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Abstract

Protoplanetary discs are disc-shaped structures around T-Tauri stars which are composed
of gas and dust. The matter in the disc is accreted onto the host star in a time of several
million years. During this phase, the dust particles grow to form larger bodies, eventually
leaving behind a planetary system after the disc is gone. It is assumed that the accretion
process is powered by turbulence, which most likely is of magnetic origin. The turbulence
is not only important concerning the evolution of the disc in general, but might possibly
also play a key role in the process of planet formation.
In the present thesis, we describe numerical models of magnetorotational turbulence

in protoplanetary discs. We use a modern finite-volume grid code which solves the equa-
tions of radiation magnetohydrodynamics in a three-dimensional domain. Being the first
radiative models of turbulent protoplanetary discs to date, our simulation provide for
the first time a self-consistent and detailed picture of the vertical structure of protoplan-
etary discs. The turbulent line-broadening that we find in our simulations is consistent
with existing astrophysical observations, supporting the assumption that magnetorota-
tional turbulence is indeed present in protoplanetary discs. The numerical tool that we
developed provides the basis for future research work where constraints on key physical
parameters of protoplanetary discs will be obtained by comparing the results of numerical
simulations with astrophysical observations.

Zusammenfassung
Protoplanetare Scheiben sind scheibenförmige Strukturen aus Gas und Staub um T-Taui
Sterne. Die Materie in den Scheiben wird im Laufe von mehreren Millionen Jahren
auf den Zentralstern akkretiert. Während dieser Phase klumpen die Staubpartikel zu
größeren Körpern zusammen, so dass am Ende mg̈licherweise ein Planetensystem zurück-
bleibt. Es wird angenommen, dass der Akkretionsprozess durch Turbulenz getrieben
wird, welche sehr wahrscheinlich mit Magnetfeldern im Zusammenhang steht. Die Turbu-
lenz ist nicht nur wichtig in Bezug auf die Dynamik der Scheibe im Allgemeinen, sondern
spielt möglicherweise auch eine wichtige Rolle bei dem Prozess der Planetenentstehung.
In der vorliegenden Arbeit beschreiben wir numerische Modelle hydromagnetischer

Turbulenz in protoplanetaren Scheiben. Wir benutzen einen modernen finite Volumen
Gittercode, der strahlungs-magnetohydrodynamischen Gleichungen in drei Dimensionen
löst. Als die ersten radiativen Modelle turbulenter protoplanetarer Scheiben, liefern



unsere Simulationen zum ersten Mal ein selbskonsistentes und detailiertes Bild der ver-
tikalen Struktur einer protoplanetaren Scheibe. Die turbulente Linienverbreiterung, die
wir in unseren Simulationen finden, stimmt mit bereits existierenden Resultaten aus
astrophysikalischen Beobachtungen überein. Somit stützen unsere Ergebnisse die An-
nahme der Existenz hydromagnetischer Turbulenz in protoplanetaren Scheiben. Das
numerische Werkzeug, das wir im Laufe unserer Forschungsarbeit entwickelt haben, bi-
etet ein wertvolle Basis für die Zukunft, um Schlüsselparameter protoplanetarer Scheiben
einzuschränken durch den Vergleich der Resultate numerischer Simulationen mit astro-
physikalischen Beobachtungen.
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Chapter 1: Introduction

At the time of the writing of the present work, more than 500 extrasolar planets (or
“exoplanets” for short) have been discovered. They form a diverse “zoo” of bodies that
cover a wide range of physical parameters (Fig. 1.1). Explaining the formation and the
physical properties of such a diverse population of objects poses a difficult challenge to
theorists working in the field of planet formation.
It is assumed that planets form in accretion discs around T Tauri stars, which for

this reason are commonly termed “protoplanetary discs” (PPDs). The discovery of so
many exoplanets over the last 15 years has lead to a great deal of activity in the research
of protoplanetary discs. Improved observational methods have provided new data that
helped to increase our understanding of the structure and composition of these objects.
The Hubble space telescope delivered the first spatially resolved images taken at visible
wavelengths (see Fig. 1.2). Protoplanetary discs are rather frequent, at least half of all
protostars are surrounded by PPDs (McCaughrean and O’Dell, 1996).
Despite the significant advances on the observational side, the physics of protoplanetary

accretion discs is still not well understood. Significant uncertainties remain both with
respect to their physical composition as well as their temporal evolution. Their rather
short lifetime of ∼10 Myr requires a physical process that transfers angular momentum
outwards efficiently so that the matter can be accreted fast enough onto the star. Usually
it is assumed that some sort of turbulence is acting in the disc, providing an effective
viscosity that drives accretion (see Sec. 1.2). As of today, the most promising mechanism
for this scenario is the magnetorotational instability (MRI), a powerful linear instability
that exists in rotating, weakly magnetised shear flows and operates under very general
conditions (see Sec. 2.3).
Protoplanetary discs are both cold and dense. This implies that they are for a large

part optically thick, and therefore a realistic model should include radiation transport.
The inclusion of radiation transport into theoretical models is not only necessary in order
to achieve self-consistency, but it is also an important step towards the goal of comparing
theory with observations by matching observed disc spectra with the results of numerical
simulations. Since protoplanetary discs are cold objects that are for some part not well
ionised, one should take into account also non-ideal magnetohydrodynamical effects like
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Fig. 1.1: Plot of semi-major axis versus planet mass for all known planets, as of Jan 2011.
(Source: www.exoplanets.eu)

Fig. 1.2: Hubble view of the Orion nebula showing five young stars of which four are surrounded
by “proplyds” (compact clouds of gas and dust that are supposed to harbour circumstellar discs).
(Courtesy: NASA)
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1.1 Protostars and Protostellar Discs

Ohmic resistivity. For the determination of the ionisation state it is necessary to include
at least a small chemical network that contains the most important chemical reactions.
A self-consistent model of magnetorotational turbulence in protoplanetary discs thus has
to include magnetic fields, radiation transport and chemistry.
Up to now, there have been no protoplanetary disc simulations reported that model the

magnetorotational turbulence in a self-consistent manner by including all these physical
factors into one model. This lack of self-consistent turbulent disc models (and especially
the lack of radiative models) was the main reason for carrying out the present research
project. In this thesis, we describe the first fully radiative simulations of magnetorota-
tional turbulence in protoplanetary discs. While we will concentrate our study mainly on
the effects of radiation transport, we will also describe a few simulations that additionally
include disc chemistry and are therefore applicable to colder regions of the disc where
the ionisation level is small. We argue that such self-consistent numerical simulations
are a very important field of research for the future and will help to constrain theoretical
models by comparing the results of numerical simulations with actual observations.

1.1 Protostars and Protostellar Discs

1.1.1 Formation

According to the current theoretical understanding, stars are formed through the gravi-
tational collapse of molecular cloud cores (Larson, 2003). Molecular cloud cores contain
masses from 1M� up to 104M� and their size ranges from L = 0.1 pc up to several pc.
They are cool, with typical temperatures of order ∼ 10 K, meaning that they consist
mostly of molecular hydrogen H2. The condition for gravitational instability is that the
mass M of the cloud core exceeds the Jeans mass MJ, which is given by

MJ =
5kBTL

µmHG
, (1.1)

where kB is the Boltzmann constant, µ is the mean molecular weight, mH is the mass
of hydrogen and G is the gravitational constant. Since at the start of the collapse the
pressure is negligible, the initial collapse happens on the free-fall time scale

τff =

√
3π

32Gρ
. (1.2)

As long as the system stays optically thin, the temperature will not change much and the
Jeans mass will decrease during the collapse. This means that the collapse will continue

3



1 Introduction

on smaller scales and the system will fragment, leading to the formation of a system
of multiple stars. The collapse is temporarily slowed down once the collapsing cloud
becomes optically thick, since the system can then no longer efficiently get rid of its
gravitational energy. The corresponding object is called the “first core”. As soon as the
temperatures are high enough to allow for the dissociation of the molecular hydrogen, the
collapse accelerates again, since now the system can effectively transfer its gravitational
energy into the dissociation of H2 molecules. This second collapse is stopped once the
bulk of the matter is completely ionised, leading to the formation of the protostellar
core. Because of angular momentum conservation, the collapse will in general lead to the
formation of a disc-like structure around the protostar. The young stellar object (YSO)
will continue to accrete matter from the surrounding disc for several million years until
the disc is gone.

1.1.2 Classification

Young stellar objects can be divided into two groups, depending on their mass: Stars with
masses bigger than 2M� are called Herbig Ae/Be stars while those with masses below
2M� are called T Tauri stars. Classical T Tauri stars (CTTS) have similar masses and
effective temperatures as their main sequence counterparts, but they are more luminous
since they do not yet have contracted to their final main sequence radii. The spectral
energy distribution (SED) of T Tauri stars shows both an UV and an IR excess.1 The UV
excess stems from the accretion of matter onto the star, where matter is channeled along
magnetic field lines onto a “hot spot” on the stellar surface. The IR excess comes from
the surrounding disc, which is the characteristic signature through which a circumstellar
discs reveals its existence (see Fig. 1.3 for a model SED of a protoplanetary disc).
Traditionally, protoplanetary discs are grouped into three categories according to the

shape of their SED (Lada, 1987, see Fig. 1.4). Class I objects are discs where the spectral
index

s =
d log(λFλ)

d log λ
(1.3)

is positive. They correspond to very young objects deeply embedded in their parent
molecular cloud. Class II objects are defined by

−2 < s < 0. (1.4)

1In addition to the classical T Tauri stars there are also so-called weak lined T Tauri stars (WTTS)
which lack the UV excess and show at best only a weak IR excess. These are believed to be more
evolved systems where no or only a small residual disc is left.
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domain
D

is
k

Star
Energetic domain

Rayleigh−Jeans

Wien domain

Fig. 1.3: Model SED, taken from Dullemond et al. (2007). The different wavelengths of the
emitted radiation correspond to different locations in the disc. The near- and mid-infrared
emission comes from the region near the inner rim, while the far-infrared emission corresponds
to the outer disc regions.

Fig. 1.4: Classification of protoplanetary discs according to Lada (1987). The young Class I
objects show a strong IR excess and the protostar is still hidden in the parent molecular cloud.
The older class II objects show a combination of stellar and disc spectrum, while class III objects
can be modelled by a blackbody spectrum. (Taken from Lada, 1987, adapted.)
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1 Introduction

These correspond to objects of intermediate age in the T Tauri phase. Class III objects
have a spectral index smaller than -2 and correspond to post T Tauri stars.

1.1.3 Typical Parameters

In this section we summarise the basic physical parameters of protoplanetary discs,
namely the disc mass, temperature, size, magnetic field, accretion rate, lifetime and
chemical composition. We will also discuss how these parameters are inferred from ob-
servations and theoretical arguments.

Disc Masses

Circumstellar discs are composed of gas and dust, with a dust-to-gas ratio of typically
1%. Although the dust component is much smaller than the gas component, it dominates
the opacity, and therefore the emission properties of the disc. Disc masses are usually
inferred from sub-mm emission. At these wavelengths, the dust emission is optically
thin, which means that the measured flux can be converted into a disc mass, once the
dust opacity is known. The masses of protoplanetary discs that are obtained with this
method are in the range of 10−4M� up to more than 0.1M�, with a typical mass being
10−2M� (Lodato, 2008).

Temperatures

The temperatures in protoplanetary discs, as inferred from the SED, range from a a
few thousand K in the very inner regions down to a few 10 K in the outer parts. Note
that the SED does not tell us from which radius the emission at a certain wavelength
actually comes, which means that the temperature profile cannot be obtained directly
from observations. Instead, it is obtained by fitting observational data to theoretical
models (see, for example, Hueso and Guillot, 2005).

Disc Size & Density Profile

In order to determine the size of the disc, one has to spatially resolve it. This is possible
with sub-mm interferometry (Dutrey et al., 1996; Andrews and Williams, 2007). Proto-
planetary disc sizes obtained with this method range from several 100AU up to 1000AU.
As is the case with the temperature, the density profile cannot be determined directly,
but is instead obtained from a fit of the experimental data to theoretical models (Hueso
and Guillot, 2005).
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Magnetic Field

The observation of jets (Ferreira, 2008) is a strong argument in favor of the existence
of significant magnetic fields in protoplanetary discs. Magnetic fields in protoplanetary
discs may arise either from the frozen-in magnetic field of the parent molecular cloud or
as a consequence of internal dynamo action, or through a combination of both.
The Zeeman splitting of OH in molecular cloud cores places a lower limit on the

magnetic field of & 10 mG in these objects (Wardle, 2007), which will likely be amplified
during the collapse of the cloud core. Direct evidence for magnetic fields in protoplanetary
discs comes from the observation of polarised sub-millimeter emission (Tamura et al.,
1999), but see also Hughes et al. (2009), which is emitted by dust grains aligned with
the magnetic field. Cho and Lazarian (2007) calculate a critical magnetic field of order
10− 100 mG for the grains to become aligned with the magnetic field.
Another constraint on the magnetic field in protoplanetary discs comes from the re-

manent magnetic field found in meteorites, if this field is interpreted as an imprint of the
magnetic field in the solar nebula (King and Pringle, 2010). The data from meteorites
suggests field strengths of the order of 1 Gauss at 1 AU (Levy and Sonett, 1978).2 Fi-
nally, numerical simulations of magnetorotational turbulence (for example Flaig et al.,
2010) also yield magnetic field strengths of this magnitude.

Accretion Rates & Disc Lifetime

There are mainly two methods to determine accretion rates: The first consists of measur-
ing the strength of emission lines that are generated by the infall of disc gas, which is chan-
neled along magnetic field lines, onto the star. The second makes use of the veiling (the
‘filling-in’) of photospheric absorption lines due to the accretion shock. Typical values
for the accretion rate of discs around T Tauri stars are in the range of 10−9−10−7M�/y.
Disc lifetimes are usually determined by comparing the fraction of discs which show

an infrared excess between young stellar clusters of different age. Typical lifetimes are
in the range of 106 − 107 y (Hartmann et al., 1998; Sicilia-Aguilar et al., 2006).

Chemical Composition

As has already been mentioned, protoplanetary discs are made up mainly of gas and dust.
Direct detection of the disc gas is difficult since the emission features are dominated by
the dust grains. The most abundant molecule, H2 is very difficult to observe due to

2Note, however, that the magnetic field in meteorites can alternatively be interpreted as being the
result of an internal dynamo, rather than the product of external magnetic fields (Weiss et al., 2010).
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Component Description/Properties Observational basis
Neutral gas Mainly H2. Mass fraction 99%. molecular lines
Ions Mainly alkali metals K+, Na+, . . . -
Free electrons From ionisation of neutrals. -
Photons Wavelength 0.1-1000 µm. direct detection
Magnetic fields Field strengths of order ∼ 1 G. polarised sub-mm emission
Dust grains µm-cm size, mass fraction ∼ 1%. dust emission
Bigger objects Pebbles, boulders, planet(esimal)s. observation of planets

Tab. 1.1: Table showing the main physical constituents which make up a protoplanetary disc.

the lack of low excitation emission lines. The next most abundant molecule is CO, its
abundance being ∼ 10−4 compared to molecular hydrogen. It can be detected through
emission from rotational lines at mm wavelengths. All other molecules are much less
abundant and very difficult to observe.
The ratio between dust and disc mass is usually assumed to something around 1%.

Most of the emission that is observed comes from µm sized dust grains. However, there
is observational evidence for grain growth up to mm and cm sizes Natta et al. (2007);
Wilner et al. (2005); Isella et al. (2007).
The gas in protoplanetary discs will certainly be ionised to some degree since there are

a number of ionisation sources present, such as stellar X-rays, cosmic rays or the decay of
radionuclides. The most important ions will in general be K+ and Na+. Unfortunately,
the question how the ionisation level varies as a function of position in the disc can not
be answered from the observational side, and must instead be estimated from theoretical
arguments. To summarise, Tab. 1.1 gives an overview of the main physical constituents
of protoplanetary discs.

1.2 Phenomenological Accretion Disc Theory

1.2.1 Astrophysical Accretion Discs

In addition to protostellar systems, accretion discs are present also in a variety of other
astrophysical objects, namely active galactic nuclei, binary X-ray sources and cataclysmic
variables. The classical problem in the theory of accretion discs is why they are accreting,
or, stated in other words, what is the mechanism which transports angular momentum
outwards so that matter can spiral inwards? It cannot be ordinary molecular viscosity
because it is several orders of magnitude too small to account for the observed accretion
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rates (Pringle, 1981, see also Sec. 2.2.1). Instead, it is usually assumed that accretion
discs are turbulent and that it is the large kinematic viscosity associated with the turbu-
lent motions in the disc that drives the outward angular momentum transport (Shakura
and Sunyaev, 1973). This effect can be modelled phenomenologically by introducing an
effective turbulent viscosity. Despite the remarkable success of such phenomenological
models, the question of what mechanism could make the disc turbulent, however, still
remains a matter of debate. We will later see (Sec. 2.3) that magnetorotational turbu-
lence is the most likely driver of turbulent angular momentum transport in astrophysical
accretion discs. In this introductory chapter, we will restrict ourselves to a simple phe-
nomenological treatment of viscous accretion.

1.2.2 Theory of Viscous Accretion Discs

In the classical theory of viscous accretion discs (Pringle, 1981), the disc is described
by the basic fluid dynamical equations, namely the continuity and the Navier-Stokes
equations:

∂ρ

∂t
+ ∇ · (ρv) = 0, (1.5a)

∂v

∂t
+ v ·∇v = −1

ρ
(∇p+ ∇ · σ)−∇Φ. (1.5b)

where ρ is the density of the fluid, v the velocity, p is the pressure, σ is the stress tensor
and Φ the gravitational potential. The stress tensor contains the effect of viscous forces,
which are assumed to be a consequence of turbulent motions in the disc.3 The origin of
the turbulence is, however, left open in the phenomenological theory. The most simple
ad-hoc ansatz is to model it as a classical shear viscosity, i.e.

σRφ = −ρν RdΩ

dR
, (1.6)

where the angular orbital velocity Ω = vφ/R and ν takes the place of the kinematic
viscosity. All other components of the stress tensor are assumed to be zero. Neglecting
the self-gravity of the disc, the gravitational potential is simply the gravitational potential
of the central star:

Φ = −GM?

r
. (1.7)

3Note that although it is assumed that the accretion disc viscosity is of turbulent origin, classical
viscous disc theory treats the flow as laminar. This means that the quantities appearing in Eqs. (1.5)
should be considered as mean-field quantities that have been suitably averaged to smooth over the
inhomogeneities created by the turbulence. See Sec. 2.2.2 for a further discussion.
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We assume axisymmetry and switch to cylindrical coordinates (R,φ, z). Furthermore, for
the case of circumstellar discs, we may in general assume that the disc is thin, which will
lead us to consider vertically integrated quantities. We will now construct an approximate
solution to Eqs. (1.5) by considering all three components of Eq. (1.5b) separately.

Rotation Profile

We start with the radial component of Eq. (1.5b). Assuming that the radial and vertical
components of the velocity are negligible compared to the azimuthal component, we get:

∂vR
∂t
−
v2
φ

R
= −1

ρ

∂p

∂R
− GM?

r2
r̂ · R̂. (1.8)

To first order, we can neglect ∂vR/∂t as compared to the centrifugal term −v2
φ/R and

the pressure term −1
ρ
∂P
∂R as compared to the gravitational acceleration. Furthermore, we

may (due to our assumption of a thin disc) set r̂ · R̂ ≈ 1, leading to

v2
φ ≈

GM?

R
= Ω2

KR
2, (1.9)

where we have defined the Keplerian angular velocity ΩK as

Ω2
K ≡

GM?

R3
. (1.10)

This means that to first order, the velocity profile of the disc is described by a Keplerian
rotation profile, which is a simple consequence of centrifugal balance. Discs that obey
Eq. (1.9) are therefore called “Keplerian discs”.

Vertical Structure

Next, we consider the z-component of Eq. 1.5b. Since the disc is confined to the equatorial
plane, we can to first order ignore motions in the vertical direction, which leads to

1

ρ

∂p

∂z
= −GM?

r2
r̂ · ẑ. (1.11)

Using r ≈ R and r̂ · ẑ = z/r ≈ z/R yields

1

ρ

∂p

∂z
= −GM?

R2

z

R
. (1.12)
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Assuming a constant temperature such that p = ρc2
s , we arrive at

c2
s

ρ

∂ρ

∂z
= −GM?z

R3
= −Ω2

Kz. (1.13)

Defining the disc scale height H as H ≡ cs/ΩK, we can write the solution to Eq. (1.13)
as a Gaussian

ρ = ρ0 exp

(
− z2

2H2

)
, (1.14)

where ρ0 is the density at the disc midplane. We note that the aspect ratio is just the
ratio of the sound speed to the Keplerian velocity. This means that in order for the disc
to be thin, the sound speed has to be significantly smaller than the Keplerian rotation
speed.

Angular Momentum Transport

We finally turn to the azimuthal component of Eq. (1.5b). The vertically integrated
version of this equation in cylindrical coordinates reads:

Σ

(
∂Vφ
∂t

+
VRVφ
R

+ VR
∂Vφ
∂R

)
= − 1

R2

∂

∂R
(R2TRφ); (1.15)

where Σ, the surface density, denotes the vertically integrated density,

Σ ≡
∫ ∞
−∞

ρdz, (1.16)

TRφ is the vertically integrated stress tensor,

TRφ ≡
∫ ∞
−∞

σRφ dz, (1.17)

and VR/Vφ are density-weighted mean values of the corresponding velocity components,
i.e.

Vi ≡
1

Σ

∫ ∞
−∞

ρvi dz. (1.18)

(Note that in the derivation of Eq. (1.15) we have made use of the fact that according
to Eq. (1.9), vφ does not depend on z, so that Vφ = vφ). Analogously, the vertically
integrated continuity equation becomes

∂Σ

∂t
+

1

R

∂

∂R
(RΣVR) = 0. (1.19)
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With the help of (1.19) we can write Eq. (1.15) in conservation form as

∂

∂t
(ΣRVφ) +

1

R

∂

∂R
[R2(ΣVRVφ + TRφ)] = 0. (1.20)

Written this form, Eq. (1.20) expresses angular momentum conservation, with G(R) ≡
−RTRφ representing the torque exerted by viscous forces. Using Eq. (1.9) as well as
Eq. (1.6), we obtain the radial velocity from Eq. (1.15):

vR =
∂R(R2TRφ)

RΣ∂R(Rvφ)
= − 3

ΣR1/2

∂

∂R
(νΣR1/2). (1.21)

Insertion of this expression into the continuity equation, Eq. (1.19), results in an diffusion
equation for the surface density,

∂Σ

∂t
=

3

R

∂

∂R

[
R1/2 ∂

∂R
(νΣR1/2)

]
. (1.22)

This equation is the fundamental equation of viscous disc theory. The temporal evolution
of the surface density is governed by one single parameter – the kinematic viscosity.
However, since viscous disc theory is only a phenomenological theory, it can by itself not
make any statements about the the nature or the magnitude of this effective viscosity.

Temperature Profile

We will now derive the temperature profile for a disc in a steady state, where the time
derivatives in the continuity equation and the Navier-Stokes equation vanish. In the
steady state, the continuity equation Eq. (1.19) reduces to

Ṁ = 2πRvRΣ, (1.23)

with Ṁ being the constant mass accretion rate on to the star. Analogously, the angular
momentum conservation equation Eq. (1.20) becomes

J̇ = ṀΩR2 − 3πνΣΩR2, (1.24)

with J̇ being the constant net flux of angular momentum. For small R, both terms on
the right hand side of Eq. (1.24) become small. This implies that once we are far from
the inner edge of the disc, J̇ will be small compared to either of the the two terms on
the right hand side and can be neglected, leading to

Ṁ = 3πνΣ; (1.25)
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which is a very useful relation connecting the mass accretion rate, the viscosity and the
surface density.4 Note that Eq. (1.25) implies that in a steady state, the surface density
and the viscosity are inversely proportional.
The energy that is locally dissipated through viscous torques per unit radial interval

is given by

−GΩ′ = 2πRνΣ(RΩ′)2 (1.9)
=

9

4
νΣΩ. (1.25)

=
3GM?Ṁ

4πR3
(1.26)

Under the assumption that this power is radiated away locally, we can equate Eq. (1.26)
with 2σT 4

s , where σ is the Stefan-Boltzmann constant and Ts is the surface temperature
(the factor of two coming from the fact that the disc has two sides), leading to

T 4
s (R) =

3GMṀ

8πσR3
. (1.27)

Far from the disc’s inner edge, the surface temperature thus has the characteristic scaling
Ts ∝ R−3/4. This relation, being simply a consequence of energy conservation, does not
depend on the value of the viscosity ν. Note, however, that although this relation is often
used, it is actually not well satisfied for real protoplanetary discs (Balbus, 2003).

1.3 Summary

Protoplanetary discs are disc-shaped structures around T Tauri stars in which planets
are supposed to form. They are complicated objects in which many different physical
mechanisms interact. The current picture that we have of these objects looks as follows:

• Protoplanetary discs form from the collapse of molecular cloud cores, where, due
to angular momentum conservation, a disc-like structure forms around the young
star. The matter in the disc is accreted onto the star in a time frame of ∼10 My.

• The temporal evolution of protoplanetary discs is determined by some form of
turbulence, which transports angular momentum outwards and powers the accre-
tion process. The turbulence is likely of magnetic origin and connected with the
magnetorotational instability (MRI).

• In the classical theory of viscous accretion discs, the (unknown) turbulence is pa-
rameterised as a turbulent viscosity. This phenomenological approach has proved

4Ultimately, J̇ will be determined by the boundary condition at the inner edge of the disc. Using for
example so-called “no-torque” conditions at the inner edge leads to J̇ = Ṁ(ΩR2)in = Ṁ

√
GMRin,

resulting in the relation 3πνΣ = Ṁ(1−
√
Rin/R), which indeed reduces to Eq. (1.25) for R� Rin.
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remarkably successful and provides the basic framework for interpreting observa-
tions of astrophysical accretion discs.

However, in order to make real progress towards understanding the nature of the tur-
bulence in accretion discs and and also towards predicting the value of the turbulent
viscosity, we must move towards a microscopic description of protoplanetary discs. Such
a theory will have to start from the fundamental fluid-dynamical equations and it must
identify an instability that has the desired properties. The rate of angular momentum
transport that results from the instability can then be measured by means of numerical
simulations and compared to astronomical observations. In the next chapter, we will
derive the mathematical framework necessary for building such a theory.
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Chapter 2: Protoplanetary Disc
Physics

In the present chapter, we will have a more detailed look at the physics of protoplane-
tary discs. We will first derive the fundamental fluid-dynamical equations that govern
the dynamics of the matter in a protoplanetary disc. Then we will have a look at how
the viscous evolution of accretion discs can be described in terms of turbulent angu-
lar momentum transport. We will review the most important instability mechanisms,
arguing that the magnetorotational instability is the most promising driver of angular
momentum transport in protoplanetary discs.

2.1 Fundamental Fluid-dynamical Equations

Astrophysical plasmas (like the gas in protoplanetary discs) usually consist of a dilute
mixture of atoms, molecules, ions and electrons. The time evolution of such a system
can be described exactly by specifying the distribution function (the phase space den-
sity) which is evolved in time according to the Boltzmann equation. Luckily, such a
cumbersome approach is usually not necessary, instead, in most cases one can use a
much simpler, statistical description of the plasma which is obtained by taking succes-
sively higher moments of the Boltzmann equation, leading to the familiar equations of
hydrodynamics. The criterion for this approach to work is that the mean free path of a
particle is smaller than the length scale of the system under consideration, a condition
that does hold for protoplanetary discs (see Sec. 2.2). As we will see, this means that we
can describe the gas in protoplanetary discs by the equations of magnetohydrodynamics
(MHD).
We start from a multifluid approach, describing the matter in protoplanetary discs as

a mixture of four different fluids, namely:

1. Neutrals (mainly H2), denoted by ‘n’.

2. Ions (K+, Na+, . . . ), denoted by ‘I’.
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2 Protoplanetary Disc Physics

3. Free electrons, denoted by ‘e’.

4. Small (∼ µm sized) dust grains. We allow our model to contain dust species of
different sizes, which we denote by ‘d1’, ‘d2’, . . . , ‘dndust

’, where ndust is the number
of dust species that we want to model.

To a good approximation, each of of the four species is separately conserved Balbus
(2009)1 and obeys a mass conservation equation, i.e.

∂ρs
∂t

+ ∇ · (ρsvs) = 0, (2.1)

where s ∈ {n, I, e,d1, d2, . . . ,dndust
}. Denoting the (mean) number of ionisations per ion

with Z and treating the dust as a pressureless uncharged fluid, the equations of motions
for the different species become

ρn
∂vn

∂t
+ ρnvn ·∇vn + ∇pn − ρn∇Φ = fIn + fen +

∑
ifdin, (2.2a)

ρI
∂vI

∂t
+ ρIvI ·∇vI + ∇pI − ρI∇Φ = ZenI

(
E +

vI

c
×B

)
+ fnI + feI +

∑
ifdiI, (2.2b)

ρe
∂ve

∂t
+ ρeve ·∇ve + ∇pe − ρe∇Φ = −ene

(
E +

ve

c
×B

)
+ fne + fIe +

∑
ifdie, (2.2c)

ρdi

∂vdi

∂t
+ ρdi

vdi
·∇vdi

− ρdi
∇Φ = fndi

+ fIdi
+ fedi

+
∑

j 6=ifdjdi
; (2.2d)

where the index i runs from 1 to ndust and fs1s2 denotes the force that species s1 exerts
on species s2. Note that charge neutrality demands

ne = ZnI, (2.3)

and because of Newtons third law, we have the relations fIn = −fnI, fen = −fne, . . .
and so on. Since in protoplanetary discs, the neutral particles are by far the dominant
species, we can in general neglect

∑
i fdin in Eq. (2.2a), feI and

∑
i fdiI in Eq. (2.2b), fIe

and
∑

i fdie in Eq. (2.2c) and fIdi
, fedi

and
∑

j 6=i fdjdi
in Eqs. (2.2d). This means that

we only need to provide explicit expressions for fne, fnI and fndi
. We express fne as

fne = nemeνen(vn − ve), (2.4)

1This is, of course, not exactly true, since for example the number of electrons may be subject to
changing chemical conditions, and the number of small dust grains may decrease during the disc’s
evolution as a consequence of grain growth.
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with νen denoting the collision frequency between electrons and neutrals. Next, we write
fIn in the form

fnI = ρnρIγ (vn − vI), (2.5)

where the drag coefficient γ = 3 × 1013 cm3 s−1 (Balbus, 2009). Finally, the drag force
that the gas exerts on the dust can be written as

fndi
= ρdi

vn − vdi

τi
, (2.6)

where τi is the stopping time for dust species di. Small dust particles, whose size a is
smaller than 4/9 the gas mean free path, λmfp, belong to the so-called Epstein regime,
with a stopping time given by

τEp =
ρsa

ρncs
, (2.7)

where ρs is the material density of the dust particles. For dust particles that are bigger,
but still small enough so that the Reynolds number of the flow past the particle, Re =
4a|vd− vn|/(csλmfp), is smaller than one, have a stopping time according to Stokes’ law:

τSt =
4ρsa

2

9ρncsλmfp
. (2.8)

For still larger particles, the fluid description breaks down (see Youdin and Goodman,
2005).
As has been discussed in the previous chapter, protoplanetary discs are likely to be

magnetised. In order to incorporate magnetic fields into our mathematical model, we
further have to add Maxwell’s equations to our Eqs. (2.1) and (2.2). The solution of the
resulting system of equations would be a formidable task. However, since the neutral
particles make up the bulk of the matter in protoplanetary discs, we can concentrate
on this species. Our next aim will therefore be to derive a closed system of equations
describing the evolution of the neutral particles.

2.1.1 The Equation of Motion for the Neutral Particles

Summing Eqs. (2.2a)-(2.2c) and neglecting the terms on the left hand side of Eqs. (2.2b)-
(2.2c) against the corresponding terms in Eq. (2.2a), we obtain the following equation of
motion for the neutral particles:

ρn
∂vn

∂t
+ ρvn ·∇vn = −∇pn +

J

c
×B + ρn∇Φ, (2.9)

17



2 Protoplanetary Disc Physics

where we have introduced the current density

J ≡ ene (vI − ve). (2.10)

As a result of the collisional coupling, the neutrals behave just as if they were a charged
gas. We can now use the second Maxwell equation to express the current density J via
the magnetic field B:

1

c

∂E

∂t
+ ∇×B =

4π

c
J . (2.11)

The displacement current (1/c)∂E/∂t is a term of order v2/c2 and should be neglected
in non-relativistic MHD. Therefore, the current density becomes:

J =
c

4π
∇×B. (2.12)

Neglecting from now on the subscript ‘n’, we obtain the equations of motion for the
neutral particles in their final form:

∂ρ

∂t
+ ∇ · (ρv) = 0, (2.13a)

ρ
∂v

∂t
+ ρv ·∇v = −∇p+

(∇×B)×B
4π

+ ρ∇Φ. (2.13b)

Note that the Lorentz force can be decomposed according to

(∇×B)×B
4π

= ∇
(
B2

8π

)
− B ·∇B

4π
, (2.14)

where the first term of on the right hand side corresponds to the gradient of the magnetic
pressure Pmag = B2/8π and the second to the magnetic stress.

2.1.2 Evolution of the Magnetic Field

In order to derive an equation for the evolution of the magnetic field, we start by looking
at Faraday’s law,

1

c

∂B

∂t
+ ∇×E = 0. (2.15)

We calculate ∇×E with the help of the equation of motion for the electrons, Eq. (2.2c).
For a weakly ionised gas, this equation reduces to

fne ≈ ene

(
E +

ve

c
×B

)
. (2.16)
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The justification for this is that the ratio of the inertial terms to the Lorentz force can
be estimated to be∣∣∣∣ρe

Dve

Dt /ene

(
E +

ve

c
×B

)∣∣∣∣ ∼ ρeve

∆t

c

eneveB
=
mec

eB /∆t� 1; (2.17)

i.e. it is of the order of the ratio of the electron gyro-period to a macroscopic flow
crossing time, denoted here by ∆t. In protoplanetary discs, this quantity will usually be
very small (Balbus, 2009); so the Lorentz and collisional terms will dominate all other
terms and Eq. (2.16) will be an excellent approximation. Using Eq. (2.4), we can write
the electric field E as

E = −1

c
[vn + (ve − vI) + (vI − vn)]×B − meνen

e
[(ve − vI) + (vI − vn)]. (2.18)

The term vI − v in Eq. (2.18) is related to the momentum exchange rate between ions
and neutrals fIn via Eq. (2.5). Using the fact that in general fen will be small compared
to fIn, we can write vI − vn as

vI − vn =
fIn

ρnρIγ
≈ J ×B
cρnρIγ

. (2.19)

It can be shown (Balbus, 2009) that the final term in Eq. (2.18) is small compared to
the third term in this equation, i.e.

meνen

e
(vI − vn)� 1

c
(ve − vI)×B, (2.20)

so it may be neglected. Using this fact, as well as Eq. (2.19), and Eq. (2.10), we may
write the force balance equation for the electrons, Eq. (2.18), as

E +
vn

c
×B − J ×B

enec
+
J ×B ×B
c2ρnρIγ

− J

σcond
= 0, (2.21)

where we have defined the electrical conductivity σcond as

σcond =
e2ne

meνen
. (2.22)

Operating with ∇× on Eq. (2.21) and putting this into Faraday’s law, Eq. (2.15), we
obtain the following equation describing the self-induction of the magnetised gas:

∂B

∂t
= ∇×

v ×B︸ ︷︷ ︸
I

− η∇×B︸ ︷︷ ︸
O

− c∇×B ×B
4πene︸ ︷︷ ︸
H

+
∇×B ×B ×B

4πγρnρI︸ ︷︷ ︸
A

 , (2.23)
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where we have introduced the resistivity η, which is related to the conductivity σcond via

η =
c2

4πσcond
. (2.24)

The first term in Eq. (2.23) is the induction term (I ), the second is the ohmic resistivity
(O), the third corresponds to the Hall current (H ) and the fourth describes ambipolar
diffusion (A ). The Hall term H (the ambipolar diffusion term A ) is present whenever
the drift velocity between electrons and ions ve− vI (the drift velocity between ions and
neutrals vI − v) has a component perpendicular to the magnetic field.

2.1.3 Importance of Non-ideal MHD-effects

The scaling of the non-ideal MHD terms for an astrophysical gas goes as follows (Balbus,
2009):

A

H
= Z

(
9× 1012 cm−3

n

)1/2(
T

103 K

)1/2(vA

cs

)
, (2.25)

O

H
=

(
n

8× 1017 cm−3

)1/2( cs

vA

)
. (2.26)

We see that for a weakly magnetised gas, ohmic dissipation will always be the dominant
non-ideal term. For protoplanetary discs, the critical ionisation fraction for ideal MHD
to be applicable is about 10−13 (Balbus, 2009). This means that actually for a large part
of the disc, ideal MHD will be a very good approximation.
As has already been stated in the previous chapter, the turbulent angular momentum

transport in protoplanetary disc is most likely due to hydromagnetic turbulence driven
by the magnetorotational instability (MRI).2 If this is true, then the level of turbulence
(and the magnitude of angular momentum transport) at a certain location in the disc
will depend on the ionisation level there. The ionisation level itself is determined by
a balance between ionisation processes (namely thermal ionisation, ionisation due to
stellar X-rays, cosmic rays and the decay of radionuclides) and recombination processes
(the most important one being the sweeping-up of free charges by small dust grains).
Since the recombination rate depends critically on the abundance of small dust grains
(which is unknown), any estimate of the ionisaton profile of protoplanetary discs is highly
uncertain.
Nevertheless, numerous analytical and numerical calculations (see Armitage, 2010, for

a review) hint at the following picture (see Fig. 2.1):
2The MRI is discussed in some detail near the end of the present chapter, see Sec. 2.3.
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dead zone

collisional ionization at 
T > 103 K (r < 1 AU),
MRI turbulent

resistive quenching
of MRI, suppressed
angular momentum
transport MRI-active 
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non-thermal ionization
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cosmic
rays?

ambipolar diffusion
dominates

X-rays

Fig. 2.1: Sketch of an MRI-turbulent protoplanetary disc. The disc is consists of a thermally
ionised, fully turbulent inner zone, an intermediate zone, where only the surface layers are tur-
bulent, and an outer zone, which, is fully turbulent again. [Image taken from Armitage (2010)]
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1. In the region near to the central star, the gas is hot enough (T ≥ 1000 K) for
collisional ionisation to be effective, forming a turbulent inner zone. The outer
edge of this inner, active zone will lie somewhere between 0.1 and 5 AU, and moves
inward with time as the disc’s surface density decreases.

2. Next comes an intermediate region, where the midplane is cool enough, and well-
enough shielded from the ionising radiation, so that near the midplane the hy-
dromagnetic turbulence gets quenched by resisistivity, forming a so-called “dead
zone”. The upper layers may still show some turbulent activity and (weak) angular
momentum transport.

3. Finally, there is an outer region, where the disc’s surface density is low enough for
the non-thermal ionisation sources (mainly stellar X-rays) to be effective, so the
disc becomes fully turbulent again.

Since the location of the dead zone corresponds to the place where planetesimals are
assumed to form, constraining the size of the dead zone and the level of turbulence in
this region is a very important task for current research.

2.1.4 Thermodynamics

From now on, we will restrict ourselves to the region of a protoplanetary disc, where the
ambipolar diffusion and Hall term can be neglected. Then, our set of equations, which
describes the combined evolution of the neutral particles and the magnetic field looks as
follows:

∂ρ

∂t
+ ∇ · (ρv) = 0, (2.27a)

ρ
∂v

∂t
+ ρv ·∇v = −∇p+

(∇×B)×B
4π

+ ρ∇Φ, (2.27b)

∂B

∂t
= ∇× (v ×B − η∇×B) (2.27c)

However, this system of equations is not yet closed, since we have not yet specified the
pressure p. This means that we have to make some assumptions about the thermody-
namics of the gas.

Isothermal Equation of State

The simplest possibility to close the set of equations (2.27) is to use a prescribed value
for the sound speed c2

s = ∂p/∂ρ, from which the pressure immediately follows as

p = ρc2
s . (2.28)
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This is identical to keeping the temperature fixed at some predefined value, since the two
quantities are directly related via

cs =
√
kBT/µmH. (2.29)

The closure Eq. (2.28) is often used in numerical simulations of magnetorotational tur-
bulence in accretion discs. However it has the drawback that the temperature profile
must be known (or guessed) in advance. Also it does not account for changes in the
temperature profile due to varying turbulent activity.

Adiabatic Equation of State

If we want to determine the temperature in the disc self-consistently, rather than to
prescribe it, we have to add the equation for the thermal energy e to our set of gas-
dynamical equations (2.27). Neglecting the interaction between matter and radiation,
the thermal energy equation reads:

∂e

∂t
+ ∇ · (ev) = −p∇ · v +

η

4π
|∇×B|2, (2.30)

where the first term on the r.h.s. describes the change in thermal energy due to com-
pression or expansion of the fluid and the second term describes the Ohmic heating. For
an ideal gas, e and p are related via

e = p/(γ − 1). (2.31)

Note that this ansatz is not well suited for simulations of magnetorotational turbulence:
Since no form of cooling is prescribed, the turbulent dissipation will lead to rapid secular
heating of the disc. In an optically thin gas, this problem can be cured by adding a
cooling function (Brandenburg et al., 1995), but for the optically thick protoplanetary
discs this is very unrealistic. For a realistic description of protoplanetary discs, one needs
to include radiation transport.

Radiation Transport

For the most part of a protoplanetary disc, the radiation pressure is negligible compared
to the gas pressure, so we need not to include the radiation pressure in the equation of
motion, Eq. (2.27b). Including the interaction between matter and radiation, the thermal
energy equation becomes:

∂e

∂t
+ ∇ · (ev) = −p∇ · v +

η

4π
|∇×B|2 − κPρ(4πB − cE), (2.32)
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where E is the radiation energy and κP is the Planck mean opacity. Furthermore, we
must add the radiation energy equation

∂E

∂t
+ ∇(Ev) = −E

3
∇ · v + κPρ(4πB − cE)−∇ · F , (2.33)

where F is the radiative energy flux. We close our system of equations by employing a
flux-limited diffusion approach which consists of writing F as

F = −λc
κρ

∇E, (2.34)

where λ is the so-called flux limiter, for which we use the form as given in Levermore
and Pomraning (1981). In the optically thick limit, where

∇E

E
� κρ, (2.35)

the flux limiter becomes λ = 1/3 which is the exact expression in this limit. In the
optically thin limit, where

∇E

E
� κρ, (2.36)

the flux limiter becomes
λ =

κρE

|∇E|
, (2.37)

As a result, the flux is then

F = cE
∇E

|∇E|
, (2.38)

which is the correct physical expression in the optically thin limit, where photons stream
freely. In between, the flux limiter extrapolates between the optically thick and the
optically thin regimes, and the solution will only be approximately correct.

One-temperature approximation

When considering protoplanetary discs, we can make use of the fact that in most part
of the disc, radiation and matter are closely coupled and therefore in thermodynamic
equilibrium. This means that the radiation energy can be expressed in terms of the gas
temperature according to the following relation:

E = aT 4, (2.39)
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where a is the radiation constant. When using the relation Eq. (2.39), we do no longer
need to solve the equation for the radiation energy. Instead we add the radiation energy
equation, Eq. (2.33) to the thermal energy equation, Eq. (2.32), which yields, after
making use of E � e,

∂e

∂t
+ ∇ · (ev) = −p∇ · v −∇ · F . (2.40)

Since F can now be written as

F = −λc
κρ

∇aT 4 = −4aT 3 λc

κρ
∇T, (2.41)

with the radiation energy no longer appearing.

2.1.5 Final Set of Equations

To summarise, we will restrict ourselves to the planet forming region inside the first ten
AU, where the Hall term and ambipolar diffusion can be neglected, yielding the following
set of equations:

∂ρ

∂t
+ ∇ · (ρv) = 0, (2.42a)

ρ
∂v

∂t
+ ρv ·∇v = −∇p+

(∇×B)×B
4π

+ ρ∇Φ, (2.42b)

∂B

∂t
= ∇× (v ×B − η∇×B) , (2.42c)

∂e

∂t
+ ∇ · (ev) = −p∇ · v +

η

4π
|∇×B|2 −∇ · F , (2.42d)

F = −4aT 3 λc

κρ
∇T, e = p/(γ − 1). (2.42e)

This set of radiation-magnetohydrodynamics equations form the basis for most of the
calculations carried out in the present work.

2.2 Accretion Disc Viscosity

2.2.1 Molecular Viscosity vs. Turbulent Viscosity

In the phenomenological disc theory, the kinematic viscosity ν is nothing more than a
phenomenological parameter for which we have yet to put up a physical explanation. On
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thing that can be made clear immediately, is that it cannot be the ordinary molecular
viscosity νmol, because the Reynolds numbers in accretion discs are much to high to
explain the observed accretion rates (Pringle, 1981; Balbus, 2003). This can be seen by
calculating the Reynolds number

Re =
R2Ω

νmol
. (2.43)

The physical origin for molecular viscosity is the diffusion of molecules across fluid layers
moving at different velocities (see Fig. 2.2 a). The magnitude of the molecular viscosity
is given by the product of the collisional mean free path ` = 1/nσcoll (with n the number
density and σcoll the collisional cross section) and the random velocity vtherm ∼ cs:

νmol = vtherm` (2.44)

The number density is

n =
ρ

µmH
∼ Σ/H

mH
, (2.45)

since the mean molecular weight µ is of order one. Thus we can estimate (using H =
cs/Ω) the Reynolds number to be of order

Re =
Σσcoll

mH

(
H

R

)−2

= 1014 ×
(

Σ

100 gcm−2

)(
H

R

)−2

, (2.46)

after inserting the hydrogen mass mH ≈ 10−24 g and the geometrical cross section of
the hydrogen molecule σcoll ≈ 10−16 cm2. For a typical aspect ratio of H/R ∼ 0.1 and
a typical surface density of Σ ∼ 100 gcm−2 at a distance of ∼ 10 AU, we thus get a
Reynolds number of Re ∼ 1012! From the fact that the dynamical timescale is of the
order of years, this implies that the accretion process would take many billions of years,
which contradicts the observational results mentioned in the previous chapter. Therefore,
there must be some other mechanism that drives the accretion process in protoplanetary
discs. This unknown mechanism is sometimes referred to as anomalous viscosity.
As has already been stated in the previous chapter, turbulent motions within the disc

are the most likely source for anomalous viscosity. The mechanism of turbulent angular
momentum transport can be understood as follows: Given that our disc is turbulent, then
the accretion process is no longer dominated by the dynamics of individual atoms and
molecules with their corresponding molecular viscosity, but instead it is the dynamics of
the turbulent eddies with their much larger turbulent viscosity νturb that will determine
the strength of the angular momentum transport (Fig. 2.2 b). We can estimate the
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(a) Molecular viscosity: ν = vthλ⇒ Re & O(1012). (b) Eddy viscosity: ν ∼ csL⇒ Returb ∼ 10−10Re.

Fig. 2.2: Schematic plot of two fluid layers moving at different speeds. The diffusion of molecules
from one layer to the other leads to the transport of momentum between the layers, thus reducing
the velocity difference between them (left panel). In astrophysical accretion discs, the friction
that is generated in this way is more or less negligible, because the mean free path over which the
molecules diffuse is very small compared to the size of the whole system. If, on the other hand,
the flow is turbulent, then the diffusion of turbulent eddies will provide much stronger viscous
forces between the two fluid layers (right panel). Since the mean free path of the eddies will
likely be of the same order as the typical length scale of the system (i.e. the pressure scaleheight)
this process will generate a turbulent viscosity that many orders of magnitude larger than the
molecular viscosity of the gas.
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magnitude of the eddy viscosity in the same manner as we did for the molecular viscosity.
The collisional mean free path of the turbulent eddies can be taken to be of the order
of the disc scale height H, while the random velocity of the turbulent eddies must be
smaller than the sound speed cs,3 leading to

νturb = αcsH, (2.47)

where the dimensionless parameter α satisfies

α . 1. (2.48)

The parametrisation Eq. (2.47) is the basis for so-called alpha models of accretion discs
and was introduced by Shakura and Sunyaev (1973). Using this equation, we can calcu-
late the turbulent Reynolds number Returb,

Returb =
R2Ω

αcsH
=

1

α

(
H

R

)−2

, (2.49)

If we now consider a disc with an aspect ratio of 0.1, and take the dynamical timescale
to be in the range of 10-100 y, then α should be of order 10−3 in order to produce the
observed accretion timescales of 1-10My. We see that the assumption of turbulent disc
does indeed have the potential to explain the large accretion rates observed. However,
in order to make further progress, we first have to establish the connection between the
unknown alpha parameter and the dynamics of the underlying turbulence.

2.2.2 Dynamical Foundation of Accretion Disc Viscosity

As has already been mentioned, classical viscous disc theory can be interpreted in terms
of a mean field theory. By suitably averaging the fundamental fluid-dynamical equations,
we can obtain mean-field equation of the same form as used in the phenomenological disc
theory described in Sec. 1.2.2, with the stress tensor being a function of the correlated
fluctuations that live atop the background mean flow.
The question is how to define a suitable average. Since we are dealing with a disc, it

is certainly sensible to perform an average in the azimuthal direction. If the disc is thin,
as is the case for protoplanetary discs, it is natural to also integrate the equations in the
vertical direction. Because of the turbulence, the azimuthally and vertically averaged

3If the turbulence were supersonic, we would have strong dissipation by shocks, which would make the
turbulence subsonic. Therefore, the sound speed poses an upper limit on the velocity of the turbulent
eddies.
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profile will likely still show significant spatial and temporal variations. This suggests
to perform also a smoothing in the radial direction, leading to the sort of averaging
procedure as proposed for example by Balbus (2003):

〈•〉Balbus =
1

2π∆R

∫ R+∆R/2

R−∆R/2

∫ 2π

0

∫ ∞
−∞
• dR dφ dz. (2.50)

The smoothing length scale ∆R must be small compared to R but large compared to the
length scale of the turbulence, i.e. the pressure scale height H. If such a separation of
length scales does not exist, one may alternatively also perform a time average, or, as a
last resort, employ an ensemble average.
Let us now assume that a suitable average exists, and let us denote it by 〈•〉. We oper-

ate with this average on the azimuthal component of the momentum equation Eq. (2.27b),
which, in cylindrical coordinates, reads

∂

∂t
(ρRvφ) +

1

R

∂

∂R

[
R2

(
ρvRvφ −

BRBφ
4π

)]
+

1

R

∂

∂φ

[
R

(
ρv2
φ + P +

B2
R +B2

z

8π

)]
+

∂

∂z

[
R

(
ρvφvz −

BφBz
4π

)]
= 0. (2.51)

This operation results in

∂

∂t
(ΣR〈vφ〉ρ) +

1

R

∂

∂R

[
R2

(
Σ〈vR〉ρ〈vφ〉ρ +

〈
ρvRδvφ −

BRBφ
4π

〉)]
= 0, (2.52)

where 〈•〉ρ ≡ 〈ρ •〉/Σ and δvφ denotes the fluctuating azimuthal velocity:

δvφ ≡ vφ − 〈vφ〉ρ. (2.53)

Note that in deriving Eq. (2.52) we have assumed that the boundary terms

R

(
ρvφvz −

BφBz
4π

)∣∣∣∣z=∞
z=−∞

(2.54)

vanish, which is equivalent to assuming that there is no disc wind. Defining

VR ≡ 〈vR〉ρ, Vφ ≡ 〈vφ〉ρ, (2.55)

as well as
TRφ ≡

〈
ρvRδvφ −

BRBφ
4π

〉
, (2.56)
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we can write Eq. (2.52) in a form identical to Eq. (1.20)

∂

∂t
(ΣRVφ) +

1

R

∂

∂R

[
R2 (ΣVRVφ + TRφ)

]
= 0. (2.57)

This shows that classical viscous disc theory can indeed be interpreted in terms of a
mean field theory. The “anomalous” viscosity arises from correlated fluctuations in the
velocity and the magnetic field. At this point, however, it becomes clear that matters
are more complicated as in the heuristic picture outlined in Sec. 2.2.1: In principle, the
stress tensor Eq. (2.56) may take on any value or even become negative. It is therefore
not enough to have just some mechanism that generates turbulent fluid motions, rather
it is of primary importance that these motions are correlated in such a way that they
yield a stress tensor of the desired magnitude and sign.

Diffusion Equation for Surface Density

We proceed by using the azimuthally averaged height-integrated version of the continuity
equation,

∂Σ

∂t
+

1

R

∂

∂R
(RΣVR) = 0, (2.58)

to obtain an equation for VR in analogy to Eq. (1.21):

VR =
∂R(R2TRφ)

RΣ∂R(RVφ)
=

2∂R(R2TRφ)

RΣΩK
, (2.59)

where we have made use of the assumption that Vφ ≈ RΩK. Plugging this into Eq. (2.58),
we obtain

∂Σ

∂t
+

1

R

∂

∂R

[
2

Ω

∂

∂R

(
R2TRφ

)]
= 0, (2.60)

in analogy to Eq. (1.22).

Measuring the Alpha Parameter

The connection established by Eq. (2.56) opens the possibility to actually measure the
value of the anomalous viscosity by means of a numerical simulation. Eq. (1.6) suggests
the following relation between TRφ and the non-dimensional parameter α defined in
Eq. (2.47):

TRφ =

〈
d lnΩ

d lnR
αρc2

s

〉
=

3

2
αP, (2.61)
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with P ≡ 〈p〉. This leads us to define the alpha parameter as

α ≡ 2

3

TRφ
P
≈
TRφ
P

. (2.62)

Throughout the paper, we will drop the numerical factor 3/2 ∼ 1, since it has by itself
no physical significance but instead follows from how α is defined.

2.3 Disc Instabilities

There are quite a number of mechanisms that have been investigated as a possible ex-
planation for enhanced angular momentum transport in accretion discs. As we will see,
the most plausible mechanism is hydromagnetic turbulence initiated by the magnetoro-
tational instability.

2.3.1 Hydrodynamical Shear Instabilities

It is natural to look first for purely hydrodynamical instabilities, since in general shear
flows are known to easily develop instabilities. The dispersion relation for a hydrody-
namical shear flow is simply

ω2 = c2
sk

2 + κ2, (2.63)

where κ is the epicyclic frequency defined as

κ2 ≡ 2Ω

R

d(ΩR2)

dR
. (2.64)

In order for the rotation profile to become unstable, κ2 should be negative (the Reynolds
criterion). For Keplerian shear flows, where Ω ∝ R−3/2 this criterion is not met, i.e.
Keplerian flows are linearly stable to small perturbations.
Even when a flow configuration is stable against weak perturbations there is of course

still the possibility that the flow might develop self-sustained turbulence if the pertur-
bations are strong enough. Although the debate concerning nonlinear hydrodynamical
instabilities is still ongoing, there has been so far no convincing demonstration that suit-
able instabilities exist, that have the desired properties needed for explaining enhanced
angular momentum transport in accretion discs (Hawley et al., 1999; Balbus and Hawley,
2006).
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2.3.2 Convective & Baroclinic Instability

The situation changes if a temperature gradient is present in the disc. The first possi-
bility that has been investigated in this context is convective instability arising from a
sufficiently steep vertical temperature gradient. Early simulations suggested that convec-
tive motions transport angular momentum in the wrong direction, namely inwards (see,
for example Kley et al., 1993). This view has changed a bit since the recent simulations
of (Lesur and Papaloizou, 2010). However, it is still questionable if the this mechanism
is important for protoplanetary discs during their main evolutionary stage, since it is
unlikely that they will be able to maintain a convectively unstable temperature profile
Armitage (2010).
Instead of a vertical temperature gradient, one may also consider a radial gradient.

Such a flow may be unstable to the baroclinic instability which is well known in the
field of meteorology. It turns out that the linear instability that arises in this case is in
fact only a transient phenomenon (Klahr, 2004). However, nonlinear perturbations lead
to the sustained production of vortices and also to the transport of angular momentum.
Whether the baroclinic instability is really a viable mechanism to explain angular momen-
tum transport in protoplanetary discs is, however, not clear at the present. It has been
found that in the case where both the baroclinic instability and the magnetorotational
instability (which will be discussed in a moment) are present, then the magnetorotational
instability will dominate the dynamics anyway Lyra & Klahr (2011).

2.3.3 Gravitational Instability

Another mechanism that may redistribute angular momentum in an accretion disc is
gravitational instability. The problem with this mechanism is, of course, that the disc
needs to be sufficiently massive, otherwise it will not work. For protoplanetary discs,
gravitational instability should only play a role in the very early phase of the discs
evolution, when the disc is very massive. Taking self gravity into account, the dispersion
relation Eq. (2.63) is replaced by

ω2 = c2
sk

2 − 2πGΣ|k|+ κ2. (2.65)

From this dispersion relation, the condition for instability follows to be Q < 0, where Q
is defined as

Q ≡ csκ

πGΣ
. (2.66)

Q can be estimated to be

Q ≈ csΩ

πGΣ
=

cs

ΩR

GM

πGΣR2
≈ H

R

M?

Mdisc(R)
. (2.67)
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Since around young stellar objects, the disc masses may reach a mass of a fraction of
H/R ∼ 0.1 of the host star, gravitational instability might indeed be important in the
outer parts of a very young protoplanetary disc.

2.3.4 Magnetorotational Instability

The magnetorotational instability (MRI) comes about by a combination of differential
rotation and magnetic fields (Balbus and Hawley, 1998; Balbus, 2003, 2009). In the
incompressible limit cs → ∞, the effect of including magnetic fields is to change the
purely hydrodynamic dispersion relation Eq. (2.63) to

ω̃4 − ω̃2κ2 − 4Ω2(k · vA)2 = 0, (2.68)

where ω̃2 ≡ ω2 − (k · vA)2 Balbus and Hawley (1991). A mode with wave vector k is
unstable if it fulfills the criterion

(k · vA)2 +
dΩ2

d lnR
< 0. (2.69)

As a consequence, the Reynolds criterion of outwardly decreasing angular momentum is
replaced by the condition that the angular orbital frequency decrease outwards, i.e.

dΩ

dR
< 0, (2.70)

which is satisfied in most astrophysical discs. Note that, for vanishing magnetic field, one
does not recover the Reynolds criterion, meaning that magnetic fields alter the physical
situation fundamentally. As long as ideal MHD can be applied, the flow will be unstable
to arbitrarily small magnetic fields. Note also that, from Eq. (2.69), strong magnetic
fields will have a stabilising effect. Therefore, the MRI is a weak field instability.
The basic mechanism of the MRI can be grasped by looking at a simple mechanical

analogue. Let us look at an axisymmetric disc in the presence of a weak vertical magnetic
field. The displacement of fluid elements in the orbital plane by an amount ξ ∝ eikz yields
a perturbed magnetic field which is given by

δB = ∇× (ξ ×B) = ikB ξ. (2.71)

The magnetic tension force (per unit mass) corresponding to the newly created magnetic
field is

ftension =
B ·∇B

4πρ
= −k2v2

A ξ. (2.72)
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Fig. 2.3: Schematic picture elucidating the basic physical mechanism through which the mag-
netorotational instability operates. Fluid parcels moving at slightly different orbits are sheared
apart in a runaway manner due magnetic tension forces. (Picture courtesy H. Ji)

The tension force is proportional to the displacement vector and has the opposite sign.
This means it acts exactly like a classical mechanical spring. The situation is depicted
schematically in Fig. 2.3, considering two fluid parcels initially on the same orbit. The
parcels are disturbed in such a way that one parcel, mi, moves on an orbit slightly nearer
to the star, while the other parcel, mo moves on an orbit slightly more far away from the
star. The magnetic tension force exerts a negative torque on the inner parcel, causing
it to move further inwards; and a positive torque on the outer parcel, causing it to
move further outwards. This further increases the magnetic field and thus the magnetic
tension between the two parcels, causing the process to run away. Note that the outward
transport of angular momentum is an intrinsic property of the instability mechanism.
As we have seen, the MRI needs only two basic ingredients for it to work, namely an

outwardly decreasing angular orbital frequency profile and a weak magnetic field. This
means that the MRI operates under quite general conditions and is therefore supposed
to be active in many astrophysical discs. However, there is as of today still no direct
observational confirmation for this. Laboratory experiments of the MRI bear no direct
relevance to the MRI in astrophysical systems since the parameter regime is very differ-
ent. The only field where magnetorotational turbulence in astrophysical systems can be
actively explored are thus numerical simulations. In the following, we will give a brief
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overview of the work that has been done in this field.

2.4 Numerical Simulations

Numerical simulations can be grouped into three classes according to the shape of the
computational domain (see Fig.2.4). The simplest (and most often used) type of setup is
the unstratified shearing-box model in which a small rectangular domain near the mid-
plane of the disc is simulated, with the vertical component of gravity neglected [Fig.2.4
(a)]. Stratified shearing-box models include the vertical component of gravity and cover
a large fraction of the vertical extent of the disc [Fig.2.4 (b)]. Finally, there are global
simulations [Fig.2.4 (c)] which extend over a large radial range (tens of AU). Global
simulations are usually performed using cylindrical or spherical coordinates. It is not
possible to include the full disc (which has a size on the order of hundreds of AU) in a
numerical simulation, since then it would not be possible to resolve the MRI resolved.

2.4.1 Unstratified Shearing Box Simulations

The first three-dimensional simulations of the magnetorotational instability were per-
formed by Hawley et al. (1995). The basic setup consists of a rectangular box represent-
ing a small volume located at the midplane of an accretion disc that is co-moving with
the background Keplerian shear flow (Fig. 2.4). The vertical component of gravity is
neglected; as a consequence the physical situation looks uniform in the whole box. The
boundary conditions in the azimuthal and vertical directions are periodic. In the radial
direction, so-called shear-periodic boundary conditions are used that are consistent with
the background shear flow (see Chap. 4). A constant vertical magnetic field is imposed at
the beginning, leading to rapid growth of the MRI and sustained magnetorotational tur-
bulence. In a later work, the authors find sustained turbulence also in the case where the
initial magnetic field is designed in such a way that it has zero net vertical flux (Hawley
et al., 1996). The most important result of these early works is that the magnetorota-
tional turbulence leads to outward angular momentum transport at a rate that is roughly
compatible with observations (King et al., 2007), establishing the MRI as the most likely
cause for enhanced angular momentum transport in astrophysical accretion discs.
These early simulations lacked the resolution to allow for a detailed study of the proper-

ties of magnetorotational turbulence. Also, a thorough resolution study was not possible
with the computational resources available at that time. The first such study (Fromang
and Papaloizou, 2007) found that for the case of magnetorotational turbulence in the
absence of a net vertical magnetic flux, the turbulent transport scaled inversely propor-
tional to the numerical resolution, suggesting zero transport at very high resolution. The
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2 Protoplanetary Disc Physics

(a) Unstratified shearing box: A box of
small radial and vertical extent located at
the midplane of the accretion disc.

Star Disc
Computational
domain

⇒ ⇒
⇒

Fig. 2.4: The different setups used in numerical sim-
ulations of the magnetorotational instability in ac-
cretion discs. The unstratified shearing box, which
is periodic and homogeneous, is the most widely
used model but also the least realistic one. Strat-
ified shearing box models offer a good compromise
between computational complexity and physical real-
ism. Global calculations are rare, since they are dif-
ficult to set up and very expensive computationally.

(b) Stratified shearing box: A box of
small radial extent that covers the full
vertical height of the disc.

(c) Global simulation: Usually a “cake
piece” that covers a large radial extent.
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2.4 Numerical Simulations

authors conclude that numerical effects occurring at the grid scale have a non-negligible
influence on the simulation outcome. In order to quantify these effects, the authors es-
timate the numerical Prandtl number4 of their code and find it to be of order unity or
bigger. Later works found the same decrease of the turbulent saturation with increasing
resolution using other codes (Guan et al., 2009; Simon et al., 2009). In a follow-up paper
(Fromang et al., 2007), simulations with explicit physical dissipation were performed.
This study found that the magnetic Prandtl number plays a decisive role in determining
the fate of the magnetorotational turbulence: If it is too small the turbulence will die
off.5

In a later work, the dependence of the turbulent saturation level on the numerical
scheme was explored (Balsara and Meyer, 2010). The authors find that the results
depend substantially on the numerical method employed. Depending on what type of
Riemann solver one uses, the turbulence might not even be sustained, but instead the
simulation converges to a laminar state in the zero net-flux case (see also Chap. 4). The
highest resolution simulation performed as of today was reported in Fromang (2010). In
this simulation, the inertial range of the turbulence could be resolved for the first time.
The author finds that when using physical dissipation with a fixed magnetic Prandtl
number, the turbulent transport does depend only very weakly on the Reynolds number,
indicating that the decline of the turbulent activity with increasing resolution in a purely
ideal simulation is indeed a numerical artifact.
The most recent work on the Prandtl number dependence of magnetorotational tur-

bulence suggests that the turbulence found in unstratified shearing boxes is actually
a transient phenomenon: Rempel et al. (2010) performed a parameter study of visco-
resistive shearing box calculations using a pseudo-spectral MHD code. They find that
the turbulence always dies at some time and the system converges towards a laminar
state, no matter how big the value of the magnetic Prandtl number. At the present time
it is not clear, however, if this behaviour can be reproduced with other codes.
Aside from all these considerations, the unstratified shearing box with zero net flux is

an idealisation that will hardly be found in nature: In a real accretion disc, it is unlikely
that the flux permeating a small volume picked out of the disc will be exactly zero;
moreover, as we will see in the next section, when adding the vertical stratification, the
problem of the resolution dependence of the turbulent activity vanishes.

4The Prandtl number is defined as the ratio of viscosity to resistivity.
5These results can be understood as follows: In the case of the unstratified shearing box with zero net
flux, the fate of the magnetic field depends on the working of a small-scale dynamo. The magnetic
field is wound up in the turbulent eddies at small scales and thereby amplified. If the ratio of
resistivity to viscosity becomes too big, this process is destroyed by reconnection, and the magnetic
field will decay [see also (Schekochihin et al., 2002a,b).]

37



2 Protoplanetary Disc Physics

2.4.2 Stratified Simulations

The first simulations including the vertical component of gravity were performed by Stone
et al. (1996). As in the unstratified simulations, magnetorotational turbulence leads to
sustained transport of angular momentum. However, in a stratified setup, the turbulent
activity shows strong variations on scales of ∼ 20 orbits, the reason for this being still a
matter of debate (see Chap. 5).
Including the vertical stratification is a necessary prerequisite for including radiation

transport in order to allow the disc to cool by emitting radiation through the vertical
boundaries. The first stratified radiative accretion disc simulation was performed by
Turner (2004), modelling a patch of a radiation-dominated accretion disc around a black
hole. The maximum density contrast that was achieved in this simulation (as determined
by the density floor) was 2% of the midplane density, which was not even enough to have
the photosphere included in the computational domain.
The first gas-pressure dominated radiative accretion disc simulation was performed by

Hirose et al. (2006). The simulation parameters where chosen according to a Galactic
black hole binary, with a maximum density contrast of 10−5. The photosphere, whose
position was found to vary significantly during the course of the simulation, was always
located very near the upper boundary or even outside the computational domain.
The first radiative simulations with parameters appropriate for a protoplanetary disc

was described in Flaig et al. (2010). The simulations covered a larger domain in the
vertical direction than any previous radiative simulations and achieved a density contrast
of 10−6. The photosphere was located well inside the computational domain for the whole
time. One of the most interesting results of this study was that the turbulent Mach
number at the location of the photosphere did actually match with previous observations
of turbulent line broadening in protoplanetary discs.

2.4.3 Global Simulations

Global simulations of magnetorotational turbulence started with the works of Matsumoto
and Shibata (1997), Armitage (1998), Hawley (2000), Hawley (2001) and Hawley and
Krolik (2001). With the exception of Armitage (1998), these early works all simulated a
thick accretion torus around a black hole. The advantage of this setup is that the whole
disc can be made to fit into the computational domain, therefore avoiding the need for
sophisticated boundary conditions in the radial direction. Essentially the global models
gave results that were compatible with the results from the earlier local models. The
model of Armitage (1998), however, yielded stresses one order of magnitude larger than
corresponding local simulations.
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A global stratified setup for a protoplanetary disc model was described in Fromang
and Nelson (2006). The authors employed buffer zones at the radial boundaries where
the turbulence was damped via viscosity and resistivity. In a latter paper (Fromang
and Nelson, 2009) the authors investigated the settling of small dust particles under the
influence of the turbulence. The first non-ideal global protoplanetary disc simulations
were reported in Dzyurkevich et al. (2010), who used a prescribed resistivity profile that
was held fixed during the whole course of the simulation. Global simulations including
radiation transport and/or disc chemistry have not been reported so far.

2.5 Summary

In the present chapter, we were concerned with describing the physics of protoplanetary
discs from a microscopic viewpoint. We summarise the most important points:

• The dynamics of the gas in protoplanetary discs is governed by the equations of
radiation-magnetohydrodynamics. Since protoplanetary discs are for some part
only poorly ionised, one has in general to include non-ideal MHD effects, namely
Ohmic resistivity, the Hall effect and ambipolar diffusion. In the planet-forming
region inside the first ten AU, resistivity will be the most important effect.

• Molecular viscosity is many orders of magnitude too small to account for the ob-
served accretion rates. This leads to the heuristic idea of a turbulent viscosity,
where turbulent eddies take the place of the molecules. Since the mean free path
of the eddies will be much larger than the mean free path of the molecules, the
corresponding eddy viscosity is be much larger.

• However, the effective viscosity generated by turbulence will in general be differ-
ent from a classical shear viscosity. The effective stress tensor is determined by
correlated fluctuations in the velocity and magnetic field components. This means
that it is not sufficient to have just some sort of turbulence in order to achieve
outward angular momentum transport; rather the turbulence must also have the
right properties.

• Turbulence initiated by the magnetorotational instability is the most promising
candidate to explain turbulent angular momentum transport in accretion discs. It
operates under a broad range of conditions and leads to outward angular momentum
transport at a rate that is compatible with observations.

Although magnetorotational turbulence is usually considered to be the most important
physical factor determining the dynamics of protoplanetary discs, truly self-consistent
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2 Protoplanetary Disc Physics

models of MRI-turbulent protoplanetary discs have not been reported until recently. In
the present thesis, we describe the first such models that include all the relevant physical
factors. We will start our presentation with an analytical analysis of the linear growth
phase of the MRI including radiation transport and resistivity (Chap. 3). After this,
we move on to numerical simulations, where we investigate the influence of radiation
transport on the turbulent saturation level of magnetorotational turbulence (Chap. 4).
Finally, we will describe the first self-consistent numerical simulations of turbulent pro-
toplanetary discs and discuss the connection to astrophysical observations (Chap. 5+6).
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Chapter 3: Linear Growth Phase
of the MRI

3.1 Local Stability Analysis

Before performing fully nonlinear numerical simulations of MRI-induced MHD turbu-
lence, we will first study the linear growth phase of the instability, which can be investi-
gated by analytical means. The aim of this study will mainly be to determine to what
extend the two most important non-ideal physical processes acting in protoplanetary
discs, namely resistivity and radiative diffusion, change the behaviour of the instability.
The analytical results will not only help to better understand how the MRI will work
in a protoplanetary disc, but they will also provide a useful analytical solution against
which our numerical code (and especially the radiative diffusion and resistivity parts)
can be tested.
Since the MRI is a local instability, it can be studied by means of a local analysis.

This means we are seeking for solutions of the fluid-dynamical equations of the form

q = q0 + δq, (3.1)

where q is the vector of fluid variables. We take the δq to be plane-wave axisymmetric
perturbations, i.e.

δq ∝ exp[i(krr + kzz) + σt]. (3.2)

We restrict ourselves to axisymmetric modes (i.e. kφ = 0) because the axisymmetric
modes are the dominant ones (see Sec. 3.2) and the inclusion of non-axisymmetric modes
would only complicate the analysis unnecessarily.
We consider a volume of the accretion disc that is small enough so that all the back-

ground variables q0 except the velocity can be taken constant. We switch to a cylindrical
coordinate system (R,φ, z) that is rotating with the local Keplerian angular frequency
Ω0 = Ω(R0) at a certain radius R0 in the disc. In this system, the background Keplerian
shear flow becomes locally

v0 ≈ −
3

2
Ω0r φ̂. (3.3)
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3 Linear Growth Phase of the MRI

We consider a situation where the initial radial magnetic field is zero, i.e. we take the
magnetic field to be of the form

B0 = B0φ φ̂+B0z ẑ. (3.4)

The reason for this is that a configuration that has a radial field is not in equilibrium,
because an initially radial field would rapidly be transformed into an azimuthal field due
to the background shear flow.

3.2 Ideal MHD Dispersion Relation

We start our analysis by deriving the MRI dispersion relation in the limit of ideal MHD,
i.e. neglecting non-ideal MHD effects and radiative diffusion. The equations that we
want to solve are thus

∂ρ

∂t
+∇ · (ρv) = 0, (3.5a)

∂v

∂t
+ v · ∇v +

1

ρ
∇
(
p+

B2

4π

)
− B · ∇B

4πρ
+∇Φ = 0, (3.5b)

∂B

∂t
= ∇× (v ×B), (3.5c)

∂p

∂t
+ v · ∇p = −γp∇ · v. (3.5d)

Inserting the ansatz (3.1, 3.2) into the above equations, we obtain the following linearised
equations (dropping, from now on, the index ‘0’ on the background fluid variables and
the orbital angular frequency):

σ δρ = −ρ ik · δv, (3.6a)

σ δv − 3

2
Ω δvr φ̂+

ik

ρ
·
(
δp+

δB ·B
4π

)
− ikzBz

4πρ
δB + 2Ω ẑ × δv = 0, (3.6b)

σ δB = −ik · δvB + ikzBz

(
δv − 3Ω

2σ
δvr φ̂

)
, (3.6c)

σ δp = −γp ik · δv. (3.6d)
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3.2 Ideal MHD Dispersion Relation

3.2.1 Incompressible Fluid

Making the simplifying assumption of incompressibility, k · δv = 0, we get δρ = δp = 0,
leaving the following system of equations:

σ δv − 3

2
Ω δvr φ̂+

ik

ρ

δB ·B
4π

− ikzBz
4πρ

δB + 2Ω ẑ × δv = 0, (3.7a)

σ δB = ikzBz

(
δv − 3Ω

2σ
δvr φ̂

)
. (3.7b)

Next, we insert Eq. (3.7b) into Eq. (3.7a) in order to eliminate δB, yielding

σ2 δv − 3

2
σΩ δvr φ̂− kkzvAz

(
δv · vA −

3Ω

2σ
δvrvAφ

)
+ k2

zv
2
Az

(
δv − 3Ω

2σ
δvr φ̂

)
+ 2σΩ ẑ × δv = 0; (3.8)

where we have defined the Alfvén speed according to

vA ≡
B√
4πρ

. (3.9)

Adding the x-component and −kr/kz times the z-component of this equation and making
use of the relation δvz = −(kr/kz) δvr gives

(σ2 + k2
zv

2
Az)

k2

k2
z

δvr − 2σΩ δvφ = 0. (3.10)

Together with the y-component of Eq. (3.8),

(σ2 + k2
zv

2
Az) δvφ +

Ωσ

2

(
1− 3

k2
zv

2
Az

σ2

)
δvr = 0. (3.11)

We now have two equations that contain only two unknowns, namely δvr and δvφ. Note
that the toroidal magnetic field component, Bφ has dropped out of the equations. The
dispersion relation now follows as

σ̃4 +Ω2σ̃2 − 4Ω2k
4
zv

2
Az

k2
= 0, (3.12)

where we have defined σ̃2 ≡ σ2 + k2
zv

2
Az. The dispersion relation Eq. (3.12) is equivalent

to the dispersion relation derived in the seminal paper of Hawley et al. (1995) (their
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Fig. 3.1: Plots of the MRI growth rates σ/Ω as a function of the non-dimensional wave number
kzvAz/Ω, obtained under the assumption of incompressibility. The growth rates are largest for
vertical modes, which have kr = 0.

Eq. 2.5) except that they included gradients in the background density and pressure,
which we do not. The quartic equation Eq. (3.12) contains only even powers of σ̃ so the
solution can immediately be written down:

σ2

Ω2
= −

k2
zv

2
Az

Ω2
− 1

2
±
√

1

4
+ 4

k4
zv

2
Az

k2Ω2
. (3.13)

In Fig. 3.1 we plot the resulting MRI growth rates as a function of wavenumber for
different values of the ratio k/kz. As the ratio k/kz increases, the growth rates decrease.
The fastest growth rates are thus obtained for the case k = kz, and from Eq. (3.13) it
can be deduced that the fastest growth occurs at wavenumber

kz,max =

√
15

16

Ω

vAz
, (3.14)
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and the corresponding maximum growth rate is

σmax =
3

4
Ω. (3.15)

The critical wavenumber kcrit beyond which the instability ceases to exist is found to be

kcrit =
√

3
Ω

vAz
. (3.16)

To summarise, the most important properties of the magnetorotational instability are
that it operates at wavelengths kz ∼ Ω/vAz and that it grows fast, on an orbital timescale.

3.2.2 Including Compressibility

We now calculate the MRI dispersion relation retaining the terms containing k · δv in
equations Eqs. (3.6), i.e. we include the effects of a finite compressibility. Eq. (3.8) now
becomes

σ2 δv − 3

2
σΩ δvr φ̂− kkzvAz

(
vA · δv −

3Ω

2σ
vAφ δvr

)
+ k(c2

s + v2
A)k · δv

− kzvAzvA k · δv + k2
zv

2
Az

(
δv − 3Ω

2σ
δvr φ̂

)
+ 2σΩ ẑ × δv = 0, (3.17)

where we have defined the gas sound speed as c2
s ≡ γp/ρ. We now introduce a new

quantity K via the definition
K δvr ≡ k · δv. (3.18)

Physically, the quantity K can be interpreted to measure the amount of compressibility
of the perturbations.
Now, using the same strategy as above for the incompressible case, we find that

Eqs. (3.10) and (3.11) become(
σ2 + k2

zv
2
Az −

Kkr
k2

σ2

)
k2

k2
z

δvr − 2σΩ δvφ = 0, (3.19a)

(σ2 + k2
zv

2
Az) δvφ +

[
Ωσ

2

(
1− 3

k2
zv

2
Az

σ2

)
− kzvAzvAφK

]
δvr = 0. (3.19b)

In each of the two equations one additional term containing the quantityK has appeared,
leading to two additional terms (as compared to Eq. (3.12)) in the general dispersion
relation as it follows from Eqs. (3.19):(

σ̃2 − krK

k2
σ2

)
k2

k2
z

σ̃2 +Ω2σ̃2 − 4Ω2k2
zv

2
Az − 2ΩσvAφvAzkzK = 0. (3.20)
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As said, however, we still have to calculateK. This is done by looking at the z-component
of Eq. (3.17):

σ2 δvz − k2
zvAφvAz δvφ + k2

zvAz
3Ω

2σ
vAφ δvr +Kkz(c

2
s + v2

Ay) δvr = 0. (3.21)

Note that in order to obtain the above equation we have made use of Eq. (3.18). Com-
bining Eq. (3.19a) with Eq. (3.20), we obtain the following expression relating δvφ and
δvr:

δvφ =

(
− Ω

2σ
+ 2

Ω

σ

k2
zv

2
Az

σ̃2
+
KkzvAφvAz

σ̃2

)
δvr. (3.22)

This relation can now be used to eliminate δvφ from Eq. (3.21) yielding the following
expression for K,

K =
σ̃2σ2kr − 2σΩk3

zvAφvAz

σ̃2(σ2 + k2
zc

2
s ) + σ2k2

zv
2
Aφ

, (3.23)

which completes our derivation of the compressible MRI dispersion relation.

Comparison to the Blaes and Balbus (1994) dispersion relation

The first paper in which the effects of a finite compressibility were included is the paper
by Blaes and Balbus (1994). However, they restricted their analysis to vertical modes.
Defining

ω ≡ iσ, (3.24a)

ω̃2 = −σ̃2, (3.24b)

Dms ≡ ω2 − k2
z(cs + v2

Aφ), (3.24c)

DBH ≡
k2

k2
z

ω̃4 −Ω2ω̃2 − 4Ω2k2
zv

2
Az, (3.24d)

we can write Eq. (3.20) in an alternative way as

DmsDBH − k2
zv

2
Aφv

2
Az(k

2ω̃2 + 3k2
zΩ

2)− k2
r

k2
z

ω̃2ω4 = 0. (3.25)

Written in this form, and if we set kr = 0, our dispersion relation becomes equivalent to
the dispersion relation given in their paper, as can be verified by comparing Eq. (3.25)
to their Eq. (64).
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Applicability of Incompressibility Approximation

Next, we may ask under what conditions the assumption of negligible compressibility is
a good approximation; for simplicity we consider now only vertical modes, i.e. we set
kr = 0. Compressibility is negligible if the last term in Eq. (3.20) is small compared to
the second last term, which is equivalent to

σ2k2
zv

2
Aφ � σ̃2(σ2 + k2

zc
2
s ) (3.26)

It therefore turns out that a sufficient condition for the approximation of incompressibility
to hold is that the azimuthal magnetic field is sufficiently subthermal, i.e. vAφ � cs.

Effect of Compressibility on the Growth Rates

Since in the dispersion relation Eq. (3.20) the terms containing K vanish when σ →
0, the critical wavelength is not changed due to compressibility and is still given by
Eq. (3.16). This means that compressibility does not change the range in which the
instability operates, it only modifies the growth rates. To calculate the effects which a
finite compressibility has on the growth rates, we differentiate Eq. (3.20) with respect to
|K| to obtain

dσ

d|K|
= sgn(K)

2σΩvAφvAzkz
4(k2/k2

z)σ̃
3 + 2σ̃Ω2 − 2ΩvAφvAzkzK

. (3.27)

From Eq. (3.23) we see that for vertical modes K < 0, from which it follows that
dσ/d|K| < 0. This means that for vertical modes, compressibility reduces the growth
rates if there is an azimuthal field present. This behaviour is depicted in Fig. 3.2, where
the growth rates are plotted for different values of the ratio Bφ/Bz. For non-vertical
modes, K might actually become positive, implying the possibility of dσ/d|K| > 0, i.e.
an increase of the growth rates.

3.3 General Dispersion Relation

3.3.1 Linearised Equations

We now proceed to calculate a more general dispersion relation, suitable for accretion
discs in which the ambipolar diffusion and Hall term can be neglected. The corresponding
dispersion relation can be applied to the inner, more denser regions of protoplanetary
discs inside the first few ten AU. The set of equations that we want to solve is thus given
by Eqs. (2.27a), (2.27b), (2.27c), (2.32) and (2.33), with the ambipolar diffusion and
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Fig. 3.2: MRI growth rates of vertical modes (kr = 0) for the case cs = 0, i.e. highly superthermal
magnetic fields. Plotted are the growth rates σ/Ω as a function of the non-dimensional wave
number kzvAz/Ω, for different values of Bφ/Bz.

Hall terms dropped. In order to keep our calculation as general as possible, we relax the
restriction that the disc be gas-pressure dominated, which means that we have to replace
∇p by ∇p+ λ∇E. We list the complete set of equations here for reference:

∂ρ

∂t
+ ∇ · (ρv) = 0, (3.28a)

ρ
∂v

∂t
+ ρv ·∇v = −∇p− λ∇E +

(∇×B)×B
4π

+ ρ∇Φ, (3.28b)

∂B

∂t
= ∇× (v ×B − η∇×B) , (3.28c)

∂e

∂t
+ ∇ · (ev) = −p∇ · v +

η

4π
|∇×B|2 − κPρ(4πB − cE), (3.28d)

∂E

∂t
+ ∇(Ev) = −E

3
∇ · v + κPρ(4πB − cE)−∇ · F , (3.28e)

F = − λc

κFρ
∇E. (3.28f)

Assuming that the background resistivity η, the thermal energy e, the radiation energy
E are constant, and that radiation and matter are in thermodynamical equilibrium, such
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that E = aT 4, the corresponding linearised equations become:

σ δρ = −ρ ik · δv, (3.29)

σ δv − 3

2
Ω δvr φ̂+

ik

ρ
·
(
δp+ λδE +

δB ·B
4π

)
− ikzBz

4πρ
δB + 2Ω ẑ × δv = 0, (3.30)

ση δB = −ik · δvB + ikzBz

(
δv − 3Ω

2ση
δvr φ̂

)
, (3.31)

δp = γ
p

ρ
δρ− (γ − 1)αPE

(
4
δT

T
− δE

E

)
, (3.32)

δE =
4E

3ρ
δρ+ αPE

(
4
δT

T
− δE

E

)
− αF δE; (3.33)

where we have defined

ση ≡ σ + ηk2, (3.34)

αP ≡
κPρc

σ
, (3.35)

αF ≡
k2

σ

λc

κFρ
. (3.36)

The dimensionless quantity αP describes the rate at which radiation and matter are
thermally coupled with respect to the growth rate of the instability while αF constitutes
a non-dimensional diffusion coefficient. Note that Eq. (3.6c) ensures that the divergence-
free constraint k · δB = 0 be satisfied, as it should be.

3.3.2 Dispersion Relation

Introducing the effective sound speed Ceff via the definition

C2
eff ≡

δp

δρ
+ λ

δE

δρ
, (3.37)

the linearised momentum equation can be written in a form similar to Eq. (3.6b):

σ δv − 3

2
Ω δvr φ̂+

ik

ρ
·
(
C2

eff δρ+
δB ·B

4π

)
− ikzBz

4πρ
δB + 2Ω ẑ × δv = 0. (3.38)

Now, the equivalent of Eq. (3.17) becomes:

σησ δv −
3

2
σηΩ δvr φ̂− kkzvAz

(
vA · δv −

3Ω

2ση
vAφ δvr

)
+ kK

(ση
σ
C2

eff + v2
A

)
δvr

−KkzvAzvA δvr + k2
zv

2
Az

(
δv − 3Ω

2ση
δvr φ̂

)
+ 2σηΩ ẑ × δv = 0. (3.39)
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In the same manner as we derived Eqs.(3.19), we now obtain(
σησ + k2

zv
2
Az −

Kkr
k2

σησ

)
k2

k2
z

δvr − 2σηΩ δvφ = 0, (3.40a)

(σησ + k2
zv

2
Az) δvφ +

[
Ωση

2

(
1− 3

k2
zv

2
Az

σ2
η

)
−KkzvAφvAz

]
δvr = 0. (3.40b)

From this two equations, the dispersion relation thus follows as:(
σ̃2
η −

krK

k2
σησ

)
k2

k2
z

σ̃2
η +Ω2(σ2

η + k2
zv

2
Az)− 4Ω2k2

zv
2
Az − 2ΩσηvAφvAzKkz = 0; (3.41)

with the definition σ̃2
η ≡ σησ + k2

zv
2
Az. The quantity K can again be calculated in the

same manner as in the ideal case. We use the z-component of Eq. (3.39),

σησ δvz − k2
zvAφvAz δvφ +

3Ω

2ση
k2
zvAφvAz δvr +Kkz

(ση
σ
C2

eff + v2
Aφ

)
δvr = 0, (3.42)

as well as the analogue of Eq. (3.22),

δvφ =

(
−
Ω(s2

η + k2
zv

2
Az)

2σησ̃2
η

+ 2
Ω

ση

k2
zv

2
Az

σ̃2
η

+
KkzvAφvAz

σ̃2
η

)
δvr, (3.43)

to obtain the following expression for K:

K =
σ̃2
ησ

2kr −Ωσk3
zvAφvAz(σ

2
η + 3σ̃2

η)/2σ
2
η

σ̃2
η(σ

2 + k2
zC

2
eff) + σ2k2

zv
2
Aφ

. (3.44)

The only task that is left is the determination of the effective sound speed Ceff . Using
the linearised equations (3.32) and (3.33), we find after some algebra

δp

δρ
=

(1 + αP + αF)
(
γ + 4E

3e

)
− 4E

3e (1− 3αP)(1 + αF)

1 + αP + αF + 4αP
E
e (1 + αF)

p

ρ
, (3.45a)

δE

δρ
=

1 + 4αP

(
γ − 1 + 4E

3e

)
1 + αP + αF + 4αP

E
e (1 + αF)

E

ρ
, (3.45b)

from which Ceff immediately follows. The general dispersion that we have calculated,
is applicable over a wide range of physical conditions, encompassing both the case of a
gas-pressure dominated disc, such as a protoplanetary disc, and the opposite extreme of
a radiation-pressure dominated system like an accretion disc around a black hole.
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3.3 General Dispersion Relation

3.3.3 Eigenfunctions

The corresponding eigenfunctions in terms of the radial velocity perturbation δvr are
readily obtained and can be expressed as follows:

δρ = −iρ
K

σ
· δvr, (3.46a)

δvφ =
σ

2Ωk2
z

(
k2

σ̃2
η

σησ
− krK

)
· δvr, (3.46b)

δvz =
K − kr
kz

· δvr, (3.46c)

δBr = i
kzBz
ση
· δvr, (3.46d)

δBφ = i

{
kzBz
2Ω

(
k2

k2
z

σ̃2
η

σ2
η

− σ

ση

krK

k2
z

− 3
Ω2

σ2
η

)
−
KBφ
ση

}
· δvr, (3.46e)

δBz = −i
krBz
ση
· δvr, (3.46f)

δp = −ip
(1 + αP + αF)

(
γ + 4E

3e

)
− 4E

3e (1− 3αP)(1 + αF)

1 + αP + αF + 4αP
E
e (1 + αF)

K

σ
· δvr, (3.46g)

δE = −iE
1 + 4αP

(
γ − 1 + 4E

3e

)
1 + αP + αF + 4αP

E
e (1 + αF)

K

σ
· δvr. (3.46h)

In the incompressible ideal limit (setting Ceff = ∞, η = 0) the eigenfunctions for the
vertical modes (kr = 0) take the following simple form:

δvφ =
σ̃2

2Ωσ
· δvr, (3.47a)

δBr = i
kzBz
σ
· δvr, (3.47b)

δBφ = i
kzBz
2Ωσ2

(
σ̃2 − 3Ω2

)
· δvr, (3.47c)

δρ = δvz = δBz = δp = δE = 0. (3.47d)

This solution has the peculiar property that it is an exact solution to the incompressible
ideal MHD equations, since the nonlinear terms

δv ·∇δv, δB ·∇δB and ∇× (δv × δB) (3.48)
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3 Linear Growth Phase of the MRI

all vanish, as one can easily verify. As a consequence, the mode (3.47) has the potential
to grow beyond the linear regime. However, the mode itself is subject to secondary non-
axisymmetric instabilities related to the Kelvin-Helmholtz instability, that will eventually
terminate its growth (Goodman and Xu, 1994). Since the mode develops characteristic
channels it is also termed “channel mode”.

3.4 Effect of Resistivity and Radiation Transport

3.4.1 Resistivity

Comparison to Resistive Dispersion Relations in the Literature

In the incompressible limit Ceff → ∞, the dispersion relation Eq. (3.41) reduces to the
following simple form:

k2

k2
z

σ̃4
η +Ω2(σ2

η + k2
zv

2
Az)− 4Ω2k2

zv
2
Az = 0. (3.49)

By defining
ωη ≡ iση, (3.50a)

ω̃2
η ≡ −σ̃2

η, (3.50b)

DJin =
k2

k2
z

ω̃4
η −Ω2(ω2

η − k2
zv

2
Az)− 4Ω2k2

zv
2
Az; (3.50c)

we do then recover the incompressible resistive dispersion relation

DJin = 0 (3.51)

of Jin (1996). Using the above definitions as well as Eq. (3.24c), we can write Eq. (3.41)
as

ω2
[
(ωηω − k2v2

Az)(ωηω − k2
zv

2
Az)−Ω2(ω2

η − k2
zv

2
Az)− 4Ω2k2

zv
2
Az

]
− k2

zC
2
effDJin

− k2v2
Aφ

[
ω2(ωηω − k2

zv
2
Az)−Ω2ωηω

k2
z

k2

]
− 3

2
ηω2Ωkrkzk

2vAφvAz = 0. (3.52)

Written in this form, it can be verified that our dispersion relation reduces to the isother-
mal dispersion relation derived by Sano and Miyama (1999), provided that we replace
Ceff by the isothermal sound speed cs (see their Eq. (17)).
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3.4 Effect of Resistivity and Radiation Transport

Effect on Wavenumber Range

In order to see how resistivity effects the range of wavelength over which the instability
operates, we set σ = 0 in Eq. (3.51) and obtain

kcrit =
√

3
Ω

vAz

(
1 +

η2Ω2

v2
Az

k2

k2
z

)−1/2

. (3.53)

Comparing this with Eq. (3.16), we see that resistivity reduces the range of unstable
wavenumbers.

Effect on Growth Rates

In order to investigate the effect that resistivity has on the growth rates of the MRI
modes, we differentiate Eq. (3.51) with respect to η and obtain

dσ

dη
= −

σ̃2
ησk

4 −Ω2σηk
2k2
z

σ̃2
η(σ + ση)k2 +Ω2σηk2

z

(3.54)

from which it follows that dσ/dη < 0. This means that resistivity does not only change
the range over which the MRI operates, but it also reduces the growth rates of the MRI
modes.

3.4.2 Radiation Transport

Comparison to Radiative Dispersion Relations in the Literature

The effect of radiative diffusion on the growth of the MRI was considered in the paper
by Blaes and Socrates (2001). Defining

ω ≡ iσ, (3.55a)

ω̃2 = −σ̃2, (3.55b)

Dms ≡ ω2 − k2
z(C

2
eff + v2

Aφ), (3.55c)

DBH ≡
k2

k2
z

ω̃4 −Ω2ω̃2 − 4Ω2k2
zv

2
Az; (3.55d)

and setting η = 0, we can write Eq. (3.20) in a form similar to the dispersion relation
given in their paper:

DmsDBH − k2
zv

2
Aφv

2
Az(k

2ω̃2 + 3k2
zΩ

2)− k2
r

k2
z

ω̃2ω4 = 0. (3.56)
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3 Linear Growth Phase of the MRI

Blaes and Socrates (2001) considered the case of a radiation-dominated disc where matter
and radiation interact only by momentum exchange. This means that in order to compare
our result with theirs, we should take the limit αP → 0. In this limit the effective sound
speed Ceff becomes

C2
eff =

γp

ρ
+

4λE/3ρ

1 + αF
. (3.57)

In this particular limit (and with setting λ = 1/3, the dispersion relation Eq. (3.41)
becomes indeed identical to the Blaes and Socrates (2001) dispersion relation.

Gas-pressure Dominated Disc

For a gas-pressure dominated disc, with strong coupling between matter and radiation
(like in a protoplanetary disc), the effective sound speed follows by applying the limits
αP →∞ and E/e→ 0 to be

C2
eff =

γ + 4aT 4αF/e

1 + 4aT 4αF/e

p

ρ
. (3.58)

By introducing a dimensional diffusion coefficient D via the definition

D ≡ 4
aT 4

e

λc

κFρ
, (3.59)

we can write Ceff as the Ceff = γeff p/ρ where the effective adiabatic index γeff is defined
by

γeff ≡
γ + k2D/σ

1 + k2D/σ
. (3.60)

With increasing radiative diffusion coefficient D, the effective adiabatic index is reduced
towards the isothermal value γeff = 1 for D →∞. This reduction happens mostly in the
regime where the non-dimensional diffusion coefficient k2D/σ ∼ 1, as can be seen from
Fig. 3.3, where the effective adiabatic index is plotted as a function of D.
Since radiative diffusion enters only via the effective sound speed Ceff , it only changes

the compressibility, and nothing else. This means that the range of wavenumbers over
which the instability operates is not changed by radiative diffusion, however, since the
compressibility is changed, the growth rates are also changed.

Change of Growth Rates Due to Radiative Diffusion

In order to quantify the effects of radiative diffusion on the growth rates, we first look at
the vertical modes (kr = 0) which have the largest growth rates. By differentiating the
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Fig. 3.3: Effective adiabatic index γeff as a function of k2
maxD/Ω, where kmax is the wavenumber

of the fastest growing mode. In this plot, the azimuthal Alfvén speed is taken equal to the
isothermal sound speed, v2

Aφ = p/ρ (the global features of this plot are not sensitive to this
particular choice).

55
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dispersion relation (3.20) with respect to C−2
eff , we find for the change of the growth rate

σ with respect to a change in the effective sound speed:

1

σ

(
dσ

dC−2
eff

)
Ceff=∞

= −
2k2v2

Az/σ̃
2

1 + 2σ̃2/Ω2
v2

Aφ. (3.61)

From this result we conclude that for vertical modes the effect radiative diffusion leads
to a decrease of the growth rates in the presence of a nonzero azimuthal field. For
the fastest growing mode, which, for Ceff = ∞, has a growth rate σmax = 3/4Ω with
wavenumber kmax = (

√
15/4)Ω/vAz, this means that the change ∆σmax in the growth

rate as compared to the incompressible case Ceff =∞ is approximately:

∆σmax

σmax
≈ −1

5

v2
Aφ

C2
eff

. (3.62)

The relative dampening of the growth rates is, thus, in this case of the order ofO(v2
Aφ/C

2
eff).

In Fig. 3.4 and also 3.5, main part, we plot the growth rates of vertical modes for different
values of radiative diffusion coefficient D.
Curiously, if we consider non-vertical modes (kr 6= 0) and a vanishing azimuthal field,

we discover the opposite. In this case we find by an analogous analysis:

1

σ

(
dσ

dC−2
eff

)
Ceff=∞

=
k2
r

2k2
z

σ̃2σ2/k2
zΩ

2

1 + 2k2σ̃2/k2
zΩ

2
. (3.63)

The corresponding shift of the maximum growth rate becomes:

∆σmax

σmax
≈ 27k2

r

240k2

v2
A

C2
eff

. (3.64)

Plots of growth rates illustrating this effect can be found in the inset of Fig. 3.5. As
long as the azimuthal magnetic field is subthermal, this effect should not be considered
too important, because the growth of the MRI will be dominated by the fastest growing
modes, which are in this case the vertical ones. In both cases considered, radiative
diffusion contributes a fraction of (γp/ρ)/C2

eff − 1 = γ/γeff − 1 to the total shift in the
growth rates.
In gas-pressure dominated discs, the growth rates will never be dramatically changed

by radiative diffusion, since the variation in C2
eff covers only a factor of γ. This is different

from the situation encountered in a radiation dominated disc, where the analog of C2
eff
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kzvAz/Ω

σ
/Ω

D = 0
D = 10−6

D = 2 · 10−6

D = 4 · 10−6

D = 8 · 10−6

D = 1.6 · 10−5

D =∞

Fig. 3.4: Comparison of the numerical growth rates (black crosses) to the analytical results
(lines). All simulations have Bφ = 25Bz and a vertical magnetic field corresponding to a plasma
beta β = 400. The curve for D = ∞ has been inserted to show the maximum possible change
in the growth rates. The data has been obtained from simulations using an explicit numerical
implementation of the radiation transport.
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Fig. 3.5: Change of MRI Growth Rates Due to Radiative Diffusion. The curves in the main
part of the graphic are for vertical modes (kr = 0), where the growth rates are reduced by
radiative diffusion. From top to bottom, they represent the following cases, Bφ = D = 0;
Bφ = 20Bz, D = 10−5; Bφ = 20Bz, D = 10−4; Bφ = 20Bz, D = 1. The vertical magnetic field
in terms of the plasma beta, β = 2µ0p/B

2, is chosen such that β = 400, which means that
vAz/

√
p/ρ ' 0.1. The inset shows simulation results for non-vertical modes with no azimuthal

magnetic field, where radiative diffusion increases the growth rates. We chose kr = kz, Bφ = 0

and Bz such that vAz =
√
p/ρ. From bottom to top, we have D = 0, D = 10−5, D = 10−4,

D = 1. The asterisks represent the results of numerical simulations of single MRI modes, using
an implicit implementation of radiation transport, which is described in more detail in Chap. 4.

58



3.4 Effect of Resistivity and Radiation Transport

may vary greatly. In the presence of a enough azimuthal field, the growth rates of the
vertical modes may thus be severely reduced Turner et al. (2002).

In order to understand the change of the growth rates due to radiative diffusion in a
qualitative manner, let us consider two cases: First, the case of a vertical mode (k = kzez)
in the presence of an azimuthal field. In the incompressible limit (Ceff →∞), the motion
of the fluid is confined to the plane perpendicular to the perturbation wavevector, so
that δvz = 0 (Fig. 3.6 (a)). When the compressibility is nonzero, the Lorentz force due
to the azimuthal magnetic field causes a fluid flow in the vertical direction (Fig. 3.6 (b)).
The higher the compressibility (and the smaller therefore the gas pressure), the more
vertical will the velocity vector become. This in turn makes the buildup of the magnetic
field less effective, resulting in a smaller growth rate. Radiative diffusion increases the
compressibility, and therefore decreases the growth rate.

Next consider the case of a non-vertical mode (kr 6= 0), with no background azimuthal
field. If we now start with the limit of maximum compressibility (Ceff = 0), we have
δvz = 0 (Fig. 3.6 (c)), since the z-component of the Lorentz force vanishes. When
now increasing Ceff , the gas pressure will act to push the velocity vector into the plane
perpendicular to the perturbation wavevector, this effect becoming stronger and stronger
as the compressibility is further decreased (Fig. 3.6 (d)). Therefore, this time increasing
the compressibility makes the buildup of the magnetic field more effective, which means
that the growth rate increases due to radiative diffusion.

When considering the general case of a non-vertical mode in the presence of a nonzero
azimuthal field, both effects are present and the result will be either an increase or a
decrease of the growth rate, depending on the strength of the azimuthal field and the
direction of the perturbation wavevector.

Numerical Simulations

In order to test our analytical calculations numerically, we set up 2D simulations of
single MRI mode using the CRONOS code, a conservative MHD code which we describe in
some detail in the next chapter. We initialise the simulations using the formula for the
eigenfunctions given in Eqs. 3.46. The measured growth rates are plotted as asterisks in
Figs. (3.4)+(3.5). As can be seen, the calculated growth rates are nicely reproduced by
the numerical simulation, even in the case where the where the the shift in the growth
rates is very small, as in the inset of Fig. (3.5).
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(a) k = kz, Ceff >> vA

(b) k = kz, Ceff << vA

(c) kr = kz, Ceff << vA

(d) kr = kz, Ceff >> vA

Fig. 3.6: Sketch of the MRI eigenmodes. Plotted is the density perturbation δρ (grayscale) and
the velocity perturbation δv (arrows) in the r-z plane. The plots on the left show the case of a
vertical mode in the presence of a background azimuthal magnetic field; where (a) corresponds
to the incompressible case, while (b) is for finite compressibility. The plots on the right show the
case of a non-vertical mode with kr = kz where no azimuthal magnetic field is present. Here, (c)
corresponds to the case of maximum compressibility and (d) to the incompressible case.
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3.5 Summary

The topic of the present chapter was a linear analysis of the magnetorotational instability.
The analysis was carried out by analytical means. Additionally, we performed numerical
simulations of single MRI modes and measured the growth rates, thereby proving the
correctness of the analytical calculation. We summarise the most important points of
the work presented in this chapter:

• We have derived the most general MRI dispersion relation to date. We include both
the effect of an Ohmic resistivity as well as an elaborate description of radiation
transport. This makes our solution applicable to a wide range of astrophysical ob-
jects, including both the extremes of a cool protoplanetary disc and a hot accretion
flow around a compact object.

• Radiative diffusion changes the growth rates of the MRI modes, leading to a de-
crease of the growth rates of the fastest growing modes. In addition, we find that
there exists a class of modes whose growth rates are increased as a consequence of
radiative diffusion. In contrast to this, resistivity always decreases the growth of
the MRI for all modes.

In the next chapter, we will continue our study of the influence of radiation transport on
the MRI by setting up 3D numerical simulations of magnetorotational turbulence. We
will test different numerical schemes and check how much numerical effects affect the
results. Finally, we will investigate how radiation transport affects the saturation level
of the turbulence.
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Chapter 4: Local Shearing Box
Simulations

4.1 Numerical Schemes

While in principle it is always desirable to obtain an analytical solution to a particular
problem, this is in practice often not possible. As we have seen in the last chapter, for
example, the evolution of a single MRI mode can be calculated analytically, but this is no
longer possible if we want to consider the problem of fully evolved 3D magnetorotational
turbulence where many modes interact with each other in a non-linear fashion. Instead
we have to resort to numerical methods, where the equations of magnetohydrodynam-
ics are integrated numerically on a computer. With the exponential rise in computing
power over the last decades, numerical methods have become ever more important in
many fields of science, and astrophysics is no exception here. Concerning the problem
of magnetorotational turbulence in accretion discs, numerical simulations are almost the
only means of investigation, since analytical approaches are very limited and certain
physical conditions that are present in accretion discs (like the very high Reynolds num-
bers) cannot be reproduced in laboratory experiments. Therefore, the rest of our work
is reserved to the numerical solution of the fluid equations that have been derived in
Chap. 1.

4.1.1 Finite Difference vs. Finite Volume

The numerical algorithms that are employed to solve the magnetohydrodynamical equa-
tions can be grouped into two classes, namely finite-difference and finite-volume schemes.1

In finite-difference codes, the derivatives appearing in partial differential equations are
replaced by finite differences. Such codes usually have to include some form of artifi-
cial viscosity for the proper treatment of shocks (von Neumann and Richtmyer, 1950).

1In addition to these two groups there exist also spectral codes which solve the incompressible MHD
equations in Fourier space. While these codes are very important for the study of incompressible
turbulence, their applicability to actual astrophysical problems is, however, quite limited.
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Finite-volume schemes, on the other hand, are based on the integral formulation of a set
of conservation equations, rather than the original differential form. This means that
they are naturally well suited for calculating weak solutions to the original partial differ-
ential equations and usually need no artificial viscosity to get shock speeds and positions
right. Moreover, they have the nice property of automatically conserving the values of
the conserved variables to round-off error. Finite-difference codes are still widely used
for astrophysical problems, however, the more modern finite-volume codes become more
and more common and will likely play a prominent role in the foreseeable future.

4.1.2 The ZEUS code

The ZEUS code invented by Stone and Norman (1992) is the most widely used finite-
difference code in the field of theoretical astrophysics. The code solves the equations of
ideal magnetohydrodynamics, i.e. Eqs. (2.27a), (2.27b), (2.27c) and (2.32) written in the
form

∂ρ

∂t
+ ∇ · (ρv) = 0, (4.1a)

ρ
∂v

∂t
+ v ·∇v = −∇p+

(∇×B)×B
4π

− ρ∇Φ−∇ ·Q (4.1b)

∂e

∂t
+ v ·∇e = −p∇ · v −Q : ∇v, (4.1c)

∂B

∂t
= ∇× (v ×B), (4.1d)

where the tensor Q describes the artificial viscosity. ZEUS uses a staggered mesh, where
the scalar variables (ρ and e) are located at the cell centers and the vector variables (v
and B) are defined at cell interfaces. The code uses operator splitting to calculate the
solution in two steps, namely the source step, where the equations

ρ
∂v

∂t
= −∇p+

(∇×B)×B
4π

− ρ∇Φ−∇ ·Q, (4.2a)

∂e

∂t
= −p∇ · v −Q : ∇v, (4.2b)
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are solved, and the transport step, where the advection of the fluid variables is calculated
based on the integral equations

d

dt

∫
V
ρdV = −

∫
∂V
ρv · dA, (4.3a)

d

dt

∫
V
ρv dV = −

∫
∂V
ρvv · dA, (4.3b)

d

dt

∫
V
edV = −

∫
∂V
ev · dA; (4.3c)

where V denotes the volume of one grid cell. The way the transport step is performed
means that although technically ZEUS is a finite-difference code, it does also contain
elements of a finite-volume code. The ZEUS code is characterised by a high degree of
simplicity, robustness and speed, making it ideally suited for astrophysical applications.
A special advantage of the ZEUS code is the fact that it’s operator split nature makes it
very easy to add new physics, something that in general cannot be said of finite-volume
codes. For some applications, a disadvantage of the ZEUS code is that in its original
form it is not energy conserving: Kinetic and magnetic energy that is lost on the grid
scale due to numerical dissipation simply gets lost, while in a real physical system the
energy would cascade down to smaller scales and finally be converted into heat. For our
project, where we intend to calculate the transport of energy that comes from turbulent
dissipation, energy conservation is essential, so the ZEUS code is not well suited for the
problem we have in mind.2 However, we will nevertheless use the ZEUS code for test
simulations in order to compare the results of different codes.

4.1.3 A Simple Finite Volume Scheme

The MHD Equations in Conservative Form

We will now proceed to derive a simple finite-volume scheme suitable for the problem
that we are considering. To do so, we first have to write the MHD equations3 in the form
of a system of conservation laws, i.e.

∂u

∂t
+
∂fx
∂x

+
∂fy
∂y

+
∂fz
∂z

= 0, (4.4)

2Note, however, that the ZEUS code can be changed so that part or all of the dissipated energy is
correctly transformed into heat, see, for example Turner (2004); Hirose et al. (2006).

3For simplicity, here we restrict ourselves to the ideal MHD equations, i.e. Eqs. (2.42) with η = 0 and
the radiative diffusion term ∇ ·F dropped. The radiation transport is treated implicitly anyway, see
Sec. 4.1.6
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where u denotes the vector of conserved variables and fx, fy, fz are the fluxes. The
continuity and induction equations,

∂ρ

∂t
+ ∇ · (ρv) = 0, (4.5)

∂B

∂t
= ∇× (v ×B), (4.6)

already have the desired form. By adding the continuity equation to Eq. (2.27b) and
applying standard vector identities, we can also write the momentum equation in an
conservative form:

∂(ρv)

∂t
+ ∇ ·

[
ρvv + ptotI−

BB

4π

]
= 0, (4.7)

where ptot ≡ p + B2/8π. Defining the total energy Etot as Etot = e + ρv2/2 + B2/8π
and multiplying Eq. (4.7) with v and Eq. (4.6) with B and adding the two resulting
equations to the thermal energy equation, we get

∂Etot

∂t
+ ∇ ·

[
(Etot + ptot)v −

B(B · v)

4π

]
= 0. (4.8)

Note that by including the radiation transport term∇·F in the thermal energy equation,
and by adding the gravitational energy to the definition of Etot we could have arrived
at a conservative formulation of the total energy equation including radiation transport
and gravity. However, we prefer to include these terms later as source terms.
We have now indeed arrived at a conservative formulation of the ideal MHD equations,

i.e. we can write them in the form of Eq. (4.4), with the the vector of conserved variables,
u, defined as

u ≡



ρ
ρvx
ρvy
ρvz
Bx
By
Bz
Etot


, (4.9)

66



4.1 Numerical Schemes

and the fluxes fx, fy, fz given by

fx ≡



ρvx
ρv2
x + ptot −B2

x

ρvxvy −BxBy
ρvxvz −BxBz

0
Byvx −Bxvy
Bzvx −Bxvz

(Etot + ptot)vx − (B · v)Bx


, (4.10)

fy ≡



ρvy
ρvyvx −ByBx
ρv2
y + ptot −B2

y

ρvyvz −ByBz
Bxvy −Byvx

0
Bzvy −Byvz

(Etot + ptot)vy − (B · v)By


, (4.11)

fz ≡



ρvz
ρvzvx −BzBx
ρvzvy −BzBy
ρv2
z + ptot −B2

z

Bxvz −Bzvx
Byvz −Bzvy

0
(Etot + ptot)vz − (B · v)Bz


. (4.12)

1D Version of the Scheme

For simplicity, let us begin with the 1D version of Eq. (4.4), i.e. we want to discretise
the equation

∂u

∂t
+
∂f

∂x
= 0, (4.13)

with f ≡ fx. Integrating Eqs. (4.4) over one interval in space I = [xl, xr] and one interval
in time [tn, tn+1] yields:

un+1
I = unI +

δt

δx

(
f
n+ 1

2
r − f

n+ 1
2

l

)
, (4.14)
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where δx ≡ xr − xl and δt ≡ tn+1 − tn. The sliding average unI is defined as

unI ≡
1

xr − xl

∫
I
u(x, tn) dx (4.15)

and the time-averaged fluxes f
n+1/2
l and f

n+1/2
r through the left/right boundary of the

cell are given by

f
n+ 1

2
l ≡

∫ tn+1

tn

f(xl, t) dt, (4.16)

f
n+ 1

2
r ≡

∫ tn+1

tn

f(xr, t) dt. (4.17)

Note that Eq. (4.14) is an exact expression and does not involve any approximations.
Starting from the volume averages

uni = un[x
i− 1

2
,x

i+ 1
2

], (4.18)

we perform a piecewise linear reconstruction4

un(x) = uni + sni (x− xi), xi− 1
2
< x < xi+ 1

2
∀i. (4.19)

For the stability of the numerical scheme it is important that the reconstruction does
not introduce any new extrema, a property that is usually achieved using suitable slope
limiters (LeVeque 2002). Next, we want to advance the solution in time over a small
interval δt, using Eq. (4.14). The reconstruction Eq. (4.19) contains discontinuities at
the interfaces xi±1/2, which propagate away from the interface. It is easy to provide upper
bounds for the right- and left-sided propagation speeds, which we denote by a+

i±1/2 and
a−i±1/2, respectively (Kurganov et al., 2001). Following Kurganov et al. (2001), we define

xi+ 1
2
,l ≡ xi+ 1

2
+ a−

i+ 1
2

δt, (4.20)

xi+ 1
2
,r ≡ xi+ 1

2
+ a+

i+ 1
2

δt. (4.21)

The solution is thus continuous in the intervals Ii ≡ [xi−1/2,r, xi+1/2,l], but contains
discontinuities in the intervals Ii+1/2 ≡ [xi+1/2,l, xi+1/2,r] (cf. Fig. 4.1). Since the solution
is continuous at the boundaries of both the intervals Ii and Ii+1/2, we can apply Eq. (4.14)

4Actually, the following derivation is not restricted to a reconstruction of second order, but may be a
conservative, non-oscillatory polynomial of any order (Kurganov et al., 2001).
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J
JJ
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xi− 1
2
,l xi− 1

2
,r

L
L
L
L
L
L
L
LL

�
�
�
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xi+ 1
2
,l xi+ 1

2
,r

a−
i− 1

2

a+
i+ 1

2

a−
i+ 1

2

a+
i+ 1

2

︸ ︷︷ ︸
∆x

Fig. 4.1: Sketch showing the structure of the computational grid. The cell centers are labeled
xi, where the index i runs from 1 to N , the number of grid points. Cell faces are labeled using
fractional indices, such that xi±1/2 refers to the point at xi±∆x/2, where ∆x denotes the width
of one grid cell. The solution is continuous in the green intervals but may contain discontinuities
in the red intervals. These discontinuities propagate away from the interface xi+1/2 with signal
speeds a±i+1/2. The location of these discontinuities at a certain instant in time is denoted by
xi+1/2,l/r.
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on both intervals Ii and Ii+1/2. We will denote the corresponding volume averages over
the interval Ii and Ii+1/2 by

ũi(t) ≡ uIi(t) and ũi+ 1
2
(t) ≡ uI

i+ 1
2

(t) (4.22)

respectively. Using now the decomposition

un+1
i =

1

∆x

∫ x
i− 1

2 ,r

x
i− 1

2

un+1(x) dx+
xi+ 1

2
,l − xi− 1

2
,r

∆x
uni +

1

∆x

∫ x
i+ 1

2

x
i+ 1

2 ,l

un+1(x) dx, (4.23)

we can calculate the time derivative of ui,

d

dt
ui(t) = lim

∆t→0

un+1
i − uni

∆t

=
a+
i− 1

2

∆x
lim

∆t→0
ũn+1
i− 1

2

+ lim
∆t→0

1

∆t

(
xn
i+ 1

2
,l
− xn

i− 1
2
,r

∆x
ũn+1
i − uni

)
+
a−
i+ 1

2

∆x
lim

∆t→0
ũn+1
i+ 1

2

. (4.24)

The three limits in this equation can be calculated independently. For the term in the
middle, we get (using Eq. (4.14) with I = Ii)

lim
∆t→0

1

∆t

(
xn
i+ 1

2
,l
− xn

i− 1
2
,r

∆x
ũn+1
i − uni

)
= − lim

∆t→0

1

∆t∆x

∫ x
i− 1

2 ,r

x
i− 1

2

un(x) dx

− lim
∆t→0

1

∆t∆x
+

∫ x
i+ 1

2

x
i+ 1

2
,l
un(x) dx− lim

∆t→0

1

∆t∆x

∫ tn+1

tn

[
f
(
ux

i+ 1
2 ,l

(t)
)
− f
(
ux

i− 1
2 ,r

(t)
)]

dt.

(4.25)

Introducing the following shorthand notation for the interface states to the left/right side
of the interface at xi+1/2,

u−
i+ 1

2

≡ uni + sni
∆x

2
, (4.26)

u+
i+ 1

2

≡ uni+1 − sni+1

∆x

2
, (4.27)

the result can be expressed as

=
a−
i+ 1

2

u−
i+ 1

2

− a+
i− 1

2

u+
i− 1

2

∆x
−

f
(
u−
i+ 1

2

)
− f
(
u+
i− 1

2

)
∆x

. (4.28)
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The calculation of the other two limits proceeds in a similar fashion, where again we
make use of Eq. (4.14), this time with I = Ii+1/2:

lim
∆t→0

ũn+1
i− 1

2

= lim
∆t→0

1

xi− 1
2
,r − xi− 1

2
,l

∫ x
i− 1

2

x
i− 1

2 ,l

un(x) dx+

∫ x
i− 1

2 ,r

x
i− 1

2

un(x) dx


− lim

∆t→0

1

∆x

∫ tn+1

tn

[
f(ux

i− 1
2 ,r

(t))− f(ux
i− 1

2 ,l
(t))
]

dt

=
a+
i− 1

2

u+
i− 1

2

− a−
i− 1

2

u−
i− 1

2

a+
i− 1

2

− a−
i− 1

2

−
f(u+

i− 1
2

)− f(u−
i− 1

2

)

a+
i− 1

2

− a−
i− 1

2

, (4.29)

and, analogously,

lim
∆t→0

ũn+1
i+ 1

2

=
a+
i+ 1

2

u+
i+ 1

2

− a−
i+ 1

2

u−
i+ 1

2

a+
i+ 1

2

− a−
i+ 1

2

−
f(u+

i+ 1
2

)− f(u−
i+ 1

2

)

a+
i+ 1

2

− a−
i+ 1

2

. (4.30)

Substitution of Eqs. (4.28),(4.29) and (4.30) completes the calculation of the time deriva-
tive of ui(t), which can be expressed in conservative form as

d

dt
ui(t) = −

F i+ 1
2
(t)−F i− 1

2
(t)

∆x
, (4.31)

where the numerical fluxes F i+ 1
2
are defined by

F i+ 1
2
(t) ≡

a+
i+ 1

2

f(u−
i+ 1

2

)− a−
i+ 1

2

f(u+
i+ 1

2

)

a+
i+ 1

2

− a−
i+ 1

2

+
a+
i+ 1

2

a−
i+ 1

2

a+
i+ 1

2

− a−
i+ 1

2

(
u+
i+ 1

2

− u−
i+ 1

2

)
. (4.32)

By replacing the differentials on the left hand side of Eq. (4.31) with finite differences,
we arrive at the following scheme:

un+1
i = uni −

∆t

∆x

[
F i+ 1

2
(t)−F i− 1

2
(t)
]
. (4.33)

Generalisation to 3D

The scheme Eq. (4.33) can be straightforwardly generalised to multiple dimensions. Since
this does not introduce any new concepts, we will omit the somewhat lengthy derivation
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here. Details can be found in Kurganov et al. (2001). The result is that Eq. (4.33) is
replaced by

un+1
i = uni −

∆t

∆x

[
Fx
i+ 1

2
jk

(t)−Fx
i− 1

2
jk

(t)
]

− ∆t

∆y

[
Fy

ij+ 1
2
k
(t)−Fy

ij− 1
2
k
(t)
]
− ∆t

∆z

[
Fz
ijk+ 1

2

(t)−Fz
ijk− 1

2

(t)
]]
, (4.34)

where

Fx
i+ 1

2
jk

(t) =
a+
i+ 1

2
jk
f(u−

i+ 1
2
jk

)− a−
i+ 1

2
jk
f(u+

i+ 1
2
jk

)

a+
i+ 1

2
jk
− a−

i+ 1
2
jk

+
a+
i+ 1

2
jk
a−
i+ 1

2
jk

a+
i+ 1

2
jk
− a−

i+ 1
2
jk

(
u+
i+ 1

2
jk
− u−

i+ 1
2
jk

)
,

Fy

ij+ 1
2
k
(t) =

b+
ij+ 1

2
k
f(u−

ij+ 1
2
k
)− b−

ij+ 1
2
k
f(u+

ij+ 1
2
k
)

b+
ij+ 1

2
k
− b−

ij+ 1
2
k

+
b+
ij+ 1

2
k
b−
ij+ 1

2
k

b+
ij+ 1

2
k
− b−

ij+ 1
2
k

(
u+
ij+ 1

2
k
− u−

ij+ 1
2
k

)
,

Fz
ijk+ 1

2

(t) =
c+
ijk+ 1

2

f(u−
ijk+ 1

2

)− c−
ijk+ 1

2

f(u+
ijk+ 1

2

)

c+
ijk+ 1

2

− c−
ijk+ 1

2

+
c+
ijk+ 1

2

c−
ijk+ 1

2

c+
ijk+ 1

2

− c−
ijk+ 1

2

(
u+
ijk+ 1

2

− u−
ijk+ 1

2

)
;

(4.35)

with a±i+1/2jk, b
±
ij+1/2k, c

±
ijk+1/2 being the signal speeds in the x, y and z directions,

respectively. We note the following advantages of the scheme Eq. (4.33) that we have
just derived:

1. The scheme is simple and easy to implement.

2. It enjoys the usual advantages of finite-volume schemes, namely exact conservation
of conservative variables and correct treatment of shocks.

3. It does not require a (computationally expensive) Riemann solver.

4. It is general and can in principle be applied to any set of conservative partial
differential equations.

From the above mentioned points we conclude that the scheme is very well suited for the
applications that we have in mind. The scheme has been implemented in the CRONOS code
(Kissmann, 2006), and we will apply this code for most of our work. In the CRONOS code,
the prescription Eq. (4.34) is evolved using either a second or third order Runge-Kutta
scheme in order to obtain a solution that is second/third order accurate in time. For
comparison, we will also use the NIRVANA code which employs a very similar numerical
scheme (Ziegler, 2004).
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4.1.4 Godunov Schemes

The scheme that we derived in the last section belongs to the class of Godunov schemes.
The general algorithm proposed by Godunov (1959), which is also called the REA algo-
rithm for “reconstruct-evolve-average” (LeVeque 2002) works as follows:

1. Use the volume-averages uni to calculate the left and right interface states ui−1/2,r

and ui+1/2,l. This step may include a time advance.

2. Calculate the fluxes F i+1/2 at the cell interfaces using an (approximate) Riemann
solver.

3. Apply the flux-differencing formula Eq. (4.14),

un+1
i = uni +

δt

δx

(
F i+ 1

2
−F i+ 1

2

)
,

to obtain the solution at the next timestep un+1
i .

The scheme that we derived in the last section is usually referred to as a central scheme
(Kurganov et al., 2001), which, in contrast to the upwind Godunov schemes described in
the REA algorithm above, does not need a Riemann solver, we can nevertheless interpret
these scheme in the context of upwind Godunov schemes, since Eq. (4.32) essentially
describes an approximate solution to the Riemann problem. Indeed, if we compare
Eq. (4.32) equation with Eq. (10) in Miyoshi and Kusano (2005) we see that the flux
defined by this equation is identical to the flux defined by the HLL Riemann solver.
This means that we can easily extend the scheme implemented in the CRONOS code to
include any desired Riemann solver by simply changing the prescription Eq. (4.32) for the
calculation of the flux accordingly. A similar change has also been made to the NIRVANA
code (see Gressel 2010).
As an example of a genuine upwind Godunov scheme, we consider the scheme imple-

mented in the ATHENA code (Stone and Gardiner, 2010), which is based on the piecewise-
parabolic method of Colella and Woodward (1984). The one-dimensional integration
scheme follows the REA algorithm described above. Step 1 includes a time advance by
δt/2 using characteristic variables. The steps 1-3 in the REA algorithm are performed
only once per timestep and are not coupled to a Runge-Kutta scheme. Due to the time
advance performed in step one, the code is nevertheless second order in time.

4.1.5 Evolution of the Magnetic Field

An important requirement for magnetohydrodynamical codes is that they evolve the
magnetic field in manner such that the divergence free constrained ∇ · B = 0 is sat-
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isfied. Otherwise the forces arising from magnetic monopoles will cause the simulation
to produce unphysical results. Obviously, the algorithms discussed so far will in general
not preserve the divergence of the magnetic field. A possibility to overcome this problem
is to use the method of constrained transport (CT) invented by Evans & Hawley 1988.
The idea behind this method is to integrate the induction equation

∂B

∂t
= ∇× (v ×B) = ∇×E (4.36)

over the cell faces resulting in a scheme that automatically preserves the value of ∇ ·B
in each cell. This hybrid ansatz (using volume averaged values of the magnetic field for
the hydro part and area-averaged values for constrained transport part) is very common,
and all of the four above-mentioned codes use one or the other flavour of CT for the
magnetic field evolution.5 The constrained transport scheme implemented in the CRONOS
code is based on the works of Balsara and Spicer (1999); Londrillo and Del Zanna (2000).

4.1.6 Radiation Transport

Explicit Discretisation

The easiest method to include radiative transfer is to simply add the radiation flux F
to the total energy flux. The problem with this method, where the radiation transport
is treated explicitly, is that this imposes a severe restriction on the time step, since for
a diffusion process the maximum possible time step scales ∝ ∆x2/∆t. Furthermore, in
optically thin regions, the diffusion coefficients can become very high, leading to pro-
hibitively small timesteps even at low resolutions. Although the explicit treatment of
the radiation transport is not really practicable for our project, we have nevertheless
included it in the CRONOS code for use in test simulations.

Implicit Discretisation

In order to overcome the problem of the prohibitively small timestep in optically thin
regions, we implemented an implicit treatment of the radiation transfer, which is used in
almost all calculations presented in this thesis. We use operator splitting and calculate
the radiation transport step separately from the hydro part using an implicit scheme
which will be described in a moment. We start by adding the thermal energy equation

∂eth

∂t
+ ∇ · (ethv) = −p∇ · v − κPρ(4πB − cErad) (4.37)

5Note that variants of CT using cell-centered fields also exist (for example Toth 2000), but these are
far less common.
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and the radiation energy equation

∂Erad

∂t
+ ∇ · (Eradv) = −Erad

3
∇ · v + κPρ(4πB − cErad)−∇ · F , (4.38)

in order to obtain an equation that describes the evolution of the combined (gas+radiation)
energy:

∂(eth + Erad)

∂t
+ ∇ · [(eth + Erad)v] = −ptot∇ · v −∇ · F , (4.39)

where ptot = p + Erad/3 ≈ p, since in our simulations the radiation pressure is small
compared to the gas pressure. Splitting off the radiation diffusion part and making
use of the flux-limited diffusion approximation (Levermore and Pomraning, 1981), the
radiation transport step becomes:

∂(eth + Erad)

∂t
= −∇ · λc

κρ
∇Erad. (4.40)

Using the ideal gas law eth = cVρT and assuming thermal equilibrium between matter
and radiation, Erad = aT 4, we close our system of equations and end up with the following
diffusion equation for the radiation energy:(

eth

4Erad
+ 1

)
∂Erad

∂t
= −∇ · λc

κρ
∇Erad. (4.41)

From this we can estimate the timescale to reach thermal balance according to τ ∼
H2/Drad, where H is the scale height and

Drad =

(
eth

4Erad
+ 1

)−1 λc

κρ
. (4.42)

Note that in the radiation pressure dominated case,Drad is simply given byDrad = λc/κρ.
However, for the gas pressure dominated case that we are considering, we actually have
Drad = 4Eradλc/ethκρ, which means that τ is bigger by a factor of 4Erad/eth and it takes
thus much longer to reach thermal balance.
When working in the gas-pressure dominated regime, it is natural to replace the radi-

ation energy Erad in Eq. (4.41) by aT 4 and then solve the following diffusion equation
for the temperature:

(cVρ+ 4aT 3)
∂T

∂t
= −∇ · λc

κρ
4aT 3∇T. (4.43)
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This equation is straightforwardly discretised in the following manner:

Tn+1
ijk = Tnijk +

∆t

cVρnijk + 4a(Tnijk)
3

{
1

∆x2

[
Dn
i+ 1

2
jk

∆Tn+1
i+ 1

2
jk
−Dn

i− 1
2
jk

∆Tn+1
i− 1

2
jk

]
+

1

∆y2

[
Dn
ij+ 1

2
k
∆Tn+1

ij+ 1
2
k
−Dn

ij− 1
2
k
∆Tn+1

ij− 1
2
k

]
+

1

∆z2

[
Dn
ijk+ 1

2

∆Tn+1
ijk+ 1

2

−Dn
ijk− 1

2

∆Tn+1
ijk− 1

2

]}
,

where ∆Tn+1
i+ 1

2
jk

= Tn+1
i+1jk − T

n+1
ijk ,

Dn
i+ 1

2
jk

=
1

2

[(
λc

κρ
4aT 3

)n
i+1jk

+

(
λc

κρ
4aT 3

)n
ijk

]
, (4.44)

and so on. The resulting matrix equation, which involves a diagonally dominant matrix,
can in principle be solved by any standard sparse matrix solver. For the calculations
reported in this work we use the method of successive overrelaxation.

4.2 Code Tests

4.2.1 Convergence Tests

As a simple test problem for our numerical code, we simulate single MRI modes. The
analytical formulae for these modes have been derived in the last chapter (see Eq. (3.46)).
By simulating these modes numerically, we do at the same time verify the analytical
calculations that were presented there. We perform these calculations in an axisymmetric
2D (r-z) domain, where in accordance with the local instability analysis we assume that
the radial domain is small enough so that geometrical curvature can be neglected. The
calculations are thus performed in Cartesian coordinates with x and y corresponding
to the radial and azimuthal coordinates, respectively. The computational domain has
size [−L/2, L/2] × [−L/2, L/2], with L = H, where H is the pressure scaleheight. The
vertical boundary conditions are periodic. For the radial boundary condition we choose
shearing-sheet boundary conditions (Balbus & Hawley 1990b), which are identical to
periodic boundary conditions except for the azimuthal velocity, where the velocity offset
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coming from the background shear flow is subtracted:

vy(−L/2, y, z) = vy(L/2, y, z) +
3

2
Ω · L

2
(4.45)

We initialise the simulations using the formulae given in Eq. (3.46). The perturbation am-
plitude is set to δvx = 0.001cs. The initial vertical magnetic field has a value correspond-
ing to a plasma beta of β = 84.33. The simulations run for one orbit. Growth rates are
measured by performing a least-squares fit to the function ln(

√
〈δvr(t)2〉/

√
〈δvr(0)2〉),

where the angular brackets 〈 〉 denote a spatial average. We run simulations with ideal
MHD and also simulations where radiation transport or resistivity are switched on order
to test these two extensions to the ideal MHD equations also. We perform simulations
both with the original central scheme (i.e. using the HLL Riemann solver) and with the
modified scheme where the numerical flux in Eq. (4.32) has been replaced with the flux
provided by the more sophisticated HLLD Riemann solver (Miyoshi and Kusano, 2005).
The results are shown in Fig. 4.2, where the relative difference between the theoretical

growth rate as predicted by Eq. (3.41) is plotted. We find good convergence in all three
cases, meaning that neither the inclusion of radiation transport (which is only first order)
nor the inclusion of resistivity affect the convergence properties of the scheme for this
particular test case. From panel (a) of Fig. 4.2, we see that the error is about ten times
smaller when using the HLLD solver as compared to the HLL solver of the original
scheme. For the case of the HLL solver, we need about as double the resolution to
achieve the same accuracy. Looking at the radiative case (panel (b)), which includes an
azimuthal field also and where the perturbations are no longer incompressible, we see
that the performance of the HLL solver does get even much more worse, while the HLLD
solver shows about the same performance as in the ideal case. In the resistive case, the
convergence of both solvers is roughly similar to the ideal case. The conclusion taken
from this test is that the HLLD solver performs significantly better than the HLL solver,
and it does so at only a slightly higher computational cost. This strongly suggests using
the HLLD solver for future calculations.

4.2.2 Code Comparison

In the last section we verified that our numerical code accurately reproduces the growth
of single MRI modes, for which an analytical solution is available. This suggests that our
code is indeed an appropriate tool for investigating magnetorotational turbulence, which
can not be done by analytical means. The simplest setup to study 3D magnetorotational
turbulence is the unstratified local shearing box (Hawley et al., 1995; Stone and Gar-
diner, 2010). This setup is an extension to the shearing-sheet setup that we encountered
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(a) Ideal Case: kr = By = D = η = 0.
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(b) Radiative Case: By = 10Bz, D 6= 0.
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Fig. 4.2: Single MRI Mode Convergence Test. A single axisymmetric MRI mode with wave-
length λ = H is simulated in a domain of size 1H × 1H and an initial vertical magnetic field
corresponding to a plasma beta of β = 84.33. The resulting growth rate in the ideal MHD case
(panel (a)) is σ = 0.75 (i.e. the maximum growth rate). Panel (b) shows the radiative case
which possesses also an azimuthal magnetic field By = 10Bz. The growth rate in this case is
σ = 0.53. The setup for the resistive case (panel (c)) is the same as in the ideal case, except that
resistivity is switched on, with the value of η chosen such that the magnetic Reynolds number
is Rem = csH/η = 100. The growth rate in this case is σ = 0.52. Plotted is the relative error
between the theoretical growth rate and the growth rate measured in the simulation vs. the
number of grid cells per scaleheight. The label ‘HLL’ refers to simulations performed with the
HLL Riemann solver, while ‘HLLD’ refers to simulations where the HLLD Riemann solver is
used.
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in the last section. The simulation domain is a rectangular box, where the Cartesian
coordinates (x, y, z) correspond to the radial, azimuthal and vertical directions, respec-
tively. The boundary conditions in the azimuthal and vertical directions are periodic.
The radial boundary conditions are so-called shear-periodic boundary conditions, which
are consistent with the background shear flow. We set up a fiducial model which takes
place in a box of size 1H × 6H × 1H and that has as its initial condition the state de-
scribe in Sec. 3.1, with By = 0 and an initial vertical magnetic field Bz corresponding to
a plasma beta of β = 400. The simulation is seeded with random velocity perturbations
of order 0.01cs.
In order to look how different codes compare in simulations of magnetorotational tur-

bulence we run the fiducial model described in the previous paragraph with all of our four
codes, ZEUS, NIRVANA, CRONOS and ATHENA. We choose a resolution of 32 × 64 × 32 grid
cells. We find that in most of the variables, the codes actually produce rather similar
results, see for example the evolution of the magnetic energy depicted in panel (a) of
Fig. 4.3. The similarity in the result is likely to a large part due to the fact that we
have a strong magnetic background field. As a consequence, the dynamics is dominated
by the fastest growing channel mode. In a period of several orbits, the mode grows, is
destroyed, and grows again (Sano and Inutsuka, 2001).6 The periodic reappearance of
the channel mode can clearly be seen in movie of, for example, the magnetic energy and
also in the oscillations in panel (a) of Fig. 4.3. It is clear that once the channel mode
is sufficiently resolved, the simulation is essentially converged, so the similarity of the
results of the different codes is not too surprising.
A remarkable difference shows up, however, if we look at the heating rates. These

can be measured directly by looking at the total thermal energy in the box, since due
to the periodic boundary conditions, energy cannot escape from the box. Therefore, the
turbulent dissipation leads to an approximately steady increase of the thermal energy.
By looking at panel (b) of Fig. 4.3, we see that the heating rate for the ZEUS code
is much lower than for the other codes. The reason for this is that the ZEUS code
evolves the thermal energy, meaning that the compressional heating is the only factor
that contributes to the increase in internal energy. On the contrary, the other codes
involve the total energy, which means that the losses in magnetic and kinetic energy
are also captured and automatically transferred into gas internal energy. However, the
three other codes also show significant differences concerning the heating rates, with the
ATHENA code producing about as twice as much heating as NIRVANA and CRONOS. This
shows that at least at low resolutions the heating rate may depends on numerical effects.

6Possible mechanisms responsible for the destruction of the channel mode include parasitic modes,
mode-mode interactions and magnetic reconnection.
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Fig. 4.3: Plot of Shearing-box results for different MHD codes. Shown are the volume-averaged
magnetic and thermal energy, obtained with the MHD codes ZEUS, NIRVANA, CRONOS and ATHENA.
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Name Solver Resolution 〈〈αR〉〉 〈〈αM〉〉 〈〈α〉〉
rs16.hll HLL 16x32x16 no sustained turbulence
rs32.hll HLL 32x64x32 no sustained turbulence
rs64.hll HLL 64x128x64 no sustained turbulence
rs128.hll HLL 128x256x128 no sustained turbulence
rs16.hlld HLLD 16x32x16 4.4 · 10−5 1.1 · 10−4 1.6 · 10−4

rs32.hlld HLLD 32x64x32 0.004 0.011 0.015
rs64.hlld HLLD 64x128x64 0.006 0.018 0.024
rs128.hlld HLLD 128x256x128 0.004 0.012 0.016

Tab. 4.1: Overview of the simulation runs performed for the resolution study. ‘HLL’/‘HLLD’
means that the HLL/HLLD Riemann solver has been used for that particular run. All runs
were restarted using the data from model rs16.hlld at t = 100 orbits and have been run until
t = 140 orbits. The last three columns show the values of the Reynolds, Maxwell and total stress,
averaged over 40 orbits. For further information, see the text.

4.2.3 Resolution Study

Model

In order to further test our numerical code and investigate the influence of numerical
effects on the outcome of the MRI, we also run a model that has zero net magnetic
flux in the vertical direction. The simulation box has a size of 1H × 6H × 1H and the
simulation is initialised with a magnetic field of the form

B = B0 sin(2πx/H) êz, (4.46)

where the strength of B0 is chosen such that it corresponds to a plasma beta of β = 100.
As has already been remarked earlier, with this type of magnetic field configuration there
is no driving of the turbulence by an imposed background field; instead it depends on the
working of an internal dynamo if the magnetic field can be sustained or not. We perform
runs at different resolutions, using either the HLL or the HLLD Riemann solver. Tab. 4.1
gives an overview of the runs performed. We first run model rs16.hlld until t = 100
orbits. All other runs are then initialised using the data from this simulation, and are
then run until t = 140 orbits. The time-averaged values for the turbulent stresses have
been measured during this period from t = 100− 140 orbits. The stresses are measured
according to the following prescription:

α = 〈TR + TM〉/p0, (4.47)
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where p0 is the initial gas pressure, TR = ρδvrδvφ denotes the Reynolds stress and
TM = −δBrδBφ is the Maxwell stress. The angular brackets 〈· · · 〉 indicate a spatial
average. We also use the dimensionless stresses αR and αM defined as

αR = 〈TR〉/p0, αM = 〈TM〉/p0. (4.48)

Results

We find that when using the HLL solver no sustained dynamo action occurs. At the
beginning, the magnetic field is amplified due to transients perturbations, but these
always decay after a few orbits and the simulations converges towards a laminar state.
This behaviour is the same for all resolutions, and the magnetic field decays even for the
highest resolution simulation which uses 128 grid cells per pressure scaleheight in the
radial and vertical directions. The same behaviour has also been reported recently by
Balsara and Meyer (2010).
In contrast to this, the HLLD solver shows sustained magnetic field amplification even

for a resolution as low as 16x32x16, however, for this low resolution, the saturation level
is more than one order of magnitude smaller as for the simulation using the double
resolution (see Fig. 4.4 and Table 4.1). The simulations that use 32/64 grid cells per
scaleheight yield approximately the same saturation level. When increasing the resolution
further, the saturation level decreases. This indicates that at high resolutions our codes
shows the same behaviour as it has been reported for the ZEUS code (Fromang et al.,
2007) and for the ATHENA code (Simon et al., 2009), namely a decrease of the turbulent
saturation with increasing resolution. However, we would have to perform simulations
at still higher resolutions to fully validate this result.

4.3 Investigating the Influence of Radiation Transport on
Magnetorotational Turbulence

In Chap. 3 we have seen that radiation transport changes the growth rates of the MRI.
The next question to ask is then: Does radiation transport also affect the saturation
level of the magnetorotational turbulence? As has been shown in Flaig et al. (2009), the
answer is yes. For this study, we switch to a shearing box with a computational domain
of size 1H × 4H × 1H. Apart from this, all other parameters are the same as in the
model used for the code comparison described in Sec. 4.2.2. Especially this means that
we employ a magnetic field with nonzero net flux in the vertical direction, so that we
can control the strength of the turbulence. Due to the fact that in our simulations the
magnetic field possesses a net flux, the resulting α is quite large, α & 0.1.
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Fig. 4.4: Time evolution of the total stress, shown for the models which employ the HLLD solver.
The parameters used in this simulation can be found in Table 4.1. For further information, see
the text.
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Tab. 4.2: Time- and space-averaged quantities from 3D shearing box simulations performed with
the CRONOS code. In all of the simulations Bφ = 0. In the first three lines, only the resolution
is varied, while the last three lines show the dependence on the strength of radiative diffusion.
Averages were taken over 10 to 40 orbits.

Resolution D/H2Ω Emag/p0 α

32x64x32 0.001 0.400 0.278
128x256x128 0.001 0.505 0.299
64x128x64 0.001 0.337 0.226
64x128x64 0 1.007 0.719
64x128x64 10−8 0.358 0.244
64x128x64 0.001 0.337 0.226

4.3.1 Saturation Level

In order to check if there exists a trend for the turbulent activity with different resolu-
tion, we performed three radiative runs using a constant radiative diffusion coefficient
of D = 0.001H2Ω, where the resolution was successively doubled. Fig. 4.5 shows the
time evolution of the magnetic energy and the α-parameter for this runs. In Table 4.2
long-term averages of this quantities as well as of the Maxwell and Reynold stresses can
be found. The results displayed in Fig. 4.5 and Tab. 4.2 indicate no net trend for the
change of the saturation level with resolution (the first three lines in the table).
In order to investigate the influence of radiation transport on the saturation level of

the MRI-induced turbulence, we perform simulations with varying radiative diffusion
coefficient, where we pick a resolution of 64x128x64. The results show a decrease of the
turbulent activity with increasing radiative diffusion coefficient D, see last 3 entries in
Tab. 4.2. A qualitative explanation for this phenomenon is given below.
In order to check this results with a different numerical scheme, we also perform sim-

ulations with the ZEUS code. We use the same setup as in the simulations done with the
CRONOS code, except that the strength of the constant vertical magnetic field is taken as
corresponding to a plasma beta of β = 800. We perform simulations with and without
azimuthal magnetic field Bφ, using different resolutions (see Table 4.3). In Fig. 4.6, the
magnetic energy is plotted for the high resolution simulations.
The results for the turbulent saturation level differ somewhat between these two differ-

ent codes. For example, if we compare the simulations in lines 3 and 4 of Tab. 4.2 with
the corresponding simulations done with the ZEUS code, lines 5 and 6 of Tab. 4.3, the
ratio of the saturation levels in the case of the ZEUS code turns out to be about a factor
of two smaller than in the simulations done with the CRONOS code. We have checked that
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Tab. 4.3: 3D shearing-box simulations performed with ZEUS. In some of the simulations, a non-
zero constant Bφ was used, leading to a higher saturation level. Averages were taken from 10 to
40 orbits.
Resolution D/H2Ω Bφ/Bz Emag/p0 α TM TR

32x64x32 0 0 0.398 0.248 0.210 0.038
32x64x32 0.001 0 0.245 0.146 0.123 0.023
32x64x32 0 20 2.557 1.125 0.983 0.141
32x64x32 0.001 20 1.542 0.577 0.498 0.079
64x128x64 0 0 0.552 0.335 0.288 0.047
64x128x64 0.001 0 0.392 0.218 0.187 0.031
64x128x64 0 20 2.474 1.137 1.006 0.131
64x128x64 0.001 20 2.315 1.075 0.938 0.137

this fact remains true even if we choose the same initial plasma beta as in the runs with
our code. Despite these issues, all runs unambiguously show that the saturation level
decreases with increasing radiative diffusion.
A plausible explanation for the phenomenon of the reduction of the saturation level

due to radiative diffusion can be given as follows: As has already been noted, in the case
of an initial magnetic field with nonzero net flux, the turbulence in the saturated state
is still partially pumped by the channel mode. In Chap. 3 we have seen that radiative
transport tends to decrease the growth rates of vertical modes by effectively increasing
the compressibility of the fluid and thus making it easier for the Lorentz force to push
the velocity vectors out of the r-φ plane. Therefore, it is to be expected that radiative
transport, by decreasing the growth rate of the recurrent channel mode, acts to reduce
the turbulent activity.

4.3.2 Temperature Distribution

For the full 3D simulation the influence of the radiation transport can also be visualised by
the temperature distribution. This is shown in Fig. 4.7 for a similar setup as described in
the previous section. Here we used an extent of the computational domain of 1H×6H×
1H with the same spatial resolution of 64x128x64. The z-component of the magnetic
induction was initialised with β = 800, and we chose Bφ = 20Bz. We followed the
evolution for several orbits. In Fig. 4.8 we show the distribution in the density - thermal
energy plane for one simulation without and one with radiative transport. Apparently the
plasma gets more isothermal when radiation transport is present – for a fully isothermal
simulation the thermal energy would depend linearly on the density, thus, yielding a
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Fig. 4.6: 3D shearing box simulations performed with ZEUS at resolution 64x128x64. Shown
is the perturbed magnetic energy normalised to the initial gas pressure. The solid, dashed,
dot-dashed and dotted curves correspond to the combinations Bφ = 0/D = 0, Bφ = 0/D =
0.001H2Ω, Bφ = 20Bz/D = 0 and Bφ = 20Bz/D = 0.001H2Ω, respectively. In the linear
phase, the obtained growth rates are only a few percent smaller than the growth rate of the
fastest growing mode that fits in the box, which means that the initial growth is dominated by
the fastest growing mode, as is to be expected.
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Fig. 4.7: Temperature distribution for two 3D simulations without radiation transport (left) and
with radiative transport, D = 4 · 10−8H2Ω (right). In both plots, the distribution to the left
corresponds to t = 3.5 orbits, while the right corresponds to t = 4.1 orbits. In the case with
radiative transport, the width of the distribution function is smaller and the heating occurs less
rapidly.

line in this plot. This fact also becomes apparent, when comparing the results for the
temperature distribution function.
This is done in Fig. 4.7 for the same simulations. Here, the temperatures are nor-

malised to the initial temperature (that is, initially we had a delta-peak at T = 1). The
shift of the distribution functions with regard to the initial temperature results from the
heating by (numerical) viscosity and resistivity. Obviously the distribution for the disc
with radiation transport is considerably narrower. Note, however, that also for this case
the temperature after several orbits differs markedly from the initial temperature. This
conclusion is also strengthened by the fact that both distributions are centered at nearly
the same temperature. This is due to the fact that the gas is still heated by viscosity
and resistivity. In contrast to the case without radiation transport the local temperature
enhancements are smoothed out by the radiation transport.

4.4 Summary

In the present chapter, we used 2D and 3D numerical simulations in order to investigate
the growth of the MRI and the magnetorotational turbulence resulting from the insta-
bility. In this study, we were mainly concerned with the effects of radiation transport.
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Fig. 4.8: Distribution in the density-thermal energy plane. Values are shown in normalised units.
Here we show the distribution function for a simulation without radiative transport (left) and
one where we used D = 4 · 10−8H2Ω (right). Both snapshots are taken at time t = 4.1 orbits.

• We performed a convergence study by simulating single MRI mode with resistivity
and radiation transport, using the analytical formulae derived in Chap. 3. This
study served to test our numerical code and also to validate the analytical calcula-
tion presented in Chap. 3.

• When comparing the HLL and HLLD Riemann solvers, we find that the HLLD
solver yields a significantly higher effective resolution than the simpler HLL solver.
This suggests using the HLLD solver for future calculations.

• In the simulations where resistivity or radiative diffusion was switched on, the
convergence was about as good as in the ideal case. This test therefore validates
our implementation of the resistivity and radiation transport parts of the code.

• In the turbulence simulations with radiative transport switched on, we find that
radiative diffusion reduces the growth rates of the MRI. We can explain this inter-
esting new result qualitatively by using the analytical results from Chap. 3.

From our tests we conclude that our numerical tool is well suited for simulations of
turbulence protoplanetary discs. The next step is to include the vertical component of
gravity, leading to vertically stratified simulations. The setup of this type of simulations
will be the topic of the next chapter.
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Chapter 5: Simulations Including
Vertical Stratification

5.1 Stratified Local Shearingbox

The unstratified local shearing box setup that was the topic of the last chapter is a rather
restricted model. Since it does not include the vertical component of gravity, the situation
in the vertical direction is homogeneous, so nothing can be learned about the vertical
structure of an accretion disc using such a simplified setup. As has been remarked earlier
in Chap. 1, in the case where the net magnetic flux through the computational domain is
zero, the system lacks a well-defined driving scale, and the fate of the turbulence depends
critically on the working of a small-scale dynamo. Inconvenient consequences of this are
the dependence of the turbulent saturation level on the Prandtl number and also on
numerical effects (for example, no sustained turbulence when using the HLL Riemann
solver).
Adding the vertical component of gravity is likely to alleviate such issues, since the

vertical stratification does set a well-defined physical length scale, thus allowing the
possibility of a large-scale dynamo. As we will see later, the turbulence that develops
in the vertically stratified case is indeed qualitatively different from the unstratified one,
with buoyancy effects leading to characteristic “butterfly”-cycles of the turbulence which
are not present in an unstratified setup (see Sec. 6.3). For the reasons just mentioned,
the physical relevance of the unstratified shearing box setup is indeed a bit questionable,
and for a realistic model of magnetorotational turbulence in accretion discs, we should
include the vertical stratification.

Numerical Setup

In this chapter, where we will describe the implementation and the testing of the strat-
ified shearing box setup, we will restrict ourselves to isothermal calculations. Radiative
calculations (as well as simulations including chemistry), will be reserved for the next
chapter. Isothermal simulations are not only much cheaper computationally, but also less
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likely to cause numerical problems than radiative calculations. The isothermal models
presented in this chapter will serve both as test and comparison runs for the radiative
simulations. Especially, we are interested in possible differences concerning the vertical
structure and the turbulent saturation level. The equations that are solved in the present
chapter are given by

∂ρ

∂t
+ ∇ · (ρv) = 0, (5.1a)

∂(ρv)

∂t
+ ∇ ·

(
ρvv − BB

4π

)
= −c2

s∇ρ+ f , (5.1b)

∂B

∂t
−∇× (v ×B) = 0. (5.1c)

Going from the unstratified shearing box to the stratified one amounts to implementing
the following changes to the numerical setup: First, one has to include the vertical
component of gravity, which is done by adding the vertical component of the linearised
gravitational force to the force term f appearing in the shearing-box equations, so that
this term now becomes

f = 3ρΩ2x x̂+ 2ρΩ v × ẑ − ρΩ2z ẑ. (5.2)

As a result, the density profile will no longer be uniform as in the unstratified case.
Rather, as we have already seen in Chap. 1, it will resemble a Gaussian,

ρ ∼ exp
(
−z2c2

s/2Ω
2
)
, (5.3)

Therefore, the initial conditions have also to be changed accordingly. Finally, one has
to replace the periodic boundary conditions of the unstratified shearing box by more
appropriate (open) boundary conditions in the vertical direction.

5.1.1 Boundary Conditions

As in the unstratified local shearing-box setup, we apply shear-periodic boundary condi-
tions in the radial direction and periodic boundary conditions in the azimuthal direction.
In the vertical direction, we will use outflow boundary conditions. Defining suitable verti-
cal boundary conditions for stratified accretion disc simulations that are both physically
meaningful and numerically stable can be a difficult task. We try the following types of
boundary conditions:
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Periodic Boundary Conditions

For reasons of numerical stability, many authors prefer to use periodic boundary condi-
tions even in vertically stratified simulations [see, for example (Stone et al., 1996; Davis
et al., 2010)]. Apart from lacking any physical motivation, this approach has further
drawbacks. For example, in vertically stratified simulations, the magnetic field that is
generated near the midplane rises to the upper layers. For the case of periodic boundary
conditions the field cannot escape from the simulation domain, resulting in an unphysical
pile-up of magnetic field in the upper layers of the simulation box. As a consequence,
this also leads to a small timestep due to the corresponding high Alfvén speed. Apart
from this considerations, the fact that periodic boundary conditions prevent radiation
from escaping from the simulation domain, forbids their use in our project. However,
since periodic boundary are very stable numerically, we still use them in some cases for
test calculations.

Outflow Boundary Conditions

The simplest possibility to define open boundary conditions is to extrapolate all variables
into the ghost zones by using zero slope extrapolation, i.e. simply copying the value
of the outermost computational cell into the adjacent ghost zones. If we denote the
outermost computational cell at the lower boundary by kmin, the outermost cell at the
upper boundary by kmax and the number of ghost cells by nghost, then this can be
mathematically expressed as

uij,kmin−k = uij,kmin
, uij,kmax+k = uij,kmax , 1 ≤ k ≤ nghost; (5.4)

where u stands for any of the fluid variables. This simple approach does, however, not
work for vertically stratified disc models, since these boundary conditions lead to a strong
inflow of mass which quickly destroys the simulation.
This problem can be cured by modifying the boundary conditions such that reflecting

boundary conditions are used whenever the velocity vector points into the computational
domain.1 For the lower boundary, this means that we replace the prescription Eq. (5.4)
by

uij,kmin−k =


uij,kmin+k; if vz > 0 and u 6= vz
−uij,kmin+k; if vz > 0 and u = vz

uij,kmin
; otherwise

, 1 ≤ k ≤ nghost; (5.5)

1Note that with a Godunov-type numerical scheme, simply setting vz to zero in this case does not
guarantee that there is no inflow of mass into the computational domain.
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and with an analogous expression for the upper boundary. Eq. (5.5) describes thus a
very simple type of outflow boundary conditions.
Using this type of outflow boundary conditions, a stratified simulations may run stable

for many orbits. However, occasionally there may still occur problems related with the
magnetic field. We find that the numerical stability can be improved by using pseudo-
vacuum boundary conditions for the magnetic field, which means extrapolating the z
component and setting the other components to zero in the ghost cells. Mathematically,
this is expressed as

uij,kmin−k =


uij,kmin+k; if vz > 0 and u /∈ {vz,B}
−uij,kmin+k; if vz > 0 and u = vz

0; if u = Bx or u = By
uij,kmin

; otherwise

, 1 ≤ k ≤ nghost; (5.6)

and with an analogous expression for the upper boundary. Although one might worry
that simply setting two of the three magnetic field components to zero might distort the
magnetic field structure near the vertical boundaries, we find that the influence of the
boundaries on the magnetic field structure does not appear to be stronger as when using
extrapolating boundary conditions for all three magnetic field components (as was done,
for example, in Simon et al., 2010). See also Fig. 5.4 later in this chapter.

Transparent Boundary Conditions

We also try so-called transparent boundary conditions which consist of solving a charac-
teristic equation at the boundaries which contains only outgoing waves. Such boundary
conditions have been successfully used in the work of Suzuki and Inutsuka (2009). The
idea behind this type of boundary condition can be explained as follows: Consider a sys-
tem of conservation laws in one dimension, where u is the vector of conserved variables
and f(u) is the flux vector, i.e. written in conservative form the system of equation reads

∂u

∂t
+
∂f(u)

∂z
= 0. (5.7)

For the case of the one dimensional MHD equations, we have u = {ρ,v, Bx, By}2, where
explicit formulas for the fluxes have been given in Chap. 4. By performing a transforma-
tion to primitive variables,3 u = u(v) and applying the chain rule in Eq. (5.7), we can

2Note that, in one dimension, the longitudinal magnetic field component (Bz in our case) is constant.
3The choice of primitive variables is in principle arbitrary, for example one may simply choose v = u.
In practice, one chooses a transformation such that the resulting equations become especially simple,
for example in the case of MHD, the equations become simpler if we use the thermal energy or the
pressure instead of the total energy.
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5.1 Stratified Local Shearingbox

write this system of equations as

∂v

∂t
+ A

∂v

∂z
= 0, (5.8)

where the matrix A is defined as

A ≡ ∂f(u(v))

∂u
. (5.9)

Next, we diagonalise the matrix A according to

A = S−1DS, (5.10)

where D is a diagonal matrix, and perform a transformation to characteristic variables
defined by w ≡ Sv, by which we obtain our system of equations written in characteristic
form:

∂w

∂t
+ D

∂w

∂z
= 0. (5.11)

When using equations of this form, the individual equations are now longer coupled,
rather we have a system of independent advection equations

∂wi
∂t

+ λi
∂wi
∂z

= 0, (5.12)

where λi ≡ Dii are the eigenvalues of the matrix A. In these equations, a positive value
of λi means that information is propagating upwards, while a negative value means that
information is propagating downwards.
In our simulations, we would like to have a situation where no information from outside

(i.e. noise) enters the simulation domain. This can be achieved by solving a characteristic
equation similar to (5.12) at the boundaries, where we discard all waves that propagate
into the computational domain. For the specific case of the lower boundary, this would
mean we perform the substitution λi → λ−i ≡ min{λi, 0} in Eq. (5.12). The modified
system of equations can be straightforwardly discretised according to

wn+1
i = wni −

λ−i ∆t

∆z
(wni+1 − wni ); (5.13)

and a similar formula for the upper boundary. We verify that the use of transparent
boundary conditions does indeed produce much less unphysical reflections than the out-
flow boundary conditions Eq. (5.6). However, for the case of stratified MRI-simulations
we find not much difference between simulations using transparent boundary conditions
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5 Simulations Including Vertical Stratification

and simulations using outflow boundary conditions. Moreover, for large box sizes (larger
than three pressure scaleheights) the transparent boundary conditions tend to be un-
stable. This problem can possibly be cured when using an implicit discretisation of
Eq. (5.12), as was done by Suzuki and Inutsuka (2009). Since it is at the present stage
not clear if the use of transparent boundary conditions really yields a significant advan-
tage, we choose, however, not to investigate this further and rather adopt the outflow
boundary conditions Eq. (5.6) for all the following simulations.

5.1.2 Initial Conditions

As the initial condition for the hydrodynamic variables we choose a state of approximate
vertical hydrostatic equilibrium:

ρ(t = 0) = ρ0 exp(−z2/2H2
0 ),

v(t = 0) = −3
2Ωx ŷ + δv.

(5.14)

The sound speed cs is taken to be constant. We add small random velocity perturbations
δv of order 5 · 10−3 cs to the velocity. The initial magnetic field is derived from a vector
potential,

B(t = 0) = ∇×A(t = 0), (5.15)

in order to guarantee that the divergence-free condition ∇ · B = 0 is satisfied. We
perform simulations with different initial magnetic field configurations. At this point we
note that due to the type of boundary conditions that we apply, the vertical magnetic
flux is conserved to good accuracy throughout the simulation, however not exactly due
to small interpolation errors at the shear-periodic radial boundaries.
Simulations that start from different magnetic field configurations with the same net

vertical magnetic flux evolve towards the same turbulent state (Hawley et al., 1996).
However, the time it takes for the disc to reach the fully turbulent state might vary
significantly for different initial magnetic field configurations. Therefore, we search for
a magnetic field configuration that lets the turbulence develop throughout the disc as
quickly as possible.

Constant Vertical Magnetic Field

The simplest initial magnetic field configuration is that of a constant vertical magnetic
field, which is described by the following vector potential:

A = B0x ŷ. (5.16)
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5.1 Stratified Local Shearingbox

The magnetic field strength B0 is most conveniently expressed in terms of the plasma
beta β = 8π p0/B

2
0 . A simulation containing a net vertical flux leads to much more

vigorous turbulence as compared to a zero net flux simulation. In the simulations of
Suzuki & Inutsuka (2009) it has been found that a vertical magnetic field corresponding
to a plasma beta as big as 106 is already sufficient to drive a significant disc wind, with
the mass loss rate being dependent on the value of the magnetic net flux. We are able
to reproduce this finding with our code. However, in the present work we will restrict
ourselves to models that have zero net flux, which are in general more interesting due
to the presence of self-sustained dynamo action. Another reason is that we want to
investigate a possible resolution dependence of the turbulent saturation level. Such a
dependence is likely to be less pronounced in net flux simulations, since the value of the
magnetic flux controls the saturation level (as has already been discussed in Chap.1).
Therefore, the case of zero net magnetic flux is more interesting also from the viewpoint
of a resolution study.

Sinusoidal Vertical Magnetic Field

One of the simplest possibilities to construct a magnetic field with zero net flux is to use
a sinusoidally varying vertical field, which is derived from the following vector potential
(Hawley et al., 1996):

δA = B0
sin(2πx/Lx)

2π/Lx
ŷ, (5.17)

where Lx is the radial extent of the box. When performing simulations with a large
vertical box size (12 or more pressure scale heights) it takes a long time for the whole disc
to become turbulent, usually about 100 orbits or even more. The reason for this is that
for this magnetic field configuration, the Alfvén speed scales as vA ∝ exp(−z2/2H2

0 ).
Since the fastest growing MRI mode fulfills λmax ∼ vA/Ω, it obeys the same scaling.
Choosing B0 in such a manner that the MRI is resolved in the upper layers of the disc,
means that the midplane is initially stable, since the most unstable wavelength is much
smaller there and cannot be resolved.4 The MRI thus starts in the upper layers first and
very slowly spreads towards the midplane. The midplane only becomes unstable when

4Note that on the other hand we cannot choose B0 to be so strong that the MRI is resolved initially
at the midplane: Then the plasma beta in the upper layers would be extremely small, leading to the
disruption of the disc, since the sinusoidally varying magnetic field is not an equilibrium configuration.
Note also that the problem is the same in the case of the constant vertical magnetic field: Here again
one can choose only a very high plasma beta, otherwise the disc will quickly loose most of its mass
due to the very vigorous MRI turbulence.

97



5 Simulations Including Vertical Stratification

the magnetic field, which is pushed towards the midplane via the turbulent motions in the
upper layers, has become strong enough. Since magnetic buoyancy works against this,
this process can take a very long time, and we observe that in some cases simulations do
not become fully turbulent even after very long integration times.

Improved Initial Magnetic Field Configuration

The considerations of the previous paragraph lead us towards the following improvement:
If we multiply Eq. (5.17) by a factor of exp(−z2/2H2

0 ), resulting in the vector potential

δA = B0
sin(2πx/Lx)

2π/Lx
exp(−z2/2H2

0 ) ŷ, (5.18)

then the Alfvén speed (and, correspondingly, the fastest growing unstable wavelength)
will both be approximately constant throughout the simulation domain, allowing the
MRI to grow everywhere right from the beginning. We find that when choosing a value
of β = 100, then the whole disc becomes turbulent in less than ten orbits. Therefore, the
improved boundary conditions Eq. (5.18) can indeed save us a lot of integration time.

5.2 Simulation Runs

5.2.1 Overview

We set up vertically stratified, isothermal simulations using the outflow boundary con-
ditions Eq. (6.2) and initial conditions given by Eq. (5.14) and Eq. (5.18) with a plasma
beta of β = 100. We choose a box of size Lx × Ly × Lz, with Lx = H0 and Ly = 6H0.5

We perform simulations with different vertical box sizes Lz and at different resolutions,
and using different solvers. Tab. 5.1 provides an overview of the runs performed. Note
that the simulations rs32 and rs64 have been restarted from the simulation rs16 at
t = 100 orbits.
Due to the special magnetic field configurations used, the MRI grows quickly and the

whole disc is turbulent in less than ten orbits. The turbulent activity varies on a timescale
of tens of orbits (see Fig. 5.1), therefore it is necessary to perform averages over at least
several tens of orbits in order to calculate meaningful mean quantities.

5Note that in the isothermal case, the problem is already fully specified once values for β, Lx/H0, Ly/H0

and Lz/H0 have been provided. In our code, we use a system of units such that Ω = ρ0 = H0 = 1.
The numerical value for the sound speed cs follows then from cs = H0Ω, the magnetic field B0 from
B2

0 = 8πρ0c
2
s/β, and the box lengths Li from the ratios Li/H0.
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Fig. 5.1: Time history of the total turbulent stress for the models that use the HLLD Riemann
solver. The simulations rs32 and rs64 have been restarted from the model rs16 at t = 100
orbits, at twice and four times the resolution of model rs16, respectively.
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5.2.2 Turbulent Saturation Level

We first consider the models using the HLL Riemann solver. It has been found that for
stratified models of magnetorotational turbulence, the resolution in the vertical direction
is critical for achieving convergence (Shi et al., 2010). The number of grid cells per
scaleheight in the vertical direction is listed in the fifth column of Table 5.1. Model
I6 which has a resolution in the vertical direction of only 21 grid cells per scale height
yields a significant lower saturation level than the other models, so this model is clearly
under resolved. The better resolved models I5, I7 and I6D yield very similar saturation
levels of 〈α〉 ≈ 0.015 with deviations of only ∼ 10%. This suggests that, when using the
HLL solver, for isothermal simulations, a value of & 25 grid cells per scale height in the
vertical direction is sufficient to yield results that are reasonably converged.
Next we look at the models employing the HLLD solver. Here we choose a smaller

box covering only four pressure scaleheights. We start at a resolution of 16x32x128 grid
cells which is then doubled two times. All three simulations yield quite similar values for
the total stress, with differences not bigger than 20%. This shows that when using the
HLLD solver, already a simulation with a resolution as small as 16 grid cells per pressure
scale height produces reasonable results. Taken together, our simulations support the
conclusion that vertically stratified models do not suffer from the problem of diminishing
turbulent activity with increasing resolution, but rather converge towards a specific value
for the saturation level.
The saturation levels in the runs with the HLLD solver yield higher stresses than those

using the HLL solver. This suggests that, as is the case in the unstratified case (Balsara
and Meyer, 2010), the turbulent saturation level in the stratified case also does depend
to some degree on the numerical scheme involved. (In addition, the smaller box size that
was used in the runs using the HLLD solver, might also play a role).

5.2.3 Vertical Structure

Next we look at the vertical structure. Fig. 5.2, where gas and magnetic pressure are
plotted, reveals that the vertical structure consists of two different layers: A gas-pressure
dominated midplane region that extends up to 3-4 pressure scaleheights above the mid-
plane, and a corona where the vertical support is mainly due to magnetic forces. The
same two-layered structure is also reflected in the vertical profiles of the turbulent stresses,
which are plotted in Fig. 5.3: In the region near the midplane, the stresses are approxi-
mately uniform, while in the corona they decline steeply and quickly become negligible.
In Fig. 5.4, we plot the magnetic field configuration found in model rs32. Near the

midplane, the field is highly tangled. When going further away from the equator, we
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Fig. 5.2: Plot of gas pressure and magnetic pressure for model I6D.
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Fig. 5.3: Plots of the vertical stress profiles found in model I6D.
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Fig. 5.4: Magnetic field configuration in model rs32 taken from a snapshot at t = 5 orbits.
Color-coded is the magnetic field strength (in arbitrary units), while the field line density is
arbitrary.
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reach a region where the disc gas is stable to the MRI and the field is predominantly
azimuthal. In simulation of larger boxes (Chap. 6), on finds that even further away
from the midplane, the field becomes distorted again, which may be partially due to
imperfections in the vertical boundary conditions (see also Simon et al., 2010). The
vertical structure of a protoplanetary disc will be investigated in more detail in the
context of the fully radiative models, which are the topic of the next chapter.

5.3 Summary

We have set up and tested vertically stratified models of turbulent accretion discs us-
ing an isothermal equation of state. Important ingredients to our setup are the outflow
boundary conditions applied in the vertical direction and also the initial magnetic field
configuration, which ensures a fast growth of the MRI throughout the whole disc. Con-
cerning the results, we want to stress the following two points:

• Vertically stratified models do not suffer from the problem of diminishing turbulent
activity when the resolution is increased, rather they show convergence once a
sufficient resolution has been achieved. Our results suggest that a resolution of
∼ 20 ( ∼ 30) grid cells per pressure scaleheight is needed when using the HLLD
(HLL) Riemann solver in order to achieve meaningful results.

• The vertical structure of the disc consists of a gas-pressure dominated midplane
region inside the first three pressure scaleheights and a magnetically dominated
corona above this region. In the corona, the MRI is quenched due to the high
magnetic fields and angular momentum transport is negligible.

Due to the fact that protoplanetary disc are mostly optically thick, isothermal calcula-
tions like the ones that were described in the present chapter, are actually not a very
realistic model for these systems. Rather, we have to include radiation transport. In the
next chapter, where we will describe realistic radiative simulations, we will investigate
the vertical structure in more detail.
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Chapter 6: Radiative Models of
Protoplanetary Discs

In this chapter, we move towards simulations of realistic protoplanetary disc models,
which include all the relevant physical factors. We will stick to the local approximation,
since due to the limited computing power, at the present time it is very difficult to include
additional physics like radiation transport or non-ideal MHD effects like Ohmic diffusion
into a global disc model. Indeed, all global MRI-turbulent disc models published so far
employ an isothermal equation of state (for example Fromang and Nelson, 2009; Flock
et al., 2010; Dzyurkevich et al., 2010). Such an ansatz is, however, not really appropriate
for protoplanetary discs, since these are for a large part optically thick. For a realistic
model, we have to include radiation transport.
Including radiation transport is very important in order to properly model the trans-

port of radiation energy from the disc midplane, which is heated by turbulent dissipation,
to the upper layers, where the radiation escapes into space. Without a proper treatment
of radiation transport, we will not get the correct vertical structure, which will be deter-
mined by a dynamic balance between turbulent heating and radiative cooling. Including
radiation transport is also an important step towards the goal of comparing numeri-
cal simulations to actual observations by modelling accretion disc spectra, and thereby
deriving constraints on physical parameters (Blaes et al., 2006).
While such an attempt to include radiation transport in MRI-turbulent protoplanetary

disc simulations has not been reported so far, there exist already a few works which
include radiative transfer in simulations of accretion discs around compact objects (for
example Turner, 2004; Krolik et al., 2007, for the case of radiation dominated discs). The
gas-pressure dominated simulation of Hirose et al. (2006), is most closely related to our
work, and will be the main source of reference.
When dealing with protoplanetary discs one has to consider that these are not only

dense, but also cold, which means that for some part they will be only poorly ionised,
leading to the formation of a “dead zone”, as has already been discussed in Chap. 2. The
effects of a finite resistivity have already been studied in isothermal models (for example
Sano et al., 2000; Turner and Sano, 2008; Dzyurkevich et al., 2010). The need to include
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6 Radiative Models of Protoplanetary Discs

non-ideal MHD effects can be circumvented by simulating a part of the protoplanetary
disc that is located near to the star (R . 1 AU), and that is sufficiently massive, so that
the disc is hot enough for collisional ionisation to be effective. The first such radiative
turbulent protoplanetary disc model has been simulated by Flaig et al. (2010) and will
be the main topic of this chapter. In addition, will also present simulations of a part of
a protoplanetary disc which is located further away from the star, and where the effect
of Ohmic resistivity is included.

6.1 Numerical Setup

We summarise the equations that will be used in this chapter: We calculate the dy-
namics of the disc gas by solving the equations of radiation magnetohydrodynamics in
conservative form. We make the one-temperature approximation (i.e. we assume thermal
equilibrium between matter and radiation), which means that we need not to solve an
additional equation for the radiation energy. Radiative diffusion is treated within the
flux-limited diffusion approach. Including the source terms that arise in shearing box
framework, the resulting set of equations looks as follows:

∂ρ

∂t
+ ∇ · (ρv) = 0, (6.1a)

∂(ρv)

∂t
+ ∇ ·

(
ρvv − BB

4π

)
= −∇p+ f , (6.1b)

∂B

∂t
= ∇× (v ×B − η∇×B), (6.1c)

∂Etot

∂t
+ ∇ ·

[(
Etot + p+

B2

8π

)
v − B(B · v)

4π
+

η

4π
(∇×B)×B)

]
= f · v −∇ · F ;

(6.1d)

where f denotes the sum of the gravitational forces and the inertial forces arising in
the shearing-box system [see Eq. (5.2)], Etot = p/(γ − 1) + ρv2/2 + B2/8π + E is the
total energy, F = −(λc/κρ)∇E is the radiative energy flux, and the other symbols have
their usual meaning. For most of the simulations presented in this chapter, the Ohmic
resistivity is set to zero, η = 0. Note that by solving the total energy equation, rather
than the thermal energy equation, all dissipative losses are automatically captured and
transformed into gas internal energy. In this way the heating of the gas is consistent with
the dissipation caused by the turbulence.
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6.2 The Physical Model

6.1.1 Boundary Conditions

We now turn to the boundary conditions in the vertical direction. For the fluid variables
other than the temperature, we employ outflow boundary conditions similar to that used
for the stratified simulations which were the topic of the last chapter. We have, however
still to think about what type of boundary conditions to use for the temperature. Simply
using zero-slope extrapolation for the temperature also, would not make any sense, since
this would imply a radiation flux of zero at the boundary. In principle it is possible
to set the temperature at the vertical boundaries in such a way that the radiation flux
is approximately constant through the vertical boundaries (see Hirose et al., 2006, for
the corresponding formulas). We have tested this type of boundary conditions, but we
encountered problems with numerical stability. We therefore decided to use the simpler
approach, of setting the temperature in the ghost cells to a value Tb much smaller than
the temperature at the photosphere. As long as we are optically thin, then, by virtue
of the flux limiter, the radiation flux will indeed be approximately constant through the
boundary.1 Including the boundary conditions for the temperature, our outflow boundary
conditions become:

uij,kmin−k =


uij,kmin+k; if vz > 0 and u /∈ {vz,B, e}
−uij,kmin+k; if vz > 0 and u = vz

0; if u = Bx or u = By
Tb; if u = T

uij,kmin
; otherwise

, 1 ≤ k ≤ nghost. (6.2)

An analogous expression holds for the upper boundary. The boundary conditions Eq. (6.2)
match the requirements of being physically sensible and numerically stable, and we will
use them for all simulations presented in this chapter. For the temperature at the bound-
ary, we use the value Tb = 10 K. By performing simulations with different values of Tb

we verify that the results do not depend on the specific choice of Tb.

6.2 The Physical Model

As has been already mentioned, protoplanetary discs are likely for some part not well
ionised, so that in principle one also has to include non-ideal MHD effects. In order to
avoid this additional difficulty, we first start by modeling the region close to the star,

1Using this type of boundary conditions means, however, that we have to make our simulation box
large enough so that the photosphere is well inside the computational domain. Also we have to check
that the condition of a constant radiation flux through the vertical boundaries is actually fulfilled
during the simulation.
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where the gas is hot enough for collisional ionisation to be effective. Also, we choose
a high surface density, corresponding to a protoplanetary disc in the earlier stages of
its evolution. We call this model, where non-ideal MHD effects are neglected, the “hot”
model. Later we also formulate a model corresponding to a cooler region further away
from the central star, where, in addition to radiation transport, we also include Ohmic
resistivity. The value of the resistivity is calculated by solving a chemical network. This
latter model is called the “cool” model. We now start with the description of the “hot”
model.

6.2.1 Basic Parameters of the “Hot” Model

We simulate a model of a protoplanetary disc around a young solar-type star. We take the
mass of the star to be equal to one solar mass,M? = M�. The simulation box is placed at
a distance of 1 AU from the central star. The disc gas is assumed to have solar chemical
composition, which leads us to choose values of γ = 1.4 for the adiabatic index and
µ = 2.35 for the mean molecular weight. We choose a surface densityΣ0 = 11 356 g cm−2,
corresponding to a number density at the midplane of n0 = 1015 cm−3. This value is
significantly higher than the value of Σ0 = 1700 g cm−2 used in the standard “minimum
mass solar nebula” model (see, e.g. Weidenschilling, 1977, and also Fig. 6.1). However,
the values discussed for the solar nebula may even be much higher; for example, the
more recently proposed solar nebula model by Desch (2007) yields a value of Σ0 =
50 500 g cm−2 at 1 AU. With the above choice of surface density, the temperatures that
come out of our model are of the order of ∼ 1000 K in the body of the disc, so the
assumption of ideal MHD is indeed justified (see, for example, Armitage, 2010).
We choose a radial box size of Lx = 0.08 AU. This size corresponds roughly to one

pressure scaleheight (according to the typical temperatures at the midplane, that come
out of our models, see Sec. 6.3.2). The azimuthal box size is Ly = 6Lx, and the vertical
box size varies from Lz = 12-16Lx for the different simulations. For reference, the basic
physical parameters are summarised in Table 6.1.

6.2.2 Stellar Irradiation

At visible wavelengths, the stellar irradiation will only be important in the very upper
layers of a protoplanetary disc, where according to passively heated models, a tempera-
ture inversion will occur (Chiang and Goldreich, 1997). In the present work we are mainly
interested in the temperature profile of an “actively” heated disc, which results from a
balance between heating by turbulent dissipation and cooling by radiation transport.
Therefore, we neglect the “passive” heating due to the stellar irradiation.
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6.2 The Physical Model

Fig. 6.1: Distribution of mass in the solar nebula according to Weidenschilling (1977). The
surface densities are obtained by restoring the mass of the planets in the solar system to solar
chemical composition and spreading the resulting masses in zones around their current orbits.
The surface density at 1 AU is Σ0 ∼ 3200 g cm−2 originally, and becomes Σ0 ∼ 1700 g cm−2

after fitting the whole distribution with a power law.

Parameter Symbol Value
Radial box size Lx 0.08 AU
Azimuthal box size Ly 0.48 AU
Vertical box size Lz 0.96 AU - 1.28 AU
Mass of central star M∗ 1M�
Distance to central star R0 1 AU
Surface density Σ0 11 356 g cm−2

Adiabatic index γ 1.4
Mean molecular weight µ 2.35

Tab. 6.1: Summary of basic physical parameters for the “hot” model. The vertical box size of
Lz = 0.96 AU corresponds to a model which covers 12 pressure scale heights in the vertical
direction, while Lz = 1.28 AU corresponds to a model with 16 scale heights.
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Fig. 6.2: Opacity as a function of temperature and density. The thick curve gives the opacities
for the typical densities and temperatures found in our model R7 (see Tab. 6.2), where M and S
correspond to the location of the midplane and the surface, respectively, while the star ? denotes
the mean location of the photosphere. For an explanation of the different opacity regions À to
Ã see the text.

6.2.3 Opacity

As has already been explained in Chap. 1, in protoplanetary discs, the opacity of the
disc is dominated by dust grains. For our simulations, we use dust opacities κ = κ(ρ, T )
as described in Bell and Lin (1994), which are calculated as a function of the gas density
and temperature. Fig. 6.2 shows a plot of the opacity function for the typical density
and temperature range that we have in our simulations. Four different regions can be
distinguished: At the lowest temperatures, in region À, the dominant contribution to
the opacity is due to ice grains. Since these are more efficient scatterers and absorbers at
shorter wavelengths, the opacity increases with temperature. In region Á, ranging from
∼ 170 to ∼ 200 K, the ice grains melt, so the opacity decreases. Region Â is dominated
by dust grains and the opacity shows only a weak temperature dependence of the form
κ ∝ T 0.5. Finally, in region Ã, the temperatures and densities are sufficiently high for
the dust grains to start melting, leading again to a decrease of the opacity.
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6.2 The Physical Model

6.2.4 Turbulent Dissipation

As has already been pointed out, one of our major goals is to calculate the thermal
structure of an actively heated protoplanetary disc as it results from the dynamical
balance between turbulent heating and radiative cooling. In a real disc, the heating
occurs on the molecular scale, which can, of course, not be resolved in a numerical
simulation. Instead, in a simulation, the dissipation takes place on the grid scale where
energy is lost due to numerical errors.
Since we use a conservative scheme, the heating of the disc gas in our simulations is

automatically consistent with the losses of kinetic and magnetic energy due to the nu-
merical dissipation. The fact that the heating is mainly due to numerical effects2 means
that there will inevitably be some dependence on numerical parameters such as the res-
olution and the details of the numerical scheme involved. This issue has already been
investigated in Sec. 4.2.2, where, at the low resolutions considered, we found significant
differences between different numerical schemes concerning the turbulent heating. How-
ever, since numerical errors are largest at locations where there are sharp gradients in
velocity and magnetic field, the numerical dissipation will at least qualitatively resemble
the actual physical dissipation (Hirose et al., 2006; Krolik et al., 2007; Flaig et al., 2010).
For high enough resolutions, where enough details of the turbulent flow are resolved, we
expect the results to become independent from the numerical effects taking place at the
grid scale. It is therefore important to perform runs at different resolutions in order to
check if the results are actually converged. Unfortunately, we can not afford to carry out
a study comparing different schemes, since due to the very high computational demands
of the stratified radiative simulations, we can only carry out very few runs.

6.2.5 Initial Conditions

As the initial conditions for our simulations, we choose the state of approximate hydro-
static equilibrium defined by Eqs. (5.14) and (5.18). We set the initial temperature to a
spatially constant value

T0 = 1500 K (6.3)

for all runs of the “hot” model, which corresponds roughly to the temperature that is found
in the saturated turbulent state. During the first ten orbits (which is the time it takes for
the disc to become fully turbulent), the boundary temperature in the vertical direction
is linearly lowered from the initial value T0 down to the final value of Tb = 10 K. This
greatly improves the numerical stability, because when setting the boundary temperature

2Apart from the compressive heating due to the p∇ · v-term in the energy equation.
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6 Radiative Models of Protoplanetary Discs

initially to the small value Tb, sharp temperature gradients develop that may cause the
code to crash.
As has already been stated, the special magnetic field initial conditions Eq. (5.18)

let the disc become fully turbulent in just a few orbits. For our radiative simulations,
this is very important. When using initial conditions like that defined in Eqs. (5.16) or
(5.17), due to our large box sizes, it takes many tens of orbits for the disc to become fully
turbulent. During this time, the disc cools and contracts, which often causes numerical
problems due to very low densities in the upper layers. Thanks to the specially designed
initial conditions for the magnetic field, this problem is avoided.

6.2.6 Test Problem: Equilibrium Temperature Profile

Before describing the 3D radiative simulations of magnetorotational turbulence, we first
consider an additional test problem for the radiation transport. The problem that we pose
consists of calculating the temperature profile of a non-turbulent disc with no internal
heating in hydrostatic equilibrium. This problem will also serve as a further test for our
radiation transport solver. We take the density to be given by the fixed Gaussian density
profile

ρ(z) = ρ0 exp(z2/2H2
0 ) (6.4)

and set the velocities and magnetic field to zero, v = B = 0. Only the temperature is
evolved, where we use fixed temperatures at the disc midplane, T (z = 0) = T0 and at
the disc’s upper boundary T (z = zb) ≡ Tb. The temperature profile resulting from this
configuration follows from solving the equation

∇ · cλ
κρ

∇E =
d

dz

acλ

κρ

dT 4

dz
= 0. (6.5)

Using the defintion of the optical depth τ ,

τ ≡
∫ z

zb

κρdz, (6.6)

which means that dτ = κρdz, and integrating, we obtain the relation

T 4 = Cτ +D. (6.7)

Evaluating this equation at τ = 0 (corresponding to z = zb) and at τ = 1, the meaning
of the integration constants C and D turns out to be as follows:

D = T 4(z = zb) = T 4
b , (6.8)

C = T 4(τ = 1)− T 4
b . (6.9)
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6.3 Simulation Results I: “Hot” Disc Model

Making use of Tb � Tphot, we get

T 4 ≈ T 4
photτ, (6.10)

where Tphot ≡ T (τ = 1). The temperature increases thus linearly with the optical depth
(see also Hubeny, 1990). Setting z = 0 in the above equation, we obtain the following
equation between the temperature at the photosphere Tphot, the temperature in the
center Tc ≡ T (z = 0) and the optical depth at the center τc ≡ τ(z = 0):

Tc

Tphot
= τ1/4

c . (6.11)

The relations Eq. (6.10) and Eq. (6.11) will not hold exactly for the temperature profile
of a turbulent disc with internal heating, but it is still to be expected that they will be
fulfilled approximately for the time-averaged temperature profile.
We solve Eq. (6.5) with parameters corresponding to the “hot” model using a one-

dimensional grid with 256 grid cells in the vertical direction. We use λ = 1/3 and set
T0 = 2000 K and Tb = 10 K. Starting from a constant temperature of 2000 K, the
temperature is evolved until an equilibrium is reached. In Fig. 6.3 we plot the resulting
temperature profile, the optical depth and the opacity as a function of height [panels
(a)-(c)]. For the equilibrium configuration we consider, the photosphere is located at
about 4 scaleheights above the midplane. The corresponding effective temperature is
about 260 K. The opacity is around ∼ 1 g/cm2 above three scaleheights and declines
when going towards the midplane, reaching a value of ∼ 0.1 g/cm2 there.
In panel (d), we plot the quantity T 4/T 4

phot vs. the optical depth, resulting in a perfect
straight line of slope one, in accordance with Eq. (6.10). The radiation transport solver
thus reproduces the analytical equilibrium solution perfectly. This test is complementary
to the tests where the MRI growth rates are measured, as described in Chap. 4: The
latter test problem describes a time-dependent problem without stratification, while the
test problem described in this section consists of calculating an equilibrium temperature
profile with the vertical stratification included.

6.3 Simulation Results I: “Hot” Disc Model

Tab. 6.2 provides an overview of the radiative simulations that have been performed
according to the parameters chosen for the “hot” model. We perform simulations with
different box sizes and resolutions. The lowest resolution chosen is 32× 64× 256 (Model
R6). We also perform a simulation at double the resolution in all directions (simulation
R6D) and two simulations (R7 and R8) with a larger box size in the vertical direction and
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Fig. 6.3: Vertical structure for a disc in hydrodynamical equilibrium with given inner and outer
temperatures. Panels (a)-(c) show the equilibrium solutions for the temperature, optical depth
and the dust opacity as a function of height above the midplane. Panel (d) shows the relation
between T 4 and the optical depth τ , which is a perfect straight line as predicted by the analytical
calculation.
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6 Radiative Models of Protoplanetary Discs

a vertical resolution that is in between model R6 and R6D, since recent results indicate
that it is the resolution in the vertical direction that is critical in determining the value
of the turbulent saturation level (see Chap. 5).

6.3.1 Time History

Starting from the initial state described in Sec. 6.2.5 the MRI starts to grow quickly and
the non-linear state is reached already after a few orbits. After ten orbits the whole disc is
fully turbulent and remains turbulent for the whole course of the simulation. Concerning
the time history we now concentrate on model R7.

The “Butterfly” Pattern of Magnetorotational Turbulence

The turbulent state is not time-steady, but there are periods of high turbulent activity
which are followed by periods where the disc is less active. This behaviour can be
observed in Fig. 6.4, where various physical quantities are plotted as function of time
for the first 80 orbits. Fig. 6.4(a) shows the horizontally averaged azimuthal component
of the magnetic field (which is the dominant component). During an active phase the
magnetic field is lifted upwards, leading to the typical butterfly structure. Scenarios that
try to explain this behaviour invoke the Parker instability (Shi et al., 2010) or a dynamo
mechanism (Gressel 2010). As one can estimate from Fig. 6.4(a), one cycle lasts between
10 and 20 orbits. Often the changes in turbulent activity are accompanied by magnetic
field reversals in one or both sides of the disc. Unlike, the solar butterfly diagram, the
field reversals shown in Fig. 6.4(a) do not follow a regular pattern and there is no strict
correlation between the magnetic polarities in both sides of the disc.

Structure of the Corona

In Fig. 6.4(a) we also plot the location of the photosphere (defined as the location where
the optical depth equals unity) and the position of the magnetosphere (defined as the lo-
cation where the magnetic pressure starts to exceed the gas pressure). The photosphere
is almost always located above the magnetosphere. During an active phase, the disc
expands due to the stronger magnetic forces and the photosphere is pushed outwards.
At the same time, the magnetosphere is pushed inwards due to the higher magnetisation
caused by stronger turbulence. Therefore, for most of the time, the magnetically dom-
inated region is for a large part optically thick. The same phenomenon has also been
reported in the gas-pressure dominated simulation of (Hirose et al., 2006), although the
physical regime for this simulation was quite different.
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6.3 Simulation Results I: “Hot” Disc Model

(a) Horizontally averaged azimuthal magnetic field component By normalised to
the initial magnetic field strength B0. The blue curve denotes the location of the
photosphere and the green curve is the location at which magnetic pressure starts
to exceed gas pressure.
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Fig. 6.4: Time history of various physical variables for model R7 from 0 to 80 orbits illustrating
the changes in turbulent activity and the correlations between stresses, magnetic field strength
and luminosity of the disc. For further explanation see the text.
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Energy Content of the Disc

We plot the time history of the energies (thermal energy, turbulent kinetic energy and
magnetic energy) in Fig. 6.4(b). During active periods the magnetic energy is much larger
then during a quiet period. The turbulent kinetic energy (that is the total kinetic energy
minus the kinetic energy of the background shear flow) is also larger during active phases.
In contrast to this, the long-term changes in the thermal energy are much smaller than the
up-and-down variations, which shows that we have indeed reached thermal equilibrium.

Time-variability of the Luminosity

The turbulent stresses that determine the angular momentum transport in the disc are
shown in Fig. 6.4(c). The angular momentum transport is dominated by the Maxwell
stress which is about four to six times larger than the Reynolds stress. This ratio is
consistent with previous results for stratified boxes (for example Stone et al., 1996).
From a comparison between Fig. 6.4(b) and Fig. 6.4(c) it is evident that the magnetic
energy and the alpha parameter are strongly correlated. Indeed, it is known that in
shearing-box calculations, the time-dependence of the alpha parameter can be fitted by
a formula of the form 〈α〉 ∝ 〈B2〉+ const. (see Brandenburg, 2008).
Finally, we may ask how the observational appearance of the disc will change due to

phases of varying turbulent activity. To address this question, we plot in Fig. 6.4(d)
the photospheric temperature (i.e. the temperature at the location where the optical
depth equals unity). If we compare Fig. 6.4(d) with Fig. 6.4(c), it is obvious that in
general a high degree of turbulent activity leads to a higher flux of radiation through the
disc’s boundaries. This observation can be made more quantitative by looking at the
cross-correlation between alpha-parameter and photospheric temperature:

C(τ) =

∫
[〈α〉(t− τ)− 〈〈α〉〉][Tphot(t)− 〈Tphot〉] dt. (6.12)

Here, 〈α〉 denotes the volume-averaged alpha parameter and Tphot is the arithmetic mean
of the photospheric temperatures at top and bottom. The cross-correlation is shown in
(Fig. 6.5). The lag τ between photospheric temperature and alpha parameter (as inferred
from the peak in the correlation function) is about 2-3 orbits. We can compare this to
the radiative diffusion timescale τrad ≈ H2

0/Drad, where the radiative diffusion coefficient
Drad is given by

Drad = 4acT 3/3cVκρ
2 (6.13)

(cf. the appendix). When taking typical values ρ = 2.0 ·10−9 g cm−3 and T = 1700 K for
the density and the temperature in the region near the midplane (see Fig. 6.7 and Fig. 6.8
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Fig. 6.5: Cross-correlation between alpha stress and photospheric temperature for model R7.

later in the paper), we get τrad ∼ 2.5 orbits, so the lag between stress and photospheric
temperature agrees well with the radiative diffusion timescale. Concerning the turbulent
transport coefficient Dturb = v2

z/Ω, we find that near the midplane Dturb is typically
about one order of magnitude smaller than Drad, so the energy transport by turbulent
gas motions is negligible compared to the energy transport by radiative diffusion.
The connection between variations of the turbulent activity and oscillations in ac-

cretions discs has already been discussed in the literature, both in the context of local
(Arras et al., 2006; Guan and Gammie, 2010), as well as global simulations (Machida
and Matsumoto, 2008; O’Neill et al., 2010).3 The global simulations showed that the
characteristic “butterfly” pattern found in simulations of stratified magnetorotational
turbulence is not just an artifact of the local approximation, but persists also in a global
setup. However, in contrast to our simulations, neither of the works mentioned above
did include radiation transport. These means that our simulations are the first where
the connection between turbulent activity and changes in the disc luminosity has been
explicitly calculated.

3The works mentioned where mostly concerned with accretion flows around compact objects.
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6.3 Simulation Results I: “Hot” Disc Model

6.3.2 Vertical Structure

To get an impression of how the turbulent state looks like, the reader may first have a
look at Fig. 6.6, where 3D snapshots of some physical quantities are shown for the high-
resolution model R6D. Panel (a) depicts the magnetic field strength measured in Gauss.
In panel (b) a plot of the vorticity measured in units of the angular orbital frequency Ω
is shown. Panel (c) contains a plot of the quantity

Rz =
|∂zErad|
κρErad

=
4|∂zT |
κρT

(6.14)

which is the ratio of the photon mean free path `phot = 1/κρ to the typical length over
which the radiation energy (or the temperature) varies.
Concerning the vertical structure, two regions with very different physical properties

can be distinguished: On the one hand, there is the region near the midplane (the region
inside the first three scaleheights). Here, the magnetic field strength is approximately
uniform and of the order of several Gauss. The turbulence is subsonic (see Sec. 6.3.6
below) and many intertwined vortices can be observed. Since Rz � 1 the photons are
diffusing in this region. On the other hand, there is the corona (the region outwards from
4 scaleheights) which exhibits markedly different features: Here, the magnetic field drops
sharply, the flow is supersonic and characterised by strong shocks, and the photons are
to a large part better described as free streaming rather than diffusing.

6.3.3 Density & Temperature Profile

One of the most interesting quantities that our radiative models are able to provide
is the self-consistently calculated temperature profile. We plot the mean temperature
profiles for our radiative models in Fig. 6.7. Except for the low resolution model R6 all
the radiative models yield quite similar temperature profiles. In the body of the disc,
the temperature profile resembles an inverted parabola and becomes flat in the optically
thin regions in the upper layers of the disc. Near the disc midplane, the temperature is
about 1800 K. The mean position of the photosphere is located at about 5 scaleheights
away from the midplane. The corresponding photospheric temperatures are of the order
of 500− 600 K. According to Eq. (1.27), which was derived in Chap. 1

Ṁ =
8π

3

σT 4R3
0

GM�
(6.15)

this would correspond to an accretion rate Ṁ of order 10−5M� yr−1. The accretion rate
can also be estimated from the alpha parameter according to Eq. (1.25), which was also
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Fig. 6.7: Temperature profiles obtained for the radiative models. Averages have been taken from
20 orbits until the end of the simulation.

derived in Chap. 1,
Ṁ = 3παcgHΣ0. (6.16)

Using cg ≈ cg0 as well as H ≈ H0, and plugging in a value of α = 0.02 for the alpha
parameter (see Sec. 6.3.7), we get again an accretion rate of order 10−5M� yr−1, so the
two results are nicely consistent.
In Fig. 6.8 we compare the density profile obtained with model R7 to the profile of

the isothermal model I7 from Chap. 5 and also to the initial profile. Away from the
midplane, the density profile flattens due to the additional magnetic support. Since for
the radiative model the temperature decreases outwards, the density in the upper layers
is lower as compared to the isothermal model.

6.3.4 Magnetic Field

In our model, the radiation pressure is small compared to the gas pressure almost ev-
erywhere. This means that concerning the vertical support of the disc against gravity,
radiation pressure plays no role, leaving only gas pressure and magnetic forces. As can
be inferred from Fig. 6.9, where gas and magnetic pressure are plotted as a function of
height, the midplane region inside the first three scaleheights is gas-pressure dominated.
The magnetic pressure is approximately constant in the midplane region with a slight
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6 Radiative Models of Protoplanetary Discs

Fig. 6.10: Magnetic field configuration in model R6D taken from a snapshot at t = 20 orbits.
Color-coded is the magnetic field strength, while the field line density is arbitrary in this plot.

increase outwards. Outside the midplane region, the magnetic pressure declines expo-
nentially, but not as steep as the gas pressure. As a consequence, the disc’s corona is
magnetically dominated.
In Fig. 6.10 we plot the magnetic field lines. Near the midplane, in the MRI-unstable

region, the field is highly tangled. Further outwards, where magnetic pressure becomes
dominant, the field becomes predominantly azimuthal. Even further outwards, the mag-
netic field becomes irregular again (see also the discussion in (Suzuki and Inutsuka,
2009)).
The magnetic field strengths near the midplane are of the order of several Gauss. At

this point, it is interesting to note that the field strengths generated by the MRI are
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Fig. 6.11: Turbulent stresses as a function of height for the radiative models. Averages have
been taken from 20 orbits until the end of the simulation.

thus consistent with the remnant magnetisation found in meteorites from the asteroid
belt (Cisowski and Hood, 1991; King and Pringle, 2010).

6.3.5 Turbulent Stresses

We can determine the strength of the turbulence at different locations by measuring the
turbulent stresses. This is done in Fig. 6.11, where vertical profiles of the alpha parameter
are plotted for the radiative models. Note that except for the low resolution model R6
all profiles are very similar, indicating convergence. We encounter a similar picture as
in Fig. 6.9 for the case of the magnetic pressure: Inside the gas-pressure dominated
midplane region the stress profiles are roughly constant with a slight increase outwards
(with the exception of the low-resolution model R6, where the stresses drop noticeably
at the midplane). Outside the midplane region, the stress profiles decline exponentially.
This means that almost all the angular momentum transport happens in the midplane
region and is there almost independent of height. In the corona, angular momentum
transport is negligible.
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Fig. 6.12: Turbulent velocities for model R7, where cg denotes the gas sound speed, cg0 is the
initial gas sound speed and ctot is the total sound speed (including gas and magnetic pressure).

6.3.6 Turbulent Velocities

We now look at the velocity distribution in the disc. In Fig. 6.12 we plot the horizontally
averaged turbulent velocity vturb = v − vkep normalised by the gas sound speed as a
function of height. In the midplane region, the turbulence is subsonic, while in the corona
it becomes highly supersonic, exceeding Mach 5 at the boundaries. For comparison
with other works we also plot the velocity normalised to the initial isothermal sound
speed at the midplane and the velocity normalised to the total sound speed ctot, where
c2

tot = (p+B2/8π)/ρ. Our results are in agreement with the isothermal simulations done
by Miller and Stone (2000) who report Mach numbers of about two and with HKS, who
report Mach numbers (with respect to the total sound speed) between one and two.
From Fig. 6.6, middle panel, where a snapshot of the vorticity is plotted, on can

appreciate the highly dynamic and tangled nature of the velocity field. In the subsonic
midplane region many intertwined vortices can be distinguished. Vortices have been
proposed as a means of trapping dust particles, thereby helping the formation of larger
bodies by enhancing the number of collisions and slowing down the spiraling into the
star (Barge and Sommeria, 1995; Tanga et al., 1996). However, the vortices in our
simulations are rather short-lived, usually lasting much shorter than one orbit, so particle
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6.3 Simulation Results I: “Hot” Disc Model

trapping in the MRI-generated vortices in the midplane region will not be efficient.
In observations, the turbulence will show itself in the form of a broadening of spectral

lines due to the velocity dispersion induced by it. At the mean location of the photosphere
the turbulent velocities are about Mach 2-3 which implies a significant effect on the line
widths. The detection of CO overtone emission in young stellar objects (YSOs) provides
a useful diagnostic tool to detect turbulent line broadening. The reason for this is that
the near overlap of CO transitions near the v = 2 − 0 band allows a separation of the
local broadening (e.g. turbulence) from the macro-broadening (caused for example by a
disc wind). In the case of several YSOs, there is indeed substantial empirical evidence
for supersonic turbulent line broadening of the magnitude that we find in our simulations
(Najita et al., 1996; Carr et al., 2004; Hügelmeyer, 2009).

6.3.7 Turbulent Saturation Level

As has already been remarked in the introduction, in numerical simulations of MRI
turbulence, the turbulent saturation level is influenced by a number of numerical factors.
By performing a suite of simulations with different box sizes an at different resolutions,
we are able to gauge the strength of the influence of these numerical parameters.
In Fig. 6.13 we plot the values of the alpha parameter for the isothermal models of

Chap. 5 (as given in Tab. 5.1), as well as for the radiative runs corresponding to the “hot”
model (as given in Table 6.2). When increasing the resolution from 32x64x256 (models
I6 and R6), to the double resolution of 64x128x512 (models I6D and R6D), the values of
the stresses increase considerably. A similar increase of the stresses is observed also when
only the resolution in the vertical direction is increased (models I5, I7, R7 and R8), which
is analogous to what has been found in the radiative simulations of (Shi et al., 2010). A
look at Fig. 6.11 suggests that it is especially the region near the midplane that is not
sufficiently resolved, since the stress drops there noticeably, while in the better resolved
models it does not.
The results depicted in Fig. 6.13 suggest that once a resolution of about 30 grid cells

per scaleheight in the vertical direction has been achieved, the results will no longer
significantly depend on the numerical resolution. All models except I6 and R6 are con-
sistent with an α-value of about α ∼ 0.015 − 0.02, with the isothermal models yielding
somewhat lower stresses that are closer to the lower end of α ∼ 0.015, while the stresses
found in the radiative models are grouped around the value α ∼ 0.02. No tendency is
found for the turbulent saturation level to change with respect to neither the vertical
box size nor the resolution in the radial and azimuthal directions.
As a consequence of the lower stress, the heating in the low-resolution model R6 is

also smaller than compared to the other radiative models, leading to significantly lower
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Fig. 6.13: Time-averaged value of the alpha parameter as a function of the number of grid cells in
the vertical direction per scale height for all models. The “error bars” correspond to the deviation
from the mean value.

temperatures in this model. Apart from this, the temperature profile for model R6 is
qualitatively similar to the other models.
As has already remarked before, the heating does intrinsically depend on numerical

effects. However, as can be seen from Fig. 6.7, the temperature profiles for the better
resolved models (R7, R8 and R6D) are very similar, suggesting that the heating rates are
also converged.

6.4 Simulation Results II: “Cool” Disc Model

We now describe the already mentioned “cool” disc model, which is located further away
from the star than the “hot” model and uses a lower surface density. We choose the same
setup as for the “hot” model, except that we place the simulation domain at a distance
of 5AU from the central star, and we choose a surface density of 456 g cm−2. In this
model, we start with an initial temperature of T0 = 125K. All other physical parameters
are the same as for the “hot” model. We use the HLLD Riemann solver for all runs of
the “cool” model.
We perform one run that includes Ohmic resistivity. For this simulation, the ionisation

level is calculated on the basis of a model that includes as ionisation sources stellar X-
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6.4 Simulation Results II: “Cool” Disc Model

Parameter Symbol Value
Radial box size Lx 0.27 AU
Azimuthal box size Ly 1.63 AU
Vertical box size Lz 2.18 AU
Mass of central star M∗ 1M�
Distance to central star R0 5 AU
Surface density Σ0 456 g cm−2

Adiabatic index γ 1.4
Mean molecular weight µ 2.35
Grain size ad 10µm
Dust-to-gas ratio ρd/ρg 0.01

Tab. 6.3: Summary of basic physical parameters for the “cool” model.

rays, cosmic rays and the decay of radionuclides. The recombination rate is calculated
on the basis of a simple chemical network as proposed by Oppenheimer and Dalgarno
(1974). We assume grains of size 10µm and a dust-to-gas ratio of 0.01. The details of
the chemical model are described in Ruoff (2010). The resistivity is calculated according
to the formula

η = 230 (T/K)1/2 χ−1 cm2 s−1, (6.17)

where χ = ne/nn is the ionisation level. For a summary of the physical parameters of
these model, see Table 6.3.
Tab. 6.4 provides an overview of the runs performed. Run ri16 is a low resolution run

that uses ideal MHD. In addition, we perform a run at double the resolution (run ri32)
and a run where resistivity is switched on (run rc16). The ideal runs both yield similiar
values for the turbulent stresses, which shows that when using the HLLD Riemann solver,
already a resolution of 16 grid cells per scaleheight does produce meaningful results.

6.4.1 Time History

In Fig. 6.14, we show space-time diagrams of the density, the turbulent Mach number
and the magnetic energy. Since the simulation domain covers only 4 scaleheights in the
vertical direction, the disc looses some of it’s mass, as can be seen in the upper panel of
Fig. 6.14.
The turbulence is subsonic throughout most of the simulation domain and becomes su-

personic only near the vertical boundaries (middle panel of Fig. 6.14). The photosphere
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6.4 Simulation Results II: “Cool” Disc Model

Fig. 6.14: Time history of model ri32. Shown are space-time plots of the following quantities
(from top to bottom): Density (normalised to initial midplane density), turbulent Mach number,
magnetic energy (normalised to the initial midplane pressure). Note that the middle panel shows
the Mach number with respect to the initial isothermal soundspeed at the midplane.
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6 Radiative Models of Protoplanetary Discs

(which is not shown in the plot) is located in the region slightly upwards of 3.5 pressure
scaleheights away from the midplane. This means that the finding of a supersonic tur-
bulent Mach number at the location of the photosphere, which was established for the
“hot” disc model in the last section, does also hold for the “cool” disc model.
Concerning the magnetic field, we find the same “butterfly” pattern as for the “hot”

disc model, which has been simulated using the HLL Riemann solver (lower panel of
Fig.6.14). During the end of the simulation, the magnetic field becomes a bit weaker,
since due to the small box size, some of the mass is lost through the vertical boundaries.

6.4.2 Turbulent Stresses

We plot the turbulent stresses for the models ri16, ri32 and rc16 in Fig.6.15. From
the upper and middle panel of Fig. 6.15 it is clear that the simulations have reached a
meaningful quasi-steady turbulent state. Also, the stress patterns for model ri16 and
ri32 are very similar.
Concerning the resistive model rc16 we let this model run with resistivity turned off

for the first twenty orbits, therefore during this phase the evolution is similar to model
ri16. Shortly after t = 20 orbits, where a saturated turbulent state has been reached, we
switch on the resistivity. During the next ten orbits, a MRI-inactive dead zone forms near
the disc midplane, while the upper layers still show signs of turbulent activity. Although
the MRI is quenched near the midplane, the value of Maxwell and Reynolds stresses do
not drop to zero there, so there is some angular momentum transport going on even
in the MRI inactive region. This phenomenon has also been reported in other works
(for example Fleming and Stone, 2003; Oishi and Mac Low, 2009). Possible reasons for
this are hydrodynamic waves, that are activated by the turbulence in the upper layers
and penetrate to the midplane Oishi and Mac Low (2009); as well as the diffusion of
radial magnetic fields towards the midplane, where the shear generates an azimuthal
field, resulting in a non-zero laminar Maxwell stress Turner and Sano (2008). However,
the overall angular momentum transport is much smaller than in the ideal case (see the
plots of the alpha parameter in Fig. 6.16)).

6.4.3 Temperature

A space-time plot of the temperature for the models ri16, ri32 and rc16 can be found
in Fig. 6.17 In the ideal models (upper two panels), the temperature decreases with time
due to the mass loss. Concerning the resistive model rc16, it cools rather quickly after
the resistivity has been switched on, since the turbulent heating becomes very small.
At the end of the simulation, the models ri16 and ri32 have a midplane temperature
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6.4 Simulation Results II: “Cool” Disc Model

Fig. 6.15: Shown are the turbulent stresses (absolute values) for the following models (from
top to bottom): ri16, ri32 and rc16. The stresses are normalised to the initial gas pressure
(therefore the values for the stresses are smaller than the one given in Tab. 6.2). Note the
different color scale in the last panel.
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6.4 Simulation Results II: “Cool” Disc Model

Fig. 6.17: Shown are space-time plots of the temperature for the following models (from top to
bottom): ri16, ri32 and rc16. Note that the temperature decreases in time because the disc
looses part of its mass.
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∼ 150 K and a photospheric temperature ∼ 70 K, while model rc16 has a midplane
temperature ∼ 100 K and a photospheric temperature ∼ 45 K.

6.5 Summary

In the present chapter we have described 3D radiation-magnetohydrodynamics simula-
tions of magnetorotational turbulence in protoplanetary discs. Ours are the first sim-
ulations that include a detailed treatment of radiation transport, allowing us to obtain
a self-consistent picture of the vertical structure which results from a dynamic balance
between turbulent heating and radiative cooling. Our simulations do not only contain a
much greater level of realism as compared to previous isothermal simulations, but are also
an important step towards bringing numerical simulations into contact with observations.
We summarise the most important results of our study:

• In our models two regions can be distinguished: A gas-pressure dominated mid-
plane region where most of the angular momentum transport takes place, and a
magnetically dominated corona where the MRI is quenched and angular momentum
transport is negligible.

• The position of the photosphere is highly variable due to changing turbulent ac-
tivity, but is usually located above the point where magnetic pressure starts to
dominate gas pressure. The variations in the turbulent activity lead to oscillations
in the disc’s luminosity, which we model for the first time using radiation transport.

• Magnetic field strengths generated by the MRI are compatible with the remanent
magnetisation found in meteorites.

• The turbulent Mach number found at the location of the photosphere is consistent
with the Mach number derived from the (turbulent) line broadening of CO lines
found in observations of young stellar objects. This supports the assuption that
the MRI is active in theses systems.

We concentrated our work on simulations of the inner, hotter parts of protoplanetary
discs, where non-ideal MHD effects can be neglected. In addition, we have also started
to model the cooler parts, where one has to include the effect of Ohmic resistivity. The
calculation of the resistivity is done on the basis of a simplified chemical network, leading
to a fully self-consistent protoplanetary disc model. We believe that the numerical setup
that we developed will be a very important tool for future research.
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Chapter 7: Summary and
Outlook

In this thesis, we performed numerical simulations of turbulence in protoplanetary discs
which is driven by the magnetorotational instability (MRI). We employed the local ap-
proximation, where the computational domain covers only a small part in the radial
direction of the disc, which allows one to achieve much higher spatial resolutions than in
a global setup. Since our calculations are the first of this type which do include radiation
transport, they deliver, as of today, the most detailed picture of the vertical structure of
an MRI-turbulent protoplanetary disc.
We started our presentation in Chapter 1 with a brief overwiev of the basics of pro-

toplanetary disc physics. Protoplanetary discs are accretion discs around young stars
which typically last for only a few million years. This observation poses the important
question of what mechanism actually powers the accretion process. The most widely
accepted answer to this problem is MRI-driven internal turbulence.
We then developed in Chapter 2 the general mathematical framework for the cal-

culations to be performed in this thesis. We describe the disc gas by the equations
of radiation-magnetohydrodynamics. Restricting ourselves to the planet-forming region
within the first ten AU, we can neglect all non-ideal magnetohydrodynamical effects
except Ohmic resistivity.
In Chapter 3, we started our research work by performing a local stability analysis of

a rotating, magnetised shear flow including both radiation transport and resistivity. Our
calculation yields the most general MRI dispersion relation in the astrophysical literature
and is applicable for for a wide range of astrophysical accretion flows, including both a
cool, poorly ionised protoplanetary disc and the opposite extreme of a hot, fully ionised
accretion disc around a black hole. We verified our analytical calculations by performing
numerical simulations of single MRI modes. These simulations also proved very useful
in comparing the performance of different MHD solvers and verifying the numerical
implementation of the radiation transport and resistivity parts.
After having finished our study of the linear growth phase of the MRI, we moved on

to 3D numerical simulations of MRI-driven turbulence (Chapter 4). For our study we
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choose the local shearing-box approximation, which means simulating a small rectangular
domain located near the midplane of an accretion disc; where we neglect the vertical
component of gravity and use special, “shear-periodic”, boundary conditions in the radial
direction that are consistent with the background shear flow. We restrict ourselves to
the case where the disc is threaded by an external magnetic field, meaning that there
is a well-defined driving scale for the turbulence, namely the wavelength of the fastest
growing mode that fits in the box.
First, we compare different MHD codes by performing runs with the same parameters

using four different codes, namely ZEUS, NIRVANA, CRONOS and ATHENA. We find that for
the net-flux model that we simulated, all four codes produce rather similar results for
the turbulent saturation level, even at low resolutions. This result is not surprising, since
once the fastest growing mode is well resolved, the simulation outcome will likely not
depend much on numerical factors. The same can, however, not be said of the heating
rates. Since we do not include any physical dissipation, the dissipation in the simulations
is determined by numerical effects taking place at the grid scale. In our low resolution
simulations, we find significant differences between the various codes concerning the
heating rates. From this we conclude that it is important to perform runs at different
resolutions in order to check if the results are actually converged.
When including radiative diffusion into our simulations, we find that it reduces the

saturation level of the magnetorotational turbulence. By making a connection to our
study of the linear growth phase, we can provide a simple possible explanation for this:
In the net-flux case we are considering, the turbulence is driven by the fastest growing
vertical mode. Due to the background shear, the magnetic field in the turbulent state has
a dominant azimuthal component, meaning that the growth rates of the vertical modes
are reduced by radiative diffusion. As a consequence, the driving of the turbulence is
weaker when radiative diffusion is present, leading to a lower saturation level.
As the logical next step towards more realistic models of MRI-turbulent protoplanetary

discs, we include the vertical component of gravity (Chapter 5). As a consequence, the
vertical structure looks no longer uniform. The density is given roughly by a Gaussian
profile, with very low density in the upper layers. As a consequence, a magnetically
dominated corona forms above and below approximately three pressure scaleheights away
from the midplane. This leads to numerical difficulties due to a small timestep limited
by the Alfvén speed, and also due to problems with the magnetic field near the vertical
boundaries. We find that vertical field boundary conditions for the magnetic field are a
very good choice, because they are numerically quite stable and also do not distort the
magnetic field near the boundaries significantly.
We start with simulations that use an isothermal equation of state. While such an

approach is not realistic for protoplanetary discs, we take this simulations to serve both
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as a test for our vertically stratified setup and also later to compare results between
isothermal and radiative simulations. We choose a setup where the net vertical magnetic
flux through the computational domain is zero. This means that there is no external
driving, but the fate of the turbulence depends instead on the working of an internal
dynamo process. We perform runs at different resolutions and using different box sizes.
The result is that the turbulent saturation level is similar for simulation that use a
resolution of about 30 grid cells per pressure scale height and more.
We then perform vertically stratified simulations including radiation transport (Chap-

ter 6). In order to arrive at a self-consistent model, that includes all the relevant physics,
we choose a rather high surface density (corresponding to a massive protoplanetary disc
in the early stages of its evolution), and we place our simulation domain near to the star,
at a distance of 1 AU. The temperatures that come out of our model are of the order of
1000 K, which is enough for collisional ionisation to be effective, such that we can assume
ideal MHD. In the vertically stratified models, the turbulent activity shows oscillations
on a timescale of 10-20 orbits, leading to a typical “butterfly” structure when plotting
quantities such as the density, the magnetic field or the turbulent stresses in a space-time
diagramm. We find that associated with these oscillations are fluctuations in the lumi-
nosity of the disc. Since the butterfly pattern is also observed in global simulations (i.e.
it is not just an artifact of the local approximation), the changes in the luminosity are a
possible observable signature of stratified magnetorotational turbulence.
The vertical structure of the disc that comes out of our simulations is made up of two

layers with very different physical conditions: A midplane layer extending about three
scaleheights above both sides of the equator, where the disc is gas-pressure dominated,
the turbulent stresses are approximately uniform, the turbulence is subsonic and the
disc gas is optically thick; and a magnetically dominated corona, where angular mo-
mentum transport is negligible, the fluid motions are supersonic and the photons are
better described as free streaming rather than diffusing. It is interesting to note that the
magnetic field strengths generated by the MRI (which are of the order of several Gauss)
are compatible with the remanent magnetisation found in meteorites. A possible direct
observational consequence that can be derived from our simulations is the broadening
of spectral lines due to the velocity dispersion induced by the turbulence. The turbu-
lent Mach number of 2-3 at the photosphere, that we find in our simulations, is indeed
the same as that derived by the fitting of spectral lines due to CO overtone emission.
We conclude that this result supports the assumption that MRI-turbulence is active in
protoplanetary discs.
Concerning the resolution dependence of the turbulent saturation level, we find similar

results as in the case of the isothermal models, namely that as soon as a resolution of
∼ 30 grid cells per pressure scale height is reached, the results do no longer significantly
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depend on the resolution, and also not on the size of the computational domain. With
respect to the temperature profile, we also find that for the well resolved runs the mean
temperature profiles are similar. This means that both the turbulent saturation level
and the heating rates are reasonably converged, suggesting that the results are indeed
reliable.
The next logical step in our work is to simulate models of cooler regions of proto-

planetary discs, where non-ideal MHD effects are no longer negligible. We are currently
running such simulations, including both radiation transport and an Ohmic resistivity.
With this setup we are able to cover the full range of the planet-forming region inside the
disc, using a fully self-consistent model of an MRI-turbulent protoplanetary disc. Since
the curvilinear coordinates of the CRONOS have by now been extensively tested, we will
also be able to perform global protoplanetary disc simulations covering a large radial
range. We believe that the numerical setup and methods that we developed during this
thesis will prove to be a very important tool for future research.
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Appendix A: Table of Physical
and Astronomical
Constants

Speed of light c 2.99792458 · 1010 cm s−1

Gravitational constant G 6.67259 · 10−8 cm3 g−1 s−2

Electron charge e 4.8032068 · 10−10 esu
Mass of electron me 9.1093897 · 10−28 g
Boltzmann’s constant kB 1.380658 · 10−16 erg K−1

Radiation density constant a 7.5646 · 10−15 erg cm−3 K−4

Mass of hydrogen mH 1.6733 · 10−24 g
M� Mass of the Sun 1.99 · 1033 g
Astronomical unit AU 1.496 · 1013 cm

Tab. A.1: Table of fundamental physical and astronomical constants used in the present work.
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Appendix B: Table of
Mathematical
Symbols

ρ density
v velocity
B magnetic induction
p pressure
e thermal energy
E radiation energy
Etot total energy
F radiation flux
T temperature
ν viscosity
η Ohmic resistivity
Σ surface density
M? mass of central star
Ω angular orbital frequency
µ mean molecular weight
Φ gravitational potential

Tab. B.1: Table listing the most important mathematical symbols used in the present work.

153



B Table of Mathematical Symbols

154



Curriculum Vitae

Persönliche Angaben
Name Markus Flaig
Familienstand verheiratet, 1 Kind
Staatsangehörigkeit deutsch
Geburtsdatum 17.02.1978
Geburtsort Oberndorf a.N.

Schulbildung
1985 - 1989 Grundschule Waldmössingen
1989 - 1995 Realschule Dunningen, Realschulreife Juni 1995
1995 - 1998 Wirtschaftsgymnasium Rottweil

Abitur Juni 1998, Note: 1,3

Wehr- / Zivildienst
1999 - 2000 Zivildienst im Antonie-Maurer-Haus (Wohnheim für Behin-

derte) in Waldmössingen

Berufliche Tätigkeit
2000 - 2001 Tätigkeit als freier Mitarbeiter in selbiger Einrichtung

Wissenschaftlicher Werdegang
2000 - 2007 Studium der Physik an der Eberhard Karls Universität Tübin-

gen, Diplom Februar 2007, Note ‚sehr gut‘

2005 - 2007 Wissenschaftliche Hilfskraft an der Fakultät für Mathematik
und Physik der Universität Tübingen

2007 - 2011 Anfertigung der vorliegenden Dissertation Magnetorotational
Turbulence in Protoplanetary Discs am Institut für Computa-
tional Physics der Universität Tübingen unter Anleitung von
Prof. Dr. W. Kley

2007 - 2011 Wissenschaftlicher Angestellter am Institut für Computational
Physics der Universität Tübingen

Akademische Lehrer
H. Clement, J. Frauendiener, H. Kaul, R. Kleiner, W. Kley, D. Kölle, M. Liu,
H. Müther, F. Nüsslin, H. Reinhardt, U. Schlotterbeck, N. Schopohl, G. J. Wag-
ner, K. Werner


	Introduction
	Protostars and Protostellar Discs
	Formation
	Classification
	Typical Parameters

	Phenomenological Accretion Disc Theory
	Astrophysical Accretion Discs
	Theory of Viscous Accretion Discs

	Summary

	Protoplanetary Disc Physics
	Fundamental Fluid-dynamical Equations
	The Equation of Motion for the Neutral Particles
	Evolution of the Magnetic Field
	Importance of Non-ideal MHD-effects
	Thermodynamics
	Final Set of Equations

	Accretion Disc Viscosity
	Molecular Viscosity vs. Turbulent Viscosity
	Dynamical Foundation of Accretion Disc Viscosity

	Disc Instabilities
	Hydrodynamical Shear Instabilities
	Convective & Baroclinic Instability
	Gravitational Instability
	Magnetorotational Instability

	Numerical Simulations
	Unstratified Shearing Box Simulations
	Stratified Simulations
	Global Simulations

	Summary

	Linear Growth Phase of the MRI
	Local Stability Analysis
	Ideal MHD Dispersion Relation
	Incompressible Fluid
	Including Compressibility

	General Dispersion Relation
	Linearised Equations
	Dispersion Relation
	Eigenfunctions

	Effect of Resistivity and Radiation Transport
	Resistivity
	Radiation Transport

	Summary

	Local Shearing Box Simulations
	Numerical Schemes
	Finite Difference vs. Finite Volume
	The ZEUS code
	A Simple Finite Volume Scheme
	Godunov Schemes
	Evolution of the Magnetic Field
	Radiation Transport

	Code Tests
	Convergence Tests
	Code Comparison
	Resolution Study

	Investigating the Influence of Radiation Transport on Magnetorotational Turbulence
	Saturation Level
	Temperature Distribution

	Summary

	Simulations Including Vertical Stratification
	Stratified Local Shearingbox
	Boundary Conditions
	Initial Conditions

	Simulation Runs
	Overview
	Turbulent Saturation Level
	Vertical Structure

	Summary

	Radiative Models of Protoplanetary Discs
	Numerical Setup
	Boundary Conditions

	The Physical Model
	Basic Parameters of the ``Hot'' Model
	Stellar Irradiation
	Opacity
	Turbulent Dissipation
	Initial Conditions
	Test Problem: Equilibrium Temperature Profile

	Simulation Results I: ``Hot'' Disc Model
	Time History
	Vertical Structure
	Density & Temperature Profile
	Magnetic Field
	Turbulent Stresses
	Turbulent Velocities
	Turbulent Saturation Level

	Simulation Results II: ``Cool'' Disc Model
	Time History
	Turbulent Stresses
	Temperature

	Summary

	Summary and Outlook
	Table of Physical and Astronomical Constants
	Table of Mathematical Symbols

