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SUMMARY 

 

The increasing resistance of pathogenic bacteria to existing antibiotics has become one of 

the most serious threats to public health, and the discovery and development of new 

antibiotics represents an enormous challenge both for industry and for academic research 

institutions. 

 

Aminocoumarin antibiotics like clorobiocin, novobiocin and coumermycin A1 are produced 

by different Streptomyces strains. Their biosynthetic gene clusters have been cloned and 

sequenced, and the function of nearly all genes therein has been elucidated. With this 

knowledge, new derivatives of these antibiotics were generated by genetic engineering, 

mutasynthesis and combinatorial biosynthesis over the past years. In contrast to 

fluoroquinolones, aminocoumarins are potent inhibitors of the GyrB subunit of the bacterial 

DNA gyrase by competing with the binding of ATP. They are active against Gram-positive 

pathogens including methicillin-resistant Staphylococcus aureus strains and have also 

potential applications in oncology. It has been shown that they enhance the cytotoxic 

activities of the anti-tumor drugs etoposide and teniposide and interact with the eucaryotic 

heat shock protein 90 (Hsp90). Only novobiocin had been licensed for clinical use in 

human infections in the United States (Albamycin®). Because of the low solubility in water, 

toxicity in eukaryotes and poor penetration in Gram-negative bacteria the therapeutic use 

of aminocoumarin antibiotics remain restricted. Combinatorial biosynthesis may offer a 

way to develop novel aminocoumarins with improved properties.  

 

Previous date indicated that the lack of antibiotic activity of aminocoumarins against Gram-

negative bacteria was in part due to their poor permeation across the outer membrane. In 

this work, we aimed to generate a siderophore-like derivative of clorobiocin, which mimicks 

the structure of siderophores. This would facilitate the active transport of the antibiotic into 

the cell by its own siderophore transporters. In the first part of this PhD work, the 

prenylated 4-hydroxybenzoyl moiety (Ring A) of clorobiocin was replaced with a 3,4-

dihydroxybenzoyl moiety using combinatorial biosynthesis techniques. An artificial operon 

was synthesized, consisting of the genes for chorismate pyruvate lyase of E. coli and for 4-

hydroxybenzoate 3-hydroxylase of Corynebacterium cyclohexanicum. This operon, 

directing the biosynthesis of 3,4-dihdroxybenzoate, was expressed in the heterologous 

host Streptomyces coelicolor M512, together with a modified clorobiocin gene cluster that 
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lacks an essential gene for the biosynthesis of the genuine Ring A. The resulting strain 

now produced a new clorobiocin derivative containing a 3,4-dihdroxybenzoyl moiety. Its 

structure was confirmed by LC-MS, HR-MS and NMR analysis, and it was found to be a 

potent inhibitor of the DNA gyrase from E. coli and Staphylococcus aureus. These 

experiments confirmed that the structure of Ring A is not essential for the interaction with 

DNA gyrase. Bioassays against different E. coli mutants suggested that this compound 

(novclobiocin 401) was actively imported by catechol siderophore transporters in the cell 

envelope. This study provides a new example that the structure of a natural product can 

be rationally modified by genetic methods. 

Experiments to generate other siderophore-like derivatives of clorobiocin were performed. 

Substitution of Ring A with 2,3-dihydroxybenzoic acid (2,3-DHBA), which is the catechol 

moiety present in the siderophore enterobactin of Escherichia coli, was achieved at the 

end of this PhD work. The limiting biosynthetic steps were identified by in vitro assays: 2,3-

DHBA must be first activated by adenylation –attained with the AMP ligase DhbE from 

Bacillus subtilis– before being accepted by the available aminocoumarin acyl ligases as 

substrate. 

 

In the second project, we investigated the inhibitory activity of the naturally occurring 

aminocoumarin antibiotics novobiocin, clorobiocin, coumermycin A1, simocyclinone D8 and 

of several new derivatives (novclobiocins) against DNA gyrase and topoisomerase IV from 

Escherichia coli and Staphylococcus aureus as well as the effect of potassium and sodium 

glutamate on the activity of these enzymes. For this purpose, the inhibitory concentrations 

of the aminocoumarins were determined in DNA gyrase supercoiling assays and 

topoisomerase IV decatenation assays. Both subunits of S. aureus topoisomerase IV were 

purified by expressing the genes encoding the subunits ParC and ParE separately as His-

Tag proteins in Escherichia coli. DNA gyrase is in vitro the primary target of all investigated 

aminocoumarins. With the exception of simocyclinone D8, all other aminocoumarins 

inhibited S. aureus DNA gyrase on average 6-fold more effectively than E. coli DNA 

gyrase. Potassium glutamate was found to be essential for the activity of S. aureus DNA 

gyrase and increased the sensitivity of E. coli DNA gyrase to aminocoumarins at least 10-

fold. Furthermore, the IC50 values were three orders of magnitude lower than those 

reported for fluoroquinolones. This study provides insights about the important substituents 

for the inhibitory activity of aminocoumarins against the target enzymes, and thereby may 

facilitate the rational design of improved antibiotics. 
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ZUSAMMENFASSUNG 

 

Die steigende Resistenz pathogener Bakterien gegenüber bekannten Antibiotika wird 

immer mehr zu einer ernstzunehmende Bedrohung der Gesundheit und die Entdeckung 

und Erforschung neuer wirksamer Antibiotika zu einer schwierigen Herausforderung. 

Aminocoumarine, wie z.B. Novobiocin, Clorobiocin oder Coumermycin A1, bilden eine 

interessante Gruppe von Antibiotika, die von verschiedenen Stämmen der Gattung 

Streptomyces gebildet werden. Ihre Biosynthesegencluster wurden in den vergangenen 

Jahren kloniert, sequenziert und die Funktion nahezu aller Gene aufgeklärt. Mit diesem 

Wissen konnten neue Derivate dieser Antibiotika durch genetische Manipulation, 

Mutasynthese und Kombinatorische Biosynthese hergestellt werden.  

Im Gegensatz zu Chinolon-Antibiotika, die an der A-Untereinheit der bakteriellen Gyrase 

angreifen, ist das zelluläre Traget der Aminocoumarine die B-Untereinheit. Das 

therapeutische Potential der Aminocoumarine liegt in ihrer hohen Affinität zur bakteriellen 

Gyrase mit Inhibierungskonzentrationen im 10 nM Bereich; d.h. die Hemmkonzentrationen 

sind erheblich geringer als die der Chinolone.  

Neben ihrer Wirkung als Antiinfektiva gegen Gram-positive Pathogene (methicillin-

resistente Staphylococcus aureus Stämme eingeschlossen) finden sie außerdem 

Anwendung in der Onkologie. Aminocoumarine potenzieren zum einen die zytotoxische 

Wirkung der Topoisomerase-Inhibitoren Etoposid und Teniposid und reduzieren zum 

anderen durch direkte Interaktion mit dem Heat shock Protein 90 (Hsp90) die Menge an 

onkogenen Protein Kinasen (z.B. Raf-1) und somit die Anzahl an Tumorzellen.  

Obwohl Clorobiocin der potentere Wirkstoff gegen die bakterielle Gyrase ist, ist einzig 

Novobiocin in den USA als humantherapeutisches Antiinfektivum unter dem 

Handelsnamen Albamycin® (Pharmacia & Upjohn) zugelassen und wird zur Behandlung 

multiresistenter Gram-positiver Pathogene wie Staphylococcus aureus und 

Staphylococcus epidermidis eingesetzt. Wegen der schlechten Löslichkeit in Wasser, der 

Toxizität gegenüber eukaryotischen Zellen und der geringen Aktivität gegen Gram-

negative Bakterien, wird Novobiocin allerdings nur als Reserveantibiotikum verwendet. 

Kombinatorische Biosynthese bietet daher eine viel versprechende Möglichkeit neue 

Aminocoumarin-Antibiotika mit verbesserten Eigenschaften zu entwickeln. 

 

Zu Beginn dieser Doktorarbeit wurde angenommen, dass die schlechte Wirkung von 

Aminocoumarinen auf die unzulängliche Penetration durch die äußere Membran Gram-



ZUSAMMENFASSUNG 

 

8 

negativer Bakterien zurückzuführen ist. Wir stellten daraufhin mittels Kombinatorischer 

Biosynthese ein Clorobiocin Derivat mit einer siderophor-ähnlichen Struktureinheit her, mit 

deren Hilfe der aktive Transport durch die äußere Membran mittels zelleigenen 

Siderophortransporter genutzt werden sollte. Hierfür wurde die prenylierte 4-

Hydroxybenzoesäure (Ring A) von Clorobiocin durch 3,4-Dihydroxybenzoesäure (3,4-

DHBS) ersetzt. Zuvor wurde ein Operon aus zwei synthetischen Genen erstellt, die für 

eine Pyruvatlyase und eine 4-Hydroxybenzoat-3-hydroxylase kodieren und zusammen für 

die Biosynthese der 3,4-DHBS verantwortlich sind. Die Gene stammen aus dem Gram-

negativen Bakterium E. coli und dem Gram-positiven Bakterium Corynebacterium 

cyclohexanicum. Die Codons beider Gensequenzen wurden für eine Expression im 

Wirtsstamm Streptomyces coelicolor M512 optimiert und zusammen mit einem cloQ-

defekten Clorobiocin Biosynthesegencluster (verantwortlich für das Ausbleiben der Ring A-

Biosynthese) transformiert. Der resultierende Stamm produzierte ein neues Clorobiocin 

Derivat (Novclobiocin 401) mit der siderophor-ähnlichen Struktureinheit 3,4-DHBS. Die 

chemische Struktur des neuen Clorobiocin Derivats wurde mittels LC-MS, HR-MS und 

NMR Analysen bestätigt.  

Novclobiocin 401 erwies sich als potenter Hemmstoff der bakteriellen Gyrase von 

Escherichia coli und Staphylococcus aureus, was die Vermutung bestätigte, dass Ring A 

nicht an der direkten Interaktion mit der bakteriellen Gyrase beteiligt ist. Bioassays gegen 

verschiedene Escherichia coli Mutanten zeigten, dass diese Substanz aktiv durch 

Catecholsiderophortransporter in die Zelle transportiert wurde. Anhand dieser Arbeit 

konnte gezeigt werden, dass neue potente Substanzen bewusst durch „synthetische 

Biologie“ hergestellt werden können.  

 

Im Laufe dieser Arbeit wurde außerdem erstrebt, andere siderophor-ähnliche Clorobiocin 

Derivate herzustellen. Eine Substitution von Ring A mit 2,3-Dihydroxybenzoesäure (2,3-

DHBS), der Catecholeinheit der Siderophore Enterobactin von Escherichia coli, wurde 

schlussendlich erhalten, nachdem der limitierende Schritt durch in vitro Assays identifiziert 

wurde: 2,3-DHBS musste erst durch Adenylierung aktiviert werden, was durch Inkubation 

mit der AMP Ligase DhbE aus Bacillus subtilis erreicht wurde. Erst die aktivierte 2,3-DHBS 

wurde danach von allen uns vorliegenden Aminocoumarin-Acyl Ligase als Substrat 

akzeptiert. 

 

Im zweiten Projekt wurde die inhibitorische Aktivität der natürlichen Aminocoumarine 

Clorobiocin, Novobiocin, Coumermycin A1, Simocyclinon D8 und mehrere Aminocoumarin 
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Derivate (Novclobiocine) gegen die bakterielle Gyrase und Topoisomerase IV von 

Escherichia coli und Staphylococcus aureus untersucht. Außerdem wurde der Effekt von 

Kaliumglutamat (K-Glu) auf die Aktivität der Topoisomerasen bestimmt. Die 

Inhibierungskonzentartionen der Aminocoumarine wurden in Gyrase-Supercoiling Assays 

bzw. Topoisomerase IV-Dekatenierungs Assays bestimmt. Beide Untereinheiten der S. 

aureus Topoisomerase IV, ParC und ParE, wurden exprimiert und mittels Nickel-

Affinitätschromatographie gereinigt. Die bakterielle Gyrase erwies sich in den in vitro 

Assays als bevorzugte Zielstruktur aller getesteten Aminocoumarine. Mit Ausnahme von 

Simocyclinon D8 wurde die S. aureus gyrase im Durchschnitt sechsmal besser als die E. 

coli Gyrase gehemmt. Kaliumglutamat erwies sich als unabkömmlich für die Aktivität der 

S. aureus Gyrase und steigerte die Sensitivität der E. coli Gyrase mindestens um das 10-

fache. Die Ergebnisse dieses Projektes zeigten die Wichtigkeit verschiedener 

Substituenten der Aminocoumarin Derivate für die Interaktion mit ihren Zielstrukturen, was 

für das Design zukünftiger potenter Aminocoumarine von Wichtigkeit sein kann.  
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I. INTRODUCTION 

I.1. Antibiotic resistance and the quest for new antibiotics  

 

The dramatic increase in the number of antibiotic-resistant pathogenic Gram-positive and 

Gram-negative bacteria in the past decade have focused attention on the need for new 

anti-infective drugs119. Natural products have traditionally played a dominant role in the 

discovery of new drugs, although structural modifications of these natural products are 

often necessary to improve the efficacy, stability and pharmacokinetics124. 

 

About two-thirds of the known antibiotics, and many other compounds with different 

biological activities, are produced by a group of Gram-positive bacteria called 

actinomycetes9, characterised by the high content of guanine and cytosine of their 

genomes125 (in contrast with the other main group of Gram-positive bacteria, the low G+C 

organisms, which includes genera such as Bacillus or Staphylococcus). Among 

actinomycetes, the most prolific producers of antibiotics are the species of the genus 

Streptomyces. Streptomyces are ubiquitous soil bacteria, where they play a central role in 

carbon recycling. They show one of the most complex life cycles among bacteria: a spore 

germinates leading to the development of a vegetative mycelium that differentiates in 

aerial hyphae and later in chains of spores, facilitating the dispersion of the specie as well 

as its survival under adverse conditions. The production of antibiotics is usually 

coordinated with the morphological differentiation59. 

 

The history of antibiotics obtained from Streptomyces begins with the discovery of 

streptothricin in 1942, although it was the discovery of streptomycin two years later what 

triggered systematic screening of antibiotics produced by members of this genus122. 

Streptomyces coelicolor A3(2) is the most studied representative of this genus. This strain 

is able to produce four known chromosomally encoded antibiotics: the NRPS/PKS-derived 

prodiginines, the type II polyketide actinorhodin, the NRPS-derived calcium-dependent 

antibiotic (CDA) and the type I polyketide CPK11.  

 

Antibiotic production in Streptomyces is generally growth phase-dependent. In liquid 

culture it begins as the culture enters stationary phase. Most antibiotics are the products of 

complex biosynthetic pathways, with all the enzymes and transport proteins encoded 

within a gene cluster that usually contains also genes for pathway-specific transcriptional 
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regulatory proteins. The onset of antibiotic biosynthesis is determined and influenced by a 

variety of physiological and environmental factors. There is evidence that the full capacity 

for secondary metabolite production by soil microorganisms is not expressed under the 

typical conditions used for antibiotic screening in the laboratory. Furthermore, only a small 

portion of microorganisms are culturable by current methods. Therefore, it is accepted that 

a large number of biosynthetic pathways still await to be discovered in actinomycetes, 

what encourages the use of genetic approaches for antibiotic discovery, like heterologous 

expression of biosynthetic gene clusters in culturable and genetic manipulable strains (e.g. 

Streptomyces coelicolor M51238 and combinatorial biosynthesis or genetic engineering as 

methods to increase the natural diversity120. 

 

In 1985, Hopwood55 reported 1985 for the first time the production of “hybrid” antibiotics by 

genetic engineering of Streptomyces strains, i.e. through the transfer of biosynthetic genes 

between strains producing different members of the same class of antibiotics in order to 

combine structural features of both compounds. Since then, the number of biosynthetic 

genes and gene clusters available for such experiments, and the genetic techniques 

available for recombination and expression, have expanded greatly and many new 

bioactive compounds have been generated by genetic engineering of microorganisms53, 54. 

Advances in the methods of chemical DNA synthesis now allow to readily adapt the 

sequence of a gene to different expression hosts, what greatly expands the possibilities for 

the generation of new bioactive compounds by the combination of genes from very 

different organisms. This "combinatorial biosynthesis", or the shuffling of biosynthetic 

genes from different pathways and even organisms via genetic engineering to create novel 

chemical structures, has proved in the last few years to represent a promising alternative 

approach to create new compounds and overcome bacterial resistance to existing drugs21, 

76, 119.  

 

Over the last years, the biosynthetic gene clusters of five different aminocoumarin 

antibiotics have been cloned and sequenced, and this group of antibiotics has become a 

successful example for the generation of new derivatives in high structural diversity by 

combinatorial biosynthesis techniques, including metabolic engineering, mutasynthesis, 

and chemoenzymatic synthesis in natural and heterologous producer strains65, 35, 48. 
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I.2. Aminocoumarin antibiotics 

I.2.1. Chemical structure 

 

The aminocoumarin antibiotics are produced by different Streptomyces strains: e.g. 

novobiocin by S. spheroides111, clorobiocin by S. roseochromogenes var. oscitans DC 

12.97672, and coumermycin A1 by S. rishiriensis13. So far, two further aminocoumarin 

antibiotics, simocyclinone D8101 and rubradirin109 have been discovered (Figure I.1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure I.1: 

Chemical structure of the aminocoumarin antibiotics. 

 

The characteristic structural moiety that gives the name to the aminocoumarin antibiotics is 

a 3-amino-4,7-dihydroxycoumarin moiety (Ring B), which is linked via an amide bond to an 

acyl moiety (Ring A) and via a glycosidic bond to the deoxysugar noviose (Ring C)49. 

Clorobiocin differs from novobiocin at two positions: novobiocin has a carbamoyl group 

attached to noviose, while clorobiocin contains a 5-methylpyrrole-2-carboxylic acid 
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molecule, and clorobiocin carries a chlorine atom at Ring B whereas novobiocin has a 

methyl group at the corresponding position (Figure I.1). Coumermycin A1 contains two 

noviosyl aminocoumarin moieties and has a different acyl component, 3-methyl-pyrrole-

2,4-dicarboxylic acid. Simocyclinone D8 and rubradirin have only Ring B in common with 

the “classical” aminocoumarins49. 

 

 

I.2.2. Mechanism of action 

 

The mode of action of clorobiocin, novobiocin and simococlinone D8 has been examined 

recently by Maxwell and Lawson74. These aminocoumarins are powerful inhibitors of DNA 

gyrase, binding to this target with higher affinity than modern fluoroquinolones.  

Gyrase and topoisomerase IV belong to the procaryotic type II topoisomerases22, 104, that 

are different from eukaryotic topoisomerases and therefore they are a promising anti-

infective drug target. Topoisomerases can be divided into two main classes: type I 

enzymes, which cleave a single strand of DNA during the course of their reaction, and type 

II enzymes, which cleave both strands. DNA gyrase is unique in its ability to introduce 

negative supercoils into DNA and is involved in the maintenance of a critical superhelical 

density of DNA that is essential for DNA replication and transcription. In contrast, the 

primary function of topoisomerase IV is the decatenation of multiply linked daughter 

chromosomes during the terminal stages of DNA replication (Figure I.2).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure I.2107: 

Reactions of type II topoisomerases. 

(A) DNA gyrase introduces negative 

supercoils into closed circular DNA by 

the concerted breaking and rejoining of 

double strands. Both DNA gyrase and 

topoisomerase IV can remove supercoils. 

(B) Supercoiled DNA is catenated by 

DNA gyrase and decatenated by both 

DNA gyrase and topoisomerase IV. 
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DNA gyrase as well as topoisomerase IV consist of two GyrA/GyrB and two ParC/ParE 

subunits, respectively. The reactions catalysed by both enzymes are energetically driven 

by hydrolysis of ATP, catalysed by GyrB and ParE subunits22, 104.  

Aminocoumarins bind to the GyrB subunit of DNA gyrase or the ParE subunit of 

topoisomerase IV, competing with the binding of ATP10, 74. Detailed crystallographic 

studies have been published on the interaction of clorobiocin and novobiocin with DNA 

gyrase and topoisomerase IV, which have shown that Ring B and Ring C are essential for 

the interactions with gyrase, while Ring A is much less involved in the binding of the 

antibiotics to the target. Therefore, it appears possible to vary the structure of Ring A 

without severely affecting the DNA gyrase inhibitory activity. Complexes between 

clorobiocin or novobiocin and the protein involve hydrophobic interactions and a network of 

hydrogen bonds. Key hydrogen bonds include those between Arg136 and Ring B, Asp73 

and Thr65 and the acyl group of Ring C, and Asn46 and the hydroxyl group of Ring C 

(Figure I.3)74. The drugs do not occupy the same binding pocket as ATP, but the binding 

site of Ring C overlaps with the binding site for the adenine ring of ATP86. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure I.3: 

(A) Interaction between E. coli gyrase subunit B and clorobiocin; adapted from ref. 74; (B) Interaction 

between E. coli gyrase subunit B and ATP; adapted from ref. 86.   

 

The interest in aminocoumarins has been stimulated by recent biochemical and X-ray 

crystallographic evidence showing that the aminocoumarin antibiotic simocyclinone D8 

inhibits DNA gyrase by a completely new mode of action, interacting with two separate 

pockets of the enzyme and thereby preventing its binding to DNA30, 36, 87.  
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I.2.3. Clinical application 

 

The therapeutic potential of the aminocoumarins lies especially in their very high affinity to 

gyrase. Their equilibrium dissociation constants (KD) for gyrase is in the 10 nM range, i.e. 

lower than that of fluoroquinolones74. 

Even though clorobiocin is a more potent inhibitor of DNA gyrase, only novobiocin 

(Albamycin®, Pharmacia & Upjohn) has been licensed in the United States for the 

treatment of human infections with multi resistant bacteria such as Staphylococcus aureus 

and Staphylococcus epidermidis6. Due to its poor solubility in water, which prevented the 

development of parenteral formulations, the toxicity in eukaryotes and its low activity 

against Gram-negative bacteria (resulting from poor permability), clinical use of this 

antibiotic remains restricted. 

Novobiocin and its derivatives have also been investigated as potential anticancer drugs. 

Novobiocin acts synergistically with etoposide and teniposide and could be used in 

combination therapies to overcome drug resistance. The increase in etoposide cytotoxicity 

is due to the inhibition by novobiocin of etoposide efflux68, 95-97. Furthermore, novobiocin, 

clorobiocin, and coumermycin A1 were shown to interact with the eukaryotic heat shock 

protein 90 (Hsp90), which plays a key role in the stability and function of multiple cell-

signaling components, e.g. several oncogenic tyrosine and serine-threonine kinases (e.g. 

Raf-1), being expressed at two to ten fold higher levels in tumour cells than in their normal 

counterparts. Hsp90 is therefore considered to be a novel molecular target for anticancer 

therapeutics, and aminocoumarins markedly reduced cellular levels of oncogenic kinases 

in vitro and in vivo (mice) by interacting with Hsp9073. 

 

 

I.2.4. Biosynthesis and biosynthetic gene clusters  

 

The biosynthesis of novobiocin was first studied in the 1960s by feeding experiments by 

Birch and co-workers14 and Bunton and co-workers20. They proved that the deoxysugar is 

derived from glucose, and that tyrosine is the precursor of both the aminocoumarin moiety 

(Ring B) and the acyl component (Ring A). In 2000, cloning and sequencing of the 

novobiocin biosynthetic gene cluster provided the basis for genetic investigations of 

aminocoumarin antibiotics biosynthesis111. Subsequently, the biosynthetic gene clusters 

for coumermycin A1 and clorobiocin were also identified92, 121. Comparison of the three 
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gene clusters revealed a strikingly stringent correspondence between the structure of the 

antibiotics and the organization of the biosynthetic genes (Figure I.4). The order of the 

genes coding for each structural moiety are perfectly identical for the three clusters. The 

novobiocin, clorobiocin and coumermycin A1 cluster span 23.4, 35.6 and 38.2 kb and 

comprise 20, 29 and 31 putative genes, respectively66. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure I.4: 

The biosynthetic gene clusters of coumermycin A1 (cou), clorobiocin (clo) and novobiocin (nov).  

  

The 3-amino-4,7-dihydroxy coumarin moiety (Ring B) is present in all three 

aminocoumarins, and correspondingly all three clusters contain a group of four genes for 

its biosynthesis, i.e. novHIJK, cloHIJK and couHIJK23. 

The 3-prenylated-4-hydroxybenzoyl moiety (Ring A) of clorobiocin (and of novobiocin) is 

formed from 4-hydroxyphenylpyruvate under catalysis of the ABBA prenyltransferases 

CloQ93 (NovQ) and two subsequent oxidative decarboxylation steps catalysed by the non-

heme iron(II)-and α-ketoacid-dependent oxygenase CloR91 (NovR). The prephenate 

dehydrogenases CloF (NovF) provides 4-hydroxyphenylpyruvate34.  

The aminocoumarin moiety is linked to the respective acyl moiety by the amide synthetase 

NovL110, CloL43 or CouL103. 
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The aminocoumarin moieties of novobiocin and coumermycin A1 are methylated by the 

methyl transferases NovO and CouO respectively67. Clorobiocin contains a chlorine atom 

and correspondingly the gene cluster of clorobiocin contains a gene clo-hal encoding a 

halogenase32. 

All three aminocoumarin antibiotics contain the same deoxysugar skeleton92, 111, 121, i.e. 5-

C-methyl-L-rhamnose, and all three gene clusters contain a group of five genes, 

novSTUVW and its orthologous in the other clusters. The dTDP-activated deoxysugar is 

subsequently transferred to the 7-hydroxy group of the aminocoumarin moiety, catalysed 

by the glycosyl transferases NovM39, CloM and CouM. 

After glycoside formation, the 4-hydroxy group of the deoxysugar is methylated by the 

SAM-dependent methyltransferases NovP40, CloP or CouP. 

The last step in the biosynthesis appears to be the acylation of the 3-hydroxy group of the 

deoxysugar, catalysed in novobiocin biosynthesis by the carbamoyl transferase NovN40. In 

clorobiocin and coumermycin A1, the corresponding acyl moiety is a pyrrol-2-carboxylic 

acid formed by the genes cloN1-73 and couN1-7 (Figure I.5). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure I.5: 

Structure of clorobiocin and function of the gene products of cloFHIJKLMNPQRSTUVW and clo-hal in 

clorobiocin biosynthesis49. 
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The clorobiocin and coumermycin A1 gene clusters contain a small open reading frame, 

cloY and couY, which shows sequence similarity to the gene mbtH from the biosynthetic 

gene cluster of the siderophore mycobactin from Mycobacterium tuberculosis. It is 

supposed that these genes interact with cloH (couH) in an adenylation reaction of L-

tyrosine128. 

All three clusters contain also two positive regulators, novE34 and novG33 and their 

orthologs, as well as a gyrBR resistance gene, coding an aminocoumarin-resistant gyrase 

B subunit. The gene clusters of clorobiocin and coumermycin A1 contain an additional 

resistance gene parYR102. This encodes an aminocoumarin resistant topoisomerase IV 

subunit. Clorobiocin and coumermycin A1 are more potent inhibitors of topoisomerase IV 

than novobiocin, and therefore it makes sense that during the evolution of the biosynthetic 

gene clusters the clorobiocin and coumermycin A1 producers had to acquire a second 

resistance gene. 

 

 

I.2.5. Bacterial resistance mechanisms against aminocoumarins 

 

A principal shortcoming of the aminocoumarin antibiotics is their poor activity against 

Gram-negative organisms which is due to a synergistic effect of the permeability barrier, 

imposed by the outer membrane114, and of active efflux by multidrug efflux pumps of these 

organisms81. The outer membrane bilayer is composed of lipopolysaccarides85. Because 

of the presence of porins12, protein complexes that cross the membrane forming a pore 

through which small molecules can diffuse with different selectivity, the outer membrane is 

permeable for small hydrophilic substances but not for hydrophobic compounds or 

molecules with higher molecular weight.  

The multidrug efflux pump is another worrisome mechanism that contributes to bacterial 

antibiotic resistance. Active efflux is a mechanism responsible for the export of a variety of 

antibiotics outside the bacterial cell. The ability of efflux systems to recognize a large 

number of compounds other than their natural substrates is probably because substrate 

recognition is based on physiochemical properties, such as hydrophobicity, aromaticity 

and ionisable character, rather than on defined chemical properties as, for instance, in 

classical enzyme-substrate or ligand-receptor recognition. Because aminocoumarins are 

amphiphilic molecules they are easily recognized by many efflux pumps84, e.g. the 

multidrug transporter ABC (mdtABC or AcrAB)81, 7. This efflux system usually consists of 
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membrane protein complexes, e.g. MdtA/MdtB/MdtC or AcrA/AcrB, and a common 

membrane channel TolC (Figure I.6). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure I.6: 

Schematic model of the molecular construction of MdtABC-TolC and AcrAB-TolC transporter complexes, 

respectively; adapted from ref. 81. 

 

Since efflux pump inhibitors, like verapamil, can be used in combination with current drugs 

to increase their effective intracellular concentration, the possible impact of efflux pump 

inhibitors together with improved uptake of the antibiotic is of great clinical interest94. 
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cell82. Many siderophores, like E. coli enterobactin, contain catechol (= o-diphenol) motifs 

whose proximate hydroxyl groups are responsible for chelating the Fe3+ ion. In the case of 

E. coli Cir, Fiu and FepA transporters, they receive the energy for active transport from the 

inner membrane associated proteins TonB, ExbB and ExbD. After passing the outer 

membrane, the siderophore-iron(III) complex is bound by a periplasmic binding protein 

(PBP). The PBP donates the ferrisiderophore to a transporter and once inside the 

cytoplasm a reductase releases iron under the Fe2+ form, which can be incorporated into 

Fe-containing proteins. The siderophore can eventually be recycled (Figure I.7)25. The 

expression of this machinery is up-regulated under conditions of iron starvation. Bacterial 

growth during an infection in the human body represents a condition of extreme iron 

starvation24, and therefore the bacterial iron uptake mechanism offers a possibility to 

overcome membrane-associated drug resistance by a Trojan Horse approach.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure I.7: 

Schematic representation of the uptake of iron via siderophores in Gram-negative bacteria. OM = outer 

membrane; IM = inner membrane; adapted from 25.  

 

It has been shown that beta-lactam antibiotics to which a catechol moiety had been 

chemically attached were transported by siderophore transporters into the Gram-negative 

cell, resulting in an enhanced antibacterial activity79. As it was discussed earlier, 

aminocoumarin antibiotics have potent antibacterial activity against Gram-positive bacteria 

but little against Gram-negative microorganisms, partly due to the lack of permeability. 
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Therefore, it was of great interest to develop aminocoumarin derivatives with siderophore-

like structures, so that the aminocoumarin antibiotic is recognized and actively transported 

into the cell under involvement of catechol siderophore transporters (Figure I.8) and in this 

way to obtain new antibiotics that could add to the scarce set of available compounds to 

fight the increasing problem of multi-drug resistant Gram-negative infections61. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure I.8: 

Aminocoumarin derivative imitating the siderophore-like structure (catechol) of a siderophore, e.g. 

enterobactin from Escherichia coli. 
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I.3. Objectives of this study 

 

 

The principal objectives of this study were: 

 

 

1) To generate new aminocoumarin derivatives with catechol structures instead of 

the natural Ring A by metabolic engineering, mutasynthesis and combinatorial 

biosynthesis for studies of influx and efflux processes. 

The bacterial cell envelope represents a barrier, which strongly limits the efficacy of 

many antibiotics. We attempted to develop new catechol derivatives in order to test 

whether they would be transported into the cell under involvement of catechol 

siderophore transporters. 

 

 

2) To generate mutants of E. coli with multiple mutations affecting transport 

processes in the bacterial cell envelope. 

E. coli mutants with a single gene exchanged by an antibiotic resistance cassette are 

available from the Keio-strain collection (Japan). Further deletions of genes of interest 

by RED/ET-mediated recombination were necessary to study siderophore dependent 

uptake processes of the newly generated catechol compounds. Also, the export of 

aminocoumarins by multidrug efflux pumps shall be examined via these E. coli mutant 

strains. 

 

 

3) To investigate the antibacterial activity of these new catechol derivatives against 

different E. coli mutant strains in agar diffusion tests (bioassays). 

To investigate whether catechol-containing aminocoumarins are subject to active 

import by catechol siderophore transporters, the expression of these transporters 

needs to be induced by iron-limited growth conditions. Under these conditions, 

siderophore-dependent uptake of the compounds shall be identified and the minimum 

inhibitory concentration of compound necessary to avoid bacterial growth determined. 
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4) To express and purify both subunits ParC and ParE of Staphylococcus aureus 

topoismoerase IV for the investigation of aminocoumarins activity against this 

target. 

S. aureus DNA gyrase, as well as E. coli topoisomerase IV and DNA gyrase, were 

available commercially, but it was necessary to purify S. aureus topoisomerase IV for 

our study. Soluble, N-terminally his-tagged proteins were aimed to be obtained by 

expression in Escherichia coli host cells of constructs containing parC and parE from 

the methicillin-resistant strain S. aureus RN4220. 

 

 

5) To determine the inhibitory activity of the new catechol derivatives as well as 

other derivatives of clorobiocin and novobiocin, called novclobiocins, against 

their principal targets, gyrase and topoisomerase IV of Escherichia coli and 

Staphylococcus aureus.  

Structural changes of aminocoumarins may not only affect their recognition by active 

transport systems in the bacterial cell envelope, but also their affinity to their biological 

targets, gyrase and topoisomerase IV. Therefore, the compounds generated in this 

project, as well as other novclobiocins produced in our lab, should be tested against 

these two targets in supercoiling and decatenation assays, and their activities be 

compared with those of the natural aminocoumarins clorobiocin, novobiocin, 

coumermycin A1 and simocyclinone D8. 

 

 

6) To provide a new clorobiocin cloHIJK (Ring B synthesis) defective mutant strain, 

unable to produce the natural Ring B, for the generation of new aminocoumarin 

derivatives with different Ring B analogues.  

The toxicity of aminocoumarins is thought to be due to the 3-amino-4,7-

dihydroxycoumarin moiety (Ring B). Therefore, we focussed in developing methods to 

exchange the natural Ring B by less toxic analogues.  
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II. MATERIALS AND METHODS 

II.1. Microbiology methods 

II.1.1. Microorganisms 

 

The bacterial strains used or constructed during this study are listed in Table II.1. 
 
Table II.1: Microorganisms. 

Strains Relevant genotype, description, or properties Reference 
   

E. coli   

K-12 MG1655  17

XL1 Blue general cloning host; recA1, endA1, gyrA96, thi-1, 
hsdR17, supE44, relA1, lac[F', proAB, lacIq, ZΔM15, 
Tn10]; Tetr 

19
Stratagene 

ET12567 DNA methylase negative strain; dam-13::Tn9, dcm-

6, hsdM; Tetr, Cmr 
71

BL21(DE3)/pLysS host strain for heterologous gene expression; F-, 
ompT, hsdSB(rB

- mB
-), gal, dcm, (DE3)pLysS; Cmr 

Novagen

BW25113 K-12 derivative; ΔaraBAD, ΔrhaBAD 27

JW0585-2 K-12 derivative; ΔentC; Kmr  8

JW5503-1 K-12 derivative; ΔtolC; Kmr  8

JW5195-1 K-12 derivative; ΔtonB; Kmr  8

JW3605-1 K-12 derivative; ΔrfaP; Kmr 8

SA-101 K-12 derivative; ΔtolC, ΔentC; aac(3)IV; Kmr, Aprr This study

SA-102 K-12 derivative; ΔtonB, ΔentC; aac(3)IV; Kmr, Aprr This study

SA-103 K-12 derivative; ΔtonB, ΔtolC; aac(3)IV; Kmr, Aprr  This study

SA-104 K-12 derivative; ΔtonB, ΔtolC, ΔentC; aac(3)IV; 
aadA; Kmr, Aprr, Strr 

This study

SA-105 K-12 derivative; ΔrfaP, ΔentC; aac(3)IV; Kmr, Aprr This study

SA-106 K-12 derivative; ΔrfaP, ΔtolC; aac(3)IV; Kmr, Aprr This study

SA-107 K-12 derivative; ΔrfaP, ΔtolC, ΔentC; aac(3)IV; 
aadA; Kmr, Aprr, Strr 

This study

   

Streptomyces coelicolor   

M512 S. coelicolor M145 derivative; ΔactII-ORF4, ΔredD, 
SCP1-, SCP2- 

38

M1154 S. coelicolor M145 derivative; Δact, Δred, Δcpk, 
Δcda, rpoB[C1298T], rpsL[A262G] 

45

M512(clo-BG1) S. coelicolor M512 containing cosmid clo-BG1; Kmr 31

M512(clo-SA2) S. coelicolor M512 containing cosmid clo-SA2; Kmr This study

M512(cloSA4) S. coelicolor M512 containing cosmid clo-SA4; Kmr This study

M1154(clo-SA2) S. coelicolor M1154 containing cosmid clo-SA2; Kmr This study

M512(clo-SA2)/pSA11 S. coelicolor M512 containing cosmid clo-SA2 and 
plasmid pSA11; Kmr, Tsrr  

This study

M1154(clo-SA2)/ 
pSP1261110 

S. coelicolor M1154 containing cosmid clo-SA2 and 
plasmid pSP1261110; Kmr, Tsrr 

This study
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II.1.2. Culture media 

 

Unless otherwise stated, the media were prepared with distilled water and autoclaved for 

20 min at 121°C. All the recipes for the media are given for 1 l of final volume. When 

necessary, supplementary components like antibiotics or other heat labile substances, 

sterilized by filtering through 0.22 µm pore sized filters, were added to the sterile media. 

Culture media were stored at RT or 4°C. 

 

Culture media for E. coli 

LB (Luria-Bertani) medium70 

NaCl 10.0 g
Tryptone 10.0 g
Yeast extract 5.0 g
 
Components were dissolved in 1 l water, adjusted to pH 7.0 and sterilized by autoclaving. 
 

Mueller-Hinton agar (Roth)  

Mueller-Hinton agar 38.0 g
 
Components were dissolved in 1 l water and sterilized by autoclaving. 
 

SOB medium 

Tryptone 20.0 g
Yeast extract 5.0 g
NaCl 0.5 g
 
Components were dissolved in 1 l water and sterilized by autoclaving.  
 

Culture media for Streptomyces 

TSB (Tryptone Soya Broth) medium59 

Tryptone Soya Broth 30.0 g
 
Components were dissolved in 1 l water and sterilized by autoclaving. 
 

MS (Mannitol Soya flour) Agar59 

Mannitol 20.0 g
Soya flour 20.0 g
Agar 20.0 g
 
The mannitol was dissolved in 1 l tap water and 100 ml each poured into flasks containing 
2 g agar and 2 g soya flour. The medium was sterilized twice (115°C, 15 min) by 
autoclaving with moving of the media between the two runs. 
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GYM medium105 

Glucose 4.0 g
yeast extract 4.0 g
Malt extract 10.0 g
Peptone  1.0 g
NaCl 2.0 g
 
Ingredients were dissolved in 1 l water, adjusted to pH 7.2 with NaOH and sterilized by 
autoclaving. 
 

Corn starch medium (Clorobiocin preculture medium)72 

Corn starch 10.0 g
Peptone  10.0 g
Meat extract 5.0 g
 
Ingredients were dissolved in 1 l water, adjusted to pH 7.0 and sterilized by autoclaving. 
 

Distillers solubles medium (clorobiocin production medium)72 

Distillers' solubles 48.0 g
Glucose 12.0 g
CoCl2  6 H2O 24 mg
CaCO3 6.0 g
 
(NH4)2SO4 (16%) 13 ml
Glucose (25%) 100 ml
 
Distillers' solubles, glucose and cobalt chloride were dissolved in 887 ml water and 
adjusted to pH 7.8. After adding of calcium carbonate the medium was sterilized by 
autoclaving. After autoclaving sterile ammonium sulphate and glucose solutions were 
added. 
 

CDM medium (novobiocin production medium)60 

tri-sodium citrate  2 H2O 6.0 g
L-proline 6.0 g
K2HPO4 · 3 H2O 2.0 g
(NH4)2SO4 1.5 g
NaCl 5.0 g
 
MgSO4  7 H2O 2.05 g
CaCl2  2 H2O 0.4 g
FeSO4  7 H2O 0.2 g
ZnSO4  7 H2O 0.1 g
 
Glucose (30%) 100 ml
 
The Ingredients up to NaCl were dissolved in 900 ml water and adjusted to pH 7.2. After 
adding of MgSO4, CaCl2, FeSO4 and ZnSO4 the medium was again adjusted to pH 7.2 and 
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sterilized by autoclaving. The glucose solution was also sterilized by autoclaving and 
added afterwards to the medium. 
 

YEME (Yest Extract Malt Extract) medium (protoplast transformation)59 

Sucrose 340.0 g
Glucose 10.0 g
Peptone 5.0 g
Yeast extract 3.0 g
Malt extract 3.0 g
 
MgCl2 (2.5 M) 2 ml
Glycine (20%) 25 ml
 
Ingredients were dissolved in 1 l water and sterilized by autoclaving. After autoclaving 
sterile MgCl2 and glycine solutions were added. 
 

R5 medium 

Sucrose 103.0 g
MgCl2  6 H2O 10.1 g
Glucose 10.0 g
TES 5.7 g
Yeast extract 5.0 g
K2SO4 0.25 g
Casaminoacids 0.1 g
Trace elements solution 2.0 ml
 
CaCl2  2 H2O (1 M) 20 ml
L-Prolin (20%) 15 ml
KH2PO4 (0.5%) 10 ml
 
The ingredients were dissolved in 1 l water and adjusted to pH 7.2 and sterilized by 
autoclaving. The three supplementary solutions were also sterilized by autoclaving and 
added afterwards to the medium. For the preparation of agar plates 23 g agar was added 
after adjusting to pH 7.2. For the preparation of soft agar only 6 g agar were added. 
Ingredients for the trace elements solution were dissolved in 1 l water and sterilized by 
autoclaving. 
 

 

II.1.3. Growth and preservation of microorganisms 

 

E. coli strains 

E. coli strains were routinely cultivated in liquid or on solid LB medium with appropriate 

antibiotics at 37°C overnight (18 h). Standard methods for cultivation were performed as 

described by Sambrook and co-workers100.  

Trace elements solution (for 1 l) 
FeCl3  6 H2O 200 mg
ZnCl2 40 mg
CuCl2  2 H2O 10 mg
MnCl2  4 H2O 10 mg
Na2B4O6  10 H2O 10 mg
(NH4)6Mo7O24  4 H2O 10 mg
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Stocks of E. coli strains for long term storage were prepared by mixing 800 µl of overnight 

culture with 400 µl sterile glycerol solution (80% in distilled water) and stored at -70°C. 

 

Streptomyces strains 

Standard methods for cultivation were performed as described by Kieser and co-workers59. 

For antibiotic production in batch fermentation, Streptomyces strains were routinely pre-

cultivated in liquid TSB medium (BD Bioscience) with appropriate antibiotics at 30°C for 2-

3 days using baffled Erlenmeyer flasks with a steel spring. The cultivation was continued in 

distillers' solubles, GYM or CDM medium for antibiotic production at 30°C for 5-8 days. 

For preparation of stocks of Streptomyces strains for long-term storage as frozen 

mycelium, 1 ml of 2-3 days old TSB culture was harvested by centrifugation, the cells were 

resuspended in 0.5 ml 20% glycerol and stored at -70°C. 

For long term storage as spore suspensions, Streptomyces strains were spread on MS or 

R5 agar and incubated at 30°C for about 1-2 weeks until dense and matured sporulation 

was observed. 6 ml Tween® 20 (0.1%) were added to each plate and the spores scraped 

off into suspension with a sterile cotton bud. The spore suspension was poured into a 

falcon tube, vortexed and separated from the mycelium by passing through sterile cotton 

wool. After centrifugation (4000 rpm, 10 min, 4°C) spores were resuspended in 0.5 ml 

glycerol (20%) and stored at -70°C. 

 

 

II.1.4. Antibiotic solutions 

 

For stock solutions, antibiotics were dissolved in sterile distilled water (unless otherwise 

stated) and kept at –20°C. The aqueous solutions were sterilized by filtration (pore size 

0.22 µm). For antibiotic selection, the required antibiotics were added to the media in 

appropriate concentrations. 

 

Antibiotic Resistance gene Final concentration 
in the media (µg/ml)  

Stock solution  
(mg/ml) 

    

Apramycin acc(3)IV 50 50 
Carbenicillin bla 100 100 
Chloramphenicol cat 25 25 (ethanol) 
Kanamycin neo 50 50 
Streptomycin aadA 10 10 
Tetracycline tet 12 12 (ethanol) 
Thiostreptone tsr 25 50 (DMSO) 
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II.2. Molecular biology methods 

 

Standard methods for DNA isolation and manipulation were performed as described by 

Sambrook and co-workers100 and Kieser and co-workers59.  

 

II.2.1. Vectors and constructs used in this study 

 

Cloning and expression vectors used for this study and the constructs generated during 

this work are listed in Table II.2. 

 

Table II.2: Vectors and constructs. 

Plasmids / 
Cosmids 

Description and Properties Reference / 
Source

   

Plasmids  

pJ201 pUC origin; Kmr DNA2.0  

pUWL201 E. coli-Streptomyces shuttle vector; ermE* promoter; pIJ101 
origin; Ampr, Tsrr 

28

pUG019 pBlueskript SK(-) derivative; aac(3)IV; Ampr 31

pQE70 expression vector; C-terminal (His)6-Tag; T5-promotor; ColE1 
origin; Ampr 

Qiagen

pET22b expression vector; C-terminal (His)6-Tag; f1 origin; Ampr Novagen

pREP4 lac repressor plasmid; p15Aori; Kmr Qiagen

pBR322 origin; Ampr, Tetr 100

pIJ790 λ-RED (gam, bet, exo), cat, araC, rep101ts 47

pIJ778 pBlueskript SK(-) derivative; aadA; Strr 47

pIJ773 pBlueskript SK(-) derivative; aac(3)IV, oriT; Aprr 47

pSH2 pUWL201 derivative containing simL; XbaI-HindIII restriction 
sites; Ampr, Tsrr 

47

pJJM301 pQE70 derivative containing dhbE; SphI-BamHI restriction sites; 
Ampr 

75

pET11cSaparC pET11c derivative containing parC; restriction sites; pBR322 
origin; Ampr 

Novagen

pET11cSaparE pET11c derivative containing parC; restriction sites;  pBR322 
origin; Ampr 

Novagen

pSP1261110 pUWL201 derivative containing dhbA, dhbC, dhbE, dhbB; 
EcoRV restriction sites; Ampr, Tsrr 

89

pSA07 pET22b derivative containing parC from pET11c-SaparC; NcoI-
XhoI restriction sites; Ampr 

This study

  pSA08 pET22b derivative containing parC from pET11c-SaparE;  NdeI-
XhoI restriction sites; Ampr 

This study
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II.2.2. DNA isolation 

 

Unless otherwise described, buffers and solutions were prepared with distilled water, 

autoclaved, and stored at room temperature. 

 

Alkaline lysis for plasmid and cosmid isolation from E. coli 

Miniprep solution 1 

Tris-HCl 50 mM
EDTA 10 mM
RNase A 100 µg/ml
 
Miniprep solution 2 

NaOH 0.2 M
SDS 1%
 
Miniprep solution 3 

Potassium acetate·pH 5.5 3 M
 
Tris-HCl and EDTA of solution 1 were dissolved in water and adjusted to pH 8.0. After 
autoclaving RNase A was added. Solution 3 was adjusted to pH 4.8 and stored at 4°C. 
 

Alkaline-lysis method was used to isolate recombinant plasmids from E. coli. 2 ml of 

culture were centrifuged (13000 rpm, 5 min, 4°C) and the pellet resuspended in 250 µl 

miniprep solution 1 by vortexing. 250 µl miniprep solution II were added, mixed by 

inversion and 5 min incubated at room temperature. The suspension was mixed with 250 

pSA09 pQE70 derivative containing parC from pET11c-SaparC; SphI-
BglI restriction sites; Ampr 

This study

  pSA10 pQE70 derivative containing parE from pET11c-SaparE; SphI-
BglI restriction sites; Ampr 

This study

pSA11 pUWL201derivative containing a synthetic ubiC/pobA DNA 
fragment; HindIII-SpeI restriction sites; Ampr, Tsrr 

This study

   

Cosmids  

clo-BG1 SuperCos1 derivative containing the clorobiocin biosynthetic 
gene cluster; oriT, tet, attP, int ΦC31; Kmr 

31

clo-SA1 clo-BG1 derivative; cloQ replaced by aac(3)IV resistance 
cassette; Aprr, Kmr 

This study

clo-SA2 clo-BG1 derivative; ΔcloQ; Kmr This study

clo-SA3 clo-BG1 derivative; cloHIJK replaced by aac(3)IV resistance 
cassette; Aprr, Kmr 

This study

clo-SA4 clo-BG1 derivative; ΔcloHIJK; Kmr This study
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µl miniprep solution 3, incubated for 5 min on ice and centrifuged (13000 rpm, 10 min, 

4°C). The supernatant was transferred into a fresh tube, mixed with 400 µl Rotiphenol® 

(Roth) by vortexing and centrifuged (13000 rpm, 5 min, 4°C). The supernatant was 

transferred into a fresh tube, 460 µl isopropanol added and mixed by inversion, and the 

DNA precipitated by centrifugation (13000 rpm, 30 min, 4°C). The pellet was washed with 

500 µl ethanol (70%), air dried and resuspended in 20 µl Tris-HCl buffer (10 mM). 

 

Eckhard-Lysis for fast plasmid isolation and test from E. coli colonies 

Eckhardt gel 

TAE buffer (1x)  
(see II.2.5) 

125 ml

SDS 0.25 g
Agarose 1.25 g
 
Eckhardt buffer 

Sucrose 6.25 g
Ficoll 400 0.75 g
TEA buffer (1x) 25 ml
Bromphenol blue 0.01%
 
To 1 ml of Eckhardt buffer 1 µl RNase A (100 mg/ml) and 5 mg lysozyme were added. 
 
Single colonies were picked with toothpicks and rubbed into 17 µl Eckhardt buffer 

(microplates are suitable). Samples were put directly on the Eckhardt gel and run for the 

first 15 min with 20 V and after that with 90 V. Before staining with ethidium bromide, the 

SDS was removed by washing the gel with distilled water.  

 

Plasmid isolation from Streptomyces 

Miniprep solution 1  

Glucose 50 mM
Tris-HCl 25 mM
EDTA 10 mM
RNase A 100 µg/ml
Lysozyme 4 mg/ml
 
Tris-HCl and EDTA of solution 1 were dissolved in water and adjusted to pH 8.0. After 
autoclaving RNase A and lysozyme were added. 
 

Miniprep solution 2  

NaOH 0.2 M
SDS 1%
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Miniprep solution 3 

Potassium acetate 5 M
 
Solution 3 was adjusted to pH 4.8 and stored at 4°C. 
 

Alkaline-lysis was used to isolate recombinant plasmids from Streptomyces. For isolation 

of plasmids from Streptomyces 500 µl miniprep solution 1 for Streptomyces was added 

after the resuspension of the pellet in 1 ml miniprep solution 1 for E. coli. The suspension 

was incubated at 37°C for 60 min with inversion of the tubes every 10 min. The procedure 

was continued as described under “Alkaline lysis for plasmid and cosmid isolation from E. 

coli” 

 

 

II.2.3. DNA quantification and  manipulation with enzymes 

 

DNA quantification 

DNA was quantified by comparing the fluorescence intensity with the GeneRulerTM 1 kb 

DNA ladder (Fermentas) on an agarose gel after staining with ethidium bromide.  

 

Restriction digest 

Restriction of DNA with endonucleases was performed according to the instructions 

provided by manufacturers (Amersham; New England Biolabs). 

 

Ligation 

DNA ligation was performed by using 1U T4-DNA ligase (Amersham), 1x ligation buffer 

and the mixture of insert and linearized vector at a 1:1 ratio in a total volume of 10 µl. The 

mixture was incubated at 4°C over night. 

 

Dephosphorylation 

This reaction avoids intramolecular ligation by dephosphorylation of the 5'-end of DNA. 0.2 

U alkine phosphatase (Amersham), 1x alkaline phosphatase buffer and DNA were 

incubated for 1 h at 37°C. 
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II.2.4. PCR amplification of DNA 

 

PCR amplification was performed with an iCycler® PCR-System (Bio-Rad). The 

oligonucleotide primers, listed in Table II.3, were purchased to MWG-Biotech. PCR 

amplifications for plasmid construction and gene inactivation by PCR targeting47 were 

performed with the Expand High Fidelity PCR System (Roche) and the Phusion 

polymerase (New England BioLabs). Colony PCR was performed with Taq-DNA 

polymerase (New England BioLabs).  

 

PCR products were purified using a High Pure PCR Product Kit (Roche) and 2 µl analysed 

on an agarose gel as described in section II.2.5. 

 

Table II.3: Oligonucleotides. 

Name Sequence (5'-3') Restriction 
sites 

 

Primers for cloQ inactivation 

cloQ_f GGC GCG CCC ATT GCT CAC CGT CTT ACC GAC ACC GTC 
CTT ATT CCG GGG ATC TCT AGA TC 

XbaI 

cloQ_r TCC CAT GGT CGA TTC CGT GTG TTG GTG AAG TGC GCG 
CAG ACT AGT CTG GAG CTG CTT C 

SpeI 

   

Primers for cloHIJK inactivation (resulting in cosmid clo-SA3 / clo-SA4) 

cloHIJK_f GTA TGT TCC AAT GGC ATG GAG ACT TAA GGG GGA AGT 
TTG TCT AGA ATT CCG GGG ATC CGT CGA CC 

XbaI 

cloHIJK_r GTG CTC CGG TCC GTG GTC CTT GTT CGC CAC CAG TGA 
CTA ACT AGT TGT AGG CTG GAG CTG CTT C 

SpeI 

   

Primers for construction of plasmid pSA07 

parC_f_NcoI C ATG CCA TGG TGA GTG AAA TAA TTC AAG ATT TAT CA NcoI 

parC_f_XhoI CCG CTC GAG GCT AAT ATA CAT GTC TAT TAC TTC AC XhoI 

   

Primers for construction of plasmid pSA08 

parE_f_NdeI GG GAA TTC CAT ATG AAT AAA CAA AAT AAT TAT TCA 
GAT GAT TCA ATA 

NdeI 

parE_f_XhoI CCG CTC GAG GAT TTC CTC CTC ATC AAA TTG A XhoI 

   

Primers for construction of plasmid pSA09 

parC_f A AAG GCA TGC ATA GTG AAA TAA TTC AAG ATT TAT CAC 
TT 

SphI 

parC_r GGA AGA TCT GCT AAT ATA CAT GTC TAT TAC TTC AC BglII 
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Primers for construction of plasmid pSA10 

parE_f A AAG GCA TGC ATA ATA AAC AAA ATA ATT ATT CAG ATG 
ATT CA ATA 

SphI 

parE_r GGA AGA TCT GAT TTC CTC CTC ATC AAA TTG ATC BglII 

 

Primers for construction of the E. coli mutant strains 

entC_f T CAT TAT TAA AGC CTT TAT CAT TTT GTG GAG GAT GAT 
ATG att ccg ggg atc cgt cga cc 

 

entC_r C CGG CCA GCG GGT GAA TGG AAT GCT CAT CCT CGC TCC 
TTA tgt agg ctg gag ctg ctt c 

 

tolC_f G ATC GCG CTA AAT ACT GCT TCA CCA CAA GGA ATG CAA 
ATG att ccg ggg atc cgt cga cc 

 

tolC_r A CGT TCA GAC GGG GCC GAA GCC CCG TCG TCG TCA TCA 
tgt agg ctg gag ctg ctt c 

 

 

Primers for testing of the E. coli mutant strains by colony PCR 

entC_T1 GAG TTG CAG ATT GCG TTA CC  

entC_T2 CGT CAG AAT GTC GGT CAG CG  

tolC_T1 CAT TAA CGC CCT ATG GCA CG  

tolC_T2 GAA TAG AGG ATG GCT GGT CG  

tonB_T1 TGT CTT TGT TAA GGC CAT GC  

tonB_T2 TTG GGC AAC GCT ATA AAG CG  

rfaP_T1 GCC CCA GCC ATG CAT TAT CC  

rfaP_T2 AGT CGC CAT TGC GAA TGG CC  

 

 

II.2.5. Agarose gel electrophoresis of DNA 

 

50x TAE buffer 

Tris base 2 M
EDTA 0.05 M
Glacial acetic acid 57.1 ml/l
 
The pH was adjusted to 8.0 with glacial acetic acid. 
 

Loading buffer 

Glycerol 49.75%
Tap water 50%
Bromphenol blue 0.25%
 

Ethidium bromide solution 

Ethidium bromide 1 mg/l
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1% agarosese gels (Biozym) were prepared with 1x TAE buffer to separate DNA 

fragments between 0.25 and 10 kb. As marker, the GeneRulerTM 1 kb DNA ladder 

(Fermentas) was used. Gels were run in 1x TAE buffer, stained with ethidium bromide 

solution for 15 min and analysed with UV light (312 nm) with an Eagle Eye II System 

(Stratagene) or a gel documentation system from Biostep equipped with a Argus X1 

software.  

 

DNA fragments were isolated from agarose gels using a NucleoSpin® 2 in 1 extraction kit 

(Macherey-Nagel) according to the protocol supplied by the manufacturer.   

 

                                                                                              

II.2.6. Introduction of DNA in E. coli and Streptomyces 

 

Electroporation of E. coli cells 

Preparation of electro-competent E. coli cells: 

100 ml LB medium was inoculated with 1 ml E. coli overnight culture and cultivated at 

37°C until the OD600 reached 0.6. The cells were harvested by centrifugation (5000 rpm, 

10 min, 4°C) and washed twice with 30 ml ice-cold glycerol solution (10%). The pellet was 

suspended in the remains of the discarded supernatant. The competent cells were used 

immediately or stored in 50 µl aliquots at -70°C. 

 

Electroporation: 

3 µl DNA (about 100 ng) were mixed with 50 µl competent cells. The mixture was 

transferred into an ice-cold electroporation cuvette (0.2 cm) and electroporation was 

carried out with 2.5 kV using an electroporator (BioRad). The optimal time constant is 4.5 – 

5.0 ms. 500 µl cold LB medium was immediately added to the electroporated cells. After 1 

h incubation of the cells at 37°C, 200 µl were spread on LB agar containing an appropriate 

antibiotics. The agar plates were incubated overnight at 37°C.  

 

PEG-mediated protoplast transformation of Streptomyces 

The following sterile solutions were prepared separately before mixing the buffers. The 

buffers were stored at -20°C. 
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 Stock solution Amount 
   

P(protoplast)-buffer   

Sucrose 12% 85.5 ml 
TES 0.25 M, pH 7.2 10.0 ml 
MgCl2 · 6 H2O 1 M 1.0 ml 
K2SO4 140 mM 1.0 ml 
KH2PO4 40 mM 1.0 ml 
CaCl2 · 2 H2O 250 mM 1.0 ml 
Trace element solution (see R5 medium) 0.2 ml 
distilled water  to 100 ml 
   
T(transformation)-buffer   

PEG 1000 50% 5.0 ml 
Sucrose 25% 1.0 ml 
CaCl2 · 2 H2O 5 M 1.0 ml 
Tris-maleate 0.5 M, pH 8.0 1.0 ml 
K2SO4 140 mM 0.1 ml 
KH2PO4 40 mM 0.1 ml 
MgCl2 · 6 H2O 1 M 0.1 ml 
Trace element solution (see R5 medium) 0.03 ml 
distilled water  to 10 ml 
 

Protoplast preparation: 

20 µl spores were added to 1 ml TSB medium and incubated for 5 min at 50°C. After 2 h 

incubation at 30°C, 50 ml YEME medium with MgCl2 and glycin were inoculated and 

cultivated for 2 d. The mycelium was harvested by centrifugation (5000 rpm, 10 min, 4°C) 

and washed twice with 20 ml sucrose solution (10.3%). The pellet was resuspended in 

sterile filtered lysozyme solution (4 ml P-buffer for 1 g cell pellet) and incubated for 30 – 60 

min at 30°C with gentle moving. Protoplast formation was identified by microscopy and the 

reaction was stopped by incubation on ice. 10 ml ice-cold P buffer were added, gently 

mixed with the protoplasts by pipetting and filtered through cotton wool. After centrifugation 

(3000 rpm, 10 min, 4°C) the supernatant was discarded and the pellet carefully 

resuspended in the remaining liquid. Protoplasts were used immediately for transformation 

or stored in 100 µl aliquots at -70°C. 

 

Protoplast transformation: 

Before transformation, plasmid DNA was isolated from the DNA-methylation deficient 

strain E. coli ET12567. 10 µl (about 15 µg) plasmid DNA were added to 100 µl protoplasts 

and 100 µl P buffer. The suspension was mixed carefully by pipetting. The tube was 

inverted several times after adding of 500 µl T buffer and incubated for 1 min at room 

temperature. 100 µl, 200 µl and 400 µl of this suspension were mixed with 3 ml melted R5 
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soft agar each and poured on R5 agar plates. After 24 h incubation at 30°C the plates 

were overlaid with 3 ml R5 soft agar including the required antibiotics for selection. The 

incubation was continued for 7 d. 

 

 

II.2.7 Construction and heterologous expression of the plasmid pSA11 

 

Design of the synthetic gene operon for 3,4-DHBA biosynthesis 

The nucleotide sequences of the genes pobA coding for a 4-hydroxybenzoate hydroxylase 

from Corynebacterium cyclohexanicum (GenBank AB210281) and ubiC coding for a 

chorismate pyruvate-lyase from Escherichia coli 536 (GenBank NC_008253) were 

redesigned using the codon preference of S. coelicolor M512 (DNA2.0 Gene Designer 

Software). The two genes were linked by translational coupling and flanked by SpeI and 

HindIII restriction sites. The DNA fragment was synthesized by DNA2.0 company 

(California, USA) and provided in the vector pJ201. This nucleotide sequence of the 

synthetic ubiC/pobA DNA fragment has been listed in Figure III.4. 

 

Cloning of the synthetic gene operon in an expression vector 

The synthetic ubiC/pobA fragment was isolated from the pJ201 vector (DNA2.0) by 

restriction digest with SpeI and HindIII and cloned into pUWL201 which contains the 

constitutive ermE* promoter for foreign gene expression. Transformation of pSA11 into the 

integration mutant S. coelicolor M512(clo-SA2) was carried out by PEG-mediated 

protoplast transformation (II.2.6). Transformed colonies appeared after 5 d at 30 °C. 

 

 

II.2.8 Construction and heterologous expression of cosmid clo-SA2 

 

In cosmid clo-BG1, cloQ was replaced by RED/ET-mediated recombination with an 

apramycin-resistance (aac(3)IV) cassette that was flanked by XbaI and SpeI recognition 

sites. For replacement of cloQ, the cassette was generated by PCR using pUG019 as 

template and the primers cloQ_f and cloQ_r (Table II.3). PCR amplification was performed 

in 50 µl volume with 100 ng template, 0.25 mM dNTPs, 50 pmol of each primer, and 5% 

(v/v) DMSO with the Expand High Fidelity PCR system (Roche): denaturation at 94 °C for 

2 min, then 10 cycles with denaturation at 94 °C for 45 s, annealing at 50 °C for 45 s, and 

elongation at 72 °C for 90 s, followed by 15 cycles with annealing at 55 °C for 45 s, and 
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the last elongation step at 72 °C for 5 min. The PCR product was introduced by 

electroporation into E. coli BW25113/pIJ790 harboring cosmid clo-BG1. The resulting 

modified cosmid clo-SA1 was isolated, transformed into the nonmethylating strain E. coli 

ET12567, reisolated, and digested with XbaI and SpeI to remove the apramycin-resistance 

cassette. Religation overnight at 4 °C gave the cosmid clo-SA2.  

The cosmid clo-SA2 isolated from E. coli ET12567 was introduced into S. coelicolor M512 

by PEG-mediated protoplast transformation. Clones resistant to kanamycin were selected. 

Feeding experiments were carried out by addition of 1 mg Ring A (3-dimethylallyl-4-

hydroxybenzoic acid) dissolved in 100 µl ethanol to 80 ml S. coelicolor M512(clo-SA2) 

culture in distillers` solubles medium.  

For mutasynthesis experiments, 3 mg of the respective catechol compounds were 

dissolved in 100 µl ethanol and added to 80 ml of the culture of the cloQ defective strain S. 

coelicolor M512(clo-SA2) in distillers` solubles medium one day after inoculation. After 5-8 

days cultivation at 30 °C and 210 rpm, the cultures were extracted and analyzed by HPLC 

described below.  

 

 

II.2.9. Construction and heterologous expression of cosmid clo-SA4 

 

In cosmid clo-BG1 cloHIJK was replaced by RED/ET-mediated recombination with an 

apramycin-resistance (aac(3)IV) cassette that was flanked by XbaI and SpeI recognition 

sites. For replacement of cloHIJK, the cassette was generated by PCR by using pIJ773 as 

template and the primers cloHIJK_f and cloHIJK_r (Table II.3). PCR amplification was 

performed in 50 µl volume with 100 ng template, 0.25 mM dNTPs, 50 pmol of each primer, 

and 5% (v/v) DMSO with the Expand High Fidelity PCR system (Roche): denaturation at 

94 °C for 2 min, then 10 cycles with denaturation at 94 °C for 45 s, annealing at 50 °C for 

45 s, and elongation at 72 °C for 90 s, followed by 15 cycles with annealing at 55 °C for 45 

s, and the last elongation step at 72 °C for 5 min. The PCR product was introduced by 

electroporation into E. coli BW25113/pIJ790 harboring cosmid clo-BG1. The resulting 

modified cosmid clo-SA3 was isolated, transformed into the nonmethylating strain E. coli 

ET12567, reisolated, and digested with XbaI and SpeI to remove the apramycin-resistance 

cassette. Religation overnight at 4 °C gave the cosmid clo-SA4.  

The cosmid clo-SA4 isolated from E. coli ET12567 was introduced into S. coelicolor M512 

by PEG-mediated protoplast transformation. Clones resistant to kanamycin were selected. 

Feeding experiments were carried out by addition of 2 mg Ring B (3-amino-4,7-dihydroxy-
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8-methyl-coumarin) dissolved in 100 µl ethanol to 80 ml S. coelicolor M512(clo-SA4) 

culture in distillers` solubles medium. After 5-8 days cultivation at 30 °C and 210 rpm, the 

cultures were extracted and analyzed by HPLC as described under II.4.1.  

 

 

II.2.10. Generation of E. coli mutants 

 

E. coli double and triple mutants were generated from E. coli K-12 MG1655 mutants 

obtained from the Keio collection. The gene entC was replaced in E. coli JW5195-1/pIJ790 

and JW5503-1/pIJ790 using RED/ET-mediated recombination. An apramycin resistance 

cassette (acc(3)IV) was amplified from plasmid pIJ773. The primers entC_f and entC_r 

used for PCR amplification are listed in Table II.3. The gene tolC was replaced in E. coli 

JW5195-1/pIJ790 using RED/ET-mediated recombination. For this purpose, a 

streptomycin resistance cassette (aadA) was amplified from plasmid pIJ778 using the 

primer pair tolC_f and tolC_r (Table II.3). The genotype of the resulting mutants was 

confirmed by PCR with chromosomal DNA. 

 

 

II.3. Biochemistry methods 

II.3.1. Assay compounds, enzymes, DNAs and chemicals 

 

Reference compounds  

Novobiocic acid Isolated from S. spheroides AM1T2 

Novobiocin Sigma-Aldrich 

Clorobiocin A. Maxwell (John Innes Centre Norwich, UK) 

Coumermycin A1 Sigma-Aldrich 

Simocyclinone D8 H.-P. Fiedler (University of Tübingen, Germany). 
  

Ring B 
(3-amino-4,7-dihydroxy-8-methyl-coumarin) 

Pharmacia & Upjohn, Inc. (Kalamazoo, MI) 

Ring A 
(3-Dimethylallyl-4-hydroxybenzoic acid) 

Obtained by hydrolysis of novobiocin 

Catechol compounds Sigma-Aldrich 

Enterobactin Sigma-Aldrich 
  

Enzymes  

E. coli DNA gyrase  Inspiralis (Norwich, UK) 

E. coli DNA topoisomerase IV Inspiralis (Norwich, UK) 
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S. aureus DNA gyrase Inspiralis (Norwich, UK) 
  

DNAs  

relaxed pBR322 DNA Inspiralis (Norwich, UK) 

kDNA (from Crithidia fasciculate) Inspiralis (Norwich, UK) 
  

Chemicals  

Potassium glutamate Fluka 

Sodium glutamate Sigma-Aldrich 

KCl Sigma-Aldrich 

NaCl Sigma-Aldrich 

2,2'-bipyridyl Sigma-Aldrich 

2,3,5-triphenyltetrazolium chloride Roth 

 

 

II.3.2. General methods for protein expression and purification 

 

Overexpression and purification of His6-Tag proteins from E. coli were carried out as 

described by the user manual of Qiagen “A handbook for high level expression and 

purification of 6x His-tagged proteins”. The buffers were prepared with distilled water, 

autoclaved, filtered through 0.2 µm pore sized filters and stored at 4°C. If required, 

imidazol, β-mercaptoethanol, lysozyme, PMSF and DTT were added fresh before use. 

 

Lysis buffer 

Tris-HCl (pH 8.0) 50 mM
NaCl 500 mM
Glycerol 10%
Tween® 20 1%
Imidazol 20 mM
β-Mercaptoethanol 10 mM
Lysozyme 0.5 mg/ml
PMSF 0.5 mM
 

Washing buffer 

Tris-HCl (pH 8.0) 50 mM
NaCl 500 mM
Glycerol 10%
Imidazol 20 mM
β-Mercaptoethanol 10 mM
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Elution buffer 

Tris-HCl (pH 8.0) 50 mM
NaCl 500 mM
Glycerol 10%
Imidazol 250 mM
β-Mercaptoethanol 10 mM
 

Dialysis buffer 

Tris-HCl (pH 8.0) 25 mM 
NaCl 100 mM
DTT 2 mM
Glycerol 15%
 

 

II.3.3. Cloning, protein expression, and purification of S. aureus topoisomerase 

IV subunits ParC and ParE 

 

S. aureus RN4220 parC and parE (GenBank D67075) were PCR-amplified using plasmids 

pET11c-SaparC and pET11c-SaparE kindly provided by H. Hiasa (University of 

Minnesota) as a template. The primers ParC_f/ParC_r and ParE_f/ParE_r are listed in 

Table II.3. parC and parE were cloned into the SphI and BglII restriction sites of pQE70 

expression vector and transformed in E. coli BL21/pREP4 cells. For protein expression, 

cultures were grown at 37°C in 1 l of LB medium to OD600 = 0.7. 1 mM IPTG was added 

and growth continued for 4 h at 37°C. After centrifugation cell pellets were resuspended in 

25 ml lysis buffer and sonicated to release soluble proteins. Insoluble material was 

removed by centrifugation and the supernatant loaded onto a 5 ml His-TrapTM HP column 

(GE Healthcare) that had been equilibrated previously with washing buffer. The column 

was eluted with a linear gradient from 20 – 250 mM imidazole (30 min; 1 ml/min) and the 

eluates were dialyzed against the dialysis buffer. The final yields were 7 mg/l of ParC and 

5 mg/l of ParE, respectively. Absorbance at 280 nm was measured to calculate protein 

concentration. SDS polyacrylamide gel electrophoresis of the purified topoisomerase IV 

subunits revealed bands with apparent molecular weights of 96.2 kDa and 77.8 kDa, 

corresponding to ParC and ParE, respectively. S. aureus topoisomerases IV were 

reconstituted in vitro by mixing equimolar amounts of the subunits and incubation on ice 

for 10 min. 
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II.3.4. Cloning, protein expression, and purification of the AMP ligase DhbE 

 

The E. coli strain BL21(DE3)pLysS/pREP4 with the integrated plasmid pJJM301 was 

kindly provided by M. Marahiel (University of Marburg, Germany). For protein expression, 

cultures were grown at 37°C in 1 l of LB medium to OD600 = 0.7. 500 µM IPTG was added 

and growth continued for 3 h at 30°C. After centrifugation cell pellets were resuspended in 

12.5 ml lysis buffer and sonicated to release soluble proteins. Insoluble material was 

removed by centrifugation and the supernatant loaded onto a 5 ml His-TrapTM HP column 

(GE Healthcare) that had been equilibrated previously with washing buffer. The column 

was eluted twice with elution buffer and the eluates were dialyzed against the dialysis 

buffer. The final yields were 21 mg of purified protein DhbE of one litre culture. 

Absorbance at 280 nm was measured to calculate protein concentration. SDS 

polyacrylamide gel electrophoresis of the purified protein revealed a band with the 

apparent molecular weight of 59.9 kDa, corresponding to DhbE. DhbE was used in amide 

synthetase assays with the catechol substrat 2,3-dihydroxybenzoic acid as described 

under II.3.6. 

 

 

II.3.5. Denaturing polyacrylamide gel electrophoresis (SDS-PAGE) and 

Coomassie staining 

 

 Stock solution Amount 
   

1 Stacking gel (4%)    

Distilled water  1192 µl 
Tris-HCl (pH 6.8) 0.5 M, pH 6.8 500 µl 
SDS 10% 20 µl 
Rotiphorese® Gel 30 30% 266 µl 
APS 10% 20 µl 
TEMED 100% 2 µl 
   
1 Running gel (12%)   

Distilled water  1848 µl 
Tris-HCl 1.5 M, pH 8.8 1000 µl 
SDS 10% 40 µl 
Rotiphorese® Gel 30 30% 1068 µl 
APS 10% 40 µl 
TEMED 100% 4 µl 
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Laemmli buffer (4x)   

Tris-HCl 1 M, pH 6.8 2.5 ml 
Glycerol 100% 4 ml 
SDS  0.8 g 
Bromphenol blue  0.4 mg 
ß-Mercaptoethanol 100% 2.0 ml 
Distilled water  ad 10 ml 
 

Electrophoresis buffer (10x) 

Tris base 30.3 g 
Gycine 144 g 
SDS 10.0 g 
Distilled water ad 1 l 
 

Fixing buffer 

Distilled water 70% 
Acetic acid 10% 
Methanol 20% 
 

Staining buffer 

Coomassie Brilliant 
Blue G-250 

0.25% 

Distilled water 45% 
Acetic acid 10% 
Methanol 45% 
 

Bleaching buffer 

Distilled water 45% 
Acetic acid 10% 
Methanol 45% 
 

The SDS-PAGE was carried out according to the method of Laemmli62. Sample and 

sample buffer were mixed in the ratio 3:1 (total volume 40 µl) and incubated for 3 min in 

boiling water (95°C). 4% and 12% polyacrylamide gels were used as stacking and running 

gels respectively. Gel electrophoresis was carried out at 100 V during the run in the 

stacking gel and later at 200 V using a Mini-PROTEAN II electrophoresis cell (BioRad). 

Proteins were stained with Coomassie Brilliant Blue G-250 solution for 15 min after 

treatment of the gels with fixing buffer for 5 min. The following bleaching of the gels was 

carried out with bleaching solution for 2 h. To determine protein sizes, 2 µl of protein 

marker (LMW Calibration Kit for SDS Electrophoresis, GE Healthcare) were used. 
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II.3.6. Amide synthetase assay 

 

The assay contained the listed components in a final volume of 100 µl. The acyl substrates 

are 3,4-dihydroxybenzoic acid, 2,3-dihydroxybenzoic acid, caffeic acid, 3,4-

dihydroxyphenylacetic acid, 3,4-dihydroxypropionic acid or 3,4-dihydroxymandelic acid, 

respectively. 

 
Acyl substrate 2 mM
Ring B 2 mM
ATP 5 mM
Mg2Cl 5 mM
Ascorbic acid 10 mM
Tris-HCl (pH 8.0) 100 mM
Acyl ligase 10 µg
 

The reaction was carried out for 45 min at 30°C and stopped by addition of 5 µl 1.5 M 

trichloroacetic acid. The reaction mixture was extracted with 100 µl ethyl acetate. The 

organic layer was used for analysis. After evaporation of the solvent and dissolution in 100 

µl methanol, the sample was analyzed by HPLC. A linear gradient from 60% to 100% 

solvent B (solvent A H2O/HCOOH 99:1; solvent B MeOH/HCOOH 99:1) over 30 min was 

used. UV detection was carried out at 330 nm. Novobiocic acid was used as standard.  

  

 

II.3.7. Topoisomerase IV decatenation assay 

 

New aminocoumarin compounds were obtained by metabolic engineering, mutasynthesis 

and chemoenzymatic synthesis as described previously. These compounds were 

dissolved in a small volume of dimethyl sulfoxide (DMSO) and the solutions were diluted 

with water to a final concentration of 5% DMSO. Topoisomerase IV activity was measured 

by using a decatenation assay that monitored the ATP-dependent unlinking of DNA 

minicircles from kDNA. 

 

Assay buffer 

HEPES-KOH (pH 7.5) 40 mM
Potassium glutamate 100 mM
Magnesium acetate 10 mM
DTT 10 mM
ATP 1.2 mM
Albumin 50 µg/ml
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Dilution buffer 

HEPES-KOH (pH 7.5) 40 mM
Potassium glutamate 100 mM
EDTA 1 mM
DTT 1 mM
Glycerol 40%
 
Stop buffer 

Sucrose 40%
Tris-HCl (pH 7.5) 100 mM
EDTA 100 mM
Bromphenol blue 0.25%
 

Topoisomerase IV decatenation assays (30 µl) were performed by incubating 200 ng of S. 

aureus topoisomerase IV or 2 U of E. coli topoisomerase IV and 200 ng kDNA with the 

indicated concentrations of the aminocoumarins in the assay buffer. The final DMSO 

concentration in the assay did not exceed 0.5% (v/v). The reactions were performed at 

37°C and terminated after 45 min by addition of an equal volume of stop buffer, followed 

by extraction with one volume of chloroform/iso-amyl alcohol (24:1). The aqueous phase 

was analyzed on 1% agarose gels for 4 h at 80 V in TAE and visualized after staining with 

ethidium bromide. The IC50 for inhibition of decatenation can be visually assessed as the 

concentration of compound which leads to a 50% reduction in the mini-circle band. IC50 

values are averages from at least two separate experiments. 

 

 

II.3.8. DNA gyrase supercoiling assay 

 

The same compounds as in the topoisomerase IV decatenation assays were tested. DNA 

gyrase activity was measured by a supercoiling assay that monitored the ATP-dependent 

conversion of relaxed pBR322 DNA to the supercoiled form. 

 

Assay buffer (5x) 

Potassium glutamate  3500 mM 
Tris-HCl (pH 7.5) 175 mM
KCl 120 mM
Mg2Cl 20 mM
DTT 10 mM
Spermidin 9 mM
ATP 6 mM
Albumin 0.5 mg/ml
Glycerol 32.5%
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Dilution buffer 

Tris-HCl (pH 7.5) 50 mM
KCl 100 mM
DTT 2 mM
EDTA 1 mM
Glycerol 50%
 

Assays (30 µl) were prepared by mixing 6 µl assay buffer (5x) with 0.5 µg of the relaxed 

pBR322 DNA, water and either 1 U of S. aureus or 1 U of E. coli DNA gyrase dissolved in 

6 µl of dilution buffer (5x). Reaction mixtures were incubated at 37°C for 45 min and 

terminated by adding 30 µl stop buffer (see II.3.7), followed by extraction with one volume 

(30 µl) chloroform/iso-amyl alcohol (24:1). Prior to agarose gel analysis, samples were 

subjected to a buffer exchange with 10 mM Tris-HCl (pH 8.0), performed by dialysis with 

MFTM-membrane filters (Millipore, 0.025 µm VSWP). For this purpose, membrane filters 

were cut into pieces and placed on the surface of the buffer solution in a petri dish. The 

aqueous phase of the assay mixtures was pipetted onto the floating membranes, and the 

petri dish was covered with a lid to avoid evaporation. After 3 h, the assay mixtures were 

removed from the membranes and mixed with 15 µl loading buffer (50% water, 49.75% 

glycerol, and 0.25% bromophenol blue). 20 µl of each sample were analysed by agarose 

gel electrophoresis as described under II.2.5. The IC50 for inhibition of the supercoiling can 

be visually assessed as the concentration of compound which leads to a 50% reduction in 

the supercoiling band. IC50 values are averages from at least two separate experiments. 

 

 

II.3.9. Agar diffusion tests 

 

Agar plates (40 ml medium) were prepared by adding 1 ml of a culture of the respective E. 

coli mutant (overnight culture in LB medium, OD600 1.2) (Table II.1) and 50 µM 2,2`-

bipyridyl in melted Mueller-Hinton agar (Roth). Different amounts of antibiotic, dissolved in 

15 µl methanol, were applied to paper disks of 7 mm of diameter. These disks were placed 

on the agar and the plates were incubated at 37 °C for 16 h. For visualization of living 

cells, plates were flooded with 5 ml of 0.5% aqueous 2,3,5-triphenyltetrazolium chloride 

(Roth), and after incubation for 10 min at 37°C the inhibition zones were determined. The 

minimal inhibitory concentration (MIC) was determined according to Wiegand and co-

workers123. 
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II.4. Analytical chemistry techniques  

II.4.1. Production and purification of novclobiocin 401 

 

S. coelicolor M512(clo-SA2)/pSA11 was precultivated in TSB medium (BD Bioscience) 

with 50 µg/ml thiostrepton for 3 days and then used to inoculate 40 flasks, each containing 

50 ml CDM production medium  with 50 µg/ml thiostrepton. The cultivation was carried out 

for 5 days at 30 °C and 210 rpm. The culture was adjusted to pH 4 with hydrochloric acid 

and extracted twice with an equal volume of ethyl acetate. The organic layer was 

evaporated to dryness. The residue was dissolved in methanol and purified by preparative 

HPLC with a linear gradient from 70% to 100% solvent B in solvent A over 36 min (solvent 

A H2O/HCOOH 99:1; solvent B MeOH: HCOOH 99:1).  

For analytic purposes, 1 ml bacterial culture was acidified with HCl to pH 4 and extracted 

with equal volume of ethyl acetate. After evaporation of the solvent, the residue was re-

dissolved in 100 µl methanol. 80 µl were analyzed by HPLC with a linear gradient from 

60% to 100% solvent B over 23 min. UV detection was carried out at 280 nm. 

 

 

II.4.2. HPLC analysis 

 

For HPLC analysis an Agilent 1100 system with ChemStation software was used. For 

analytical purpose, samples were analysed in a Multosphere RP18-5 column (250 x 4 mm, 

5 µm; Agilent) at a flow rate of 1 ml/min. For preparative HPLC analysis extracts were 

purified using a Multosphere column 120 RP18-5 (250 x 20 mm, 5 µm; C&S 

Chromatographie Service Düren, Germany) at a flow rate of 2 ml/min. For detailed 

information see II.4.1. 

 

 

II.4.3. LC-MS analysis 

 

For LC-ESI-MS analysis an electrospray ionization (ESI) mass spectrometer (LC/MSD 

Ultra Trap System XCT 6330; Agilent Technology) was used. Culture extracts were 

prepared as described under II.4.1. Samples were analysed on a Nucleosil 100-C18 

column (100 x 2 mm, 3 µm) at a temperature of 40 °C and a flow rate of 400 µl/min. A 

linear gradient of solvent A (H2O/HCOOH 99.9:0.1) and solvent B (methanol/HCOOH 

99.94:0.06) from 60% to 100% of solvent B over 20 min was used. UV detection was 
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carried out at 280 nm and authentic clorobiocin was used as a standard. ESI-MS detection 

of ions was performed in negative mode. High resolution ESI mass spectrometry was 

performed on a Bruker Apex IV, FT-ICR 7 Tesla mass spectrometer.  

 

 

II.4.4. NMR analysis 

 

For NMR analysis novclobiocin 401 was dissolved in CD3OD and NMR spectra were 

recorded on Varian Inova spectrometers. 1H NMR spectra were recorded at 600 MHz and 
13C NMR spectra were recorded at 125.7 MHz respectively. Chemical shifts in CD3OD are 

reported as δ values relative to respective solvent as an internal reference.
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III. RESULTS 

III.1. Generation and activity test of novclobiocin 401, a clorobiocin 

derivative containing the catechol moiety 3,4-dihydroxybenzoic 

acid 

 

III.1.1. Investigation of the substrate tolerance of different aminocoumarin acyl 

ligases for acyl substrates with catechol moieties 

 

The main aim of this study was the replacement of the genuine 3-dimethylallyl-4-

hydroxybenzoyl moiety (Ring A) of clorobiocin (Figure I.1) with an acyl moiety containing a 

catechol structure. We considered six different acids which contain catechol motifs (Figure 

III.1A). Previous mutasynthetic experiments aimed at the replacement of Ring A by other 

acyl groups, had shown that the success depends primarily on the acceptance of the acyl 

substrate by the aminocoumarin acyl ligase (or amide synthetase) enzyme that attaches 

the acyl moiety to the 3-amino group of the aminocoumarin moiety43, 4. The later 

biosynthetic steps, glycosylation and final tailoring steps, appeared not to be affected by 

modifications of the structure of the acyl moiety. We therefore tested the acceptance of the 

six acyl substrates with catechol motifs (Figure III.1A) by four different aminocoumarin 

acyl ligases from the biosynthetic gene clusters of novobiocin, clorobiocin, coumermycin 

A1, and simocyclinone D8 (NovL, CloL, CouL, and SimL respectively). These four 

enzymes were expressed and purified as described previously43, 69, 103, 110, and used for in 

vitro assays of aminocoumarin acyl ligase activity using 3-amino-4,7-dihydroxy-8-methyl-

coumarin as amino substrate and the six catechols as acyl substrates. The formation of 

the amide bond was analysed by HPLC and the identity of the resulting compounds was 

confirmed by LC-MS. As shown in Figure III.1, the best accepted catechol substrate was 

3,4-dihydroxybenzoic acid (3,4-DHBA), and the most efficient amide synthetase was CloL, 

which reached 42% of the reaction velocity observed with the genuine substrate Ring A 

(Figure III.1B). Caffeic acid was not accepted by CloL, but by SimL and NovL albeit with 

very low efficiency. The other four catechols were not accepted by any of the investigated 

enzymes. We therefore concentrated our efforts on 3,4-DHBA and the aminocoumarin acyl 

ligase of clorobiocin biosynthesis, i.e. CloL. 
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Figure III.1:  

(A) Activity of different aminocoumarin acyl ligases (amide synthetases) with acyl substrates containing 

catechol motifs. Amide bond formation was determined with 3-amino-4,7-dihydroxy-8-methyl-coumarin as 

amino substrate in the presence of ATP and Mg2+, as described in Materials and Methods. (B) HPLC 

chromatogram showing the product formation of the aminocoumarin acid with 3,4-DHBA under the catalysis 

of different aminocoumarin acyl ligases. 
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III.1.2. Inactivation of cloQ in the biosynthetic gene cluster of clorobiocin, and 

heterologous expression of the modified gene cluster  

 

In order to replace Ring A in clorobiocin with 3,4-DHBA, the biosynthesis of Ring A had to 

be abolished to avoid competition between the genuine and the artificial acyl moiety as 

precursor in the antibiotic biosynthesis. The first step in Ring A biosynthesis is the 

prenylation of 4-hydroxyphenylpyruvate catalysed by CloQ93. Therefore, we chose to 

inactivate cloQ in cosmid clo-BG131, which contains the entire biosynthetic gene cluster of 

clorobiocin and elements for stable integration in the Streptomyces chromosome by 

RED/ET-mediated recombination47 to generate cosmid clo-SA2 (see II.2.8.). This cloQ 

deficient gene cluster was integrated into the genome of S. coelicolor M512 at the ΦC31 

attachment site, resulting in S. coelicolor M512(clo-SA2).  

Cultivation of this strain in clorobiocin production medium did not result in production of 

clorobiocin, while similar experiment with S. coelicolor M512 containing the intact gene 

cluster clo-BG1 resulted in the expected production of clorobiocin31, 37. Feeding of Ring A 

restored production of clorobiocin, as confirmed by HPLC, LC-MS analysis and 

comparison with an authentic reference compound. This demonstrated that the inactivation 

of cloQ led to the abolishment of the production of Ring A, but had not affected the 

subsequent steps of clorobiocin biosynthesis (Figure III.2). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure III.2: 

HPLC analysis of the cloQ defective S. coelicolor M512(clo-SA2). (A) 1 mM clorobiocin standard;  

(B) analysis of clorobiocin production in S. coelicolor M512(clo-BG1); (C) abolishment of clorobiocin 

production in the cloQ defective strain S. coelicolor M512(clo-SA2); (D) restored production of clorobiocin 

after complementation of S. coelicolor M512(clo-SA2) by feeding of 1 mg Ring A. 
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III.1.3. Mutasynthetic experiments with 3,4-DHBA and caffeic acid 

 

Feeding of different amounts of 3,4-DHBA to cultures of S. coelicolor M512(clo-SA2) did 

not lead to the formation of a clorobiocin derivative, as shown in HPLC and LC-MS 

analysis. In parallel experiments, we also fed caffeic acid to S. coelicolor M512 expressing 

clo-SA2 and the SimL expression plasmid pSH24, since SimL but not CloL was able to 

accept caffeic acid (Figure III.1A). These experiments were also unsuccessful, but we 

noticed that caffeic acid was clearly detected in the cultures after feeding, while no 

detectable amounts of 3,4-DHBA were present in the cultures already one day after 

feeding. We speculated that 3,4-DHBA may rapidly be oxidised in the medium, or quickly 

metabolised by catabolic pathways similar to those described in Corynebacterium78. We 

therefore considered whether a continuous in vivo biosynthesis of 3,4-DHBA might be 

more efficient than external feeding of this compound, in order to supply 3,4-DHBA for 

aminocoumarin antibiotic formation. 

 

 

III.1.4. Creating an artificial pathway to 3,4-dihydroxybenzoic acid  

 

3,4-DHBA can be formed by the well characterised 4-hydroxybenzoate-3-hydroxylase 

PobA of Corynebacterium cyclohexanicum (Figure III.3)41, 57. This 44 kDa flavoprotein 

monooxygenase is involved in catabolic processes, e.g. lignin degradation. In all Gram-

positive bacteria, it uses NADH to provide the required reduction equivalents. The 

substrate of PobA, 4-hydroxybenzoic acid (4-HBA), is not expected to be present in 

Streptomyces in high concentrations. 4-HBA is an intermediate of ubiquinone biosynthesis. 

In most organisms, it is formed by degradation of tyrosine77. However, Gram-negative 

bacteria such as E. coli synthesise 4-HBA directly from chorismate by elimination of the 

enol-pyruvyl side chain under catalysis of chorismate pyruvate lyase, a 19 kDa protein 

encoded by the gene ubiC (Figure III.3)106. The reaction does not require cofactors. By 

heterologous expression of ubiC in the chloroplasts of plants, which do not contain an 

ortholog of this gene, very large amounts of 4-HBA could be generated without any 

detrimental effect on growth118. Also Streptomyces genomes do not contain an ortholog of 

ubiC. An expression of both ubiC and pobA therefore presented an attractive possibility to 

generate 3,4-DHBA in our Streptomyces strains in vivo.  
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Figure III.3:  

Strategy for the generation of a clorobiocin derivative containing a 3,4-dihydroxybenzoyl moiety. Cosmid clo-

SA2 contains the entire clorobiocin gene cluster with cloQ inactivated. 

 

The GC content of ubiC of E. coli is 53%, much lower than 70%, the approximate average 

content in genes of the GC-rich Streptomyces. Therefore, the sequence of ubiC was 

modified in order to adapt it to the codon preference of Streptomyces. The Gene Designer 

program (DNA 2.0, USA) was used for this purpose, using the codon usage table of 

Streptomyces coelicolor. The same was applied for the gene pobA of Corynebacterium 

cyclohexanicum, although fewer modifications were required for this gene 

(Corynebacterium is also a GC-rich species). The two genes were translationally coupled 

in order to increase translation efficiency and to facilitate co-regulation. The nucleotide 

sequence of the synthetic ubiC/pobA construct is given in Figure III.4. After in vitro 

synthesis (DNA 2.0, USA), this DNA fragment was cloned into the Streptomyces 

expression vector pUWL20128, placing it under control of the strong constitutive ermE* 

promoter. The resulting plasmid, pSA11, was introduced into S. coelicolor M512(clo-SA2) 

by protoplast transformation. Thereby, all genes required for the biosynthesis of the 

desired compound were assembled in the heterologous expression strain (Figure III.3). 
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AAGCTTATGAGCCACCCCGCCCTCACCCAGCTGCGGGCGCTCCGGTACTTCACCGAGATCCCGGCGCTGGAGCCCCAGCT
CCTCGACTGGCTGCTCCTGGAGGACTCGATGACCAAGCGCTTCGAGCAGCAGGGCAAGACCGTCAGCGTCACCATGATCC
GGGAGGGCTTCGTGGAGCAGAACGAGATCCCCGAAGAACTGCCGCTCCTGCCCAAGGAGTCCCGGTACTGGCTCCGGGAG 
ATCCTGCTCTGCGCCGACGGGGAGCCCTGGCTGGCCGGCCGGACCGTCGTGCCGGTGTCCACCCTCAGCGGCCCGGAGCT
GGCGCTCCAGAAGCTGGGCAAGACCCCGCTGGGCCGGTACCTCTTCACCTCGTCCACGCTCACCCGGGACTTCATCGAGA
TCGGCCGCGACGCCGGCCTGTGGGGGCGCCGCAGCCGCCTGCGCCTCAGCGGGAAGCCCCTGCTGCTGACGGAGCTGTTC 
CTGCCGGCGTCCCCGCTGTACTGATGGGGGACCGGACCGTCATCACCACGCAGGTCGCGATCATGGGTGCGGGTCCGGCC
GGGCTCATGCTGTCCCACCTCCTCCACCAGGCCGGTATCGAAAACACGGTGGTGGAGATCCGGTCCCGCGCGGAGATCTC
CGCCACCATCCGGGCCGGCATCCTGGAGGCCGGTTCGGTCGACCTGCTGGTCCAGAGCGGCGTCGACAACGTCCTCCGGA 
ACGGCCACGAACACGAAGGCACCGAGTTCCGCGTCAACGGCGAGGGCCACCGCATCGACTTCAAGGGCCTGGTCGGGCAG
AGCGTCTGGCTGTACCCCCAGAACGACGTCTTCGACGACCTCGCCGCCCGGCGCGAAACGGACGGCGGCGACGTCCGCTA
CTCGTGCAGCAACACCGAGGCCTTCGACCTGCTCGACAAGCCCCGCGTCCACTTCACCGACAGCGAAGGGAACGACTTCG 
AACTCCGCGCCGAGATCCTGGTCGGGGCCGACGGGTCCCGGAGCTACTGCCGGCACCAGATCCCCGAAGCCGCCCGGAAG
ACCTACTTCAACGAGTACCCGTTCGCCTGGTTCGGCATCCTGACCGAGGCGCCGCGCAGCGCGCCCGAGCTCATCTACGC
CAACAGCCCCCACGGCTTCGCCCTGATCAGCCAGCGCACCGACACCGTCCAGCGGATGTACTTCCAGTGCGACCCCACCA 
CCAACCCCGCCGACTGGACCGACGAGCAGATCTGGGAGCAGCTCCGCCTGCGCGTCAACGGTAACGGTTTCGAGCTCAAG
GAGGGCCCCGTGACCGACAAGGTCGTGCTGCCCTTCCGGTCCTTCGTGCAGACCCCGATGCGCCACGGCAACCTCTTCCT
CGCCGGCGACGCCGCGCACACGGTGCCGCCGACCGGGGCGAAGGGCCTCAACCTGGCCTTCTCGGACGTCCGCGTGCTGT 
TCGAATCGCTGGACAGCTACTTCAAGAGCGGCTCCACGGCCCTCATGGACACCTACTCCGAGCGCGCGCTGGACCGGGTG
TGGAAGGCGCAGTACTTCTCGTACTGGATGACCACCCTGCTGCACACCGTGCCGACCGAGACGAACCACGAATTCTTCCG
CGCCCGGCAGCTGGGGGAGCTCCGCTCGCTGCTCGAGTCGGAGCGCGGTCGGGCCTACATCGCCGAGTGCTACACCGGCT 
GGCAGTCCAAGTGAACTAGT 
 

Figure III.4: 

Nucleotide sequence of the synthetic ubiC/pobA DNA fragment. Underlined letters represent the flanking 

HindIII and SpeI restriction sites. The bold letters show the start and stop codons of the synthetic genes ubiC 

and pobA. The genes are translationally coupled, with the stop codon of ubiC overlapping the start codon of 

pobA. 

 

 

III.1.5. Production of novclobiocin 401 by S. coelicolor M512(clo-SA2) harbouring 

plasmid pSA11 

 

S. coelicolor(clo-SA2) harbouring pSA11 was cultivated in three different media: i) the 

complex clorobiocin production medium described for the wild type producer strain 

Streptomyces roseochromogenes var. oscitans DS 12.97672; ii) the complex GYM medium 

described for S. coelicolor A(3)2 fermentation105; iii) the chemically defined medium (CDM) 

developed for novobiocin production in the wild type producer strain Streptomyces 

niveus60. Ethyl acetate extracts from cultures in three media were analyzed by HPLC and 

LC-MS. The formation of a new compound with the expected molecular ion of m/z 643 M-

H- was detected in all media. The compound was not detected in extracts from S. 

coelicolor(clo-SA2) lacking plasmid pSA11. The amount of this compound was moderate 

using the two complex media (4 µg/ml and 7 µg/ml, respectively), but was much higher 

using the chemically defined medium (64 µg/ml). In this case, the new metabolite clearly 

represented a major compound in the extract (Figure III.5A). Preparative isolation of this 
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metabolite from 2 l of culture resulted in 18 mg of pure compound (Figure III.5B). This new 

clorobiocin derivative was termed novclobiocin 401.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure III.5: 

(A) HPLC chromatogram of a culture extract from the heterologous producer strain Streptomyces coelicolor 

M512(clo-SA2)/pSA11 cultivated in CDM medium. (B) Purified compound isolated from cultures in CDM 

medium. (C) Mass spectrometric fragmentation (MS-MS) of novclobiocin 401 obtained by selected ion 

monitoring chromatograms. LC-ESI-MS mass scans were performed in negative mode for m/z 643. The 

suggested fragmentation scheme for the compound is shown. 

 

 

III.1.6. Structure elucidation of novclobiocin 401  

 

LC-MS analysis in negative mode showed the presence of the molecular ion of m/z 643 

M-H-, corresponding to the expected molecular mass of 644 for novclobiocin 401. MS/MS 

analysis (Figure III.5C) showed a fragmentation pattern corresponding to that identified in 

previous mass spectrometric studies of aminocoumarin antibiotics58. High resolution ESI-

MS in positive mode showed a molecular ion of m/z = 645.14858, which is in agreement 

with the calculated value of m/z = 645.14818 (C30H30N2O12Cl [M+H]+; Δ0.62 ppm). 

Unidimensional (1H NMR, 13C NMR) and multidimensional (1H 1H COSY, 1H HSQC and 1H 

HMBC) NMR spectroscopy confirmed the expected structure (Figure III.6). Chemical shifts 

for the substituted pyrrole, the deoxysugar and the aminocoumarin moiety were in 

accordance to those of clorobiocin32.  

 

 

culture extract

purified compound

mass spectrometric fragmentation of 
novclobiocin 401

min0 5 10 15 20

mAU

min0

0

200

400

600

800

novclobiocin 401

min0 5 10 15 20

mAU

min0

0

200

400

600

800

min0 5 10 15 20

mAU

min0

0

200

400

600

800

novclobiocin 401

min0 5 10 15 20 min0

mAU

0

1000

2000

3000

novclobiocin 401

min0 5 10 15 20 min0

mAU

0

1000

2000

3000

min0 5 10 15 20 min0

mAU

0

1000

2000

3000

novclobiocin 401 225.8

317.9 361.9

507.1

-MS2(643.0)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

5x10

Intens.

100 200 300 400 500 600 m/z

N

O O O

OH

Cl

O

CH3

CH3

OHO

H3CO

H3C

H O

N C

H O

OH

OH

[M-H]- 643

507

362

226
- pyrrol - noviose

318
- CO2

225.8

317.9 361.9

507.1

-MS2(643.0)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

5x10

Intens.

100 200 300 400 500 600 m/z

N

O O O

OH

Cl

O

CH3

CH3

OHO

H3CO

H3C

H O

N C

H O

OH

OH

[M-H]- 643

507

362

226
- pyrrol - noviose

318
- CO2

225.8

317.9 361.9

507.1

-MS2(643.0)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

5x10

Intens.

100 200 300 400 500 600 m/z

N

O O O

OH

Cl

O

CH3

CH3

OHO

H3CO

H3C

H O

N C

H O

OH

OH

[M-H]- 643

507

362

226
- pyrrol - noviose

318
- CO2

culture extract

purified compound

mass spectrometric fragmentation of 
novclobiocin 401

min0 5 10 15 20

mAU

min0

0

200

400

600

800

novclobiocin 401

min0 5 10 15 20

mAU

min0

0

200

400

600

800

min0 5 10 15 20

mAU

min0

0

200

400

600

800

novclobiocin 401

min0 5 10 15 20 min0

mAU

0

1000

2000

3000

novclobiocin 401

min0 5 10 15 20 min0

mAU

0

1000

2000

3000

min0 5 10 15 20 min0

mAU

0

1000

2000

3000

novclobiocin 401 225.8

317.9 361.9

507.1

-MS2(643.0)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

5x10

Intens.

100 200 300 400 500 600 m/z

N

O O O

OH

Cl

O

CH3

CH3

OHO

H3CO

H3C

H O

N C

H O

OH

OH

[M-H]- 643

507

362

226
- pyrrol - noviose

318
- CO2

225.8

317.9 361.9

507.1

-MS2(643.0)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

5x10

Intens.

100 200 300 400 500 600 m/z

N

O O O

OH

Cl

O

CH3

CH3

OHO

H3CO

H3C

H O

N C

H O

OH

OH

[M-H]- 643

507

362

226
- pyrrol - noviose

318
- CO2

225.8

317.9 361.9

507.1

-MS2(643.0)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

5x10

Intens.

100 200 300 400 500 600 m/z

N

O O O

OH

Cl

O

CH3

CH3

OHO

H3CO

H3C

H O

N C

H O

OH

OH

[M-H]- 643

507

362

226
- pyrrol - noviose

318
- CO2

A 

B 

C



RESULTS 

 

56 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure III.6: 
1H NMR (A) and 1H HSQC (B) for the structure confirmation of novclobiocin 401. 
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The chemical shifts and coupling patterns of the protons in 1H NMR spectra of 

novclobiocin 401 showed the catechol structure of the new acyl moiety. A strong high-field 
13C NMR shift for carbon C-2 (δC = 116.1) and C-4 (δC = 150.8) in novclobiocin 401 

compared to clorobiocin (δC-2 = 130.9, δC-4 = 161.0) indicated a new hydroxyl substitution 

in ortho-position (C-3). Additionally, the NMR spectra of novclobiocin 401 lack all proton 

and carbon NMR signals of the dimethylallyl group of the native clorobiocin. Full 

comparative 1H and 13C NMR spectroscopic data of novclobiocin 401 and clorobiocin are 

given in Table III.1. 

 

 

 

 

 

 

 

 

 

Position  1H-NMR data  
(150.8 MHz, CD3OD),  

δH [ppm], intensity, m, J [Hz] 
 

13C-NMR data  
(125.7 MHz, CD3OD),  

δC [ppm] 

 novclobiocin 401 
 

clorobiocin novclobiocin 401 clorobiocin 

1   125.6 124.2 
2 7.42, 1H, br s 7.76, 1H, d 

(2.5) 
116.1 130.9 

3   146.2 129.9 
4   150.8 161.0 
5 6.80, 1H, d (6.9) 6.84, 1H, d 

(8.4) 
115.8 115.6 

6 7.39, 1H, d (6.9) 7.72, 1H, dd  
(8.4, 2.5) 

121.7 128.5 

7 -- 3.34, 2H, d 
(7.1) 

-- 29.2 

8 -- 5.35, 1H, br t 
(7.1) 

-- 123.2 

9   -- 133.8 
10 -- 1.74, 1H, s -- 17.9 
11 -- 1.75, 3H, s -- 26.0 
7 in 1,  
12 in 2  

  169.6 170.0 

2‘   161.8 162.4 
3‘   102.5 103.7 
4‘   161.7 157.8 
5‘ 7.82, 1H, d (7.1) 7.90, 1H, d 

(9.2) 
124.1 123.9 
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6‘ 7.22, 1H, d (7.1) 7.33, 1H, d 
(9.2) 

111.9 112.5 

7‘   150.0 161.8 
8‘   110.2 110.7 
9‘   156.1 156.5 
10‘   110.5 113.3 
1‘‘ 5.72, 1H, d (2.0) 5.73, 1H, d 

(1.8) 
100.2 100.4 

2‘‘ 4.38, 1H, br m 4.34, 1H, dd 
(2.7) 

71.0 71.0 

3‘‘ 5.70, 1H, dd (11.1, 
2.0) 

5.71, 1H, dd 
(10.3, 2.9) 

71.6 71.6 

4‘‘ 3.72, 1H, d (11.1) 3.72, 1H, d 
(10.3) 

82.7 82.7 

5‘‘   80.4 80.5 
6‘‘ 1.17, 3H, s 1.18, 3H, s 22.9 22.9 
7‘‘ 1.35, 3H, s 1.35. 3H, s 29.3 29.3 
8‘‘ 3.52, 3H, s 3.52, 3H, s 62.0 62.1 
2‘‘‘   121.5 121.8 
3‘‘‘ 6.89, 1H, d (3.4) 6.90, 1H, d 

(3.6) 
118.2 118.33 

4‘‘‘ 5.93, 1H, d (3.4) 5.94, 1H, br d 
(3.6) 

109.7 109.8 

5‘‘‘   136.1 136.3 
6‘‘‘ 2.29, 3H, s 2.29, 3H, s 13.0 12.9 
7‘‘‘   161.8 161.8 
 

Table III.1:  

Full comparative 1H and 13C NMR spectroscopic data of novclobiocin 401 and clorobiocin. Chemical shifts 

are expressed in δ values using the solvent as internal standard (CD3OD). Assignments for novclobiocin 401 

were made using 2D NMR data; assignments of clorobiocin were taken from literature32. 

 

 

III.1.7. Inhibitory activities against E. coli and S. aureus DNA gyrase and 

topoisomerase IV. 

 

The new compound was investigated in vitro for its inhibitory effects on E. coli and S. 

aureus DNA gyrase and topoisomerase IV in comparison with the natural antibiotics 

clorobiocin and novobiocin. Two different assays were used: a DNA gyrase supercoiling 

assay and a topoisomerase IV decatenation assay. The 50% inhibitory concentration (IC50) 

of the catechol compound was determined as 0.006 µM for S. aureus DNA gyrase and 

0.03 µM for E. coli DNA gyrase (Figure III.7A). These inhibitory concentrations are 

identical to those observed with clorobiocin and lower than those observed with the 

clinically used novobiocin (inhibitory concentration: 0.01 µM and 0.08 µM respectively) 

against the two gyrases. This clearly proves that the replacement of the genuine Ring A 

moiety with a 3,4-DHBA moiety had not affected the potency of the compound as gyrase 
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inhibitor, what is in agreement with the structural information indicating that Ring A is not 

involved in the interaction with DNA gyrase (see Introduction).  

DNA gyrase inhibitors of the fluoroquinolone class also inhibit topoisomerase IV which is 

very similar to gyrase74. Thus, we examined whether novclobiocin 401 also inhibits the 

decatenation activity of E. coli and S. aureus topoisomerase IV. However, just as 

novobiocin and clorobiocin, the new compound inhibited topoisomerase IV from S. aureus 

and E. coli only at much higher concentrations than those required for gyrase inhibition 

(IC50 values: 35 µM for S. aureus gyrase and >50 µM for E. coli gyrase) (Figure III.7B). 

Therefore, novclobiocin 401 is expected to act primarily as gyrase inhibitor in both S. 

aureus and E. coli.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure III.7: 

Supercoiling (A) and decatenation (B) assays with E. coli and S. aureus DNA gyrase and topoisomerase IV. 

The first lane labelled with C contains control assays without enzyme. The lane labelled 0 contains assays 

with addition of 3 l solvent (5% aqueous DMSO). The following lanes contain assays to which the indicated 

amount of antibiotic, dissolved in 5% DMSO, has been added. In the supercoiling assays, the lower band 

shows supercoiled pBR322 DNA, formed under catalysis of DNA gyrase. In the decatenation assays, the 

lower band shows decatenated kinetoplast DNA, formed under catalysis of topoisomerase IV. 
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III.1.8. Construction of E. coli mutants for investigation of antibiotic import by 

catechol siderophore transporters  

 

As reported above, E. coli gyrase is equally sensitive to clorobiocin and novclobiocin 401, 

but novclobiocin 401 has been designed for a more efficient transport inside the cell than 

clorobiocin and therefore exert higher antibacterial activity in vivo. In order to study the 

differences in influx without interference by differences in efflux, we inactivated the gene 

tolC, which encodes an essential part of the AcrABTolC drug efflux pumps of E. coli 

(Figure III.8A)15. 

E. coli possesses three outer membrane transporters for active import of catechol 

siderophores: Fiu, Cir, and FepA18. All three transporters receive the energy for active 

transport from the periplasmic-located protein TonB. Therefore, the role of the catechol 

siderophore transporters Fiu, Cir, and FepA in the uptake of novclobiocin 401 can be 

investigated by comparing the sensitivity to clorobiocin and novclobiocin 401 of mutants 

with and without active TonB (Figure III.8A). Expression of these proteins is up-regulated 

under conditions of iron starvation. Bacterial growth during an infection in the human body 

represents a condition of extreme iron starvation24. For functional studies of catechol 

siderophore transport in E. coli, conditions of iron starvation are usually created by i) 

mutation of entC, which abolishes the biosynthesis of the important siderophore 

enterobactin26; ii) addition of the iron chelator 2,2'-bipyridyl to the culture medium2, 79. In 

order to investigate the importance of the outer membrane as a resistant mechanism of 

Gram-negative bacteria, we considered to test the three aminocoumarins also with E. coli 

strains defective in the outer membrane. A mutation in the gene rfaP, encoding for a 

lipopolysaccaride kinase that is essential for the outer membrane stability127, causes a 

hyperpermeable membrane for lipophilic antibiotics by mutational alteration of its 

lipopolysaccaride components (Figure III.8A).   

Single in-frame knockout mutants of entC, tolC, tonB and rfaP in E. coli K-12 were 

available from the Keio collection8. Using these strains, we generated several E. coli 

double and triple mutants by RED/ET-mediated recombination, shown in Figure III.8B, to 

compare their sensitivity to clorobiocin and novclobiocin 401 in culture media containing 

2,2'-bipyridyl. The correct genotype of the mutants was verified by PCR analysis (Colony 

PCR) of the genomic DNA of the mutant.  
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Figure III.8: 

(A) Overview of the catechol-mediated drug influx and AcrAB-TolC-mediated drug efflux in E. coli. Cir and 

Fiu are TonB dependent receptors in the outer membrane (OM). In an energy dependent way they catalyse 

the uptake of siderophore-drug-conjugates. The ABC transporter (Fep system) transports the siderophore-

drug-conjugate across the inner membrane (IM) into the cytoplasm. The lipopolysaccaride kinase RfaP is 

essential for the outer membrane stability; inactivation of rfaP results in a mutant which is hypersensitive to 

aminocoumarins114, 127. (B) Overview on the constructed multiple mutations of E. coli strains by RED/ET-

mediated recombination based on strains from the Keio-collection8. 
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III.1.9. Determination of the antibacterial activity of novclobiocin 401 in agar 

diffusion  tests 

 

The antibacterial activity of novclobiocin 401, in comparison to clorobiocin and novobiocin, 

was first tested in agar diffusion assays with the E. coli ΔtolC and E. coli ΔtolC/ΔentC 

mutants compared with the E. coli ΔtonB/ΔtolC and E. coli ΔtonB/ΔtolC/ΔentC mutants. To 

improve visualisation of the inhibition zones, living cells on the agar plates were stained 

with 2,3,5-triphenyltetrazolium chloride. The results are shown in Figure III.9AB. Against 

the mutants with intact TonB, and therefore functional siderophore uptake, novclobiocin 

401 shows approximately 2-fold higher activity than clorobiocin, and 4-fold higher activity 

than novobiocin. In contrast, against the E. coli mutants with deleted tonB, novclobiocin 

401 is approximately 10-fold less active than clorobiocin. As expected the antibacterial 

activity is more pronounced with an additional entC mutation, because the production of 

the own siderophore enterobactin is abolished and therefore bacteria grow under iron 

starvation and are more sensitive to drugs. 

These results show that TonB-dependent transport plays an important role in the 

antibacterial activity of novclobiocin 401 but not in the activity of clorobiocin and 

novobiocin, what indicates that i) aminocoumarin antibiotics are efficiently introduced 

inside E. coli and the previously observed resistance114 is due mainly to the multi-drug 

efflux pump of which TolC is an important component; and ii) the exchange of the natural 

Ring A of clorobiocin with 3,4-DHBA diminishes the uptake of the antibiotic through the 

usual path for clorobiocin and novobiocin. This is in accordance with former literature that 

Ring A plays a crucial role for the uptake into bacterial cells1, 98. 

Agar diffusion assays with an E. coli ΔrfaP/ΔentC mutant support the hypothesis that the 

outer membrane is not the main resistance mechanism of Gram-negative bacteria against 

aminocoumarins. The antibacterial activity of aminocoumarins is much more increased in 

bacteria with an efflux pump defect (E. coli ΔtolC/ΔentC mutant) (Figure III.9B) than with 

an outer membrane defect (E. coli ΔrfaP/ΔentC mutant) compared with an E. coli ΔentC 

mutant which is not affected at all by aminocoumarins (Figure III.9C). However, it remains 

unclear why the ΔrfaP mutant (supposed to have a hyperpermeable membrane) shows 

higher resistance to novclobiocin 401 than to clorobiocin or novobiocin (indistinct inhibition 

zone of 8 mm with 10 µg compound; Figure III.9C). A possible explanation is given in 

section III.1.10. 
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Figure III.9: 

Disk diffusion assay for the determination of the antibacterial activity of clorobiocin, novobiocin, and 

novclobiocin 401 against E. coli mutants with and without active TonB (A B) and with and without active 

RfaP (C). At the same time the importance of TolC for the antibacterial activity of aminocoumnarins is shown. 

To improve visualization of the inhibition zones, living cells were stained with 2,3,5-triphenyltetrazolium 

chloride. 
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Table III.2 shows the mean values, from at least three separate experiments, of the 

inhibition zones obtained with different amounts of novobiocin, clorobiocin and 

novclobiocin 401 (0.5 µg, 1.5 µg, 5 µg, 10 µg) against the described E. coli mutants in agar 

diffusion tests.  

 

mean of inhibition zone (mm) caused by test compounds 

0.5 µg 1.5 µg 5 µg 10 µg 

E. coli  

strain 

nov clo 401 nov clo 401 nov clo 401 nov clo 401 

ΔtolC 9 9.3 14 11 13.8 16.3 15.5 17.5 19.3 18.3 19.2 21 

ΔtolC/ΔentC 10.5 10.6 15.3 12.5 15.2 21.3 18.3 18.4 25.6 21 19.8 26 

ΔtonB/ΔtolC 10.3 11.3 8 14 15.3 12.6 18.6 19.6 17.3 22.6 21.6 19.6

ΔtonB/ΔtolC/ΔentC 11.8 13 9.5 16 17.5 10 20 21.5 16 22.3 23 19.3

ΔrfaP/ΔentC 0 0 0 13.3 11.5 0 16.6 13 0 19.6 15.6 8 

ΔentC 0 0 0 0 0 0 0 0 0 0 0 0 

K12 (wild type) 0 0 0 0 0 0 0 0 0 0 0 0 

 

Table III.2: 

Inhibition zones obtained with novobiocin (nov), clorobiocin (clo) and novclobiocin 401 (401) against 

genetically defined E. coli mutants in agar diffusion tests, performed in Mueller-Hinton-Agar; tested 

compounds were dissolved in MeOH; inhibition zones are averages from at least three separate 

experiments. 

 

After the evaluation of the inhibition zones the statistical t-test was performed to test 

whether the antibacterial activity of novclobiocin 401 was significantly better than that of 

clorobiocin or novobiocin. It is generally accepted that if a specific parameter (p value) in 

the t-test is lower than 0.05 then the antibacterial activities are different with statistical 

significance, i.e. with 95% probability. 

Figure III.10 shows that the antibiotic activities of novobiocin and clorobiocin against the 

E. coli ΔtolC/ΔentC mutant are not significantly different (p value >0.05). In contrast, 

novclobiocin 401 showed a significantly better antibacterial activity than novobiocin and 

clorobiocin against this mutant (p value <0.05). On the other hand, novclobiocin 401 

showed a significantly lower activity against the E. coli mutants without active TonB than 

clorobiocin or novobiocin, what demonstrates that Ton B is involved in the uptake of 

novclobiocin 401 into the Gram-negative cell. 

 

 

 



RESULTS 

 

65

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure III.10: 

Statistical t-test to determine the significant differences in the antibacterial activity of novclobiocin 401 in 

comparison with novobiocin and clorobiocin. Both graphs represent the mean of inhibition zones caused by 

the tested compounds (10 µg) against E. coli mutants with and without active TonB. Error bars indicate the 

calculated standard deviations. 

 
 
 
III.1.10. Growth promotion with enterobactin 

 
The observation that novclobiocin 401 was not able to enter the hyperpermeable 

membrane mutant E. coli ΔrfaP/ΔentC, unlike clorobiocin or novobiocin, was unexpected. 

To investigate this further, we performed growth promotion assays with the E. coli 

siderophore enterobactin. We hypothesised that due to the alteration of the 

lipopolysaccarids (caused by ΔrfaP mutation) the siderophore transporters, located in the 

outer membrane, might have been also affected. This could be a reason why novclobiocin 

401 can not be transported inside the cell and shows less antibacterial activity. Therefore, 

we compared the E. coli ΔentC and E. coli ΔrfaP/ΔentC mutants, both unable to form their 

own siderophore enterobactin, under iron-restricted conditions. After addition of 

enterobactin to the E. coli ΔentC mutant, growth could be observed. In contrast, the E. coli 

ΔrfaP/ΔentC mutant showed less ability to grow on iron diminished medium what points to 

a lack of iron transport into the cell (Figure III.11). This experiment gives a possible 

explanation of the limited influx of novclobiocin 401 through the hyperpermeable 

membrane, which like enterobactin is transported by siderophore transporters.  
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Figure III.11:  
Role of RfaP in enterobactin-mediated growth promotion. Both strains were grown in iron-restricted medium. 
(a) control (methanol); (b) 0.02 µg enterobactin; (c) 0.01 µg enterobactin. Dark halos indicate bacterial 
growth. 
 

 

III.1.11. Determination of the minimum inhibitory concentration (MIC) of 

novclobiocin 401 

 
We also determined the minimum inhibitory concentration (MIC) in liquid culture, following 

the procedure described by Wiegand and co-workers123, but including 50 µM of the iron 

chelating agent 2,2'-bipyridyl to the culture media. Under these conditions, novobiocin and 

clorobiocin MIC against E. coli ΔtolC/ΔentC double mutant was 23 and 12 µg/ml 

respectively. The MIC of novclobiocin 401 was 6 µg/ml, showing again that novclobiocin 

401 has higher antibacterial activity than its parent compound clorobiocin. Against the 

ΔtonB/ΔtolC/ΔentC triple mutant, novobiocin and clorobiocin gave the same MIC values as 

observed against the ΔtolC/ΔentC double mutant (23 and 12 µg/ml, respectively). 

However, novclobiocin 401 showed much less activity against the tonB-deficient triple 

mutant (MIC: 47 µg/ml) than against the double mutant with active tonB (MIC: 6 µg/ml). 

This shows again that TonB-dependent transport is important for the antibacterial activity 

of novclobiocin 401, but not of novclobiocin and clorobiocin. 

Against the wild-type strain E. coli K-12, the MICs of novobiocin, clorobiocin and 

novclobiocin 401 resulted as 375, 47 and 95 µg/ml respectively. Similar values were 

obtained against the ΔentC mutant. Therefore, against these strains novclobiocin 401 was 

less active than its parent compound clorobiocin. The poor activity of aminocoumarins 

against wild-type strains of E. coli is in accordance with previous observations5, 44. 
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III.2. Generation of a clorobiocin derivative containing the catechol 

moiety 2,3-dihydroxybenzoic acid 

 

III.2.1. Activation of 2,3-dihydroxybenzoic acid by the AMP ligase DhbE from 

Bacillus subtilis 

 

After the generation of a clorobiocin derivative with the siderophore-like structure 3,4-

dihydroxybenzoic acid (novclobiocin 401), the production of a second clorobiocin 

derivative with 2,3-dihydroxybenzoic acid (2,3-DHBA) was of great interest as the 

siderophores enterobactin from E. coli and bacillibactin from B. subtilis contain this 

catechol motif.  

In amide synthetase assays (see III.1.1.) we found that none of the four available acyl 

ligases (NovL, CloL, CouL, SimL) accepted 2,3-DHBA as substrate. Normally, the acyl 

ligases catalyze two steps, the adenylation of the acyl moiety and the following attachment 

to the aminocoumarin moiety.  

The required genes for the biosynthesis of 2,3-DHBA, precursors of the siderophore 

bacillibactin75, are organized in a single operon in B. subtilis. Conspicuous is that a special 

enzyme, an AMP ligase, is present to catalyze the activation of 2,3-DHBA to 2,3-DHB 

adenylate (Figure III.12).  

 

 

 

 

 

 

 

 

 

 

 

Figure III.12: 

Enzymes of bacillibactin biosynthesis. 

 

We concluded that 2,3-DHBA needs a special activation, which can not be catalysed by 

any of the acyl ligases alone. We design the in vitro adenylation of 2,3-DHBA to study its 
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acceptance by the for amide synthetases. Plasmid pJJM301, that contains dhbE from B. 

subtilis, was kindly provided by the laboratory of Prof. M. Marahiel (Marburg, Germany). 

Soluble, N-terminally his-tagged protein DhbE was obtained after expression of plasmid 

pJJM301 in E. coli BL21/pREP4 cells. Ni2+-affinity chromatography resulted in 

approximately 21 mg of purified DhbE from one litre LB-culture. The apparent molecular 

mass in SDS-PAGE analysis was consistent with the predicted molecular weight of the 

polypeptide encoded by dhbE (59.9 kDa) (Figure III.13).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure III.13: 

SDS PAGE of the expression and purification of the AMP ligase DhbE from B. subtilis 

 

We then performed in vitro amide synthetase assays as described in section II.3.6 but 

containing equal amounts of purified DhbE and of one of the acyl ligases per assay. 2,3-

DHBA was efficiently adenylated by purified DhbE, and the activated catechol was readily 

accepted as substrate by the four available amide synthetases and connected to the 

coumarin moiety (Figure III.14).  
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Figure III.14: 

(A) HPLC chromatogram of an amide synthetase assay containing CloL and DhbE in equal amounts; the 

arrow indicates the product formation of the aminocoumarin acid with 2,3-DHBA moiety. (B) LC-MS 

chromatogram showing the MS-MS main ion scan for m/z 344 in positive mode. (C) Mass spectrometric 

fragmentation of the novclobiocin acid with 2,3-DHBA moiety obtained by selected ion monitoring 

chromatograms. The suggested scheme for the compound is shown. 

 

Therefore, the reason for the failed reaction described in section III.1.1 was the required 

pre-activation by DhbE (Figure III.15).  

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure III.15: 

Suggested activation of 2,3-DHBA by the AMP ligase DhbE by an adenylation reaction and the following 

transfer to the aminocoumarin moiety catalyzed by amide synthetases under catalysis of ATP. 
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III.2.2. Detection of the clorobiocin derivative with 2,3-dihydroxybenzoic acid 

 

S. coelicolor genome contains a gene cluster for a hypothesised zinc-chelating compound, 

called coelibactin11, 51. The first gene in this hypotetical cluster, sco7681, encodes a 

putative AMP-binding ligase with 52% amino acids homology to DhbE from B. subtilis. We 

considered that this DhbE homolog could activate 2,3-DHBA in a similar way than DhbE of 

the catechol siderophore griseobactin found in S. griseus89. 

The first attempts to obtain the new clorobiocin derivative by feeding of 2,3-DHBA to S. 

coelicolor M512(clo-SA2) remained unsuccessful, although 2,3-DHBA, in contrast to 3,4-

DHBA, could be detected over several days in the culture and therefore the problem of 

rapid degradation of the catechol by Streptomcyes was not the problem. This could be due 

to lack of expression of sco7681 under our working conditions. 

We then tried to synthesise 2,3-DHBA in S. coelicolor M512 by introducing the plasmid 

pSP1261110 containing the necessary genes (dhbA, dhbC, dhbE, dhbB; Figure III.12) from 

griseobactin gene cluster of Streptomcyes griseus89. This strategy was also unsuccessful, 

probably because of inefficient expression of the genes from that construct. 

In a further experiment we integrated the cloQ deficient clorobiocin biosynthetic gene 

cluster (clo-SA2) as well as the plasmid pSP1261110 (containing genes for griseobactin 

biosynthesis) into the genome of S. coelicolor M1154 at the ΦC31 attachment site, 

resulting in S. coelicolor M1154(clo-SA2)/pSP1261110. We cultivated this strain in 

chemically defined medium (CDM) and additionally fed 2,3-DHBA to the culture. Ethyl 

acetate extracts from the culture were analyzed by HPLC and LC-MS after 5 d. LC-MS 

analysis in negative mode showed the presence of the molecular ion of m/z 643 M-H-, 

corresponding to the expected molecular mass of 644 for the new clorobiocin derivative 

with 2,3-DHBA. MS/MS analysis (Figure III.16) showed the expected fragmentation 

pattern of the new compound. We think that the activation of the externally added 2,3-

DHBA was actually performed by the AMP-ligase encoded by sco7681 and not by the 

DhbE encoded in pSP1261110, since the formation of this compound was only detected in 

the culture to which 2,3-DHBA was added and therefore the genes in pSP1261110 seem 

not to be expressed. S. coelicolor M1154 is a new host strain especially developed for the 

increased heterologous expression of secondary metabolite gene clusters45 what could 

explain the expression of sco7681 in contrast to M512. 
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Despite we have certainly obtained the desired compound, it is still necessary to optimize 

the conditions for an enhanced production of the new clorobiocin derivative with 2,3-DHBA, 

in order to obtain enough amounts for structure confirmation by NMR and bioactivity tests. 

 

 

 

 

 

 

 

 

 

 

 

Figure III.16: 

LC-ESI-MS mass scans were performed in negative mode for m/z 643. Extracted ion chromatogram for the 

main ion m/z 643 [M-H]- of the culture extract S. coelicolor M1154(clo-SA2)/pSP1261110 without feeding of 

2,3-DHBA (A) and with feeding of 2,3-DHBA (B). (C) Mass spectrometric fragmentation of the new 

clorobiocin derivative with 2,3-DHBA obtained by selected ion monitoring chromatograms. The suggested 

fragmentation scheme for the compound is shown. 
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III.3. Inhibition of DNA gyrase and topoisomerase IV of 

Staphylococcus aureus and Escherichia coli by aminocoumarin 

antibiotics 

 

III.3.1. Expression of the subunits of Staphylococcus aureus topoisomerase IV as 

his-tagged proteins  

 

S. aureus DNA gyrase, as well as E. coli topoisomerase IV and DNA gyrase, are 

commercially available, but it was necessary to generate S. aureus topoisomerase IV for 

our study. Expression of the structural genes for ParC and ParE as C-terminally his-tagged 

proteins, using vector pET22b (Novagen) were unsuccessful. However, soluble, N-

terminally his-tagged ParC and ParE proteins were obtained from constructs containing 

parC and parE from S. aureus RN4220 in the pQE70 vector (QIAGEN) which were 

expressed in E. coli BL21/pREP4 cells. Ni2+-affinity chromatography resulted in 

approximately 7 mg of purified ParC and 5 mg purified ParE per litre of culture. The 

apparent molecular mass in SDS-PAGE analysis was consistent with the predicted 

molecular weight of the polypeptides encoded by parC (96.2 kDa) and parE (77.8 kDa) 

respectively. Mixing of equimolar amounts of the two subunits resulted in active 

topoisomerase IV (see below). 

 

 

III.3.2. Removal of potassium glutamate from the assays for DNA gyrase activity 

 

We established assay conditions for the measurement of the inhibition of E. coli and S. 

aureus DNA gyrase and topoisomerase IV by aminocoumarin antibiotics. As described by 

Morgan-Linnell and co-workers80 and Pan & Fisher88 for investigation of the inhibitory 

activity of agents against topoisomerase IV the decatenation assay is the most 

appropriate, while the most relevant assay for agents like aminocoumarins, acting on DNA 

gyrase, is inhibition of supercoiling. The activity of S. aureus DNA gyrase is dependent on 

high concentrations of potassium glutamate (K-Glu)16, 52. However, we found that K-Glu 

concentrations over 400 mM impaired the resolution in the gel electrophoresis analysis of 

the supercoiling assays (Figure III.17, lane b). We tested different methods for desalting 

the samples before loading them in agarose gels. Addition of 700 mM 18-Crown-6 (Fluka) 

after the reaction, intended to complex the potassium cations, led to an undesirable 
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reduction of the intensity of the bands on the agarose gel (Figure III.17, lane c). 

Purification of the assay products with the QIAprep Spin Miniprep Kit for plasmid DNA 

purification (QIAGEN) provided better results (Figure III.17, lane d). The best resolution 

and visualization of the different topoisomers of relaxed DNA was achieved by dialysis 

against a 10 mM Tris-HCl buffer (pH 8.0) using membrane filters (0.025 µm pore diameter) 

(Figure III.17, lane e), and therefore this method was used for all further DNA gyrase 

assays. No dialysis was required for topoisomerase IV activity tests. Kinetoplast DNA was 

used as substrate in these assays, and the resolution in agarose gel electrophoresis was 

satisfactory without removal of K-Glu (Figure III.18). Furthermore, S. aureus 

topoisomerase IV required a lower concentration of K-Glu for activity than DNA gyrase 

(see below). 

 

 

 

 

 

 

 

Figure III.17: 

Electrophoretic analysis of S. aureus DNA gyrase supercoiling assays using different methods for potassium 

glutamate removal. Lane a, assay without K-Glu (the enzyme is inactive under these conditions); lane b to e, 

assays with 700 mM K-Glu; lane b, without removal of K-Glu; lane c, addition of 700 mM 6-Crown-18; lane d, 

desalting with QIAspin Miniprep Kit for plasmid DNA purification (QIAGEN); lane e, dialysis against 10 mM 

Tris-HCl buffer (pH 8.0) with 0.025 µM membrane filters MFTM VSWP (Millipore). 

 

 

III.3.3. Effect of potassium glutamate on the activity of DNA gyrase and 

topoisomerase IV of E. coli and S. aureus 

 

Previous investigations had shown that K-Glu has an important influence on the activities 

of bacterial type II topoisomerases. The optimal K-Glu concentration is different for S. 

aureus and for E. coli enzymes, and different for DNA gyrase and topoisomerase IV. Even 

for the same enzyme of a given origin, the optimal K-Glu concentration varies for different 

assay types, e. g. for the supercoiling and the DNA cleavage assay in case of S. aureus 

DNA gyrase, or for the decatenation and the relaxation assay in case of topoisomerase 

IV16,52, 99. We investigated the influence of K-Glu and Na-Glu in concentrations from 0 mM 

nicked DNA
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to 1000 mM on the four enzymes relevant to our study, i.e. DNA gyrase and 

topoisomerase IV from both S. aureus and E. coli, using the supercoiling assay for DNA 

gyrase and the decatenation assay for topoisomerase IV (Figure III.18). 

S. aureus DNA gyrase and topoisomerase IV were both inactive in the absence of K-Glu. 

DNA gyrase activity was detectable from 300 - 1000 mM K-Glu, with an optimal 

concentration around 900 mM. Topoisomerase IV activity was detectable between 100 - 

500 mM K-Glu, with an optimal activity between 200 - 400 mM. These data are in 

agreement with the results of the four previous studies on the influence of K-Glu on S. 

aureus topoisomerases16, 52, 99, 112. 

E. coli DNA gyrase is active in the absence of K-Glu, and this may be the reason that only 

few data are available on the influence of K-Glu on type II topoisomerases of E. coli52. Our 

investigations confirmed that E. coli DNA gyrase does not require K-Glu for activity, but 

also showed that inclusion of 200 - 500 mM K-Glu moderately stimulates the activity of this 

enzyme. Using the established amount of enzyme in our standard decatenation assay, 

activity of E. coli topoisomerase IV was not detected in the absence of K-Glu, but clearly in 

the presence of 100 - 500 mM of this salt; the optimal concentration range was 200 – 400 

mM (Figure III.18). Therefore, also E. coli topoisomerase IV is clearly stimulated by K-Glu.  

Blanche and co-workers16 reported that for stimulation of S. aureus DNA gyrase in the 

supercoiling assay, K-Glu could be replaced by its enantiomer, e.g. the potassium salt of 

D-Glu, but not by Na-Glu or KCl. Our investigations confirmed that S. aureus DNA gyrase 

is inactive in the presence of Na-Glu, irrespective of the concentration (Figure III.18). In 

clear contrast, S. aureus topoisomerase IV is stimulated by Na-Glu (200 – 400 mM), 

although less than by K-Glu. Also E. coli topoisomerase IV is weakly stimulated by 200 

mM Na-Glu. Notably, E. coli DNA gyrase is completely inhibited by Na-Glu in 

concentrations of 200 mM or higher (Figure III.18).  
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Figure III.18:  

Effect of K-Glu and Na-Glu on S. aureus and E. coli DNA gyrase in supercoiling assays and on 

topoisomerase IV in decatenation assays. The supercoiling reaction mixtures contained relaxed pBR322 

DNA, DNA gyrase and the indicated concentrations of K-Glu and Na-Glu.  The decatenation reaction 

mixtures contained kDNA, topoisomerase IV and the indicated concentrations of K-Glu and Na-Glu. The first 

lane, labelled with C, contains a control assay without enzyme. In the DNA gyrase assays, the lower band 

shows supercoiled DNA. In the topoisomerase IV assays, the lower band shows decatenated DNA. 

 

It has been shown that a monovalent cation is required for the ATPase activity of this 

family of enzymes and that it seems to exist some specificity for the cation56. To test 

whether potassium is responsible for the catalytic activity of S. aureus DNA gyrase we 

performed similar series of supercoiling assays with 0 mM to 1500 mM KCl or NaCl. S. 

aureus DNA gyrase was inactive regardless the concentration of KCl or NaCl, while the E. 

coli enzyme lost activity from 100 mM onwards of either KCl or NaCl (Figure III.19). Since 

E. coli DNA gyrase does not require nor is affected by K-Glu, the lack of activity observed 

when adding Na-Glu could indicate that the enzyme prefers potassium, and sodium is 

competing for the binding to the enzyme. To test this hypothesis we performed 

supercoiling assays in the presence of 100 mM Na-Glu and increasing concentrations of 

K-Glu up to 400 mM, but K-Glu did not restore enzyme activity (data not shown). 
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Figure III.19: 

Effect of KCl and NaCl on E. coli DNA gyrase in supercoiling assays. The first lane, labelled with C, contains 

a control assay without enzyme. In the DNA gyrase assays, the lower band shows supercoiled DNA. 

 

 

III.3.4. Potassium glutamate modulates the sensitivity of E. coli DNA gyrase to 

aminocoumarin antibiotics 

 

Previous studies have shown that the sensitivity of DNA gyrase to quinolones is modulated 

by K-Glu52, 112. We now tested the influence on K-Glu on the sensitivity of E. coli DNA 

gyrase to aminocoumarin antibiotics. E. coli DNA gyrase was approximately 10-fold more 

sensitive to novobiocin, clorobiocin, and novclobiocin 101 (Figure III.20) in the presence of 

700 mM K-Glu than in its absence (Figure III.21). Unexpectedly, the effect of K-Glu was 

much more pronounced in case of novclobiocin 103, which is an analogue of novobiocin 

lacking the acyl substituent, which is attached in the naturally occurring antibiotic (Figure 

III.20) to the 3-OH group of the deoxysugar moiety. E. coli DNA gyrase was only weakly 

inhibited by this compound in the absence of K-Glu, but sensitivity increased by a factor of 

150 in the presence of K-Glu. X-ray crystallographic studies have shown that the 

carbamoyl group of novobiocin occupies a distinct binding pocket of the DNA gyrase 

protein, providing an important interaction with the target74. Apparently, the relative 

importance of this particular interaction in the overall binding of the antibiotic is reduced in 

the presence of K-Glu.  
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Figure III.20: 

Structure of the novclobiocins used in this study. 

 

The concentration of K-Glu is therefore an important consideration when the inhibitory 

effects of aminocoumarins on DNA gyrase from E. coli and S. aureus are compared. Since 

DNA gyrase from S. aureus does not require K-Glu, we decided to subsequently use 700 

mM K-Glu in assays of DNA gyrases from both organisms that is the concentration 

recommended by Blanche and co-workers16 for assays of S. aureus DNA gyrase and still 

provides 100% of activity of E. coli DNA gyrase.  

The other three enzymes in our study, i.e. DNA gyrase from S. aureus and topoisomerase 

IV from both S. aureus and E. coli, did not show detectable activity in the absence of K-Glu 

under our assay conditions, and therefore the influence of K-Glu on their sensitivities to 

aminocoumarins could not be tested in a similar experiment as described above for E. coli 

DNA gyrase. We decided to use 100 mM K-Glu in subsequent assays for topoisomerase 

IV from both organisms, which is the concentration used in several previous studies35, 90 

and which is recommended by the commercial suppliers of topoisomerase IV, i.e. Inspiralis 

(Norwich, UK) and Topogen (Columbus, Ohio, USA). However, our own data suggest that 

the enzyme activity is slightly higher at 200 – 400 mM K-Glu (Figure III.18). 
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Figure III.21: 

Influence of K-Glu on the sensitivity of E. coli DNA gyrase towards aminocoumarin antibiotics. The 

supercoiling reaction mixtures contained relaxed pBR322 DNA, DNA gyrase and the indicated 

concentrations of the antibiotic. The first lane, labelled with C, contains control assays without enzyme. The 

lanes labelled 0 or 0* contain assays with no addition or with addition of 3 µl solvent (5% aqueous DMSO), 

respectively. The following lanes contain assays to which the indicated amount of antibiotic, dissolved in 5% 

DMSO, has been added. (A) Investigation of novobiocin, clorobiocin and novclobiocin 101. (B) Investigation 

of novclobiocin 103.  
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III.3.5. Inhibition of DNA gyrase and topoisomerase IV from E. coli and S. aureus 

by different aminocoumarin antibiotics 

 

Using the assay conditions established in the preceding experiments, we investigated the 

inhibitory effect of different aminocoumarin antibiotics on DNA gyrase and topoisomerase 

IV from E. coli and S. aureus. We tested the three “classical” aminocoumarin antibiotics 

novobiocin, clorobiocin, and coumermycin A1, as well as the structurally different 

simocyclinone D8 (Figure III.20). We also included several novobiocin and clorobiocin 

derivatives (termed “novclobiocins”), which we had obtained in previous mutasynthesis 

and metabolic engineering experiments4, 32, 35, 126. Novobiocin, clorobiocin, and 

coumermycin A1 were on average 6-fold more active against S. aureus DNA gyrase than 

against E. coli DNA gyrase (Table III.3). The inhibitory concentrations were in the range of 

6-10 nM, i.e. three orders of magnitude lower than reported for fluoroquinolones like 

ciprofloxacin, ofloxacin or sparfloxacin88, 113, 115. This confirms the potency of 

aminocoumarins as DNA gyrase inhibitors in Gram-positive pathogens. However, the 

activity of the aminocoumarins against S. aureus topoisomerase IV was weaker (Table 

III.3). These biochemical data suggest that gyrase is the primary target of the tested 

aminocoumarins in S. aureus. This is supported by the observation by Fujimoto-Nakamura 

and coworkers42, who showed that cultivation of S. aureus in the presence of novobiocin 

resulted first in the selection of mutants with altered DNA gyrase; use of higher 

concentrations of novobiocin additionally resulted in mutations of topoisomerase IV as a 

second step in the emergence of resistance. 

Simocyclinone D8, an aminocoumarin antibiotic with a completely new mode of action30, 36, 

showed similar activity against E. coli DNA gyrase as novobiocin, but less activity against 

S. aureus DNA gyrase. Its effect on S. aureus topoisomerase IV was weak and it was 

essentially inactive against the corresponding E. coli enzyme (Table III.3)87.  

Novclobiocin 101, which is very similar in structure to clorobiocin but lacks the chlorine in 

position 8 of the aminocoumarin moiety (Figure III.20) showed 8-fold lower inhibitory 

activity against S. aureus DNA gyrase than clorobiocin (Table III.3). If the chlorine atom of 

clorobiocin is replaced by a methyl group (novclobiocin 102), there is 2-fold reduction in 

activity. These biochemically determined ratios of activities between clorobiocin, 

novclobiocin 101, and novclobiocin 102 are identical to those determined earlier in a disk 

diffusion assay against Bacillus subtilis32.  

When the acyl substituent at position 3 of the deoxysugar of novobiocin is removed, 

resulting in novclobiocin 103, activity against S. aureus DNA gyrase is reduced by a factor 
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of 100. When the methyl group of the 4-methoxy group at the deoxysugar moiety of 

clorobiocin is additionally removed, activity is completely lost (novclobiocin 105).  

Novclobiocins 217 and 225 are clorobiocin derivatives in which the alkyl side chains of the 

4-hydroxy-benzoyl moieties have been modified (Figure III.20)4. They have been identified 

as very potent inhibitors of the growth of S. aureus ATCC 29213 and the methicillin-

resistant S. aureus strain ATCC 43300 with MIC values of <0.06, equal to the parent 

compound clorobiocin5. Our study shows that these compounds are highly potent 

inhibitors of S. aureus DNA gyrase in vitro, with inhibitory concentrations of 1 nM. In 

contrast, the changes in the acyl side chains that provided increased DNA gyrase 

inhibitory activity, led to a lower inhibition of topoisomerase IV. It is also remarkable that 

the E. coli topoisomerase IV is more sensitive to the aminocoumarin antibiotics tested than 

the S. aureus enzyme. The results indicate that the presence of the 3``-MePC moiety and 

the natural occurring 3-dimethylallyl-4-hydroxy-benzoic acid side chain are of importance 

for topoisomerase IV inhibition. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Table III.3:  

Inhibitory activity of aminocoumarin antibiotics against DNA gyrase and topoisomerase IV from Escherichia 

coli and Staphylococcus aureus. The concentration [µM] of antibiotic that caused 50% inhibition (IC50) of 

DNA gyrase supercoiling and topoisomerase IV decatenation is given. DNA gyrase and topoisomerase IV 

activities were determined in the presence of 700 and 100 mM potassium glutamate, respectively. Each 

assay was repeated at least twice and the IC50 values were determined based on intensity of either the 

supercoiled DNA or decatenated DNA gel bands. 

IC50 (µM) 

E. coli S. aureus 

 
compound  

name 
DNA gyrase topo IV DNA gyrase topo IV 

novobiocin 0.08 10 0.01 20 

clorobiocin 0.03 3 0.006 10 

coumermycin A1 0.03 5 0.006 100 

simocyclinone D8 0.1 >10 2 17 

novclobiocin 101 0.3 3 0.05 35 

novclobiocin 102 0.03 0.3 0.01 5 

novclobiocin 103 0.1 >10 1 >50 

novclobiocin 105 >100 >100 >100 >100 

novclobiocin 217 0.006 8 0.001 >50 

novclobiocin 225 0.006 8 0.001 >50 



RESULTS 

 

81

III.4. Inactivation of cloHIJK (encoding for Ring B) in the biosynthetic 

gene cluster of clorobiocin and heterologous expression of the 

modified cluster 

 

Ring B of aminocoumarins has been linked to their toxicity. In order to replace the genuine 

Ring B of clorobiocin with less toxic analogous by mutasynthesis experiments, the 

biosynthesis of the genuine Ring B would need to be abolished.  

Using RED/ET-mediated recombination, we replaced the coding sequence of cloHIJK with 

an apramycin resistance gene, resulting in cosmid clo-SA3 (Figure III.22). The resistance 

cassette was subsequently removed by restriction digestion and religation, using XbaI and 

SpeI sites introduced into the PCR primer sequence as described previously. This cloHIJK 

deficient gene cluster was integrated into the genome of S. coelicolor M512, resulting in S. 

coelicolor M512 (clo-SA4) (Figure III.22). 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure III.22: 

Gene deletion using the apramycin resistance cassette (aac(3)IV) from pIJ773 containing flanking XbaI and 

SpeI restriction sites. 

 

Cultivation of this strain in clorobiocin production medium did not result in production of 

clorobiocin, while corresponding heterologous expression strains containing the intact 
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gene cluster produced this antibiotic. However, feeding of Ring B (2 mg per 80 ml culture 

medium) restored production of clorobiocin, as confirmed by HPLC analysis and UV 

spectra comparison to an authentic reference compound (data not shown). Therefore, the 

inactivation of cloHIJK had led to the abolishment of the production of ring B, but had not 

affected the subsequent steps of clorobiocin biosynthesis. 

The only purchasable Ring B analogous 6-Amino-4-methyl-quinolin-2-ol (Matrix Scientific; 

Figure III.23) was fed under the same conditions as Ring B to S. coelicolor M512(clo-

SA4). Until now, no product formation with this Ring B analogous could be observed by 

HPLC analysis. 

 
 
 
 
 
 
 
Figure III.23: 

Ring B analogue 6-amino-4-methyl-quinolin-2-ol.

N

NH2

CH3

HO
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IV. DISCUSSION 

IV.1. Generation and activity test of novclobiocin 401, a clorobiocin 

derivative containing the catechol moiety 3,4-dihydroxybenzoic 

acid 

 

The present study provides an example for the rational design and production of a 

structurally modified antibiotic by a synthetic biology approach. The main aim was to 

exchange the structure of Ring A in clorobiocin by a catechol moiety, and in that way 

imitate a siderophore and facilitate the transport of the antibiotic inside the cell. The 

chemical synthesis of a clorobiocin derivative with a modified Ring A moiety is not 

straightforward, since a clorobiocin derivative lacking Ring A (e.g. containing only Rings B 

and C) can not be obtained from any producer strain, due to the fact that Ring A is the 

starter moiety for clorobiocin biosynthesis. Alternatively, the de novo chemical synthesis of 

an entire aminocoumarin antibiotic is a complicated multi-step procedure63. 

 

Our engineering strategy involved genes from four different organisms: i) the Gram-

negative organism E. coli as the source of ubiC, which encodes an enzyme of an anabolic 

pathway; ii) the Gram-positive organism Corynebactericum cyclohexanicum as the source 

of pobA, encoding an enzyme of a catabolic pathway; iii) Streptomyces 

roseochromogenes as the source of the biosynthetic gene cluster of clorobiocin, which 

was modified by deletion of cloQ; and iv) Streptomyces coelicolor M512 as host for 

heterologous expression. S. coelicolor M51238 is a derivate of the strain S. coelicolor A3(2). 

Strain M512 does not produce three of the genuine antibiotics of strain A3(2), i.e. 

methylenomycin, actinorhodin and undecylprodigiosine, which facilitates the detection and 

isolation of heterologously produced compounds. The modified clorobiocin gene cluster 

was stably integrated into the chromosome of this organism, and the synthetic operon 

containing ubiC and pobA under control of the strong constitutive ermE* promoter was 

expressed from a replicative plasmid. This strategy resulted in the efficient production of 

the desired compound novclobiocin 401, a clorobiocin derivative in which the genuine Ring 

A is replaced with a 3,4-DHBA moiety.  

The yield of novclobiocin 401 exceeded that of clorobiocin reported for both the wild type 

and for a heterologous producer strain31. Even without extensive optimization experiments, 

novclobiocin 401 represented a major compound in the culture extract, what facilitated the 

preparative isolation of this compound. The production of novclobiocin 401 did not result in 
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any impairment of growth of the heterologous producer strain. Apparently, both the 

diversion of chorismate for the production of 3,4-DHBA and the accumulation of the potent 

gyrase inhibitor novclobiocin 401 were tolerated well. Self-resistance of the heterologous 

producer strain was expected, since the clorobiocin gene cluster, contained in clo-SA2, 

carries an aminocoumarin resistance gene31.  

In vitro investigation of the inhibitory effect of this compound on the DNA gyrase of E. coli 

and S. aureus showed no change of activity in comparison to the parent compound 

clorobiocin. This confirms that the structure of Ring A is of little importance for the 

interaction of aminocoumarin antibiotics with their principal target, and can be modified to 

introduce desirable motifs into the molecule. It should be noted that the IC50 of 

novclobiocin 401 against the gyrase of E. coli and Staphylococcus aureus is two to three 

orders of magnitude lower than that of modern fluoroquinolones113, confirming the strong 

potency of aminocoumarins.  

Novclobiocin 401, containing a catechol motif, showed higher antibacterial activity than its 

parent compound clorobiocin against E. coli mutants defective in the TolC-dependent 

efflux pump. When tonB was additionally deleted, the activity of novclobiocin 401 was 

reduced eightfold (as calculated from the MIC values), while the activity of clorobiocin 

remained unchanged. TonB supplies the energy for the catechol siderophore transporters 

Cir, Fiu and FepA, and therefore this result strongly suggests that these transporters are 

involved in the active import of novclobiocin 401.  

Previous experiments showed that especially Cir and Fiu have a broad substrate 

specificity and can import catechol compounds of different structures50. Uptake of drug-

siderophore conjugates by Cir and Fiu has been demonstrated previously, like for 

cephalosporin-catechol conjugates50, 79. However, in these examples the catechol moiety 

conjugated to the antibiotic added considerably to the molecular weight of the drug, and 

even the size of the catechol moiety often exceeded the size of the antibiotic moiety. In the 

present study, a pre-existing moiety (i.e. Ring A) of the antibiotic was replaced by a 

catechol moiety, and the molecular weight of the new catechol compound (645 Da) was 

lower than that of the parent compound clorobiocin (697 Da).  

Though novclobiocin 401 was transported into E. coli cells under involvement of TonB-

dependent transporters, it did not show higher activity than clorobiocin against wild-type 

and ΔentC mutants (with production of the natural siderophore enterobactin abolished) of 

E. coli. The MIC values of clorobiocin and novclobiocin 401 against E. coli ΔentC mutants 

were 23 and 95 μg/ml, respectively. Under identical conditions, the MICs against 

ΔentC/ΔtolC double mutants were 12 and 6 μg/ml, respectively. These results suggest that 
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novclobiocin 401 is more rapidly exported than clorobiocin by TolC-dependent drug efflux 

pumps. The introduction of a catechol moiety into the clorobiocin molecule therefore had 

the desired effect to facilitate active import by catechol siderophore transporters, but also 

the undesired effect to accelerate TolC-dependent efflux. Future attempts to improve the 

activity of aminocoumarins against Gram-negative organism may therefore aim at a 

reduced efflux, either by modification of the drug or by combination with an efflux pump 

inhibitor, and at a further improvement of active import, e.g. by inclusion of a 2,3-DHBA 

moiety, which is the catechol moiety present in enterobactin.  

 

The generation of a clorobiocin derivative with a 2,3-DHBA moiety by combinatorial 

biosynthesis proved more complicated because of the requirement of its activation by 

adenylation prior to the acceptance by the aminocoumarin acyl ligase. We identified a 

suitable 2,3-DHBA AMP ligase from B. subtilis75, but it failed to be functional in S. 

coelicolor M512. Further attempts to produce 2,3-DHBA in the same host by introducing a 

plasmid containing the necessary genes from the griseobactin gene cluster of 

Streptomcyes griseus89 were also unsuccessful, probably because of inefficient expression 

of the genes from this construct. 

We only obtained the desired 2,3-DHBA clorobiocin derivate when we fed 2,3-DHBA to the 

heterologous host S. coelicolor M1154 (improved heterologous expression strain derived 

from S. coelicolor45) containing clo-SA2 and the griseobactin-derived construct. We think 

that 2,3-DHBA, fed to the culture medium, was activated by an AMP-ligase endogenous in 

M1154, probably encoded by the first gene in the hypothetical coelibactin gene cluster11, 

Sco7681. Although we have now obtained the desired compound, it is still to be tested in 

vitro and in vivo to see whether it is comparable imported as the 3,4-DHBA analogue 

novclobiocin 401. 

 

The major focus of this work was an improved influx of aminocoumarins into Gram-

negative bacteria. We have demonstrated that, at least in E. coli, it is the multidrug efflux-

pump, dependent on the membrane channel TolC, which is responsible for the high level 

of resistance. The previously reported high sensitivity of novobiocin to E. coli mutants, 

affected in cardiolipin metabolism116, 127, could well be due to an impaired function of the 

efflux pump in membranes diminished of that phospholipid. The increased activity shown 

by novclobiocin 401 against a TolC deficient E. coli strain is promising, and it must be 

noted that novclobiocin 401 (nor the 2,3-DHBA analogue) has not been tested in vivo 

against other bacteria yet. 
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All together, we are confident that the work presented in this thesis comprises an important 

advance in combinatorial biosynthesis of antibiotics and of aminocoumarins in particular 

towards an improvement of their bioactivity.  

 

 

IV.2. Inhibition of DNA gyrase and topoisomerase IV of 

Staphylococcus aureus and Escherichia coli by aminocoumarin 

antibiotics 

 

One part of the present work aimed at elucidating the contribution of different 

aminocoumarin structural elements to their inhibitory activity against DNA gyrase and 

topoisomerase IV of Gram-positive and Gram-negative bacteria, what would provide us 

with more knowledge for further rational improvement of this class of antibiotics.  

We established an optimized protocol for supercoiling and decatenation assays, and we 

determined the inhibitory activity of four naturally occurring aminocoumarin antibiotics and 

of several novclobiocins, compounds derived from clorobiocin and novobiocin, against 

DNA gyrase and topoisomerase IV from S. aureus and E. coli. 

In the supercoiling assay, S. aureus DNA gyrase requires the presence of high 

concentrations of K-Glu, whereas E. coli DNA gyrase had so far been assayed in the 

absence of this salt. For the first time, our study shows that the sensitivity of E. coli DNA 

gyrase towards the inhibition by aminocoumarins is considerably increased by K-Glu. 

Therefore, the concentration of K-Glu used in the assays needs to be considered when 

comparing the effect of inhibitors on E. coli and S. aureus DNA gyrase. The precise role of 

K-Glu in the catalytic mechanism of topoisomerases is unclear. Hiasa and co-workers52, 

provided evidence that K-Glu is not required for the binding of DNA to the catalytic domain 

of DNA gyrase, but rather for its binding to the C-terminal domain of GyrA and the resulting 

wrapping of DNA which enables DNA gyrase to catalyse the supercoiling reaction.  

Another theory is that DNA gyrase requires potassium for activity, and it has been shown 

that it stabilizes the GyrB subunit108. DNA Gyrase belongs to the GHKL family of enzymes 

(represented by gyrase, Hsp90, certain protein kinases, and the DNA mismatch protein 

MutL), and crystallographic and biochemical studies have revealed a distinct binding site 

for monovalent cations like K+ on these enzymes, which is important for catalytic activity56. 

This may explain the difference of the effects of K+ and Na+ on the type II topoisomerases. 

Assays with Na-Glu instead K-Glu showed no stimulatory effect for S. aureus DNA gyrase, 
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and we even found an inhibitory effect over E. coli DNA gyrase. Since this enzyme does 

nor require K-Glu, the most feasible explanation is that the sodium added with Na-Glu out-

competes the potassium present in the reaction buffer as 24 mM KCl; this would explain 

the weak activity observed when adding only 100 mM Na-Glu, concentration at which a 

proportion of DNA gyrase could still be reached by potassium; and it would also explain 

the lack of activity of E. coli enzyme with increasing concentration of NaCl. The results 

obtained with competition assays between Na-Glu and KCl or K-Glu did not support this 

hypothesis and more experiments are required to give further insights into DNA gyrase 

requirements of potassium and glutamate. 

Assays of inhibitory activity of aminocoumarin antibiotics reinforced the previous 

knowledge and provided further insights about the relevance of the different substituents 

on antibiotic activity. Out of the four naturally occurring aminocoumarin antibiotics, 

clorobiocin and coumermycin A1 had the highest inhibitory activity against all the enzymes 

tested, and clorobiocin had the lowest IC50 toward topoisomerase IV of both E. coli and S. 

aureus. Manipulation of substituents35 at position 3``-OH of noviose confirmed that the 

presence of MePC is essential for high inhibition of both DNA gyrase and topoisomerase 

IV. Furthermore, elimination of the methyl group at position 8`` of noviose rendered the 

compound (novclobiocin 105) completely inactive against all the enzymes tested, which 

indicate that hydrophobic contacts between this methyl group and a hydrophobic path of 

the enzymes play a prominent role44, 64. One of the most exciting results is the obtaining of 

clorobiocin and novobiocin derivates with stronger antibiotic activity than the natural 

compounds. In this way, modification of the Ring A, attached to the amino group of the 

coumarin ring, provided higher activity against DNA gyrase, particularly against E. coli 

enzyme, although with lost of activity against topoisomerase IV from both microorganisms. 

Therefore, our experiments suggest that the most active compounds against S. aureus 

and E. coli type II topoisomerases contain an 8``-CH3 group, a MePC moiety at position 3`` 

and an 8`-CH3 group. 

These biochemical data suggest that in vitro DNA gyrase is the primary target of all 

investigated aminocoumarin antibiotics. Fujimoto-Nakamura and co-workers42 have shown 

that cultivation of S. aureus in the presence of novobiocin results not only in the selection 

of mutants with altered DNA gyrase, but also in mutations of topoisomerase IV as a 

second step in resistance development. Therefore, topoisomerase IV may not be 

completely irrelevant as target of aminocoumarins in S. aureus, at least at higher antibiotic 

concentrations. 
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Another group of topoisomerases inhibitors are the synthetically generated 

fluoroquinolones, which interact with the GyrA and ParC subunits of DNA gyrase and 

topoisomerase IV respectively. Resistance against the fluoroquinolones is rapidly 

emerging, usually by mutations near the active site tyrosines of GyrA or ParC29. Agents 

that target type II topoisomerases in a different way than fluoroquinolones would offer a 

possibility to overcome this resistance while still exploiting the same validated target. The 

combination of fluoroquinolones with aminocoumarins, which are highly potent inhibitors of 

the GyrB and ParE subunits, may offer a strategy to provide effective antibacterial therapy 

with reduced risk of resistance development. In vitro studies have shown that S. aureus 

mutants that are simultaneously resistant to both fluoroquinolones and aminocoumarins 

arise only at very low frequency and might therefore not be selected if those agents were 

used as combination therapy117. These considerations may warrant the development and 

evaluation of new aminocoumarin antibiotics. The assay methods developed here can be 

useful in such approach. 
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