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Zusammenfassung

Die Erzeugung realistischer und komplexer Korperbewegungen in Echtzeit ist fiir
Computergraphiker und Robotiker eine schwierige und anspruchsvolle Aufgabe.
Eine Animation realistischer Bewegungsablidufe setzt voraus, dass die zugrun-
de liegenden Trajektorien vor dem Hintergrund einer Vielzahl gegebener Frei-
heitsgrade moglichst detailliert und genau modelliert werden. Gleichzeitig miis-
sen echtzeitfahige Animationen flexible Systeme und Mechanismen enthalten, um
reaktiv und dynamisch mit der Umwelt zu kommunizieren bzw. sich ihr anzupas-
sen. Solche Online-Systeme eignen sich fiir die Selbstorganisierung dynamischer,
komplexer Szenen, bei denen mehrere virtuelle Charaktere autonom miteinander
interagieren.

Diese Arbeit stellt einen neuartigen Ansatz zur Online-Synthese realistischer
menschlicher Korperbewegungen vor, der durch Konzepte aus dem Forschungs-
feld der Motor-Control inspiriert wurde. Anhand von uniiberwachten Lernme-
thoden konnen ganzkorperliche Bewegungen durch die Uberlagerung von Bewe-
gungsprimitiven —sogenannten Synergien— approximiert werden, welche auf Da-
ten des Motion Capture Verfahrens beruhen, wobei ein neuartiger blind source
separation Algorithmus zur Anwendung kommt. Im Vergleich zu den Standard-
verfahren der PCA und ICA stellt dieser Ansatz hinsichtlich der Dimensionsre-
duktion von Daten eine signifikant kompaktere Reprisentation dar.

Werden iiberwachte Lernmethoden benutzt, um ein echtzeitfihiges Modell zu er-
halten, so konnen die Quellensignale als stabile Losungen niedrigdimensionaler,
nichtlinearer dynamischer Systeme dargestellt werden. Auf diese Weise konnen
periodische und nichtperiodische Bewegungsabldufe generisch erzeugt werden,
wobei ein hoher Realismusgrad mit einer nur sehr geringen Anzahl von Synergi-
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en gewihrleistet wird.

Die Anwendung eines neuen Verfahrens der Stabilitdtsanalyse, aus der Contracti-
on Theory ermdglicht das Erstellen komplexer Netzwerke von dynamischen Pri-
mitiven mit einer stabilen Systemarchitektur. Wihrend die Erzeugung von Sta-
bilitdtseigenschaften dynamischer Systeme im Bereich der Control Theory und
Robotik zu den Kernthemen gehoren, wird Stabilitit im Kontext der Computera-
nimation kaum beriicksichtigt. Grund dafiir ist u.a. die Architektur dynamischer
Systeme, die fiir realistische Modellierung von menschlichen Koérperbewegungen
dusserst komplex ist, v.a., wenn interaktives Verhalten zwischen multiplen virtu-
ellen Charakteren dargestellt werden soll.

Vor diesem Hintergrund wird der vorgestellte Ansatz durch die Einbeziehung von
Methoden aus der Contraction Theory erweitert, um koordinierte menschliche Be-
wegungen online zu simulieren. Auf diese Weise konnen Stabilititsproblemen bei
der Charakteranimation systematisch betrachtet und geldst werden. Daraus resul-
tierend konnen globale Stabilitdtseigenschaften gewonnen werden, auch bei Sy-
stemen, die viele Charaktere oder nichtlineare Interaktionsmodule enthalten.

Zusammengefasst ergibt sich:

e Bewegungsprimitive bzw. Synergien werden aus Motion Capture Daten von
ganzkorperlichen Bewegungen erzeugt.

e Die erhaltenen Trajektorienmodelle werden in ein echtzeitfdhiges System
transformiert.

e Mit diesem System konnen dusserst realistische Animationen menschlicher
Bewegungsabliufe generiert werden.

e Interaktives und koordiniertes Verhalten unter virtuellen Charakteren kann
simuliert werden.

e Um die Stabilitit der dynamischen Architektur zu gewihrleisten, werden
Methoden aus der Contraction Theory angewandt.



Abstract

The synthesis of realistic and complex body movements in real-time is a chal-
lenging task in computer graphics and in robotics. High realism requires accurate
modeling of the details of the trajectories for a large number of degrees of free-
dom. At the same time, real-time animation necessitates flexible systems that can
react in an online fashion and, therefore, adapting to external constraints. Such
online systems are suitable for the self-organization of complex behaviors due to
the dynamic interaction among multiple autonomous characters in the scene.

A novel approach for the online synthesis of realistic human body movements
is hereby presented. The proposed model is inspired by concepts from motor
control as it approximates full-body movements by the superposition of lower-
dimensional movement primitives -synergies- that are learned from motion cap-
ture data. For this purpose, a blind source separation algorithm is applied and
provides significantly more compact representations than standard approaches for
dimension reduction, such as PCA or ICA.

When applying supervised learning methods, these source signals are further as-
sociated or ‘replaced’ with the stable solutions of low-dimensional nonlinear dy-
namical systems (dynamic primitives) in order to obtain a real-time architecture.
In this way, the learned generative model can synthesize periodic and non-periodic
movements, achieving high degrees of realism with a very small number of syn-
ergies.

The application of a new type of stability analysis (contraction theory) permits the
design of complex networks of such dynamic primitives, resulting in a stable over-
all system architecture. The design of stability properties of dynamical systems
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has been a core topic in control theory and robotics, but has rarely been addressed
in the context of computer animation. One potential reason is the enormous com-
plexity of the dynamical systems that are required for the accurate modeling of
human body movements, and even more for the interaction between multiple in-
teracting agents.

In this context, the approach to the online simulation of realistic coordinated hu-
man movements is extended by introducing contraction theory as a novel frame-
work that permits a systematic treatment of stability problems for systems in char-
acter animation. It yields tractable global stability conditions, even for systems
that consist of many nonlinear interacting modules or characters. To summarize:

e Movement primitives or synergies from full-body motion capture data are
learned.

e The transformation of such trajectory models into a real-time capable sys-
tem is obtained.

e With this process, one is able to generate high-quality animation of complex
human movements.

e The simulation of interactive behavior and coordinated crowd animation is
enabled.

e To ensure the stability of the dynamical architecture, contraction theory is
applied to compute stability properties.
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CHAPTER 1

Introduction

Body motions, in particular human full-body movements, are complex procedures
which require e.g. the coordination of the skeleton, the muscles and the control
of multi-joint movements. Nevertheless, since the generation of realistic human
motion is highly expected in various areas such as computer graphics, robotics, or
biomechanics, scientists are faced with the challenge of motion creation in order
to satisfy the community.

The controllability of real-time character animation that approaches the quality of
natural-looking movement based on motion capture systems is still an unsolved
problem for a number of reasons.

A key reason is it’s high dimensionality: Characters have a relatively high number
of degrees of freedom and are often provided as a set of different motion styles,
making the search for the appropriate control parameters hard in order to obtain
a dynamic animation. If, in addition to that, interactive control algorithms (e.g.
navigation algorithm) for generating reactive behavior in the dynamic environ-
ment were included, the control architecture would become even more complex.
The movements are often simplified at the expense of quality with the purpose of
preventing infeasibility as well as saving computational cost.

In this context, we try to address these difficulties and show an efficient method for
the representation of human movements based on learned primitives from motion
capture data, which results in a simple dynamical control architecture for generat-
ing human motion.
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The novel method is suitable for the real-time simulation of natural looking human
movements combined with the dynamic variation of different movement styles.
For an autonomous and self-organized behavior in e.g. crowd animation, we fur-
ther included modules like navigation algorithms, which are crucial for interactive
manners in real-time animation. As to ensure the stability of e.g. autonomous
crowd scenarios, the stability constraints were analyzed by using the concept of
contraction theory.

1.1 Background

Figure 1.1: Performer’s motion drove the movement of Gollum’s body through
motion capture [HbTOS].

Human animation in computer graphics with important applications as in hu-
manoid robots, and especially in the film and game industry, have become increas-
ingly popular. In famous Hollywood blockbusters such as Titanic, Star Wars and
Lord of the Rings (Fig.1.1), many synthetic scenes involve virtual humans like in
special effects. With character animation, for instance, dangerous action scenes
can be simplified and crowd simulations in films can be animated without orga-
nizing hundreds of actors.
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The interest in the area of human animation never decreased. On the contrary,
since the observer itself is experienced with human movement and will notice
immediately any artifacts in motion, the task of simulating natural movements
becomes an important research field. In addition, human beings represent in gen-
eral a very critical and skeptic audience when they are confronted with human
motion in humanoid robots or animated characters. Figure describes the emo-
tional reaction to humanoid robots or animated characters, who look and act like
actual humans: At first, a humanlike appearance in motion leads to a positive
emotional reaction. At a certain degree of realism the character become ’eerily’
lifelike, and the reaction becomes strong revulsive. This is known as the ‘un-
canny valley phenomenon’ [Mas70]. Due to this fact, the simulation of 'realistic’
looking human animations in order to satisfy the audience, became even more
challenging and sophisticated. However, only few people are aware of the non-
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Figure 1.2: The Uncanny Valley: ‘For the animators of films and video games,
creating a truly human looking and acting character has long been the holy grail.’
But making characters close-to-real and yet not-real-enough leaves them in what
is called the ‘uncanny valley’ where audiences find those characters unsettling,
unnatural and zombie-like’ [Med10].

trivial process for obtaining complex behavior in character animation, where the
realism requires the accurate modeling of the detailed trajectories of the joints
with different techniques based on i.e. kinematics, dynamics and biomechanics.
Considering that every joint has its own number of degrees of freedom, the con-
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trol of complex multi-joint movements is typically highly redundant, i.e. the same
behavior for the end effector like the hand can be accomplished with many differ-
ent combinations of joint angles, or muscle commands. This central challenge of
controlling multi-joint movements in the computer animation community address
a well-known problem and is the reason why animators find 3-D character anima-
tion so tedious. The two main approaches for character animation in the computer
graphics are based on kinematic and physical modeling.

In this manner, the first approach, kinematic animation, is based on motion cap-
ture data. Motion capture has become the standard approach for modeling natu-
ralistic movement, since appropriate movements can be recorded offline and then
retargeted to the relevant kinematic model. In addition, editing or blending meth-
ods can be applied onto the recorded movements in order to modify the move-
ment style, or to make the synthesized movements compatible with constraints
from the animation, which can be achieved for example through setting kinematic
boundary conditions. This approach results in highly realistic animations, but re-
quires tedious post-processing of the recorded motion capture data and makes this
sort of process not real-time capable since the data from optical systems is often
error-prone and noisy. Although morphing techniques like key-frame animation
are applied, the concatenation of captured motion segments for creating a longer
scene has been often corrected by hand.

The second approach, physics based animation, is mostly used for real-time
applications, such as in computer games or in robotics, where the characters or
robots have to interact with their dynamic environment immediately and permit
an online synthesis of character behavior. Given that the simulation of scenes has
to take the many interactive and autonomous agents in crowds into consideration,
the underlying character models are often very simplified and lacking subtle de-
tails of realistic human body movement to achieve manageable complexity of the
system dynamics and dynamics simulations.

In the more current applications, especially in video games, there is a rising
trend towards combining kinematical and physical simulations. In this way,
the simulation of realistic human behavior using kinematic models combined with
physics based modeling is realized, nevertheless they are still associated with high
computational cost. However, the existing approaches are characterized by high-
dimensional and complex underlying dynamic control architectures, whose design
requires substantial expertise from the animator.

In this case, our approach is based on a simple dynamical architecture for gen-
erating complex human movements that integrate the information learned from
motion capture data, and in which we avoid a detailed simulation of the human
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body dynamics. This process, however, results in real-time animation with a high
degree of realism.

To accomplish this goal, our approach was inspired by motor control in biological
systems: It has been a classical assumption that complex motor behavior is gen-
erated by appropriate combination of simpler movement primitives or synergies.
Synergies specify lower-dimensional control units that typically encompass only a
subset of the available degrees of freedom. Decomposition in such low-dimensional
sub-units has been proposed as an alternative to solve the ’degrees-of-freedom
problem’, which arises in the synthesis and control of movements in effector sys-
tems with many degrees of freedom.

We extend this idea to the computer graphics by learning these movement primi-
tives from motion capture data, and describing them using structurally stable but
simple dynamical systems. Consistent with related approaches in robotics and
biology, this method generates complex movements by combining the learned
movement primitives. Coordinated behavior of multiple characters can then be
generated by self-organization. The resulting system architecture is rather simple,
despite needing a suitable treatment of dynamical properties to obtain a stable be-
havior. While the design of stability properties is a central topic in robotics, it is
rarely addressed in character animation, even though, the application of dynam-
ical systems in computer animation is a significant domain for the simulation of
autonomous and collective behavior of many characters, i.e in crowd animation.

Some work, primarily in robotics, has been inspired by observations in biology:
Coordinated behavior of large groups of agents such as flocks of birds, results
from the dynamic interactions among individual agents without requiring a cen-
tral mechanism that ensures coordination. It is well-known that such behaviors
can be analyzed efficiently within the framework of nonlinear dynamics. This
makes it interesting to exploit the underlying principles for the automatic synthe-
sis of collective behavior in computer animation.

So far, the design of such technical systems has been often heuristic, exploiting
empirical results from simulations instead of deriving the system parameters from
theoretical results of the system dynamics. However, the controlled engineering
of such system makes more systematic theoretically founded approaches highly
desirable. A critical limiting factor in this context is the complexity of the dynam-
ical models for individual agents or characters, which often makes a systematic
treatment of stability properties infeasible.

In this context, we additionally introduce contraction theory as a novel frame-
work, which permits a systematic treatment of stability problems for systems in
character animation. It yields tractable global stability conditions, even for sys-
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tems that consist of many nonlinear interacting modules or characters. We obtain
system dynamics that can be analyzed, even for situations with multiple charac-
ters, when exploiting models that are based on the learned movement primitives.

1.2 Main Contribution

The contribution of this thesis approach different aspects of character animation in
real-time and can be combined for animating interactive crowd animation. After
a brief discussion of related approaches, the thesis is structured in the following
chapters.

Nonlinear Dynamical Systems (Chapter 2)

We first give a general introduction of self-sustained oscillators as an example
for nonlinear dynamical systems and describe their tendency to synchronize. The
synchronization behavior can be seen as a result of coupling individual oscillators
in an appropriate way. In order to achieve stabilization criteria for an overall stable
system, we discuss the basic concepts of contraction theory, which provide anal-
ysis tools to investigate the stability of complex nonlinear systems. Furthermore,
stability properties of systems with different kinds of couplings can be computed
for the design of stable interactive character animations as partial contraction anal-
ysis is applied.

Dimension Reduction Techniques (Chapter 3)

The simulation of complex human motion for character animation is often tedious
and deals with high-dimensional data, which can be simplified by reducing the
dimensionality into lower dimensional subspaces. In this chapter, we give a short
overview of blind source separation algorithms for instantaneous and convolutive
mixtures. The latter is used to obtain a more compact motion representation and
models our motion trajectories by mixtures of typically very few hidden source
terms with time-delays (anechoic mixtures).

Real-Time Character Animation (Chapter 4)

Inspired by the concept of ’synergies’, we approximate movement primitives from
full-body motion capture trajectories, comprising subsets of degrees of freedom.
Next, a real-time-capable system for character animation can be realized by intro-
ducing a mapping between the stable solutions of limit-cycle oscillators and the
extracted source signals. Appropriate couplings among the dynamical systems are
introduced and ensure the coordination of the degrees of freedom within individ-
ual characters.

Dynamic Character Animation (Chapter 5)
Methods are invented to obtain interactive character animation; Different motion
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styles can be animated by morphing between different emotions and movement
styles using linear interpolation. We also introduce appropriate couplings among
avatars, which allow the realization of interactive behavior, such as following or
group synchronization. Concerning the dynamic environment: To be able to avoid
static and moving obstacles, navigation algorithms have to be implemented. The
blending between examples of straight and curved walking is used for simulating
the walking corresponding to the heading direction of the character.

Stability Properties: (Chapter 0)

When exploiting models that are based on learned movement primitives, we ob-
tain a system dynamics that can be analyzed, including situations with multiple
characters. Considering contracting boundaries it is now possible to obtain dif-
ferent kinds of desired self-organized scenarios by choosing the corresponding
coupling methods and coupling strengths. Moreover, our system is tolerant to-
wards increasing the amount of characters, thus, granting an efficient handling
of the computational resources. We demonstrate how dynamic couplings can be
introduced that stabilize the coordination within single characters, and which are
suitable for the simulation of coordinated behavior of multiple avatars.

1.3 Context and Related Work

In the following section, we discuss and present the most significant publications
concerning related problems in our approach of character animation.

1.3.1 Motion Synthesis

Designing a rich repertoire of realistic looking motions for virtual humans repre-
sents an important task for virtual entertainment software, i.e. computer games.
Traditionally, animations are generated for virtual environments through motion
capture, or dynamic simulation. Different methods for motion synthesis are pre-
sented in this section.

1.3.1.1 Kinematical Models based on Motion Capture

For the offline generation of highly realistic human movements in animated films
and entertainment, motion capture (mocap) has become the standard approach.
Thereby, the recorded complex movements of an actor can be transferred onto a
virtual kinematic model, which results in realistic looking animations. Compared
to traditional animation techniques such as keyframe animation, this method pro-
duces a larger amount of valuable data within a given time and convinces scientists
to consider the motion capture system for animation [BW95, RGBC96, MBT99,
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BBO07]. In addition to this, adjustments can be made by editing or by blending the
recorded movements in order to modify movement styles. Motion blending is a
technique which combines multiple input motion data according to time-varying
weights [RCB98]. It allows the user to generate either new parameterized mo-
tions or transitions by smoothly changing one animation into another one. With
this method, hybrid motions can be synthesized and libraries of reusable motion
clips can be created [WP95].

To make the synthesized movements compatible with constraints in a virtual world,
retargetting techniques and kinematic boundary conditions have to be applied to
adapt an animated motion from one character to another, with identical structure
but with different segment lengths [Gle98]. In these cases, inverse kinematics,
a common technique for positioning end effectors of articulated figures in indi-
vidual frames of an animation, are used in addition to the motion capture data
and helps to optimize the generation of the desired joint angle trajectories, if the
standard approach does not yield satisfactory results for the special cases. These
procedures work well and have been effectively used to produce motions for a
number of applications and especially for commercial video games [BCRP97].

Furthermore, a large data base of captured motions is required to provide a suf-
ficient set of body motions, when providing the ability to morph among differ-
ent motions. The time to identify the requested motion from the large repertoire
of movements is a critical factor for real-time applications. Recent approaches
have tried to simplify this procedure by automatic selection and concatenation of
recorded motion segments from large data bases, ensuring that the generated mo-
tion sequences fulfill constraints defined by the animator [AFO03, KG03, SHO7].
Often a corpus of short motion capture clips is preprocessed that can be con-
catenated to generate a continuous motion sequence [GSKJ03, AF02]. A simple
graph structure facilitates efficient planning of character motions, where a user-
guided process selects common character poses and system automatically synthe-
sizes multi-way transitions that connect through these poses.

These methods permit a flexible off-line synthesis of quite complex sequences of
movements. However, since the retrieval of the relevant trajectory segments from
the database requires complex search algorithms with preprocessed motions, the
resulting methods are typically not suitable for real-time generation of animations.
In other words, although the mocap approach results in natural looking anima-
tions, it also requires tedious post-processing of the recorded motion capture data,
which is almost impossible to transfer into real-time applications.
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1.3.1.2 Physical Models

In many applications, such as in computer games or in robotics, a simulation in
real-time is required, in which the characters are often based on physical or dy-
namical models. Therefore, truly interactive motion of the characters with the
virtual environment is required. Characters have to react autonomously, taking
the dynamic environment into acount or respond to the actions of the applicant
immediately. In addition to the real-time capability, the animated characters have
to appear naturally, providing complex body movements with high degrees of re-
alism, to get accepted as ‘realistic looking’ avatars by the skeptic audience. How-
ever, to obtain a realistic human motion the rigid body models must be physi-
cally correct, e.g. their mass and inertia properties are often derived from the
biomechanics. Then, the desired movement can be performed applying con-
trol algorithms considering all physically constraints obtaining realistic models
[TPB*89, TW90, HWBO95, GTH98, SHP04, CHO7]. Hence, the control algo-
rithms and control architecture become tedious and more complex, the more en-
vironmental features are considered.

In large crowd simulations, for instance, every individual character is treated as
an autonomous virtual agent, who interacts with other individuals, e.g. by chang-
ing the heading or emotional state accordingly [MTO1, UT02, GTH98, STO05].
Global path planning for each avatar quickly becomes computationally expen-
sive, particularly in real-time contexts. Other approaches show crowd simulation
without agent-based dynamics and rather unifies global path planning and local
collision avoidance into a single optimization framework, where the agents do
not experience a discrete regime change in the presence of other people, but per-
form global planning to avoid both obstacles and other agents [GKM 01, KS02,
TCP06, ASDBO08]. Therefore, the simulation is driven by dynamic potential
fields, where the motion can be viewed as a perparticle energy minimization, and
adopt a continuum perspective on the system. This formulation yields a set of
dynamic potential and velocity fields over the domain that guide all individual
motion simultaneously (Figure 1.3).

In general, physics based character and crowd simulation are a computationally
intensive and expensive processes. Complex composite controllers have to be de-
signed involving the solution to many equations. First, it is difficult to develop
behavioral rules that consistently produce realistic motion iteratively; and second,
global path planning for each agent quickly becomes computationally expensive,
particularly in real-time contexts. For this reason, the underlying character models
are often strongly simplified, resulting in a manageable complexity of the system
dynamics and dynamics simulation, but lacking subtle details of realistic human
body movements. In addition, physically based methods demand high expertise
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Figure 1.3: Crowd animation. [TCPO06]

of the animator to deal with a high parameter dimension, which is inappropriate
for real-time animation systems.

1.3.1.3 Hybrid Models for Interactive Character Animation

In contrast to animation based on motion capture data, physical models allow
virtual characters to interact dynamically with their surroundings. Because, the
ability to simulate reactive responses to perturbations is essential and it is those
natural responses to events that make the characters appear alive, the constructions
of controllers for such physically based responses are difficult to realize (Section
1.3.1.2). However, researchers have succeeded in combining physics based mod-
els with motion-capture data, in order to generate realistic looking motion in real-
time [SCCHO9].

For the purpose of obtaining a natural motion, characters are animated using mo-
tion capture data, combined with dynamic simulations, constrained by biome-
chanical attributes for allowing responsive and interactive behavior. Zordan and
Hodgins [ZH02, SCCH09] for example, proposed a method based on physics and
motion capture data to simulate a ‘boxing scenario’, where specific gain param-
eters control the characters movement trajectories during a perturbation. While
such perturbations may alter the trajectories depending on the physical force,
characters return afterwards to an appropriate motion capture trajectory. They
also used, a balance controller to keep the character upright while modifying se-
quences from a small motion library to accomplish specified tasks. Consequently,
the system reacts to forces computed from a physical collision model by changing
stiffness and damping terms.
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Figure 1.4: A character switches automatically to obstacle avoidance mode and
navigates around the obstacles [TLPO7].

In order to expand the range of possible motions and to provide more natural inter-
actions with the environment, researchers have focused on designing controllers
for dynamically simulated characters. Given a corpus of motion capture data and
a set of task dependent controllers, different motions can be obtained using blend-
ing methods in order to generate interactive motions. In addition environmental
constraints like obstacles are taken into account and can be avoided in real-time
[TLPO7, dSAPO8, MLPPO09]. The underlying hierarchical control architectures
are typically complex and require high expertise of the animator for the adjust-
ment of their parameters [HPPOS5, CHOS]. It seems interesting to develop simpler
dynamical architectures that, however, can simulate complex human movements
by integrating information learned by motion capture.

1.3.1.4 Dimensionality Reduction in Character Animation

Dimensionality reduction techniques allows an improved visualization, catego-
rization, or simplification of large data sets. Several techniques for dimension
reduction have been exercised in the context of human motion analysis for captur-
ing the intrinsic dimensionality of the desired behavior and efficient computation.
Motion capture sequences are often represented by large data sets due to the high
sampling rate and the high number of degrees of freedom a virtual human body
contains. Character motions are high dimensional but can be simplified by re-
ducing the dimensionality of motion capture data in low-dimensional subspaces,
using statistical methods. In this way an articulated figure motion can be opti-
mized in the low-dimensional space to satisfy user-specified constraints, resulting
in a data compression of motion data which economizes the memory.

One method for nonlinear dimensional reduction from motion capture data is
based on Isomap and STIsomap to reduce the data set [SBOS5]. Jenkins and Matari¢
[JMO04] focus on synthesizing humanoid motions from a motion database by auto-
matically learning motion vocabularies. Starting with manually segmented motion
capture data, ST-Isomap is applied to the motion segments in two passes, along
with clustering techniques for each of the resulting sets of embeddings. Motion
primitives and behaviors are then extracted and used for the motion synthesis.
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Another typical approach is to apply the principal component analysis (Section 3)
to compress and simplify the captured human motion data, and construct a low-
dimensional motion space [AFO03, SHP04, SLO6]. In this way, motion models
can be constructed out of a rich set of model data and can be used for real-time ap-
plications [LT02]. Chai and Hodgins [CHOS5, CHO7] developed an animation sys-
tem that uses low-dimensional control signals obtained from the position of very
few markers to animate characters. These control signals from the user’s perfor-
mance are supplemented by a database of pre-recorded full-body motion capture
data. Therefore, local models are learned from a set of predefined motion capture
examples, which are similar to the recorded marker locations. The information
of these local models is then used to reconstruct the complete motion. Grochow
et. al [GMHPO04] applied a nonlinear dimensionality reduction technique called
Gaussian Process Latent Variable Model (GPLVM) to motion data and then used
the learned statistical model to compute poses from a small set of user-defined
constraints. Thereby GPLVM allows the mapping from a low-dimensional space
(latent space) to a feature space which characterizes motions e.g. joint angles.
Hence, a kernel function maps the correlation between postures according to their
corresponding representations in the latent space. The method generalizes RBF
interpolation, providing an automatic learning of all RBF parameters.

1.3.2 The Idea of Synergies
1.3.2.1 Synergies

By increasing the complexity of human motion, the generation of articulated char-
acters or humanoid robots becomes correspondingly harder since the number of
degrees of freedom of an articulated character grows very rapidly with its com-
plexity and makes the specification of the controls correspondingly extremely dif-
ficult. That is because every joint has its own number of degrees of freedom which
make the human limb kinematically redundant.

The problem of motor redundancy can be illustrated using the following example
[LatO8]: Touching the nose with a right index finger while moving the arm without
losing contact shows the many possible combinations of arm-joint angles. Never-
theless, when the task is presented, we do it with a particular joint combination,
where a particular joint configuration from an infinite number of possibilities has
to be selected.

The assumption in motor control is that the Central Nervous System (CNS) orga-
nizes many degrees of freedom of the musculoskeletal system in order to generate
a certain behavior [Ber67]. This complex task of organizing the desired behavior
might be simplified by a hierarchical control architecture. This has led to the hy-
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Figure 1.5: Shared synergies are extracted from the entire dataset whereas the
other behavior-specific synergies are extracted from only the muscle patterns
from two behaviors (jump-swim and jump-walk) or a single behavior (swim and
walk)[dBO5].

pothesis that the CNS uses elements (joints of a limb, muscles acting a joint) in a
task specific way so that the complexity of this problem can be reduced into a set
of synergies or movement primitives, as output modules [IPL04, FHOS, TCdO06].

In this manner, synergies can be specified as lower-dimensional control units that
typically encompass only a subset of the available degrees of freedom. Decom-
position in such low-dimensional sub-units has been proposed as a way to solve
the ‘degrees-of-freedom problem’, which arises in the synthesis and control of
movements in effector systems with many degrees of freedom. In other words,
the crucial feature in this case is that different movements can be derived from
a limited number of stored primitives by appropriate combination through a well
defined syntax of actions to obtain a complex action [SIB03, FHOS5].

Studies in motor control have successfully applied unsupervised learning meth-
ods to extract low-dimensional spatio-temporal components from trajectories or
EMG signals, which have been interpreted as correlates of synergies. [dSBO03,
dBO05, IPL04, SFS98]. D’Avella and Bizzi [dBO5] recorded electromyographic
activity from different movements of frogs in naturalistic conditions. By using
unsupervised learning methods, very few muscle synergies could be extracted, so
that each behavior may be reconstructed by a combination of them (Figure 1.5).
A similar approach was applied by recording EMG data of human locomotion and
then extracting basic underlying components that can account a high level of the
total variance across different muscles during normal gait [IPLO4].

Based on the idea of synergies or movement primitives, we extended this approach
to the field of character animation in order to generate different kinds of move-
ments by mixing very few extracted components from human motion trajectories
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in an appropriate way.

1.3.2.2 Humanoid Robots

Researchers in this field also seem inspired by the scientific field of motor control
as they follow the idea of synergies or movement primitives, describing a subset
of joints as well as their degrees of freedom, which were controlled by ‘Central
Pattern Generators’ (CPGs) for the realization of periodic movements [LMIMO09].

CPGs are neural circuits found in periodic movements of vertebrate and inverte-
brate animals, like swimming or walking that can produce rhythmic patterns of
neural activity without receiving rhythmic inputs. They additionally present sev-
eral interesting properties including distributed control, the ability to deal with re-
dundancies, fast control loops, and allowing modulation of locomotion by simple
control signals. These properties, when transferred to mathematical models, make
CPGs interesting building blocks for locomotion controllers in robots [Ijs08].
CPGs have been proposed for the control of periodic motions of many kinds of
different robots, for instance quadrupeds [CR94, KFHTO02], bipeds [TYS91, RI06,
MENT06], and snake robots [CBGIO5]. In biped robots, the artificial CPGs often
consist of weakly coupled nonlinear dynamical systems, oscillators, that control
the DOF of the joints, which are chain coupled in order to coordinate these several
DOFs [RIO6].

The numerous parameters of the CPGs, often specialized for a specific task, are
usually set by automatic techniques like genetic algorithms, policy gradient or re-
inforcement learning [INS02, SIBO3, GRILOS8]. That makes the idea of the CPG
much more efficient: The user is left with control of the resulting motion, which
can be modified by changing the evaluation function. As opposed to this, the set-
ting of each parameter manually leads to a full control over the system’s behavior
but requires a lot of effort and time. However, CPGs encode rhythmic trajec-
tories as limit cycles of nonlinear dynamical systems, typically systems of cou-
pled nonlinear oscillators, which offer multiple interesting features. For instance,
the stability properties (Section 6) of the limit cycle behavior (i.e. perturbations
are quickly forgotten) or the smooth online modulation of trajectories through
changes in the parameters of the dynamical system.

1.3.3 Dynamics for Collective Behavior

Dynamical systems derived, for example, from biomechanical or physical mod-
els seem particularly appropriate for real-time synthesis [TW90, GTH98, BRIO6].
However, it has turned out that such models for the generation of human move-
ments with high degree of realism typically have to be rather detailed [Ter09,
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HWBQO95, AHS03], which results in complex dynamical systems whose proper-
ties are difficult to control. Consequently, the dynamical stability properties of
such systems have rarely been addressed and it is an open question whether they
can be treated at all, given their complexity. An important domain of the applica-
tion of dynamical systems in computer animation is the simulation of autonomous
and coordinated behavior of multiple characters. The dynamics of collective be-
haviors of animals have been extensively analyzed in biology for collective mo-
tions in flocks, as it is in the case of fish schools (Figure 1.6). Although each
individual agent has no global knowledge about the group as a whole or about
the surrounding environment, complex coordinated behaviors emerge from local
interactions [Cou09, CDFT01].

Figure 1.6: Flocking example of a fish school: *Tornado unter Wasser’. [HbF09]

One example for self-organized coordinated behavior is the tendency of multi-
ple agents to synchronize their behavior, for instance during walking or applaud-
ing. From the scientific point of view, these observations of motion coordination
pose novel challenges in system theory [PRK03] and serve as a remarkable tool for
autonomous robotic vehicles and active sensors, where group coordination and co-
operative control have been studied in the context of the navigation, or the control
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of agents that realize coordinated behavior for useful tasks, e.g.[Mat95, BH97].

Thereby, modeling of complex group behaviors for simulating autonomous char-
acters is rarely discussed in the field of computer animation [Rey99]. Espe-
cially for large crowd scenes, the understanding of such coordinated organiza-
tions would help to permit the high computational costs, considering that each
acting individual person has only access to local information about the behavior
of the near-neighbors. In comparison, by using traditional computer animation
techniques and scripting the path of a large number of individual characters, the
computational costs become needless tedious to obtain a highly realistic crowd
behavior [MTO1, TWPO03, TCP06].

Another characteristic and advantage of self-organized groups is that they are tol-
erant to loss or gain of group members, which makes them more robust to tran-
sient perturbations in contrast to non-interacting individuals [CS07, OEHO02]. This
makes it interesting to exploit the underlying principles for the automatic synthe-
sis of collective behavior in computer animation.
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Nonlinear Dynamical Systems

In nature, nonlinearity is the rule rather than the exception, while linearity is a
simplification adopted for analysis. Therefore, nonlinear models are designed
to provide a better mathematical way to characterize the inherent nonlinearity in
real dynamic systems and may be expressed in the form of differential equations
[CTFO1, Str94]. In order to control such systems, detailed investigation of the sys-
tems’ behavior and the circumstances of the stability properties have to attentively
considered, since even small perturbations can lead to a chaotic and unpredictable
behavior. Hence, the knowledge of the stability constraints is necessary to treat
such systems in a controlled way to observe the desired behavior. Moreover, sta-
ble dynamic networks of nonlinear dynamical systems can be created.

This chapter mainly discusses the nonlinear-dynamical systems of limit-cycle os-
cillators: Van der Pol and Andronov-Hopf oscillators, which are applied in this
thesis for generating periodic movements for character animation (Chapter 4).
Moreover, this chapter focuses on the synchronization behavior of coupled oscil-
lators. In addition to this, contraction theory, as a theoretical approach, permits a
treatment of the dynamical properties of networks for different coupled nonlinear
dynamical elements. Applying contraction theory, a method derived from sys-
tem theory [WSO05], stability properties for different kind of couplings between
oscillators have been analyzed.

18
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2.1 Synchronization

F

Figure 2.1: Two pendulum clocks coupled through a beam (Orginal picture from
Huygen) [Huy67, PRKO3].

Oscillators produce rhythmic outputs and play an important role in our envi-
ronment; oscillatory processes can be observed in our surroundings, like in nature
or in social life (e.g. applouding, heart beat, butterflies flapping their wings, pen-
dulum of a clock, violins in an orchestra, etc.).

Synchronization refers to the phenomena of coordinated behavior of events in
rhythm and can be understood as an adjustment of rhythms of oscillating objects
due to their weak interaction [PRKO03].

Fireflies, in Southeast Asia, provide a great example of a synchronization be-
havior in nature. A large group of male fireflies gather in neighboring trees and
synchronize their light flashes at night in order to attract the female fireflies pass-
ing by. Although the fireflies start flashing with independent intervals, they seem
to influence each other by adapting or regulating the speed of the flashing and
synchronizing their light emissions very precisely during the night.

In 1665, Christiaan Huygens, a Dutch researcher in mathematics, astronomy, and
physics, came across the synchronization phenomena in pendulum clocks. He
recognized that a couple of pendula of clocks, which were hanging on the wall,
had synchronized when the pendula moved always in the opposite direction. In a
letter to his father, he described his discovery [Huy67, PRKO03]:

"It is quite worth noting that when we suspended two clocks so constructed from
two hooks embedded in the same wooden beam, the motions of each pendula in
opposite swings were so much in agreement that they never receded the least bit
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from each other and the sound of each was always heard simultaneously. Further,
if this agreement was disturbed by some interference, it reestablished itself in a
short time....The cause is that the oscillations of the pendula, in proportion to the
weight, communicate some motion to the clocks. This motion, impressed onto the
beam, necessarily has the effect of making the pendula come to a state of exactly
contrary swings if it happened that they moved otherwise at first, and from this
finally the motion of the beam completely ceases.’

Thus, Huygens describes the synchronization behavior of the two pendulum clocks
due to the coupling through the beam, where the pendula of the clocks can be
viewed as self-sustained oscillators (Figure 2.1).

2.1.1 Self-Sustained Oscillator
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Figure 2.2: Two non-identical pedulum clocks: a) The pendula are in different
positions a; # 9 at some arbitrary moment of time. b) They differ in their
periods 15 > T7.

Self-Sustained oscillators are autonomous and can be described within a class
of nonlinear dynamics, where the shape of the oscillation is dependent on the pa-
rameters of the system. One of the main properties states that even by taking the
systems apart from each other, the system keeps generating the oscillatory outputs
in its own rhythm due to its own source of energy. In addition, the oscillators are
characterized by their stability or robustness against, at least small, perturbation.
After the system gets disturbed, following some transient process, the shape of
the oscillators converge to their nominal motion and the disturbance is somehow
‘forgotten’.

Rhythm and frequency: The rhythm can be formalized by the number of oscil-
lation cycles per time unit or period, or by the oscillation cyclic frequency: f = %
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where the period, denoted by 7', describes the length of one cycle.

In theoretical conventions, the angular frequency (or angular velocity) w = 27 f =
27 /T is a more common representation and can be viewed as a scalar measure of
the rotation rate.

To describe the basic synchronization behavior of two self-sustained oscillators,
it is assumed that two non-identical pendulum clocks, with different oscillation
periods (Figure 2.2), are hanging on a common support and are coupled in a way
that they interact through the vibration of the beam.

Synchronization in anti-phase (Figure 2.3): As it was mentioned before in Sec-
tion 2.1, Huygens described a synchronization behavior of the pendulum clocks
in anti-phase, where the pendula of two clocks move in opposite directions so that
the phase difference is given by: ¢ — ¢1 ~ 7.

Synchronization in phase (Figure 2.3): Two non-identical oscillators with their
own frequency are coupled together. They start adjusting their thythms with each
other, and end up with a common frequency. The coincidence of the frequen-
cies is often called frequency entrainment or locking. Hence, the phase difference
is defined by: ¢ — ¢; = 0. Concerning the pendulum example, it means that
the pendula move exactly in the same direction and swing equally to the other
direction.
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Figure 2.3: a) Synchronization in phase. b) Synchronization in anti-phase.
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Phase-shift: In the case of two pendulum clocks, starting with initially dif-
ferent oscillation periods, phase shifts can be observed and the pendula denote
different positions a; # vy at time .

However, whether they synchronize or not depends on the coupling strength,
which define how weak or how strong the interaction is.

2.2 Limit Cycle Oscillators

2.2.1 Phase Space

Generally speaking, a phase space is a representation, in which all possible states
of the system are displayed. In other words, every degree of freedom or parameter
of the system is embodied in each point in the phase space. The phase-space of i.e.
limit cycle oscillator illustrates two degrees of freedom —position and velocity—
and portrait the dynamics of this system. Consider a dynamical system with f;
and f5 given functions:

l"l = fl(l‘l,l'g) and l"g = f2($1,l’2) (21)
Equation can be rewritten in a more compact vector notation:
x = f(x)

with x = (21, 29) and f(x) = (f1(x), f2(x)). Then, x represents a point in the
phase plane, and x is the velocity vector at that point.

2.2.2 Limit Cycle

A solution trajectory, (x1(t), z2(t)) is defined as a closed orbit, or periodic solu-
tion, if for some time t = T (z(t+71),y(t+7T)) = (z(t),y(t))), forall ¢t > 0. The
limit cycle on a phase-plane is defined by an isolated closed trajectory or closed
orbit, whereby the neighboring trajectories of the dynamical system either spiral
towards or away from the limit cycle, as illustrated in Figure 2.4. If all the neigh-
boring trajectories approach the limit-cycle, it is called stable or attracting [Str94].
Therefore, the essential characteristics of limit cycle oscillators, representing non-
linear autonomous dynamic systems, imply self-sustained oscillations, having the
property that the tracectories converge against the limit cycle independently of
their initial conditions.

Additionally, any small perturbation causes the system to return or relax the dis-
turbed trajectories, after a transient time, back towards the limit-cycle.
The Van der Pol and Andronov-Hopf oscillators represent the two most common
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Limit cycle
1 Y attractor

Figure 2.4: Limit-cycle oscillator

limit-cycle oscillators and will be introduced in the next Section.

2.2.3 Van der Pol Oscialltor

The Van der Pol oscillator was proposed in 1929 by the Dutch engineer Balthasar
Van der Pol and can be understood as a harmonic oscillator with amplitude-
dependent damping. The dynamics of this limit-cycle oscillator is given by the
following differential equation:

jt)+ C®)—a) §(t)+wiy(t)=0 (2.2)
—_—

Amplitude-dependent damping term

where w, determines the eigenfrequency and a the amplitude of the stable limit cy-
cle. The nature of the limit cycle is dependent on the value ¢ > 0 of the amplitude-
dependent damping term: ¢ (y (t)2 — a). For ( = 0 the dynamics represents a
harmonic oscillator, where the oscillatory motion is sinusoidal, since the damping
term vanishes completely:

i (t)+woy(t)=0

When ¢ > 0, the state will enter the limit cycle, where energy continues to be
conserved. In addition, for large values of y, the damping term becomes positive
and the damper removes energy from the system, which implies a convergent
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Van der Pol oscillator
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Figure 2.5: Van der Pol oscillator viewed in the time domain (left) and in the phase
space (right).

motion towards the limit cycle. Conversely, for small values of y, the damping
term becomes negative and the damper adds energy into the system, in order to
approach to the attractor. Since nonlinear damping varies with y to adjust the
amplitude, the system motion can neither grow unboundedly nor decay to zero.
The dynamical system can be rewritten in two first order systems, where

y(t) = z(t)
then

() = Cla—y(t)*) a(t) —wi y (t)

Figure 2.5 illustrates the Van der Pol oscillator as a function of time (left) and in
phase space (velocity y against position y ) on the right side. The typical behavior
of a limit cycle oscillator (Section 2.2) is shown clearly: Independent of any initial
condition, the convergence towards a stable equilibrium amplitude can be obtained
and small perturbations are ‘forgotten’.

2.2.4 Andronov-Hopf Oscillator

The Andronov-Hopf oscillator, a nonlinear oscillator, is characterized by a limit
cycle that corresponds to a circular trajectory in phase space. The dynamics of
the Andronov-Hopf oscillator is described by two first order differential equations

[AVKS7]:
() = Cla— (2*(t) + (1)) (t) — wy(t)

9(t) = C(a— (2() + 57(1)) y(t) + wa(t) (2:3)
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Similar to the Van der Pol Oscillator, the parameters w, a and ( describe the eigen-
frequency, the amplitude, and the speed control. The amplitude-dependent damp-
ing term is determined by ¢ ((2%(t) + y*(t)) — a). Whereby, the parameters influ-
ence the system in the same way as described in Section

Introducing polar coordinates » = /22 + y? and ¢ = arctan(y/x), this system
can be rewritten:

{m) = () (1 -r*(1) o

o) = w

The polar transformation has produced a pair of decoupled differential equation,
hence, the first equation does not depend on ¢ anymore and conversely ¢ does not
depend on r. Indeed, the subsystem has three stationary solutions where f(r) = 0.
It has fixed points at 7, = 0 corresponding to (x,y) = (0,0) (unstable) and

ry = +£1 (stable) corresponding to the unit limit cycle (see also Section ).
. 6
T
4
2
e
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Figure 2.6: The radial dynamics has three stationary solutions where 7 = f(r) =
0. Whereas the fixed point at ; = 0 is unstable, the other two 7y, = =£1 are stable.

2.3 Contraction Theory and Partial Contraction The-
ory

Contraction theory [LS98] provides a general method for the analysis of essen-
tially nonlinear systems and moreover, it can be applied for the analysis of more
complex systems comprising many components and has already been applied suc-
cessfully in different types of systems [LLS98, Slo03, WSO05, PS07].
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The classical approach for the stability analysis of nonlinear systems is to com-
pute first the stationary solutions of the dynamics, and then to establish its local
stability by linearization in the neighborhood of this solution numerically.

Contraction theory takes a different approach and characterizes the system sta-
bility by the behavior of the differences between solutions with different initial
conditions. If these differences vanish exponentially over time, and its solution
converges towards a single trajectory independently from the initial states, the
system is called globally asymptotically stable. Interestingly, the analysis of such
differences between solutions is often simpler than the classical linearization ap-
proach, making those systems tractable that would be impossible to analyze with
the classical approach. The contraction theory [LS98] can be summarized in the
following feautures:

1. Global exponential convergence and stability are guaranteed.
2. Asymptotic convergence rates can be explicitly computed as eigenvalues.
3. Robustness to variations in dynamics can be easily quantified.

4. Under simple conditions, convergence to a synchronized state can be pre-
served through system combinations (if every subsystem has contracting
property, the contracting of the global system can always be guaranteed by
an appropriate choice of couplings).

2.3.1 Contraction Theory

In the following section the bounds are derived for the convergence properties of
the solution of a dynamical system. Consider a nonlinear dynamical system:

x = f(x, 1) (2.5)

The bounds for the convergence property depend on the eigenvalues of the sym-
metrized Jacobian of the system:

Jy(x,t) = (afé’;’ t))s (2.6)

Given a square matrix A, the matrix
A = (A+AT))2 (2.7)

signifies its symmetric part. Moreover, we denote the real-valued matrix functions
Amin(As) and Ayax(Ag) which correspond to the smallest, respectively largest,
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eigenvalue of the symmetric matrix A;. The matrix A; is positive definite, de-
noted by Ag > 0 if

)\min<As) >0
and negative definite, denoted by A < 0 if
Amax (Ag) < 0.

The matrix inequality A > B denotes A\yin(As) > Anax(Bs). If the matrix itself
is a function of state and time (i.e., A(X, t)) one says that it is uniformly positive
definite if there exists a real + > 0 such that

VX, Vit © Amin (As(x,1)) >0

Likewise, it is defined as uniformly negative definite if there exists a ¢ > 0 such
that

Vx, VE © Amax(As(x, 1)) < —¢

2.3.2 Contraction of Dynamical Systems

Assume that x(t) is one solution of the dynamical system 2.5 and
x(t) = x(t) + 0x(¢) (2.8)

a neighboring one. The function §x(t) is also called virtual displacement (see
Figure 2.7). If the virtual displacement is small enough, the last equation 2.8,
together with equation indicates

d
—0x(t) = J(x, 1)9x(1)

implying through
%H(SX(t)HQ = oxT(t) o%'t) = 20x7 (t)J(x, 1)ox(t)

Denoting that A\,.x(Js(X, t)) presents the largest eigenvalue of the symmetric part

of the Jacobian J = %; it follows the inequality:

[x(£)]] < [|6x(0)]] efo Amex(D & < 15 (0)]] e~

If the Jacobian is uniformly negative definite J(x,¢) < 0 then A\ (Js(x, 1)) is
the maximal negative eigenvalue. Thus, this equation implies that any nonzero
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virtual
displacement

5X(0) ——

trajectories

virtual
velocity
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Figure 2.7: Two trajectories of a dynamical system and the virtual displacement.

virtual displacement ||dx|| decays exponentially to zero over time.
This decay occurs with a convergence rate (inverse timescale) that is bounded by
the quantity

Pc = —Sup )‘maX(Js(Xu t))

x,t

By ‘concatenating’ such virtual displacements at fixed points in time one can show
that any difference between the trajectories decays to zero, with at least the follow-
ing time constant [LLS98]. This has the consequence that all trajectories converge
towards a single trajectory exponentially. Therefore, this motivates:

Definition 1 With respect to the dynamical system x = f(x, t), the regions in state
space for which the symmetrized Jacobian

Jy(x,1) =% [afg;t) + <afg: t)) ] <0

is uniformly negative definite are called contracting regions. All solutions that
start in these regions converge towards a single trajectory for t — oo.

The previous argumentation can be extended by measuring the length of the virtual
displacement using a different metric (coordinate system). Assume a coordinate
transformation:

0z = O

©(x, t) presents a uniformly invertible square matrix, which in most cases is state-
and time-dependent. One can introduce the transformed displacement

0z(t) = O(x,1)dx(t)
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Analogous to the previous case, one finds:

d e\ os TS oo T o
dt(éz 0z) = 207" 0z = 20z £@+@8x)@ J(Sz
F

This implies the following general result [LS98]:

Theorem 1 Assume that for the system it is possible to find a square matrix
O(x,t) such that ©(x,t)TO(x, t) is uniformly positive definite, and such that the

generalized Jacobian

N
F=(6+65)0 (2.9)

is uniformly negative definite, then all system trajectories converge exponentially
to a single trajectory, and the system is called contracting. The rate of convergence
of ||0z(t)|| is at least p. = — sup, ; Amax(Fi(x,1)).

The matrix M(x,t) = O(x,t)7O(x, t) is also called the contraction metric.

Conversely, the existence of a uniformly positive definite metric
M(x,t) = O(x, 1)1 O(x,t)

with respect to which the system is contracting is a necessary condition for the
global exponential convergence of trajectories [LS98]. Furthermore, all transfor-
mations © corresponding to the same M result in the same eigenvalues for the
symmetric part of F [Slo03], and thus the same convergence rate. (The proofs
can be found in [LS98, Slo03].)

2.3.3 Partial Contraction

The concept of partial contraction can be seen as an extension of contraction the-
ory. The application implies the analysis of convergence to behaviors or to spe-
cific properties, such as equality of state components, or convergence to a man-
ifold, rather than trajectories. Many systems are not contracting with respect to
all dimensions of the state space, but show convergence with respect to a sub-
set of dimensions. A typical example is an externally driven nonlinear oscillator.
By its tendency to self-initiate oscillatory solutions, it is unstable and thus non-
contracting, within a region around the origin of state space. However, indepen-
dent of the initial state, it might converge exponentially against a single trajectory
that is determined by the external driving signal.

Partial contraction [WS05] allows to capture this property in a mathematically
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well-defined manner, and to derive from it results in the global stability of the
system. The key idea is to construct an auxiliary system that is contracting with
respect to a subset of dimensions (or submanifold) in state space.

Theorem 2 Consider a nonlinear system of the form

x = f(x,x,1) (2.10)
and assume that the auxiliary system

y = f(y,x,t) (2.11)

is contracting with respect to 'y uniformly for all relevant x. If a particular solu-
tion of the auxiliary system verifies a specific ‘smooth property’, then all trajecto-
ries of the original system verify this property with exponential convergence.
The original system is then said to be partially contracting.

A ‘smooth property’ is a property of the solution that depends smoothly on space
and time, such as convergence against a particular solution or value.

The proof of the theorem is to immediately notice that the observer-like system
has y(t) = x(¢) for all ¢ > 0 as a particular solution. Since all trajectories of

the y-system converge exponentially to a single trajectory, this implies that also

the trajectory x(t) verifies this specific property with exponential convergence.

Related to partial contraction are the following methods that will be crucial for the
derivation of results for the synchronization of groups of avatars. Again starting
from the equation 2.5, we assume the existence of a flow-invariant linear subspace
M, i.e. alinear subspace M such that

Vi E(M,t) C M

(see also Figure 2.8).

This implies that any trajectory starting in M remains in M. Furthermore, we
assume that p = dim(,M) and consider an orthonormal basis (e, ..., ,) where the
first p vectors form a basis of M and the last n — p a basis of M, the orthogonal
space of M. We define an (n — p) x n matrix V whose rows are e/, |, ..., e[ This
matrix can be regarded as projection on M, which implies x € M < Vx = 0.

It verifies
vvl =1, , and V'V+U'U-=I,

where U is the matrix formed by the first p basis vectors.
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Figure 2.8: Flow-invariant linear subspace M, such that Vt : £(M,t) C M. Any
trajectory starting in M remains in M.

Theorem 3 Assuming that for the dynamical system 2.5, a flow-invariant linear
subspace M exists with the associated orthonormal projection matrix V. A par-
ticular solution x,(t) of this system converges exponentially to M if the auxiliary
system

y = VI (V'y + UTUx, (), t) (2.12)

is contracting with respect to'y for all relevant X, then starting from any initial
conditions, all trajectories of the original system will exponentially converge to
the invariant subspace M. Furthermore, if all the contraction rates for the system
are lower-bounded by some constant \ > 0, uniformly in x,, and in a common
metric, then the convergence to M will be exponential with a minimum rate \.

The proof for this theorem can be found in [PS07]. It implies that a simple suffi-
cient condition for global exponential convergence to M is given by the following
inequality that needs to hold uniformly:

of
\% V' <
( ox
An even more general condition can be derived if there exista a constant invertible
transform © on M+ such that

oV <8f) viel<o
ox

is fulfilled uniformly [PSO7].
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Figure 2.9: Diffusive coupling with equal coupling gains K, where N; define a
set of neighbors of 7.

2.4 Contraction Analysis for Coupled Nonlinear Dy-
namical Systems

Most coupled oscillators in natural world are networked in large groups, such
as fireflies, with synchronized flashes, partial contraction, which was described
previously in Sections , can be used to study the synchronization be-
havior. This technique can be applied to analyze the stability for networks of
coupled dynamical elements of various coupling structures. Based on observed
stability properties, a synchronization behavior of the dynamical primitives can
be achieved. This approach has been used to analyze the dynamics in this thesis,
to analyze the stability of crowd animation, whose characters are coupled in an
appropriate way to obtain a coordinate behavior which will be discussed later in
more detail (see Chapter 6). Assume in the following n dynamical systems with a
linear, very general coupling structure, so called diffusive coupling [WS05], where
K;; denotes the gain (associated with coupling from node 7 to j). Furthermore,
assume that coupling links are bidirectional and symmetric in different directions,
ie., K;; = Kj;, illustrated in Figure

% =f(xi,t) + Y Ky(xj—x;) Vi=1,..n (2.13)
JEN;

where N; denotes the set of indices of the active links of element . In this case
of diffusive coupling, after synchronization, the dynamics of each subsystem is
equivalent to the dynamics of uncoupled subsystem.

The matrix L with the blocks (L;; = Z].GM K,; and L;; = —K;; for j # i) is
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called Laplacian matrix of the coupling graph. With this matrix and the definitions
X1 f(xy,1)
%, £(x,. 1)
the equation system can be written in vector form:
x = f(x,t) — Lx

This implies that the Jacobian of the system is given by J(x,¢) = D(x,t) — L,
where

%(xl,t) 0 0
D(x,t) = 0 0 (2.14)
0 0 2(x,,t)

For the case of diffusive coupling, we assume again the existence of a flow-
invariant linear subspace M of the x space that contains a particular solution
of the form x] = --- = x,.

f(xi, 1)
f(x*,t) — Lx" = : eM
f(x;,, 1)

For this solution all state variables x; for different subsystems 7 are identical and
thus in synchrony. In addition, for this solution the coupling term in equation

vanishes so that the form of the solution is identical to the solution of the
uncoupled systems x; = f(x;, t).

From the last section, it can be implied that V is a projection matrix onto the
subspace M, a sufficient condition for convergence toward this solution, which
is the matrix inequality V(D(x,t) — kL);V?T < 0. From this inequality, the
following sufficient condition for exponential convergence can be derived [PS07]

Amin(VELVT) > sup Apax ((ﬁ(x, t)) ) (2.15)
x,t 8x s

which implies the following minimum convergence rate:

pe = — SUP Amax(V(D(x, 1) — kL), VT)

x,t
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2.4.1 Andronov-Hopf Oscillator

The methods from contraction theory can be exploited to analyze the dynamics
of networks of coupled non-linear dynamical systems. Therefore, the stability
properties of oscillators (limit-cycle oscillator, viewed earlier in Section and
networks of such interacting systems will be discussed in more detail. Provid-
ing mathematical results help us to design a stable collective behavior as e.g. in
crowds (Section 6).
For this purpose, the dynamics of an individual character is modeled by an Andronov-
Hopf oscillator, a nonlinear oscillator whose choice of parameters is characterized
by a limit cycle that corresponds to a circular trajectory in phase space (Section
). For appropriate re-parameterization (rescaling of time and state-space
axes) the dynamics of this oscillator is described by the differential equations
[AVKS8T7]:

{i:(t> = (1= (@2(2) +52(0) a(t) — w y(t) 016
g(t) = (1= (2%(t) + v*(1) y(t) +w 2(t)
which can be written more compact in vector form (with x = [z, y]7):

x(t) = f(x,t) (2.17)

In the following equations, we will omit the notation of time dependence for the
oscillators phase variables: 7(t), ¢(t), x(t), y(t). The symmetrized Jacobian for
the system in x coordinates is:

10T  of

Jo=( o

’ 2<8x * 8x)
—(?+y? —1) — 222 —2xy

—2xy (2?2 +y?—1) —2y°

The eigenvalues of this matrix A\; = 1 — (2% + y?) and Ay = 1 — 3(2% + ¢?) are
independent of w. The contracting region for the system is (22 + y?) > 1, where
all trajectories converge to the circular trajectory of the limit cycle 7% = 1.

(Inside the disk 72 < 1 a single unstable fixpoint x = 0 exists.) Due to the
Cauchy theorem the solutions of this ordinary differential equation (ODE) do not
cross each other. Due to topological arguments for the 2D autonomous system
with a single unstable point in a compact region with single attractor trajectory as
its border, we have the global convergence of all trajectories of Hopf oscillator to
the stable limit cycle.
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By rewriting the system using polar coordinates (see equation 2.4) the sym-
metrized Jacobian of this system is given by

1—3r2 0
[

showing that, according to Definition |, this system is semi-contracting [PS07]
in the region |r| > 1/+/3 where its symmetrized Jacobian is uniformly negative
definite. Meanwhile, a more general result can be obtained by using a different
metric (cf. Section ). The introduction of the new variable p = 1/r? > 0
transforms the dynamics into the form:

(P*) =2r" (1 —17)
= p=2(1-p)
In this case, one of the eigenvalues of the symmetrized Jacobian are —1 and 0, so

that the system is semi-contracting in the whole phase plane, excluding the points
with p = 0.

(2.18)

2.4.1.1 Symmetric Coupling of Two Oscillators

The constraints that guarantee the synchronization of two symmetrically coupled
oscillators can be proven following [PS07]. The dynamics of two Andronov-Hopf
oscillators with symmetric diffusive linear coupling is given by:

= (1= (a1 +u1)) 21— wyn + k(@ — 71)
Y1 = ( (1’1+y1))yl+wx1+k Y2 — Y1)
Tg = ( ( + y2)) Ty — wys + k(x1 — x2)
Yo = ( (1’2 + yg)) Yo + wrs + k(Y1 — 12)

with k& > 0. In vector notation (using x; = [x;,3;]7, i = 1,2, and the definition
according to equation ) one obtains:

).(]_ . f(Xl) ke 1 —I X1
)'(2 N f(X2) -1 I X2
~_——
L)
& x=f(x)—kLgx (2.19)
where x = [x7,...,x%]?. According to the definition discussed in Section ,

a flow-invariant mamfold M of this system is given by the linear 2-dimensional
subspace that is defined by the linear relationship x; = X». For points on this
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manifold the coupling term vanishes, and the solution of the coupled system coin-
cides with the solutions of the uncoupled individual oscillators. By interchanging
the columns of the matrix L) — Al it is easy to show that

1-A 0 -1 0
1-M -1 | | 0 1-x 0 -1
| (1—)\)1'_ ~1 0 1-Xx 0
0 -1 0 1-A

Interchanging 2nd and 3rd columns and rows, we get:

det(Lg — )\I) =

1-x -1 0 0
—1 1-X 0 0 | |1-x -1
T -1 1-2)

2

=M\ —2)?

This implies that the matrix L) has rank 2. Its nullspace is 2-dimensional and
thus coincides with M. If according to Section , the matrix V is a projector
onto M this implies that the matrix VL5 V7T has only the eigenvalues 2.

The Jacobian for a single oscillator is given by

of
(i) = 50
—(z2+y?—1) — 227 —2xy; — w
=22y +w —(af+yi —1) =2y}

implying
1Jo(x:) = AI| = (1 — 7% = \)(1 —3r? = \)

with 72 = 2? + y2. The eigenvalues of the matrix J,(x;) are thus bounded by 1
from above.

Using the derived bounds for the eigenvalues, a sufficient condition for global
exponential convergence of the coupled oscillator system can be derived from
equation

Amin (V(EL(2)) V") = 2k > sup Amax ((%) ) =1 (2.20)
x,t s
This implies that a sufficiently strong coupling with k£ > 1/2 guarantees the global
exponential convergence against a stable behavior. Hence, the two oscillators
synchronize for non-zero initial conditions, which is shown in an example (Figure
), where the initial conditions of two oscillators differ from each other and
become synchronized using bidirectional couplings.
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a) Example: Uncoupled

N
><h 1
< o
-1
2F
_3 L L L L L L L L L
0 1 2 3 4 . 5 6 7 8 9 10
time
b) Example: Bidirectionally
4 =
3 =
2 =
[\l
<k
=
=
>
O =
-1F

time

Figure 2.10: a) Two uncoupled oscillators show no synchronization behavior; b)
Two bidirectionally coupled oscillators synchronize.
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24.1.2 Symmetric Coupling of Three Oscillators

The same proof can be extended for the system of three coupled Hopf oscillators,
where we use the diffusive coupling term with £ > 0:

xr = (1 — (l’% + yf)) Ty — Wiy + k?(xg — Il) + /{3(1’3 - 1‘1)
1= (1= (21 +91)) 1 +wrr + k(y2 —y1) + k(ys — 1)
I“QZ ( — (I2+y2))x2—wy2—|—k [EI—IQ)+/€(.T3 Iz)
g2 = (1= (23 +92)) y2 + wrz + k(Y — y2) + k(ys — y2)
j;3:( _(I3+y3)) 3 — wys + k(x1 — x3) + k(2 — 23)
gs = (1= (25 +13)) ys + was + k(ys — us) + k(v2 — ys)
Which can be described by the equations:
}.(1 f(Xl) 21 —I —I X1
Xo | = | f(x2) | = k| -1 2I -1 Xa (2.21)
).(3 f(Xg) —I —I 21 X3
L)
x = f(x) — kL3x (2.22)
where x = [x7, ...,x4]". In this case, the characteristic equation for L3 is:

det(Lz) — AI) = A?(A—3)* = 0, where all non-zero eigenvalues of L3, are equal
to 3 and it follows by the same argumentation as in Section

f
Amin (V(kL(3)VT) = 3k > SUp Aoy ((%) ) —1 (2.23)
x,t S

Hence, k& > 1/3 presents the derived condition for the global exponential conver-
gence to the stable phase-locking behavior of three coupled Hopf oscillators.

Due to the construction of the coupling, the flow-invariant manifold is two-dimensional.
Here the flow-invariant manifold is spanned with the set of all trajectories when

all oscillators behave identically, and one Hopf oscillator has 2 degrees of free-
dom. But dim(Null(L)) = 2 holds also in this case, so that Null(L) and the
flow-invariant manifold coincide.

2.4.1.3 Symmetric All-to-All Coupling of N Oscillators

The last analysis can be extended to any number N of coupled oscillators (Figure
). In this case, the 2 N-dimensional square matrix L has the form:
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D
7> ]
Okt

Figure 2.11: All-to-all coupling of /V oscillators, with equal symmetrical coupling
gains k.

(N=1) 0 ~1 0

0 (N-1) 0 ~1

L=| -1 0 (N-1) 0
0 -1 0 (N-1)

ie, L; =N —1land L;; = —1ifi # jand (i + j)mody = 0, and L;; = 0
otherwise. By rearranging the columns and rows, this matrix can be restructured

in the form:
| Lg O
L= [ 0 L } (2.24)
where:
(N —-1) -1 -1
B -1 (N —-1) -1 o
Lo = —1 -1 (N-1) ... (2.25)

Note that L = NI — 117, The matrix 117 has rank 1 and the eigenvector 1
with the eigenvalue NNV, while all other eigenvalues are 0. From det(Lg — AI) =
det(—117 — (A = N)I) = 0 follows that the matrix Lg has one eigenvalue 0 and
all other N — 1 eigenvalues are N. Resulting from this and equation the two
eigenvalues of the matrix Li are 0, while all non-zero eigenvalues are /N. As for
equation one obtains the inequality

f
Nk > sup Anax ((8_) ) =1
x,t aX s
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Global exponential convergence to a stable synchronized solution is thus guaran-
teed for k > 1/N .

2.4.2 Symmetric Couplings: More General Structure

This subsection deals with systems with more general symmetric couplings of N
number of oscillator, following the proceeding in [WSO05]. Therefore, suppose
equal coupling gains k. The corresponding dynamics is then:

X =f(x;)+ kY (x;-x), Vi=1...N (2.26)
JEN;

where N; denotes the set of indices of all oscillators that are coupled with oscilla-
tor ¢. The couplings are assumed to be bidirectional, defining an undirected graph
of couplings. This implies j € N iff i € ;. By construction the coupling graph
is balanced, i.e. the sum of the (weighted) connections towards each oscillator
equals the sum of (weighted) connections away from this oscillator. The corre-
sponding symmetric Laplacian matrix L has a block structure, where the blocks
at positions (i, i) are given by —I where the i-th diagonal block is given by n;I, n;
signifying the number of elements in N;:

L= Do (2.27)

L : : A NxN

Like in the previous sections, this matrix, by appropriate sorting of columns and

L O

rows, can be brought in the form
0 Lg

} , where Lg is called Laplacian ma-

trix of the coupling graph.

Since the network is balanced, the sum of the rows of this matrix are zero. This
implies that 1 is an eigenvector with eigenvalue O.
Again, the block structure implies that all eigenvalues of Lg appear twofold in the

matrix L. Consequently, two of its eigenvalues are zero, independent of the form
of the sets N;.

Following the argumentation in the last sections one can derive a necessary con-
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) Q.. =
" Q@@ =~

Figure 2.12: Symmetric coupling. a) Chain and b) ring coupling of /V oscillators.

dition for the exponential convergence from equation

Amin (V(EL)s V") = kA{ > sup Amax ((g—i) ) =1 (2.28)
x,t s

Here, )\{ stands for the smallest non-zero eigenvalue of the matrix L that depends
on the form of the coupling. The matrix V defines the projection to the orthogonal
complement of the flow-invariant manifold x; = --- = x,,. The condition for
exponential convergence thus is

k> 1/A (2.29)

Considering symmetric coupling, different coupling structures can be analyzed in
this way to obtain synchronization conditions. Beside diffusive coupling, which
was discussed earlier in Section , Figure shows additionally coupling
structures: A symmetric chain structure of a set of NV oscillators (a) and a two-
way-ring structure on the right side (b). In the case of the two-way-chain structure,
the first nonzero eigenvalue of the matrix Lg can be shown to be

A =2(1 — cos(m/N))

Whereas, for a symmetric-coupled ring structure, the synchronization condition is
1/M\{ [WS05], where

A =2(1 = cos(2m/N)) (2.30)
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Figure 2.13: Star coupling

Finally, a star coupling of N > 2 oscillators can be interpreted as a network,
where N — 1 oscillators are not connected with each-other, but only with the
central node of the star. Moreover, the couplings are again bidirectionally and
the coupling gains for all connections are identical. The corresponding coupling
graph is illustrated in Figure . If the first oscillator represents the center-
node of the star structure, it implies for the elements of the Laplacian matrix, that
(Lg)ia =N —1,(Lg)ii = 1, (Lg)1; = —1 for ¥i > 1, while all other entries are
zero (Lg);; = 0.

It can be shown that the eigenvalues of this matrix are then 0, 1 (N — 2) times),
and N. Hence, \{ = 1 it follows the stability condition

k>1 (2.31)

in order to achieve a synchronization of the network.

2.4.3 Leader-Group Coupling

Assume a scenario, where a single oscillator is coupled to group of /V identical
oscillators that are already synchronized. The underlying dynamics is defined by:

%o = f(x0) — k (NXO - le) = f(x0) — kN (x0 — x1)

A particular solution of this system is xy = x;. If the system is partially contract-
ing in X this implies the exponential convergence of the follower state x( against
the equilibrium state x; of the other oscillators. This condition is obviously ful-

filled if
f
kN > sup Amax ((8_) ) =1 (2.32)
x,t aX S
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In a leader scenario, the single oscillator feeds unidirectionally into all other N
oscillators with the same coupling strength «, but not vice versa, as it is illustrated
in Figure . This situation is described by the dynamics (for 1 < i < N):

Followers

Figure 2.14: Leader-group coupling: Single oscillator feeds unidirectionally into
all other V oscillators with the same coupling strength £.

Since the leader oscillator does not receive external inputs, it oscillates au-
tonomously, and x, can be treated as external input. Applying partial contraction
analysis to the second equation, one obtains the dynamics by using the same defi-

nitions as in Section , where Xg = [x{,...,x3]" and x = [x7 , ..., xx|T.

x = f(x) — kLx — ax + aXg (2.33)
This implies

J(x,t) =D(x,t) — kL — oI
and the contraction condition:

of
Amin (KL + o) > sup Adpax | | =— =1 (2.34)
x,t ax S

For the special case that the /V oscillators (except for the leader oscillator) are
symmetrically coupled all-to-all, the contraction condition becomes

EN +a>1 (2.35)

This implies that for kN < 1, a contracting behavior can still be guaranteed when
the coupling « to the leader oscillator is sufficiently strong. The minimum con-
vergence rate is then given by p. = kN + «. Figure presents a simulation of
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two unidirectionally coupled oscillators, which start in anti-synchronization and
become coordinated.

Different coupling structures and coupling strengths have a diverse impact on the
behavior of the oscillator networks. By understanding the stability properties of
such systems using partial contraction theory, one is able to control such com-
plex interactions between an arbitrary number of nonlinear-dynamic primitives to
obtain a stable and coordinated behavior.
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a) Example: Anti—synchronization
15 ‘ ‘ ‘ ‘ ‘
1 |
0.5} 1
Py
-0.5} 1
1F
1.5 ‘ ‘ ‘ ‘ ‘
0 1 2 3 4 5 6
time
b) Example: Unidirectionally coupled
1.5 ‘ ‘ ‘ ‘ ‘

time

Figure 2.15: a) Two oscillators with opposite initial conditions (1, —1) are un-
coupled resulting in an anti-synchronization behavior. b) Two unidirectionally
coupled oscillators synchronize.
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)

z,(2) z,(t)

Figure 2.16: Following the Leader: z;(t) and z, define the position of the follower
and the leader at time ¢.

2.5 Distance-Frequency Control

The following section deals with the stability analysis of dynamics of simple fol-
lowing behavior. As illustrated in Figure , z1(t) and z5(t) specify the positions
of the leader and the follower. The follower is modeled by a Andronov-Hopf
oscillator, whereas the leader is just represented by his position zy(¢). Let the
distance-frequency coupling for the follower be given by:

w(t) = wo +m(z1(t) — z2(t)) (2.36)

where m denotes some positive constant (1 > (). Furthermore, we assume that
wy 1s the frequency of the follower, which corresponds to the propagation speed
of the leader (wy can be estimated by observing the leader).

The last equation specifies a position control, where (for constant propagation
speed of the first agent) w(¢) changes until the position of the second avatar
matches the one of the first, i.e. z1(t) = 25(t) for large ¢.

In fact, the propagation speed depends in a very complex way on the phase ¢(t)
of the oscillator through the highly nonlinear kinematics. Nevertheless, as a first
example we analyze the extremely simplified case where the relationship between
propagation speed and phase of the oscillator can be approximated by the linear
relationship

%(t) = Pw(t) = Po(t) (2.37)

where P is some positive constant.
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2.5.1 Analysis

Below the following simplified notations are used: z;(tf) = A(t) for the position
of the leader z; at time ¢ and z(t) = 25(t) = P [ w(t)dt for the position of the
follower z5 at time ¢.

2.5.1.1 Linear Approximation of Kinematics

From the previous assumption we derive

2(t) = Pw(t)
(2.38)
w(t) = wo + m(A(t) — (1))
Insertion of the last equation in the first yields:
2(t) = P(wo + m(A(t) — 2(1))) (2.39)
Differentiation with respect to time results in:
(t) = Po(t) = —Pmw(t) + RmA(t) (2.40)
= wt) = m(A®t) — Pw(t)) (2.41)

This is a linear dynamics for w(t) that is obviously contracting for mP > 0. If
the propagation speed of the leader is constant, (which means, by definition of wy
that A(t) = Puwy), then w(t) — wy, £(t) — Puwy, and from equation follows
that z(t) — A(t). More abstractly this implies that coupled Hopf oscillators of
this type with the specified linear approximation of the propagation model specify
a cascade system, where the eigenfrequency as an external parameter influences
the oscillator(s), but the state of the oscillator does not feed back in the dynamics
of w(t).

2.5.1.2 Nonlinear Approximation of Kinematics

A more accurate description of the kinematics driven by general dynamical system
results in a dependency of the propagation speed of the variables ¢(t), G(t), r(t),
7(t). Due to the complexity of this nonlinear relationship, we believe that this
problem cannot be solved exactly. Instead a bound has been computed by deriving
appropriate constraints for the relationship:

£(t) = g(o(t), (1), o(t), 7 (1)) (2.42)

The nonlinear function ¢(.) of forward kinematics has the effect that in this case
the oscillator state feeds back into the w(¢) dynamics, which makes the analysis
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20),,

30

20

Figure 2.17: Propagation velocity dependent on the gait cycle phase ¢.

of the system much harder. We propose to proceed in the following ways:
The first extension is to assume

2(t) = (t)g(8(t)) = w(t)g(o(t)) (2.43)

where w(t)g(¢(t) denotes the propagation speed for the avatar driven by a single
Hopf oscillator resting on its limit cycle. An example for an empirically deter-
mined function g(¢(t)) is shown in Figure , where the propagation velocity
g(¢(t)) was estimated for a constant w = 1. In this case, the decoupling of the
w(t) dynamics and the oscillator dynamics remains valid, and the system dynam-
ics for one avatar driven by single Hopf oscillator on its limit cycle is given by
two differential equations:

{z(t)zé(t)g( (t) = G((t))

. - (2.44)
o(t) = wo +m(A(t) — (1))

where G(¢) = f0¢ g(¢)d¢ + const. The position of the follower is z(t), and A(t)
is the position of the leader avatar. Here m is a positive coupling constant and g(¢)
is positive function. dG(¢)/d¢ = g(¢) and G(¢) is a strictly increasing function,
for which we can choose initial conditions so that G(0) = 0. Using the identity
z(¢(t)) = G(o(t)) — ¢, the system can be rewritten as

O(t) = wo + m(A(t) — G((t)) + ¢) (2.45)

where c is the constant that depends on the initial phase and position of the fol-
lower. The symmetrized Jacobian of the system is

Js = _mg(¢(t))

which is always negative for m > 0 and guarantees that the system is contracting.
This means that the trajectories of all following avatars (starting with the same
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initial relations to the leader as determined by c) converge to the same single
trajectory.

If the dynamics for the position control of the follower (equation ) is extended
by including a nonlinear coupling &, i.e. sigmoid function, used for the ‘father-
son example’ in Section , contraction 1s guaranteed when the nonlinear
coupling is positive with £ > 0. Therefore, the distance-frequency coupling of the
follower is denoted by:

w(t) = wo + &(21(t) — 22(t)) (2.46)
Corresponding to equation the dynamics can be written in
(t) = wo + E(A(t) = G(9(t)) +¢)

and it follows that the symmetrized Jacobian is

Js = —§(A(t) = G(@(t) + g6 (1))
where for ¢ > 0 a contracting behavior is guaranteed.

In this section, contraction theory as a tool for stability analysis of complex non-
linear systems was presented and applied to exploit this approach for obtaining
stability properties from coupled nonlinear limit-cycle oscillators. Indeed, sys-
tems of different coupling structures with arbitrary size were investigated; Ad-
ditionally simple leader-follower dynamics have been discussed. The computed
stability properties can be used for the controlled application in character anima-
tion.



CHAPTER 3

Blind Source Separation

The aim of dimensional reduction is to decrease redundancy in large data set of
parameters or features, which can be summarized into a set of fewer dimensions.
In this way, the extracted information reformulates the original data using less pa-
rameters [LVO7]. Dimension reduction of information is currently an important
topic in many different domains such as in biology, engineering, and other areas
of applications dealing with data processing.

Especially in entertainment software, like video games with limited memory, it is
of high interest to reduce the dimension of the original data without losing qual-
ity and make the data accessible for the environment (applicants). For instance,
complex body movements represent highly redundant trajectory data and leads to
a tedious process for animating virtual humans due to the ‘degrees of freedom
problem’ (Section |.1). Therefore, a more compact representation of the joint tra-
jectories is desired to simplify the treatment of the many degrees of freedom by
separating the movement into simpler components [IPL04, FHOS]. For this pur-
pose, unsupervised learning techniques, such as blind source separation, can be
applied and serves as the main topic of this chapter.

50
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3.1 General Approach to Blind Source Separation

Figure 3.1: The cocktail-party problem presents the classical BSS problem since
the number of speakers is larger than the observed mixtures recorded by the two
microphones x; and x,. Hence, this example represents an under-determined
problem because several simultaneously active signal sources can be separated
at different spatial locations by assuming mutual independence of the sources.

Blind Source Separation (BSS) can be applied to a variety of situations, as
it is in the case of speech processing [BS95, OPR05]. Although no information
regarding the source signals or the mixing process is given, source signals from
a set of mixed signals can be recovered. In fact, BSS relies on the assumption
that the source signals are mutually independent and, by superpositioning them,
the mixed signals can be reconstructed. Linear BSS problems can be summarized
into the following three kinds of mixtures:

1. Instantaneous mixtures
2. Anechoic Mixtures

3. Convolutive Mixtures
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The classical example for the source separation problem is been presented in the
well-known ’cocktail party problem’ [HOO1, PLKPO7] and is illustrated in Fig-
ure 3.1. Hereby, the task of the BSS algorithm is to extract the voice of a single
person from an ensemble or mixtures of different voices corrupted by music and
background noises.

In many cases the number of mixtures (7 microphones) are larger than the num-
ber of sources (n speakers) so that m > n and it is defined as an over-determined
mixing problem. To solve such a problem, the application of dimensionality re-
duction methods is usually the first step to follow.

Vice versa, if the number of sources is smaller than the number of mixtures
(m < n), the model is known as an under-determined mixing model.

However, the cocktail party problem can be mathematically formalized as follows:
wi(t) =) wyesi(t) =1 m, (3.1)
j=1

where z; denotes the recorded mixtures of the original source signals (speakers)
s;j in time ¢ and w;; defines the mixing weights. This simplest form of the BSS
problem is referred to as instantaneous mixtures (Section 3.2).

Anechoic mixtures (Section 3.3) can be seen as an extension of the instantaneous
mixing model with time delays. In regard to the ’cocktail party problem’, the party
is located in a reverberant environment, where the source signals are recorded with
different time delays due to reflections on the walls. Considering the different
times of arrival —delays (7 )— of the sounds, the mixing model is termed by

J]Z(t) :Zw”s](t—n]) 1= ]_, , M. (32)
j=1
and can be seen as a special case of a positive convolutive model (see [Oml110]).

3.1.1 BSS For Motion Analysis

As it was discussed earlier in Section a classical assumption in motor control
implies that complex behavior can be reconstructed by an appropriate linear com-
bination of simpler movement primitives or synergies. For extracting the basic
components from motion data, instantaneous BSS algorithms like principal com-
ponent analysis (PCA), independent component analysis (ICA), or non-negative
matrix factorization (NMF) have been successfully applied [SFS98, IPL04].

Corresponding to the instantaneous model in equation 3.1, x;(t) represents the
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recorded motion data and is modeled as a linear combination of weighted source
signals s;(t).

However, to separate movement components, the application of instantaneous

BSS algorithms seem to be a common approach and has been also applied for
full-body motion capture trajectories.

ICA has been used on individual joint angles trajectories; a comparison between

the components among joints show a similarity in shape but a disparity of phase
(Figure 3.2).

Source signals

‘Ieft knée ‘

right elbow

amplitude

realigned

time

Figure 3.2: Extraction of primitives by using ICA on individual joint angles.

Source signals of individual joints have a similar shape, but are time-shifted
against each other.

From this observation a mixture model with time delays 7;; among sources
might be more convenient and corresponds to the anechoic mixing model
More details can be found in [Oml10].
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unknown sources

x.(t) = Zwijs'(].(t -1,
i ¢ 4

Joint angle

trajectories ] {
unknown unknown
weights phase shifts

Figure 3.3: Generative mixing model: Superposition of independent shift-
invariant source signals.

3.2 Instantaneous Blind Source Separation

In order to find a suitable representation of the data, an appropriate transfor-
mation is needed and states a common problem in many scientific areas, as in
statistics or signal processing [Hyv99, LVO7]. In mathematical terms the task
can be reformalized as in the following equation. A function f is sought, which
expresses an m-dimensional random variable x as an n-dimensional transform
s = (s1, 82, ..., 5,)7 and is defined by

s = f(x)

In general cases, one seeks for a linear transformation of the random variable, so
that
s = Bx

where B defines the matrix, which has to be determined. Principal component
analysis, independent component analysis, and non-negative matrix factorization
are few of many methods for such a linear representation.

3.2.1 Principal Components Analysis

The Principal Components Analysis (PCA), also known as (discrete) Karhunen-
Loeve transform, or the Hotelling transform, represents a classical example for
the linear transformation of data. Moreover, it is a common method for dimension
reduction, and feature extraction [BisO7, Hyv99]. In fact, PCA belongs to the
second-order method and uses the information from the covariance matrix of the
data vector x. Additionally to the assumption on linearity, the assumption of
normal or Gaussian distribution of the random variable is required.
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A

X

Figure 3.4: PCA projects the data along the directions where the data varies the
most. These directions are determined by the eigenvectors of the covariance ma-
trix corresponding to the largest eigenvalues. The magnitude of the eigenvalues
corresponds to the variance of the data along the eigenvector directions.

Before applying PCA on the variable x, the mean is often subtracted in order to
center the data, which can be viewed as a first transformation:

x = X9 — E{xo}

where x( denotes the original non-centered variable. The goal of PCA is to find
the principal components by, b, ..., b, and their weights sq, so, ..., s,,, which ex-
plain the maximum amount of variance by n linearly transformed components.
For this purpose, the direction of the first principal component b; is computed by
b; = arg Hmﬁax E{(b"x)?}
b|=1

and has the same dimension m as the random data vector x, which explains the
largest variance of the data (see Figure 3.4). Having the first principal components
k —1, the k-th principal component is then determined as the principal component
of the residual:

k—1
by = arg max E{[b"(x — > b;b/x)]*}
=1

[bfl=1
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The sources weights are then given by s; = b!'x. For the computation of b; the
covariance matrix C of the data x is needed, where C = E{xx’}. From C the
eigenvalues A\; > Ay > --- > ), and then the eigenvectors of C are computed.
Since PCA emphasized the dimensionality reduction of the observed data, one
usually chooses n < m, so that b; define the eigenvectors corresponding to the n
largest eigenvalues of C'.

3.2.2 Independent Component Analysis

In comparison to PCA, the independent component analysis (ICA) belongs to
a higher order method and use information on the distribution of x that is not
contained in the covariance matrix. Hence, to apply ICA successfully to the gen-
erative instantaneous mixing model (see also Section 3.1):

x = As
assumptions, besides the centering of x and s are required [CCPLO0O5, VMO1]:

e The latent variables s; in the vector s = (sy,...,,)" are assumed to be
independent.

e The independent components have non-Gaussian distribution.

The original sources s can be recovered by multiplying the observed signals x
with the inverse of the mixing matrix U = A~!, also known as the unmixing
matrix. Thus, the estimation of the unmixing matrix U is needed, to obtain the
sought independent source signals y:

y(t) = Ux(t)

Therefore, several approaches for the ICA problem have been developed [Hyv99,
HOO1]. The most common one is based on the algorithms for maximum like-
lihood or infomax estimation; and defines a (stochastic) gradient ascent of the
objective function. For instance, the log-likelihood of the unmixing matrix U is
given by:

1 n
log L(U) = ) log | det UUT| — Zlog (pi(y:))

=1
and can then be maximized by the natural gradient descent:
AU = [UT] + E{g(y)x" }.

where g() denotes a nonlinear function, which must approximate the cumulative
distribution function (CDF) of s. In practice hyperbolic tangent and logistic func-
tions are good estimates for g() [OmI2010].
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3.2.3 Non-Negative Matrix Factorization

The Non-negative Matrix Factorization or NMF defines an algorithm, which was
developed for 2-D images [LSO1]. Given a non-negative data, NMF finds an ap-
proximate factorization of a matrix X (M x N) into factors A (M x R) and B
(R x N) with the constraint that A and B must be non-negative.

X ~ AB

This equation can be re-written also as:

where a, denotes the vector to be the rth column of A = aq,as, ...,ar and b, to
be the vector of the rth row of B = by, bs, ..., br . Each vector a, describe the
basis feature in X, whereas the corresponding b, is the vector of coefficients of
this feature. However, to find such a pair A and B that approximates the data
matrix X and which minimizes the error of reconstruction, two cost functions are
defined [PAB*06, LSO1].

The first of the two cost functions Y is based on the Euclidean distance between
X and AB:

T(X,AB) = | X — ABJ[;,

This is lower bounded by zero, and vanishes if and only if X = AB An alterna-
tive measure is the divergence (generalized version of Kullback-Leibler [OP06])
between X and AB:

x(X[|AB) =

X

The denotation o is known as Hadamard or Schur product and defines an elemen-
twise product, and division is also elementwise.

The NMF can now be written as an optimization problem:

minD(X||AB)
AB

and A,B > 0. A gradient descent update rules of A and B can be applied to
minimize the cost functions:

AT. X X BT
_ AB _ AB
B=Bo—m A=A BT

where 1 is an M x N matrix with all its elements equal to unity. More details about
the minimization of the cost function and the proof can be found in [WP05, LSO1].
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3.3 Anechoic Demixing using Wigner-Ville Trans-
form

In Section anechoic mixing model were already introduced as an example
for modeling the human motion. Opposed to common blind source separation
techniques, such as PCA or ICA, this mixing model allows for time shifts 7;; of
the sources in the linear mixture.

:Zwi]’ 'Sj(lf—Tl'j) 1= 1, ,m. (33)
j=1

The functions s; denote hidden source signals and the parameters w;; are the mix-
ing weights. The standard anechoic demixing techniques in acoustics treat under-
determined problems, which is not appropriate for dimension reduction purposes
as it is necessary for motion analysis.

Therefore, we apply a suitable new approach over-determined problems, for which
the signals outnumber the sources. Moreover, the anechoic mixing model is in-
dependent of the dimension of the data and the relation between the number of
sources and the number of data points [OGO7].

In order to solve this anechoic mixture model, the time shifts (delays), source sig-
nals and mixing weights are determined by a blind source separation algorithm
that is based on a time-frequency integral transform, which is called Wigner-Ville
spectrum (WVS). In this way, the signals can be represented in the time-frequency
domain, while assuming that x(¢) is a random process and =* = Z(—t) defines the
reversed conjugated process:

Ve(t, f) = /E {x(t + %)x*(t _ %)} o=2miTf g

T

Applying this integral transform to the anechoic mixing model rewrites the
following time-frequency domain:

T —2miwT
Ve(t,w /E{ Z W; Wik ( t+ - 5 — i) sy (t + 5~ Tie) ye T dr =

J,k=1
Z wz’jw_ik/E{Sj(t + 5~ i) sy (t + ohe Ta) e 2T g
k=1

Assuming the statistical independence of the sources, the model can be simplified
in [OGO6]:
Ve, (T, w) Z |w2J| V — Tij, W) (3.4
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As two-dimensional representation of one dimensional signals, this equation is re-
dundant and can be solved by projecting the WVS back to several 1D spaces. The
simplest projections are obtained by computing the first and zero-order moments

of equation 3.4, which results in the following equations:
B{|F,. 2} = / - (tw)dt = Z|w\ /v i w)dt = Z|wy E{F. %)
(3.5)
and:
B[ Fr (@)} o, (w Zm B{FSY @) ] (36)
Equation defines an instantaneous mixing model with non-negativity con-

strains and can be treated as a standard NMF or positive ICA problem. The un-
known sources, the weights and the delays can be estimated by using the iterative
solution of a two step algorithm [OGO6].

1. Solve:

| F i (w Z jwij | | Fsj*(w) (3.7)

where Fz; and F's; specify the normal Fourier transform of z; and s;. This
equation can be solved using nonnegative matrix factorization (NMF) or a
positive ICA algorithm to obtain the power spectra of the sources.

2. Use the results from the previous step to solve the following equation nu-
merically to obtain the phase spectra and delays of the sources:

\.7:$i(w)|2%arg {Faij(w)} =

(3.8)
Z\wml |Fsj(w [*arg{fsz( )} + 751

In this way, the linear mixture model, as well as the time delays, can be solved us-
ing this BSS approach based on the Wigner-Ville transform and has been applied
successfully for joint angle trajectories (Chapter 4).



CHAPTER 4

Real-Time Architecture for Character Animation

This chapter describes the realization of a real-time character animation based
on a small set of approximated spatial movement primitives, or synergies from
full-body motion capture data. In this way, we modeled complex motor behavior
with many degrees of freedom by the superposition of simpler components (syner-
gies), inspired by the concepts of motor control (Section ). Additionally, we
combine the compact parameterization of the motion captured movements with a
dynamical system approach to obtain a real-time architecture. This can be real-
ized by constructing a nonlinear mapping between the solutions of the dynamical
systems and the extracted source signals by applying supervised learning tech-
niques. To obtain a coordinated behavior, the dynamical systems corresponding
to the different source signals are coupled with each other.

4.1 Data Acquisition

4.1.1 Motion Capture System

The Motion Capture System became a common approach to record motions and
translating that movement onto a synthetic model. Especially in movies and in
video games, motion capturing is a popular process to synthesize realistic human
actions before transferring the generated movements onto a virtual character (Fig-
ure 4.1).

One can distinguish between two different approaches of motion capturing: The
electromagnetic, or magnetic motion capture, and the optical motion capture.

60
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Figure 4.1: From a real performer to a virtual character. Left to right: Captur-
ing human walking; 3D positions of recorded data; joint angle computation and
mapping them onto a simple character; and animate a virtual human.

The magnetic tracking method requires an environment devoid of magnetic field
distortions and furthermore uses sensors placed at joints. These sensors often
need cables to transmit their positions and orientation back to a central proces-
sor to record their movements, so that the performer is tethered with some kind
of cabling harness, and thus constraining the flexibility of the actor’s movements
[Par02].

However, the optical motion capturing is a wireless procedure and gives the actor
enough flexibility to perform complex movements. This is a very accurate method
of capturing motions. It is not a real-time process —at least not for complex move-
ments; immediate feedback is not or hardly possible on the target character. Since
the captured data are error prone and noisy, extensive post-processing become
necessary (Section ).

Our lab is equipped with an optical motion capture system, consisting of the VI-
CON 612 data station, which controls nine active infrared cameras with a temporal
sampling frequency of 120 Hz and a spatial resolution error of < 1 : Smm (Figure

). The Vicon motion tracking system includes the software: VICON work-
station, VICON Body Builder and the Plug-in Gait marker set.

For our recordings, we used optical markers with a diameter of 2.5cm, which
are spheres covered with a retro reflective material. The motion capture cameras
are normally fitted with their own light sources that create a directional reflection
from the markers. The cameras’ threshold can be adjusted, so that only the bright
reflective markers will be sampled ignoring skin and fabric.

The optical system must be calibrated by having all the cameras track an object
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Figure 4.2: Motion capture environment. Vicon cameras record the performer’s
motion.

with known dimensions that the software can recognize, such as a wand with
reflective markers. By combining the views from all cameras with the known
dimensions of the object, the exact position of each camera in space can be cal-
culated. At least two views are needed to track a single point’s three-dimensional
position while extra cameras are necessary to maintain a direct line of sight from
at least two cameras to every marker [Men99].

For our recordings, 41 optical markers were coated on positions, according to
the Plug-in Gait marker placements, listed in the table in Appendix |, which are
taken from the Plug-in Gait documentation. Since it is not possible to attach the
marker directly to the joint centers of the human skeleton, the coordinates of the
joint centers —virtual markers— have to be inferred from the position of the skin
markers using the Plug-in Gait information and the anatomical measurements of
the individual actors, see Figure 4.3. The description how to compute the joint
centers from the marker position can be taken from the Plug-in Gait documenta-
tion. However, these virtual markers then describe the position of the joint centers
which are used for the representation of our animated character model, giving the
model hierarchy structure of segments which are connected by 17 computed joint
centers (Figure 4.4).

4.1.2 Joint Representations of the Avatars

A constant problem with motion capture systems is noise, which can arise, for
instance, from the physical system. The markers can move relative to their initial
positioning, and the faster the performer moves, the more the marker swing and
reposition themselves. Noise also arises from the sampling process. To deal with
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Figure 4.3: According to the Plug-In Gait marker set, gray spheres show the place-
ment of the markers. Red dots indicate the location of virtual markers that can be
computed using additional anatomical measurements.

this issue, the user can condition the data before they are used in the reconstruction
process. Data points that are radically inconsistent with typical values can be
manually thrown out, and the rest can be filtered. The objective is to smooth the
data without removing any useful features which is generally handcrafted.

However, once the markers look smooth and reasonable, the next step is to fit the
tracking information into a underlying skeletal structure that is to be controlled by
the captured motion. In other words, the position of each marker in each frame is
used to absolutely position the specific joints of the skeleton.

4.1.2.1 Joint angle computation

The cleaned and post-processed motion capture data describe the 3D-position of
the virtual markers during human motions. Because the comparison between the
movements with absolute marker positions are difficult to analyze and the major
part of the variance will be dominated by the actor’s height differences, the move-
ment is described by the angular change between segments.

To compute the joint angles, we use a forward kinematic model. Its essential con-
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Figure 4.4: Representation of the hierarchical structure of our model.

cept is that the position of the end effector of the model is calculated by taking
into account the position and orientation of the previous segments in the kinematic
chain (forward kinematic). The relative orientation between adjacent segments is
given by a rotation matrix mapping one reference frame to the other. A complete
list of segments, the associated markers, the joints, and the corresponding trihe-
dron can be found in Table

The standard angle computation of joints are based on Euler angles [Par02] but
also implies certain problems. For instance, one is known as the gimbal lock and
describes the loss of one degree of freedom that occurs when two axes of the three
gimbals are driven in the same place and one degree of freedom is lost. The fol-
lowing example illustrates this:

Rotations around the cartesian axes are given by

cos¢p sing 0 cos 0 sind 1 0 0
Z=|—-sing cos¢p 0| ,Y= 0 1 0 , X=10 costY sing
0 0 1 —sinf 0 cos6 0 —sinvy cosy

Any rotation matrix R in 3D space can be represented by three rotations in several
ways. One of these representations is:

cos¢ sing 0 1 0 0 cos® sinyg 0
R=7ZXZ = | —sin¢g cos¢p 0 0 cosy siny —siny cosy 0
0 0 1 0 —siny cos®y 0 0 1
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with ¢ and v constrained in the interval [—, 7|, and 6 constrained in the interval
[0, 7]. If § = 0 the above expression becomes equal to:

cos¢ sing 0 100 cos® siny 0
R=|—sing cos¢ 0 010 —sinvy cosy 0
0 0 1 00 1 0 0 1

The second matrix is the identity matrix and has no effect on the product. Carrying
out matrix multiplication of the first and the third matrices, one computes:

cos(¢ +¢) —sin(¢+1v) 0
R=|sin(¢+v¢) cos(¢+1) 0
0 0 1

Changing ¢’s and 1/’s values in the above matrix has the same effect. The rota-
tion’s angle ¢ + v changes, but the last column and the last line in the matrix will
not change. Hence, the rotation’s axis remains in the Z direction and one degree
of freedom has been lost.

One can choose another convention for representing a rotation with a matrix us-
ing Euler angles than the Z — X — Z convention above, and also choose other
variation intervals for the angles, but at the end there is always at least one value
for which a degree of freedom is lost. Therefore, our joint angle computation is
based on the axis angles representation.

4.1.2.2 Axis Angle

The axis angle representation evolves from Euler’s rotation theorem and implies
that any rotation of a rigid body in a three-dimensional space is equivalent to a
pure rotation around a single fixed axis. Hence, the axis angle represents a rota-
tion by two values: A unit vector indicating the direction of a directed axis, and
an angle describing the magnitude of the rotation about the axis.

Mathematically the connection between the axis of rotation e, the angle of revolu-
tion 6 and the rotation matrix R is given by:

0 —E€3 €9
€ := €3 0 —€
—€9 €1 0

R=1+sinfé+ (1 — cosf)é
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where R is a 3 x 3 rotation matrix and the hat operator gives the antisymmetric
matrix equivalent of the cross product. This is known as the Rodrigues’ rotation
formula.

To obtain the axis angle representation of a rotation matrix, the angle of rotation
has to be computed and then has to be used to find the normalized axis:

f = arccos (%)

1 Rsy — Ros
Ryt (B o (R —RaP \
V/(R32 — Ra3)? + (Ri3 — Rs1)? + (Ro1 — Ruo) Roi — Rio

The three parameter of the axis angle parametrization are then defined as the en-
tries of the vector fw with length 6 and direction e. Only the norm of this repre-
sentation is affected by the 27 angle ambiguity, and in practice this leads only to
flips in sign of the vector e which are easy to remove [Oml10].

4.2 Data Reduction Based on BSS

Synthesizing natural-looking animations of human, learning-based approaches
have become increasingly popular. The efficient parameterization of complex
movements is a core problem in modern computer animation caused by the de-
grees of freedom problem (Section ). The size of the required databases de-
pends critically on the efficiency of the chosen trajectory representation. One of
its characteristics is that such representations should allow the synthesis of large
trajectory classes with a very limited amount of motion capture data. This can be
achieved by obtaining a lower dimensional trajectory representation using unsu-
pervised learning algorithms, which became a widespread method as a result.

For an accurate re-synthesis of the trajectories standard, methods for dimension
reduction, such as PCA or ICA, nevertheless require about 8 — 12 components
for an accurate approximation of human full-body movements [SHP04]. To de-
velop efficient representations of motion data, we take an approach of blind source
separation (Section 3), which promises a significantly more compact trajectory
representation.

4.2.1 Database of Recorded Data

The captured and post-processed movement trajectories were retargeted to a skele-
ton model with 17 joints using an axis-angle representation (Section ) for
the parameterization of the 3D rotations between adjacent segments as discussed
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above. The recorded database comprises different types of periodic gaits. Par-
tially the gaits are combined with non-periodic arm movements, such as swinging
the right or left arm up, or holding the arm in a fixed posture during the whole
gait cycle. For these recorded movements, the arm moved independently from the
legs, forming a separate ’synergy’ that was non-periodic. Moreover, we captured
crouching and straight walking with neutral and emotional styles as happy, angry,
fearful and sad. Additionally, walking along a circular path (forward and back-
ward) with rotations of 90 degrees, and turning on spots (120 deg) left or right per
double step were recorded for navigation purposes.

4.2.2 Learning Movement Primitives

It was possible to learn compact movement primitives from our dataset described
above in Section , containing periodic and non-periodic motions by applying
the blind source separation approach, based on the anechoic mixture model, which
was mentioned before in Section (Section 3.3). As a result, a highly compact data
representation could have been obtained.

Before the algorithm was applied to the data, the joint angles x were preprocessed
by centering them through subtracting its means m. In this way, it is ensured
that the data have a zero-mean, which results in a zero average. This is done
solely to simplify the BSS algorithm, which does not mean that it could not be
approximated. After subtracting the means m; the joint angle trajectories z; were
approximated by a weighted mixture of source signals, that are given by the equa-
tion:

J

The functions s; denote the hidden source signals while the parameters w;; are
the mixing weights. As opposed to common blind source separation techniques
like PCA or ICA, this mixing model allows for time shifts 7;; of the sources in
the linear superposition. Source signals, time shifts or delays, and mixing weights
are determined by a blind source separation algorithm that is based on a time-
frequency integral transform [OGO06].

Moreover, the source functions are joint specific, but identical over the whole data
set in contrast to the mixing weights and delays. A detailed analysis shows that
mixing weights and delays vary with different motion styles. In other words, for
the generation of intermediate or different motion styles the weights and delays
for each motion style are required. By interpolating or blending between them,
the desired behavior can be modified.

In this way, we estimated a common set of three or four source functions which
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Figure 4.5: Four source signals were extracted from the joint angles trajectories
of the motion capture dataset. Sources 1 — 3 represent the periodic and the 4th
source the non-periodic movements.

explain the whole motion data. An example is given in Figure : Four approx-
imated source signals from the joint angle trajectories of the different periodic and
non-periodic actions are illustrated, where three of them describe the periodic and
one describes the one shot movements.

4.2.2.1 Approximation Quality

Detailed comparisons of periodic and non-periodic trajectory data show that the
applied anechoic mixture model provides a more compact approximation of hu-
man movement trajectories and requires less source terms than models based on
instantaneous mixtures. This is illustrated in Figure for the described data
set. The figure shows the approximation quality as a function of the number of
sources s;. Instead of the explained variance 1 — (IX~Fllr/|x|)?, we used a
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quality measure () that is more sensitive for differences in the regime of small
approximation errors. It was given by the expression:

X-0
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Figure 4.6: Comparison of different blind source separation algorithms of periodic
and non-periodic movements. The approximation quality () is shown as a function
of the number of sources for traditional blind source separation algorithm (PCA)
and the applied new algorithm.

where X signifies the original data matrix and O its approximation by the
source model. The norm is defined as the Frobenius norm.

The approximation quality of the recorded trajectory set including periodic and
non-periodic movements with only four source signals is () = 0.92. This corre-
sponds to an explained variance of approximation. £ = (.99 and is sufficient for a
very accurate approximation of the trajectories. The traditional blind source sepa-
ration algorithm, like PCA and ICA, requires more than seven sources to achieve
the same level of accuracy. Regarding only periodic gait movements, only three
source functions were sufficient to obtain a highly accurate estimation of the joint
trajectories where PCA and ICA need twice the amount of the sources to obtain
the same approximation quality (Figure ).

4.3 Dynamical System for Trajectory Generation in
Real-Time

The described model 4.1 for the compact movement representation is not yet suit-
able for real-time application as it is needed for interactive animations, e.g. in
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video games. For an immediate process, the joint trajectories have to be synthe-
sized by superposition and delaying of source signals, whose whole time-course
must be known. This leads us to the question: How do we transfer or express the
learned components into a real-time capable architecture, which provides the joint
angles trajectories iteratively? A real-time capable system can be devised by spec-
ifying dynamical systems that produce the same shape of the extracted movement
primitives (Figure 4.7) as a solution.
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Figure 4.7: How can the extracted source signals be encoded for a real-time ap-
plication?

We design such dynamical systems again by exploiting the fact that the move-
ments can be approximated by a superposition of a few basic components. For
this purpose, we learn the shape of the components by establishing a mapping
between the solutions of simple dynamical systems and the source signals of the
trajectory representation. In this way, the complete trajectory can be generated by
the superposition of the solutions of a set of such simple dynamical systems.
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4.3.1 Attractor Dynamics

The four extracted source-signals are sufficient for a highly accurate approxima-
tion of the original trajectories, containing periodic and non-periodic movements,
as we have seen before in Section . The fourth source contributes exclu-
sively to the reproduction of the non-periodic movements in the data set, whereas
the other three sources are periodic and model the periodic parts of the move-
ments.

The idea for the online generation of the trajectories is to construct dynamical
systems that generate the source signals s;(¢) by iteration of differential equa-
tions over time. The relative timing between the different source signals can be
stabilized by introducing dynamic couplings between these differential equations,
which will be discussed later in Section

However, efficient realization of the time delays presents an additional challenge
for the online implementation because introducing them would lead to a slow
system dynamics with rather complex stability properties. This particularly is a
problem for more complex systems including multiple interacting characters.

In the following section, we first introduce the differential equations that gener-
ate the source signals in an online fashion (Section ). Therefore, we have
to choose structurally stable nonlinear dynamical systems for the generation of
periodic and non-periodic patterns, and then map their solutions onto the required
form of the source signals —applying kernel methods (Section ).

4.3.2 Dynamic Primitives

For the online generation of the motion trajectories, a nonlinear mapping between
the solutions of the dynamical systems and the estimated source signals is con-
structed. This gives us high flexibility for choosing dynamical systems, which
can be optimized in order to simplify the design of a stable overall system dynam-
ics. As basic building blocks for the dynamics, nonlinear oscillators are used to
synthesize periodic behaviors, while a fixed point attractor dynamics is used for
the synthesis of non-periodic movements.

We decided to make use of nonlinear dynamical systems, whose structural prop-
erties do not change in the presence of weak couplings. In this way, we can design
the qualitative properties of different dynamic primitives independently from their
interaction with other system components.

The idea to map desired behaviors onto solutions of nonlinear dynamical systems
is quite common in robotics and behavioral research and has been successfully
demonstrated in a variety of applications [SDE95, INS02, SIB03, BRI0O6], as well
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as in computer animation [FMJ02].

It seems natural to choose limit cycle oscillators as dynamics for the generation of
such periodic behaviors, at least for periodic movements (e.g. [INS02]). Because
of its well-studied dynamics, we use the Van der Pol oscillator as a base element of
our architecture for the generation of the periodic signals. For an adequate choice
of the parameters, the Van der Pol oscillator (described in Section ) produces
an asymptotically stable limit cycle and its dynamics is given by the differential
equation:

i)+ (y(®)* —a) g () +wiyt) =0 (4.2)
The parameter w, determines the eigenfrequency of the oscillator, and the positive
parameter a the amplitude of the stable limit cycle. Given an appropriate choice
of the oscillator parameters, the force determined by the parameter ¢ > 0 pushes,
after a perturbation, the state back towards the limit cycle in absence of external
input signals. Assuming appropriate scaling of the two axes the form of the stable
limit cycle can be made almost ideally circular in the y-y plane (phase plane).
This property is needed for the online implementation of the phase delays, which
will be discussed later in Section

The fourth source (see Figure ) belongs to the one shot motion and is cru-
cial for the approximation of the non-periodic arm movements, for which the arm
moves from a start posture to an end posture. We model this behavior by a fixed
point dynamics. Considering that natural arm movements are characterized by a
bell-shaped velocity profile [SL81, Mor81], we chose a nonlinear dynamics that
generates solutions with this property, and which can generate identical move-
ments in opposite directions by the change of a single parameter. This dynamics
is given by the differential equation:

y(t) = uy()(1 = y(1)) (4.3)

We restrict the values for y to the interval / = [0, 1]. For v < 0 this dynamics has
a stable fixed point in 0, and for u > 0 a stable fixed point in 1 that is approached
asymptotically from inside the interval /. The value of |u| determines how fast
this fixed point is approached. The solution of this differential equation can be
computed analytically and is given by

y(t) = (1+ tanh(G(t — 10))/2)) (4.4)
showing that its derivative
y(t) = %(1 - tanhQ(g(t — to)) 4.5)

is bell-shaped. By clipping we ensure that in presence of noise y does not leave
the permissible interval.
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4.3.3 Mapping between Attractor Solutions and Source Sig-
nals
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Figure 4.8: Online implementation of delays. a) Direct implementation intro-
duces explicit delay lines, resulting in a complex system dynamics that is difficult
to control. b) Approximation by a rotation in the phase space, defined by the in-
stantaneous orthogonal transformation H;,; in the phase plane of the oscillator,
avoids a dynamics with delays.

To realize an iterative trajectory generation and to achieve a real-time capable
system architecture, a dynamical system is needed to reproduce the same shape
or form of the extracted movement primitives. In this way, we can replace the
learned sources by these dynamical systems that reproduce the sources signals
in real-time and can be defined as dynamic primitives. Therefore, we construct
a nonlinear mapping between the attractor solutions of the differential equations
and the estimated components. This mapping is defined by a concatenation of
a rotation in phase space, modeling the influence of the time delays 7;;, and a
nonlinear function, which is learned from training data points by Support Vector
Regression (SVR). The underlying idea is illustrated in Figure

By treating the oscillatory primitives first, the purpose of the mapping is to asso-
ciate the points y = [y, ¢|" along the attractor in the phase plane of the Van der
Pol oscillators with the corresponding values of the source function s;. We try
to avoid the introduction of explicit time delays in the implementation since this
would lead to a complex system dynamics. Instead, as illustrated in Figure 4.8,
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we approximate the terms s; (¢ — 7;;) in (4.1) in the form:

si(t —7i;(t)) =~ f; (Hz,y(1)) (4.6)

where H. . is an affine transformation of the form:

_ | cos(¢i) —sin(¢yy)
HTij o sin(qﬁij) COS(¢7;J') > (47)
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Figure 4.9: Illustration of the dynamic architecture for real-time animation. Pe-
riodic and non-periodic movements are generated by dynamic primitives. The
solutions of these dynamical systems are mapped onto the source signals by a
nonlinear mapping that models the time delays and a nonlinear transformation
that is learned by SVR. Joint angle trajectories can be synthesized by combin-
ing the signals linearly according to the learned mixture model 4.1. A kinematic
model converts the joint angles into 3-D positions for animation.
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This transformation is a concatenation of scaling and rotation in the two di-
mensional phase space. The matrix X is diagonal and scales the axes of the phase
plane in a way that makes the attractor solution approximately circular. The rota-
tion angles are given by ¢;; = —QW%, where 7' is the duration of one period of
the stable oscillatory solution.

However, the nonlinear function f;(y) maps the phase plane onto a scalar. It
is learned from training data pairs that were obtained by temporally equidistant
sampling of the signals y(¢) and s;(¢), where we used the solutions of the uncou-
pled dynamic primitives. The functions were learned by support vector regression
[Vap98, CLO1] using a Gaussian kernel.

In order to learn the form of the non-periodic source signal, we mapped the solu-
tion of the point attractor (equation 4.3) onto the values of the non-periodic source
signal. Therefore, we used the same supervised learning method as for observing
the periodic joint trajectories. In principle, here the effect of the time delay can be
modeled by an application of a conformal mapping to the solution of this equa-
tion. The overall system dynamics was defined by three Van der Pol oscillators
and the point attractor dynamics. The state variables of the dynamic primitives
were mapped onto the source signals by the described nonlinear observers.

After all, we were able to transfer the most compact motion representation, con-
sisting of complex kinematics, into simple nonlinear dynamical primitives. Fur-
thermore, the dynamical primitives can be generated in real-time. We then observe
the complete joint angle representation by the linear combination, according to the
mixture model for each iteration step. This step requires the consideration of
the average joint angles m;, which were subtracted before —see Section —and
the style dependent mixing weights w;;. Afterwards, the synthesized movement
trajectories can be transferred to a kinematical model.

With the presented system architecture, the online character animation can be con-
trolled by adjustments of few parameters of the nonlinear dynamical systems. The
reason is caused by the fact that the change of the dynamical systems have an im-
mediate effect to the corresponding output signals. As a consequence, we observe
the modified joint angle trajectories in an online fashion.
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Figure 4.10: Demo simulates the comparison between approximated and original
motion. Furthermore, the comparison between different emotions can be seen in
the following movies: MovieAngry, MovieSad, MovieHappy.

Beyond the quantitative analysis in Figure , the influence of approxi-
mation quality on animations is illustrated in the attached demos in Figure
and shows the comparison between the original and the approximated gait anima-
tion, which were generated by the dynamical system. An overview of the whole
algorithm is given in the Figure

Reconstruction Error

The blind source separation method discussed in Section 3 provides accurate ap-
proximations of the joint trajectories by using less components than other standard
methods for dimension reduction as we have seen in Section above.

As further evaluation of the method, we compared the reconstruction errors of
the model for different conditions, including online and offline models. For this
purpose, we extracted three shift invariant source signals from the seven motion-
captured emotional walking gaits (including left and right turning walks).

We compared the reconstructed angle trajectories of neutral straight walking of
synthesized gaits with the original motion-captured trajectories of the same style,
corresponding to avatar 1 (A;). The second case was the offline generation of the
trajectory by the blind source separation model (Chapter 3), which was used to
animate avatar 2 (A;). The movements of avatar 3 (A3) were generated by the
simplest possible online model, mapping the phase spaces of three coupled os-
cillators by Support Vector Regression onto the source signals. The propagation
speed of this avatar deviates slightly (a few percent) from the avatar 1 due to ap-
proximation errors.



4.3. DYNAMICAL SYSTEM FOR TRAJECTORY GENERATION IN
REAL-TIME 77

The normalized errors (unexplained variance) between the trajectories in joint
angle space of A, and Az compared with A; (original trajectory) were: 6.89%
(A2 - Al), and 8.62% (Ag — Al)

This implies that the major error is introduced by the source approximation, while
the support vector regression has a much smaller influence.

4.3.4 Stabilization by Dynamic Coupling

Figure 4.11: Every avatar is driven by three limit cycle oscillators. The coupling

of the oscillators ensure coordinated behavior and prevent the influence of external
perturbations by dynamical noise.

As indicated by the system architecture, every avatar is driven by three limit
cycle oscillators (Figure ), where each of them represents one movement
primitive as its output. We introduce dynamic couplings between the primitives
to obtain a stable and a more robust behavior against potential interference from
the environment. Hence, the temporal coordination between the different source
components can be ensured while the modulation of the locomotion in terms of
simple control signals can be designed. One counterexample is presented in Fig-
ure , which shows the result of uncoupled oscillators or dynamic primitives,
resulting in an uncoordinated behavior. The figure and the corresponding demo
show two characters next to each other, where each of them is driven by three,
either coupled (right side) or not-coupled (left side) oscillators representing the
three corresponding movement primitives (Section ). To prevent eventual
disturbances from e.g. the environment, perturbation was simulated by adding
dynamic noise v into one of the oscillatory primitives (VdP oscillators). Within a
short period of time, we observe that the system recovers from the perturbation in
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case of coupled oscillators, whereas when not coupled the behavior of the system
remains uncoordinated.

PO+’ —a) i) +wiy ) +v=0 (4.8)

14

not-coupled coupled not-coupled coupled not-coupled coupled

Figure 4.12: Comparison between two characters which are consisting of uncou-
pled and coupled dynamic primitives. a) Dynamic noise is included, in order to
simulate e.g. disturbances or environmental noise. b), ¢) While the movement of
the left character becomes uncoordinated, the coupled character on the other hand
gets stabilized. The corresponding movie can be found under DEMO.

The coordination or synchronization can be easily accomplished by introduc-
ing couplings between the dynamic primitives: Applying concepts from contrac-
tion theory (explained in Section 2.3) can guarantee a single stable solution for
even complex networks of such limit cycle oscillators if the oscillators are coupled
in terms of velocity couplings. This type of coupling is defined by the equations
(k specifying the coupling force):

h+C(yi—a)+wiy = k@ —0)+kYs— )
Jo+C(s—a)to+wyye = k(— 1) +k (s — 10) (4.9)
s+ C (B —a)ys+wiys = k(U —us) + k(U2 — Us)

For values of a below a specific bound, which depend on the coupling graph, the
overall system dynamics has only one single stable solution. It is characterized by
synchronization of all oscillators.

To synchronize the non-periodic primitives with external events, the sign of the
parameter v in equation 4.3, was switched depending on an external signal, which
triggers one shot movements such as the raising of the arm. In this way, the
previously stable fixed point of this dynamics becomes unstable while its unstable
fixed point becomes stable. In addition to this, we added a short pulse input to this
equation that displaces the state away from the unstable fixed point. This ensures
a transition to the novel stable point with a well-defined timing.
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Dynamic Character Animation

Figure 5.1: Virtual humans present a standard element in most modern entertain-
ment software.

Almost in every video game, animated human motions are involved. Today,
gamers find themselves in more realistic computer graphic worlds competing in
increasingly complex missions with more believable characters. Not only in video
games character animations are important, but virtual humans present a standard
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Figure 5.2: This figure present examples of the relationships between autonomous
and interactive character animations

element in every modern entertainment software (see Figure 5). Major airlines,
for instance, are using avatars to replace stewardesses to present in-flight security
videos; crowds are simulated for animating dangerous scenes on most Hollywood
films, etc. However, a scene is only as intriguing as the characters that inhabit its
world. This chapter introduces the methods we apply for obtaining an interactive
behavior, which can be combined for self-organized crowd simulations.

5.1 Autonomous Agents for Interactive Character
Animation

The degree of autonomy depends on the intervention of the user. The less the
characters need instructions by the user to react in a specific way or interact with
the dynamic environment, the more independent and autonomous the avatars are.
In movies, for instance, the user fully controls and synthesizes the joints of a char-
acter while working offline. Figure shows diverse applications of character
animations and explains their levels of autonomy and interactivity. In this con-
text, the interactivity represents the reaction time the character efforts to interact
with his surroundings. As it is evidenced in movies, no strict execution time is
required for modeling human animations. In other applications, particularly in
computer games, interactivity in real-time has a high relevance.
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Figure 5.3: Depending on specific weight components, different motion styles can
be simulated. Example: Boy walking sadly on the left side and happy on the right
side.

Despite the challenging task of obtaining a fully-autonomous human character
motion for applications that provide real-time interaction, we are able to animate
self-organized autonomous character animation based on the learned dynamic
primitives. In this section, we will introduce the first steps towards autonomy,
which of:

e Generating different motion styles,
e character propagation, and

e navigation and path planning

5.1.1 Dynamic Style Morphing

The proposed framework for the real-time synthesis of human movements can be
integrated with other functions that are crucial for applications with autonomous
characters. We discuss in this section the integration of style morphing within
this framework. Our dataset (Section 4.2.1) consists of periodic gait movements
with different emotional styles, direction changes as well as simple on-shot move-
ments. A distinction between the different motion styles can be made due to the
specific weight components for individual styles. Hence, to obtain e.g. a sad
walking, the movement primitives are combined with the weight components cor-
responding to its sad style. Two examples are given for sad and happy walk in the
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movies in Figure

As mentioned in Section , we observe a real-time generation by a linear com-
bination of the dynamic primitives s;;, average angles m, and the mixing weights
wj;, whereby the sources are constant for all styles. The real-time generation of
trajectories permits style morphing by using linear interpolation of the mentioned
parameters. The interpolation of the mean angles and of the weight matrices is
straight forward.

However, the interpolation of the delays requires an additional approximation to
avoid artifacts that are caused by ambiguities in the estimation of the delays.

For periodic source signals, ambiguities in the estimation of weights and delays
can arise and need to be removed prior to the interpolation. Periodic source signals
fulfill

Sj(t + TT) = Sj(t) (51)

with integer r. Furthermore, source signals can be approximately periodic, fulfill-
ing

s;(t + qTy) =~ s;(1) (5.2)

with integer ¢. Such ambiguities are a particular problem for source signals that
model the higher frequency components, in which 7}, = T'/n is an integer fraction
of the gait cycle time 7'. This approximated periodicity can cause ambiguities in
the estimated delays, which might differ by multiples of 7},. If such delays are
linearly interpolated, they then introduce phase differences between the sources
that do not interpolate correctly between similar motion styles.

To remove such ambiguities, we introduced an additional approximation step and
we replaced the delays by the modified source delays

in which ¢ was chosen to minimize the values of the delays. This approximation
was based on an algorithm that identifies the presence of ambiguities by determin-
ing the local extrema of the cross correlation function between the original and the
time shifted versions of the source signals. This made it possible to restrict and
interpolate the delays within the intervals [—7"/2n, T'/2n], removing the ambigu-
ity. After estimating these modified delays the mixing weights were re-estimated
to optimize the accuracy of the obtained model.

By combining the corrected time delays 7;; and mixing weights, which belong to
only a small repertoire of different motions, we are able to obtain a huge variation
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of movement styles (Figure 5.5). The following example shows a simple inter-
polation between two movement styles (a) and (b), e.g. neutral and emotional
walking, see also Demo5.4, and is characterized by the equations:

i (t) = 1 (1) mé + (1= (1)) m
wy (1) = 0 (6) w + (1= n (1) ul) (5.4
7y (1) = 0 (1) 7+ (L= 7 (1) 7

The time-dependent morphing parameter 7)(¢) specifies the movement style and,
as a result, the desired motion can be achieved dynamically. To model transitions

-

1

Figure 5.4: Morphing between neutral and happy walk.

between periodic and non-periodic movements, such as walking while lifting up
the arms vs. walking with an arm up or an arm down, we used a non-periodic
ramp-like source signal to model changes in the mean angles before and after the
transition. On the one hand, the superposition weights from periodic and the non-
periodic sources are thereby learned during the middle of the transition of the arm
movement from training examples. Conversely, the weights for periodic move-
ments are learned from the whole gait cycle, but because the one shot function
does not allow shifts and leads to jumps in the trajectories, the weights from the
middle of the transition period are learned.

However, by using the equations 5.4, the linear interpolation generates a blending
between the periodic gait steps and the steps containing the non-periodic tran-
sitions. While applying this method, we were able to generate natural-looking
transitions even for movements dependent on periodic and non-periodic primi-
tives.
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Figure 5.5: Movement primitives can be combined with specific weight com-
ponents for individual styles. By morphing between them, a huge repertoire of
different movement styles is given.

5.1.1.1 Integration of Periodic and Non-Periodic Synergies

The algorithm for online style morphing, discussed above in Section , was
tested by applying it to a complex sequence of locomotion patterns. The move-
ments were generated by interpolation between five prototypical gaits in our data
set: Straight walking with neutral and happy emotion, rotation steps of back-
wards and forward walks, and walking with stooped posture and turning on the
spot. Although these types of locomotion were quite different, we were capable of
approximating them with only three different source terms. By applying the pro-
posed technique for the interpolation between weights, posture vectors, and time
delays, we were able to create almost-realistic transitions between these different
patterns, resulting in a complex sequence of steps that could be part, for instance,
of a dancing scenario.

In this context, we tested that our method correctly identifies the spatial localiza-
tion of periodic and non-periodic motion components in the training data. The
mixing weights w;; for the fourth non-periodic source (cf. Figure ) are sig-
nificantly different from zero only for the angles of the shoulder and elbow joint,
reflecting the fact that in our data set the non-periodic movements were mainly
executed with the arms. The separation of different spatially localized movement
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components makes it possible to modify the movement styles of different syner-
gies separately. This is particularly true for periodic and non-periodic primitives,
resulting in the generation of novel movement patterns when combined with such
primitives in ways that were not present in the training data. A simple example is

Figure 5.6: Simulation of an arm up movement by recombining the learned syn-
ergies with dynamically changing morphing weights. Cyan line: Periodic move-
ments of the feet. Blue line: Fourth non-periodic source. Green line: External
trigger signal

presented in the Figure 5.6. In this case, an arm movement is superposed with dif-
ferent relative timings to the periodic movements of the feet of two avatars. The
sequence is generated by using the blending method described in Section

and by recombining the learned synergies with dynamically changing morphing
weights. To initiate the raising and lowering of the arms of the avatars, an external
trigger signal was included.

The same method can be applied for more complex scenarios, like two danc-
ing couples. As illustrated in Figure 5.7, one of the two couples forms a bridge
with the arms while moving forward. In the meantime, the second couple walks
through this bridge one-by-one in a crouched posture. Then the partners turn
around and change roles. The whole scenario was simulated online, modulating
the dynamics by few binary control signals that define the action mode of each
avatar (forming bridge, crouching, or turning). In this case, periodic and non-
periodic movement primitives were coupled in a way that permits an initiation of
the arm movement at any time during the step cycle (e.g. depending on whether
the partner has already completed his turning step).
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Figure 5.7: Dancing figures from a folk dance. The sequence was generated on-
line by blending and recombination of the learned synergies with dynamically
changing morphing weights in matlab a) as well as with an animation software b).
The corresponding movie can be found under Movie (See text for further details.)
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5.1.1.2 Modulation of Walking Speed

Instead of capturing gaits with different walking speed, we have the advantage
that our periodic source signals are encoded by oscillators. Different propagation
speeds can be achieved by changing the eigenfrequency of the oscillators, which
results in motion primitives with corresponding frequencies. For modifying the
gait speed during walking, linear blending can be used again. The adjustment is
done by interpolating between different eigenfrequencies of the oscillators. It can
be formalized in this equation:

wolt) = (t)wh + (1 =7 (t) wp (5.5)

The change of the morphing parameter can also be made dependent on the be-
havior of other avatars in the scene to simulate interactive behavior. For instance,
the introduction of a distance control, which manages the distances between one
character to another, or even force a fixed distance can be simulated. The distance-
frequency coupling was implemented by a sigmoidal function:

n(t) =& (db) = = exp(l—vd(t))

with the positive constant «y. In this context, the morphing weight can be defined
as a nonlinear function of the distance d from another character, as our distance-
dependent control for the modulation of the walking speed: 1 (t) = £ (d (t)).

The ’father-son example’ demonstrates this behavior: The son is following the
father with a slower walking speed. If the distance exceeds a certain threshold
between the two, the son accelerates by changing his eigenfrequency to catch up
with his father, who takes the role of the leader. This behavior was simulated by
making the eigenfrequencies of the oscillators of the follower dependent on the
distance to the leader and is shown in Figure
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Figure 5.8: Following behavior realized by two coupled avatars. a) With the dis-
tance exceeding a certain threshold the smaller avatar accelerates to catch up with
the leader b) Eigenfrequency wy dependent on the distance d(t) between different
characters. [cf. Movie]
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5.1.2 Character Propagation

.
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Figure 5.9: Pelvis scheme: In every time-step we compute the differential changes
in the pelvis xy-direction angle in respect to the foot-on-the-ground xy-direction
angle.

Walking is a natural process for the human body, but a complex one neverthe-
less. Not only the feet have to move across the ground, but other body parts —the
head, shoulders, arms, spine, and hips— are moving in synchrony to keep the sys-
tem in balance. During the walking cyclic pattern, body movements are repeated
step by step, whereby the locomotion is a procedure where the moving body is
supported by alternating feet: First one leg and then the other leg swing forward
in preparation for its next support phase. Therefore, at least one foot always rest
on the ground. During that period when the support of the body is transferred
from the trailing leg to the leading leg, there is a brief period when both feet are
on the ground. As a person walks faster, these periods of double support become
smaller fractions of the walking cycle until, as a person starts to run, they dis-
appear altogether, and are replaced by brief periods when neither foot is on the
ground. The cyclic alternation of the support function of each leg and the exis-
tence of a transfer period when both feet are on the ground are essential features of
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the locomotive process. As the body passes over the supporting leg, it rises until
the foot is directly underneath and then descends again as the foot passes behind.
The highest point of elevation occurs when the speed is the lowest, and the lowest
point of elevation occurs when the speed is the highest. However, after the foot
touches the ground, the body’s weight is transferred to it and these displacements
of the entire body through space can be described as a translation [RG06]. The
entire body must be moved across the ground at the exact same rate that the feet
are moving to maintain the illusion of walking in our character animation, other-
wise, the character’s feet appear to slip.

To detect the footplant in real-time for computing the displacement velocity, we
propose an adaptive on-line method which takes into account the foot-floor con-
tact constraints. Thereby the pelvis forms the root of the kinematic chain of our
avatar model. We established an algorithm for computing the propagation, deter-
mining horizontal pelvis translation and the rotation of the avatar in a way that
prevents foot skating.

For this purpose, we first automatically detect whether the feet make ground con-
tact using a simple threshold criterion, for the vertical position z of the foot cen-
ters. This criterion, however, works well for the original motion capture data,
assuming that the motions itself do not contain foot slipping. Since the data
is not always free from noise and artifacts, we additionally add different con-
straints to obtain the right translation. Thereby, the correction is based on the
foot with the lowest vertical coordinate z, as well as it is based on the support-
ing foot that touches the ground ahead of the pelvis. In this way, we then can
obtain the translation rate translation,, from this foot considering the zy coor-
dinates of the heel and the toe, which present in parallel the directionality of the
feet and therefore also the rotation rotation,, for the body. The computation of
translation and rotation (Figure 5.9) from foot-ground contact can be illustrated as
follows:

for : < maxTime — 1 do
if IFoot, > rFoot, then
translation,,, = rFoot,, (i + 1) — rFoot,, (i)
rotation,,, = atan2(rFoot,(i+1), rFoot, (i+1))—atan2(rFoot, (i), tFoot, (7))

else
if rFoot, > 1Foot, then
translation,, = IFoot,, (i + 1) — IFoot,, (i)
rotation,,, = atan2(1Foot, (i+1), 1Foot, (i+1))—atan2(1Foot, (i), IFoot, (7))
end if
end if
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end for

We now add the computed differential translation and horizontal rotation to the
pelvis coordinate system to animate a natural looking locomotion with minimal
foot skating. To achieve an even higher degree of realism, we shift the pelvis also
in the vertical axis corresponding to the heel z-translation in order to animate the
natural up and down movement during walking.

5.2 Crowd Animation

The animation of crowds is a challenging task. For obtaining a realistic looking
crowd behavior in real-time, each character often exhibits enormous complexity
and subtlety. A crowd model must not only include individual human motion, but
also address the consideration of environmental constraints such as boundaries.

This chapter involves a simple navigation model to obtain dynamic interactions
between the agents. In this way, the control algorithm for the walking direction
is defined by three main elements: Steering toward goals, avoiding instantaneous
obstacles and avoiding predictive obstacles. Besides, we demonstrate in the sec-
ond part of this chapter how interactions between multiple characters can be self-
organized by implementing specific couplings within a group of, for example,
pedestrians. As a result, we obtain collective and coordinated crowd animations
based on the application of contraction theory (see Section 2.3), which allows
a synchronized behavior in networks of coupled avatars expressed by dynamic
primitives.

5.2.1 Navigation

Navigation is an essential topic in crowd animation. Humans constantly adjust
their paths to navigate through a complex environment with boundaries and other
dynamic factors (Figure ). Even dense crowds are characterized by surpris-
ingly few collisions or sudden changes in individual motion [TCP06]. Although
the locomotion through a complex environment seems to be effortless for humans,
navigation comprises different challenging tasks, such as steering towards goals
or avoiding static and dynamic obstacles, e.g. other pedestrians. In this context,
our model has to be extended by including realistic looking navigation dynamics
to adopt the virtual characters into the surrounding and let them propagate in the
virtual scene. Therefore, we invented navigation policies based on three control
dynamics, which describe:

1. Moving towards a goal. 2. Avoiding stationary and dynamic obstacles.
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Figure 5.10: Humans constantly adjust their paths to navigate through a complex
environment.

Our dynamic navigation model is originally inspired by robotics. We combined
our trajectory generation algorithm with a simplified version of a dynamic naviga-
tion model that has been successfully applied before in robotics [SDE9S5, War(6].

In this context, goals can be described by attractors or regions in state space to-
wards trajectories converge. Conversely, states to be avoided, like obstacles be-
have as repellers —regions from which trajectories diverge— and force back the
heading direction of the agent. Thereby, the strengths of the repeller depend on
the distance between the obstacle, and the character, which decreases with increas-
ing distance. The locomotion behavior was modeled by a differential equation in
which the angular acceleration is described as a function of the goal, the obstacle
angle, and the distance.

We extended this model by including a predicted obstacle term, which influences
the behavior of the heading course by detecting a possible collision. Hence, the
navigation dynamics were given by a differential equation for the heading direc-
tions ¢; of the characters and can be characterized by linearly combining the terms
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for the goal, the obstacle, the predictive obstacle, and the distance. The turning
rate of the avatars was controlled by morphing between straight and curved walk-
ing steps (Section ). Whereby, the morphing weights were dependent on the
temporal change of heading direction ;.

5.2.1.1 Navigation Algorithm Outline

The navigation dynamics specifies the direction change ¢; of the character by a
differential equation that integrates three different components, where p, denotes
the position of character ¢:

dy; i
__ pgoal/, goal E : avoid(, .
=h (907,7pi’pi )+ h (szapiapj)
dt ~ “ ,
goal-finding J ,
Vv
instantaneous obstacle avoidance

+>  hN i, 05, ,,D)) (5.7)

J

N J/

Vv
predictive obstacle avoidance

The two-dimensional vectors p; and p; signify the 2D-positions of the character i
and the moving obstacle j - in our case another pedestrian- in the scene, and the
variables ;(t) and ¢, (¢) their heading directions, which can be estimated from
the momentary velocities.

Goal-Finding Term: The first term in the vector field permits to define a goal
position p&° that the character tries to approach. We can represent this by a
term that specifies the turning rate for each possible value of heading. If the
heading increases away from the goal, the dynamics introduces a force that steers
the avatars towards the goal, e.g. Figure a). This can be expressed by the
following term:

he (i ) = —sinipy — ) (5-8)

where goéoal is the direction angle of the goal relative to the position p, in external
coordinates.

Stationary and Dynamic Obstacle Avoidance: The second term implements
obstacle avoidance, where the obstacles 1 F define stationary, as well as dynamic
objects like other avatars (Figure b). Therefore, the dynamics of obstacle
avoidance correspond to repellers that push the character’s heading away. This
repelling behavior of the obstacle decreases with distance and can be represent by
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Navigation Dynamics:

Figure 5.11: Navigation dynamics depending on: a) Goal-finding term, b) instan-
taneous obstacle-avoidance term, and c) predictive obstacle-avoidance term.
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multiplying the obstacle angle ¢; — ¢;; by an exponent of minus squared distance.
This term is given by the following expression:

h* (o, p;,p;) =
Co— )2 dz.
sin (¢; — @ij) - exp (—M) - exp (— ”2) (5.9

203 203

where ; — ¢;; defines the relative direction of character j from character ¢ in
global coordinates. Introducing the vector d;; = p; — p; one obtains

pij = arctan((dy;), /(d;),,) (5.10)

and d;; = |d;;|, the 2D distance between the two characters. The values of the
constants were 0, = 7/6and oy = 1.5...2 m.

In order to remove far field interactions, we set h**°4 to zero for |Ag;;| > /2 and
for d;; > 4 m. Headings to the right of the obstacle yield a positive turning rate
that asymptotes to zero as the agent turns away from the obstacle, and headings to
the left of the obstacle yield a negative turning rate that also asymptotes to zero.
In this way, the heading direction is forced away from the dynamic or stationary
obstacles.

Predictive Obstacle Avoidance: A much more realistic collision avoidance is
accomplished by the inclusion of a third term in the navigation dynamics that is
dependent on the predicted future positions of the avatars (Figure c). When a
collision is likely to occur in the future, this third term helps to prevent collisions
by steering the characters away from each other at an early stage. The predic-
tion assumes straight trajectories of the avatars and computes the closest point
between their predicted trajectories. The implemented force depends on the fu-
ture positions of the characters ¢ and j, computed from their current positions and
momentary velocities v;, v;. We define p; — cpfjc as the direction to the character j
at the expected moment of minimal distance. With v;; = v; —v;and d;; = p ;i — P
the characters approach each other only for v;;7d;; < 0. In this case, the closest
relative position in the future occurs after the time 7°¢ = v;;7'd;;/(v;;* v;;). This
third term is defined by:

hpCOH ((;O'w Pis Py p]) =
2
. ) (b — i) dy;
sin(p; — gpfj) - exp (—]— - exp —% (5.11)
d

2
2a¢

where the constants o, and o, were chosen as before and hPeoll was set to zero for
@i — i; and iy > 8 m.
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5.2.1.2 Control of Walking Direction

As we have seen in Section , different motion styles were synthesized by
applying morphing methods, which are also used in a similar way to implement
direction changes of the avatars for navigation purposes. The change of the mor-
phing parameter 7 can be made dependent on the behavior of other avatars in the
scene, e.g. to influence the emotional style depending on the distance of the avatar
from another ’dangerous’ colleague. Hence, the walking direction of the charac-
ters is computed by interpolation between straight walking and walking along
curved paths to the left (for dp; /dt > 0 or to the right (d;/dt < 0 ) using equa-
tion (5.4). The morph parameter was taken proportional to |dy;/dt|, normalizing
it in a way that ensures 17 = 1 for the maximum possible value of this derivative.
The heading direction ¢;(t), generated by the navigation dynamics, was low-pass
filtered with a time constant equal to one step cycle as to improve the smoothness
of the navigation behavior.

Navigation with Emotional Changes

As one example is illustrated in Figure , a group of avatars that meets in the
center of the scene changes their affect upon the contact with the other characters.
This behavior was implemented by making the affect of each avatar dependent
on the distance from the others. In addition, the avatars avoid each other due to
the navigation dynamics described in Section . In this simulation, navigation
and changes of emotional styles were combined, based on only three prototypical
gaits: neutral walking with rotation right or left and emotional straight walking.

O
\

(o]

Figure 5.12: Avoidance behavior and change of emotional style. a) Avatars start-
ing from different positions with a sad emotion are heading towards their goals
(red circles). b) At the meeting point the emotional styles change to happy. In
addition, the characters avoid each other. DEMO
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Figure 5.13: Simulation of stationary and dynamic obstacle avoidance, while
changing the emotional styles and speed interactively. a) The avatars’ goal areas
are positioned on the opposite side of the scene’s floor. b), c), d) Static obstacles
(columns) and dynamic obstacles (other avatars) have to be avoided simultane-
ously. e), f) After avoiding all obstacles, the characters proceed heading towards
their goal areas. The demo, corresponding to the described scene can be seen in
DEMO.
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The navigation dynamics not only enable an interactive behavior within the
crowd, but also with the dynamic environment. Stationary obstacles, or other
crowd members, can be avoided autonomously without planning the path for each
agent separately (Figure ). Moreover, we exploit this framework by going a
step further and combine the navigation dynamics with emotional styles to make
it even more interactive.

In order to produce the morphs between straight, emotional gaits and neutral
curved walking (left and right), we first created an intermediate balanced mixture
by interpolating the mixing weights according to the relationship:

3 emotiona

wy = w4 (5.12)

1 i

3 <(1 + Brr)wi™ + (1 — ﬁLR)wZ ght)
The parameter Gz, with 0 < Bpr < 1, was adjusted for different emotional styles
in order to balance left-right declinations from the straight line. In accordance
with Section , morphing was done in a piece-wise linear manner dependent

on the sign of the change of the heading direction.

3) A

Figure 5.14: Avoidance behavior and change of emotional style. Three avatars,
starting from the left side, change their emotion from happy to sad while proceed-
ing to their goals. A second group of avatars starting from the right side change
their emotions from sad to happy while avoiding the opposing group. DEMO

Another simulation based on a similar implementation is shown in Figure
In this particular situation, three avatars, starting from the left side, change their
emotion from happy to sad while proceeding towards their goals. A second group
of avatars, starting from the right side, change their emotions from sad to happy
while avoiding the first group.
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This behavior was implemented by designing dynamics that makes the emotional
style of each avatar dependent on the distance from the others. In addition, we en-
sure that the avatars approach their goal points while avoiding each other. Again,
this simulation combines navigation and changes of emotional style dependent on
the distance to the counter group. It is based on only three prototypical gaits that
were recorded by motion capture: neutral walking with rotation right or left, and
two emotional walking styles.

5.2.2 Self-Organized Behavior in Crowds

The magnificently synchronized coordination of collective motions in flocks (e.g.
fish swarms) are characterized by their visual complexity despite arising from
simple rules that result from the dynamic interactions among individual agents,
and without central coordination. By observing such biological organizations,
scientists try to deduce new coordination approaches as in autonomous dynam-
ics. Especially in robotics, the principle of cooperative control is used to enable a
large group of autonomously functioning vehicles in the air, on land or in the sea,
to collectively accomplish useful tasks in a coordinated manner (e.g.[Cou09]).

Furthermore, the application of group coordination or collective behaviors is a
key subject in computer graphics for crowd animation. We describe a crowd by a
group of individuals in the same environment sharing, a common goal. The mo-
tion of an agent in a crowd is often computed separately, where the scene is manu-
ally composed using singly captured motions or keyframe animations [SKSYO08].
Although the simulation of close interaction can be fulfilled and each individual
can be treated on his own (e.g. making their own decisions), it requires much
computational resources and much expertise and labor by the animator (Section

). In addition, it is very difficult to develop behavioral rules that consis-
tently produce realistic motion. Global path planning, especially in real-time be-
comes computationally expensive, particularly regarding every single character
within the crowd.

Hence, it is not surprising that the generation of autonomous behaviors for many
characters require complex architectures of dynamical systems. Nevertheless, we
managed to simplify the architecture by presenting realistic human movements
with very few simple dynamical systems. Introducing couplings between agents
enable coordination to simulate collective behavior. Thereby, varying synchro-
nized and completely self-organized crowd scenarios have been obtained by ap-
plying only different coupling structures (see Chapter 6 for more details). In this
way, we accomplish a synchronized crowd behavior through a cooperative control
model.
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5.2.2.1 Coordinated Crowd Behavior

Leader

jjj:::
Avatar 1 V Avatar2 o~ )

Figure 5.15: Coupling of multiple avatars, each of them comprising three coupled
oscillators (Oscl, Osc2, Osc3), permits the simulation of the behavior of coordi-
nated crowds.

The variety of periodic movements has been reduced into very few compo-
nents together with style dependent weights and delays. The desired motion
can be reconstructed for real-time animation, by using nonlinear dynamical sys-
tems which are associated with the movement components applying unsupervised
learning (Chapter 4). Accordingly, each character is expressed by a network of
dynamic primitives or more specifically: limit-cycle oscillators. To accomplish a
more robust behavior against e.g. disturbances, we introduced velocity couplings
between the oscillators, thus obtaining a more coordinated motion (Section ).

The stability analysis based on contraction theory see Chapters (4,6) permits the
design of such dynamical systems and promises a stable overall system architec-
ture. Being aware of these particular coupling techniques, we are able to extend
this framework of coupled oscillators and design a network within many intercon-
nected characters or subnetworks. Therefore, the same type of coupling method,
as in Section , has been applied resulting in a synchronisation behavior in
crowds. By introducing unidirectionally couplings, it is possible to make multiple
characters following another one automatically, who then acts as a leader (Figure
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5.15). Therefore, we only connected the oscillators with each other, which corre-
sponds to the source with the lowest frequency (Oscl). As a result we are able to
self-organize coordinated behavior of crowds with relatively realistic appearance
by applying simple coupling techniques. This can be illustrated schematically in
Figure 5.16, which shows a few snapshots from an animation where a group of
characters begins with asynchronous step phases. One of the characters acts as
a guide, and the dynamical systems of the other characters are coupled unidirec-
tionally with the leaders’ dynamics (cf. Section 2.4.3).

Figure 5.16: Autonomous synchronization of gait patterns within a crowd. (a)
Avatars start with self-paced walking and are out of phase. After a transitory
period (b), the gaits of the characters become completely synchronized (c).

After a short transition period the step cycles of all characters synchronize
with the leader.
This has the consequence of the crowd leaving the scene with synchronous step
pattern ("lock-step’), whereby the information of the rhythm was given from only
one character’s dynamics. This shows that the proposed method is suitable for the
simulation of coordinated behavior of crowds, like marching soldiers. Another
example consists of several dancing scenes that require the coordination of loco-
motion patterns. A demonstration video can be seen here DEMO.

Synchronized Behavior in Comparison

In the context of the scenario above, we compared our method with standard ap-
proaches such as PCA (cf. Figure 5.17 with corresponding demo. Avatar 3 acts
as a ’leader’ because it is driven by three coupled oscillators, but without addi-
tional external couplings. The other two avatars are coupled to this leader and
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Figure 5.17: This example video shows the comparison of a synchronization be-
havior of a model, which is generated by our method with a standard approach
such as PCA. See text for more details. [DEMO]

start with equal initial phases that are different from the phase of the leader. The
movement of one character (avatar 1) was generated applying our novel method,
using an anechoic mixture model with three sources. The movement of the second
character (avatar 2) was generated with a PCA model with seven components in
order to obtain the same approximation quality. This avatar was driven by seven
coupled Van der Pol oscillators where we attempted to optimize the coupling for
maximum naturalness of the obtained animation.

The detailed comparison shows that the avatar whose motion was generated by
the novel architecture (oscillator dynamics with 6 degrees of freedom) shows a
quite natural-looking transition from its initial state to the equilibrium state that is
synchronized with the leader. The movement of the avatar whose movement was
generated using PCA (oscillator dynamics with 14 degrees of freedom) shows arti-
facts. The amount of artifacts is even increased if transitory body motion is added
by enforcing the kinematic foot-contact constraints on the ground, resulting in a
turning motion of the avatar (see Figure ). If the internal coupling strength
within the avatars is increased, the synchronization time between multiple avatars
slows down and an unnatural reduction of step size arises. If the number of com-
ponents in the PCA model is increased to 12, similar problems remain also for
stronger coupling forces [DEMOJ.

The proposed novel trajectory model thus tends to produce more natural transi-
tions between different coordination states. Present work focuses on a more sys-
tematic quantitative comparison between different methods. However, a model
consisting of three oscillators synchronizes faster and produces more natural-
looking behavior.
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Figure 5.18: Phase plot of the first (principal) oscillators of two avatars that are
coupled to a leader. The diagram shows the state space of the oscillator in the
[y(t),y(t)] plane. The green line corresponds to the avatar driven by five PCA
components, and the red line to the avatar animated with three sources extracted
with our algorithm. The coupling is switched on after a short starting period.

The same example also demonstrates that the model, even though it has been
trained in the attractor of the dynamics, generalizes in a meaningful way to tran-
sient states. This is illustrated by the phase diagram in Figure that illustrates
the trajectories of the first leading oscillators of the two avatars. In the first place,
this figure shows that the oscillators’ states are not near the attractor state dur-
ing the synchronization period, requiring the system to generalize to trajectories
that were not used during the training of the system. In the second place, it is
obvious that the system with less oscillators (red trajectory) returns faster to the
attractor than the system with five oscillators (green trajectory). More detailed
investigations testing dependence on coupling strength and coupling structure are
underway. Since the linear weights of the PCA components are not sparse, the
mixing of the many oscillator inputs results in jerky motion in the starting phase
of the synchronization period.

Self-Organized Crowd-Scenario

The methods mentioned bfore —morphing, navigation and introducing couplings—
can be combined to explore the capabilities of the proposed framework: A com-
pletely self-organized scenario of a larger group has been simulated for a dance
scenario, where the avatars have to walk in synchrony with the music in formation.
In this sequence, eight pairs of avatars execute a type of ’folk dance’ that requires
them to walk along a straight line, forming a corridor. Once the couples have
reached the end of the corridor, they have to walk quickly to the other end and
re-enter the corridor from the other side. At the point of re-entrance, the individ-
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ual avatars need to synchronize with their partner. Despite this relatively complex
scenario, the whole group of 16 avatars can be self-organized quite naturally.

Figure 5.19: Simulation of a ’folk dance’ behavior is organized within four zones:
1) Avatars within the corridor move in synchrony, simulated by coupling the cor-
responding oscillators. 2) Leaving the corridor, the avatars of the individual danc-
ing couple become separated and start to move along curved paths. Their emo-
tional style changes from happy to neutral. 3) Avatars walk asynchronously and
“hurry up’ to reach the entrance of the corridor, simulated by increasing the eigen-
frequency of the oscillators. 4) When the avatars approach the entrance of the
corridor their walking speed decreases, and they need to get in synchrony again
with the appropriate leg. This can be simulated by appropriate adjustment of the
oscillator frequencies. [DEMO]

To simulate this complex behavior, we divided this scenario into four main
sectors that are described separately in the following (see Figure 5.19):

1. At the entrance of the corridor, the characters gather and wait for the cor-
responding partner to move synchronously. To simulate the synchronized
walking of all couples within the corridor the corresponding oscillators are
coupled to equation (4.10), introducing couplings not only between the
avatars of one couple but also between the subsequent couples within the
corridor and a coupling to an external periodic signal derived from the mu-
sic.
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2. At the end of the corridor, reaching the second zone, the two avatars of each
couple separate and the coupling between their oscillators is removed. This
results in an asynchronous movement that is controlled by the navigation
dynamics (Section ). In addition, within this zone the emotional walk-
ing style of the characters changes from happy to neutral. The curved walk-
ing paths were generated by defining appropriate intermediate goal points.

3. Along the straight paths outside the corridor, the avatars accelerate to catch
up with their associated partner in time at the beginning of the corridor,
which is simulated by a temporary increase of the eigenfrequency of the
corresponding oscillators.

4. In the last zone, the characters decelerate, modeled by decreasing the fre-
quency of the oscillators. A difficult problem is the re-synchronization with
the correct foot at the entrance of the corridor. This is accomplished by
slightly adjusting the oscillator frequencies to ensure re-synchronization
with the appropriate leg. Again, the curved paths are generated by defining
appropriate goal point exploiting the navigation dynamics (Section ).

Another visualization of a completely self-organized example, is illustrated in
Figure with the corresponding movies. They describe a formation sce-
nario of ’soldiers’: First, a group of characters are placed randomly in the scene
without including any couplings. To obtain the desired formation, we included a
distance-frequency coupling (Section ) among them to ensure collocation
and keep the others at the right distance. Because in such a soldier formation, each
individual has to march in lock-step, we additionally determine a distance-to-step
size coupling. As a result the soldiers not only get ordered, but farther they start
to synchronize with each other by adapting the step size. Meanwhile each sol-
dier is steering towards to his own predefined goal (2.3 meters ahead of him) and
avoiding the other members within the group using navigation dynamics (Section

).

In this manner, we are able to create diverse scenarios of interactive autonomous
behavior in crowd animations. From a small database of motion clips it is possible
to obtain a huge variety of different motion styles, based on a simple dynamic ar-
chitecture, which give us the opportunity to simulate large self-organized groups
in an efficient way. Nevertheless, the control of human locomotion is a complex
task —comprising nonlinear dynamics— that have to consider the coordination for
collective crowd behavior and the navigation through the changing environment.
In order to investigate stable conditions for such simulated crowd scenarios, the
stability analysis is needed to ensure a stable over all architecture.
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Figure 5.20: Self-organized formation behavior of interacting characters (’sol-
diers’) in crowds. Different coupling methods and navigation dynamics have been
applied to observe the coordinated behavior. [DEMO1] or [DEMO2].



CHAPTER 6

Stability Properties in Character Animation

Figure 6.1: Illustration of a large crowd animation in video games (Napoleon:
Total War).

The magnificently synchronized coordination of the collective motions in flocks
(e.g. fish schools) is characterized by their visual complexity, but arises from
simple rules and no central coordination. By comprehending such biological or-
ganizations, scientists attempt to analyze this phenomenon to learn more about
coordinated behavior. In robotics, those interested in group coordination and co-
operative control use this principle to enable large groups of autonomous vehicles
by land, sea or air, to collectively accomplish useful tasks, in a coordinated man-
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ner (e.g. [Cou09]).

Especially for large crowd scenarios, the understanding of such coordinated orga-
nizations would help to simplify the complexity in crowd animation:

In this context, the critical limiting factor is the complexity of the dynamical mod-
els for individual agents or characters, which often make a systematic treatment
of stability properties infeasible. Therefore, instead of deriving the system param-
eters from theoretical results on the system dynamics, the design of such systems
has been often heuristic, meaning that empirical results from simulations are ex-
ploited. However, the controlled engineering of such system makes more system-
atic theoretically founded approaches highly desirable.

In Chapter 4, a method was developed that approximates complex human behav-
ior by relatively simple nonlinear dynamical systems. Consistent with related ap-
proaches in robotics [GRIL0O8, AMS97, SIB03] and biology [FHOS5], this method
generates complex movements by combining learned movement primitives.

The resulting system architecture is rather simple and thus suitable for a treatment
of dynamical stability properties. While the design of stability properties is a cen-
tral topic in robotics [BRIO6, RI06, GRILOS], it is rarely addressed in character
animation.

Nevertheless, the simulation of collective behavior by self-organization in systems
of dynamically coupled agents seems interesting for several reasons:

First, it might help to reduce the computational costs of traditional computer ani-
mation techniques, such as scripting or path planning [TCP06, TWPO03]. In addi-
tion, the generation of collective behavior by self-organization results in sponta-
neous adaptation to perturbations or changes in the number of characters [CSO7,
OEHO02].

This chapter exploits character models, whose behavior is driven by nonlinear
limit cycle oscillators. The stationary solution of these oscillators is given by a
sinusoidal oscillation with a constant equilibrium amplitude.

Groups of interacting characters can be modeled by coupled networks of such
nonlinear dynamical systems. By applying contraction theory, stability properties
for various coupling structures have been observed (Chapter 2.3) in order to design
stable scenarios for interactive character animations. Coordinated group behavior
of multiple characters with different coupling conditions and the corresponding
behavior have been simulated and will be discussed later.
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6.1 Collective Behavior Fulfilling And Violating Con-
traction Bounds

Physical or biomechanical models of complex human movements are typically
complex and require about 30 degrees of freedom for obtaining a sufficient ex-
tend of realism [HWBO95, GTH98]. Nonlinear systems of this complexity are
typically not accessible for a more detailed analysis of their dynamical stability
properties.

Our animation system models the behavior of characters by learning the mappings
between stable solutions of relatively simple nonlinear dynamical systems and the
corresponding very few movement primitives, representing the motion trajectories
of a human. By learning the appropriate simplified models, our approach results
in dynamical models with a limited degree of complexity.

A single character in our animations is described by a dynamical system of the
form

% = f(x, 1) 6.1)

where the variable x signifies the dynamical state of the character.

For a walking avatar, this dynamic could be given by a limit cycle oscillator, whose
periodic solution is mapped onto the joint angles of the character. The nonlinear
mapping between the dynamical state x and the joint angles is learned through the
use of kernel methods (see Section for details). The learned nonlinear map-
ping is bounded and acts as a nonlinear observer of the state variable that does not
modify the overall stability properties of the system, unless the joint angles are
fed back into the dynamical state. The dynamics in equation 6.1 can also be inter-
preted as a central pattern generator that drives the movement of the character.
More specifically, CPGs encode rhythmic trajectories as limit cycles of nonlin-
ear dynamical systems, usually systems of coupled nonlinear oscillators and offer
multiple interesting features: For instance, the stability properties of the limit cy-
cle behavior (i.e. perturbations are quickly forgotten) or the smooth online modu-
lation of trajectories change in the parameters of the dynamical system.

Contraction theory was applied in Section onto networks consisting of cou-
pled limit-cycle oscillators. Analyzing networks with different coupling structures
such as all-to-all, chain or leader-group-coupling, contracting conditions, bound-
aries for animating synchronized scenarios and estimation of relaxation times
were obtained.

The following section presents a number of examples illustrating the behavior of
groups of characters when the underlying dynamics fulfill or violate the bounds
for contracting system behavior, whose contracting boundaries have been com-
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puted before in Section

6.1.1 All-to-All Symmetric Coupling

The first set of demonstrations shows the synchronization within a group of three
characters. The characters are, therefore, connected symmetrically with each
other and were simulated with different coupling strengths k. As it was discussed
in Section 2.3, for a contracting network of three symmetric coupled Andronov-
Hopf oscillators, the condition for k is: k > 1/s.

Example 1: In this case, the coupling strength is defined with £ = 0.334 and thus
it fulfills the theoretical bound. As a result, the dynamics quickly converges to a
stable state and is been illustrated in Figure 6.2. It shows a group of three char-
acters starting with random initial step phases and becoming synchronized during
a very short period of time. Thereby, the frequency of the characters (oscillators)
start adjusting their rhythm with each other and end up in a frequency entrainment,
which results in synchronous walking.
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Figure 6.2: Group of characters that are all-to-all coupled and fulfill the contract-
ing conditions (k = 0.334). The characters start with random initial condition (a)
and adapt to the other step phases (b, ¢) and until they are synchronized (d, e).
[Movie_1]

Example 2: Conversely, the next illustration 6.3 shows an example where the
coupling strength £ = 0.111 violates the theoretical bound. The characters start
with different step-phases and do not obtain a synchronized group behavior, or at
least they synchronize in a very slow manner (reaching an equilibrium state only
after hundreds of time steps). The fact that the system still converges to a stable
solution reflects that the bounds derived by contraction theory define sufficient but
not necessary stability conditions.
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Figure 6.3: Group of characters that are all-to-all but with a violating contracting
condition (k=0.111). The characters start with different step cycles (a) and do not
synchronize (b, ¢). [Movie_2]

Example 3: For an even stronger violation of the theoretical bound (Figure

), we choose the coupling gain of £ = —2.0. This results in a system dynamics
that does not achieve the formation of a coordinated behavioral pattern anymore.
The strong coupling deforms the limit cycles in phase space, resulting in unnatural
joint trajectories and a very slow propagation speed of the characters.
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Figure 6.4: Group of characters that are all-to-all but with a violating contracting
condition (k=-2.0). Due to the coupling gain, no coordinated behavior can be
achieved and in addition, the walking movement becomes even unnatural (a-c).
[Movie_3]

6.1.2 Chain Coupling

The following set of demonstrations was generated under the assumption of a
bidirectional chain coupling among the oscillators. As it was evinced in Section

, the bound for a contracting attitude of three coupled oscillators (characters)
is given by the coupling strength of £ > 1.
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Figure 6.5: Group of characters with a chain structure, while fulfilling the con-
tracting condition (k = 1.0): Starting with random initial conditions (a), the phase
steps are adapted from each other, (b) which result in a coordinated group behav-
ior (¢). ([Movie_4])

Example 4: Figure 6.5 presents the result of the character behavior by fulfill-
ing the theoretical bound with the coupling force £ = 1.0. As it is also illustrated
in this example, the individuals start independently with different phases and show
an immediate phase-locking behavior of the oscillator, producing a synchronized
behavior within the group members during a short time period. Example 5: We
define £ = 0.333, which violates the contraction condition (Figure 6.6). In this
case, the individuals with initial conditions are not *waiting’ for each other and do
not realize coordinated behavior in the observed time interval.

a) b) c)

2 -9

FW i

o O WS
v 4 y ﬁ ¥ ‘)\(,’l \01‘3“/’%
it I\

Figure 6.6: Group of characters with a chain structure but violating the contracting
condition: Characters start with individual step-cycles (a) and do not synchronize
(b, ¢). The corresponding demo can be found here: [Movie_S5]

6.1.3 Leader-Group Interaction

As discussed in Section , one can introduce a leader that can entrain all other
characters in the scene by its own behavior. In addition, coupling with a leader can
synchronize other characters in the scene that would not synchronize otherwise.
In Section we showed that contracting behavior is obtained for kN +a > 1,
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assuming that % signifies the coupling strength between the members of the group
and « the strength of the coupling between the members and the leader.

The following demonstrations show five characters, where one of them represents
the leader (denoted in dark gray). This leader is coupled unidirectionally to all
members of the group. If the leader is not present, the group itself (v = 0) shows
exponential convergence for the coupling strength & > 1/4.

Example 6: Figure , present the case, where £ = 0.01 and o = 0 and the
contracting condition is not fulfilled. The system is non-contracting and no coor-
dinated behavior is achieved in the simulation. The group members do not adjust
their step cycles to the others nor to the leader.
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Figure 6.7: Leader-group interaction: The contraction condition is not fulfilled
(k = 0.01, « = 0), showing no coordinated behavior. The characters start
start with uncoordinated, individual step-phases (a) and do not synchronize (b,
¢). [Movie_6]

Example 7: If a leader with sufficiently strong coupling is introduced to the
other group members (o = 1), the theoretical contraction bound is fulfilled (Fig-
ure 6.8). During the time interval, a fast convergence to a coordinated behavior
can be observed. Even for small values of the coupling strength £ within the
group, the whole system including the leader oscillator (character) is contracting.
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Figure 6.8: Leader-group interaction with a fulfilled contraction condition. A
synchronization behavior can be observed. [Movie_7]
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Figure 6.9: Leader-group interaction: a) At the beginning, the characters start with
the initial condition (yellow bar). After introducing couplings the group becomes
coordinated (green bar). The leader experiences a perturbation by changing its
frequency (red bar) and the follower adapts to the leaders phase again. b) Instead
of the leader, a member of the group gets perturbed in an identical way and relaxes
back to reestablish synchrony with the other members of the group. [Movie_8]
and [Movie_9]

The last Figure corresponds to the case, where the group members are
coupled within the group with £ = 0.2 and to the leader with the gain of o = 0.25,
while fulfilling the theoretical bound for contraction. The characters converge
very quickly to a coordinated behavior. Additionally, perturbations to one of the
followers and to the leader were included in order to see contraction behavior
more properly.

In the first interval of Figure a), marked with a yellow bar, the characters
are initially uncoupled and start with random initial phases. After activating the
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coupling (green bar), the group converges to the same state. In the next interval,
denoted by the red bar, the leader experiences a phase perturbation by changing
the frequency of the oscillator. The group quickly adopts the behavior of the
leader and ends with the same common frequency, which can be seen in the last
interval. The panel b) of this figure represents a similar example and illustrates
a perturbation of the same size, which is not applied to the state of the leader
but to the one of a group member by again changing the frequency. It can be
observed that its behavior quickly relaxes back to reestablish synchrony with the
other members of the group.

6.1.4 Theoretical vs. Empirical Convergence Rates

As a more systematic validation of the theoretical bounds, we also computed em-
pirical convergence rates

)\exper — l/Texper

for groups of characters of different size /N. These rates were obtained by assum-
ing approximately exponential convergence of the sizes of virtual displacements:

o] ~ e

The norm of the virtual displacements was approximated by the angular dispersion
[Kur84]:

A 1 . 1
_ _ Z¢j 2
J

of the phases ¢; of the oscillators, averaged over 100 simulations with random
initial conditions.

Figure a) shows the logarithm of this dispersion measure as a function of
time (in gait cycles). It shows an initial constant segment (offset time), and after
that a nearly linear decay with time, from which the time constant 7¢*P*" can be
estimated by linear regression. Figure b) shows the offset times as a function
of the coupling strength to different types of coupling.
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Figure 6.10: a) Dispersion of the phase of the oscillators, averaged over 100 sim-
ulations with random initial conditions, as function of time (gait cycles). After
an offset time, during which the dispersion remains relatively constant, it decays
exponentially. Convergence rates were estimated by fitting linear functions to this
decay. b) Offset times (in gait cycles) as function of the coupling strength. (End

of offset time interval was defined by the point where the regression line crosses
the level R = 1.)
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Figure 6.11: a) The relationship between convergence rate and coupling strength
k for different types of coupling graphs. b) Slopes of this relationship as function
of the number NV of Hopf oscillators, comparing simulation results (indicated by
asterisks) and derived from the theoretical bounds (Section ).

Figure a) illustrates the dependency between coupling strengths £ and the
convergence rate A*P*" as estimated from simulations in the regime of the expo-
nential convergence. As derived from the theoretical bound, the convergence rate
varies linearly with the coupling strength. In the case of three oscillators, the ring
coupling is equivalent to the all-to-all coupling. Figure b) shows the slope
dA*P* (k) /dk of this linear relationship as function of the number of oscillators N
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in the network.

We find a close similarity between the theoretically predicted relationship (dashed
curves) and the results from the simulation (indicated by the stars). Indeed, it is
evident that for all-to-all coupling, the convergence rate increases with the number
of oscillators; while for chain or ring coupling, the convergence speed decreases
with the number of oscillators (for a fixed coupling strength). These results show
in particular that the proposed theoretical framework is not only suitable for prov-
ing asymptotic stability, but also for guaranteeing the convergence speed of the
system dynamics.

6.1.5 Distance Frequency Coupling

F2 e

R
) f:\h?ig

Figure 6.12: Distance Frequency Coupling: Follower F'1 was coupled with pos-
itive and follower F'2 with a negative coupling force to the leader L, whose fre-
quency is dependent on the distance. F'1 converges to the leader by increasing the
speed, where the behavior of F'2 diverges to minus infinity, which shows a back
walk.[Movie_10]

The last part of this section shows the results of the contracting conditions for
the distance-frequency coupling in a following behavior (see Section 2.5). We de-
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rived the equation of the form w(t) = wy + m(21(t) — 22(t)) where m defines the
coupling strength. We assume that wy is the frequency of the follower, which cor-
responds to the propagation speed of the Leader (w, can be estimated by observing
the Leader). This means that, depending on the coupling force, we obtain an auto-
matically following behavior, which is presented in Figure . Three characters
are animated, where two of them characterize the followers (£'1 and [£'2), whose
frequency is dependent on the distance to the third one, the leader (L). To show the
different behaviors dependent on the coupling strength, we coupled one follower
with a positive and the other with a negative coupling force. If m > 0, the posi-
tion of the follower converges to the leader by increasing the eigenfrequency. In
the contrary case, (m < 0), the behavior diverges exponentially to minus infinity,
which shows a backward-walking comportment.
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Testing Environment

This chapter briefly presents the main software tools that have been used for our
animation engine. The proposed methods and formulas were implemented in Mat-
lab (Matrix Laboratory) R2007b, an appropriate choice for the solution of numer-
ical computation. In addition to this, it serves as an excellent environment to de-
velop and test algorithms, which have been already discussed in detail throughout
the previous chapters.

7.1 Visualization

The output of the motion synthesis was provided in terms of a standard marker
set and standard skeleton, which have been animated in three different ways: In
Matlab, 3D Studio Max (Autodesk Inc.), and in the Graphics Engine Horde3D.

MATLAB: Besides serving as the environment for implementation, Matlab rep-
resents the testing platform for the visualization of the generated motion trajecto-
ries. For this purpose, simple puppet figures were animated using the information
of the marker position to attach geometrical shapes —ellipsoids and cylinders— to
the marker positions, whereby the apex of an ellipsoid represents the joint centers
(Figure 7.1). A more detailed description of the avatar modeling in Matlab can be
found in [OmlI10].

3D Studio Max (Autodesc, Inc.) is a modeling and animation software for ob-
taining a more realistic-looking scenario and has become a standard tool for video
game developers and other visualization studios. Since the marker set of the com-
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Figure 7.1: Modeling avatar: Geometrical shapes were attached to the computed
marker positions.

puted motion trajectories are compatible with 3D Studio Max, they were imported
in CSM file format -an optical tracking format for importing marker data- in the
animation software through its plug-in architecture. The character models we
used were exported to 3D Studio Max from a commercial set of human avatars
(‘Complete Characters’ from Rocketbox Studios GmbH), especially created for
real-time environments, e.g. video games, and providing a complete bone skele-
ton and skinning. Our trajectory set had to be retargeted on the chosen characters
by using a 3D Studio Max model-matching technique to obtain joint angle trajec-
tories. Therefore, character rigs or ‘Bipeds’, illustrated in Figure 7.2, had to be
pre-made for animation purposes, which represent the standard skeleton and are
needed to adjust our motion trajectories to the desired character. In this way, more
sophisticated characters, whose movements were then described by the synthe-
sized motion data, can be merged together to animate the desired scenario (Figure

).

Moreover, for establishing an interchange file format for interactive 3D applica-
tions with the ability to transfer the character information into our Graphics En-
gine Horde3d, we converted them into the COLLADA (COLLAborative Design
Activity) format (*.DAE). COLLADA defines an open standard XML schema for
exchanging digital assets among various graphics software applications that might
otherwise store their assets in incompatible file formats. Through this format we
were able to transport the body information into the Graphics Engine.

Graphic Engine: Horde3D rendering engine is a cross-platform compatible by
using OpenGL as rendering API. It is a powerful graphics engine comprising
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Figure 7.2: Motion trajectories have to be mapped onto a Biped 3D-model (left),
which defines the animation of a character (right).

modern shader-based architecture (automatic shader permutation generation using
GLSL shaders, OpenGL Shading Language, fully supported by NVidia GPU). It is
possible to create an online polygonal resolution adaptation by software skinning
and GPU hardware skinning in vertex shader for rendering hundreds of animated
characters. It supports: High Dynamic Range (HDR) textures and lighting; almost
all modern rendering techniques, including parallax mapping; real-time shad-
ows using Parallel Split Shadow Maps (PSSM) which takes into account hard-
ware acceleration. Data-driven rendering pipelines for straight switching between
different rendering techniques includes optimization of geometry for GPU post-
transform vertex cache. Horde3D is programmed in object-oriented C++ code
and 1s accessible through a procedural C-style interface similar to the Microsoft
Win32 API. This interface provides routines for loading data from files, streams
or any type of archives, mixing of binary and XML formats for better trade-offs
between performance and productivity. A Collada Converter links Horde 3D with
many common Digital Content Creation (DCC) tools. The Horde3D rendering
engine provides access to joint data for dynamic animations and ragdoll physics
and access to vertex data for collision detection and interoperability with physics
engines. The unified low-level animation system is working directly on scene
graph.

Collada Converter of Horde3D reshapes the data from Collada-format files into
assets accessible by Horde3D, creating separate files:
1. A scene graph resource (XML document) defining branch of the scene graph
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Figure 7.3: This screenshot shows an animation of a dance scenario in 3D-Studio
Max. Characters contain Biped models (bone skeleton), which comprise the mo-
tion information

and its complete hierarchy in a form providing access to the components of a
model like meshes and joints using the scene graph API.

2. A geometry file with polygonal data used by models and meshes containing
triangle indices and several streams for vertex attributes like texture coordinates
etc.

3. An animation file for joints containing the local transformation for each frame
in the form of a translation vector, a scale vector and a rotation quaternion.

Only the first two components were imported while the third was modified online
by the developed online animation software. We created several standalone pro-
grams in C++ for animating offline produced scenarios using Horde3D. Moreover,
we established an interface between Horde 3D and the Matlab psychophysics tool-
box for online control of the engine.

In order to provide an online reactive control together with a timing control for
real-time rendering engine embedding (like Horde 3D) in Matlab programs, we
established in collaboration with the Max Planck Institute for Biological Cyber-
netics, Tuebingen, an interface between Horde3D and the MATLAB Psychophysics
Toolbox v.3 (psychtoolbox.org). It provides the user with a high-level interpreted
language (Matlab) with a well-defined interface to the graphics hardware that ac-
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cesses the display frame buffer and color lookup table, allows synchronization
with the vertical blanking, supporting millisecond timing, and facilitates the col-
lection of observer responses.

The interface was programmed as C++ MEX file, a wrapper around the C/C++
interface of the Horde3D graphics engine, which allows addressing Horde 3D
commands directly from Matlab with a well-controlled timing. The interface uses
the Matlab Psychtoolbox-3 that coordinates its access to an OpenGL rendering
engine with Horde 3D. This resulting framework combines the advantages of the
Matlab Psychophysics Toolbox, which makes it possible for experimentalists to
program easily experiments with highly controlled timing of stimuli and response
acquisition, and the advantages of Horde 3D, which provides a variety of tools
for the real-time simulation of crowds, rendering with variable resolution, etc.
The developed interface is compiled with the core Horde3D engine and gives ac-
cess to all Horde3D classes and functions accessing vertex and joint data. This
is specifically important for the online generation of trigger events and enforcing
kinematic constraints derived from the interaction between individual characters
and the scene. The interface plug-in also dynamically uploads Horde3D assets
and resources.



CHAPTER 8

Conclusion and Outlook

Animating virtual humans and, in particular the real-time simulation of interac-
tive crowd behavior is a challenging task in computer animation for film and game
applications. In this context, one of the core problems is the synthesis of believ-
able human motion, a complex procedure in which many joints and its redundant
degrees-of-freedom are involved. This high dimensional volume of control in-
formation for coordinating the motion of an articulated figure makes character
animation tedious.

Furthermore, to develop a real-time capable system that interacts with the dynamic
environment or other articulated figures, immediate interaction skills have to be
considered, such as taking into acount navigating through moving and stationary
obstacles. In addition to this, different convincing emotional changes might be
included for a more realistic scenario. The outcome of this mentioned procedure
appears as a complex architectural system containing many nonlinear subsystems,
in which the treatment can be considered sophisticated and infeasible. Given the
intricacy of this background, the goal of our framework was the development of
learning-based methods for the synthesis of highly realistic human movements in
real-time.

The proposed method is biologically inspired and exploits the concept of syner-
gies, which is derived from motor control. Synergies specify lower-dimensional
control units that encompass only a subset of the available degrees of freedom. It
has been suggested that complex motor behavior, characterized by a large number
of redundant degrees of freedom, is controlled by a superposition of such syn-
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ergies. In addition to this, work in motor control has tried to identify synergies
from trajectory and EMG data, applying unsupervised learning. We used a simi-
lar approach to solve the degrees of freedom problem in full-body animation and
developed an algorithm for real-time animation, which can be summarized in the
following steps:

1. Learned movement primitives, or ‘synergies’, were extracted from full-body
motion capture data and comprise periodic gait movements with simple
non-periodic arm movements. Therefore, we applied an algorithm for blind
source separation, based on ICA with time-delays, and modeled the data by
mixing delayed sources (anechoic mixtures). The described model for the
compact approximation of trajectories based on synergies is not suitable for
real-time animation, since the trajectories have to be synthesized by super-
position and delaying of source signals whose whole time-course must be
known.

2. For this reason, we obtained a real-time capable animation system in which
we defined nonlinear dynamical systems that generate the associated trajec-
tories online. This is done by constructing a nonlinear mapping between the
attractor solutions of the dynamical systems (i.e. VdP oscillators) and the
source signals using Support Vector Regression (SVR). In this way, com-
plex kinematics are described by simple non-linear dynamical systems.

3. Then, the character is driven by the non-linear dynamical systems that cor-
respond to the extracted movement primitives, which we coupled to obtain
a stabilized coordinated behavior. Additionally, we included morphing al-
gorithms, so that various numbers of motion styles with different emotions
can be realized by blending among corresponding morph parameters.

4. The introduction of appropriate dynamic couplings among the dynamical
systems controlling each individual avatar, allows the generation of a co-
ordinated or synchronized group behavior. The developed framework can
now be easily combined with key elements of real-time animation systems,
such as style morphing and obstacle avoidance. Therefore, navigation dy-
namics had to be developed and can be used for interactive behavior with
the dynamic environment. A variety of application scenarios, such as fol-
lowing behaviors —involving speed and distance control algorithms— could
be demonstrated.

5. It is usually a difficult task to analyze the stability of such coupled time-
varying systems. Thus, we presented a new approach to design stability
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properties of animation systems that generate collective behavior of charac-
ters through self-organization from interacting dynamical models. In con-
trast with many existing approaches, our system uses simple non-linear dy-
namical systems, as opposed to more detailed biomechanical or physical
models. Such systems are in principle accessible for an application of tools
from stability theory. We have also introduced contraction analysis as a
new framework for the study and to design the stability properties of online
animation systems. The proposed theoretical approach has the advantage
of deriving global stability results for nonlinear systems from local stability
properties that can be easily verified. Contraction theory also offers the pos-
sibility to treat the stability of complex systems since it permits to transfer
stability results from components to composite systems. Many other ap-
proaches for stability analysis do not have this property, which makes the
analysis of complex systems often intractable. Moreover, we also demon-
strated that this theory is suitable to compute bounds for the convergence
rate of such systems, where sufficiently fast convergence is important for
many applications.

Although our approach is a fundamental step in the right direction, it has a lot of
potential to be extended and to be improved in different kinds of aspects. Few of
them can be summarized in the following points:

Future work will extend this approach for more complex movements, and
will focus on exploiting more the concept of synergy, trying to learn sparse
components that encompass only limited sets of degrees of freedom. This
will potentially result in a more flexible control of motion styles.

In fact, including feedback control will offer the possibility to make the
articulated figures or rather individual ’synergies’ reactive and dependent
on external constraints, potentially providing a basis for a much more fine-
grained adaptation of the generated behavior to external constraints, which
would be also interesting for other research field; possible applications in
robotics will be considered.

Another interesting task would be a systematic investigation with other
methods by comparing ground truth data for movements in interactive sce-
narios, including psychophysical experiments. Psychophysical experiments
can be used to classify the extend of the realism of the animated scenario
and the applications can be improved to obtain a more realistic acceptance
rate for the observer.

Self-organized crowd animation can be relevant for advertisement propos-
als and for simulation of safety procedures, e.g. the evacuation process in
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airplanes.

Finally, since in this work we tried to sketch some first steps towards a de-
velopment of a systematic approach for the design of the dynamics of such
online animation systems, future work needs to evaluate whether this work
can be extended to more complex systems that combine periodic and non-
periodic primitives and other dynamical components, such as navigation, or
the arbitration of different behaviors.
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Appendix
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Notation

Time pedriod

Phase of an oscillation

ratio of circle’s circumference to its diameter
Frequency

amplitude

Speed control (for amplitude damping)
Radius

Jacobian

Symertical part

Eigenvalue

Positive Eigenvalue of the Laplacian
virtual displacement

Supremum

Coordinate transform

Generalized Jacobian

Contracting metric

Flow invariant manifold

Identity matrix

Transpose of the matrix A

Inverse of the matrix A

Coupling gains

Set of neighbors of ¢

Laplacian matrix

Laplacian of coupling graph
Gradient
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trace(A)
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Nonlinear function
Nonlinear coupling
Mixing weight
Sources signal

Mean

Time delay

Expected value
Complex argument of the complex number z
Trace of the matrix A
Hyperbolic tangent
Covariance matrix

Natiirlicher logarithm (e als Basis)

Hadamard or Schur product.

Formally, for two matrices of the same dimensions:
A, B € R™*" the Hadamard product

is a matrix of the same dimensions A o B € R™*"
with elements given by (Ao B); ; = A; ;- B;
Fourier transform

Inverse Fourier transform

orthogonal matrix

Dynamic noise

Heading direction

Morphing parameter

Distance

Momentary velocity

Angular dispersion

convergence rate
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.2 Tables

Table 1: Marker names and definitions of the Vicon Plug-In Gait model

Marker Name Definition Marker Name Definition
Upper Body
LFHD Left front head RFHD Right front head
LBHD Left back head RBHD Right back head
Cc7 Seventh cervical vertebrae T10 Tenth thoracic vertebrae
CLAV Clavicle STRN Sternum
RBAC Right back
LSHO Left shoulder RSHO Right shoulder
LUPA Left upper arm RUPA Right upper arm
LELB Left elbow RELB Right elbow
LFRM Left forearm RFRM Right forearm
LWRA Left wrist A RWRA Right wrist A
LWRB Left wrist B RWRB Right wrist B
LFIN Left finger RFIN Right finger
Lower Body
LASI Left front waist RASI Right front Waist
LPSI Left back waist RPSI Right back Waist
LTHI Left thigh RTHI Right thigh
LKNE Left knee RKNE Right knee
LTIB Left shin RTIB Right shin
LANK Left ankle RANK Right ankle
LHEE Left heel RHEE Right heel
LMT5 Left 5th metatarsal RMTS5 Right 5th metatarsal

LTOE Left toe RTOE Right toe
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Table 2: Skeleton segments, and attached coordinate frames [x,y, z]
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