware that
Eq. (1) is valid only at the beginning of the evolution when the
torques acting on the planet are not saturated. However, at later
times the flow settles to an equilibrium state where the torques
saturate and Eq. (1) is not valid any more.
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Fig. 1. Torque acting on planets with three different masses embedded
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plotted when planet and disc have reached a quasi-stationary equilib-
rium where the torque acting on the planet is approximately constant in
time.
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Fig. 2. Torque acting on a 20MEarth planet in fully radiative discs as a
function of distance from the star. Additional curves indicate the re-
sults from the torque formula published in Paardekooper et al. (2010)
and Paardekooper et al. (2011). Additionally we also plot the linear
Lindblad torque.

In Fig. 2 we additionally plot results from the improved for-
mula in Paardekooper et al. (2011) (purple asterisk). Its deriva-
tion is quite complex and we give a brief summary in the ap-
pendix. The formula captures the behaviour of the torque caused
by Lindblad resonances and horseshoe drag on low-mass plan-
ets embedded in gaseous discs in the presence of viscous and
thermal diffusion (Paardekooper et al. 2011).

For r > 2.0rJup the formula matches our simulations almost
perfectly. For 20MEarth planets the torque equilibrium radius is
also atr ≈ 2.4rJup (and the torque becomes negative for longer
distances to the central star), which is definitely a better approxi-
mation than that of Paardekooper et al. (2010). There seems to be
only marginal differences between the Lindblad torque, our sim-
ulations, and the torque formula of Paardekooper et al. (2011).
The torques converge towards the Lindblad torque as the effects
of the corotation torque become less important. A longer dis-
tance to the central star increases the width of the horseshoe
orbit (xs ∝ a), which in turn leads to a reduction of the coro-
tation torque. The corotation torque staturates for long distances
to the central star, so that its effect becomes small compared to
the now dominating Lindblad torque. The total torque therefore
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Fig. 3. Torque acting on a 20MEarth planet in fully radiative discs as a
function of distance from the star. The additional curve indicates the
result from the theoretical formula by Masset & Casoli (2010).

converges towards the Lindblad torque in the formula and in the
simulations.

For r < 2.0rJup the formula and our simulations show some
differences. For 1.2 < r < 2.0rJup the formula predicts more
extended torques acting on the planet than the 3D simulations,
while for r < 1.2rJup the formula predicts reduced torques acting
on the planet. At the often used reference radiusr = 1.0rJup the
torque formula and our 3D simulations differ by a factor of about
two. For even shorter distances to the central star, the formula
shows a rapid drop-off that leads to extended negative torques,
while the simulations only show a slower drop-off in the torque
and remain in the positive regime.

There are many reasons for the differences between the sim-
ulations and the formulae. The formulae in Paardekooper et al.
(2010) and Paardekooper et al. (2011) were derived for 2D discs
only, but the horseshoe drag can be even stronger in three dimen-
sions, as shown for isothermal discs in Masset et al. (2006).The
radiative diffusion is also most effective in the vertical direction,
meaning that the two-dimensional approximation is restricted to
the orbital plane of the embedded planet. The formulae were de-
rived for background gradients of temperature and surface den-
sity, but as the disc with an embedded planet evolves, the struc-
ture of the disc changes and the basic assumptions (gradients
in temperature, density, and so on) used to derive the formu-
lae might not be valid any more. This is in particular true for
planets in the mass range studied here, because the theory has
been developed for lower mass planets, which do not alter their
surroundings significantly. A more detailed discussion about the
smoothing of the planet in Paardekooper et al. (2011) can be
found in Appendix A. Nevertheless, there seems to be a rough
qualitative agreement between the improved torque formulaof
Paardekooper et al. (2011) and our numerical results.

In Fig. 3 we also plot the results from Masset & Casoli
(2010), who provided an alternative recipe for planetary miga-
tion in viscous discs with thermal diffusion. We do not cite the
full formula here, because it is very complicated and long. In
paragraph 8 of Masset & Casoli (2010), a summary of the torque
formula is given.

For short distances to the central star (r < 0.9rJup) the
formula agrees well with our simulations, but for an increas-
ing distance to the central star, considerable differences arise.
Moreover the formula seems not to become negative for our sim-
ulated regime, even for long distances to the central star, as in
Paardekooper et al. (2010). The formula represents the torque
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drop off to shorter distances to the central star very well, which
was also found in Paardekooper et al. (2011).

In Fig. 4 the radial torque densityΓ(r) is displayed for
20MEarth planets atrP = 0.6,rP = 1.0,rP = 2.5 andrP = 4.0rJup,
where the radius is normalized to the actual planetary distances
to allow a direct comparison. In all curves the contributions by
the Lindblad torques are clearly visible, positive forr < 1 and
negative forr > 1. The contribution responsible for the torque
reversal, the ’spike’ just insider = 1, is visible only for the
rP = 0.6 andrP = 1.0 locations, which both show an over-
all positive total torque. Even though the torque acting on the
rP = 0.6rJup planet is much reduced, the spike in the torque dis-
tribution is clearly visible. In Kley et al. (2009) we discussed the
origin of the spike for therP = 1.0rJup planet. It is an indicator
for a density enhancement ahead of the planet just inside ofrP,
and thus creating a positive torque.

For therP = 2.5rJup case the corotation spike in the fully ra-
diative case in the torque density is not visible any more, only the
Lindblad torques are visible. The resulting total torque isabout
zero, which indicates that the Lindblad torques are just counter-
balanced by the corotation effects. For even longer distances to
the central star, the torque is identical to the (negative) Lindblad
torque, indicating inward migration (see also Fig. 1).

In Kley et al. (2009) we explained in great detail with
the help of 2D surface density plots how the torque acting on
the planet is created in fully radiative discs. The torque act-
ing on a 20MEarth planet on a circular orbit atrP = rJup in
a fully radiative disc is positive, indicating outward migration.
In Fig. 5 the 2D surface density of the 20MEarth planets at
r = 0.6, 1.0, 2.5, 4.0rJup (from top to bottom) is displayed. The
origin of the structure of the standardrP = 1.0rJup case (second
from top) was described in Kley et al. (2009), and we display
this case here again for better reference.

The planet located atrP = 0.6rJup (top panel) is still prone to
outward migration (see positive torque in Fig. 1), but at a slower
rate. The surface density distribution shows some significant dif-
ferences compared to therP = 1.0rJup planet. The density in-
crease ahead and inside of the planet (φ > 180◦ andr < 0.6) is
still visible in therP = 0.6rJup case, but the density decrease be-
hind the planet (φ < 180◦ andr > 0.6) is not that clearly visible.
Indeed it seems as if the density behind the planet increasedin a
way that the total torque acting on the planet is reduced dramat-
ically, resulting in reduced positive torque acting on the planet.

For the planet atrP = 2.5rJup, where the total torque act-
ing on the planet is about zero, the density increase ahead ofthe
planet is no longer visible in the surface density plot, but the de-
crease behind the planet is clearly visible. It also seems that the
planet is able to deplete a larger area around it, possibly owing
to the onset of gap formation. For even longer distances to the
central star (e.g.rP = 4.0rJup), the effect becomes ever stronger,
and the gap is more pronounced. The density increase in front
of the planet is no longer visible at all. The torque acting onthis
planet is clearly negative, indicating inward migration. With in-
creasing distance from the host star, the opening angleδ of the
spiral arms becomes smaller (see Fig. 5), as can be inferred from
δ ≈ cs/vKep which scales∝ r−0.35 for our temperature gradient
of T (r) ∝ r−1.7.

To analyse the extent of outward migration from our disc
properties in more detail, it seems useful to compare various
time scales: the libration, the radiative and the viscous time scale
in the disc. The necessary unsaturated torques needed for sus-
tained outward migration require approximately equal libration
and radiative diffusion times (see Baruteau & Masset (2008a);
Paardekooper & Papaloizou (2008)). For the latter we use in our
case the radiative diffusion time scale,τrad. We define (Bitsch &
Kley 2010)

τrad =
s2

Drad
, (3)

with the diffusion coefficient

Drad =
4caT 3

3cvρ2κ
. (4)

For the typical diffusion lengths we substitute the vertical disc
height, i.e.s = H, where we useH = cs/Ω with the sound speed
cs. The libration time given by (Baruteau & Masset 2008a)

τlib = 8πrP/(3ΩK xs) , (5)

where xs denotes the half-width of the horseshoe-orbit,xs =

1.16rP

√
q/(
√
γH/r). Similarly to the radiative diffusion time,

the viscous time scale is given byτvisc = s2/ν, again withs = H,
and a constantν. To compute the time scales all required quanti-
ties are evaluated in the midplane of the unperturbed disc atthe
beginning of the simulations. This applies to the density, temper-
ature, opacityκ(ρ, T ), and the sound speed andΩ.

The three time scales are displayed in Fig. 6. For accretion
discs that are solely heated internally by viscous dissipation we
expect in equilibriumτrad ≈ τvisc. Apparently, this relation is ful-
filled well. We have plotted the libration time for two different
planet masses, 20 and 30MEarth. Time scale arguments suggest a
most efficient outward migration for equalτlib andτrad, which is
indeed roughly what we find in our 3D simulations. However,
the overall range of outward migration is surprisingly broad.
Specifically we find that 20MEarth planets are prone to outward
migration up to aboutr ≈ 2.4, where the two time scales differ
by a factor of 3-4. For 30MEarth planets the range of outward mi-
gration is substantially smaller and centres directly around equal
libration and radiative time scale.

We have checked the above estimates of the torques for a sta-
tionary planet with additional simulations of 20MEarth planets in
discs, starting atr = 2.0rJup andr = 3.0rJup respectively, which
were able to move freely inside the disc. The planets gather in
this case indeed at the zero torque radius (results are not dis-
played here).
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Fig. 5. Surface density maps for a 20MEarth planet on fixed circular orbit
in fully radiative discs at four different locations. The distance from star
to planet changes (from top to bottom):rP = 0.6, rP = 1.0, rP = 2.5 and
rP = 4.0 (in Jupiter radii). Please note the slightly different colour scale
for each plot.
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Fig. 6. Radiative and viscous diffusion time scales that depend on the
distance from the central star for our standard disc model. To compute
the time scales we used the density and temperature of the midplane
at the beginning of the fully radiative simulations (when the disc is
in the r − θ equilibrium between viscous heating and radiative trans-
port/cooling). Libration time scales are stated for 20 and 30MEarth plan-
ets.

4. Influence of the disc’s mass

In this section we examine the influence of the disc’s mass on
the migration of low-mass planets embedded in these discs. First
we compare the relevant physical properties of the discs with
different masses, and then we investigate the planetary migration
in those discs. We then finally discuss convection inside fully
radiative discs.

4.1. Properties of discs with different masses

In our previous work, the disc’s mass was fixed to 0.01M⊙. We
now extend the range of disc masses from 0.005M⊙ to 0.04M⊙
(with respect to the standard radial distance, from 0.4− 2.5). All
models started locally isothermal withH/r = 0.05 and during
initial evolution on time this will change to the appropriate equi-
librium configurations (between viscous heating and radiative
transport/cooling).

In Fig. 7 we display the density, temperature, and the as-
pect ratio of the equilibrium discs for different disc masses at
r = 1.0. Density and temperature, andH/r are evaluated in the
disc’s midplane. The results are as expected from our previous
simulations. A higher mass of the disc results in a higher density,
temperature, and aspect ratio of the disc in the equilibriumstate.
In the isothermal case, a higher aspect ratio of the disc would
result in a slower inward migration of a low-mass planet, see
Tanaka et al. (2002) for linear analysis and e.g. Bitsch & Kley
(2010) for non-linear simulations. However, low-mass planets in
fully radiative discs migrate outwards, so that the linear isother-
mal approach is not valid any more.

In Fig. 8 the radial distributions of surface density (top) and
temperature (bottom) are displayed. The temperature has been
measured in the disc’s midplane. By construction, the surface
density increases for higher disc masses, while it falls offwith in-
creasing distance to the star, on average according toΣ(r) ∝ r−1/2

as expected for a constantν. The surface density profiles for
the higher mass discs withMDisc ≥ 0.015M⊙ show some fluc-
tuations. With increasing disc mass, these fluctuations become
stronger and reach out to a longer distance from the star. While
they are quite short forMDisc ≤ 0.02M⊙ and reach only to
r ≈ 1.3, they become very strong and reach out tor ≈ 2.3 for
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Fig. 7. Density (top), temperature (middle) and aspect ratio (bottom) of
discs with different masses in the initial equilibrium state. All quantities
are measured in the disc’s midplane at the reference distance, r = 1.0.

MDisc = 0.04M⊙. These fluctuations of the surface density vary
in time and are related through convective motions in the disc,
see below.

The described fluctuations in the surface density can also
be seen in the temperature profiles of discs with different disc
masses (bottom panel in Fig. 8). The variabilities of the temper-
ature are not as strong as those for the surface density, neverthe-
less, they are clearly notable forMDisc ≥ 0.015M⊙ and increase
with the disc’s mass. They also, change in time, as does the sur-
face density. A higher disc mass seems to support stronger fluc-
tuations that reach farther out into the disc.

Because a higher disc mass results in a higher aspect ratio
of the disc, the cut-off of the computed domain (at 7◦ above
and below the midplane) might change the structure of the disc.
Additional simulations with largerθ did not change the density
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Fig. 8. Surface density (top) and temperature (bottom) of discs with dif-
ferent masses in the equilibrium state of the disc. The temperature is
measured in the disc’s midplane.

and temperature patterns atθ = 83◦ andθ = 97◦ for all disc
masses (see also Kley et al. (2009)). However, a too low bound-
ary substantially changes the distributions and might therefore
influence convection in the disc as well.

The changes in the surface density profiles have a direct
influence on the migration of an embedded planet. If a planet
is embedded in a region in the disc where the fluctuations of
the surface density are very strong (i.e. strong convection), the
direction of migration might not be clearly determinable, be-
cause changes in the surface density profile directly influence
the migration. Stationary gradients in surface density profiles
can even be used as planetary traps to collect planetary embryos
(Morbidelli et al. 2008).

4.2. Influences on the migration of low-mass planets

As mentioned above, a different aspect ratio of the disc will
change the rate of planetary migration. In the isothermal case,
a higher aspect ratio will result in slower inward migrationin
theory (Tanaka et al. 2002), which we supported in our previ-
ous simulations (Bitsch & Kley 2010; Bitsch & Kley 2011). A
higher disc mass results in a higher aspect ratio and temperature
of the disc, and we may expect changes in the migration rates.
When the planet is farther away from the central star, the tem-
perature and density of the disc are reduced. If the reduction in
density and temperature is sufficient, the planets stop their out-
ward migration (see Fig. 1). One might now expect that for discs
with very low masses the torque acting on a 20MEarth planet at
r = 1.0rJup might become negative. Very high temperatures and

7



Bitsch & Kley: Range of outward migration and influence of thedisc’s mass on planetary migration

high densities inside the disc, on the other hand, might influ-
ence the outward migration as well. Following the formula of
Paardekooper et al. (2010) in Equation (1), one might suspect
stronger torques acting on planets in more massive discs forcon-
stantα, β andξ (increase in surface density overcompensates the
increase in aspect ratio).

In the top panel of Fig. 9 the total torque acting on 20MEarth
planets on circular orbits embedded in fully radiative discs with
different masses and the theoretical results from Paardekooper
et al. (2010) and Paardekooper et al. (2011) are displayed (blue
and purple). The torque acting on the planet remains nearly con-
stant within a small intervall around our standard disc massof
0.01M⊙. For lower disc masses, the torque drops off very rapidly
to even negative values forMDisc = 0.005M⊙, as we expected.
For higher disc masses, the torque drops off as well. First at a
faster rate (to≈ 0.020M⊙), then at a slightly slower rate, until
it reaches an about zero torque state forMDisc = 0.040M⊙. This
contradicts to our first expectation that planets in more massive
discs should experience a higher torque, the reason may be a
change in the temperature gradient and the influence of convec-
tion.

When looking at the surface density profile displayed in
Fig. 8, it is clear that the changes in the surface density may
disrupt the very sensitive density pattern near the planet.As the
convection cells in the disc change with time, the torque acting
on the planet will change as well, giving rise to high fluctua-
tions/oscillations in the total torque acting on the planet. Hence,
the torques acting on the planet have been averaged over 20 plan-
etary orbits. After averaging, the torques acting on planets in
convective discs show only very low fluctuations.

For disc masses around≈ 0.01M⊙ the theoretical formula
from Paardekooper et al. (2010) (see eq. 1) fits our 3D simula-
tions quite well. For very low disc masses (Mdisc = 0.005M⊙),
however, the fit is not as good. This may be because of the re-
duced disc mass and the consequently changed surface density
distribution (which changes the torque acting on the planet),
as explained in Section 3. For higher disc masses (Mdisc ≈
0.015M⊙), the two torque values differ more and more. As the
torques of our simulations tend to go to zero, the theoretically
predicted adiabatic torques from Paardekooper et al. (2010) be-
come even more extended.

The formula from Paardekooper et al. (2011), which includes
the important effects of viscosity and heat diffusion, differs by a
factor of two near disc masses ofMdisc ≈ 0.01M⊙ as one could
have expected from the results presented in Fig. 2. For higher
disc masses, the torques from Paardekooper et al. (2011) be-
come even more reduced and even drift to the negative regime
for Mdisc ≈ 0.04M⊙. The torques from our simulations follow
the trend of the reduction, but they do not reach negative values.
Interestingly, the overall slopes of the simulations and torque
formuala generally agrees despite a constant shift. Besides the
differences described in Section 3, more differences arise from
convection in the disc, because convection results in fluctuations
in the torque, which is not considered in the analytical formulae.
However, convection seems to play a role only for discs with
Mdisc > 0.02M⊙.

4.3. Torque analysis

In the bottom panel of Fig. 9 the radial torque densityΓ(r) is dis-
played for different disc masses. For the lowest disc mass in our
simulations,MDisc = 0.005M⊙, the usual spike in the torque den-
sity cannot be seen. The spike in the torque density distribution is
an indication for a positive torque in a fully radiative disc(Kley
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Fig. 9. Torque acting on a planet located at 5 AU for different disc
masses.Top: Specific total torque acting on planets (20MEarth) embed-
ded in discs with different disc masses. The planets embedded in the
higher mass discsMDisc > 0.02M⊙ are in the convective zone in the
disc, so that the torque acting on the planet is very noisy andhas been
averaged over 20 planetary orbits. Additionally, we over-plotted results
(blue and purple) from the theoretical torque formulae of Paardekooper
et al. (2010, 2011) for 20MEarth planets.Bottom: Radial torque den-
sity Γ(r) acting on the planet for different disc masses. For comparison,
the vertical line indicates the location of the maximum as found for our
standard case.

et al. 2009). For higher disc masses (up toMDisc ≈ 0.02M⊙), it is
is clearly visible. For those disc masses, the total torque is indeed
positive (see top panel of Fig. 9), indicating outward migration
of the embedded protoplanet.

The torque density for theMDisc = 0.04M⊙ disc seems to in-
dicate a total positive torque acting on the planet, and it isindeed
positive at the moment of the snapshot, but as the fluctuations
in the surface density change in time, so does the torque act-
ing on an embedded planet. Therefore the torque density for the
MDisc = 0.04M⊙ disc at one single moment during the evolution
does not necessarily reflect the longterm outcome, if the fluctu-
ations are to strong. This time variation of the total torqueand
torque density acting on the planet is displayed in Fig. 10. The
top panel in Fig. 10 shows the time evolution of the total torque
acting on embedded planets for discs with different disc masses.
For Mdisc < 0.02M⊙ the torque acting on the planet is constant in
time (after about 50 orbits), while it shows very high fluctuations
for Mdisc = 0.04M⊙. In the bottom panel of Fig. 10 the torque
densityΓ(r) for a 20MEarth planet in aMdisc = 0.04M⊙ disc is
shown. The torque density is plotted at different times. Because
the total torque was fluctuating very much, it is no surprise to
find these fluctuations for the torque density as well. These fluc-
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tuations, induced by convection, clearly show that a higherdisc
mass disturbs the evolution of the torque.

In Fig. 11 the surface density profiles of fully radiative discs
with disc masses of 0.005, 0.015 and 0.04M⊙ with embedded
20MEarth planets are displayed. The planet in the 0.005M⊙ disc
generates a very similar surface density structure compared to
our standard 0.01M⊙ disc (second panel in Fig. 5). The overall
density is, of course, reduced (because the disc mass is much
lower), but the general pattern of the density increases in front
of the planetφ > 180◦ andr < 1.0 and the decrease behind the
planetφ < 180◦ andr > 1.0 remains intact. However, the density
structure relevant for outward migration is not as pronounced as
it should be to result in a positive torque acting on the planet.

For planets embedded in discs with higher masses, the pic-
ture is quite different. For a disc mass of 0.015M⊙ (middle pic-
ture in Fig. 11) the density structure in the direction of thestar
(r < 0.9rJup) is very distorted, but one can still see the density
increase ahead and the density decrease behind the planet. The
distortion seems to reduce the torque acting on the planet, but
the overall torque is still positive, indicating outward migration.
For an even higher disc mass (bottom picture in Fig. 11 with
MDisc = 0.040M⊙) the distortions in the disc increase more. The
density structure, normally seen for low-mass planets in fully
radiative discs, is no longer visible at all. The distortions are so
strong that the torque acting on the planet becomes about zero,
indicating only a low migration rate.
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Fig. 11. Surface density maps for planets on fixed circular orbits in fully
radiative discs with different disc masses (from top to bottom):MDisc =
0.005M⊙, MDisc = 0.015M⊙ and MDisc = 0.040M⊙. The disruption in
the surface density patterns for the higher mass discs are caused by
convection inside the disc.

However, in this last case the torque is in a state of constant
fluctuations, which complicates realistic predictions about the
direction of migration in these massive discs. The fluctuations
of the torque have their cause in fluctuations of the density pat-
terns, which indicates that the convective zone inside the disc is
enlarged compared to low-massive discs. We observed the phe-
nomenon of convection briefly in our previous work (Kley et al.
2009) for discs withMDisc = 0.01M⊙ as well, but the convective
zone did not reach the planet, and thus did not disturb the density
pattern around the planet.
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In Fig. 12 we display the radiative diffusion time scale and
the libration time scale for discs with different masses. In or-
der to keep the torques acting on the planet unsaturated (to
evoke outward migration), the libration and radiative diffusion
time scale need to be approximately equal (Baruteau & Masset
2008a; Paardekooper & Papaloizou 2008). However, for convec-
tive discs the equilibrium state through cooling through convec-
tion is reached only whenτrad > τvisc as observed in Fig. 12. The
time scales for the 0.005M⊙ disc indicate outward migration in
a region atr ≈ 2.0rJup, but atr = 1.0rJup the time scales differ
by a factor of 4, indicating that the torques are not kept unsat-
urated in this region of the disc, which in turn indicates inward
migration (as presented in in the top figure in Fig. 9).

For the 0.015M⊙ disc the time scales are nearly identical at
r = 1.0rJup, which indicates outward migration (as can be seen
in the top of Fig. 9). However, for longer distances to the central
star, the time scales start to differ, which indicates inward mi-
gration. In the 0.040M⊙ disc, the time scales differ by a factor
of 3 atr = 1.0rJup, which indicates inward migration. However,
the measured torque acting on the planet is positive, indicating
slow outward migration. But because the planet is embedded in
a highly convective region in the disc, it is very difficult to pre-
dict the motion of the planet correctly by considering only the
time scales.

4.4. Orbital evolution

In Fig. 13 the evolution of semi-major axis for 20MEarth plan-
ets in isothermal and fully radiative discs with different disc
masses is displayed. The isothermal reference simulationsare
started from aH/r = 0.037 disc, which represents theH/r value
at the planets starting location in the fully radiative regime. In
the isothermal disc, no convection is present and thereforethe
embedded planet migrates as expected. A higher disc mass re-
sults in a faster inward migration. However, it seems that for the
Mdisc = 0.04M⊙ disc the type-III-migration regime is hit, be-
cause the planet moves inwards very fast.

For a planet on a fixed circular orbit in a fully radiative
disc with Mdisc = 0.04M⊙ we determined a positive torque (see
Fig. 9) by averaging in time. However, the total torque acting
on the planet undergoes strong fluctuations in time (see Fig.10).
When embeddeding a 20MEarth planet in such a highly convec-
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Fig. 13. Evolution of semi-major axis for 20MEarth planets (starting at
r = 1.0rJup) in isothermal and fully radiative discs with different disc
masses.

tive disc, the evolution pattern should to some extend reflect the
strong fluctuations in the torque acting on a planet on a fixed
orbit. Indeed, the planet experiences some small kicks in its evo-
lution pattern (see Fig. 13). Interestingly, the planet migrates
inwards despite the positive torque acting on a fixed planet.It
seems that in the convective region of high-mass discs, the mea-
surement of the torque for planets on fixed orbits is not as re-
liable as for planets in low-mass discs. Additionally, the time
averaging may have to be performed over a longer time span.

4.5. Convective zone

In order to investigate whether convection is actually present in
the disc, we display the velocities inz-direction (out of mid-
plane of the disc) for different disc masses (MDisc = 0.005M⊙,
MDisc = 0.015M⊙ andMDisc = 0.04M⊙) in the disc’s midplane
in Fig. 14. These plots represent simulations with a whole disc,
meaning 83◦ ≤ θ ≤ 97◦. As the surface density plots indi-
cated, there are no disrupted areas in the velocity patters for the
MDisc = 0.005M⊙ simulations. Therefore for this low disc mass
we observe no convection near the planet.

However, for theMDisc = 0.015M⊙ case the surface density
patterns already indicated that convection is possible in the disc
inside of the planet’s distance to the central star. The velocity dis-
tributions confirm this result, lines with positive velocities (indi-
cating a flow towards the upper boundary of the disc) alternate
with lines with negative velocities (indicating a flow towards the
midplane of the disc). These flows are a clear indicator of mo-
tion caused by convection in the disc. In theMDisc = 0.040M⊙
case, the fluctuations in the surface density increased dramat-
ically, as did the changes in the velocity pattern. Alternations
between positive and negative velocities have increased and in-
dicate a very strong convective region that disturbs the torque
acting on the planet (and therefore it’s migration). The flowpat-
tern in the disc is very erratic, making it absolutely necessary
to average the torque acting on an embedded planet for many
orbits.

For simulations that cover only the upper half of the disc,
the convection cells inside the disc end at the disc’s midplane,
but in reality these convective cells continue to the lower half of
the disc. However, that convection inside the disc changes the
behaviour of the planet disc interactions can also be seen for
simulations containing only one half of the disc.
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Fig. 14. Vertical velocities inz-direction for planets on fixed circular
orbits in fully radiative discs with different disc masses (from top to
bottom) in the disc’s midplane:MDisc = 0.005M⊙, MDisc = 0.015M⊙
and MDisc = 0.04M⊙. The disruption in the velocity patterns for the
higher mass discs are caused by convection inside the disc. Apositive
velocity simulates outward flows, while a negative velocityindicates a
flow towards the disc’s midplane.

In Fig. 15 the velocity inz direction is displayed for a half-
size disc (only the upper half of the disc is computed, top figure)
and for a full disc. These computations have been performed
only for fully radiative axisymmetric 2D discs (inr-θ direc-
tion) with a disc mass ofMdisc = 0.04M⊙ without an embedded
planet. The convection in the disc is clearly visible. In both sim-
ulations the convection cells in the disc become more symmetric
for distances longer thanr > 1.25rJup, meaning that the veloc-
ity changes from positive to negative only in radial direction and
not in the vertical direction as well. For shorter distancesto the
central star the convection cells are very irregular in bothcases.
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Fig. 15. Velocities in z-direction for 0.04M⊙ discs without planet. In
the top panle only the upper half of the disc was simulated, while in
the bottom panel both sides of the disc were simulated (with twice the
number of grid cells inθ direction). The other simulation parameters
are identical.

When putting a 20MEarth planet in the 0.04M⊙ discs, the
structure of the convective cells changes as the disc gets dis-
turbed by the planet. Without the planet, the convective cells
are very regular for distances to the central star exceedingr >
1.25rJup. With an embedded planet these regular structures break
down and become very irregular, as can be seen in Fig. 16. This
effect may caused by to the wake created by the planet inside
the disc, which acts as an additional heat source. At shorterdis-
tances to the central star, the structure is irregular with or without
an embedded planet.

The velocity patterns for the one sided and two sided discs
show a little difference. It seems that the fluctuations in veloc-
ity are more centred in midplane for the one sided disc, while
they seem to be located near the upper and lower boundaries for
the two sided discs. This effect has several reasons. In the one
sided disc, material is reflected at the midplane of the disc,which
might lead to an increase of flucutations near the midplane. In the
two sided disc, material can flow through the midplane, so that
the fluctuations near the midplane are reduced. Furthermore, the
one sided disc might be unrealistic if convection is presentin the
disc.

However, the general structure changes when both halves of
the disc are computed, independent of an embedded planet. The
convection cells are now moving through the midplane of the
disc, which was not possible for simulations of only one half
of the disc, see also Kley et al. (1993); Klahr et al. (1999).
Therefore, the surface density structure in the two sided disc
(with Mdisc = 0.04M⊙) is slightly different compared to the one
sided disc. In the two sided case, the fluctuations in the surface
density continue only to≈ 1.5rJup, while they covered the whole
disc in the one sided case. The temperature profiles, on the other
hand, show no difference at all. We therefore only expect little
change in the torque acting on planets embedded in one or two
sided discs atrP = 1.0rJup.

Simulations of embedded 20MEarth planets in fully radiative
discs that cover both sides of the disc show only very small dif-
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Fig. 16. Velocities in z-direction for 0.04M⊙ discs with embedded
20MEarth planet. In the top panel only the upper half of the disc was
simulated, while in the bottom panel both sides of the disc were sim-
ulated (with twice the number of grid cells inθ direction). The other
simulation parameters are identical.

ferences in the velocity pattern in mid-plane of the disc. The
fluctuations in time of the torque acting on the planet embed-
ded in Mdisc = 0.04M⊙ and Mdisc = 0.03M⊙ discs are compa-
rable (with only small differences in the amplitude of the fluc-
tuations) for both simulations, confirming our previous assump-
tions. Simulations of planets embedded in lower mass discs show
no difference at all (simulations not displayed here), because the
convective region does not reach to the planet at all.

Considering that a longer distance from the central star re-
sulted in a turn from outward to inward migration for a 20MEarth

planet (see Fig. 1) because of a reduction in temperature and
density at the given location of the planet, one might argue that
the zero-torque distance from the central star might be at longer
distances for higher disc masses. Moreover, as the disrupting
convective zone in massive discs reaches farther out from the
star, outward migration might be possible at larger radii inmore
massive discs, because the disc’s convective zone stops at longer
distance to the central star and the density is still high enough to
produce the surface density patter needed for outward migration.

Additional simulations with 20MEarth planets in 0.02, 0.025,
0.03 and 0.04M⊙ discs withrp = 2.0, 2.5, 3.0 and 4.0rJup, re-
spectively, confirm our assumption (see Fig. 17). The torques
acting on those planets are positive, indicating outward migra-
tion, and show no fluctuations in time. The surface density plots
also show no sign of convection in the disc at the location of
the planet (not displayed here). It seems that outward migration
is therefore possible to farther distances from the centralstar in
more massive discs.

The picture of convection in our disc would change when in-
cluding stellar irradiation because it would heat the surfaces of
the disc in contrast to the applied cooling right now. This would
result in less convection in the disc. Because the convective re-
gion is a result of the higher surface density (increasingτrad)
and viscosity in the disc, a reduction in viscosity could prevent
convection in the disc. However, a reduction of viscosity also
reduces the torque of an embedded planet, so that outward mi-
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Fig. 17. Specific torque acting on 20MEarth planets embedded in 0.02,
0.025, 0.03 and 0.04M⊙ discs at the following distancesrp = 2.0, 2.5,
3.0 and 4.0rJup, respectively.

gration might not be possible any more, even for low-mass discs.
The influence of viscosity will also be adressed in a next paper
in much more detail.

In self-gravitating discs, the torque acting on an embed-
ded planet can differ by a factor of two compared to non self-
gravitating discs, as shown by Baruteau & Masset (2008b).
These authors also state that self-gravity has no effect on the
corotation torque in the linear regime, but our 3D simulations are
in the non-linear regime. Therefore the influence of self-gravity
on planet migration in fully radiative discs should be investigated
in the future.

The Toomre stability criterion can be used to estimate the
stability of discs against self-gravity (Toomre 1964). Thestabil-
ity parameter reads

Q =
csκep
πΣG

, (6)

wherecs is the sound speed in the disc,κep is the epicyclic fre-
quency, which for Keplerian discs is approximately equal tothe
angular frequencyΩ, Σ is the surface mass density andG is the
gravitational constant. In order to achive stability in discs, the
stability parameter must beQ ≫ 1. For all disc masses used in
this work, this criterion is fulfilled well, so that the discsare not
gravitationally unstable.

Because convection is a 3D effect, 2D simulations (inr-φ
direction in the midplane) of fully radiative discs with high discs
masses (Mdisc > 0.02M⊙) cannot capture this effect. Therefore
planets embedded in these 2D simulations will not be exposed
to these fluctuations and might therefore be inaccurate nearthe
central star because of convection in the disc.

5. Summary and conclusions

We performed full 3D radiation hydrodynamical simulationsof
low-mass planets embedded in accretion discs at different dis-
tances to the central star and for various disc masses.

In the first sequence of our simulations we changed the plan-
etary distance to the central star of embedded planets on circular
orbits. With increasing distance to the central star, the torque
acting on 20MEarth planets embedded in fully radiative discs be-
comes even more reduced and it reaches negative torques for
longer distances. We find an equilibrium, zero-torque distance,
to the central star for 20MEarth planets atr ≈ 2.4rJup. This equi-
librium distance varies with the planetary mass (for 25MEarth
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planets it isr ≈ 1.9rJup andr ≈ 1.4rJup for 30MEarth planets),
indicating that a quite extended region in the disc might actas a
feeding zone to create even larger planetary cores. The concept
of equilibrium radius (zero torque radius) for planetary embryos
in fully unsaturated discs has been stated in Lyra et al. (2010) as
well and it could easily act as a feeding or collection zone for
planetary embryos.

Planets embedded in fully radiative discs migrating outwards
create a very sensitive pattern in the surface density distribution.
Ahead and inside of the planet a density increase is visible (see
second panel from the top in Fig. 5), which shrinks with in-
creasing distance to the central star. This density enhancement
is indeed accountable for the positive torque acting on the planet
(also visible as a spike in the radial torque density distribution in
Fig. 4), but as the distance to the central star increases, this ef-
fect becomes less, so that it cannot overcompensate the negative
Lindblad torques any more, which results in inward migration.

We compared our results to the recently developed torque
formulae by Paardekooper et al. (2010), Paardekooper et al.
(2011) and Masset & Casoli (2010). Paardekooper et al. (2010)
includes just the fully unsaturated torques in the inviscidand
adiabatic case, shows no torque reversal option and is as such
unphysical when comparing it with the long-term evolution of
planets. This formula is only valid in the first orbits after the
planet is embedded when the torques are still unsaturated, how-
ever, the torques do saturate in time. However, as expected,the
improved version of Paardekooper et al. (2011) that includes vis-
cous and heat diffusion describes our results more accurately.
Even though an exact match has not been achieved, nevertheless
the trend seems agree quite well. The Paardekooper et al. (2011)
formula shows a difference of a factor of two atr = 1.0rJup,
which may have several causes.

The formulae are derived for 2D discs, while our simulations
are 3D, which accounts for vertical diffusion that can change the
structure of the disc. This might be a problem because the for-
mulae were also derived for gradients in temperature and sur-
face density, but in a real disc the temperature and surface den-
sity profiles are disturbed when a planet is embedded in a disc.
Because the formulae were derived and checked for a 5MEarth

planet (with about 20 per cent agreement), the disturbancesof
such a small planet in a disc are much weaker than for our em-
bedded 20MEarth planet, which may give rise to more significant,
non-linear disturbances in the temperature and density profiles.
All of this may lead to differences between our simulations and
the theoretical formulae in the torque acting on the planet.

For longer distances (r > 2.0rJup) the formula of
Paardekooper et al. (2011) fits our simulations quite well. As
the distance to the central star increases, temperature andden-
sity decrease, so that the argument of disc disturbances dueto
the embedded planet might not be so strong any more, and the
main contribution to the total torque comes from the Lindblad
torques.

The formula of Masset & Casoli (2010) matches our simu-
lations quite well in the inner parts of the disc, however, inthe
outer parts of the disc the differences become stronger and seem
to be similar to Paardekooper et al. (2010), where the torques did
not become smaller than zero. This behaviour may be triggered
by the temperature gradient in the disc. In Ayliffe & Bate (2011)
a steeper temperature gradient resulted in faster outward mi-
gration and triggered outward migration for planets with higher
masses (even up to 50MEarth). The same effect might be respon-
sible for an positive migration rate even for long distancesto the
central star. However, it seems that the best match for the discs
studied here is given by Paardekooper et al. (2011).

For increasing disc masses, the temperature, density (in mid-
plane), and aspect ratio of the disc increases in the equilibrium
state where viscous heating and radiative transport/cooling are
in balance. The convective zone in the inner discs stretchesfar-
ther out with increasing disc mass, resulting in high fluctuations
of the surface density in our computed domain for discs with a
mass higher thanMdisc ≈ 0.02M⊙.

Starting from aMdisc = 0.01M⊙ disc, the torque acting
on embedded 20MEarth planets decreases for increasing disc
masses. As the disc mass increases, the convective zone in the
disc stretches farther out from the central star and influences
planetary migration. The fluctuations in the disc’s densitydis-
rupt the torque acting on the planet on a stationary orbit for
high-mass discs in a way that the torque is very irregular and
shows high fluctuations as well, making it difficult to determine
the correct direction of migration. For lower disc masses, the
torque reduces as well, assumably because of the same reasons
as the torque reduced for longer distances to the central star in a
discs withMdics = 0.01M⊙.

The formula in Paardekooper et al. (2011) fits within a fac-
tor of two with our 3D simulations for planets in discs with
Mdics ≈ 0.01M⊙. For higher disc masses, the difference between
the formula and our 3D simulations increases. Convection cer-
tainly plays a role in more massive discs, but it is unaccounted
for in Paardekooper et al. (2011). In more massive discs the con-
vective zone reaches longer distances from the central star, dis-
rupting the density pattern near the embedded planet and thus
creating fluctuations in the torque acting on the planet. These
disruptions in the density pattern are caused by the convective
cells evolving in the disc. These cells also change in time, giving
rise to the stronger fluctuations of the torque.

Both the 3D simulations and the Paardekooper et al. (2011)
formula show a decreasing torque for increasing disc mass. As
the disc mass increases, viscous heating increases and cooling
becomes inefficient, which results in a structure similar to an
adiabatic disc. In adiabatic discs the corotation torques saturates,
resulting in a lower torque acting on the planet, hence the drop
of torque for increasing disc masses.

Interestingly, it seems that the analytical formulae matchbest
when the distance to the central star is the standard value of
r ≈ 1.0rJup and Mdics ≈ 0.01M⊙. In Appendix A we discuss
the influence of the smoothing length on the formulae.

Convection is inefficient for transporting angular momentum
(Kley et al. 1993; Lesur & Ogilvie 2010), but the influences of
convection on planetary migration are very dramatic, because
a planet close to the star in the convective zone of the disc is
essentially disrupted. The direction of migration is not clearly
determinable any more, but when the planet is farther out in
the massive disc and the convection fades away, the direction
of migration is easy to specify, indicating outward migration.
Therefore the zero-torque radius for migration lies farther out in
more massive discs.

Convection is also a 3D effect only and cannot be simulated
in 2D discs (inr-φ direction in the midplane). Two-dimensional
simulations of planets in massive discs (Mdisc > 0.02M⊙) might
therefore be inaccurate near the central star, because the effects
of convection are not considered.

Appendix A: Comparison with Paardekooper et al.
(2011)

In Section (3) we compared our numerical results to the analyti-
cal torque formula derived in Paardekooper et al. (2011). Asthe
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derivation is rather cumbersome, we present here a brief sum-
mary of the relevant contributions to the total torque acting on
a planet, so that the reader can follow our calculations. In our
notation we closely follow Paardekooper et al. (2011).

The total torque acting on a low-mass planet consists of two
main contributions the Lindblad torque,ΓL, plus the corotation
torque,Γc

Γtot = ΓL + Γc . (A.1)

The Lindblad torque is caused by the action of the induced spiral
arms and is given as (Paardekooper & Papaloizou 2008)

γΓL/Γ0 = −2.5− 1.7β + 0.1α , (A.2)

whereα denotes the negative slope of the surface density profile
Σ ∝ r−α, β refers to the slope of the temperature profileT ∝ r−β,
andγ is the adiabatic index of the gas.

It is important to notice that all torques listed here are nor-
malized to

Γ0 =

(q
h

)2
ΣPr4

pΩ
2
P ,

with q the planet/star mass ratio,h the relative disc’s height,ΣP

the surface density at the planet’s location andΩP the rotation
frequency of the planet in the disc.

The corotation torque is now split into the barotropic part
and an entropy-related part:

Γc = Γc,baro + Γc,ent ,

where the first part applies to barotropic flows where the pressure
only depends on the density, and it depends on the gradient ofthe
vorticity in the flow; the second part relates to the variations of
entropy. Each of them is split again into a linear contribution and
a so-called horseshoe drag contribution. This separation is nec-
essary because the two parts are affected differently by the diffu-
sion processes. The barotropic part of the (non-linear) horseshoe
drag is given by

γΓhs,baro/Γ0 = 1.1(1.5− α) (A.3)

and the entropy-related part of the horseshoe drag is given by

γΓhs,ent/Γ0 = 7.9
ξ

γ
, (A.4)

whereξ = β − (γ − 1.0)α is the negative of the power-law index
of the entropy. We note that the total torque formula given by
Paardekooper et al. (2010), as summarized in Eq. (1), is exactly
the sumΓtot = ΓL + Γhs,baro + Γhs,ent.

The barotropic part of the linear corotation torque reads as

γΓc,lin,baro/Γ0 = 0.7(1.5− α), (A.5)

and the entropy-related part of the linear corotation torque is
given by

γΓc,lin,ent/Γ0 =
(
2.2− 1.4

γ

)
ξ. (A.6)

Owing to the difference between the isothermal and adiabatic
sound speed, differences in the torque arise. To compensate for
this, the adiabatic indexγ should be replaced by aneffective γ:

γe f f =
2Qγ

γQ + 1
2

√
2
√

(γ2Q2 + 1)2 − 16Q2(γ − 1)+ 2γ2Q2 − 2
,

so that allγ’s in the previous equations (A.2 to A.6) have to be
replaced byγe f f . The parameterQ is given by

Q =
2χPΩP

3hc2
s
=

2χP

3h3r2
PΩP

,

whereh = H/r andχP = 10−3r2
PΩP.

The final correction relates to the non-ideal effects of vis-
cosity and heat transfer, which both have to be present to avoid
the saturation of the corotation torque. The barotropic part of the
horseshoe drag is not affected by thermal diffusion and is only
determined by the viscosity. According to Paardekooper et al.
(2011) it can be written as

Γc,baro = Γhs,baroF(pν)G(pν) + (1− K(pν))Γc,lin,baro,

whereΓhs,baro andΓc,lin,baro are given by equations (A.3 and A.5),
but now withγ → γe f f . F(p) (eq. A.7) governs saturation and
G(p) (eq. A.8) andK(p) (eq. A.9) govern the cut-off at high
viscosity.

For the non-barotropic, entropy-related corotation torque
Paardekooper et al. (2011) find

Γc,ent = Γhs,entF(pν)F(pχ)
√

G(pν)G(pχ)

+
√

(1− K(pν))(1− K(pχ))Γc,lin,ent ,

whereΓhs,ent andΓc,lin,ent are given by equations A.4 and A.6,
again withγ → γe f f , andpχ is the saturation parameter associ-
ated with thermal diffusion.

The functionF(p) is given by

F(p) =
1

1+ (p/1.3)2
. (A.7)

The functionG(p) is given by

G(p) =



16
25

(
45π
8

)3/4
p3/2 for p <

√
8

45π

1− 9
25

(
8

45π

)4/3
p−8/3 for p ≥

√
8

45π

. (A.8)

The functionK(p) is given by

K(p) =



16
25

(
45π
28

)3/4
p3/2 for p <

√
28
45π

1− 9
25

(
28
45π

)4/3
p−8/3 for p ≥

√
28
45π

. (A.9)

The parameterspν andpχ, relate to the strength of viscosity
and thermal diffusivity, and are given by

pν = 2
3

√
r2

PΩP x3
s

2πνp
,

pχ =

√
r2

PΩP x3
s

2πχp
,

whereνp is the kinematic viscosity andχp the thermal conduc-
tivity at the planet location.xs is the half width of the horseshoe,
given by

xs =
1.1

γ1/4
e f f

( 0.4
ǫ/h

)1/4
√

q
h
,

The scaling withǫ/h breaks down for small softening (ǫ/h <
0.3). All these contributions have to be substituted into equation
(A.1) to calculate the total torque acting on the planet. In deriv-
ing these formulae one has to use a description for the smooth-
ing of the gravitational potential. Here, a standardǫ potential has
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Fig. A.1. Specific torque acting on 20MEarth planets embedded in a
0.01M⊙ disc. Overplotted are the results of Paardekooper et al. (2011)
with ǫ/h = 0.4 andǫ/h = 0.36.

been assumed, and a smoothing length ofǫ/H = 0.4 has been
made.

To compare with our simulations, we have used the follow-
ing parameter in the formulae aboveα = 0.5, β = 1.7, ξ = 1.5.
To evaluate the viscosity parameterpν we useν = 10−5. Please
note thatνp ≈ χp for discs in radiative equilibrium.

In Kley et al. (2009) we pointed out that a different planetary
smoothing results in different torques. This phenomenon can be
up to a factor of two for theǫ potential withrsm = 0.5 and the
cubic potential withrsm = 0.5. In Section (3) we compared our
numerical simulations to the smoothing withǫ/h = 0.4.

Because our cubic potential withrsm is deeper in the vicin-
ity of the planet, we usedǫ/h = 0.36 for the Paardekooper
et al. (2011) formula as well. The results are shown in Fig. A.1.
Compared to theǫ/h = 0.4, the ǫ/h = 0.36 potential shows
very good agreement atr = 1.0rJup, but for longer distances
to the central star the differences between the formula and our
simulations are much more pronounced than in theǫ/h = 0.4
case. The zero-torque radius is shifted to longer distancesfor
the ǫ/h = 0.36 case, indicating that a different smoothing of
the planetary potential influences the zero-torque radius as well.
For longer distances to the central star (r > 3.0rJup) both for-
mula and the simulations agree very well because the Lindblad
torques seem to dominate the torque regime.
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grid of the Baden Württemberg state. Finally, we gratefully acknowledge the
helpful and constructive comments of an anonymous referee.

References
Alibert, Y., Mordasini, C., & Benz, W. 2004, A&A, 417, L25
Ayliffe, B. A. & Bate, M. R. 2010, MNRAS, 408, 876
Ayliffe, B. A. & Bate, M. R. 2011, ArXiv e-prints
Baruteau, C. & Masset, F. 2008a, ApJ, 672, 1054
Baruteau, C. & Masset, F. 2008b, ApJ, 678, 483
Bitsch, B. & Kley, W. 2010, A&A, 523, A30
Bitsch, B. & Kley, W. 2011, A&A, 530, A41
Crida, A., Baruteau, C., Kley, W., & Masset, F. 2009, A&A, 502, 679
Crida, A., Sándor, Z., & Kley, W. 2008, A&A, 483, 325
Ida, S. & Lin, D. N. C. 2008, ApJ, 673, 487
Klahr, H. & Kley, W. 2006, A&A, 445, 747
Klahr, H. H., Henning, T., & Kley, W. 1999, ApJ, 514, 325

Kley, W., Bitsch, B., & Klahr, H. 2009, A&A, 506, 971
Kley, W. & Crida, A. 2008, A&A, 487, L9
Kley, W., Papaloizou, J. C. B., & Lin, D. N. C. 1993, ApJ, 416, 679
Lesur, G. & Ogilvie, G. I. 2010, MNRAS, 404, L64
Lyra, W., Paardekooper, S. J., & Mac Low, M. M. 2010, ApJ, 715,L68
Masset, F. 2000, A&AS, 141, 165
Masset, F. & Casoli, J. 2010, ApJ, 723, 1393
Masset, F. S. & Casoli, J. 2009, ApJ, 703, 857
Masset, F. S., D’Angelo, G., & Kley, W. 2006, ApJ, 652, 730
Morbidelli, A., Crida, A., Masset, F., & Nelson, R. 2008, A&A, 478, 929
Mordasini, C., Alibert, Y., & Benz, W. 2009, A&A, 1139
Mordasini, C., Dittkrist, K. M., Alibert, Y., et al. 2010, astro-ph.EP
Paardekooper, S., Baruteau, C., Crida, A., & Kley, W. 2010, MNRAS, 401,

1950+
Paardekooper, S. J., Baruteau, C., & Kley, W. 2011, MNRAS, 293
Paardekooper, S.-J. & Mellema, G. 2006, A&A, 459, L17
Paardekooper, S.-J. & Mellema, G. 2008, A&A, 478, 245
Paardekooper, S.-J. & Papaloizou, J. C. B. 2008, A&A, 485, 877
Sándor, Z., Lyra, W., & Dullemond, C. P. 2011, ApJ, L9
Tanaka, H., Takeuchi, T., & Ward, W. R. 2002, ApJ, 565, 1257
Toomre, A. 1964, ApJ, 139, 1217
Ziegler, U. & Yorke, H. 1997, Computer Physics Communications, 101, 54

15





Astronomy & Astrophysicsmanuscript no. Gamma c© ESO 2011
July 20, 2011

Influence of viscosity and the adiabatic index on planetary
migration

Bertram Bitsch1, Aaron Boley2 and Wilhelm Kley1

1 Institut für Astronomie & Astrophysik, Universität Tübingen, Auf der Morgenstelle 10, D-72076 Tübingen, Germany
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ABSTRACT

Context. In our previous works we have shown that the outward migration of low mass planets in fully radiative discs can be possible.
For these studies we only considered a constant viscosity and a constant adiabatic index in the disc, in which the planetswere embed-
ded. As the viscosity inside a real accretion disc is unknown, we want to investigate the influence of viscosity on planetary migration.
Aims. In this paper we focus on fully radiative discs with different viscosities (α and constant viscosity) and adiabatic indices. We
compare profiles of accretion discs with different viscosities and adiabatic indices and want to determine the migration rate of embed-
ded planets in these discs.
Methods. We use an explicit three-dimensional (3D) hydrodynamical codeNIRVANA that includes full tensor viscosity. We have added
implicit radiation transport in the flux-limited diffusion approximation.
Results. In low viscosity discs, planets migrate inwards even in fully radiative discs. The effect of outward migration can only be
sustained if a large enough viscosity in the disc is present.The differences between the two different gas distributions seems to play
only a role in discs withα viscosity. Simulations with a constant viscosity show no differences in the torque acting on an embedded
planet for the two gas distributions.
Conclusions. A change in the adiabatic index and in the viscosity changes the zero-torque radius for outward migration. The dif-
ference between the two gas distributions seems to decreasewith increasing viscosity (as the temperature in the midplane becomes
higher and higher).

Key words. accretion discs – planet formation – hydrodynamics – radiative transport – planet disc interactions – adiabatic index

1. Introduction

Inward migration of a low-mass planet embedded in a fully ra-
diative gaseous disc can be significantly different from migra-
tion in an isothermal or purely adiabatic disk (Paardekooper
& Mellema 2006; Baruteau & Masset 2008; Paardekooper &
Papaloizou 2008; Paardekooper & Mellema 2008; Kley & Crida
2008; Kley et al. 2009; Ayliffe & Bate 2010). While all authors
agree that radiation transport can slow the rate of inward mi-
gration, there is still a lack of consensus whether the direction
of migration can be outward. Part of this confusion may be due
to the sensitivity of the direction and magnitude of migration
on global disk parameters (Paardekooper et al. 2010; Masset&
Casoli 2010; Paardekooper et al. 2011), including, e.g., the ra-
dial disk temperature gradient (Ayliffe & Bate 2011). Different
authors also use different viscosities, usually either a constant
viscosity or a Shakura & Sunyaev (1973)α-viscosity, with a typ-
ical value ofα ranging between 10−4 and 10−2.

An unperturbed, viscous, fully radiative disc will evolve to-
ward an equilibrium state, where viscous heating is balanced by
radiation transport and cooling (as described in, e.g., Kley et al.
2009). This equilibrium state is dependent on the disc mass,the
viscosity, and the adiabatic index of the gas. Variations inthe vis-
cosity change the radial density, temperature, and entropypro-
files. The entropy gradient, in turn, determines whether torques
acting on an embedded, low-mass planet saturate (Baruteau &

Send offprint requests to: B. Bitsch,
e-mail:bertram.bitsch@uni-tuebingen.de

Masset 2008). If the torques remain unsaturated, the net torque
can be positive, leading to outward migration. This effect is also
possible in isothermal discs (Paardekooper & Papaloizou 2008).

There is an additional complication to understanding the mi-
gration of low-mass planets in disks. The rotational statesof
molecular hydrogen are only fully accessible at temperatures
& 300 K (Decampli et al. 1978; Boley et al. 2007). As a re-
sult, the adiabatic index of the gas will transition fromγ = 7/5
to 5/3 as the temperature in a disk drops with radial distance.
The region over which this variation occurs is precisely where
we expect planetary cores and planets to form in the core accre-
tion scenario and begin their initial stages of migration. So far,
only a constant adiabatic index ofγ = 1.4 has been explored in
our previous simulations with radiative transport.

All of these effects on low-mass planet migration are rele-
vant to understanding whether planet traps can exist, i.e.,regions
in the disk where a protoplanet would experience zero torque.
Protoplanets migrating from a smaller radius outward or from
an outer radius inward would collect at the zero-torque radius,
creating areas conducive to planetary mergers, leading possibly
to large cores. A planet trap could be formed by surface density
changes, which would also create an enhanced feeding zone for
these cores (Morbidelli et al. 2008); however, it is yet unclear
how realistic surface density changes are in discs. In contrast,
radiation transport might allow for traps to exist in smoothdisc
structure. As outward migration is dependent on the viscosity,
disc mass, and adiabatic index, these parameters will influence
the radius and breadth of the zero-torque region.

1



Bitsch, Boley & Kley: Influence of adiabatic index on planetary migration

This paper is organized as follows: In Section 2 we give an
overview of our numerical methods. We then describe the in-
fluence of the adiabatic index, viscosity, and the differences be-
tween the ortho-para and equilibrium gas configuration on the
disc structure in Section 3. These changes in the disc structure
influence the migration rate of an embedded 20MEarth planet,
which is discussed in Section 4. In Section 5 the influence of
viscosity and of the different gas mixtures on the zero-torque ra-
dius is investigated. We then summarise and conclude in Section
6.

2. Numerics and setup

2.1. Setup

The protoplanetary disc is modelled as a three-dimensional
(3D), non-self-gravitating gas. Fluid motion is describedby the
Navier-Stokes equations, where the equations are solved numer-
ically using a spatially second-order finite volume method that
is based on the codeNIRVANA (Ziegler & Yorke 1997). The disc
is heated solely by internal viscous dissipation, and is allowed
to cool by flux-limited diffusion (FLD, Levermore & Pomraning
1981). The FLD approximation allows internally produced en-
ergy to diffuse radiatively through the optically thick regions of
the disc and into the optically thin regions, where the energy can
be radiated away by free-streaming. The flux-limiter interpolates
between the optically thick and thin regimes and ensures that en-
ergy loss never exceeds the free-streaming limit. Radiative trans-
port is handled implicitly and uses theFARGO (Masset 2000)
extension as described in Kley et al. (2009). A more detailed
description of the modelling and the numerical methodologyis
provided in our previous papers (Kley et al. 2009; Bitsch & Kley
2010; Bitsch & Kley 2011).

The three-dimensional (r, θ, φ) computational domain (with
266× 32 × 768 active cells) consists of a complete annulus
of the protoplanetary disc centred on the star, extending from
rmin = 0.4 to rmax = 2.5 in units ofr0 = aJup = 5.2AU. In the
vertical direction the annulus extends 7◦ above the disc’s mid-
plane, meaning 83◦ < θ < 90◦. Hereθ denotes the polar angle of
our spherical polar coordinate system measured from the polar
axis. The central star has one solar massM∗ = M⊙, and the total
disc mass inside [rmin, rmax] is Mdisc = 0.01M⊙. The aspect ratio
of the disc is calculated self-consistently from the equilibrium
structure, given by the viscous internal heating and radiative dif-
fusion. This also determines the surface density gradient in the
equilibrium state of the disc. To calculate the equilibriumstate,
we first use 2D models in ther-θ directions.

The planet is located atrP = 1.0aJup. For the planet, we use
the cubic potential (Klahr & Kley 2006; Kley et al. 2009) with
rsm = 0.5. The planetary potential and its influence on planetary
migration is discussed in great detail in Kley et al. (2009).

2.2. 2D axisymmetric models

The initialisation through an axisymmetric 2D phase (in ther−θ
plane) reduces the required computational effort substantially.
The evolution from the initial isothermal state towards theequi-
librium between viscous heating and radiative transport/cooling
takes about 100 orbits, if the disc is started with an isothermal
equilibrium having constantH/r. The surface density or temper-
ature profiles of the initial (isothermal) state are unimportant as
the equilibrium state of the disc solely depends on the disc mass,
viscosity and adiabatic index of the disc.
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Fig. 1. Adiabatic index for the 3 : 1 ortho to para mix and equilibrium
gas configuration in dependence of the temperature.

After reaching the equilibrium between viscous heating and
radiative transport/cooling, we extend this model to a full 3D
simulation, by expanding the grid into theφ-direction and by
embedding the planet. From this starting configuration it isalso
possible to investigate the vertical structure of an unperturbed
disc in the equilibrium state.

2.3. Adiabatic index

The gas in an existing accretion disc is primary molecular hydro-
gen, which exists as para and ortho-hydrogen for proton spins
that are antiparallel and parallel, respectively. If enough proto-
nated ions (e.g.,H3+) are available to exchange proton spins
on time scales that are shorter than the dynamical time, the
para- and ortho-hydrogen should be treated as being in statis-
tical equilibrium (Boley et al. 2007). If the dynamical timescale
is shorter than the equilibrium timescale, a fixed ratio should be
used, where a 3 : 1 ortho-to-para mix is common for many astro-
physical systems. A different mixture of gas changes the ratio of
specific heats, which is the adiabatic indexγ. The adiabatic in-
dex is dependent of the temperature of the underlying gas (Boley
et al. 2007), and astrophysical disks should transition between
γ = 5/3 to γ = 7/5 near the frost line. This is represented in
Fig. 1, where the adiabatic index’s dependence on temperature
is plotted for the equilibrium (blue) and the 3 : 1 ortho to para
mix (red) gas. The adiabatic index can span quite a large region
in γ for low temperatures. In our typical disc simulations (with
γ = 1.4) the temperature atr = 1.0rJup is about 65K, which is
in a region where the adiabatic index changes rapidly. Such vari-
ation could affect an embedded planet’s migration rate, as the
planet modifies the temperature structure of its surroundings.

2.4. Viscosity

One can assume the viscosity of an accretion disc to be either
constant or anα viscosity, withν = αcsH (Shakura & Sunyaev
1973), whereH is the disc’s thickness andcs the sound speed.
In a real accretion disc in equilibrium, the viscosity can bede-
termined through the mass accretion rate onto the star:

Ṁ ≈ 3πνΣ = 3παcsHΣ, (1)

whereṀ is the mass accretion rate onto the star, typically 10−9−
10−7M⊙/yr (Hartigan et al. 1995; Gullbring et al. 1998) andΣ
the surface density. For numerical studies one has to assumethe
viscosity in the disc. The viscosity determines the structure of

2



Bitsch, Boley & Kley: Influence of adiabatic index on planetary migration

the disc and thus influences the migration of embedded planets.
For simulations of accretion discs typically 10−4 ≤ α ≤ 10−2.

2.5. Torque calculations

In our previous work, we have discussed the calculation of the
torque acting on the planet in great detail. Outward migration
seems only possible and is strongest, when the planet is on cir-
cular orbits (Bitsch & Kley 2010) and in the midplane of the disc
(Bitsch & Kley 2011). Therefore it seems sufficient to consider
only planets on fixed circular orbits in the midplane of the disc,
and calculate the torque acting on the planet, as the torque repre-
sents a direct measurement of migration in this case. Therefore
only the upper half of the disc (83◦ ≤ θ ≤ 90◦) is needed for the
calculation, as the lower half is directly symmetric to the upper
half.

The torques acting on a 20MEarth planets are calculated to
determine the direction of outward migration. As the planetis
simulated as a point mass, the planetary potential needs to be
smoothed. We use the cubic potential (Klahr & Kley 2006; Kley
et al. 2009) for our calculations:

Φcub
p =


−mpG

d

[(
d

rsm

)4 − 2
(

d
rsm

)3
+ 2 d

rsm

]
for d ≤ rsm

−mpG
d for d > rsm

(2)

HeremP is the planetary mass,d = |r − rP| denotes the distance
of the disc element to the planet andrsm is the smoothing length
of the potential in units of the Hill radii. The constructionof
the planetary potential is in such a way that for distances larger
than rsm the potential matches the correct 1/r potential and is
smoothed inside that radius (d < rsm) by a cubic polynomial.
The parameterrsm is equal to 0.5 in all our simulations.

The gravitational torques acting on the planet are calculated
by integrating over the whole disc, where we apply a tapering
function to exclude the inner parts of the Hill sphere of the planet
(Crida et al. 2008). This torque-cutoff is necessary to avoid large,
probably noisy contributions from the inner parts of the Roche
lobe and to disregard material that is possibly gravitationally
bound to the planet (Crida et al. 2009). Here we assume (as in
our previous papers) a transition radius of 0.8 Hill radii.

3. Changes in the disc structure

As the adiabatic index is connected to the sound speed, whichis
directly linked to pressure and density, a change in the adiabatic
index, changes the structure of the disc. Also a change of vis-
cosity in the disc changes the equilibrium state between viscous
heating and radiative cooling/transport. The influences of these
parameters on the disc structure (without an embedded planet)
are discussed in this Section.

3.1. Influences of the adiabatic index

A change of the adiabatic index will change the relation between
pressure and density and therefore change the internal structure
of the disc. For the following simulations we limit ourselves to
constant values ofγ in the range of 1.05 ≤ γ ≤ 1.8, which is
larger than the range of the adiabatic index in Fig. 1. In Fig.2 the
midplane density and temperature and the resulting aspect ratio
at r = 1.0 for a 2D disc inr − θ direction are displayed (using
a constant viscosity ofν = 1015 cm2/s). A lower adiabatic index
leads to a higher midplane density, a lower midplane temperature
and a lower aspect ratio in the disc atr = 1.0. The density falls

off very rapidly for lowγ values, and asγ increases, the drop
in density becomes less and less. For the temperature and aspect
ration, it is the other way round. These quantities increasevery
fast for lowγ’s and then the increase becomes less and less. It
seems that there is no big difference in density, temperature and
aspect ratio for highγ values. HereH = cs/Ω ∝

√
T .

Now the radial density and temperature gradients result in
a gradient in entropyS ∝ p

ργ . This gradient of entropy across
the horseshoe region is very crucial to planetary migration, as it
keeps the corotation torque acting on the planet unsaturated and
thus determines the direction of migration in a fully radiative
disc. As the density decreases and the temperature increases with
increasingγ, the strength of the gradient in entropy might change
and therefore influence planetary migration.

In the isothermal situation, the result would be clear, as a
higher aspect ratio results in a slower inward migration of low
mass planets (Tanaka et al. 2002). In our fully radiative discs, the
structure of the disc is calculated self-consistently, meaning that
the equilibrium configuration of the disc between viscous heat-
ing and radiative transport/cooling determines the structure. This
structure is influenced by the adiabatic index, thus for eachadi-
abatic index a disc with different aspect ratioH/r and different
density and temperature profiles is created.

The structure of the aspect ratio of a fully radiative disc with
different adiabatic indices is shown in Fig. 3. The aspect ratio

H/r is computed throughH = cs/Ω =
√
γP
ρ
/Ω in the disc’s

midplane. Forγ = 1.1 the aspect ratio shows nearly constant
profile (with small fluctuations), with a large dip aroundr ≈
1.0. But keep in mind that such a small adiabatic index is not
predicted for accretion discs, following theγ(T ) profile of Boley
et al. (2007) in Fig. 1.

In contrast, the profiles for a higher adiabatic index show a
drop in aspect ratio (after a small increase for very small distance
to the central star) with increasing distance to the centralstar.
Theγ = 1.4 simulation also shows a small dip aroundr ≈ 1.0,
which is not visible for higherγ. The interesting feature of a disc
structure like this is the opposite of what one would expect.The
general assumption would be an increasingH/r for increasing
distances to the star.

With increasing distance to the central star, the temperature
is decreasing. With increasing temperature the opacity in the disc
increases untilT ≈ 155K. For higher temperatures the opacity
is decreasing again. So with increasing distance to the central
star, the opacity first increases and whenT ≈ 155K, the opacity
decreases. This is exactly the point in the disc, where the aspect
ratioH/r of the disc starts to decrease. Please note that the height
H of the disc is still increasing, but at a lower rate, whenT <
155K compared toT > 155K. The structure of the disc is a
result of the used opacity law.

3.2. Influences of viscosity

A change in the viscosity changes the equilibrium state between
viscous heating and radiative transport/cooling. Therefore the
density and temperature profiles of the disc are changed, as can
be seen in Fig. 4, where we display the density (top) and temper-
ature (bottom) of fully radiative discs in the equilibrium state.
We plot the density and temperature forα-viscosities 0.001 ≤
α ≤ 0.008 and for a constant viscosity ofν = 1015 cm2/s, a
value used in our previous simulations (Kley et al. 2009; Bitsch
& Kley 2010; Bitsch & Kley 2011).
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For increasingα-viscosity the density in the midplane of
the disc becomes smaller, but the differences in density become
smaller for higher viscosities.

For the temperature profile, the trend is reversed: a higher
viscosity results in a higher temperature in the midplane ofthe
disc. As the viscosity increases, so does the viscous heating in
the disc. The heating process mainly takes place in the midplane
of the disc, as the density is highest there. Therefore the temper-
ature in the midplane of the disc is higher for increasing viscosi-
ties. But not only is the temperature higher in the midplane,but
also the temperature profiles change with viscosity (T ∝ r−β).
For our constant viscosity ofν = 1015 cm2/s the slope of tem-
perature was∝ r−1.7 (Kley et al. 2009), while it is different for
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the differentα-viscosity models. The slope of temperatureβ is
displayed in Table. 1.

The slope of the temperature has a direct influence on the
migration of embedded planets, e.g. (Paardekooper et al. 2010,
2011). In Paardekooper et al. (2011) the slope of the temperature
is needed to calculate the Lindblad torque, the entropy-related
part of the horseshoe drag and the entropy-related part of the
linear corotation torque. A change inβ therefore influences the
torque acting on an embedded planet quite severely (Ayliffe &
Bate 2011). The formula of Paardekooper et al. (2011) also fits
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quite nicely with our simulations to determine the zero-torque
radius (Bitsch & Kley 2011b).

The aspect ratioH/r of the disc also increases for increasing
viscosity (see Table. 1), indicating another factor that influences
planetary migration in these discs. For isothermal discs, this has
been know for a while (Tanaka et al. 2002).

It seems that the density and temperature profiles of our con-
stant viscosity simulation are betweenα = 0.005 andα = 0.006
simulations (alsoH/r seems to match quite good), indicating
that one could expect a very similar torque acting on a planet
embedded in these discs. However, as theα-viscosity is not con-
stant inr, one might also expect some differences in the spiral
wave densities and temperatures in these discs. Also the area
near the planet might be subject to some changes due to the dif-
ferent viscosity.

3.3. Influences of varying adiabatic index

In Fig. 5 the temperature (top) and density (bottom) profilesin
the midplane of fully radiative discs are displayed. The discs
feature differentα viscosities and the two different mixtures of
the gas (equilibrium and the ortho-para mix). As expected from
simulations with a constant adiabatic index, an increasingα vis-
cosity results in a smaller density and higher temperature in the
midplane of the disc.

It seems that the gradients in density and temperature are
comparable to the gradients for constant adiabatic indices. It also
seems that the mixture of the gas does not have a huge influ-
ence on the temperature and density profiles for large viscosi-
ties. However, forα = 0.001 there are differences between the
two gas states in the density and temperature profiles. Forr < 1.0
the temperature in the equilibrium state between viscous heating
and radiative transport/cooling is smaller in the equilibrium gas
configuration compared to the ortho-para mix. As a result the
density is higher in the equilibrium gas configuration compared
to the ortho-para mix. Asγ is reduced largely for temperatures
aroundT ≈ 50K in the equilibrium gas configuration compared
to the ortho-para mix, the behaviour of density and temperature
should be the same as for constantγ. This behaviour is expected
from our simulations with constantγ, where a decrease inγ re-
sulted in a drop in temperature and an increase in density.

In Fig. 6 the aspect ratioH/r for the same discs is shown.
The profiles are very similar to those with alpha viscosity, but
with a constant adiabatic index. In theα = 0.001 case, the as-
pect ratio profile is nearly constant, with a dip forr < 1.0 in the
equilibrium case, as discussed before for temperature and den-
sity. For the higher viscous discs, the aspect ratio increases for
smallr, but then decreases with increasingr continuously. Also
a higher viscosity provides for a higher aspect ration in thedisc.

α β H(r = 1.0)
0.001 2.10 0.0220
0.002 2.10 0.0270
0.003 2.00 0.0301
0.004 1.85 0.0331
0.005 1.75 0.0357
0.006 1.70 0.0379
0.007 1.70 0.0415
0.008 1.60 0.0416
ν = const. 1.70 0.0370

Table 1. Slope of the temperature profileβ, whereT ∝ r−β, and discs
thicknessH in dependence of viscosity.
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For r > 1.0 the equilibrium gas configuration shows a slightly
smaller aspect ratio for viscositiesα ≥ 0.004 compared to the
ortho-para gas configuration.

The aspect ratio differs by about 10% for the high viscosity
cases atr = 1.0. This difference in the aspect ratio can also
influence the torque acting on embedded plants at this point in
the disc, as it does in isothermal discs.

A higher viscosity inside the disc leads to larger temperature
in midplane of the disc. Recently, Bitsch & Kley (2011b) have
shown that in fully radiative discs with viscous heating a con-
vective region arises near the central star dependent on thedisc
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Fig. 7. Velocities inz-direction for discs withα = 0.008 with the ortho-
para mix (top), the equilibrium gas configuration (middle) and with a
constant adiabatic index ofγ = 1.4 (bottom).

mass. A higher disc mass resulted in a larger convective zonein
the disc. However, for our used disc mass ofMdisc = 0.01M⊙
here, the convective region is minimal for our constant viscos-
ity reference simulation. The density and temperature structures
of the disc with constant viscosity seem to correspond to a disc
with α ≈ 0.0055 (see Fig. 4). For lower viscosities we do not see
any signs of convection in the velocity pattern (not displayed).

We display in Fig. 7 the velocity inz-direction forα = 0.008
discs with a constant adiabatic index ofγ = 1.4 and for the two
gas mixtures. We note that convection is different when taking
both sides of the disc into account, because the eddies crossthe
midplane. However, in Bitsch & Kley (2011b) we have shown
that the first signs of convection can also be seen in simulations
where only one half of the disc is simulated.

For all displayed gas configurations we see fluctuations
(changes between positive and negative velocity) in the veloc-
ity pattern forr < 1.2rJup, with the weakest and smallest pat-
tern in the ortho-para gas configuration. For lower viscosities
the convective region still exists, but it is not so pronounced in
the velocity pattern. A higher viscosity might therefore leads to
a larger convective region in the disc.

To investigate in more detail if really convection is present
in the disc, we compute a mass-weighted adiabatic gradient as
follows

1
β
=

∫ H

0
ρ

d ln p
dz

dz
d ln T

dz /
∫ H

0
ρdz , (3)
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For β > βadiabat, convection is present in the disc.βadiabat is de-
fined as

βadiabat =
γlocal − 1
γlocal

, (4)

whereγlocal represents the local adiabatic index. For the constant
γ and the ortho-para mixed gas configuration this is fulfilled in
the region that features the fluctuations in thez-velocity. For the
equilibrium gas configuration, this region covers also the outer
parts of the disc, as can be seen in Fig. 8.

In the velocity pattern, no fluctuations can be seen forr > 1.5
in the equilibrium gas configuration, which indicates that no con-
vection is present which is in contradiction with the evaluation
of the mass-weighted adiabatic gradient. The reason that nocon-
vection in the outer parts of the disc can be seen might just be
that the disc is too thin, the temperature too low and the optical
depth too low to feature convection.

4. Influence on planetary migration

As a different adiabatic index and a change in viscosity changed
the disc profiles, it is expected that it will also change the migra-
tion rate of an embedded planet. To determine the direction of
migration of protoplanets embedded in discs, the torque acting
on the planet is measured. A positive torque represents outward
migration, while a negative torque indicates inward migration.
The torque acting on planets on circular, non-inclined planets
is directly proportional to the migration rate. We therefore only
plot the torque acting on the embedded planets. The planetary
mass is for all embedded planets 20MEarth.

4.1. Constant adiabatic index

In Fig. 9 the total torqueΓtot acting on planets on circular or-
bits embedded in discs with different adiabatic indices (ν =
1015 cm2/s) are displayed. For adiabatic indices higher than 1.15
the torque acting on the planet is positive, while forγ < 1.15
it is negative, indicating inward migration. The maximum ofthe
torque seems to be atγ = 1.3 and is decreasing for smaller and
higherγ’s. For lowerγ’s, the torque decreases very rapidly, even
indicating inward migration, whenγ comes closer to≈ 1.0. The
minimum in the curve of the torque acting on the planet seems
to be atγ = 1.1, and the torque acting on the planet is increas-
ing to smaller values ofγ again. Please keep in mind, that the
torque acting on a 20MEarth planet embedded in an isothermal
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disc with theH/r corresponding to the disc withγ = 1.4 is about
Γtot = −2.1 · 10−5, confirming the trend forγ ≤ 1.1.

It seems that the change of the adiabatic index influences the
overall results of planetary migration only by magnitude, not by
direction. For higher adiabatic indices the torque acting on the
embedded planet is decreased by a factor of 3 to 4 compared to
the maximum torque atγ = 1.3. The tendency of outward migra-
tion, however, remains intact forγ ≥ 1.15. For lower adiabatic
indices, the direction of migration is reversed asγ approaches
the value for isothermal discs. On the other hand, the torquehas
strong fluctuations in time, indicating that the planet has reached
the convective zone of the disc.

In Fig. 10 the torque density (Γ(r))

Γtot =

∫ rmax

rmin

Γ(r) dr , (5)

for 20MEarth planets embedded in fully radiative discs with a
constant adiabatic index is displayed. All displayed torque densi-
tiesΓ(r) feature the spike in the torque density around≈ 1.0aJup
with the underlying Lindblad torque curve. For increasingγ the
Lindblad torque and the spike in the torque density is reduced.
This reduction in the torque density is also represented by are-
duction in the total torque, which is reduced for increasingadia-
batic indices as well (see Fig. 9).

In Fig. 11 the surface density for a 20MEarth planet embedded
in fully radiative discs withγ = 1.1 (top), γ = 1.4 (middle)
andγ = 1.7 (bottom) is displayed. Please keep in mind, that
theγ = 1.4 case represents the case discussed in great detail in
Kley et al. (2009). For theγ = 1.1 case, strong variations in the
density surrounding the planet are visible. The variationsare due
to convection inside the disc. It seems, that a smaller adiabatic
index, favours convection inside the disc. The convective zone
reaches out much farther than for discs with a higher adiabatic
index (e.g. forγ = 1.4, middle in Fig. 11). The torque acting
on a planet in the convective zone is in constant fluctuationsand
therefore it is very difficult to determine the total torque (it has
to be averaged).

When the planet is further out in the disc (outside of the
convective zone), the temperature and density in the disc are
very low (which prevents outward migration, see Bitsch & Kley
(2011b) ), so that outward migration seems unlikely.

The surface density pattern of theγ = 1.7 disc, on the other
hand, shows no sign of convection. In fact it is very similar to the
γ = 1.4 (middle in Fig. 11), the only difference being that the
density increase in front of the planet and the density increase
behind of the planet is not as well pronounced. It also seems that
the spiral waves exerted by the planet are not as dense as for
theγ = 1.4 case. Consequently this leads to a smaller positive
torque acting on the planet compared to theγ = 1.4 disc, as can
be seen clearly in Fig. 9.

4.2. Influence of viscosity

In Section 3, we discussed the changes of the structure of plane-
tary discs with different viscosities. Changes in the temperature
gradient lead to changes in the torque acting on embedded plan-
ets (Paardekooper et al. 2011). In Fig. 12 the torque acting on
embedded 20MEarth planets in discs with different viscosity is
displayed. As expected, planets in discs withα ≤ 0.002 feel a
negative torque, indicating inward migration. A decrease of the
torque with decreasing viscosity can also be found in isother-
mal discs (see for example our simulations in Fig. 1 in Bitsch
& Kley (2010)). The decrease in the total torque has is origin
in the lower viscosity. If the viscosity is very low, the corotation
torques saturate and outward migration can not be supportedany
more.

For increasing viscosities (α ≥ 0.003) the torque acting on
the planet becomes positive. For even larger viscosities (α ≥
0.004) the torque seems to settle. However, the torque acting on
the planet with a constant viscosity ofν = 1015 cm2/s is still
about 50% larger, which is a little bit surprising as the unper-
turbed density and temperature profiles seemed to match quite
well for α ≈ 0.0055.

In Fig. 13 we display the radial torque densityΓ(r) acting
on a 20MEarth planet in discs with different viscosity. In the
α = 0.001 case, the displayed torque density shows a typical
Lindblad torque curve, without a trace of the typical pattern of a
fully radiative disc with a higher viscosity (Kley et al. 2009). In
fact the torque density is very similar to an isothermal disc.

Theα = 0.005 andα = 0.006 torque density patters are very
similar to the one of a constant viscosity ofν = 1015 cm2/s. The
’spike’ in the distribution atr = 0.984 is nearly identical for
all three simulations. However, there are some differences. For
smaller and larger distances to the central star (r < 1.0rJup and
r > 1.0rJup) the torque density is larger for the constant viscos-
ity case, although all simulations follow the same trend. These
differences might be due to small fluctuations in the density pat-
terns in the vicinity of the embedded planet. Also the underlying
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Fig. 11. Displayed are the surface density maps for planets on fixed cir-
cular orbits in fully radiative discs with different adiabatic indices (top:
γ = 1.1, middle:γ = 1.4, bottom:γ = 1.7) and a constant viscosity
of ν = 1015 cm2/s. The disruption in the surface density pattern for the
γ = 1.1 disc is due to convection inside the disc.

Lindblad torque distribution is smaller for theα = 0.006 disc
compared to theα = 0.005 disc. These small differences might
be the reason why the total torque of the constant viscosity sim-
ulations is larger compared to theα viscosity discs.

In theα = 0.008 disc, the Lindblad torque is much smaller
compared to the other discs. However, the torque density shows
the usual ’spike’, indicating outward migration (Kley et al.
2009). One might suspect from the trend of the simulations that
even higher viscosities might destroy this effect of outward mi-
gration and might also trigger convection.

In Fig. 14 we display the surface densities of 20MEarth plan-
ets in disc with different viscosities in order to bring more insight
to the torques acting on the embedded planets. For very low vis-
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Fig. 12. Torque acting on 20MEarth planets embedded in discs with dif-
ferent viscosity (γ = 1.4).
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Fig. 13. Radial torque densityΓ(r) acting on 20MEarth planets embedded
in discs with different viscosity (in the equilibrium state) and a constant
adiabatic indexγ = 1.4.

cosities (α = 0.001), the planet seems to open a very small or
partial gap inside the disc. Additionally the spiral waves of the
planet are more dense compared to the constant viscosity simu-
lation (middle picture in Fig. 11), which may be due to the higher
density in the midplane of the disc. It seems that a low viscosity
encourages the formation of gaps in the disc, thus explaining the
torque density in Fig. 13.

The α = 0.005 surface density profile seems very similar
to the constant viscosity profile we discussed in great detail in
Kley et al. (2009). The density increase ahead of the planet
(φ > 180◦ and r < 1.0) is clearly visible in both cases, thus
creating a nearly identical ’spike’ in the torque density distribu-
tion (Fig. 13). However, the density decrease behind the planet
(φ < 180◦ andr > 1.0) is not so clear in theα = 0.005 simu-
lation compared to theν = 1015 cm2/s simulation (middle pic-
ture in Fig. 11). This directly reflects on the torque density, as
the torque density is higher for the constant viscosity simulation
compared to theα = 0.005 simulation at that distance to the
central star, thus explaining the higher total torque.

For α = 0.008 the surface density profile shows the same
structure as for the constant viscosity simulation, but thesurface
density is generally reduced. The spiral waves and the vicinity
near the planet show smaller surface densities. Also the structure
ahead and behind the planet is not as distinctive as in the constant
viscosity (orα = 0.005) simulation. This all leads to a smaller
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Fig. 14. Displayed are the surface density maps for 20MEarth planets on
fixed circular orbits in fully radiative discs (withγ = 1.4). The viscosi-
ties in the discs are (from top to bottom):α = 0.001,α = 0.005 and
α = 0.008. The snapshots are taken in the equilibrium state of the disc.

curve in the torque density plot (Fig. 13) and to a smaller total
torque (Fig. 12).

4.3. Varying adiabatic index

In Fig. 15 the torque acting on 20MEarth planets in discs with dif-
ferent viscosity and with the two different gas configurations is
displayed. For low viscosities (α = 0.001) the torque is negative
(not displayed), indicating inward migration and for higher vis-
cosities it is positive indicating outward migration, as expected
from simulations with a constant adiabatic index.

For all shown viscosities, the torque acting on the planet is
positive, indicating outward migration. In the equilibrium gas
configuration disc the torque is higher than the torque for a
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Fig. 15. Torque acting on 20MEarth planets embedded in discs with dif-
ferent viscosity. The picture featuresα = 0.004,α = 0.008 and constant
viscosity for both gas configuration.
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Fig. 16. Torque density of 20MEarth planets embedded in discs with dif-
ferent viscosity. The picture featuresα = 0.004,α = 0.008 and a con-
stant viscosity for both gas configurations.

planet in the ortho-para mixed gas configuration (with the same
viscosity). The largest differences between the two gas config-
urations is observed for the disc with constant viscosity. It also
seems that the torque in theα = 0.004 disc is showing some
fluctuations in time, which might be due to convection in the
disc.

The temperature near the planet is in the region of 80K ≤
TPlanet ≤ 130K, which is where the separation of the adiabatic
index between the equilibrium and ortho-para mixed gas starts
to occur (see Fig. 1). This difference in temperature leads to a
change in the total torque acting on the planet (see Fig. 9), which
can be up to a factor of two in this temperature region. Therefore
the total torque in the equilibrium gas configuration is higher
than in the ortho-para gas configuration.

In Fig. 16 the torque densityΓ(r) is displayed. As all total
torques are positive (Fig. 15), each simulation shows a spike on
top of the Lindblad torque in theΓ(r) distribution nearr ≈ 0.99.
The spike on top of the Lindblad torque distribution is largest for
the equilibrium gas configuration in the constant viscositysim-
ulation, which is also the simulation featuring the highesttotal
torque. Also the spikes in theΓ(r) distributions are smaller for
the ortho-para gas mixture compared to the equilibrium gas con-
figuration, which was also reflected by the total torque (Fig.15).
However, the Lindblad torque seems strongest for theα = 0.004
disc with the equilibrium gas configuration.

9



Bitsch, Boley & Kley: Influence of adiabatic index on planetary migration

In Fig. 17 the surface density for theα = 0.004 andα =
0.008 simulations with the two gas configurations are displayed.
The simulations with constant viscosity are not displayed,as the
difference between the equilibrium and ortho-para gas distribu-
tions is minimal. The surface density is a little bit higher in front
of the planet (φ > 180 andr < 1.0) and a little bit low behind
the planet (φ < 180 andr > 1.0) in the equilibrium gas configu-
ration compared to the ortho-para mix gas configuration, which
results in the observed higher torque of the equilibrium gasdisc.

For the lower viscosity (α = 0.004), the density in the spiral
waves exerted by the planet is higher compared to the high vis-
cosity case (α = 0.008), which could also be observed for discs
with a constantγ (Fig. 14). Also, the surface density near the
planet is higher for the lower viscosity discs. These two features
are the origin in the higher torque of theα = 0.004 compared to
theα = 0.008 discs (compared with the same gas configuration).

In theα = 0.004 discs, the spiral waves in the equilibrium
gas disc are much denser compared to the ortho-para mix gas
disc. Also the density increase in front of the planet (φ > 180
and r < 1.0) and the decrease behind the planet (φ < 180
and r > 1.0) is more pronounced, which results in the larger
Lindblad torque and a somewhat larger spike in theΓ(r) distri-
bution (Fig. 16). In the equilibrium gas configuration, the disc
shows some fluctuations in the surface density forr < 0.85.
These fluctuations might also be due to convection, also we did
not see any big signs of that in simulations without a planet.
However, the convective region seems sufficiently far enough
away from the planet, so that the torque is not influenced much
by this behaviour of the disc.

The surface density profiles of theα = 0.008 discs show the
expected trend from the total torque andΓ(r) distributions. In
the equilibrium gas configuration the density ahead of the planet
(φ > 180 andr < 1.0) is a little bit higher than in the ortho-para
gas disc, which results in the higher spike in theΓ(r) distribution.

All in total it seems that the differences between the two gas
mixtures is larger in a constant viscosity disc compared to adisc
with α-viscosity. The reason for that might be in the complicated
relation that arises when anα viscosity is used. The viscosity is
then dependent on the temperature, which in turn influences the
adiabatic index, which changes the disc structure and therefore
the temperature and with it the viscosity again.

5. Zero-torque radius

As density and temperature decrease with increasing distance to
the central star, the torque acting on an embedded planet also
decreases. At some point in the disc, the torque becomes zero
(zero-torque radius) and the planet does not move any more due
to planet-disc interactions. This point in the disc is dependent
on the disc mass (Bitsch & Kley 2011b). In our simulations in
Section 4, we stated that the strength of outward migration is de-
pendent on viscosity and the gas configuration. It is only logical
to assume an influence on the zero-torque radius as well.

In Fig. 18 the torque acting on 20MEarth planets in fully ra-
diative discs with different viscosities is displayed. The Figure
also features the two different gas configurations (ortho-para mix
and equilibrium) and simulations with a constant adiabaticindex
γ = 1.4. The simulations withγ = 1.4 and a constant viscosity
are taken from Bitsch & Kley (2011b).

As the details of the torque acting on planets in discs with
different viscosity has been discussed for the different gas distri-
butions in great detail in Section 4, we just want to discuss the
influence of these configurations on the zero-torque radius.
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Fig. 17. Displayed are the surface density maps for 20MEarth planets
on fixed circular orbits in fully radiative discs. The viscosities and gas
configurations in the discs are (from top to bottom):α = 0.004 with
ortho-para mix,α = 0.004 with equilibrium gas,α = 0.008 with ortho-
para mix andα = 0.008 with equilibrium gas. The snapshots are taken
in the equilibrium state of the disc.
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Fig. 18. Torque acting on 20MEarth planets in discs with different vis-
cosities. Each plot features the two gas configurations (ortho-para mix
and equilibrium) and a constantγ = 1.4. From top to bottom the viscos-
ity is: α = 0.004,α = 0.008 andν = 1015 cm2/s. The simulations with
γ = 1.4 and a constant viscosity are taken from Bitsch & Kley (2011b).

In Table 2 the zero-torque radius for the mentioned simula-
tions is presented. In theα = 0.004 the zero torque radius is
closer to the star compared to the simulations withα = 0.008
andν = 1015 cm2/s. As viscosity is needed to keep the torques
acting on the planet unsaturated, it is not surprising that the zero-
torque radius is further out for discs with higher viscosity.

With an increasing adiabatic indexγ the torque acting on an
embedded 20MEarth planet is decreasing (see Fig. 10). For lower
temperatures the adiabatic index is constantly increasingin the
ortho-para gas mixture (untilT < 50K, whenγ = 1.67), while it
is first decreasing in the equilibrium configuration (toγ = 1.3)
and then increasing until it reachesγ = 1.67 atT ≈ 20K. As the

temperature decreases further out in the disc, one might suspect
a larger zero-torque radius for the equilibrium gas configuration
compared to the ortho-para configuration (as density is about the
same for these configurations for large distances to the central
star).

For all displayed viscosities the zero-torque radius is farther
out in the disc in the equilibrium gas configuration comparedto
the ortho-para mixed gas. However, the constantγ simulations
feature a zero-torque radius that is in most cases even farther out
than in the equilibrium gas configuration.

6. Summary and Conclusions

The viscosity determines the structure of the disc. For increas-
ing α-viscosity we find a decrease of density and an increase of
temperature in midplane of the disc. The aspect ratio of the disc
is also increasing for increasing viscosity. The slope of the tem-
peratureβ is decreasing for increasing viscosity. It seemed that
the simulation with a constant viscosity ofν = 1015 cm2/s is in
between theα = 0.005 andα = 0.006 simulations.

The aspect ratio of the disc increases for increasing viscosity
and increasingγ. The aspect ratio profile for very low viscosities
is about constant with little fluctuations. However, for increasing
viscosity the aspect ratio is no longer constant, but after asmall
increase for small distances to the central star, the aspectratio de-
creases with increasing distance to the central star. A decreasing
H/r profile with increasing distance to the star is not what one
would expect, and is the result of the temperature dependence of
the opacity.

A change in aspect ratio of the disc influences the migration
of embedded planets. For the aspect ratio this has been shown
for isothermal discs, where embedded planets migrate inwards
faster for smaller aspect ratios of the disc (Tanaka et al. 2002).
The slope of the temperatureβ also influences the torque acting
on an embedded planet. In many theoretical formulae (Masset
& Casoli 2010; Paardekooper et al. 2011) the parameterβ is not
only used to calculate the Lindblad torque, but also to calculate
the entropy-related part of the horseshoe drag and the entropy-
related part of the linear corotation torque. A change in these
parameters therefore changes the torque acting on a planet em-
bedded in these discs.

For very small viscosities (α < 0.0025) we find a negative
torque acting on a 20MEarth planet in a fully radiative disc, indi-
cating inward migration. Interestingly in the low viscosity case,
a low mass planet seems to open up a partial gap in the disc. A
lower viscosity also reduces the torque acting on planets embed-
ded in isothermal discs (Bitsch & Kley 2010).

For increasing viscosities (α > 0.003), the torque becomes
positive and seems to stall for even higher viscosities (α ≈
0.005). Even as the density, temperature and aspect ratio pro-
files of theα = 0.005 simulation match quite well with the con-
stant viscosity simulation of an unperturbed disc, a difference of
about 50% in the total torque acting on an embedded 20MEarth
planet arises. As theα-viscosity is dependent of the temperature
in the disc (cs ∝

√
T ) and the temperature undergoes substan-

equilibrium ortho-para const. γ = 1.4
α = 0.004 1.8 1.7 1.75
α = 0.008 3.3 3.0 >3.5
const. ν 2.35 1.7 2.5

Table 2. Zero-torque radius (inaJup) for planets in fully radiative discs
with different viscosity and different gas configurations.
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tial changes near the planet, the torque is influenced as wellas
the major contributions of the torque arise from near the planet.
This difference results in a smaller torque acting on the embed-
ded planet.

Paardekooper & Papaloizou (2008) stated that viscosity can
prevent the torques from saturation in isothermal discs. Infully
radiative discs, the effects of viscous heating and radiative trans-
port/cooling in the disc prevent the torques from being saturated
(Kley et al. 2009), but as we showed here, only if the viscosity
in the disc is high enough to do so.

As the accretion rate onto the star might be higher for more
massive discs, the viscosity in those discs might also be higher,
resulting in a more likely scenario for outward migration ofem-
bedded planets. The viscosity of the disc determines the torque
acting on the planet, which therefore also changes the zero-
torque distance to the central star. At the zero-torque distance
to the central star, planetary embryos can pile up and form larger
planetary cores (Sándor et al. 2011). When this distance changes
dramatically due to a too small viscosity in the disc, the creation
of larger bodies may be too close to the central star, so that these
new formed cores might be lost in the central star anyway.

The torque acting on planets embedded in discs with the
equilibrium gas configuration is higher than the torque in the
ortho-para mixed disc for the same viscosity (constant andα).
A larger viscosity in a disc, results in a higher temperaturein
the midplane of the disc. As the adiabatic index is dependentof
the temperature in the disc, the viscosity directly influences the
adiabatic index. A transition fromγ = 1.4 to γ = 1.67 reduces
the torque by a factor of≈ 3 for discs with a constant adiabatic
index.

In anα = 0.004 disc the temperature in midplane is lower
than in theα = 0.008 disc. In the equilibrium gas configuration
the adiabatic index first becomes smaller and increases towards
γ = 1.67 when the temperature in the disc decreases. If the disc
is then sufficiently cool enough, the total torque acting on an
embedded planet in an equilibrium gas disc is higher than in an
ortho-para gas disc as simulations with a constantγ have shown.

The consideration of a temperature dependent adiabatic in-
dex is crucial for discs with a sufficiently highα viscosity, as the
adiabatic index influences the disc structure, which then influ-
ences the torque acting on an embedded planet.

As the equilibrium gas configuration features a smaller adi-
abatic index for low temperatures, which in return results in a
higher torque acting on planets in discs with constant viscos-
ity, the zero-torque radius for embedded planets is larger in the
equilibrium gas configuration compared to the ortho-para mix
configuration. It seems that due to the consideration of the tem-
perature dependent adiabatic index, the zero-torque region in the
disc can be much larger than for a constant adiabatic index. In
general, a wider area of stopped inward and outward migration
can function as a planetary trap, where larger planetary embryos
can be created.
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5 Summary and conclusions

In the papers, I studied the influence of radiation transport in fully radiative discs on
embedded planets. The motion of the planets in isothermal discs is inwards, at a rate
proportional to the planets mass (Tanaka et al., 2002). In 2D and 3D simulations of fully
radiative discs, planets can migrate outwards, if they do not exceed a certain threshold in
mass (Kley and Crida, 2008; Kley et al., 2009). The outward migration of planet embryos
with several earth masses certainly represents a solution to the too rapid inward migration
found in the mass regime of classical (isothermal) type-I migration. Growing planets can
spend more time in the outer disc regions and move then later via type-II migration towards
the star.

In Kley et al. (2009), we investigated the origin of the torque acting on the embedded
planet in great detail. In Baruteau and Masset (2008) it was stated that the maximum of
the torque density Γ(r) lies at corotation. However, in our simulations we find that the
maximum of the torque density is slightly shifted from the planets location (Kley et al.,
2009). This result is confirmed by numerical simulations for increasing resolution and for
changes in the planetary mass.

The maximum of the torque density in a fully radiative disc, is represented as a little
’spike’ in Fig. 2.9. Without the ’spike’ the torque density would follow the adiabatic
torque density, which saturates, so that the planet can not sustain outward migration any
more. As the maximum of the torque density is slightly shifted from the planets location,
it might have a dramatic effect, if the planet would move from its location beyond the
torque maximum. This could happen, for example, if the planet was on an eccentric orbit
around the star.

The evolution of planets on eccentric orbits in fully radiative discs is investigated in Bitsch
and Kley (2010). Outward migration of low-mass planets in fully radiative discs is possible
for planets on circular orbits. However, if the planet moves on a small eccentric (e ≤ 0.02)
orbit, it can still migrate outwards. For larger eccentricities, the direction of migration is
inwards. The maximum value of eccentricity by which a planet can still undergo outward
migration seems to be determined by the ’spike’ in the torque density configuration Γ(r).
This torque maximum has a slight offset to the planets location (Kley et al., 2009), which
then results in a limiting eccentricity for outward migration of about 0.015 − 0.025. If
the eccentricity of the planet is larger than this value, it will migrate inwards, while it
will migrate outwards for smaller eccentricities. It seems that a too large eccentricity
overcompensates the effects of a fully radiative disc, so that the planet would migrate
inwards.

In isothermal discs, the eccentricity of an embedded planet is damped in time (Cresswell
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et al., 2007). This result was confirmed by isothermal reference simulations in Bitsch and
Kley (2010). In this work, we also monitored the evolution of eccentricity in fully radiative
discs. As expected, eccentricity is damped in these discs as well. However, the damping
rate for low-mass planets is slightly slower in fully radiative discs compared to isothermal
discs with the same aspect ratio H/r. Small eccentricities (with e<∼2H/r) are damped
exponentially with a time scale given approximately by the linear results (Ward and Hahn,
1994). Larger eccentricities are damped initially according to ė ∝ e−2 in agreement with
Papaloizou and Larwood (2000) and Cresswell et al. (2007).

For increasing masses of the planet, the damping of eccentricity becomes faster in both
thermodynamic cases. But if the planet is so massive that it can open a gap in the disc,
eccentricity is damped at a slower rate, as an open gap reduces the damping rate.

In Cresswell et al. (2007) also the evolution of planets on inclined orbits in isothermal discs
is discussed. In these discs, inclination is damped for all planetary masses. The results for
isothermal discs could be verified in Bitsch and Kley (2011). In the main body of the disc
(i < H/r, i in radiants), inclination is damped at an exponential rate, di/dt ∝ −i. For
higher inclined planets, the loss of inclination is determined through di/dt ∝ i−2.

In fully radiative discs, the evolution of inclination also follows the trend of an isothermal
disc, but the damping rates are a little bit higher (Bitsch and Kley, 2011). For low-
mass planets on circular inclined orbits, outward migration is still possible, but only if the
inclination is smaller than the threshold of i ≤ 4.5◦. For higher inclinations, the planet
migrates inwards. It seems that inclination does not have such a huge effect on migration
as eccentricity. In the evolution of planets on eccentric and inclined orbits, both quantities
are damped in time by the disc, but outward migration only occurs, when both quantities
are damped below their thresholds.

Inclination is also damped at a faster rate for more massive planets (Bitsch and Kley,
2011). However, if the planet is massive enough to open a gap in the disc, the damping
rate is reduced, as a gap in the disc reduces the damping effects of the disc.

As eccentricity and inclination are damped at a fast rate compared to the lifetime of the
disc (Bitsch and Kley, 2010; Bitsch and Kley, 2011), one could just monitor the torque
acting on a planet on a fixed circular orbit to determine its possible direction of migration.
Also the migration rates determined from calculations of planets on fixed orbits, match
the observed migration rates when the planet is allowed to move freely in the disc (Bitsch
and Kley, 2011).

In Bitsch and Kley (2011) the range of outward migration is discussed. As planets migrate
outwards in fully radiative discs, it is important to determine the so called zero-torque
radius in the disc. At this location, the planet does not feel a net torque from the disc and
it does not move. For more massive planets, the zero-torque radius is located nearer to the
central star. The zero-torque radius is of special interest for planet formation, as planetary
embryos will accumulate in this area of the disc where they can merge into bigger cores
(Lyra et al., 2010).

Planets migrating outwards in fully radiative discs generate a very sensitive density pattern

126



CHAPTER 5. SUMMARY AND CONCLUSIONS

near their location. The density is increased ahead of the planet (r < 1.0 and φ > 180◦)
and decreased behind the planet (r > 1.0 and φ < 180◦), see Fig. 2.10. As the planet
moves farther out in the disc, the density decreases and the disc is not able to sustain
outward migration.

In Bitsch and Kley (2011) the torques of planets in 3D fully radiative discs are compared
with theoretical formulae of Paardekooper et al. (2010, 2011); Masset and Casoli (2010).
The formula of Paardekooper et al. (2010) is only valid directly after the insertion of the
planet in the disc, as it does not account for saturation. In reality, however, the torques
do saturate. This formula also has the disadvantage that it does not become negative for
increasing distances to the central star. The same problem arises for the formula of Masset
and Casoli (2010), but the trend of the torque is fitted a little bit better.

The best quantitative fit for the 3D simulations in Bitsch and Kley (2011) is achieved with
the formula of Paardekooper et al. (2011). Not only is the zero-torque radius predicted
correctly, but also the general development of the torque is captured. This is of particular
interest to planet population synthesis models, where the planet moves under theoretical
predicted torques. A more accurate formula, checked with simulations, will provide for
better results in these models.

The influence of the disc mass is also discussed in Bitsch and Kley (2011). As the structure
of the disc is determined by viscous heating and radiative transport/cooling, a change in
the disc mass results in change of the disc structure. This is of special interest, when the
mass of the disc is increasing. As an increasing disc mass leads to higher temperatures in
the midplane, an influence on embedded planets is expected. However, with increasing disc
mass, the convective region in the discs grows, which results in an randomisation of the
torque of an embedded planet. The torque acting on a planet embedded in the convective
region of the disc is not clearly determinable.

For higher disc masses, the density farther out in the disc is also higher. A higher density
farther out in the disc, results in a still positive migration rate for low-mass planets, even
if they are farther out from the zero-torque radius as it would be possible in discs with
less mass. This results is of interest for population synthesis models, as the disc feeds the
planet and higher mass discs are needed to create higher mass planets.

As convection is a 3D effect, these results will not be visible in 2D simulations. 2D Simu-
lations of high-massive discs should therefore be handled with care. However, the effects
of convection should be investigated with higher resolution and including MRI effects for
studies with farther turbulence.

As viscosity is needed to keep the torques unsaturated, we investigated the influence of
it on planets embedded in fully radiative discs (Bitsch et al., 2011). As expected from
isothermal simulations, where a too low viscosity resulted in torque saturation, we find
the same effect for fully radiative discs. Very small viscosities disrupt the sensitive density
pattern needed for outward migration and even the onset of gap formation can be found for
low-mass planets. However, if the viscosity is high enough, outward migration is achieved,
as expected.
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There are different assumptions for the gas mixture in the disc. In accretion discs around
young stars, mainly hydrogen is present. One can assume an equilibrium gas configuration
where ortho and para hydrogen are equally distributed or a 3 : 1 mixed gas configuration
with a 3 : 1 ortho-para configuration. The gas configuration has a direct influence on the
adiabatic index. The adiabatic index is now dependent on the temperature in the disc. A
change in the adiabatic index changes the pressure of the disc, which directly influences the
disc structure (Bitsch et al., 2011). A change in the disc structure changes the zero-torque
radius of embedded low-mass planets. The inclusion of a temperature dependent adiabatic
index, results in a more accurate model of accretion discs.

Outlook

Different parameters of the disc (viscosity, adiabatic index, mass, etc.) can sometimes
have a quite dramatic effect on the migration rates of embedded planets. A change in the
disc parameters changes the disc structure, which in turn influences the embedded planets.
However, in these models so far, not all disc parameters have been considered. Another
interesting point to consider is stellar irradiation. Stellar irradiation heats the upper layers
of the disc, so that the heating of the disc is not only dependent on the viscosity in the
disc any more.

Also, as it is very unlikely that only one planetary core forms in a disc, one should consider
models with many planetary embryos that merge and grow in the disc. This process can be
investigated with N-body simulations, but the task of coupling hydrodynamical simulations
with N-body simulations is very challenging. In the hydrodynamical simulations only a
few thousand years are covered by the computation time, but in N-body simulations this
time is about a factor of 100-1000 larger.

Planetary embryos embedded in gaseous accretion discs can grow through the accretion
of gas from the disc and from gas giant planets. The process of accretion and how the
planet growth in the discs is not investigated in detail at all. Material in the Roche lobe
can be bound to the planet, but to display the movement of gas inside the Roche lobe, a
very high numerical resolution is needed. The usage of Nested Grids in these simulations
would certainly provide more insight in this topic, but the combination of Nested Grids
and FARGO (Masset, 2000) has never been done before.

As the new Kepler telescope provides scientists with more and more data on exoplanets,
more details have to be taken into account when modeling the evolution of planetary
systems. Also, the structure of accretion discs can now be observed in much more detail
than a decade ago, so that models of accretion discs should be adjusted to the observations.
Future observations of planets and discs will continue to give more detailed informations
that have to be taken into account. The inclusion of these aspects in simulations will make
them more realistic, which will be an interesting and challenging task in the future.
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