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Abstract

In this thesis measurements of electronic transport through quantum point-contacts (QPCs)
and quantum dots (QDs) defined in GaAs-AlGaAs heterostructures are presented. The nanos-
tructures are fabricated using electron beam lithography and the measurements are performed
in He3/He4 dilution refrigerator with a base temperature of approximately 60 mK.

The quantization of differential conductance in units of 2e2/h is observed in several quan-
tum point-contacts. Furthermore, additional structure which may be explained in terms of the
Coulomb blockade oscillations of a single quantum dot appears in the differential conductance
of the QPC. This is interpreted as the accidental coupling of the quantum point-contact to
an unexpected quantum dot. This unexpected dot is presumably located exactly underneath
one of the metallic gates of the point-contact and results from either the inhomogeneous two-
dimensional electron gas beneath or from the inhomogeneous vertical depletion of the gate. With
strong coupling between the unexpected dot and reservoirs, the enhancement of conductance
that results from the Kondo resonance in the density of states at the Fermi level of the reservoirs
occurs, and a zero-bias anomaly is observed in the nonlinear measurements. This quantum dot
is symmetrically coupled to the leads.

Electron transport measurements are also performed in single quantum dots in both the weak
and strong coupling regimes. For weak tunnel coupling, clear patterns of Coulomb blockade
diamonds are obtained and the capacitance parameters of the system are extracted from the
pattern geometry. The extracted charging energy is in good agreement with the expectation
for the size of the quantum dot structure defined by lithography. For strong tunnel coupling,
an enhanced conductance is observed at a non-zero bias. This unexpected Kondo behaviour
has been considered in the context of an asymmetrically coupled quantum dot structure. The
Kondo resonance in the density of states is then pinned to the potential level of the reservoir
with stronger coupling.

The characteristic of the coupling of the electron spin in the dot to the reservoirs is defined by
a single parameter, the Kondo temperature, which is extracted from the measured linewidth of
the Kondo conductance peak at base temperature. According to the Anderson impurity model,
the temperature dependence of the Kondo effect may be compared to theoretical predictions
quantitatively. The universal scaling of the Kondo data is studied by comparing the observed
behaviour with the prediction of a numerical renormalization group calculation. The influence of
the magnetic field on the Kondo effect in the dot is investigated and it is found that the Kondo
resonance disappears when the magnetic field reaches about 0.5 Tesla. Furthermore a magnetic
field improves the symmetry of the coupling of the dot to the reservoirs. This improvement may
result from the formation of edge states both in the reservoirs and in the dot under an applied
magnetic field. The coupling of the dot either to the source or to the drain reservoirs is then
symmetric.

Electronic transport through double quantum dots coupled in series is studied in the transition
regime from weak to strong interdot tunnel coupling. The crossover from two isolated dots to
one single large dot can be obtained from the evolution of the stability charging diagram with
increasing interdot coupling. The capacitive parameters for double dots are extracted from the
geometry of the honeycomb pattern in the charging diagram. Not only the influence of interdot
coupling, but also the coupling between dots and reservoirs is investigated for the electron
transport.



Zusammenfassung

In dieser Arbeit werden Messungen zum elektronischen Transport durch Quantenpunktkontak-
te (QPCs) und Quantenpunkte (QDs) in GaAs-AlGaAs-Heterostukturen vorgestellt. Diese Nano-
strukturen werden mittels Elektronenstrahllithographie hergestellt, und in einem He3/He4-Ent-
mischungskryostat mit einer Basistemperatur von etwa 60mK vermessen.

Eine Quantisierung des differentiellen Leitwerts in Einheiten von 2e2/h wird in mehreren
Quantenpunktkontakten beobachtet. Des Weiteren wird im differentiellen Leitwert eines ein-
zelnen Quantenpunktkontakts zusätzliche Strukturen beobachtet, die durch Coulomb-Blockade-
Oszillationen eines Quantenpunktes erklärt werden können. Diese Struktur wird durch zufällige
Kopplung des Quantenpunktkontaktes mit einem unerwarteten Quantenpunkt gedeutet. Der
Quantenpunkt liegt vermutlich in unmittelbarer Nähe zu den metallischen Gates des Punkt-
kontakts und entsteht entweder durch die Inhomogenität des zwei-dimensionalen Elektronen-
gases oder die inhomogene Verarmung unterhalb des Gates. Bei starker Kopplung zwischen
Quantenpunkt und den Reservoiren wird eine Erhöhung des Leitwerts beobachtet, die in einer
Kondoresonanz der Zustandsdichte bei der Fermienergie der Reservoire begründet liegt. Es wird
dabei eine so genannte “Zero-Bias”-Anomalie in den nichtlinearen Messungen beobachtet. Dieser
Quantenpunkt koppelt symmetrisch an die beiden Reservoire.

Elektronische Transportmessungen werden auch für einzelne Quantenpunkte im Bereich schwa-
cher und starker Kopplung durchgeführt. Bei schwacher Tunnel-Kopplung werden die für die
Coulomb-Blockade charakteristischen Rautenstrukturen beobachtet, die eine Bestimmung der
im System vorliegenden Kapazitäten ermöglichen. Die dadurch bestimmte Ladeenergie stimmt
gut mit dem aufgrund der Lithographie erwarteten Wert überein, der durch die Abmessun-
gen des Quantenpunkts gegeben ist. Bei starker Tunnel-Kopplung wird ein erhöhter Leitwert
bei endlicher Source-Drain-Spannung beobachtet. Dieses unerwartetes Kondoverhalten wird im
Rahmen einer asymmetrischen Kopplung des Quantenpunkts betrachtet. In diesem Fall wird
die Kondoresonanz der Zustandsdichte bei der Fermienergie des Reservoirs mit der stärkeren
Kopplung zum Quantenpunkt gefunden.

Die Kopplung des Elektronenspin-Zustands im Quantenpunkt mit den Reservoiren wird durch
einen einzigen Parameter, gegeben durch die Kondo-Temperatur, charakterisiert, die aus der Li-
nienbreite der Kondoresonanz bei Basistemperatur bestimmt wird. Nach dem Anderson-Störstel-
len-Modell skaliert die Temperaturabhängigkeit des Kondo-Effekts mit der Kondo-Temperatur
und ermöglicht daher einen quantitativen Vergleich mit den theoretischen Vorhersagen. In die-
ser Arbeit wird die universelle Skalierung des Kondo-Effekts durch den Vergleich der gemesse-
nen Daten mit den Ergebnissen einer Berechnung auf Grundlage der Renormierungs-Gruppen-
Theorie verglichen. Der Einfluss eines Magnetfeldes auf den Kondo-Effekt in Quantenpunkten
wird untersucht, und das Verschwinden der Kondoresonanz bei Feldstärken um 0,5 Tesla be-
obachtet. Des Weiteren bewirkt das Magentfeld eine Verbesserung der Symmetrie der Ankopp-
lung des Quantenpunkts an die Reservoire. Vermutlich basiert dies auf der Entstehung von
Randzuständen im Quantenpunkt und in den Reservoiren. Die resultierende Ankopplung des
Quantenpunkts sowohl zum Source- als auch zum Drain-Reservoir ist dann symmetrisch.

Weiter wird der elektronische Transport durch zwei in Serie gekoppelte Quantenpunkte im
Übergangsbereich zwischen schwacher und starker Kopplung untersucht. Der Übergang von
zwei getrennten Quantenpunkten bis zu einem einzelnen großen Quantenpunkt kann durch
die Entwicklung des Ladediagramms mit zunehmender Kopplung beobachtet werden. Aus der
Honigwabenstruktur des Ladediagramms werden die Kapazitäten der beiden QD berechnet.
Nicht nur die Kopplung der beiden Punkte, sondern auch die Kopplung der einzelnen Quanten-
punkte mit dem entsprechenden Reservoir wird systematisch untersucht.
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1. Introduction

Semiconductor quantum dots have been studied for more than 20 years, both experimentally
and theoretically. The mesoscopic physics of such nanostructures has become increasingly more
accessible due to two major technological developments which are the advances in nanometer
scale fabrication and the attainment of very low temperatures in dilution refrigerators. In order
to study quantum dots, there are many designs of such artificial atoms. The design structure
that we are interested in and has been used in this thesis is the lateral quantum dot which is
formed by depleting a two-dimensional system in a GaAs/AlGaAs hetrostructure via metallic
split gates. This gives us opportunities to study the physics of electrons in the dot by tuning
the coupling of the dot to the electron reservoirs.

An important physical effect in quantum dots is the quantization of charge in the dots. This
leads to Coulomb gaps in the energy spectrum of the islands and to a blockade of transport.
This behaviour is known as the Coulomb blockade. The work we have done in this thesis is
related to the investigation of confined electron systems - quantum point contacts and quantum
dots - in the regime where the coupling plays an important role for both classical and quantum
mechanical effects.

A quantum dot may be regarded as a small puddle of electrons. Electrons can enter and exit
the dot through narrow constrictions which are connected to large electron reservoirs. These
constrictions are known as quantum point contacts (QPCs). The theoretical background of the
effects involving to electron transport through these structures is described in Chapter 2.

The fabrication of our samples by optical lithography and the different designs of the ge-
ometry of nanostructures with electron beam lithographic techniques is explained in Chapter
3. We describe how to study the effects in such quantum systems in Chapter 4. The sample
measurement techniques at low temperatures, linear and nonlinear, and the cryogenic physics
bringing the temperature of the system down to ∼ 60 mK are included in this chapter. The
two-dimensional electron gas is also characterized by the quantum Hall effect in order to obtain
the properties of electron system which is used for studying the system of QPCs or quantum
dots.

Because the tunable quantum dots are formed and coupled with the reservoirs by tuning the
gate voltage of QPCs, the characterization of these QPCs is therefore necessary. When a QPC
is squeezed by tuning the gate voltage, the conductance of a QPC is quantized in units of 2e2/h
which is a fundamental characteristic of quantum point contacts. In our work, Coulomb blockade
oscillations in a single QPC have been observed. This surprising and interesting behaviour
has been investigated and compared with more conventional quantum dots. Our quantum
point contacts are characterized and studied in linear regime, and the quantum behaviour in
conductance, quantization and oscillations, are discussed in Chapter 5.

In order to study the Coulomb blockade oscillations of electron transport in our quantum
dot systems, the differential conductance of the dot with weak tunnel coupling to the electron
reservoirs has been carefully measured. It is also interesting to understand the correlation
between the electronic temperature and bath temperature; in this context experiments of the
temperature dependence of Coulomb oscillations has been performed. We are also interested in
the transport in the nonlinear regime where the DC-bias is applied to the electron reservoirs.
In this regime, the transport via excited states in the dot is expected to be observed. These
characterizations of single quantum dots with weak coupling in linear and nonlinear regime are

1



1. Introduction

described in Chapter 6.
Increasing the tunnel coupling between the quantum dot and the electron reservoirs to the

strong coupling regime, the Kondo physics can be observed and studied in the dot system. A
resonance in the differential conductance at zero bias source-drain voltage within the Coulomb
blockade region is shown and is the so called zero-bias anomaly which is the signature of the
Kondo effect in the dot system. Our aim of this study is to investigate the tunable Kondo effect,
which is affected by the influence of the coupling symmetry of our quantum dot, and to compare
our Kondo experimental data with the Anderson impurity model which is a simple model of a
localized electron spin coupled to the reservoir of electrons. One of the unexpected places the
Kondo effect seems to occur is in the quantum point contact device showing dot characteristics.
The Kondo effect is thus not only studied in quantum dots, but also in the single QPC. The
experiments described in Chapter 7 address the Kondo effect, first in a quantum dot and second
in a quantum point contact. The temperature dependence of the Kondo resonance is investigated
because we are motivated to study the Kondo physics of our quantum dot system with various
temperatures and compare the evolution of Kondo peak with the theoretical prediction. To study
the influence of a magnetic field on the Kondo resonance peak, experiments of the magnetic field
dependence were performed and are also presented in this chapter.

The next step after studying individual quantum dots is to study systems of more than one
dot. Where single quantum dots are regarded as artificial atoms, two quantum dots can be
coupled to form an artificial molecule. Depending on the strength of the interdot coupling,
two dots can form ionic-like (weak tunnel coupling) or covalent-like (strong tunnel coupling).
With weak interdot coupling, the electrons are localized on the individual dot, whereas they
are delocalized over two dots with strong interdot coupling. In this thesis we concentrate on
electron transport through double quantum dots coupled in series. Not only the influence of
interdot coupling, but also the coupling between dots and the reservoirs is investigated in the
electron transport. The electron transport in series double quantum dot systems for various
interdot coupling regimes is investigated and discussed in Chapter 8.
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2. Theoretical Background

2.1. Mesoscopic Physics

Small conductors or semiconductor with dimensions that are intermediate between the micro-
scopic and the macroscopic are called mesoscopic. When the size or dimension of the material is
reduced from macroscopic size to a very small size, the properties of material are continuously
changed [1, 2]. However when the size drops in the order of nanometer, dramatic changes in
properties can occur. If we consider the system confined into a box with side Lx, Ly and Lz

(Lx < Ly < Lz), and assume that there is zero potential energy inside and an infinite potential
outside. Deriving from the one-electron Schrödinger equation, the energy of this system is then
given by

E(nx, ny, nz) =
~
2π2

2m

[

(

nx

Lx

)2

+

(

ny

Ly

)2

+

(

nz

Lz

)2
]

(2.1)

When the dimension of the system is reduced by the partial confinement in a particular direc-
tion, the conduction electrons remain delocalized in the remaining dimensions and distribute
themselves in the levels below the Fermi level in the corresponding potential well along the con-
finement direction [2, 3]. The important length scale for low-dimensional system is the Fermi
wavelength λF = 2π/kF , where kF is the Fermi wave number. At zero temperature, the elec-
trons occupy the states specified by the wave vector k with |k| ≤ kF in the reciprocal space or
k-space. The system can roughly be categorized as follows depending on the relative magnitude
of Lx, Ly, Lz and kF .

3D : λF ≪ Lx, Ly, Lz

quasi-2D : Lx ∼ λF ≪ Ly, Lz

2D : Lx < λF ≪ Ly, Lz

quasi-1D : Lx < Ly ∼ λF ≪ Lz

1D : Lx, Ly < λF ≪ Lz

quasi-0D : Lx, Ly < Lz ∼ λF

0D : Lx, Ly, Lz < λF

Figure 2.1 shows the density of states in energy in system of various dimensions. The density
of states D(E) is the delta function of energy for zero-dimension, D(E) ∝ 1/

√
E, for one-

dimension, is constant for two-dimensions, and increases with increasing energy, D(E) ∝
√
E,

for three-dimensions. In the quasi-dimensional systems, we can see above that there are some
dimensions which are comparable to the Fermi wavelength. For example, Lx < Ly ∼ kF in
a quasi-one-dimensional system (Q1D), while Lx < Ly < kF , or Lx and Ly tend to zero in
one-dimensional sytem (1D). In a Q1D system, there will be a quasi-continuum of states in the
one dimension, but separated and discrete sets of energy levels in the other two dimensions.

2.1.1. Length Scales in Mesoscopic System

At low temperatures the current is mainly carried by the electrons with energies close to the
Fermi energy, EF = ~

2k2F /2m = 2~2π2/mλF . This is the de Broglie wavelength of the electrons
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Figure 2.1.: The density of states D(E) plotted against the energy for various dimensional sys-
tems (3D, 2D, 1D, and 0D) and quasi-dimensional systems (Q2D, Q1D, and Q0D).

at the Fermi edge. Another important length scale is the mean free path. The mean free path
Lm is the distance that an electron travels before they are colliding with the impurities, and
change its initial momentum. The mean free path is given by

Lm = vF τm, (2.2)

where vF is the Fermi velocity and τm is the momentum relaxation time. Both length scales will
be discussed again in more details for the two-dimensional system in next section. The phase
relaxation length or phase coherence length Lφ is another important length scale as well [4]. It
is the distance that an electron travels before its initial phase memory is destroyed by inelastic
scattering events, such as electron-electron scattering and electron-phonon scattering, both of
which depend strongly on temperature. In the diffusive regime, τφ ≫ τm, the phase relaxation
length is given by

Lφ =
√

Dτφ, (2.3)

where D = v2F τm/d is the diffusive coefficient, d is a dimension, and τφ is the phase-relaxation
time determined by inelastic scattering. The scattering of electrons decreases at low tempera-
tures. Then the Lφ increases with decreasing temperature. In the ballistic regime, τφ ∼ τm, we
have Lφ ∼ vF τφ, which is often the case with high-mobility semiconductors.

2.1.2. Two-Dimensional Electron Gas

Many experiments on mesoscopic conductors are based on GaAs-AlGaAs heterojunctions as
shown in Fig. 2.2(a). A thin two-dimension electron gas (2DEG) is formed at the interface
between GaAs and AlGaAs. We can use this heterostructure to fabricate a Hallbar sample, which
is the base structure for supporting the additional nanostructure, for example, the quantum point
contacts, the quantum dot system, etc. The AlGaAs has a higher energy gap than GaAs and is
doped to be n-type. In this case the AlGaAs is doped with Si which can give excess electrons
to the material if it replaces Al or Ga in the lattice.

When the materials are joined together, the electrons transfer from n-doped AlGaAs leaving
behind positively charged donors. This space charge gives rise to an electrostatic potential that
causes the conduction band bending as shown in Fig. 2.2(b), and the electron density (ns) is
sharply peaked near the GaAa-AlGaAs interface forming a thin conducting layer of 2DEG. In
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Figure 2.2.: (a) Structure of GaAs-AlGaAs heterostructure. (b) The conduction band and elec-
tron density profile in a direction perpendicular to wafer surface.
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this figure we set the Fermi energy at the zero level. In equilibrium the Fermi level is always
constant. The energy states in the quantum well below the Fermi level are all occupied by
electrons. Therefore the electrons are trapped in the well at the interface. For the thin layer of
2DEG, the electrons are confined in the direction perpendicular to the wafer surface, but still
able to move freely in the plane parallel to the wafer surface.

The GaAs-AlGaAs heterostructure is fabricated by Molecular Beam Epitaxy (MBE). In our
work, we use a heterostructure from the Cavendish laboratory Cambridge for the sample prepa-
ration. For AlGaAs layer the ratio between Al and Ga can be defined by x = [Al]/([Al] + [Ga]),
and x = 0.33 for the heterostructure we use. The 2DEG is formed at 90 nm depth and is around
10 nm thick. The cap layer of GaAs protects the material from oxidation. The layer of n-doped
AlGaAs provides a quadratic solution of the Poisson equation for the potential, and therefore
a curvature as shown in Fig. 2.2(b), which is generated from the 1D Poisson/Schroedinger: A
Band Diagram Calculator program of G. Snider [5]. There are heterojunction steps at the depth
of 90 nm and within the cap layer, otherwise the EC is linear within the cap and spacer GaAs
layer. The heterojunction may also need a superlattice buffer layer of GaAs/AlGaAs in order
to smooth out the short-length roughness on the surface of a substrate [1].

At low temperature the mobility provides a direct measure of the momentum relaxation time
as limited by impurities and defects. The mobility for 2DEG can be defined by

µ ≡ |e|τm
m

, (2.4)

where τm is the momentum relaxation time, m is the effective mass, and e is the electron
charge. We can find the mobility by measuring the Hall effect, which is a basic characterization
measurement for semiconducting thin films. In a 2DEG the mobility found can be over 103

times of that in bulk semiconductor with the same order of equivalent concentration [4]. The
scattering due to impurities is reduced because of the spatial separation between the donor
atoms in AlGaAs layer and the conduction electrons in the GaAs layer. The undoped-AlGaAs
spacer layer in Fig. 2.2(a) is introduced between the GaAs and the n-doped AlGaAs in order to
increase the separation between the 2DEG in the GaAs and the ionized donors in the AlGaAs.

If we consider the 2DEG that the electrons are confined by some potential in the z-direction
and free to move in xy plane, the wave function with no applied magnetic field can be written
as

Ψ(r) = exp(ikxx) exp(ikyy)φn(z). (2.5)

The φn(z) exponentially decays in the spacer layer where the scattering by ionized donors in the
n-AlGaAs is reduced. The dispersion relation is

E =
~2

2m

(

k2x + k2y
)

+ Ec + εn, (2.6)

where εn is a cut-off energy and n is the index number of the subband which corresponds to
the φn(z) in the z-direction. At low temperature and low carrier concentration, only the lowest
subband with n = 1 is occupied. Hence we can write the Schroedinger equation usually called
the single-band effective mass equation [4, 6] by neglecting the z-dimension and only consider a
two-dimensional system in the x-y plane:

[

(i~∇+ eA)2

2m
+ U(x, y) + Es

]

Ψ(x, y) = EΨ(x, y), (2.7)

where U(x, y) is the potential energy in the x-y plane, A is the vector potential, and Es = Ec+ε1.
Let U(x, y) = 0 and A = 0, The form of the eigenfunction normalized to an area S is

Ψ(x, y) =
1√
S
exp(i(kxx+ kyy)) (2.8)
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2.1. Mesoscopic Physics

and the eigenenergies is given by

E =
~
2

2m

(

k2x + k2y
)

+ Es. (2.9)

We can find the density of states for 2DEG from the calculation of total number of states Ntot(E).
From Eq. 2.9, we determine the k-space for two-dimensional system and can get k2 = k2x + k2y .
Therefore, the states having an energy less than E is contained within a circle of radius k in
k-space. The area occupied by an individual state is given by 4π2/S, while the area enclosed by
the circle is πk2. Consider the spin of electron and k2 = 2m(E −Es)/~

2 from Eq. 2.9, thus the
total number of states can be derived by

Ntot(E) = 2
πk2

4π2/S
=

k2

2π
S =

mS

π~2
(E −Es). (2.10)

Therefore the density of states per unit area per unit energy is given by

D(E) =
1

S

d

dE
Ntot(E) =

m

π~2
Θ(E − Es), (2.11)

where Θ(E − Es) is the step function. Then the density of states for 2DEG is constant for all
energies exceeding the subband energy Es. At low temperature, the equilibrium electron density
ns is given by

ns =
m

π~2
(EF − Es), (2.12)

The conductance is determined by electrons with energy close to the Fermi energy. The Fermi
wave number kF is then given by

kF =
1

~

√

2m(EF −Es). (2.13)

By using Eq. 2.12, the Fermi wave number can be expressed as

kF =
√
2πns. (2.14)

Therefore the Fermi wavelength decreases as the electron density increase and is given by

λF =

√

2π

ns
. (2.15)

Thus we can obtain the Fermi wavelength from the electron density, which is determined by the
measurement of the Quantum Hall Effect (QHE). The Fermi wavelength in 2DEG that we use
to be the substrate for fabricating the sample is typically of the order of 50 nm. From Eq. 2.14,
the Fermi velocity is given by

vF =
~kF
m

=
~

m

√
2πns. (2.16)

The mean free path can be calculate from Eq. 2.2 and Eq. 2.4, and then obtained as

Lm =
~µ

|e|
√
2πns. (2.17)

The characteristic parameters in the 2DEG of our work will be discussed below in the discussion
of the quantum Hall effect (QHE).
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2. Theoretical Background

2.1.3. Quantum Point Contact

A quantum point contact consists of a short, narrow constriction connecting two conducting
reservoirs, which is the two-dimensional electron system. To fabricate the quantum point con-
tact, the dimension of devices must be comparable to the mean free path of the electrons. The
lateral extent of the contact perpendicular to the direction of the current (W ) must be of the
order of the Fermi wavelength λF and the length of contact (L) should be shorter than the elec-
tronic mean free path lm. Therefore the electron transport through the quantum point contact
is the ballistic.

Figure 2.3 shows a metal electrode gate fabricated on the top of a GaAs-AlGaAs heterojunc-
tion. When the gate is biased with a negative voltage to deplete the electron gas beneath them,
the 2DEG is squeezed and forms a one-dimensional narrow constriction. The electron transport
can be investigated by measuring the current flowing through the point contact from one reser-
voir to another. The conductance decreases when the width W is reduced by increasing the
negative voltage on the gates. The measured conductance does not decrease gradually but there
is a sequence of steps in the conductance, as shown in Fig. 2.4. The conductance is quantized in
units of the natural constant 2e2/h, where e is the absolute value of the electric charge and h is
the Planck constant. This effect was discovered in 1988 by D. A. Wharam et al. in Cambridge
[7] and B. J. van Wees et al. from the Delft-Philips group [8].

AlGaAs

GaAs

2DEG

Gate Depleted region-Vg

-Vg

1D constriction W

L

I

x

y

Figure 2.3.: Schematic of a quantum point contact, defined in a high-mobility 2DEG at the
interface of a GaAs-AlGaAs heterojunction. The point contact is formed when a
negative voltage is applied to the gate electrodes on the top of the AlGaAs layer.
The transport measurement can be performed by measuring the current flowing
through the 1D constriction from a reservoir in one side to another.

Assuming that the area of 2DEG at the constriction has a transverse parabolic confining
potential U(y) = (1/2)mω2

0y
2 and with no applied magnetic field, the motion of electrons can

be described by the effective mass equation in Eq. 2.7, which is rewritten as

[

p2x + p2y
2m

+
1

2
mω2

0y
2 + Es

]

Ψ(x, y) = EΨ(x, y). (2.18)

The solution to equation above can be expressed in the form of plane waves in the x-direction
as

Ψ(x, y) =
1√
L
exp(ikx)χ(y), (2.19)

where k is the wavenumber in the x-direction referred to px = ~k and the transverse function
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Figure 2.4.: The differential conductance quantization of a quantum point contact. The con-
ductance is quantized in steps of 2e2/h. This shown conductance is the measured
result from one of our QPCs.

χ(y) in the y-direction satisfies the equation
[

(~2k2 + p2y)

2m
+

1

2
mω2

0y
2 + Es

]

χ(y) = Eχ(y). (2.20)

Therefore the eigenenergies are given by

E(n, k) =
~
2k2

2m
+ (n+

1

2
)~ω0 + Es, (2.21)

where n = 0, 1, 2, ... The dispersion relation is drawn in Fig 2.5. The ω0 corresponds to the
transverse confinement. Thus the spacing between two subbands ~ω0 increases when the con-
finement is tighter. These subbands are also called transverse modes in the one-dimensional
system.

k

E(k)

n = 0   1   2   ...

EF

Figure 2.5.: Dispersion relation, E(k) vs. k for the subbands arising from transverse confinement
in zero magnetic field. Different subbands are indexed by n.

Figure 2.6 shows the dispersion relation for the narrow conductor with applied voltage at the
contacts as shown in the inset. The conductor with width W and length L is connected to the
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 L

 R

EF

 R L

L

W

I !

I "

I

Figure 2.6.: Dispersion relations for the difference subbands at the narrow conductor. The shade
area on the subbands in the +k states refers to the states carrying the net current
through the conductor. Inset: a conductor is sandwiched between two contacts
connected to the reservoirs which the bias is applied.

left and right contacts with applied voltage (µL − µR)/e. If the mean free path Lm is smaller
than the dimensions of the conductor (Lm < W,L), the electron transport is in the diffusive
regime. In the quasi-ballistic transport regime, it can be obtained by W < Lm < L. When
the dimensions of the conductance is smaller than the mean free path W,L < Lm, the ballistic
transport regime is obtained and the conductor is also called the ballistic conductor. This means
clearly that the ballistic electron transport can be found in the point contact.

From the dispersion relation in Fig.2.6, the +k states are occupied only by electrons originated
in the left contact while the −k states are occupied only by electrons originated in the right
contact. At low temperature, the current is carried by the +k states between µL and µR, as
shown by the shaded area. Let us define that N(E) is the number of transverse modes at an
energy E of the one-dimensional system: N(E) ≡ ∑

Θ(E−En), where En is the cut off energy
at k = 0. The net current can be given by [4, 6]

I =
2e

h

∫ +∞

−∞

[fL(E)− fR(E)]N(E)dE, (2.22)

where fL(E) = f(E,µL) and fR(E) = f(E,µR). It is the Fermi-Dirac distribution function of
the left and right reservoir respectively. In the linear regime the applied voltage difference Vsd

is very small, µL − µR = eVsd ≪ kBT . We can expand the difference in Fermi functions at the
lowest order in a Taylor series [6]:

fL(E)− fR(E) ≈ (µL − µR)
∂f(E,µ)

∂µ
= −eVsd

∂f(E,µ)

∂E
, (2.23)

where µ is the Fermi level at equilibrium. Assuming that the number of occupied modes N is
constant over the energy range µR < E < µL. The N is also related to the Fermi wavelength
λF of the 2DEG and the width W of the constriction via N ≈ Int(2W/λF ) [4]. The current
can be obtained as

I =
2e2

h
N

(µL − µR)

e
=

2e2

h
NVsd. (2.24)

Therefor the conductance for the ballistic electron transport is given by

G =
2e2

h
N, (2.25)
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2.1. Mesoscopic Physics

where N is the number of occupied modes. It can be seen that the conductance does not
decrease linearly with the width W . It depends on the number of occupied transverse modes in
the conductor and decreases in discrete steps. This is called the quantization of the conductance,
as seen in Fig. 2.4. Increasing the negative voltage on the gate makes the channel narrower and
decreases the number of energy subbands or transverse modes below the Fermi energy and hence
reduces the number of modes that are free for the electrons to occupy. The separation between
each plateau of the conductance in Fig. 2.4 is constant of 2e2/h.

At zero temperature, the Fermi-Dirac distribution function in Eq. 2.22 can be determined
and rewritten in the form of step function as fL(E) = Θ(µL − E) and fR = Θ(µR − E). In the
energy range µR < E < µL, we can determine the current and then obtain

I =
2e

h
N

∫ µL

µR

[fL(E)− fR(E)]dE

=
2e

h
N

∫ µL

µR

[Θ(µL − E)−Θ(µR − E)]dE

=
2e

h
N(µL − µR). (2.26)

Hence the conductance is obtained and equal to (2e2/h)N as found in Eq. 2.25. The relationship
of the quantization of the conductance above can also determined and understood by using the
Landauer-Buttiker formalism. First, we consider that the current carried per transverse mode
is

I = e

∫

D(E)v(E)T (E)dE, (2.27)

whereD(E) is the density of state, v(E) is the velocity of the electrons, and T is the transmission
function that represents the transmission probability of an electron transferring from one end
to another end of the conductor. In one-dimensional system, D(E) = (1/π)dk/dE and v(E) =
(1/~)dE/dk, then the current can be rewritten in the same electrochemical potential range as
above as

I = e

∫ µL

µR

T (E)
1

π

dk

dE

1

~

dE

dk
dE =

2e

h

∫ µL

µR

T (E)dE. (2.28)

For the linear regime and zero temperature, the total current can be expressed as

Itot =
N
∑

n=1

2e

h

∫ µL

µR

Tn(E)dE, (2.29)

where N is the number of occupied subbands. The conductance can be given by

G =
e

µL − µR

N
∑

n=1

2e

h

∫ µL

µR

Tn(E)dE. (2.30)

According to Landauer-Buettiker formalism [1, 6], the transmission is expressed in the term of
transmission coefficient tij that is the transmission amplitude between mode i and j. For the
ballistic conductor, the perfect transmission is determined for every modes and the transmission
probability can be written as Tn = |tnn|2 = 1, and tij = 0 for i 6= j. The Eq. 2.30 can be
rewritten as

G =
2e2

h

1

µL − µR

N
∑

n=1

∫ µL

µR

|tnn|2dE =
2e2

h

µL − µR

µL − µR

N
∑

n=1

|tnn|2

=
2e2

h
N (2.31)
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2. Theoretical Background

The conductance is the same as Eq. 2.25 and quantized in the unit of 2e2/h, as shown in Fig. 2.4.
It also turns out that each energy subband has a resistance of h/2e2 ≈ 12.9 kΩ.

Many interesting effects of quantum point contacts have been studied and investigated widely
for over twenty years. The effect of a finite temperature on the conductance of a quantum
point contact has been determined by the temperature dependence of the Fermi distribution
and the occupation of the states at the Fermi level. For increasing temperature the conductance
quantization of point contacts broadens and disappears at high temperatures. This is because the
electron states of the higher subbands become occupied, and not all states of the low subbands
are fully occupied anymore [9].

The application of a magnetic field leads to the magnetic depopulation of the subbands in the
quantum point contact. The quantization of the conductance in high magnetic field has also been
studied [9]. When a perpendicular magnetic field is applied, the quantization is modified, and
hybrid magneto-electric subbands evolve. This results in a reduction of the number of subbands
within the channel width [7]. The number of conductance plateaus observed in a given gate
voltage range decreases, the plateaus are more pronounced, and the plateaus width measured as
a function of gate voltage increase with increasing magnetic field [9, 10]. The magnetic field can
lift the spin degeneracy of the subbands, and then the additional quantized plateaus in the linear
regime can be observed [11]. The 0.7 structure, 0.7 × 2e2/h, which is an interesting anomaly
structure in conductance quantization evolves to 0.5×2e2/h when magnetic field increases. This
is half of the value that one would normally expect because of the effect of spin splitting [12].

Nonlinear effects have been observed in the quantum point contact devices. In the nonlinear
regime, the finite bias voltage Vsd is applied to the reservoirs, this shifts the electrochemical
potential as µs − µd = eVsd. Additional plateaus can be observed with quantized conductance
G = (n + 1/2)2e2/h. This leads to the broadening between the conductance plateaus at finite
bias and the disappearance of the plateaus when the energy spacing between quantized levels
become comparable with the applied bias voltage. The observed differential conductance for the
lowest conductance plateaus is given by G = β2e2/h and (1−β)2e2/h where β is the fraction of
the potential dropped at the entrance to the ballistic channel of quantum point contact [13]. A
more investigation of the non-linear properties over a wide range of gate voltage where several
subbands are occupied has also been considered under the influence of a perpendicular magnetic
field, the additional conductance plateaus can appear and all plateaus become more pronounced
[14]. The evolution of 0.7 structure along the source-drain voltage direction can also be observed
as a zero-bias anomaly in the nonlinear regime [15, 16].

Quantum point contacts may also be used to define nanostructures of reduced dimensionality.
If we arrange the quantum point contacts in series, electrons are confined in a dot or an island
in the 2DEG at the interface of the heterojunction and can be considered to be a quantum dot.
The characteristics and physics phenomena in quantum dot systems will be discussed in the
next section.

2.2. Electron Transport through Quantum Dots

2.2.1. Coulomb Blockade Oscillations in Quantum Dots

In a typical quantum dot arrangement there are the source and drain contacts and a plunger
gate. The structure is depicted in Fig. 2.7(a) which is coupled to these three terminals. Tun-
neling junctions connect the dot to source and drain while the gate provides an electrostatic or
capacitive coupling and can be use as a gate electrode. The source and drain terminals connect
the dot to macroscopic current and voltage reservoirs. Electron transport can occur with these
two terminals, as indicated by the arrows. If there is no coupling to the source and drain con-
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Figure 2.7.: (a) Schematic of a quantum dot connecting to the source and drain contacted by
the tunnel junctions and to a plunger gate. (b) Circuit diagram in which the tunnel
barriers are represented as a parallel resistance and capacitor. A quantum dot
connects to a gate by capacitance Cg

tacts, then the quantum dot acts as an island for electrons. The number of electrons on the
island is an integer N . Therefore the charge on the island is quantized and equal to −Ne. If
there is tunneling to the source and drain electrodes, the number of electrons N adjusts itself
until the energy of the whole circuit is minimized. For the measurement of electron transport
through quantum dots, many experiments have been performed in samples with lateral quantum
dots which are defined by metallic gates on the 2DEG of a GaAs/AlGaAs heterostructure.

The single quantum dot can be modeled as a circuit diagram shown in Fig. 2.7(b). The
quantum dot is coupled to source and drain through a tunneling barrier represented by a tunnel
resistor Rs(d) and a capacitor Cs(d) connected in parallel. The dot is capacitively coupled to a
gate voltage Vg through a capacitor Cg. The bias voltage Vsd is applied to the source contact
with the drain contact grounded.

A theory of transport through quantum dots that incorporates both single electron charging
and energy level quantization will be presented in this section. Fig. 2.8(a) shows the potential
structure of a quantum dot. The states in the leads are filled up to the electrochemical potentials
µs and µd which are defined via the externally applied source-drain voltage Vsd = (µs − µd)/e.
At zero temperature, the electron transport can be observed when there are electron states on
the dot aligned in the energy window between µs and µd, and the current will be zero when no
states are in the energy window. The number of available states follows from calculating the
electrochemical potential energy µdot(N). By definition, this is the minimum energy for adding
the Nth electron to the dot.

µdot(N) ≡ U(N)− U(N − 1), (2.32)

where U(N) is the total ground state energy for N electrons on the dot at zero temperature.

To be able to calculate U(N) first and explain electronic states and electron transport through
a quantum dot, the model for this system has been introduced and called as Constant-Interaction
(CI) model [17, 18, 19]. The CI model is based on two important assumptions. First, the
quantum levels are calculated independently of the number of electron on the dot. This means
that the discrete single particle energy spectrum is unaffected by any interactions. Second, the
Coulomb interaction of an electron on the dot with all other electrons, in and outside the dot, are
parameterized by a constant total capacitance CΣ which is assumed independent of the number
of electron on the dot. According to Fig. 2.7(b), the total capacitance CΣ = Cs+Cg+Cd consists
of capacitances across the tunnel barriers, Cs and Cd, and a capacitance between the dot and
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2. Theoretical Background

gate, Cg. The voltage for source and drain contact can be defined as Vs and Vd respectively, and
the applied source-drain voltage is then Vsd = Vs − Vd. According to the capacitance model [20]
the total charge on a single dot is the sum of the charges on all of the capacitors connected to
the dot. Therefore the total charge on the dot, Qdot, is

Qdot = Cs(Vdot − Vs) + Cg(Vdot − Vg) + Cd(Vdot − Vd), (2.33)

where Vdot is the voltage defined at the node of the single dot and can be expressed as

Vdot =
1

CΣ
(Qdot + CsVs +CgVg + CdVd) , (2.34)

where CΣ is the total capacitance coupled to the dot. The electrostatic energy of the system,
Eelstat, needed to add N additional electrons to the dot is given by

Eelstat =
1

2
Vdot · CΣVdot

=
1

2CΣ
(Qdot +CsVs + CgVg + CdVd)

2 . (2.35)

Substituting Qdot = −(N −N0)e, we obtain

Eelstat =
1

2CΣ
(−(N −N0)e+ CsVs + CgVg + CdVd)

2 , (2.36)

whereN0 is the number of electrons on the dot when all voltage source is zero, which compensates
the positive background charge originating from donors in the heterostructure [20]. In the linear
regime, Vsd << ∆E/e, e/CΣ, we assume Vs = Vd = 0, hence Eq. 2.36 can be re-written as

Eelstat =
1

2CΣ
((N −N0)e− CgVg)

2 . (2.37)

Including a sum over the quantized energy levels, the total energy of the dot with N additional
electrons is

U(N) =
1

2CΣ
((N −N0)e− CgVg)

2 +
N
∑

i=1

En. (2.38)

According to Eq. 2.32 above, the electrochemical potential µdot(N) for N electrons on the dot
is

µdot(N) = EN +
(N −N0 − 1/2)e2

CΣ
− e

Cg

CΣ
Vg, (2.39)

where N0 is the number of electrons on the dot at zero gate voltage and EN is the topmost
occupied single particle state for an N electron dot. Generally, the electrochemical potential
can also be expressed as the form of the summation of the chemical and the electrostatic potential
as

µdot(N) = µch(N) + eϕN , (2.40)

where µch(N) = EN is the chemical potential and eϕN is the electrostatic potential. According to
Fig. 2.8 the single-particle state EN for theNth electron on the dot depends on the characteristics
of the confinement potential and is measured from the bottom of the conduction band. From
Eq. 2.39 and 2.40 the electrostatic potential eϕN contains two terms, a discrete and a continuous
part, respectively. In the discrete term the integer number of electrons N at a fixed gate voltage
can be changed by one and be the largest integer for which µdot(N) < µs

∼= µd in linear regime.
The continuous term of eϕN is clearly proportional to the gate voltage Vg.

14



2.2. Electron Transport through Quantum Dots

s d 

2e
E

C!

" #

NE

( )dot N 

Ne$

(b)

s d 

2e
E

C!

" #

1NE "

1Ne$ "

(c)

( 1)Ndot "

s d 

2e
E

C!

" #

NE

( )dot N 

sdeV
Ne$

(a)

#E

N N+1

Figure 2.8.: (a) Energy level structure of the quantum dot system in the Coulomb blockade. (b)
and (c) Position of the energy levels that allows an electron to tunnel through the
dot from source to drain with a very small applied bias voltage at the same gate
voltage. There are N and N +1 electrons in the dot in the situation of (b) and (c),
respectively.

When the number of electrons on the dot is changed by one at the fixed gate voltage, the
resulting change in electrochemical potential called the addition energy is given by

µdot(N + 1) − µdot(N) = ∆E +
e2

CΣ
, (2.41)

where ∆E is the energy level spacing and e2/CΣ can be defined as the charging energy. The
gate voltage Vg linearly changes the electrochemical potential in Eq. 2.39 with proportionality
factor Cg/CΣ relating the peak spacing in the gate voltages to the addition energy: ∆µdot(N) =
eα(V N+1

g − V N
g ) where α = Cg/CΣ, and V N

g and V N+1
g are the gate voltage of the Nth and

(N+1)th Coulomb peak, respectively. The addition energy is large for a small total capacitance.
The energy states below µdot(N) are separated by the single particle energy difference ∆E and
the N electrons are localized on the dot as depicted in Fig. 2.8(a). The N +1th electron cannot
tunnel into the dot because the µdot(N + 1) is higher than the potentials of source and drain.
The electron transport is blocked for µdot(N) < µs, µd < µdot(N + 1). This situation is called
the Coulomb blockade.

The addition energy can lead a blockade to the tunneling of electrons on and off the dot.
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Figure 2.9.: Schematic comparison, as s function of gate voltage, between the Coulomb oscilla-
tion in the conductance G, the electrochemical potential µdot, and the electrostatic
potential ϕ

Hence the Coulomb blockade can be removed by changing the gate voltage Vg. Figure 2.8(b)
and (c) shows the electrochemical potential in the dot µdot(N + 1) is aligned within the small
window of source-drain voltage. In this situation an electron can transfer from the source to the
dot since µs > µdot(N + 1). The electrostatic increase eϕ(N + 1)− eϕ(N) = e2/CΣ is seen as a
change in the bottom of the the conduction band. An electron can tunnel off the dot to drain
since µdot(N +1) > µd. This causes the electrochemical potential to drop back to µdot(N). Now
a new electron can tunnel on the dot and repeat the cycle N → (N + 1) → N and the electron
current can be carried from one side of reservoir to another side. This process is known as single
electron tunneling.

By sweeping the gate voltage, we obtain the Coulomb oscillations showing that the conduc-
tance oscillates between zero to non-zero (or Coulomb peak) as shown in Fig. 2.9. When the
conductance is zero, the number of electron N on the dot is fixed. At the maximum of a
Coulomb peak, N changes by one, the electrochemical potential µdot shifts by ∆E+ e2/CΣ, and
the electrostatic potential ϕ shifts by e2/CΣ. In order to derive the separation between Coulomb
oscillation in gate voltage ∆Vg, Eq. 2.39 and the condition µdot(N,Vg) = µdot(N + 1, Vg +∆V )
can be used. Then we get ∆Vg between two neighbouring Coulomb peaks as

∆Vg = Vg(N + 1)− Vg(N)

=
1

eα

(

∆E +
e2

CΣ

)

. (2.42)

In the case that the single-particle energy level spacing vanish ∆E ∼= 0, the classical relationship
between capacitance and voltage for a single electron charge is then

∆Vg =
e

Cg
. (2.43)

Periodic Coulomb oscillations are found in this so-called metallic regime. For non-vanishing
energy spacing, the oscillations will be nearly periodic.
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2.2. Electron Transport through Quantum Dots

The temperature dependence of the line shape of the Coulomb oscillation is now considered.
The tunneling coupling of the dot states to the leads is defined by Γ. In the case of Γ ≪ kBT ,
the conductance resonances will be thermally broadened. Otherwise, in the opposite case of
Γ ≫ kBT , the resonances will be broadened by the tunneling coupling. Therefore, we assume
the temperature is greater than the quantum broadening of the energy levels in the dot due to
the coupling to the leads Γ ≪ kBT . To be able to observe the Coulomb blockade effect, the
temperature must be small compared to the charging energy kBT ≪ e2/CΣ. Thus the size of
the dot must be sufficiently small such that the total capacitance is small to fulfill this condition
in the experiment.

In the high temperature limit, kBT ≫ e2/CΣ, the conductance is independent of the electron
number and the size of the dot. We can completely characterize the conductance with the Ohmic
sum of the barrier conductances

1

G
=

1

G∞

=
1

Gleft
+

1

Gright
. (2.44)

In the classical or metallic Coulomb blockade regime, Γ,∆E ≪ kBT ≪ e2/CΣ, the oscillation
behaviour can be explained by orthodox Coulomb blockade theory. Many levels are excited by
thermal fluctuations. We can consider the calculated temperature dependence of the Coulomb
oscillations as a function of Fermi energy. The Coulomb oscillation peak is more pronounce when
the ratio kBT/(e

2/CΣ) decrease. This means that the oscillation will be visible with decreasing
temperature. For kBT ≪ e2/CΣ, the width of the the peaks are linear in temperature. In this
regime, the peak maximum Gmax is independent of the temperature and equal to half the high
temperature value Gmax = G∞/2, because an electron must first tunnel off the dot before the
next can tunnel on. The probability to tunnel through the dot hence decrease to one half. The
line shape of an individual single conductance peak is given by [17, 19].

G

Gmax
=

δ/kBT

sinh(δ/kBT )
≈ cosh−2

(

δ

2.5kBT

)

, (2.45)

where δ is the measured distance to the center of the conductance peak in units of energy. This
is able to express in gate voltage as δ = eα · |Vg − Vg,cen| in which Vg,cen is the gate voltage at
the center of the peak and α = Cg/CΣ.

In the quantum Coulomb blockade regime, Γ ≪ kBT ≪ ∆E, e2/CΣ, the temperature is small
compared to the single-particle level spacing. An electron can tunnel through only one quantized
energy level in the dot. This can be called the single-level transport regime. The temperature
dependence is calculated with the assumption that ∆E is independent of E and N [19]. The
peak maximum Gmax = G∞ · (∆E/4kBT ) decrease linearly when temperature increases in this
regime. The line shape of the single conductance peak is given by

G

Gmax
= cosh−2

(

δ

2kBT

)

. (2.46)

The peak is thermally broadened and decays exponentially with increasing distance from the
maximum.

Therefore we can use the temperature dependence of a single conductance peak to distinguish
the classical from the quantum regime. On the classical regime, the peak maximum decreases
down to half the Ohmic value with decreasing temperature. On entering the quantum regime, the
peak maximum increase and start to exceed the Ohmic value. Furthermore, we can also consider
the height of different peaks at a single temperature to distinguish classical from quantum
regime. The height of all classical peaks are the same at Gmax = G∞/2. On the other hand, in
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2. Theoretical Background

the quantum regime, the peak height depends sensitively on the coupling between the energy
levels in the dot and in the leads.

For both the classical and quantum Coulomb blockade regimes, the important assumption is
that the quantum dot is weakly coupled to the reservoirs. This assumption implies that the
barrier conductance is small, Gleft,right ≪ e2/h, and the broadening Γ of the energy levels is
much smaller than kBT even at low temperatures. If the barrier conductance increases until
Γ ∼ kBT , this regime is strongly coupling between the dot and the reservoirs. For non-interacting
electrons and equal barriers, the Coulomb peaks in this regime have the Lorentzian line shape
[21, 22]. This means that the electron tunneling through a discrete energy level is approxi-
mately Lorentzian. The measured conductance peak fitting in strongly coupling with thermally
broadened Lorentzian is better than that with thermally broadened function in Eq. 2.46.

2.2.2. Non-linear Transport Regime

The details about relevant energy scales of the dot can be obtained by measuring the nonlinear
dependence of the current on the source-drain voltage Vsd. We can combine the result in the mea-
surement of the differential conductance dI/dVsd as a function of gate voltage and as a function
of the source-drain voltage Vsd in the measurement of the Coulomb blockade diamonds [23]. The
measurement of Coulomb blockade diamonds corresponds to taking many gate voltage swept at
various source-drain voltages. The finite source-drain voltage Vsd is applied to a quantum dot.
The current depends on the number of available states in the bias window eVsd = µs − µd. The
number of available states can be changed by varying Vsd. We first consider the case that the
applied source-drain is less than the energy level spacing eVsd < ∆E. Figure 2.10(a) shows
the schematic of Coulomb diamond which corresponds to alignment of energy levels in the dot
within bias window as shown in Fig. 2.10(b)-(d).

The differential conductance is represented by the gray triangular shaped regions in Fig. 2.10(a).
Black lines indicate alignment between one of the electrochemical potentials in the leads with
the electrochemical potential in the dot. The intersection of these black lines on axis of the gate
voltage is the sequence of the conductance peaks at zero-bias voltage, which is also obtained
in the linear measurement. Between these conductance peaks there are diamond shaped white
regions in which electron transport is completely suppressed as a result of the Coulomb blockade
effect. As long as µs > µdot(N) > µd in Fig. 2.10(b)-(d), the electron can keep tunneling through
the dot from source to drain. Consider the vertical dashed line in Fig. 2.10(a), with increasing
gate voltage, the current increases from zero at point (b), µs = µdot(N,Vg), to a finite value and
then remains constant until point (d), µd = µdot(N,Vg + ∆Vg), where it drops again to zero.
From Eq. 2.39, we can get µd = µdot(N,Vg)− eα∆Vg and the separation between point (b) and
(d) in gate voltage can be calculated

|∆Vg| =
|Vsd|
α

. (2.47)

If source-drain voltage keeps increasing, the boundary line of a Coulomb diamond will intersect,
for example, at the encircled point in Fig. 2.10(a) where µdot(N) = µs and µdot(N + 1) = µd.
From Eq. 2.41, we can obtain

Vsd =
1

e

(

∆E +
e2

CΣ

)

. (2.48)

It can be seen that the bias voltage difference between current changes measures the addition
energy.

So far we have determined the electrons tunnel through the dot involving the ground states, for
example, the transitions (N−1, 0) → (N, 0) → (N−1, 0) where index 0 refers to the ground state.
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Figure 2.10.: (a) Schematic Coulomb blockade diamonds. Current can flow only in the gray
shaped regions. The points labeled (b)-(d) refer to the situations schematically
representing a quantum dot with finite bias source-drain for various gate voltage.
The electron transport is indicated by arrows. Situations is shown with (b) µs =
µdot(N), (c) µs > µdot(N) > µd,and (d) µdot(N) = µd

When eVsd > ∆E, the tunneling through excited states of the dot leads to additional structure
in the Coulomb blockade diamond. For example, the transport can be achieved starting from
the dot in (N − 1) electron ground state into an N electron excited state back into the (N − 1)
electron ground state:(N − 1, 0) → (N, 1) → (N − 1, 0) where index 1 refer to the first excited
state. In more generally the transition can be written as (N − 1,m) → (N,n) → (N − 1,m).
The energy for adding an electron to the dot in this transition process is defined by µn,m

dot (N).

All µn,0
dot(N) with n > 0 are larger than µ0,0

dot(N) = µdot(N), whereas all µ0,m
dot (N) with m > 0 are

smaller.

If the excited states and µdot(N) are within the bias window, the excited states can contribute
the electron tunneling through the dot as shown in Fig. 2.11(a). The electrons can tunnel into
the dot not only to the ground state but also to the first excited state. These extra tunneling
channels can be detected as an increase in the current in the Coulomb blockade diamond.

Figure 2.11(b) shows that the additional lines occur outside the Coulomb blockade diamond
whereas no lines are found in the diamonds themselves. The dashed lines running parallel to the
upper boundaries of the N − 1 electron diamond indicate the energy of an N electron excited
state. The dotted lines beneath the lower boundaries of the N − 1 electron diamond indicate
the N − 2 electron excited state.

The dashed lines are shifted from the upper edges of the diamond by ∆∗/(eα), where ∆∗

is the energy difference between the ground state and the first excited state or can be called
the excitation energy of the N electrons system. The simplest estimate within the constant
interaction model can identify this excitation energy with the single particle energy spacing
∆E. Therefore, the Coulomb blockade measurement can be used for excited state spectroscopy.

19



2. Theoretical Background

sdV

gV

N

N+1

N-1

21 e
E

e C 

! "
# $% &
# $
' (

21 e
E

e C)  

! "
# $% &
# $
' (

( )dot dN* *+

( )dot sN* *+
*1

( )
e)

%

s*

d*

(a)

(b)

sde V

1,0 ( )
dot

N*

( )dot N*

1,0 ( ) ddot N* *+
1,0 ( ) sdot N* *+

Figure 2.11.: (a) Schematic representation of a quantum dot at finite source-drain voltage. The
excited state is indicated as dashed line. The µ1,0

dot(N) is in the bias window
and therefore contributes to electron transport through the dot. (b) Schematic
Coulomb blockade diamonds with the excited states. Current can flow in the gray
shaped regions. The dashed lines indicate the excited states
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2.3. The Kondo Effect in Quantum Dot System

2.3. The Kondo Effect in Quantum Dot System

The original Kondo effect is found in the conductance measurement of the metals containing a
small concentration of magnetic impurities [24]. When the temperature is lowered, the electrical
resistance of a pure metal, for example gold and copper, usually drops because the lattice vibra-
tions decrease and electrons can travel through a metallic crystal more easily. The resistance,
however, saturates at finite resistance as the temperature decrease below about 10 K because of
static defects or nonmagnetic impurities in the material. Although more defects are added and
increase the saturation resistance, the temperature dependence characteristic of the resistance
remains the same. While the resistance of pure metals tends towards a saturated resistance, the
resistance of metals with magnetic impurities, such as cobalt, shows a logarithmic increase as
temperature is lowered further [25]. This is the Kondo effect and the temperature at which the
resistance starts to increase again is called Kondo temperature (TK).

The effect is named after the Japanese theorist J. Kondo who developed the theory to explain
the temperature dependence of this anomalous resistance. The important point of this effect is
the exchange interaction between the localized magnetic moment and the spins of conduction
band electrons known as Kondo cloud. In order to consider the scattering from these localized
magnetic ions, the model of a magnetic impurity was introduced by Phil Anderson in 1961 [26].
The Anderson impurity model and his approach can be used to predict the properties of a system
close to absolute zero temperature. According to the Kondo effect, at the temperature below
TK , the magnetic moment of the impurity ion is screened entirely by the spins of the electrons
in the metal. The Kondo effect only occurs when the total spin of all electrons in the impurity
atom is non-zero or unpaired. A spin singlet state is formed between the unpaired localized
electron and delocalized electrons at the Fermi energy of the host metal at low temperature.

A quantum dot or a single electron transistor (SET) containing a small droplet of localized
electrons and being strongly coupled to conducting lead is analogous to the localized magnetic
impurity within the metal. Therefore it has been predicted that the Kondo effect should be able
to occur in the quantum dot and be explained by Anderson impurity model [27]-[29]. In the
metal, the Kondo cloud increases scattering which increases the resistivity, but the analogous
event in a quantum dot is the mechanism for enhancing the the conductance in the Coulomb
blockade at zero bias. This novel Kondo effect has been found and studied in various quantum
dot systems, vertical and lateral quantum dots, which have odd number of electrons in the
droplet and hence one electron is unpaired [30]-[32]. Also there are many experiments done in
order to investigate the Kondo effect in the applied magnetic field [31, 33, 34].

Consider the Coulomb blockade regime for a quantum dot system occupied by an odd number
of electrons. In the Anderson model, a quantum dot is approximated as a single localized state
coupled by tunneling to two electron reservoirs. Hence the dot with energy levels in Fig. 2.12(a)
is separated from the leads by tunnel barriers. The state ε0 in energy diagram is a single spin
degenerate energy state and referenced to the Fermi level in the leads. The ε0 is occupied by
one electron of either spin up or spin down. In this diagram we show a spin up electron occupies
the state. In order to add another electron to the dot, the addition energy U is required. If we
assume that µL ≃ µR ≃ µF = 0, ε0 < 0, but ε0 + U > 0. The electron tunneling is blocked at
the initial state in Fig. 2.12(a). An electron cannot tunnel onto the dot because the energy level
ε0 + U is higher than the Fermi energies of the leads, µL and µR. The electron on the dot also
cannot tunnel off because ε0 < µL, µR.

However, the electron on the dot can tunnel into the right lead with rate Γ/h, which leads
to Lorentzian broadening of the localized state energies with full width at half maximum
(FWHM) Γ [35, 36]. This electron tunneling occurs in the virtual intermediate state as shown
in Fig. 2.12(b) and then be replaced by an electron with the opposite spin from the left lead.
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Figure 2.12.: Schematic energy diagram of a quantum dot for Kondo effect. (a) At the initial
state, an unpaired spin electron is occupied the energy state ε0 on the dot. The U
is the single electron charging energy, and ΓL and ΓR give the tunnel coupling to
the left and right leads. (b) The virtual state can occur that converts the spin of
electron. The spin up electron tunnels off the dot and the spin down tunnels on
the dot in (c) at the final state. An electron then transfers from one side of the
dot to the another.
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2.3. The Kondo Effect in Quantum Dot System

B Kk T

 

Figure 2.13.: Tunneling density of states for Kondo effect showing a sharp peak of width kBTK at
Fermi energy level of the source and drain reservoirs in addition to the broadened
level at ε0 of width Γ.

Therefore the quantum dot has reversed the direction of its unpaired spin in the final state of
Fig. 2.12(c). The success of spin-flip process effectively screen the local spin on the dot such
that the electrons in the leads and on the dot together form a spin-singlet state [31]. This is
analogous to the singlet state formed by the magnetic impurity in the metal. Figure 2.13 shows
that the narrow peak in the tunneling density of states is exactly at the Fermi energies of the
leads, µL ≃ µR, leading to the enhanced conductance through the dot. This sharp resonance of
the density of states has been known as the Kondo resonance, and the width of this resonance
peak is defined by kBTK .

At the Kondo resonance peak, an enhanced current is exhibited in the Coulomb blockade
at zero bias voltage. This effect shows a zero-bias anomaly in the Coulomb diamond of the
nonlinear measurement for a quantum dot. When a bias voltage Vsd is applied between source
and drain, eVsd = µL − µR, the Kondo peak in the density of states splits into two peaks. One
peak is located at each chemical potential [28, 31]. The energy ε0 and Γ = ΓL +ΓR, the energy
broadening of the discrete states on the dot caused by the coupling to the left and right leads, can
be tuned by adjusting the negative gate voltage of the dot system. The Kondo resonance with
non-zero bias and asymmetric tunneling barrier has also been investigated that the resonance
peak of the density of states is pinned to the the chemical potential of the thin barrier or strong
coupling side [37, 38].

According to the Anderson model, the parameter ε̃ ≡ ε0/Γ has been defined to distinguish the
Kondo regime from other regimes [35]. There are three interesting regimes, each of which has
different transport properties, in this model: the Kondo regime ε̃0 ≪ −0.5 which describes the
system of dilute magnetic impurities in metals, the mixed-valence regime −0.5 . ε̃ . 0 which
provides some understanding of heavy-fermion compounds [39], and the empty orbital regime
ε̃ & 0. The Kondo effect only occurs when the temperature of the system is comparable to
or lower than the Kondo temperature TK , which is the characteristic temperature scale of the
Kondo effect [35]. The Kondo temperature TK , is given by

kBTK =

√
ΓU

2
eπε0(ε0+U)/ΓU , (2.49)
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where Γ is the FWHM in the energy scale unit of the localized state in the dot, reflecting the
tunneling coupling between the dot and the leads, ε0 is the energy of the localized state, U
is the addition energy for the next electron, and kB is the Boltzmann constant. Since ε0 =
αVg+constant, then we can obtain that U = α∆Vg, where Vg is the gate voltage used to adjust
the position of the energy state in the dot.

It is obvious that the Kondo temperature TK is higher with larger tunneling coupling Γ.
Therefore the Kondo effect can only be observed in the strongly coupling regime of the dot.
Furthermore, the TK increases as one of the energy state ε0 and ε0 + U is tuned closer to the
Fermi energies in the leads. A further condition for observing the Kondo effect is that the
single-particle level spacing ∆ is larger than the tunneling coupling, ∆ & Γ, and hence requires
a small quantum dot.

According to the work about the scaling theory in [35, 40], the temperature dependence of
the conductance G in the Kondo regime follows the empirical form

G(T ) = G0

(

T ′2
K

T 2 + T ′2
K

)s

(2.50)

with T ′

K = TK/
√

21/s − 1, where G0 is the zero temperature extrapolation of the conductance,
G0 = 2e2/h is the unitarity limit for symmetric tunneling to the two leads, and s is the fit
parameter that is approximately 0.2 for spin 1/2 system in the Kondo regime, as obtained in
[40]. The Kondo effect has given rise to a lot of research, both theoretical and experimental and
is attractive for study further.

2.4. Electron Transport through Double Quantum Dots

Quantum dots in semiconductors are submicron islands of electrons that are influenced by the
interplay of quantum mechanical and electrostatic effects [41, 42]. In low temperature tunneling
measurements through double dot systems defined in a two-dimensional electron gas (2DEG)
by tunable gates as in Fig 2.14. The confinement of the dots can be obtained by applying
negative voltage to the lateral tunneling gates to deplete the electron in 2DEG beneath. The
interdot tunneling can leads to a variety of phenomena not observed for single dots. Where
single quantum dots are often referred to as ”artificial atoms”, double quantum dots can be
coupled to form an ”artificial molecule”. They depend on the strength of the interdot coupling
to be able to form ionic like (weakly tunnel coupling) or covalent like bonds (strongly tunnel
coupling).

In the case of ionic like bonding the electrons are localized and well quantized on the individual
dots. The binding is formed by a static redistribution of electrons leading to an attractive
Coulomb interaction. Electrostatically coupled dots with negligible interdot tunnel conductance
are covered by the orthodox Coulomb blockade theory. In the case of covalent bonding, the
electron state in two dots are quantum mechanically coupled and an electron can tunnel many
times between the two dots in a phase-coherent way which is delocalized over two dots. The
binding state of a strongly coupled artificial molecule has a lower energy than the energies of
the original states of the individual dots. This energy gain forms the binding force between the
two dots [20]. This behaves like the real covalent molecules in which the bonding is weaker than
that of ionic molecules.

In this section the electron transport through lateral double quantum dots coupled in series
have been summarized. Tunnel coupling between the quantum dots can be continuously adjusted
from the weakly coupling regime to the strongly coupling regime. In the weak tunnel coupling
regime, the dots are well isolated and the numbers of electrons on each dot, n1 and n2, are
quantized. In this regime Coulomb blockade theory can apply to each dot individually. On the
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Figure 2.14.: Double dot structure fabricated by electron beam lithography on
GaAs/AlxGa1−xAs heterostructure containing a 2DEG. (a) Scanning elec-
tron micrograph of the series double dot system compounded with five pairs of
metallic gates. (b) Schematic drawing of the structure. The gates are energized
with negative voltage to form the double dot.

other hand the two dots effectively are merged into one big dot in the strong tunnel coupling
regime. The n1 and n2 are not individually well defined and the coupled dot system acts like
an artificial molecule.

Transport through quantum dots depends strongly on the strength of tunnel coupling between
the dot and its surroundings. When the coupled dot system is well isolated or tunnel conductance
between a quantum dot and surroundings leads is weak (Gdot−lead << 2e2/h) and the total
number of electrons ntot = n1 + n2 is quantized, the transport properties are well described
by standard Coulomb blockade theory for the entire double dot system to probe its ground
state energy. In order to understand double dot systems, the charge stability diagram has been
studied [20].

2.4.1. Charge Stability Diagram

In this section the charge stability or honeycomb diagram is introduced; that is the visual
diagram of the equilibrium charge states of two quantum dots coupled in series. Fig. 2.15 shows
the network of tunnel resistors and capacitances representing two quantum dots coupled in
series. The configuration of the number of electrons on dot1 and dot2 is (n1, n2). Each dot
is capacitively coupled to the electrode with gate voltage Vg1(2) through a capacitor Cg1(2) and
to the source (S) or drain (D) contact through a tunnel barriers which is characterized by a
tunnel resistor RL(R) and a capacitor CL(R) connected in parallel, as indicated in the inset. The
interdot tunnel barrier is represented the coupling interaction between dots by a tunnel resistor
Rint and a capacitor Cint in parallel. The bias voltage V is applied to the source contact with
the drain contact grounded. we first consider the electron transport in the linear regime, then
V ≈ 0. For this model, we assume that the cross capacitances, other voltage sources, and stray
capacitances are negligible. The gate voltage Vg1(2) changes the charge on dot1(2) only and has
no effect on the charge of the other dot.

In order to study the structure of double dot system we determine the electrostatic coupling
between the quantum dots by using the capacitance model [20, 43]. From this model we can
represent the coupling between each dot and the electrodes by a capacitance matrix. The general
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Figure 2.15.: Diagram of the resistors and capacitors representing two quantum dots coupled in
series. The tunnel barrier are characterized by a tunnel resistor and a capacitor,
as indicated in the inset.

expression for the charges on the individual dot are related to the electrostatic potential by

Qi =
n
∑

j=0

qij =
n
∑

j=0

Cij(Vi − Vj), (2.51)

where i is the index denoting the electrodes and dots. The total charge on dot i is the sum of
the charges on all of the capacitors connected to dot i. The voltage source in the network can be
treated as a node with large capacitance to ground and large charge on it such that V = Q/C.
Since the voltage on the voltage source is already known, only the voltages on the other nodes
need to be determined. Here we define the electrostatic potential at left and right lead electrode
by VL and VR respectively. The ground is defined to be zero potential and potential of dot1(2)
is defined by V1(2). Therefore we can express the total charge Q1(2) on dot1(2) as

Q1 = CL(V1 − VL) + Cg1(V1 − Vg1) + Cint(V1 − V2),

Q2 = CR(V2 − VR) + Cg2(V2 − Vg2) + Cint(V2 − V1). (2.52)

We can write this as
(

Q1 + CLVL + Cg1Vg1

Q2 + CRVR + Cg2Vg2

)

=

(

C1 −Cint

−Cint C2

)(

V1

V2

)

, (2.53)

where C1(2) = CL(R) + Cg1(2) + Cint. C1 and C2 are the sum of all capacitances coupled to the
dot 1 and dot 2 respectively. We can invert the equation above to obtain

(

V1

V2

)

=
1

C1C2 − C2
int

(

C2 Cint

Cint C1

)(

Q1 + CLVL + Cg1Vg1

Q2 + CRVR + Cg2Vg2

)

. (2.54)

The total electrostatic energy of the double dot system is expressed using the capacitance matrix
and then given by

U =
1

2

−→
V T ·C−→

V =
1

2

−→
V T · −→Q

=
1

2

−→
QT

(

C1 −Cint

−Cint C2

)−1 −→
Q, (2.55)

where

−→
Q =

(

Q1 + CLVL + Cg1Vg1

Q2 + CRVR + Cg2Vg2

)

. (2.56)
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For linear transport regime we assume VL = VR = 0 and the total charge on dot1(2) is Q1(2) =
−eN1(2). By using Eqs. 2.54 and 2.55 the double dot electrostatic energy U becomes

U(n1, n2) =
1

2
(n2

1EC1 + n2
2EC2) + n1n2ECint + f(Vg1, Vg2), (2.57)

f(Vg1, Vg2) =− 1

e
[Cg1Vg1(n1EC1 + n2ECint) + Cg2Vg2(n1ECint + n2EC2)]

+
1

e2

[

1

2
C2
g1V

2
g1EC1 +

1

2
C2
g2V

2
g2EC2 + Cg1Vg1Cg2Vg2ECint

]

, (2.58)

where EC1 and EC2 can be interpreted as the charging energy of each dot, ECint is the electro-
static coupling energy and e is the electron charge. It can be seen that the total electrostatic
potential is controlled by the two gate voltages Vg1 and Vg2. The coupling energy ECint is
the energy change of one dot when electron is added to the other dot. These energies can be
expressed in terms of the capacitances as follows:

EC1 =
e2

C1





1

1− C2

int

C1C2



 , (2.59)

EC2 =
e2

C2





1

1− C2

int

C1C2



 , (2.60)

ECint =
e2

Cint





1
C1C2

C2

int

− 1



 , (2.61)

In the case of two dots with equal total capacitance, CΣ = C1 = C2 = CL(R)+Cg1(2)+Cint can
be defined to be the total capacitance of each dot to ground. From the double dot electrostatic
energy in Eqs. 2.57 and 2.58 the equation can be reduced and re-written as

U(n1, n2, Vg1, Vg2) =
1

2CΣ(1− α2)
[(Cg1Vg1 − n1e)

2 + (Cg2Vg2 − n2e)
2

+ 2α(Cg1Vg1 − n1e)(Cg2Vg2 − n2e)], (2.62)

where α = Cint/CΣ. According to Eqs. 2.57, 2.58 and 2.62, the total electrostatic energy surface
U(Vg1, Vg2) is a paraboloid for the given values of n1 and n2. For each pair of gate voltage values,
there is a ground state of the double dot system. The charge state configuration is determined
by the values of n1 and n2 that minimize the total electrostatic energy. The ground state
of electrostatic energy is plotted in Fig. 2.16 which is the array of paraboloids corresponding
to different charge configuration (n1, n2). The electrostatic energy U also presents a barrier
of tunneling as the Coulomb blockade. Therefore an electron can tunnel through double dot
in series only when both n1 and n2 can change simultaneously at the intersections of three
paraboloids.

When the interdot coupling is very weak, Cint = 0, and hence ECint = 0, Eq. 2.57 reduces to

U(n1, n2) =
(Cg1Vg1 − n1e)

2

2C1
+

(Cg2Vg2 − n2e)
2

2C2
. (2.63)

This is the sum of the energies of two independent dots. In the case of strongly interdot coupling,
Cint becomes the dominant capacitance (Cint/C1(2) → 1), the total electrostatic energy is given
by

U(n1, n2) =
[Cg1Vg1 + Cg2Vg2 − (n1 + n2)e]

2

2(C1 + C2 − 2Cint)
. (2.64)

27



2. Theoretical Background

(n1,n2)

(n1+1,n2)

(n1-1,n2)

(n1,n2-1)

(n1,n2+1)

(n1-1,n2+1)

(n1+1,n2+1)

(n1-1,n2-1)

(n1+1,n2-1)

Figure 2.16.: Total electrostatic energy of the double dot system. Plot of the minimum energy
surface as a function of center gate voltages calculated from the capacitance model.
Dark regions are minima of the energy paraboloids for given occupation numbers,
e.g. (n1, n2). Bright regions are the intersections of paraboloids corresponding to
different charge states. The Coulomb blockade is lifted and the current may flow
at the intersection points of three paraboloids. This plot is generated from the
simulation program written by D. Schefzyk.

This is the energy of a large single dot with a charge configuration of n1 +n2 and a capacitance
of the dot to the outside world:

C1 + C2 − 2Cint = CL +Cg1 + Cg2 +CR. (2.65)

In order to obtain the energy needed to add a single n1(2)th electron to dot1(2) while keeping
the electrons in dot2(1) constant at n2(1), we use the total electrostatic energy expressed in
Eqs. 2.57 and 2.58 to calculate for this quantity. This value can be called the electrochemical
potential of the dot1(2) which is given by

µ1(n1, n2) ≡ U(n1, n2)− U(n1 − 1, n2)

= (n1 −
1

2
)EC1 + n2ECint −

1

e
(Cg1Vg1EC1 + Cg2Vg2ECint), (2.66)

µ2(n1, n2) ≡ U(n1, n2)− U(n1, n2 − 1)

= (n2 −
1

2
)EC2 + n1ECint −

1

e
(Cg1Vg1ECint + Cg2Vg2EC2). (2.67)

At fixed gate voltage, if the number of electron in dot1(2) N1(2) is changed by 1, the electro-
chemical potential µ1(2)(n1, n2) will be changed by EC1(2), as the followings

µ1(n1 + 1, n2)− µ1(n1, n2) = EC1, (2.68)

µ2(n1, n2 + 1)− µ2(n1, n2) = EC2,

and

µ1(n1, n2 + 1)− µ1(n1, n2) = µ2(n1 + 1, n2)− µ2(n1, n2) = ECint. (2.69)
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2.4. Electron Transport through Double Quantum Dots

The EC1(2) from above can be called the addition energy of the dot1(2) and equals the charging
energy of dot1(2) in the classical regime, while the discrete energy level spacing is added and
plays a role in the quantum regime.

In the quantum regime, the strong confinement of the electrons in the dots can form a discrete
energy spectrum. For the quantized energy states in the dots, the electrochemical potential for
adding an electron into energy level n of the dot i can be defined by µi,n. With the constant
interaction model, µi,n is the sum of the classical electrochemical potential µclass

i , as discussed
above in Eqs. 2.66 and 2.67, and the single-particle energy En: µi,n = µclass

i +En. Therefore the
addition energy for the (n1 + 1)th electron occupying discrete energy level m of dot1 in which
the energy level n has already been occupied by n1th electron, is

µ1,m(n1 + 1, n2)− µ1,n(n1, n2) = EC1 + (Em − En)

= EC1 +∆E. (2.70)

Similarly, we can find the addition energy for dot2 as

µ2,m(n1, n2 + 1)− µ2,n(n1, n2) = EC2 +∆E. (2.71)

Note that for a spin degeneracy energy level ∆E can be zero. The configuration of electron
number in both dot (n1, n2) that give the lowest possible total energy in dot1 or dot2, is referred
to the ground state of dot1 or dot2, respectively. The µ1(2)(n1, n2) at ground state is the
electrochemical potential for adding the n1(2)th electron to the lowest unoccupied energy level
of the (n1(2) − 1)-electron ground state. Any configuration with higher total energy is referred
to the exited state.

Linear Transport Regime

In the linear regime electron transport occurs via ground states. In the following discussion,
we use µ1(2)(n1, n2) to denote the ground state of the dot1(2). Hence from the electrochemical
potential in Eqs. 2.66 and 2.67 including the energy level at ground state, the charge stability
diagram of the double dot system can be constructed and give the equilibrium electron numbers
n1 and n2 at ground states as a function of gate voltage Vg1 and Vg2. In each point of this gate
voltage plane, a charge state (n1, n2) can be seen and is the ground state of the system. The
region in the plane which belong to the same charge ground state is called charge stability region.
Whenever the electrochemical potentials µs = µd in the source and drain leads are not resonant
with one of the two electrochemical potential in the double dot, the charge in the double dot
system is stable. On the other hand, if electrochemical potential in either dot1 or dot2 is aligned
to µs or µd, including the condition of µ1(n1 + 1, n2) = µ2(n1, n2 + 1), the boundaries of the
charge stability region (n1, n2) will be reached. These conditions, plus the fact that n1 and n2

must be integers, create hexagonal areas in the two-dimension gate voltage plane in which the
charge configuration (n1, n2) is stable as shown in Fig. 2.17.

The typical shape of such hexagons form a honeycomb pattern in the gate voltage plane which
is called charge stability diagram. In this diagram, along the diagonal lines from bottom left to
top right, only the total number of electrons n1 + n2 is changed. If we follow the diagonal lines
from top left to bottom right, the total charge n1+n2 of the double dot system remains constant.
The six corners of each hexagon of the stable charge are called triple points because at these
points, whenever three boundaries in the honeycomb diagram meet in one point, three charge
states coexist and become degenerate. Triple points are important for double dots connected
in series with weakly tunnel coupling, because these are the only points where an electron can
tunnel from source to drain and a conductance resonance is then found.
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Figure 2.17.: Honeycomb pattern representing the charge stability diagram of a double dot sys-
tem in the capacitance model. The vertices A and B have been discussed in the
text.

We now consider the electron transport in the linear regime, which implies low source-drain
bias voltage, µLeft − µRight = µs − µd = eVsd ≈ 0. In Fig. 2.17 and 2.18 an electron can
tunnel through both dots at triple points A and B in the charge stability diagram where the
electrochemical potentials are aligned with each other and with the electrochemical potential
of source and drain. A and B are two kind of triple points distinguished by different charge
transfer process. At triple point A, the cycle of charge transition is

(n1, n2) → (n1 + 1, n2) → (n1, n2 + 1) → (n1, n2),

which is the cycle of an electron transport through double dots from the left lead (source) to
the right (drain). At the other triple point B, the cycle is

(n1 + 1, n2 + 1) → (n1 + 1, n2) → (n1, n2 + 1) → (n1 + 1, n2 + 1),

corresponding to the transition of hole through double dots as shown in the configuration of
energy level in Fig. 2.18 at point B. It is obvious that the direction for this cycle is opposite to
the direction of electron transition [20, 44]. The situation is different at point C and D, where
the electrochemical potential level in only one of the dots is aligned with the electrochemical
potential of one lead, whereas another dot is in the Coulomb blockade. In this case electron
transfer from source to drain is suppressed in weakly tunnel coupling between two dots and
between dots and leads. The tunneling current, however, may flow and conductance is found
when the interdot coupling of double dot system is increased.

The coupling between double dots can be continuously tuned via interdot tunnel conductance
Gint from two isolated dots in the weak tunnel regime, Gint

∼= 0, to one large dot in the strong
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Figure 2.18.: Part of a charge stability diagram in Fig. 2.17. Schematic electrochemical potential
energy levels of double dot system in four situations are shown and corresponding
to four points marked with filled circles in honeycomb pattern. Four different
charge states can be separated by solid lines. Two solid lines are connected at the
triple point A and B. At the other solid lines, point C and D, the energy level of
only one dot equals the electrochemical potential of the leads.
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Figure 2.19.: Charge stability diagram of the double dot system in (a) weak and (b) strong
tunneling coupling regime

tunnel regime, Gint → 2e2/h. This interdot conductance can be obtained by measuring the point
contact conductance between dots with all other gates energized and the outer point contacts
open. If double dots are decoupled completely according to the condition in Eq. 2.63, Cint → 0,
the pattern of charge stability diagram is shown in Fig. 2.19(a). When the interdot coupling is
increased, the pattern changes to the honeycomb pattern as seen in Fig. 2.17. The vertices of
the square have separated into triple points.

Figure 2.20 shows the measured double dot conductance as a function of the gate voltages.
This shows the evolution of the measured conductance pattern for the double dot system from
weakly coupling regime in Fig. 2.20(A) to strongly coupling regime in Fig. 2.20(F) when inter-
dot coupling is increasing. An array of the points in Fig. 2.20(A) can be expressed by Coulomb
blockade theory for capacitively coupled separate dots. These triple points are at the inter-
section of the hexagons defined by charge configuration (n1, n2). When interdot conductance
is increased, the splitting of the triple points increases because of interdot capacitance Cint.
Figure 2.20(B) shows the arrays of triple points where the Coulomb blockade for both dots is
lifted and electron can transfer through the system.

For larger interdot conductances, Fig. 2.20(C) to (F), the pattern is no longer described by
the Coulomb blockade theory of individual dots. In Fig. 2.20(D) conductance can be seen clearly
along the boundaries of the hexagons. The charge states are delocalized between the dots and
electrons are shared by both dots in this regime. At Gint ≈ 2e2/h the conductance pattern
becomes an array of lines corresponding to the Coulomb blockade for a single large dot. In
this strongly interdot coupling, Cint/C1(2) → 1, the triple points can separate and reach their
maximum. The pattern in charge stability diagram evolves from honeycomb to the pattern in
Fig. 2.19(b) and 2.20(F). The double dot system behaves like one large dot with total charge
n1+n2 corresponding to Eq. 2.64. We can see that the conductance grows out from the points in
Fig. 2.20(A) along the boundaries between configuration with different total charge n1+n2, and
the shape of these boundaries changes from the zigzag pattern for weakly coupling to straight
lines for strongly coupling in Fig. 2.20(F) [41]. The tunneling through double dot system is
controlled by three parameters, the two gate voltages Vg1 and Vg2 and the interdot tunnel
conductance Gint.

The dimensions of the honeycomb cell in Fig. 2.21 can be calculated from the capacitances
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Figure 2.20.: Conductance of the double dots in series as a function of gate voltages Vg1 and
Vg2. The grey scale is logarithmic. Bright (dark) regions indicate high (low)
conductance. Interdot conductance is given by (A) 0.22G0, (B) 0.40G0, (C) 0.65G0,
(D) 0.78G0, (E) 0.96G0, and (F) 0.98G0, where G0 = 2e2/h [41].

by using Eqs. 2.66 and 2.67 .

µ1(n1, n2;Vg1, Vg2) = µ1(n1 + 1, n2;Vg1 +∆Vg1, Vg2)

We can derive

∆Vg1 =
e

Cg1
. (2.72)

Similarly, from

µ2(n1, n2;Vg1, Vg2) = µ2(n1, n2 + 1;Vg1, Vg2 +∆Vg2)

we obtain

∆Vg2 =
e

Cg2
. (2.73)

From

µ1(n1, n2;Vg1, Vg2) = µ1(n1, n2 + 1;Vg1 +∆V int
g1 , Vg2)

we can derive

∆V int
g1 =

Cint

C2
∆Vg1. (2.74)

Similarly, from

µ2(n1, n2;Vg1, Vg2) = µ2(n1 + 1, n2;Vg1, Vg2 +∆V int
g2 )

we obtain

∆V int
g2 =

Cint

C1
∆Vg2. (2.75)

We assume above that Vg1 and Vg2 only couple directly to dot1 and dot2, respectively. In
practice, however, there are finite cross capacitances causing a change of the slope along the
boundaries in the honeycomb diagram. With finite cross capacitances the positions of the triple
points move to lower Vg1(2) when Vg2(1) is increased [20].

2.4.2. Conductance Peak Splitting in Double Quantum Dots

In this section we discuss the details of the electron transport through identical double dot
system with a pair of center gates which are tuned simultaneously, Vg1−Vg2 = ∆Vg = 0 [45, 46].
Increasing the interdot tunnel conductance Gint leads to a continuous transition from isolated
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Figure 2.21.: Coulomb peak spacings in a honeycomb cell of the charge stability diagram. These
spacings can be determined experimentally by connecting the triple points.

dots to one large dot as Gint → 2e2/h. Isolated dot arrays show strong Coulomb blockade
conductance peaks vs gate voltage, which split into two peaks for double dots as the tunnel
conductance increases. The splitting approaches zero for weak tunneling regime, Gint << 2e2/h,
and saturates as the dots merge for strong tunneling regime Gint → 2e2/h. For double dots
system with unequal gate capacitances, conductance peaks show beating, quasiperiodicity and
peak suppression for weak interdot tunneling. While the interdot tunneling for weakly coupled
dots are consistent with classical capacitive charging, peak splitting for strongly coupled dots is
a quantum phenomenon arising from interdot tunneling.

Peak splitting in double quantum dots coupled in series can be understood by considering
single-dot capacitive charging models. Consider two identical dots weakly coupled to external
leads, the total number of electrons ntot =

∑

ni is a good quantum number, where ni is the
number of electrons on the dot i. In the case of weak coupling, the ni for each dot are also good
quantum numbers and the orthodox Coulomb blockade theory of single electron charging can
be applied.

For the identical dots the total capacitance on both dots can be defined that CΣ = C1 = C2

and balanced gate voltages Vg1 = Vg2 gives the equal induced charges Cg1Vg1 = Cg2Vg2 = CgVg.
From Eq. 2.63 in the weak tunneling coupling, Cint ≈ 0, The total electrostatic energy of the
double dot system can be re-written as

U =
2

∑

i=1

Ui =
2

∑

i=1

(CgVg − nie)
2

2CΣ
, (2.76)

which is the sum of the single dot charging energies Ui, where Cg, Vg and CΣ are the gate
capacitance, gate voltage, and total capacitance, assumed to be the same for both dots. In
order to obtain the total energy the sum over quantized energy states En in the two dots is
added to the electrostatic energy. From the definition above the double dots are first considered
with negligible interdot tunnel conductance, Gint → 0, and negligible interdot capacitances.
Assuming EF > U > ∆E > kBT , where EF is the Fermi energy, U = e2/CΣ is the charging
energy, and ∆E ∼= 2EF /n is the average level spacing. At the low temperatures, the ground state
for each dot charge configuration, which is determined by the value of n1 and n2, dominates
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(a) (b)

Figure 2.22.: (a) Double dot total energy vs gate voltage for indicated numbers (n1, n2) of elec-
trons on each dot for identical dots. (b) Double dot conductance Gdd vs gate
voltage for increasing interdot coupling. Interdot tunneling conductance increase
from top to bottom graph. Double dot coupling splits conductance peaks with ∆Vs

proportional to interaction energy ∆. The separation between Coulomb peaks is
defined as ∆Vp [45].

equilibrium transport. In the case without the dot interactions, the ground state energy is
simply the total electrostatic energy from Eq. 2.76 minimized over all charge configurations
(n1, n2) [41, 46].

The ground state of total energy for each charge configuration is shown in Fig. 2.22(a). These
solid parabolas represent the the total energies for zero interdot coupling as a function of equal
gate voltages at different charge states (n1, n2), which is the diagonal direction of honeycomb
pattern in Fig. 2.17. The conductance peaks are found at the intersection of three parabolas.
Figure 2.22(b) shows the experimental results found by Waugh et al.[45]. Changes in the double
dot conductance Gdd versus center gate voltage for both dots with increasing interdot coupling
are shown. The interdot coupling, which is related and adjusted by tunneling conductance
between dots, increases from the top most to bottom graph. The conductance peaks hence split
by an increasing amount ∆Vs to saturated separation ∆Vp/2. The peak separation in top most
graph is the same as for a single dot, whereas the separation in bottom graph is half that in top
most graph, indicating that two dots have merged into a single large dot with twice the gate
capacitance.

According to Fig. 2.22(a), a charge configuration with no internal polarization, which means
that the ni are the same for all dots, has the lowest energy. On the other hand, polarized
configurations with different ni on some or all dots have higher energies. Because of this, the
parabolas with polarization, n1 6= n2, have higher energy. Without interdot coupling, the
parabolas with polarized states are degenerate. When interdot coupling is no longer negligible,
the polarization can be destroyed by quantum charge fluctuations between dots [45] and the
polarized states with lower energy can be allowed to participate in the electron transport. The
dotted parabola in Fig. 2.22(a) represents the energy lowering ∆ of the polarized state because
of interdot coupling. Conductance peaks splitting occur at the intersection of lowering polarized
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Figure 2.23.: The fractional Coulomb-blockade peak splitting F data from [45, 46] is plotted
together with recent theory [49] (solid curves) and old theory [48] (dot-dashed
curves) in the weak and strong tunneling limits, and the interpolation between
these limits (dashed curve).

and unpolarized parabolas. In order to understand the relationship between peak splitting
∆Vs and shifting energy ∆, we consider the conditions of total energy at intersection of three
parabolas as U(n1, n2, Vg) = U(n1+1, n2, Vg)−∆ = U(n1, n2+1, Vg)−∆ and U(n1+1, n2, V

′

g)−
∆ = U(n1, n2 + 1, V ′

g )−∆ = U(n1 + 1, n2 + 1, V ′

g) in which U(n1 + 1, n2) and U(n1, n2 + 1) are
degenerate. We can derive

Vg =
1

eCg

[

(n1 + 1/2)e2 − CΣ∆
]

, (2.77)

and

V ′

g =
1

eCg

[

(n2 + 1/2)e2 + CΣ∆
]

. (2.78)

The conductance peak splitting ∆Vs can be calculated by

∆Vs = V ′

g − Vg =
1

eCg

[

2CΣ∆+ e2(n2 − n1)
]

. (2.79)

For n1 = n2 the electronic configuration is an unpolarized parabola, a decrease ∆ in the energy
of a polarized configuration leads to conductance peak splitting

∆Vs =
2CΣ

eCg
∆. (2.80)

For strong interdot coupling, peak splitting saturates when two dots merge into one large dot.
At saturation, the maximum value of a decrease in ground state energy of double dots reaches
∆max = e2/4CΣ. The fractional peak splitting F compares ∆Vs to the peak separation ∆Vp =
e/Cg in the absence of splitting, and is defined that 0 6 F 6 1:

F =
∆

∆max
=

2∆Vs

∆Vp
. (2.81)

The peak splitting is strongly correlated with the interdot tunnel conductance Gint which
increase from a small value for Gint

∼= 0 to saturation for Gint
∼= 2e2/h. Conductance peak
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splitting due to interdot tunneling coupling has been studied theoretically by using a variety
of approaches. One of them, which has been developed by Matveev et al. [47] and Golden
and Halperin [48, 49], is the many-body calculations of the double dot energy shifts with few
tunneling modes and with ∆E ≪ e2/CΣ. The tunneling to the leads is assumed negligible
compared to tunneling between two dots. These calculations predict a universal relationship
between conductance peak splitting and tunnel conductance for double dots. This is found to
be a function F (Gint) of the interdot tunnel conductance that saturates exactly at F (2e2/h) = 1
for dots coupled by two tunneling modes. The fractional peak splitting is proportional to Gint for
weak tunneling, Gint ≪ 2e2/h, and has a logarithmic form for strong tunneling, Gint → 2e2/h.
In the weak tunneling limit the fractional peak splitting is

F ≈ 2ln2

π2
Nchg + 0.1491Nchg

2 − 0.009798N2
chg

2 + · · · (2.82)

where Nch is the number of tunneling channels between the two dots, Nch = 2 for one spin de-
generate mode, and g = Gint/(Nche

2/h) is the dimensionless interdot conductance per tunneling
channel. In the strong tunneling limit, the fractional peak splitting for Nch = 2 becomes

F ≈ 1 +
16eγ

π3
(1− g)ln(1 − g)− 0.425(1 − g) + · · · (2.83)

where γ ∼= 0.577. The plot of the experimental measured fractional peak splitting F versus the
dimensionless interdot conductance per channel g for Nch = 2 is shown in Fig. 2.23 [49], where F
as a function of the dimensionless interdot conductance g in the weak and strong tunneling limits
is shown. The recent theoretical curves in [49] give proper fitting to the data from Waugh et al.
[45] and [46] for both limits. The old theoretical curves from [47] and [48] are dot-dashed lines.
The dashed curve shows a possible interpolating function. As shown, the agreement between
experimental data and theory is excellent, providing strong support for the charge quantization
theory.
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3. Sample Fabrication

3.1. Heterostructure

Our work on the mesoscopic conductors is based on GaAs/AlGaAs heterostructures as used for
the substrate materials. The AlGaAs has a higher energy gap than GaAs and is doped to be
n-type. When the materials are joined together, the electrons transfer from n-doped AlGaAs
leaving behind positively charged donors. This space charge gives rise to an electrostatic poten-
tial that causes the band bending as a potential well in the energy band diagram of the junction,
and the electrons are confined in the potential well near the GaAs/AlGaAs interface forming
a thin conducting layer of two-dimensional electron gas (2DEG). We use the heterostructures
prepared by molecular beam epitaxy at Cavendish laboratory, University of Cambridge to fab-
ricate the Hallbar samples. The GaAs-AlGaAs heterojunctions used has been shown in Fig. 2.2
in the section 2.1.2.

The process of our sample fabrication can be presented in Fig. 3.1. The process starts from
a heterostructure substrate with 2DEG etched to form Hallbar on the surface. The ohmic
contacts, gate leads and bondpads are respectively grown on the Hallbar pattern by the metal
evaporation method. Our nanostructures are written by electron beam, and metal deposited
on the working area and also connected to the gate leads. Finally, the sample is bonded with
current conducting wire to contact the measurement setup.

2DEG

Hallbar

Wire bonding

Ohmic contactsGate leads and bondpads

Nanostructures

Substrate

Figure 3.1.: The process of sample fabrication. The ohmic contacts (blue), gate leads, bondpads
(green), and nanostructures (red) are metalized by the evaporation method, respec-
tively. The sample is wire bonded to pads of a chip-carrier. This schematic pattern
is not drawn in a correct ratio.

At the beginning of the sample fabrication, the heterostructue wafer is cleaved to define a
small chip of 5 mm× 6 mm. Since the wafer is very brittle, it needs only gentle force to cut and
break a small piece of the wafer. Four Hall bars can be prepared in this small chip. We clean
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(c)

(a) (b)

Figure 3.2.: Designed structures on chromium plated glass mask: (a) Hallbar, (b) Ohmic con-
tacts, and (c) Gate leads and bondpads. The dark areas represent the regions of
the mask cover in Cr which is opaque to UV-light, while the light can go through
the white areas.

the surface of the chip with ultrasonics bath in acetone for few seconds, rinse with isopropanal
(IPA), and blow-dry a chip surface with nitrogen gas. Then it is dried by hard baking in the
oven.

3.2. Optical lithography

In order to microfabricate a Hallbar sample, we use the optical lithography process to selectively
remove parts of the heterojunction substrate. It uses a UV-light to transfer a pattern from a
photo mask, glass with a designed chromium pattern on one side, to a chemical photoresist
on the substrate. The structures designed on our photo mask are Hallbars, ohmic contacts,
gate leads, and bondpads as represented as the white areas in Fig. 3.2, whereas the dark area
represents the regions of the glass covered with evaporated chromium blocking the UV-light
from the lamp of the optical lithography machine. In our work, we use the exposure station of
KSM-MJB 3 from Karl Suess KG. We use negative photoresist in the step of Hall bar fabrication,
and positive photoresist in the step of Ohmic and bondpads contact preparation. A series of
chemical treatments, developing and etching process, then transfers the exposure pattern into
the material underneath the photoresist. The steps of our sample fabrication can be presented
as the followings.

3.2.1. Hallbar

A Hallbar pattern in the heterostructure is prepared by optical lithography. The Hallbar is
about 900 µm long and 100 µm wide. The pattern is designed with three legs on each side as
shown on the photo mask in Fig. 3.2(a). These Hallbar legs are used in the measurement for
either current contacts or voltage contacts. The process of optical lithography for Hallbar is
summarized and presented in Fig. 3.3. The 2DEG level formed at the interface between GaAs
and AlGaAs is identified by dashed line which is underneath the surface about 100 nm. At first
step, we put the dry Heterostructure substrate on the middle of spinning table, and drop some
amount of adhesion chemical HMDS covering all surface. We leave it for 30 s, and then spin
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3.2. Optical lithography

2DEG

Substrate With negative photoresist

Exposure through photo mask Develop

Etching Lift-off

Cross section of sample 

Figure 3.3.: The fabrication process of the Hallbar sample by using the optical lithography and
chemical or wet etching method.

Figure 3.4.: (Left) The pattern of a designed Hallbar in our work. (Right) Optical micrograph
of a Hallbar etched from the heterostructure substrate.

the substrate to spread HMDS all over the surface. The negative photoresist MaN 405, which is
sensitive to the wavelength of 300-365 nm and has a resolution of 0.4 µm, is put on the surface,
and the substrate is spined to cover the surface with homogeneous resist. The sample is then
baked on the hot plate.

Using the desired photo mask, the substrate is exposed by UV light generated from optical
lithography machine. The direction of Hallbar axis is considered by depending on the plane
orientation of III-IV compound semiconductor. The good direction for carrying the current
through Hallbar is found to be parallel to the direction of [011], which is perpendicular to plane
(011) of the substrate. On the other hand, the bad direction is perpendicular to the good
direction and parallel to [011̄] direction, which is perpendicular to plane (011̄) of the substrate.
After finishing the exposure, we make post baking on the hot plate.

We then develop the sample with exposed negative photoresist in the developer maD 333
depending on how long the Hallbar structure needs to begin appearing on the surface. In this
step we need to stir the sample and monitor the changing of the resist simultaneously. The area
of negative photoresist which is not exposed will dissolve in the developer, while only exposed
resist defines the pattern of Hallbars on the surface. We stop the development process by using
deionized water and blow dry the sample with N2 gas. To get rid of any unwanted remaining
resist at the edge of the pattern, the sample is brought into an O2 plasma etching machine. We
use an O2 plasma to remove any unwanted resist parts. Before we perform this step, we first
need to pre-heat and clean the system in chamber by running the plasma for 5 min. The sample
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3. Sample Fabrication

is then hard baked on the hot plate.

To transfer the pattern into the bulk of the material, the chemical etching is needed in this
step. The sample is dipped into 37 % HCl before being dipped into the etching solution. The
etching solution we used for our substrate is the mixture of H2O : H2SO4 : H2O2. The depth
of the etched surface can be controlled and monitored by DEKTAK 3030 ST surface texture
profiler. The depth difference between before and after etching should be about 70-80 nm. The
etching rate is approximately 1 nm/s. The 2DEG is still located underneath the Hallbar pattern.
We can stop etching by rinsing with deionized water and blow dry with N2 gas. In a final step,
the photoresist is lifted off with acetone and IPA. The Hallbar structure with thickness of 70-80
nm will be left on the surface of Heterojunction substrate, as shown in Fig 3.4.

3.2.2. Ohmic Contacts

In this step ohmic contacts to the 2DEG are prepared. The pattern of ohmic contacts for
a Hallbar is shown as six rectangular windows on the photo mask in Fig. 3.2(b). Optical
lithography with a positive photoresist is used in this step. The ohmic contact fabrication is
presented in Fig. 3.5. The substrate with Hallbars structure dried with acetone and IPA is
put on the spin-coater. The positive photoresist maP 1215, which is sensitive to wavelengths
between 300-460 nm and has a resolution of 1 µm, is then coated on the surface by spinning
method. The substrate with photoresist is baked on the hot plate. On the table of exposure
machine, we align the ohmic contact windows in the photo mask on each legs of a Hallbar, and
then expose with UV-light together.

Substrate with

postive photoresist

Exposure through 

photo mask

Develop

Metal evaporation

Lift-off

Figure 3.5.: The preparation process of the ohmic contacts, gate leads, and bondpads. Figures
in right hand show the cross-section view.

After exposure, the sample is developed by using developer MF 26A or maD 331. Because
of the positive photoresist, the exposed area will dissolve in the developer and left un-exposed
photoresist on the sample. During developing the sample, we need to stir and monitor the
pattern appearing on the sample. We stop developing with deionized water and blow dry with
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3.2. Optical lithography

N2 gas. The O2 plasma etching is used to get rid of the unwanted remaining resist at edge of the
contact windows. Before loading the sample in the evaporator, we prepare the surface for metal
deposition by dipping the sample in 37% HCl and blow dry with N2 gas. This step removes the
oxide that might form on the sample surface and could lead to metal adhesion problems.

Metal pads for ohmic contact are deposited on parts of the Hallbar by evaporating process.
The metal for ohmic contact are also loaded in the heating sources inside the machine. For
ohmic contacts, we deposit three layers from bottom to top of metals which are gold-germanium
(AuGe), nickel (Ni), and gold (Au). The AuGe and gold is evaporated by using thermal evapo-
rator, while the Ni is evaporated by using e-beam evaporator. After liftoff in acetone and rinsing
with IPA, the AuGe/Ni/Au only sticks to the areas of ohmic contact windows. After liftoff, the
ohmic metal must be annealed into the heterostructure to make the contact with the 2DEG.

The sample is heated in the annealing oven AZ500 from MBE Komponenten GmbH. The
metal melts and is absorbed into the underlying Hallbar and forms an electrical contact between
metal and the 2DEG. The sample is annealed under the atmosphere of forming gas 20% Ar/H2.
The position and pattern of ohmic contacts on each leg of a Hallbar is shown in Fig. 3.6. It
can be noticed that there is some remaining photoresist from the Hallbar preparation, which
cannot be dissolved. However, their resist did not cause any problems in the next step of sample
preparation and also in the sample measurement.

Figure 3.6.: (Left) The pattern and position of ohmic contact at the parts of a Hallbar. (Right)
The optical micrograph of a Hallbar with deposited metal at ohmic contacts.

3.2.3. Gate Leads and Bondpads

In this step, we deposit the metal layers (Ni and Au) for bondpads and gate leads which connect
designed nanostructure from electron beam lithography to their own bondpads. For our samples,
we can prepare gate leads and bondpads simultaneously. There are six lead gates with bondpads
designed at each side of the center of a Hallbar. Six bondpads are positioned on the ohmic
contacts. All bondpads, which are large metallic areas, are prepared for wire bonding between
the sample and chip carrier. This process of preparation is the same as ohmic contact as
presented in Fig. 3.5, but evaporated metal and some details are different.

First, the dried sample is coated with positive photoresist maP 1215 with spinning technique.
Then the sample is baked on the hot plate. The sample is aligned with the pattern of gate leads
and bondpads on the photo mask, and exposed with UV-light. We develop the photoresist on
the sample with the developer MF 26A or maD 331 until the pattern of gate leads and bondpads
appear clearly, and then stop with deionized water and blow dry with N2 gas. We clean the
unwanted remaining photoresist with O2 plasma. The surface of the sample is cleaned and
prepared for metal adhesion with dipping in 37% HCl and then blow dry with N2 gas.

The sample is loaded into the evaporator as well as the metal sources which are chromium
(Cr) and gold. We evaporate Cr as adhesion layer by using e-beam evaporating source, and then
evaporate gold by using thermal evaporating source. Lift-off in acetone and rinse with IPA. The
metals only stick to the area of the sample where there is no photoresist before evaporation.
Ultrasonic can be used for short time if necessary to assist lift-off. The position and pattern
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3. Sample Fabrication

Figure 3.7.: (Left) The pattern and position of gate leads and bondpads deposited on a Hall-
bar. (Right) Optical micrograph of a Hallbar with ohmic contact, gate leads, and
bondpads.

of gate leads and bondpads deposited on a Hallbar has been shown in Fig. 3.7. This distance
between two big markers at the adjacent corners is 920 µm.

3.3. Electron Lithography

Electron beam (e-beam) lithography is used to write the fine pattern of nanostructures that
define the gates of the point contacts and quantum dots as well as the larger parts of these gates
that connect out to the gate leads prepared by optical lithography as described above. The
lithography process is similar to that used for optical lithography. In this process, an e-beam
resist is coated on the surface of the sample, and the electron beam microscope is used to expose
the desired pattern whose size is in the order of nanometer.

For the process of e-beam lithography, the sample is firstly dried by acetone and IPA. The
sample is coated with a 2% solution of PMMA (polymethyl methacrylate) in MIBK (methyl
isobutyl ketone) for positive e-beam resist by spinning technique. The sample is firstly baked
on the hot plate and then hard baked in the oven. The sample is then loaded into the chamber
of scanning electron microscope (SEM) to be written with e-beam. The SEM system that we
use in our work is Philips XL 30. The pattern generator connected to the SEM system is used
to control the e-beam to write the desired nanostructure.

The pattern of nanostructure can be designed in Xfig program and saved in a format of FIG
file. The format of file is transformed to be PAT file. This file format will be used and read
out by the pattern generator. When the pressure inside the chamber is less than 10−5 mbar,
we can turn on the e-beam with 30 kV. Before writing any pattern, the good resolution for
e-beam of about 10 nm is needed. Then we adjust the focus and astigmatism of e-beam on
the tin ball particles. The current of e-beam is measured by pointing to a Faraday cup at high
magnification. We can change the position of the sample by controlling the stage, and also
protect some PMMA areas without exposing with e-beam by using the beam blanker.

The sample is aligned with the markers in order to get the center of a writing field whose
size is 82 × 82 µm2. In this step, it is necessary to adjust the focus of e-beam again with the
gold markers appearing underneath PMMA. For the pattern of nanostructure, we define the
dose of e-beam in each part. The base dose is set at 160 µC/cm2 defined in some big parts of
nanostructure. At a magnification of 976×, the dose is set higher when the pattern parts are
getting smaller. The smallest parts, for example the point contacts, is set at 264 µC/cm2. This
value of the dose is obtained from the array of test pattern which is written with different dose in
the dummy sample. After developing, metal evaporation, and checking the patterns with SEM,
we therefore get the proper dose for the point contacts and dots structure in the real sample.
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3.4. Wire Bonding

Figure 3.8.: (Left) The pattern of designed nanostructures is in the alignment with the gate
leads. (Right) Optical micrograph of the nanostructures on the middle of a Hallbar.

The sample is exposed with e-beam at the dose determined during a test exposure array
as discussed above. The pattern is written in the middle of the Hallbar, and each gate is
connected to the lead deposited at the same step as the bondpads, as shown in Fig. 3.8(left).
The additional pattern, which is a matrix of 5 × 5 squares with different dose, is also written
beside the bondpads where is covered with PMMA and no structures beneath. The dose for
middle square is defined at 160 µC/cm2. This matrix is really needed to use for monitoring in
the develop step. A solution of MIBK:IPA = 1:2 is used as a developer. We develop and check
the developed pattern by optical microscope until the middle square of the additional matrix is
clearly developed. We then stop developing with IPA and blow dry with N2 gas.

The developed sample is now ready to be loaded into the evaporator for gate metal deposition.
For the gates of our nanostructures, we typically deposit Cr and Au at the same rates as
bondpads preparation for both materials. We lift-off in acetone, rinse the sample with IPA,
and blow dry with N2 gas. The optical micrograph of the metal deposited nanostructures after
lift-off has been shown in Fig. 3.8(right).

3.4. Wire Bonding

We glue the sample into the chip carrier with silver epoxy, because the sample chip is needed
to have good contact with high thermal conductivity and can be held and fixed inside the chip
carrier when the epoxy hardens. Our samples are contained in the ceramic chip carriers with 18
pins, as shown in Fig. 3.9(a). We use an ultrasonic wedge bonder with gold wire to connect the
bondpads on the sample and the chip carrier pads. During wire bonding, the sample is heated at
120 ◦C to get rid of the moisture on the surface of bondpads. The schematic bonding is shown
in 3.9(b), and the optical and SEM micrograph of the sample with wire bonding at bondpads
are respectively shown in Fig. 3.9(c) and (d). The silver epoxy for gluing the sample in a chip
carrier can also be seen in Fig. 3.9(d).
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(a)

(c) (d)

(b)

Figure 3.9.: (a) The sample in a 18-pin chip carrier. (b) The pattern of wire bonding between
the bondpads of the device and chip carrier pads. (c) Optical and (d) SEM image
of the sample with gold wire bonded at bondpads.
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4. Measurement Techniques

4.1. Cryostat

In order to study the behaviour and physics of electron transport in nanostructures, e.g. quan-
tum point contacts and dots, one needs to perform measurements of the samples at very low
temperatures. Therefore, we use an Oxford Instruments Kelvinox 25 3He/4He dilution refriger-
ator cryostat for our cryogenics system, which is able to operate at temperatures down to order
of 100 millikelvin (mK).

4.1.1. 3He/4He Dilution Refrigerators

The principle of operation of the dilution refrigerator was originally proposed by H. London in
1951 [50]. When a mixture of the two stable isotopes of helium (3He/4He) is cooled below the
critical temperature, it separates into two phases. The lighter concentrated phase is rich in 3He
and the heavier dilute phase is rich in 4He [50], [51]. The phase diagram of 3He/4He mixtures at
saturated vapor pressure is shown in Fig. 4.1. The diagram shows the lambda line for superfluid
transition of 4He. The phase separation line of the mixtures below separate into a 4He-rich and
a 3He-rich phase. The concentration of 3He in each phase depends on the temperature. The
cooling process can be obtained by evaporating the 3He from the concentrated phase into the
dilute phase.

Normal fluid

Superfluid phase

Unstable composition

T
e
m

p
e
ra

tu
re

 (
K

)

Concentration of 3He in molar fraction (%)

Tri-critical point

Lambda curve

Figure 4.1.: Phase diagram of 3He/4He mixtures

4He becomes superfluid at a temperature of 2.177 K. The temperature of the superfluid phase
transition of 4He is depressed if it is diluted with liquid 3He. At 3He concentration of 67% and
at a temperature of 0.87 K, the λ-line meets the phase separation line at the tri-critical point.
The shaded phase separation region in the figure is a non-accessible range of temperatures and
concentrations for Helium mixture. If the helium mixture, which has a 3He concentration in
excess of 6.5%, is cooled to temperatures below 0.87 K, the liquid will separate into two phase,
one rich in 4He (dilute phase) and the other rich in 3He (concentrated phase). Because of its
lower density, the 3He-rich liquid floats on top of the 4He-rich liquid. If the temperature is
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Figure 4.2.: Schematic diagram of a 3He/4He dilution refrigerator

decreased to close to absolute zero, It can be seen that liquid in the concentrated phase becomes
pure 3He. But the concentration of the 3He does not approach zero when the temperature
approaches zero in the dilute phase and it instead reaches a constant concentration of 6.5% 3He
in 4He at saturated vapor pressure even for T = 0 K.

It is helpful to regard the concentrated phase of the mixture as 3He liquid and the dilute
phase as 3He gas. The main components of a 3He/4He dilution refrigerator and a flow diagram
are shown in Fig. 4.2. First, the mixture, mostly 3He gas, coming from the pump at room
temperature will be precooled by a liquid 4He bath at 4.2 K. Then, it will be condensed in 1 K
pot. It is not intended to cool the mixture enough to set up the phase boundary but only to cool
it to 1.2 K. To get phase separation, the temperature must be reduced to below the tri-critical
point. The 3He liquid will flow though the primary impedance, which is used to maintain a
high enough pressure in the 1 K pot region for condensing the gas, and enter the heat exchanger
which is in thermal contact with the still.

The still is the first part to cool below 1.2 K. It cools the incoming 3He at a temperature
of about 0.6 - 0.7 K before it enters the next heat exchangers and the mixing chamber. Below
the still we have a secondary flow impedance to prevent reevaporation of 3He. After leaving
this impedance, the liquid 3He will flow through several heat exchangers to precool it to a low
enough temperature before entering the upper concentrated phase in the mixing chamber.

In the mixing chamber, the 4He which makes up the majority of the dilute phase is inert.
Evaporating of 3He takes place of the phase-boundary and the 3He gas moves through the liquid
4He without interaction. This process continues to work even at the lowest temperature because
the equilibrium concentration of 3He in the dilute phase is still finite, even as the temperature
approaches absolute zero. However, the base temperature is limited by other factor, and in
particular by the residual heat leak and exchanger performance. A wider tube for dilute phase
in the mixing chamber leaves the lower dilute phase, and then goes through the series of heat
exchangers to precool the incoming concentrated 3He. Then, the contact area has to be increased
as far as possible, and so this can be done by using sintered silver heat exchanger being very
efficient even at the lowest temperatures.
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It enters the dilute liquid phase in the still where we have a liquid 3He concentration of less
than 1%. Therefore the concentration of the 3He is lower than it is in the mixing chamber, and
the flow of 3He can be driven into the still by the osmotic pressure difference. The vapor above
the dilute liquid phase in the still has a concentration of typically 90 % of 3He because of the high
vapor pressure of 3He at the temperature of the still. At this temperature the vapor pressure of
the 3He is about 1000 times higher than that of 4He, so 3He evaporates preferentially. A small
amount of heat can be supplied to the still to promote the required return flow. If 3He gas is
pumped on the still and compressed to a pressure of a few hundred millibar, and resupply the
condensation line continuously, we will get a closed 3He circuit. The gas is then passed through
filters and Nitrogen cold traps to remove impurities and returned to the cryostat.

The experimental equipment is mounted on or inside the mixing chamber, ensuring that it
is in good thermal contact with the dilute phase. The lowest possible base temperature can
be obtained by reducing any heat load on the mixing chamber. For our dilution refrigerator, a
sample in a chip-carrier is put in a socket on the cold finger which has a good thermal contact
with the mixing chamber. To estimate the temperature of our sample, a ruthenium oxide
(RuO2) resistance thermometer is also mounted on the cold finger. A 4-point measurement with
a current of 10 nA is performed on the RuO2 thermometer to read out the electrical resistance,
what can be calibrated to the electronic temperatures of the RuO2.

4.2. Measuring Techniques

We usually use two different setups to measure the conductance through the nanostructures on
a sample. We can feed a current and measure the voltage, or vice versa, via the ohmic contacts.
The current through and voltage across the device have to be kept relatively small for our
measurements. These two different measurement setups are 4-point and 2-point measurement.
For the 4-point measurement, we feed a constant current, I = Vsd/R, through the device via
two ohmic contacts (source and drain), and measure the voltage drop between two different
ohmic contacts, as shown in Fig. 4.3(a). For the 2-point measurement, a constant bias voltage,
Vsd, is applied and the current is measured through the sample, as shown as a configuration in
Fig 4.3(b).

(a) (b)

Figure 4.3.: The configuration of the (a) 4-point and (b) 2-point measurements for a Hallbar
sample.

4.2.1. 4-Point Measurement

The 4-point current bias measurement requires two ohmic contacts in both of the source and
drain reservoirs, and the voltage drop across the device is measured by using the other two
ohmic contacts, as illustrated schematically in Fig. 4.4. In our measurement setup, the 4-point
measurement is usually performed for measuring the conductance of quantum point contacts
which are described in the chapter of characterization of quantum point contacts. We measure
the differential resistance R = dV/dI, which can be converted to the differential conductance
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G = dI/dV , by using standard ac lock-in techniques. In this setup, the constant bias current
of 10 nA is fed into the sample. Because the output signal is comparable to the background
noise, then a lock-in amplifier is used to read out the periodically modulated signal and hence
eliminate the unwanted noise.

The small ac current Isd = 10 nA is generated from the current source by applying ac voltage
of 1 V from a 7260 or 7265 EG&G lock-in amplifier through the large in-line resistor R = 100
MΩ. The voltage drop across the device is fed back into the lock-in at channel A and B, and
obtained as ∆VAB = VA − VB . The measured voltage drop is due only to the resistance of
the sample including small series resistance because no current flows through the voltage probe
leads, ohmic contacts and external wires. The conductance from Isd/∆VAB is therefore equal
to the differential conductance because of the small source-drain current and voltage.

The depletion gates of the nanostructures are negatively biased with respect to the bondpad by
using individual channels of a Keithley 213 quad voltage source with analog output connector.
The applied voltage limit is ±10 V. There are four channels of digital-to-analog converters
(DACs) on a quad voltage source. The gate voltage Vg can be smoothly swept in a small step via
the measurement program called Measkern based on the Linux operation system. This program
was developed by U. Wilhelm at Max-Planck institute for solid state research in Stuttgart. All
our measurements are running with the Measkern program via GPIB-Bus port interfacing the
experimental instruments and the computer.

4.2.2. 2-Point Measurement

The 2-point voltage bias measurement are also usually used for characterizing our samples, for
example the ohmic contact resistances. According to the simplest voltage bias setup for 2-point
measurement in Fig. 4.3(b), the Keithley 236/237 Source Measure Units (SMU) can be used to
bias the voltage and measure the current through the sample along the path bounded with two
probe points in order to investigate the contact resistance at each ohmic contact of the sample.
The voltage is varied from -10 mV to 10 mV, and then the relationship between voltage and
current is linear according to Ohm’s law. From this method at low temperature, we can extract
the resistance of the ohmic contacts; average values of ∼ 150 Ω for sample PR1:d2 and ∼ 2 kΩ
for sample PR1:d1 were found.

For investigation of the quantum point contacts and dots, the lock-in technique is used in this
measurement. In this 2-point voltage bias setup, a constant ac voltage, Vsd, is applied across
the source-drain reservoirs and the resulting current in the circuit is measured to determine the
conductance, as shown schematically in Fig. 4.5. The sample resistances are measured in series
with the ohmic contact resistances and wiring resistances.

As seen in Fig. 4.5, a voltage bias is applied across the sample using the output of the lock-in
amplifier divided down to the source-drain voltage Vsd of 10 µV with the 104 : 1 divider of
resistors of 10 kΩ and 1 Ω. The high voltage is connected to an ohmic contact in the source
reservoir. An ohmic contact in the drain reservoir is connected to a Stanford Research Systems
model SR 570 low-noise current preamplifier which converts an ac current to ac voltage and feeds
back into lock-in amplifier. The factor of 1 µA/V is set for the current preamplifier. The gates
are again negatively biased with the Keithley quad voltage sources connected to digital-to-analog
converters as described above.

4.2.3. Linear Measurement

For the measurement in linear transport, the source-drain voltage Vsd is kept near 0 V. This
applied voltage across the sample should not exceed the temperature of electron, Te, that is
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Figure 4.4.: Circuit diagram of a 4-point ac current bias measurement. The lock-in sources an
ac voltage converted into a constant ac current source via a 100 MΩ resister. Two
ohmics are used for current path and two are used to measure the voltage drop
∆VAB across the sample. The gates are biased with negative voltages from the
quad voltage sources connected with DACs.
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Figure 4.5.: Circuit diagram of a 2-point ac voltage bias measurement. The lock-in sources an
ac voltage divided down to Vsd = 10 µV. The circuit is completed with a low-
noise current preamplifier connected to an ohmic in the drain. The current I2pt
is converted to Vread and fed into the lock-in. The gates are biased with negative
voltages from the quad voltage sources connected with DACs.
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eVsd < kBTe, where kB is Boltzman’s constant. Both 4-point and 2-point measurement per-
formed above are in the linear regime, because the voltage across the sample is very small. The
4-point measurement for low resistance samples is used where the conductance is greater than
e2/h, whereas the high resistance samples with conductance less than e2/h are better suited to
2-point measurements [52]. The conductances in this case is usually defined as G = dI/dVsd so
called the differential conductance. In the 2-point measurement, the dVsd can be approximately
the voltage drop between two probe points of the sample ∆VAB , whereas dVsd is equal to the
bias ac voltage to the sample in the 4-point measurement. The differential conductances of
quantum point contacts or quantum dots are usually presented as a function of gate voltage Vg,
that is G(Vg).

4.2.4. Nonlinear Measurement

In the nonlinear measurement, an additional bias voltage Vsd is applied between source and
drain. Therefore, we usually perform the measurement in nonlinear transport regime with 2-
point voltage bias setup. The schematic drawing of the nonlinear measurement is shown in
Fig. 4.6. The applied dc voltage from one DAC channel of the Keithley quad voltage source is
added in series with the ac voltage generated from lock-in amplifier before they are connected
to the 103 : 1 divider in order to obtain V ac

sd = 10 µV. The dc source-drain voltage V dc
sd is also

divided with a factor of 103. The dc voltage can then be adjusted for non-zero source-drain
voltage. Therefore the voltage across the sample contains the dc and ac components for the
applied source-drain bias voltage; Vsd = V dc

sd + V ac
sd .
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Figure 4.6.: Circuit diagram of a nonlinear measurement based on the 2-point voltage bias mea-
surement. A finite Vdc from a DAC channel of voltage source is added in series to
the Vac. The voltage is divided with resistance divider to obtain dc+ac source-drain
bias voltage. The current through a sample is converted to Vread by a low-noise cur-
rent preamplifier, and fed back to the lock-in to read out the V ac

read. The multimeter
is used to measure the V dc

read. The gates are biased with negative voltages from the
quad voltage sources connected with DACs.

The current, I2pt, through the sample is converted to a voltage value with the same factor of
the low-noise current preamplifier that is used in the 2-point measurement setup. The dc read-
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out voltage V dc
read converted from the dc current, Idc2pt, can be measured by the HP34401A digital

multimeter. The lock-in amplifier is fed back with the ac read-out voltage, V ac
read, converted from

the ac current, Iac2pt. The gates are negatively biased with the Keithley quad voltage sources.
The differential conductance, G = dI/dVsd, is generally measured as a function of gate voltage
and dc source-drain voltage as G(Vg, Vsd).

The gate voltage Vg can be negatively biased with a DAC channel connected to the Keithley
quad voltage source as described in the 2 and 4-point measurement setups. Nevertheless, the gate
voltage is usually swept in very small steps in the nonlinear measurement for high resolution
results. The sweeping limit for a DAC voltage source is an increment of 250 µV for voltage
varying range of -1 to 1 V, and 1.25 mV for varying range of 1 to 5 V or -1 to -5 V. In order to
sweep gate voltage in a smaller step than the limit, we add a DAC voltage sources connecting to
the resistance divider R1 : R2 with another DAC voltage source in series. The schematic circuit
diagram is show in Fig. 4.7.

According to this circuit, VDAC1 is divided by a factor of R1/R2 and added in series with
VDAC2 which is fixed at a constant. Therefore we can sweep the Vg in a very small step, for
example, if R1/R2 = 100 and VDAC1 is swept in the step of 1 mV which is far from the limit,
then Vg = VDAC2 + VDAC1(R2/R1) and is swept in the increment of 10 µV, which gives a high
resolution detail of the result as a function of gate voltage Vg.

Quad
Keithley

Quad
Keithley

gDAC1V VDAC2R1

R2

V

Figure 4.7.: The voltage sources for gate voltage Vg which can be swept in a smaller increment
than the limit. It is compounded with two DAC channels of the quad voltage
sources. One source with VDAC1 is connected to the resistance R1/R2 divider, and
in-line connected to another voltage source VDAC2.

4.3. Characterization of 2DEG by Quantum Hall Effect

Without negative voltage bias to any gates of nanostructure, we can set up the 4-point mea-
surement in applied magnetic field to study the quantum Hall effect of the Hallbar sample
and obtain the characteristics of the 2DEG. The magnetic field is applied perpendicular to the
plane of 2DEG in the sample. The 4-point measurement of the Hallbar sample is shown as
the inset of Fig. 4.8, the longitudinal resistance and transverse or Hall resistance where of the
sample temperature of ∼ 65 mK are shown. At low magnetic fields the longitudinal resistance is
constant while the Hall resistance increases linearly. However, at high magnetic fields the longi-
tudinal resistance shows pronounced oscillatory behaviour, which is referred to as Shubnikov-de
Haas oscillations, while the Hall resistance shows plateaus corresponding to the minima in the
longitudinal resistance [1, 4, 53].

The Hall resistance is quantized in units of h/e2 divided by an integer i; RHall = h/(ie2).
It can be noticed in Fig. 4.8 that the even indices with i > 4 label show flat plateaus. At 0.3
T< B < 0.6 T, the plateaus with even indices only appear and correspond to a spin degeneracy
of the electrons. The minima of the oscillations are nearly zero at high magnetic field, and the
kinks in the longitudinal resistance peaks are related to the lifting of the spin degeneracy by
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4. Measurement Techniques

Figure 4.8.: Measured longitudinal and Hall resistance for a Hallbar sample PR1:d2 at T≈ 65
mK. The 4-point current bias measurement setup has been shown in the inset.

Zeeman effect and correspond to the Hall resistance’s plateaus labeled with odd indices.

The plateaus appearing at 65 mK correspond to the Fermi energy lying in a gap between
Landau levels in the density of states of 2-D electrons system with applied magnetic field. The
energy of the electrons is quantized and the Landau levels are separated by the cyclotron energy
~ωc, where ωc is the cyclotron frequency and ωc = eB/me. The gaps between Landau levels
become wider when the magnetic field increases as shown in Fig. 4.9(a). As the magnetic field is
varied, the Landau levels move relative to the Fermi energy. The energy states underneath the
Fermi level are occupied by electrons identified as the shaded areas. The longitudinal resistance
goes through a maximum every time the Fermi level lies at the center of a Landau level.
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Figure 4.9.: (a) Landau quantization of 2DEG. (b) Plot of the longitudinal resistance versus
inverse of the magnetic field. This shows the periodic oscillation with a constant
∆(1/B).

In Fig. 4.9(b), the periodic oscillation of longitudinal resistance as a function of the inverse
of magnetic field has been plotted. The interval of 1/B between two peaks is equal to the
constant of 2e/h divided by the electron density ns of the 2DEG. The oscillations in longitudinal
resistance therefore provide an alternative method to determine ns. Since ∆(1/B) = 0.29 T−1
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4.3. Characterization of 2DEG by Quantum Hall Effect

for the sample PR1:d2 fabricated from the same heterostructures wafer as the other samples,
the electron density is calculated as ns = 2e/h(∆(1/B)) = 1.66× 1015 m−2, which is typical for
our samples. The Fermi wavelength is given by λF =

√

2π/ns ≃ 62 nm.
The longitudinal resistance at zero magnetic field, RB=0

long , is equal to 316 Ω, the sheet resistance,

ρ2, is then given by ρ2 = RB=0
long /N4pt ≃ 60 Ω, where N4pt is the number of squares of the Hallbar

geometry between voltage probes in the 4-point measurement. From the electron density and
sheet resistance, the mobility can be calculated as µ = (ensρ2)

−1 = 6.3 × 105 cm2/(Vs), and
hence the mean free path given by Lm = (~/e)µ

√
2πns = 4.2 µm. This shows that the dimension

of designed nanostructures of the order of 102 nm is smaller than the mean free path of electrons,
and we can obtain ballistic transport through our nanostructures.
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5. Quantum Point Contacts in Linear Transport

Quantum point contacts (QPCs) are short one dimensional (1D) channels connected adiabati-
cally to large source and drain reservoirs. In this chapter, the electron transport through QPCs
is measured with very small bias source-drain voltage. Therefore the investigated transport in
this chapter is all in the linear regime.

5.1. Quantum Point Contacts in a Different Design

In our samples, we design dot structures which are formed an arrangement of point contacts,
and we also define standalone point contacts in a different pattern. We can therefore study the
interesting properties of electron transport in many designs of our quantum point contacts.

5.1.1. QPCs in the Sample PR1:d2

Firstly, we consider the sample PR1:d2 with nanostructures of the couple dots in series and a
standalone quantum point-contact, as shown schematically in Fig. 5.1(a). The electron micro-
graphs of designed patterns are shown in Fig. 5.1(b) and (c). The metal gates are labeled and
tuned with negative voltages to deplete the 2DEG underneath at the interface of GaAs-AlGaAs
heterojunction, and force the electrons to flow through a narrow constriction in the 2DEG. The
metallic split-gates A1-A2, C1-C2 and E1-E2 have a geometry of 250 nm width and 200 nm
length. The standalone split gate F1-F2 is bigger than the gates at quantum dots structure,
and is 400 nm width and 250 nm length. The width of the constriction is controlled by the gate
voltage and can be made comparable to the Fermi wavelength.

(a) (b)

(c)

Figure 5.1.: (a) Schematic drawing of the nanostructures fabricated on the sample PR1:d2 and
all metal gate are labeled as gate A to gate F. (b) and (c) The SEM images of the
designed double dots and standalone QPC F.

QPC F

The conductance quantization of quantum point-contacts has been observed and investigated by
2-point and 4-point measurements with the lock-in technique. Figure 5.2 shows the differential
conductance, G = dI/dVsd, in QPC F as a function of applied gate voltage Vg = VF1 = VF2
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5. Quantum Point Contacts in Linear Transport

at temperature of 70 mK with the 4-point measurement. In this case, the Vsd depends on the
QPC resistance which is increased as more negative voltage biased to the gates of a QPC. The
conductance is obtained from the measured resistance in QPC F after substraction of a constant
series resistance of 370 Ω, and is quantized in the unit of 2e2/h.
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Figure 5.2.: Conductance quantization in the unit of of 2e2/h in QPC F of the sample PR1:d2.
The differential conductance is corrected with a series resistance of 370 Ω.

The series resistance used for the substraction was chosen to match the plateaus with their
corresponding quantized values. This resistance is in reasonable agreement with the series
resistance based on the sheet resistance of the 2DEG. In this measurement, the other gates
except gate F1, F2 and A2 are grounded. A negative voltage is applied to the gates F1 and F2,
whereas the gate A2 must be not grounded because there is a short circuit between one terminal
contact of the hall bar and gate A2 as discussed below.

The conductance of the QPC F shows a sequence of quantized plateaus with steps of 2e2/h.
The conductance is pinched off at −1.06 V and ten steps of quantization are observed. Several
plateaus, in particular first three plateaus, are quite flat and well fit to the quantized value. The
conductance is simply given by the conductance quantum 2e2/h, multiplied by the number of
occupied 1-D subbands (N) in the QPC: G = 2e2/h(N). Each occupied subband contributes
2e2/h to the conductance. The broadening between conductance plateaus is caused by the effect
of finite temperature at which the quantization at zero temperature limit convolves with the
derivative of Fermi-Dirac distribution. Some of plateaus deviate from the exact quantization.
These deviations might come from the finite reflection probability of the current carried by a
subband as discussed by B. J. Wees et al [9].

QPC C and QPC E

We return to determine why we need to un-ground gate A2. Consider the quantization of
conductance of QPC C observed from the resistance measured by the 2-point technique as shown
in Fig. 5.3, the result is corrected with a sum of the contact resistance and series resistance of
2.4 kΩ. The conductance of QPC C with ungrounded gate A2 is higher and more pronounced
than that with grounded gate A2. This means that the current can leak via grounded gate A2,
and thus a lower current through the sample is measured. To avoid any influence from this
leaking current, the gate A2 is always ungrounded in every measurement.

Figure 5.4 shows the differential conductance of QPC C and QPC E of sample PR1:d2 from
(a) the 2-point and (b) the 4-point measurement. In the 2-point measurement, the conductance
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Figure 5.3.: The comparison of the differential conductance of QPC C with grounded and un-
grounded gate A2. These results have been investigated by the 2-point measurement
and corrected with a resistance of 2.4 kΩ.

is corrected with a resistance of 2.4 kΩ. The conductance in the 4-point measurement is corrected
with a series resistance of 470 Ω. This used series resistance is a bit higher than that used for
QPC F. The differential conductance of QPC C and QPC E are respectively measured as a
function of applied gate voltage Vg = VC1 = VC2 and Vg = VE1 = VE2. There is the quantization
in conductance for both point contacts. It can be seen from the comparison of the position of
the kinks appeared in the conductance between (a) 2-point and (b) 4-point measurement. The
kinks in (b) are lower than (a), clearly at Vg = −0.35 V for QPC C. From both measurement
techniques, the position of the plateaus is corrected by a series resistance for each techniques,
but there is the difference of the kinks position in the region before quantization. Therefore the
series resistance shows the dependence on applied gate voltage Vg.
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Figure 5.4.: Conductance quantization of QPC C and QPC E of the sample PR1:d2. (a) The
differential conductance is obtained by the 2-point measurement and corrected with
a resistance of 2.4 kΩ. (b) The differential conductance is obtained by the 4-point
measurement and corrected with a series resistance of 470 Ω.

There are three plateaus in the conductance of QPC C and two plateaus in the conductance
of QPC E. For QPC C three plateaus are observed in the gate voltage interval between -0.365 V
to -0.48 V at pinch off. For QPC E there are two plateaus observed in the interval between -0.27
V and -0.38 V at pinch off. After correction with a series resistance, the curve of each QPCs
in (a) and (b) is almost repeated in the same trace. For both measurements, the conductance
of each QPC shows the quantization in the same range of the gate voltage. Comparing with
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Figure 5.5.: The differential conductance quantization of QPC C at the 1st and the 2nd cooling
in the He3/He4 dilution refrigerator. The conductance is obtained by (a) 2-point
measurement after correction for a resistance of 2.4 kΩ, and (b) 4-point measurement
after correction for a series resistance of 470 Ω

the conductance of QPC F, the gate voltage interval of the formation of QPC C and QPC E is
smaller than that of QPC F. This confirms that the width size of gate F1-F2 is wider than that
of gate C1-C2 and E1-E2.

The comparison of the differential conductance of QPC C (C1-C2) between the cooling process
at a different time, the 1st and the 2nd cooling, has been shown in Fig. 5.5. The conductance
presented before is all obtained after the 2nd cooling. The differential conductance obtained by
the 2-point and 4-point measurement setup is shown in Fig. 5.5(a) and Fig. 5.5(b), respectively.
We can see clearly that there is an improvement of conductance quantization. The conductance
quantization in the 2nd cooling process is observed in the region of a more negative gate voltage.
The quantization is more pronounced, and shows more plateaus in conductance from one to three
plateaus. The conductance is the inverse of measured resistance after substraction of a series
resistance of 2.4 kΩ for the 2-point measurement and 470 Ω for the 4-point measurement. We
also notice the curve in the 1st cooling that there is an oscillation appearing in the differential
conductance at the beginning of the quantization. For the details of this oscillation, we will
discuss afterwards in the section 5.2

5.1.2. QPCs in the Sample PR1:d1

We studied the differential conductance quantization of the quantum point contacts in the
sample PR1:d1, which has the structure of two systems of double quantum dots in series, as
schematically shown in Fig. 5.6. The geometry of the QPC split gates for both systems is 250
nm width and 200 nm length. The pattern of gate A1, C2, D1, and F2 are designed as the finger
gates in order to form each dot structure. The inset shows the electron micrograph of one of
double dot systems. The size of the double dot is designed to be different for two systems.

Figure 5.7(a) to 5.7(e) show the comparison of differential conductance of QPCs in sample
PR1:d1 obtained by the 2-point measurement between before and after the sample illumination
with IR-LED. The conductance for each QPC is measured as a function of corresponding split
gate voltage. The illumination is used to change the properties of the 2DEG, for example, to
increase electron density, to reduce the impurity scattering influencing the electron mobility, etc.
The conductance G before illumination for all QPCs shows unclear quantization. After illumi-
nating the sample, the quantization is improved and the traces are shifted to higher negative
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5.2. Conductance Oscillation in Quantum Point Contacts

Figure 5.6.: Schematic structure of two different size of double quantum dot systems in series of
the sample PR1:d1. The SEM image of such double dots has been shown in the
inset.

gate voltages.

All conductance traces show pronounced plateaus in units of 2e2/h. Therefore, we can correct
the conductance of each QPC with a series resistance by matching the plateaus to the the
reasonable value in the unit of 2e2/h. A series resistance of 2 kΩ is used to subtract from
the resistance of QPC A and QPC A1C2. The measured resistance of QPC D, D1F2, and F
is subtracted with the series resistance of 1.8 kΩ, 2.2 kΩ, and 2 kΩ, respectively. Thus, the
well-defined eight conductance plateaus of QPC A and four plateaus of QPC A1C2 appear
and have been respectively shown in Fig. 5.7(a) and 5.7(b), whereas, there are four plateaus
appearing in the conductance of QPC D, QPC D1F2, and QPC F, as shown in Fig. 5.7(c)-
5.7(e). Unfortunately, the conductance of QPC C is not presented here because the gate C1 is
broken. We also tried to measure the conductance in QPC C but it needed too high a negative
voltage, and it does not show any evidence of quantization.

The series resistance used to corrected the conductance for all QPCs is noticed to be in the
range of 1.8 kΩ- 2.2 kΩ. This series resistance include the resistances at two contacts of the
Hallbar terminal that are used for the 2-point measurement setup. It can be seen that the quality
of quantization in all differential conductance traces is improved after sample illumination. These
traces have been corrected with the corresponding series resistance, but the conductance traces
before sample illumination are not corrected.

5.2. Conductance Oscillation in Quantum Point Contacts

In this section, we discuss the oscillatory behaviour appearing in the conductance of some
quantum point contacts in our samples.

5.2.1. QPC C in the sample PR1:d2

From the the 1st cooling in Fig. 5.5, the conductance of QPC C decreases as the Vg increases
negatively, and there is an additional structure; a sequence of conductance peaks before the
quantization begins. This oscillatory behaviour can be observed in both measurement setups.
However, after 2nd cooling these conductance oscillations disappears.

Figure 5.8(a) shows the differential conductance of QPC C as a function of the gate voltage
VC2 when the gate voltage VC1 is fixed. The VC2 is swept in steps of 250 µV, and the VC1 is
varied in steps of 4 mV. We can observe that a sequence of conductance peaks exists in three
regions: (i) −0.23 V < VC2 < −0.22 V, (ii) −0.27 V < VC2 < −0.24 V, and (iii) −0.29 V
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Figure 5.7.: The differential conductance G(Vg) of the (a) QPC A, (b) QPC A1C2, (c) QPC D,
(d) QPC D1F2, and (e) QPC F of the sample PR1:d1 before and after illuminating
the sample. All traces are obtained by the 2-point measurement.
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Figure 5.8.: (a) The differential conductance G of QPC C as a function of gate voltage VC2 while
the VC1 is fixed at a constant value. The VC1 is varied from -0.22 to -0.5 V in steps
of 4 mV. There are the sequences of conductance peaks appearing in each trace. (b)
and (d) Conductance oscillation in (a) at two regions of VC2. (c) and (f) Gray-scale
plot of the transconductance dG/dVC2 respectively corresponding to (b) and (d) as
a function of VC1 and VC2 for clarity of the peak position.
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< VC2 < −0.27 V. These oscillations can be observed in every conductance trace in which the
gate C1 voltage is varied from -0.22 V to -0.5 V in steps of 4 mV. Seven conductance peaks in the
the middle region are shown in Fig. 5.8(b). To see the detail of this feature in the differential
conductance, the VC2 is swept in steps of 100 µV, which is smaller than that of the data in
Fig. 5.8(a). The average separation between peaks is about 2.5 mV.

To display the feature in the conductance traces more clearly we show the transconductance
dG/dVC2, which is calculated by numerical differentiation from the measured differential con-
ductance. The transconductance is zero on the conductance peaks or valleys, and shows maxima
or minima in the transition regions between conductance peaks and valleys. Figure 5.8(c) shows
the gray scale plot of the transconductance of the data in Fig. 5.8(b). The maxima are repre-
sented as the bright area and the minima are represented as the dark area. Four stripes are
shown and their slope dVC1/dVC2 ≈ −4000, which is an almost vertical line, is clearly changed to
be approximately -370 at VC1 = −328 mV, and also slightly changed again around VC1 = −0.5
V. For the sequence of the peaks in the middle, the position of the conductance peaks shifts to
less negative of the VC2 as the VC1 is varied to more negative. This means that the position of
conductance peaks in Fig. 5.8(c) is slightly shifted when VC1 > −328 mV, and obviously shifted
when VC1 < −328 mV.

In order to see the detail of the oscillation in the region of −0.29 V < VC2 < −0.27 V, the
VC2 is also swept in steps of 100 µV and the data is shown in Fig. 5.8(d). The oscillations
can be observed clearly in this region. The data gap shown in this figure is the jumping of the
measured data at VC1 = −376 mV, which is not significant and also not reproducible. The gray
scale plot of transconductance, dG/dVC2, of the data in Fig. 5.8(d) is shown in Fig. 5.8(e). The
transconductance pattern is almost vertical stripes. The slope of each stripe is constant. This
shows that the gate C1 voltage does not effect the position of conductance peaks when the gate
C2 voltage is swept. The average spacing between peaks is about 2 mV.

The conductance oscillations might be Coulomb blockade oscillations due to the periodicity.
It can be assumed that there is an unexpected quantum dot coupled to the quantum point
contact. For the system with low density of electrons, the ionized donors in the doped layer of
the heterostructure can generate the random impurity potential [54, 55]. Many electron puddles
in the 2DEG are formed by wells in the random potential. Qualitatively, a electron puddle
behaving like a quantum dot might be accidentally coupled with one of split gates of the quantum
point contact; gate C2 for this QPC. Hence, when the VC2 is swept, the coupling of the dot is
changed and the electron in the dot can tunnel through the barrier of the random potential. The
conductance peak can therefore be observed as the superposition between the Coulomb blockade
oscillations and the conductance of a QPC. This assumption could be confirmed by the cooling
sample in another time that can change the properties of 2DEG and also the distribution of
ionized donors providing the random potential. This can make more homogeneous in 2DEG and
redistribute electron puddles, especially the one coupled with our QPC. The oscillation then
disappears in the conductance of QPC C in the 2nd cooling as already shown in Fig. 5.5.

Figure 5.9 shows the differential conductance as a function of VC1 corresponding to the data in
Fig. 5.8(d). We can see a big data jumping at VC1 = −376 mV, which has been shown as a data
gap in Fig. 5.8(d). The conductance at VC2 = −277 mV which is a maximum of the conductance
peak in Fig. 5.8(d) has been shown and compared to the conductance at two neighbouring
minima: VC2 = −276 mV and VC2 − 278 mV. The conductance traces with VC2 = −276
mV and -278 mV are obviously below the trace with VC2 = −277 mV. The slight plateau at
G ≈ 1.5(2e2/h) corresponds to the dark repeating conductance traces at G ≈ 1.5(2e2/h) in
Fig. 5.8(d).
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Figure 5.9.: The differential conductance of QPC C as a function of gate voltage VC1 at three
values of gate voltage VC2.
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Figure 5.10.: (a) The differential conductance of QPC E as a function of gate voltage Vg. (b)
The traces of G of QPC E as a function of the VE1. Each trace is plotted at one
fixed value of VE2. The VE2 is varied from -0.25 V to -0.7 V. (c) Gray-scale plot of
the transconductance dG/dVE1 corresponding to data in (b) as a function of VC1

and VC2 for clarity of the peak position.
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5. Quantum Point Contacts in Linear Transport

5.2.2. QPC E in the sample PR1:d2

Oscillations in the conductance can also be observed in QPC E as well. These oscillations might
also be due to the coupling of QPC E to an accidental quantum dot which is formed by the
random impurity potential. The differential conductance with the 4-point measurement of QPC
E is shown in Fig. 5.10(a). The conductance is corrected with a series resistance of 1 kΩ to
match the 1st and the 2nd plateaus. The conductance of QPC E is measured as a function of
gate voltage Vg = VE1 = VE2. The oscillation is also found at the beginning of quantization.
Hence, we keep the VE2 at a fixed value and measure the differential conductance as a function
of the VE1, as shown in Fig. 5.10(b). VE1 is swept in steps of 100 µV and VE2 is varied with 4
mV per step from -0.25 V to -0.7 V. We can clearly see the dark repeating conductance traces
at G ≈ 2e2/h, 2(2e2/h), and 3(2e2/h). These repeating traces correspond to the first to the
third plateaus if this conductance data is presented as a function of the VE2.

Figure 5.10(c) shows the gray scale plot of transconductance dG/dVE1 of the data in Fig. 5.10(b)
to see the pattern clearly. There are four pronounced peaks appearing in the conductance of
QPC E. The position of the Coulomb peaks is shifted to less negative VE1 as the VE2 is negatively
increased. It can also be seen that there is structure crossing the transconductance traces. They
occur as slight dark lines along VE1 on the plane of the transconductance. This almost likes
some double dot structure with weak interdot coupling. It can be inferred that the QPC E might
couple with the system of two electron puddles from the inhomogeneous of electron density in
the 2DEG, and these two dot are also weak coupled with each other. Thus, the structure like
charging diagram of double dot system occurs when VE1 and VE2 are independently varied.

5.2.3. QPC A in the Sample PR1:d4

The oscillatory behaviour in the differential conductance of a QPC has also been observed in a
third sample. The SEM image of the quantum dots system and a standalone point contact in
the sample PR1:d4 is shown in Fig. 5.11. One split gate of standalone QPC A, A1, is linked
to the left gate (lead-to-dot) of a single dot structure in the quantum dots system. All metal
gates are labeled from A to F. When a negative voltage is applied to the gate A1, one gate of
a dot is also energized simultaneously. The split gates A1-A2 with 200 nm length are placed
diagonally and separated with 250 nm in the vertical direction. Thus, the diagonal separation
between gate A1 and A2 is about 320 nm. In this section, we are only interested in the QPC A
in this sample.

A1
B1 C1 D1 E1

F1

A2 B2 C2 D2 E2

F2

Figure 5.11.: The electron micrograph of the quantum dots system and a standalone quantum
point contact in the sample PR1:d4. The left figure shows the closed-up of QPC
A.

The negative voltage is applied to gate A1 and A2, and swept simultaneously. The sequence
of the differential conductance peaks of QPC A can be observed, as shown in Fig. 5.12. The
gate voltage Vg = VA1 = VA2 is swept in steps of 250 µV. The measured resistance from QPC A
is not subtracted by any series resistance because we cannot obtain and match any plateaus in
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5.2. Conductance Oscillation in Quantum Point Contacts

the conductance. This data is obtained by the 2-point measurement technique. The oscillatory
behaviour in the conductance of QPC A can be seen more clearly when we keep the the gate
A2 voltage fixed and sweep the gate A1 voltage. The result can be shown in Fig. 5.13.

Figure 5.13(a) shows that the gate voltage VA2 is varied from -160 mV to -400 mV in 2.5 mV
per step, and the gate voltage VA1 is swept in steps of 250 µV. This conductance is compounded
with three sets of measured data. It can be seen the evolution of the peaks while the gate voltage
is changing. When the VA2 increases negatively, the sequence of peaks shows more pronounced.
There are five pronounced conductance peaks which occur as the conductance is decreasing.
To be able to see the position and the pattern of the conductance peaks clearly, the gray scale
plot of the differential conductance of QPC A has been shown in Fig. 5.13(b). The solid line
indicates the position of the maximum of the peak and the slope, dVA2/dVA1, is approximately
-450, which means that the conductance peak is just slightly shifted. The peak spacing ∆VA1 is
about 4.5 mV. Figure 5.13(c) shows the gray scale plot of the transconductance corresponding
to the peaks pattern in 5.13(a) and 5.13(b). The solid line with the same slope is also used to
indicate the peaks position changing.

Figure 5.14(a) shows the differential conductance of QPC A as a function of the VA2. The
conductance quantization of QPC A is observed when the VA1 is fixed and VA2 is swept. When
VA1 is tuned to higher negative voltages, the first plateau of the quantization is clearly observed.
The VA1 is varied in steps of 2.5 mV and the VA2 is swept in steps of 250 µV. Figure 5.14(b)
shows the re-plotted conductance in Fig. 5.14(a) as function of VA1 as well as the plotting in
Fig. 5.13(a). This measured data corresponds to the data in Fig. 5.13 because the oscillatory
behaviour also occurs in the range of −200 mV < VA1 < −175 mV in Fig. 5.14(b). We can
clearly see the thick line of a few repeating conductance traces at −170.5 mV < VA2 < −170 mV.
It shows that the conductance in this small range of VA2 is at the first plateau of the conductance
quantization for all sweeping value of VA1. As seen in Fig. 5.14(b), the conductance converges
to 2e2/h when the VA1 is reduced, and G ≈ 2e2/h at VA1 < −240 mV.

The periodic oscillation in the differential conductance of QPC A come from the superposition
effect of the coupling system between a QPC and a single unexpected quantum dot as well as
QPC C and QPC E of the sample PR1:d2 described in two previous sections. The Coulomb
blockade oscillation of a single dot then appears in the conductance of the QPC. The unexpected
quantum dot might be formed by the random impurity potential contributed by ionized donors
[54]. Another possibility, which can explain Coulomb blockade oscillations in this sample, might
be the influence of the Ohmic contact of the metal gates on the surface of the Hallbar. Because
of this influence, a single quantum dot in which the gate A1 is the one of the lead-to-dot gates
may be formed and deplete the 2DEG underneath a dot structure. To compensate the influence
forming the dot structure, therefore, we apply the positive voltage to the other split gates except
gate A1 and A2. However, this also improves the properties of 2DEG by attracting the electron
at the interface of heterojunction.

Firstly, the positive voltage is applied and varied from 0 to 0.5 V to the gate B1, B2, and
C1, which are the metal gates of a dot structure having a lead-to-dot gate linked to the gate
A1. While the VA2 is fixed at -0.4 V, the pattern of the conductance peaks does not change
significantly, as shown in Fig 5.15(a). In Fig. 5.15(b) all split gates except gate A1 and A2 are
applied with higher positive voltage Vpos, while VA2 is still fixed at -0.4 V. We can see the change
of peaks pattern beginning at Vpos = 0.9. The applied positive voltage finally has some influence
to the 2DEG.

Then, we ground all spilt gates except the gate A1 and A2 again. The split gates of QPC
A are applied with the negative voltage, and the differential conductance is measured again
after applying the positive voltage to other gates. It can be seen clearly that the quantization
of conductance is improved and shows some well defined plateaus. Figure 5.15(c) shows the
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Figure 5.12.: Oscillation in the differential conductance of QPC A measured by the 2-point
measurement. The G is measured as a function of Vg = VA1 = VA2.
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Figure 5.13.: (a) The differential conductance of QPC A in the sample PR1:d4 as a function of
the VA1. Each trace is shown at a fixed value of VA2. The VA2 is varied from -0.16
V to -0.4 V. Gray scale plot of (b) the conductance and (c) the transconductance
of QPC A as a function of VA1 and VA2. Solid line indicates the changing of the
Coulomb peak position.
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Figure 5.14.: (a) The differential conductance of QPC A as a function of VA1. Each trace is shown
at a fixed VA1. The VA1 is varied from -0.16 V to -0.4 V. (b) The conductance data
in (a) is re-plotted as a function of VA1. The VA2 is varied from -0.16 V to -0.245
V. Oscillation in the conductance can be observed at the same region of VA1 as
Fig. 5.13(a).

comparison of the differential conductance before and after applying the positive voltage. Fig-
ure 5.15(d) shows the differential conductance of QPC A after correction for a series resistance
of 2.3 kΩ. The Coulomb blockade oscillation disappears and the quality of conductance of QPC
A is much better and quantized in the unit of 2e2/h. There are seven plateaus in the differential
conductance. It can be inferred that an unexpected single quantum dot disappears in the 2DEG
and no longer couples to the QPC. For the interesting oscillatory behaviour in the conductance
of the QPC A in the sample PR1:d4, it will be discussed again in the nonlinear measurement
of a QPC coupled with an unexpected quantum dot in Coulomb regime in the section 6.5.
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Figure 5.15.: (a) The conductance oscillation in QPC A as function of VA1 when VA2 is fixed
at -0.4 V and VB1,B2,C1 is biased with positive voltage. (b) The conductance of
QPC A when other gates except gate A1 and A2 are applied by positive voltage
Vpos = 0.5 V to 0.9 V. (c) The comparison of G between before and after applying
Vpos. (d) The quantization of G in QPC A after correction for a series resistance.

70



6. Single Quantum Dots with Weak Coupling

6.1. Linear Transport of the Quantum Dots in Weak Coupling
Regime

To characterize all single quantum dots in our samples, we need to perform linear measurements
in which a very small voltage is biased to source and drain contact of the sample; Vsd = 10 µV
comparable to kBT for our measurement at low temperature. Because the energy level spacing
∆E is presumed to be greater than kBT , only one quantized energy level within kBT or small
biased window contributes to the electron transport. The linear transport so called the single
level transport is therefore obtained in this regime. There are five single dots in two samples to
present in this part showing the investigation of the Coulomb blockade oscillations with weak
coupling between the quantum dots and the reservoirs.

6.1.1. Coulomb Oscillation of the dotII in the sample PR1:d2

Initially, we study the electron transport through the dotII structure in the sample PR1:d2
in weak tunnel coupling regime. In order to obtain the Coulomb oscillations occurring in the
differential conductance in this regime, we have tuned the voltage of the left gate (VC1C2 ≡
VQPC C) and the right gate (VE1E2 ≡ VQPC E) which are connected to the reservoirs, to obtain
strong tunneling barriers.

A1 B1 C1 D1 E1

A2 B2 C2 D2 E2

dotII

A1

B1
C1

D1

E1

A2

B2
C2

D2

E2

source drain

(a) (b)

dotI dotII

Figure 6.1.: (a) Scanning electron micrograph of the double dots structure in the sample
PR1:d2. (b) Schematic of device and labels for each gates. Shaded gates are
used to form the dotII. The gate A2 is ungrounded due to a shortcut to a contact
of Hall bar sample.

The dots structure in the samplePR1:d2 with identified gates and dots is shown in Fig. 6.1(a).
The size of lithographic design for each dot is 400 nm by 600 nm. To form the dotII in Fig. 6.1(b),
all shaded gates are tuned to define an electron puddle. The side gate voltage can be tuned by
adjusting the voltage of gate C1(E1) and C2(E2) simultaneously. Similarly, the center or plunger
gate is controlled by simultaneously tuning the voltage of gate D1 and D2. The gate A1 and
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6. Single Quantum Dots with Weak Coupling

center gate B1B2 are not used. They are grounded and have no effect on the 2DEG. Additionally,
the gate A2 has a short circuit to one contact of Hall bar, thus it is always ungrounded during
the measurement performed.

We investigate the range of VC1C2 and VE1E2 to obtain the Coulomb blockade oscillation in the
dotII structure. In Fig. 6.2, the differential conductance G of QPC C and QPC E is measured
as a function of their own gate voltage at each applied voltage of QPC D (VD1D2 ≡ VQPC D),
which is the center gate or plunger gate voltage for the quantum dot structure. Because the
changing of the center gate voltage VD1D2 has an influence to the side gate voltage, VC1C2 and
VE1E2, and the measured differential conductance, we are then interested in the effect of center
gate voltage to the side gate voltage.

The differential conductance of QPC C in Fig. 6.2(a) and QPC E in Fig. 6.2(b) with fixed
VD1D2 and no applied other gate voltages show the quantization of the conductance for each
curve. The VD1D2 has been varied from -0.9 to -1.3 V in order to observe the effect of center
gate voltage to side gate voltage. The differential conductance is presented in the unit of 2e2/h.
We can barely see the first plateau of the conductance quantization of QPC C and QPC E
with VD1D2 of -0.9 to -1.2 V, whereas the conductance of both QPCs with VD1D2 = −1.3 show
the losing of conductance quantization. In order to obtain the Coulomb blockade oscillation
in a single quantum dot, the conductance of side gates are focused on about e2/h or below.
Therefore, the range of side gate voltages for observing the Coulomb oscillation are selected as
VC1C2 = −0.32 to -0.35 V and VE1E2 = −0.21 to -0.25 V.
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Figure 6.2.: Differential conductance of QPC C and QPC E in the sample PR1:d2 with applied
QPC D from -0.9 V to -1.3 V in steps of 0.1 V

Figure 6.3 shows the observation of Coulomb blockade oscillation as a function of center gate
voltage Vg at various values of VC1C2 and VE1E2. The Vg is swept in the increment of 250 µV.
Each subfigure shows the differential conductance with fixed VC1C2, and VE1E2 is varied from
-0.21 to -0.25 V. The VC1C2 is changed from (a) -0.32 V to (d) -0.35 V. The curves have been
offset by 0.5e2/h for clarity. In (a), we can observe the periodic oscillation in the differential
conductance, especially in the range of −1.15V . Vg . −1V , but the valleys do not touch zero.
When VE1E2 is decreased, the pinch off of conductance is clearly shifted to higher value of Vg.

When VC1C2 is lowered to (b) -0.33 V, it can be seen that the valleys of the conductance
peaks are closer to zero conductance at Vg < −1.15 V, however, the amplitude of these peaks
are quite low. For VC1C2 = −0.34 V and VC1C2 = −0.35 V, we can clearly see the sequence of
pronounced conductance peaks at VE1E2 = −0.23 V and VE1E2 = −0.24 V respectively, while
the conductance peaks do not appear clearly with the other values of VE1E2. Therefore, we can
locate the condition for the side gate voltage to obtain a good pronounced Coulomb blockade
oscillation as −0.35 V6 VC1C2 6 −0.34 V and −0.24 V6 VC1C2 6 −0.23 V. The objective of this
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Figure 6.3.: Coulomb blockade oscillations in dotII at different conditions of tuned gates. Each
curve is measured as a function of Vg. The VC1C2 is varied from (a) -0.32 V to (d)
-0.35 V. The curves have been offset for clarity.

initial characterization is to obtain pronounced Coulomb oscillations with well-defined minima
in between.

Thus, we can obtain more nice Coulomb blockade periodic oscillations with varying the −0.355
V6 VC1C2 6 −0.34 V and −0.245 V6 VE1E2 6 −0.23 V in the step of 5 mV, as shown in
Fig. 6.4(a) to (d). In (a) and (b), it can be noticed that the sequence of conductance peaks is
shifted to higher value of Vg when VE1E2 is reduced. With VC1C2 = −0.34 V, the pronounced
conductance peaks are exhibited at VE1E2 = −0.235 V, while they are shown at lower VE1E2 of
-0.24 V with VC1C2 = −0.345 V as well. The valleys of this sequence of peaks is flat on the zero
conductance. The conductance peak spacing ∆Vg is approximately 10 mV.

When VC1C2 is reduced to (c)-0.35 V, the Coulomb oscillation still appears along decreasing
conductance curve, the most pronounced conductance peaks are shown at VE1E2 = −0.245 V,
but the amplitude of the peaks with flat valleys is relatively low. The Coulomb oscillation is
clearly shifted to higher Vg when VC1C2 is reduced to -0.355 V, as shown in (d). This confirms the
center gate voltage affecting to the tunneling coupling of the dot to the reservoirs. The amplitude
of oscillation increases when VE1E2 decreases, however, the conductance peaks with flat valleys
at zero conductance disappear. For all Coulomb oscillations in the strong tunnel coupling regime
in Fig. 6.4, especially in the range of high value of Vg, the peaks are so broadened due to the
tails of adjacent peaks overlapping. Therefore, we select the sequence of the most pronounced
and sharp conductance peaks at VC1C2 = −0.345 V and VE1E2 = −0.24 V in the range of −1.13
V6 Vg 6 −1.07 V to study the detail of the Coulomb blockade oscillation in the weak tunnel
coupling regime.
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Figure 6.4.: Coulomb blockade oscillations in differential conductance of dotII. The VC1C2 is
varied from (a) -0.34 V to (d) -0.355 V. Each subfigure, VE1E2 is varied from -0.23
V to -0.245 V. Both side gates are tuned in the increment of 5 mV. The curves have
been offset for clarity.

The Coulomb blockade oscillations in the dotII structure at VC1C2 = −0.345 V and VE1E2 =
−0.24 V with sweeping VD1D2 in the fine increment of 50 µV has been shown in Fig. 6.5.
There are six well pronounced and sharp conductance peaks with spacing between neighbouring
peaks of ∼ 10 mV presented. The gate capacitance Cg = e/∆Vg is approximately 16 aF. This
measurement was performed at bath temperature of 65 mK. The valleys between peaks fall
down and touch almost zero conductance, which means no electron tunneling through the dot
in the region. However, at Vg & −1.09, the valleys are not so flat because the coupling become
stronger with increasing Vg.

The line shape of an individual conductance peak is given by

G(Vg) = A · cosh−2 [B(Vg − Vres)] + offset, (6.1)

where A is the amplitude of the conductance peak, Vres is the gate voltage at the center of a
resonance peak. The factor B = eα/2kBT in the quantum Coulomb blockade regime (Γ ≪
kBT ≪ ∆E ≪ U), whereas B = eα/2.5kBT in the classical Coulomb blockade or metallic
regime (Γ ≪ ∆E ≪ kBT ≪ U), where Γ is the tunnel coupling of the dot to the reservoirs, ∆E
is the energy level spacing, and U = e2/CΣ is the charing energy. This equation is corrected
with the background offset. The amplitude of conductance peaks is inversely proportional to
the temperature in the quantum regime, whereas it is temperature independent in the metallic
regime.

Eq. 6.1 give us the line shape of a thermally broadened resonance peak. This line shape
is determined by the derivative of the Fermi-Dirac distribution function of the electrons in the
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Figure 6.5.: Coulomb oscillation of dotII in the sample PR1:d2 at VC1C2 = −0.345 V and
VE1E2 = −0.24 V. The center gate D1D2 is swept in steps of 50 µV.
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Figure 6.6.: (a) The data in Fig. 6.5 fit very well to the sum of thermally broadened conductance
peak centered at each peak. (b) Comparison of coulomb oscillation of dotII in the
sample PR1:d2 between grounded and ungrounded gate A2. The center gate D1D2
in both data is swept in the same steps of 50 µV.
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reservoirs [56]. The conductance peak data in Fig. 6.5 fits excellently, at valleys as well as peaks,
to sum of Eq. 6.1 centered at each peak at base temperature, as shown in Fig. 6.6(a). The line
width or full-width at half maximum (FWHM) of the peaks slightly increases with Vg due to
the increasing tunnel coupling influenced by center gate voltage.

Since there is a shortcut between gate A2 and one terminal contact of the Hall bar, if the gate
A2 is grounded to the earth, the current might be able to leak out of the sample. The Coulomb
oscillations shows a noisy background and peaks is measured when the gate A2 is grounded to
the earth. It is compared to the nice oscillation with un-grounded gate A2 in Fig. 6.6(b).

6.1.2. Coulomb Oscillation of the dotI in the sample PR1:d2

Due to the shortcut between gate A2 and a terminal contact of Hall bar sample, we lost one
gate to form a quantum dot in the dotI pattern. However, we tried to form the dotI with the
remaining gates as indicated with the shaded gates in Fig. 6.7(a). Firstly, we use the gate A1
and B2 to form a quantum point contact so called QPC A1B2. The gate B2 is applied and fixed
at a high negative voltage of -1.3 V. The differential conductance as a function of gate voltage
Vg ≡ VA1 has been shown in Fig. 6.7(b). The conductance decreases with Vg, until Vg < −0.3,
the conductance quantization can be observed, and the first three plateaus appear slightly. This
means that the gate A1 and B2 can be used for coupling the dot to the reservoir.

dotI
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Figure 6.7.: (a) Schematic structure of the double dots in sample PR1:d2. The shaded gates
are used to form a quantum dot in dotI structure. (b) The differential conductance,
G, of QPC A1B2 as a function of gate voltage of both gates, which are swept
simultaneously. The quantization in G can be observed.

To observe the condition for a good Coulomb blockade oscillation in the dotI, the gate voltage
VA1 is varied from -0.45 to -0.53 V in the increment of 20 mV at a fixed VC1C2, and the gate
voltage VC1C2 is also varied from -0.534 to -0.546 V in the increment of 4 mV. The gate B2 is
always fixed at -1.3 V. The center gate B1 is then swept in the step of 250 µV. Each subfigure
in Fig. 6.8, the VC1C2 is kept at the fixed value. The curves of each value of VA1 have been
offset for clarity. The periodic Coulomb oscillation in differential conductance can be observed
in these range of gate voltages.

When VA1 is reduced, the peak height decreases and pattern of oscillation is slightly changed.
The conductance pinch off is clearly shifted to higher center gate voltage when VC1C2 decreases.
This shows that the changing of VC1C2 has more influence on the oscillation than VA1 changing.
The valleys of the conductance peaks reach to zero and become flat with decreasing Vg. This
means that the center gate voltage Vg ≡ VB1 also has an effect on the coupling of the dot to
reservoirs.
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Figure 6.8.: Coulomb oscillation of dotI in the sample PR1:d2. The VQPC C is varied from (a)
-0.534 V to (d) -0.546 V. Each figure the VQPC C is fixed and the VA1 is varied from
-0.46 V to -0.52. The gate B2 is always fixed at -1.3 V. The center gate voltage
Vg = VB1 is swept in steps of 250 µV. The graphs have been offset with 0.5e2/h for
clarity.
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Figure 6.9.: Coulomb oscillation of dotI at VA1 = −0.5 V, VQPC C = −0.534 V and VB2 = −1.3 V.
The center gate voltage Vg = VB1 is swept in steps of 100 µV.
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6. Single Quantum Dots with Weak Coupling

We determine the Coulomb blockade oscillation in weak tunnel coupling regime at VC1C2 =
−0.534 V, VA1 = −0.5 V, VB2 = −1.3 V, and −1 V< Vg < −0.85 V, because there are the
sharp pronounced conductance peaks and flat valleys at the background, which is almost zero
conductance. The Coulomb blockade oscillation is measured by sweeping the center gate voltage
Vg in the small step of 100 µV. In Fig. 6.9, it shows the sequence of pronounced conductance
peaks which compound with nine sharp dominant peaks and low noise at background. The line
shape of this data can be fit very well to the thermally broadened resonance peak in Eq. 6.1 for
each single peak.

It is noticeable that the conductance peak spacing ∆Vg is not same in all region. The ∆Vg

can be approximately 14 mV for −0.97 V< Vg < −0.9 V, while ∆Vg is approximately 12 mV
for −0.9 V< Vg < −0.85 V. The gate capacitance for −0.97 V< Vg < −0.9 V can then be
calculated as Cg = e/∆Vg ≃ 11 aF which is less than Cg ≃ 13 aF for −0.9 V< Vg < −0.85 V.
It can be confirmed that the increasing center gate voltage Vg has an influence to the tunnel
coupling of the dot by increasing the coupling to reservoirs. This results in the valleys between
peaks in the right part being lifted up and no longer going to zero due to the tail of adjacent
peaks overlapping.

6.1.3. Coulomb Oscillation of the dot structure in the sample PR1:d1

In this section, we characterize each quantum dot in the double dots system in the the sample
PR1:d1. The lithographic designed pattern of this double dots system is shown in Fig. 6.10(a).
The size of each dot is 500 nm by 800 nm. Only three pairs of gate contact are required to be
able to form the coupled dots. Figure 6.10(b) shows the schematic drawing of the double dots
with labeling for each gate. Each dot can be formed by applying negative voltage to four gates.
One gate behaves like a finger gate and is usually fixed at constant applied voltage, for example,
gate D1 for the dotIII structure and gate F2 for the dotIV structure.

D1 E1 F1

D2 E2 F2

source drain

dotIII

dotIV

D1

E1

F1

D2

E2

F2

(b)(a)

Figure 6.10.: (a) Scanning electron micrograph of the double dots structure in the sample
PR1:d1. (b) Schematic of device and labels for each gates. The dots are identi-
fied as dotIII and dotIV. This pattern is decided to be able to form double dots by
using only three pairs of gates.

dotIII: A quantum dot in the dotIII structure can be formed by applying negative voltage to
the shaded gates as identified in Fig. 6.11. The gates D2 and F2 are used with gate D1 to make
the tunneling barrier of the dot. Figure 6.12 shows the Coulomb oscillation in the differential
conductance as a function of center gate voltage VE2. The gate voltages VD1 and VF2 are
varied independently between -0.24 V and -0.25 V. The VD2 is varied from -0.3 V to -0.34 V in
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6.1. Linear Transport of the Quantum Dots in Weak Coupling Regime

increments of 20 mV at fixed VD1 and VF2. In each data curve, the center gate voltage VE2 is
swept in steps of 1 mV. The curves have been offset with 0.05e2/h for clarity. When the VD1 is
changed, the coupling of the dot to reservoirs via gate D2 and F2 both change.

dotIII

D1

E1

F1

D2

E2

F2

Figure 6.11.: Schematic of the double dots structure in the sample PR1:d1. A quantum dot
identified as dotIII can be formed by applying negative voltage to four shaded
gates.

In Fig. 6.12(a), The gate D1 and F2 are applied with the same voltage of -0.24 V. At VD2 =
−0.3 V, the oscillations appear with decreasing conductance as a function of VE2. It can be
seen that the conductance decreases with VD2 presumably due to increasing tunneling barrier
via gate D2. In this range of −0.6 V< VE2 < −0.3 V, the small oscillation in the differential
conductance and the pinch-off can be found, when VD2 is reduced to -0.34 V. The tunneling
barrier of the dot is increased by decreasing the voltage of gate F2, which is another side gate
of the dot structure. The conductance oscillations after reduced VF2 to -0.26 V are shown in
Fig. 6.12(b). The pronounced oscillation still appears along the decreasing conductance curve.
In Fig. 6.12(c), VD1 is reduced to -0.25 V, while VF2 is set at -0.24 V. In this case, we change
the voltage of the finger gate affecting to the tunneling barrier at both side gates. Comparing to
voltage condition in (a), the coupling of the dot to the leads is getting weaker. The pronounced
sequence of conductance peaks shown at VD2 = −0.3 V in (c), while the peaks in the oscillations
are much lower at VD2 = −0.32 V and disappear or pinch-off at VD2 = −0.34 V. Figure 6.12(d)
shows the Coulomb oscillations when the gate D1 and F2 are applied at the same value of -0.25
V. The valleys of the oscillations can almost reach to zero in this range of VE2. The oscillation
disappears when VD2 is decreased to -0.34 V in the pinch-off region.

From the Coulomb oscillations in Fig. 6.12, it can be interpreted that the increasing coupling
of the dot to the reservoirs results in broadened, overlapping peaks with minima which do not
go to zero. We can calculate that the <δ(∆VE2)>

<∆VE2>
∼ 0.02 − 0.03, where δ(∆VE2) is the difference

of two neighbouring Coulomb gaps. This fraction relates to the comparison of the energy level
spacing ∆E and the charging energy e2/CΣ, where CΣ is the total capacitance of the dot. Thus,
we can infer that the level spacing in this dot is relatively small compared with its own charging
energy. Figure 6.13(a) shows the Coulomb oscillations close to pinch-off for VD1 = −0.25 V,
VF2 = −0.24 V and VD2 = −0.3 V. There are a few pronounced peaks appearing with flat
valleys on a background of nearly zero conductance. This region is measured again by sweeping
VE2 with smaller step of 250 µV, and the conductance is then shown in Fig. 6.13(b). The
estimated peak spacing ∆VE2 is approximately 10 mV. The peaks in this region are broad and
their amplitude is quite low, but the valleys reach nearly zero. We then use this condition of
gate voltages to perform the nonlinear measurement of this dot system. The nonlinear result
will be presented later in the section of nonlinear transport in weak coupling regime.
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Figure 6.12.: Coulomb oscillation in differential conductance of dotIII in the sample PR1:d1.
The VD1 and VF2 is varied separately. Each pair of VD1 and VF2 in (a) to (d),
VD2 is varied from -0.3 V to -0.34 V. The curves have been offset by 0.05e2/h for
clarity.
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Figure 6.13.: The Coulomb blockade oscillation of dotIII. The differential conductance is mea-
sured as a function of VE2 in steps of (a) 1 mV and (b) 250 µV. Both are measured
at the same set of gate voltage parameters.
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Figure 6.14.: (a) The schematic of the dots system in the sample PR1:d1. The shade gates are
used to form a quantum dot named as dotIV. The Coulomb oscillation appears in
the decreasing differential conductance. The VF1 is varied from (b) -0.4 V to (d)
-0.44 V. The VE1 is swept in steps of 1 mV.
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Figure 6.15.: The Coulomb blockade oscillation in dotIV at VD1 = −0.25 V, VF2 = −0.24 V,
and VF1 = −0.44 V. The VE1 is swept in steps of 500 µV
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dotIV: A quantum dot in the dotIV structure can be formed by applying negative voltages to
the shaded gates as identified in Fig. 6.14(a). The gates D1 and F1 are used with gate F2 to
form the tunneling barriers of the dot to the reservoirs. Figure 6.14(b)-(d) show the differential
conductance as a function of center gate voltage VE1. The Coulomb oscillations appear in each
conductance curve. The gate F2 is fixed at -0.24 V for all data curves. The VF1 is varied from
(b) -0.4 to (d) -0.44 V. The conductance decreases when VE1 is swept to more negative voltages,
and the oscillations then occur as the conductance decreases. The Coulomb oscillations appear
in every curve with two different values of VD1, which are -0.24 and -0.25 V.

It can be seen that the conductance clearly decreases when either VD1 or VF1 is reduced,
because reducing this voltage increases the tunneling barrier between the dot and the reservoirs.
In this our interesting range of VE1, the Coulomb blockade oscillations with minima close to
zero appear at VD1 = −0.25 V. Therefore, we sweep the VE1 in steps of 500 µ V, which is
small as a half of step swept in Fig. 6.14. The periodic oscillations are measured again at
VD1 = −0.25 V, VF1 = −0.44 V, and VF2 = −0.24 V. The sequence of conductance peaks is
shown in Fig. 6.15. The estimated conductance peak spacing is approximately 8.3 mV. The gate
capacitance is therefore about 19 aF. There are about 7-8 peaks with the valleys nearly zero
before they disappears as decreasing VE1. These peaks are quite low and broad. However, we use
this condition of gate voltages to measure nonlinear transport of dotIV structure as presented
later.

After illumination: We illuminated the sample PR1:d1 with IR-LED to increase the carrier
concentration in 2DEG, and then measured the differential conductance of both dots in the
weak coupling regime again. Figure 6.16 shows the Coulomb blockade oscillation in (a) dotIII
and (b) dotIV in the sample after illuminated. For both dots, the gate D1 and F2 are tied and
applied by the same voltage of -0.45 V. In order to determine the Coulomb oscillation in weak
coupling regime, VD1 is set at -0.42 V for dotIII, whereas VF1 is set at -0.95 V for dotIV.
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Figure 6.16.: (a) Non-stable conductance peaks of dotIII after illuminated. VD2 = −0.42 V,
and VD1F2 = −0.45 V. Three repeat measurements have been done with the same
gate voltage parameters. (b) Non-stable conductance peaks of dotIV in the same
sample at VD1F2 = −0.45 V, and VF1 = −0.95 V. All curves have been offset with
0.2e2/h for clarity.

In Fig. 6.16(a), three repeat measurements are performed with the same side gate voltages.
They clearly show that the results are not reproducible as well as the results of dotIV shown in
Fig. 6.16(b). According to the result from both dots, the quality of the conductance peaks is
not significantly better after illuminating the sample.
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Figure 6.17.: (a) The differential conductance of dotI in the sample PR1:d1 as a function of
VB2. There is the Coulomb oscillation appearing. The inset shows the schematic
of another double dots structure in the sample PR1:d1. A quantum dot named
dotI is presented and can be formed by using the shaded gates. (b) The differential
conductance of dotI after illuminating the sample.

dotI: In the sample PR1:d1, we can also obtain the conductance oscillation of the dotI struc-
ture. This structure has a similar pattern as the dotIII structure, but the lithographic size of
dot is smaller; 400 nm by 600 nm. The Coulomb oscillations in differential conductance of dotI
are shown in Fig. 6.17(a). The schematic drawing of the dotI structure in the inset shows the
shaded gates A1, A2, B2, and C2, which are used to form a small electron island in the dotI. The
broad conductance peaks are shown up even though all gate voltages are set for weak coupling
of the dot to the leads. The quality of the obtained peaks is not good for this dot. The spacing
between peaks, ∆VB2, is approximately 12 mV. Then, the gate capacitance can be estimated of
13 aF. From the inset, because the gate C1 is broken for this structure, the dotII cannot then
be performed by only three left gates (A1, C2, and B1).

In order to improve the quality of the Coulomb oscillations, we illuminated the sample and
measured the differential conductance again. The measured conductance with new tuning pa-
rameters for the dotI gates is shown in Fig. 6.17(b). We were not able to obtain periodic Coulomb
blockade oscillations. The conductance data fluctuates at some region during the measurement
performed. The result then becomes non-stable and is not reproducible after the illumination.

In order to characterize and understand the transport in the nonlinear regime of a quantum
dot with weak tunnel coupling, we perform nonlinear measurements by applying a DC-bias to
source and drain contacts and measuring the differential conductance, G ≡ dI/dVsd, in units of
e2/h versus the gate voltage Vg and the DC-bias source-drain voltage Vsd. The dot-to-lead gate
voltages have been set for high tunnel barriers to obtain the sharp Coulomb conductance peaks
in nearly zero DC-bias voltage.
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6.2. Nonlinear Transport of Quantum Dots in the Sample PR1:d2

6.2.1. The dotII Structure

Figure 6.18 shows the nonlinear transport data of the quantum dot in the sample PR1:d2 after
un-grounding the short-circuited gate A2 to correct the conductance values. The measured
differential conductance G clearly shows the pattern of Coulomb diamonds. The dark diamond-
shaped areas correspond to the regions of the Coulomb blockade where G ≈ 0, and the number
of electrons, N , is fixed. Therefore the shape and size of the Coulomb diamonds refer to the
regions where the charge, −eN , on the dot is stable. Thus it is often called a stability charge
diagram. Along the Vsd ≈ 0 axis N changes to N + 1 in the adjacent Coulomb diamond. For
neighbouring diamonds the charge difference is equal to ±e.
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Figure 6.18.: Coulomb blockade diamonds measured on a quantum dot named dotII with
VC1C2 = −345 mV and VE1E2 = −240 mV. The differential conductance G of
the dot is showing in the grey scale.

At a fixed gate voltage Vg, an electron can tunnel through the dot when Vsd reaches the edge of
the diamond. For an N electron diamond, the lower diamond edges correspond to the N electron
ground state, and the upper edges corresponds to the N+1 electron ground state. When excited
states enter into the source-drain window ∆eVsd, there are additional lines running parallel to
the boundaries of the Coulomb blockade diamonds. For example, the parallel lines close to the
upper edge of the N electron diamond indicate the energy of the excited states of the N + 1
electron system entering into the bias window, and contributing to electron tunneling through
the dot. Similarly, the lines running parallel to the lower edges indicate the energy of the excited
states of the N −1 electron system. These details and analysis therefore will be discussed in the
part on the excited states.

According to the constant interaction model, in the case of constant electrochemical poten-
tial level for drain reservoir µd, the drain contact is grounded, all capacitances in a quantum
dot system can be extracted and evaluated from the slope of the borderlines of the Coulomb
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diamonds shown in Fig. 6.19 as

dVg

dVsd

+

=
Cg + Cd

Cg
, (6.2)

dVg

dVsd

−

= −Cs

Cg
,

where (dVg/dVsd)
+ and (dVg/dVsd)

− are the positive and negative slope of the borderlines respec-
tively. The Cs, Cd, and Cg are the source, drain, and gate capacitances. The total capacitance
is written as CΣ = Cs + Cd + Cg. The Cg is calculated from the Coulomb peak spacing ∆Vg;
Cg = e/∆Vg. Therefore the proportionality factor relating a change in Vg to a shift in the energy
in the dot, α = Cg/CΣ, and the charging energy, EC = e2/CΣ = αe∆Vg, can be obtained.

A quick estimate for a quantum dot can be obtained from the formula for an isolated dot of
2D metallic disk, this method is proposed by L. P. Kouwenhoven et al. [17]:

EC =
e2

Cii
=

e2

8εrε0R
, (6.3)

where Cii is a pure self-capacitance of the dot and can only be a lower bound, CΣ > Cii, R is
the dot radius, εr = 13 in GaAs, and ε0 is the permittivity of free space. We can see that the
size or radius of the dot is proportional to the self-capacitance Cii. This clearly relates to the
tunnel coupling of the dot. The energy level spacing ∆E can be calculated by ∆E = EF /N ,
where EF is the Fermi energy, and N is the number of electrons on the dot. We can obtain

∆E =
EF

N
=

m∗v2F
2N

=
~
2πn2DEG
m∗N

, (6.4)

where vF = ~
√
2πn2DEG/m

∗ is the Fermi velocity in 2DEG, n2DEG is the electron density of 2DEG,
and m∗ = 0.067me is the effective mass of the electron in GaAs. In case of an isolated quantum
dot, the number of electrons can be estimated from N = n2DEG × πR2.

After cooling down the system, we have performed the nonlinear measurement of the dotII
structure in the sample PR1:d2 as presented in Fig. 6.19(a)-(c) for three cool down pro-
cesses.1 The added solid lines indicate the boundaries and shape of the Coulomb diamonds.
The solid lines indicate the diamond borderlines with positive slope (dVg/dVsd)

+ and negative
slope (dVg/dVsd)

−. These measurement have been done with weak tunnel coupling by tuning
the dot-lead gate voltages VC1C2 and VE1E2 to high negative values. For the first and second
cooling process, VC1C2 and VE1E2 is set at -345 and -240 mV, respectively. The VC1C2 = −480
mV and VE1E2 = −440 mV for the third cooling process.

For the Coulomb diamonds in Fig. 6.19(a), the linear lines show the excellent fit to the
boundaries of the diamonds with slope (dVg/dVsd)

+ = 6.667 and (dVg/dVsd)
− = −2.778. There

is a slight DC offset of Vsd = −15 µV. This might be due to the ground-offset of the measurement
setup or instruments, i.e. current preamplifier. The Coulomb peak spacing is ∆Vg = 9.6 mV,
thus the gate capacitance is Cg = e/∆Vg = 17 aF. The parameters corresponding to these
Coulomb diamonds can then be calculated that

Cs = −Cg
dVg

dVsd

−

= 46 aF, Cd = Cg(
dVg

dVsd

+

− 1) = 95 aF.

1During characterization of the quantum dots system in this sample, we have got the problems about the
circulation blocking of the mixture He3/He4, then we need to stop and repeat cooling process many times.
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(c) The 3rd measurement

Figure 6.19.: Comparison between the first, the second, and the third non-linear measurement.
The 1st and 2nd measurement have been performed at the VC1C2 = −345 mV and
VE1E2 = −240 mV, the 3rd has been performed at the VC1C2 = −480 mV and
VE1E2 = −440 mV. All measurements are performed at Tbase ∼ 65 mK. The solid
lines indicate the border of diamonds.
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Then the total capacitance is obtained as CΣ = 158 aF. The conversion factor α and charging
energy EC are given as

α =
Cg

CΣ
= 0.106, EC =

e2

CΣ
= 1.01 meV.

In weak coupling regime the capacitances are quite small values and are in order of ×10−17

F. From the measurement of quantum Hall effect, the 2DEG has a electron density n2DEG =
1.66 × 1015 m−2 at the temperature of 65 mK. According to the geometry of the dot, we can
estimate the number of electrons on the dot of N ∼ 400. The level spacing can then be estimated
to be ∆E ≈ 15 µeV.

For the second cool down, in Fig. 6.19(b), the gate voltages VC1C2 and VE1E2 are still set at the
same values of -345 and -240 mV, respectively. The DC offset appearing in this figure is about
Vsd = −30 µV. The same Coulomb diamond pattern is shown that the result is reproducible,
but there is a slight shift in Vg about 5 mV. From the fit lines at boundaries of the diamond,
(dVg/dVsd)

+ = 6.173 and (dVg/dVsd)
− = −2.825. All parameters extracted from both two

diamonds appearing in this figure are the same values, and they can then be obtained that
∆Vg = 10 mV, Cg = 16 aF, Cs = 45 aF, Cd = 83 aF, CΣ = 144 aF, α = 0.111, and EC = 1.11
meV.

Figure 6.19(c) shows the Coulomb diamonds of the dotII in the third time of cool down. To
reach the weak coupling regime again, VC1C2 and VE1E2 must be decreased. This might be due
to the changing of 2DEG properties after repeated cool down processes. The scale of Coulomb
diamonds looks quite different from (a) and (b). There are no excited states visible in the
region next to blockade diamonds. From the boundaries of the diamond, (dVg/dVsd)

+ = 10 and
(dVg/dVsd)

− = −2.857. The DC offset is Vsd = −100 µV which is higher than the offset in two
previous cool down. Therefore the extracted capacitances and parameters can be obtained that
∆Vg = 10.5 mV, Cg = 15 aF, Cs = 44 aF, Cd = 137 aF, CΣ = 196 aF, α = 0.078, and EC = 817
µeV.

Excited States

In the measurement of the differential conductance for dotII structure, there are additional lines
clearly appearing outside the Coulomb blockade diamonds as seen already in Fig. 6.19(a) and
(b). These lines run parallel to the boundaries of the diamonds. In Fig. 6.20, the differential
conductance of dotII versus Vg and Vsd already shown in Fig. 6.19(b) has been plotted again in
gray-scale in order to show the Coulomb blockade diamonds and clear lines at outside.

The black solid lines indicate the edges of the Coulomb blockade diamond shaped regions,
whereas the white dashed lines represent the electron transfers. Comparing this figure with the
schematic of Coulomb blockade diamonds with the excited states in Fig. 2.11(b), the dashed
lines are expected to indicate the excited states. The number of electrons is also quantized in the
Coulomb blockade regions. For the Coulomb diamond with N electrons in the dot, the dashed
lines running parallel to the upper edges of the diamond indicate the energy of the excited states
of N + 1 electron system. Similarly, the excited states of N electron system are indicated by
dashed lines parallel to the upper edge of the N − 1 electron diamond. The dashed line beneath
the lower edge of N electron diamond indicates the excited state of the N − 1 electron system.

The separations in energy scale between the middle of the Coulomb diamond and the point at
which the dashed lines hit the edge of the diamond are defined in Fig. 6.20. These separations
correspond to the excitation energies of the electron system in the dot. When the dashed line
parallel and closed to the upper edge of the N − 1 electron diamond touches the solid line
indicating the lower edge of the N electron diamond, the separation in energy scale from the
middle of the diamond is given by ∆N ≈ 136 µeV. The ∆′

N ≈ 233 µeV for the adjacent dashed
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Figure 6.20.: The expansion of the second Coulomb blockade diamond in Fig. 6.19(b). Dashed
lines indicate region where transport via excited states occurs.

line. At the touching point of the dashed line parallel to the lower edge of the N diamond on
the the upper edge of the N − 1 electron diamond, the ∆N−1 ≈ 143 µeV.

Considering the points at which dashed lines running parallel to the upper edge of N electron
diamond reach the lower edge of N+1 electron diamond, the ∆N+1 ≈ 276 µeV for the dashed line
with positive slope and closed to the upper edge, whereas the ∆′

N+1 ≈ 434 µeV for the adjacent
dashed line with positive slope. For the dashed line with negative slope, the ∆′′

N+1 ≈ 278 µeV.
It can be seen that the ∆N+1 and ∆′′

N+1 are obtained approximately the same because they
refer to the same excitation energy of N + 1 electrons system.

Compared with the level spacing ∆E ≈ 15 µeV which is estimated earlier, we can see that the
∆E is much smaller than the excitation energies extracted above. This infers that the electron
tunneling at additional lines is contributed from the excitation of center-of-mass (CM) modes of
the electron system [57]. This assumption is based on the strict separation of CM and relative
motions in the parabolic confinement potential. Due to the strong correlations between electrons,
most transitions involving excitations of internal degrees of freedom (internally excited states)
are effectively suppressed. Since the excitation of CM modes is unaffected by the Coulomb
interaction or correlations effect. These degrees of freedom can be excited easily. Therefore,
channels connected to these modes dominate the excitation spectra in the transport measurement
[57].

6.2.2. The dotI Structure

Since we have succeeded in making a quantum dot from the left gates in dotI structure, the
nonlinear measurement is then performed. The gate B2 is applied with a fixed voltage. The gate
A1 and QPC C (gate C1 and C2) are used to make the coupling between dotI and reservoirs, and
gate voltage Vg ≡ VB1 is swept to observe the Coulomb oscillations in differential conductance
G = dI/dVsd.

Figure 6.21(a) shows the differential conductance versus gate voltage Vg and applied source-
drain voltage Vsd. The gate voltage VB2 is fixed at -1.3 V, VA1 = −500 mV and VC1C2 = −535
mV. The slope of Coulomb diamond boundaries are (dVg/dVsd)

+ = 14.286 and (dVg/dVsd)
− =

−4.082, and the DC offset for Vsd is −80 µV. The Coulomb peak separation is ∆Vg = 14 mV,
which is larger than the peak spacing measured in the dotII. The gate capacitance can then be
calculated as Cg = e/∆Vg = 12 aF. The other capacitances can be obtained by evaluating with
the slope values that Cs = 47 aF, Cd = 154 aF, and CΣ = 213 aF. The charging energy for this
dot is EC = 752 µeV corresponding to the conversion factor α of 0.054.
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(a) VA1 = −500 mV and VC1C2 = −535 mV
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(b) VA1 = −550 mV and VC1C2 = −530 mV

Figure 6.21.: Measured Coulomb blockade diamonds on the dotI in the sample PR1:d2. (a)
and (b) is set with different VA1 and VC1C2. Both have the same VB2 of -1.3 V.

After re-cooling the sample, the nonlinear measurements have been performed again by ap-
plying a more negative voltage to gate A1 and QPC C in order to reach the weak coupling of the
dot to leads. Then VA1 = −550 mV and VC1C2 = −530 mV are applied. The solid lines indicate
the border lines of a Coulomb diamond in differential conductance as show in Fig. 6.21(b). The
extracted parameters and capacitances are obtained that ∆Vg = 15 mV, Cg = 11 aF, Cs = 51
aF, Cd = 149 aF, CΣ = 210 aF, EC = 762 µeV, and α = 0.051. It can be seen that all parame-
ters have values very close to the values extracted from the Coulomb diamonds of the previous
cool down. Furthermore, this dot is designed in the same size as the dotII structure. Hence, the
number of electrons N and the level spacing ∆E for the dotI can be estimated to be equal to
values for the dotII. For comparison of the conversion factor α between dotI and dotII in this
sample, αdotI < αdotII. To obtain a same shift in the energy level of the dot, a change in Vg for
dotI is needed more than that for dotII.

Excited States

In Fig. 6.21(a), it can be noticed that there are slight additional lines parallel to the upper edge
of each Coulomb blockade diamond, they especially appear in the negative Vsd region. We can
use these to extract the excitation energy of the electron system directly from the separation ∆N

between the middle of Coulomb diamond and the touching point of the line parallel to the upper
edge of the N − 1 electron diamond on the lower edge of the N electron diamond. Therefore,
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∆N ≈ 250 µeV for this dot system. Comparing with the level spacing estimated from the dot
geometry, ∆E ≈ 15 µeV, the excitation energy is much larger than the level spacing. This can
also be inferred that the electron tunneling via the internal excitation states contributed from
the relative motion is suppressed due to strong electron correlations, whereas the center-of-mass
motion still remains unaffected [57]. It can be expected that they would dominate the transport
resonance. Therefore, only tunneling via the excitation of CM modes is visible as the additional
conductance lines.

6.3. Nonlinear Transport of Quantum Dots in the Sample PR1:d1

We have performed the nonlinear measurement of the dotIII and dotIV structures in the sample
PR1:d1 to characterize their quantum dot properties. Our investigated samples are all fabri-
cated from the same heterojunction wafer, thus we assume that all samples in this thesis have
the same characteristic of 2DEG: the electron density n = 1.66 × 1015 m−2 and the mobility
µ = 63 m2/(Vs) at T ≈ 65 mK.

The dotIII Structure

The Coulomb diamonds in Fig. 6.22(a) shows the border lines with slope of (dVE2/dVsd)
+ =

16.67 and (dVE2/dVsd)
− = −6.25. The DC-offset in this figure is at -50 µV. The gate capacitance

is obtained as Cg = 16 aF corresponding to Coulomb peak spacing ∆Vg ≡ ∆VE2 of 9.8 mV. The
other capacitances are Cs = 102 aF, Cd = 256 aF, and CΣ = 375 aF. Then the conversion factor
is α = 0.044 and charging energy is EC = 427 µeV. From the geometry of the dotIII larger than
dotI and dotII in the sample PR1:d2, the number of electrons is estimated to be N ∼ 660. The
level spacing is then estimated as ∆E ≈ 10 µeV.

The dotIV Structure

Figure 6.22(b) shows the Coulomb diamonds with identified border lines of (dVE1/dVsd)
+ =

14.925 and (dVE1/dVsd)
− = −7.143. The DC-offset is observed at -60 µV. The Coulomb gap

∆Vg ≡ ∆VE1 is 8.3 mV giving the gate capacitance Cg = 19 aF. The source and drain capac-
itances can be expressed that Cs = 138 aF and Cd = 268.8 aF. Then the total capacitance is
CΣ = 426 aF. The conversion factor α is obtained as 0.045, and the charging energy is EC = 376
µeV. The estimated number of electrons N and estimated level spacing ∆E are the same as
that of dotIII due to the same designed dot geometry.

The dotI Structure

Figure 6.22(c) shows the differential conductance versus gate voltage VB2 and applied source-
drain voltage Vsd of the dotI. Unfortunately, we cannot obtain nice Coulomb diamonds for this
dot structure. The pattern is unstable and not reproducible. In addition it was quite different
for positive and negative bias voltages Vsd.

For the structure of dotIII and dotIV, unfortunately, there is no additional line structure
appearing outside the Coulomb blockade diamonds in Fig. 6.22(a) and (b). Thus, we cannot
estimate the excitation energy of the excited states for the N electron system in both quantum
dot structures.
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VD2 = -300 mV, VF2 = -240 mV, VD1 = -250 mV

-1 -0.5  0  0.5  1
Vsd (mV)

-770

-760

-750

-740

-730

V
E

2 
(m

V
)

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

(a) dotIII

VD1 = -250 mV, VF1 = -440 mV, VF2 = -240 mV
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dotI : VA2 = -610 mV, VC2 = -210 mV, VA1 = -260 mV
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Figure 6.22.: Grey-scale plot of differential conductance G as a function of Vg and Vsd in (a)
dotIII, (b) dotIV, and (c) dotI in the sample PR1:d1. Solid lines indicate the
boundaries of Coulomb blockade diamonds.
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VD1F2 = -450 mV, VD2 = -440 mV
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(a) dotIII: VD1F2 = −450 mV and VD2 = −440 mV

VD1F2 = -450 mV, VF1 = -950 mV
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(b) dotIV: VD1F2 = −450 mV and VF1 = −950 mV

Figure 6.23.: Non-stable Coulomb blockade diamonds after illumination of (a) dotIII and (b)
dotIV in the sample PR1:d1

6.3.1. After Illumination

After illuminating the sample PR1:d1, the differential conductance in dotIII and dotIV is
measured again in nonlinear regime. The gates D1 and F2 are tuned with the same voltage. The
voltage VD1F2 is then fixed at -450 mV. Another dot-to-lead gate voltage is given as VD2 = −440
mV for dotIII, and VF1 = −950 mV for dotIV. The plunger gate voltage, VE2 for dotIII and VE1

for dotIV, is swept for obtain the Coulomb oscillation. The non-stable Coulomb oscillations of
both dots in nonlinear transport have been shown in Fig. 6.23(a) and (b). These figures show the
non-stable Coulomb diamonds in differential conductance of dotIII and dotIV. It is impossible
to find a good quality Coulomb diamond to calculate the capacitances and other parameters.

6.4. Temperature Dependence of Coulomb Oscillations

For electron tunneling through a quantum dot in the Coulomb blockade regime, there are three
important energy scales having the following order as Γ < ∆E < U , where U = e2/CΣ is the
charging energy, ∆E is the level energy spacing, and Γ is the tunnel coupling of the quantum dot
to the reservoirs. In the case of thermal broadening of the conductance resonance, the thermally
energy will become another important energy scale, and is usually larger than Γ. Therefore, when
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the temperature increases, the electron tunneling process changes from the quantum Coulomb
blockade regime in which the tunneling occurs through a single level so called the single-level
regime, Γ < kBT ≪ ∆E < U , to the multilevel regime, Γ < ∆E ≪ kBT < U , in which there
is more than one energy level within kBT window [22]. This clearly shows the broad resonance
peaks in the Coulomb oscillation at high temperature. The multilevel regime can also be called
the metallic Coulomb blockade regime.

Figure 6.24 shows the temperature dependance of the Coulomb oscillation of the dotII in
the sample PR1:d2. The DC-offset of this data is already corrected. The conductance peaks
are measured as a function of the gate voltage Vg at various temperatures. The temperature
is derived from the resistance read out from the RuO2 resistance thermometer contacted at
the cold finger of the sample holder, and is assumed to measure also the sample temperature.
For all conductance peaks, the peaks height decreases, whereas the peak width broadens with
increasing temperature. The line shape fitting of an individual conductance peak is given by

G(Vg) = A · cosh−2 [B(Vg − Vres)] + offset, (6.5)

where A is the amplitude of the conductance peak, which decreases linearly with increasing
temperature in the quantum regime and is independent of temperature in the metallic regime,
Vres is the gate voltage at the center of the resonance peak. This equation is corrected for a
background conductance offset. The factor B can be used to evaluate the full width at half-
maximum (FWHM, V1/2) of the single peak as

V1/2 = 2 · acosh(
√
2)

B
. (6.6)

If the line shape is obtained by a purely thermally broadened resonance, then factor B =
eα/2kBT in the quantum regime, whereas B = eα/2.5kBT in the metallic regime.

The FWHM of the conductance peaks identified as A and B in Fig. 6.24 have been plotted
as a function of the temperature T in Fig. 6.25. These values of FWHM are obtained from the
line shape fitting of an individual conductance peak at various temperatures2. At high temper-
ature, the FWHM has a linear dependence on the temperature. As a function of temperature,
the obtained FWHM data has been fit to the Lorentzian line width predicted by a thermally
broadened Lorentzian parametrized by a full width at half-maximum of the resonance, Γ, in the
density of state as reported in Foxman et al. work [21]. This is given by the convolution of a
Lorentzian conductance with the negative derivative of the Fermi-Dirac distribution function at
finite temperature.

This clearly shows the excellent fitting obtained with the Lorentzian line shape of the resonance
peak at high temperatures, but the deviation between measured data and fitting curve occurs
when temperature is reduced below T ≈ 300 mK for peak A and B. The fit with this model
yields Γ = 101 µeV at zero temperature and α = 0.139 for conductance peak A. For conductance
peak B, Γ = 94 µeV at zero temperature and α = 0.112 is yielded from the own fit as well. The
Γ from both peaks fitting can be approximated to 100 µeV. The α factor of 0.112 yielded from
peak B is in strong agreement with the α obtained from nonlinear data.

At low sample temperature, the FWHM of the conductance peak become finite. At T ≃ 65
mK, the FWHM or V1/2 of the conductance peak A and B are approximately 0.92 mV and 1.15
mV, respectively. We then extrapolate these values back to their own fitting curves. Therefore,

2The temperature (T ) presented in our graphs is converted from the measured resistance of the RuO2 ther-
mometer attached at the cold finger, and is approximated to the bath temperature (Tbath), T ∼ Tbath. Since
our samples are glued on the cold finger with the Ag-paste. The thermal energy of the sample is transferred
via Ag-paste and also gold wires connected to the chip-carrier. Thus, the sample temperature (Tsample) is
assumed to be approximately Tbath or T .
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Figure 6.24.: Conductance G as a function of gate voltage Vg at various temperatures for dotII
structure in the sample PR1:d2.
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Figure 6.25.: Plot of full width at half maximum or line width of peak A and B in 6.24 as a
function of temperature. Both data are fit with the curves which are generated from
the thermally broadened Lorentzian parameterized by Γ. These curves extrapolate
back to T = 0 to extract Γ. The slope of the curve in linear temperature dependence
region gives α for each peak.
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the electronic temperature Te in the system can be evaluated as Te ≈ 160 mK from fitting curve
of the conductance peak A, and Te ≈ 190 mK from the fitting curve of the conductance peak
B. It can be seen that the values of Te from extrapolating are quite close to each other.

The deviation between theory and experimental data increases as T . 300 mK for both
peaks. This also refers to the obtained FWHM of the conductance peak larger than expected
theory value. Along the range of FWHM deviation between expected and obtained values, if we
extrapolate FWHM value back to fitting curve, the obtained electronic temperature Te below
the deviation point becomes finite and is higher than the sample temperature at the cold finger.
It is probably due to the result of electronic heating by residual electronic noise [56]. Above this
temperature, T > 300 mK, it can be assumed that the electronic temperature closely follows
the sample temperature.

At the lowest sample temperature and in the quantum Coulomb blockade regime, Γ ≪ kBT ≪
∆E, the electronic temperature is directly calculated from FWHM or V1/2 of the conductance

peak by using TQM = eαV1/2/[4kB · acosh(
√
2)]. Therefore, TQM ≃ 335 mK for peak A,

and TQM ≃ 420 mK for peak B. The difference between Te and TQM is around 200 mK.
These difference clearly show that the electronic temperature extracted from a purely thermally
broadened conductance peak is not valid, because line shape of our data is well described as a
thermally broadened Lorentzian parameterized by Γ even at high temperature.

The peak hight GMax for single level conductance in the quantum regime is proportional to
1/T , whereas it is temperature independent for multilevel conductance in the metallic regime
[22, 58]. Figure 6.26 shows the inverse of peak hight for the conductance peak B in Fig. 6.24 as a
function of sample temperature. At T . 450 mK, the slope of linearly temperature dependence of
G−1

Max is steeper than the slope at high temperature. The electron tunneling at low temperature
is clearly in the single-level regime. Additionally, the transition of electron tunneling from
single-level regime to multilevel regime could be expected at high temperature due to the trend
of plotted data with decreasing slope which may become zero or flat at very high temperature.
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Figure 6.26.: Inverse of maximum conductance 1/GMax of the conductance peak B versus tem-
perature for dotII structure in the sample PR1:d2.

Figure 6.27 shows the temperature dependance of the Coulomb oscillation of dotI in the
sample PR1:d2. The conductance peak is broadened and the position of the peak also fluctuates
with increasing temperature. It can also be noticed that the peak height increases as sample
temperature is higher than base temperature of 64 mK. This strange temperature dependence
of the peak height probably results from a large variation of coupling strength from one peak to
another peak [59]. It is to be expected for a weakly coupled level adjacent to a strongly coupled
one. When the thermal energy kBT approaches the level spacing ∆E, thermal excitation to the
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strongly coupled level causes the amplitude to increase with the temperature until the multilevel
regime, in which the peak height is temperature independent, is obtained. The conductance
peaks can be fit quite well with Eq. 6.5 at various temperature.
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Figure 6.27.: Conductance versus the center gate voltage Vg of dotI in the sample PR1:d2 at
various temperatures.
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Figure 6.28.: Temperature dependence of line width of peak (a) no.1 and (b) no.2 in Fig. 6.27.
Both of them are fit with the curves of temperature dependence of Lorentzian line
width.

The FWHM of the conductance peak no.1 and no.2 are calculated from the line shape fitting,
and plotted as a function of sample temperature as shown in Fig. 6.28(a) and 6.28(b). It clearly
shows that the conductance peak is broadened with increasing temperature. The predicted line
width from a thermally broadened Lorentzian line shape parameterized by Γ as a function of
temperature is also fit to these data. This fit yields Γ = 136 µeV for peak no.1, Γ = 160 µeV
for peak no.2 at zero temperature, and α = 0.071 for both peaks. The fit is quite good at high
temperatures for both peaks, but there are some deviations occurring at lower temperatures.
For peak no.1, the data begins deviating at T ≈ 330 mK and clearly deviates at T ≈ 130 mK,
while the deviation occurs at T ≈ 330 mK and back to fit again at T ≈ 130 mK for peak
no.2. At high temperature, the line width of both peaks are linearly temperature dependence.
From the saturation of the width of peak no.1 at low temperature, we can estimate the electron
temperature Te of ∼ 170 mK by extrapolating back to fitting curve.

The conductance as a function of gate voltage of the dotIII in the sample PR1:d1 shown in
Fig. 6.29. This presents the Coulomb oscillations at various temperatures. When the tempera-
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Figure 6.29.: Conductance as a function of gate voltage Vg of dotIII in the sample PR1:d1 for
various temperatures.
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Figure 6.30.: (a) The Coulomb oscillation in conductance at T = 500 mK. The data is well fit to
the sum of Eq. 6.5 centered at each peak indicated by the solid line. Dashed line
indicate an individual peak fitting based on the offset at lowest temperature. (b)
Temperature dependence of line width of peak identified in (a) with single peak.
The data is fit to the curve of thermally broadened Lorentzian line with.
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6. Single Quantum Dots with Weak Coupling

ture increases, the conductance peaks are broadened and the valleys between two neighbouring
peaks, especially in the region of high gate voltage, do not reach to the bottom which is shown at
low temperature, because the the tails of adjacent peaks are overlapping. The maximum for each
peak, however, does not significantly change. The Coulomb peak spacing ∆VE2is approximately
8.5 mV.

The data fit quite well, at valleys as well as peaks, to the sum of Eq. 6.5 centered at each
peak, as shown in Fig. 6.30(a) at T = 600 K. The dashed line show an individual line shape of
the middle peak based on the offset background. The FWHM or line width taken from the data
fitting is plotted as a function of temperature as presented in Fig. 6.30(b). The obtained line
widths from every peaks at various temperature all repeat in same trace, and we then select the
line width of the middle peak to be representative for the measurement. The data is fit to the
expected line width as a function of T for thermally broadened Lorentzian peak parameterized
by Γ. The fit is very good at high temperature. At T & 360 mK, the linearly temperature
dependence is presented, and the electron temperature then follows the sample temperature at
cold finger. The deviation between data and fit curve increases as T is reduced below 360 mK.
The fit yields α = 0.042, which is consistent with 0.044 calculated from the Coulomb diamond
in the nonlinear data, and Γ = 18 µeV at zero temperature. This data shows the saturation at
low temperature or T . 150 mK. If we extrapolate the obtained line width at saturation back
to the fit curve, the electron temperature can be estimated as Te ≈ 300 mK.

6.5. Nonlinear Transport in a Quantum Point Contact coupled with
a Single Quantum Dot

From the Coulomb oscillations appearing in the differential conductance of a standalone QPC
A in the sample PR1:d4, we are interested to investigate the electron transport in nonlinear
regime for this quantum point contact coupled with an unexpected quantum dot, which is
probably caused of the impurity in the material or 2DEG. The electron micrograph of the QPC
A with identified gates has been shown in Fig. 6.31. The results and discussion of the oscillatory
behaviour in the differential conductance of QPC A has been presented in the section 5.2.3.

1  m

A2

A1

source drain

Figure 6.31.: Scanning electron micrograph of the quantum point contact A in the sample
PR1:d4. The split gates A1 and A2 with 200 nm length are placed diagonally
and vertically separated with 250 nm

The sequence of conductance peaks appears when the gate voltage VA1 is swept, while VA2

is kept as a constant value. Since this oscillation is clearly periodic, we interpret that it arises
from the Coulomb blockade oscillations. The conductance traces are repeated and do not show
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6.5. Nonlinear Transport in a Quantum Point Contact coupled with a Single Quantum Dot

any significant differences when the VA2 is applied below -0.4 V. Thus it is assumed that the
system is in the weak coupling regime with this applied voltage VA2. The gate voltage VA2 is
then fixed at -0.4 V, and VA1 is swept to observe the quite stable conductance oscillations for
this system. The Coulomb oscillations at VA2 = −0.4 V has been shown in Fig. 6.32(a). The
Coulomb peak spacing ∆VA1 is about 4.6 mV.

Figure 6.32(b) shows the differential conductance in a logarithmic scale as a function of gate
voltage VA1 and source-drain voltage Vsd. There are quite clear diamond shapes appearing in the
grey-scale plot. The excited state bright lines also appear outside the diamonds. The boundaries
of a Coulomb blockade diamond are indicated as lines with slope of (dVA1/dVsd)

+ = 2.326 and
(dVA1/dVsd) = −1.25. The DC-offset of Vsd is about -48 µV. From the capacitive charging model,
we can estimate the gate capacitance of a coupled dot by giving as Cg = e/∆Vg = 35 aF. The
other capacitances are extracted and given Cs = 44 aF, Cd = 46 aF, and CΣ = Cg+Cs+Cd = 125
aF. Therefore the charging energy can be evaluated that EC = e2/CΣ = 1.28 meV which is quite
high and corresponds to the conversion factor α of 0.28.

6.5.1. Excited States

Figure 6.33 shows the gray-scale plot of the logarithmic value of differential conductance dI/dVsd

in Fig. 6.32(b) as a function of VA1 and Vsd for clarity to investigate the additional line outside
the Coulomb blockade diamonds. Few Coulomb diamonds are selected to show and defined by
the number of electron. The solid lines indicate the edges of the N electron diamond, and the
dashed lines outside the diamond indicate the excitation of the dot system. These additional
lines appear for negative Vsd much more clearly than for positive Vsd.

The dashed lines running parallel to the upper edge of the N − 1 electron diamond hit the
lower edge of the N electron diamond. The separation between this hitting point and the middle
of Coulomb diamonds is given by ∆N , which is the excitation energy of the N electron system,
whereas another dashed line parallel to the lower edge of the N electron diamond indicates the
excitation energy of the N − 1 electron system, ∆N−1. The excitation energy of N + 1 electron
system, ∆N+1, can be extracted by the separation between the point at which the dashed line
running parallel to the upper edge of the N electron diamond touches the lower edge of the
N + 1 Coulomb diamond.

According to Fig. 6.33, it can be obtain that ∆N−1 ≈ 344 µeV, ∆N ≈ 305 µeV, and ∆N+1 ≈
318 µeV. These excitation energies are higher than energies extracted from the Coulomb blockade
diamonds of the dotI and dotII structure as presented in the section 6.2.1 and 6.2.2. The level
spacing for this unexpected dot can be inferred to be smaller than these obtained excitation
energies. This means that the strong correlations between electrons reduce the probability of
tunneling through channels involving excitations of the internal degrees of freedom. This leads
to a dominance of the center-of-mass excitations which are not affected by correlation effects
[57].

6.5.2. Temperature Dependence

Figure 6.34 shows the Coulomb oscillations as a function of gate voltage VA1 at various temper-
atures. The DC-offset is already corrected in this data. The conductance peaks broaden with
increasing temperature. It can also be seen that the peak height, especially at VA1 < −0.188 V,
clearly decreases, while the valley between adjacent peaks increases when the temperature rises.
This is due to the tail of adjacent peaks overlapping. The increasing conductance of valley at
VA1 > −0.188 V is very pronounced, and we also see the increasing of the peak height when
T >∼ 550 mK. This is probably due to the influence of the stronger tunnel coupling at thermal
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Figure 6.32.: (a) Differential conductance as a function gate voltage VA1 while VA2 is fixed at
-0.4 V. (b) Grey-scale plot of logarithmic differential conductance of QPC A in the
sample PR1:d4 versus gate voltage VA1 and source-drain voltage Vsd. The solid
lines indicate the boundaries of one of Coulomb blockade diamonds appearing in
this plot.
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N

N-1

N+1
 !N+1

 !N

 !N-1

Figure 6.33.: Expansion of an indicated Coulomb blockade diamond in Fig. 6.32(b) with iden-
tified number of electrons in each diamond. The DC-offset of Vsd is about -48
µV. The gray scale represents the logarithmic value of dI/dVsd. The dashed lines
indicate the electron transport via the excited states.

energies comparable to energy level spacing. This leads to an increasing of conductance peak
height with temperature [59].

The line shape of conductance peak at VA1 = −0.198 V is well fitted to Eq. 6.5 at different
temperature, as also shown in the inset of Fig. 6.35 at base temperature. The extracted line
width or FWHM is plotted as a function of the sample temperature. The FWHM data is also
fitted to the theoretical line width of Lorentzian peak parameterized by Γ at various temperature,
as shown in Fig. 6.35. The fit curve yields α = 0.344 and Γ = 141 µeV at zero temperature. At
high temperature, the data is an excellent fit to the curve. A deviation between the data and
the fit curve occurs at the temperature below 400 mK. The deviation increases and converge to
a finite value as T . 400 mK. At T < 80 mK, the electron temperature from extrapolating the
almost saturated data back to the fit curve is approximately 230 mK.
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Figure 6.34.: Coulomb oscillations in the differential conductance versus gate voltage VA1 for
different temperatures. The temperature ranges from 58 mK to 900 mK. The VA2
is fixed at constant of -0.4 V.
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Figure 6.35.: Temperature dependence of line width of the conductance peak which is fit to
the thermally broadened resonance peak as shown as solid line shape in the inset.
At linear temperature dependence region, the data fits remarkably well to the
curve generated from the thermally broadened Lorentzian line shape. The α is
then yielded from the fit curve, and Γ is given from extrapolating back to zero
temperature.
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7. Kondo Physics in a Single Quantum dot

The Kondo effect in a single quantum dot is usually observed in the strong coupling regime.
Hence we perform the differential conductance measurement in this regime by increasing applied
voltage to the left and right gate of a quantum dot coupled to the reservoirs. We found significant
evidence of the Kondo effect in the dotII structure of the sample PR1:d2 and also the point
contact QPC A of the sample PR1:d1. Firstly, we discuss the measurement procedure and
results from the conventional quantum dot in the sample PR1:d2, and later we show the
results of the Kondo effect discovered in the conductance of a quantum point contact coupled
with an unexpected quantum dot in the sample PR1:d1.

7.1. Coulomb Oscillations in Strong Coupling

In order to increase the tunnel coupling between the dotII and the reservoirs, both VC1C2 ≡ VQPC C

and VE1E2 ≡ VQPC E are increased. Figure 7.1(a) shows the Coulomb oscillations at different gate
voltages VC1C2 and VE1E2. These two gate voltages control the coupling between the dotII and
the leads. The gate voltage VE1E2 is changed from -235 mV in the curve A to -230 mV in
the curve B. The position of the Coulomb peaks is clearly shifted to more negative values of
the center gate voltage, Vg ≡ VD1D2. When the gate voltage VC1C2 is increased from -340 mV
in the curve B to -335 mV in the curve C, the Coulomb peaks are not only shifted but also
broadened. The tunnel coupling can be represented by the broadening or the width of the
Coulomb resonance peak Γ. In Fig. 7.1(b), we select gate voltages around VC1C2 = −328 mV
and VE1E2 = −218 mV to make the strong tunnel coupling regime for the dotII structure. The
Kondo effect is investigated in the region where the valleys between Coulomb peaks do not reach
the zero conductance.

Figure 7.2 shows the non-linear data which corresponds to the data with the same conditions
as in Fig. 7.1(b). From the Coulomb diamonds comparison between 7.2(a) and 7.2(b), the
diamond pattern has been distorted due to the stronger coupling, and it can also be noticed
that there is a zero bias anomaly which is most pronounced in the second and the third Coulomb
diamonds from the bottom of Fig.7.2(b). The anomalous conductance peak at zero-bias in the
Coulomb diamonds is referred to as the Kondo resonance in the density of states (DOS) of the
quantum dot. At this condition for strong coupling, the gate voltage spacing ∆Vg ≃ 10 mV and
the capacitances can be extracted that Cg ≃ 16 aF, Cs ≃ 128 aF, Cd ≃ 230 aF, CΣ ≃ 374 aF,
and α ≡ Cg/CΣ ≃ 0.04. It clearly shows that the capacitances coupled between dot and the
reservoir, Cs and Cd, in strong coupling regime are much greater than that in weak coupling
regime as reported in the section of nonlinear transport regime.

The Kondo effect leads to an enhanced density of states of the quantum dot at the chemical
potential levels, µL ≃ µR, of the the electron reservoirs as shown in Fig. 7.3(a). For symmetric
barriers, ΓL = ΓR, where ΓL,R represent the tunnel couplings of the dot to the left and right
reservoir respectively. This DOS Kondo resonance gives rise to enhanced conductance at zero
bias and rapidly decreases for Vsd 6= 0. When a bias voltage, Vsd = (µL − µR)/e, is applied
between source and drain, the Kondo peak in the DOS splits into two peaks, each pinned to one
chemical potential of the reservoir, as shown in Fig. 7.3(b).

In our nonlinear measurement setup, we have obtained the result with a finite DC-offset at
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Figure 7.1.: (a) The comparison of Coulomb oscillation in three different gate voltage conditions.
A: VC1C2 = −340 mV and VE1E2 = −235 mV, B: VC1C2 = −340 mV and VE1E2 =
−230 mV, and C: VC1C2 = −335 mV and VE1E2 = −230 mV. (b) The Coulomb
oscillation in strong coupling between the dotII and the reservoir. The curve is
offset with e2/h for clarity.
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(a) VC1C2 = −330 mV, VE1E2 = −220 mV

-0.4 -0.3 -0.2 -0.1  0  0.1  0.2  0.3  0.4
Vsd (mV)

-1.16

-1.155

-1.15

-1.145

-1.14

-1.135

V
g 

(V
)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

(b) VC1C2 = −328 mV, VE1E2 = −218 mV

Figure 7.2.: The differential conductance of the dotII in the nonlinear measurement with strong
coupling, which corresponds to Fig. 7.1(b). The coupling of the dot to the reser-
voirs in (b) is stronger than the coupling in (a) because both VC1C2 and VE1E2

is increased by 2 mV. More pronounced Kondo resonance appears in the second
Coulomb diamond from the bottom of figure.
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Figure 7.3.: (a) In equilibrium, the narrow Kondo resonance peak in the density of states of the
dot is at chemical potential energies of the leads, µL ≃ µR. (b) Out of equilibrium,
when a finite Vsd is applied, the DOS resonance peak splits into two peaks, each
peak is located at each chemical potential of the leads.

zero bias which is probably due to the ground offset of the preamplifier. In Fig. 7.5, we can
observe the evolution of the offset of the conductance anomaly or Kondo conductance resonance
in the Coulomb blockade diamond to non-zero bias. This might be the result of asymmetric
tunneling barriers of the dot, ΓL 6= ΓR, as shown in Fig. 7.4. The Kondo resonance in the DOS
of the dot is pinned to the chemical potential of the lead with strongly coupling (the thin barrier
side), this leads to the occurrence of a conductance anomaly at non-zero bias [37].
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Figure 7.4.: The density of states of a quantum dot in non-equilibrium Kondo situation with
asymmetric barriers. The Kondo resonance is pinned on the thin barrier side.

The shifted zero bias anomaly in Coulomb diamond of our nonlinear measurement can be seen
in Fig. 7.5(a) - (g). The asymmetry in Kondo conductance resonance is probably due to the
asymmetric barriers situation. It indicates that the tunnel coupling of the quantum dot is tuned
into an asymmetry with varying the gate voltage VE1E2, which relates to the tunneling barrier
between the dot and one lead. When the gate voltage VE1E2 is decreased, the diamond position
is shifted to higher plunger gate voltage, Vg ≡ VD1D2, and the shape is also distorted. Since
the higher Vg may have some influence to increase the coupling between the dot and the lead
via gate voltage VC1C2. Due to the higher Vg and lower VE1E2, the quantum dot is tuned into
stronger asymmetric coupling. Therefore the alignment of the Kondo conductance resonance
peaks is obviously more tilted and is not in the middle of the Coulomb diamond.
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VE1E2 = -226 mV
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Figure 7.5.: The evolution of an asymmetric of the Kondo conductance resonance by varying
gate voltage VE1E2 from (a) -214 mV to (g) -226 mV at VC1C2 = -325 mV
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7.2. Analysis of the Kondo Resonance

Figure 7.6 shows the plot of the Kondo conductance resonance peak versus the bias voltage at
various gate voltages Vg as the VC1C2 = −325 mV and VE1E2 = −220 mV. The curves have
been offset by 0.01e2/h for clarity. The topmost and bottom curves are observed at low and
high negative gate voltage respectively. This data represents the Kondo resonance in the second
Coulomb diamond of Fig. 7.5(d). The Kondo peaks can be seen clearly in every curve, and the
position of the Kondo peak gradually shifts to more negative bias.

The measured data in each trace at fixed gate voltage Vg has been fit with the hyperbolic
cosine superposed by a Lorentzian to find the width, amplitude, and peak position of the Kondo
resonance peak as shown in Fig. 7.7. If there is no anomaly at the Coulomb blockade region,
the conductance data in this region is very small and the trend of data is quite flat at the fixed
Vg. Thus the hyperbolic cosine function is selected to fit the data without anomaly structure,
whereas the Lorentzian function is selected to fit peak-shaped data for anomaly structure in
the blockade region. The long-dashed line represents the Lorentzian peak and the short-dashed
line represents the hyperbolic cosine curve. According to the superposed curve (solid line) and
the data points, the quality of fitting is good. Therefore we use this superposed function to
make Kondo peak fitting in the Coulomb diamond at different gate voltages VE1E2 as already
presented in Fig. 7.5.

For each gate voltage VE1E2, the width of the Kondo resonance peak decreases gradually with
decreasing gate voltage Vg. The peak width becomes saturated and then begins rising again when
the Vg is further decreased, as shown in Fig. 7.8(a). The trend of data points of the width for
each different VE1E2 shows a parabolic behaviour. We can see that the width rises to a high value
whenever the Vg moves to the region of neighbouring Coulomb peak. Figure 7.8(b) shows the
dependence of the amplitude of the Kondo peak on the gate voltage Vg at different VE1E2. From
the fitting with superposed function, the amplitude of the Kondo peak can be calculated as the
conductance at base line of Lorentzian peak subtracted from that at maximum. This amplitude
data corresponds to the conductance in the valley of Coulomb oscillation where the Kondo
resonance can be found. For each VE1E2, the peak amplitude decreases from the conductance of
the right Coulomb peak to minimum value at the Kondo valley, and then increases again to the
conductance of the left Coulomb peak. This can be expressed that the amplitude of the Kondo
resonance peak increases as the conductance G increases moving up the side of the Coulomb
blockade peak.

In the Kondo peak fitting we assume that the width obtained is approximately the full width
at half maximum (FWHM) of the peak. Since it can be defined as

FWHM =
kBTK

e
, (7.1)

where kB is the Boltzmann’s constant and TK is Kondo temperature, the increasing width
follows the increase of TK . As shown in Fig. 7.8(a) and 7.8(b), the Kondo resonance peak
increases in both height and width when moving away from Kondo valley toward a neighboring
Coulomb peak. The Kondo effect arises from the coupling between a localized electron spin and
a Fermi sea of conduction electrons. The strength is characterized by the Kondo temperature
TK . The spin-coupling interactions which give rise to Kondo physics contribute significantly
only for temperatures comparable to or lower than the Kondo temperature [31, 52].

According to the Anderson impurity model, the relationship of Kondo temperature as defined
in Eq. 2.49: kBTK = (

√
ΓU/2)exp(πε0(ε0 + U)/ΓU), where ε0 = αeVg+ constant, and is the

energy of the localized state measured from the Fermi energy of the leads, the TK is proportional
to the gate voltage Vg. Therefore Kondo temperature TK increases when approaching the
Coulomb blockade peaks on either side of the Kondo valley. This is the result of bringing
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7. Kondo Physics in a Single Quantum dot

the energy state ε0 toward the Fermi energies µL
∼= µR by tuning the gate voltage Vg. For

example, at VE1E2 = −220 mV, the minimum width around the middle of Kondo valley is
≈ 100 µV implying TK ∼ 1.16, while the width at Kondo valley approaching one of Coulomb
peak is obtained ≈ 132 µV estimating TK ∼ 1.53 K. It can be noticed that the minimum width
referring and hence the Kondo temperature at the valley is independent of VE1E2.

Figure 7.8 shows the dependence of Kondo resonance width and amplitude on the gate voltage
Vg at different VE1E2, which corresponds to the measured data appeared in Fig. 7.5. According
to both 7.8(a) and 7.8(b), we can see clearly that the position of Kondo valley is shifted to
less negative Vg as the VE1E2 decreases. Because the tunnel barrier is adjusted by changing
VE1E2, the Kondo valley is shifted under the influence of the dot-lead gate voltage VE1E2. The
asymmetry of the Kondo effect can be seen in Fig. 7.8(c) which shows the center of Kondo
resonance peak in the Coulomb diamond for different VE1E2. For each VE1E2, the Kondo peak
position is shifted to more negative bias when the Vg is decreased. Around the middle of the
Kondo valley in (a), the Kondo peak position in (c) is slightly shifted. While the Vg is swept to
neighbouring Coulomb blockade peaks, the shifting of the Kondo peak position is more clear.
The slope of Kondo peak shifting in the Kondo valley is much steeper than that in the region
closed to the adjacent Coulomb peaks. At VE1E2 = −224 and -226 mV, the steepest part of
the Kondo peak position shifting becomes shorter. It corresponds to the region of Kondo valley
getting narrower and the distortion of Coulomb diamond as seen in Fig. 7.5(f) and (g). This
can be referred to the large asymmetry of the tunnel coupling of the dot at these conditions of
gate voltages.

The effect of the Kondo peak position shifting is due to the influence of the asymmetry of
the tunnel coupling between the dot and the electron reservoirs, ΓL 6= ΓR. With decreasing
VE1E2, the Kondo peak shifting is more pronounced and the slope for this peak changing over
the Kondo valley decreases. In order to break the symmetry of the tunnel coupling of the dot
to the reservoir, we adjust the voltage applied to the dot-lead gate, i.e. gate E1E2 in this case,
instead of tuning the applied voltage to an additional gate close to a dot-lead gate as performed
by F. Simmel et. al. [37]. The Kondo resonance in the density of states in the dot will be
pinned to the electrochemical potential level of the stronger coupling of the dot to either left or
right barrier. Therefore, the appearance of Kondo conductance resonance in non-zero bias can
be observed even at no applied magnetic field B = 0. The shifting of enhanced conductance
peaks in the Coulomb diamond also becomes more pronounced with increasing of asymmetry
of the coupling by decreasing the VE1E2. These asymmetry results qualitatively agree with the
numerical results of density of states and differential conductance calculated from the on-dot
impurity Green’s function according to the Anderson Hamiltonian in the work of M. Krawiec
and K. I. Wysokinski [38].

Figure 7.9(a) shows the Coulomb diamond in the Kondo regime as the tunneling gate voltage
VC1C2 and VE1E2 is applied by -326 mV and -218, respectively. The DC-offset in this presented
data is corrected by 30 µV. We will use this condition to investigate the temperature dependence
of the Kondo resonance in the next section. The straight line indicates the evolution of the offset
of Kondo conductance resonance with the gate voltage Vg. The slope of this line Vg/Vsd is about
200, which is the linear shift of the resonance with the Vg. This resonance shifting results from
the influence of the Vg, which is the applied voltage to gate D1D2, to the gate C1C2 and E1E2,
which is coupling of the dot to the left and right lead respectively. The shifting of the Kondo
conductance resonance peak can be seen clearly in the line plot in Fig. 7.9(b) when the gate
voltage Vg is swept from -1.1475 V to -1.151 V. Figure 7.10(a) also shows the shifting of the
Kondo peak position from Fig. 7.9(a) indicated with the straight line with the same slope as
described above. The effect of resonance shifting from the gate voltage Vg has also obtained
before in Fig. 7.8(c) for every value of VE1E2.
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7. Kondo Physics in a Single Quantum dot

The maximum value GMax and amplitude of the Kondo peak are shown in Fig. 7.10(b), and
have the same trend as the amplitude of Kondo peak in previous data. The amplitude and the
width of the Kondo peak, as shown in Fig. 7.10(b) and (c), is clearly increased when moving
towards the Coulomb peaks. Therefore, the Kondo temperature increases from the Kondo valley
to the side of the Coulomb peak. Since the kBTK/e is estimated to be equal to the width of the
Kondo resonance peak, the Kondo temperature TK varies from a minimum value of ∼ 1.1 K in
the valley to ∼ 1.7 K close to the Coulomb peaks, as presented in Fig. 7.10(c). The calculated
Kondo temperature TK for different gate voltage Vg has been shown and is proportional to the
width of the Kondo resonance peak.

We can rewrite Eq. 2.49 as ln(TK) = πε0(ε0 + U)/ΓU + ln(
√
ΓU/2kB) where ε0 = αeVg+

constant. This equation indicates a quadratic dependence for ln(TK) on the gate voltage Vg.
The data set of natural logarithm values of Kondo temperature, which is derived from the width
of the Kondo conductance peaks at the base temperature, is fitted to the equation above and a
parabolic dependence is found, as shown in Fig. 7.10(d). From this fit, we obtain the charging
energy U ≃ 1 meV and the tunnel coupling to the leads Γ ≃ 550 µeV, which is much larger than
Γ for the dot in weak coupling limit discussed in the section 6.4.

Out of equilibrium, when a finite Vsd is biased, the Kondo resonance appearing in the density
of states of the quantum dot is split into two resonances, each pinned to one chemical potential of
the respective lead. Due to the different couplings of the dot to the leads in our case, one of the
resonances is enhanced whereas the other is suppressed as schematically shown in Fig 7.4. The
asymmetry and energy dependence of the tunneling strengths result in an enhanced conductance
in the Coulomb blockade diamond at nonzero bias [31, 37].

7.3. Temperature dependence of the Kondo Resonance

Figure 7.11(a) and 7.11(b) show that the differential conductance for different temperature
value of the Kondo resonance peak in the Coulomb diamond in Fig. 7.9(b) at gate voltage
Vg = −1.1475 and -1.148 V, respectively. This presented data is already corrected for the
DC-offset. The pronounced peaks around Vsd ∼ −30 µV, which is the shifted value from the
zero-bias, reflect the Kondo resonance located at the chemical potential of the lead with strong
coupling. As temperature, T ≡ Tbath, increases, the conductance at the Kondo resonance peak
decreases whereas the conductance at the valley at both sides of Kondo peak increases. The base
temperature for temperature dependence measurement is about 64 mK, whereas the electronic
temperature, Te, is about 190 mK, as indicated with the solid line for each figure.

The data is fitted quite well with a hyperbolic cosine function superposed by a Lorentzian
peak as demonstrated in Fig. 7.11(c) for Vg = −1.1475 V and 7.11(d) for Vg = −1.148 V. The
conductance at the top of the Kondo resonance peak and the peak width estimated from the full
width at half maximum of the fitting Lorenzian peak can be extracted for different temperature.

The width of the Kondo resonance peaks is constant at low temperature and begin increasing
at the temperature above ∼ 150 mK, as shown in Fig. 7.12(a) and (b). The width linearly
increases at high temperature above ∼ 250 mK as indicated with the linear line in both figures.
According to Eq. 7.1, the Kondo temperature TK can be extracted from the constant width at
the low temperature. For Vg = −1.1475 V, the width is about 129 µV, therefore the TK ≃ 1.5 K.
The width of 125 µV for Vg = −1.148 V replies the TK ≃ 1.45 K. The linear fitting line at high
temperature can extrapolate the width at zero temperature of ∼ 44 µV for Vg = −1.1475V and
∼ 38 µV for Vg = −1.148 V. The slope of the linear line can be written as ∆(FWHM)/∆T =
(kB/e)(∆TK/∆T ). In Fig. 7.12(a) and 7.12(b), the lines indicate a slope of ∼ 4.5kB/e and
∼ 4.7kB/e, respectively.

Figure 7.12(c) and (d) show the logarithmic temperature dependence of the conductance at the
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Figure 7.11.: Differential conductance G ≡ dI/dVsd versus dc bias voltage between source and
drain contacts Vsd for temperature ranging from 64 mK up to 600 mK, at Vg =
−1.1475 V in (a) and Vg = −1.148 V in (b). Other gate voltage is set as VC1C2 =
−0.326 V, VE1E2 = −0.218 V. (c) and (d) show the good fitting of Kondo resonance
peaks corresponding to data in (a) and (b) at the base temperature.

top of the Kondo peaks. At low temperature the Kondo conductance saturates around 0.43e2/h
and 0.36e2/h for Vg = −1.1475 V and Vg = −1.148 V, respectively. We fit the conductance G
versus the temperature T for these two gate voltages to the empirical function in Eq. 2.50 as

G(T ) = G0

(

T ′2
K

T 2 + T ′2
K

)s

, (7.2)

with T ′

K = TK/
√

21/s − 1, where the fit parameter s ≈ 0.2 for a spin-1/2 system [35]. This is
an empirical fitting function to numerical renormalization group calculations (NRG) reported
in work by T. A. Costi et al. [60]. The appropriate value of s is determined from the steepness
of the conductance drop with increasing temperature. To compare the TK from this method to
the one extracted from the width of Kondo peak, the parameter s is fixed at 0.2 in the fit to
our data. Therefore, we can obtain that the TK ≃ 1.64 K for Vg = −1.1475 V, and TK ≃ 1.68
K for Vg = −1.148 V. The TK value extracted from this fitting in Fig. 7.12(c) and 7.12(d) is
comparable to the previous TK value extracted from 7.12(a) and 7.12(b).

Hence, we assume the value for TK in Eq. 7.2 as the value extracted from the width with
Eq. 7.1 (1.5 K and 1.45 K), and fit to the data in order to find the value of s. The quality
of curve fitting does not change significantly. The fitting values of s are 0.22 and 0.24 for
Vg = −1.1475 V and Vg = −1.148 V, respectively. They are quite close to expected value of
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0.2 in Kondo regime depending on the spin of the impurity or localized electron spin. It clearly
shows that the fitting with this scaling empirical function to our Kondo conductance data is
acceptable and in agreement with the theory. This empirical form provides a good fit to NRG
results giving the correct Kondo temperature for the Kondo regime [35, 60].

Since the saturation of Kondo linewidth is similar to the saturation in the temperature de-
pendence of Coulomb peaks, then some of linewidth data in Fig. 7.12(a) and (b) is plotted as
a function of electronic temperature Te, as shown in Fig. 7.13. The Te is obtained from the
temperature dependence of Coulomb linewidth in Fig. 6.25 giving the correlation between bath
temperature and electronic temperature. It can be seen that the width becomes saturated at
Te ∼ 200 mK which is comparable to the electronic temperature of ∼ 190 mK at base tem-
perature of ∼ 64 mK. This means that the Kondo linewidth becomes saturated because the
electronic temperature saturates. At Te & 250 mK, the linear dependence of Kondo linewidth
on the electronic temperature is clearly shown. At high temperature, the electron temperature
Te can be assumed to be equal to the temperature of the bath. Since TK/Te > 1 extracted from
the method above, it can be confirmed that the conductance in a quantum dot with this strong
coupling condition is definitely in the Kondo regime [32].

We investigate the Coulomb oscillation in the dotII structure with strong coupling to the lead
over a wide range of gate voltage Vg, as shown in Fig. 7.14(a). The fitting of the Coulomb peak
in Kondo regime at the base temperature of 62 mK has also been shown. Figure 7.14(b) shows
Coulomb oscillations for different temperatures. The temperature of the bath is increased from
62 to 800 mK. The conductance at the slope between the Vg of -1.15 and -1.146 V decreases
with increasing temperature. This slope is the one we found the Kondo conductance peaks in
the nonlinear measurement, as shown before in Fig. 7.10. The dot-lead gate voltages, VC1C2 and
VE1E2, are set at -326 and -218 mV, respectively. Comparing to the Coulomb valley between
-1.163 to -1.157 V, the conductance in this valley is increased with increasing temperature.

From the Coulomb peak fitting in Fig. 7.14(a) for different temperatures, we can plot the
line width or full width at half maximum Γ of the Coulomb peak versus temperature T . The
conductance peak is well described by the convolution of a Lorentzian broadening of Γ of the
localized energy level with the derivative of the Fermi-Dirac function [21, 22]. Comparing the
convolution to our temperature dependence of measured conductance peak width, we can extract
Γ ≈ 292 µeV from the extrapolation back to T = 0 K as shown in Fig. 7.14(c). Comparing
the Γ ∼ 300 µeV in this section to the Γ ∼ 100 µeV extracted in the weak coupling regime in
the section 6.4. The Γ extracted at higher dot-lead gate voltage is approximately three times
higher than that in the weak coupling regime. Since Γ = ΓL + ΓR reflects the tunnel coupling
between the dot and the leads, we can clearly see that the electron tunneling with the dot-lead
gate voltages applied in this section is definitely in the strong coupling regime giving chances to
study Kondo physics in our quantum dot. The slope of the same temperature dependence gives
the constant of factor α = Cg/CΣ = 0.097, where Cg and CΣ are the gate and total capacitance,
respectively. The factor α is the proportionality between the localized energy level and the gate
voltage Vg. At high temperature the line of the convolution function with above parameters is
almost linearly decreased with decreasing temperature, and separates from our data at ∼ 300
mK, which corresponds to the temperature dependence of Coulomb oscillation in weak coupling
or in the Coulomb regime.

Figure 7.15(a) shows the temperature dependence of the conductance G on a logarithmic scale
for fixed gate voltages Vg in the Kondo regime. We fit G versus T for different gate voltages Vg to
the empirical function in Eq. 7.2 to extract the Kondo temperature TK . The gate voltage Vg is
related to the localized state energy ε0 with ε0 = αVg+constant. The normalized conductances
G/G0 for the same data are replotted as a function of temperature divided by the respective
Kondo temperature TK . This yields the normalization plot, as shown in Fig. 7.15(b). In this plot
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Figure 7.14.: (a) Coulomb oscillations in G versus Vg with the Coulomb peak fitting at VC1C2
= -326 mV and VE1E2 = -218 mV. (b) Coulomb oscillations in Kondo regime at
different temperature. (c) Temperature dependence of the peak width extrapolated
back to T = 0 to extract Γ. The slope at high temperature gives α value as shown
in the figure.
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the different data sets all lie on top of each other, especially at 0.04 . T/TK . 0.4. This confirms
that the normalized conductance is a universal function of the normalized temperature T/TK

scaling to a single trace of data for different gate voltage Vg, and being independent of the other
energy scales (U, ε0, and Γ). The Kondo temperature TK calculated by fitting with the empirical
function for various gate voltages Vg has been shown in Fig. 7.15(c). The Kondo temperature
TK along the Kondo valley is extracted between 1.4 and 1.9 K. It shows a parabolic dependence
similar to the behaviour of the Kondo temperature estimated from the width of Kondo peak,
but the value of TK obtained from fitting with empirical function is somewhat higher than that
estimated from the Kondo peak width.

7.4. Kondo resonance in the Magnetic field

According to previous studies of the Kondo effect in an applied magnetic field [30, 31, 61], a
magnetic field can split the enhanced Kondo peak in the density of states at the electrochemical
potential level of the leads into two peaks with the Zeeman energy gµBB above and below
the potential level. This lifting of the spin degeneracy results in a splitting of the differential
conductance G = dI/dVsd versus Vsd. When a magnetic field is applied, a Kondo conductance
peak splits into two peaks appearing at Vsd = ±gµBB/e, where g is the Lande g-factor, µB is
the Bohr magneton, and B is the applied magnetic field. Thus these split peaks in differential
conductance are separated by twice the Zeeman energy, 2gµBB. It equilibrium, there is no
longer a peak in the density of states at µL = µR, and the zero-bias conductance will be not
enhanced.

In our case, we have performed the nonlinear measurements of a quantum dot in strong
coupling or Kondo regime in small magnetic field. Figure 7.16(a)-(c) show the plot of our
nonlinear data after corrected for the DC-offset over Kondo regime for applied magnetic field
varied from 0 to 200 mT. The line shapes in the right figures have also been presented to
make more clear in changing of the Kondo conductance peak. This presented Kondo region is
selected around VC1C2 = −1.1425 (topmost curve) and -1.146 (bottom curve). When the applied
magnetic field increases, the maximum of the Kondo peak decreases, but there is no evidence
indicating a peak splitting. This might be interpreted that a slight increase in magnetic field
can reduce the tunnel couplings such that a quantum dot system is turned out of the Kondo
regime [37]. The applied magnetic of 200 mT is still not enough to obtain a peak separation.

The Kondo effect parameters: maximum conductance, width, and center of the resonance
peak in differential conductance, are extracted and shown in Fig. 7.17(a) to (c), respectively.
We can see that the maximum of the Kondo resonance decreases and the trend of the maximum
conductance data points is getting flatter with increasing magnetic field, as shown in Fig. 7.17(a).
This result confirms that the magnetic field might have some influence to the coupling of the
dot to the leads. In Fig. 7.17(b) the width of the Kondo resonance peak in the region of
−1.1455 < Vg < −1.1435 slightly decreases, whereas the width outside this region approaching
to the Coulomb peaks on either side increases when applied magnetic field increase.

Figure 7.17(c) shows the plot of center position of the Kondo peak in Kondo regime at different
applied magnetic field. At Each value of magnetic field, the Kondo resonance peak position
changes with the positive slope of dVg/dVsd. This effect might come from an asymmetric tunnel
barrier of the dot as discussed above. With increasing magnetic field, the peak position at fixed
gate voltage Vg changes randomly. The trend of the shifting of the peak position is nearly the
same for different magnetic field.

We may apply higher magnetic fields to a quantum dot in Kondo regime with another condition
of gate voltage VC1C2 and VE1E2. Since the position and shape of the Coulomb diamond are
not quite stable after we perform the measurement in applied magnetic field, we therefore have
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Figure 7.16.: (a)-(c) (Left) Grey-scale plot of G = dI/dVsd for a quantum dot at VC1C2 = -327
mV and VE1E2 = -220 mV for B = 0 to 200 mT, respectively. (Right) The plot
of line shape of peaks in Kondo valley for depending B. The curves have been
offset with 0.01(e2/h) for clarity. The topmost curve indicates Vg = −1.1425 V,
and Vg = −1.146 V for the bottom curve.
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Figure 7.17.: (a) Maximum conductance GMax and (b) the width of Kondo peak versus Vg for
various applied magnetic field B. (c) Plot of the peak position of the Kondo
resonance in G for different B. All values are extracted from the Kondo peak fit
to the data in Fig 7.16. The magnetic filed is applied from 0 to 200 mT.

to re-adjust VC1C2 and VE1E2 to obtain the good quality of Kondo resonance appearing in the
Coulomb diamond. Figure 7.18(a) and (b) show the comparison of Kondo resonance in Coulomb
diamond between no magnetic field and applied magnetic field of 250 mT. From the line shape
of the Kondo peaks in both values of B, it can be seen clearly that the Kondo peak height
decreases, and the regular diamond pattern for Coulomb blockade begins reappearing. At some
fixed value of Vg, the Kondo peak disappears and the differential conductance in diamond region
becomes flat in B = 250 mT.

Figure 7.18(c) shows the maximum conductance at the top of Kondo peak at B = 0 and 250
mT, which corresponds to the data in Fig. 7.18(a) and (b). The peak height at any gate voltage
Vg clearly decreases as the magnetic field increases. Furthermore, the trend of data points seem
to be decreased and getting flatter. The position of Kondo peak is also plotted and shown in
Fig. 7.18(d). The dashed-line is the linear fit to the peak position data in no magnetic field. It
is clearly seen that its slope is less than that of the dotted-line. The dotted-line is the linear fit
to the peak position data in B = 250 mT, and almost vertical. With B = 250 mT, it improves
the trend of the Kondo resonance offset by changing from tilting to vertical straight line. From
these results, it is quite obvious that the magnetic field has some influence to the symmetry of
the tunnel barrier of a quantum dot affecting to the symmetry of Kondo resonance and shape
of Coulomb diamond. No peak splitting can be observed in this value of magnetic field.

The magnetic field might be too small to make pronounced Kondo peak splitting which can
be observed. Since two splitting peaks should be separated by 2gµBB, one of peaks is expected
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Figure 7.18.: For VC1C2 = -328 mV and VE1E2 = -215 mV, (a) and (b) (Left) Differential con-
ductance on a grey scale as functions of both Vg and Vsd at T ∼ 70 mK for B = 0
and 250 mT, respectively. The DC-offset is corrected for this presented data. (a)
and (b) (Right) The curves of Kondo peaks at different Vg in the left have been
offset with 0.01(e2/h) for clarity. Vg = −1.1455 and -1.1485 V are indicated at
the topmost and bottom curve, respectively. (c) Conductance Maxima GMax as a
function of Vg, and (d) the peak position of Kondo resonance with indicated slope
line as a function of Vg and Vsd for B = 0 and 250 mT.
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Figure 7.19.: For VC1C2 = -328 mV, VE1E2 = -213 mV, and T ∼ 70 mK, (Left) Grey-scale plot
of dI/dVsd as functions of Vg and Vsd for (a) B = 0 mT and (b) B = 500 mT.
(Right) The plots show line shape of Kondo peaks for corresponding B in the left.
The DC-offset is already corrected in this data. The curves have been offset with
0.01(e2/h) for clarity. The topmost and bottom curves indicate the gate voltage
Vg = −1.147 and -1.15 V, respectively.

to be found at finite bias Vsd = ±gµBB/e = ±25 µV/T, where g = −0.44 for bulk GaAs [52, 62].
For a magnetic field of B = 250 mT, we expect to see the splitting peaks in the windows of
eVsd ≃ 15.8 µeV around the offset of the peaks. Unfortunately, we however swept the source-
drain voltage Vsd in the step of 10 µV which is bigger than gµBB/e, thus we cannot observe the
effect of Kondo peak splitting with small applied magnetic field. Additionally, the spin-splitting
in two-dimensional electron gas might have been found to be suppressed compared with values
for bulk samples [30].

We increase the tunneling coupling to the lead via QPC E by increasing VE1E2. Figure 7.19
shows the results of nonlinear measurement performed in stronger coupling and higher magnetic
field compared to the result in previous figures. The Kondo resonance appears in the Coulomb
diamond in Fig. 7.19(a) clearly, but it almost completely disappears and the diamond pattern
develops when a magnetic field of 500 mT is applied, as shown in Fig. 7.19(b). The shape
of Coulomb diamond is changed completely, and the differential conductance at the middle of
Kondo valley become flat. This result might be due to either the splitting of Kondo resonance
in density of states around the electrochemical potential level of the leads, or the influence of
magnetic field to the tunneling barrier of a quantum dot. From theory, the splitting of the
Kondo peaks is expected within a window of Vsd = 2gµBB/e ≃ 25 µV. Thus we are still not
be able to find any evidence of the Kondo resonance splitting even for a magnetic field of 500
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mT. According to data from Fig. 7.16 to 7.19, when the magnetic field is increased from zero to
500 mT, it can be noticed that the Kondo peaks are broadened. The peak height decreases and
the Kondo peaks become flat at half of one tesla. The shifted Kondo resonance position and
the shape of Coulomb diamond are improved with increasing magnetic field. It can be inferred
that the magnetic field affects the symmetry of the tunnel coupling of the dot to leads. The
symmetry of the Kondo resonance is therefore improved with increasing magnetic field.

7.5. Kondo Effect in a Quantum Point Contact coupled with a
Single Quantum dot

In the nanostructure of the sample PR1:d4, Coulomb oscillations are observed in the con-
ductance of QPC A when sweeping gate voltage VA1 for fixed gate voltage VA2. Therefore a
nonlinear measurement is performed to investigate the Kondo effect appearing in the Coulomb
diamond as VA2 = −0.23 and -0.24 V. We select these values for VA2 because we would like to
study the nonlinear data in strong coupling regime with VA2 > −0.4 V, which is the value for
stable Coulomb oscillation in the conductance of QPC A and is shown in Fig. 5.13(a).

Figure 7.20(a) shows two Coulomb diamonds of nonlinear data with VA2 = −0.23 V. We can
observe the anomaly structure indicating the Kondo conductance resonance in both diamonds.
The Kondo resonance peaks occur exactly at a zero bias after the correction for DC-offset of
∼ −40 µV. The line shape of the Kondo conductance peak in the top and bottom diamond is
shown in Fig. 7.20(b) and Fig. 7.20(c), respectively. It can be seen that the center of the Kondo
peaks is at the same position especially in the bottom diamond. It can be assumed that the
unexpected dot probably has the symmetric tunnel coupling to the reservoirs. The Coulomb
peak spacing is approximately 4.6 mV. The capacitances of a coupled quantum dot can be
extracted from the slope of the border lines of Coulomb diamond in Fig. 7.20(a) as Cg ≃ 35 aF,
Cs ≃ 70 aF, Cd ≃ 65 aF, and CΣ ≃ 170 aF. We can see that the source and drain capacitances
are comparable, thus the tunnel coupling to the reservoirs could be symmetric corresponding to
the assumption above. The coupling factor of the gate A1 capacitance and the total capacitance
is calculated as α = Cg/CΣ ≃ 0.2. The source-drain capacitances are obviously higher than the
capacitances extracted from the diamond for VA2 = −0.4 V as presented in the section 6.5. This
may result from the stronger coupling between an unexpected quantum dot structure and the
reservoir by increasing gate voltage VA2.

When sweeping gate voltage VA1, the conductance oscillations corrected for the source-drain
offset of ∼ −50 µV are shown in Fig. 7.20(d). It shows the valleys that the Kondo resonance
can be found in −0.198 V < VA1 < −0.194 V and −0.194 V < VA1 < −0.19 V corresponding to
two Coulomb diamonds in Fig. 7.20(a). From fitting Kondo resonance peak in Fig. 7.20(b) and
7.20(c) with hyperbolic cosine superposed by Lorentzian, the width of the resonance peaks can
be calculated and is presented in Fig. 7.20(e). The Kondo temperature TK can be estimated
from the width of the resonance by using Eq. 7.1. Therefore the Kondo temperature is between
∼ 1.7 K and ∼ 2.7 K for Kondo resonance in the top Coulomb diamond, and is between ∼ 2.1
K and ∼ 3.6 for the Kondo resonance in the bottom Coulomb diamond. We find the parabolic
dependence of Kondo temperature in these two regions. The parabolic dependence of Kondo
line width or TK corresponds to the conductance valley as shown in Fig. 7.20(d). Thus, we
can call these valleys as Kondo valleys. The Kondo temperature increases when the distance
between localized state and the Fermi energy of the leads is decreased by moving away from
Kondo valley toward a neighbouring Coulomb peak.

For a decreased VA2 of -0.24 V, Fig. 7.21(a) to (e) shows the same analysis method of the Kondo
resonance as already given for VA2 = −0.23 V. The anomaly indicating the Kondo resonance can
be clearly observed in the top and bottom Coulomb diamond. After the correction of DC-offset
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Figure 7.20.: At VA2 = −230 mV, (a) Grey-scale plot of differential conductance G ≡ dI/dVsd as
a function of VA1 and Vsd shows the Kondo resonance peak in both top and bottom
Coulomb diamonds. (b) and (c) Line plot of G in respective top and bottom
Coulomb diamonds as a function of Vsd. The curves is offset with 0.02e2/h for
clarity. (d) Plot of Coulomb oscillation in G versus VA1 with DC-offset correction
of ∼ −40 µV. (e) The Kondo peak width extracted from fitting to data in (b) and
(c).
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Figure 7.21.: At VA2 = −240 mV, (a) Grey-scale plot of differential conductance G ≡ dI/dVsd as
a function of VA1 and Vsd shows the Kondo resonance peak in both top and bottom
Coulomb diamonds. (b) and (c) Line plot of G in respective top and bottom
Coulomb diamonds as a function of Vsd. The curves is offset with 0.02e2/h for
clarity. (d) Plot of Coulomb oscillation in G versus VA1 with DC-offset correction
of ∼ −40 µV. (e) The Kondo peak width extracted from fitting to data in (b) and
(c).
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of ∼ −40 µV, the line shape of Kondo peaks shows that they all are at a zero bias which is
the middle of both diamonds. The Kondo temperature TK estimated from the width of Kondo
conductance peak is between ∼ 1.8 K and∼ 3.7 K for the resonance in the top Coulomb diamond,
and is between ∼ 1.5 K and ∼ 2.5 K for the resonance in the bottom Coulomb diamond. It is
found that only the Kondo temperature in bottom diamond has a parabolic dependence which
corresponds to the Kondo valley at −198 mV . VA1 . −194 mV. All extracted capacitances of
a quantum dot and coupling factor α are the same as those extracted for VA2 = −0.23 V. This
can be explained that the coupling of the unexpected quantum dot to the leads or reservoirs is
not changed significantly, but the Kondo temperature is changed when VA2 is varied within the
short range of 10 mV. The Kondo resonance might be sensitive to a small change of the coupling
between a localized electron spin in the dot and electrons in the reservoirs. However, the Kondo
temperature values between two conditions of VA2 for both top and bottom diamonds are still
in the same order and are not too much different.

7.5.1. Temperature dependence

We measure the differential conductance G versus the DC bias voltage Vsd for different temper-
atures, at fixed VA1 and VA2. Figure 7.22(a) shows the temperature dependence of the Kondo
peak in the middle of both Kondo valleys in Fig. 7.20(d), VA1 = −192 and -196 mV, for fixed
value of VA2 = −230 mV. For VA2 = −240 mV, the temperature dependence of Kondo conduc-
tance peak at the same position in VA1 is also shown in Fig. 7.22(b). The base temperature is
about 60 mK for both conditions of gate voltage. When the temperature T increases, the Kondo
peak in each regions broadens and the peak height decreases. The Kondo peak disappears at
high temperatures.

The Kondo peaks in both figures are fitted, and the width and maximum conductance of
the peak can be extracted, as shown in Fig. 7.23(a) to (d). The Kondo temperature TK can
be estimated from the width of Kondo peak at base temperature by using the relationship
between FWHM and TK in Eq. 7.1. Another method to find the Kondo temperature is to use
the empirical function of Eq. 7.2 fitting to the data of maximum conductance at the top of
the Kondo peak. The figures of the conductance G data show the good fitting with empirical
function using the fitting parameter s ≃ 0.2.

At VA2 = −230 mV, the Kondo temperature TK estimated from the peak width at base
temperature shown in the left figure of 7.23(a) and 7.23(b) is ∼ 2 K at VA1 = −192 mV (in the
top Coulomb diamond) and ∼ 2.7 K at VA1 = −196 mV (in the bottom Coulomb diamond).
The Kondo temperature extracted from the good fitting in the right figure of 7.23(a) and 7.23(b)
for both values of VA1 is approximately 3 K, which is comparable to that extracted from the
Kondo line width at VA1 = −196 mV.

At VA2 = −240 mV, the Kondo temperature TK estimated from the peak width at base
temperature shown in the left figure of 7.23(c) and 7.23(d) is ∼ 2 K for both VA1 = −192 mV
(in the top Coulomb diamond) and VA1 = −196 K (in the bottom Coulomb diamond). The
Kondo temperature extracted from the good fitting in the right figure of 7.23(c) and 7.23(d) is
∼ 2.3 K at VA1 = −192 mV and ∼ 1.8 K at VA1 = −196 mV, respectively.

For all conditions of gate voltages, VA1 and VA2, the width of Kondo peak increases linearly
with higher temperature. It can be seen that the Kondo temperature TK extracted from fitting
with empirical function is a bit higher than that estimated from the width of Kondo peak at
base temperature. However, they are comparable, especially at VA2 = −240 mV in which TK is
obtained around 2 K in both methods. From the temperature dependence of Kondo resonance
peak at two different values of VA2, there is no significant difference in the physics between these
two conditions of VA2. Therefore we measure the conductance as a function of gate voltage VA1

at different temperatures only for VA2 = −230 mV.
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Figure 7.22.: Differential conductance versus Vsd for different temperature, at (a) VA2 = −230
mV and (b) -240 mV. The data is already corrected for the DC-offset. The gate
voltage VA1 is set at -192 and -196 mV in the middle of both Kondo valleys as
shown in Fig. 7.20(d) and 7.21(d).

Figure 7.24(a) shows that the conductance G versus the gate voltage VA1 at different temper-
atures. The gate voltage VA2 is set at -230 mV, and this Coulomb oscillation is corrected for the
DC-offset of ∼ −40 µV. The Coulomb conductance peak is also broadened and the peak height
decreases with increasing temperature. The Coulomb peak spacing ∆VA1 is approximately 4.7
mV, and six conductance valleys are shown in this figure. When the temperature is increased,
the conductance in the three valleys on the left hand side decreases, whereas the conductance in
the next two valleys increases. The valleys around VA1 = −198 and -195 mV, and VA1 = −194
and 190 mV, in which the conductance decreases with increasing T , corresponds to the Coulomb
diamond region in which the Kondo resonance peak appears in Fig. 7.20(a). Hence these valleys
between Coulomb peaks may be regarded as Kondo valleys.

The conductance in the center of the valleys, VA1 = −192 and -196 mV, has a logarithmic
temperature dependence, as shown in Fig. 7.24(b) and (c) respectively. The fitting with empirical
function in Eq. 7.2 to the data shows a good agreement with the theory. The fitting parameter
is set to s = 0.2, and then the Kondo temperature TK can be extracted as TK ≃ 4 K for
VA1 = −192 mV and TK ≃ 3.2 K for VA1 = −196 mV. The Kondo temperature within two
Kondo valleys has been shown in Fig. 7.24(d). This also shows the parabolic dependence of TK

in both valleys. We also see clearly that the Kondo temperature TK increases when moving
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the fit to Eq. 7.2 with s ≃ 0.2 in order to extract the Kondo temperature TK .

128



7.5. Kondo Effect in a Quantum Point Contact coupled with a Single Quantum dot

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

-0.205 -0.2 -0.195 -0.19 -0.185 -0.18 -0.175

G
 (

e2 /h
)

VA1 (V)

T  =   58 mK
= 400 mK
= 550 mK
= 700 mK
= 900 mK

(a)

 0.41

 0.42

 0.43

 0.44

 0.45

 0.46

 0.47

 100  1000

G
 (

e2 /h
)

T (mK)

VA1 = -192 mV

VA2 = -230 mV

(b)

 0.28

 0.29

 0.3

 0.31

 0.32

 0.33

 0.34

 0.35

 100  1000

G
 (

e2 /h
)

T (mK)

VA1 = -196 mV

VA2 = -230 mV

(c)

 3

 3.2

 3.4

 3.6

 3.8

 4

 4.2

 4.4

-0.198 -0.197 -0.196 -0.195 -0.194 -0.193 -0.192 -0.191

T
K
 (

K
)

VA1 (V)

(d)

Figure 7.24.: (a) Coulomb oscillation in differential conductance at VA2 = −230 mV for T rang-
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The curve shows a good quality of fitting with Eq. 7.2 where s = 0.2. (d) Calculated
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7. Kondo Physics in a Single Quantum dot

close to the Coulomb peak. This corresponds to an increasing width of the Kondo peak when
the separation between the localized state and the electrochemical potential in the reservoir is
reduced by the influence of gate voltage VA1. Furthermore, the TK value from this method is
higher than that estimated from the Kondo peak width.
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8. Electron transport in Double Quantum Dots

8.1. Characterization of the Double Dot System

For the sample PR1:d2, the SEM micrograph and the schematic drawing of the structure of
double dot system coupled in series has been shown above in Fig. 6.1. At the base temperature
of ∼ 65 mK, we use gate B2 as an optional lower gate to define a quantum point contact with
gate A1. The sequence of conductance peaks of the double dot (dotI-dotII) system shown in
Fig. 8.1 is obtained by applying VA1 = VgateA = −500 mV, VC1C2 = VgateC = −534 mV,
VE1E2 = VgateE = −435 mV, and VB2 = −1.3 V. The center gate B1, D1 and D2 are connected
and applied with a negative voltage Vg as in the figure below. The observed peak sequence looks
like the Coulomb blockade oscillations obtained for a single dot.
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Figure 8.1.: Differential conductance of the double dots (dotI-dotII) system coupled in series in
the sample PR1:d2 as a function of Vg ≡ VB1D1D2. The VB2 is fixed at -1.3 V.

To characterize the dotI-dotII system of the sample, the center gate B1 and gates D1D2
are varied independently and the conductance is observed as shown in Fig. 8.2. The VC1C2,
corresponding to the coupling between the dots, is varied from -534 to -555 mV to reduce the
coupling as shown in Fig. 8.2(a)-(d). The pattern in all figures is similar but the voltage gap
seems to be a little bit different. However, the pattern of charge stability diagram for double
dot systems known as the honeycomb diagram does not appear, only straight a line pattern can
be observed instead. It is inferred that the observed charging diagrams belong to a single dot,
and that the double dot system is still not yet formed.

In order to form the double quantum dot system, we try to make the system more symmetric
by connecting and applying the negative voltage to gate B2 and D2 together. Figure 8.3 (a)
and (b) show the coulomb oscillation of dotI and dotII respectively when gates B2 and D2
are connected and applied with the voltage of -1.3 V. In both dot structures, the oscillations
begin appearing in this range of gate voltage when the gates C1 and C2 are energized with -470
mV. For the dotII structure the oscillations are most pronounced at VC1C2 = −475 mV. At
VC1C2 = −480 mV the gate voltage gap, ∆Vg, is approximately 12.5 mV for the dotI and 9.6
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Figure 8.2.: Double dot (dotI-dotII) conductance as a function of VB1 = VgateB and VD1D2 =
VgateD. The VC1C2 is varied from (a) -0.534 V to (d) -0.555 V. Each figure, VA1 and
VE1E2 are fixed at -0.5 V and -0.435 V, respectively.
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Figure 8.3.: Conductance of (a) dotI and (b) dotII as a function of their own center gate voltage
Vg. The VA1 ≡ VgateA = -0.48 V for dotI, whereas VE1E2 ≡ VgateE = -0.44 V for
dotII. For each dot, VC1C2 ≡ VgateC is varied from -0.47 to -0.49 V. The gate B2 and
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for clarity.
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8.1. Characterization of the Double Dot System

mV for the dotII. This means that the gate capacitance, Cg, of the dotII is greater than that of
the dotI in this sample. We can obtain the coulomb peaks in the range of -1 V < Vg < -0.6 V
for the dotI and -0.6 V < Vg < -0.3 V for the dotII structure.

Therefore we energized every gate except gate A2 and swept the gates B1 and D1 together
with gates B2 and D2 connected. The conductance peaks for the double dots are obtained and
shown in Fig. 8.4. The gate C1C2 is varied from -470 mV to -490 mV, and the gates A1 and
E1E2 have been tuned to find some evidence of double dot peaks. The gate A1 is then varied
from -460 mV to -480 mV, and the gate E1E2 is also varied from -430 mv to -445 mV. The
modulation of the conductance peaks, which is quite different from the oscillation of the single
dot, can be obtained clearly with the gate E1E2 voltage of -435 mV and -440 mV. When the
E1E2 gate voltage decreases to -445 mV, the conductance modulation is not well-defined. At the
fixed voltage value of gate A1 and E1E2, the amplitude of the conductance peaks decrease and
the oscillations start disappearing when the voltage of the gate C1C2 decreases. The voltage
conditions for gate A1 and E1E2 in Fig. 8.4(k) have been selected to perform the measurement
for investigating the stability phase diagram of the double quantum dots.

Figure 8.5 shows the stability diagrams of the double quantum dots, dotI-dotII. The bright
regions represent high conductance and the dark regions represent low conductance or no electron
transport through the double dots. When the gate C1C2 voltage increases, the coupling between
dots increases and the stability pattern evolves from the array of the conductance peaks in the
weakly coupling regime, as shown in Fig. 8.5(a), to honeycomb pattern in the strongly coupling
regime, as shown in Fig. 8.5(d). In the dark region for each cell the configuration of electrons in
the dots, (n1, n2), is constant. If we keep increasing the VC1C2, the coupling between dots will
increase and change the double dots to a large single dot. A pattern of straight lines will begin
appearing in the stability diagram as shown in Fig. 8.5(f).

After a new cooling process1, the same measurements were repeated to investigate the stability
phase diagram of this double dot system. Figure 8.6(a)-(i) shows the series of figures of the
measured double dot conductance versus gate voltages VD1 and VB1 for the voltage of gate
C1C2 increasing from -488 mV to -455 mV. The coupling between two dots increases from
8.6(a) to (i) by increasing the gate voltage VC1C2. The evolution of the stability diagrams of the
double dots can be observed clearly. The Coulomb blockade for the double dot system evolves
from weakly coupled dots in Fig. 8.6(a) to a single large dot in Fig. 8.6(i). For weak coupling,
the array of bright points indicating the conductance peaks has been predicted by Coulomb
blockade theory for coupled dots as described in the section 2.4.1. Conductance through double
dots in series occurs only when the number of electrons in both dots, n1 and n2 can change
simultaneously, at the intersections of three stable charge configuration (n1, n2) regions and are
known as the triple points.

In Fig. 8.6(a) and (b) the two neighboring triple points are not separately resolved. We see
only that a pair of triple points is merged into one large bright point. This can be explained
since there is a very small splitting of the conductance in the weak coupling regime. As shown
in Fig. 8.6(a), there is no conductance boundary linking the bright points, but it occurs as the
interdot coupling increases.

For stronger interdot coupling in Fig. 8.6(c) to (i), the pattern of stability diagram changes
to hexagon or honeycomb pattern and is no longer described by the Coulomb blockade theory
of individual dots. The quantum dot molecule regime is reached as the interdot coupling is
increased. More interdot coupling corresponding to an increase of the interdot gate voltage
leads to more splitting of the conductance at a pair of triple points as is shown. In this regime
the electronic states are delocalized between the dots and electrons are shared by both dots. The

1In this process, the system was cooled down after the last process was stopped for two week. The base
temperature was obtained at ∼ 65 mK, which is approximately the same as the cooling process before.
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Figure 8.4.: Double dot conductance as a function of Vg ≡ VB1D1. For (a) to (d), VA1 ≡ VgateA

is set at -460 mV. For (e) to (f), VA1 is set at -470 mV. The VC1C2 ≡ VgateC is varied
from -470 to -490 mV, and VE1E2 ≡ VgateE is varied from -430 to -445 mV. The
VB2D2 is fixed at -1.3 V.
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Figure 8.4.: (cont.) Double dot conductance as a function of Vg ≡ VB1D1. For (g) to (h), VA1 ≡
VgateA is set at -470 mV. For (i) to (l), VA1 is set at -480 mV. The VC1C2 ≡ VgateC

is varied from -470 to -490 mV, and VE1E2 ≡ VgateE is varied from -430 to -445 mV.
The VB2D2 is fixed at -1.3 V.
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Figure 8.5.: Charge stability diagram of dotI-dotII system at VA1 ≡ VgateA = -480 mV and
VE1E2 ≡ VgateE = -440 mV. Conductance is measured as a function of VB1 ≡ VgateB

and VD1 ≡ VgateD. The VC1C2 ≡ VgateC is varied from (a) -485 to (f) -460 mV, and
VB2D2 is always fixed at -1.3 V.
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Figure 8.6.: Charge stability diagram of double dot system at VA1 ≡ VgateA = -480 mV and
VE1E2 ≡ VgateE = -440 mV. Conductance is measured as a function of VB1 ≡ VgateB

and VD1 ≡ VgateD. The VC1C2 ≡ VgateC is varied from (a) -488 to (f) -463 mV, and
VB2D2 is always fixed at -1.3 V.
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Figure 8.6.: (cont.) Charge stability diagram of double dot system at VA1 ≡ VgateA = -480
mV and VE1E2 ≡ VgateE = -440 mV. Conductance is measured as a function of
VB1 ≡ VgateB and VD1 ≡ VgateD. The VC1C2 ≡ VgateC is varied from (g) -460 to (i)
-455 mV, and VB2D2 is always fixed at -1.3 V.

conductance boundary line of hexagons or honeycomb cells becomes more pronounced. This can
be understood since the coupling not only between the dots but also between the dots and the
leads is increased by some influence from increasing gate voltage VC1C2.

The pattern is tilted and compressed along the diagonal because of the cross capacitance
between each center gate and the opposite dot. In Fig. 8.6(i) the conductance pattern, especially
in the range of high value of gate voltage VD1 and VB1, becomes an array of lines corresponding
to the Coulomb blockade for a single large dot. These lines separate regions defined by integer
value of the total double dot charge ntot = n1 + n2. In this case the system becomes a single
Coulomb blockaded quantum dot.

According to the coupled dots in series model discussed in the theoretical background chapter,
the cross capacitance is neglected when determining the double dot electrostatic energy U .
However, it can be seen that the honeycomb pattern in Fig. 8.6(d) to (g) is compressed and
the alignment of triple points is tilted in the direction of both center gate voltages due to the
influence of the cross capacitance. Therefore the cross capacitance cannot be neglected, and has
to be included to determine the total electrostatic energy. For the linear transport regime, the
charge defined in Eq. 2.56 can be modified according to

−→
Q =

(

QdII +CD1VD1 + CB1dIIVB1

QdI + CB1VB1 + CD1dIVD1

)

, (8.1)

where QdI(II) is the total charge on the dotI(II), CB1(D1)dII(I) is the cross capacitance between
gate B1(D1) to dotII(I), CB1(D1) is the capacitance of gate B1(D1), and VB1(D1) is the voltage
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Figure 8.7.: Equivalent electronic circuit for double dot system in the sample PR1:d2. The
cross capacitances, CD1dI and CB1dII, are included in this diagram. CB1(D1) is the
capacitance from dotI(II) to gate B1(D1), CL(R) is the capacitance from dotI(II)
to neighboring lead, Cint is the interdot capacitance, and VB1(D1) is the voltage
applied to the gate B1(D1). Inset: SEM micrograph of the lithographic double dot
structure has been shown.

of the gate B1(D1).

We put the charge above back into Eq. 2.55 and then obtain the total electrostatic energy for
the double dot system which includes a cross capacitance term:

U =
1

2

−→
QT

(

CdII −Cint

−Cint CdI

)−1−→
Q

=
1

CdICdII − C2
int

(

1

2
CdIA

2 +
1

2
CdIIB

2 + CintAB

)

, (8.2)

where

A ≡ (−endII + CD1VD1 + CB1dIIVB1),

B ≡ (−endI + CB1VB1 + CD1dIVD1),

ndI(II) is the number of electrons in the dotI(II), and CdI(dII) is the total capacitance of dotI(II).
The equivalent electronic diagram representing the double dots structure in this sample is shown
in Fig. 8.7.

Therefore, CdI = CL + CB1 + Cint + CD1dI and CdII = CR + CD1 + Cint + CB1dII. The cross
capacitance between gate D1(B1) and dotI(II) can be calculated by

CD1dI =
e

|∆V x
D1|

and CB1dII =
e

|∆V x
B1|

, (8.3)

where ∆VD1(B1)x is the value of gate voltage VD1(B1) identified in Fig. 8.8. The value of V x
D1(B1)

is at the point on the VD1(B1) axis intercepting with the green (red) line, which shows the tilting
along VD1(B1) direction. From Fig. 8.9 we can find the relationship between the capacitance and
the dimension of the honeycomb diagram. According to works of F. Hofmann et al. [43, 63], the
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Figure 8.8.: Extracting the cross capacitance out of the honeycomb pattern in the charge stability
diagram of the double dot system.

Eq. 2.72 and 2.73 are modified because of influence of the cross capacitances. The capacitance
of the system can then be determined from the voltage separation in Fig. 8.9 as

CD1 =
e

∆VD1
− CD1dI

∆V int
D1

∆VD1
. (8.4)

Similarly, we also obtain

CB1 =
e

∆VB1
− CB1dII

∆V int
B1

∆VB1
. (8.5)

The interdot capacitance can be extracted directly from the relationship in Eq. 2.74 and 2.75 as

Cint = CdI
∆V int

D1

∆VD1
and Cint = CdII

∆V int
B1

∆VB1
. (8.6)

From the data in Fig. 8.6 with VA1 = −480 mV and VE1E2 = −440 mV, the cross capacitance
CB1dII is approximately 3 aF and CD1dI is approximately 5 aF. Figure 8.10(a) shows the value
of gate capacitances at various interdot gate voltages. The capacitive coupling between gate
B1(D1) and dotI(II), CB1(D1), over every interdot gate voltage is close to a constant, and then
the average gate capacitance is 23 ± 5 aF for CB1 and 19 ± 4 for CD1. Figure 8.10(b) shows
the ratio between interdot capacitance and the total capacitance in each dot, Cint/CdI(II). The
Cint/CdI(II) increases with increasing interdot gate voltage. Thus, it is obvious that the interdot
capacitance increases when the tunneling coupling between dots increases. Furthermore, the
ratio Cint/CdII is greater than Cint/CdI at VC1C2 = −473 and -468 mV, whereas both ratios are
approximately the same at higher interdot gate voltage.

From the non-linear measurement of Coulomb blockade oscillations, we can calculate the
capacitive coupling between the dot and the lead according to Fig. 8.7 as CL = 180 ± 4 aF for
dotI and CR = 140± 4 aF for dotII. Therefore, the interdot capacitance, Cint, can be extracted
and increases from 61 ± 10 aF to 138 ± 20 aF with increasing interdot gate voltage from -473
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Figure 8.9.: Coulomb peak spacings in the honeycomb pattern of the charge stability diagram,
which is modified from Fig. 2.21.

mV to -458 mV, as shown in Fig. 8.11(a). Figure 8.11(b) also shows that the total capacitance
increases from 268± 11 aF to 347± 21 aF for dotI, and increases from 223± 11 aF to 300± 21
aF for dotII.

The evolution of the honeycomb pattern in Fig. 8.6 between the weak and strong tunneling
coupling can also be seen in Fig. 8.12, which shows the charge stability diagram for VA1 = −520
mV and VE1E2 = −440 mV. The conductance at the boundary of the honeycomb cells is quite
pronounced and is comparable along both directions, the gate B1 voltage and the gate D1
voltage direction. The tunneling coupling is increased with increasing interdot gate voltage,
VC1C2 = −480 mV to -460 mV, and more splitting of the triple points clearly occur. The
extracted cross capacitance CB1dII is approximately 3 aF, and the cross capacitance CD1dI is
approximately 4 aF.

From the nonlinear measurement at VC1C2 = 470 mV, the value of CL and CR is estimated
as 156± 4 aF and 141± 4 aF respectively. Therefore, we can calculate the interdot capacitance
and also the total capacitance of the dot. The interdot capacitance increases from 43± 4 aF at
VC1C2 = 470 to 116± 9 aF at VC1C2 = −460 mV. The average gate B1 and D1 capacitances are
21 ± 2 aF and 18 ± 2 aF, respectively. The total capacitance for each dot increases when the
coupling between dot increases; CdI increases from 225±6 aF to 298±10 aF, and CdII increases
from 206± 6 aF to 278± 10 aF. It can be seen that the total capacitance for dotI is still greater
than that for dotII even though the gate voltage VA1 is decreased to reduce the coupling to the
lead.

Between the two cases of extremely weak and extremely strong coupling, the observed con-
ductance increases and extends continuously from the points in Fig. 8.6(a) and 8.12(a) along the
boundaries between the charge configurations with different values of ntot, as shown in Fig. 8.6(b)
to (h) and 8.12(b) to (d). The shape of these boundaries changes from zigzag pattern for in-
termediate tunnel coupling to straight lines in Fig. 8.6(i) for extremely strong tunnel coupling
regime.

Figure 8.13 shows the changing of the honeycomb pattern in the charge diagram as decreasing
gate voltage VE1E2 and fixed interdot gate voltage VC1C2 at -472 mV. The honeycomb pattern in
Fig. 8.13(a) changes to the pattern in Fig. 8.13(b) in which only boundaries separating different
ndII occur. No boundary lines separating different ndI can be observed. The splitting of the
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Figure 8.10.: (a) The gate capacitances, CB1 and CD1, and (b) The ratio between interdot and
total capacitances of dotI and dotII, Cint/CdI(II). Both are extracted at various
interdot gate voltage VC1C2. The VA1 and VE1E2 is respectively applied at -480
mV and -440 mV. The VB2D2 is fixed at -1.3 V.
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Figure 8.12.: Charge stability diagram of double dot system at VA1 ≡ VgateA = -520 mV and
VE1E2 ≡ VgateE = -440 mV. The VC1C2 ≡ VgateC is varied from (a) -480 mV to (d) -
460 mV. Conductance is measured as a function of VB1 ≡ VgateB and VD1 ≡ VgateD.
The VB2 is fixed at -1.3 V.
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triple points however is still well defined. When VE1E2 is decreased, the coupling between dotII
and lead is weaker, and the conductance resonances occur like the resonances in a single quantum
dot of a parallel double dot system [64].
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Figure 8.13.: Comparison of charge stability diagram of double dot system when VC1C2 ≡ VgateC

is set at (a) -440 mV and (b) -445 mV. For both results, VC1C2 ≡ VgateC is kept at
-472 mV and VA1 ≡ VgateA = -500 mV. Conductance is measured as a function of
VB1 ≡ VgateB and VD1 ≡ VgateD. The VB2 is fixed at -1.3 V.

We also characterize and calculate the capacitances from the pattern of this figure. The gate
capacitances can be extracted as CB1 = 22 ± 2 aF, CD1 = 19 ± 1 aF. The extracted cross
capacitances values is not so different from the values for the previous gate voltage condition,
CB1dII is approximately 3 aF and CD1dI is approximately 4 aF. Importantly, the interdot capac-
itance Cint for VE1E2 = −440 mV is 71± 7 aF, while the interdot capacitance is 78± 13 aF for
VE1E2 = −445 mV. This means that the gates which control the coupling to the leads have some
influence on the coupling between dots. However, these interdot capacitances in two different
conditions for gate voltage VE1E2 are comparable and not so different. The total capacitances
for dotII decreases from 232±8 aF to 220±14 aF because the capacitive coupling between dotII
and the lead is reduced, even though the interdot coupling is slightly increased.

According to the total energy of the double dot model as expressed in Eq. 8.2, we can simulate
the total electrostatic energy as a function of gate voltages (VB1 and VD1) and the numbers of
electrons in each dot (ndI and ndII). The comparison of the charge stability diagram between
measured conductance data in Fig. 8.14(a) and simulated total energy data in Fig. 8.14(b). The
excellent simulated total energy data has been generated from the program written by another
Ph.D. student: Daniel Schefzyk [65]. By using the capacitance parameters extracted from the
charge diagram of the measured conductance in Fig. 8.12(b), we obtain the total electrostatic
energy in each charge configuration over the range of defined center gate voltages VB1 and VD1.
We can see clearly that the plot of simulated total energy has the same pattern and number of
hexagons as the plot of the measured conductance resonance for the charge stability diagram.
The slopes of borderlines as indicated as dashed lines for each honeycomb cell in Fig. 8.14(a)
and the bright lines in Fig. 8.14(b) are very close. This confirms that the model used to explain
the double quantum dot system is satisfied and reasonable.

To study the effect of changing the coupling between the dot and the lead to the conductance
resonance, the gate voltage VA1 is varied from -480 to -570 mV and VE1E2 is varied from -435 to
-440 mV, while the interdot gate voltage VC1C2 is fixed at -470 mV. The conductance resonances
in the charge stability diagram are measured as a function of gate voltage VB1 and VD1, and are
shown in Fig. 8.15. The conductance resonance in Fig. 8.15(a) is quite pronounced in both gate
voltage directions, but there is no splitting at the triple points of the honeycomb cells. There is
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Figure 8.14.: Comparison between (a) the experimental data and (b) simulation of the charge
stability diagram of double dot system. In (a), the gate voltages are set as
VA1 = −520 mV, VE1E2 = −440 mV, and VC1C2 ≡ VgateC = −470 mV. Mea-
sured conductance as a function of VB1 ≡ VgateB and VD1 ≡ VgateD. Dashed
lines indicate the boundaries of honeycomb cells in the diagram. In (b), the total
electrostatic energy of the double dots as a function of VB1 and VD1 in arbitrary
unit.
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Figure 8.15.: The charging diagram of couple dot system. Measured conductance as a function
of VB1 ≡ VgateB and VD1 ≡ VgateD. (a) and (b) VA1 ≡ VgateA is set at -480 mV,
while VA1 is set at -570 mV for (c) and (d). The VE1E2 ≡ VgateE is varied between
-435 mV and -440 mV. The VC1C2 ≡ VgateC and VB2D2 is fixed at -470 mV and
-1.3 V, respectively. The artefact in (b) is the jumping of the data during the
measurement is running.

instead an array of diffuse points.

When the gate voltage VE1E2 is decreased, the conductance pattern changes to the same form
as the result of Fig. 8.13(b). In this case, the coupling between dotII and the lead is decreased.
On the other hand, if the gate voltage VA1 is decreased, while the other gate voltage removes
fixed, the coupling between dotI and the lead is decreased. The conductance resonance only
occurs along the boundaries separating different ndI of the charge configuration, as shown in
Fig. 8.15(c). Additionally, the triple points begin splitting and can be resolved. When the
coupling between both dots in the system to neighbouring leads decreases, the interdot coupling
is influenced by the tunnel coupling between double dots, as shown in Fig. 8.15(d). The splitting
of the triple points is pronounced and the well defined honeycomb or hexagon pattern is seen in
the charge stability diagram. Therefore, we can extract the capacitances by using this pattern
at this gate voltage condition.

The cross capacitance is approximately 3 aF for CB1dI and 4 aF for CD1dII, which is independent
of other gate voltages except the gate voltage VB1 and VD1 respectively. The gate capacitances
are 20 ± 2 aF for CB1 and 19 ± 1 aF for CD1. From the results presented we can see that the
capacitive coupling between the center gate and any dot is almost constant and independent of
the influence from interdot gate voltage or even dot-lead gate voltage. The interdot capacitance
Cint is 41 ± 5 aF, which is rather small. By reducing both gate voltage VA1 and VE1E2, the

146



8.1. Characterization of the Double Dot System

splitting of the conductance resonance at the triple points is clearly visible.

8.1.1. Honeycomb diagram in the sample PR1:d1

We now consider the double dots coupled in series fabricated in another sample. The pattern of
the structure is designed to use only three pairs of split gates for forming the double dot system,
and the size of this structure is also bigger than the structure in the previous sample. Figure 8.16
shows the equivalent electronic circuit for one double dot system in the sample PR1:d1. The
dots defined as dotIII and dotIV are coupled to each other in series, and have the numbers
of electrons ndIII and ndIV respectively. The size of the dotIII and dotIV can be adjusted by
applying gate voltage VE2 and VE1 respectively. The capacitance coupled between dotIII(IV)
and gate E2(E1) is defined as CE2(E1). The cross capacitances between gate E1(E2) and dot
III(IV) is represented by CE1dIII(E2dIV ). The interdot capacitance is defined as Cint, and the
capacitances of the dot coupled with the lead is given by CL and CR.

RL, CL

ndIII ndIV

Rint, Cint
RR, CR

CE1

VE1

dotIV

dotIII

D S

CE2dIVCE2

VE2

CE1dIII

III
IV

D1 E1 F1

D2 E2 F2

Figure 8.16.: Equivalent electronic circuit for double dot (dotIII-IV) system in the sample
PR1:d1. The cross capacitances, CE1dIII and CE2dIV, are included in this dia-
gram. CE1(E2) is the capacitance from dotIV(III) to gate E1(E2), CL(R) is the
capacitance from dotIII(IV) to neighboring lead, Cint is the interdot capacitance,
and VE1(E2) is the voltage applied to the gate E1(E2). Inset: SEM micrograph of
the lithographic double dot structure has been shown.

We measure the conductance of the double-dot system and obtain the hexagons or honeycomb
pattern for the charge stability diagram. The conductance as a function of the gate voltage VE1

and VE2 at various interdot gate voltages is shown in Fig. 8.17. The interdot gate voltage VD1F2

is increased from -240 mV in the weak coupling to -220 mV in the strong coupling in steps of
5 mV. Figure 8.17(a) shows the conductance of double dots for weak tunnel coupling. There is
an array of bright points of the unresolved pairs of triple points. In the weak tunneling regime
the charges in each dot are quantized and both dots are well isolated.

The tunnel coupling between double dots increases from Fig. 8.17(a) to (d) by increasing the
interdot gate voltage VD1F2. The pattern of the charge stability diagram changes to a hexagonal
pattern and the splitting of the triple points more pronounced, as shown in Fig. 8.17(b). If the
interdot gate voltage is increased, the coupling between dots increases, the pattern will change

147



8. Electron transport in Double Quantum Dots

(a) (b)

(c) (d)

Figure 8.17.: Charge stability diagram of double dot (dotIII-dotIV) system in the sample
PR1:d1. Conductance is measured as function of VE1 and VE2 with VD2 = -
305 mV and VF1 = -445 mV. The interdot gate voltage VD1F2 is increased from
(a) -240 mV to (d) -225 mV in the increment of 5 mV.

to the straight line identifying a large dot with the electron number ntot = ndIII + ndIV, as
shown in Fig. 8.17(d). The conductance measurements are not as clear for this structure as
compared to the results for the structure in the previous sample, however, the evolution of the
charge stability diagram shows the system changing from an isolated double-dot system to a
large single dot.

In Fig. 8.17(b) - (d), we notice that the bright boundary lines are so smeared out, thus this
makes the dark areas corresponding to the region of almost zero conductance in each honeycomb
cell are small compared to the honeycomb diagrams of the double dot system of the sample
PR1:d2. This means that the conductance peaks are broadened. This measurement was
performed at base temperature of ∼ 65 mK which is the same as the measurement for previous
sample. The geometry of these double dots is bigger than that of the previous sample. Thus we
infer that the broadening of the boundary lines might be due to the strong coupling of double
dot system to the reservoirs.

From the double dot model, we can extract the capacitances from the honeycomb pattern
in Fig. 8.17(b). The gate capacitances can be calculated by determining the geometry of the
hexagons or honeycomb cells and is given by CE1 = 26± 4 aF and CE2 = 20 ± 1 aF. The cross
capacitance between gate E1 and dotIII, CE1dIII, is approximately 3 aF and the cross capacitance
between gate E2 and dotIV , CE2dIV, is approximately 4 aF. From the non-linear measurement
of the Coulomb oscillation for each dot, the interdot capacitance Cint is extracted as 88±19 aF.
The total capacitance of dotIII and dotIV is 381± 19 aF and 388 ± 19 aF respectively.

As shown in the inset of Fig. 8.16, the double dots in this sample are fabricated with a special
geometry. When the interdot gate voltage VD1F2 is adjusted, not only does the interdot coupling
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8.1. Characterization of the Double Dot System

change, but also the coupling between each dot to the lead. Therefore we try to characterize
the influence of the interdot gate voltage to the measured conductance. All data presented
in Fig. 8.18 is not obtained from the same run as data in Fig. 8.17, but the measurement is
performed few days later. Thus we can see the pattern difference of charge diagram at the same
condition of the gate voltages. This means that the system is not quite stable over long time
scale.

Figure 8.18(a) shows the charge stability diagram of the coupled dotIII-dotIV system in the
weak coupling regime. As we see in the figure of the structure, the interdot gate is tuned with
the gates D1 and F2. The interdot gate voltage is set at -235 mV. The gate voltage VD1 is
increased to -225 mV only and the gate voltage VF2 is still fixed at the same value. The interdot
coupling increases as well as the coupling between dotIII and the lead, and the conductance
pattern changes as seen in Fig. 8.18(b). The boundaries lines separating the different ndIV are
more pronounced than the lines separating different ndIII. In this case the coupling of dotIV
and the lead is weaker than that of dotIII and the lead.
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Figure 8.18.: Charge stability diagram of double dot (dotIII-dotIV) system. Conductance is
measured as function of VE1 and VE2. (a) and (b) The VF2 is set at -235 mV,
while it is set at -225 mV in (c) and (d). The VD1 is varied between -235 mV and
-225 mV for the same VF2. The VD2 and VF1 are set at -305 mV and -445 mV,
respectively.

On the other hand, if the gate voltage VD1 is fixed at -235 mV and VF2 is increased to -225 mV
instead, the pattern changes to Fig. 8.18(c). The coupling between dotIII and the lead becomes
weaker than that between dotIV and the lead. This also affects and increases the interdot
coupling as well. The lines separating different ndIII are more pronounced than boundaries lines
along the other direction. Figure 8.18(d) shows the honeycomb pattern appearing in the charge
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VD2 = -305 mV, VF1 = -425 mV

-550 -545 -540 -535 -530 -525
VE2 (mV)

-372

-370

-368

-366

-364

-362

-360
V

E
1 

(m
V

)

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0.22

(a)

VD2 = -305 mV, VF1 = -435 mV

-550 -545 -540 -535 -530 -525
VE2 (mV)

-372

-370

-368

-366

-364

-362

-360

V
E

1 
(m

V
)

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

(b)

VD2 = -325 mV, VF1 = -425 mV

-550 -545 -540 -535 -530 -525
VE2 (mV)

-372

-370

-368

-366

-364

-362

-360

V
E

1 
(m

V
)

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

 0.11

 0.12

 0.13

(c)

VD2 = -325 mV, VF1 = -435 mV

-550 -545 -540 -535 -530 -525
VE2 (mV)

-372

-370

-368

-366

-364

-362

-360

V
E

1 
(m

V
)

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

(d)

Figure 8.19.: Charge stability diagram of double dot system with interdot gate voltage VD1F2 =
-230 mV. (a) and (b) VD2 is set at -305 mV, while it is decreased to -325 mV in
(c) and (d). For the same value of VD2, VF1 is varied between -425 and -435 mV.
The conductance is measured as a function of gate voltages VE1 and VE2.

diagram when both gates (gate D1 and F2) are connected together and applied with the same
voltage of -225 mV. This refers to the stronger coupling between two dots.

To study the dependence of conductance pattern on the coupling between the dots and the
leads, we keep the interdot gate voltage VD1F2 constant at -230 mV to obtain the honeycomb
pattern in charge stability diagram in Fig. 8.19(a), and change the gate voltage VD2 and/or
VF1 in Fig. 8.19(b) to (d). The gate voltage VF1 is decreased from -425 mV to -435 mV in
Fig. 8.19(b) to reduce the coupling between dotIV and the lead. The boundaries lines along
gate voltage VE2 are more pronounced than the lines along gate voltage VE1. These lines separate
the charge configurations with different ndIV . On the other hand, we keep the gate voltage VF1

constant, and decrease the gate voltage VD2 from -305 mV to -325 mV in order to reduce the
coupling between dotIII and the lead. Then the pattern changes quite clearly; the boundary
lines along the gate voltage VE1 are more pronounced as be seen in Fig. 8.19(c). These lines
separate charges configuration with different ndIII . When both gate F1 and D2 are decreased
to the values respectively defined in (b) and (c), VF1 = −435 mV and VD2 = −325 mV, the
honeycomb pattern is well defined and the splitting of the triple points is clearly observed, as
shown in Fig. 8.19(d).

We can see clearly that the coupling between each dot to the lead changes when interdot gate
voltage is changed because of the special shape of the gates D1 and F2 that work in conjugation
with gates D2 and F1, respectively, to define the quantum point contacts of the dot structure. To
compensate this effect of the interdot gate voltage to the dot-lead gate voltage, the gate voltage
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Figure 8.20.: Charge stability diagram as a function of VE1 and VE2. The interdot gate voltage
VD1F2 is increased from (a) -240 to (d) -205 mV. The side gate voltages VD2 and
VF1 in (a) are reduced in order to compensate for the increasing interdot gate
voltage.

VD2 and VF1 is decreased whenever the interdot gate voltage VD1F2 increases, or vice versa.
This technique is used to keep a constant coupling between dots and leads. The conductance
resonance patterns measured after performing this method at various interdot gate voltage are
shown in Fig. 8.20.

At the beginning, the double dot system is formed with VD1F2 = −240 mV, VD2 = −305 mV,
and VF1 = −440 mV. The charge stability diagram shows the double dots in the weak coupling,
as shown in Fig. 8.20(a). In Fig. 8.20(b)-(d), the interdot gate voltage is increased, the dot-lead
gate voltage, VD2 and VF1, is reduced to compensate for the gate voltage VD1F2. The pattern
in charge stability diagram changes from the honeycomb pattern to array of the straight lines.
The evolution of the double dots coupling from the weak to strong coupling can be seen clearly
in this measurement.

8.2. Conductance Peak Splitting in Double Quantum dots

In this section we discuss the conductance peak splitting when the same voltage is applied to
both center gates. First, we study the behaviour of the peak splitting of the double dot system,
dotI-dotII structure, in the sample PR1:d2. In this measurement the pair of center gates on
the same side, gate B1-D1 and gate B2-D2, are connected. The gate voltage VB2D2 is fixed at
-1.3 V. The interdot gate voltage VC1C2 is used to adjust the coupling between two dots as in
the measurements of the previous section. The gates A1 and E1E2 are also biased with negative
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8. Electron transport in Double Quantum Dots

voltage to couple the dot and the reservoir or lead.
The model for conductance peak splitting in double dots coupled in series has been described

in details in the section 2.4.2 [45, 46]. For identical dots we can assume that total capacitance for
dotI is equal to the total capacitance for dotII, CdI = CdII = CΣ. The center gate capacitance
of each dot CB1 and CD1 is also assumed to have the same value, CB1 = CD1 = Cg. Therefore
the capacitance for dotI-lead and dotII-lead are automatically the same.

According to the peak splitting model, the relationship between the conductance peak splitting
∆Vs along the sweeping gate voltage VB1D1 and the shifting ∆ in total energy for a polarized
electronic configuration in double dots is defined in Eq. 2.80 as;

∆Vs =
2CΣ

eCg
∆. (8.7)

The fractional peak splitting F for double dots is defined in Eq. 2.81,

F =
2∆Vs

∆Vp
, (8.8)

where ∆Vp is the peak separation and is equal to e/Cg. The fractional peak splitting F increases
with increasing tunnel coupling of double dots, F = 0 in the weak tunnel coupling and F = 1 in
the strong tunnel coupling. The quantities ∆Vs and ∆Vp are shown in Fig. 2.23(b) for double
dots [45].

We perform the measurement on double dots and show how interdot tunnel coupling leads
to a conductance peak splitting. Figures 8.21(a) and (b) show changes in the conductance of
the double dots vs gate voltage, Vg = VB1D1, with changing interdot gate voltage VC1C2, which
corresponds to the tunnel coupling between two dots, at two different gate voltage VE1E2. In
both figures, the interdot gate voltage is increased from -470 mV at the bottom curve to -440
mV at the topmost curve in steps of 3 mV. It can be seen that the peak splitting increases with
increasing interdot tunnel coupling at both VE1E2 = −435 mV and -440 mV.

At the bottom curve of Fig. 8.21(a) and (b), interdot tunneling is weak. Each conductance
peak in bottom curve corresponds to adding two electrons to the double dot, one to each dot.
The double dot conductance consists of weakly split peaks when the interdot gate voltage VC1C2

increases from -470 to -464 mV. As increasing interdot gate voltage, each peak clearly splits into
two peaks whose separation increases. Finally, for three top curves the tunnel coupling between
dotI and dotII becomes very strong, the tunneling barrier between two dots is removed, and the
conductance is that of a single large dot with peak separation about half that of the bottom
curve. This peak splitting is similar for both values of VE1E2.

The measured fractional peak splitting can be calculated from the separation of the split peaks
∆Vs and separation of double dot peaks ∆Vp in Fig. 8.21(a) and (b), as shown in Fig. 8.22.
When the interdot gate voltage VC1C2 corresponding to double dots tunnel coupling increases,
the interdot tunnel conductance and the fractional peak splitting increases. For strong tunnel
coupling, the fractional peak splitting gradually reaches unity. The change of the fractional peak
splitting for the system with different dotII-lead gate voltage shows the same trend.

Figure 8.23(a) shows the strong correlation between peak splitting and interdot tunnel con-
ductance. The interdot tunnel conductance Gint is plotted and compared to the fractional peak
splitting. The Gint is separately measured versus interdot gate voltage VC1C2. Additionally, the
trace of Gint, which is the conductance of QPC C, is horizontally shifted with ∆VC1C2 = 44 mV
to account for the influence of the other gates. Then the fractional peak splitting and interdot
tunnel conductance track each other pretty closely.

Figure 8.23(b) plots the measured fractional peak splitting F versus the interdot tunnel con-
ductance Gint. This plot of fractional peak splitting can be predicted and interpolated from
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Figure 8.21.: Conductance peaks of double dots (dotI-dotII) in the sample PR1:d2 at (a)
VE1E2 ≡ VgateE = -435 mV and (b) VE1E2 = −440 mV. Both (a) and (b) are
measured at VA1 = -480 mV. The gate B1 and D1 are connected and varied volt-
age together. Another gate of them are fixed at -1.3 V. VC1C2 is varied from -470
mV (bottom curve) to -440 mV (top curve) in 3 mV increment. The curves have
been offset with 0.3(e2/h) for clarity.
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Figure 8.22.: Double dot fractional peak splitting (F) vs interdot gate voltage VC1C2 ≡ VgateC

of double dot (dotI-dotII) system.

the theories of many body charge fluctuations developed by Matveev et al. and Golden et al.
[47, 48, 49], and has no adjustable parameters in the strong tunnel coupling regime as shown
in Eq. 2.83. As predicted by the theory, the measured fractional peak splitting approaches and
saturates at the value of 1 for strong tunneling. As shown, the data and the many body theory,
especially when Gint → 2e2/h, are in good qualitative agreement.

Nevertheless, only theory in the strong tunneling limit can be compared qualitatively but not
quantitatively with the measured data. This error of comparison might come from two factors.
The first factor is that not all gates are energized. Then the interdot point contact (QPC C)
conductance has to be offset to account for the expected influence from the other gates. This
procedure may not be exactly correct, and leads to a shifting of the QPC C conductance, which
depends on the interdot gate voltage. To compare with the theory in Fig. 8.23(b), the ∆VC1C2

of 44 mV has been selected as a offset the interdot conductance. The second factor is that both
dots in our system may not be assumed to be the identical, because the gate A2 is grounded and
not used to form the dot structure. The total capacitance for both dots is not exactly the same,
and there is also a cross capacitances for the real system which is different from the model.

Figure 8.24 shows the nonlinear measurement of double dot differential conductance as a
function of the gate voltage and the source-drain voltage Vsd for six different values of interdot
gate voltage corresponding to the interdot tunnel conductance and coupling of two dots. In
Fig. 8.24(a), the interdot gate voltage is -470 mV, the diamond shape dark regions of Coulomb
blockade bounded by conductance peaks at which current begins to flow can be observed clearly.
These large regions corresponds to a double dot ground state in which each dot has the same
number of excess electrons, or so called unpolarized ground states [66, 67].

As interdot gate voltage increases, the primary diamonds decrease in size, width and height,
and small secondary diamonds appear and grow in Fig. 8.24(b)-(e), until the size and shape of
the primary and secondary diamonds is nearly identical, as shown in Fig. 8.24(f). This refers to
the shifting energy ∆, which is cost for adding an electron to the unpolarized ground stage. The
interdot tunnel coupling allows the double dots to share the extra electron and then decrease
the polarization. At fixed values of gate voltage, the Coulomb gap, ∆Vgap, is defined as the
width of the primary Coulomb blockade diamond along source-drain voltage, or the separation
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Figure 8.23.: (a) Double-dot fractional peak splitting F = 2∆Vs/∆Vp and measured interdot
barrier conductance Gint (Curve) vs gate voltage VC1C2 ≡ VgateC . For double-
dot fractional splitting measurement, VA1 = -480 mV and VE1E2 = -440 mV. The
Gint is offset in VC1C2 direction of 44 mV because all gates except gate A2, which
are energized in order to form double dot system, should have the influence to
electron tunneling through the system. The value of series resistance of the sample
is assumed as 800 Ohm. For strongly tunneling, (b) and (c) F , which is the tunnel
peak splitting equation according to Matveev et al. and Golden and Halperin,
plotted vs Gint.
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Figure 8.24.: Gray scale plot of double dot differential conductance vs center gate voltage
Vg ≡ VB1D1 and source-drain voltage Vsd for interdot gate voltage VC1C2 ≡ VgateC

increased from (a) -470 mV to (f) -445 mV in 5 mV increment. Solid lines indi-
cates the border lines of Coulomb blockade diamonds. Dark areas are regions of
Coulomb blockade. The Coulomb gap ∆Vgap and Coulomb peak spacing ∆Vp are
indicated in (a). VA1 and VE1E2 is respectively set at -480 mV and -440 mV. The
DC-offset of Vsd is about -100 µV
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Figure 8.25.: Conductance peaks of double dot vs interdot gate voltage, VC1C2 ≡ VgateC , for
VA1 ≡ VgateA of -480 mV at VB2D2 = -1.3 V and VgateE = -435 mV. VB1D1 is also
varied from -450 mV (bottom line) to -480 mv (top line) in 5 mV increment. The
curves have been offset with 0.25(e2/h) for clarity.

between conductance peaks bounding the Coulomb blockade region.

From the data in Fig. 8.24(a) it can be extracted that ∆Vp = ∆Vg = 8 mV, Cg = 20 aF,
Cs = 67 aF, Cd = 123 aF, CΣ = 210 aF, and α = 0.095. Therefore the charging energy is
EC = e2/CΣ = αe∆Vg ≃ 760 µeV. The size of diamond shape decreases with increasing VC1C2.
In Fig. 8.24, the ∆Vgap obviously decreases from 1.12 mV at VC1C2 = −470 mV to 540 µV at
VC1C2 = −445 mV. The peak separation ∆Vp also decreases from 8 mV to 3.5 mV when interdot
coupling increases from (a) to (f). In the strong tunneling limit, the size of the diamonds is
half of that in the weak tunneling limit. As the interdot tunnel coupling increase from weak to
strong coupling, the peak splitting ∆Vs increases until is equal to half of the peak separation
∆Vp/2, and the Coulomb gap ∆Vgap and Vp decrease by a factor of ∼= 2. In Fig. 8.24(f) with a
strong interdot coupling, two small isolated dots become a big single dot, and the capacitances
extracted from a diamond are expressed as Cg = 46 aF, Cs = 143 aF, Cd = 240 aF, CΣ = 429
aF. The α factor is 0.107 and the charging energy is approximately 373 µeV. It can be seen
that the capacitances are much greater than those extracted from a diamond of double dots in
8.24(a).

Figure 8.25 shows the plot of double dot conductance versus interdot gate voltage VC1C2 for
different values of fixed gate voltage VB1D1. The conductance is observed at the gate voltage
VA1 of -480 mV. For the lowest conductance curve, the transition from a single dot to a double
dot with decreasing interdot tunneling clearly begins at VC1C2 ≃ −435 mV. With changing
the interdot gate voltage, the same pattern of conductance oscillations for the single-to-double
quantum dot transition was also recently reported for a tunable three lead double dot with a
resorcinarene spacer by M. Fleischer [68]. At VC1C2 6 −430 mV, neighbouring peaks begin to
merge in to single broad peak with about twice the peak separation. These broad peaks with
twice the separation in interdot gate voltage indicate the well isolated serial double quantum
dots.

For every curve, the peak separation ∆Vp is about 4.4 mV in double dot region and 1.8 mV
in a single dot region. The influence of gate B1D1, which is used to change the size of the dot
and hence the energy level separation, is shown. When the VB1D1 decreases, the amplitude of
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8. Electron transport in Double Quantum Dots
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Figure 8.26.: (a) Gray scale of differential conductance of double dots as a function of interdot
gate voltage VC1C2 ≡ VgateC at VgateA = -480 mV, VB1D1 = -470 mV, VB2D2 =
-1.3 V and VgateE = -435 mV. The DC-offset is about -100 µV. When VC1C2 is
increased more negative voltage, neighbouring Coulomb diamonds start to merge
into bigger diamonds with the twice period. The interdot gate voltage regime for
(b) double dots and (c) a single dot have been presented. The solid lines indicate
the boundaries of the Coulomb blockade diamonds.
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8.2. Conductance Peak Splitting in Double Quantum dots

the conductance peaks slightly decreases, but the transition can still be observed in the same
region as before.

The same characteristics can be seen in the non-linear measurement. Figure8.26(a) shows the
differential conductance plotted versus source-drain voltage Vsd and interdot gate voltage VC1C2.
The neighbouring Coulomb diamonds merge into bigger diamonds when the interdot coupling
decreases by reducing the interdot gate voltage, as has been previously observed in Fig. 8.24.
The size of the Coulomb diamonds is indicated in Fig. 8.26(b) for the double dot region and
(c) for a single dot region. The Coulomb diamond in (b) is about twice as large as in (c). The
peak separation Vp is about 4.4 mV for double dot regime and 1.9 mV for a single dot regime.
The Coulomb gap ∆Vgap decreases from 0.86 mV in (a) to 0.29 mV in (b) when the interdot
coupling increases.

8.2.1. Conductance peak splitting in the sample PR1:d1

The double-to-single quantum dot transition can also be observed in the double dot system in
the sample PR1:d1. According to the pattern of double dot (dotIII-dotIV) structure, the gate
E1 and E2 are connected and a negative voltage applied. The gate voltage VD2 = −310 mV,
VF1 = −445 mV, and interdot gate voltage VD1F2 = −235 mV are fixed while the gate voltage
VE1E2 is swept. The measured differential conductance oscillations are shown in Fig. 8.27. The
resolution of the oscillations is quite poor due to the effect of the geometry of the big double-dot
system on the coupling of each dot to the leads. However, the peak splitting can be observed at
this condition of tunnel coupling, which indicates the beginning of the transition from a double
dot to a large single dot. It can be seen clearly that the broad peaks begin to split into two
peaks.

Figure 8.28 shows the data from nonlinear measurements at various values of the interdot gate
voltage. As the increased interdot gate voltage VD1F2 from (a) to (d), the Coulomb diamonds
gap Vgap decreases by about half, but the Coulomb peak separation barely changes because
the coupling between the dot and the lead also increases. This is due to the special geometry
of the double dot system. The dot-lead gate voltage simultaneously increases with increasing
interdot gate voltage. Therefore the comparison between dot-lead coupling and interdot coupling
does not change significantly. The number of Coulomb diamonds is almost the same at about
five diamonds. The Coulomb peak separation Vp is about 6 mV in every value of interdot
gate voltage. Unfortunately we did not perform any measurements with interdot gate voltage
compensation for the dot-lead gate, thus we cannot see the obvious transition of the quantum
dot system in this nonlinear data.
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8. Electron transport in Double Quantum Dots
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Figure 8.27.: Differential conductance of double dot (dotIII-dotIV) system in the sample
PR1:d1 as a function of tied center gate voltage VE1E2. The interdot gate voltage
VD1F2 is set at -235 mV, and the dot-to-lead or side gate voltages VD2 and VF1 is
respectively set at -310 mV and -445 mV. The splitting occurs on the conductance
peaks.
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Figure 8.28.: Gray scale plot of differential conductance of double dot (dotIII-dotIV) system vs
VE1E2 and Vsd. The interdot gate voltage VD1F2 is increased from (a) -235 mV to
(d) -220 mV in the increment of 5 mV. The other gate voltage is set as VD2 = -305
mV and VF1 = -445 mV. The finite DC-offset also appears in this data.
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9. Conclusions

In this thesis, a series of experiments which show the electron transport through quantum dot
devices is presented. Devices are fabricated in a two-dimensional electron gas (2DEG) which
is suited to investigate the effects of mesosopic systems at low temperatures. Quantum devices
on the nanometer scale or nanostructures can be fabricated by lithographic techniques, and a
dilution refrigerator used to reduce the temperature down to the order of 100 millikelvin to give
an opportunity to study quantum mechanical effect at very low temperatures. Quantum dots
and quantum point contacts are the two types of devices considered in this work.

Quantum point contacts (QPCs), which constrict electrons tunneling through a narrow one-
dimensional channel, are tuned and characterized. The quantization of differential conductance
in unit of 2e2/h is clearly observed for many structures. Surprisingly, Coulomb blockade oscil-
lations have been observed in a single QPC. It introduces new data for a single QPC and it can
be inferred that there is a coupling between the QPC and an unexpected quantum dot formed
in the inhomogeneous 2DEG. Due to the influence of the random impurity potential of ionized
donor in the doped layer of heterostructure, the small islands of electrons or quantum dots can
then be formed and coupled to a QPC.

The electron transport measurements are performed for single quantum dots with weak tunnel
coupling. Many good Coulomb oscillations are observed and are clearly reproducible. The
temperature dependence of Coulomb oscillations was investigated in the linear regime. The
Coulomb peaks at various temperatures are well fit to the Lorentzian line shape. We can study
the correlation between the electronic temperature (Te) and the bath temperature (Tbath) of
our system. At low temperatures, the evaluated Te is higher than the Tbath due to electronic
heating, whereas the Te reaches and follows the Tbath at higher temperatures. We have used
the theoretical fit to evaluate the true electronic temperature in the system. We also observe
the trend of electron transport changing from single level or quantum regime to multilevel
or metallic regime with increasing temperatures. The temperature dependence of Coulomb
blockade oscillations in a single QPC is studied as well, and yields the same physics as that of
a single quantum dot.

Nonlinear transport of single quantum dots with weak coupling was measured, and we obtained
the Coulomb diamonds with good quality. The coupling parameters and the charging energy
can be extracted from the geometry of these patterns, and the conversion energy factors are
comparable to the values extracted from the temperature dependence. There is evidence for
excited state spectroscopy which indicates the electrons transfer through the dot via excited
states. The excitation energy is much larger than the level spacing estimated from the geometry
of the dot. This may be due to the suppression of tunneling processes involving internally excited
states resulting from the strong correlations between electrons, whereas the excitation of center-
of-mass modes is unaffected by correlation effects. Therefore, the tunneling via the excitation
of these modes dominate the excitation spectra in transport measurement in agreement with
previous theoretical and experimental studies.

With strong coupling between dots and reservoirs, the Kondo effect can be observed in a single
quantum dot. The Kondo effect is considered for the case of asymmetric tunnel coupling. Due
to this asymmetry, it leads to the occurrence of a conductance anomaly in Coulomb blockade
diamond at non-zero bias. The Kondo resonance in the density of states is pinned to the elec-
trochemical potential level of the reservoir with stronger coupling or thinner tunnel barrier. The
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9. Conclusions

Kondo temperature, which is characteristic of the coupling between electron spin in the localized
state and electrons in the reservoirs, is extracted from the linewidth of the Kondo conductance
peak at base temperature. According to the Anderson impurity model, the temperature depen-
dence of the Kondo effect could be compared to theoretical predictions qualitatively, and the
NRG scaling law was found to be applicable to our data. The normalized conductance is con-
firmed to be the universal function of the normalized temperature. The shifted Kondo resonance
in non-zero bias is affected by the magnetic field. With increasing magnetic field, the position
of Kondo peaks is moved toward the middle of the Coulomb diamond and the peak height is
decreased. This is probably due to the improvement of symmetry of tunneling coupling influ-
enced by the magnetic field. The Kondo resonance in our dot system disappears when magnetic
field reaches 0.5 Tesla. Anomalous Kondo physics is also found in the single QPC coupled to
an unexpected quantum dot. Clear Kondo conductance resonance is observed and indicates the
symmetry of the tunnel coupling between dot and reservoirs.

The electron transport through double quantum dots coupled in series was also investigated.
We observe the crossover from the weak interdot coupling regime in which the number of elec-
trons in the two dots are quantized individually to the strong coupling regime in which the
total numbers of electrons in both dots are quantized. The evolution of the stability charging
diagram can be obtained by increasing interdot coupling. It shows the transition from isolated
dots to a single large dot. The capacitances for two dots can be extracted from the geometry
of the pattern in the charging diagram. When the center gate voltages of two dots are swept
simultaneously, the conductance peak splitting in double dots can be study. When the interdot
coupling is increased from weak to strong coupling, one conductance peak splits into two peaks
with peak spacing is half as large. This indicates that the two dots combine to a large single dot
with twice the gate capacitance. Qualitatively, our data agrees with the theoretical prediction
of the relationship between splitting and interdot tunnel conductance for the strong tunneling
limit.

For future experiments, in order to study more details of Kondo physics, the quantum dot
structure should be designed such that a higher Kondo temperature can be obtained. The
quantum dot of such a geometry must be much smaller than that of the dot designed to use
in this thesis and should be fabricated by some modern lithographic techniques of the next
generation. This dot with very small size will be able to confine few electrons inside and the
level spacing will be quite large. The cooling process giving a lower sample temperature must also
be improved. All these developments will yield the possibility to study interesting phenomena
on quantum dot systems in both linear and nonlinear regimes.
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A. Parameters of Sample Fabrication

A.1 Hallbar

Surface cleaning Acetone, IPA, blow-dry with N2

Photoresist coating

Surface drying In the oven at 160 ◦C for 5 min or more
Adhesion chemical HMDS 1:20, 30 s before spinning
Negative photoresist MaN 405, 40 s with 6000 rpm (6000:5:40)
Baking On the hot plate at 85 ◦C for 1 min

Exposure and Developing

Exposure UV-light for 8 s
Post baking On the hot plate at 80 ◦C for 1 min
Develop 30-40 s in maD 333, stop with H2O,

blow-dry with N2

O2 plasma 0.5 mbar with 100 W for 25 s

Wet etching

Hard baking On the hot plate at 105 ◦C for 3 min
HCl dip 10 s in 37% HCl
Etching 70-80 s in H2O : H2SO4 : H2O2 ≡ 100:3:1,

stop with H2O, blow-dry with N2

Lift-off Acetone

Cleaning Acetone, IPA, blow-dry with N2

Table A.1.: Parameters of the Hallbar fabrication.
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A. Parameters of Sample Fabrication

A.2 Ohmic Contacts

Surface cleaning Acetone, IPA, blow-dry with N2

Photoresist coating

Positive photoresist maP 1215, 40 s with 6000 rpm (6000:5:40)
Baking On the hot plate at 90 ◦C for 3 min

Exposure and Developing

Exposure UV-light for 25 s
Develop ∼ 15 s in maD 331 or MF 26A, stop with H2O,

blow-dry with N2

O2 plasma 0.5 mbar with 100 W for 25 s

Evaporating

HCl dip 10 s in 37% HCl
AuGe 192 nm ≡ 1.6 g, rate ≈ 0.1 nm/s
Ni 76 nm, rate ≈ 0.05 nm/s
Au 20 nm, rate ≈ 0.1 nm/s

Lift-off Acetone

Cleaning Acetone, IPA, blow-dry with N2

Annealing

Forming gas Ar/H2 = 20% with 300 mbar
Process (i) 110 ◦C for 180 s with gas flow

(ii) 370 ◦C for 120 s with no gas flow
(iii) 420 ◦C for 50 s with no gas flow
(iv) 100 ◦C for 2 s with gas flow

Table A.2.: Parameters of the ohmic contacts fabrication.

A.3 Gate Leads and Bondpads

Surface cleaning Acetone, isopropanal, blow-dry with N2

Photoresist coating

Positive photoresist maP 1215, 40 s with 6000 rpm (6000:5:40)
Baking On the hot plate at 90 ◦C for 3 min

Exposure and Developing

Exposure UV-light for 25 s
Develop ∼ 15 s in maD 331 or MF 26A, stop with H2O,

blow-dry with N2

O2 plasma 0.5 mbar with 100 W for 40 s

Evaporating

HCl dip 10 s in 37% HCl
Cr 10 nm, rate ≈ 0.1 nm/s
Au 100 nm, rate ≈ 0.1 nm/s

Lift-off Acetone

Cleaning Acetone, IPA, blow-dry with N2

Table A.3.: Parameters of the gate leads and bondpads fabrication.
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A.4 Nanostructures

Surface cleaning Acetone, isopropanal, blow-dry with N2

Photoresist coating

E-beam resist 2% PMMA 2041 in MIBK
Process (i) 1 s with 3000 rpm (3000:0:1)

(ii) 50 s with 6000 rpm (6000:5:40)
Baking On the hot plate at 120 ◦C for 5 min
Hard baking In the oven at 160 ◦C for 1 hour at least

Exposure

SEM E-beam with 30 kV, pressure < 10−5 mbar
Base dose = 160 µC/cm2

Setting parameters Aperture and spot size at 2, blanker at 1,
scan rotation at 3, magnification of 976×

Developing

Develop ∼ 40 s in MIBK:IPA ≡ 1:2, stop with IPA,
blow-dry with N2

Evaporating

Cr 10 nm, rate ≈ 0.1 nm/s
Au 30 nm, rate ≈ 0.1 nm/s

Lift-off Acetone

Cleaning Acetone, IPA, blow-dry with N2

Table A.4.: Parameters of the nanostructures fabrication.
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