OpenMS — A framework for
computational mass spectrometry

Dissertation

der Fakultat fiir Informations- und Kognitionswissenschaften
der Eberhard-Karls-Universitat Tiibingen
zur Erlangung des Grades eines
Doktors der Naturwissenschaften
(Dr. rer. nat.)

vorgelegt von
Dipl.-Inform. Marc Sturm

aus Saarbriicken

Tibingen
2010

Tag der miindlichen Qualifikation: 07.07.2010
Dekan: Prof. Dr. Oliver Kohlbacher
1. Berichterstatter: Prof. Dr. Oliver Kohlbacher

2. Berichterstatter: Prof. Dr. Knut Reinert

Acknowledgments

I am tremendously thankful to Oliver Kohlbacher, who aroused my interest in the field
of computational proteomics and gave me the opportunity to write this thesis. Our
discussions where always fruitful—no matter if scientific or technical. Furthermore, he
provided an enjoyable working environment for me and all the other staff of the working
group.

OpenMS would not have been possible without the joint effort of many people. My
thanks go to all core developers and students who contributed to OpenMS and suffered
from the pedantic testing rules. I especially thank Eva Lange, Andreas Bertsch, Chris
Bielow and Clemens Gropl for the tight cooperation and nice evenings together.

Of course, I'm especially grateful to my parents and family for their support through-
out my whole life. Finally, I thank Bettina for her patience and understanding while I
wrote this thesis.

iii

Abstract

Mass spectrometry coupled to liquid chromatography (LC-MS) is an analytical technique
becoming increasingly popular in biomedical research. Especially in high-throughput
proteomics and metabolomics mass spectrometry is widely used because it provides both
qualitative and quantitative information about analytes. The standard protocol is that
complex analyte mixtures are first separated in liquid chromatography and then analyzed
using mass spectrometry. Finally, computational tools extract all relevant information
from the large amounts of data produced. This thesis aims at improving computational
analysis of LC-MS data—we present two novel computational methods and a software
framework for the development of LC-MS data analysis tools.

In the first part of this thesis we present a quantitation algorithm for peptide signals in
isotope-resolved LC-MS data. Exact quantitation of all peptide signals (so-called peptide
features) is an essential step in most LC-MS data analysis pipelines. Our algorithm
detects and quantifies peptide features in centroided peak maps using a multi-phase
approach: First, putative feature centroid peaks, so-called seeds, are determined based
on signal properties that are typical for peptide features. In the second phase, the seeds
are extended to feature regions, which are compared to a theoretical feature model in
the third phase. Features that show a high correlation between measured data and the
theoretical model are added to a feature candidate list. In a last phase, contradicting
feature candidates are detected and contradictions are resolved. In a comparative study,
we show that our algorithm outperforms several state-of-the-art algorithms, especially
on complex datasets with many overlapping peaks.

The second part of this thesis introduces a novel machine learning approach for model-
ing chromatographic retention of DNA in ion-pair reverse-phase liquid chromatography.
The retention time of DNA is of interest for many biological applications, e.g., for quality
control of DNA synthesis and DNA amplification. Most existing models use only the
base composition to model chromatographic retention of DNA. Our model complements
the base composition with secondary structure information to improve the prediction
performance. A second difference to previous models is the use of a support vector re-
gression model instead of simple linear or logarithmic models. In a thorough evaluation,
we show that these changes significantly improve the prediction performance, especially
at temperatures below 60°C. As a by-product, our approach allows the creation of a
temperature-independent model, which can predict DNA retention times not only for a
fixed temperature, but for all temperatures within the temperature range of the training
data.

Finally, we present OpenMS - a framework for computational mass spectrometry.
OpenMS provides data structures and algorithms for the rapid development of mass
spectrometry data analysis software. Rapid software prototyping is especially important
in this area of research because both instrumentation and experimental procedures are
quickly evolving. Thus, new analysis tools have to be developed frequently. OpenMS
facilitates software development for mass spectrometry by providing a rich functionality
ranging from support for many file formats, over customizable data structures and data
visualization, to sophisticated algorithms for all major data analysis steps. The peptide
feature quantitation algorithm presented in the first part of this thesis is one of many
algorithms provided by OpenMS.

We demonstrate the benefits of using OpenMS by the development of TOPP — The
OpenMS Proteomics Pipeline. TOPP is a collection of command line tools which each
perform one atomic data analysis step—typically one of the OpenMS data analysis algo-

iv

rithms. The individual TOPP tools are used as building blocks for customized analysis
pipelines. This kind of flexibility and a graphical user interface for the visual creation
of analysis pipelines make TOPP a versatile instrument for LC-MS data analysis.

Kurzzusammenfassung

Die Kopplung von Massenspektrometrie (MS) und Fliissigchromatographie (LC) gewinnt
immer mehr Bedeutung als analytische Technik in der biomedizinischen Forschung. Vor
allem in der Hochdurchsatzproteomik und -metabolomik ist Massenspektrometrie weit
verbreitet, weil sie sowohl qualitative als auch quantitative Information iiber Analyten
liefert. Komplexe Stoffmischungen werden normalerweise mit Fliissigchromatographie
aufgetrennt bevor sie mittels Massenspektrometrie analysiert werden. Danach werden
alle relevanten Informationen mithilfe spezieller Computerprogramme extrahiert, da die
produzierten Datenmengen sehr grofi sind. Diese Arbeit hat das Ziel die computer-
gestiitzte Analyse von LC-MS Daten zu verbessern. Wir stellen zwei neue Methoden zur
Datenanalyse und eine Softwarebibliothek zur Entwicklung von Analyseprogrammen vor.

Der erste Teil dieser Arbeit beschaftigt sich mit einem Algorithmus zur Quantifizierung
von Peptidsignalen (sogenannten Peptid-Features) in LC-MS Daten. Die exakte Quan-
tifizierung aller Peptid-Features ist ein wichtiger Verarbeitungsschritt der meisten LC-
MS Analyse-Pipelines. Unser Algorithmus detektiert und quantifiziert Peptide-Features
in Peakdaten durch ein mehrstufiges Verfahren: Zuerst werden potenzielle Signalmit-
telpunkte gesucht anhand der fiir Peptidsignale typischen Eigenschaften. In einem
zweiten Schritt werden die gefundenen Mittelpunkte zu Signalregionen vergroflert, die
im dritten Schritt mit einem theoretischen zweidimensionalen Modell verglichen wer-
den. Signalregionen die eine hohe Ubereinstimmung zwischen Messdaten und Modell
aufweisen werden dann in eine Kandidatenliste von potenziellen Peptid-Features einge-
tragen. Im letzten Schritt werden Widerspriiche in der Kandidatenliste gesucht und
diese behoben. In einer Vergleichsstudie auf komplexen Daten mit vielen iiberlappenden
Signalen konnten wir zeigen, dass unser Algorithmus mehreren modernen Algorithmen
iiberlegen ist.

Im zweiten Teil der Arbeit stellen wir einen neues maschinelles Lernverfahren zur
Vorhersage von DNA Retentionszeiten in der Umkehrphasen-Chromatographie vor. Die
Retentionszeit von DNA ist fiir viele biologische Anwendungen von Interesse, zum Beispiel
fiir die Qualitatskontrolle der DNA-Synthese und der DNA-Amplifikation. Die meisten
existierenden Verfahren benutzen nur die Basenzusammensetzung der DNA um die Re-
tentionszeit zu modellieren. Unser Modell beruht auch auf der Basenzusammensetzung,
bezieht aber Sekundarstrukturinformation ein, um die Vorhersageleistung zu verbessern.
Ein weiterer Unterschied zu bisherigen Methoden ist die Verwendung von Support Vector
Regression anstelle einfacher linearer und logarithmischer Modelle. In einer Vergleichs-
studie zeigen wir, dass diese Neuerungen die Vorhersageleistung signifikant erhchen, vor
allem bei Temperaturen unter 60°C. Auflerdem erlaubt unsere Methode die Erstellung
temperaturunabhéngiger Modelle, die Retentionszeiten nicht nur fiir eine feste Temper-
atur, sondern fiir den gesamten von den Trainingsdaten abgedeckt Temperaturbereich
vorhersagen konnen.

SchlieBlich stellen wir OpenMS, eine Bibliothek zur Entwicklung von Software fiir
die Massenspektrometrie, vor. OpenMS bietet alle erforderliche Datenstrukturen und
viele Algorithmen zur schnellen Entwicklung von Analysesoftware. Die schnelle Entwick-
lung von Softwareprototypen ist gerade in der Massenspektrometrie besonders wichtig,
da sowohl die Instrumente als auch die experimentellen Protokolle sehr schnell weiter-

entwickelt werden. Daher miissen regelméaflig neue Softwarelosungen zur Analyse der
Daten entwickelt werden. OpenMS stellt eine umfangreiche Infrastruktur zur Verfiigung
und vereinfacht so die Entwicklung dieser Analysesoftware. Die Funktionalitdt von
OpenMS reicht von der Unterstiitzung fiir weit verbreitete Dateiformate, iber anpass-
bare Datenstrukturen and Datenvisualisierung, bis hin zu modernen Analysealgorithmen
fiir alle Hauptanalyseschritte.

Die Vorteile die sich aus der Benutzung von OpenMS ergeben zeigen wir anhand der
Entwicklung von TOPP — The OpenMS Proteomics Pipeline. TOPP ist eine Sammlung
von Kommandozeilenprogrammen, die je einen minimalen Analyseschritt ausfiihren.
Diese Schritte entsprechen meistens einem Algorithmus von OpenMS. Die einzelnen
TOPP-Anwendungen kénnen als ein Baukastensystem benutzt werden um daraus kom-
plexe Analyse-Pipelines zu entwickeln. Die hieraus resultierende Flexibilitdt kombiniert
mit einer graphischen Oberflache zur Erstellung individueller Analyse-Pipelines, machen
TOPP zu einem vielfaltigen Werkzeug zur Analyse von LC-MS Daten.

vi

Contents

1.

Introduction

1.1.
1.2.
1.3.
1.4.
1.5.

2.1.

2.2.

2.3.

Motivation L
Proteomics
Mass spectrometry Lo
Software tools for mass spectrometry
Thesis overview e e

. Background

Mass spectrometry-based proteomics
2.1.1. Mass spectrometry
2.1.2. Interpretation of mass spectrometry data and terms
2.1.3. Peptide/protein identification with mass spectrometry
2.1.4. Liquid chromatography
2.1.5. Sample preparation
2.1.6. Stable-isotope labeling L Lo
Machine learning Lo oo
2.2.1. Support vector classificationo
2.2.2. Support vector regression Lo
2.2.3. SVM model generation and performance evaluation
Software engineeringo Lo
2.3.1. Software development processes
2.3.2. Requirements engineering
2.3.3. Analysisand design Lo
2.3.4. Implementation o
2.3.5. Testing
2.3.6. Deployment and maintenance

A novel feature detection algorithm for centroided data

3.1.

3.2.
3.3.

3.4.

State of theart
3.1.1. Seeding
3.1.2. Extension L
3.1.3. Model fitting L o
Our contribution Lo
Design and implementation oL L.
3.3.1. Overall design
3.3.2. Seeding phase
3.3.3. Extension phase L.
3.3.4. Model fitting phase oo
3.3.5. Feature clipping phase L.
3.3.6. Conflict resolution o oo
Results and discussion L Lo oo
3.4.1. Test datasets

10
12
14
16
16
18
18
21
22
25
25
28
29
32
34
35

37
37
38
38
39
39
39
40
41
44
45
47
48
50
20

vii

Contents

viii

3.4.2. Parameter selection 51
3.4.3. Performance on the test data 51
3.4.4. Comparison to other algorithms 55
3.5. Summary and conclusion L oo 58
3.6. Outlook e 59
Retention time prediction 61
4.1. Peptide retention time prediction Lo 61
4.2. DNA retention time prediction 61
4.2.1. Experimental dataset 0oL 62
4.2.2. Feature selection 65
4.2.3. Models e 67
4.2.4. Results 67
4.2.5. Discussion and outlook 71
OpenMS and TOPP 73
5.1. Stateoftheart 73
5.2. Designgoals 75
5.3. Overall architecture 7
5.4. Foundation classes 78
5.4.1. Basic data structures oL 78
5.4.2. Basic file system classes 78
5.4.3. Progresslogging Lo 78
5.4.4. Factoryclasses 79
5.4.5. Parameter handling 79
5.5. Data reduction and kernel classes 82
5.5.1. Datareduction 82
5.5.2. Peakdata 83
5.5.3. Featuredata 84
5.5.4. Metadata 85
5.6. File and database I/O oL 87
5.7. Visualization 90
5.7.1. Peak data visualization 90
5.7.2. Meta data visualization 92
5.7.3. Parameter visualization 93
5.8. Analysis algorithms 93
5.8.1. Signal processing 94
5.8.2. Feature detection and quantitation 95
5.8.3. Map alignment o L 96
5.8.4. Retention time prediction 0L 97
5.9. TOPP e 98
5.9.1. Packages. 98
5.9.2. Example pipelines o oo oo 101
5.9.3. TOPPView e 103
5.9.4. TOPPAS 106
5.10. Project management Lo Lo 107
5.10.1. Version control system L. 107
5.10.2. Coding conventions 108
5.10.3. Documentationo o 108
5.104. Testing L 109

Contents

o0 ® »

5.10.5. Release management L Lo
5.11. Discussion and outlook L o

Conclusion and Outlook

List of abbreviations
Contributions
List of Publications

Detailed quantitation results

Bibliography

117
119
121

123

123

ix

1. Introduction

1.1. Motivation

Deoxyribonucleic acid (DNA) has been studied ever since it was discovered by Friedrich
Miescher in 1869 [1]. Nearly one hundred years later, in 1968, Holley, Khorana and
Nirenberg were awarded the Nobel Prize in medicine for their work towards the inter-
pretation of the genetic code and its function in protein synthesis. Subsequently, many
single genes could be identified and assigned to proteins. In 1990, the Human Genome
Project was founded to coordinate the full sequencing of the human genome. Thirteen
years later, in 2003, the first sequence of the human genome was published by the Hu-
man Genome Project [2]. This sequence of the human genome became the foundation
for molecular biology as we know it today. However, it soon became obvious that the
study of the genome alone could not answer many of the key questions in biology.

The low number of protein-coding genes was one of the big surprises of the human
genome sequence. Only 25,000 to 30,000 protein-coding genes could be identified, while
a much higher number of proteins was already known. Thus, the paradigm ’‘one gene
codes for one protein’ needed to be revised. It became obvious that many human genes
code for multiple proteins through mechanisms such as alternative splicing and post-
translational modifications of proteins [3]. The huge diversity of proteins is required,
because proteins carry out many functions in the cell and their activity is often subject
to regulation. Proteins are essential for structural, enzymatic and signaling functions.
Because of the huge number of different proteins, the large-scale study of proteins and
metabolites, which interact with proteins, moved into the focus of biology.

1.2. Proteomics

The term proteomics has been coined by Marc Wilkins in 1994 [4]. He defined it as
the study of proteins, how they are modified, when and where they are expressed, how
they are involved in metabolic pathways and how they interact with one another. This
definition still holds, but the focus of proteomics has shifted towards the large-scale study
of proteins. Not single proteins but entire proteomes are studied. A proteome is defined
as the complement of proteins expressed in a cell at a given time point under defined
conditions. In contrast to the genome, the proteome of a cell is highly dynamic. The
proteome is influenced by many factors such as the cell type, the cell cycle and changes
in the environment of the cell. On the one hand, this variability complicates proteomics
research. On the other hand, it allows us to directly study the effects of perturbations
and diseases.

Differential proteomics is the qualitative and quantitative comparison of two or more
proteomes. In differential proteomics various experimental techniques are used to study
differences between samples from healthy and diseased patients, to investigate changes
occurring in time series experiments, or to explore the effects of perturbations to bio-
logical systems. Thus, differential proteomics is an essential tool for understanding the

1. Introduction

molecular foundations of diseases, for the discovery of biomarkers and for the identifica-
tion of potential drug targets.

In analogy to the proteome, the complement of metabolites in a biological sample is
termed metabolome, and the large-scale study of metabolites is termed metabolomics.
Metabolomics, just like proteomics, is becoming increasingly important because it deep-
ens our understanding of the biochemical processes in living cells. In both areas of
research, mass spectrometry is a key analytical technique.

1.3. Mass spectrometry

Mass spectrometry (MS) characterizes the chemical compounds in a sample by their
mass. However, most biological samples are very complex and, cannot be analyzed with
mass spectrometry directly. The usual procedure is to reduce sample complexity by
separation techniques, and then to conduct one or several mass spectrometric analy-
ses. Common separation techniques are high-performance liquid chromatography (LC),
capillary electrophoresis and two-dimensional gel electrophoresis (e.g., 2D PAGE). For
high-throughput analysis, high-performance liquid chromatography and capillary elec-
trophoresis are preferred over gel electrophoresis, since they can be easily automated
and directly coupled to mass spectrometers.

After separation, the still complex analyte mixture is analyzed in one or several mass
spectrometry runs. In mass spectrometry, analyte molecules are ionized and their mass-
to-charge ratio is detected. Depending on the goal of the study, different mass spec-
trometer types are used. New instrument types with a higher resolution and improved
scan modes become available regularly. The result of a mass spectrometry analysis is a
collection of mass spectra. These spectra are used to deduce the identity and quantity
of a large number of analytes that were present in the sample.

The keen interest of researchers in the field of proteomics and the rapid advancement
of analytical instruments opens the door to a variety of new and complex experimental
setups producing large amounts of data, which have to be analyzed jointly. In recent
years it has become evident that the handling and computational analysis of this data is
the major bottleneck of biomedical studies in the field of proteomics or metabolomics.

1.4. Software tools for mass spectrometry

Although algorithms for mass spectrometry-based protein analysis were available since
the 1960s [5], they were not widely used because the amount of data to analyze was
rather small. The breakthrough for computer-aided mass spectrometry data analysis
came with the invention of soft ionization techniques in the late 1980s, which increased
the data volume dramatically. The first popular algorithms were peptide identification
algorithms [6], which try to infer the sequence of a peptide from the corresponding mass
spectrum.

In the last decade, many analysis tools have been developed which cover all facets of
mass spectrometry data analysis. Several companies offer highly specialized commercial
software for specific analysis steps in LC-MS data analysis, for example MassLynx [7],
DeCyder [8] and Mascot [9]. Academic software tools tend to be more flexible than the
commercial tools. Customized data analysis pipelines can be created using for example
the Trans-Proteomic Pipeline [10], XCMS [11] or msInspect [12]. Still, data analysis and
management is a major bottleneck in the field.

1.5. Thesis overview

Today, the biggest problem for the development of analysis software lies in the fast
advancement of the field. New experimental techniques are emerging rapidly driven by
continuous improvements to the instrumentation. As a consequence, new analysis tools
have to be developed frequently. The lack of frameworks for rapid software development
in the context of mass spectrometry makes this a very difficult task.

The main goal of this thesis is to develop a framework for rapid software development
in the field of proteomics and metabolomics. The framework should provide all required
infrastructure, i.e., data structures for LS-MS data, support for important file formats,
algorithms for common analysis steps, etc. The second focus of this thesis is to de-
velop new data analysis methods based on this framework, and to make the algorithms
available as a flexible toolbox that can be used to create customized analysis pipelines.

1.5. Thesis overview

Chapter 2 introduces the biochemical and computational background needed for this
thesis. First, mass spectrometry instrumentation and the setup of typical proteomics
experiments are discussed. Then, the key concepts of the machine learning techniques
support vector classification and support vector regression are introduced. Finally, an
overview of modern software engineering is given.

Chapter 3 presents a novel quantitation algorithm for peptide signals in LC-MS data.
The design goals of the algorithm are a high quantitation performance, a good runtime
and wide applicability. To ensure these goals, the algorithm works on centroided input
data in which each peak of the original mass spectra is represented as one data point.
Only few other algorithms, for example SpecArray [13] and MZmine [14], can process
centroided data—most algorithms operate on the much larger profile data. The use of
centroided input data reduces both runtime and memory consumption of the algorithm.
Additionally, it ensures applicability to basically all medium- and high-resolution data.
Many other algorithms are designed for high-resolution data produced by the most re-
cent mass spectrometer generations only, e.g., SuperHirn [15] and MaxQuant [16]. The
reduced dataset size of centroided data also allows more sophisticated modeling ap-
proaches. To increase the accuracy of our algorithm, peptide signals are modeled based
on an averagine [17] isotope distribution and a Gaussian elution profile. A thorough eval-
uation of the algorithm performance shows that it outperforms several state-of-the-art
algorithms on typical proteomics datasets.

Chapter 4 deals with a machine learning approach for the prediction of DNA retention
times (RT) in chromatographic separation systems. Our approach is based on support
vector regression and incorporates novel features that encode the secondary structure of
DNA. Other state-of-the-art prediction methods only consider the base composition and
use simple linear models [18]. We could show that our method improves the prediction
performance significantly, especially at low temperatures where the secondary structure
is not suppressed. This chapter is only loosely related to the rest of the thesis because
it focuses on oligonucleotide analytes. Still, it is not completely unrelated, because
exploring the principles underlying chromatographic retention might help to improve all
prediction models, also those for peptides and proteins.

Chapter 5 presents the main focus of this work—the OpenMS software framework
and TOPP — The OpenMS Proteomics Pipeline. OpenMS provides data structures and
algorithms for rapid development of mass spectrometry data analysis software. As men-
tioned above, software development in the field could be sped up by a feature-rich and
mature software framework. The first part of the chapter presents the design goals of

1. Introduction

OpenMS. Then, the implementation of selected functionality is described, focusing on
core data structures, file I/O, visualization and selected algorithms.
The second part of the chapter introduces TOPP — The OpenMS Proteomics Pipeline.
TOPP is a collection of computational tools, each providing functionality for a single
analysis step. These lightweight command-line tools are used as building blocks for the
construction of complex analysis pipelines. The flexibility of this modular approach
makes TOPP a versatile tool for data analysis in proteomics and metabolomics. To
improve the usability, TOPP provides a graphical user interface for the creation of cus-
tomized analysis pipelines and a powerful visualization tool for LC-MS data.

The last chapter concludes this thesis with a summary of our work and some final
remarks.

2. Background

Mass spectrometry is widely used in biochemistry and biomedical research. In the first
part of this chapter, mass spectrometry and its applications in proteomics are introduced.
The second part deals with machine learning techniques, which are often used to model
physicochemical properties of biomolecules. In the third part, the basics of modern
software engineering are introduced.

2.1. Mass spectrometry-based proteomics

The design of a proteomics LC-MS experiment depends on the goal of the study. For
drug target identification the comparison of two cell states (e.g., healthy and diseased
cells) is most important. The differentially expressed proteins are potential drug targets
and can be used as markers for diagnostics. Systems biology tries to infer protein in-
teraction networks and metabolic networks from the data. In this context, time series
experiments are made that capture the dynamics of protein expression, for example after
a perturbation of cells.

The general setup of a differential LC-MS proteomics experiments is shown in Fig. 2.1.
In differential proteomics, protein samples from two or more states are compared. For
simplicity, we assume that two states are to be compared. Thus, we start with two
samples. Most protein samples are too complex to be analyzed by mass spectrometry
directly. Typically, the sample complexity is reduced by fractionation, for example with
liquid chromatography or two-dimensional gel electrophoresis. The protein fractions are
then enzymatically digested to peptides of a limited length which can be handled more
easily. After digestion, the protocols of label-free and isotope-labeled experiments differ.
In stable-isotope labeling approaches, the samples are labeled, combined and analyzed
on one LC-MS run. In label-free approaches, the samples are analyzed in individual
LC-MS runs.

In this section, the basics of mass spectrometry in the context of proteomics are intro-
duced. First, the principles and instrumentation of mass spectrometry are illustrated.
Then, sample preparation steps and fractionation of samples by means of liquid chro-
matography are described.

2.1.1. Mass spectrometry

In 1898, Wilhelm Wien discovered the principles of mass spectrometry. He observed that
beams of charged particles can be deflected by a magnetic field, and that the deflection
depends on the mass-to-charge ratio (m/z) of the ions [19]. Ever since, these principles
were used to separate small compounds in analytical chemistry.

The discovery of the soft ionization methods electrospray ionization (ESI) and matriz-
assisted laser desorption/ionization (MALDI) made mass spectrometry applicable to
larger biomolecules such as proteins. The importance of this discovery was underlined
when Koichi Tanaka and John Bennett Fenn, the inventors of MALDI and ESI, respec-
tively, were jointly awarded one half of the Nobel Prize in chemistry 2002.

2. Background

isotope-labeled label-free
sample1 sample 2 samplel sample2
£ SRS FE RSl
eala e el
FFERE] |FESKRE] FERE] |FEE]
fractionation } } } ! fractionation

digestion | il } | digestion
SR I SERN I
labeling } |

Figure 2.1.: Comparison of differential proteomics experiments with stable-isotope label-
ing and label-free differential proteomics experiments.

Fig. 2.2 shows the basic structure of mass spectrometers as they are used today. The
analytes are first ionized in an ion source. Then, the ions are separated according to
their mass-to-charge ratio in a mass analyzer. Finally, the ion count for each m/z value
is detected by a detector. We will now describe a selection of widely used ion sources,
mass analyzers and ion detectors.

lon source

As mentioned above, ESI and MALDI are the most important ionization methods for
biomolecules. Both are soft ionization methods that can ionize large biomolecules with-
out fragmenting them. One reason for the softness of these ion sources is that ionization
takes place at atmospheric pressure.

ESI [20] was established by John Bennett Fenn and co-workers in the 1980s. Fig. 2.3
shows a schematic representation of the ionization process in ESI. The solvent containing
the analytes is forced through a charged capillary. At the tip of the capillary, a so-
called Tylor cone forms which disperses the mixture to a fine aerosol. The solvent in
the aerosol droplets is evaporated, typically by a warm stream of an inert gas such as
nitrogen. There are two mechanisms which explain the final production of gas phase ions:
Coulomb Fission assumes that the increasing charge density, due to evaporating solvent,

2.1. Mass spectrometry-based proteomics

mass spectrometer £

ion mass
N\(\) §—’ — —> | detector | | —>
source analyzer |

sample m/z

Figure 2.2.: Illustration of a mass spectrometer.

capillary electrode

solvent
ions \

Figure 2.3.: Schematic representation of electrospray ionization.

leads to division of droplets, which finally leads to single ions. The second theory, lon
FEvaporation, assumes that Coulombic repulsion leads to release of single ions from the
droplets, because the Coulombic repulsion becomes stronger than the surface tension of
the droplets. Although there is no final proof, it is believed that both mechanisms occur
depending of the analyte size and other parameters. More information on ESI can be
found in [21].

The second widely used ionization method for biomolecules is MALDI [22]. The

breakthrough for large molecule MALDI came in 1987 when Koichi Tanaka and co-
workers showed that it is possible to ionize proteins as large as carboxypeptidase-A
(34472 Da).
The basic idea of MALDI is to ionize the analyte with a laser beam (see Fig. 2.4).
To avoid fragmentation of the analytes by the direct laser beam, the analytes are co-
crystallized with smaller molecules, the so-called matrix, on a metal plate. The matrix
molecules absorb the laser beam energy and aid in vaporization and ionization of the
analyte molecules. Today, mostly organic acids are used as matrix molecules because
they strongly absorb specific laser wavelengths, e.g., of a 337 nm nitrogen laser. In
contrast to ESI, which often produces ions of charge two and three, MALDI mainly
produces singly charged ions from tryptic peptides.

Mass spectra can be recorded from positively charged ions (positive ion mode) and
negatively charged ions (negative ion mode). The ion mode is also called polarity in
this context. Usually, proteomics experiments are run in positive mode. Only in special
cases negative ion mode is used. One application is to record spectra alternatingly in
positive and negative ion mode, because the two kinds of spectra contain complementary
information.

2. Background

laser beam

e @ ° .
. ° \analyte ion

% ———— analyte/matrix mixture ‘
] b '

Figure 2.4.: Schematic representation of matrix-assisted laser ionization/desorption.

Mass analyzer

Mass analyzers separate ions according to their mass-to-charge ratio. A large variety of
different mass analyzer types are used in mass spectrometry. All have specific strengths
and weaknesses, and can be combined with certain ion sources. We will now briefly
describe several common mass analyzer types.

--- stable ion path
---------- unstable ion path

Figure 2.5.: Schematic representation of a quadrupole mass analyzer.

The schematic representation of a quadrupole [23] mass analyzer is shown in Fig. 2.5.
A quadrupole consists of four parallel metal rods with applied electric currents, which
create an oscillating magnetic field. The flight paths of ions passing through this field
are stabilized or destabilized depending on their mass-to-charge ratio. Only ions of a
specific m/z have a stable trajectory. All other ions leave the quadrupole at the sides or
collide with the metal rods. The quadrupole effectively acts as a filter for a specific m/z
value, which is why it belongs to the class of scanning mass analyzers. Modulation of
the created electric field allows sweeping through a mass-to-charge range and recording
a mass spectrum. Quadrupole instruments are popular because they are affordable and
can be used for many different purposes. Most quadrupole instruments contain an ESI
ion source.

The quadrupole ion trap [23] is based on similar principles as the simple quadrupole
mass analyzer. The main difference is that the ions are trapped inside the mass analyzer

2.1. Mass spectrometry-based proteomics

and can be sequentially ejected. This allows for a higher sensitivity, because no ions
are lost. The inventor, Wolfgang Paul, was rewarded with a share of the Nobel Prize in
physics in 1989. Quadrupole ion traps are also called Paul traps after their inventor.

acceleration zone

detector ion beam reflectron

Figure 2.6.: Schematic representation of a time-of-flight mass analyzer with reflectron.

The time-of-flight (TOF) mass analyzer [24] is based on the acceleration of ions in
an electric field of known strength. Thus, the kinetic energy transferred to the ions is
known and depends only on the charge state of the ion. The velocity of an ion after
acceleration depends on its mass: ions with a lower mass are faster. The m/z of an ion
can be calculated from the time it needs to reach a detector at known distance from
the ion source. Fig. 2.6 shows the schematics of a TOF mass analyzer. The flight path
length can be extended using a reflectron, which uses a constant electric field to deflect
ions towards the detector. The use of a reflectron allows for the construction of more
compact instruments with an improved resolution. The TOF mass analyzer is mainly
used in combination with a MALDI ion source.

The Orbitrap mass analyzer goes back to the work of Alexander Makarov [25] from the
year 2000. It consists of a barrel-shaped outer electrode, which contains a spindle-like
coaxial inner electrode. Between the two electrodes an electrostatic field is created in
which ions oscillate in cycles along the inner spindle. The frequency of these harmonic
oscillations can be detected, and the mass-to-charge ratio of the ions can be calculated
from it. Orbitrap instruments are characterized by a high mass accuracy and a high
dynamic range (the ratio of the lowest and highest detectable ion count).

Detector

Ton detectors are needed to count the number of ions with a specific mass-to-charge ratio.
Because the number of ions is typically very small, a considerable amount of amplification
is required. A widely used ion detector in mass spectrometry is the electron multiplier.
We will now briefly explain the principles behind an electron multiplier with discrete
dynodes. Fig. 2.7 shows the schematics of a secondary ion multiplier. The ion beam from
the mass analyzer is transformed into an electron beam by a conversion dynode. The
electron beam is then amplified by a cascade of secondary electron emissions. Finally,
the electrons are detected by an electron collector. From the resulting signal an ion
count can be calculated.

2. Background

electron cascade electron
collector

ion beam \

conversion electron
dynode beam

Figure 2.7.: Schematic representation of a secondary electron multiplier (ion detector).

Sk

£
=

w
=

Intensity
R——

2k

|
|
fl \ H/centrmded data

\ _profile data
A

e I AR IR A e e

2455 2470
Mz [Th]

Figure 2.8.: Plot of a small m/z region of a TOF spectrum, showing a peptide isotope
cluster with charge 1. In addition to the profile spectrum (blue line), peak
centroids are plotted as red sticks.

2.1.2. Interpretation of mass spectrometry data and terms

The mass spectrum recorded by the MS instrument is a continuous signal sampled at
regular intervals. It is typically plotted as mass-to-charge ratio (x-axis) against the in-
tensity in arbitrary units (y-axis). Fig. 2.8 shows a small m/z region of a TOF mass
spectrum. Continuous spectra are also called profile spectra. After centroiding a spec-
trum, i.e., detecting mass spectrometric peak apexes and reducing each peak to a single
data point, a so-called centroided spectrum is obtained. Each peak in a mass spectrum
corresponds to one or several chemical entities with a defined mass-to-charge ratio.

LC-MS experiments produce a collection of spectra with distinct retention times. Such
a dataset is called a peak map. It is often visualized as a plot of m/z (x-axis) against
RT (y-axis) with data points colored according to intensity. Fig. 2.9 shows a centroided
peak map of a proteomics experiment. The inset of the figure shows a small data region
with two peptide features. A peptide feature is defined as the set of signals caused by
one peptide. In general, a feature is defined as the set of peaks that are caused by one
chemical entity in a certain charge state.

Because of naturally occurring stable isotopes (e.g., 13C makes up 1% of all carbon

10

2.1. Mass spectrometry-based proteomics

peptide\feature mass trace
peak map 1

1

9000

a0n0 bl

7000

Intensity

6000

S00a

o P

RT [sec]

!
H | cd4 oe4
4000 4|

i :
SR i ;
e et L |
3000 +-—- ey Rt e |
000 L bl \

isotope pattern

1000

Figure 2.9.: Plot of a centroided peak map. The insets show a region with two peptide
features and the corresponding isotope pattern.

atoms), each analyte species produces several peaks with one neutron mass difference.
These peak clusters are called isotope patterns. Fig. 2.10 shows theoretical isotope pat-
terns for peptides of different masses. The peak with the lowest mass, which is produced
by analytes which contain only the most abundant isotope of each element, is called
monoisotopic peak. An important property of isotope patterns is that the m/z distance
of isotope peaks depends on the charge state of the analyte. The distance of two adjacent
isotope peaks is equal to a neutron mass divided by the charge.

In LC-MS experiments, the isotope patterns of an analyte species can be observed
in several adjacent spectra. Peaks recurring at similar m/z position in several adjacent
spectra are called mass traces. Thus, each analyte species produces an isotope pattern
of several mass traces. Examples of isotope patterns and mass traces of peptides can be
found in Fig. 2.8 and Fig. 2.9.

Intensity
Intensity
Intensity

A AA AA AAA

01 2 3 45 6 7 8 910 01 2 3 45 6 7 8 910 01 2 3 45 6 7 8 910
Isotope Isotope Isotope
(a) 1,000 Da (b) 2,000 Da (C) 7,000 Da

Figure 2.10.: Theoretical isotope patterns for peptides of different masses. On the y-
axis the isotope peak number is denoted. The number 0 stands for the
monoisotopic peak. All three isotope patterns are based on the averagine
model [17] which reflects the average isotope distribution in proteins.

Projecting the mass spectrum intensities to the RT axis produces a total ton current

11

2. Background

chromatogram (TIC). Another important type of chromatogram is the extracted ion
chromatogram (EIC or XIC). EICs are the projections of a small m/z window to the RT
axis. Fig. 2.11 shows an example of both chromatogram types.

EIC ——
| TIC e

Intensity

2000 4000 6000 8000
RT [sec]

Figure 2.11.: A TIC chromatogram of the peak map shown in Fig. 2.9, and an EIC of
the m/z range 552.70 to 552.71 Th from the same dataset.

2.1.3. Peptide/protein identification with mass spectrometry

A common problem in mass spectrometry is to determine the sequence of peptides or
proteins. This is not easily possible, since mass spectrometry only measures the mass-
to-charge ratio of analytes. The analyte identity cannot be inferred from a single mass-
to-charge ratio because many sequences yield the same mass. Thus, several techniques
have been established that allow the identification of proteins and peptides based on a
set of fragment masses.

Peptide mass fingerprinting

In 1993, peptide mass fingerprinting [26] was developed for protein identification with
mass spectrometry. The key idea of this technique is to fragment a protein to peptides
and to identify the protein based on the fragment masses. The first step is to cleave the
unknown protein to smaller peptide fragments, usually by digestion with trypsin. Then,
a mass spectrum of the fragments is recorded. Finally, the measured peptide fragment
masses are compared to a database of theoretical peptide fragment masses, which are
determined by in-silico digestion of proteins with trypsin.

Because the amino-acid sequence has to be known for the in-silico digestion step, only
proteins with known sequences can be identified with this method. A second drawback
is that proteins have to be isolated and identified in individual MS runs. Digesting
protein mixtures produces too many fragments, which complicates the statistical analysis
performed during the database search. Thus, complex mixtures of more than a hand
full of proteins cannot be identified with peptide mass fingerprinting.

12

2.1. Mass spectrometry-based proteomics

quadrupole (MS) quadrupole (MS/MS)
ion (%Co)oo. C)) X 0 O m) Gp ﬁo @) Uoomol)o o)O -)goo detector
source | * e] J gt BREN) ©
collision cell

Figure 2.12.: Schematic representation of a triple quadrupole mass spectrometer.

Tandem mass spectrometry

Tandem mass spectrometry or MS/MS [27] aims at identifying single peptides by frag-
mentation of the peptides and subsequent analysis of the fragment masses. It is per-
formed with special mass spectrometers, which provide a means to fragment selected
peptides.

For example, triple-quadrupole mass spectrometers are frequently used for MS/MS. They
contain a linear arrangement of three quadrupole mass analyzers (see Fig. 2.12). The
first quadrupole acts as a mass filter to isolate a peptide ion of interest (called precursor
ion). The second mass analyzer is filled with an inert gas such as Argon or Helium,
and serves as a collision chamber for collision-induced dissociation. Finally, the third
quadrupole records a fragment ion spectrum (also called product ion spectrum), from
which the peptide sequence can be inferred. Other mass spectrometer types (e.g., ion
trap mass spectrometers) and dissociation methods (e.g., electron transfer dissociation)
are also used for MS/MS.

X3 Ya Zg X2 Yo Zp X Vi Z4

HQN\/L\N/)\Y/N\YJJ\I}I/)\H/OH

I:{1 H O R3 H O

Figure 2.13.: Illustration of the most common peptide fragmentation ion series and the
used nomenclature [28].

The dissociation of peptide ions does not produce random fragments. Mainly the
amide-bonds of the peptide backbone break, producing y-ions if the charge is retained
on the C-terminus, or b-ions if the charge is retained on the N-terminus (see Fig. 2.13).
Tons of one series are numbered according to the number of residues they contain. Be-
sides b-ion series and y-ion series, less frequent ion series are produced by other cleavages
along the peptide backbone—additional ions are produced by adducts and neutral losses.
Fig. 2.14 shows an example of a survey spectrum and the corresponding MS/MS spec-
trum.

The actual identification of peptides based on MS/MS spectra is either done by de novo
identification or database search algorithms:

13

2. Background

De novo identification: De novo identification algorithms [29, 30] try to identify a
peptide based on the tandem MS spectrum and the precursor ion mass only. In order to
achieve this, m/z distances of ions from one ion series are analyzed. The m/z distance
between subsequent ions of one series corresponds to one amino acid. In theory, one ion
series is sufficient to determine the sequence. However, usually not all ions of an ion
series are present in an MS/MS spectrum. Another problem is that it is very difficult
to correctly determine all ions of one series, because usually several ion series and many
chemical noise peaks are present in an MS/MS spectrum. Due to these difficulties
and long runtimes, database search algorithms are preferred over de novo identification
algorithms.

Database search: The techniques employed by database search algorithms [6] are sim-
ilar to those in peptide mass fingerprinting. A database with theoretical spectra is
generated by in-silico fragmentation of peptides. The recorded MS/MS spectra are then
compared to all theoretical spectra with matching precursor mass. If the two spectra
show a high similarity, the sequence corresponding to the theoretical spectrum is re-
ported as a putative peptide identification of the recorded MS/MS spectrum.

In general, database search algorithms show a better performance and runtime than de
novo identifications. However, they are only applicable to peptides of known proteins.
The most widely used database search algorithms are Mascot [9] and SEQUEST [31].

MS/MS spectrum

99.039 |

precursor peak

= survey spectrum

00

700

Intensy

L

L . AT L

Intensity

L] s | | S

PR S S | S

M2 [Th]
200

100

- [L T \\“HM IR T A TR I
500 550 600 50

Mz [Th]

Figure 2.14.: Example spectra from a tandem mass spectrometry experiment. The pre-
cursor peak selected in the survey spectrum is fragmented to produce a
tandem MS (MS/MS) spectrum. The annotated mass differences in the
MS/MS spectrum could correspond to the amino acids serine (78.032 Da)
and valine (99.068 Da).

14

2.1. Mass spectrometry-based proteomics

2.1.4. Liquid chromatography

Liquid chromatography is an analytical chemistry technique for the separation of an-
alytes. It is an important separation technique in the context of mass spectrometry
because it can be coupled directly to certain mass spectrometer types—separating the
analyte mixture before it is analyzed in the mass spectrometer. Liquid chromatography
is not restricted to proteins and peptides. It is applicable to various analyte classes, for
example metabolites and DNA. The basics of liquid chromatography are summarized
this section.

analyte mixture

o =

0 stationary phase

| | (column)

mobile phase

Figure 2.15.: Hlustration of liquid chromatography.

In liquid chromatography an analyte mixture is dissolved in a mobile phase. After
injection of the solution into the chromatographic system, it is forced through a col-
umn (the stationary phase) at high pressure. Each analyte species has a characteristic
distribution ratio between mobile phase and stationary phase, which depends on the
strength of interaction between the analyte and the two phases. The distribution ratio
determines the time at which an analyte species elutes from the column, the elution time
or retention time. Fig. 2.15 shows an illustration of a liquid chromatography run.

The choice of analytical column and solvents in the mobile phase has a large influ-
ence on the separation. Different column types and materials are used. The column is
either packed with small particles or filled with a porous monolithic layer. When the
stationary phase is more polar than the mobile phase, this is called normal phase liquid
chromatography (NPLC). In proteomics, reverse phase liquid chromatography (RPLC)
is more commonly used, in which the mobile phase is more polar. Typical materials
for the stationary phase are silica and polystyrene-divinylbenzene. The mobile phase
typically consists of water and acetonitrile, an organic solvent.

Liquid chromatography is called isocratic when the composition of the mobile phase re-
mains constant. The composition can however change during the chromatography. This
technique is called gradient elution. For example, in RPLC with water and acetonitrile
as mobile phase, the amount of acetonitrile would be increased during the chromatog-
raphy. Gradient elution speeds up the chromatography and thereby improves the peak
shape of the analytes: Peak tailing is reduced and the peaks produced by late-eluting
analytes are narrower and higher.

Liquid chromatography can be coupled on-line to certain mass spectrometer types.
Alternatively, aliquots from the separation can be collected and analyzed in several

15

2. Background

mass spectrometry runs afterwards.

2.1.5. Sample preparation

Proteomics sample preparation spans all steps between the extraction of a protein sam-
ple from an intact biological system and the analysis of the sample in an analytical
instrument. Typical sample processing steps are fractionation, digestion, alkylation, re-
duction and labeling. In this section, we will shortly describe fractionation and digestion.
Labeling is described separately in Section 2.1.6.

Most samples obtained from biological systems (e.g., whole-cell lysates) are too com-
plex to be analyzed in a mass spectrometer directly. Thus, the complexity is reduced
by fractionation of the sample. T'wo-dimensional gel electrophoresis is a commonly used
technique for separation of protein mixtures. First, a pH gradient is applied that sepa-
rates proteins by their isoelectric point. In the second step, the proteins are separated
according to their size in orthogonal direction. The result is that proteins are spread
out across a two-dimensional gel. Now fractions of proteins can be obtained from the gel
for further analysis. Another popular fractionation technique is liquid chromatography
described in Section 2.1.4.

Before the actual analysis in a mass spectrometer, most protein samples are digested
using a protease. Digestion is necessary to ensure that the analytes have similar prop-
erties and are well-suited for MS analysis. The by far most widely used protease in
proteomics is trypsin. Trypsin cleaves proteins after lysine or arginine, unless either of
them is followed by a proline in C-terminal direction. Tryptic digestion is especially
useful for mass spectrometry because each peptide fragment contains arginine or lysine.
These basic amino-acids ensure ionizability of the peptides (in positive ion mode). The
general size distribution of tryptic peptides is also well suited for mass spectrometry.

600 - -
500 r
> 400 r
2
S 300 |
c
- 200t
100 | 1
0 J.L A/\ L L L A A

402 404 406 408 410 412 414
m/z

Figure 2.16.: Theoretical ICAT spectrum containing an ICAT-labeled peptide pair (light
and heavy). The peptides are singly charged and, thus, have an m/z dis-
tance of 8 Th.

2.1.6. Stable-isotope labeling

In differential proteomics, stable-isotope labeling plays an important role. Several sam-
ples can be labeled and analyzed in one LC-MS run, which minimizes errors caused

16

2.1. Mass spectrometry-based proteomics

by differences in sample preparation and chromatography. The relative expression dif-
ferences of the same protein from different samples can be determined by comparing
corresponding peaks with a defined mass difference. The mass difference depends on the
labeling technique used. We will now briefly explain the most important stable-isotope
labeling methods:

ICAT (Isotope-coded affinity tags) [32] is a chemical labeling for two samples with a
mass difference of 8 Da. For each labeled peptide, two signals with a distance of 8 Da
can be observed in the LC-MS data. Fig. 2.16 shows a theoretical example spectrum of
an ICAT peptide feature pair.

SILAC [33] is a metabolic labeling technique that can be used in cell cultures only. One
population of cells is grown with standard amino acids. The second population is grown
with isotope-labeled amino acids. For example, arginines can be labeled with six heavy
carbon atoms (13C). The metabolic incorporation of the labeled amino acids causes a
mass shift if the labeled peptides in the mass spectrum (see Fig. 2.17). The disadvan-
tage of this method is that the mass difference of corresponding peptides depends on the
number of arginine amino acids in the peptide.

iTRAQ [34] is a labeling technique for MS/MS experiments (see Section 2.1.3). Up to
four samples are labeled using isobaric iTRAQ markers with a mass of 145 Da. The
markers consist of a reporter group (114-117 Da) and a balancer group which main-
tains the overall mass of 145 Da. Because of their identical mass, identical peptides of
different samples form one precursor peak and are fragmented together when recording
an MS/MS spectrum. During the fragmentation, the reporter and balancer groups are
cleaved off the peptide. Thus, the peptide can be identified from the peptide fragments,
just as in label-free approaches. The relative quantitation is performed based on the
reporter ion peaks with a mass-to-charge ratio between 114 and 117 Th.

Although stable-isotope labeling has many advantages, label-free quantitation is very
popular as well. In label-free approaches no expensive labeling reagents are needed and
the labeling step, which can also introduce errors, is not required. The downside of label-
free approaches is that the evaluation of the produced data is more difficult. Several
LC-MS runs have to be aligned in RT dimension, and corresponding peptide features
have to be detected across several LC-MS runs.

argo,
@ \ MS il

Arg 6 "

Figure 2.17.: Tllustration of a SILAC experiment. One cell culture is grown with a light
variant of arginine, one with a heavy variant of arginine (+6 Da). When
recording a mass spectrum, the mass difference causes a 6 Th shift of the
corresponding peaks (assuming the peptide contains one arginine and is
singly charged).

int

17

2. Background

2.2. Machine learning

Machine learning is a discipline of computer science that tries to learn characteristics
from given data. In most cases the goal is to identify complex patterns in the data and
to allow a classification of data points according to these patterns. Machine learning is
closely related to multivariate statistics and density estimation of the underlying distri-
bution. Depending on the used input data, three classes of algorithms are distinguished:

Supervised learning deals with labeled input data, i.e., each data point is associated
with a label value. The goal is to find a general function that cannot only assign
the correct labels to the given training data points, but also to new data points
that were drawn from the same distribution. Examples of supervised machine
learning algorithms are decision trees, artificial neural networks and support vector
machines.

Unsupervised learning deals with unlabeled example data. Here the goal is to find
patterns hidden in the data, which allow a discrimination of different classes of
data points in the data. The most prominent unsupervised learning algorithms
are clustering algorithms.

Semi-supervised learning falls between supervised and unsupervised learning. It deals
with both labeled and unlabeled data. The reasoning behind this approach is
that it might be impossible or undesirable to produce a large training dataset of
labeled data points, but unlabeled data points are readily available. Typically, a
small number of labeled data points is used in conjunction with a large number
of unlabeled data points, which are mainly used for density estimation. This
approach can lead to a significant improvement of the learning accuracy, compared
to supervised and unsupervised learning.

In this work we will consider only support vector machines, a widely used supervised
learning approach. As already mentioned above, support vector machines work on la-
beled training data. Depending on the type of label different types of supervised learning
approaches are available. The simplest case is that two classes must be distinguished,
i.e., only two types of labels are present. This case is called binary classification. If more
than two labels need to be distinguished, this is called multi-class classification. Su-
pervised learning with labels from a continuous domain, such as real numbers, is called
regression. In the following, we will introduce the basics of support vector classification
(SVC) and support vector regression (SVR).

2.2.1. Support vector classification

The separation of two classes of data points is a common problem in machine learning.
In general, the data points are given in an n-dimensional feature space and the goal is
to find an (n — 1)-dimensional hyperplane, which separates the data. Fig. 2.18 shows a
simple example, where two classes of two-dimensional data points and several separating
hyperplanes are shown. Although each of these hyperplanes separates the data, they
differ in their ability to generalize to unseen data. It is easy to see that the hyperplane
with the maximum distance from the data points is the most general separator. This
motivates why the separating hyperplane with the largest distance (margin) from the
data points is the desired output of our classifier. This hyperplane is called mazimum-
margin hyperplane and classifiers which use this hyperplane are called mazimum-margin
classifiers. The training data points which lie on the border of the maximum-margin

18

2.2. Machine learning

N
(&)
2
E X
O
X
X
X
O
X
O .
feature 1

Figure 2.18.: Binary classification example with several suboptimal separating hyper-
planes (dashed lines) and the maximum margin hyperplane (bold line).
The maximum margin is denoted as a gray rectangle.

hyperplane define the orientation of the hyperplane in space—they are called support
vectors.

Formal definition

After this short motivation, we will now introduce a formal definition of the problem.
We are given a set of training data of the form

(X1,Y1)s- -+ (Xnyyn) € R™ x {—1,1}, (2.1)

where —1 and 1 denote the labels of the binary classification. The goal is to find the
maximum-margin separating hyperplane that separates the data points with y; = —1
from those points with y; = 1. A hyperplane can be defined as the set of points that
satisfy the equation

w-x+b=0, (2.2)

where w is the normal vector of the hyperplane, b is the offset of the hyperplane from
the origin and - denotes the dot product. Now we want to find a vector w and an offset
b that maximize the margin of the hyperplane to the training data points. The margins
can be described by the two equations

w-x+b=1 (2.3)

and
w-x+b=—1. (2.4)
Note that the 1 and —1 are arbitrarily chosen here. They depend on the length of w only.

In this case, the distance between the margins can be calculated as ”27” As the goal is

to maximize the margin, we need to find parameters w and b that minimize the norm
of w and separate the two classes, which can be expressed by the following optimization

19

2. Background

problem:
m ol (25)
min = :
weR™ beR 2 w
subject to yi(w-x3)+b>1 Vie{l,...,n} (2.6)

The constraints in this formulation ensure that the training data points x; have a min-
imum distance of 1 from the hyperplane and that the two classes are separated by the
hyperplane. The convenient choice of —1 and 1 as labels y;, allows the formulation of a
single constraint for both classes by simply multiplying with the class label.

The factor % and the square of the norm of w in the optimization problem are used
for mathematical convenience only—they do not alter the minimum. This optimization
problem can be efficiently solved by standard quadratic optimization techniques. More
information about the optimization problem and support vector machines in general can

be found for example in [35].

Non-linear classification

Linear support vector machines can be used only if the two classes can be separated by a
hyperplane. This poses a serious restriction on the applicability of the method. In 1992,
Vapnik et al. proposed to generalize support vector machines to non-linear problems [36]
by applying the kernel trick [37].

The kernel trick employs that problems which are not separable by a linear classifier in
the original feature space can become separable in a higher-dimensional feature space.
Thus, the input features are transformed to a higher-dimensional feature space where
a linear separation might be possible. If a linear classifier can be found in the higher-
dimensional feature space, it corresponds to a non-linear separation in the original fea-
tures space (see [38] for more details).

The explicit transformation of the features to a higher-dimensional feature space can be
quite time-consuming. It can be circumvented, if only the inner product in the trans-
formed feature space is required for the optimization. For support vector machines, this
can be achieved by reformulating the optimization problem.

Fig. 2.19 shows an example of a simple kernel transformation. Commonly used kernel
functions in support vector classification are the linear kernel, the polynomial kernel and
the radial basis function kernel. Details about different kernels can be found in [39].

Soft-margin classifiers

Another important modification, which made support vector classification more robust
with respect to errors in the training data, was proposed by Cortes and Vapnik in 1995.
They introduced so-called slack variables, which allow the misclassification of data points
in order to find a more general classifier [40]. This is necessary for data with possibly
misclassified training data points or data with noisy features. The slack variables & > 0
are used to relax the constraints of the optimization problem:

yi(w-x3)+b>1-¢ Vie{l,...,n} (2.7)

To avoid the misclassification of too many training data points, the slack variables have
to be integrated into the objective function as well:

1) "
; it C . 2.8
petmin 5w ? + ;5 (2.8)

20

2.2. Machine learning

f(x,y) = (x,y?)

r'y
x
x x
°1lo
o -
o o »
X
% x

Figure 2.19.: Classification example which is not linearly separable. After the transfor-
mation of the data to another feature space of the same dimensionality, the
data is linearly separable.

Now the minimization problem minimizes both the norm of w and the sum of all slack
variables (also called training error). The parameter C is used to balance these contri-
butions.

Multi-class support vector classification

One drawback of support vector classification is that it is defined for binary classification
only. To solve a multi-class classification problem, the problem has to be transformed to
binary classification problems. Several such transformations are known. One possibility
is to train an SVM for each class that discriminates the class from all other classes (one-
versus-all). In this case, the class with the highest probability is selected as result of
the classification. Another possibility is that one SVM is trained for each pair of classes
(one-versus-one). In this case, the class with most votes is selected as the final result.

2.2.2. Support vector regression

Support vector regression (SVR) is very similar to support vector classification. The
main difference is the domain of the label. In support vector regression the label is from
the continuous domain of real numbers (it is also called the response). The input data
consists of training data points and the respective labels:

(leyl)a"'a(xnvyn) ERm x R (29)

In analogy to support vector classification, the optimization problem for the so-called
e-SVR [39] can be formulated as

1 s
melel2+O;Iyi — f(x)le, (2.10)

where f(x;) is the predicted response for the data point x;. The first addend minimizes
the model complexity while the second minimizes the e-insensitive training error, i.e.,

21

2. Background

Figure 2.20.: Support vector regression example. Deviations from the model inside the
e-margin are not penalized. The sum of the larger deviations (red lines) is
minimized.

training errors below a fixed ¢ are not penalized. C is a parameter which defines the
trade-off between these two objectives. Fig. 2.20 shows an illustration of a linear SVR
model.

In 2001, Scholkopf et al. [41] proposed v-SVR, a modified version of e-SVR which
minimizes ¢ along with the model complexity and the training error. This modification
simplifies the use of SVR, as € no longer has to be chosen a priori. Today, v-SVR is
widely used to solve regression problems from different fields of application.

2.2.3. SVM model generation and performance evaluation

In all machine learning approaches special care has to be taken to avoid overfitting.
Overfitting occurs when a model learns to classify training data based on random noise
in the data, rather than on the general underlying distribution. Overfitting frequently
occurs when the model has too many degrees of freedom in comparison to the number
of training data points. In general, the overfitted models explain the training data very
accurately, but their predictive power on other datasets is very low.

To avoid overfitting during the model generation with support vector machines, the per-
formance of an SVM predictor is usually given as Q?, the squared correlation coefficient
between the predicted response on previously unseen data and the true response of the
data. The correlation of the predicted and true response on the training data is called
R2.

Fig. 2.21 shows the general procedure of SVM training. First, the available data is ran-
domly split into a training dataset and a test dataset. The model is created based on the
training dataset. Then, the model performance is evaluated on the test dataset, which
was not used for the model generation.

k-fold cross-validation

The performance for a single random split of the data may deviate significantly from the
true prediction power. To counter this effect several random splits can be used, which

22

2.2. Machine learning

SVM
_> . .
/ training

training data

x Model
R2
X x x x N (R?)
@ — M

prediction

test
data

|
Prediction
(Q%)

Figure 2.21.: Hlustration of the typical training procedure used for support vector ma-
chine model generation.

allow calculating an average performance on the data. To make sure that each data
point is part of the test dataset at least once k-fold cross-validation is used: The data
is split into k subsets of equal size and each subset is used as test dataset once. This
method allows a good estimation of the true prediction power.

Nested cross-validation

Both SVC and SVR models have parameters which must be optimized during the model
creation. The parameters stem from the used kernel function and from the SVM itself
(e.g., the tradeoff between model complexity and prediction error C'). Typically, a second
k-fold cross-validation on the training dataset is used for a grid search on the parameter
space. The use of two cross-validation steps, one for parameter optimization and one
for evaluation of the prediction performance, is called nested cross validation. Today,
nested cross-validation is state-of-the-art for assessing the prediction performance of

SVM models.

Performance measures

Many different scoring functions can be used to measure the performance of machine
learning models. In the context of SVR the Pearson correlation coefficient [42] is fre-
quently used. For the set of value pairs (x;,y;) it is calculated as

Y (@ —7)(yi — 9)
V@i = 2)2 /3 (i — 9)?

where T and g are the mean of the respective samples. The Pearson correlation coefficient
ranges from —1 to 1. A value of 1 means that a linear function with positive slope
perfectly describes the relation between the two samples. A value of —1 means that a
linear function with negative slope perfectly describes the relation between the samples

(2.11)

23

2. Background

(anticorrelation). A value of 0 means that there is no correlation between the samples.
As mentioned before, the squared correlation coefficient is used to measure the model
performance on training data (R?) and the model performance on unseen data (Q?).
For SVC, and in general for two-class classification problems, the Matthews correlation
coefficient [43] is frequently used. It is based on the counts of true positives (TP), true
negatives (TN), false positives (FP) and false negatives (FN). It is calculated as

TP xTN —FP x N

. (2.12)
V(TP + FP)(TP + FN)(TN + FP)(TN + FN)

Just like the Pearson correlation coefficient it ranges from —1 to 1 and can be interpreted
in a similar way.

24

2.3. Software engineering

2.3. Software engineering

The systematic approach to development and maintenance of software products is termed
software engineering. It covers the whole software life-cycle from planning of the soft-
ware, over its implementation, to maintenance. Software engineering can be divided into
the following disciplines:

Requirements engineering
Analysis and design
Implementation

Testing

Deployment

Maintenance

The concrete practices used in these disciplines are defined by so-called software devel-
opment processes. Depending on the process, practices for all disciplines or only a subset
of the disciplines are defined. In this section we will first give an overview of software
development processes. Then, we briefly summarize the most important aspects of each
development discipline.

2.3.1. Software development processes

The software development process is a set of principles, practices and guidelines that
define how a software product is developed. Over the last 50 years, different software
development processes have been proposed, each with its advantages and disadvantages.
Depending on the project setting, software engineers adopt the most appropriate process
or a combination of principles from several processes.

The waterfall model

The first defined software development process was the waterfall model in which plan-
ning, design, implementation and testing are performed in a strict sequential order. A
new phase starts only after the previous phase has been completed. However, it soon
became obvious that this model is applicable to the simplest projects only. For large or

complex software products an up-front complete and correct specification is not possi-
ble [44].

Iterative and evolutionary development processes

Iterative and evolutionary software development processes try to overcome uncertainties
in the specification by iterative development of the software product. An iteration is
a mini-project which itself contains all required steps from planning over design and
implementation to testing. The goal of an iteration is to create a functional, stable and
tested software that implements more features than the result of the preceding iteration.
The most important features (those with the highest value for the user and those with
the highest risk) are developed in early iterations. Later iterations refine the behavior
based on user feedback and add lower priority features.

The Spiral model was developed for very large and complicated projects. It consists
of a few long iterations (six months to two years). Each iteration in principle follows
the waterfall model. The spiral model is more flexible than the waterfall model but still

25

2. Background

very rigid in comparison to other iterative processes. For small and medium size projects
more flexible processes like the Unified Process are preferred.

The Unified Process [45] is a popular iterative process framework because it is suitable
for all project sizes and the degree of formality is adaptable to project needs. Nearly all
artifacts (documents created in addition to the code) are optional and should only be
created when needed. The key practices of the Unified Process are:

e Timeboxed iterations of two to six weeks are used. If the iteration time is insuf-
ficient, features are moved to the next iterations rather than increasing iteration
time.

High-risk and high-value elements are implemented in early iterations.

The software quality is continuously verified through integrated testing.

Visual modeling is used to explore the design of a software before programming.

Requirements are collected and refined iteratively, for example in short require-
ments meetings in the early iterations of the project.
e Requirements changes are managed through change request protocols.

The Unified Process, like the waterfall model, is organized in phases. However, the
phases do not correspond to the disciplines of software development. Each phase contains
work in most disciplines but the relative effort and emphasis change. The first phase,
Inception, is ideally very short and aims at identifying the most important requirements
and the vision of the project. Prototyping of the software is encouraged. In the second
phase, elaboration, architecturally significant elements are programmed and tested. In
parallel to the programming, requirements are refined so that after this phase most
requirements are stable. At the end of this phase a semi-reliable project plan is possible.
In the third phase, construction, the remainder of the system is build while finalizing
the requirements and writing all artifacts. In the transition phase the software product
is verified and deployed.

Fig. 2.22 shows an exemplary work distribution between software development disciplines
when using an iterative software development process. Each phase of the Unified Process
would correspond to one or several iterations in this figure.

Iterations

Requirements

Programming

1
1
1
1
1
1
1
]
:
1
Design '
|
1
1
1
1
1
1
1
1
1
1

Testing

Figure 2.22.: Illustration of an example distribution of work among the software devel-
opment disciplines when using an iterative software development process.
The number of iterations is arbitrarily chosen here.

26

2.3. Software engineering

Agile development processes

Agile development processes are a subclass of iterative and evolutionary development
processes. They place even more emphasis on agility, i.e., fast and flexible response
to change. The common motto of all agile processes is to embrace change rather than
avoiding it. Finding an exact definition for agile development processes is however very
difficult because agile methods differ very much in concrete practices. However, the
common ground of agile development processes is stated by the Agile Manifesto:

e Individuals and interactions over processes and tools.
e Working software over comprehensive documentation.
e Customer collaboration over contract negotiation.

e Responding to change over following a plan.

Two prominent agile processes, Extreme programming and Scrum, are now summarized
shortly.

Eztreme Programming (XP) is a well-known agile method [46] which is used for
projects with up to 20 developers and a tight timeline. It mainly provides practical
programmer-relevant techniques for delivering high-quality software in spite of changing
requirements. It is very communication- and team-oriented: customers, managers and
developers work in a common project room. Due to the continuous availability of cus-
tomers, the overhead for requirements specification is reduced to a minimum—just as
all other documentation overhead. Extreme programming uses short iterations of one
to three weeks. Implementation starts with the first iteration and each implemented
feature is tested using automated tests. It is recommended to use test-driven develop-
ment, i.e., write the tests before implementing the functionality. To ensure correctness
after code changes, all tests are continuously executed on a dedicated test server. This
is especially important because the design is not done prior to implementation, but is
the result of continuous refactoring. Because refactoring can break existing functional-
ity, continuous integration and testing is essential. The coding is always done in pairs
of developers, which change frequently. This practice significantly reduces the defect
rate because all code is real-time reviewed. Additionally, knowledge transfer between
developers is ensured, which is important because Extreme Programming relies on high
software craftsmanship of all programmers. Another important practice is team code
ownership. This practice implies that any pair of programmer can implement a new
feature or improve a piece of code. Enforcing a common coding style, adhering to the
simplest design and automated test builds support this practice. Because Extreme Pro-
gramming mainly guides implementation practices, it can be easily combined with other
processes such as Scrum or Unified Process.

Scrum [47] emphasizes self-directed teams that develop with minimal overhead, using
empirical processes rather than predefined processes. Typically, a team of up to seven
people works in 30 calendar day iterations (called sprints). Each sprint starts with
re-prioritizing remaining requirements and creating a task list for the sprint (called
sprint backlog). During the sprint, the task list is not changed unless unavoidable and
the team alone decides how to perform the planned tasks. Each workday starts with
a 30 minutes team meeting (the Scrum meeting) which monitors the progress of the
team and identifies problems. After each iteration, a software demo is held to external
stakeholders and the sprint is reviewed. Scrum can also be applied to projects with
more than seven developers by forming several teams and coordinating the teams using
a second scrum meeting where team progress is reported. Because Scrum mainly guides

27

2. Background

project management, it can be easily combined with other processes such as Extreme
Programming.

After this short overview of software development processes, we will describe important
aspects of the software development disciplines.

2.3.2. Requirements engineering

Requirements engineering is typically the first step of each software project. It ensures
that all relevant requirements of a software product are known and understood on the
necessary level of detail. In this context a requirement is defined as a statement on
a characteristic of a product, of a process, or of the persons involved in the process.
Requirements engineering encloses the collection of requirements, verification of require-
ments and management of requirements. We will now briefly describe the main tasks of
a requirements engineer.

Requirements elicitation

Requirements elicitation tries to collect all requirements of a software product. This is
typically done iteratively with increasing level of detail. First, the involved stakeholders
(all persons that are affected by the development and the use of the system), the intended
use of the product and the context of the product are defined. The second step is to
collect coarse product requirements, which describe the characteristics of the product
from a high-level view. User needs are often determined using questionnaires or by
interviewing representative users. In a third step, the software requirements are defined
by transforming each coarse product requirement to a set of more detailed requirements.
Typically, software requirements are described by use cases, activity diagrams or state
diagrams. They should be complete, unambiguous, consistent and testable.

In parallel to the requirements, a glossary is created which defines all domain-specific
terms used in the requirements descriptions. A glossary is very important to make sure
that all project participants have the same understanding of the terms and thereby of
the requirements.

Requirements analysis and validation

Once requirements are collected, they need to be grouped and dependencies between the
requirements have to be determined. Grouping is done in different ways, for example
according to priority, according to user roles, or into functional and non-functional re-
quirements.

Grouping and determining dependences is especially important for risk management.
Risk management identifies risks to a software project, i.e., things that threaten the
project timeline or budget. It is common that low priority requirements are postponed
to later versions of the software to ensure fulfillment of the project timeline and budget.

Requirements management

Just as the source code, requirements exist in different versions. For example, one set
of requirements exists for each planned release or for each level of detail. Additionally,
requirements are annotated with meta information such as the cost of implementation,
priority, dependencies, etc. The management of requirements is an important part of
requirements engineering. To organize requirements and keep track of the changes,
special software tools for requirements engineering are used.

28

2.3. Software engineering

2.3.3. Analysis and design

Today, most large software projects are implemented using object-oriented programming
languages. Before implementing a complex software product, the standard approach is
to model the system through objects and interactions between objects. We will now
summarize the modeling process and introduce the tools used in the process. If you
are not familiar with object-oriented programming, you should read Section 2.3.4 before
continuing.

Object-oriented analysis and design

Object-oriented analysis and design is a modern approach towards the modeling of a
software system prior to implementation. Each object represents an entity of the system
through encapsulated data and methods that work on the data. The behavior of objects
and interactions between objects define the behavior of the overall system. To represent
object-oriented design, different notations have been developed of which the Unified
Modeling Language (UML) is the most prominent. UML is described in the next section.

The first step, the analysis, models the problem domain based on requirements. In
this step, the focus of the model is on the problem domain only. Constraints imposed by
non-functional requirements, choice of programming language, etc. are not considered.
The model is a collection of documents that describe the system on a high level of
abstraction (called conceptual or semantic model). The model typically comprises use
case descriptions, UML class diagrams, UML sequence diagrams and mock-up graphical
user interfaces.

The second step, the design, re-models the system taking the constraints not consid-
ered by the semantic model into account. The outcome of the design step are refined
UML class diagrams and UML sequence diagrams, which can be used as a basis for the
implementation of the software. During the design step, so-called design patterns are
used. Design patterns are reusable solutions to commonly recurring design problems.

———=1

|
T |

{ |
Class TemplateClass L"I"I <<interface>>

+ attribute1: Type InterfaceClass
attribute2: Type
- attribute3: Type

+ method1(): Type
+ method2(parameter: Type): Type

Figure 2.23.: Three UML class representations: a standard class representation with
attributes and methods (left), a parametrized class representation (middle)
and a stereotype class representation (right). In the middle and on the right
side, the class members are omitted.

UML

The Unified Modeling Language (UML) is a standard tool for creating visual models of
software systems. UML diagrams offer two different views on the system to model. The
static view focuses on the structural details such as classes including members and the
relationships between classes. The dynamic view depicts the behavior of the system by
modeling interactions between objects and the resulting changes to the system. There

29

2. Background

are several different diagram types both for static and the dynamic view. In this work,
mainly the class diagram is used, which is explained in detail now. For more information
about UML in general and the different diagram types see [48].

—O -
aggregation generalization association
— & T > - >
composition realization dependency

Figure 2.24.: Representations of relationships in UML diagrams.

The UML class diagram is a static structure diagram that provides a view on class
details and the relationships between classes. Classes are represented by a rectangle
subdivided into three parts. The upper part contains the class name. The optional
lower parts contain the members (attributes and methods) of the class. Fig. 2.23 shows
three example classes. Public members are prefixed with '+’, protected members with
"4’ and private members with ’-’.

Relationships between classes are represented by several types of lines and arrows.
Fig. 2.24 gives an overview of the most important relationship types. Aggregation and
composition express whole-part relationships (diamond on the container side). Aggrega-
tion is stronger and typically implies that the contained objects are destroyed when the
container is destroyed, while composition is used when the container only references the
contained elements. Generalizations are drawn as solid lines from base class to special-
ized class with a hollow triangle on the base class side. Realizations are drawn as dashed
lines with a hollow triangle. In most cases they indicate that a class implements an
interface (hollow triangle side). Associations are drawn as solid lines. They express re-
lationships between instances of the connected classes and can be annotated with several
properties, e.g., association type, role names of the participating objects and multiplic-
ities. Dependencies between classes are drawn as dashed lines with an arrowhead and
are usually annotated with the dependency type.

Design patterns

In software design, frequently recurring design problems exist. Reusable solutions to such
problems, which have proven to solve the problem effectively, are called design patterns.
The first comprehensive collection of design patterns has been published by Gamma et
al. [49] in 1995. Since then, design patterns have become very popular, not least because
they provide a common vocabulary that allows communicating design problems and the
applied solution.

Although design patterns provide a tested solution to a common problem, they should
not be applied without thorough consideration. Often, design patterns need to be
adapted to fit the concrete problem, or a combination of several patterns offers the
best solution.

Design patterns are traditionally categorized in creational patterns, structural patterns
and behavioral patterns. We will give an overview of the patterns which have been fre-
quently used in this work. More details and many patterns not mentioned here can be
found for example in [49].

Creational patterns deal with object creation:

Singleton ensures that only one instance of a class exists. This is usually achieved by

30

2.3. Software engineering

<<interface>> <<interface>>
GUIFactory Button

+ button(): Button + paint(): void

+ window(): Window

|
|
|
|
|
|
|
|
|
|
|
|
|
o

I
|
! I
. :
I I
: l StandardStyleFactory :
! ! StandardButton :
! - | _ !
! + button(): Button croates —— :
: + window(): Window + paint(): void !
| |
| |
1
1 |
| |
: ModernStyleFactory !
i ModernButton :
1
b= +button(): Button ~ [TTTT Tl b———————— - !
+ window(): Window creates + paint(): void

Figure 2.25.: Example of the abstract factory pattern. The classes implementing the
GUlFactory interface are used to create concrete instances of GUI classes
such as Buttons, Windows, etc.

hiding the constructor and providing a static access method to a static instance.
Factory method provides an interface for creating an object of a certain supertype. The
concrete factory class, which implements the interface, defines which concrete class
is instantiated.
Abstract factory provides an interface to create a family of related products. It sepa-
rates the creation of an object family from its use. Fig. 2.25 shows an example of
the pattern.

Behavioral patterns implement frequently occurring behavior:

Iterator allows accessing the elements of a data structure sequentially without knowing
the underlying structure. It is for example used to provide easy access to tree
structures.

Null object is used as a default object when a null pointer would have to be returned
otherwise.

Observer implements a one-to-many notification system to allow multiple objects to
be updated when the central object changes its state. The observer pattern is
mainly used for distributed event handling, for example in GUIs. Fig. 2.26 shows
an example of the pattern.

Structural patterns influence the static structure of the system:

Adapter is a wrapper that changes the interface of a single class to the interface expected
by a client.

Facade provides a unified interface to a complex subsystem, in order to make the sub-
system more easily usable.

Composite lets clients treat individual objects and subtrees of a tree structure alike.
Fig. 2.27 shows an example of the pattern.

31

2. Background

Subject Observer

+ register(Observer) Ko——— +notify()
+ unregister(Observer)
notifyAll()

Observerl Observer2

+notify() +notify()

Figure 2.26.: Example of the observer pattern. The subject is the central object, which
allows observers to register and unregister. When the state of the subject
changes, it notifies all observers by calling their notify method.

Component

+ operationl()
+ operation2()

AN

Leaf Composite
+ operationi() + operationi()
+ operation2() + operation2()
+ removeComponent(int)
+ addComponent(i)

+ getComponent(i)
+ count(): int

Figure 2.27.: Example of the composite pattern. The client accesses the data struc-
ture only though the component base class interface, which provides all
operations needed by the client. Typically, the composite class delegates
operations to leafs, which implement the operations.

2.3.4. Implementation

The implementation part of the software development process mainly consists of coding
(writing new code), refactoring (improving existing code) and debugging (fixing errors in
the code). Today, most software is implemented using modern object-oriented program-
ming languages such as C++, Java and C+#. In this section, we will shortly summarize
the main features of object-oriented programming and introduce the most important
tools which support software implementation.

Object-oriented programming

Object-oriented programming (OOP) is a programming paradigm which bundles data
and operations on the data to objects. It is considered to be best practice to create
reusable pieces of code. In this section we will introduce important terms and core
concepts of object-oriented programming.

32

2.3. Software engineering

Classes can be seen as the blueprints to create objects at program runtime. They
define attributes (data fields) and methods (operations) of the corresponding objects.
Attributes and methods together are often referred to as members of the class. Addi-
tionally, classes define how objects are created. Objects of a class created at runtime are
called instances of the class.

Not all object-oriented programming languages offer the same set of features, but a
number of core concepts exist that most object-oriented languages share [50]. These
concepts are inheritance, encapsulation and polymorphism:

Inheritance is perhaps the most fundamental concept of object-oriented programming.
It allows a class to inherit the characteristics (members) of a parent class, and add new
behavior or specialize the behavior. Multiple inheritance, i.e., a class can have several
parent classes, is not supported by all object-oriented languages.

Encapsulation in OOP means that classes can hide details from clients. Both attributes
and methods play a role in encapsulation. Methods often encapsulate complex opera-
tions to provide a simplified interface for common tasks. Methods can also encapsulate
attributes, i.e., clients can access attributes through special accessor methods only. At-
tribute encapsulation is mostly used to ensures that objects are always in a valid state.
Polymorphism captures a language’s ability to treat subclasses and parent class uni-
formly, as long as only the parent class interface is used. This technique is frequently
used to implement generic containers of objects derived from a common parent class.
Another example of polymorphism are interface classes. They only declare methods of
a class, but do not provide an implementation. Thus, interface classes cannot be in-
stantiated. However, they can be used to write generic methods, i.e., methods that can
handle all classes that implement the interface.

Development tools

Software developers use a variety of tools that support all parts of the development pro-
cess, e.g., coding, refactoring, code versioning, debugging and profiling. Today, the cen-
tral development tool in most projects is an integrated development environment (IDE).
Modern IDEs are very powerful tools which facilitate coding through syntax highlighting,
code auto-completion, code folding and quick navigation in the code. Most IDEs also
offer refactoring tools, debugging tools and integration for code version systems. Widely
used IDEs for C++ development are Microsoft Visual Studio [51] and Eclipse [52]

Versioning systems, for example Subversion [38], are a very important software develop-
ment tool. The principle is that the project source code (and other versioned documents)
is managed in a central repository. Developers can check out a working copy from the
repository, work on it and check in the changes they made. Besides being a repository of
previous code versions, versioning systems support the development process in various
ways. They provide a means to review and undo code changes. They allow parallel work
of several developers on the same file through file locks, merging of changes to the same
file and conflict resolution tools. When integrated with the requirements management
system, they allow traceability of requirements to code changes. When integrated with
the test system, they allow automated test builds after code commits. Another important
feature they provide is tagging and branching. Tagging simply labels a certain version
of the code with a unique name, for example a release version. Branching creates a copy
of the main development directory tree (called trunk) to a so-called branch. This allows
temporary independent development of two or more versions of the project. Changes
can be merged from the trunk to the branch and vice versa. Branching is often used to
develop several features independently in different branches or to allow development of

33

2. Background

new features while preparing a release version of a software.

2.3.5. Testing

Because of the inherent complexity even of small software projects, testing is indispens-
able. Software testing ensures that the software behaves as specified and fulfills the
user needs. How tests are implemented and in which phase of the project testing starts
mainly depends on the software development process used (see Section 2.3.1).

There are two fundamental approaches to testing. Dynamic tests execute program code
and check that the output is as expected. Static tests analyze the source code without
executing it. The largest part of static testing is performed by compilers and inter-
preters, which check the syntactic correctness of source code. Other aspects of static
testing are code reviews and applying code metrics.

In this section we will focus on dynamic testing. First, different ways to classify tests
are explained. Then, test automation is motivated and the tools for test automation are
shortly summarized. For more information on the theory and practice of testing refer
to [53].

Classification of tests

There are many different types of tests and several classification schemes for tests. One
common way to classify tests is according to scope: Unit tests validate code sections of
limited size. In object-oriented programming a unit is typically a class, which is why
unit tests are often referred to as class tests in this context. Interactions between classes
or larger subsystems of a software are tested in so-called integration tests. Tests of the
whole software system are called system tests.

Another common classification criterion for software tests is purpose: Correctness tests
validate that software behaves as specified. This kind of testing is widely adopted in soft-
ware development. Performance tests ensure that the software does not use too many
hardware resources such as CPU cycles, memory and file system operations. Reliability
tests evaluate the ability of a software to cope with stressful environment conditions, e.g.,
exceptional input and resource shortage. Security tests try to reveal security problems
of the software introduced by design or implementation defects.

Independent of the scope and purpose, each test can be classified as white-box test or
black-box test. This classification depends on the view taken while designing a test. In
the black-box approach the actual implementation is not taken into account while de-
signing a test. This implies that only the public API is tested. In white-box testing the
tester has access to internal data structures and functions, and to the source code. Both
approaches have certain advantages and disadvantages: One advantage of black-box test-
ing is that implementation and testing can be performed by different persons. This can
speed up development significantly and often reveals more errors than developer-testing.
Another advantage is that tests can be designed before the actual implementation of the
functionality (test-driven development). The big advantage of white-box testing is that
critical code paths can be easily identified and tested thoroughly. This improves the
code coverage of tests. A middle way between black- and white-box testing is gray-box
testing, where the tester has access to the source code, but testing is performed on the
public API only.

34

2.3. Software engineering

Test automation and tools

A recommended practice in the context of testing is to use continuous integration. It
demands that code changes are committed to the code repository early—when a single
feature is implemented and tested. To validate these atomic code commits, automated
builds and automated execution of tests are performed regularly. Building and testing
can be scheduled once or several times a day, or triggered by commits to the source code
repository. These practices ensure that errors (files accidentally not committed, bugs,
etc.) are detected early and can be assigned to a specific commit, which corresponds to
a specific feature.

Many software tools have been developed to support these practices. Test frameworks
such as CTest [54] facilitate the implementation of unit tests, manage unit tests and
generate test result reports. Automation tools, e.g., CMake [54] and Ant [55], allow
automated building of software and automated execution of tests. The results of the
automated tests can be visualized and evaluated using test servers such as CDash [56]
or Bamboo [57].

2.3.6. Deployment and maintenance

Software deployment summarizes all activities required to make the software product
available to users. It includes assembly, packaging, distribution, installation and updat-
ing of the software. Because each software product uses different techniques and tools
for these activities, a universal description of software deployment cannot be given. It
is a highly customized process.

Software maintenance is a discipline that deals with changes to software after it has
been released. The goals of the changes are to correct faults, to improve performance or
other attributes, or to adapt the product to a modified environment [58]. Of these goals,
correcting defects and improving usability are most important. Maintenance of software,
just as deployment, is highly dependent on the software product and the context it is
used in. More information can be found in [59].

35

3. A novel feature detection algorithm for
centroided data

Peptide identification and quantitation are the two most important steps in LC-MS
data analysis pipelines [60]. For identification of MS/MS spectra, several reliable soft-
ware tools are established and widely used [61]. The field of quantitation is still evolving,
although many different algorithms have been published [62]. The reason for this differ-
ence in maturity is the complexity of quantitation. Identification algorithms typically
work on simple centroided MS/MS spectra, while quantitation algorithms work on profile
data (see Section 2.1.2). Profile data is not only highly dependent on the MS instrument
type, but it also contains many signals caused by chemical noise (ions derived from com-
pounds other than the target analyte [63]) and white noise (random noise generated by
measurement instruments).

In the last few years the resolution of mass spectrometers has significantly improved,
providing isotope-resolved spectra even for multiply-charged ions. The improved resolu-
tion of the data, combined with modern peak detection techniques [64] allows quantita-
tion based on centroided data. Because centroided data is several orders of magnitude
smaller than profile data, more sophisticated algorithms can be applied, increasing the
specificity especially on noisy data. Another advantage of quantitation based on cen-
troided data is that it can be used on datasets where no profile data is available.

3.1. State of the art

There are many different quantitation algorithms for mass spectrometry data available.
We will now discuss the common features and differences of some recently published
algorithms: mslnspect [12], MaxQuant [16], MapQuant [65], SuperHirn [15], SpecAr-
ray [13], MZmine [14, 66], LCMS2D [67] and FeatureFinder [68]. FeatureFinder offers
several quantitation algorithms, of which we will consider the simple algorithm [69] and
the isotope_wavelet algorithm [70, 71].

Input data: All of the listed tools take profile mass spectrometry data as input. As a
first processing step, smoothing, baseline-reduction and centroiding is applied by most
of the tools. However, combining several data processing steps into a single tool severely
limits the control over the data processing. The user is forced to use the built-in signal
processing and centroiding, even if other algorithms are more suitable for the data. Only
SpecArray and MZmine offer processing of centroided data in addition to profile data.

The second important property of the input data is the resolution. Recent mass
spectrometers can achieve a very high mass resolution with an error of less that one ppm.
Thus, recent algorithms, for example SuperHirn and MazQuant, are designed for high-
resolution data only. In contrast, MapQuant and FeatureFinder (simple) are suitable
for low-resolution and medium-resolution data only. The rest of the tools presented here
work both for medium-resolution and high-resolution data.

37

3. A novel feature detection algorithm for centroided data

Usability: Another important aspect, which has nothing to do with the algorithms
themselves, is availability and usability. All tools can be downloaded from the locations
specified in the respective publications. However, not all of them provide a binary
installer. The source code packages of MapQuant, SuperHirn and LCMS2D could not
be compiled without changes to the source code or build system. This makes them
unusable for most potential users.

Another common problem is the required input file format. MaxQuant, MapQuant and
LCMS2D do not support any of the community standard XML formats. They require
proprietary vendor formats or ASCII text files as input, which complicates the use of
these tools.

Algorithmic approaches: Most quantitation algorithms consist of two or three basic
steps. First, interesting regions in the data are determined, which probably contain a
feature. This step is often referred to as seeding. In a second step, all peaks contributing
to the feature and its charge state are determined. This step is referred to as extension.
Some tools perform a third step, in which a theoretical peptide feature model is fitted
to the data in order to remove false positive features. This step improves the specificity
of the algorithm.

3.1.1. Seeding

In the seeding step, different approaches are used by the algorithms. The most widely
used approach is intensity descent [72]. Here, the peaks are used as seeds in the order
of descending intensity. First, the highest peak is used, then the second highest peak
is used, and so on. Many algorithms (SpecArray, MZmine, FeatureFinder (simple) and
LCMS2D) use this approach and combine it with different stop conditions based for
example on an absolute intensity cutoff or on a signal-to-noise cutoff. MazQuant and
msInspect implement a variant of intensity descent, which identifies whole elution peaks
(also called mass traces or chromatographic peaks) instead of single peaks.

The MapQuant tool uses a completely different approach based on the image pro-
cessing algorithm watershed segmentation. Just like in MaxQuant and msInspect, the
watershed segmentation is used to detect single mass traces.

The most sophisticated seeding strategy is used by the FeatureFinder (isotope_wavelet).
A hand-tailored isotope wavelet [73] is used to detect isotope pattern in each spectrum.
The isotope wavelet is based on the averagine [17] model, which approximates a peptide
isotope pattern by assuming an average isotope distribution. This approach is charac-
terized by a very high specificity.

3.1.2. Extension

In the extension step the seed peak or seed region is extended until all signals belonging
to the peptide feature are contained. Here, most algorithms use heuristics to detect mass
traces—often the same m/z value has to be observed in a number of subsequent spectra.
Most algorithms combine several mass traces to a feature if their m/z distances match
a specific charge and if their intensities follow the averagine distribution.

Because MazQuant, MapQuant and msInspect have already determined the mass
traces during the seeding phase, they use slightly different techniques during the exten-
sion. MapQuant and msInspect use clustering approaches, where the theoretical isotope
distribution is used in the similarity score. MazrQuant transforms the mass traces to
a graph—the nodes represent mass traces, edges are drawn between nodes if their m/z

38

3.2. Our contribution

distance and intensity match the averagine model. Graph algorithms can then efficiently
determine those subgraphs that correspond to one feature.

The FeatureFinder (isotope_wavelet) determines isotope patterns in single spectra dur-
ing the seeding phase. The extension is in this case a very simple task. Isotope patterns
that are present in several subsequent spectra are merged to a feature.

The FeatureFinder (simple) maintains a priority queue containing all peaks within a
small boundary around the feature region to extend the feature. In each extension step
the peak with the highest priority, which depends on the peak intensity and its distance
from the feature seed, is added. To restrict the extension, configurable cutoffs are used
in all three dimensions (intensity, m/z and RT).

3.1.3. Model fitting

The MapQuant and FeatureFinder (simple) algorithms implement an additional model
fitting step. In this step, the plausibility of the detected feature is checked. In both tools
a two-dimensional model is fitted to the data, which models the isotope pattern by an av-
eragine model and the elution profile by an exponentially modified Gaussian (EMG) [74].
The EMG function is a Gaussian function with an additional skewness parameter. It
allows for asymmetric elution profiles, which are not uncommon in chromatography.

Using model fitting as a sanity check for each features increases the specificity of the
algorithms. Because most algorithms use an iterative approach (e.g., intensity descent)
a higher specificity helps to avoid subsequent errors caused by false positive features.

3.2. Our contribution

In this chapter we present a novel peptide feature quantitation algorithm for centroided
LC-MS data. The development goals of the algorithm were:

Usability: The algorithm should not be integrated in a fixed analysis pipeline, and
should not depend on identification data as start points. It should be a general-purpose
algorithm for use in different quantitation scenarios, e.g., for isotope-labeled and label-
free data.

To make the algorithm widely usable, it was integrated in the C++ library OpenMS
(see Chapter 5) and provided as a stand-alone tool of TOPP (see Section 5.9).

Wide applicability: The algorithm should be widely applicable to medium-resolution
and high-resolution data of different MS instruments. The only requirement is that
isotope-patterns are resolved to individual peaks. This implies that it is applicable to
centroided data and profile data with prior centroiding.

Robustness: Because it relies on centroided data, the algorithm must be robust with
respect to centroiding errors, e.g., missing peaks and misplaced peak m/z positions. It
should also be robust to chemical noise and white noise present in the data. Additionally,
it should be able to resolve features overlapping in RT, m/z or both dimensions.

3.3. Design and implementation

This section first discusses the overall design of the algorithm and the purpose of the
different phases. Then, details of the individual phases are described.

39

3. A novel feature detection algorithm for centroided data

i do
[Extend seed region] !
i v i
[Fit model to region]
! v !

[Resolve contradicting features]

@®

Figure 3.1.: UML activity diagram of the overall algorithm structure.

3.3.1. Overall design
Iteration strategy

Most quantitation algorithms use an iterative approach. They start with the highest data
point and determine the corresponding feature. The feature peaks are then subtracted
from the data or flagged as used. This procedure is repeated until an end criterion is
reached, e.g., no peak above a certain signal-to-noise ratio is left.

In our experience this works well only on rather simple data. On complex datasets with
many overlapping features, this approach often fails to detect all features. The problem
is that subtracting feature peaks from the data corrupts the data if the feature charge,
the feature borders or the overall shape are not determined correctly.

Thus, our algorithm uses a different approach. Putative feature centroid positions are
maintained in a so-called seed list. Each seed is the start point for feature detection
once. When a feature is found, it is stored in a feature candidate list. After all features
are detected, contradicting features are removed from the candidate list using a greedy
algorithm.

This approach does not manipulate the data or exclude data from subsequent processing
steps. It makes sure that all features can be detected, regardless of errors in previous
feature detection steps.

Feature detection strategy

The actual feature detection consists of three phases. First, a seed is extended to a
feature region, which contains the feature and surrounding data points. In the second
phase, a model based on mass, charge and an elution profile is fitted to the feature
region. If the model does not fit to the data, feature detection is aborted. In the third

40

3.3. Design and implementation

phase, data points not belonging to the feature are clipped and the final feature quality
is determined.

A high-level overview of the algorithm phases is given in Fig. 3.1.

3.3.2. Seeding phase

The seeding phase determines putative feature centroids, which are used as start points
for the extension and model fitting. Fast and simple heuristics are used in this phase,
because the entire input data has to be inspected. Each seed has to have a high signal-to-
noise ratio, a mass trace in RT dimension and an isotope pattern in m/z dimension. The
final seed score of each peak combines the individual scores for these three properties.

a) b)

1 -
i i X
C
; g
T 5
I (0]
. N
W T
£
o
c

0 - - T

T min intensity max
m/z

Figure 3.2.: Calculation of the intensity score during the seeding phase. a) The peak
map is segmented into tiles. b) Intensities are transformed to an intensity
score based on the rank of the intensity in the tile.

Intensity score

The signal-to-noise value of a peak is a widely used score to determine the significance
of a peak in its local environment [75]. Unfortunately, signal-to-noise is only defined for
profile data. Thus, we use a heuristic to estimate the significance of a peak. The local
environment of a peak is determined by segmenting the peak map in n times n tiles.
Unlike in most signal-to-noise scores, neighboring peaks in both m/z dimension and RT
dimension are considered.

To determine the significance of a peak in its tile, the normalized intensity rank of the
peak in the tile is calculated. The peak with the highest intensity gets a score of 1. The
peak with the lowest intensity gets a score of 0.

This rank score can be calculated exactly when using the sorted intensity values of all
peaks in the tile. This would however require a lot of memory, because the intensity
distributions of all tiles need to be stored. To minimize the memory consumption, 20-
quantile (vigintile) values of the intensity distribution are stored and used to approximate
the rank of each peak. To do so, the vigintile values surrounding the peak intensity are

41

3. A novel feature detection algorithm for centroided data

determined and the final peak score is interpolated according to the formula

peak_intensity — vigintileyy,

intensity_score = — % |index(vigintile + — —
Y 20 [(g low) vzgmtzlehigh—vzgmtzlelow

where indez(...) returns the vigintile number, vigintile;,, is the lower bound vigintile
and vigintilep;qp, is the upper bound vigintile. Fig. 3.2 shows an overview of the intensity
score calculation.

The 20-quantile values have been chosen after thorough testing. In our experiments,
they provided a good approximation of the overall intensity distribution. Increasing the
number of quantiles did not improve the accuracy of the score.

a) mz_tol b)
= <> 14
o
X
X X
X X X
O T T T
e X -mz_tol 0 mz_tol
X X X
X X
%

m/z

Figure 3.3.: Calculation of the mass trace score during the seeding phase. a) Peak po-
sitions in adjacent spectra are determined. b) m/z deviations are penalized
using a linear approximation of a Gaussian.

Mass trace score

The mass trace score measures whether the m/z position of a peak occurs in several ad-
jacent spectra. The number of required spectra depends on the dataset and can be set
via the input parameter min_spectra. The mass trace score is calculated as the average
of position tolerance scores for all spectra inside a window of min_spectra spectra around
the central peak.

The position tolerance score takes two m/z positions and returns a similarity score. The
allowed m/z deviation depends on the instrument, and thus can be set as a parameter.
The score is calculated based on the central peak m/z and the nearest peak m/z in an-
other spectrum. The score should tolerate small deviations between peak m/z positions
and penalize large deviations. To achieve this, a linear approximation of a Gaussian
function is used to calculate the score. The exact Gaussian cannot be used here because
of performance issues—it is too slow when evaluated several times for each peak. Alter-
natively, a tabulated Gaussian could be used. Fig. 3.3 shows an overview of the mass
trace score calculation.

42

3.3. Design and implementation

In addition to the mass trace score, another peak property is calculated in this phase.
Each peak is flagged as a local maximum peak, if no other peak in the mass trace has a
higher intensity value.

a) b)
r z
X 2
[
8
X X £
X X X
v N T T I'
X X X m +1 42
X X X
X X
X
m/z

Figure 3.4.: Calculation of the isotope pattern score during the seeding phase. a) Peaks
with the correct m/z distance to the central peak are determined. b) The
observed peak intensities are compared to an averagine isotope pattern. Here
a monoisotopic peak and two isotope peaks are shown.

Isotope pattern score

The isotope pattern score measures whether a peak is part of a peptide-like isotope
pattern. Because amino-acid sequences of the features are unknown, the averagine [17]
model is used to approximate the isotope pattern of peptides with a given mass.
Starting from the seed peak, peaks are searched which have an m/z distance of one over
the current charge. A position tolerance score is calculated just as for the mass traces
score.
Next, the maximum correlation of the averagine isotope distribution with the peaks
found in the data has to be determined. To do so, several hypotheses are tested—the
central peak is shifted to the different isotopes of the theoretical isotope pattern and the
maximum achieved correlation is stored.
The final isotope pattern score is calculated as the product of the averaged position
tolerance score and the maximum correlation to the theoretical isotope pattern. Fig. 3.4
shows an overview of the isotope pattern score calculation.

The isotope pattern score is the only score that depends on the charge state. Thus,
it is recalculated for each possible charge state. The intensity score and the mass trace
score are precalculated and used for all charge states.

Overall score calculation

The final seed score of each peak is calculated as the geometric mean of the three
individual scores for intensity, mass trace and isotope pattern. The geometric mean
was chosen because it strongly penalizes low values of a single score—a good score for

43

3. A novel feature detection algorithm for centroided data

50 r
seed score
40 ¢ intensity score ———
pattern score -
30 t trace score
X
20
10
0

score bin

Figure 3.5.: Histogram of typical distributions (seed score and the three base scores).

each criterion is expected for true seeds. The seed score ranges from zero (worst) to one
(best), just as the three contributing scores.

Fig. 3.5 shows an example of typical score distributions for reasonable parameter settings.
The intensity score is evenly distributed because it is calculated as the normalized rank
of the peak intensity. The seed score, trace score and pattern score produce far more low
scores than high scores and, thus, allow a better discrimination of good and bad seed
candidates.

Seed list creation

The seeds list for a charge state is created by looking up all peaks with a seed score above
a given threshold (default is 0.8). Additionally, the seed has to be a local maximum of a
mass trace. This makes sure that only one peak per mass trace is considered as a seed.
The list of seeds is sorted with respect to seed intensity. Thus, the seeds with the highest
intensity are extended first.

3.3.3. Extension phase

Each seed determined in the seeding phase is extended to a feature region, which contains
the feature peaks and a number of surrounding peaks. After the extension, a feature
model is fitted to the determined region.

Extension in m/z dimension

In the first step of the extension phase, the best averagine [17] isotope pattern containing
the seed peak is determined. This is done similarly to the isotope pattern score calcu-
lation during the seeding phase. Each isotope peak of the theoretical isotope pattern is
aligned to the seed. The quality of fit is determined by the deviation in m/z dimension
and the correlation to the averagine model intensities. The best matching isotope pat-
tern is used for the following steps.

Because peak detection does not always work reliably one or several isotope peaks might

44

3.3. Design and implementation

'_
x
upper boundary
X
% X
A
X X
< x %
v
X
lower boundary
m/z

Figure 3.6.: Extension of isotope pattern mass traces. The isotope with the highest
intensity (left) is extended first. The boundaries in RT dimension are used
as absolute boundaries for the extension of the two other isotope traces.

be missing. Missing isotope peaks can be compensated for by looking up peaks with a
similar mass in directly adjacent spectra.

Extension in RT dimension

In the second step of the extension phase, the elution profiles of all isotope peaks are
extended. The extension in increasing RT and decreasing RT are done independently.
The extension stops if one of the following criteria is fulfilled:

e Mass trace ends: No peak within an m/z tolerance around the isotope position
can be found in several subsequent spectra.

e Noise peaks: Peaks with a matching m/z position can be found, but they have a
seed score close to zero—they are probably noise peaks.

e Rising average intensity: The moving average intensity over three peaks rises more
than a given threshold (10% is the default). This criterion is needed to abort the
extension in the case of overlapping mass traces of different features.

e Boundary reached: The mass trace of the most abundant isotope peak is extended
first. The retention time interval of this mass trace is used as an overall bounding
box for extension of all remaining mass traces (see Fig. 3.6). This criterion is
needed to restrict the extension of low intensity isotope traces in regions with
many noise peaks. Otherwise very large feature regions could be created, which
would slow down the subsequent model fitting step.

Fig. 3.6 shows an example extension in RT dimension.

3.3.4. Model fitting phase

The feature region determined in the extension phase is fitted to a peptide feature model.
The model is based on a Gaussian elution profile [74] in RT dimension and the averagine
model in m/z dimension. All mass traces are fitted to the model simultaneously using
the Levenberg-Marquardt [76] algorithm implementation of the GNU Scientific Library
(GSL) [77].

45

3. A novel feature detection algorithm for centroided data

500 . 500 .
feature region - feature region -
~xx_feature * feature *
400 S o<model e 400 | mode| -
2 300 | 2 300 |
@ ; a
c * ’ c
a % 2
€ 200 | . £ 200t
100 | 100 |
840 860 880 900 920 840 860 880 900 920
RT RT
(a) m/z 710.80 - accepted (b) m/z 711.80 - accepted
500 . 500 .
feature region - feature region -
feature ~ feature ~
400 ¢ model| - 400 ¢ model| -
2 300 t 2 300t
(%] (2]
c c
Q + Q
E 200t € 200t
100 | . 100 | »
0 listosn et A A 0 btetenprmetln e L ey
840 860 880 900 920 840 860 880 900 920
RT RT
(¢) m/z 712.80 - rejected (d) m/z 713.80 - rejected

Figure 3.7.: Example of a feature model fitted to four mass traces and of feature clipping
(see Section 3.3.5). The first two mass traces show a good fit. The other
mass traces are rejected because of large intensity deviations. They belong
to an overlapping feature with a nearly identical elution profile. The rejected
traces can be detected as a feature in a later extension step.

The model fitting optimizes the three parameters of the Gaussian distribution:

_(z—=g)?
flz) = A5t
The parameter A determines the height of the Gaussian, o determines the width in RT
dimension and zg determines the center in RT dimension. Because all mass traces of an
isotope pattern are fitted simultaneously, a scaling factor is needed for parameter A. It
is set for each mass trace according to the averagine intensity distribution.

The Gaussian elution profile model does not always exactly fit the data, as can be
seen in Fig. 3.7. Especially high-intensity features often show an elution profile with
tailing. The use of a model with tailing, for example an exponentially modified Gaussian
(EMG) [74] model, could improve the fit. The pros and contras of the EMG model are
discussed in the outlook (3.6).

Estimation of fit start parameters

The start parameters of the Levenberg-Marquardt fit have a large influence on the suc-
cess. Start parameters far from the optimum solution can lead to slow convergence or

46

3.3. Design and implementation

intensity
4.0
38
35
2
30
2s

25

22
20

18

15
12

10

i
08
|||||||| it |
o2
@25
||| ||| T
71075
71 ‘
I
1;

1T [T rTIrryrrrji?

Figure 3.8.: Example of two overlapping features. The monoisotopic peak of the first
features is at 710.80 Th. The monoisotopic peak of the second features is
at 712.80 Th. The elution profiles of the two features show a very high
correlation.

can make the algorithm find a local minimum instead of the global minimum.

The parameters A and x(are easy to estimate. They are set to the intensity and RT
position of the most abundant peak, respectively. These estimates are not far from the
optimal value in most cases.

o is estimated as a tenth of the feature region width in RT dimension, which underesti-
mates the optimal value roughly by a factor of two. Our tests showed that overestimating
o often leads to a bad model fit. Underestimating o has rarely any effect on the fit. Thus,
underestimating the parameter is preferable—it also corrects for too large feature regions
determined in the extension phase.

3.3.5. Feature clipping phase

The extension phase often determines a too large feature region, especially on very noisy
data where the ends of the mass traces cannot be easily determined. Thus, the feature
region has to be clipped after the model fit.

In RT dimension, the feature is restricted to an interval of 2.5 o around the z(position
determined by fitting the Gaussian model. This interval should include more than 98%
of the feature intensity. In m/z dimension, the consistency of each mass trace with the
model is checked. First, the correlation between model intensity and data intensity is
calculated. However, the correlation alone is not enough to separate features with a
similar elution profile and overlapping mass traces. Thus, the average relative deviation
between model intensity and data intensity is incorporated. The final score used to
assess the match between model and data is calculated as the product of the intensity
correlation and 1 minus the average relative deviation. Mass traces with a score below a
given threshold (default is 0.5) are removed from the features. Fig. 3.7 shows an example
of the clipping phase. In the 3D visualization of the same region (Fig. 3.8) it is easy to
see that the monoisotopic peak of the smaller feature overlaps with the +2 peak of the

47

3. A novel feature detection algorithm for centroided data

larger feature.

Feature creation

After clipping the feature according to the model fit, the overall feature quality is cal-
culated based on the remaining data points. Just like the quality of mass traces, the
overall quality score is calculated from the intensity correlation and the average relative
deviation of intensities. Features below a given quality threshold (default is 0.7) are
discarded. Features above the quality threshold are added to the feature candidate list.

For each feature candidate intensity, RT position and m/z position are reported along
with some meta data. The feature intensity is calculated based on the area under the
Gaussian model. This approach was chosen because it is more robust to noise than
summing up the data point intensities. It also compensates for missing mass traces, e.g.,
in the case of overlapping features.
The user can choose from two different options for the reported m/z position—either
average m/z or monoisotopic m/z. The average m/z is simply calculated as the intensity-
weighted average m/z position of all peaks. The monoisotopic m/z is calculated by
shifting the intensity-weighted average m/z position of the highest mass trace peaks to
the monoisotopic peak, based on the averagine model of the feature.
Additionally, meta information about the data and the model fit is reported, e.g., the
convex hull of each mass trace and the overall feature quality.

All seeds that lie inside the feature candidate area are removed from the seed list and
not used for extension. This should prevent finding the same feature several times.

charge 1 ——
charge 2~

Intensity

700 700.5 701 701.5 702 702.5 703
m/z

Figure 3.9.: Example of strong similarity between isotope patterns. The monoisotopic
peak of both isotope patterns is at 700 Th. The charge 1 isotope pattern
fits very well on the charge 2 distribution (correlation greater than 0.99). In
this case the charge two feature would be preserved because it explains all
peaks.

3.3.6. Conflict resolution

Our iteration strategy (see Section 3.3.1) and the independent processing of all considered
charge states, can lead to the detection of multiple feature candidates for one signal in
the input data. The goal of the conflict resolution step it to detect these contradicting

48

3.3. Design and implementation

features and resolve the contradiction by removing all but one of the features.

Two features are considered to be conflicting, if the overlapping area of the features
is higher than a given cutoff (default is 35%). The overlapping area of two features is
determined by intersecting the mass trace convex hulls of the features. Small overlaps
have to be tolerated—they are caused by true overlapping features, e.g., in RT dimension.

Three different cases have to be considered for features with large overlaps:

(1) Overlapping features with the same charge occur due to incomplete feature detection.
The same feature is found twice originating from two different seeds. In most cases the
features are nearly identical or differ in the number of mass traces only. The feature
with the highest score (product of intensity and quality) is preserved. The feature with
the lower score is removed from the feature candidate list.

(2) In certain mass-to-charge ranges, isotope patterns of different charge states are very
similar. For example, the isotope pattern of a singly charged peptide of mass 699 fits well
to an isotope pattern with mass 1398 and charge 2 (see Fig. 3.9). This can only occur if
one charge state is a multiple of the other. Otherwise the m/z differences between mass
traces would not be correct. This case is resolved by removing the lower charge feature,
because the higher charge feature explains all mass traces.

(3) For all other conflicts, e.g., between charge state 2 and 3, a greedy strategy is used
which preserves the feature with the highest quality.

Figure 3.10.: Snapshot of the m2 r2 region (taken in TOPPView).

49

3. A novel feature detection algorithm for centroided data

3.4. Results and discussion

Assessing the performance of quantitation algorithms is difficult because there are no
standard datasets with annotated features available. Artificial datasets can be created,
e.g., with the tool LC-MSsim [78]. It is, however, unclear if an artificial dataset shows
the same characteristics as experimental data. Thus, we decided to use experimental
data for this evaluation.

Many studies use experimental datasets with only a few proteins as benchmark dataset.
However, the performance of quantitation algorithms on a simple dataset is in general
much better than on highly complex datasets. Thus, only the maximum possible per-
formance can be assessed when using low-complexity datasets.

Other studies use very complex datasets, but evaluate the performance based on a
small number of peptide features only. Although this method gives a better impression
of the algorithm performance on complex data, it is prone to errors as well. For a sound
performance analysis of quantitation algorithms, a statistically significant number of
peptide features from a complex sample has to be evaluated.

3.4.1. Test datasets

For the evaluation of the feature detection, we used several LC-MS maps from differ-
ential immuno-peptidomics assays. The focus of the assays were peptides bound to
MHC molecules extracted from renal cell carcinoma cell lines. The goal was to compare
presented MHC peptides after treatment with anticancer drugs to peptides presented
without treatment. The two peptide samples were labeled with a stable-isotope nico-
tinic acid label (mass difference of 4 Da) and combined before they were analyzed in
one LC-MS run on Waters Q-TOF instruments with ESI sources. MS survey scans were
recorded in the m/z range of 400 Th to 1000 Th, where most of the MHC peptides are
expected. The gradient duration of the HPLC system was between one and two hours.
More details about the experimental setup can be found in [79, 80].

Because the LC-MS maps contain too many features to manually annotate all of them,
two regions with different properties (m/z range, peak density, noise level, feature charge)
were selected in each map, each containing several hundred features. For those regions,
a gold standard feature list was manually created using the GUI tool TOPP View. The
data was visually inspected by an expert and feature centroid positions and charge states
of all features were annotated.

The datasets were selected specifically to be very challenging for the analysis algorithms.
They contain a lot of noise, both chemical and white noise, and many overlapping fea-
tures (see Fig. 3.10). This complexity also made the manual annotation difficult, espe-
cially for low-intensity features. Features for which the charge state or centroid position
could not be determined unambiguously, were not annotated. Thus, a high number of
false positive features with low intensities can be expected in the evaluation.

The two datasets described above do not contain annotated feature intensity values
because the feature area cannot by easily determined by hand. To evaluate feature
intensities, a third dataset from a similar study was used for which hand-annotated
intensity values were available for 300 features. This dataset was not split into smaller
regions because the annotated features were spread over the whole dataset.

Tables 3.1 and 3.2 give an overview of the peak datasets and the manually created
gold standard datasets. The datasets are labeled m1, m2 and m3. The two regions
selected from datasets m1l and m2 are denoted by appending r1 or r2 to the dataset
label. The dataset with annotated intensity values is m3.

50

3.4. Results and discussion

All three datasets were acquired as profile peak data. To obtain centroided data, the
PeakPicker tool of The OpenMS Proteomics Pipeline [68] was used. Only the peak_width
parameter (full width at half maximum) of the tool had to be adapted. A value of 0.08 Th
was used for the dataset m1 and 0.1 Th was used for datasets m2 and m3.

dataset profile data size spectra min RT max RT minm/z max m/z

spacing [MiB] [sec] [sec] [Th] [Th]
mlrl 0.012 19.8 799 3002.2 4628.8 1299.0 1400.9
m1l._r2 0.012 134 619 2745.2 4005.1 699.5 758.9
m2.rl 0.031 6.9 369 4886.0 6954.1 799.2 890.5
m2_r2 0.031 5.0 332 3342.2 5200.6 611.7 669.7
m3 0.031 107.0 3639 3.1 12001.7 399.8 999.5

Table 3.1.: Overview of centroided test datasets.

dataset features charge

1 2 3 4 5
ml_rl 116 6 5 71 33 1
ml_r2 131 4 61 55 10 1
m2_rl 133 06 25 2 - -
m2_r2 222 2 216 - 4 -
m3 300 - 288 12 - -

Table 3.2.: Overview of the manually created gold standard datasets.

3.4.2. Parameter selection

Our algorithm has 10 base parameters. Additionally, 12 advanced parameters are avail-
able. The advanced parameters are intended for internal use only and should not be
changed. Only a hand full of the base parameters has to be adapted to the dataset:
(1) The charge state range of interest should be known and easy to set. (2) The m/z
tolerances for mass traces and isotope patterns depend on the instrument and the peak
picking accuracy. Visual inspection of several features in the peak data should give a
good estimate of the expected deviations. (3) Finally, the expected number of data
points per elution profile and the maximum number of missing data points has to be set.
These parameters depend on the chromatography settings and on peak picking. Again
visual inspection can quickly reveal the right settings.

The quality score cutoffs, e.g., seed score and feature quality, usually need no tuning.
They are universal because the scores are scaled to the interval between 0 and 1. Table 3.3
shows the base parameters used in this evaluation. Default values were used for all
advanced parameters, so they are not listed here.

3.4.3. Performance on the test data
Feature positions

To assess the performance of our algorithm we ran it on the five test datasets. The two
regions of the same LC-MS map were processed using the same parameters. Precision

o1

3. A novel feature detection algorithm for centroided data

parameter ml m?2 m3
intensity:bins 1 1 10
mass_trace:mz_tolerance 0.05 0.05 0.02
mass_trace:min_spectra 10 8 10
mass_trace:max_missing 2 1 2
isotopic_pattern:charge_low 1 1 2
isotopic_pattern:charge_high 5 4 3
isotopic_pattern:mz_tolerance 0.05 0.05 0.04
seed:min_score 0.8 0.8 0.8
feature:min_score 0.7 0.7 0.7

feature:reported_mz maximum maximum maximum

Table 3.3.: Parameters used for the evaluation.

and recall were used to measure the performance:

True Positives

precision = — —
True Positives + False Positives

True Positives

recall = True Positives + False Negatives

Features are considered to be correctly identified (true positives), if they match the
manually determined m/z position, RT position and charge. The m/z position was
counted as a match, if the deviation from the true feature was not higher than 0.25 Da
divided by the charge state. The RT position was counted as a match if the deviation
was below 15 seconds, which corresponds to roughly 25% of the average elution time
span of peptide features in the data. If several features were assigned to one true feature,
this was counted as a mismatch.

dataset manual | detected correct incorrect | recall precision
features | features matches matches

ml_rl 116 143 90 10 0.78 0.63

ml_r2 131 226 83 25 0.63 0.37

m2_rl 133 214 124 0 0.93 0.58

m2_r2 222 295 179 4 0.81 0.64

Table 3.4.: Performance overview of our algorithm on the test datasets. The number of
detected features and the matches to the true features are shown along with
the precision and recall calculated from them. Additionally, the number of
incorrect matches (true features that were not counted because of differing
charge state or multiple matches) are shown.

Table 3.4 shows an overview of the performance. The algorithm could correctly detect
between 63% and 93% of the true features, depending on the dataset. This is a good
result, considering the complexity of the data. On the other hand, it found up to twice
as many features as the annotation by hand. This leads to a bad precision value of 37%
to 64%. A low precision was however expected because of the high number of borderline
features which could not be annotated unambiguously by hand. Fig. 3.11 shows that

52

3.4. Results and discussion

0.8

T : Aﬁ ;
O
(]
@ 041
mlrl ——
0.2 ¢ ml_r2
f m2_rl e
m2 r2
0 L — 1
0 0.2 0.4 0.6 0.8 1
1-Precision

Figure 3.11.: Peptide feature recall plotted against precision. Bipartitions of the output
feature set ordered according to intensity were used to calculate corre-
sponding precision and recall values.

many false positives are low-intensity features. They can be easily removed by applying
an intensity cutoff to the output feature list.

From the incorrect matches count, one can see that a large part of the undetected true
features were not completely missed. They were counted as mismatches because of
differing charge assignment or multiple matching features.

4000 | +
3500 |
3000 | P
2500 | e

2000 | g
1500 | -
1000 | ¥

et

> R?=0.913

intensity (algorithm)

0 200 400 600 800
intensity (manual)

Figure 3.12.: Comparison of manual feature intensities and automatic feature intensities.

Feature intensities

Out of the 300 manually quantified features of dataset 'm3’, the algorithm found 272
features. Fig. 3.12 shows a plot of manual quantification results against the automatic

93

3. A novel feature detection algorithm for centroided data

25t 9
—_ R“=0.930
§e) 2t
= e
g A
= 157 e
S P
6 1 B +++++ & A +:++
o *+ #:4‘
— 05 B i, ﬁ** ’
£ aft
E Or L

5

o —05 r +

-1 ,

-1 -05 0 05 1 15 2 25
manual log(pair ratio)

Figure 3.13.: Comparison of manual feature pair intensity ratios and automatic feature
pair intensity ratios.

quantification results. This comparison exhibits a good correlation with few outliers.
The R? between the data points is 0.913.

A closer inspection revealed a small systematic error in the test dataset. The manual
intensity values were not always comparable between features because several persons
contributed to the analysis. However, the two features belonging to an isotope-labeled
feature pair were always quantified by the same person. Therefore, we compared feature
pair intensity rations of the manual and automatic analysis. From the 150 feature pairs,
126 pairs have been found by the algorithm. Fig. 3.13 shows that feature pair intensity
ratios have been reliably determined by the algorithm. The R? between the ratios is
0.930. The relative deviation of the algorithm ratio from the manual ratio was on
average 9.1% with a standard deviation of 8.8%. The maximum relative deviation from
the manual ratio was 45.2%. Fig. 3.14 shows a histogram of the deviations.

Resolution of overlapping features

Two or more features that overlap are very difficult to detect correctly. Basically, there
are three different types of feature overlaps to consider (See Fig. 3.15).

Interleaved features overlap in RT and m/z range, but the mass traces of the features do
not overlap in m/z. This type of overlap poses a problem for algorithms based on profile
data, because the additional mass traces interfere with the modeling of the continuous
m/z signal. Because our algorithm is based on centroided data, it can select peaks with
the correct m/z distance from the seed and models the m/z dimension discretely. Thus,
interleaved features need no special treatment and are easy to resolve to several features.

In the case of real overlapping features, the mass traces of two of more features inter-
penetrate. Fig. 3.15 shows the two basic types. In the first case (overlap type 1), the
feature mass traces have the same m/z positions, but a slightly different retention time
apex. In the second case (overlap type 2), the features have the same retention time
apex, but only part of the isotopes patterns overlap. There are of course many hybrid
forms of these two cases.

Our algorithm can resolve feature overlaps, if the overlap is not too strong. Fig. 3.7
(page 46) shows an example of two overlapping features with nearly identical retention

54

3.4. Results and discussion

count

-40 -20 0 20 40
relative deviation from manual ratio [%0]

Figure 3.14.: Deviation of automatic feature pair intensity ratios from manual feature
pair intensity ratios plotted as histogram.

interleaved features overlap type 1 overlap type 2

RT

m/z

Figure 3.15.: Schematic representation of the three basic features overlap types.

time apex. The overlap is detected in the model fitting phase and the signal is correctly
split to two features.

Features that have the same mass-to-charge ratio but differ slightly in elution time are
split during the mass traces extension (see Section 3.3.3). Fig. 3.16 shows an example
of two features with overlapping mass traces that were successfully resolved.

3.4.4. Comparison to other algorithms

Based on the evaluation of quantitation algorithms by Schulz-Trieglaff et al. [78], we
selected four algorithms for a thorough comparison: SpecArray [13], msInspect [12] and
two algorithms of the FeatureFinder tool [68]. The FeatureFinder algorithms are referred
to as simple [69] and isotope_wavelet [71]. Our algorithm is referred to as centroided.
The average performance and average runtime of the selected algorithms on the four test
datasets is shown in Table 3.5. Detailed results for the individual datasets can be found
in Appendix D. Furthermore, the appendix contains plots of recall against precision for
each algorithm.

95

3. A novel feature detection algorithm for centroided data

S A
\\
o] A “

4800 4850 4900
RT [sec]

Figure 3.16.: Two features with overlapping mass traces are resolved by splitting the
elution profile into two features. The XIC of m/z 627.292 is taken from
dataset ‘'m2_r2’.

SpecArray is a software suite for the evaluation of LC-MS data written in the C pro-
gramming language. It consists of several tools that form a processing pipeline. Indexed
mzXML files are the only accepted input data format of SpecArray. This already poses
a problem because indexing an mzXML file is not supported by SpecArray itself. Other
software tools have to be used, for example the program mzXMLIndezer provided by
the TPP [10]. Data converted to the binary SpecArray format is subject to automatic
denoising, baseline-reduction and centroiding.

The actual quantitation is done using the pepList tool, which writes an ASCII file listing
all detected peptide features. Isotope distributions are modeled by an averagine [17]
distribution. The elution profile is not explicitly modeled. Isotope clusters of similar
mass, charge and retention time are simply merged into one feature.

The algorithm detects only very few features (16% on average), but with a very high
precision of 97%. The detected features are those with the highest signal-to-noise ratios.
Because the algorithm has no parameters the very conservative internal thresholds can-
not be changed. The very low number of detected features and the missing parameters
make the algorithm unfit for these test datasets.

mslInspect is an MS data viewer and processing tool written in Java. It cannot only
be used through a GUI, but also offers a batch mode. Peptide feature detection is in-
voked through the findPeptides command line option. The input format of msiInspect is
mzXML. The output is an ASCII file containing the peptide features.

The first processing step of mslInspect is to create a binned, image-like representation
of the input map. Then, the global background level is estimated conservatively and
removed. Peaks in the spectra are identified using wavelet techniques. Isotope patterns
are modeled using a simple Poisson distribution. Finally, co-eluting mass traces that
follow this theoretical distribution are merged into one feature.

The quality of features is assessed using the Kullback-Leibler divergence [81]. A Kullback-
Leibler score of zero, indicates a prefect match. The score increases with an increasing
difference between two distributions. The maximum score cutoff is the only parameter
of the algorithm. We selected a very high cutoff of 40 in order to get as many features
as possible.

o6

3.4. Results and discussion

The algorithm shows a good performance with a recall of 62% and a precision of 66%.
It performs similar to our algorithm—with less recall and better precision. Another
property of msInspect that has to be emphasized is its speed. It is the fastest algorithm
in the comparison. The speed can be explained by the binning, which allows very efficient
access to the profile data and reduces the amount of data significantly.

FeatureFinder (simple) is one of several quantitation algorithms provided by TOPP [68].
The FeatureFinder tool reads an mzML peak data file and writes the peptide features
in the OpenMS [82] featureXML format.

The overall algorithm design is similar to that of our algorithm. It uses a simple signal-
to-noise cutoff to determine all seeds. The seeds are extended to a feature region. The
feature region is fitted using a two-dimensional model based on an averagine isotope
distribution and an EMG elution profile.

The algorithm has many parameters that need to be tuned. Some of the parameters
are hard to determine because they cannot be easily estimated from the peak data.
Because the algorithm is the slowest in this comparison, finding good parameters is a
difficult task. We could not find parameters that guarantee both good performance and
acceptable runtime. Thus, we chose the best parameters in terms of performance (see
Table D.8).

The algorithm cannot compete with our centroided algorithm or msiInspect. It achieves
only about 40% recall and 50% precision. The runtime of the algorithm is far higher than
the runtime of all other algorithms. This seems to stem from the very simple seeding
strategy. The same feature region can be extended and fitted very often, which leads to
unacceptable runtimes. The reason for this problem is probably the high noise level of
our test datasets, which results in a very high number of seeds.

FeatureFinder (isotope_wavelet) is a quantitation algorithm based on an isotope wavelet.
It is invoked through the TOPP tool FeatureFinder as well. Thus, it also reads mzML
peak data and writes the peptide features in featureXML format.

Isotopic peaks in single spectra are detected using a wavelet which models an averagine
isotope distribution [73]. Signals above a given threshold that occur in several adjacent
scans are combined into a peptide feature. No model is used for the elution profile.
The algorithm has only a few parameters, which are easy to set. The maximum charge
state to consider has to be set. The elution profile is described by two parameters: (1)
the minimum number of spectra in which a signal has to occur and (2) the maximum
number of spectra in which the signal can be missing. Here we chose the same values as
in the centroided algorithm. The most important parameter is an ’intensity_threshold’
for isotope patterns in the wavelet transformed signal. It was set to 30 and 7 for the
datasets 'm1’ and 'm2’, respectively.

With a recall of 28% and a precision of 16% the algorithm seems to have the lowest
performance in this comparison. However, the output of the algorithms is not as bad at
these numbers suggest. It suffers from two major problems, which make it fail in this
evaluation.

The first problem is that the feature RT apex is not determined as accurately as with
all other methods. When relaxing the maximum allowed RT deviation to 40 seconds
(instead of 15), the recall is 35% and the number of incorrectly matched features increases
to 32%.

The high number of incorrectly matched features is mainly caused by multiple matches to
one true feature, which have different charge states. The missing resolution of conflicting

o7

3. A novel feature detection algorithm for centroided data

features is also mentioned as an unsolved problem by the authors of the algorithm.
If these two problems can be overcome, the algorithm has the potential to reach up to
70% recall, which would be a good value. Finally, one has to mention that the algorithm
was designed to run either on the CPU, or on modern GPUs. The authors have shown,
that an up to twohundred-fold speedup can be reached when using GPUs for calculations.
This would make the algorithm faster than all other algorithms in this comparison.

3.5. Summary and conclusion

We have presented a novel peptide feature detection algorithm for centroided LC-MS
data. The algorithm was designed for medium-resolution and high-resolution centroided
data. Thus, it is applicable to a wide range of datasets, independent of the availability
of profile data.

algorithm recall precision runtime [s] | incorrect matches
centroided 0.79 0.55 31.87 7.3%
SpecArray 0.16 0.97 401.89 0.5%
msInspect 0.62 0.66 6.60 6.1%
simple 0.40 0.50 2942.94 10.9%
isotope_wavelet 0.28 0.13 413.92 19.5%

Table 3.5.: Comparison of quantitation algorithm performance. All numbers are average
over the four test datasets.

In the presented evaluation the algorithm reached a good average recall (0.79) and

precision (0.55) on three very complex Q-TOF datasets of different resolution. The
intensity values determined by our algorithm are very accurate and show a high corre-
lation to manually determined intensity ratios (R? = 0.930). Preliminary test runs on
high-resolution Orbitrap datasets and on less complex datasets show that the algorithm
works reliably on all isotope-resolved datasets (data not shown).
We compared our algorithm to four other quantitation algorithms, of which only msin-
spect showed a comparable performance (see Table 3.5). The other three algorithms
only reached a precision between 16% and 50% and were significantly slower than the
two best algorithms.

Although our algorithm is one of the fastest in this comparison, the runtime can be
lowered even further by parallelization. Most modern computers contain two or more
processor cores of which the basic implementation of the algorithm uses only one. Thus,
we have implemented a simple approach for parallelization—the feature candidates for
each charge state are processed by a separate thread. This allows a two-fold to five-fold
speedup, depending on the number of charge states and the distribution of feature charge
states in the data. All runtimes presented in this evaluation were determined without
parallelization support.

Another noteworthy feature of the algorithm is the support of user-specified seeds. The
user can provide a seed list in feature XML format, which restricts the seeding process
to data points near the given seeds. The tolerated deviations in m/z and RT dimension
can be set as parameters. User-specified seed lists are useful in several scenarios where
only a subset of the features is of interest. For example, they can be used to find only
those features for which an MS/MS spectrum was recorded.

o8

3.6. Outlook

The algorithm is available as the C++ class FeatureFinderAlgorithmPicked in the
OpenMS [82] library. Alternatively, it can be used in analysis pipelines through the
FeatureFinder command line tool of TOPP [68].

3.6. Outlook

Although the algorithm already shows a good performance, there is still room for im-
provement. Several potential problems have been identified during the evaluation:

(1) The most obvious problem of the algorithm is the very restrictive averagine isotope
distribution. Peptides that contain one or several sulfur atoms deviate significantly from
this distribution. This can cause a bad model fit, which in turn leads to various er-
rors, e.g., missed features, inaccurate intensity values or wrong monoisotopic m/z. A
significant improvement of the performance can be expected when additional isotope
distributions are considered. For example, one could test hypotheses containing one,
two and three sulfur atoms in addition to the standard averagine distribution.

(2) Overlapping features are modeled individually by the algorithm. This inaccuracy
often leads to a slight overestimation of the feature intensity. In the conflict resolution
phase, mixture models of two or more peptide features could be used to re-fit areas
with strongly overlapping features. The accuracy of feature intensities could certainly
be increased that way.

(3) The Gaussian elution profile does not fit to experimental data in all cases. Especially
high-intensity features often show an asymmetric elution profile with tailing. An EMG
function could be used to model the chromatographic peak shape more accurately. The
effect of this change must however be evaluated carefully. Especially for low-intensity
features, the additional fitting parameter for the skewness could make the model fitting
instable. Thus, using an EMG function for high-intensity features and a Gaussian for
low intensity features is a promising alternative to the current implementation of the
elution model.

(4) Our algorithm requires several parameters that describe the input LC-MS map, e.g.,
charge states and peak m/z accuracy. Although all parameters are intuitive and easy
to determine, it would be desirable to estimate them from the input data. Statistics on
the data, perhaps in combination with a grid search on parameter space, could be used
to estimate all parameters. This would improve the usability of the algorithm.

(5) Finally, the runtime could be improved even further using more sophisticated paral-
lelization approaches. The highest speedup can be expected when processing all seeds of
one charge state in parallel. This approach would allow an arbitrary number of threads
and would distribute the load more evenly among threads. However, it would also re-
quire large changes to the algorithm because multiple seeds from the same region should
not be extended in parallel.

99

4. Retention time prediction

The retention time of biomolecules in a given chromatographic separation system is
an important physicochemical property. It plays a role in many biochemical applica-
tions. Thus, exact modeling of this property would be desirable. The most important
biomolecules, DNA, RNA and proteins, are linear polymers consisting of a limited num-
ber of building blocks. Because of this similarity in structure, similar sequence-based
models for retention time prediction have emerged. In this chapter, we will shortly sum-
marize the advances in peptide retention time prediction and present our work on DNA
retention time prediction.

4.1. Peptide retention time prediction

Because of their complex secondary and tertiary structure, the retention time of proteins
is very hard to model. Thus, most models focus on smaller peptides, roughly up to a
length of 60 amino acids. Rather simple models for peptide retention time based on the
amino acid composition have been used for more than 20 years [83, 84, 85].

Today, one main application of peptide retention time prediction it to be found in shot-
gun proteomics: Retention time predictors are used to filter out false positive MS/MS
peptide identifications by comparing observed and predicted retention time.

In 2004, Petritis et al. [86] introduced a retention time predictor based on an artifi-
cial neural network. However, this model has one major drawback. It requires several
thousand peptide retention times for training, which makes the adaptation to different
chromatographic conditions nearly impossible. In 2007, Klammer et al. [87] published a
model based on SVR [41]. Their predictor still requires more than 200 peptide retention
times for training.

Recently, Pfeifer et al. [88] proposed another retention time predictor based on an SVR
which requires only roughly 50 peptides for training. Moreover, it can be applied to any
type of separation system, as it is based on the novel paired oligo-border kernel, which
considers the peptide sequence only. The good performance of the predictor (Q? > 0.9
with less then 50 training data points) was demonstrated for strong anion-exchange
solid-phase extraction (SAX-PSE) and ion-pair reverse-phase high-performance liquid
chromatography (IP-RP-HPLC). The authors could show, that peptide identification
results can be significantly improved when using this novel predictor for filtering the
peptide hits.

4.2. DNA retention time prediction

DNA retention behavior plays a role in many biochemical applications, such as poly-
merase chain reaction, genotyping [89], DNA sequencing [90] and gene therapy [91].
Thus, exact models for retention time prediction of DNA have many applications. They
could be a tremendous help for the selection of chromatographic separation systems for a
specific study and for the optimization of separation parameters such as the temperature.

61

4. Retention time prediction

The problem can be formally defined as the retention time prediction for a given DNA
sequence in a specific chromatographic separation system. So far, most DNA retention
time models are based on the contributions of the four base types: In 2002, Gilar et
al. [18] proposed a model for the retention time prediction of oligonucleotides in ion-pair
reverse-phase liquid chromatography by summing up the contributions of individual
bases, which were determined experimentally by analyzing homo-oligonucleotides. Since
the input of the model is only the nucleotide length and base composition, the model
is applicable to high temperatures only (60°C-80°C), where the secondary structure is
suppressed because of thermal denaturing.

In spite of the broad availability of structural data, investigations into the relationship
between the 3D-structure of nucleic acids and their interaction with stationary phases in
chromatographic separation systems have been quite limited [92, 93, 94], mainly because
of the highly dynamic nature of the process, and the involvement of both a liquid and
a solid phase in the phase transfer. Because the mechanistics of these processes are
not fully understood, modeling them explicitly is not possible. Fortunately, modern
machine learning approaches do not require explicit modeling in order to derive broadly
applicable models from training datasets.

We propose a new model for oligonucleotide retention time prediction which differs in
two ways from the previous approaches. First, we incorporate additional features of the
oligonucleotides into the model, the most important being secondary structure informa-
tion. Secondary structure is temperature-dependent, thus the model can be applied to
lower temperatures as well. The second difference lies in the model generation. Support
vector regression (SVR) is used instead of simple linear or logarithmic models. SVR can
model non-linear relationships while optimizing the model performance and complexity.
This leads to reliable models with significantly increased prediction performance.

The secondary structure information used in our models is derived entirely from pre-
dictions. This makes the model independent of experimental data and, thus, widely
applicable. To predict RNA secondary structure of a single sequence, the most popular
methods use free energy minimization based on dynamic programming algorithms [95].
The prediction accuracy is limited by the incompleteness of the models: Many sequence-
dependent effects are not completely understood today. Also, some factors, e.g., non-
local effects, cannot be easily integrated into dynamic programming methods. Never-
theless, many advances such as pseudoknot prediction [96], generation of suboptimal
structures [97] and the use of folding kinetics in the prediction [98] have been recently
made.

4.2.1. Experimental dataset

Oligonucleotide sequence selection: Our dataset consists of retention times measured
for 72 oligonucleotides ranging from 15 to 48 bases. As one focus of this study is the
influence of secondary structure on the retention time, the dataset consists of oligonu-
cleotides that contain little or no secondary structure and others where nearly all bases
form a hairpin. Four sequences that form stable hairpin structures even at elevated tem-
peratures were included. Fig. 4.1 shows the predicted, average fraction of paired bases
plotted against the measurement temperature.

A second point of interest is the influence of the sequence on the retention time. That
is why the dataset contains two groups of oligonucleotides that have the same overall base
composition, but slight differences in the base sequence. Both groups are derived from
the 24-mer GTGCTCAGTGTAGCCCAGGATGCC. In the first group, one guanine is
exchanged for an adenine; in the second, one guanine is exchanged for a cytosine. The

62

4.2. DNA retention time prediction

Sequence normalized retention time [min]
30°C 40°C 50°C 60°C 80°C
TGTAGCTCCAAGATG 16.37 15.54 14.99 14.19 11.96
TAGCTTTCCAAGATG 16.61 16.10 15.54 14.85 12.62
GAGAGAGATCTCTCTC 13.47 13.52 14.02 13.74 11.74
TGTAGCTCCAAGATGCC 16.35 15.67 15.10 14.38 12.16
TAGCTTTCCAAGATGCA 17.30 16.79 16.23 15.49 13.37
GCTCAGTGTAGCCCACGTT 17.29 16.57 15.97 15.12 12.78
TGTAACTTTCCAGGATGCC 18.17 17.34 16.67 15.74 13.67
ACTCAGTGTAGCCCACGATGC 17.65 16.90 16.28 15.55 13.24
ATGCTTCAGTGTAGCCCAGTA 18.56 17.97 17.36 16.47 14.47
GAGAGAGAGAGATCTCTCTCTCTC 13.22 13.41 14.57 15.60 14.08
GTGTGTGTGTGTACACACACACAC 14.83 13.74 13.57 14.22 14.63
GTGCTCAGAGTAGCCCAGGATGCC 16.97 16.60 16.06 15.36 13.47
GTGCTCAGTGTAGGGCAGGATGCC 16.84 16.30 15.89 15.34 13.50
GTGCTCAGTGTAGCGGAGGATGCC 16.62 16.60 16.13 15.36 13.51
GTGCTCAAAGTAGCCCAGGATGCC 17.10 16.61 16.24 15.42 13.62
GTGCTCAGTGTAGCCCAGCATGCC 16.97 16.85 16.27 15.67 13.66
GTGCTCAGTGTAGCCCAGACAGCC 17.21 16.76 16.21 15.51 13.48
GTGCTCAGTGTAGCCCAGGATGCC 17.35 16.98 16.32 15.43 13.50
GTGCTCAGTGTAGCCCAGACTGCC 17.43 16.97 16.40 15.48 13.58
GTGCTCAGTGTAGCCCACGATGCC 17.44 17.00 16.51 15.68 13.58
GTGCTCAGTGTAGCCCAGAATGCC 17.29 16.82 16.37 15.68 13.62
GTGCTCAGTGTAGCCCAGGACAAC 17.41 16.97 16.43 15.70 13.75
CTGCTCAGTGTAGCCCAGGATGCC 17.23 17.00 16.25 15.49 13.47
GTGCTCAGTGTAGCCCAGGATACC 17.46 17.11 16.64 15.80 13.85
GTGCTCAGTGTAGCCCAGGATGCG 17.40 16.90 16.44 15.67 13.67
GTGCTCAGTGTAGCCCAGACATCC 17.65 17.25 16.59 15.83 13.92
GTGCTCAGTGTAGCCCAGGATCCC 17.52 17.06 16.44 15.79 13.72
GTGCTCACTGTAGCCCAGGATGCC 17.62 17.12 16.57 15.67 13.79
GTGCTCAGTGTAGCCCAGGATGAC 17.61 17.12 16.51 15.32 13.88
GTGCTCAGTGTAGCCCAAGATGCC 17.40 16.73 16.37 15.66 13.58
ATGCTCAGTGTAGCCCAGGATGCC 17.77 17.40 16.81 16.08 14.08
GTCCTCAGTGTAGCCCAGGATGCC 17.67 17.08 16.53 15.73 13.76
GTGCTCAATGTAGCCCAGGATGCC 17.52 17.11 16.55 15.84 13.90
GTGCTCAGTGTAACCCAGGATGCC 17.64 17.14 16.61 15.89 13.99
GTGCTCAGTATAGCCCAGGATGCC 17.50 17.08 16.62 15.87 14.00
GTGCTCAGTGTAGCCCAGGATGGG 18.07 17.37 16.61 15.75 13.68
GTGCTCAGTGTAGCCCAGGATAAC 17.82 17.17 16.78 16.11 14.05
GTGCTCAGTGTAGCCCGTGATGCC 17.77 17.15 16.59 15.81 13.57
GTGCTCAGTGTAGCCCAGGATGCA 17.82 17.36 16.83 15.98 13.99
GTGCTCAGTGTAGCCCAGGATGCT 17.81 17.16 16.71 15.94 13.96
GTGCTCAGTGTAGCCCAGGATGAA 17.82 17.31 16.86 16.19 14.29
GTGCTCAGTGTAGCCCATGATGCC 17.78 17.20 16.68 15.90 13.77
GTGCTCAGTGTACCCCAGGATGCC 17.99 17.30 16.66 15.84 13.70
GTGCTCAGTGTAGCCCAGGATGAT 17.90 17.36 16.90 16.20 14.17
GTACTCAGTGTAGCCCAGGATGCC 17.84 17.34 16.70 15.93 14.03
GTGCTCAGTCTAGCCCAGGATGCC 18.05 17.37 16.65 15.78 13.76
GTGCTCAGTGTAGCCCAGACATAC 17.98 17.39 16.85 16.21 14.04
GTGCTCAGTGTAGCCCAGGATGTT 18.16 17.50 17.09 16.31 14.23
GTGCTCAGTGTAGCCCAGGATTAA 18.40 17.87 17.40 16.69 14.68
GTGCTCAGTGTAGCCCAGGATTTT 18.75 18.13 17.61 16.72 14.81
GTGCTCAGTGTAGCTCCAGGATGCC 17.74 17.22 16.72 15.97 13.98
GTGCTTCAGTGTAGCCCAGGATGCC 17.83 17.40 16.79 16.03 13.98
GTGCTCAGTGTAGCTTCCAGGATGCC 18.10 17.72 17.18 16.47 14.48
GTGCTTTCAGTGTAGCCCAGGATGCC 18.49 17.94 17.29 16.61 14.47
GTGCTCAGTGTAGCTTTCCAGGATGCC 18.76 18.30 17.66 16.83 14.93
GTGCTTTTCAGTGTAGCCCAGGATGCC 18.99 18.37 17.72 16.93 14.90
GTGCTCAGTGTAGCTTTTCCAGGATGCC 19.13 18.57 18.04 17.21 15.30
GTGCTCAGTGTAGCCCAGTTTTGATGCC 18.99 18.39 17.85 17.09 15.25
GTGCTTTTTCAGTGTAGCCCAGGATGCC 19.51 18.85 18.20 17.45 15.40
GTGCTCAGTGTAGCCCAGTTTTTGATGCC 19.44 18.89 18.27 17.49 15.69
GTGCTCAGTGTAGCTTTTTCCAGGATGCC 19.64 19.01 18.55 17.67 15.72
GTGCTTTTTTCAGTGTAGCCCAGGATGCC 19.83 19.17 18.57 17.75 15.80
GTGCTCAGTGTAGCCCAGTTTTTTGATGCC 19.72 19.12 18.71 17.72 15.87
GTGCTCAGTGTAGCTTTTTTCCAGGATGCC 19.88 19.40 18.77 17.98 15.99
GTGCTTTTTTTCAGTGTAGCCCAGGATGCC 20.21 19.55 18.99 18.07 16.17
GAGAGAGAGAGAGAGATCTCTCTCTCTCTCTC 13.65 13.59 14.79 16.56 15.62
GTGCTCAGTATAGCCCAGTTTTTTGATGCCATA 20.64 20.13 19.69 19.08 17.23
CTCAGTGTAACCCAGTTTTTTGATGCCGTAGATCAT 20.57 20.04 19.80 19.27 17.46
GTGCTCAGTGTAACCCAGTTTTTTGATGCCGTAGATCAT 20.93 20.41 20.12 19.57 17.80
GTGCTCAGTGTAACCCAGTTTTTTGATGCCGTAGATCATAAA 21.20 20.75 20.47 19.93 18.41
GTGCTCAGTGTAACCCAGTTTTTTGATGCCGTAGATCATAAATTT 21.60 21.15 20.89 20.31 18.85
GTGCTCAGTGTAACCCAGTTTTTTGATGCCGTAGATCATAAATTTAGA 21.76 21.24 21.07 20.63 19.08

Table 4.1.: Oligonucleotides sequence and measured normalized retention times.

63

4. Retention time prediction

0

S
»w 80
Q
® 70t
o]
- 60}
o
S 50t
o
s 40 |
S 30¢
8 20
o 10}
(@)]
©
()
>
®

30 40 50 60 70 80
temperature [°C]

Figure 4.1.: Average fraction of bases in stems and loops for the 72 oligonucleotides. The
secondary structures were predicted using RNAFold [99].

sequences of the 72 oligonucleotides can be found in Table 4.1.

Chemicals and oligonucleotides: Acetonitrile (far UV HPLC grade) and acetic acid
(analytical reagent grade) were obtained from Riedel-de-Haén (Seelze, Germany), tri-
ethylamine (analytical reagent grade) and ethylenediamine tetraacetate (EDTA, analyt-
ical reagent grade) were purchased from Fluka (Buchs, Switzerland). Triethylammonium
acetate was prepared by mixing equal amounts of triethylamine and acetic acid. Water
was purified by means of a purification system (Purelab Ultra Genetic, Elga, Siershahn,
Germany). Oligonucleotides were synthesized by MWG-Biotech AG (Ebersberg, Ger-
many) or Biospring (Frankfurt, Germany).

lon-pair reversed-phase high-performance liquid chromatography: Ion-pair reversed-
phase high-performance liquid chromatography was performed with a fully automated
capillary /nano HPLC system (Model Ultimate 3000, Dionex, Amsterdam, The Nether-
lands) equipped with a low-pressure gradient micropump (Model LPG-3600) with a vac-
uum degasser (Model SRD-3600), an integrated column oven, a microcolumn switching
unit and flow-splitting device (Model FLM-3100), a micro-autosampler (Model WPS-
3000), and a UV-detector (Model UVD 3000) with a 3-nL Z-shaped detector cell (Model
Ultimate). The system was controlled by a personal computer with Chromeleon Version
6.60 SP2 (Dionex). The 60 x 0.20 mm i.d. poly-(styrene/divinylbenzene) monolithic
column was prepared according to the published protocol [100] and is available from
Dionex.

Generation of experimental retention time datasets: One to five nanograms of oligonu-
cleotides, dissolved in 1 ul water, were injected and chromatographed with a 30 min linear
gradient from 0-16% acetonitrile in 100 mmol/] triethylammonium acetate, 0.5 mmol/1
EDTA, pH 7.0. The flow rate was adjusted to 2 ul/min. The gradient delay volume of
the used LC system was 5.94 ul. Although retention times of oligonucleotides were highly
reproducible (0.26% relative standard deviation in absolute retention time from three
repetitive injections), (dC)14 and (dT")2¢ homooligonucleotides were co-injected as inter-
nal standards to normalize retention. A representative separation of an oligonucleotide

64

4.2. DNA retention time prediction

Absorption

_—y

L L L L L L L L L L L L L L L L LB L B |

0 4 8 12 16 20 24 28 min

Figure 4.2.: Sample separation of an oligonucleotide (second peak) with internal stan-
dards (dC')14 (first peak) and (dT)96 (third peak) at 80°C.

including the two standards is illustrated in Fig. 4.2.
Normalization was performed using Eq. 4.1 (¢t and ¢ representing the retention time

and average retention time, respectively, of the oligonucleotides) and resulted in retention

time measurement errors of less than 0.04% (0.6 sec).

t(dT)26 — H(dC)1a

tdT)ss — (dC)14

tnormalized = (tmeasured - t(dC)M) * + E(dC)14 (41>
The 72 different oligonucleotides were chromatographed at column temperatures of
30, 40, 50, 60, and 80°C and the measured normalized retention times are summarized

in Table 4.1. All chromatographic experiments were performed by Sascha Quinten and
Christian G. Huber.

4.2.2. Feature selection

The selection of input features is a critical step, as the features determine the perfor-
mance of the prediction. Leaving out essential features or adding unnecessary features
both lead to a drop in prediction accuracy. We thus tested several different models,
i.e., input feature sets. Each model consists of several model components which group
closely related features. Besides these model components, each model implicitly contains
the temperature and the length of the oligonucleotide. The model components can be
grouped into composition components, structural components and energy components.
Table 4.2 gives an overview of all components.

All secondary structure components are calculated from predicted secondary struc-
tures. For this purpose, the RNAFold tool of the Vienna RNA Package [99] version 1.4
was used.

Sequence components are calculated from the oligonucleotide sequence and describe
base composition or sequence details of the oligonucleotide. COUNT reflects the base
composition, while CONTACT and SCONTACT count dinucleotide frequencies, which
contain information on the adjacency of bases. The key idea here is that stacking bases
will influence the secondary structure and the interaction with the stationary phase.

65

4. Retention time prediction

Name Features Description

Composition components:

COUNT 4 Base frequencies (#A, #C, #G and #T in the sequence).
CONTACT 16 Dinucleotide frequencies (#CG, #CA, #CT, #CC, ...).
SCONTACT 10 Dinucleotide frequencies, independent of direction

(#CGH#CG, #CA+#AC, #CC, ...).

Secondary structure components (for measurement temperature only):

PAIRED 4 Fraction of A, C, G and T inside stems.

UNPAIRED 4 Fraction of A, C, G and T outside stems.

STRUCTURE 12 Fraction of A, C, G and T in stems, in loops, or unpaired.
Secondary structure components (for temperatures 30, 40, 50, 60, 70, 80°C):
MULTISTRUCT 6 Fraction of bases in stems.

MULTITWO 12 Fraction of bases that are unpaired, and in stems or loops.
MULTIDETAIL 36 Fraction of bases in stems, and loops. Fraction of

unpaired A, C, G and T.

Energy components:

SESUM 1 Sum of the stacking energies of adjacent bases.

STACKING 2 Sum of the enthalpic (AH) and entrophic (TAS)
contributions to the free energy.

Table 4.2.: Overview of the model components used in this work.

Since retention time behavior strongly depends on the secondary structure, sequence
based features alone are suitable only for high temperatures. At lower temperatures,
the secondary structure requires the inclusion of structure-based components in the
prediction. These components can be subdivided into two groups. The first group
considers only the secondary structure of the temperature at which the measurement
was performed, whereas the second group contains information on secondary structures

for temperatures of 30, 40, 50, 60, 70 and 80°C.

Feature C G T A
Composition 5 10) 4
Bases in stems 3 3 1 1
Fraction of bases in stems 0.60 0.30 0.20 0.25
Bases in loops 0 2 0 1

Fraction of bases in loops 0.00 0.20 0.00 0.25

Figure 4.3.: Example of the feature calculation from the predicted secondary structure
of GTGCTCAGTGTACCC at 40°C.

Fig. 4.3 shows the predicted secondary structure of the oligonucleotide GTGCTCAGT-
GTAGCCCAGGATGGG at 40°C and the features calculated from the predicted struc-
ture. For the simple structural components, only the measurement temperature is con-
sidered. For the multi-temperature structural components, the secondary structure and
the resulting features are calculated for different temperatures.

The single temperature components PAIRED and UNPAIRED have four features each
reflecting the fraction of A, T, C and G inside stems and outside stems, respectively.
The STRUCTURE component contains more detailed information, as it considers the
fraction of A, T, C, and G inside stems and inside loops and unpaired nucleotides.

The multi-temperature structural components reflect secondary structure information

66

4.2. DNA retention time prediction

as well. In contrast to the single temperature components, they do not only consider
the measurement temperature but a range of temperatures (30, 40, 50, 60, 70 and
80°C). Adding this gradient of secondary structure information for different temperatures
provides information similar to a melting curve. The simplest component in this group
is MULTISTRUCT, which, for each of the six temperatures, contains the fraction of all
bases that are inside stems. MULTITWO contains the fraction of bases in stems and
loops, as well as the fraction of unpaired bases. The most detailed representation of the
secondary structure is MULTIDETAIL. It contains the fraction of bases in stems, the
fraction of bases in loops, and the fractions of A, C, G and T that are unpaired.

Energy components describe the ring stacking effects between adjacent bases. These
energies might influence retention time as they have to be overcome in order for the
aromatic ring system of the base to interact with the column packing. The EMBOSS
suite [101] was the source of the stacking energies of base pairs used in the SESUM
component. The thermodynamic parameters used for the STACKING component were
taken from [102].

4.2.3. Models

Support vector regression In this study, the libSVM [103] implementation of v-SVR [41]
was used with the Radial Basis Function kernel. The kernel parameter v and the trade-
off C' have been optimized using grid search and three-fold cross validation on the training
data.

Single temperature and combined temperatures models: The standard approach in
predicting retention time is to create fixed-temperature models, i.e., each model is based
on data for a single temperature. Thus, if predictions for several temperatures are
needed, one model has to be created for each temperature.

The model components that consider multiple temperatures allow for a more general
approach. The data points of one dataset may differ in temperature, which leads to a
model that can predict retention times over the whole temperature range of the training
data. The advantage of this approach is that all available data can be integrated into a
single, more general model. This reduces the amount of data needed for the individual
temperatures.

Combining datasets of all temperatures yields a dataset with 432 data points (72 data
points from six temperatures). To avoid overfitting, we included data from only one
randomly chosen temperature for each oligonucleotide. The resulting model was then
used to predict the retention times of the remaining measurements.

Model creation: From the 11 model components presented in Table 4.2, we created
models containing one or more of these components. As the number of models that can
be built out of 11 components is huge, we focused on models built out of two or three
components, which mostly contain one composition component and one structural com-
ponent. These models will subsequently be referred to by the names of the components
they contain (e.g., ‘count_sesum’ for a model that consists of the COUNT component
and the SESUM component).

For each temperature, the models were trained and the results evaluated. Additionally,
the models were trained on the combined temperature dataset.

67

4. Retention time prediction

4.2.4. Results

For each model, the average prediction correlation Q2 in three-fold cross-validation was
determined for all temperatures. Table 4.3 shows the prediction performance for a se-
lection of models. Among the composition components SCONTACT and CONTACT
did not show much difference. In the group of single-temperature secondary structure
components, the combination of PAIRED and UNPAIRED was the only one that per-
formed at a similar level to the multi-temperature structural components, where MULTI-
STRUCT and MULTITWO were the best components. Out of the energy components,
STACKING always performed better than SESUM.

Model 30°C 40°C 50°C 60°C 80°C ALL | average
contact 0.934 0.891 0.891 0.947 0.968 0.934 0.927
count 0.583 0.621 0.762 0.918 0.988 0.873 0.791
count_contact 0.925 0.888 0.855 0.953 0.976 0.929 0.921
count_contact_multistruct 0.968 0.962 0.926 0.964 0.974 0.948 0.957
count_multidetail 0.943 0.969 0.964 0.953 0.954 0.919 0.950
count_multistruct 0.951 0976 0.962 0.959 0974 0.954 0.963
count_multistruct_stacking 0.956 0977 0.960 0.957 0.983 0.953 0.964
count_multithree 0.929 0.970 0.954 0.955 0.972 0.929 0.952
count_multitwo 0.938 0.974 0.964 0.963 0.981 0.934 0.959
count_multitwo_stacking 0.950 0.975 0.964 0.959 0.985 0.936 0.961
count_paired_stacking 0.956 0.940 0.956 0.955 0.986 0.936 0.955
count_paired 0.948 0.946 0.956 0.958 0.982 0.935 0.954
count_scontact 0.902 0.866 0.843 0.961 0.988 0.924 0.914
count_scontact_multistruct 0.978 0.978 0.950 0.965 0.975 0.954 0.967
count_structure_stacking 0.921 0.912 0.959 0.958 0.983 0.928 0.943
count_structure 0.921 0916 0.957 0.964 0.976 0.928 0.944
paired_unpaired _stacking 0.947 0.953 0.956 0.955 0.983 0.934 0.955
paired_unpaired 0.942 0949 0.954 0.962 0.963 0.929 0.950
scontact 0.912 0.897 0.897 0.952 0.975 0.931 0.927
scontact_multistruct 0.972 0.968 0.949 0.957 0.955 0.955 0.959
scontact_multistruct_stacking 0.971 0.972 0.953 0.954 0.963 0.954 0.961
scontact_multitwo_stacking 0.958 0.965 0.946 0.950 0.964 0.941 0.954
scontact_paired_stacking 0.933 0946 0.935 0.960 0.972 0.933 0.946
scontact_paired 0.938 0.944 0.931 0.960 0.967 0.935 0.946
scontact_stacking 0.907 0.899 0.890 0.950 0.977 0.930 0.925
scontact_structure_stacking 0.931 0912 0.941 0.968 0.981 0.929 0.944
scontact_structure 0.929 0904 0.934 0.969 0.978 0.928 0.940
structure_stacking 0.937 0919 0.955 0.959 0.983 0.924 0.946
average 0.928 0.928 0.931 0.957 0.975 0.933

Table 4.3.: Performance overview of all tested models (Q?).

Single temperatures datasets: All models show a good prediction correlation on the
80°C dataset, but the prediction performance averaged over all models drops with the
temperature. The models that are exclusively based on sequence information (‘count’,
‘scontact’ and ‘count_scontact’) cannot compete with those models that use secondary
structure information at lower temperatures.

Combined temperatures dataset: The models with multi-temperature structural com-
ponents outperform all other models on the combined temperature dataset. Out of these

68

4.2. DNA retention time prediction

components, ‘multistruct’ performs best.

For all further evaluations, we chose the model ‘count_multistruct_stacking’. It was
preferred over the model ‘count_scontact_multistruct’, which shows a slightly better av-
erage performance, because it has far fewer features and thus has less tendency to overfit.

Homology reduction: To rule out the possibility that the good prediction perfor-
mance stems from overfitting caused by sequence homology present in the dataset, three
homology-reduced datasets were created. We simply removed oligonucleotides from the
original dataset until the remaining sequences differed in at least two, three or five bases,
respectively.

dataset oligonucleotides 30°C 80°C
unreduced 72 0.957 0.983
two bases differing 52 0.954 0.986
three bases differing 38 0.957 0.965
five bases differing 29 0.911 0.963

Table 4.4.: Prediction performance on homology-reduced datasets at 30°C and 80°C.

Table 4.4 shows that there is almost no drop in the prediction performance for homology-
reduced datasets. Only the dataset with oligonucleotides that differ at least in five bases
actually performs a little worse than the rest, which is probably caused by the small
number of training data points.

Comparison to the Gilar model: In 2002, Gilar et al. [18] proposed a simple math-
ematical model for predicting the retention time of oligonucleotides. The model takes
only the overall length and the base composition of oligonucleotides into account. As
Eq. (4.2) shows, the model is a sum where each addend corresponds to the contribution
of one base type to the retention time:

Z a;N; + b;N;In(N)

t:
" N

(4.2)
1€{A,T,C,G}

where N; is the number of occurrences of base 7 in the oligonucleotide and N is the overall
length of the oligonucleotide (i.e., N = Ny + Np+ No+ Ng). There are two coefficients
a; and b; for each base type ¢ which have to be determined experimentally. Therefore,
the retention times of homo-oligonucleotides of different lengths were measured for each
base type. The individual contributions of each base can then be fitted to the measured
times in order to determine a; and b;.

We compared the Gilar model to our model ‘count_multistruct_stacking’. The Gilar
model fits very well at 80°C but drops to R?=0.58 at 30°C (see Fig. 4.4). In contrast, the
‘count_multistruct_stacking’ model maintains a performance of R? >0.95 for all tempera-
tures. Fig. 4.5 shows the retention times predicted by the Gilar model at 30°C and 80°C.
At 80°C, the prediction performance is equal to the performance of our models. How-
ever, at 30°C, the hairpin structures (marked with circles) cannot be predicted correctly
anymore and generally, prediction errors increase significantly (see also Fig. 4.5).

Influence of secondary structure: To demonstrate the effect of adding secondary struc-
ture information to a sequence-based model, we compared the model error of the models

69

4. Retention time prediction

Figure 4.4.

‘count’ and ‘count_multistruct_stacking’.

0.8
0.7

0.6 L "

Gilar etal. -

count —»—
count_multistruct_stacking —e—

0.5

30 40 50 60

temperature [°C]

: Comparison of the Gilar

‘count_multistruct_stacking’.

model to

70

our

80

models ‘count’ and

Table 4.5 shows the average relative model

error of oligonucleotides with a similar fraction of bases involved in their secondary

structure.
Temp. Model Fraction of bases in secondary structure
00-02 02-04 04-06 06-08 0.8-1.0

30°C count 0.98% 1.12% 1.41% 15.47% 37.62%
30°C count_multistruct_stacking 0.65% 1.01% 1.21% 2.35% 1.19%
50°C count 0.78% 0.80% 1.11% 17.95% 22.70%
50°C count_multistruct_stacking 0.38% 0.39% 0.43% 0.27% 0.26%
80°C count 0.57% 2.12% na 1.94% 0.40%
80°C count_multistruct_stacking 0.44% 0.34% na 0.28% 0.09%

Table 4.5.: Average relative model error of oligonucleotides with a similar fraction of

bases involved in secondary structure. ‘na’ indicates that there is no oligonu-
cleotide with the corresponding fraction of bases in the secondary structure

for that temperature.

The ‘count_multistruct_stacking’ model can compensate for the influence of the sec-
ondary structure. However, the relative model error of the ‘count’ model rises up to
nearly 38% and 23% for several oligonucleotides at 30°C and 50°C, respectively. It is
simply impossible for the ‘count’ model to derive a reasonable model from the training
data at lower temperatures as it does not incorporate secondary structure information.
At 80°C, the ‘count_multistruct_stacking’ model still has lower relative model errors than

the ‘count’

model.

The amount of data required for training: For practical use, the number of training
data points that are required for a reasonable model is very important. So we determined
an average prediction performance for the range of 10 to 60 training data points. We
used the following procedure:

1. Repeat the following steps 200 times:

70

4.2. DNA retention time prediction

22 1 X
E 21 ¢ Xxx E 19 ¢
= o i =
k197 ix X [
I 18 t < te Il
g 17f - 5
E 16} *x E
8 15¢ o g
))
14 t o o
13 — 0 11
13 14 15 16 17 18 19 20 21 22
predicted RT [min]
(a) 30°C
Figure 4.5.:

marked with circles.

20 ¢

18
17 ¢
16
15
14 ¢
13 ¢
12

oX

11 12 13 14 15 16 17 18 19 20

predicted RT [min]
(b) 80°C

Results of the Gilar model at 30°C and 80°C. The hairpin structures are

a) Randomly choose 10 data points as a test set.

b) Randomly choose 10, 20, 30, 40, 50 and 60 of the data points not contained
in the test set as training set.

c¢) For each of the training sets, train a model, predict retention times for the
test set and store the squared correlation coefficient.

2. Calculate the average squared correlation for 10, 20, 30, 40, 50 and 60 training
data points.

Fig. 4.6 shows the results for the ‘count_multistruct_stacking’ model. From the figure
one can see that even for a temperature of 30°C, 40 training sequences are sufficient
to construct a model describing oligonucleotide retention with acceptable accuracy. No
significant improvement is observed for more than 50 data points.

1
0.9
0.8
0.7
0.6
0.5
0.4

30°C ——
80°C

0

10 20 30 40 50 60 70
Number of sequences for training

Figure 4.6.: Number of training data points plotted against prediction performance. The
error bars show the standard deviation, derived from 200 repetitions of the

experiment.

71

4. Retention time prediction

4.2.5. Discussion and outlook

The methods, experiments and results presented in this chapter clearly demonstrate that
predicting oligonucleotide retention time can be significantly improved using secondary
structure information and support vector regression.

The use of secondary structure information improves the prediction performance, es-
pecially at low temperatures and for oligonucleotides that form highly stable secondary
structures. The second point of interest in this study was the effect that the base se-
quence had on the retention time. The fact that our best model contains no explicit
sequence information shows that it plays only a subordinate role in this process. Rather,
it is the influence of the base sequence on the secondary structure that seems to be the
base sequences’ main contribution. Explicitly modeling the base sequence is therefore
not necessary. However, a closer examination of the influence of the base sequence
remains to be done.

The second performance boost came from the use of SVR, probably because of its
ability to model non-linear relations and because of the improved handing of outliers
in the training data. The essential step, and limiting factor, when working with an
SVR model is the selection of the training data. A good prediction performance for
oligonucleotides that lie far outside the training feature space is very unlikely. Thus,
it is crucial to ensure a broad coverage of feature space, both in terms of secondary
structure and base composition.

We tested 11 model components that cover base composition, base sequence, secondary
structure and base stacking. Although our model performed very well, there is still room
for improvements. New features that model additional chemical properties can be easily
added to our model by appending them to the feature vector. We expect that this kind
of model extensibility can further help to improve the oligonucleotide retention time
prediction model in the future.

72

5. OpenMS and TOPP

Mass spectrometry has become a key technique for biomedical research, especially in
proteomics and metabolomics. Although MS is used in these fields for many years now,
there are still rapid advances in instrumentation and experiment design. As a result,
data analysis software is evolving quickly as well—existing software has to be adapted
to new instruments, and new software has to be written for novel experiments.

Thus, it would be advantageous to view data analysis as a series of smaller analysis
problems. For example, one specific quantitation protocol could consist of a process
involving peak picking, quantitation, normalization, map alignment and marker finding.
Other quantitation protocols, e.g., for labeled data, differ from the above, although they
have many steps in common. Therefore, it would be desirable to have smaller algorithmic
components that can be readily combined into more complex workflows or tools.

5.1. State of the art

Commercial software: Commercial software packages, like MassLynx [7] and DeCy-
der [8], often perform specific tasks very well, however, their use as has many draw-
backs. Almost all commercial software relies on proprietary data formats. The import
and export of raw data and analysis result in non-proprietary data formats is not always
possible. This makes the construction of large analysis pipelines with different tools
very difficult or even impossible. The use of proprietary data formats also makes the
joint analysis of data from different MS instruments or even different instrument vendors
impossible.

Moreover, the algorithms implemented in commercial software are often not published
and the parameters that govern their behavior are rarely accessible. Comparison of
analysis algorithm performance is also very difficult, because intermediate results of
single analysis steps are not accessible.

In summary, one can say that the use of commercial tools severely limits the control
the user has over the data analysis.

Academic software: There are many academic projects for mass spectrometry data
analysis. Table 5.1 gives an overview of the available tools and summarizes their features.
In this section we will highlight the features and shortcomings of the individual tools.

As we have discussed before, support for non-proprietary file formats is a requirement
for wide usability of data analysis tools. All but one of the listed tools support at least one
of the non-proprietary mass spectrometry data formats ANDI/MS [104], mzData [105],
mzXML [106] or mzML [107]. MazQuant support the Thermo Finnigan RAW file format
only and, thus, is not applicable to data from different instrument vendors. The only
tool that can read all four non-proprietary file formats is MZmine.

Another important feature for analysis tools is flexibility. The analysis should be
adaptable to new instruments and experiments. However, most of the present tools
combine several analysis steps to a fixed pipeline. Some tools can be used through a
GUTI only, which does not allow high-throughput analysis or scripting.

73

5. OpenMS and TOPP

There are only a few tools that allow a flexible use of several analysis steps in a high-
throughput manner: msInspect offers all methods from the GUI in a CLI batch mode.
XCMS allows flexible scripting through an R interface, but the project is focused on
metabolomics and the functionality for proteomics data analysis is very limited. SpecAr-
ray and the Trans-Proteomic Pipeline (TPP) support flexible analysis pipelines—they
both come as a set of CLI tools which can be used to build custom analysis pipelines.

Besides flexibility, reusability is also quite important. Analysis methods and algo-
rithms should be implemented in such a way, that they can be reused by other projects.
Otherwise, algorithms with similar goals are developed over and over again. However,
only msiInspect, XCMS and Proteo Wizard make their functionality available as a well-
documented class library.

Finally, availability of analysis tools is very important. Not every tool is available for
all major operating systems. Here, the choice of programming language and build system
plays a large role. MaxQuant and Viper are available for Windows only, because they
are developed in C# and Visual Basic, respectively. MZmine and msInspect are written
in Java, a platform-independent programming language that runs all major operating
systems. Most other projects are implemented in C++, which can be compiled on
various platforms as well. However, SpecArray and SuperHirn use an outdated build
system without Windows support.

Our contribution: We present OpenMS — An open-source framework for mass spec-
trometry [82]. OpenMS aims at providing building blocks for analysis tools and is there-
fore more flexible than all current commercial tools and openly available libraries. It
serves as a framework for developing mass spectrometry data analysis tools, providing
everything from basic data structures over file input/output (I/O) and visualization to
sophisticated algorithms. Thus, OpenMS allows developers to focus on new algorithmic
approaches instead of implementing infrastructure.

Three academic projects with very similar goals and functionality have been devel-
oped in parallel to OpenMS: XCMS [11, 108], ProteoWizard [109] and msInspect [12].
XCMS focuses on metabolomics, providing only very limited proteomics data analysis
capabilities. ProteoWizard is a platform-independent C++ library. However, the anal-
ysis functionality of ProteoWizard is rudimentary. The current focus of the project is
file I/0O, especially the support of all major MS vendor formats. Most of the high-level
functionality needed for the actual analysis of MS data is still missing. msInspect is the
most mature toolset in terms of functionality and usability. It also provides a Java class
library. However, the design of the library and the quality of its documentation are not
satisfying.

To make the rich functionality of OpenMS available to users not skilled in software
development, we developed a suite of computational tools called TOPP — The OpenMS
Proteomics Pipeline [68]. TOPP is a collection of command line tools—each performing
one atomic analysis step. These lightweight tools serve as building blocks for more
complex proteomics pipelines. This modular setup allows flexible construction of new
analysis pipelines and rapid adaptation of existing pipelines to new experiments.

An academic project with goals similar to those of TOPP is the Trans-Proteomic Pipeline
(TPP) [10]. TPP integrates several tools developed at the ISB into a coherent framework.
Among those tools are ProteinProphet [110], PeptideProhet [111], ASAPRatio [112] and
SuperHirn [15]. Despite the similar philosophy, TPP and TOPP differ in scope. TPP
focuses on quantitation and identification of peptides/proteins only. TOPP is not focused
on one particular area of MS data analysis. It offers tools for all analysis steps including

74

5.2. Design goals

signal processing, file handling and visualization.

In this chapter, we will highlight the core architectural features of OpenMS and how
it can be used to construct powerful applications for proteomics data analysis. We will
also elaborate the different algorithms already contained in OpenMS and demonstrate
its versatility in several small code examples. The last part of this chapter describes the
construction of powerful analysis pipelines using the TOPP tools.

5.2. Design goals

OpenMS is intended to offer a rich functionality while keeping in mind the design goals
of ease-of-use, robustness, extensibility and portability. We will now briefly describe the
techniques used to achieve these goals.

Ease-of-use: A very important aspect for the acceptance of a software library is ease-
of-use. Software developers expect clear interfaces and a good documentation.

The object-oriented programming paradigm aims at mapping real-world entities to com-
prehensible data structures and interfaces. Combining it with a coding style that enforces
consistent names of classes, methods and member variables, leads to intuitive usability
of a software library. For these reasons we adapted this paradigm for OpenMS.

The documentation of OpenMS is created using Doxygen [114]. This tool allows integra-
tion of the class documentation into the source code, which ensures consistency of code
and documentation. The documentation is generated in HT'ML format making it easy
to read with a web browser. OpenMS also provides several tutorials in HTML and PDF
format which introduce the most important concepts and analysis tools using example
applications.

Robustness: Robustness is the ability of a software system to handle abnormal situ-
ations. While robustness is not of the essence when developing new algorithms, it is
essential if a new method will be applied routinely to large scale datasets. Typically,
there is a tradeoff between performance and robustness. OpenMS tries to address both
issues equally.

In general, we try to tolerate recoverable errors, e.g., files that do not entirely fulfill the
format specifications. On the other hand, exceptions are used to handle fatal errors. To
check for correctness, unit tests are implemented for each method of a class. These tests
check the behavior for both valid and invalid use. Additionally, preprocessor macros
are used to enable additional consistency checks in debug mode, which are disabled in
productive mode for performance reasons.

Extensibility: Since OpenMS itself is based on several external libraries, it is designed
for the integration of external code. All classes are encapsulated in the OpenMS names-
pace to avoid symbol clashes with other libraries.

Through the use of template code, the core data structures are adaptable to specific prob-
lems. For example, it is possible to replace the representation of the mass-spectrometric
peak. Also, OpenMS supports standard formats and is itself open-source software. The
use of standard formats ensures that applications developed with OpenMS can be easily
integrated into existing analysis pipelines. OpenMS source code is located on Source-
Forge [115], a repository for open-source software. This allows users to participate in
the project and to contribute to the code base.

75

5. OpenMS and TOPP

supported community file formats pipeline library supported platforms language visualization algorithms
ANDI mzData mzXML mzML Win Linux Mac
MaxQuant - - - - - - + - - C# 1D, 2D, feature detection, label-free
[16] feature quantitation, identification
mapping, calibration
msInspect - - + - + + + + + Java, R 1D, 2D, signal processing, feature detection,
[12] feature label-free quantitation,
MRM quantitation, alignment,
identification mapping
MZmine + + + + - - + + + Java 1D, 2D, 3D signal processing, alignment,
[14, 66] normalization, statistics
ProteoWizard - - + + - + + + + C++ - signal processing
[109]
SpecArray - - + - + - - + - C 2D signal processing, feature detection,
[13] label-free quantitation, alignment,
statistics
SuperHirn - - + - - - - + + C++ - signal processing, feature detection,
[15] label-free quantitation, alignment,
identification mapping,
normalization, statistics
TPP - - + - + - + + + C, C++ 2D peptide validation, protein
[10] assignment, protein validation,
ICAT quantitation,
iTRAQ quantitation
Viper - + + - - - + - - VB, C++ 2D, feature detection, calibration,
[113] feature alignment, identification mapping
XCMS + + + - + + + + + R 1D, 2D feature detection, feature linking,
[11, 108] alignment, spectral library search,
statistics
OpenMS + + + + + + + + + C++ 1D, 2D, 3D, signal processing, feature detection,
[82, 68] feature, MRM quantitation, iTRAQ
consensus quantitation, ICAT quantitation,

label-free quantitation, calibration,
identification mapping, alignment

Table 5.1.: Overview of mass spectrometry analysis software tools and libraries.

76

5.3. Overall architecture

Portability: To ensure wide acceptance of a software framework, it should be usable on
all major operating systems. OpenMS can be used on most Linux distributions, MacOS
and Windows. This portability is achieved by using ANSI C++ [116] combined with the
build tool CMake [54]. CMake creates project files for all major compilers and platforms.
In the OpenMS project it is used to create Makefiles for Linux systems, Makefiles or
Xcode [117] project files for MacOS and MSVC [118] project files for Windows.
OpenMSs is distributed as source and binary packages. The source package can be used
to compile OpenMS on nearly all modern platforms and compilers. It is mainly used by
developers. For users which are not interested in software development, binary packages
are provided. Using the binary packages, the applications that come with OpenMS can
be easily installed and used on Windows, MacOS and Ubuntu Linux.

5.3. Overall architecture

The overall architecture of OpenMS is shown in Fig. 5.1. The general structure is very
simple—applications can be implemented using OpenMS, which in turn relies on several
external libraries: Qt [119] provides visualization, database support and a platform ab-
straction layer. Xerces [120] allows XML file parsing. The library libSVM [103] is used for
machine learning tasks, CoinMP [121] for linear and integer programming optimization.
The Computational Geometry Algorithms Library (CGAL) [122] provides data struc-
tures and algorithms for geometric computation. The GNU Scientific Library (GSL) [77]
is used for different mathematical and statistical tasks. Finally ANDI/MS [104] and
NetCDF [123] are needed for support of the file format ANDI/MS. These libraries are
from now on referred to as contrib libraries.

Applications
TOPP UTILS custom
OpenMS framework
File and database 10 Visualization Analysis algorithms

Kernel classes

Foundation classes

Contrib libraries

Qt Xerces libSVM CoinMP CGAL GSL ANDI/MS = NetCDF

Figure 5.1.: Overall architecture of OpenMS.

OpenMS itself can be subdivided into several layers. At the very bottom are the
foundation classes which implement low-level concepts and data structures. They include
basic concepts (e.g., factory pattern, exception handling), basic data structures (e.g.,
string, points, ranges) and system-specific classes (e.g., file system, date, time). The
kernel classes which capture the actual MS data and meta data, are built upon the
foundation classes. Finally, there is a layer of higher-level functionality that relies on the
kernel classes. This layer contains database I/0, file I/O, visualization and all analysis

77

5. OpenMS and TOPP

algorithms.

5.4. Foundation classes

This section will briefly describe the most important foundation classes, which are the
basis for the kernel classes and all higher-level functionality of OpenMS. First, very
basic data structures are described which are needed by many classes and applications
(strings, file system, etc.). The second part of this section focuses on classes that are
often needed by algorithms, i.e., progress logging, parameter handling and the abstract
factory pattern.

5.4.1. Basic data structures

The lack of convenient implementations for some very basic data structures is a major
drawback of the programming language C++. For example, the string implementation
provided by the STL [124] is quite rudimentary. Thus, the following data structures
were implemented in order to facilitate common programming tasks:

String: The OpenMS String class is derived from the STL string to make interfacing
with part of the contrib libraries more convenient. The String class extends the interface
of its base class by conversion methods from/to integers, floating-point numbers and
Qt strings; string manipulations methods for prefix, suffix and substrings; whitespace
handling and trimming; and concatenation methods for many types.

Date and time: C++ does not implement date and time handling classes. Instead,
methods of the C programming language have to be used. However, the Qt library offers
platform-independent classes for this purpose. Date and Date Time, the OpenMS classes
for date and time handling, are derived from the corresponding Qt classes and slightly
extended by some convenience functions.

Lists: Arrays of strings, integers or floating-point numbers are frequently used data
structures. The STL template class vector can be used and provides an efficient imple-
mentation. OpenMS contain such array implementations based on the STL and extends
them with more convenient constructors (e.g., from comma-separated strings) and other
methods.

5.4.2. Basic file system classes

Platform-independent file and directory handling is a prerequisite for portable applica-
tions. OpenMS implements a File class for searching files, checking file properties and
handling file paths. File is based on Qt file and directory classes.

Monitoring changes of existing files is also frequently needed, for example to trigger up-
dates in viewer applications. The class File Watcher uses Qt classes and the signals and
slots mechanism to provide this functionality.

5.4.3. Progress logging

Even very efficient algorithms working on MS data often have quite long runtime, because
of the huge amount of data that are being processed. Thus, progress logging is an
important feature for the usability of many applications. OpenMS offers a ProgressLogger

78

10

11

5.4. Foundation classes

class which allows progress reporting for tasks with a known or unknown number of
processing steps. Progress is reported either as text to the command line or as a progress
dialog for GUI applications. The following code snippet demonstrates the use of the class
in a command line application:

ProgressLogger logger;
logger.setLogType (ProgressLogger: :CMD) ;
logger.startProgress(0,10,"Starting progress");

for (UInt i=0; i<=10; ++i)

{
//... time-consuming task
logger.setProgress(i);

}

logger.endProgress();

5.4.4. Factory classes

OpenMS makes use of various design patterns for object-oriented programming [49], for
example Singleton, Facade, Composite and Iterator. A variation of the factory method
pattern is used very frequently and thus it is explained now in more detail.

In general, factory pattern is used to provide a means of constructing objects of a certain
family without specifying their concrete type. In OpenMS this technique is frequently
used to construct different variants of the same algorithm. This allows changing the
algorithm used for a certain task at run-time. Fig. 5.2 shows the OpenMS factory
implementation.

The factory base class is implemented by the template class Factory. The template pa-
rameter T of the factory is the base class of the factory products. The factory provides all
methods for registering different factory products and creating instances of the products.
In our example the concrete factory instance Factory<MapAlignmentAlgorithm> creates
products derived from the class MapAlignmentAlgorithm. MapAlignmentAlgorithm de-
fines the interface of all subclasses and registers all derived classes with the factory. The
actual factory products need to implement the methods create() and getProductName()
for the registration of the products in the factory.

A common problem of factory patterns is that different factory products need different
sets of parameters. Individual interfaces of the different classes are not possible, because
only the interface of the base class is accessible after creating an object using the factory.
Thus, the factory product base class has to offer a generic mechanism for parameter
handling. The OpenMS classes for parameter handling, which solve this problem, are
explained in the following section.

5.4.5. Parameter handling

The behavior of most algorithms is controlled by parameters. OpenMS offers many
algorithms for different tasks, which is why parameter handling is an important feature
of the library. Parameters are represented as tuples consisting of name, type and value.
Parameters can be arranged in a tree structure, because some algorithms can have
many parameters, which would make a simple parameter list confusing. The string keys
used to access parameters can contain colons to denote hierarchy levels—similar to the

79

5. OpenMS and TOPP

Factory

+ create(name: String): T
+ isRegistered(name: String): boolean
+ registeredProducts(): String[0..*]

+ registerProduct(name: String, creator: Function)

<<bind>> <T->MapAlignmentAlgorithm>

1
Factory<MapAlignmentAlgorithm> <<interface>>

MapAlignmentAlgorithm

registers products

+ align(maps: PeakMap[1..*])

creates + registerChildren()
b

I ————— e ——————————————————————— J Ep—

| |

| |

1 1

MapAlignmentAlgorithmPoseClustering MapAlignmentAlgorithmSpectrumAlignment

+ create(): MapAlignmentAlgorithmPoseClustering + create(): MapAlignmentAlgorithmSpectrumAlignment
+ getProductName(): String + getProductName(): String

Figure 5.2.: UML class diagram of the factory implementation in OpenMS.

slashes used in file paths. For further categorization, each parameter can be tagged
with arbitrary strings. These string tags are for example used to distinguish the basic
parameters of an algorithm from advanced parameters.

Fig. 5.3 shows the main parameter handling classes. The Param class is the central
class. It implements a facade pattern, i.e., it provides a unified high-level interface to the
parameter data structure, which is made up of several classes. The Param class provides
methods for

setting and getting single parameters,
manipulation of whole subtrees,
iteration over all parameters,

tagging parameters,

setting descriptions of parameters,
setting restrictions of parameters and

loading/storing the parameters to/from XML files.

The tree structure is implemented by a class for internal nodes and a class for leaves—
ParamNode and ParamEntry, respectively. Both classes store a name and description.
The leaves additionally contain assigned tags, restrictions and the values assigned to the
parameter. The value is stored in the class DataValue, which can efficiently store data of

80

5.4. Foundation classes

Param

+ setValue(key: String, value: DataValue, description: String, tags: String[0..*])
+ getValue(key: String): DataValue

+ begin(): Paramiterator
+ end(): Paramlterator

+ load(name: String)
+ store(name: String)

ParamEntry

4 O.*
FD + name: String
+ description: String
ParamNode + tags: String[0..¥]

+ name: String
+ description: String 1.*

+ min_float: DoubleReal
+ max_float: DoubleReal
+ min_int: Int

+ max_int: Int

+ valid_strings: String[0..¥]

3
1

DataValue

- type: Type {enumeration}
- value: Value {union}

Figure 5.3.: UML class diagram of the generic parameter handling in OpenMS.

different types using a union of different data structures. It supports integers, floating-
point numbers and strings, as well as arrays of these three basic types. The numerical
parameters can be restricted to intervals by settings a minimum and maximum value.
The string parameters can be restricted to a set of valid strings. The following code
example shows how parameters can be set and stored:

Param param;

param.setValue("debug","true");
param.setValue("mass_trace:mz_tolerance",0.1);
param.setValue("isotope_pattern:mz_tolerance",0.14);

param.store("parameters.xml") ;

In the example three parameters are set. The string parameter debug is located in
the root level of the parameter tree. The mz_tolerance parameters are located in two
different subsections. In line 6 the parameters are stored in ParamXML format. The
XML representation of the parameters in this format looks like that:

<?xml version="1.0" encoding="IS0-8859-1"7>
<PARAMETERS version="1.3">

<ITEM name="debug" value="true" type="string" description="" />
<NODE name="mass_trace" description="">
<ITEM name="mz_tolerance" value="0.1" type="float" description="" />
</NODE>
<NODE name="isotope_pattern" description="">
<ITEM name="mz_tolerance" value="0.14" type="float" description="" />

81

5. OpenMS and TOPP

9 </NODE>
10 </PARAMETERS>

DefaultParamHandler: All OpenMS algorithms provide default parameters, which should
work on most datasets. These default parameters are typically managed by the class
DefaultParamHandler. It holds two Param instances, one for the defaults and one for
the currently used parameters. Knowing the defaults allows validating parameters that
are assigned to an algorithm. For each parameter the following checks are performed:

e if the parameter name exists in the defaults,
e if the parameter type is equal to the default type and
e if the value restrictions are fulfilled.

Besides handling the defaults, DefaultParamHandler also helps keeping member vari-
ables synchronized with certain parameters. This is needed in time-critical parts of
algorithms, where the overhead of searching the parameter in the tree structure is not
acceptable. In this case, synchronized member variables with constant access time are
used. The member variables are simply updated every time the parameters change. This
is achieved by a member function of DefaultParamHandler which the derived class has
to re-implement.

TOPPBase: The last important parameter handling class described in more detail is
TOPPBase. 1t is a base class for applications based on OpenMS and handles command
line parameters. The command line parameters are registered during the initialization
of the application. The registration includes parameter names, value type, default value,
restrictions, requirement level and description. Given this information, TOPPBase can
do the parsing of command line parameters automatically, before any other code is
executed. In case of an error, a detailed description of problem is automatically generated
and the execution is aborted. The documentation of command line parameters, which is
invoked with the special parameter --help, is automatically generated as well. This kind
of automation is very convenient for programmers and users. Programmers do not need
to implement parameter handling for each application, which can be time-consuming.
The users benefit from this approach in two ways. All tools share a similar user interface
and the documentation cannot easily deviate from the functionality.

5.5. Data reduction and kernel classes

The kernel classes are the foundation of all high-level functionality of OpenMS. They
hold the actual MS data and meta data about the data. In this section, the design of
the kernel classes is described and the concept of data reduction used in OpenMS is
introduced.

5.5.1. Data reduction

Data reduction is a central concept of OpenMS and will now be considered in more
detail. Data reduction comprises two transformation steps as displayed in Fig. 5.4: The
conversion of profile spectra to centroided spectra and the conversion of a profile or
centroided map (a collection of MS spectra produced by an LC-MS experiment) to a
feature map. By feature we denote the two-dimensional signal created by some chemical
entity, e.g., a peptide or metabolite. A feature is characterized by its isotopic pattern in

82

5.5. Data reduction and kernel classes

& LA
i / AN ANNS
Y A 2V LVAN
= / VAN
o /
o/
m/z

|
g / L
£/ -
é ———
3/
o m/z

|
g /
A
% g// Convex hull
g / ——
g / / =

Figure 5.4.: The data reduction concept of OpenMS. A profile map (top) which is first
reduced to a centroided map (middle) and finally to a feature map (bottom).
The direct reduction of a profile map to a feature map is also possible.

mass-to-charge dimension and by the elution profile in retention time dimension.

Each of these reduction steps reduces the amount of data by roughly two to four orders
of magnitude. It is this kind of reduction which makes the application of sophisticated
algorithms with high runtimes in up-stream analysis steps possible. On the other hand,
information is lost in each reduction step. Special care has to be taken to retain as
much information as possible, while reducing the overall amount of data. This tradeoff
is reflected by the flexibility of the OpenMS kernel data structures.

5.5.2. Peak data

The kernel data structures store raw MS data as well as the results of the data reduction
steps, thus they are the very basis of each OpenMS application. First, we will have a
closer look at the kernel classes for peak data.

Peak maps are stored as a set of spectra, which in turn hold the individual peaks (see
Fig. 5.5). The peak type of maps and spectra is customizable through the use of template
code. Different peak types are available depending on the amount of information required
for a specific use case. Profile spectra are stored using Peak1D, which holds only an
intensity value and an m/z position. For centroided spectra RichPeak1D can be used,
which stores additional meta information, for example a signal-to-noise value calculated
from the profile data. If these predefined peak types are not sufficient, custom peak types
can be used as long as they provide the proper interface. This kind of customization

83

5. OpenMS and TOPP

ExperimentalSettings SpectrumSettings

|_ _____ 1
1 T
MSExperiment MSSpectrum ‘—-7-—— Peak1D
- retention_time: DoubleReal - position: DoubleReal
- ms_level: Integer * o |- intensity: Real

Figure 5.5.: UML class diagram of map, spectrum and peak data structures.

allows a very flexible and efficient use of the kernel classes. A 115 MiB mzData file
containing approximately 2.1 million data points can be stored in 27 MiB of RAM on a
32 bit computer.

In addition to peak data, maps and spectra also store meta information about the
experiment and spectrum acquisition, respectively. More information about the meta
data can be found in Section 5.5.4.

To make the use of theses template classes more convenient, several type definitions
are provided for maps and spectra: PeakMap and PeakSpectrum are the standard types
using PeaklD as peak type. RichPeakMap and RichPeakSpectrum allow storing of meta
data through the use to RichPeaklD as peak type.

Maps and spectra are not mere container classes. They provide a lot of convenience
functionality for sorting and iterating. The following listing shows how one can iterate
over an area of the map using a special iterator:

PeakMap map;
//... £ill the map with data
map.sortSpectra(true);

PeakMap: :Arealterator it = map.areaBegin(3000.0,6000.0,500.0,800.0);
for (; it!=map.areaEnd(); ++it)

{
cout << it.getRT() << " " << it->getMZ() << endl;

}

In lines 1 to 3 the map is created and the spectra are sorted with respect to RT. The
boolean parameter of the sortSpectra method enables sorting of the peaks according
to m/z. Sorted data is a prerequisite for the area iterator. In line 5 the Arealterator
is initialized with the intervals 3000-6000 s in RT dimension and 500-800 Th in m/z
dimension. Finally, in lines 6 to 9 the peak position of each peak in the selected area is
printed to the command line.

5.5.3. Feature data

Feature maps are produced from profile or centroided peak maps as the result of feature
detection. The feature detection step groups all peaks belonging to one chemical entity
to one feature. Just as a peak, a feature is characterized by a position in m/z dimension

84

5.5. Data reduction and kernel classes

and an intensity value. In addition, a position in RT dimension is needed, because
feature maps contain no information about spectra. However, this position information
alone would not be sufficient to reconstruct the feature creation. Thus, the feature also
contains a convex hull of all peaks that contributed to the feature (see Fig. 5.4). If
available, convex hulls of the individual mass traces can also be added.

Peak2D Metalnfolnterface

- position: DPosition<2>

- intensity: Real

RichPeak2D

i

FeatureMap r~—- Feature

- hulls: ConvexHull2D
| - charge: Int
- quality: DoubleReal

Figure 5.6.: UML class diagram of the feature data structures.

Fig. 5.6 shows the FeatureMap class and the Feature class along with its base classes.
Just as for the spectrometric peaks, base classes with different levels of detail are avail-
able for peaks with two-dimensional peaks. Peak2D is the most basic one. RichPeak2D
extends it with meta data. The Feature class adds convex hulls, quality, charge, etc. The
container for the features, FeatureMap, is a template class just as the map and spectrum
classes.

Besides peak and feature maps, there is a third map type (ConsensusMap) used for rel-
ative and absolute quantitation. Consensus maps aggregate several features from one or
several feature maps to feature groups, so-called ConsensusFeatures. Using Consensus-
Features, intensity ratios can be calculated for label-free or isotope-labeled experiments.

5.5.4. Meta data

The meta data spectra and maps are annotated with is a crucial part of MS data.
Without this information data analysis is hampered, because the experiment design and
instrumentation have a strong influence on the data processing pipeline. The impor-
tance of meta data is emphasized by the HUPO-PSI [125] effort to define the minimum
information about a proteomics experiment (MIAPE [126]) which must be provided for
publication of the data. Similar guidelines are enforced by all major journals in the field
of proteomics.

As described in Section 5.5.2, the meta data is stored along with the peak data in the
MSExperiment and MSSpectrum classes. In the following, the modeling of map and
spectrum meta data is shortly described.

85

5. OpenMS and TOPP

1

Samm SampleTreatment |
SourceFile |

—| Detector |
ContactPerson |

MassAnalyzer |
Instrument
2 2
lonSource |

Software |

ExperimentalSettings

alls

—| HPLC |Q—| Gradient |

Figure 5.7.: UML class diagram of the peak map meta data.

Peak map meta data: Peak maps mainly contain meta data about the experimental
setup—sample material, sample processing, instrumentation and operator are described.
The class EzperimentalSettings is the container for these different pieces of information
(see Fig. 5.7). The sample is described by a hierarchy of Sample instances with annotated
sample treatment information. A single sample would not be sufficient in the case of
stable isotope labeling experiments, where two or more biological samples are mixed.
As for the instrumentation, the mass spectrometer is described in the Instrument class.
It may consist of several ion sources, mass analyzers and ion detectors. The acquisition
software, which operates the instrument, can also be described. In the case of an LC-MS
experiment the LC column and the used gradient can be given as well.

Another important piece of information are contact persons. Here, the operator of the
instrument or the person who did the computational analysis of the data can be listed.
Finally, one or several source files can be given from which the data was obtained.

—| InstrumentSettings H ScanWindow |
—| SourceFile |

|—{ Acquisitioninfo H Acquisition |
|*—{ Precursor |

T' Product |

—*| DataProcessing |0—| Software

<
SpectrumSettings |4

-
-
b—
-

&b

Figure 5.8.: UML class diagram of the spectrum meta data.

86

5.6. File and database 1/0O

Spectrum meta data: Spectrum meta data mainly covers the acquisition of the data
and the processing applied. Instrument settings which can vary between scans are stored
in InstrumentSettings. This covers scan polarity, scanning method, scan windows, etc.
Several special scanning methods, e.g., MS/MS scans, require additional information
about the fragmentation of ions. This information is stored in the Precursor and Prod-
uct classes. AcquisitionInformation describes the raw micro-scans performed by the
instrument. These micro-scans are processed by the instrument software in order to
create a single spectrum.

The second focus of the spectrum settings is data processing. Each processing step ap-
plied to the spectrum is documented as a single DataProcessing instance, which contains
information about the software that performed the processing, the applied parameters
and the completion time. This information about data processing is of utmost impor-
tance for traceability and repeatability of data processing protocols.

5.6. File and database 1/0

Standardized data exchange formats are especially important because they allow seam-
less integration of different software tools into a single analysis pipeline. Therefore,
OpenMS supports the most important non-proprietary file formats. Proprietary file
formats of instrument vendors are not supported because most of the required access
libraries are available for Windows only and are not freely distributable.

Format version reading support writing support
ANDI/MS 1.0 yes no
mzData 1.0.5 yes yes
mzXML 2.1 /3.0 yes yes
mzML 1.1.0 yes yes
DTA - yes yes

Table 5.2.: Peak data file formats supported by OpenMS.

Peak data files: OpenMS supports all standard formats for peak data. ANDI/MS [104],
the fist official data exchange format for MS data is out of date, but still used by legacy
software tools. It was replaced by two modern XML formats, which were developed in
parallel. The HUPO-PSI mass spectrometry work group released the mzData [105] for-
mat in the year 2004. In the same year the Institute of Systems Biology (ISB) presented
the mzXML format with a very similar scope as the mzData format. Because both
formats were—and are still—widely used, software developers have to support mzData
and mzXML.

The existence of two standard formats was considered a barrier for adoption, especially
by instrument vendors. Therefore, in 2006 the merge of the two formats was announced.
Version 1.0 of the new mzML [107] format was released in 2008, but was not widely
adopted due to several flaws in its design and missing validation tools. After the official
release of mzML the OpenMS project started implementing it and actively contributed
to the format development. The revised version 1.1.0 of mzML was finally released in
June 2009, replacing all other formats.

Despite the fact that there is only one community-supported format left, there are still
many useful applications which do not support mzML. Thus, OpenMS has to support

87

5. OpenMS and TOPP

as many formats as possible, in order to make the integration of external tools possible.
Table 5.2 lists the most important file formats supported by OpenMS.

The following listing demonstrates how easily one can convert between mzData and
mzML format using the respective OpenMS classes:

PeakMap map;

MzDataFile infile;
infile.load("example.mzData",map) ;
MzMLFile outfile;
outfile.store("example.mzML" ,map) ;

In line 1 the data structure that holds the peak data is created. In lines 2 and 3
the input file adapter is instantiated and used to fill the map variable with the data
from an mzData file. In lines 4 and 5 the data is written to an mzXML file using the
corresponding file adapter.

1300

b) z

[Fi3EH

a) 1200 : -

Tk

e

6k

=c]

o .
¥ 1100 e

syttt
T

RT [

4k

1000

Intensity
H

2k 800

Figure 5.9.: Visualization widget examples. (a) Visualization of a profile spectrum and
the corresponding peaks spectrum as two superimposed layers. (b) Part of
an LC-MS map displayed in a 2D view.

The mzML format: Version 1.1.0 of the mzML format addresses many shortcomings
of the previous standard formats mzData and mzXML. The main improvement is the
possibility to store chromatogram data, which is indispensable for new MS techniques
such as multiple reaction monitoring (MRM).

The second main innovation of the mzML format is a very rich controlled vocabulary
(CV) which allows the annotation of MS data with essential meta data. The CV covers

88

5.6. File and database 1/0O

Figure 5.10.: Example of the 3D map visualization provided by OpenMS. A small region
of a proteomics experiment is shown.

experimental setup, MS instrumentation and information about spectra. We will now
give two examples of its use: It is possible to document all applied data processing steps,
which could not be done with previous formats. The support for hybrid instruments,
such as LTQ-Orbitrap, was improved by supporting different spectrum types in one ex-
periment.

Another important point to mention is the involvement of several MS instrument ven-
dors. This will ensure that mzML export will be supported by most instrument software
in the future.

However, the use of a CV for annotation of meta data also has disadvantages. Files
in mzML format cannot be entirely validated by standard XML tools. The validation
against an XSD schema can only check the general structure. The correct use of CV
terms in an XML element has to be checked in a second step, the semantic validation.
Thus, OpenMS offers data structures and algorithms for the validation of mzML and
other PSI formats. For the semantic validation a CV definition file and a mapping file
are needed. The mapping file defines which CV terms are allowed for a certain XML
element and which are of those terms are mandatory.

Identification and quantitation formats: As there are no official standard file formats
for quantitation and peptide identification data, we created our own formats for these
tasks (featureXML and idXML). Support for the identification formats pepXML and
protXML [10] developed by the ISB is planned for the future.

Eventually, our formats will be replaced by standard formats released by the HUPO-PSI.
Currently, we are actively contributing to the development of the upcoming HUPO-PSI
standard mzldentML, which captures the results of peptide and protein search engines.

89

5. OpenMS and TOPP

Database 1/0: Currently, most mass spectrometry tools operate on files. Because of
the constantly growing data volume created by LC-MS experiments, database systems
will become increasingly important for data management. Therefore, we developed
a database adapter that can persistently store the kernel data structures in an SQL
database. Through the use of Qt as an additional layer of abstraction, the implementa-
tion works with most SQL-compliant relational database management systems including
MySQL, PostgreSQL, ORACLE and DB2. The interface of the database adapter is very
similar to the file adapters, which is why we omit an example.

5.7. Visualization

Graphical user interfaces are important in many aspects of data analysis. In general,
they improve the usability of software, especially for users not experienced in command
line use. In scientific visualization GUIs are used to increase the accessibility of infor-
mation. Different visualizations can give a quick overview and deep insights into huge
amounts of data.

OpenMS mainly provides widgets for comprehensive visualization of peak data, meta
data and algorithm parameters. Additionally, many other widgets and dialogs are pro-
vided for convenience, e.g., a widget for creating gradients of multiple colors.

5.7.1. Peak data visualization

Visual inspection is an important data analysis tool for MS data. It can instantly
reveal properties of the data that would go unnoticed using command line tools. Errors
during separation or polymeric contamination of the sample can, for example, be easily
noticed during visual inspection of an LC-MS map. OpenMS provides efficient widgets
for visualization of single spectra or whole peak maps. A single spectrum is displayed
by a standard plot of profile or centroided data. Peak maps are displayed either in a 2D
view from a bird’s eye perspective with color-coded intensities or in a 3D view. Fig. 5.9
shows an example of the spectrum and the 2D map view. An example of the 3D view
can be found in Fig. 5.10.

All visualization widgets are intended for interactive exploration of the data. They
allow zooming into the data, measuring distances between data points and filtering
the displayed data (intensity cutoff and meta data filters). Another important feature
is customizability. Through the settings dialog provided by each view, the user can
customize many properties such as colors, icons and line widths.

In order to display two given spectra as shown in Fig. 5.9 (a) the following code could
be used:

PeakMap mapl,map2;

//... £ill the maps with data
SpectrumlDWidget* gui;

gui = new SpectrumiDWidget(Param());
gui->canvas()->addLayer (map1l) ;
gui->canvas()->addLayer (map2) ;

In line 1 two maps are created which should be filled with data in a real-world ap-
plication but remain empty in this toy example. In lines 3 and 4 the widget used for
visualization is created with an empty set of parameters. Therefore, default parame-
ters are used for peak color, background color, etc. Finally, both maps are added to

90

5.7. Visualization

the canvas subwidget. Handing over a map to the widget, although it displays only
one spectrum, is necessary, because all spectrum and map visualization widgets share a
common base class and thus a common interface.

= ;
x |
—_—
--------------------------------- Loememeeaeo-- pixel
% boundary
PoX
X | X
®® X
x ;
® a
m/z

Figure 5.11.: Illustration of the pixel-oriented painting: (1) First, the spectra which lie
inside a row of pixels are determined. (2) Intensities of all peaks that lie
inside the pixel are checked. (3) Finally, the highest intensity is assigned
to the pixel. The procedure is repeated for all pixels of the row, then the
next row is processed.

Visualization of large datasets

As the resolution of modern MS instruments is quickly improving, the amount of pro-
duced data per run is growing rapidly. Today, a single dataset can already contain several
hundred million raw data points, which corresponds to several GB file size. Visualizing
datasets of this size poses a big challenge. Especially for the 2D view, which is typically
used to display whole datasets, fast visualization techniques had to be developed. The
naive approach, painting each data point to the screen, is too slow for large datasets. In
our approach, the data is partitioned into rectangles that correspond to one pixel on the
screen. For each rectangle the maximum intensity is determined and painted onto the
screen. Fig. 5.11 illustrates the mapping of data to pixels. This approach restricts the
number of transformations from data coordinates to screen coordinates and the number
of color calculations to the number of pixels. Iterating over all displayed data points is
done in O(n), where n is the number of displayed data points (see Fig. 5.12(a)).

The downside of the pixel-oriented approach is that the runtime depends on the num-
ber of pixels (see Fig. 5.12(b)). It is slow, compared to the naive approach, when very
few data points are displayed. Therefore, a heuristic was implemented which switches
between pixel-oriented painting and the naive approach. As determining the exact num-
ber of data points on the screen requires O(n) steps, an estimation of the number of
displayed data points is used. First, the number of spectra contained in the visible RT
range is determined. Then, the number of displayed peaks of the spectrum closest to
the center of the RT range is determined. The overall number of displayed peaks is es-
timated by multiplication of these two values. Naive painting is used, when the number
of displayed data points is less than a fourth of the number of pixels. Switching between

91

5. OpenMS and TOPP

250 | 900 -)
X
800 | x
- 200 | x
é -g 700 5 X
2 150 | - 6007 L X
=i g 500 X
2 100} x 2 400 | $
s E 300f x *
© x ©
2 50} S 200t
X
o b ‘ ‘ ‘ ‘ ‘ ‘ 100 |
0 n n n n n 3
0 5 10 15 20 25 30 35 0 500 1000 1500 2000 2500 3000
data points [millions] widget width/height [pixel]
(a) (b)

Figure 5.12.: (a) 2D view painting time plotted against the number of displayed data
points. (b) 2D view painting time plotted against the widget size in pixels
(square widget). The test dataset contained 65 million data points and had
a file size of 576 MiB in mzData format.

painting modes ensures good painting performance for large amounts of data as well as
very fast painting for few data points.

The actual painting of the data is done on a buffer, which is copied to the screen. The
buffer is needed for user interaction with the data, i.e., for highlighting selected data
points and measuring distances between data points. Highlighting the selected peaks is
possible without repainting, by simply copying the buffer to the screen and painting the
highlighting on top. Repainting the buffer is only necessary when the displayed data
range or the data itself changes.

Browse in Metadata tree | Modify ionsource information.
- ExperimentalSettings

Documentldentifier

Sample M5-Sample
Istrument Inlet type [Direct |

. E-lonSource

Metalnfo lonization method [Electrospray ionisation I~

|

Order [0

MassAnalyzer
MassAnalyzer
lonDetector

Polarity [Positi\.re

E-E-B

B Software
Metalnfo
Metalnfo
SourceFile
ContactPerson
ContactPerson
HPLC
Metalnfo l oK H Cancel l

Figure 5.13.: Meta data visualization of a peak map.

5.7.2. Meta data visualization

As discussed in Section 5.5.4, meta data is an important part of MS data. Editing
meta data is frequently required for publication of the data, data management, etc. In

92

5.8. Analysis algorithms

OpenMS the MetaDataBrowser class is used to visualize and edit meta data. Fig. 5.13
shows the visualization of an FExperimentalSettings object. On the left, the tree of meta
data objects can be browsed. When an object is selected, its properties can be edited on
the right side. In the shown example the ion source of the MS instrument is selected. The
corresponding properties—ionization method, polarity, etc.—are shown on the right.

name value type restrictions
= algorithm
debug false string true,false
intensity
El-mass_trace
mz_tolerance 0.03 float min: 0
min_spectra 10 int min: 1
rax_missing 1 int min: 0
isotopic_pattern
seed
B feature

- min_score 0.7 min: 0 max: 1

reported_mz maximum string maximum,average,monoisotopic

Feature score threshold for a feature to be reported.
The feature score is the geometric mean of the average relative deviation and the correlation between the
rmodel and the observed peaks.

["] show advanced parameters

Figure 5.14.: Algorithm parameters of the feature detection algorithm for centroided
data.

5.7.3. Parameter visualization

Another frequently used widget is ParamFEditor, which displays Param objects (see
Fig. 5.14). It displays the parameter names as a tree structure in the first column.
Parameter value, type and possible restrictions are shown on the right of the parame-
ter name. In the text box on the bottom, the documentation of the currently selected
parameter is shown. The checkbox below the documentation can be used to display
additional advanced parameters.

This very general design makes ParamFEditor a versatile tool. It is used in several applica-
tions. It is the central widget of the TOPP tool INIFileEditor, providing a stand-alone
editor for parameter files. Moreover, it is integrated in TOPPView and TOPPAS, a
pipeline editor for TOPP pipelines.

5.8. Analysis algorithms

The parts of OpenMS we described so far—foundation classes, kernel classes, file 1/O
and visualization—form the scaffold used to build higher-level functionality like analysis
algorithms. OpenMS offers a wide range of algorithms covering data reduction (see Sec-
tion 5.5.1), map alignment and protein/peptide identification. In the following sections,
selected algorithms of OpenMS are presented using small code examples.

93

5. OpenMS and TOPP

5.8.1. Signal processing

OpenMS offers several filters to reduce chemical and random noise as well as baseline
trends in MS measurements. Profile spectra may either be denoised by a Savitzky-Golay
filter or a peak-area-preserving Gaussian low-pass filter. Both smoothing filters are com-
monly used and recommended for spectrometric data [127, 128]. For the baseline in MS
experiments, no universally accepted analytical expression exists. Hence, we decided
to implement a nonlinear filter, known in morphology as the top-hat operator [129].
This filter does not depend on the underlying baseline shape and its applicability to MS
measurements has already been shown in [130]. For extraction of the accurate informa-
tion about the mass spectral peaks in a profile spectrum we developed an efficient peak
picking algorithm [64] that uses the multi-scale nature of spectrometric data. First, the
peak positions are determined in the wavelet-transformed signal. Afterward, important
peak parameters (centroid, area, height, full-width-at-half-maximum, signal-to-noise ra-
tio, asymmetric peak shape) are extracted by fitting an asymmetric peak function to the
profile data. In an optional third step, the resulting fit can be improved further by using
techniques from nonlinear optimization. In contrast to currently established techniques,
our algorithm yields accurate peak positions even for noisy data with low-resolution and
is able to separate overlapping peaks of multiply charged peptides.

Intensity

g
g

g
g

. .
o .
-
. i Mﬁ%) ‘ | | ‘H
. . » L | il | |
I T e A BT e e e e e e

Figure 5.15.: Signal processing example on low-quality data: From the profile spectrum
(left) the baseline is subtracted (middle) and then centroiding is performed
(right).

The next code example demonstrates a small analysis pipeline consisting of a baseline
reduction and a peak picking step:

PeakMap exp_profile;

//... £ill the map with data
MorphologicalFilter mf;

mf .filterExperiment (exp_profile);

PeakMap exp_centroided;
PeakPickerCWT pp;
pp-pickExperiment (exp_profile, exp_centroided);

After filling the PeakMap the baseline is removed using the class MorphologicalFilter.
Then, the peak centroids are detected and stored in exp_centroided. In this example no
algorithm parameters are explicitly set, so the default parameters are used. Fig. 5.15
visualizes the effect of the above program on a single profile spectrum.

94

5.8. Analysis algorithms

5.8.2. Feature detection and quantitation

Feature detection is a central concept in OpenMS. As noted before, a feature is char-
acterized by its mass-to-charge ratio, the centroid of its elution curve and the signal

area.
& \ /@ ol

&»

centroid RT .|

T T T T T T T T T
00 0 1, 50020 25 30 35 0 5 50

monoisotopic m/z

Figure 5.16.: The OpenMS feature model. The averagine model (left) and the corre-
sponding isotope wavelet (right) used by our algorithm for mass 2000 Da
and charge 1.

OpenMS includes several algorithms for the detection of peptide features in LC-MS

data. The quantitation algorithm presented in Chapter 3 is available as the centroided
algorithm. It is applicable to centroided data, and to medium- and high-resolution profile
data after centroiding. For profile data with low resolution the simple and isotope_wavelet
algorithms can be used.
All our approaches are based on a two-dimensional model. We use the averagine isotope
model to approximate the amino acid composition for a peptide of a given mass. From
this we can estimate its atomic composition and derive its isotope distribution in a
mass spectrum [131]. Similarly, we approximate the elution curve by a Gaussian or
exponentially modified Gaussian distribution [74]. The combined two-dimensional model
can be seen in Fig. 5.16. In addition, our isotope pattern model takes different mass
resolutions into account by incorporating a parameter for the width of the isotopic peaks
in a feature.

Fitting the two-dimensional model is an expensive computational task, especially
on profile data. Therefore, it is important to select the candidate regions carefully.
Thus, we designed the isotope_wavelet algorithm [132, 70] that uses a hand-tailored
isotope wavelet [73] to filter the mass spectra for isotopic patterns of a given charge
state. The isotope wavelet explicitly models the isotope distribution of a peptide (see
Fig. 5.16 right). This prefiltering results in a lower number of potential peptide candi-
dates that need to be refined using the model fit. The next code example demonstrates
how the feature detection can be used:

PeakMap exp_profile;

//... f£ill the map with data
FeatureMap<> features;
FeatureFinder ff;

95

5. OpenMS and TOPP

5 ‘ff.run("centroided", exp_profile, features, Param());

The experimental data are stored in a PeakMap and the extracted features in a Fea-
tureMap. To quantify, we invoke the run method of the FeatureFinder. It is a template
function, therefore, other data structures for input and output are supported as well.
Various types of algorithms are available—in this case we choose centroided. As in the
examples before, algorithm parameters are handed over in a Param object. Each algo-
rithm has a different set of parameters, which can be read from a ParamXML file or set
directly in the code.

5.8.3. Map alignment

An important step in a typical LC-MS analysis workflow is the combination of results
from multiple experiments, e.g., to improve confidence in the obtained measurements
or to compare results from different samples. In order to do so, a suitable mapping or
alignment between the datasets needs to be established. The alignment has to correct
for random and systematic variations in the observed elution times that are inevitable
in experimental datasets.

mapl +
map2 ©

m/z

(a) before alignment (b) after alignment

Figure 5.17.: Map alignment example. Left: Two feature maps with varying retention
time and mass-to-charge dimensions. Right: The features of the second fea-
ture maps were transformed onto the coordinate system of the first feature
map.

OpenMS offers algorithms to align multiple experiments and to match the correspond-
ing ion species across many samples. A novel and generic algorithm was developed to
correct for the variation of retention time and mass-to-charge dimensions between two
maps. It uses an adapted pose clustering approach [133, 134] to efficiently superimpose
peak maps as well as feature maps. In Fig. 5.17 two feature maps are shown. In the
left plot the retention times and the mass-to-charge ratio of corresponding features vary
extremely and corresponding ion species are hard to determine. However, after the map-
ping of the two feature maps onto a consistent coordinate system the correspondence
between the two maps can easily be seen in the right plot.

To detect and combine corresponding features in multiple feature maps to a so-called
consensus map, we developed an algorithm based on techniques from computational
geometry. The superimposition algorithm and the algorithm for the determination of

96

10

11

12

5.8. Analysis algorithms

a consensus map are combined to a star-wise approach for the alignment of multiple
peak or feature maps. The overall methods are fast, reliable and robust, even in the
presence of many noise signals and large random fluctuations of retention time. Details
of the map alignment algorithms can be found in [135]. In the following code example
three feature maps are aligned, corresponding features are grouped and the resulting
consensus map is stored in a file:

vector< FeatureMap<> > maps(3);

//... £ill the feature maps with data
MapAlignmentAlgorithmPoseClustering mla;
vector< TransformationDescription > trafos;
mla.alignFeatureMaps (maps, trafos);

ConsensusMap output;
FeatureGroupingAlgorithmUnlabeled fga;
fga.group(maps,output) ;

ConsensusXMLFile file;
file.store("output.xml", output);

After instantiating a vector of three feature maps in line 1 they are filled with data in
line 2. In lines 3 to 5 a MapAlignmentAlgorithmPoseClustering object is used to correct
the retention time distortions between the maps. Grouping of corresponding features is
done in the lines 7 to 9. To store the resulting consensus map in consensusXML format
we use the appropriate file handler in lines 11 and 12.

5.8.4. Retention time prediction

Peptide identification is an essential step in MS/MS data analysis. A major problem
with existing identification routines lies in the significant number of false positive and
false negative annotations. So far, standard algorithms for protein identification have
not used the information gained during the separation processes usually involved in pep-
tide analysis, such as retention time information. Identification can thus be improved
by comparing measured retention times to predicted retention times. Current prediction
models are derived from a set of measured test analytes but they usually require large
amounts of training data.

OpenMS offers a new kernel function, the paired oligo-border kernel (POBK), which can
be applied in combination with support vector machines to a wide range of computational
proteomics problems. This enables the user to predict peptide adsorption/elution behav-
ior in strong anion-exchange solid-phase extraction (SAX-SPE) and ion-pair reversed-
phase high-performance liquid chromatography. Using the retention time predictions
for filtering significantly improves the fraction of correctly identified peptide mass spec-
tra. OpenMS offers a wrapper class to libSVM [103] for support vector learning. Our
POBK is well-suited for the prediction of chromatographic separation in computational
proteomics and requires only a limited amount of training data. Usually 40 peptides are
sufficient. A more detailed description of the methods for retention time prediction, as
well as the application of the retention time prediction to improve tandem MS identi-
fication results, can be found in [88]. The following code example shows how retention
times can be predicted:

97

5. OpenMS and TOPP

SVMWrapper svm;

svm_problem* training_data = NULL;
svm_problem* test_data = NULL;
//... load and encode data

//... set parameters of svm
svm.train(training_data) ;

vector<DoubleReal> predicted_rts;
svm.predict(test_data, predicted_rts);

After loading and encoding the data using the LibSVMEFEncoder class, one has to set
the parameters of the support vector machine. It is also possible to determine the best
parameters by performing a cross validation over parameter ranges. Afterwards the
SVM can be trained. The trained SVM can then be used to predict retention times. At
the end of the code example the predicted retention times are stored in the predicted_rts
vector.

5.9. TOPP

The rapid development of both instrumentation and experimental techniques in mass
spectrometry, make data analysis a difficult task. Analysis software has to be adaptable
to different MS instruments with differing properties of the recorded signal. Moreover,
the analysis strategy has to be adaptable to the experimental setup of different studies.
Thus, it would be desirable to have a flexible toolbox, which facilitates data analysis and
development of new analysis methods.

To address these issues we have developed TOPP — The OpenMS Proteomics Pipeline [68].
TOPP is a collection of command line tools for rapid development of data analysis
pipelines in proteomics and metabolomics. Each TOPP tool performs one atomic analy-
sis step, e.g., peak picking, normalization or map alignment. Complex analysis pipelines
are constructed by combining several TOPP tools. A TOPP analysis pipeline can be
easily adapted to new experiments or new analysis strategies: Parameters of the tools
can be adapted or parts of the pipeline can be easily exchanged. The added value arising

from such a modular concept was demonstrated by other bioinformatics toolboxes like
EMBOSS [101].

Most other MS data analysis tools [16, 136, 109, 137, 14, 11, 113, 13, 138, 12] do
not provide the flexibility of a customizable pipeline. They focus on a single analysis
step, offer only a fixed sequence of analysis steps or are not executable in batch mode.
However, some of these applications can be interfaced with TOPP using the standard

file formats mzML [107], mzData [105] or mzXML [106].

Next to flexibility, ease of use is the second focus of TOPP. Binary installers of TOPP
are available for Windows, MacOS and Ubuntu Linux. Along with the TOPP tools, doc-
umentation and tutorials are installed in PDF and HTML format. The documentation
covers a general introduction, first analysis steps, more complex use cases.

The following sections will give a short overview and demonstrate the flexibility of
the TOPP tools using three example pipelines. Then, TOPPView, the data viewer
application of TOPP, is described. Finally, we demonstrate the use of TOPPAS to
visually construct and edit TOPP pipelines.

98

5.9. TOPP

5.9.1. Packages

The individual TOPP tools can be grouped into several distinct packages: file handling,
signal processing, quantitation, identification, peptide property prediction and misc (see
Fig. 5.18). We will now briefly discuss the most prominent tools of each package.

~(File handling)— (Signal processing)— (Quantitation O
FileInfo DBImporter BaselineFilter MapNormalizer FeatureFinder ITRAQAnNalyzer
FileConverter DBExporter NoiseFilter InternalCalibration FeatureLinker SILACAnalyzer
FileFilter IDMerger PeakPicker ~ TOFCalibration MapAligner
FileMerger TextExporter Resampler AdditiveSeries
DTAExtractor Textlmporter SpectraFilter Decharger

(Identification)— (Peptide property prediction >—— {Misc O
IDFilter RTModel TOPPView
Consensus|D RTPredict TOPPAS
FalseDiscoveryRate PTModel INIFileEditor
MacotAdapter PTPredict IDMapper
SequestAdapter

Figure 5.18.: The TOPP tools are grouped into several packages, each addressing one
major area of functionality.

File handling

File handling is important for all data analysis pipelines, as there are several open stan-
dard formats and many proprietary vendor formats. FileConverter converts between
several commonly-used file formats. Supported formats are mzXML [106] (ISB), mz-
Data [105] (HUPO-PSI), mzML [107] (HUPO-PSI), ANDI/MS [104] and several other
text-based formats.

FileFilter allows extraction of data from an MS file based on a combination of restricting
rules. Peaks can be filtered according to RT interval, m/z interval, intensity interval and
signal-to-noise ratio. Filters for whole spectra are for example spectrum type, MS-level
and precursor peak m/z. The FileMerger tool is used to merge data from several files
into one file.

FileInfo shows basic information about MS files, i.e., m/z range, RT range, intensity
range and spectrum type. Additionally, meta data about sample, instrumentation, op-
erator and applied processing can be shown. It can also be used for validation of XML
file formats and for checking if peak data files contain corrupt data.

All TOPP tools are file-based. Database connectivity is provided through two auxiliary
tools. DBEzporter exports MS data from an OpenMS database to one or several files.
Data can be imported into the database using DBImporter. Database connectivity is
especially useful to distribute data for grid and workflow applications.

Signal processing

MS profile data always contains chemical noise and white noise. For some instrument
types strong baseline fluctuations are also common. In order to increase the reliability
of the data in downstream analysis steps, this noise and baseline should be removed.
For noise reduction two smoothing filters are provided through the tool NoiseFilter: a
Gaussian low-pass filter and a Savitzky-Golay filter [127].

99

5. OpenMS and TOPP

Baseline reduction is performed with the BaselineFilter. It implements several mor-
phological filters, of which the top-hat filter is best suited for removal of MS spectrum
baseline.

The most important signal processing step is peak picking, the reduction of profile data to
centroided data. The algorithm of the PeakPicker tool [139] uses wavelet-transformation
of the signal to detect approximate peak positions. All other properties (exact centroid
position, intensity, width, symmetry) are determined by fitting an asymmetric peak func-
tion to the data. In an optional, third step the detected peak positions can be further
improved by methods from nonlinear optimization.

Quantitation

For absolute or relative quantitation of compounds in an LC-MS experiment all peaks
belonging to a chemical species have to be aggregated to one feature. The FeatureFinder
tool offers several algorithms to perform this task. The algorithms differ in the input
data type and the used techniques to detect features:

e centroided - The feature detection algorithm for centroided data described in Chap-
ter 3.

e simple - A feature detection algorithm for profile data based on a statistical
model [69].

e isotope_wavelet - A feature detection algorithm for profile data based on a hand-
crafted wavelet for isotopic distributions [73, 70].

After detecting features, they often have to be grouped to perform the actual quantita-
tion. Depending on the experimental setup, features are grouped within a single map
(e.g., for ICAT [32] experiments) or across multiple maps (e.g., label-free approaches).
The FeatureLinker tool offers several algorithms for grouping features. In label-free ex-
periments with several measurements the RT has to be corrected before grouping can be
performed. The MapAligner corrects retention time distortions between several maps
through a star-wise alignment of the maps.

For the isotopic labeling techniques SILAC [33] and iTRAQ [34] the specialized tools
SILACAnalyzer [140] and ITRAQAnalyzer, respectively, were developed.

Identification

There are plenty tools for identification of MS/MS spectra by database search or de
novo sequencing. TOPP offers several adapters for those identification tools: Mas-
cotAdapter [9], SequestAdapter [31], InspectAdapter [141], OMSSAAdapter [142] and
XTandemAdapter [143]. The adapters transform the input spectra and settings to the
format required by the search engine. The results of the search are parsed and stored
as an idXML file. The results can be filtered according to peptide/protein hit scores by
IDFilter. Decoy database searches and calculation of false discovery rates is supported
through the tool FalseDiscoveryRate.

Peptide property prediction

Identification engines report many false-positive peptide hits. The number of false pos-
itive hits can be reduced by taking secondary information like peptide RT and proteo-
typicity into account. The tools RTModel and RTPredict are used to create a model
and predict peptide RT [88]. After prediction of peptide retention times, peptide hits

100

5.9. TOPP

with a large deviation between measured and predicted RT can be filtered out.
Prediction of peptide proteotypicity [144] can be utilized in a similar way. The tools
PTModel and PTPredict are used for this task.

Misc

This package contains the graphical TOPP tools and tools that do not fit into other
packages. Visual inspection of raw MS data and processing results is a fast and conve-
nient method to assess the quality of the data. Therefore, TOPPView was developed,
a powerful viewer for MS data and the graphical user interface for TOPP. It offers view
modes for single spectra, whole LC-MS maps, feature maps and consensus maps. A
detailed description of TOPPView can be found in Section 5.9.3. TOPPAS facilitates
the use of TOPP by visual creation and execution of TOPP pipelines.

5.9.2. Example pipelines

The simplest way to set up an analysis pipeline with TOPP is using shell scripts. The
TOPP tools are called in a defined order and results are passed on from tool to tool. In
this section, the use of TOPP is illustrated by means of three important building-blocks
of complex analysis pipelines. The first example pipeline shows the transformation of
profile to centroided data. The second demonstrates peptide identification. The third
shows how absolute label-free quantitation is performed with TOPP.

Signal processing

The first step of a typical analysis pipeline is signal processing. The TOPP tools for
signal processing are NoiseFilter, BaselineFilter and PeakPicker. First, the NoiseFilter
is used to smooth the data. Smoothing positively affects all following signal processing
steps. Then, the BaselineFilter can be applied if the signal contains a baseline which
must be removed. Finally, the profile data can be transformed to centroided data with
the PeakPicker. This step reduces the amount of data by several orders of magnitude.
Most high-level analysis steps, e.g., peptide identification, work only on centroided data,
which is why peak detection is necessary in all analysis pipelines starting with profile
data. The following script applies the described processing:

#smoothing of profile data

NoiseFiler -in profile.mzML -out smoothed.mzML -ini sp.ini
#baseline filtering

BaselineFilter -in smoothed.mzML -out baseline.mzML -ini sp.ini
#transformation to centroided data

PeakPicker -in baseline.mzML -out centroided.mzML -ini sp.ini

The algorithm parameters used are handed over to the tools in the common config-
uration file sp.ini. It contains individual sections for each tool. For signal processing
the main parameters deal with describing the peak shape, e.g., the peak width in m/z
dimension.

Peptide identification

Peptide identification based on MS/MS spectra is probably the most important analysis
step of proteomics pipelines. The standard procedure is to compare the recorded MS/MS

101

5. OpenMS and TOPP

spectra to theoretical spectra generated from a peptide database [6]. The peptide hit
scores obtained by these searches are dependent on the search engine and the database
used. Thus, results of different searches are often not comparable. To make them
comparable, a background distribution of false positive hit scores can be used to calculate
the false discovery rate corresponding to a score [145]. The background distribution is
often determined by searching against a database with decoy sequences, e.g., tryptic
peptides of reversed protein sequences. The following script demonstrates a typical
peptide identification pipeline:

#extract MS/MS spectra

FileFilter -in run.mzML -out ms2.mzML -level 2

#peptide identification (forward search)

MascotAdapter -in ms2.mzML -out id.idXML -ini id.ini
#peptide identification (reverse search)

MascotAdapter -in ms2.mzML -out id_r.idXML -ini id_rev.ini
#Assign false discovery rates

#Filter htits
IDFilter -in id_£fdr.idXML -out id_filtered.idXML -ini id.ini

First, the MS/MS spectra are extracted from the MS run using FileFilter. Masco-
tAdapter, a wrapper for the Mascot [9] search engine, is used to generate lists of peptide
identification candidates for each MS/MS spectrum. The search against the reversed
database is performed with the same tool. Then, the two search results are fed into
FalseDiscoveryRate to calculate false discovery rates for all peptide hits. In the last
step, IDFilter is used to filter the peptide and protein hits according to false discovery
rates.

Absolute label-free quantitation

The second main application of MS is peptide quantitation. As an example, the pipeline
for absolute label-free quantitation of human myoglobin, a marker for myocardial in-
farction, in blood serum is used. The experimental setup has already been described
in detail [146], so it is only shortly summarized here. The quantitation was performed
using an additive series, i.e., adding known amounts of human myoglobin to aliquots
of the sample with unknown concentration. In total, 32 measurements were performed:
three technical replicates of eight addition experiments with different spiked amounts.
To further lower the quantitation error, a known amount of horse myoglobin was added
as an internal standard. The following script implements an analysis pipeline for the
quantitation:

#Find features in all measurements
for i in ‘seq 1 32¢; do
FeatureFinder -in $i.mzData -out $i.featureXML -ini quant.ini
done
#Align feature maps
MapAligner -ini quant.ini
#Calculate a linear regression

AdditiveSeries -ini quant.ini

102

FalseDiscoveryRate -in_fwd id.idXML -in_rev id_r.idXML -out id_fdr.idXML

5.9. TOPP

First, the peptide features of all peak maps have to be determined using the Fea-
tureFinder tool. In a second step, the MapAligner aligns all feature maps to correct
for retention time distortions. Finally, the feature intensities of myoglobin (human and
horse) are used to calculate the final concentration by linear regression. Using this au-
tomated analysis a concentration of 0.417 ng/ul was determined (true value is 0.463
ng/pl). Whereas a manual expert analysis yielded a result of 0.382 ng/pul.

TOPPYiew - [PeakPickerCWT.mzDatal =10l x|
@ Fle Teols layer Windows Help
e s @
Lavers
Feak Pic ke CWT.m zData
I akricker-it-mz | | W PeakPicke CWT.mz0ata
Luus P . . . F3 PeakPickerCWT_output.mzData
1 1 1
a0- i | i
1 1 1
g20- i i i
1 1 1
- T o
‘ fg_uoo ! ! WS level RT
., B0- f ' !
b ! ! ! i MSL 475.321
o i 1 P —
5 50 Jl.ooo
B
! Datafilters
30- !
| .
20- |
1
e T . PN AN A U
135 940 a4*
m/z [] Enable/disable all filters
||RT: ||rn|"z: ||Int: |d

Figure 5.19.: The figure shows the TOPPView main window with an open 1D view.
The view contains two layers, one with profile data (blue) and one with
the corresponding centroided data (red).

5.9.3. TOPPView

TOPP was designed as a collection of command line tools, which each perform a single
analysis task. This design makes TOPP very flexible and easy to integrate into complex
analysis pipelines, which is especially important from a computer scientist’s point of
view. On the other hand, it makes TOPP hard to use for natural scientists which are
not experienced in command line use. Therefore, a central GUI for the TOPP tools was
developed: TOPPView [147] offers a Multi Document Interface (MDI) with advanced
visualizations of the main data types of typical analysis pipelines. TOPPView is not only
the visual front-end for TOPP. The second main use of TOPPView is visual exploration
of the data, which is a very effective way to detect problems during the measurement or
errors during data processing.

Several other MS data viewers are available, but most are not as flexible and power-
ful as TOPPView. Each MS instrument comes with vendor software for visualization
and processing of the acquired data. However, vendor software is not freely available
and cannot import data from other instruments. The latter is a major drawback when

103

5. OpenMS and TOPP

working with several MS instruments of different manufacturers. A viable alternative to
instrument software is freely-available software: Pep3D [148] displays LC-MS maps as a
density plot with highlighted precursor peak positions. Another viewer, mslnspect [12]
can both visualize MS data and offers several data processing algorithms. The visual-
ization consists of plots for whole LC-MS maps and plots for single spectra. Insilicos
Viewer [149] displays the total ion current chromatogram of an LC-MS map and the
spectrum corresponding to a selected time point of the chromatogram.

LEMS - centroided mzData F LCMS -centroided mzData (30)

4450 -

4400

Ww‘
=

4350 -

4300 : : \3 e

RT [sec]

i

e

4150 -

650
MZE [Th]

Figure 5.20.: Left: A 2D view displaying part of an LC-MS peak map is shown (col-
ored dots) along with the corresponding feature outlines (black polygons).
Right: The peak data from the left in a 3D view.

Main features

TOPPView shares many features with the viewers mentioned above, but also offers
several unique features which set it apart. The main features of TOPPView are described
in this section.

The views: TOPPView can be used to visualize MS peak maps (centroided and profile),
feature maps and consensus feature maps. For peak data, several views are available:
single spectra are shown in a 1D view, a plot of peak m/z on the x-axis and peak intensity
on the y-axis (see Fig. 5.19). Whole LC-MS maps are displayed in a 2D view from bird’s
eye perspective with color-coded intensities. Smaller parts of LC-MS maps can also be
displayed in a 3D view for closer inspection (see Fig. 5.20). Feature maps and consensus
maps can be displayed in the 2D view.

Each of the views supports zooming into the data, measuring distances between data
points and customization through a preferences dialog. All views are part of the OpenMS
library and, thus, can be reused to create custom viewer applications.

Layer interface: The most powerful new feature of TOPPView is the layer interface.
Each view can display several layers, i.e., several datasets, at a time. This is often
superior to displaying only one layer. In the 1D view, profile data and centroided data

104

5.9. TOPP

can be displayed together in order to assess the performance of peak detection algorithms.
Another use case would be to display recorded MS/MS spectra and theoretical MS/MS
spectra side by side. In the 2D view the layer concept becomes even more powerful.
Peptide feature centroids and convex hulls can be displayed along with the peak data
in order to supervise feature detection. The performance of map alignment can be
easily checked by displaying the aligned data in one window. Examples can be found in
Fig. 5.19 and Fig. 5.20.

Data filters: Another key concept of TOPPView is data filtering. Displaying only part
of the data is often desirable because of the vast amount of data. For each displayed
dataset filters can be added, e.g., all peaks above an intensity threshold. The filters can
also be based on annotated meta data of the features, e.g., the estimated charge of a
peptide features.

x|
TOPP tool: [MNoiseFilter - [gaussian | v]

-]
input argument: [in |vl
-]

output argqument: [out -

names |\.ra.lue |nrpe | restrictions
e in string
> out string
type gaussian string
[=]- algarithm
i gaussian_width 0.2 float
ppm_tolerance 10 float

Lo use_ppm_tolerance false string

specification of the peak width, which is depandent of the m/z valus.
The higher the value, the wider the peak and therefore the wider the gaussian.

D Show advanced parameters

(o [o] T [o]

Figure 5.21.: This screenshot shows the TOPP tools dialog in TOPPView. The Gaus-
sian noise filter is selected and its main parameters are shown. Advanced
parameters could be enabled using the check box at the bottom. Below the
parameters the description of the currently selected parameter is displayed.

TOPP integration: TOPPView also offers rich data analysis functionality through the
integration of the TOPP tools (Fig. 5.21). When a user opens the TOPP dialog, a
selection of TOPP tools that can process the data in the active layer is given. After
selecting a tool, its parameters are shown and can be adapted to the data to process.
The processing is performed in the background in a second thread, so that the user
can continue to interact with TOPPView. When the processing is finished, the results
are loaded and can be opened in a new window or in an additional layer of an existing
window.

The GUI to the TOPP tools is especially useful to find suitable algorithm parameters

105

5. OpenMS and TOPP

for a dataset. As an example, optimizing the peak picker parameters is described in the
following: Starting with an LC-MS peak map, a single spectrum can be selected and
opened in a 1D view. The selected spectrum is run through the PeakPicker algorithm.
The resulting centroided data can be displayed along with the profile data, which makes
a quick visual assessment of the algorithm performance possible. The user can now
adapt the algorithm parameters and rerun the tool, until suitable parameters are found.

Meta data visualization: When submitting MS data to public databases, e.g., PRIDE [150],
certain meta data is required. Often, at least part of the meta data required by MI-
APE [126] or journal guidelines is missing. TOPPView offers a GUI for MS meta data,
which is a very convenient way to complement the missing information.

=10l x|
il Pipeline Windows Help
o
[signal_processing. oppas [
Toal [~]
- <input file list> T
<Output file> ~ @
- <Output file list>
o AdlditiveSaries (sl 0 NeiseFifter
BaselingFiher Ealey
[}~ Comphova
- Consansus o
DEEx parter L
DEImparter
b OTAExtractor
.. Dacharger
FalseDiscoveryRate
[} FeatureFinder Z @
[} FeaturaLinker
FilzConverter
- FileFilter BaselineFiter
. FileInfo
- Fileerger
|DDecayProtability 2
b |DFileConvertsr
- IDFilter
IDMapper
< IDMerger
... IDRTCalibration &3 @
[}~ ITRAGANalyzer
i inspecthdapter PeakPicker
o InternalCalibration o i
L el prire - Qutput fike list
Mapharmalizar s 4
- MascotAdapter

. MascotAdapterOnline 3
- MoiseFilter

[| 4

Figure 5.22.: Screenshot of TOPPAS showing a typical signal processing pipeline.

5.9.4. TOPPAS

The modular design of TOPP allows a very flexible use, but has one major drawback.
The user has to work through a command line interface and has to write scripts to con-
veniently apply TOPP pipelines to several data files. Especially Windows users are not
familiar with command line interfaces, which makes using TOPP difficult. TOPPView
already allows execution of single TOPP tools from a GUI. To facilitate the use of larger
pipelines, a graphical user interface for whole pipelines was created: TOPPAS allows
the creation and execution of TOPP pipelines in a convenient way.

Fig. 5.22 shows a screenshot of TOPPAS visualizing a simple signal processing pipeline.
Pipelines are created by dragging tools from the toolbar on the left to the workspace
and connecting the tools via edges. Edges represent the data flow between tools. During
the creation process, TOPPAS performs sanity checks to avoid the construction of inop-
erative pipelines. The parameters of each tool can be visually edited by double-clicking
a tool. Pipelines can be stored and loaded as .toppas files in a simple XML-based file
format.

106

5.10. Project management

When the pipeline is fully configured, it can be executed—either in the GUI or in the
command line. In the GUI execution mode, colors are used to indicate the status of the
pipeline. Additionally, a log window shows the output of the tools and error messages.
In case of an error, the pipeline can be modified and restarted where it aborted. After
execution of a pipeline, the output of the pipeline can be opened in TOPPView through
the context menu.

The CLI execution is intended for batch execution of a pipeline, or for scripting. To use
it, TOPPAS is called with the command line parameter —ezecute. In this mode a given
pipeline is executed only—the GUI is not shown.

Home - Classes - Annotated Classes - Modules - Members - Namespaces - Related Pages

OpenMS / TOPP documentation

16.0
TOPP OpenMS Developers
) Infarmation for software development based on
Information for TOPP users. OpEnks.
Installation instructions: Installation instructions: The OpenMS project was initiated by Prof.
Oliver Kohlhacher and Prof. Knut Reinert in
« |nstallation on Linux e |nstallation on Linux 2003,
* [nstallation on MacOS ¢ |nstallation on Mac 0S X
Installation on Windows * [nstallation on Windows Currently the main developers of OpentS are:
Documentation Documentation * Stephan Aiche
Mac port, simuiation
¢ TOPP tutorial * OpenMs tutorial ® Andress Bertsah
* TOPP documentation e Coding conventions proteinipeptice igentification
* UTILS documentation * Programming with OpenMS o Chris Biclow
Misc: Misc: ITRAQ quantiiation, decharging,
Windows port, simuiation
* FAQ * FAQ * Clemens Grapl
* Contributing ® Contributing quaniitation, map alignment
s ChangelLog s ChangelLog * Rene Hussong
sighal processing, pattern recoghifion
® hico Preifer
proteinfpeptide identification, prediction
of peptide properties
® hAarc Sturm

soffware design, fiie formats,
visualization, quantitation
Alexandra Zerck

sighal processing, calibration

Figure 5.23.: Screenshot of the OpenMS documentation start page.

5.10. Project management

The OpenMS library is a large project with many contributors from different geographi-
cal locations. Currently it offers more than 500 classes that add up to about 200,000 lines
of code. A project of this size requires a significant amount of project management to
ensure a high quality standard. The following sections will describe the most important
aspects of project management in the OpenMS project.

107

10

11

12

13

14

15

16

5. OpenMS and TOPP

5.10.1. Version control system

Source code version control systems are essential for all software projects. The most
obvious benefit is that simultaneous editing of one source file by two or more persons is
possible. Version control systems assist the developers with merging of code versions and
help to resolve occurring conflicts. Another very important use case is the management
of release branches and merging bug fixes between development and release branches.
These features make a version control system indispensable.

For the OpenMS source code the version control system Subversion [38] is used. The
Subversion server is provided by SourceForge [115], a development platform for open-
source software. OpenMS also uses SourceForge infrastructure for the project website,
distribution of release packages, mailing lists and bug tracking.

5.10.2. Coding conventions

Individual programming style highly affects the readability of source code. Each pro-
grammer has its own style in terms of brackets, variable names, etc. In order to ensure
good readability a fixed style has to be enforced for larger projects. However, it should
not restrict the individual programmer too much. The OpenMS project mainly enforces
class, method and variable names through the Coding convention [151]—a part of the
documentation.

Unfortunately, such rules are often ignored, unless enforced. Thus, the PHP [152] script
checker.php is provided that checks for coding convention violations. In order to check
variable and method names an XML representation of the OpenMS classes created by
Doxygen [114] is used. Additionally, several other checks are performed, e.g., if a test
has been written for each method of a class.

5.10.3. Documentation

As stated in Section 5.2, documentation of the source code is a very important part of
each software project. OpenMS uses Doxygen [114] to generate the class documentation
in HTML format. Doxygen extracts the documentation from the source code, which
ensures that the documentation and the implementation cannot diverge. The following
listing show an example class with Doxygen documentation:

/%%
@brief Short class documentation.

More elaborate class documentation,
consisting of several lines.
*/
class Example
{
public:
///Default constructor
Example(Q);
/ *%
@brief Member that sets the name.

Oparam name The name to be set.

*/

108

17

18

19

20

21

22

23

24

25

26

27

28

5.10. Project management

void setName(const String& name);
VETS
@brief Member that returns the name.

@return The name of this class.
*/

const String& getName() const;

protected:
///string member
String name_;

Doxygen defines its own commands, which are used to document the source code.

Some HTML tags can also be used to format the documentation and even INTEX formulas
can be integrated.
Besides generating the class documentation Doxygen allows adding custom pages. This
mechanism is used to integrate other relevant information into the class documentation.
On the documentation main page (see Fig. 5.23) installation instructions, tutorials,
coding convention, FAQ and many other pages are referenced.

Monday, May 28 20058 08:22:11 MOT

Login | Dashboards

OPENMS
Dashboard

DASHEOARD CALENDAR PREVIOUS CURRENT PROJECT
e S) B

Configure Build Test
Site

Warn Min Error Warmn Min NotRun | Fail | Pass | Min
dizzepam linux-52hit-fecd . 2-make-debug 0.4 I 5.6
diazepam linug-532bit-geed 3-make-debug-stl 04 I 24 4
digzepam linux-32hit-geed . 3-make-relegse 0.3 i 3
dizzepam linux=-52hit-geed 4-make-debug 04 8 53
aride linux-E4hit-geed 2-make-dehbug 03 I 4.2
pride linus-E4bit-geed S-rake-debug-stl 03 I 134
aride linux-64hit-geed 3-make-release 03 i 21
aride linux-64hit-geed 4-make-debug 03 8 4
microcebus o5x-leopard-gec-4 0-debug 0.2 a0 5.5
microcebus osx-leopard-gec-4 0-release 0.1 a0 3.8
microcebus ogx-leopard-gec-4 0-xcode-debugy 05 a0 5.5

Figure 5.24.: Screenshot of the OpenMS nightly builds page.

109

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

5. OpenMS and TOPP

5.10.4. Testing

A fundamental step in software development is testing. In OpenMS different testing
techniques are used: All classes throw exceptions when they receive invalid input or
enter an invalid internal state. Additionally preprocessor macros enable assertion checks
if OpenMS is build in Debug mode. These very basic tests can however not make sure
that a class behaves according to its specification. In order to achieve this, unit tests are
used, which check the behavior of each class.

Unit testing: Several different approaches for unit testing are available. We decided to
use simple specification-based black-box testing for OpenMS.

In order to facilitate testing, a framework of preprocessor macros is used to set up the
testing environment and perform subtests for each method of the tested class. The
following listing shows part of the String test:

#include <OpenMS/CONCEPT/ClassTest.h>
#include <0penMS/DATASTRUCTURES/String.h>

START_TEST(String, "$Id: String_test.C 5019 2009-04-05 20:49:49Z ms $")

String* s_ptr = 0;
START_SECTION(String())
s_ptr = new String;
TEST_NOT_EQUAL (s_ptr, 0)
END_SECTION

START_SECTION(~String())
delete s_ptr;
END_SECTION

START_SECTION(Int toInt() const)
String s = "12.3";
TEST_EQUAL(s.toInt(),12);

END_SECTION

START_SECTION(Real toFloat() const)
String s = "12.3";
TEST_REAL_SIMILAR(s.toFloat(),12.3);

END_SECTION

END_TEST

First, the header containing the test macros (ClassTest.h) and the header of the
tested class are included. The START_TEST macro sets up the testing environment
and prints some information to the command line, e.g., the Id string which contains
the test name and the SVN revision. This information is automatically updated by
Subversion whenever the file changes.

Next, each method is tested in a separate subtest, surrounded by START_SECTION and
END_SECTION macros. In this scope, one or several test macros are used to test the
behavior of the method. In the example, constructor and destructor are tested first, then

110

10

11

12

13

14

15

16

5.10. Project management

two conversion methods to numerical values are tested. As can be seen in the example,
different test macros are provided for different types. This is necessary because not all
types can be easily compared, e.g., a small deviation must be allowed for floating-point
numbers. Each test macro prints the line number in the source code, the test code and
the result to the command line.

The END_TEST macro prints a summary of the whole class test. This includes the line
number of all failed tests, which is helpful especially in lengthy tests. The output of the
above example looks like this:

checking String()
+ 1line 9: TEST_NOT_EQUAL(s_ptr,0): got 0x6bfdf0, forbidden is 0
: passed

checking ~String()
: passed

checking Int toInt() comnst ...
+ line 18: TEST_EQUAL(s.toInt(),12): got 12, expected 12
: passed

checking Real toFloat() const
+ 1line 23: TEST_REAL_SIMILAR(s.toFloat(),12.3): got 12.3, expected 12.
: passed

PASSED

The management and execution of the unit tests is done with the CTest tool, which
is distributed as part of the CMake [54] package. CTest allows execution of all tests or
a subset of the tests, for example defined by a regular expression. When all tests have
been executed, it prints a summary of the test results.

Automated test builds: Because OpenMS is under continuous development, continu-
ous testing is required. In theory, each developer should execute all unit tests before
committing new code. However, this is quite time-consuming and thus often neglected.
Another, even bigger problem is portability. Different C++ compilers tend to implement
different interpretations of the ANSI C++ standard. Thus, even correct code might fail
on some compiler or platform.

In order to ensure high code quality, nightly test builds and unit testing on most sup-
ported platforms and architectures have been set up. The test builds are executed on
several different servers and the results are submitted to a CDash [56] web server, which
creates an HTML summary of all tests of each day (see Fig. 5.24). These browsable test
results allow easy tracking and removal of code problems.

5.10.5. Release management

A fast release cycle is important for scientific software libraries which are under ongoing
development. Releasing often ensures that new functionality is distributed to the users
of the library. On the other hand, each release creates a lot of overhead due to docu-
mentation, testing and packaging tasks.

The OpenMS release plan strives for a release approximately every six months. One

111

5. OpenMS and TOPP

month before the release date the active development in the trunk is stopped. The
month before the release is dedicated to consolidation of the functionality and the code.
Only documentation, testing and refactoring tasks are performed on the trunk in this
time. New features have to be developed in a branch and can be merged into the trunk
after the release.

OpenMS offers two release types of release packages. Source code packages are pro-
vided for software developers. Binary packages are provided for users that only want
to use the suite of applications that comes with the software library. Binary packages
are available for Microsoft Windows, MacOS and Ubuntu Linux. Besides the actual
software, each release package contains the full documentation, tutorials and the change
log.

Table 5.3 shows the some statistics on OpenMS releases. It illustrates that both the
code base and the user community of OpenMS are rapidly growing.

Version release date lines of code downloads per month

1.6 12/2009 212.320 303
1.5 08/2009 200.172 191
14 04,/2009 168.654 283
1.3 02/2009 164.366 442
1.2 08/2008 142.766 205
1.1 04/2008 130.513 172
1.0 07/2007 126.039 74

Table 5.3.: OpenMS release statistics.

5.11. Discussion and outlook

We have presented OpenMS—a large, versatile and functional software framework for
mass spectrometry data analysis. OpenMS is a joint project of several academic research
groups. It is under active development for more than six years in which we continuously
improved and augmented the library. OpenMS 1.6, which improved tremendously upon
the previous versions [153], was released in November 2009. In its current state OpenMS
can dramatically cut down on development time for devising analysis pipelines and
testing new algorithmic strategies in the field of MS-based proteomics and metabolomics.
Thus, we anticipate that OpenMS will contribute to speeding up biomedical research.
OpenMS has proven its usefulness in several projects and studies. Selected projects are
summarized now:

TOPP — The OpenMS Proteomics Pipeline: OpenMS has been successfully used for
the implementation of TOPP — The OpenMS Proteomics Pipeline [68]. TOPP is a set
of computational tools that can be chained together to tailor problem-specific analysis
pipelines for LC-MS data. It transforms most of the OpenMS functionality into small
command line tools that are the building blocks for more complex analysis pipelines.
The functionality of the tools ranges from data preprocessing and signal processing over
quantitation to peptide and protein identification.

The source code of the TOPP tools is on average no longer than 150 lines and the
largest part of it deals with the evaluation of command line parameters. The core
functionality of most tools can be implemented in less than 20 lines of code. This is

112

5.11. Discussion and outlook

possible not only because OpenMS facilitates file handling and offers clear interfaces
for its algorithms. OpenMS also offers powerful parameter handling classes both for
parameters of algorithms and command line arguments of applications. Given such an
infrastructure, the development time of new tools is significantly reduced.

Clinical proteomics: In March 2010, the Swedish company Medic Wave introduced their
commercial Software for label-free quantitative proteomics that is based on OpenMS and
TOPP as part of their Medic Wave Bioinformatics Suite™ (MBS). The quantification
module of MBS, LEQuant, re-implements functionality of several TOPP tools and inte-
grates it into the graphical interface of MBS.

Protein quantitation: OpenMS contains several algorithms for peptide quantitation
based on model fitting [69, 70, 71]. Using the data structures provided by OpenMS
and these algorithms, we were able to implement data analysis code for various complex
quantitation tasks (labeled/unlabeled strategies, relative/absolute quantitation). In a
case study [146] we could thus show that the use of these algorithms improved quanti-
tation accuracy in a complex absolute quantitation scenario (myoglobin in human blood
plasma) while drastically reducing analysis times.

Protein and peptide identification: Kapp et al. [61] showed that most of the cor-
rect peptide identifications are found by various search engines. Nevertheless, they also
demonstrated that there is a certain amount of correctly identified spectra which could
only be identified by one or two of the search engines which they compared in their
study.

For these reasons we integrated the identifications of different search engines like Mas-
cot [9], InsPecT [141] and OMSSA [142]. The results of the different search engines were
combined by calculating an average rank for the identification candidates. Tightening
the used score thresholds of the different search engines results in more accurate identi-
fication, as only high quality identifications are kept. Using a looser score threshold the
number of correctly identified peptides increases.

To find more true positive identifications one can lower score thresholds of the search
engines further and filter out most of the additional false positive identifications using
our retention time filtering approach. In this approach the retention time prediction
model (Section 5.8.4) is trained by a small set of high confidence identifications. This
model is then used to predict retention times for all further identifications. If there is
a large difference between observed and predicted chromatographic behavior for some
identifications, these identifications are excluded. This evaluation is described in more
detail in [88].

Final remarks and future work: Developers using OpenMS are strongly encouraged to
take part in the project by contributing their algorithms. Providing an algorithm in a
framework allows a much more flexible reuse than providing an application only.
Driven by collaborative projects with experimental partners we will add more func-
tionality as the project proceeds. Planned improvements for the near future comprise
automatic algorithm parameter estimation, more powerful visualization techniques and
support for the upcoming HUPO-PSI formats mzldentML and TraML.

113

6. Conclusion and QOutlook

In this thesis we have presented two new algorithmic approaches for LC-MS data analysis
and a C++ framework for rapid prototyping of analysis software in the field of proteomics
and metabolomics.

In Chapter 3 we have presented a novel quantitation algorithm for centroided LC-
MS data. It is based on an averagine isotope pattern and a Gaussian elution profile
model. Feature candidate regions are fitted to a two-dimensional model to increase the
sensitivity of the algorithm. Finally, a greedy approach is used to resolve contradicting
features.

In a comprehensive comparison, we could show that our algorithm combines an ex-
cellent feature detection performance with a good runtime. Only one out of four state-
of-the-art algorithms could reach a similar performance in our comparison. Besides a
good performance, further design goals of the algorithm were wide applicability and ro-
bustness. The algorithm works reliably both on medium-resolution and high-resolution
centroided LC-MS data, even at high levels of chemical and white noise. It is provided
as a command line tool which allows an easy integration into existing analysis pipelines.
Additionally, it is available as a C+4++ class which can be used for the development of
new analysis application.

Although our algorithm shows good performance and was successfully used in several
studies, there is still much room for improvement. Future versions of the algorithm
could benefit from improved peptide feature models: An EMG elution profile model
could improve the recall and quantitation accuracy for asymmetric chromatographic
peaks. Additionally, the averagine isotope model could be extended by a fixed number
of additional sulfur atoms. This would allow a more accurate modeling of cysteine-rich
peptides. Metabolite feature detection would also be possible with the algorithms when
replacing the averagine isotope distribution by a more general isotope model.

In Chapter 4 we have presented a machine learning approach for the prediction of
oligonucleotide retention times in liquid chromatography. Its main improvements over
existing approaches are the incorporation of DNA secondary structure information and
use of support vector regression.

Secondary structure information allows an accurate modeling of the retention time
at lower temperatures and for oligonucleotides which form a highly stable secondary
structure. It improves the prediction accuracy for fixed-temperature models, especially
at low temperatures where secondary structure formation is not completely suppressed.
Additionally, it can be used to create multi-temperature models. These models predict
oligonucleotide retention times within the training data temperature range—in our case
from 30°C to 80°C.

The second major improvement was the use of support vector regression. Support
vector regression maximizes the model accuracy while minimizing model complexity. It
models non-linear relationships with high robustness towards outliers, which ensures a
good generalization of the model. Our results demonstrate that the use of secondary
structure information and support vector regression significantly improves the prediction
performance over existing models.

115

6. Conclusion and Outlook

In Chapter 5 we have presented OpenMS, a platform-independent software frame-
work for mass spectrometry, and TOPP — The OpenMS Proteomics Pipeline. OpenMS
provides data structures and algorithms for rapid software development in the field of
computational proteomics. One goal of OpenMS is to facilitate the development of novel
algorithms for mass spectrometry data analysis. OpenMS offers a rich infrastructure for
software engineers—including data structures for mass spectrometry data, file I/O for
most non-proprietary formats, parameter handling classes, progress logging classes, etc.
Thus, developers can focus on the actual algorithm design while relying on the OpenMS
infrastructure for all technical aspects. OpenMS also provides algorithms for all major
analysis steps in proteomics. For example, the peptide feature quantitation algorithm
presented in Chapter 3 of this thesis.

Besides the development of new algorithms, the second focus of OpenMS is to allow the
rapid development of powerful analysis tools. We have demonstrated the versatility of
OpenMS with the development of TOPP — The OpenMS Proteomics Pipeline. TOPP is
a set of computational tools for mass spectrometry, each performing one atomic analysis
step. Individual tools can be combined to construct problem-specific analysis pipelines
via an intuitive graphical user interface. The functionality of TOPP is rounded off by
TOPPView, a powerful viewer for mass spectrometry data. TOPPView is typically used
to visualize raw data along with analysis results in order to assess the quality of the data
analysis.

In summary, OpenMS and TOPP facilitate the development of analysis pipelines and
testing new algorithmic strategies in the field of MS-based proteomics and metabolomics.
After several years of continuous development and testing, they have reached a high
degree of maturity. We anticipate that OpenMS and TOPP will be useful for the whole
community and that they can contribute to speeding up biomedical research.

116

A. List of abbreviations

ASCII
API
CE
CLI
CPU
Cv
DNA
EMG
EIC
ESI
GPU
GUI
HPLC
HUPO
I/0
IDE
ISB
LC
MALDI
MDI
MIAPE
MRM
MS
MSVC
MS/MS
m/z
NPLC
PSI
010) %
Q-TOF
RNA
RT
RPLC
STL
SVC
SVM
SVR
TIC
TOF
UML
XIC
XML

American Standard Code for Information Interchange
Application programming interface
Capillary electrophoresis

Command line interface

Central Processing Unit

Controlled vocabulary

Deoxyribonucleic acid

Exponentially modified Gaussian
Extracted ion chromatogram

Electro spray ionization

Graphics Processing Unit

Graphical user interface

High performance liquid chromatography
Human Proteome Organization
Input/Output

Integrated development environment
Institute for Systems Biology

Liquid chromatography

Matrix-assisted laser ionization/desorption
Multi-document interface

Minimum Information About a Proteomics Experiment
Multiple reaction monitoring

Mass spectrometry

Microsoft Visual C++

Tandem MS

Mass-to-charge ratio

Normal phase liquid chromatography
Proteomics Standards Initiative
Object-oriented programming
Quadrupole Time-of-Flight mass spectrometer
Ribonucleic acid

Retention time

Reverse phase liquid chromatography
Standard Template Library

Support vector classification

Support vector machine

Support vector regression

Total ion current chromatogram
Time-of-flight mass analyzer

Unified Modeling Language

Extracted ion chromatogram

Extensible Markup Language

117

B. Contributions

A novel feature detection algorithm for centroided data

MS designed and implemented the algorithm, and performed the evaluation.

DNA retention time prediction

MS and OK designed and implemented the prediction method, and preformed the eval-
uation. SQ, BM and CH provided the training dataset and performed all experiments.
The method was published in [154, 155] .

OpenMS

OK and KR initiated and coordinate the project. MS designed and implemented the
kernel data structures, meta data handling, file and database I/O classes, and visualiza-
tion classes. MS, AB, SA and CB maintain the build system and the unit test system.
CG, KR, OST and MS designed and implemented the feature detection algorithms. AH
and RH contributed the isotope wavelet. EL, AH and AZ designed and implemented the
signal processing and peak picking algorithms. EL and CG designed and implemented
the map alignment algorithms. AB, NP, OK and MS designed and implemented the
algorithms related to peptide identification and retention time prediction. The OpenMS
software framework was published in [153, 82].

TOPP

OK and KR initiated and coordinate the project. MS implemented file handling tools,
visualization tools and the base functionality shared by all TOPP tools. CG and EL
implemented the map alignment tool. EL, AH and AZ implemented the signal processing
and peak picking tools. CG, OST and MS implemented the feature detection tools. CG,
AB and NP implemented the tools for peptide identification. NP implemented the tools
for peptide property prediction. The TOPP software tools were published in [68, 147].

AZ: Alexandra Zerck, AB: Andreas Bertsch, AH: Andreas Hildebrandt, BM: Bettina Mayr, CB: Chris
Bielow, CG: Clemens Gropl, CH: Christian Huber, EL: Eva Lange, KR: Knut Reinert, OK: Oliver
Kohlbacher, MS: Marc Sturm, NP: Nico Pfeifer, OST: Ole Schulz-Trieglaff, SA: Stephan Aiche, SQ:
Sascha Quinten

119

C. List of Publications

Journal publications

M. Sturm, O. Kohlbacher. TOPPView: An Open-Source Viewer for Mass Spectrometry Data. Journal
of Proteome Research. 2009;8(7):3760-3.

M. Sturm, A. Bertsch, C. Gropl, A. Hildebrandt, R. Hussong, E. Lange, N. Pfeifer, O. Schulz-Trieglaff,
A. Zerck, K. Reinert, O. Kohlbacher. OpenMS — An open-source software framework for mass spectrom-
etry. BMC Bioinformatics. 2008 Mar 26;9:163.

M. Sturm, S. Quinten, C.G. Huber, O. Kohlbacher. A statistical learning approach to the modeling
of chromatographic retention of oligonucleotides incorporating sequence and secondary structure data.
Nucleic Acids Res. 2007;35(12):4195-202.

B.M. Mayr, O. Kohlbacher, K. Reinert, M. Sturm, C. Gropl, E. Lange, C. Klein, C.G. Huber. Abso-
lute myoglobin quantitation in serum by combining two-dimensional liquid chromatography-electrospray
tonization mass spectrometry and novel data analysis algorithms. Journal of Proteome Research. 2006
Feb;5(2):414-21.

O. Kohlbacher, S. Quinten, M. Sturm, M.B. Mayr, C.G. Huber. Structure-activity relationships in
chromatography: retention prediction of oligonucleotides with support vector regression. Angewandte
Chemie International Edition. 2006 Oct 27;45(42):7009-12.

P. Donnes, A. Héglund, M. Sturm, N. Comtesse, C. Backes, E. Meese, O. Kohlbacher, H.P. Lenhof.
Integrative analysis of cancer-related data using CAP. FASEB Journal. 2004 Sep;18(12):1465-7.

Peer reviewed conference contributions

O. Kohlbacher, K. Reinert, C. Gropl, E. Lange, N. Pfeifer, O. Schulz-Trieglaff, M. Sturm. TOPP
— The OpenMS Proteomics Pipeline. ECCB 2006 conference proceedings. Bioinformatics. 2007 Jan
15;23(2):191-7.

C. Gropl, E. Lange, K. Reinert, O. Kohlbacher, M. Sturm, C.G. Huber, B.M. Mayr, C.L. Klein. Algo-
rithms for the automated absolute quantification of diagnostic markers in complex proteomics samples.
In Proceedings of the 1st International Symposium on Computational Life Science (CompLife05), pages
151-163, 2005.

Other publications

K. Reinert, O. Kohlbacher, C. Gropl, E. Lange, O. Schulz-Trieglaff, M. Sturm, N. Pfeifer. OpenMS —
A Framework for Quantitative HPLC/MS-Based Proteomics. In Proceedings of the Dagstuhl Seminar
on Computational Proteomics 2006, edited by Christian G. Huber and Oliver Kohlbacher and Knut
Reinert. Internationales Begegnungs- und Forschungszentrum fiir Informatik (IBFI), Schloss Dagstuhl,

121

Appendix

Germany, 2006.

M. Sturm, S. Quinten, C.G. Huber, O. Kohlbacher. A machine learning approach for the prediction
of DNA and peptide retention times. In Proceedings of the Dagstuhl Seminar on Computational Pro-
teomics 2005, edited by Christian G. Huber and Oliver Kohlbacher and Knut Reinert. Internationales
Begegnungs- und Forschungszentrum fiir Informatik (IBFI), Schloss Dagstuhl, Germany, 2005.

Accepted manuscripts

L. Nilse, M. Sturm, D. Trudgian, M. Salek, P. Sims, K. Carroll, S.J. Hubbard. SILACAnalyzer — a
tool for differential quantitation of SILAC data. Lecture Notes in Bioinformatics. 2010, accepted for
publication.

Submitted manuscripts

L. Martens, M. Chambers, M. Sturm, D. Kessner, F. Levander, J. Shofstahl, W. Tang, A. Roempp,
A.D. Pizarro, L. Montecchi-Palazzi, N. Tasman, M. Coleman, F. Reisinger, P. Souda, H. Hermjakob,
P.A. Binz, E. Deutsch. mzML — a Community Standard for Mass Spectrometry Data. Molecular and
Cellular Proteomics. 2010, submitted.

122

D. Detailed quantitation results

mlrl mlr2 m2rl m2r2

centroided 143 226 214 295
SpecArray 0 35 23 53
msInspect 83 232 85 219
simple 20 93 148 304

isotope_wavelet 273 419 370 283

Table D.1.: Overall number of detected features.

mlrl mlr2 m2rl m2r2

centroided 90 83 124 179
SpecArray 0 33 23 50
msInspect 65 104 61 149
simple 12 40 76 140
isotope_wavelet 44 41 23 59

Table D.2.: Number of correctly matched features.

mlrl mlr2 m2r]l m2r2

centroided 10 25 0 4
SpecArray 0 0 1 3
mslnspect 7 12 4 14
simple 2 21 19 26
isotope_wavelet 21 39 29 19

Table D.3.: Number of incorrectly matched features, i.e., wrong charge state or multiple
matches.

123

Appendix

mlrl mlr2 m2rl m2r2 Average

centroided 77.59 63.36 93.23 80.63 78.70
SpecArray 0.00 25.19 17.29 22.52 16.25
mslInspect 56.03 79.39 45.86 67.12 62.10
simple 10.34 30.53 57.14 63.06 40.27

isotope_wavelet 37.93 31.30 17.29 26.58 28.27

Table D.4.: Recall (only correctly matched features).

mlrl mlr2 m2rl m2r2 Average

centroided 62.94 36.73 57.94 60.68 54.57
SpecArray 100.00 94.29 100.00 94.34 97.16
msInspect 78.31 4483 71.76 68.04 65.74
simple 60.00 43.01 51.35 46.05 50.10

isotope_wavelet 16.12 9.79 6.22 20.85 13.24

Table D.5.: Precision (only correctly matched features).

mlrl mlr2 m2rl m2r2 Average

centroided 86.21 8244 93.23 8243 86.08
SpecArray 0.00 25.19 18.05 23.87 16.78
mslInspect 62.07 88.55 48.87 73.42 68.23
simple 12.07 46.56 71.43 74.77 51.21

isotope_wavelet 56.03 61.07 39.10 35.14 47.83

Table D.6.: Recall (including incorrectly matched features).

ml_rl mlr2 m2rl m2r2 Average
centroided 6.01 112.24 2.06 7.16 31.87
SpecArray 71.32 402.10 251.84 882.31 401.89
mslInspect 12.14 7.77 3.52 2.96 6.60
simple 16.85 10733.38 159.97 861.56 2942.94

isotope_wavelet 981.75 597.38 45.71 30.82 413.92

Table D.7.: Runtimes in seconds. The runtimes were determined on a Dual Core AMD
Opteron(tm) 275 machine with 2.0 GHz CPU frequency and 8 GB RAM.

124

D - Quantitation results and parameters

Recall

SpecArray

0.8

04 -

0.2

JRSIN DRSS 1

o
o =

ml_r2
m2_rl

0.2 0.4 0.6
1-Precision

mlrl -

me_re -

Figure D.1.: Plot of precision against recall for SpecArray quantitation results. Biparti-

Recall

mslnspect

0.8 =i

JRSIN DRSS 1

ml_r2
m2_rl

0.2 0.4 0.6
1-Precision

me_re -

tions of the output feature set ordered according to intensity were used to
calculate corresponding precision and recall values.

mirl ——

Figure D.2.: Plot of precision against recall for mslnspect quantitation results. Biparti-

tions of the output feature set ordered according to intensity were used to
calculate corresponding precision and recall values.

125

Appendix

FeatureFinder (simple)

ML 2 -
0.8 j | | M2 1l oo
-m2_r2.

Recall

1-Precision

Figure D.3.: Plot of precision against recall for FeatureFinder (simple) results. Biparti-
tions of the output feature set ordered according to intensity were used to
calculate corresponding precision and recall values.

FeatureFinder (isotope_wavelet)

M1 2 B
o8- mr
m2.r2 -

Recall

1-Precision

Figure D.4.: Plot of precision against recall for FeatureFinder (isotope_wavelet). Bipar-
titions of the output feature set ordered according to intensity were used to
calculate corresponding precision and recall values.

126

D - Quantitation results and parameters

parameter ml m?2
seeder:min_intensity 0 0
seeder:signal_to_noise 5 5
seeder:Signal ToNoise:max_intensity -1 -1
seeder:Signal ToNoise:auto_max_stdev_factor 3 3
seeder:Signal ToNoise:auto_max_percentile 95 95
seeder:Signal ToNoise:auto_mode 0 0
seeder:SignalToNoise:win_len 200 200
seeder:Signal ToNoise:bin_count 30 30
seeder:Signal ToNoise:min_required _elements 10 10
seeder:Signal ToNoise:noise_for_empty_window 1E+20 1E+20
extender:dist_mz_up 5)
extender:dist_mz_down 2 2
extender:dist_rt_up 30 30
extender:dist_rt_down 30 30
extender:priority_thr -0.1 -0.1
extender:intensity_factor 0.2 0.2
fitter:fit_algorithm simple simple
fitter:max_iteration 500 500
fitter:deltaAbsError 0.0001 0.0001
fitter:deltaRelError 0.0001 0.0001
fitter:tolerance_stdev_bounding_box 3 3
fitter:intensity_cutoff_factor 0.05 0.05
fitter:feature_intensity _sum 1 1
fitter:min_num_peaks:final 20 20
fitter:min_num_peaks:extended 40 40
fitter:rt:interpolation_step 2 2
fitter:mz:interpolation_step 0.03 0.03
fitter:mz:model_type:first 1 1
fitter:mz:model_type:last 4 4
fitter:quality:type Correlation Correlation
fitter:quality:minimum 0.5 0.5
fitter:isotope_model:stdev:first 0.06 0.06
fitter:isotope_model:stdev:last 0.14 0.14
fitter:isotope_model:stdev:step 0.02 0.02
fitter:isotope_model:averagines:C 0.0443 0.0443
fitter:isotope_model:averagines:H 0.007 0.007
fitter:isotope_model:averagines:N 0.0012 0.0012
fitter:isotope_model:averagines:O 0.013 0.013
fitter:isotope_model:averagines:S 0.00037 0.00037
fitter:isotope_model:isotope:trim_right_cutoff 0.001 0.001
fitter:isotope_model:isotope:maximum 100 100
fitter:isotope_model:isotope:distance 1.00049 1.00049

Table D.8.: FeatureFinder (simple) algorithm parameters used in this evaluation.

127

Bibliography

1]

[4]

[11]

[12]

R. Dahm and F. Miescher. Discovering DNA: Friedrich Miescher and the early
years of nucleic acid research. Hum. Genet., 122:565-581, 2008.

International Human Genome Sequencing Consortium. Finishing the euchromatic
sequence of the human genome. Nature, 431:931-945, 2004.

V. Le Texier, J. J. Riethoven, V. Kumanduri, C. Gopalakrishnan, F. Lopez,
D. Gautheret, and T. A. Thanaraj. AltTrans: transcript pattern variants anno-
tated for both alternative splicing and alternative polyadenylation. BMC Bioin-
formatics, 7:169, 2006.

M. R. Wilkins, C. Pasquali, R. D. Appel, K. Ou, O. Golaz, J. C. Sanchez, J. X.
Yan, A. A. Gooley, G. Hughes, I. Humphery-Smith, K. L. Williams, and D. F.
Hochstrasser. From proteins to proteomes: large scale protein identification by

two-dimensional electrophoresis and amino acid analysis. Biotechnology (N.Y.),
14:61-65, 1996.

M. O. Dayhoff and R. V. Eck. MASSPEC: a computer program for complete
sequence analysis of large proteins from mass spectrometry data of a single sample.
Comput. Biol. Med., 1:5-28, 1970.

Kapp, E. and Schiitz, F. Overview of tandem mass spectrometry (MS/MS)
database search algorithms. Curr. Protoc. Protein Sci., Chapter 25:Unit25.2, 2007.

Waters Corporation — MassLynx. http://www.waters.com/.
GE Healthcare — DeCyder. http://www.gelifesciences.com/.

D. N. Perkins, D. J. Pappin, D. M. Creasy, and J. S. Cottrell. Probability-based
protein identification by searching sequence databases using mass spectrometry
data. FElectrophoresis, 20:3551-3567, 1999.

A. Keller, J. Eng, N. Zhang, X. J. Li, and R. Aebersold. A uniform proteomics
MS/MS analysis platform utilizing open XML file formats. Mol. Syst. Biol.,
1:2005.0017, 2005.

C. A. Smith, E. J. Want, G. O’Maille, R. Abagyan, and G. Siuzdak. XCMS:
processing mass spectrometry data for metabolite profiling using nonlinear peak
alignment, matching, and identification. Anal. Chem., 78:779-787, 2006.

M. Bellew, M. Coram, M. Fitzgibbon, M. Igra, T. Randolph, P. Wang, D. May,
J. Eng, R. Fang, C. Lin, J. Chen, D. Goodlett, J. Whiteaker, A. Paulovich, and
M. McIntosh. A suite of algorithms for the comprehensive analysis of complex pro-
tein mixtures using high-resolution LC-MS. Bioinformatics, 22:1902-1909, 2006.

129

Bibliography

[13]

[16]

[17]

[24]

[25]

[26]

[27]

[28]

130

X. J. Li, E. C. Yi, C. J. Kemp, H. Zhang, and R. Aebersold. A software suite
for the generation and comparison of peptide arrays from sets of data collected by
liquid chromatography-mass spectrometry. Mol. Cell. Proteomics, 4:1328-1340,
2005.

M. Katajamaa and M. Oresic. Processing methods for differential analysis of
LC/MS profile data. BMC' Bioinformatics, 6:179, 2005.

Mueller, L. N. and Rinner, O. and Schmidt, A. and Letarte, S. and Bodenmiller, B.
and Brusniak, M. Y. and Vitek, O. and Aebersold, R. and Miiller, M. SuperHirn — a
novel tool for high resolution LC-MS-based peptide/protein profiling. Proteomics,
7:3470-3480, 2007.

J. Cox and M. Mann. MaxQuant enables high peptide identification rates, indi-
vidualized p.p.b.-range mass accuracies and proteome-wide protein quantification.
Nat. Biotechnol., 26:1367-1372, 2008.

M. W. Senko, S. C. Beu, and F. W. McLafferty. Determination of monoisotopic
masses and ion populations for large biomolecules from resolved isotopic distribu-
tions. J. Am. Soc. Mass. Spectrom., 6(4):229-233, 1995.

M. Gilar, K. J. Fountain, Y. Budman, U. D. Neue, K. R. Yardley, P. D. Rainville,
R. J. Russell, and J. C. Gebler. Ion-pair reversed-phase high-performance liquid
chromatography analysis of oligonucleotides: retention prediction. J. Chromatogr.
A, 958:167-182, 2002.

E. de Hoffmann and V. Stroobant. Mass Spectrometry: Principles and Applica-
tions. Wiley & Sons, 2004.

J. B. Fenn, M. Mann, C. K. Meng, S. F. Wong, and C. M. Whitehouse. Electrospray
ionization for mass spectrometry of large biomolecules. Science, 246:64—-71, 1989.

N. B. Cech and C. G. Enke. Practical implications of some recent studies in
electrospray ionization fundamentals. Mass Spectrom. Rev., 20:362-387, 2001.

M Karas and U. Bahr. Laser Desorption Ionization Mass Spectrometry of Large
Biomolecules. Trends Anal. Chem., 9:321-5, 1990.

W. Paul and H. Steinwedel. Apparatus For Separating Charged Particles Of Dif-
ferent Specific Charges. US patent 2939952.

W. E. Stephens. A Pulsed Mass Spectrometer with Time Dispersion. Phys. Reuv.,
69:691, 1946.

A. Makarov. Electrostatic axially harmonic orbital trapping: a high-performance
technique of mass analysis. Anal. Chem., 72:1156-1162, 2000.

D. J. Pappin, P. Hojrup, and A. J. Bleasby. Rapid identification of proteins by
peptide-mass fingerprinting. Curr. Biol., 3:327-332, 1993.

R. Aebersold and M. Mann. Mass spectrometry-based proteomics. Nature,
422:198-207, 2003.

P. Roepstorff and J. Fohlman. Proposal for a common nomenclature for sequence
ions in mass spectra of peptides. Biomed. Mass Spectrom., 11:601, 1984.

Bibliography

[29]

32]

[33]

J. A. Taylor and R. S. Johnson. Implementation and uses of automated de novo
peptide sequencing by tandem mass spectrometry. Anal. Chem., 73:2594-2604,
2001.

A. Frank and P. Pevzner. PepNovo: de novo peptide sequencing via probabilistic
network modeling. Anal. Chem., 77:964-973, 2005.

R. G. Sadygov and J. R. Yates. A hypergeometric probability model for protein
identification and validation using tandem mass spectral data and protein sequence
databases. Anal. Chem., 75:3792-3798, 2003.

S. P. Gygi, B. Rist, S. A. Gerber, F. Turecek, M. H. Gelb, and R. Aebersold.
Quantitative analysis of complex protein mixtures using isotope-coded affinity tags.
Nat. Biotechnol., 17:994-999, 1999.

S. E. Ong, B. Blagoev, I. Kratchmarova, D. B. Kristensen, H. Steen, A. Pandey,
and M. Mann. Stable isotope labeling by amino acids in cell culture, SILAC, as
a simple and accurate approach to expression proteomics. Mol. Cell. Proteomics,
1:376-386, 2002.

L. R. Zieske. A perspective on the use of iTRAQ reagent technology for protein
complex and profiling studies. J. Ezxp. Bot., 57:1501-1508, 2006.

B. Scholkopf and A. J. Smola. Learning with Kernels: Support Vector Machines,
Regularization, Optimization, and Beyond. MIT Press, Cambridge, MA, USA,
2001.

B. E. Boser, I. M. Guyon, and V. N. Vapnik. A training algorithm for optimal mar-
gin classifiers. In Proceedings of the 5th Annual ACM Workshop on Computational
Learning Theory, pages 144-152, 1992.

A. Aizerman, E. Braverman, and L. Rozonoer. Theoretical foundations of the
potential function method in pattern recognition learning. Autom. Remote Control,
25:821-837, 1964.

Subversion — an open source version control system. http://subversion.tigris.org/.

V. N. Vapnik. The Nature of Statistical Learning Theory. Springer-Verlag New
York Inc., 2001.

C. Cortes and V. N. Vapnik. Support vector networks. Mach. Learn., pages 273—
297, 1995.

B. Scholkopf, A. J. Smola, R. C. Williamson, and P. L. Bartlett. New support
vector algorithms. Neural Comput., 12(5):1207-1245, 2000.

J. L. Rodgers and W. A. Nicewander. Thirteen ways to look at the correlation
coefficient. Bioinformatics, 42:59-66, 1988.

P. Baldi, S. Brunak, Y. Chauvin, C. A. Andersen, and H. Nielsen. Assessing the
accuracy of prediction algorithms for classification: an overview. Bioinformatics,
16:412-424, 2000.

Ziv H., D. J. Richardson, and R. Kl§ch. The Uncertainty Principle in Software
Engineering, 1996.

131

Bibliography

[45]

[46]

[47]

[48]

[49]

[50]

[51]
[52]
[53]
[54]
[55]
[56]
[57]
[58]

[59]

[60]

132

1. Jacobson, G. Booch, and J. Rumbaugh. The Unified Software Development
Process. Addison-Wesley Longman, 1999.

K. Beck and C. Andres. FExtreme programming explained — embrace change.
Addison-Wesley Longman, 2004.

K. Schwaber and M. Beedle. Agile software development with scrum. PEARSON
STUDIUM, 2008.

J. Rumbaugh, I. Jacobson, and G. Booch. The unified modeling language reference
manual. Addison Wesley, 1999.

E. Gamma, R. Helm, and R. E. Johnson. Design Patterns. Elements of Reusable
Object-Oriented Software. Cambridge University Press, 1995.

D. J. Armstrong. The quarks of object-oriented development. Commun. ACM,
49(2):123-128, 2006.

Microsoft Visual Studio. http://www.microsoft.com/express/.

Eclipse. http://www.eclipse.org/.

G. J. Myers. The Art of Software Testing. Wiley, second edition edition, 2004.
CMake — Cross Platform Make. http://www.cmake.org/.

Apache Ant. http://ant.apache.org/.

CDash — an open source, web-based testing server. http://www.cdash.org/.
Bamboo. /http://www.atlassian.com/software/bamboo/.

Software Engineering — Software Life Cycle Processes — Maintenance. International
Organization for Standardization, ISO/IEC 14764:2006, 2006.

P. Grubb and A. T. Armstrong. Software Maintenance: Concepts and Practice.
World Scientific Pub Co, 2003.

J. Listgarten and A. Emili. Statistical and computational methods for comparative
proteomic profiling using liquid chromatography-tandem mass spectrometry. Mol.
Cell. Proteomics, 4:419-434, 2005.

Kapp, E. A. and Schiitz, F. and Connolly, L. M. and Chakel, J. A. and Meza, J.
E. and Miller, C. A. and Fenyo, D. and Eng, J. K. and Adkins, J. N. and Omenn,
G. S. and Simpson, R. J. An evaluation, comparison, and accurate benchmarking
of several publicly available MS/MS search algorithms: sensitivity and specificity
analysis. Proteomics, 5:3475-3490, 2005.

L. N. Mueller, M. Y. Brusniak, D. R. Mani, and R. Aebersold. An assessment
of software solutions for the analysis of mass spectrometry based quantitative
proteomics data. J. Proteome Res., 7:51-61, 2008.

K. L. Busch. Chemical Noise in Mass Spectrometry. Spectroscopy, 17:32-36, 2002.

Lange, E. and Gropl, C. and Reinert, K. and Kohlbacher, O. and Hildebrandt,
A. High-accuracy peak picking of proteomics data using wavelet techniques. Pac.
Symp. Biocomput., pages 243-254, 2006.

Bibliography

[65]

[70]

[71]

K. C. Leptos, D. A. Sarracino, J. D. Jaffe, B. Krastins, and G. M. Church.
MapQuant: open-source software for large-scale protein quantification. Pro-
teomics, 6:1770-1782, 2006.

M. Katajamaa, J. Miettinen, and M. Oresic. MZmine: toolbox for processing and
visualization of mass spectrometry based molecular profile data. Bioinformatics,
22:634-636, 2006.

P. Du, R. Sudha, M. B. Prystowsky, and R. H. Angeletti. Data reduction of
isotope-resolved LC-MS spectra. Bioinformatics, 23:1394-1400, 2007.

O. Kohlbacher, K. Reinert, C. Gropl, E. Lange, N. Pfeifer, O. Schulz-Trieglaff, and
M. Sturm. TOPP — the OpenMS proteomics pipeline. Bioinformatics, 23:191-197,
2007.

C. Gropl, E. Lange, K. Reinert, O. Kohlbacher, M. Sturm, C. G. Huber, B. Mayr,
and C. Klein. Algorithms for the automated absolute quantification of diagnos-
tic markers in complex proteomics samples. In Procceedings of CompLife 2005,
Lecture Notes in Bioinformatics, pages 151-163. Springer, Heidelberg, 2005.

Schulz-Trieglaff, O. and Hussong, R. and Gropl, C. and Leinenbach, A. and Hilde-
brandt, A. and Huber, C. and Reinert, K. Computational quantification of peptides
from LC-MS data. J. Comput. Biol., 15:685-704, 2008.

R. Hussong, B. Gregorius, A. Tholey, and A. Hildebrandt. Highly accelerated
feature detection in proteomics data sets using modern graphics processing units.
Bioinformatics, 2009.

L. Chen, S. K. Sze, and H. Yang. Automated intensity descent algorithm for
interpretation of complex high-resolution mass spectra. Anal. Chem., 78:5006—
5018, 2006.

R. Hussong, A. Tholey, and A. Hildebrandt. Efficient Analysis of Mass Spectrom-
etry Data Using the Isotope Wavelet. In Proceedings of the Third International
Symposium on Computational Life Science, AIP Conference Proceedings Volume
940, pages 139-49. American Institute of Physics, 2007.

V. B. Di Marco and G. G. Bombi. Mathematical functions for the representation
of chromatographic peaks. J. Chromatogr. A, 931:1-30, 2001.

S. C. Wang, C. M. Huang, and S. M. Chiang. Improving signal-to-noise ratios
of liquid chromatography-tandem mass spectrometry peaks using noise frequency
spectrum modification between two consecutive matched-filtering procedures. J.
Chromatogr. A, 1161:192-197, 2007.

J. J. Moré. The Levenberg-Marquardt algorithm: Implementation and theory. In
Numerical Analysis, pages 105-116. Springer, Berlin, 1977.

GSL — GNU Scientific Library. http://www.gnu.org/software/gsl/.

Schulz-Trieglaff, O. and Pfeifer, N. and Grépl, C. and Kohlbacher, O. and Reinert,
K. LC-MSsim—a simulation software for liquid chromatography mass spectrometry
data. BMC Bioinformatics, 9:423, 2008.

133

Bibliography

[79]

[80]

134

C. Lemmel, S. Weik, U. Eberle, J. Dengjel, T. Kratt, H. D. Becker, H. G. Ram-
mensee, and S. Stevanovic. Differential quantitative analysis of MHC ligands by
mass spectrometry using stable isotope labeling. Nat. Biotechnol., 22:450-454,
2004.

Weinzierl, A. O. and Lemmel, C. and Schoor, O. and Miiller, M. and Kriiger, T. and
Wernet, D. and Hennenlotter, J. and Stenzl, A. and Klingel, K. and Rammensee,
H. G. and Stevanovic, S. Distorted relation between mRNA copy number and
corresponding major histocompatibility complex ligand density on the cell surface.
Mol. Cell. Proteomics, 6:102—-113, 2007.

S. Kullback and R. A. Leibler. On information and sufficiency. Ann. Math. Stat.,
22(1):79-86, 1951.

Sturm, M. and Bertsch, A. and Grépl, C. and Hildebrandt, A. and Hussong, R.
and Lange, E. and Pfeifer, N. and Schulz-Trieglaff, O. and Zerck, A. and Reinert,
K. and Kohlbacher, O. OpenMS — an open-source software framework for mass
spectrometry. BMC Bioinformatics, 9:163, 2008.

R. Hoffmann, G. Bril, and L. Otvos. Prediction of retention times of peptide
nucleic acids during reversed-phase high-performance liquid chromatography. J.
Chromatogr. A, 814:111-119, 1998.

D. Guo, C. T. Mant, A. K. Taneja, J. M. R. Parker, and R. S. Hodges. Prediction
of peptide retention times in reversed phase HPLC: determination of retention
coefficients of amino acid residues of model synthetic peptides. J. Chromatogr.,
359(143):499-518, 1986.

J. L. Meek. Prediction of peptide retention times in high-pressure liquid chro-
matography on the basis of amino acid composition. Proc. Natl. Acad. Sci. U.S.A.,
77:1632-1636, 1980.

K. Petritis, L. J. Kangas, B. Yan, M. E. Monroe, E. F. Strittmatter, W. J. Qian,
J. N. Adkins, R. J. Moore, Y. Xu, M. S. Lipton, D. G. Camp, and R. D. Smith. Im-
proved peptide elution time prediction for reversed-phase liquid chromatography-
MS by incorporating peptide sequence information. Anal. Chem., 78:5026-5039,
2006.

A. A. Klammer, X. Yi, M. J. MacCoss, and W. S. Noble. Improving tandem
mass spectrum identification using peptide retention time prediction across diverse
chromatography conditions. Anal. Chem., 79:6111-6118, 2007.

N. Pfeifer, A. Leinenbach, C. G. Huber, and O. Kohlbacher. Statistical learning
of peptide retention behavior in chromatographic separations: a new kernel-based
approach for computational proteomics. BMC Bioinformatics, 8:468, 2007.

Braun, A. and Little, D. P. and Késter, H. Detecting CFTR, gene mutations by
using primer oligo base extension and mass spectrometry. Clin. Chem., 43:1151—
1158, 1997.

F. Sanger, S. Nicklen, and A. R. Coulson. DNA sequencing with chain-terminating
inhibitors. Proc. Natl. Acad. Sci. U.S.A., 74:5463-5467, 1977.

Bibliography

[91]

[92]

93]

[100]

[101]

[102]

[103]

[104]

[105]

D. Bumcrot, M. Manoharan, V. Koteliansky, and D. W. Sah. RNAI therapeutics:
a potential new class of pharmaceutical drugs. Nat. Chem. Biol., 2:711-719, 2006.

S. L. Gelhaus, W. R. LaCourse, N. A. Hagan, G. K. Amarasinghe, and D. Fabris.
Rapid purification of RNA secondary structures. Nucleic Acids Res., 31:¢135, 2003.

C. G. Huber and G. N. Berti. Detection of partial denaturation in AT-rich DNA
fragments by Ion-Pair Reversed-Phase Chromatography. Anal. Chem., 68:2959—
2965, 1996.

L. C. Tan, P. W. Carr, and M. H. Abraham. Study of Retention in Reversed-
Phase Liquid Chromatography Using Linear Solvation Energy Relationships I.
The Stationary Phase. J. Chromatogr. A, 752(1-2):1-18, 1996.

D. H. Mathews. Revolutions in RNA secondary structure prediction. J. Mol. Biol.,
359:526-532, 2006.

E. Rivas and S. R. Eddy. A dynamic programming algorithm for RNA structure
prediction including pseudoknots. J. Mol. Biol., 285:2053—-2068, 1999.

S. Wuchty, W. Fontana, 1. L. Hofacker, and P. Schuster. Complete suboptimal
folding of RNA and the stability of secondary structures. Biopolymers, 49:145—
165, 1999.

H. Isambert and E. D. Siggia. Modeling RNA folding paths with pseudoknots: ap-
plication to hepatitis delta virus ribozyme. Proc. Natl. Acad. Sci. U.S.A., 97:6515—
6520, 2000.

I. L. Hofacker, W. Fontana, P. F. Stadler, L. S. Bonhoeffer, M. Tacker, and
P. Schuster. Fast folding and comparison of RNA secondary structures. Monatsh.
Chem., 125:167-188, 1994.

C. G. Huber, A. Premstaller, and H. Oberacher. Method and Apparatus for Sep-
arating Polynucleotides Using Monolithic Capillary Columns. patent application
U. S.

P. Rice, I. Longden, and A. Bleasby. EMBOSS: the European Molecular Biology
Open Software Suite. Trends Genet., 16:276-277, 2000.

N. Sugimoto, S. Nakano, M. Yoneyama, and K. Honda. Improved thermodynamic
parameters and helix initiation factor to predict stability of DNA duplexes. Nucleic
Acids Res., 24:4501-4505, 1996.

Chih-Chung Chang and Chih-Jen Lin. LIBSVM: a library for support vector
machines. http://www.csie.ntu.edu.tw/ cjlin/libsvm/, 2001.

ANDI/MS. http://sourceforge.net/projects/andi/.

S. Orchard, H. Hermjakob, C. Taylor, P. A. Binz, C. Hoogland, R. Julian, J. S.
Garavelli, R. Aebersold, and R. Apweiler. Autumn 2005 Workshop of the Hu-
man Proteome Organisation Proteomics Standards Initiative (HUPO-PSI) Geneva,
September, 4-6, 2005. Proteomics, 6:738-741, 2006.

135

Bibliography

[106] P. G. Pedrioli, J. K. Eng, R. Hubley, M. Vogelzang, E. W. Deutsch, B. Raught,
B. Pratt, E. Nilsson, R. H. Angeletti, R. Apweiler, K. Cheung, C. E. Costello,
H. Hermjakob, S. Huang, R. K. Julian, E. Kapp, M. E. McComb, S. G. Oliver,
G. Omenn, N. W. Paton, R. Simpson, R. Smith, C. F. Taylor, W. Zhu, and
R. Aebersold. A common open representation of mass spectrometry data and its
application to proteomics research. Nat. Biotechnol., 22:1459-1466, 2004.

[107] E. Deutsch. mzML: a single, unifying data format for mass spectrometer output.
Proteomics, 8:2776-2777, 2008.

[108] H. P. Benton, D. M. Wong, S. A. Trauger, and G. Siuzdak. XCMS2: process-
ing tandem mass spectrometry data for metabolite identification and structural
characterization. Anal. Chem., 80:6382-6389, 2008.

[109] D. Kessner, M. Chambers, R. Burke, D. Agus, and P. Mallick. ProteoWizard: open
source software for rapid proteomics tools development. Bioinformatics, 24:2534—
2536, 2008.

[110] A. I. Nesvizhskii, A. Keller, E. Kolker, and R. Aebersold. A statistical model for
identifying proteins by tandem mass spectrometry. Anal. Chem., 75:4646-4658,
2003.

[111] A. Keller, A. I. Nesvizhskii, E. Kolker, and R. Aebersold. Empirical statistical
model to estimate the accuracy of peptide identifications made by MS/MS and
database search. Anal. Chem., 74:5383-5392, 2002.

[112] X. J. Li, H. Zhang, J. A. Ranish, and R. Aebersold. Automated statistical analysis
of protein abundance ratios from data generated by stable-isotope dilution and
tandem mass spectrometry. Anal. Chem., 75:6648-6657, 2003.

[113] Monroe, M. E. and Toli¢, N. and Jaitly, N. and Shaw, J. L. and Adkins, J. N. and
Smith, R. D. VIPER: an advanced software package to support high-throughput
LC-MS peptide identification. Bioinformatics, 23:2021-2023, 2007.

[114] D. van Heesch. = Doxygen — Source code documentation generator tool.
http://www.stack.nl/ dimitri/doxygen/.

[115] SourceForge. http://sourceforge.net/.

[116] Programming languages — C++. American National Standards Institute, New
York, INCITS/ISO/IEC 14882:2003, 2003.

[117] Xcode. http://developer.apple.com/TOOLS/xcode/.
[118] Microsoft Visual C++. http://msdn.microsoft.com/en-us/visualc/default.aspx.

[119] Qt: Cross-Platform Rich Client Development Framework.
http://qt.nokia.com/products,/.

[120] Xerces-C++. http://xml.apache.org/xerces-c/.
[121] COIN-OR: CoinMP. http://www.coin-or.org/projects/CoinMP.xml.
[122] CGAL, Computational Geometry Algorithms Library. http://www.cgal.org/.

[123] NetCDF (network Common Data Form). http://www.unidata.ucar.edu/software /netcdf/.

136

Bibliography

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

[133]

[134]

[135]

[136]

[137]

M. H. Austern. Generic Programming and the STL: Using and Extending the C++
Standard Template Library. Addison Wesley Pub Co Inc, 1998.

J. Kaiser. Proteomics. Public-private group maps out initiatives. Science, 296:827,
2002.

C. F. Taylor, N. W. Paton, K. S. Lilley, P. A. Binz, R. K. Julian, A. R. Jones,
W. Zhu, R. Apweiler, R. Aebersold, E. W. Deutsch, M. J. Dunn, A. J. Heck,
A. Leitner, M. Macht, M. Mann, L. Martens, T. A. Neubert, S. D. Patterson,
P. Ping, S. L. Seymour, P. Souda, A. Tsugita, J. Vandekerckhove, T. M. Vondriska,
J. P. Whitelegge, M. R. Wilkins, I. Xenarios, J. R. Yates, and H. Hermjakob. The
minimum information about a proteomics experiment (MIAPE). Nat. Biotechnol.,
25:887-893, 2007.

A. Savitzky and M. J. E. Golay. Smoothing and Differentiation of Data by Sim-
plified Least Squares Procedures. Anal. Chem., 36:1627-1639, 1964.

W. H. Press, S. A. Teykolsky, W. T. Vetterling, and B. P. Flannery. Numerical
Recipes in C++: The art of scientific computing. Cambridge University Press,
2002.

P. Soille. Morphological Image Analysis. Springer, 1999.

E. J. Breen, F. G. Hopwood, K. L. Williams, and M. R. Wilkins. Automatic
poisson peak harvesting for high throughput protein identification. Electrophoresis,
21:2243-2251, 2000.

D. M. Horn, R. A. Zubarev, and F. W. McLafferty. Automated reduction and
interpretation of high resolution electrospray mass spectra of large molecules. J.
Am. Soc. Mass Spectrom., 11:320-332, 2000.

O. Schulz-Trieglaff, R. Hussong, C. Gropl, A. Hildebrandt, and K. Reinert. A Fast
and Accurate Algorithm for the Quantification of Peptides from Mass Spectrome-
try Data. In Proceedings of the 11th Annual International Conference on Research
in Computational Molecular Biology, pages 473-487, 2007.

D. H. Ballard. Generalizing the Hough Transform to Detect Arbitrary Shapes.
Pattern Recognit., 13(2):111-122, 1981.

G. C. Stockman, S. Kopstein, and S. Benett. Matching Images to Models for
Registration and Object Detection via Clustering. PAMI, 4(3):229-241, 1982.

Lange, E. and Gropl, C. and Schulz-Trieglaff, O. and Leinenbach, A. and Huber, C.
and Reinert, K. A geometric approach for the alignment of liquid chromatography-
mass spectrometry data. Bioinformatics, 23:1273-281, 2007.

Gardén, P. and Alm, R. and Hékkinen, J. PROTEIOS: an open source proteomics
initiative. Bioinformatics, 21:2085-2087, 2005.

Hartler, J. and Thallinger, G. G. and Stocker, G. and Sturn, A. and Burkard, T. R.
and Koérner, E. and Rader, R. and Schmidt, A. and Mechtler, K. and Trajanoski,
Z. MASPECTRAS: a platform for management and analysis of proteomics LC-
MS/MS data. BMC Bioinformatics, 8:197, 2007.

137

Bibliography

[138]

[139]

[140]

[141]

[142]

[143]

[144]

[145]

[146]

[147]

[148]

[149]
[150]

[151]

138

D. Radulovic, S. Jelveh, S. Ryu, T. G. Hamilton, E. Foss, Y. Mao, and A. Emili.
Informatics platform for global proteomic profiling and biomarker discovery using
liquid chromatography-tandem mass spectrometry. Mol. Cell. Proteomics, 3:984—
997, 2004.

Lange, E. and Gropl, C. and Reinert, K. and Kohlbacher, O. and Hildebrandt,
A. High-accuracy peak picking of proteomics data using wavelet techniques. Pac.
Symp. Biocomput., pages 243-254, 2006.

L. Nilse, M. Sturm, D. Trudgian, M. Salek, P. Sims, K. Carroll, and S. J. Hubbard.
SILACAnalyzer — a tool for differential quantitation of SILAC data. In Sixth
International Meeting on Computational Intelligence methods for Bioinformatics
and Biostatistics, volume accepted, 2009.

S. Tanner, H. Shu, A. Frank, L. C. Wang, E. Zandi, M. Mumby, P. A. Pevzner,
and V. Bafna. InsPecT: identification of posttranslationally modified peptides
from tandem mass spectra. Anal. Chem., 77:4626-4639, 2005.

L. Y. Geer, S. P. Markey, J. A. Kowalak, L. Wagner, M. Xu, D. M. Maynard,
X. Yang, W. Shi, and S. H. Bryant. Open mass spectrometry search algorithm. J.
Proteome Res., 3:958-964, 2004.

R. Craig and R. C. Beavis. TANDEM: matching proteins with tandem mass
spectra. Bioinformatics, 20:1466-1467, 2004.

B. Kuster, M. Schirle, P. Mallick, and R. Aebersold. Scoring proteomes with
proteotypic peptide probes. Nat. Rev. Mol. Cell Biol., 6:577-583, 2005.

Kall, L. and Storey, J. D. and MacCoss, M. J. and Noble, W. S. Assigning signifi-
cance to peptides identified by tandem mass spectrometry using decoy databases.
J. Proteome Res., 7:29-34, 2008.

Mayr, B. M. and Kohlbacher, O. and Reinert, K. and Sturm, M. and Gropl, C.
and Lange, E. and Klein, C. and Huber, C. G. Absolute myoglobin quantitation
in serum by combining two-dimensional liquid chromatography-electrospray ion-

ization mass spectrometry and novel data analysis algorithms. J. Proteome Res.,
5:414-421, 2006.

M. Sturm and O. Kohlbacher. TOPPView: an open-source viewer for mass spec-
trometry data. J. Proteome Res., 8:3760-3763, 2009.

X. J. Li, P. G. Pedrioli, J. Eng, D. Martin, E. C. Yi, H. Lee, and R. Aebersold. A
tool to visualize and evaluate data obtained by liquid chromatography-electrospray
ionization-mass spectrometry. Anal. Chem., 76:3856-3860, 2004.

Insilicos Viewer. http://www.insilicos.com/Insilicos_Viewer.html.

P. Jones, R. G. Coté, L. Martens, A. F. Quinn, C. F. Taylor, W. Derache, H. Her-
mjakob, and R. Apweiler. PRIDE: a public repository of protein and peptide

identifications for the proteomics community. Nucleic Acids Res., 34:D659-663,
2006.

OpenMS coding style. http://www-bs2.informatik.uni-
tuebingen.de/services/OpenMS-release/html/coding_conventions.html.

Bibliography

[152]

[153]

[154]

[155]

PHP: Hypertext Preprocessor. http://www.php.net/.

K. Reinert, O. Kohlbacher, C. Gropl, E. Lange, O. Schulz-Trieglaff, M. Sturm,
and N. Pfeifer. OpenMS — a framework for quantitative hplc/ms-based pro-
teomics. In Computational Proteomics, Dagstuhl Seminar Proceedings. Inter-
nationales Begegnungs- und Forschungszentrum fiir Informatik (IBFI), Schloss
Dagstuhl, Germany, 2006.

O. Kohlbacher, S. Quinten, M. Sturm, B. M. Mayr, and C. G. Huber. Structure-
activity relationships in chromatography: retention prediction of oligonucleotides
with support vector regression. Angew. Chem. Int. Ed. Engl., 45:7009-7012, 2006.

M. Sturm, S. Quinten, C. G. Huber, and O. Kohlbacher. A statistical learning
approach to the modeling of chromatographic retention of oligonucleotides incorpo-

rating sequence and secondary structure data. Nucleic Acids Res., 35:4195-4202,
2007.

139

	Introduction
	Motivation
	Proteomics
	Mass spectrometry
	Software tools for mass spectrometry
	Thesis overview

	Background
	Mass spectrometry-based proteomics
	Mass spectrometry
	Interpretation of mass spectrometry data and terms
	Peptide/protein identification with mass spectrometry
	Liquid chromatography
	Sample preparation
	Stable-isotope labeling

	Machine learning
	Support vector classification
	Support vector regression
	SVM model generation and performance evaluation

	Software engineering
	Software development processes
	Requirements engineering
	Analysis and design
	Implementation
	Testing
	Deployment and maintenance

	A novel feature detection algorithm for centroided data
	State of the art
	Seeding
	Extension
	Model fitting

	Our contribution
	Design and implementation
	Overall design
	Seeding phase
	Extension phase
	Model fitting phase
	Feature clipping phase
	Conflict resolution

	Results and discussion
	Test datasets
	Parameter selection
	Performance on the test data
	Comparison to other algorithms

	Summary and conclusion
	Outlook

	Retention time prediction
	Peptide retention time prediction
	DNA retention time prediction
	Experimental dataset
	Feature selection
	Models
	Results
	Discussion and outlook

	OpenMS and TOPP
	State of the art
	Design goals
	Overall architecture
	Foundation classes
	Basic data structures
	Basic file system classes
	Progress logging
	Factory classes
	Parameter handling

	Data reduction and kernel classes
	Data reduction
	Peak data
	Feature data
	Meta data

	File and database I/O
	Visualization
	Peak data visualization
	Meta data visualization
	Parameter visualization

	Analysis algorithms
	Signal processing
	Feature detection and quantitation
	Map alignment
	Retention time prediction

	TOPP
	Packages
	Example pipelines
	TOPPView
	TOPPAS

	Project management
	Version control system
	Coding conventions
	Documentation
	Testing
	Release management

	Discussion and outlook

	Conclusion and Outlook
	List of abbreviations
	Contributions
	List of Publications
	Detailed quantitation results
	 Bibliography

