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1. Abbreviations 

5-HETE 5-hydroxyeicosatetraenoic acid 

5-LO 5-lipoxygenase 

ABA 3-O-acetyl-β-boswellic acid 

ac-lup 3-α-acetyl-lupanic acid 

ac-OH-lup 3-α-acetyl-28-hydroxy-lupanic acid 

3-α-ac-TA 3-α-acetyl-8,24-TA 

AKBA 3-O-acetyl-11-keto-β-boswellic acid 

ADP adenosine diphosphate 

AM acetoxymethylester 

Amp ampicillin 

AMPs antimicrobial peptides 

Apaf1 apoptotic protease-activation factor 1 

ATP adenosine triphosphate 

BCIP 5-bromo-4-chloro-3-indolylphosphate toluidine salt 

BA β-boswellic acid 

BE Boswellia extract 

BSA bovine serum albumin 

casp caspase 

catG cathepsin G 

CD cluster of differentiation 

CGI cathepsin G inhibitor I 

CHX cycloheximide 

COX cyclooxygenase 

CRAMP cathelin-related antimicrobial peptide 

cytB cytochalasin B 

DH-rob 4(23)-dihydro-roburic acid 

DHK-rob 4(23)-dihydro-11-keto-roburic acid 

DMEM Dulbecco’s modified Eagle medium 

DMSO dimethyl sulfoxide 

e(K)BA 3-O-ether-(11-keto)-BA 

EDTA ethylenediaminetetraacetate 

EGFR epidermal growth factor receptor 
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ERK extracellular signal-regulated kinase 

FCS fetal calf serum 

fMLP N-formylmethionyl-leucyl-phenylalanine 

FPRL-1 formyl peptide receptor-like 1 

Fura-2 1-[2-(5-carboxyoxazol-2-yl)-6-aminobenzofuran-5-oxyl]-2-(2`-

amino-5`-methyl-phenoxy)ethane-N,N,N`,N`-tetraacetic acid 

GAP GTPase activating protein 

GDP guanine diphosphate 

GEF Guanine-nucleotide exchange factor 

glu(K)BA 3-O-glutaroyl-(11-keto)-β-boswellic acid 

GSH glutathione 

GTP guanine triphosphate 

GST glutathione-S transferase 

hCAP18 human cathelicidin antimicrobial protein 

HEPES 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid 

HLE human leukocyte elastase 

HPLC high performance liquid chromatography 

HRP horseradish peroxidase 

ICU intensive care unit 

IFN-γ Interferon-γ 

IKK IκB kinase 

iNOS inducible nitric oxide synthase 

IPTG isopropyl-β-D-thiogalactopyranoside 

IRAK interleukin-1 receptor-associated kinase 

JNK c-Jun N-terminal kinase 

KBA 11-keto-β-boswellic acid 

6-keto-PGF1α 6-keto-prostaglandin 1α 

LAs lupanic acids 

lup lupanic acid 

LB Luria broth 

LBP lipopolysaccharide binding protein 

LPS lipopolysaccharide 

LTB4 leukotriene B4 

LTC4 leukotriene C4 



1  Abbreviations  11 

MALDI-TOF-MS matrix-assisted laser desorption ionization-time of flight-mass 

spectrometry 

MAP3K MAPK kinase kinase 

MAPK mitogen-activated protein kinase 

MEKK MAPK/ERK kinase kinase 

mRap1B mant-GppNHp-loaded Rap1B 

MTT 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide 

NBT nitro-blue tetrazolium chloride 

NF nuclear factor 

NO nitric oxide 

NP-40 Nonidet® P40 

OD optical density 

3-α-OH-TA 3-α-hydroxy-8,24-dien-TA 

3-β-OH-TA 3-β-hydroxy-8,24-dien-TA 

OH-lup 28-hydroxy-lupanic acid 

ox(K)BA 3-O-oxaloyl-(11-keto)-β-boswellic acid 

3-oxo-TA 3-oxo-8,24-dien-TA 

p12-LO platelet-type 12-lipoxygenase 

PAR4 protease-activated receptor 4 

PARP poly ADP-ribose polymerase 

PBMC peripheral blood mononuclear cells 

PBS phosphate buffered saline 

PGE2 prostaglandin E2 

PI propidium iodide 

PI 3 kinase phosphatidylinositol 3 kinase 

PMNL polymorphonuclear leukocytes 

PMSF phenylmethanesulfonylfluoride 

PxB polymyxin B 

RAs roburic acids 

RBD Ras-binding domain 

rob roburic acid 

RPMI Roswell Park Memorial Institute medium 

RT room temperature 

SDS sodium dodecyl sulfate 
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SDS-PAGE SDS-polyacrylamide gelelectrophoresis 

seph sepharose 

stauro staurosporine 

suc(K)BA 3-O-succinoyl-(11-keto)-β-boswellic acid 

s.e. standard error 

TAs tirucallic acids 

TEMED tetramethylethylenediamine 

TNF tumor necrosis factor 

TRAF TNF Receptor Associated Factor 

w/o without 
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2. Introduction 

2.1 Boswellia serrata and Boswellic acids 

2.1.1 Origin and historical background 

Boswellic acids (BAs), belonging to the group of pentacyclic triterpenes, originate from 

gum resin of trees of the genus Boswellia spec. of the burseracea family of plants. The 

genus Boswellia comprises 25 species, among them B. serrata Roxb. Ex. Colebr., B. 

carterii Birdw., B. frereana Birdw., B. papyrifera Hochst. and B. socotrana Balf.. The 

trees are widely distributed in India, on the Arabian Peninsula and in North Africa 

(Somalia, Ethiopia, Eritrea and Sudan). 

The gum resin from the trees, termed frankincense or olibanum, is used since millennia 

in traditional and Indian ayurvedic medicine. The use of frankincense as a drug was 

firstly described in the papyrus Ebers, which is thought to be written around 1,500 BC 

[1]. This document was written on a papyrus scroll and contains medical information 

for the treatment and diagnosis of various diseases. Major diseases treated with 

frankincense extracts were tumor and tumor-related disorders (carcinomas, edema), 

inflammatory diseases and diseases of the respiratory tract [2]. 

The usage of frankincense as a drug is not restricted to ancient times. Olibanum was 

mentioned in the first edition of the German Pharmacopoeia until the sixth edition in 

1926. It was mainly used as a drug in folk medicine, but due to a lack of modern 

scientific knowledge about its efficacy and modes of action, olibanum disappeared from 

medical treatments in modern medicine. Initial animal and clinical studies were 

performed in the 1980s [3-7] and the discovery of the 5-lipoxygenase as a molecular 

target of Boswellia extracts (BEs) [8] resulted in a large interest in using frankincense 

as a drug to treat several diseases in modern medicine. 

Today, many ingredients of the gum resins are identified (see 2.1.2) and a number of 

molecular targets for some of these compounds were found (see 2.1.3.1). Several animal 

and clinical studies indicate effectiveness in the treatment of diverse diseases (see 

2.1.3.3). Due to these studies, a medicinal product based on the gum resin of B. serrata 
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(H15TM) was approved in a part of Switzerland and additionally, H15TM was designated 

as an orphan drug for the treatment of peritumoral brain edema by the European 

Medicines Agency (EMA). 

2.1.2 Composition of Boswellia gum resin 

Modern analytical techniques allowed the identification of more than 200 compounds in 

Boswellia gum resin. The major components are volatile oil (5-15%), mucus (12-23%) 

and a lipophilic fraction (55-66%) [9]. The exact composition varies between different 

Boswellia species and resin harvesting time and methods. The lipophilic fraction 

contains several terpenes as di-, tetra- and pentacyclic triterpenes. Among the 

pentacyclic triterpenes, BAs were identified as major constituents [10,11]. BAs exist in 

α- and β-configurations, depending on the position of two methyl groups on C-19/C-20 

(α-BAs: geminal groups on C-20, β-BAs: vicinal groups on C-19/C-20). Further 

structural variety can be given by the presence or absence of a keto group on C-11 and 

an acetoxy group at C-3. The most abundant BAs present in Boswellia extracts (BEs) 

are mostly β-configured BAs: β-boswellic acid (β-BA), 11-keto-β-boswellic acid 

(KBA), 3-O-acetyl-β-boswellic acid (ABA) and 3-O-acetyl-11-keto-β-boswellic acid 

(AKBA) (tab. 2.1). 

Tab. 2.1: Structures of common BAs. 

Structure R1 R2 name 

COOH

R
2

R
1

 

OH  

H  
β-BA 

O  
KBA 

O

OH
3
C

 

H  
ABA 

O  
AKBA 
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The amount of different BAs in a dry extract of the gum resin from B. serrata (BSE-

018) is listed in tab. 2.2. While the non-11-keto BAs ABA and β-BA occur in relative 

high concentrations, the amount of the 11-keto-BAs AKBA and KBA is much lower. 

Tab. 2.2: Composition of a dry extract of the gum resin from B. serrata (BSE-018). 

Enlisted are the most abundant boswellic acids (according to [11]). 

ingredient content [%] 

ΒA 18.2 

ABA 10.5 

KBA 6.1 

AKBA 3.7 

 

Besides the β-configured triterpenes β-BA, ABA, KBA and AKBA, a variety of 

additional pentacyclic triterpenes have been identified, among them α-BA, acetyl-α-BA, 

2-hydroxy-β-BA [12], 3-O-acetyl-11-hydroxy-β-BA [13], α-amyrin [14], ursolic acid, 

9,11-dehydro-ß-BA [14], 9,11-dehydro-α-BA, 3-O-acetyl-9,11-dehydro-β-BA and 3-O-

acetyl-9,11-dehydro-β-BA [10] (tab. 2.3). 
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Tab. 2.3: Structures of pentacyclic triterpenes isolated from BEs. 

Structure Structure Structure 

COOH

OH

 
OH

 
OH

HOOC  

ursolic acid α-amyrin α-BA 

HOOC
O

O

 HOOC

OH

OH

 HOOC
O

O

OH

 

acetyl-α-BA 2-hydroxy-β-BA 3-O-acetyl-11-hydroxy-β-BA 

HOOC
OH

 HOOC
OH

 HOOC
O

O

 

9,11-dehydro-β-BA 9,11-dehydro-α-BA 
3-O-acetyl-9,11-dehydro-β-

BA 

HOOC
O

O

 

3-O-acetyl-9,11-dehydro-

α-BA 
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In addition, several pentacyclic triterpenes with an open A-ring (3,4-seco-triterpenic 

acids, RAs) were identified in B. socotrana Balf. (tab. 2.4): 4(23)-dihydro-roburic acid 

(DH-RA) [15], roburic acid (RA), 11-keto-roburic acid and 4(23)-dihydro-11-keto-

roburic acid (DHK-RA) [16].  

Tab. 2.4: Structures of RAs identified in frankincense extracts. 

Structure R1 R2 name 

R
1

R
2

HOOC

 

CH
2  H  

RA 

CH
3  

H  
DH-RA 

CH
3  

O  
DHK-RA 

 

Lupanic acids (LAs) were also found as ingredients from B. papyrifera and 

B. socotrana extracts (tab. 2.5): lupanic acid (LA) [17], 3-α-acetyl-lupanic acid (Ac-

LA) [18], 3-α-acetyl-28-hydroxy-lupanic acid (Ac-OH-LA) [19] and 28-hydroxy-

lupanic acid (OH-LA, Jauch, personal communication). 

Tab. 2.5: Structures of LAs identified in frankincense extracts. 

Structure R1 R2 name 

R
1

R
2

COOH  

OH  OH  
OH-LA 

O

O

 
OH  

Ac-OH-LA 

O

O

 
H  

Ac-LA 
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Several tetracyclic triterpene acids were identified as ingredients of B. papyrifera 

extracts, among them following tirucallic acids (TAs): 3-oxo-8,24-dien-TA (3-oxo-TA), 

3-α-hydroxy-8,24-dien-TA (3-α-OH-TA), 3-β-hydroxy-8,24-dien-TA (3-β-OH-TA), 3-

α-acetyl-8,24-TA (3-α-Ac-TA) and 3-α-hydroxy-7,24-dien-TA [20,21] (tab. 2.6). 

Tab. 2.6: Structures of TAs found in frankincense extracts. 

Structure R name 

HOOC

R

 

OH  
3-α-OH-TA 

OH  
3-β-OH-TA 

O

O

 

3-α-Ac-TA 

O  
3-oxo-TA 

HOOC
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OH  
3-α-OH-7,24-dien-TA 

 



2.1  Boswellia serrata and Boswellic acids 19 

2.1.3 Scientific studies 

Since the 1980s, a multitude of modern scientific studies were performed in order to 

investigate the effectiveness of BEs and its single constituents, including in vitro (see 

2.1.3.1), animal and human (see 2.1.3.3) studies. Also, some investigations were 

performed analyzing the pharmacokinetic profile of BAs and BEs (see 2.1.3.2). 

2.1.3.1 Identified molecular targets of BAs 

Several molecular targets for BAs were identified up to now. One of the first identified 

target of AKBA was 5-lipoxygenase (5-LO). Ammon et al. investigated an inhibitory 

effect of a B. serrata extract on 5-LO of rat peritoneal polymorphonuclear leukocytes 

(PMNL) [8]. 5-LO is an enzyme which catalyzes the transformation of arachidonic acid 

to LTA4, which is in turn converted into leukotriene B4 (LTB4) or leukotriene C4 (LTC4) 

[22]. More detailed investigations revealed BAs as novel non-redox inhibitors, which 

bind to a selective site for pentacyclic triterpenes on 5-LO [23-25]. AKBA was the most 

efficient BA tested with IC50 values of 1.5-50 µM, depending on the experimental 

settings (cell type, stimulus, animal or human cells) [23-30]. Higher concentrations of 

AKBA were needed to inhibit isolated 5-LO than 5-LO in intact cells. This indicates 

that the efficient inhibition in intact cells may be dependent on additional cellular 

mechanisms. In contrast to the inhibitory effects, principles from BEs may also 

stimulate 5-LO activity. When used in lower concentrations, a B. serrata extract 

elevated 5-LO activity [28], and when AKBA or KBA (<30 µM) are incubated with 

arachidonic acid in polymorphonuclear leukocytes (PMNL), an enhanced 5-LO activity 

was observed [27]. 

Besides 5-LO, other targets of the arachidonic acid metabolism have been identified. 

AKBA was identified as a direct inhibitor of cyclooxygenase-1 (COX-1), while COX-2 

was only slightly inhibited by BAs [31]. In addition, BAs were found to modulate 

platelet-type 12-lipoxygenase (p12-LO) activity [32], implicating that BAs may not be 

regarded as specific modulators of the 5-LO pathway. 

Human leukocyte elastase (HLE) was identified as a target of BAs [33]. AKBA was the 

most potent BA tested with an IC50 value of 13.8 µM. β-BA did also inhibit HLE, but 

less efficient. Other triterpenes derived from frankincense were effective as well (ursolic 

acid and α-amyrin) [33,34], indicating a more general mode of action not only specific 
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for BAs. HLE is a serine protease released by PMNL at sites of inflammation, and a 

role in several diseases like cystic fibrosis, chronic bronchitis, rheumatoid arthritis, 

pulmonary emphysema and acute respiratory distress syndrome have been proposed 

[35]. 

Several protein kinases are modulated by BAs. In PMNL and in granulocytic HL-60 

cells, AKBA activated extracellular signal-regulated kinase (ERK) 1/2 and p38 

mitogen-activated protein kinase (MAPK) and increased the intracellular Ca2+ 

concentration [27,36]. Additionally, AKBA induced the release of arachidonic acid 

from PMNL [27], this may be a consequence of the modulation of Ca2+ levels and 

MAPK activation [37]. AKBA-dependent MAPK activation and Ca2+ mobilization were 

sensitive to pertussis toxin [27], and inhibition of phosphatidylinositol 3 (PI 3)-kinase as 

well as chelation of Ca2+ reduced the AKBA-induced ERK activation [36]. This 

implicates an involvement of a G-protein coupled receptor, PI 3-kinase and Ca2+ 

signaling upstream of ERK activation in PMNL. 

In human platelets, ABA, β-BA, KBA and AKBA induced p38 MAPK activation [38]. 

ERK1/2 phosphorylation was only activated by non-11-keto BAs, as well as Ca2+ 

influx, arachidonic acid release, p12-LO product formation and thrombin generation. In 

addition, platelet aggregation was induced by β-BA. The molecular signaling induced 

by β-BA in platelets might involve Akt as well, which becomes phosphorylated after 

stimulation. On the other hand, AKBA suppressed Akt phosphorylation and inhibited 

tumor necrosis factor α (TNF-α)-induced Akt phosphorylation in human myeloid 

KBM-7 cells [39]. A direct interaction of AKBA and Akt might explain these effects 

[40].  

Some studies identified general effects of B. serrata extracts on the immune system. 

Therefore, an inhibition of C3-convertase of the classical component pathway was 

described [41]. Leukocyte infiltration was found to be suppressed by a B. serrata extract 

[5], and humoral antibody synthesis was modulated by BAs [42]. A B. serrata extract 

delayed a heart transplant rejection in mice [43]. All these effects are general 

observations and led to the question of the involved molecular pathways, which still 

have to be identified. 

In experiments analyzing the cytotoxicity of BAs, an apoptotic mode of action was 

identified. Initial studies describing the growth inhibition of promyocytic HL-60 cells 
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by a BA mixture isolated from B. carterii revealed inhibitory effects on proliferation 

while cell differentiation was induced [44]. A general inhibitory effect of BAs on DNA, 

RNA and protein synthesis was identified [45]. Up to now, cell growth inhibition by 

BEs and BAs were found in several cell lines, including glioblastoma cells, leukemia 

cells (K562, U937, MOLT-4, THP-1 [46], CCRF-CRM [47], NB4, SKNO-1, ML-1 

[48]), liver cancer Hep G2 cells [49], brain tumor cells (LN-18, LN-229) [46], colon 

cancer HT-29 cells [50,51], prostate cancer PC3 cells [52] and fibrosarcoma HT-1080 

cells [53]. An induction of apoptotic mechanisms of a BA mixture in HL-60 cells was 

shown by morphological cell changes and DNA fragmentation [54]. AKBA as a pure 

compound induced DNA fragmentation in HL-60 cells, leading to apoptotic cell death 

[47]. Since HL-60 cells do not express 5-LO constitutively [55], a 5-LO inhibition as 

molecular basis for the apoptotic induction seems unlikely. The apoptosis-inducing 

effects may be partly explained by the identification of topoisomerase I and IIa as a 

target of BAs [47,56,57]. In addition, AKBA and KBA can activate caspase 8, caspase 9 

and caspase 3 in liver cancer Hep G2 cells [49].  

Generally, there are two pathways of apoptosis induction known. The extrinsic pathway 

involves the activation of a death receptor like Fas [58]. The activated Fas receptor 

associates with the Fas associated death domain [59] and procaspase 8 or procaspase 10, 

which in turn become activated by proteolytic cleavage [60]. Then, the initiator caspase 

8 activates the effector caspase 3 in a proteolytic cascade [61]. On the other hand, the 

intrinsic pathway of apoptosis induction is triggered by a variety of extra- and 

intracellular stress factors [58]. A release of cytochrome c from the mitochondria can be 

observed as an early event and a loss of mitochondrial membrane potential might be 

involved, as well as the permeabilization of mitochondria and activation of Bcl-2 

proteins [62]. When cytochrome c is released, it binds to apoptotic protease-activation 

factor 1 (Apaf1) [63]. This leads to the formation of the apoptosome, which consists of 

cytochrome c, ATP and procaspase 9. Procaspase 9 becomes activated and activates 

caspase 3. 

In order to analyze whether the intrinsic or the extrinsic pathway is activated by BAs, 

caspase-inhibitor studies were performed [50]. While caspase 3 and caspase 8 inhibitors 

blocked the AKBA-induced apoptosis completely, a caspase 9 inhibitor was only 

partially effective. This implicates an involvement of the extrinsic pathway, which may 

in turn activate caspase 9 as a late event [49]. The apoptosis induction seemed to be 
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independent of Fas, however [50]. In prostate cancer cells, a death-receptor 5-mediated 

pathway seemed to be involved in the induction of apoptosis by AKBA [64]. An 

expressional downregulation of TNF-α-induced antiapoptotic proteins as IAP1/2, XIAP, 

Bcl-2, Bcl-XL, Bfl-1/A1 and FLIP by AKBA may contribute to the proapoptotic effects 

[39]. This effect might be explained by inhibition of the nuclear factor κB (NF-κB) 

pathway, either by inhibition of Akt [39], or by direct inhibition of IκB kinases (IKK) 

[65]. In conclusion, several reports exist about the apoptosis inducing properties of BEs 

and BAs and some parts of the responsible pathways were identified. 

2.1.3.2 Pharmacokinetic properties of BAs 

The understanding of the pharmacokinetic properties of a drug is very important in 

order to investigate the molecular mode of action. A single dose of a BE (1,600 mg, 

orally administered) resulted in plasma concentrations of KBA up to about 1.7 µM, 

while AKBA was not detected [66]. Another study determined maximum plasma levels 

of KBA (2.7 µM) [67]. This maximal concentration was reached after 4.5 h, and the 

mean elimination half life was about 6 h. In the plasma of a patient with a brain tumor 

treated for 10 days with a BE (4 × 786 mg/day), 0.34 µM KBA, 0.1 µM AKBA, 2.4 µM 

ABA and 10.1 µM β-BA were found [10]. In Crohn’s disease patients treated with BE 

(3 × 800 mg, 4 weeks), plasma concentrations of 0.04 µM AKBA, 0.33 µM KBA, 4.9 

µM ABA and 6.35 µM β-BA were determined [68]. This indicates a higher 

bioavailability of non-11-keto BAs (ABA and β-BA), while AKBA and KBA were only 

present in lower concentrations. The effect of food intake on bioavailability was 

analyzed as well. When applicated with a high-fat meal, plasma concentrations of BAs 

were strongly increased when compared to the fasted state [11]. The permeability of 

AKBA was very poor while the absorption of KBA was moderate in the Caco-2 model 

[69]. In addition, KBA was found to be subjected to an extensive phase I metabolism 

[70]. Neither KBA nor AKBA are substrates for P-glycoprotein, indicating that the low 

plasma levels are a result of poor absorption [69]. Finally, BAs were found to be 

inhibitors of cytochrome P450 enzymes, and so a possible interaction with other drugs 

should be considered while administering BE to humans [71]. 
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2.1.3.3 In vivo studies 

Several in vivo studies have been performed in animals and humans in order to 

investigate the effects of BEs and BAs. One of the first studies performed in 1969 

described analgesic and sedative effects in rats [72], as determined by the hot wire and 

mechanical compression methods. In a later study, however, the analgesic actions in rats 

could not be confirmed [73]. It may be possible that the analgesic actions are based on a 

general reduction of inflammation rather than being a direct effect [2]. BEs and isolated 

BAs have been tested in several inflammatory animal models since then. 

In the rat adjuvant arthritis model, extracts from B. serrata and B. carterii displayed 

prominent anti-arthritic activity [73,74]. In a similar model of adjuvant-induced 

arthritis, application of a BE decreased the urinary excretion of connective tissue 

metabolites as hydroxyproline, hexosamine and uronic acid [4]. The inhibition of 

excretion was very prominent in the chronic phase of inflammation. In the bovine serum 

albumin (BSA)-induced rat arthritis model, oral application of a BA-mixture resulted in 

lower leukocyte counts in the knee joint [6]. Treatment with a B. serrata extract resulted 

in a reduction of severity and resolution of typical clinical signs in osteoarthritic dogs 

with manifestations of chronic joint and spinal disease [75]. In a randomized, double-

blind, placebo-controlled cross-over study, patients suffering from osteoarthritis were 

treated with a B. serrata extract [76]. All of the 15 extract-treated patients reported an 

amendment after 8 weeks. In another placebo-controlled study, beneficial effects of a 

herbomineral formulation containing B. serrata extract on osteoarthritis in patients were 

found [77]. The beneficial effects of a B. serrata extract on osteoarthritis were 

confirmed in a double-blind, randomized and placebo-controlled study [78] and in a 

randomized, prospective, open-label, comparative study [79]. However, in a study of 

rheumatoid arthritis, frankincense displayed no beneficial effects [80]. 

There are indications that frankincense might be effective in treating inflammatory 

bowel diseases. AKBA attenuated tissue injury scores and decreased the number of 

rolling and adherent leukocytes in indomethacin-induced ileitis in rats [81]. In dextran 

sodium sulfate-induced murine colitis, AKBA blunted disease activity and reduced the 

number of adherent leukocytes and platelets in inflamed colonic venules [82]. However, 

another study could not confirm the beneficial effects of a B. serrata extract in dextran 

sodium sulfate-induced colitis [83]. In a clinical study, 34 patients with ulcerative colitis 
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grades II and III were treated with an alcoholic B. serrata extract. Several clinical 

parameters improved, and the treatment with frankincense was not inferior compared to 

the standard treatment with sulfasalazine [84]. Frankincense seems to be beneficial in 

the treatment of Crohn’s disease as well. In a randomized, double-blind, verum-

controlled study the B. serrata extract H15TM reduced the Crohn Disease Activity Index 

in a similar matter as the standard treatment mesalazin [85]. In a study on chronic 

colitis, 18 of 20 frankincense-extract treated patients showed an improvement in at least 

one disease parameter, compared to 6 of 10 in the control group receiving sulfasalazine 

[86]. 

In order to investigate whether the observed proapoptotic properties of frankincense 

(see 2.1.3.1) could lead to a tumor inhibition in vivo, several studies were performed. 

Phorbol-ester-induced increases in skin inflammation, epidermal cell layers, 

proliferation and tumor promotion were reduced by topical application of a methanolic 

B. serrata extract in mice [87]. Survival time of rats with implanted C6 tumor cells were 

increased by application of a B. serrata extract [88]. In a preclinical study, 19 patients 

with intracranial tumors received a palliative therapy with the B. serrata extract H15TM 

[89]. No obvious anti-proliferative effect on tumor progression was observed, but there 

were indications for beneficial effects due to edema reduction. In another trial with 

patients with brain tumor and progressive edema, no influence of H15TM on tumor 

growth was observed [90], while the accompanying edema was reduced by treatment 

with frankincense in some patients. 

A B. serrata extract was found to be beneficial in the treatment of asthma. In a double-

blind, placebo-controlled study, 40 patients were treated with 3 × 300 mg/day BE for 6 

weeks [91]. 70% of BE-treated patients showed an improvement, compared to 27% 

placebo-treated patients.  
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2.2 hCAP18 and LL-37 

In this study, human cathelicidin antimicrobial protein (hCAP18) and LL-37 were 

identified as molecular targets of BAs. hCAP18 belongs to the protein family of 

cathelicidins, and it is the only member of this family expressed in humans [92]. 

hCAP18 is synthesized as a preproprotein, consisting of a signal sequence, a cathelin 

domain and an LL-37 domain (see fig. 2.1) [93]. 

 

Fig. 2.1: Structure of hCAP18. 

Cathelin was first identified as an inhibitor of the cysteine proteinase cathepsin L [94]. 

This domain is highly conserved in cathelicidins throughout species [95,96]. The 

cathelin domain can be separated from the LL-37 domain by proteolytic cleavage, 

resulting in the liberation of LL-37 peptides. Some proteases able to process hCAP18 

were identified, among them proteinase-3 [97] from neutrophils and gastricsin from 

seminal plasma [98]. LL-37 is a small peptide consisting of 37 amino acids. It is thought 

to be the active component of hCAP18, which itself is generally regarded as an inactive 

precursor protein. LL-37 belongs to the group of antimicrobial peptides (AMPs), which 

are characterized by their bactericidal potential [99]. Besides its antimicrobial effects, it 

was found to modulate the immune response (see 2.2.2). In sweat, LL-37 was found to 

be further degraded by serine proteases after liberation from hCAP18, leading to shorter 

peptides with enhanced antimicrobial properties but weakened immunomodulating 

effects [100].  

2.2.1 Expression pattern and occurrence of hCAP18 

hCAP18 is expressed in a large variety of cells, tissues and body fluids, among them 

leukocytes [101,102], skin [103,104], sweat [105], wound fluid [106], diverse epithelia 

[107-109], testis [110] and colon mucosa [111]. In addition, hCAP18 was identified in 

the plasma, where it occurs bound to lipoproteins [112]. hCAP18 expression rates are 

influenced in several diseases. Expressional upregulation was found in the course of 
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inflammatory disorders (psoriasis, contact dermatitis) [113-115], bacterial infection 

[116] and breast cancer [117]. A downregulation was found in atopic dermatitis [118], 

chronic ulcer epithelium [119], acute myeloid leukemia [120] and during enteric 

infection [121]. 

2.2.2 Molecular mode of actions of LL-37 

Once liberated from hCAP18 by proteolytic cleavage, LL-37 can exert its biological 

effects. Initially, antibacterial effects were reported [122], followed by the identification 

of antifungal [123] and antiviral activities [124]. LL-37 is able to kill bacteria, most 

likely via an interaction with the membrane [125]. The bacterial cell surface is 

negatively charged, while the membrane of many mammalian cells has a neutral surface 

[126]. This allows the cationic LL-37 to target bacterial membranes with a higher 

binding rate. Nonetheless, some cytotoxic actions of LL-37 on mammalian cells have 

been described as well. Incubation of LL-37 with leukocytes and T-cells resulted in 

cytotoxicity [127] and red blood cells were lysed in a similar manner [128]. Since LL-

37 is cytotoxic for both bacterial and mammalian cells, it may be considered as a toxin 

as well [129]. Besides its cytotoxic properties, diverse immunomodulatory effects were 

found. LL-37 stimulates wound healing [119] and angiogenesis [130] and induces 

chemotaxis in different cell types such as neutrophils, eosinophils and mast cells 

[131,132]. In addition, mast cells were shown to degranulate after LL-37-stimulation, 

leading to a release of pro-inflammatory mediators as histamine and prostaglandins 

[133]. Three different receptors were found to be activated by LL-37, namely formyl 

peptide receptor-like 1 (FPRL-1) [134], P2X7 [135] and epidermal growth factor 

receptor (EGFR) [136]. Receptor activation by LL-37 leads to an intracellular activation 

of ERK and p38 MAPK in monocytes [137] and keratinocytes [138].  

In addition to its antimicrobial and immunomodulatory effects, LL-37 has strong 

lipopolysaccharide (LPS) binding properties [139]. LPS occurs in the outer membrane 

leaflet of Gram-negative bacteria and is a strong pro-inflammatory stimulus (see 2.3.1 

and 2.3.2). LL-37 can neutralize the biological activities of LPS by direct binding with a 

high affinity. LL-37 inhibits the LPS-induced cytokine secretion [140], as well as the 

LPS-induced nitric oxide and TNF-α release in macrophages [141].  
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2.3 Lipopolysaccharides 

Lipopolysaccharides (LPS) were identified as molecular targets of BAs in this study. 

They are known to be very powerful immunostimulators (see 2.3.2) which can cause 

several critical disease states (see 2.3.3). An introduction about its origin and its 

molecular modes of actions is given in the following paragraphs. 

2.3.1 Structure and origin of LPS 

LPS is an essential component of the outer membrane of various Gram-negative 

bacteria [142] and is composed of a lipophilic region (lipid A) and a hydrophilic oligo- 

or polysaccharide portion [143]. The lipid part is anchored in the membrane and the 

saccharide portion can be divided in two parts, the core region and the O-specific chain 

(fig. 2.2). The core region consists of an oligosaccharide with up to fifteen 

monosaccharides and is linked to the O-specific chain, which is comprised of repeating 

saccharide units. Some LPS classes lacking this O-specific chain have been identified, 

and so two main classes of LPS can be divided [142], the smooth form (S form, with O-

specific chain) and the rough form (R form, without O-specific chain). The O-specific 

chain is highly variable in different bacteria. In most cases, it is a heteropolysaccharide 

consisting of repeating units of two to eight sugar monomers [143-145]. The core region 

is a bit more conserved. Two components are characteristic, 3-deoxy-D-manno-2-

octulosonic acid (Kdo) and heptopyranose (Hep) [143]. Additional sugars may be 

present, but the lipid A region is linked to a Kdo molecule in the vast majority of LPS 

molecules [143,146,147]. The lipid A region is thought to be responsible for biological 

effects of LPS [148-150]. Most lipid A molecules consist of a phosphorylated 

disaccharide which is acylated at several sites [143]. Characteristic acyl components are 

(R)-3-hydroxy fatty acids, which are partly esterified by other fatty acids. 
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Fig. 2.2: General structure of LPS (S form) from Gram-negative bacteria (modified 

according to [142]). LPS is composed of an O-specific chain, a core region and lipid A. 

GlcN, glucosamine, Kdo, 3-deoxy-D-manno-2-octulosonic acid, Hep, heptopyranose. 

2.3.2 Signal transduction pathways involved in LPS-signaling 

Several cell types respond to exposure to LPS. Primary target cells are monocytes, 

macrophages, neutrophils and dendritic cells, all expressing membrane-bound CD14 as 

well as toll-like receptor 4 (TLR4) [151-155]. In a physiological context, a bacterial 

infection is recognized by the immune system, and phagocytes become activated, as 

well as humoral serine protease cascades. The adaptive immune response is activated as 

well, leading to a generation of antibodies, mostly against the O-specific side chain of 

LPS [143,146]. Elementary parts of the LPS signaling in phagocytes are shown in 

fig. 2.3.  
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Fig. 2.3: LPS signaling in phagocytes [142,156]. LPS binds to LBP and CD14 and 

activate the TLR4/MD2 receptor complex. Interleukin-1 receptor-associated kinase 

(IRAK) becomes activated and transfers the signal to TNF Receptor Associated Factor 

6 (TRAF6). TRAF6 activation results in phosphorylation of MAPK kinase kinases 

(MAP3Ks), which eventually activate MAPKs. In addition, TRAF6 activate NF-κB, 

which induces the gene expression of inducible nitric oxide synthase (iNOS). Enhanced 

iNOS levels lead to an enhanced NO generation. 

LPS binds to membrane-bound CD14 molecules [157]. The binding affinity is greatly 

enhanced by the presence of lipopolysaccharide binding protein (LBP), a protein 

common in blood serum [158,159]. The LPS/LBP/CD14-complex activates the 

TLR4/MD2 receptor complex, which transfers the signal to the cytosolic region [160]. 

The signal transduction cascade includes the activation of interleukin-1-receptor 

associated kinases (IRAKs), among them IRAK1 and IRAK4 [161], TRAF6 and a 

subsequent activation of the NF-κB signaling [153]. Additionally, activation of TRAF6 

leads to an activation of several mitogen-activated kinase kinase kinases (MAP3K), 

which eventually results in the activation of MAPKs [162,163]. Activation of NF-κB 

leads to a modulation of gene expression. Several pro-inflammatory genes are activated, 

among them the gene coding for the inducible nitric oxide synthase (iNOS) [164]. iNOS 
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catalyzes the generation of nitric oxide (NO) from L-arginine [165]. NO is an important 

messenger molecule involved in many physiological and pathological processes. 

2.3.3 LPS-mediated diseases 

LPS plays a major role in sepsis and septic shock. Septic diseases are the most common 

complications in intensive care units (ICU). More than 50% of all ICU patients are 

affected from these diseases [166]. Sepsis and septic shock are often preceded by a 

phase of immunosuppression or predominant anti-inflammatory activation [142,167]. 

This phase might promote bacterial infections [168-170]. The severity of septic 

syndromes was found to be correlated to the amount of bacteria present in the blood 

[171-173], while elevated LPS levels were identified in 70-90% of all patients with 

severe sepsis and septic shock [173-175]. The amount of LPS in the blood correlates 

with the lethal outcome. LPS triggers the generation of pro- and anti-inflammatory 

mediators, leading to a state of high fever, hypotension, disseminated intravascular 

coagulation, multi-organ dysfunction and failure and finally a lethal shock [142]. 

2.4 Cathepsin G 

Cathepsin G (catG) is a serine protease expressed in leukocytes, mainly in neutrophils, 

but to a lesser extent also in monocytes, myeloid and plasmacytoid dendritic cells [176]. 

In neutrophils, catG is synthesized during their differentiation process in the bone 

marrow and is stored in azurophilic granules [177]. It is synthesized as a preproprotein. 

After cleavage of the signal peptide, a pro-dipeptide is removed by enzymatic cleavage 

before or during the transport to the granules, resulting in the storage of active catG in 

the granules.  

2.4.1 Functions of cathepsin G 

A major function of neutrophils is the killing of invading bacteria. Many bacteria are 

destroyed by phagocytosis carried out by neutrophils. Internalized bacteria are killed in 

the phagolysosome, in which the content of azurophilic granules is released (fig. 2.4). 

However, the exact mode of action how catG and other serine proteases kill bacteria is 

still unknown [177]. A proteolytic activity seems unlikely, since the pH of the acidic 
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lysosomes is in a different range than the neutral pH optimum of catG [178]. 

Additionally, synthetic smaller peptides based on catG were found to have microbicidal 

properties in vivo [179,180], indicating that catG might have other functions besides its 

role as a serine protease.  

neutrophil

blood

catG

azurophilic granule
phagolysosome

bacteria

stimulus

catG

chemokine

PAR4

platelet

catG

Ca
2+

aggregation

chemotaxis

 

Fig. 2.4: CatG signaling after inflammatory stimulation. A stimulus leads to the 

release of catG from azurophilic granules of neutrophils into phagolysosomes and 

blood. In phagolysosomes, it can kill phagocytosed bacteria. When catG is released into 

blood, it modifies chemokine activity and activates the protease-activated receptor 4 

(PAR4) receptor on platelets, resulting in a Ca2+-dependent platelet aggregation. 

To some extent, azurophilic granules are exocytosed after inflammatory stimulation 

[181]. CatG gets released and becomes fully activated in the neutral environment of the 

plasma. Although there are several protease inhibitors present in the plasma, catG 

retains its activity [182]. This may be explained by the observation that catG is located 

near the membrane when it is released and the tight adhesion of neutrophils to the 

extracellular matrix generates a microenvironment, where high-molecular-weight 
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protease inhibitors cannot enter [183]. Released catG is known to modulate the immune 

response. It can cleave different types of chemokines [184-187], leading to an 

enhancement or a reduction of chemotactic chemokine activity, depending on the type 

of chemokine cleaved. Proteolytic activation of cellular receptors by catG has been 

reported as well. CatG was described as a direct activator of proteinase-activated 

receptor 4 (PAR4) on platelets [188]. PAR4 belongs to the protein family of seven 

transmembrane receptors. After a proteolytic cleavage, a new N-terminus is generated 

which acts as a tethered ligand activating the receptor [189,190]. A catG mediated 

activation of platelets results in platelet aggregation, mediated via a Ca2+-dependent 

signal transduction pathway [188]. Taken together, besides its antimicrobial function, 

catG plays also an immunomodulatory role. It stimulates some pro-inflammatory as 

well as some anti-inflammatory responses, indicating a complex regulation of the 

immune system. Most likely the time course of activating and degrading functions is 

crucial in the catG-depending immune response. 

2.5 The protein family Ras 

Ras genes were initially identified as transforming agents of the Harvey and Kirsten 

murine sarcoma virus [191]. The responsible viral genes turned out to be mutated 

versions of genes which encode for enzymes belonging to the protein superfamily of 

small GTPases. Six subfamilies have been identified up to now, the Ras, Rho, Ran, Rab, 

Arf and Kir/Rem/Rad subfamilies [192]. Among the subgroup of Ras proteins, five 

groups can be classified: p21 Ras, Rap, M-Ras, R-Ras and Ral. 

All members of the Ras superfamily of small GTPases are bound to guanine 

diphosphate (GDP) or guanine triphosphate (GTP) [192]. If GDP is bound, the enzyme 

is generally considered as inactive, while a binding to GTP leads to an activation of the 

enzyme. The slow intrinsic GTPase activity converts GTP to GDP, resulting in an 

inactivation of the proteins. Guanine-nucleotide exchange factors (GEFs) and GTPase 

activating proteins (GAPs) regulate the activation status of these small GTPases. GEFs 

catalyze a nucleotide exchange by releasing the bound nucleotide. The released 

nucleotide is then replaced by the more abundant GTP, resulting in an activation of the 

enzyme. The inactivation process can be accelerated by GAPs. These proteins bind to 
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small GTPases and enhance the low intrinsic GTPase activity greatly, leading to an 

inactivation of these enzymes. 

2.5.1 p21 Ras proteins 

The group of p21 Ras proteins in humans comprises H-Ras, K-Ras and N-Ras [192]. 

K-Ras occurs in two alternative splice forms: K-Ras 4A and K-Ras 4B. All p21 Ras 

proteins are closely related and share about 85% sequence identity. When compared to 

the other subfamilies of Ras proteins, they have about 40-50% amino acid identity. 

p21 Ras proteins are anchored in the membrane by the help of a farnesyl or a 

geranylgeranyl moiety [193]. In addition, the p21 Ras members H-Ras, N-Ras and 

K-Ras 4A are palmitoylated, which supports membrane targeting of these enzymes 

[194,195]. While H-Ras seems to be positioned in lipid rafts, K-Ras 4B is excluded 

from them [196,197].  

Several effector proteins have been identified for the p21 Ras subfamily, like different 

RalGEFs (RalGDS, Rgl, Rfl/Rgl2 and RPM/Rgl3 [198-202]). Besides GEFs, there are 

other effectors of p21 Ras, which are involved in p21 Ras-mediated signal transduction 

pathways. Raf-1, A-Raf and B-Raf, all members of the Raf family of serine/threonine 

kinases, were found to be activated by p21 Ras proteins, leading eventually to an 

activation of ERK [203,204]. In addition, the serine/threonine kinase MAPK/ERK 

kinase kinase-1 (MEKK-1) was found to bind to the effector domain of activated p21 

Ras proteins [205]. MEKK-1 activation results in MEK1/2 and ERK1/2 activation, but 

it activates also c-Jun N-terminal kinase (JNK) and p38 MAPK [206,207]. Besides its 

role in MAPK signaling, MEKK-1 was also found in the IKK complex, which is 

involved in the activation of NF-κB [208]. Phosphatidylinositol (PI)-3 kinase is another 

effector of the p21 Ras subfamily. It binds directly to GTP-bound Ras and becomes 

activated. PI(3,4,5)P3, produced by PI-3 kinase, binds to Sos1/2 and Vav, which 

stimulate nucleotide exchange on Rac [209,210]. 

Ras has been associated with modulation of growth. Cyclin D1, a positive regulator of 

cell cycle progression, is upregulated by Ras [211]. When Ras is inhibited, the entry and 

progression through the G1 phase is blocked [212]. These findings may contribute to the 

transforming activities observed from activated Ras. On the other hand, there is some 

evidence that p21 Ras may also induce apoptosis by induction of p19ARF or of cell cycle 
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inhibitors such as p16INK4a, p21Cip1/WAF1 and p27Kip1
 [192]. The Ras-dependent 

regulation of cellular growth seems therefore to be complex. In addition to the effects 

on cellular growth, Ras was found to be involved in cell adhesion processes [213]. Ras-

transformed cells have a less adhesive phenotype, which may be explained by a 

suppression of integrin activation [214]. An overexpression of H-Ras resulted in an 

activation of integrins, however [215]. The exact mode of action how Ras modulates 

cell adhesion is therefore still not completely understood. 

2.5.2 Rap1 

Rap1 belongs to the Ras subfamily of Rap GTPases (see 2.5). This subfamily is 

comprised of four members: Rap1A, Rap1B, Rap2A and Rap2B. Rap1 is a known 

mediator of integrin-regulating cellular signals [216-218]. Integrins are cell surface 

proteins that are important for cell adhesion processes. While Rap1 was described as a 

regulator of all integrins which are associated with the actin cytoskeleton (fig. 2.5), it 

does not influence intermediate filament associated integrins [219]. This indicates a 

specific mode of action, and these observations could be confirmed in mice deficient for 

the Rap-specific GEF RasGRP2, which show impaired platelet adhesion and 

aggregation [220]. In addition to integrins, cadherins were identified as adhesion 

molecules which are regulated by Rap1. Cadherins are components of adherence 

junctions and stabilize cell-cell contact by Ca2+-dependent interactions [221]. A 

knockdown of a Rap1GEF (Dock4) resulted in the disruption of adherence junctions in 

osteoblasts [222]. In osteosarcoma cells deficient for Dock4, the adherence junctions 

could be restored by addition of Dock4 or Rap1. In Ras-transformed Madin-Darby 

canine kidney cells, active Rap1 restored cadherin-mediated cell-cell adhesion [223]. 

Both Rap1GEF Epac and Rap1 were shown to mediate the cAMP-induced tightening of 

cell junctions in endothelia cells [224,225]. 
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Fig. 2.5: Cellular Rap1 signaling (according to [226]). Rap1 is activated by Epac, 

Dock4 and PDZ-GEF and activates the effectors RapL, Riam, Vav2, Tiam, Afadin and 

Arap3. This leads to the modulation of actin dynamics and cell adhesion via integrins 

and cadherins. 

Several Rap1 effectors have been identified up to now, among them Afadin, RapL, 

Riam, Arap3, Vav2, Tiam1 and PDZ-GEF [226]. Afadin is an adaptor protein that binds 

to various cell junction proteins [227,228] and was found to be bound by Rap1 [229]. 

RapL seems to be recruited by Rap1 to activate integrins [230]. Riam was reported to be 

involved in cell adhesion, and a direct binding of Rap1 was shown to mediate Riam-

induced cell spreading and integrin-mediated cell adhesion [231]. Arap3 links Rap1 

signaling to Rho signaling. It has a RhoGAP domain and a Rap1 binding domain, and 

the binding of Rap1 was shown to enhance RhoGAP activity [232]. This may 

eventually lead to an inhibition of Rho. The RacGEFs Vav2 and Tiam1 were identified 

as Rap1 effectors as well [233]. Rac is required for Rap1-induced cell spreading, and 

the activation of RacGEFs may be the link in the signal transduction cascade. PDZ-GEF 

is besides its function as a Rap1GEF also a Rap1 effector. The activation of PDZ-GEF 

by Rap1 can be interpreted as a positive feedback control [234]. Taken together, Rap1 
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proteins seem to be important mediators in controlling cell adhesion processes, as well 

as other small G proteins. 

2.6 Aim of this work 

Extracts of the gum resin of Boswellia spec. are traditionally used in folk and ayurvedic 

medicine to treat various diseases since centuries. In the last decades, a growing public 

interest in medical treatment with natural products became evident. In particular, a great 

interest in frankincense arose since initial studies proved pharmacological effects in 

vivo. Several animal and clinical studies revealed the efficacy of BEs in the treatment of 

many inflammatory diseases as bowel diseases (Crohn’s disease, ulcerative colitis), 

chronic arthritis and asthma but also of cancer and cancer-related diseases. In order to 

develop highly effective drugs, an understanding of the composition of BEs is crucial, 

as well as the identification of the active principles and their molecular targets. The first 

active principles identified were BAs, and the identification of 5-LO as a molecular 

target for BAs provided first knowledge about their molecular mode of action [25]. The 

growing interest in frankincense resulted in the identification of several other targets 

besides 5-LO, including HLE, COX-1, IKK, and Akt [235]. Mostly, these targets were 

identified in vitro, while appropriate in vivo experiments are still missing. The 

knowledge of the pharmacokinetic properties of BAs is crucial for the evaluation of the 

effectiveness of BAs in vivo. Several studies analyzed the maximal plasma levels of 

BAs reached after oral application and demonstrated that AKBA plasma concentrations 

are considerably lower than the concentration needed for an effective inhibition of many 

of the identified molecular targets in vitro. This led to the question whether an inhibition 

of these targets by AKBA may actually have in vivo relevance. It seemed likely that 

there are additional targets present for either AKBA or other BAs that reach higher 

plasma levels. In addition, there may be other active principles present besides BAs 

which may contribute to the overall anti-inflammatory properties of BEs. 

Based on the work of Dr. Lars Tausch (Goethe University, Frankfurt, Germany), who 

identified catG, hCAP18, Ras and Rap1B as potential BA-binding proteins [40], the 

study aims to evaluate the pharmacological relevance of these targets. The binding 

mode was identified (direct/indirect binding), and functional assays were performed to 

answer the question of a functional consequence. The moieties responsible for target 
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binding were estimated by structure-activity relationship studies using synthetic BA 

derivatives. Since it is likely that other compounds from BEs besides BAs might 

contribute to the anti-inflammatory effect, several additional triterpenes isolated from 

BEs were tested for their influence on these targets. Furthermore, an additional aim of 

this study was the identification of novel molecular targets of BAs by utilizing pull-

down and functional assays.  

BEs as well as BAs possess apoptosis-inducing properties. Different studies identified 

parts of the underlying signal transduction cascades which are influenced by BEs. 

However, the exact mode of action mediating this apoptotic effect is still unknown. In 

order to further investigate the BA-induced apoptosis induction, structure-activity 

relationship studies were performed using synthetically modified BAs. Although BAs 

are the best analyzed principles of frankincense, it is reasonable that additional 

compounds might contribute to the apoptotic effects of BEs as well. Therefore, several 

triterpenes derived from frankincense were evaluated for their apoptosis-inducing 

properties. 

Taken together, the identification and characterization of new molecular targets, as well 

as the elucidation of the apoptosis-inducing mechanisms should provide new insights 

into the molecular mechanisms by which frankincense exert its anti-inflammatory and 

pro-apoptotic activities. 
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3. Material and Methods 

3.1 Materials 

The following chemicals and materials were obtained from the stated manufacturers. 

5-HETE (5-hydroxyeicosatetraenoic acid) Cayman Chemical (Tallin, Estonia) 

Acrylamide solution 30% (37.7:1) AppliChem GmbH (Darmstadt, 

Germany) 

α-Amyrin Extrasynthese (Genay, France) 

Agar-Agar Merck KGaA (Darmstadt, Germany) 

Ammonium persulfate AppliChem GmbH (Darmstadt, 

Germany) 

Anti-β-actin (rabbit) antibody Santa Cruz Biotechnology, Inc. 

(Heidelberg, Germany) 

Anti-caspase-3 (mouse) antibody Prof. Wesselborg (Tübingen, Germany) 

Anti-caspase-8 (mouse) antibody Prof. Wesselborg (Tübingen, Germany) 

Anti-iNOS (rabbit) antibody Cell Signaling Technologies (Danvers, 

USA) 

Anti-Rap1B (rabbit) antibody Santa Cruz Biotechnology, Inc. 

(Heidelberg, Germany) 

Anti-CatG (rabbit) antibody Enzo Life Sciences GmbH (Lörrach, 

Germany) 

Anti-LL-37 (rabbit) antibody PANATecs GmbH (Tübingen, Germany) 

Anti-Ras (rabbit) antibody Cell Signaling Technologies (Danvers, 

USA) 

Anti-phospho-p44/42 (pERK1/2, mouse) 

antibody 

Cell Signaling Technologies (Danvers, 

USA) 

Anti-phoshpo-p38 MAPK (rabbit) antibody Cell Signaling Technologies (Danvers, 

USA) 

Anti-cleaved PARP (rabbit) antibody Cell Signaling Technologies (Danvers, 

USA) 



3.1  Materials 39 

2-mercaptoethanol Carl Roth GmbH + Co. KG (Karlsruhe, 

Germany) 

BAs Prepared as described [236,237]  

BCIP (5-bromo-4-chloro-3-

indolylphosphate toluidine salt) 

AppliChem GmbH (Darmstadt, 

Germany) 

Bromphenol blue (3’,3’’,5’,5’’-

tetrabromophenolsulfonphthalein) 

Merck KGaA (Darmstadt, Germany) 

Calcein-AM Invitrogen GmbH (Karlsruhe, Germany) 

Calcium chloride AppliChem GmbH (Darmstadt, 

Germany) 

λ-carrageenan (type IV) Sigma-Aldrich (Milan, Italy) 

catG AppliChem GmbH (Darmstadt, 

Germany) 

catG inhibitor I Calbiochem (Bad Soden, Germany) 

Chemotx® plates Neuroprobe, Inc. (Gathersburg, USA) 

Coomassie brilliant blue G250 AppliChem GmbH (Darmstadt, 

Germany) 

Cytochalasin B AppliChem GmbH (Darmstadt, 

Germany) 

DMEM (Dulbecco’s modified Eagle 

medium, high glucose, 5.4 g/l) 

PAA (Coelbe, Germany) 

DMSO (dimethyl sulfoxide) Carl Roth GmbH + Co. KG (Karlsruhe, 

Germany) 

EAH-Sepharose 4B GE Healthcare Bio-Sciences (Freiburg, 

Germany) 

FCS (fetal calf serum) PAA (Coelbe, Germany) 

Fura-2/AM (acetoxymethylester) Alexis Corp. (Lausen, Switzerland) 

Glycerol Caesar & Lorentz GmbH (Hilden, 

Germany) 

(L)-Glycine AppliChem GmbH (Darmstadt, 

Germany) 

GSH-Sepharose (Glutathione Sepharose 4B) GE Healthcare Bio-Sciences (Freiburg, 

Germany) 
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HEPES (4-(2-hydroxyethyl)-1-

piperazineethanesulfonic acid) 

PAA (Coelbe, Germany) 

H-Ras Jena Bioscience GmbH (Jena, Germany) 

Interferon-γ (mouse) Peprotech GmbH (Hamburg, Germany) 

IPTG (isopropyl-β-D-

thiogalactopyranoside) 

AppliChem GmbH (Darmstadt, 

Germany) 

Leupeptin AppliChem GmbH (Darmstadt, 

Germany) 

LL-37 PANATecs GmbH (Tübingen, Germany) 

Methanol Merck KGaA (Darmstadt, Germany) 

Milk powder (blotting degree) Carl Roth GmbH + Co. KG (Karlsruhe, 

Germany) 

NBT (nitro-blue tetrazolium chloride) Roche Diagnostics (Mannheim, 

Germany) 

NP-40 (Nonidet® P40) AppliChem GmbH (Darmstadt, 

Germany) 

Nycoprep PAA (Coelbe, Germany) 

Penicillin PAA (Coelbe, Germany) 

peqGOLD prestained protein marker IV PEQLAB Biotechnologie GmbH 

(Erlangen, Germany) 

Polymyxin B Enzo Life Sciences GmbH (Lörrach, 

Germany) 

Pyrogene® Recombinant factor C endotoxin 

detection system 

Lonza (Basel, Switzerland) 

RPMI 1640 (Roswell Park Memorial 

Institute medium 1640) 

PAA (Coelbe, Germany) 

SDS (sodium dodecyl sulfate) Carl Roth GmbH + Co. KG (Karlsruhe, 

Germany) 

Streptomycin PAA (Coelbe, Germany) 

Staurosporine Calbiochem (Bad Soden, Germany) 

TEMED (Tetramethylethylenediamine) Carl Roth GmbH + Co. KG (Karlsruhe, 

Germany) 

Thrombin GE Healthcare Bio-Sciences (Freiburg, 
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Germany) 

Tricin (N-

[Tris(hydroxymethyl)methyl]glycine) 

AppliChem GmbH (Darmstadt, 

Germany) 

Tris (2-amino-2-(hydroxamethyl)-1,3-

propanediol) 

AppliChem GmbH (Darmstadt, 

Germany) 

Triton X-100 Carl Roth GmbH + Co. KG (Karlsruhe, 

Germany) 

Trypsin/EDTA 

(ethylenediaminetetraacetate) solution 

PAA (Coelbe, Germany) 

Tween®-20 Carl Roth GmbH + Co. KG (Karlsruhe, 

Germany) 

Urea AppliChem GmbH (Darmstadt, 

Germany) 

 

Plastic material such as cell culture flasks, microplates and additional cell culture 

materials were obtained from Greiner bio-one (Frickenhausen, Germany). 

All other chemicals not listed were obtained from Sigma-Aldrich (Deideshofen, 

Germany), unless stated otherwise. 

3.2 Cell culture 

All cells were cultured in a cell incubator at 37 °C and 6% CO2 (Heracell, Heraeus, 

Hanau, Germany). 

3.2.1 RAW264.7 

RAW264.7 is a mouse leukemic monocyte cell line. It was isolated from an ascites of 

an induced tumor (i.p. injection of Abselon Leukemia Virus) in a male mouse [238]. 

RAW264.7 cells were cultured in DMEM medium supplemented with fetal calf serum 

(FCS, 10%), penicillin (100 U/ml) and streptomycin (100 µg/ml). After adherent cells 

reached a confluence of around 70%, the supernatant was exchanged by fresh medium. 
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Then, cells were scraped, diluted to 3 × 105 cells/ml in fresh medium and transferred 

into a new cell culture flask. 

3.2.2 Jurkat A3 

Jurkat T lymphocytes were isolated from the blood of a 14 year old boy with acute 

lymphoblastic leukemia [239]. Jurkat A3 cells were provided by Dr. John Blenis, 

Boston, MA. Cells were cultured in RPMI 1640 with 10% FCS, 10 mM HEPES, 

penicillin (100 U/ml) and streptomycin (100 µg/ml). After three days of growth, cells 

were diluted to 2 × 105 cells/ml in fresh medium. 

3.2.3 HL60 

The HL60 cell line was isolated from the blood of a woman with acute myeloid 

leukemia [240]. These cells are mainly premyeloid cells, which are able to differentiate 

after stimulation into granulocytes or monocytes/macrophages [240,241]. HL-60 cells 

were obtained from the American Type Culture Collection (ATCC). Cells were cultured 

in RPMI 1640 supplemented with 10% FCS, penicillin (100 U/ml) and streptomycin 

(100 µg/ml). After three days of growth, cells were diluted to 2 × 105 cells/ml in fresh 

medium. 

3.3 Isolation of neutrophils from buffy coats 

Venous blood was collected from healthy human donors by the University Hospital 

Tübingen (Germany). Leukocyte concentrates (buffy coats) were obtained by 

centrifugation at 4,000 × g for 20 min. The concentrates were diluted in an equal 

volume of phosphate-buffered saline (PBS, 1 mM KH2PO4, 3 mM Na2HPO4, 154 mM 

NaCl, pH 7.4) before dextran solution (5%, in PBS, w/v) was added in a ratio of 4:5. 

After 30 min, the supernatant was carefully collected and centrifuged (800 × g, 10 min, 

room temperature (RT)) on Nycoprep cushions. At this stage, the blood cells are 

separated in fractions. The supernatant consists of platelets, the peripheral mononuclear 

blood cells are located in the interphase, and neutrophils are pelleted. 
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The supernatant as well as the interphase was discarded and the pelleted cells were 

washed in PBS. For the lysis of erythrocytes, 10 ml H2O was added and incubated for 

45 sec. The lysis was stopped by addition of 40 ml PBS. Finally, cells were washed two 

times with PBS and resuspended in PBS supplemented with glucose (1 mg/ml). 

3.4 Isolation of platelets from buffy coats 

Venous human blood was separated in fractions by dextran sedimentation and 

centrifugation on Nycoprep cushions as described in 3.3. The supernatant (platelet-rich 

plasma) was collected and mixed with PBS (pH 5.9, 3:2, w/v). After centrifugation 

(2,100 × g, 15 min), cells were washed with PBS/NaCl 0.9% (1:1, v/v) and resuspended 

in PBS (pH 5.9) supplemented with glucose (1 mg/ml). 

3.5 Isolation of PBMCs and monocytes from buffy coats 

After dextran sedimentation of blood and centrifugation on Nycoprep cushions 

(see 3.3), the interphase containing peripheral blood mononuclear cells (PBMCs) was 

collected. Cells were washed two times in PBS containing EDTA (2 mM), and in case 

of the peripheral blood mononuclear cell isolation, they were resuspended in PBS and 

counted (see 3.6). For the isolation of monocytes, the cells were resuspended in RPMI 

1640 supplemented with 2 mM glutamine, 20% FCS, penicillin (100 U/ml) and 

streptomycin (100 µg/ml). Cells were transferred into cell culture flasks and left for 3 h 

at 37 °C and 6% CO2. Then, cells in suspension (mainly lymphocytes) were removed. 

Adherent monocytes were detached and resuspended in PBS supplemented with glucose 

(1 mg/ml) and CaCl2 (1 mM). Finally, cells were counted (see 3.6). 

3.6 Cell counting 

In order to determine cell numbers, cells were mixed with trypan blue (0.2%, 1:1, v/v) 

and counted on a Bürker hemocytometer under a light microscope. Viable cells appear 

unstained while dead cells are stained blue. 
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3.7 Isolation of BAs and synthesis of BA derivatives 

The isolation of naturally occurring BAs and triterpenes were carried out as previously 

described [236]. Syntheses of new BA derivatives as well as of new triterpenes were 

performed as previously described [237]. Both isolation and syntheses were carried out 

by Dr. Nicole Kather (University of Saarland, Saarbrücken). Molecular structures of 

synthetic BAs modified at the C-3 and C-11 position are shown in tab. 3.1.  
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Tab. 3.1: Structures of naturally occurring and synthetic BAs. 
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Besides C-3- and C-11-modified BA derivatives, additional derivatives from triterpenes 

derived from frankincense were synthesized (tab. 3.2). Both synthesis and isolation of 

all triterpenes were carried out by Dr. Nicole Kather (University of Saarland, 

Saarbrücken). 

Tab. 3.2: Structures of diverse triterpenes and BA derivatives derived from 

frankincense extracts. 

Structure Structure Structure 

HOOC

 

OH

OH
COOH  

OH

OH
COOH

 

4(23)-dihydro-nycthanthinic 

acid (DH-nyc) 
cis-diol-BA 11α-OH-BA 

OH

OH
COOH  

OH

COOH

 

11β-OH-BA oleanolic acid 

 



3.8  Determination of protein concentration 47 

3.8 Determination of protein concentration 

Protein concentrations were analyzed by using a colorimetric protein assay (DC Protein 

Assay, Biorad). Different concentrations of BSA (0.2 mg/ml – 1.5 mg/ml) were used as 

protein standards. 5 µl of standards and samples were transferred into a 96-well 

microplate. 25 µl reagent A’ and 200 µl reagent B were added and the plate was mixed. 

After 15 min, absorptions at 750 nm were measured in a microplate reader 

(VersaMaxTM, Molecular Devices Inc., Sunnyvale, CA, USA). The absorption was 

plotted against the standard concentrations. The concentrations of unknown samples 

were calculated with the help of a linear regression. 

3.9 Electrophoresis 

To separate proteins with molecular masses greater than 20 kDa, a discontinuous 

electrophoresis system was used [242]. Polyacrylamide was used as a matrix with 

densities between 8 and 16% acrylamide, depending on the separated samples.  

In order to separate proteins with molecular masses smaller than 20 kDa, a tricine gel 

system was used [243]. A running gel (8 - 16% acrylamide/N,N-

methylenebisacrylamide, 33% glycerol, 0.07% APS, 0.07% TEMED, 1 M Tris, 6% 

SDS, pH 8.45) was cast below a spacer gel (10% acrylamide/N,N-

methylenebisacrylamide, 0.1% APS, 0.1% TEMED, 1 M Tris, 6% SDS, pH 8.45) and a 

stacking gel (4% acrylamide/N,N-methylenebisacrylamide, 0.1% APS, 0.1% TEMED, 

3.3% APS, 3.3% TEMED, 1 M Tris, 6% TEMED, pH 8.45). 

The electrophoresis was carried out in a Mini Protean system (Bio-Rad, Hercules, CA, 

USA). All samples were separated for 15 min at a constant current of 80 V and 120 V 

afterwards. 

3.10 Western Blotting 

Western blotting was performed after electrophoretic separation of samples (see 3.9). 

Proteins were transferred to nitrocellulose membranes (Amersham Pharmacia, Little 
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Chalfont, UK) by using an electroblotting system (90 V, 90 min, in transfer buffer (48 

mM Tris, 40 mM glycine, 0.1 mM SDS, 20% methanol (v/v), tank blotting method, 

BioRad Mini Trans-Blot® cell, BioRad PowerpacTM Basic, Hercules, CA). Transferred 

proteins were fixed and stained by transferring the membrane in a Ponceau-S solution 

(5% Ponceau S in 5% acetic acid). After scanning the membranes (AGFA SnapScan 

1236, AGFA Graphics Germany GmbH & Co. KG, Germany), the staining solution was 

washed out by shaking the membranes in TBS (50 mM Tris, 100 mM NaCl, pH 7.4) for 

10 min. 

Free binding sites were blocked by 5% dry milk (w/v) and 0.1% Tween-20® in TBS, or 

5% bovine serum albumin (w/v) and 0.1% Tween-20® in TBS, respectively. After 1 h of 

constant shaking, membranes were washed with TBS for three times and transferred 

into specific antibody solutions (primary antibodies produced in rabbits or mice, diluted 

1:1,000 in TBS and 0.1% Tween-20®) over night at 4 °C with constant agitation. 

Membranes were then intensively washed three times with TBS, before they were 

transferred into the secondary antibody solutions (dilution 1:1,000 to 1:20,000 in TBS-

Tween® (0.1%), depending on the detection system used). The secondary antibodies 

bind to rabbit or mice proteins and are coupled to horseradish peroxidase or alkaline 

phosphatase. After three washing steps with TBS-Tween® (0.1%), secondary antibodies 

were detected in an ECL chemiluminescence system (GE Healthcare Bio-Sciences, 

Freiburg, Germany) or by a colorimetric method. 

The ECL detection system was used according to manufacturer’s instructions. Briefly, 

proteins were visualized by addition of horseradish peroxidase (HRP)-substrate 

AmershamTM ECL Western Blotting detection reagent (GE Healthcare Bio-Sciences, 

Freiburg, Germany). Then, the membranes were placed in an X-ray film cassette. A 

sheet of autoradiography film was placed above the membrane, and after an exposure 

time of 5 sec to 60 min, the film was developed in a development machine (CP 1000 

AGFA Healthcare N.V., Mortsel, Belgium). 

For the colorimetric detection, membranes were first equilibrated in detection buffer 

(100 mM Tris (pH 9.5), 100 mM NaCl and 50 mM MgCl2). Then, nitro blue tetrazolium 

chloride (NBT) and 5-bromo-4-chloro-3-indolyl phosphate (BCIP, 0.03%, w/v, each) 

were added. The colorimetric reaction was stopped by washing with TBS and EDTA (2 

mM) when bands became visible. 
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3.11 Coomassie staining of SDS-Gels 

Proteins in SDS-Gels were stained with Coomassie brilliant blue G-250. Following 

SDS-polyacrylamide gelelectrophoresis (SDS-PAGE) (see 3.9), gels were washed three 

times with water. Then, staining solution (Coomassie brilliant blue G-250, 70 mg/l, in 

35 mM HCl) was added. The gels were heated in a microwave (without boiling) until 

stained bands became visible. The unbound dye was washed out with water afterwards. 

3.12 Mass spectrometric analysis 

Following protein-pull down experiments and electrophoretic separation of precipitated 

proteins (see 3.13 and 3.9), protein bands were excised and digested. Matrix-assisted 

laser desorption ionization-time of flight-mass spectrometry (MALDI-TOF-MS) 

experiments were performed in cooperation with Dr. Lars Tausch (University of 

Frankfurt) and Prof. Dr. Michael Karas (University of Frankfurt, Germany) on an 

Ultraflex TOF/TOF mass spectrometer (Bruker Daltonics Inc., Manning Park Billerica, 

MA) [40]. Samples were dissolved in water/acetonitrile/TFA (29.5/70/0.5, v/v/v). As 

matrix, 3 mg/ml α-cyano-4-hydroxycinnamic acid (Bruker Daltonics Inc., Manning 

Park Billerica, MA, USA) dissolved in water/acetonitrile/TFA (29.5/70/0.5, v/v/v) was 

used. Analyte and matrix were spotted consecutively (1:1) on a stainless steel target 

before they were dried at room temperature. In order to reduce salt contamination, 

samples were washed with ice-cold formic acid (5%). Resulting spectra were externally 

calibrated using a SequazymTM Peptide Mass Standard Kit (Applied Biosystems, Foster 

City, CA, USA). An internal calibration was performed by usage of a tryptic auto 

digestion peptide (m/z 2163.0564). Processing of the spectra were done in flexAnalysis 

2.2 (Bruker Daltonics Inc., Manning Park Billerica, MA, USA) using the SNAP 

algorithm (maximal peak number: 150, quality factor threshold: 40, signal to noise 

threshold: 3). Using the NCBInr database, proteins were identified by Mascot (peptide 

mass tolerance: 100 ppm, maximum missed cleavages: 1; Matrix Science, Boston, MA, 

USA). Proteins with a score of 76 or higher were considered significant (p < 0.05). 
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3.13 Immobilization of BAs and pull-down assays 

For pull-down experiments, KBA and β-BA were linked via the C3-OH-moiety and a 

glutaric acid linker to EAH sepharose 4B beads as previously described [237]. The 

resulting constructs are shown in fig. 3.1. Immobilizations were performed by Dr. 

Nicole Kather (University of Saarland, Saarbrücken). In order to identify unknown 

binding partners of BAs, the immobilized molecules were incubated with isolated 

proteins or with cell lysates. Bound molecules were analyzed by a modified LAL assay 

(see 3.14) or SDS-PAGE (see 3.9) in conjunction with MALDI-TOF (see 3.12) or 

Western blotting (see 3.10). 

R

R = H

R = O
2 BA-seph

KBA-seph

Agarose

 

Fig. 3.1: Structure of immobilized β-BA (BA-seph) and KBA (KBA-seph). 

LPS (1 µg), LL-37 (0.5 µg), catG (0.5 µg/ml), H-Ras (1 µg) or Rap1B (2 µg) were 

solubilized in 375 µl binding buffer (50 mM HEPES (pH 7.4), 200 mM NaCl, 1 mM 

EDTA) supplemented with Triton-X 100 (1%) and BSA (0.02%). Alternatively, cell 

lysates were prepared. For platelets and HL60 cells, cells (2 × 108 platelets, 1.25 × 107 

HL60) were centrifuged (850 × g, 3 min, 4 °C) and resuspended in 75 µl lysis buffer (45 

mM HEPES, pH 7.4; 180 mM NaCl; 0.9 mM EDTA; 1% Triton-X 100). After 

sonification (2 × 8 sec, Branson B-12, Branson Ultrasonics Corporation, Danbury, CT), 

lysates were centrifuged (15,800 × g, 10 min, 4 °C) and the supernatants were collected. 

Finally, binding buffer was added to a total volume of 100 µl. For analysis of catG from 

neutrophils, cells (1 × 108/ml, 100 µl) were prewarmed for 2 min at 37 °C. Then, 

cytochalasin B (20 µM) was added for 5 min, followed by an addition of fMLP (5 µM) 

for 5 min. Samples were rested for 5 min on ice, before cells were spun down (2,500 × 

g, 10 min, 4 °C) and the supernatant was collected. Lysis buffer was added to a total 

volume of 100 µl. 150 µl sepharose slurry (50% in H2O, v/v) was added to isolated 

protein solutions or cell lysates and incubated overnight at 4 °C under slow constant 
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rotation. Then, the supernatants were collected and the sepharose beads were intensively 

washed for three times with binding buffer. Precipitated molecules were either eluted by 

addition of an equal volume of urea (4 M) or SDS-loading buffer (20 mM Tris (pH 8.0), 

2 mM EDTA, 10% 2-mercaptoethanol (v/v), 5% SDS (v/v)). In case of urea elution, 

eluted LPS as well as LPS in the incubation supernatant were quantified as described in 

chapter 3.14. Samples which were eluted by SDS-loading buffer were heated (5 min, 95 

°C) and spun down (15,800 × g, 10 min, 4 °C). Supernatants were collected and frozen 

before they were analyzed by electrophoretic (see 3.9), mass spectrometric (see 3.12) 

and Western blot (see 3.10) methods. 

3.14 Measurement of LPS activities 

LPS activities were quantified by using a modified LAL assay kit (Pyrogene®) 

according to the manufacturer’s instructions. Briefly, 100 µl LPS (10 endotoxin units 

(EU)/ml, from E. coli O55:B5) was incubated with 2 µl testing solutions at 37 °C for 10 

minutes. Then, 100 µl of a mixture of buffer, substrate and recombinant factor C were 

added. Generated fluorescence (excitation: 355 nm, emission: 460 nm) was measured in 

a fluorescent plate reader (Victor3, PerkinElmer, Rodgau-Jügesheim, Germany) directly 

and after 60 minutes of incubation. 

3.15 Measurement of LL-37 generation 

Neutrophils (5 × 107/ml) were incubated with cytochalasin B (10 µM) and BAs for 5 

min at 37 °C. Then, fMLP (1 µM) was added. The incubation was stopped after 1 min. 

by addition of SDS-loading buffer (40 mM Tris (pH 8), 4 mM EDTA, 10% SDS (w/v), 

20% 2-mercaptoethanol) in a ratio of 1:3. Samples were heated (95 °C, 5 min) and 

frozen, before the LL-37 and hCAP18 levels were analyzed by electrophoretic (see 3.9) 

and Western blot (see 3.10) methods. 
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3.16 Determination of LL-37 activity 

In order to determine LL-37 activities, its LPS-inhibiting potential was utilized. In a 

cellular assay, 2.5 × 107 neutrophils were dissolved in 1 ml PG buffer (PBS + 1 mg/ml 

glucose). Then, the cells were stimulated with cytochalasin B (10 µM) for 5 min and 

fMLP (1 µM) for 5 min at 37 °C. In parallel, 1 ml of citrated blood was collected from 

donors (University Hospital, Tübingen). Similarly, the blood was incubated with 

cytochalasin B (10 µM) for 2 minutes and fMLP (2.5 µM) for additional 5 minutes at 

37 °C. Afterwards, both neutrophil and blood samples were centrifuged (600 × g, 5 

minutes, 4 °C) before the supernatant and the plasma were collected. 

LPS (10 EU/ml, 100 µl, from E. coli O55:B5) was preincubated for 10 minutes at 37 °C 

with LL-37 (0.1 µM), neutrophil supernatant (1 µl) or blood supernatant (0.4 µl) and 

testing compounds. Then, buffer, substrate and recombinant factor C was added and the 

LPS activities were determined as described in 3.14. 

3.17 Determination of released nitrite 

The amount of nitrite in cell culture supernatants was determined via the Griess reaction 

[244]. RAW264.7 macrophages (2.5 × 106/ml, 100 µl) were incubated with LPS (1 

µg/ml, from E. coli O111:B4) and test compounds at different concentrations for 20 h. 

Then, the supernatant was collected and mixed with an equal volume of 

napthylethylenediamin-dihydrochloride (1 mg/ml) and sulfanilamide (10 mg/ml in 5% 

H3PO4). After 15 minutes, the absorption at 540 nm was measured in a microplate 

reader (VersaMaxTM, Molecular Devices Inc., Sunnyvale, CA, USA). 

3.18 Analysis of iNOS expression 

RAW264.7 macrophages (2.5 × 105, in 100 µl) were incubated with LPS (1 µg/ml, from 

E. coli O111:B4) or interferon-γ (IFN-γ, 10 ng/ml) and test compounds at different 

concentrations for 20 h. Then, 75 µl of the supernatant was replaced by lysis buffer (20 

mM Tris (pH 7.4), 150 mM NaCl, 2 mM EDTA, 1% Triton X-100 (v/v), 0.5% NP-40 

(v/v)). Cells were lysed on ice while shaking for 10 minutes. SDS-loading buffer (40 

mM Tris (pH 8.0), 4 mM EDTA, 20% 2-mercaptoethanol (v/v), 10% SDS (v/v)) was 
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added and the sample was heated for 5 minutes at 95 °C. Samples were frozen before 

they were analyzed by Western blotting (see 3.10) 

3.19 Cathepsin G activity assay 

CatG activity was measured in a photometric assay. In order to obtain a catG-rich 

solution [245], neutrophils (2.5 × 107/ml) or venous blood were stimulated with 

cytochalasin B (10 µM) for 5 min and fMLP (2.5 µM) for additional 5 min at 37 °C. 

After centrifugation at 1,200 × g (10 min, 4 °C), the supernatant was collected as a 

source of catG. In a 96-well plate, buffer (180 µl, 100 mM HEPES (pH 7.4), 500 mM 

NaCl) was mixed with N-suc-ala-ala-pro-phe-pNA (20 µl, 1 mM) and the testing 

compounds. The photometric reaction was started by addition of 10 µl enzyme solution 

(neutrophil/blood supernatants or isolated enzyme (1 µg/ml), respectively). The 

absorption at 405 nm was measured in a microplate reader (Victor3, PerkinElmer, 

Rodgau-Jügesheim, Germany) for 110 min. The enzymatic activity of catG was 

determined by the progress curve method. The activity of catG in presence of a testing 

substance was compared to the catG activity in presence of the vehicle control. 

3.20 Quantification of intracellular Ca
2+

 concentrations 

In order to quantify intercellular Ca2+ concentrations, blood cells (1 × 108 platelets, 1 × 

107 neutrophils or 1 × 106 monocytes) were probed with fura-2-AM (2 µM) for 30 

minutes at 37 °C in the dark. Then, cells were washed with PG buffer (PBS + 1 mg/ml 

glucose), resuspended in 1 ml PG buffer and incubated with testing substances for 10-

15 minutes at 37 °C. The whole sample was transferred into a fluorimeter cuvette in a 

spectrofluorimeter (Aminco-Bowman series 2, Thermo Spectronic, Rochester, NY). 

CaCl2 (1 mM) was added, and after one minute of constant stirring, the measurement 

was started by recording fluorescence emission at 510 nm after excitation at 340 and 

380 nm. The basal fluorescence was measured for 30 sec, before a specific stimulus was 

added (100 nM cathepsin G or 1 µM fMLP). After 40 sec, Triton X-100 (5%) was 

added and after additional 15 sec, EDTA (10 mM) was added. The measurement was 

stopped after the signal reached a constant level. The intracellular Ca2+ concentration 

was calculated as described [246]. 
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3.21 Chemotaxis assay 

Chemotactic activity was analyzed by using a chemotaxis assay kit (Chemotx®, 

Neuroprobe, Inc., Gaithersburg, USA). Neutrophils (4 × 107/ml) were incubated with 

calcein-AM (2.5 µg/ml) for 30 min at 37 °C. Cells were intensively washed with PBS 

and resuspended in chemotaxis medium (RPMI with HEPES (10 mM) and 10% FCS 

(v/v)), leading to cell densities of 2 × 106 cells/ml. Chemotaxis medium (29 µl) and 

different stimuli (fMLP, BAs or LL-37) were added to the wells of a 96-well-Chemotx® 

plate. For quantification, neutrophils (25 µl) were transferred at different cell densities 

(up to 2 × 106 cells/ml) in additional wells. Then, a filter plate with 8 µm pores was 

mounted on top of this plate. Neutrophils (25 µl) were added to the top side of the filter 

above the wells containing media with a stimulus, but not on top of the quantification 

wells. The whole plate was transferred to an incubation chamber (6% CO2, 37 °C) for 1 

h. Afterwards, the remaining fluid on top of the filter was washed away with PBS. Cells 

that were attached to the top side of the filter were gently scraped away by a cotton bud. 

Fluorescence was detected by a fluorescence plate reader (Victor3, PerkinElmer, 

Rodgau-Jügesheim, Germany) (excitation: 485 nm, emission: 535 nm). For 

quantification, cell densities of the quantification wells were plotted against fluorescent 

emission. A linear regression was made, and the number of migrated cells in the sample 

wells was calculated by using the obtained regression formula. 

3.22 Cell migration assay 

Cell culture inserts (8 µm pore size, BD Biosciences, Heidelberg) were coated by 

addition of matrigel (0.15 mg/insert) and incubated over night at 4 °C. Then, the inserts 

were washed with RPMI and transferred into 24-well plates (BD Biosciences, 

Heidelberg). The wells were filled with 350 µl RPMI supplemented with 10% FCS and 

fMLP (0.1 µM), before neutrophils (100 µl, 1 × 106 cells/ml) were transferred into the 

inserts. The plates were incubated for 40 min at 37 °C and 6% CO2. Then, the cell 

suspension of the inserts was removed and the upper side of the membrane was 

carefully cleaned by a cotton bud. The bottom side of the membrane was washed with 

PBS before the membrane was stained with crystal violet (0.25%). After 10 min, the 

membrane was washed with PBS and dried afterwards. Cells migrated into the 

membrane were counted under a light microscope. 
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3.23 Carrageenan-induced pleurisy 

The efficacy of BA derivatives on carrageenan-induced pleurisy was analyzed in an in 

vivo model of inflammation. Animal care complied with the European Economic 

Community regulations (Official Journal of E.C. L358/1 12/18/1986) and with Italian 

protocols (Ministerial Decree 116192). GluBA and oxBA were dissolved in a saline 

(0.9%, v/v) / DMSO (4%, v/v) solution. These solutions were injected i.p. (1 mg/kg or 5 

mg/kg animal weight) in male Wistar Han rats (200-220 g, Harlan, Milan, Italy). Then, 

the rats were anesthetized with 4% enflurane mixed with 0.5l/min O2 and 0.5 l/min 

N2O. At the level of the sixth intercostal space, the skin was incised and saline or λ-

carrageenan (0.2 ml, 1% (w/v), dissolved in 0.9% NaCl) was injected into the pleural 

cavity. The wound was closed by a suture clip. After 4 h, the animals were killed by 

inhalation of CO2 and the chest was opened carefully. 2 ml saline solution (0.9% NaCl, 

5 U/ml heparin) was transferred into the pleural cavity, before the whole volume of 

fluid in the cavity was collected. The amount of exudate was calculated by subtracting 

the volume of added saline solution from the total collected volume. The collected fluid 

was centrifuged (800 × g, 10 min, 4 °C) and the supernatant was collected and frozen (-

80 °C) for a subsequent determination of PGE2, 6-keto-prostaglandin 1α (6-keto-PGF1α) 

and LTB4 (see below). The pellet was resuspended in saline solution (0.9% NaCl, 1 ml) 

and an additional dilution (1:50) was prepared. The cell number in this dilution was 

counted (see 3.6). 

The amount of PGE2, 6-keto-PGF1α and LTB4 in the exudate supernatant were 

determined by different assays. PGE2 was detected by a radioimmunoassay (Assay 

Designs, Inc., Ann Arbor, MI), while 6-keto-PGF1α and LTB4 levels were determined by 

enzyme immuno assay kits (Cayman Chemical Company, Ann Arbor, USA) according 

to the manufacturer’s instructions. 

3.24 Ras activation assay 

The amount of GTP-bound Ras as a marker for Ras activity was analyzed by utilizing 

an affinity chromatography method as previously described [247]. Neutrophils (2 × 

107/ml) or HL60 cells (1 × 106/ml) were incubated for 1.5 min with BAs. In some 

experiments, 5-hydroxyeicosatetraenoic acid (5-HETE, 1 ng/ml) was added afterwards 
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for additional 1 min. Cells were lysed on ice by addition of lysis buffer (25 mM Tris, 

pH 7.4, 5% glycerol, 0.5% NP-40, 2.5 mM MgCl2, 200 mM NaCl, 60 µg/ml soybean 

trypsin inhibitor, 0.5 µg/ml leupeptin, 0.5 mM phenylmethylsulfonyl fluoride) for 10 

min. Samples were centrifuged at 10,000 × g for 10 min (4 °C) before the supernatants 

(750 µl) were transferred to new tubes containing the Ras-binding domain of Raf-1 

(Raf-1-RBD) coupled to GSH-sepharose beads (50 µl). The tubes were rotated for 1 h at 

4 °C and centrifuged (8,000 × g, 1 min, 4 °C) afterwards. The beads were washed four 

times with lysis buffer. Bound proteins were eluted by addition of SDS-loading buffer 

(20 mM Tris (pH 8.0), 2 mM EDTA, 10% 2-mercaptoethanol (v/v), 5% SDS (v/v)) and 

heating (96 °C, 5 min). After an additional centrifugation (21,000 × g, 1 min, 4 °C), the 

supernatant was collected and analyzed by Western blotting (see 3.10) 

3.25 Generation of competent bacteria 

In order to generate competent E. coli bacteria, an overnight culture (37 °C) was 

prepared by transferring frozen E. coli BL21 into fresh Luria broth (LB) medium 

supplemented with ampicillin (LB-Amp, 5 ml, 10 mg/ml peptone, 5 mg/ml yeast 

extract, 10 mg/ml NaCl, pH 7.0, 100 µg/ml ampicillin). On the next day, 1 ml of this 

culture was transferred into 200 ml LB-Amp medium. The culture was raised until an 

optical density at 600 nm (OD600) of 0.3 was reached and was put on ice for 15 min. 

After centrifugation (4,000 × g, 10 min, 4 °C), the cell pellet was resuspended in RF1 

buffer (20 ml, 100 mM RbCl, 50 mM MnCl, 30 mM potassium acetate, 10 mM CaCl2, 

15% glycerol (w/v), pH 5.8) and kept on ice for additional 5 min. The suspension was 

centrifuged (4,000 × g, 10 min, 4 °C) and the pellet resuspended in RF2 buffer (2 ml, 10 

mM RbCl, 75 mM CaCl2, 10 mM MOPS (3-(N-morpholino)propanesulfonic acid), 15% 

glycerol (w/v), pH 6.5). Cells were kept on ice for 30 min before they were frozen and 

stored at -80 °C until further usage. 

3.26 Transformation of a Rap1B expression vector into E. coli 

A Rap1B expression vector was kindly provided by Dr. Smolenski (Frankfurt, 

Germany). The human rap1B gene was cloned into the pGEX-2T vector (GE Healthcare 

Bio-Sciences, Freiburg, Germany). In order to generate a Rap1B expression bacterial 
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strain, competent E. coli BL21 (100 µl, see 3.25) were put on ice for 15 min. Then, 

pGEX-2T vector (10-50 ng) was added while the cells were kept on ice for additional 

20 min. A heat shock was performed by transferring the bacteria onto a heating block 

(42 °C) for 1 min. Afterwards, the sample was put on ice. LB medium (10 mg/ml 

peptone, 5 mg/ml yeast extract, 10 mg/ml NaCl, pH 7.0) supplemented with 20 mM 

glucose (900 µl) was added and the cells were rotated slowly at 37 °C for 1 h. 20 µl of 

the cell suspension was transferred onto an LB-Amp agar plate (10 mg/ml peptone, 5 

mg/ml yeast extract, 10 mg/ml NaCl, 15 mg/ml agar, 100 µg/ml ampicillin), and cell 

growth was facilitated by incubation over night at 37 °C. Single clones were picked by 

sterile tooth picks and transferred into fresh LB medium supplemented with 100 µg/ml 

ampicillin (8 ml). 

After incubation over night (37 °C), a glycerol stock of this bacterial strain was 

prepared. Glycerol (10%) was added and the bacteria were frozen in liquid nitrogen and 

stored at -70 °C until further usage. 

3.27 Expression and purification of human recombinant Rap1B 

Rap1B was expressed as a glutathione-S transferase (GST)-fusion protein using 

transformed E. coli BL21 (see 3.26). Bacteria were transferred by sterile pipette tips 

from frozen glycerol stocks into 8 ml LB-Amp medium (10 mg/ml peptone, 5 mg/ml 

yeast extract, 10 mg/ml NaCl, 100 µg/ml ampicillin, pH 7.0). Cells were cultured over 

night at 37 °C while shaking. Then, LB-Amp medium supplemented with 20 mM 

glucose (400 ml) was added. When the cell density reached an OD600 of 0.3, 

recombinant protein expression was induced by addition of IPTG (0.1 mM). Bacteria 

were incubated over night shaking at 37 °C and centrifuged (7,700 × g, 10 min, 4 °C) 

afterwards. The pellet was resuspended in E. coli-lysis buffer (20 mM Tris (pH 8.0), 

20% sucrose (w/v), 10% glycerol (v/v), 5 mM dithiothreitol, 5 mM MgCl2, 1 mM 

phenylmethanesulfonylfluoride (PMSF), 1 µg/ml leupeptin, 2 µg/ml aprotinin) and 

lysed for 30 min on ice. The lysis was completed by sonification (3 × 15 sec, Branson 

B-12, Branson Ultrasonics Corporation, Danbury, CT). The lysates were centrifuged 

(12,000 × g, 10 min, 4 °C) before the supernatants were collected and frozen. 

The purification of GST-fusion proteins was accomplished by glutathione sepharose 4B 

beads (GE Healthcare Bio-Sciences, Freiburg, Germany). Beads were washed with PBS 
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and resuspended in PBS (1:1, v/v), leading to a 50% bead slurry. 20 ml lysate was 

added to 200 µl bead slurry, and the binding reaction was started under constant slow 

rotation for 30 min. The whole approach was centrifuged (500 × g, 5 min) and an 

aliquot of the supernatant was frozen (-20 °C), while the remaining supernatant was 

discarded. Then, the beads were washed two times with PBS. In order to elute the 

bound proteins and to remove the GST-tag from the recombinant Rap1B proteins, 

thrombin was added (40 U/ml in PBS). The approaches were slowly rotated for 

additional 2 h before centrifugation (500 × g, 5 min). The supernatant containing Rap1B 

was collected. 

The Rap1B solution still contains thrombin, which is able to destroy many proteins. To 

remove the thrombin, its binding to benzamidine was utilized by an affinity 

chromatographic method. The chromatographic separation was done by high 

performance liquid chromatography (HPLC) methods (Shimadzu Deutschland GmbH, 

Duisburg, Germany). H2O was used as the mobile phase, while benzamidine was used 

as the stationary phase (GE Healthcare Bio-Sciences, Freiburg, Germany). First, the 

column was rinsed with H2O for 5 min with a flow rate of 1 ml/min. Then, it was 

equilibrated by benzamidine buffer (50 mM Tris (pH 7.4), 500 mM NaCl) for 5 min. 

Rap1B solution was injected, and the flow-through (purified Rap1B) was collected. 

In order to concentrate the purified Rap1B solution, ultrafiltration columns were used 

(Vivaspin 6, MWCO 5,000 Da, Sartorius Stedim Biotech S.A., Aubagne, France). The 

columns were loaded with 6 ml Rap1B solution and centrifuged for 30 min at 1,600 × g. 

The concentrated purified Rap1B solution was frozen. In order to monitor the success of 

the purification, an aliquot of this solution was analyzed by Western blotting (see 3.10). 

3.28 Loading of mant-nucleotides to Rap1B 

In order to exchange Rap1B-bound nucleotides by mant-GppNHp, Rap1B (6.7 µM) was 

incubated with 200 mM ammonium sulfate, 13.3 µM mant-GppNHp, 1.44 µM ZnCl2 

and 0.27 U/ml alkaline phosphatase. Alkaline phosphatase degrades GDP but not mant-

GppNHp, so that nucleotide exchange leads to mant-GppNHp-loaded Rap1B 

(mRap1B). The mixture was rotated over night at 4 °C in the dark. On the next morning, 

the sample was purified by transferring it to an illustra NAP-5TM gel filtration column. 

PBS was added and the flow-through was collected in fractions. The absorption at 280 
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nm was determined photometrically, before the fractions that showed absorbance at 280 

nm were combined. The protein concentration was determined as described in 3.8. 

3.29 Analysis of Rap1B-nucleotide exchange 

The exchange of nucleotides of Rap1B was monitored fluorimetrically by incubating 

fluorescent mRap1B (see 3.28) in a solution containing an excess of GDP and test 

compounds (i.e., AKBA). GDP (20 µM) and AKBA (0.1 - 2.5 µM) or GDP and DMSO 

as a control were dissolved in buffer (20 mM Tris, 100 mM NaCl, 10 mM EDTA, 5 

mM MgCl2, pH 8.0). The exchange reaction was started by rapid addition of mRap1B 

(30 nM), and the change in fluorescence was recorded by a fluorescence plate reader 

(excitation: 366 nm, emission: 408 nm; Victor3, PerkinElmer, Rodgau-Jügesheim, 

Germany). 

3.30 Cytotoxicity analysis 

In order to analyze cytotoxicity of substances, a colorimetric test (MTT assay) was 

used. Jurkat A3 (3 × 105/ml) or RAW264.7 cells (2.5 × 106/ml) were transferred into a 

96-well plate. Test compounds were added (not exceeding a final DMSO concentration 

of 0.5%, v/v), and the plate was incubated for 20 to 48 h at 37 °C and 6% CO2. Then, 

MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, 5 mg/ml, in PBS) 

was added for additional 30-120 min. The reaction was stopped by addition of lysis 

buffer (20 mM HCl (pH 4.5), 10% SDS (w/v)) and strong constant shaking for 16 h in 

the dark. The absorbance at 595 nm was measured in a microplate reader (Victor3, 

PerkinElmer, Rodgau-Jügesheim, Germany). 

3.31 Analysis of MAPK activation, caspase- and PARP-cleavage 

In order to determine the activation status of different MAPKs (ERK-1, ERK-2 and 

p38) and apoptotic parameters (caspases and poly-ADP-ribose polymerase (PARP)), 

Jurkat A3 cells (2 × 105 - 2 × 106/ml), RAW264.7 cells (2 × 105 – 1 × 107/ml), 

neutrophils (2 × 106/ml) or monocytes (1 × 106) were incubated with either test 
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compounds or test compounds premixed with LPS (10 min, 37 °C) for 10 min to 24 h 

(never exceeding a final DMSO concentration of 0.3%). Then, cells were spun down 

(1,600 × g, 10 min) and washed with PBS. After centrifugation at 1,600 × g for 3 min, 

lysis buffer (20 mM Tris (pH 7.4), 150 mM NaCl, 2 mM EDTA, 1% Triton X-100 

(v/v), 0.5% NP-40 (v/v); 4 µl/ml cell suspension used) was added. The samples were 

mixed and lysed for 10 min on ice. Afterwards, samples were centrifuged (10,000 × g, 

10 min, 4 °C), the supernatants were collected and mixed with SDS-loading buffer (40 

mM Tris (pH 8.0), 4 mM EDTA, 20% 2-mercaptoethanol (v/v), 10% SDS (v/v), in a 

ratio 3:1). After heating (5 min, 95 °C), the samples were frozen before they were 

analyzed by electrophoretic (see 3.9) and Western blotting (see 3.10). 

3.32 DNA-fragmentation tests 

The measurement of DNA fragmentation is based on a method developed by Nicoletti 

et al. [248]. Jurkat A3 cells (2 × 105/ml) were incubated with DMSO, BAs or BA 

derivatives (never exceeding a final DMSO concentration of 0.2%) for 24 h at 37 °C 

and 6% CO2. Then, 500 µl cell suspension was centrifuged (4,200 × g, 5 min) and the 

pellet was washed with PBS. After an additional centrifugation (200 × g, 5 min) the 

supernatant was discarded. 100 µl hypotonic propidium iodide (PI)-lysis buffer (0.1% 

sodium citrate, 0.1% Triton X-100 and 50 µg/ml PI) was added and the cells were 

carefully resuspended. After 10 min, the samples were analyzed in a FACScalibur 

(Becton Dickinson) flow cytometer (FL2, 585/42) and plotted logarithmically against 

cell counts. The fluorescence intensity of cell nuclei from cells in the G1 phase was set 

to around 103 in the FL2 channel. 

3.33 Statistical analysis 

Statistical data evaluation was performed by one-way analysis of variance (ANOVA) 

tests for independent or correlated samples followed by Tukey honestly significant 

differences (HSD) post-hoc tests. p values of <0.05 (*), <0.01 (**) and <0.001 (***) 

were considered significant. 
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4. Results 

4.1 Interaction of BAs with hCAP18 and LL-37 

4.1.1 hCAP18 and LL-37 are binding partners of BAs 

Protein pull-down experiments using immobilized BAs in neutrophil lysates were 

performed in order to analyze possible binding partners of BAs. A protein with an 

approximate molecular weight of 16 kDa was precipitated by EAH-sepharose beads 

coupled to KBA (KBA-sepharose, fig. 4.1, A) but not by EAH-sepharose beads alone 

(fig. 4.1, B). The band was excised, digested and analyzed by MALDI-TOF mass 

spectrometry. The protein was identified as the human cathelicidin hCAP18 (data not 

shown). These initial pull-down and MALDI-TOF experiments were performed by Lars 

Tausch in collaboration with Prof. Dr. Karas (Goethe Univeristy, Frankfurt). Western 

blot analyses were performed to confirm the mass spectrometric results. To this aim, 

neutrophil lysates were again incubated with KBA-sepharose or EAH-sepharose. 

Precipitated proteins were analyzed by Western blotting using an antibody against 

LL-37, a part of the protein which constitutes the C-terminal part of hCAP18. Both 

hCAP18 and LL-37 were precipitated by KBA-sepharose but not by the EAH-sepharose 

control (fig. 4.1, C). To evaluate whether the binding to LL-37 is direct or involves 

adaptor proteins, isolated LL-37 was used as a protein source for the pull-down 

experiment. Under these conditions, LL-37 was precipitated by KBA-sepharose (fig. 

4.1, C) and EAH-sepharose coupled to β-BA (BA-sepharose) (fig. 4.1, D) but not by 

unmodified EAH-sepharose, supporting a direct binding of KBA and β-BA to LL-37. 
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Fig. 4.1: hCAP18/LL-37 pull-down experiments. (A) Structure of EAH-seph, KBA-

seph and BA-seph. (B) EAH-seph and KBA-seph were incubated with neutrophil 

lysates. Precipitated proteins were separated by SDS-PAGE and silver-stained. 

Proteins present in KBA-seph- but not in EAH-seph-approaches are marked by an 

arrow. This initial pull-down experiment was performed by Lars Tausch. (C) EAH-seph 

and KBA-seph were incubated with isolated LL-37 (1.3 µg/ml) or in neutrophil lysates. 

Precipitated LL-37 and hCAP18 were detected by Western blotting using anti-LL-37 

antibodies. (D) Isolated LL-37 (1.3 µg/ml) was incubated with EAH-seph and BA-seph. 

Precipitated LL-37 was detected in Western blot experiments. Results shown are 

representative for three independent experiments. 
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4.1.2 BAs stimulate LL-37 release 

The influence of BAs on the release of the LL-37 precursor hCAP18 from neutrophil 

granules and on LL-37 generation was analyzed by Western blot experiments. 

Neutrophils were incubated with BAs and stimulated with cytochalasin B and fMLP. 

The amount of released LL-37 was determined by Western blotting. AKBA (10 µM) 

and β-BA (1 and 10 µM) enhanced LL-37 release, while only slight effects were 

observed on hCAP18 release (fig. 4.2). 
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Fig. 4.2: Influence of BAs on LL-37 generation. Neutrophils (5 × 107/ml) were 

incubated with AKBA or β-BA and cytochalasin B (10 µM, cytB) and fMLP (1 µM). 

Cells were spun down and the supernatant was analyzed by Western blot experiments 

using anti-LL-37 antibodies. Results shown are representative for three independent 

experiments. 

4.1.3 BAs restore the inhibition of LPS activities by LL-37 

LL-37 is an inhibitor of LPS activity [140]. Measurement of the inhibitory effect of LL-

37 on LPS activity (by a modified LAL assay) can therefore by used as a mean to 

measure functional LL-37 activity. As control, it was first checked whether different 

BAs directly interfere with LPS activity (see 4.3.2). Triterpenes from frankincense 

which did not influence LPS directly (e.g. AKBA or ABA) were incubated with LL-37 

and LPS and the remaining LPS activity was determined (fig. 4.3). LL-37 reduced LPS 

activities completely. AKBA and ABA (10 µM, each) potently reversed this inhibition. 

Synthetic modification of AKBA and ABA by replacement of the acetylic group at the 

C-3 position by an esterified dicarbonic acid or an etherified ω-hydroxy acid resulted in 

molecules with lower activities, which were still capable to partially restore LL-37-

inhibited LPS activities at 10 µM. 
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Ac-LA was the only LA derivative with a very potent activity at 10 µM, while both OH-

LA and Ac-OH-LA reversed the LL-37 inhibited LPS activities only moderately. All 

tested RA derivatives displayed an intermediate activity, with LPS activity restoration 

rates at 41.1% (RA), 45.1% (DH-RA) and 51.3% (DHK-RA) at 10 µM, each. 11-α-OH-

BA and 11-β-OH-BA were virtually ineffective. 
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Fig. 4.3: Influence of BAs, RAs and LAs on LL-37-inhibited LPS activity. LPS (10 

EU/ml) was incubated with LL-37 (0.1 µM) and (A) BAs, (B) RAs or (C) LAs (10 µM, 

each) for 10 min. Incubation of LPS with LL-37 and DMSO served as a vehicle control, 

LPS activity is completely inhibited under these circumstances. The inhibitory effect of 

LL-37 is reversed by addition of several triterpenes derived from frankincense. LPS 

activities were monitored by a modified LAL assay. Data are given as means + s.e.; n = 

3. * p < 0.05, ** p < 0.01, *** p < 0.001, vs vehicle (DMSO). 
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A concentration-response study revealed a concentration-dependent relationship for the 

ability of ABA, AKBA and Ac-Lup to reverse LL-37 effects on LPS activities. BAs and 

LAs restored the LL-37-diminished LPS activities with EC50 values of 0.2 µM (ABA, 

fig. 4.4, A), 0.8 µM (AKBA, fig. 4.4, B) and 0.7 µM (Ac-LA, fig. 4.4, C). 
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Fig. 4.4: Influence of ABA, AKBA and Ac-LA on LL-37-inhibited LPS activity. LPS 

(10 EU/ml) was incubated with LL-37 (0.1 µM) and (A) ABA, (B) AKBA or (C) Ac-LA 

for 10 min. Incubation of LPS with LL-37 and DMSO as a vehicle leads to maximum 

inhibition of LPS activity, which is restored by addition of several triterpenes derived 

from frankincense. LPS activities were monitored by a modified LAL assay. Data are 

given as means ± s.e.; n = 3. * p < 0.05, ** p < 0.01, *** p < 0.001, vs vehicle 

(DMSO). 
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Next, two different experimental settings were used in order to characterize the effects 

of BAs on LL-37 in a more physiological context. In the first system, neutrophils were 

stimulated to degranulate (and to release LL-37). The resulting supernatant after 

centrifugation of activated neutrophils is supposed to contain LL-37 and was added to 

an LPS/BA mixture. Supernatants from stimulated cells strongly reduced LPS-activity, 

apparently due to LL-37 (fig. 4.5), which was reversed by addition of ABA (EC50 = 

1.3 µM, fig. 4.6, A). 
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Fig. 4.5: Stimulated neutrophils release LPS-inhibiting compounds. Neutrophils were 

stimulated to degranulate with cytochalasin B (10 µM) and fMLP (1 µM) or left 

untreated. After centrifugation, the supernatant was incubated with LPS (10 EU/ml) and 

ABA for 10 min, before the remaining LPS activity was measured. Data are given as 

means ± s.e., n = 3. * p < 0.05, vs vehicle (DMSO). 

In the second system, citrated human whole blood was stimulated to induce 

degranulation of blood neutrophils. Blood plasma (that seemingly contains LL-37 when 

stimulated) was collected and mixed with LPS and ABA. While the plasma from 

stimulated blood had potent LPS-inhibiting properties (fig. 4.6, B), ABA was able to 

reverse this effect (EC50 = 3.5 µM). 
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Fig. 4.6: Influence of ABA on degranulated neutrophil supernatant-diminished or 

plasma-inhibited LPS activity. (A) Neutrophils were stimulated to degranulate with 

cytochalasin B (10 µM) and fMLP (1 µM). After centrifugation, the supernatant was 

incubated with LPS (10 EU/ml) and ABA for 10 min before the remaining LPS activity 

was measured. (B) Diluted citrated blood plasma was stimulated with cytochalasin B 

(10 µM) and fMLP (2.5 µM). The plasma was incubated with LPS (10 EU/ml) and ABA 

for 10 min. The remaining LPS activity was assayed by a modified LAL testing system. 

Data are given as means ± s.e., n = 3. ** p < 0.01, *** p < 0.001, vs vehicle (DMSO). 

Taken together, BAs bind to LL-37 and restore inhibition of LPS activities induced by 

isolated LL-37 as well as by LPS-inhibiting compounds released by stimulation of 

human neutrophils and whole blood. 
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4.2 Re-evaluation of LL-37 functions 

Next, the effects of BAs on other previously described functions of LL-37 (i.e. 

cytotoxicity for leukemic T-lymphocytic cells [249], induction of neutrophil chemotaxis 

[250], activation of ERK2 and p38 MAPKs [138] and increase of intracellular Ca2+ 

concentration in leukocytes [251,252]) were evaluated. 

It has been reported that LL-37 is cytotoxic for leukemic T-lymphocytic cells [249]. In 

order to verify this effect, Jurkat A3 cells were incubated with LL-37 and ABA in 

different concentrations. However, neither LL-37 (0.01 - 1 µM) nor ABA (1-10 µM) 

had a significant influence on cell viability (fig. 4.7), while cycloheximide (CHX) used 

as a positive control strongly reduced cell viability. 
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Fig. 4.7: Effects of LL-37 on cell viability and the influence of ABA. Jurkat A3 

(3 × 105/ml) were incubated with LL-37 (0.01, 0.1 and 1 µM) with and without ABA 

(1 and 10 µM) for 48 h. As a control, ethanol (EtOH, 16.7%, v/v) and cycloheximide 

(CHX, 50 µM) were used. After 48 h, the dye MTT was added and incubated for 30 min. 

Cells were lysed and the absorption at 595 nm was measured. Data are given as means 

+ s.e.; n = 4. 
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LL-37 has also been described to stimulate neutrophil chemotaxis [250]. However, LL-

37 (up to 10 µM) did not show a significant chemotactic activity against neutrophils in 

an established chemotaxis assay (fig. 4.8). 
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Fig. 4.8: Chemotactic activity of LL-37 in neutrophils. LL-37 was dissolved in medium 

and added to the lower compartment of a modified Boyden chamber. A membrane (8 

µm pore size) was mounted and calcein-AM-stained neutrophils (5 × 104) were placed 

on the top side. After 1 h, the fluid on the top side of the membrane was washed away 

and the number of migrated neutrophils was determined by fluorescence measurement 

(ex. 485 nm, em. 535 nm) of the lower compartment and the membrane. Data are given 

as means + s.e.; n = 3. 



4.2  Re-evaluation of LL-37 functions 71 

Similarly, LL-37 (5 µM; 0.5-30 min) did not influence the activation status of ERK1, 

ERK2 and p38 MAPKs (fig. 4.9). In contrast, the chemotactic peptide fMLP was an 

effective inductor of ERK1, ERK2 and p38 MAPKs as expected. 

0 0,5 1 2 5 15 30

fMLP

PBS

LL-37

time [min]

pERK

0 0,5 1 2 5 15 30

pp38

β-actin

LL-37

PBS

time [min]

A B

C

 

Fig. 4.9: MAPK activation is not influenced by LL-37. Neutrophils (2 × 106/ml) were 

incubated with LL-37 (5 µM), fMLP (0.1 µM) or PBS (negative control) for 15 min at 

37 °C. Cells were lysed and lysates were analyzed by Western blotting using (A) anti-

phospho-ERK, (B) anti-phospho-p38 MAPK or (C) anti-β-actin antibodies. Results 

shown are representative for three independent experiments. 
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In addition, LL-37 had no effect on Ca2+ influx in leukocytes. Fura-2-loaded neutrophils 

(fig. 4.10, A) and monocytes (fig. 4.10, B) were incubated with LL-37. The presence of 

LL-37 had no influence on the intracellular Ca2+ levels, neither in neutrophils nor in 

monocytes, while fMLP, used as a control, was a prominent inductor of Ca2+ influx. 
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Fig. 4.10: Effects of LL-37 on the intracellular Ca
2+

 concentration. (A) Fura-2-loaded 

neutrophils (1 × 107/ml) or (B) monocytes (1 × 106/ml) were incubated with CaCl2 (1 

mM) for 1 min before the measurement of intracellular Ca2+ concentration started. 

After 30 sec, LL-37 (10 µM) or fMLP (1 µM) was added. Results shown are 

representative for three independent experiments. 
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4.3 Interaction of BAs with LPS 

4.3.1 BAs bind to LPS 

Selected BAs were identified as compounds which restore LL-37-inhibited LPS 

activities (see 4.1.3). During this investigation, evidence arose that some other BAs may 

inhibit LPS activities by themselves. In order to analyze if BAs bind to LPS, a pull-

down assay was performed. BA-sepharose or EAH-sepharose without a coupled β-BA 

(fig. 4.1, A) was incubated with LPS before bound molecules were eluted and analyzed 

for their LPS content. LPS could be precipitated by BA-sepharose but not by EAH-

sepharose, accompanied by a concomitant decrease of LPS in the supernatant (fig. 

4.11). Thus, the direct influence of BAs and other compounds from frankincense on 

LPS activity was evaluated. 
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Fig. 4.11: LPS pull-down experiments with immobilized β-BA. EAH-sepharose (seph) 

and BA-sepharose (BA-seph) were incubated with LPS (2.7 µg/ml). Precipitated 

molecules were eluted and LPS levels of the eluates (elu) and supernatants (sn) were 

analyzed by a fluorimetric modified LAL assay. Data are given as means + s.e..; n = 4. 
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4.3.2 LPS activity is inhibited by selected BAs 

The influence of different compounds from frankincense on LPS activity was measured 

by a modified LAL assay. LPS was incubated with the testing compounds and LPS 

activity was determined afterwards. Certain BAs displayed a very potent inhibition of 

LPS activity, while others were virtually ineffective (fig. 4.12). Especially eBA, oxBA, 

gluBA and sucBA proved to be very potent with a maximal inhibition (0-5% remaining 

activity) reached already at 10 µM. β-BA, cis-diol-BA, α-BA and 11-β-OH-BA were 

slightly less potent, leading to remaining LPS activities (at 10 µM) of 31, 19, 42 and 

40%, respectively. None of the 11-keto-BAs tested proved to be effective at 10 µM 

(KBA, AKBA, eKBA, oxKBA, gluKBA and sucKBA), and neither RA derivatives 

(RA, DH-RA and DHK-RA) nor LA derivatives (Ac-OH-LA, Ac-LA, OH-LA) showed 

any effects. ABA was the only BA without an 11-keto moiety without effects on the 

LPS activity. 11-α-OH-BA and oleanolic acid failed to inhibit LPS activities at 10 µM 

as well. 
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Fig. 4.12: Influence of BAs, LAs, RAs and DH-nyc on LPS activities. (A) Naturally 

occurring BAs, (B) synthetic BAs, (C) LAs and (D) RAs and DH-Nyc were incubated 

with LPS (10 EU/ml) for 10 min at 37 °C. Then, fluorogenic substrate, buffer and 

recombinant factor c were added. LPS activity was determined by measuring the 

activity directly and after 60 min at 37 °C. Final LPS activity was calculated by 

subtracting the fluorescence at the beginning from the fluorescence after 60 min. Data 

are given as means + s.e.; n = 3. *,p < 0.05, ** p < 0.01, *** p < 0.001, vs vehicle 

(DMSO). 
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A concentration-response analysis revealed IC50 values for the inhibition of LPS 

activities (fig. 4.13). BAs which inhibited LPS activities at 10 µM very potently 

displayed a similar concentration-response behavior, with IC50 values of 1.9 µM (eBA 

and gluBA) and 2.5 µM (sucBA). LPS activity was completely suppressed at 10 µM 

(gluBA, sucBA). β-BA, which also had similar potency (IC50 = 1.8 µM), showed a 

maximal inhibition of only 60-70%. AKBA, on the other hand, had no influence on LPS 

activities at concentrations up to 10 µM. As a control, a known LPS-neutralizing 

compound (polymyxin B) was tested which displayed total inhibition of LPS at 1 µM as 

expected.  
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Fig. 4.13: Concentration-dependent influence of BAs on LPS activities. (A) Naturally 

occurring BAs and (A, B) synthetic BAs were incubated with LPS (10 EU/ml) for 10 

min at 37 °C. Then, fluorogenic substrate, buffer and recombinant factor c were added. 

LPS activity was determined by measuring the activity directly and after 60 min of 

incubation at 37 °C. PxB = polymyxin B. Data are given as means ± s.e.; n = 3. 

4.3.3 LPS-induced iNOS-expression and NO formation are 

inhibited by selected BAs 

In order to investigate if the inhibition of LPS activity by BAs has an influence on LPS-

induced cellular events, iNOS expression levels were analyzed. LPS strongly induced 

iNOS expression in RAW264.7 cells (fig. 4.14). This induction was inhibited by certain 

BAs. β-BA displayed a moderate inhibition at 3 µM and a strong inhibition at 10 µM. 

Similarly, gluBA and sucBA were somewhat more potent than β-BA and inhibited the 

LPS-induced iNOS expression efficiently at 10 µM. AKBA, which did not significantly 

influenced LPS activity in the LAL assay, had also no effect on LPS-induced iNOS 
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expression. Polymyxin B, used as a positive control, displayed a weaker potency than 

gluBA and sucBA while being equipotent to β-BA. 
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Fig. 4.14: Effects of BAs on LPS-induced iNOS expression. RAW264.7 cells 

(2.5 × 106/ml) were incubated with LPS (1 µg/ml, from E. coli O111:B4) and (A) β-BA, 

(B) AKBA, (C) gluBA, (D) sucBA or (E) polymyxin B (PxB) for 20 h. Cells lysates were 

analyzed by Western blotting using anti-iNOS and anti-β-actin antibodies. Results 

shown are representative for three independent experiments. 

To evaluate whether inhibition of iNOS expression results in lower NO formation, the 

influence of BAs on LPS-induced NO generation was analyzed using the measurement 

of nitrite levels by the Griess reaction as a marker [244]. RAW264.7 cells were 

incubated with LPS and BAs for 20 h before the amount of nitrite in the medium was 

analyzed. All BAs tested (BA, AKBA, oxBA, gluBA and sucBA) were ineffective at 

concentrations below 3 µM (fig. 4.15, A). β-BA displayed a tendency for a slight 

inhibition (17%) of nitrite generation at 10 µM, while AKBA was completely 

ineffective. GluBA was slightly more active than sucBA, with moderate inhibition 
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(24%) at 3 µM and potent inhibition at 10 µM (95%). sucBA displayed no inhibition at 

3 µM but a strong inhibition (77%) at 10 µM. 

In order to evaluate if the inhibition of nitrite generation is due to by cytotoxic effects, 

cell viability of RAW264.7 cells stimulated by the same conditions as in the LPS-

induced nitrite generation experiments was analyzed by MTT experiments 

(fig. 4.15, B). β-BA, AKBA and sucBA were not cytotoxic up to 10 µM. GluBA was 

the only BA with cytotoxic properties, with no cytotoxic activity at 3 µM and a 

moderate activity at 10 µM. 
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Fig. 4.15: Effects of BAs on LPS-induced NO generation and cytotoxicity. (A) 

Influence of BAs on nitrite levels after LPS-stimulation. RAW264.7 (2.5 × 106/ml) were 

incubated with LPS (1 µg/ml) and BAs for 20 h. Nitrite concentration of the 

extracellular medium was determined by addition of Naphtylethylenediamin-

dihydrochloride (1 mg/ml) and sulfanilamide (10 mg/ml in 5% H3PO4) for 15 min 

(Griess reaction). The absorbance at 540 nm was measured. (B) Cytotoxicity of BAs. 

RAW264.7 cells (2.5 × 106/ml) were incubated with LPS (1 µg/ml) and BAs for 20 h. 

Viable cells were stained for 2 h by MTT addition (5 mg/ml) and lysed. Absorption at 

595 nm was measured as a marker for viable cells. Data are given as means ± s.e.; 

n = 3. *** p < 0.001, vs vehicle (DMSO). 
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4.3.4 IFN-γ-induced iNOS expression and NO generation are not 

inhibited by BAs 

Inhibition of LPS-induced iNOS expression and NO formation by selected BAs might 

be the result of the direct inhibition of LPS activity, but it might also be due to 

modulation of related cellular events. In order to investigate this issue, the effects of 

BAs on iNOS and NO were evaluated when a different stimulus was used, i.e. IFN-γ 

(fig. 4.16). All BAs tested (BA, AKBA, gluBA and sucBA) as well as polymyxin B did 

not inhibit IFN-γ-induced iNOS expression at concentrations up to 10 µM. This 

indicates that the reduction of LPS-induced iNOS levels is likely not related to 

interference with the transcriptional apparatus or other cellular events but rather 

suggests that the compounds suppress iNOS expression due to direct interference with 

LPS. 
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Fig. 4.16: Effects of BAs on IFN-γ-induced iNOS expression. RAW264.7 cells 

(2.5 × 106/ml) were incubated with IFN-γ (10 ng/ml) and (A) β-BA, (B) AKBA, (C) 

gluBA, (D) sucBA or (C-D) polymyxin B (PxB) for 20 h. Cells lysates were analyzed by 

Western blot analysis using anti-iNOS and anti-β-actin antibodies. Results shown are 

representative for three independent experiments. 
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Neither β-BA nor AKBA reduced IFN-γ-induced nitrite levels (fig. 4.17, A). GluBA 

was active at 10 µM (69% inhibition, fig. 4.17, B), but not at lower concentrations. 

Also, sucBA displayed moderate inhibition at 10 µM (44%). 
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Fig. 4.17: Effects of BAs on IFN-γ-induced NO generation. (A) Impact of β-BA and 

AKBA on nitrite levels after stimulation with IFN-γ. RAW264.7 cells (2.5 × 106/ml) 

were incubated with IFN-γ (10 ng/ml) and BAs for 20 h. Nitrite concentrations were 

determined by the Griess reaction. (B) Influence of gluBA and sucBA on nitrite levels 

after stimulation with IFN-γ. RAW264.7 cells (2.5 × 106/ml) were incubated with IFN-γ 

(10 ng/ml) and BAs for 20 h. Nitrite concentrations were determined by the Griess 

reaction. Data are given as means ± s.e.; n = 3. *** p < 0.001, vs vehicle (DMSO). 

4.3.5 Influence of BAs on LPS-induced p38 MAPK activation 

LPS is a well described activator of p38 MAPK [253]. Therefore, the influence of BAs 

on additional LPS-induced subcellular pathways was analyzed by determination of the 

p38 MAPK activation status. RAW264.7 cells were incubated with LPS and BAs, lysed 

and the amount of phosphorylated p38 MAPK was detected as an activation marker by 

Western blot analysis. LPS increased the amount of phosphorylated p38 MAPK 

(fig. 4.18). Addition of β-BA resulted in an inhibition of p38 MAPK activation. β-BA 

and AKBA gave similar results, with β-BA being slightly more active than AKBA. 

Both BAs were ineffective at 0.5 µM, but displayed a quite potent inhibition at 1.7 and 

5 µM. A higher concentration (17 µM) resulted in increased amounts of activated p38 

MAPK. SucBA and gluBA failed to inhibit p38 MAPK activation. GluBA slightly 

enhanced p38 MAPK activation at 0.5 - 5 µM, but decreased it to 100% levels at 
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17 µM. sucBA led to a concentration-dependent potent activation of p38 MAPK, 

starting already at 0.5 µM, which was further enhanced with higher concentrations. 

These results indicate that BAs interfere with the p38 MAPK activating pathway in a 

more complex manner which may not solely be related to a simple direct binding and 

inhibition of LPS activity. 
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Fig. 4.18: Influence of BAs on LPS-induced p38 MAPK activation. LPS was premixed 

with BAs or polymyxin B (PxB) for 10 min at 37 °C. Then, this mixture was added to 

RAW264.7 cells (1 × 107/ml), leading to a final LPS concentration of 0.1 µg/ml and (A) 

0.5-17 µM β-BA, AKBA, (B) 0.5-17 µM gluBA, sucBA or (A-B) 5 µM PxB. Cells were 

incubated for 15 min at 37 °C, lysed and the amount of phosphorylated p38 MAPK 

(pp38) and β-actin were detected by Western blot experiments. Results shown are 

representative for three independent experiments. 
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4.4 Interaction of BAs with catG 

4.4.1 CatG is a binding partner of BAs 

Similarly to LL-37, the serine protease catG was identified as a possible binding partner 

for BAs [40]. In order to characterize binding and possible functional effects, pull-down 

experiments as well as functional assays were performed. 

In protein pull-down experiments, immobilized BAs were incubated with isolated catG. 

Precipitated proteins as well as proteins from the supernatant were analyzed by Western 

blotting. CatG could be specifically precipitated by BA-sepharose but not by the EAH-

sepharose control (fig. 4.19). Addition of dissolved β-BA reversed this effect, as well as 

addition of a specific catG inhibitor (cathepsin G inhibitor I, CGI), suggesting similar 

binding sites. The catG level in the supernatant was diminished after precipitation. 

Again, this effect was reversed by addition of dissolved β-BA or CGI. 
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Fig. 4.19: CatG pull-down experiments with immobilized β-BA. EAH-sepharose 

(EAH-seph) and BA-sepharose (BA-seph) were incubated with catG (0.5 µg/ml) and 

DMSO, β-BA (1 mM) or catG inhibitor I (CGI, 0.5 µM). Precipitated proteins (eluate) 

as well as pull-down supernatants (bead sn) were analyzed by Western blotting using 

anti-catG antibodies. Results shown are representative for three independent 

experiments. 
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4.4.2 CatG activity is inhibited by BAs 

In order to investigate if BAs inhibit catG activity, a catG-rich solution was freshly 

prepared from neutrophils by stimulation with cytochalasin B and fMLP. CatG activity 

was analyzed by addition of a colorimetric substrate and BAs. Several BAs displayed 

catG inhibiting activities (fig. 4.20). All β-configurated BAs lacking an 11-keto moiety 

(ABA, eBA, gluBA and sucBA) inhibited catG efficiently at 10 µM, while at least a 

tendency of inhibition was detectable at 1 µM. Most potent were gluBA (24.5% 

remaining activity), ABA (28.1% remaining activity), eBA (28.8% remaining activity) 

followed by sucBA (59.4% remaining activity) at 10 µM, each. The corresponding 

synthetic 11-keto-BAs (eKBA, gluKBA and sucKBA) did not inhibit catG activity, 

neither at 1, nor at 10 µM. However, the naturally occurring 11-keto BA AKBA was 

quite active at 1 µM and 10 µM (36.4% and 14.7%, respectively), and KBA was also 

active at 10 µM (29.4 remaining activity). 

Ac-LA was the only LA derivative which inhibited catG activity (fig. 4.20). While it 

was inefficient at 1 µM, an inhibition of 51% was determined at 10 µM. All RA 

derivatives tested were virtually ineffective, as well as α-BA, cis-diol-BA, oleanolic 

acid, 11-α-OH-BA and 11-β-OH-BA. 



84 4  Results 

A

B

C

D
M

S
O

eB
A

eK
B
A

ox
B
A

ox
K
B
A

gl
uB

A

gl
uK

B
A

su
cB

A

su
cK

B
A

11
-

-O
H
-B

A

α
11

-
-O

H
-B

A

β ci
s-

di
ol
-B

A

ol
ea

no
lic

 a
ci
d

c
a

tG
 a

c
ti
v
it
y
 [

%
]

0

20

40

60

80

100

***

***

**
*

***

D
M

S
O

β-
B
A

K
B
A

A
B
A

A
K
B
A

α-
B
A

c
a

tG
 a

c
ti
v
it
y
 [

%
]

0

20

40

60

80

100

1 µM

10 µM
***

**

***
*** *** ***

***

D
M

S
O

O
H
-L

A

A
c-

LA

c
a

tG
 a

c
ti
v
it
y
 [

%
]

0

20

40

60

80

100

**

D
M

S
O R

A

D
H
-R

A

D
H
K
-R

A

D
H
-n

yc

c
a

tG
 a

c
ti
v
it
y
 [

%
]

0

20

40

60

80

100

D

 

Fig. 4.20: Influence of BAs, LAs, RAs and DH-nyc on catG activity. Neutrophils (2.5 

×107/ml) were stimulated with cytochalasin B (10 µM) for 5 min and fMLP (2.5 µM) for 

additional 5 min at 37 °C to degranulate. After removal of cells by centrifugation, the 

supernatant was incubated with catG substrate (1 mM) and (A) naturally occurring 

BAs, (B) synthetic BAs, (C) LAs, (D) RAs and DH-Nyc for 110 min. The converted 

substrate was measured in a spectrophotometer at 405 nm. Data are given as means + 

s.e.; n = 3-7. * p < 0.05, ** p < 0.01, *** p < 0.001, vs vehicle (DMSO). 
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4.4.3 AKBA inhibits the cathepsin G-induced Ca
2+

 influx 

CatG-stimulation leads to an intracellular Ca2+ influx in platelets [188]. Platelets were 

preincubated with AKBA, CGI or DMSO and stimulated with catG. The amount of 

intracellular Ca2+ was monitored during the experiments. Addition of catG resulted in a 

prominent Ca2+-influx in vehicle (DMSO)-treated platelets (fig. 4.21). Intracellular Ca2+ 

concentrations rose continuously for approx. 1 min. Afterwards, the intracellular Ca2+ 

concentrations decreased until they reached the initial level. Preincubation with AKBA 

resulted in an inhibition of this stimulation. When AKBA-preincubated platelets were 

stimulated with catG, a small, but continuous increase in intracellular Ca2+ levels was 

monitored. The slope was much lower than in the vehicle control. Addition of CGI led 

to a similar result as observed for AKBA. 
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Fig. 4.21: Influence of AKBA on catG induced Ca
2+

 influx in platelets. Fura-2 loaded 

platelets (1 × 108/ml) were pre-incubated with catG-inhibitor I (CGI, 0.2 µM), AKBA 

(5 µM) or DMSO for 15 min at 37 °C. Then, the measurement of intracellular Ca2+ 

levels was started. After 30 sec, catG (100 nM) was added. Curves are representative 

for three independent experiments. 
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4.4.4 BAs inhibit fMLP-induced migration, but not chemotaxis 

The protease catG is a mediator of neutrophil migration [254]. Thus, the influence of 

BAs on fMLP-induced motility was analyzed in neutrophils. ABA, AKBA and CGI 

inhibited the fMLP-induced cell migration through matrigel, while the chemotaxis in 

the absence of matrigel was not influenced by either of these compounds (fig. 4.22). 

Cell migration assays were performed by Lars Tausch. 
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Fig. 4.22: BAs inhibit cell migration through matrigel but not chemotaxis in absence 

of matrigel. (A) Cell migration was analyzed in a modified Boyden chamber system. 

Neutrophils (1 × 105 cells/ml) preincubated with BAs (10 µM, each) or catG inhibitor I 

(0.1 µM, CGI) were placed into matrigel-coated cell culture inserts (8 µm pore size). 

The inserts were transferred into wells filled with medium, FCS (10%) and fMLP (0.1 

µM) or vehicle, alternatively. After 40 min, migrated cells in the matrigel layer were 

stained by crystal violet and counted under a light microscope. Cell migration assays 

were performed by Lars Tausch. (B) Chemotactic activity was analyzed. Experimental 

settings were the same as described above, except that the membranes of the cell culture 

inserts were left uncoated. Data are given as means + s.e.; n = 3. * p < 0.01, vs 

unstimulated cells.  
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In order to analyze if BAs influence chemotaxis themselves, isolated BAs were tested 

for their ability to induce chemotaxis. While the non-acetylated BAs KBA and β-BA 

had only little effects on neutrophil chemotaxis, ABA and AKBA displayed 

chemotactic effects at higher concentrations (≥ 30 µM, fig. 4.23). Thus, ABA (30 µM) 

led to a six-fold increase in migrated cell numbers. The potency of AKBA was 

intermediate, and resulted in an increase of migrated neutrophils by the factor 3.4 at 30 

µM. 
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Fig. 4.23: Chemotactic activities of BAs. BAs were dissolved in medium and added to a 

lower compartment of a modified Boyden chamber. A membrane (8 µm pores) was 

mounted and calcein-AM-stained neutrophils (5 × 104) were placed on the top side. 

After 1 h, the fluid on the top side of the membrane was washed away and the number of 

migrated neutrophils was determined by a fluorescence measurement (ex. 485 nm, em. 

535 nm) of the lower compartment and the membrane. Data are given as means ± s.e.; 

n = 3. *** p < 0.001, vs vehicle (DMSO). 
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4.4.5 BAs inhibit catG activity in the blood of BE-treated patients 

In a phase II-III clinical trial, BE (3 × 800 mg/day) or placebo was administered to 

Crohn’s disease patients. CatG activity of the blood was determined ex vivo before and 

after treatment for four weeks (fig. 4.24). Treatment with BE significantly reduced catG 

activity, while placebo treatment did not result in catG inhibition. 
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Fig. 4.24: Inhibition of catG activity in the blood of BE-treated patients. In a phase II-

III trial, blood was taken from Crohn’s disease patients prior medication and after four 

weeks of continuous administration of either BE (3 × 800 mg/day) or placebo. Venous 

blood was collected and stimulated with 10 µM cytochalasin B and 2.5 µM fMLP for 5 

min. Plasma was prepared and added to a buffer solution containing catG substrate N-

suc-ala-ala-pro-phe-pNA (1 mM). The absorption at 405 nm was measured for 110 min 

as a marker for catG activity. Data are given as means + s.e.; n = 3. * p < 0.01, vs 

catG activity before treatment. Data were assessed in together with Lars Tausch. 

4.4.6 GluBA and oxBA do not inhibit inflammatory parameters 

in a pleurisy inflammation model 

In order to analyze if a reduced cell migration (see 4.4.4) might have in vivo relevance, 

a rat model of pleurisy inflammation was utilized. Previously, β-BA was shown to 

reduce inflammatory cell numbers in the pleural exudate of λ-carrageenan-treated rats, 

in addition to inhibition of other inflammatory parameters of the exudate [255]. Since 

synthetic BAs as gluBA and oxBA are potent catG-inhibitors (see 4.4.2), the influence 

of these compounds in λ-carrageenan-induced pleurisy was analyzed. Both BAs were 

i.p. injected into male mice. Then, λ-carrageenan was injected in the pleural cavity 

before mice were killed 4 h later. Several inflammation parameters in the pleural 
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exudate were analyzed, including the exudate volume, the number of inflammatory cells 

in the exudate, prostaglandin E2 (PGE2) and LTB4 formation. Both PGE2 and LTB4 are 

well described mediators of several inflammatory processes [256] and their generation 

was found to be inhibited by β-BA in the same animal model [255]. Therefore, these 

parameters were chosen as inflammatory markers. 

When 1 mg/kg BAs were injected, oxBA reduced the exudate volume as a tendency 

(but not significantly), while gluBA had no effect (fig. 4.25, A). Cell number 

(fig. 4.25, B), PGE2 (fig. 4.25, C) and LTB4 formation (fig. 4.25, D) in the exudate were 

not influenced by gluBA and oxBA. 
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Fig. 4.25: oxBA (1 mg/kg) slightly influences exudates volume in a pleurisy 

inflammation model. GluBA, oxBA or DMSO (1 mg/kg) were injected i.p. into male 

Wistar Han rats. Then, λ-carrageenan (1%) was injected into the pleural cavity. After 4 

h, the animals were killed and the exudates from the pleural cavity were collected. (A) 

The exudate volume was determined. (B) Cells in the exudates were counted. (C) PGE2 

levels were determined by a radioimmunoassay. (D) LTB4 levels in the exudates were 

detected by an enzyme immuno assay. Data are given as means + s.e.; n = 5. 
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When 5 mg/kg weight BAs were injected into rats, none of the inflammatory parameters 

tested was influenced. Exudate volume (fig. 4.26, A), cell number (fig. 4.26, B), PGE2 

(fig. 4.26, C) and LTB4 (fig. 4.26, D) formation were at the same levels as the vehicle 

control. 
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Fig. 4.26: BA derivatives (5 mg/kg) do not influence several inflammatory parameters 

in a murine pleurisy inflammation model. GluBA, oxBA or DMSO (5 mg/kg) was 

injected i.p. into male Wistar Han rats. Then, λ-carrageenan (1%) was injected into the 

pleural cavity. After 4 h, the animals were killed and the exudates from the pleural 

cavity were collected. (A) The exudate volume was determined. (B) Cells in the 

exudates were counted. (C) PGE2 levels were determined by a radioimmunoassay. (D) 

LTB4 levels in the exudates were detected by an enzyme immuno assay. Data are given 

as means + s.e.; n = 5. 
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4.5 Interaction of BAs with p21 Ras 

4.5.1 BAs bind to p21 Ras in a direct manner 

Besides LL-37 and catG, p21 Ras was identified in initial protein pull-down 

experiments as a potential binding partner of BAs [40]. In the present study, the 

interaction of BAs and p21 Ras was investigated in detail. First, a possible binding of 

BAs to H-Ras was analyzed in protein pull-down experiments. HL60 lysates as well as 

isolated H-Ras were used as a source of Ras and incubated with immobilized BAs. 

H-Ras could be precipitated by KBA-sepharose but not by EAH-sepharose in both 

lysate and isolated protein approaches (fig. 4.27). 
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Fig. 4.27: Binding of KBA to H-Ras. KBA-sepharose and EAH-sepharose were 

incubated with H-Ras (2.7 µg/ml), HL60 lysates or a mixture of both. Precipitated 

proteins were analyzed by Western blotting using anti-Ras antibodies. Results shown 

are representative for three independent experiments. 
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4.5.2 Influence of BAs on p21 Ras activity 

The influence of BAs on the amount of GTP-bound p21 Ras was determined as a 

marker for p21 Ras activity. When neutrophils were incubated with AKBA (30 µM) and 

stimulated with 5-HETE, an increase of Ras-GTP levels were detected (fig. 4.28, A). A 

lower AKBA concentration of 10 µM as well as β-BA (up to 30 µM) did not enhance 

Ras-GTP amounts. AKBA and β-BA alone did not stimulate endogenous Ras-GTP 

concentrations in neutrophils (fig. 4.28, B) or in HL-60 cells (fig. 4.28, C).  
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Fig 4.28: Influence of AKBA and β-BA on Ras activation. (A) Neutrophils 

(2 × 107/ml) were incubated with BAs for 1.5 min and stimulated afterwards with 5-

HETE (1 ng/ml) for additional 1 min. Cell were lysed and lysates were transferred onto 

Raf-RBD coupled sepharose-beads. After incubation for 1 h, the beads were washed. 

Bound proteins were eluted and analyzed by Western Blotting using a Ras-specific 

antibody. (B) Neutrophils (2 × 107/ml) or (C) HL-60 cells (1 × 106/ml) were incubated 

with BAs for 1.5 min. Cell lysates were incubated with Raf-RBD coupled sepharose 

beads and the bound proteins were washed, eluted and analyzed by Western Blotting. 

Results shown are representative for three independent experiments. 
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4.6 Interaction of BAs with Rap1B 

4.6.1 Recombinant Rap1B expression 

To analyze possible binding to Rap1B, a method for expression and purification of 

Rap1B was established. The bacterial expression strain E. coli BL21, transformed with 

Rap1B-GST-fusion-protein expression vectors (obtained from A. Smolenski, University 

of Frankfurt, Germany) was used as a producing organism. After induction of 

expression by IPTG, Rap1B-GST-fusion proteins were produced and detected in 

Western blotting experiments of bacterial lysates (fig. 4.29). In order to isolate Rap1B-

GST-proteins, immobilized glutathione (GSH-sepharose) was used to precipitate fusion 

proteins. After elution by proteolytic cleavage, Rap1B was liberated. Thrombin was 

removed by affinity chromatography columns and purified Rap1B could be detected in 

the flow-through. 
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Fig. 4.29: Recombinant expression and purification of Rap1B. E. coli BL21, 

transformed with a Rap1B-GST-expression vector (pGEX-2T-rap1B), were induced 

overnight at 20 °C by IPTG (0.1 mM) to express Rap1B-GST fusion proteins. Cell 

lysates were analyzed by Western blotting using anti-Rap1B antibodies. Rap1B-GST 

was precipitated with GSH-sepharose (GSH-seph) and eluted by a proteolytic cut in 

front of the GST-domain with thrombin. Thrombin was removed by affinity 

chromatography using benzamidine columns, and an isolated Rap1B solution was 

obtained. 
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4.6.2 Rap1B is a binding partner of BAs 

In protein pull-down experiments the binding characteristics of BAs and Rap1B were 

analyzed. Purified Rap1B as well as platelet lysates were incubated with KBA-

sepharose or EAH-sepharose. Rap1B could be specifically precipitated in isolated 

protein and in lysate approaches (fig. 4.30). 
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Fig. 4.30: Binding of Rap1B to KBA. KBA-sepharose and EAH-sepharose were 

incubated with isolated Rap1B (5.3 µg/ml) or in platelet lysates. Precipitated proteins 

were analyzed by Western blotting using anti-Rap1B antibodies. Results shown are 

representative for three independent experiments. 
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4.6.3 Nucleotide exchange of Rap1B is not influenced by AKBA 

The influence of AKBA on nucleotide exchange speed was analyzed by incubating 

mRap1B (Rap1B loaded with mant-GppNHp) with AKBA and an excess of GDP. The 

binding of mant-GppNHp leads to a fluorescent labeling of Rap1B. Nucleotide 

exchange can be monitored by measuring fluorescence of mant-nucleotide-loaded 

proteins in a solution with an excess of free unlabeled nucleotides: the fluorescence of 

mant-nucleotides is quenched if they are not bound to proteins [257]. As shown in 

fig. 4.31, AKBA does not influence nucleotide exchange behavior in concentrations up 

to 2.5 µM. 
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Fig. 4.31: AKBA has no influence on nucleotide exchange of Rap1B. Rap1B (30 nM) 

was loaded with fluorescent mant-GppNHp. GDP (2 mM) and AKBA was added and the 

fluorescence change (ex. 366 nm, em. 408 nm) was recorded. Curves shown are 

representative for three independent experiments. 

Taken together, both p21 Ras and Rap1B were identified as direct binding partners of 

BAs. However, functional assay showed only slight effects on p21 Ras and Rap1B 

activity. 
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4.7 Influence of BAs on cell viability and apoptosis 

4.7.1 Selective BAs induce apoptosis in Jurkat cells 

Previous studies showed that BEs and BAs, in particular AKBA, induced apoptosis in a 

number of cancer cells [235]. In order to investigate whether synthetic BA derivatives 

and other triterpenes derived from frankincense may induce apoptosis and to identify 

the potential molecular mechanism, Jurkat T-lymphocytes were chosen as a testing 

system. A B. caterii Birdw. extract was previously shown to induce apoptosis in Jurkat 

cells [258], and a contribution of BAs and triterpenes derived from frankincense seemed 

likely. First, cell viability of triterpene-stimulated Jurkat A3 cells was analyzed. After 

two days of incubation with triterpenes, surviving cells were stained and quantified via 

an MTT cytotoxicity assay. The naturally occurring BAs KBA, β-BA and α-BA did not 

show cytotoxic effects at 10 µM, while both ABA and AKBA decreased the number of 

viable cells (ABA: 21% viable cells, AKBA: 65%, fig. 4.32). The only synthetic BAs 

with cytotoxic activity were eKBA (64.3% viable cells at 10 µM), oxBA (67.4%), 

gluBA (10.4%) and sucBA (31.8%), while eBA, oxKBA, gluKBA and sucKBA did not 

influence cell viability. The LA derivatives OH-LA and Ac-OH-LA were quite 

cytotoxic (17.4% and 25.1% viable cells at 10 µM, respectively), while Ac-LA itself 

had no impact on the number of viable cells. All RAs were moderately cytotoxic at 

10 µM, while DH-RA was the most potent RA (50.9% viable cells), followed by RA 

(72.9%) and DHK-RA (78.3%). 

The most cytotoxic compound analyzed was ursolic acid, with 8.7% viable cells at 

10 µM. Amyrin and oleanolic acid were not cytotoxic. 
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Fig. 4.32: Cytotoxicity of triterpenes derived from frankincense in Jurkat T 

lymphocytes. Jurkat A3 (3 × 105/ml) were incubated with (A) naturally occurring BAs, 

(B) synthetic BAs, (C) LAs and (D) RAs and other triterpenes derived from frankincense 

(10 µM, each) for 48 h at 37 °C and 6% CO2. Then, the dye MTT was added for 

additional 30 min. Only viable cells are able to reduce the yellow MTT to a purple 

product. Cells were lysed overnight and the absorption at 595 nm was measured. Data 

are given as means + s.e.; n = 3. * p < 0.05, *** p < 0.001, vs vehicle (DMSO). 
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A concentration-response analysis was performed to achieve EC50 values regarding the 

cytotoxicity. Surprisingly, ABA was the most potent triterpene tested (EC50 = 2.8 µM, 

fig. 4.33, A) and AKBA was much less efficient (EC50 = 9.8 µM). The synthetic BAs 

sucBA and gluBA showed EC50 values of 9.8 µM and 5.2 µM, respectively, while 

oxBA was only slightly cytotoxic (up to 30 µM, fig. 4.33, B). OH-LA and Ac-OH-LA 

were cytotoxic with EC50 values of 6.3 µM and 9.7 µM, respectively (fig. 4.33, C). 

Ac-LA itself had no effect on the cell viability. RA and DH-RA are only slightly 

cytotoxic (fig. 4.33, D), with EC50 values of 16.9 µM (RA) and 10.1 µM (DH-RA). 

DHK-RA displayed very little cytotoxic effects (EC50 > 30 µM). 3-α-Ac-TA reduced 

cell viability moderately (EC50 = 14.7 µM), while other TAs (3-oxo-TA, 3-α-OH-TA, 

3-β-OH-TA and 3-α-OH-7,24-dien-TA) had only slight cytotoxic properties 

(EC50 > 30 µM, fig. 4.33, E). Ursolic acid was quite toxic with an EC50 value of 

4.5 µM. 
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Fig. 4.33: Concentration-dependent cytotoxicity of BAs, LAs, RAs, TAs and urs. 

Jurkat A3 (3 × 105/ml) were incubated with (A) naturally occurring BAs, (B) synthetic 

BAs, (C) LAs, (D) RAs, (E) TAs or (F) urs for 48 h at 37 °C and 6% CO2. Then, the dye 

MTT was added for additional 30 min. Only viable cells are able to reduce the yellow 

MTT to a purple product. Cells were lysed overnight and the absorption at 595 nm was 

measured. Data are given as means ± s.e.; n = 3. * p < 0.05, *** p < 0.001, vs vehicle 

(DMSO). 
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In order to analyze if the viability of non-cancer cells is affected by compounds from 

frankincense, peripheral blood mononuclear cells (PBMCs) were investigated in the 

MTT cytotoxicity assay (fig. 4.34). AKBA was the only naturally occurring BA tested 

which displayed a cytotoxic effect at 25 µM (31.8% viable cells). GluBA and sucBA 

were cytotoxic as well (13.5% and 28.4% cell viability), while the other synthetic BAs 

(eBA, eKBA, oxBA, oxKBA, gluKBA and sucKBA) did not influence cell viability. 

Both OH-LA and Ac-OH-LA were cytotoxic at 25 µM (28.8% and 51.7% viable cells, 

respectively). Ac-LA showed no cytotoxic effects. RA and DH-RA decreased the 

number of viable cells (51.9% and 34.0% viable cells), while DHK-RA had no effect. 

Finally, DH-nyc was cytotoxic (43% viable cells), and oleanolic and amyrin had no 

impact on the cell number. 
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Fig. 4.34: Cytotoxicity of BAs, LAs, RAs and DH-nyc in PBMCs. PBMCs (2 × 106/ml) 

were incubated with (A) naturally occurring BAs, (B) synthetic BAs, (C) LAs and 

(D) RAs and DH-nyc (25 µM, each) for 48 h at 37 °C and 6% CO2. Then, the dye MTT 

was added for additional 30 min. Only viable cells are able to reduce the yellow MTT to 

a purple product. Cells were lysed overnight and the absorption at 595 nm was 

measured. Data are given as means + s.e.; n = 3. * p < 0.05, ** p < 0.01, *** p < 

0.001, vs vehicle (DMSO). 
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4.7.2 BAs induce PARP-, caspase-3 and caspase-8 cleavage 

Reduction of cell viability can be related to apoptosis or necrosis. Additional 

experiments were performed in order to investigate which of those two modes of actions 

are responsible for the cytotoxic effects of BAs and LAs. During apoptosis, caspases are 

activated by proteolytic cleavage [259]. In addition, PARP is a well described apoptosis 

marker, which is cleaved during programmed cell death [260]. Jurkat A3 were 

incubated with BAs and lysed. The cellular amount of uncleaved caspase-3, caspase-8, 

as well as the amount of cleaved PARP, was analyzed by Western blotting. AKBA, 

gluBA, sucBA and OH-LA decreased procaspase-3 and procaspase-8 levels at 10 µM, 

while the amount of cleaved PARP rose in a concentration-dependent manner 

(fig. 4.35). A slight reduction of procaspase levels and a slight increase of cleaved 

PARP levels were detected already at 3 µM, while lower concentrations had no effects. 
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Fig. 4.35: Influence of triterpenes derived from frankincense on caspase-3, caspase-8 

and PARP. Jurkat A3 cells (2 × 105/ml) were incubated with (A) AKBA, (B) ABA, (C) 

sucBA, (D) gluBA, (E) OH-LA, (F) urs and (B-D) staurosporine (stauro, 0.1 µM) for 24 

h at 37 °C and 6% CO2. Cells were lysed and lysates were analyzed by Western blotting 

using anti-caspase-3-, anti-caspase-8 and anti-cleaved-PARP-antibodies. Results 

shown are representative for three independent experiments. 
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4.7.3 DNA fragmentation is induced by BAs 

DNA fragmentation occurs during apoptosis [261]. To evaluate the effects of BAs on 

DNA fragmentation in Jurkat A3, cells were incubated with BAs, lysed and DNA was 

stained by propidium iodide. 

The amount of cells with low fluorescence (sub-G1) was increased by rising 

concentrations of AKBA, sucBA and gluBA (fig. 4.36). GluBA was the most potent BA 

tested and at 30 µM equally effective as staurosporine at 1 µM. AKBA displayed 

intermediate DNA-fragmentation, while the activity of sucBA was slightly lower than 

the activity of AKBA. 
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Fig 4.36: Influence of BAs on DNA fragmentation. Jurkat A3 cells (2 × 105/ml) were 

incubated with BAs (1-30 µM), staurosporine (1 µM) or DMSO for 24 h. Cells were 

lysed with lysis buffer containing propidium-iodide, before fluorescence intensities of 

cell nuclei were measured in a flow cytometer (FL2 585/42). Apoptotic nuclei have a 

lower fluorescence than the 2N peak (sub-G1) and contain hypodiploid DNA. Data are 

given as means + s.e.; n = 3. * p < 0.01, *** p < 0.001 vs vehicle (DMSO). 
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5. Discussion 

5.1 Identification and evaluation of molecular targets of BAs 

The molecular mechanisms underlying the anti-inflammatory effects of frankincense 

extracts are poorly understood. BAs are the main principles in these extracts, and a 

contribution of BAs to the observed effects seems likely. Though several targets of BAs 

were identified up to now (including 5-LO, COX-1, IKK, Akt, HLE and C3-convertase) 

[235], many of these studies either analyzed solely AKBA or identified AKBA as the 

compound with the highest activity. However, the bioavailability of AKBA is very low 

[10,68], and a contribution of BAs with a higher bioavailability to the anti-inflammatory 

effects of frankincense extracts seems likely. In addition, other active principles of 

frankincense extracts besides BAs may modulate the inflammatory process. 

In the present study, several new targets for triterpenes derived from frankincense were 

identified by using a pull-down strategy. This strategy was based on linking a triterpene 

to an insoluble bead. By incubating these triterpene-coupled beads with cellular lysates, 

potential binding partners (targets) could be identified and further characterized by 

additional biochemical methods. The interactions of different triterpenes derived from 

frankincense with each of these identified targets, the effects, the relevance and possible 

consequences are discussed in detail in the following paragraphs. 

5.1.1 hCAP18 and LL-37 are targeted by BAs and other 

triterpenes  

Previous target-fishing studies using BAs as bait performed by Dr. Lars Tausch (Goethe 

University, Frankfurt) revealed the human cathelicidin hCAP18 as a potential binding 

partner of KBA [40]. Here, a direct binding mode was demonstrated. Interestingly, the 

C-terminal antimicrobial peptide liberated from hCAP18, i.e. LL-37, is also a direct 

binding partner of KBA, implying that the binding to hCAP18 likely occurs through the 

LL-37 domain. The LL-37 binding effect was not only specific to KBA-sepharose, as 

LL-37 binds also to BA-sepharose. Importantly, this binding has functional 

consequences: the LPS-inhibiting potential of LL-37 was diminished. This inhibitory 
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effect was most prominent for the natural occurring BAs (i.e. ABA and AKBA), but not 

limited to BAs, as some LAs and RAs were able to restore LL-37-inhibited LPS 

activities as well (for a summary of the SAR studies, see tab. 5.1, tab. 5.2 and tab. 5.3). 

It seems that an introduction of a carboxylic group connected via an alkylic ester or 

ether at the C-3 position of BAs impairs the bioactivity of the compounds. This may be 

caused by a modification of the polarity near the C-3 position, or by sterical hindrance 

at this site (the introduced moieties elongate the molecule at the C-3 position) and it 

implicates that either the introduced polar group or the elongation at the C-3 position is 

detrimental for the LL-37 inhibiting effects. The impact of the C-11-keto group could 

not be analyzed in detail under the testing conditions because many non-11-keto-BAs 

are prominent direct LPS neutralizing compounds and interfered with the testing 

system. However, the similar effects of AKBA and ABA implicate that the 11-keto 

group may be of minor importance. 

The inhibition of biological LL-37 activities may have in vivo relevance. The low IC50 

values of BAs, especially of ABA (IC50 = 0.2 µM), are in the range of plasma 

concentrations reached after oral application of B. serrata extracts (e.g. ABA: 

2.4-4.9 µM) [10,68]. The inhibitory effect was not only limited to isolated LL-37; it was 

also relevant in the presence of other proteins from neutrophil granules. Upon 

stimulation, neutrophils degranulate and release proteinase-3 and hCAP18 [97]. 

hCAP18 is then processed by proteinase-3, resulting in the liberation of LL-37. The 

LPS-inhibitory effect of degranulated neutrophil supernatant was reversed by ABA and 

the LPS-inhibitory effect of diluted human blood plasma was impaired by ABA as well. 

This implicates that the ability of plasma proteins to bind to BAs [262] does not abolish 

their inhibitory effects on LL-37. However, it should be noted that diluted plasma was 

used and a higher plasma protein concentration is present in whole blood, therefore a 

possible interaction with plasma proteins cannot be completely excluded. In general, the 

reversion of the LPS-inhibiting properties of LL-37 demonstrates the effectiveness of 

BAs to inhibit LL-37 activity.  

Inhibition of LL-37 might explain some of the observed anti-inflammatory effects of 

BAs. Though both pro- and anti-inflammatory properties of LL-37 have been reported 

[126], high LL-37 levels were found in certain inflammatory diseases, e.g. psoriasis 

[113], and a contribution of LL-37 to the course of this disease has been suggested. 

Interestingly, in the CD18 hypomorphic mouse model of psoriasis [263], systemical and 
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local treatment with AKBA inhibited several disease parameters like TNF-α production 

and interleukin-12 and -23 expression [264]. The only murine cathelicidin CRAMP 

(cathelin-related antimicrobial peptide) is closely related to LL-37 [265], implicating 

that BAs may influence its activity as well. However, detailed studies about the effects 

on human psoriasis are still missing, and further evidences are needed to exploit the 

potential of BAs as novel therapeutics in the treatment of psoriasis. Nonetheless, BAs 

are virtually the first identified inhibitors of LL-37 and might open a new field for the 

development of novel drugs against LL-37-mediated diseases.  

The main function of LL-37, derived from the only human cathelicidin hCAP18, was 

initially assumed to be the killing of bacteria [122]. Later on, immunomodulatory 

effects of LL-37 were identified, and LL-37 cannot be regarded as a solely anti-

microbial peptide anymore [129]. Among the pro-inflammatory properties, LL-37 was 

described as a chemotactic agent for neutrophils [131]. Cellular signaling resulting in 

chemotactic activity may be related to mobilization of intracellular Ca2+ and activation 

of MAPKs (as ERK1/2 and p38 MAPK) [138]. These effects could not be reproduced in 

this thesis, however. Even at rather high concentrations (10 µM), LL-37 did not induce 

neutrophil chemotaxis, ERK1/2 or p38 MAPK phosphorylation or intracellular Ca2+ 

mobilization. Also, in contrast to a previous study [249], the reported apoptosis-

inducing abilities of LL-37 in Jurkat T-lymphocytes could not be confirmed. Therefore, 

the molecular basis of the immunomodulatory mode of action of LL-37 might be 

carefully re-evaluated. 

Though BAs have inhibitory effects on LL-37 activity, selected BAs may also increase 

LL-37 generation under certain conditions. Both β-BA and AKBA induced a higher 

release of hCAP18 in cytochalasin B/fMLP-stimulated neutrophils. This is most likely a 

priming effect which leads to a more extensive degranulation. As a consequence, higher 

levels of LL-37 were observed, suggesting that the increased release of hCAP18 might 

completely overcome the reported slight inhibition of the LL-37 liberating protease 

(proteinase-3) by BAs [40]. Released LL-37 may lead to a higher capacity of killing 

bacteria and may contribute to the beneficial effect of BEs in diseases where bacteria 

potentially participate (i.e. Crohn’s disease) [266]. However, high concentrations of 

BAs are needed to upregulate hCAP18 release and therefore the inhibitory effects of 

BAs on LL-37 activity may dominate and have a higher in vivo relevance. 
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5.1.2 LPS is a target of triterpenes derived from frankincense 

Bacterial LPS was identified as a direct binding partner of β-BA in pull-down 

experiments. The binding of BAs to LPS resulted in an inhibition of LPS activity. From 

the natural occurring BAs, only β-BA, one of the most abundant BA in frankincense, 

was able to neutralize LPS (ABA, KBA and AKBA had no effect, see tab. 5.1). The 

absence of an 11-keto group seems necessary for a potent inhibition by the synthetic BA 

derivatives: all analyzed 11-keto-free BA derivatives displayed very potent LPS-

inhibiting properties, while the corresponding 11-keto derivatives had no activity. The 

only exception to this rule was ABA, which was the only inactive 11-keto-free BA 

derivative. Replacement of the 11-keto group by a hydroxy group led to somewhat more 

active compounds compared to their 11-keto variants. Nonetheless, the activity was still 

reduced when compared to analogues without any substituent at C11. This indicates that 

a nonpolar C-11 position is necessary for an efficient LPS neutralization. 

While ABA had no LPS neutralizing activity, the replacement of the acetylic group by 

an etherified ω-hydroxy acid or an esterified dicarbonic acid greatly enhanced the 

inhibitory potential. This may be caused by a change in the steric environment or a 

change of the polarity near the C-3 position. The polarity has a strong influence: all 

analyzed compounds with a free hydroxy or acid group near the C-3 position had a high 

activity against LPS. Both α- and β-configured BAs had a similar potency, indicating 

that the position of the methyl group at C-19 or C-20 has no impact on the LPS-

neutralizing capabilities. The LPS neutralizing effect seem to be specific for BAs, since 

neither LAs nor RAs were able to inhibit LPS activity (see tab. 5.2 and tab. 5.3). 

Inhibition of LPS resulted in an inhibition of LPS signaling. A late downstream event in 

LPS signaling is the modulation of gene expression. For example, LPS leads to an 

induction of iNOS expression and in enhanced NO generation. Several 11-keto-free 

BAs were able to inhibit iNOS expression, while AKBA as an 11-keto BA was 

ineffective, hence correlating with the ability to neutralize LPS. The inhibition of iNOS 

expression resulted in lower amount of released NO, most prominent for the C-3 

modified synthetic non-11-keto BA derivatives gluBA and sucBA. β-BA itself (up to 

10 µM) did not reduce LPS-induced NO release significantly, implicating that higher 

concentrations might be necessary. Notably, β-BA was also less effective than gluBA 

and sucBA as a direct LPS inhibitor. The inhibition of NO release seems to be specific 

for LPS-induced signaling, as IFN-γ-induced NO release was not influenced by most 
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BAs. The effects of gluBA as the only active compound (but only at high 

concentrations) may be explained by its cytotoxic activity, while the other BAs were 

neither cytotoxic nor inhibited IFN-γ-induced NO release.  

NO is involved in mediating several immune responses to chronic diseases and cancer 

[267]. It plays a role in inflammatory bowel diseases like Crohn’s disease and ulcerative 

colitis [268], as well as in osteoarthritis [269]. The causes of these diseases are not 

completely identified, but there are some speculations that bacteria might be involved in 

Crohn’s disease [266]. The connection of LPS to osteoarthritis still has to be elucidated, 

but LPS was at least shown to be involved in reactive arthritis [270]. BEs are beneficial 

for the treatment of both inflammatory bowel diseases (e.g. Crohn’s disease) [85] and 

osteoarthritis [76], therefore an inhibition of NO generation by LPS neutralization might 

explain some of the anti-inflammatory effects of BEs. Nonetheless, one should keep in 

mind that an inhibition of LPS signaling may also occur at additional targets 

downstream of TLR-4. An interference of BAs with IκBα kinases (IKKs) has been 

reported, but the mode of action on this target (direct binding or indirect regulation) is 

controversial disputed [39,65]. Therefore, a contribution of a potential direct interaction 

of BAs with IKKs to the observed inhibitory effects on NO generation cannot be 

completely excluded at this point. 

An additional component of LPS signaling is p38 MAPK [253]. Both β-BA and AKBA 

inhibited LPS-induced p38 MAPK phosphorylation in mouse macrophages at 

concentrations between 1 and 17 µM, indicating that this LPS sensitive pathway is also 

inhibited by BAs. However, the synthetic BA derivatives gluBA and sucBA, which are 

both very potent LPS inhibitors, led to an unexpected enhancement of p38 MAPK 

phosphorylation, indicating that additional pathways may be activated by these 

derivatives. Interestingly, activation of p38 MAPK by BAs has already been reported 

for neutrophils, platelets and granulocytic HL-60 cells [36,38] and may be responsible 

for the effects of gluBA and sucBA in mouse macrophages as well. Activation of p38 

MAPK occurs independent of NF-κB signaling. Therefore, a possible contribution of an 

inhibition of IKKs seems unlikely. However, the observation that AKBA was also 

effective in inhibiting LPS-induced p38 MAPK activation despite no LPS neutralizing 

activity indicate that the effects on this pathway may be multiple and exploited at 

different levels. 
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Taken together, it could be demonstrated that certain non-11-keto BAs bind specifically 

to LPS and inhibit selected LPS-induced cellular functions. The amounts of β-BA 

needed for an efficient inhibition (IC50 = 1.8-10 µM) are in the range of β-BA blood 

plasma levels reached after oral application of B. serrata extracts (6.35-10.1 µM) 

[10,68]. LPS plays a role in a variety of diseases. Inhalation of LPS leads to 

bronchoconstriction [271-273], a change in non-specific airway responsiveness 

[271,272,274] and in a reduction in alveolar capillary diffusion [275]. A participation of 

endotoxin in chronic airway diseases as asthma has been suggested [276]. A B. serrata 

extract has been shown to be beneficial for the treatment of asthma [91], this might be 

explained by inhibition of LPS and reduction of the resulting bronchial inflammation. 

However, the major LPS-related disorders (e.g. sepsis and septic shock), are diseases 

which are a major cause of death in critically ill patients [277]. Detailed studies about 

the influence of BEs and BAs on these diseases are still missing, but the present study 

provides first evidence that BEs might be beneficial in the treatment of LPS-related 

diseases. 

5.1.3 CatG is a target of BAs and other triterpenes from 

frankincense 

Another molecular target of BAs that was identified by the target-fishing approach is 

catG. β-BA binds to catG in a direct manner, as demonstrated in protein pull-down 

experiments using immobilized BAs. This interaction could be antagonized by addition 

of soluble β-BA as well as by the catG inhibitor CGI. CGI is a potent, selective, 

reversible and competitive catG inhibitor which binds to catG at the substrate binding 

site [278]. The antagonism of catG-binding by CGI and β-BA implicate that β-BA may 

bind to the substrate binding site in a similar manner as CGI. Recently, a model for the 

proposed binding site was generated in collaboration with Dr. Lars Tausch and Prof. Dr. 

Gisbert Schneider (Goethe University, Frankfurt) by molecular docking experiments 

[68]. This model suggest a binding of β-BA to catG at the substrate binding site 

blocking the S1 binding pocket, similar to the proposed binding mode of CGI. The 

binding of catG to BAs had functional consequences, as its enzymatic activity was 

potently inhibited. AKBA acts thereby in a similar fashion as CGI (as a competitive and 

reversible inhibitor of catG activity [68]). catG-stimulated Ca2+ release was impaired by 

both CGI and AKBA, and fMLP-induced neutrophil migration through a synthetic 
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extracellular matrix was inhibited but not chemotaxis itself. This implicates that the 

inhibition of the proteolytic activity impairs the ability of neutrophils to pass through 

the extracellular matrix. 

SAR studies revealed the impact of the 11-keto group (see tab. 5.1). Synthetic BA 

derivatives lacking the 11-keto group were much more potent inhibitors than their 

respective 11-keto analogs. When the 11-keto group was replaced by a hydroxyl group, 

the potency is even more diminished. Such a strict correlation between activity and 11-

keto group was not observed for the naturally occurring BAs. In fact, while the 11-keto 

group of KBA decreases the inhibitory activity, similar to the effect observed for 

synthetic BAs, AKBA had a higher potency than ABA. Therefore, the absence of the 

11-keto group seems to be important in many but not in all cases of catG inhibition.  

Variations of the C-3 moiety demonstrate the influence of this position. A molecular 

modeling approach revealed a potential higher efficacy of C-3 modified synthetic BAs 

[237]. While both a short moiety (as in ABA and oxBA) and a long glutaroyl-moiety (as 

in gluBA) led to efficient inhibitors, an intermediate length (as in sucBA) was less 

effective. In addition, a C-2 hydroxy group renders the compound inactive (cis-diol-

BA). Besides BAs, several other natural occurring triterpenes derived from frankincense 

were characterized for their catG inhibiting potency. Among LAs, the absence of a 28-

hydroxy group seems to be crucial for catG inhibitory activity (see tab. 5.3). RA 

derivatives displayed only a slight tendency for catG inhibition (see tab. 5.2). Taken 

together, among the analyzed compounds from frankincense, non-11-keto BAs seem to 

be the most relevant group of catG inhibitors. 

As discussed above, inhibition of catG by BAs led to a diminished cell migration. This 

effect might be explained by inhibition of the proteolytic activity catG, which is 

responsible for the cleavage of the extracellular matrix [279,280]. In the absence of a 

migration barrier as matrigel, chemotaxis itself was not negatively influenced by BAs. 

This demonstrates that BAs are not general inhibitors of chemotaxis but instead 

influence the proteolytic degradation allowing for migration. The cleavage of the matrix 

is essential for cell migration into tissues, and the inhibition of the responsible proteases 

may lead to an inhibition of the innate immune response. 

Inhibition of catG by BAs may have in vivo relevance as well. The blood of Crohn’s 

disease patients that were orally treated with a BE displayed significant lower catG 
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activities versus those treated with placebo. This implicates sufficient bioavailability of 

the active principles, and a participation of BAs like β-BA and ABA, which reach 

relative high plasma concentrations (2.4-10.1 µM) [68,281], may be reasonable. In 

addition to catG, an interaction of BAs with other homologue neutrophil serine 

proteases [282] has been described. Safayhi et al. identified HLE as a functional target 

of AKBA and β-BA [33]. HLE inhibition by BAs is characterized by relative high IC50 

values (AKBA: 15 µM, β-BA > 15 µM), however. Since maximum plasma levels after 

oral application of BE do not exceed 0.1 µM (AKBA) or 10.1 µM (BA), respectively 

[10], catG seems to be a more relevant target. 

CatG may play a role in a variety of diseases, in which BEs have beneficial effects. The 

extracellular matrix is cleaved by catG [283,284], and in an adjuvant induced arthritis 

model of inflammation, urinary excretion of connective tissue was reduced after BE 

application [4]. CatG inhibitors have been proposed to be potential therapeutics for the 

treatment of asthma, psoriasis and arthritis [177,283] and a B. serrata extract had 

beneficial effects on the treatment of bronchial asthma [91] and on arthritic disease 

parameters in several animal models [2,235]. There are also some in vivo similarities 

between the actions of JNJ-10311795, a catG inhibitor structurally similar to CGI, and 

BEs. For example, JNJ-10311795 inhibits glycogen-induced rat peritonitis [285], while 

a B. serrata extract impaired λ-carrageenan-induced pleurisy in rats [5]. Taken together, 

catG is a functional target of BAs, and the inhibition of catG may be responsible for 

some of the observed anti-inflammatory effects of BEs and BAs. 

5.1.4 Interaction of BAs with p21 Ras 

In previous studies, p21 Ras was specifically precipitated from cellular lysates by 

immobilized KBA-seph [40]. However, it was not clear whether p21 Ras proteins are 

direct binding partners of KBA or an indirect binding mode via adaptor proteins takes 

place. The present study demonstrates that H-Ras directly bind to KBA, since isolated 

H-Ras could be specifically precipitated by KBA-seph. Nonetheless, this binding does 

have only a slight impact on the p21 Ras activation status. While neither AKBA nor 

β-BA was able to activate p21 Ras in neutrophils, a co-stimulation with 5-HETE and 

AKBA resulted in higher amounts of activated p21 Ras. This implicates that AKBA 

somehow interferes with the 5-HETE-induced cell signaling, maybe via priming effects. 

BAs are activators of the MAPK ERK1/2 and p38 MAPK [36], but this activation may 
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be independent of p21 Ras, since BAs have no direct effect on p21 Ras activity in the 

absence of 5-HETE. The 11-keto and the 3-acetoxy groups seem to be crucial, since β-

BA did not enhance the 5-HETE-stimulated p21 Ras activation. Notably, the 11-keto 

group was also important for BA-induced activation of ERK1/2 MAPK [36] and Ca2+ 

mobilization, as well as for inhibition of agonist-induced 5-LO product formation in 

neutrophils [24], 12-HHT formation in platelets [31] and nucleotide and protein 

synthesis in HL-60 cells [45]. However, it was not clear whether p21 Ras is involved in 

the signal transduction pathways leading to these observed inhibitory and stimulatory 

effects. Also, it is unknown if this effect might contribute to the overall apoptosis 

inducing effects of BAs. In fact, upregulation of p21 Ras can result in an induction of 

apoptosis [286] and AKBA was effective in inducing apoptosis in Jurkat T-

lymphocytes, while β-BA had no effect on cell viability. This strengthens the hypothesis 

that the 11-keto group is crucial for mediating effects on cellular signal transduction 

pathways. On the other hand, activation of p21 Ras may also induce cellular growth. 

Constitutively activated forms of p21 Ras proteins were identified in several cancer 

tissues [287], and Ras is responsible for the progression through the cell cycle [288]. 

Nonetheless, there are no reports stating a cancerogenic potential of BAs while an 

apoptosis-inducing mode of action is well analyzed, implicating that an interaction with 

p21 Ras proteins might preferably address the pro-apoptotic effects of p21 Ras. 

Relatively high concentrations of AKBA were needed for activation of p21 Ras, which 

questions the pharmacological relevance of this interaction. The maximum 

concentration of AKBA in the plasma after oral application of a B. serrata extract is in 

the range of 0.1 µM [10,68], while an activation of p21 Ras was only detectable at 30 

µM. It may be possible that AKBA accumulates in tissues, resulting in the observed 

very low plasma concentration. However, no studies were performed yet analyzing the 

distribution of AKBA in different peripheral tissues, but at least an interaction with cells 

in the blood stream seems unlikely. 

5.1.5 Interaction of BAs with Rap1B 

The small G protein Rap1B from the Ras family was also precipitated in platelets in 

pull-down experiments of cell lysates [40]. In order to characterize the binding mode of 

action, recombinant Rap1B was expressed. A transformation of a rap1b-expression 

vector into E. coli BL21 resulted in a bacterial strain expressing a Rap1B-GST fusion 
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protein. The GST-tag was removed and isolated Rap1B was purified. By using these 

isolated proteins, a direct binding of Rap1B to KBA was demonstrated. This binding 

does not seem to influence the nucleotide exchange rate, however. Since Rap1B is 

generally thought to be activated by nucleotide exchange [289], this result implicates 

that KBA may not be able to activate Rap1B. Nonetheless, a modulation of Rap1B 

activity cannot be completely excluded, since binding to Rap1B at different domains 

than the nucleotide binding domain may influence the activity as well. It might be 

possible that BAs interact with the effector binding site and influence the downstream 

signal transduction. An inhibition of active Rap1B might explain the inhibitory effect of 

AKBA on platelet aggregation [255]. On the other hand, an activation could explain the 

observed induction of aggregation by β-BA and ABA [40]. However, the regulation of 

platelet aggregation is complex and might involve Rap1B-independent signal 

transduction pathways as well. 

Taken together, although a direct binding of KBA to Rap1B could be proven, the 

question whether the biological activity of Rap1B is influenced still needs further 

investigations. An activating mode of action via nucleotide exchange can be excluded, 

however. 

5.2 Elucidation of BE-induced apoptosis 

5.2.1 Structure-activity relationship of BAs concerning the 

mechanism of apoptosis induction 

BEs as well as BAs are known to induce apoptosis in different cell lines [46,48-

51,53,54,290]. A part of the underlying molecular pathway has been identified and 

involves the induction of the extrinsic pathway of apoptosis [49,50]. Thus, the BE/BA-

dependent induction of apoptosis is characterized by activation of caspase 8, caspase 3 

and by cleavage of PARP, accompanied by DNA fragmentation. Since there are 

indications that BEs may be beneficial in the treatment of tumor and tumor-associated 

diseases [235], a complete understanding of their active principles and the molecular 

mode of action is essential. 
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Initial investigations revealed that a B. carterii extract induces apoptosis in Jurkat T-

lymphocytes [258]. In the present study, several compounds from frankincense extracts 

have been analyzed for their cytotoxic properties. Although AKBA is generally 

considered the most potent apoptotic inductor [235], it has only moderate cytotoxic 

properties in Jurkat cells as compared to other BAs. In fact, ABA was identified as the 

most potent cytotoxic agent among the natural occurring BAs. A structure-activity 

relationship analysis revealed that compounds with an 11-keto group possess less potent 

cytotoxic activities (see tab. 5.1). Cytotoxicity is also influenced by modification of the 

C-3 position. A hydroxy group leads to a loss of efficiency, while esterification with 

acetylic acid or a dicarbonic acid with a backbone consisting of at least four carbon 

atoms leads to highly toxic compounds.  

The mechanisms by which C-3-modified synthetic BAs cause cytotoxicity are similar to 

AKBA. Cleavage of procaspases-3 and -8 as well as PARP was demonstrated, and all of 

the compounds induced DNA fragmentation. Notably, the synthetic derivatives as well 

as ABA displayed an enhanced potency over AKBA. This result is in line with the 

observation of an enhanced cytotoxicity of ABA, while AKBA is only moderately 

cytotoxic. 

The identification of ABA as a more potent analogue than AKBA might help explaining 

the anti-neoplastic effects of BEs. Since AKBA has very poor absorption rates [69] and 

reaches only low plasma levels after oral application [10,68], the contribution of ABA 

with much higher plasma levels as a potent principle might be reasonable. The 

absorption rates of ABA still have to be elucidated, but plasma levels indicate a 

considerably higher bioavailability. In addition, ABA was cytotoxic for the Jurkat 

cancer cell line, but not for healthy PBMCs, which might be of interest for the 

development of novel anti-cancer agents. 

5.2.2 Novel triterpenes as apoptosis inducing agents 

Besides BA derivatives, other triterpenes derived from frankincense could be identified 

as apoptosis inducing compounds. Two LAs were identified, as well as two RA 

derivatives and ursolic acid. These compounds have a similar potency than the most 

potent natural occurring BA (i.e. ABA). However, detailed studies about the relative 

amount of LAs and RAs in frankincense extracts are still missing, as well as 
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pharmacokinetic studies. Several investigations have demonstrated the anti-neoplastic 

potential of BEs in animal models. Besides BAs, LAs, RAs and ursolic acid might 

contribute to the tumor growth inhibiting effects. While apoptosis inducing effects of 

ursolic acid [291] and some LA derivatives are reported [292], the effects of RAs and of 

the analyzed LA derivatives were unknown up to now. In contrast to BEs, which are 

thought to induce apoptosis via the extrinsic pathway [49,50], ursolic acid was shown to 

act via the intrinsic pathway [293]. Since BEs are mixtures of different active 

compounds, it may be possible that the pro-apoptotic effect of isolated ursolic acid may 

not contribute to the final apoptotic outcome when BEs are applied. 

It should be noted that BEs, although efficiently inhibiting tumor growth in different 

animal models [235], had no influence on brain tumor growth in humans [89,90] with 

the exception of some tumor-related events, i.e. the reduction of the volume of the 

associated edema. Notably, the extracts used in different studies were manufactured by 

different extraction methods, and so the molecular composition was likely different. 

Due to the different experimental conditions, final conclusions are hard to draw. More 

detailed analysis about the content of the BEs used in separate experimental settings are 

required. It may be reasonable that an extract with high amounts of LAs and RAs may 

possess a higher anti-neoplastic value. 

5.3 Additional cellular functions modulated by BAs 

The present study demonstrates that BAs are able to induce chemotaxis in neutrophils. 

This observation is in contrast to a previous study, where neutrophil chemotaxis was 

found to be inhibited by a mixture of BAs [6]. The inhibitory effects reported previously 

were however only detectable at very high concentrations (>100 µM) which are much 

higher than the maximal plasma levels of BAs reached after oral application [10,68] and 

the concentrations applied in the present study (≤30 µM). Additionally, the authors 

missed to define the exact composition of the BA mixture used, making an evaluation of 

these effects very tricky. Thus, due to the very high amounts of BAs needed for 

inhibition of chemotaxis, a physiological relevance for this effect seems unlikely. On 

the other hand, induction of chemotaxis by BAs might have in vivo relevance, since the 

concentrations of BAs needed are in the range of the maximal plasma levels reached 

after oral application. An inhibition of a local inflammation, as observed for several BEs 
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[2,235], might be explained if BAs are systemically available and inhibit chemotaxis 

directed to the site of inflammation by activating the same signal transduction pathways 

as the chemotaxis inducing chemokines. The chemotactic gradient would therefore be 

disturbed. 

However, induction of chemotaxis seems to be based on other mechanisms than those 

responsible for fMLP-induced chemotaxis: fMLP-induced chemotaxis is not influenced 

by BAs. This implicates that BAs may act on other pathways than fMLP to induce 

chemotaxis. Some evidences indicate similarity with the signaling of vascular 

endothelial growth factor (VEGF), which is inhibited by AKBA [294]. However, in an 

animal model of pleural inflammation, the synthetic BA derivatives gluBA and oxBA 

(applied i.p.) did not influence the number of inflammatory cells in the exudate of a 

λ-carrageenan-induced pleurisy in rats. This result strengthens the hypothesis that BAs 

may only inhibit chemotactic activity induced by a specific stimulus. An orally applied 

B. serrata extract, however, was found to inhibit neutrophil migration into the exudate 

of λ-carrageenan-induced pleurisy [5]. Besides the fact that a BE is composed of many 

different potential bioactive substances which might have different effects on 

chemotaxis, the mode of application might also have a strong impact on the outcome. A 

systemic administration might inhibit chemotaxis (see above), whereas a local 

application of BAs might even enhance the number of infiltrating cells. Further studies 

are needed to evaluate the impact of a potential induction of chemotaxis directed to the 

site of inflammation. While beneficial effects of higher immune cell numbers in 

bacterial-induced inflammation might be imaginable, enforced immune cell activity can 

be destructive as well. This would lead to an increase in inflammation. Therefore, a 

local application of BAs might enforce inflammation, but whether the induction of 

chemotaxis is still relevant under in vivo conditions still remains to be elucidated. 

While AKBA is generally regarded as the most potent active principle, a contribution of 

other BAs to the observed anti-inflammatory effects of BEs seems likely. In an in vivo 

system of λ-carrageenan-induced pleurisy in rats, a B. serrata extract (p.o.) inhibited 

exudate volume and the number of invading cells [5]. β-BA may be responsible for this 

effect, as it inhibits the exudates volume and the cell counts in a similar manner, while 

AKBA was ineffective [255]. Notably, β-BA itself had no direct effect on chemotaxis in 

vitro, while AKBA induced neutrophil chemotaxis. CatG might contribute to pleural 

inflammation, and a molecular modeling approach suggested a stronger binding to catG 
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if the moiety at the C-3 position contains a hydrophilic group [237]. Therefore the 

influence of gluBA and oxBA on pleurisy was analyzed. GluBA was completely 

inactive at a low (1 mg/kg) and high (5 mg/kg) dose, while low-dose oxBA-treatment 

resulted in a slightly reduced exudate volume. This effect seems to be absent at higher 

doses, and oxBA had no effect on cell counts or arachidonic acid metabolism, neither at 

low nor at high doses. Overall, both gluBA and oxBA have a very low or even no 

potency in inhibiting λ-carrageenan-induced pleurisy. This implicates that the properties 

of the C-3 position are crucial for the beneficial effects. A modification of the C-3 

hydroxyl group impairs the biological activity, as shown for AKBA [255], oxBA and 

gluBA (this study). CatG seems to be either not a primary inflammatory mediator in this 

model, or both gluBA and sucBA may be not bioavailable or active in vivo. 

However, although λ-carrageenan-induced pleurisy in rats can be regarded as a general 

model system of non-sterile inflammation, it is most likely not dependent on LPS and 

LL-37. The inhibition of inflammation is presumably based on additional targets, on 

which the influence of gluBA and oxBA is still unknown. Maybe these compounds 

would potentially be more efficient in test systems where LPS and LL-37 play a major 

role, like in sepsis, endotoxic shock models or psoriasis. This implicates that BAs might 

mediate anti-inflammatory activities in diverse diseases via distinct molecular 

mechanisms. However, effects like low bioavailability might also potentially contribute 

to the low activity of gluBA and oxBA in the pleurisy model. Bioavailability studies are 

therefore an important tool to evaluate whether these compounds may be effective in 

other in vivo systems as well or if further modifications are necessary to generate 

compounds with an enhanced potency. 

5.4 Conclusion 

The molecular mechanisms underlying the anti-inflammatory effects of frankincense 

extracts are incompletely understood. BAs are major principles of the extracts, and a 

contribution of BAs to the observed effects seems likely. Indeed, several targets of BAs 

were identified up to now, including 5-LO, COX-1, IKK kinases, Akt, HLE and 

C3-convertase [235]. Many of these studies either analyzed solely AKBA or identified 

AKBA as the BA with the highest activity. Since the bioavailability of AKBA is very 

low [10,68], a contribution of BAs with a higher bioavailability to the 
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anti-inflammatory effects seems reasonable. In addition, there may be other bioactive 

principles besides BAs which may modulate inflammatory processes. 

In the present study, several new targets for triterpenes derived from frankincense were 

identified. The inhibition of LPS and the subsequent LPS-induced cellular signaling by 

BAs modulates the immunologic reaction in response to this strong inflammatory 

stimulus. LPS is involved in a variety of diseases where frankincense extracts have 

beneficial effects, and the identified compounds might contribute to this outcome. 

However, not all diseases where frankincense extracts are beneficial depend on LPS, so 

the existence of additional targets is reasonable. The identification of LL-37 as a 

functional target of BAs, RAs and LAs might help explaining the efficacy of BEs in 

some (most likely) LPS-independent diseases like psoriasis. LL-37 was shown to be a 

direct binding partner of BAs, and its activity is inhibited by several triterpenes from 

frankincense extracts. This may lead to a modulation of the immune response in some 

diseases in which LL-37 was suggested to participate. Also, catG was identified as a 

third functional target of BAs. BAs bind directly to catG and inhibit its biological 

activities. There is evidence that the inhibition of catG might be relevant in vivo as well, 

as blood from patients treated with a BE had lower catG activities compared to placebo-

treated patients. 

The identification of RAs and LAs as active principles of BEs leads to new insights into 

the molecular mechanisms by which BEs influence inflammatory disorders. Up to now, 

most of the effects of BEs have been related to the actions of BAs. Though BAs 

represent a major group of ingredients in BEs, some of them have a very poor 

bioavailability. It is reasonable to hypothesize that other triterpenes like RAs and LAs 

might contribute to the beneficial effects of frankincense extracts, in particular if they 

reach sufficient plasma levels, despite of their lower contents in BEs. Detailed studies 

about the bioavailability of RAs and LAs are still missing however. 

Treatment of cancer and cancer-related diseases is a part of the traditional use of BEs. 

Several studies contributed to the understanding of the underlying molecular 

mechanism by which apoptosis is induced. The present study extends this context to 

leukemic T-lymphocytes and demonstrates a contribution of LAs which act besides BAs 

as apoptosis-inducing agents. Among BAs, an evaluation of the impact of the C-3 and 

C-11 moiety revealed novel synthetic BAs with a higher potency of apoptosis induction. 

These compounds may have superior capabilities in the treatment of cancer and cancer-
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related diseases. Detailed studies about their in vivo efficacy in these diseases are still 

missing, but the obtained in vitro data seem to be promising. 
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Tab. 5.1: Effects of BAs on LPS, LL-37, catG and cell viability. SAR studies revealed 

the importance of the C-3- and C-11 position in different testing systems. Natural 

occurring BAs are marked in light gray, synthetic BAs with a C-3 esterified dicarbonic 

acid in intermediate gray and synthetic BAs with a C-3 etherified ω-hydroxy acid in 

dark gray. n.d., not determined. 

COOH

R
1

R
2

 

name R1 R2 LPS LL-37 CatG 

Cytotoxicity 

Jurkat PBMC 

β-BA 

H  

OH  
+ n.d. ++ - - 

ABA 

O

OH
3
C

 

- ++ ++ ++ - 

oxBA OH

O

O

O

 

++ n.d. + + - 

sucBA O

O

O

O

 

++ n.d. + ++ ++ 



5.4  Conclusion 123 

COOH

R
1

R
2

 

name R1 R2 LPS LL-37 CatG 

Cytotoxicity 

Jurkat PBMC 

gluBA 

H  

OH

O O

O

 

++ n.d. + ++ ++ 

eBA 

OH

O

O

 

++ n.d. + . . 

KBA 

O  

OH  
- n.d. + - - 

AKBA 

O

OH
3
C

 

- ++ ++ + ++ 

oxKBA OH

O

O

O

 

- + - - - 



124 5  Discussion 

COOH

R
1

R
2

 

name R1 R2 LPS LL-37 CatG 

Cytotoxicity 

Jurkat PBMC 

sucKBA 

O  

O

O

O

O

 

- + - - - 

gluKBA 
OH

O O

O

 

- + + - - 

eKBA 

OH

O

O

 

- + - + - 

 



5.4  Conclusion 125 

Tab. 5.2: Effects of RAs on LPS, LL-37, catG and cell viability. SAR studies revealed 

the importance of the C-3- and C-11 position in different testing systems.  
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Tab. 5.3: Effects of LAs on LPS, LL-37, catG and cell viability. SAR studies revealed 

the importance of the C-3- and C-11 position in different testing systems. n.d., not 

determined. 
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7. Summary 

Lipophilic extracts from the gum resin of Boswellia spec. (BEs) have been traditionally 

used for the treatment of several inflammatory diseases. A growing public interest in 

drugs based on natural compounds led the focus to intense investigations of the 

mechanisms by which BEs mediate their beneficial effects. The extracts contain large 

amount of triterpenes, among them the prominent group of boswellic acids (BAs), as 

well as roburic acids (RAs) and lupanic acids (LAs). In search of the molecular 

mechanism of BEs, several targets of BAs were identified, among them 5-lipoxygenase, 

cyclooxygenase-1, human leukocyte elastase, IκB kinases and Akt. In many studies by 

others, 3-O-acetyl-11-keto-β-boswellic acid (AKBA) was identified as most active 

principle among the BAs. However, rather high concentrations were needed for efficient 

inhibition of these targets, while AKBA has a rather poor bioavailability. Therefore, it 

seems likely that there are either additional high-affinity targets for AKBA, or that other 

BAs or other ingredients (e.g. RAs or LAs) participate in the beneficial outcome 

observed in several diseases treated with BEs. 

One important aim of the present study was the identification of new targets of BAs. By 

utilizing a pull-down strategy with immobilized BAs, several new targets were 

identified, among them LL-37, lipopolysaccharides (LPS), cathepsin G (catG), p21 Ras 

and Rap1B. The binding mode was analyzed, as well as the functional consequences of 

the molecular interactions between BAs and their respective targets. Structure-activity 

relationship (SAR) studies were performed with synthetically modified BAs in order to 

identify essential structural moieties and to obtain more potent (semi-synthetic) 

derivatives.  

The pull-down strategy led to the discovery of LL-37 as a molecular target of BAs. 

LL-37 is an LPS-neutralizing antimicrobial peptide, which modulates the immune 

response and is upregulated in diseases as psoriasis. The direct interaction between BAs 

and LL-37 had a functional consequence, as BAs inhibited the ability of LL-37 to 

neutralize LPS. This effect was most prominent for 3-O-acetyl-β-boswellic acid (ABA, 

EC50 = 0.2 µM) and AKBA (EC50 = 0.8 µM). A SAR study revealed the importance of 

the C-3 and the C-11 position. Thus, a 3-acetoxy or a 3-hydroxy group was necessary 

for potent interference, while the 11-keto group was less important. Besides BAs, LAs 

and RAs were identified as LL-37-inhibiting compounds from frankincense. Moreover, 
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the inhibitory effect was also relevant in a more physiological environment. Thus, the 

LPS-neutralizing properties of the supernatant of degranulated neutrophils (containing 

LL-37) was inhibited by ABA (EC50 = 1.3 µM), as well as the LPS-neutralizing 

properties of plasma from cytochalasin B/fMLP-stimulated blood (EC50 = 3.5 µM). At 

higher concentrations (≥10 µM), BAs also stimulated LL-37 release from cytochalasin 

B/fMLP-stimulated neutrophils. Since inhibition of LL-37 activity occurs at much lower 

BA concentrations, the inhibitory effects seemingly dominates and might be of higher 

pharmacological relevance. BAs, RAs and LAs are virtually the first identified 

inhibitors of LL-37 and might open a new field for the development of novel drugs 

applicable for LL-37-mediated diseases such as psoriasis. 

A second target identified by pull-down experiments was LPS, a prominent 

inflammatory compound from Gram-negative bacteria that plays a major role in severe 

diseases as sepsis and septic shock. BAs without 11-keto group bound to LPS in a direct 

manner, and this binding led to a potent inhibition of LPS activity (IC50 ~2 µM). 

Notably, 11-keto BAs were completely inactive, suggesting a detrimental function of 

the 11-keto moiety for LPS-binding, hence explaining the specific binding of 11-keto-

free BAs. Those BAs also influenced LPS signaling in cell-based assays, as both LPS-

induced iNOS expression and nitric oxide generation were inhibited by 11-keto-free 

BAs. Detailed in vivo studies about the effects of BAs on LPS-mediated diseases like 

sepsis or septic shock are still missing, but the obtained in vitro data suggests that BAs 

may become potentially valuable compounds for the treatment of these severe diseases 

and call for more detailed analysis. 

CatG was identified as a third functional target of BAs, which was bound by BAs 

through a direct interaction. It is a serine protease from leukocytes that modulates the 

immune system. The direct interference of BAs with catG led to an inhibition of the 

proteolytic activity of catG, as well as suppression of several catG-mediated cellular 

functions. Therefore, catG-stimulated Ca2+ influx in platelets was inhibited by AKBA, 

and cell migration into an extracellular matrix was inhibited by BAs, a process in which 

catG might participate. CatG activity of the plasma of stimulated blood from BE-treated 

patients (3 × 800 mg/day, 4 weeks) was reduced, compared to the placebo-treated 

control group. Conclusively, catG inhibition by BAs might contribute to the anti-

inflammatory effects of frankincense extracts. 
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Besides LL-37, LPS and catG, two novel targets of BAs, small G-proteins belonging to 

the protein family Ras, were identified: p21 Ras and Rap1B. BAs bound to p21 Ras in a 

direct manner, but this binding had only minor functional consequences in the present 

investigation. The activity of p21 Ras in neutrophils was not influenced by BAs alone, 

but when neutrophils were co-stimulated with 5-HETE, p21 Ras was activated by 

AKBA (but not by β-BA) in relative high concentrations (≥ 30 µM). This implicates 

that AKBA might act via some kind of priming effect on neutrophils. Since relative 

high concentrations were necessary for p21 Ras activation and plasma levels of AKBA 

are significantly lower (~0.1 µM), the pharmacological relevance of this interaction is 

questionable. 

Similar to p21 Ras, Rap1B is a small G-protein that was identified as a direct binding 

partner of BAs. However, the binding of AKBA to Rap1B did not influence the 

nucleotide exchange activity. Further experiments are necessary to completely rule out 

an inhibition of cellular Rap1B functions, but an activation mode via nucleotide 

exchange was at least excluded. 

An additional aim of the present study was the analysis of apoptosis induction by 

ingredients of BEs. BAs without an 11-keto moiety showed cytotoxic effects on Jurkat 

T-lymphocytes with EC50 values between 2.8 µM and 9.8 µM, while the related 11-keto 

BAs displayed less cytotoxicity. In PBMCs, BAs in general had less cytotoxic effects, 

but most compounds that were cytotoxic for Jurkat cells were also cytotoxic for 

PBMCs. A prominent exception to this rule was ABA, which was cytotoxic for Jurkat 

cells but not for PBMCs. Such selectivity for cancer cells versus non-transformed cells 

might be of interest for the development of novel anti-cancer agents. Besides BAs, RAs 

and LAs were identified as apoptosis-inducing compounds from frankincense, which 

might also contribute to the beneficial effects of BEs. In Jurkat cells, the induction of 

apoptosis by BAs and LAs was mediated by caspase-8 and caspase-3, which finally led 

to PARP-cleavage and DNA fragmentation. 

Taken together, LL-37, LPS and catG, all involved in inflammatory processes, were 

identified as novel targets of BAs. The BA concentrations needed for an efficient 

inhibition of LL-37, LPS and catG are in the range of BA plasma levels reached after 

treatment with BEs. The physiological relevance still has to be validated in more 

detailed in vivo studies, but the obtained data suggest that these molecular mechanisms 

might have physiological relevance and may eventually lead to the development of 
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novel anti-inflammatory drugs. Moreover, novel triterpenes derived from frankincense 

were identified as potent apoptosis-inducing agents encouraging for future studies of 

BE-derived compounds for their potential in the treatment of cancer and cancer-related 

diseases. 
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8. Zusammenfassung 

Lipophile Extrakte des Harzes von Weihrauchbäumen (Boswellia spec., BEs) werden in 

der Volksmedizin eingesetzt, um diverse Entzündungs- und Krebskrankheiten zu 

behandeln. Ein wachsendes öffentliches Interesse an Naturstoffen und ihrer Anwendung 

in der modernen Medizin führte zu verstärkten Bemühungen, die molekulare Grundlage 

für die Wirkung von Weihrauchextrakten aufzuklären. Die Extrakte enthalten einen 

großen Anteil an verschiedenen Triterpenen, unter anderem die in großen Mengen 

vorkommenden Boswelliasäuren (BAs), sowie Robursäuren (RAs) und Lupansäuren 

(LAs). Die Suche nach den molekularen Wirkmechanismen der BEs führte zu einer 

Identifizierung verschiedener Targets, u.a. 5-Lipoxygenase, Cyclooxygenase-1, 

Humane Leukocyten Elastase, IκB-Kinasen und Akt. Für die meisten Targets wurde 

3-O-acetyl-11-keto-β-boswellic acid (AKBA) als die BA mit der stärksten biologischen 

Aktivität identifiziert, welche sich allerdings erst in relativ hohen Konzentrationen 

zeigte. Demgegenüber steht eine niedrige Bioverfügbarkeit von AKBA. 

Höchstwahrscheinlich gibt es entweder weitere bisher unbekannte hochaffine Targets 

für AKBA, oder andere Inhaltsstoffe der Extrakte wie weitere BAs, RAs oder LAs 

spielen eine Rolle bei der entzündungshemmenden Wirkung von Weihrauchextrakten. 

Ein wichtiges Ziel der vorliegenden Arbeit war die Identifikation neuer molekularer 

Targets von BAs. Durch eine sogenannte „pull-down“-Strategie konnten verschiedene 

neue Targets identifiziert werden, zu diesen gehörten LL-37, Lipopolysaccharide (LPS), 

Cathepsin G (catG), p21 Ras und Rap1B. Die Bindung dieser Targets an BAs wurde 

charakterisiert und schließlich wurde nach funktionelle Konsequenzen der Bindung 

gesucht. Um die für die Wechselwirkung relevanten strukturellen Merkmale zu 

identifizieren und um stärker wirkende (semi-synthetische) Derivate zu finden, wurden 

Struktur-Wirkungsbeziehungen mit Hilfe von synthetisch modifizierten BAs erstellt. 

Die „pull-down“-Strategie führte zunächst zu einer Identifizierung von LL-37 als 

molekulares Target von BAs. LL-37 ist ein LPS-neutralisierendes Peptid, welches die 

Immunantwort moduliert und in verschiedenen Krankheiten wie Psoriasis hochreguliert 

wird. Die direkte Wechselwirkung zwischen BAs und LL-37 hatte eine funktionelle 

Konsequenz: die Fähigkeit von LL-37, LPS zu neutralisieren, wurde durch BAs 

gehemmt. Dieser Effekt war am stärksten bei 3-O-acetyl-β-boswellic acid (ABA, 

EC50 = 0,2 µM) und AKBA (EC50 = 0,8 µM) ausgeprägt. Die Analyse der Struktur-
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Wirkungsbeziehung zeigte die Bedeutung der C-3- und der C-11-Gruppe auf. Eine 

3-acetoxy- oder eine 3-hydroxy-Gruppe waren notwendig für eine effiziente LPS-

Neutralisation, während eine 11-keto-Gruppe keinen großen Einfluss auf die Aktivität 

der BAs hatte. Neben BAs wurden mit RAs und LAs weitere Inhaltsstoffe des 

Weihrauchs als aktive, LL-37-hemmende Komponenten identifiziert. Darüber hinaus 

konnte der hemmende Effekt auch in einer physiologischeren Umgebung beobachtet 

werden. So wurde sowohl die LPS-neutralisierende Eigenschaft des LL-37-reichen 

Überstandes von degranulierten Neutrophilen durch ABA gehemmt (EC50 = 1,3 µM), 

als auch die LPS-neutralisierenden Eigenschaften des Plasmas von Cytochalasin 

B/fMLP-stimuliertem Blut (EC50 = 3,5 µM). In höheren Konzentrationen (≥ 10 µM) 

stimulierten BAs die Freisetzung von LL-37 aus Cytochalasin B/fMLP-stimulierten 

Neutrophilen. Da allerdings geringere Konzentrationen für eine Hemmung der Aktivität 

ausreichen, als für eine verstärkte Freisetzung nötig sind, könnten die Hemmeffekte im 

Endeffekt eine größere pharmakologische Bedeutung besitzen. BAs, RAs und LAs 

gehören zu den ersten identifizierten LL-37-Inhibitoren und könnten eine Basis für die 

Entwicklung neuer Wirkstoffe gegen LL-37-bedingter Krankheiten wie Psoriasis 

darstellen. 

LPS war ein zweites durch „pull-down“-Experimente identifiziertes Target. Das 

bakterielle LPS stellt einen starken entzündungsinduzierenden Stoff dar, welches eine 

Hauptrolle bei schwerwiegenden Krankheiten wie Sepsis oder Septischer Schock spielt. 

BAs, die keine 11-keto-Gruppe besaßen, banden direkt an LPS und führten zu einer 

starken Hemmung der LPS-Aktivität (IC50 ~2 µM). Bemerkenswerterweise waren die 

entsprechenden 11-keto-BAs komplett inaktiv, daher scheint die LPS-Hemmung 

spezifisch für BAs ohne 11-keto-Gruppe zu sein. Diese BAs beeinflussten ebenfalls die 

LPS-induzierte Signaltransduktion. Sowohl die iNOS-Expression als auch die 

Stickstoffmonoxid-Freisetzung wurde durch BAs ohne 11-keto-Gruppe gehemmt. 

Weiterführende in vivo-Studien, die sich mit den Effekten von BAs in LPS-vermittelten 

Krankheiten, wie Sepsis oder Septischer Schock, beschäftigen, fehlen zwar noch, die 

entsprechenden in vitro-Daten deuten allerdings an, dass BAs eventuell das Potential 

dazu hätten, eine Grundlage für die Behandlung dieser schwerwiegenden Krankheiten 

zu bieten. 

CatG konnte als drittes funktionelles Target von BAs identifiziert werden, welches 

direkt von BAs gebunden wurde. Es handelt sich um eine Serinprotease aus 
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Leukozyten, welche eine Rolle bei der Modulation des Immunsystems spielt. Die 

direkte Bindung an BAs führte zum einen zu einer Hemmung der proteolytischen 

Aktivität von catG, zum anderen wurden ebenfalls catG-beeinflusste zelluläre 

Mechanismen gehemmt. So wurde der catG-stimulierte Ca2+-Einstrom in Thrombozyten 

durch BAs verringert, und die Zellmigration in eine extrazelluläre Matrix wurde 

ebenfalls gehemmt, ein Prozess, an dem catG vermutlich beteiligt ist. Im Vergleich zu 

einer Placebo-behandelten Kontrollgruppe war die catG-Aktivität des Plasmas von 

stimulierten Blut von BE-behandelten Patienten (3 × 800 mg/Tag, 4 Wochen) reduziert. 

Alles in allem scheint die catG-Hemmung durch BAs an den entzündungshemmenden 

Effekten von Weihrauchextrakten beteiligt zu sein. 

Es konnten neben LL-37, LPS und catG auch zwei neue Targets von BAs identifiziert 

werden, die zu den kleinen G-Proteinen der Proteinfamilie Ras gehören: p21 Ras und 

Rap1B. BAs banden direkt an p21 Ras, allerdings hatte diese Bindung nur kleinere 

funktionelle Konsequenzen in den durchgeführten Experimenten. Die p21 Ras-Aktivität 

von Neutrophilen wurde durch BAs alleine nicht beeinflusst, dieses änderte sich 

allerdings, wenn Neutrophile zusätzlich mit 5-HETE behandelt wurden. Hier führte 

AKBA, aber nicht β-BA, zu einer Aktivitätssteigerung, diese allerdings nur bei 

vergleichsweise hohen Konzentrationen (≥ 30 µM). Da die Plasmaspiegel von AKBA 

deutlich niedriger liegen (~0,1 µM) ist es fraglich, ob die Aktivierung von p21 Ras zu 

den heilsamen Effekten von Weihrauchextrakten beiträgt. 

In einer ähnlichen Weise konnte gezeigt werden, dass neben p21 Ras auch Rap1B direkt 

an BAs gebunden hat. Die Bindung von AKBA an Rap1B beeinflusste allerdings nicht 

die Nukleotidaustauschkinetik. Um Rap1B als relevantes Target komplett 

auszuschließen, sind weitere Studien notwendig, eine Beeinflussung der Aktivierung 

über einen Nukleotidaustausch konnte zumindest nicht beobachtet werden. 

Ein weiteres Ziel der vorliegenden Arbeit war die Analyse der Apoptoseinduktion durch 

Inhaltsstoffe von BEs. BAs ohne 11-keto-Gruppe zeigten cytotoxische Effekte in Jurkat 

T-Lymphozyten mit EC50 Werten zwischen 2,8 µM und 9,8 µM. Die entsprechenden 

11-keto-BAs waren grundsätzlich weniger cytotoxisch. Die cytotoxischen Effekte 

waren in PBMCs prinzipiell weniger stark ausgeprägt, allerdings waren hier auch 

nahezu alle BAs aktiv, die auch auf Jurkat Zellen cytotoxisch wirkten. Eine 

bemerkenswerte Ausnahme stellte ABA da, welches cytotoxisch auf Jurkatzellen, nicht 

aber auf PBMCs wirkte. Diese Selektivität (Krebszellen gegen nicht-transformierte 
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Zellen) könnte wichtig für die Entwicklung von Krebsmedikamenten werden. 

Zusätzlich zu BAs wurden RAs und LAs als Apoptoseinduktoren aus Weihrauch 

identifiziert, die zu den heilsamen Effekten von BEs beitragen könnten. Die 

Apoptoseinduktion durch BAs und LAs wurde durch Caspase-8 und Caspase-3 

vermittelt und resultierte letztendlich in der PARP-Spaltung und in der Fragmentierung 

der zellulären DNA.  

Zusammengefasst wurden in der vorliegenden Arbeit LL-37, LPS und catG als neue 

Targets von BAs identifiziert, die an Entzündungsvorgängen beteiligt sind. Die BA-

Konzentrationen, die für eine effiziente Hemmung erforderlich waren, lagen auf oder 

unter dem Level der BA-Plasmaspiegel, die nach einer BE-Behandlung erreicht wurden. 

Die Frage nach einer physiologischen Relevanz kann letzten Endes nur durch 

weiterführenden in vivo-Studien geklärt werden, die vorliegende Arbeit liefert dazu 

allerdings eine rationale Grundlage, die zukünftig eventuell zu einer Entwicklung von 

neuartigen entzündungshemmenden Medikamenten auf Weihrauchbasis führen könnte. 

Darüber hinaus wurden bisher unbekannte Triterpene aus Weihrauch als wirksame 

Apoptoseinduktoren identifiziert, welche weitergehende Studien über einzelne BE-

Bestandteile und ihrer Wirkung auf Krebs und krebsassoziierte Krankheiten interessant 

werden lassen. 

 



9  Publications  159 

9. Publications 

9.1 Original publications 

Tausch L, Henkel A, Siemoneit U, Poeckel D, Kather N, Franke L, Hofmann B, Schneider G, 

Angioni C, Geisslinger G, Skarke C, Holtmeier W, Beckhaus T, Karas M, Jauch J, Werz O 

(2009). Identification of human cathepsin G as a functional target of boswellic acids from the 

anti-inflammatory remedy frankincense. The Journal of Immunology 183(5):3433-3442 

Poeckel D, Greiner C, Pergola C, Henkel A, Popescu L, Rau O, Schubert-Zsilavecz M, Werz O 

(2009). Interference of alpha-alkyl-substituted pirinixic acid derivatives with neutrophil 

functions and signalling pathways. European Journal of Pharmacology 619(1-3):1-7. 

Wolf M, Nunes F, Henkel A, Heinick A, Paul RJ (2008). The MAP kinase JNK-1 of the 

Caenorhabditis elegans nervous system modulates insulin-like signaling and stress responses in 

peripheral cells. Journal of Cellular Physiology 214:721-729. 

9.2 Poster presentations 

Henkel A, Seitz S, Jauch J, Werz O (2009). Triterpenic acids derived from frankincense inhibit 

LL-37 activity. Jahrestagung 2009 der Deutschen Pharmazeutischen Gesellschaft e.V. 

Henkel A, Tausch L, Werz O (2009). Identification of LL-37 as a molecular target for 

boswellic acids. ÖPhG annual meeting, Vienna. 

Nunes F, Voss M, Henkel A, Wolf M, Paul RJ (2006). Evaluating the role of the neuronal MAP 

Kinase JNK-1 in orientation behavior and thermotaxis. European Worm Meeting, Hersonissos. 

9.3 Oral presentations 

Janowitz T, Wolf M, Nunes F, Henkel A, Heinick A, Paul RJ (2009). The role of insulin-like 

signalling in the response to stress of the nematode Caenorhabditis elegans. 26th Congress of 

the new European Society of Comparative Biochemistry and Physiology, Innsbruck. 



160  9  Publications 

Wolf M, Henkel A, Heinick A, Nunes F, Paul RJ (2006). The MAP kinase JNK-1 of the 

Caenorhabditis elegans nervous system modulates insulin-like signaling and stress responses in 

peripheral cells. DZG annual meeting, Münster. 

9.4 Book contributions 

Ammon H, Hunnius C. Hunnius Pharmazeutisches Wörterbuch (10th edition). 

9.5 Manuscripts 

Henkel A, Seitz S, Jauch J, Werz O (2010) Boswellic acids as novel LPS inhibiting compounds. 

Manuscript. 

Henkel A, Seitz S, Jauch J, Werz O (2010) Identification of LL-37 as a functional target of 

boswellic acids. Manuscript. 

Henkel A, Seitz S, Jauch J, Werz O (2010) Apoptotic mode of action of new synthetic 

boswellic acids and new isolated natural triterpenes derived from frankincense. Manuscript. 

Kather N, Henkel A, Werz O, Jauch J (2010) Identification of new triterpenes derived from 

frankincense and synthetic modifications. Manuscript. 

9.6 Patents 

Henkel A, Siemoneit U, Jauch J, Werz O (2008). Synthetische Boswelliasäurederivate zur 

Hemmung der mikrosomalen Prostaglandin E2 Synthase und des Cathepsin G zur Behandlung 

Prostaglandin E2- und Cathepsin G-vermittelter krankhafter Zustände (priority date: 

26.03.2008). 

Henkel A, Verhoff M, Jauch J, Werz O (2008). Verwendung von Robursäure, Lupansäure oder 

Tirucallensäure als Arzneimittel (priority date: 15.10.2008). 

 



10  Acknowledgements  161 

10. Acknowledgements 

Ich danke Herrn Prof. Dr. Oliver Werz für die Überlassung des spannenden Themas, die 

hervorragende Betreuung und die vielen hilfreichen Ratschläge, die eine sehr große 

Hilfe für mich waren und die meine Tübinger Zeit zu einer produktiven Zeit haben 

werden lassen. 

Bei Frau Dr. Düfer möchte ich mich für die Übernahme des Zweitgutachtens bedanken. 

Vielen Dank an Herrn Prof. Dr. Laufer für die Unterstützung der finalen Phase meiner 

Arbeit und die großartige Möglichkeit, meine Arbeit in Tübingen fertigstellen zu 

können. 

Für die hervorragende Hilfsbereitschaft bedanke ich mich sehr herzlich bei Herrn Prof. 

Dr. Jauch (Universität des Saarlandes), sowie bei seinen engagierten Mitarbeitern 

Stefanie Seitz und Nicole Kather. 

Danke an Frau Prof. Dr. Lidia Sautebin und Dr. Antonietta Rossi der Universität von 

Neapel, für die kompetente Hilfe und die großartige neapolitanische Gastfreundschaft. 

Lars Tausch danke ich für die hervorragenden Vorarbeiten der Weihrauchforschung, 

sowie Daniel Pöckel, für das Bilden eines soliden Forschungsfundamentes. 

Vielen Dank an die Kollegen aus der Transfusionsmedizin des Universitätsklinikums 

Tübingen für die Organisation von Blutspenden. 

Ein besonderes Dankeschön geht an alle Mitarbeiter des Arbeitskreises Werz, die mich 

auf meinem Weg begleitet haben und für ein hervorragendes Arbeitsklima gesorgt 

haben: meinen Biochemie-Mitkämpfern Bianca Jazzar, Christine Greiner, Dagmar 

Bläsius, Julia Bauer und Andreas Köberle, den Weihrauchexperten Moritz Verhoff und 

Ulf Siemoneit, meiner Laborkollegin Katja Wiechmann, und nicht zuletzt bei meinen 

KollegInnen Carlo Pergola, Felix Behnke, Ulrike Bühring, Friederike Dehm, Anja 

Rogge, Susann Luderer, Daniela Müller und Hannelore Braun. Ihr wart ein großartiges 

Team, in dem ich mich immer wohlgefühlt habe, sowohl bei der Arbeit im Labor als 

auch außerhalb der Uni! 

Bei meinen Eltern Christiane und Gerald Henkel möchte ich mich für ihre 

bedingungslose Unterstützung bedanken, ebenso gilt mein Dank meinen beiden Brüdern 

Malte und Björn Henkel, die immer für großartige Gespräche zur Verfügung gestanden 

haben. 
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11. Akademische Lehrer 

Meine akademischen Lehrer waren: 

Prof. Dr. M. Bähler Zellbiologie 

Prof. Dr. G. Clemen Evolutionsbiologie 

Prof. Dr. F. Daniels Botanik 

Prof. Dr. H. Galla Biochemie 

Prof. Dr. F. Hahn Anorganische Chemie 

Prof. Dr. C. Klämbt Neurobiologie 

Prof. Dr. K. Klempnauer Biochemie 

Prof. Dr. H. Kohl Physik 

Prof. Dr. H. Kuhlmann Allgemeine Zoologie und Genetik 

Prof. Dr. A. Meinhardt Mikrobiologie 

Prof. Dr. N. Michiels Evolutionsbiologie 

Prof. Dr. B. Moerschbacher Biochemie 

Prof. Dr. R.J. Paul Tierphysiologie 

Prof. Dr. N. Sacher Verhaltensbiologie 

Prof. Dr. H. Schäfer Anorganische Chemie 

Prof. Dr. W. Scharlau Mathematik 

Prof. Dr. A. Steinbüchel Mikrobiologie 

Prof. Dr. W. Stöcker Tierphysiologie 

Prof. Dr. A. von Schaewen Pflanzenphysiologie 

Prof. Dr. W. Storkebaum Organische Chemie 

Prof. Dr. P. Tudzynski Botanik 

Prof. Dr. W. Weber Tierphysiologie 

Prof. Dr. E. Weiß Pflanzenphysiologie 

Prof. Dr. O. Werz Pharmazeutische Chemie 


