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problems

Barbara Rakitsch, Andreas Bernauer, Oliver Bringmann, and
Wolfgang Rosenstiel

Abstract

In this report, we show how to prune the population size of the Learning
Classifier System XCS for complex problems. We say a problem is complex,
when the number of specified bits of the optimal start classifiers (the prob-
lem dimension) is not constant. First, we derive how to estimate an equiv-
alent problem dimension for complex problems based on the optimal start
classifiers. With the equivalent problem dimension, we calculate the optimal
maximum population size just like for regular problems, which has already
been done. We empirically validate our results.

Furthermore, we introduce a subsumption method to reduce the number
of classifiers. In contrast to existing methods, we subsume the classifiers
after the learning process, so subsuming does not hinder the evolution of
optimal classifiers, which has been reported previously. After subsumption,
the number of classifiers drops to about the order of magnitude of the optimal
classifiers while the correctness rate nearly stays constant.

1 Introduction

System-on-Chips (SoC) provide a high level of system integration and reduced de-
sign costs compared to other chip designs. The International Technology Roadmap
for Semiconductors (ITRS) [1] expects that the number of SoC designs to increase
strongly. However, keeping the effort for SoC designs low becomes more and more
difficult. As integration density increases and feature size decreases, the complex-
ity of chip designs increases. Additionally, increasing transistor variability [2, 3],
process variation [4] and degradation effects [5] make it even more difficult to man-
ufacture reliable chips [6]. The ITRS estimates a requirement of a design reuse rate
of 70% until 2015 [1] to keep SoC designs worthwhile.

Adding Organic Computing properties to a SoC helps to reduce the design
effort. With the right set of monitors, evaluators, and actuators, the chip can
self-adapt to its actual variability and manifested process variation, self-heal from
degradation effects, and self-optimize to its current environment, ensuring an ef-
ficient but reliable chip. In [7], the authors have shown that using the Learning
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Classifier System XCS [8] as the evaluator allows a chip to self-optimize its oper-
ating point to its current environment. In [9], the authors have shown that the XCS
also enables the SoC to self-heal from unforeseen core failures.

The Learning Classifier System XCS learns a population of classifiers (or rules)
that instruct the SoC what to do in a given situation. During the design process, the
necessary number of classifiers to solve a particular problem is needed to estimate
the final costs of the SoC, as chip area is one of the main costs in chip manufac-
turing. Furthermore, for the same reason, it is desirable to keep the number of
classifiers on the chip to a minimum. The XCS has a parameter N that defines the
maximum allowable size of the classifier population and is thus a natural choice
to limit the number of classifiers. Choosing N optimally is crucial: if N is too
small, the XCS cannot evolve enough classifiers to solve the problem; if N is too
large, the selection pressure on non-optimal classifiers is low, they don’t get deleted
and the resulting classifier population is thus larger than necessary. Previous work
[10, 11] has shown how to select N optimally and how N depends on the problem
dimension k of the optimal classifiers. The problem dimension is the number of
bits that have to be set in the beginning classifier population so that the XCS can
evolve optimal classifiers. However, the current estimation only applies to regu-
lar problems where the problem dimension is constant for all optimal classifiers.
Hence, pruning the population size by selecting N optimally is only known for
regular problems.

In this report, we show how to prune the population size of XCS for complex
problems where the problem dimension of the optimal classifiers is not constant.
For this, we make the following major contributions:

1. We present a method to select the maximum population size N for com-
plex problems optimally. We show how to derive the equivalent problem
dimension k based on the variable problem dimension kcl of each optimal
classifier.

2. We introduce a subsuming method that is applied after learning has finished
to further reduce the number of classifiers.

3. We validate our theoretical findings on choosing N optimally with the core-
allocation problem, a complex problem first presented in [9].

4. We show that our subsuming method avoids the disruptive effect of subsump-
tion reported in [10] yet retains the property of self-adaptation to unforeseen
events.

This work is structured as follows. Section 2 shows related work. Section 3 briefly
introduces the XCS and the previous work on estimating N optimally for regular
problems. Section 4 presents our method to estimate an equivalent problem dimen-
sion k and how to select N optimally for complex problems. Section 5 presents
our subsumption method after learning. Section 6 describes the experimental setup
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and shows how to apply our methods to the core allocation problem. Section 7
presents the results of our validation and Section 8 concludes.

2 Related work

The content of this report is closely linked to [11], and [10] in regard of the theoret-
ical aspects of the XCS and to [9] in our use of the XCS as a generic self-adaptation
system. The LCS has been used in various Organic Computing projects. In [12],
the LCS is part of a three-layered organic controller for traffic lights and running
in embedded hardware. In [13], the authors strive for a minimal set of classi-
fiers that can evolve a cooperating communication structure in autonomous agents
with limited resources. In [14], Richter analyzes the LCS as part of the generic
observer/controller architecture [15] for organic computing systems and how the
emergent patterns can be controlled. In [16], the authors propose a hardware imple-
mentation of an LCS that uses little resources but retains the adaptation capabilities
of the LCS.

3 XCS in a nutshell

In this section, we briefly explain the XCS. A more detailed description can be
found in [17] and [18].

The XCS is a learning classifier system; it consists of a population [P ] of clas-
sifiers, and each classifier consists of a condition C ∈ {0, 1,#}L of length L, an
action a ∈ {ai, . . . , an}, a reward prediction p, a fitness value F , a numerosity
num, an action set size estimation as and some other house keeping values.

The classifiers adapt to the environment through reinforcement learning and
are altered by a genetic algorithm (GA). In contrast to most other learning classifier
systems, the accuracy, and not the predicted reward, of the classifier determines its
fitness.

One learning step of the XCS looks as follows: The XCS receives the input
state s ∈ {0, 1}L from the environment and places the classifiers whose conditions
match s into the match set [M ]. If one action a is not represented in [M ], covering
occurs; that means a classifier whose condition matches s with action a is gener-
ated. A bit in the condition is set to the don’t-care symbol # with probability P#,
otherwise it is set matching the corresponding bit in s. Then, the XCS calculates a
system prediction P (ai) for each action ai. In explore mode it chooses an action
randomly; in exploit mode it chooses the action with the best system prediction.
All classifiers which represent this action are put into the action set [A]. The action
is applied, and the environment returns a reward to the XCS. With the help of this
feedback, the XCS adjusts some of the parameters of the classifiers in [A].

The GA working on [A] is applied when the average time since the last GA in
[A] has been applied exceeds a certain threshold θGA. The two parent individu-
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als are randomly selected by their fitness and then duplicated. The resulting new
classifiers are altered by cross-over and mutation and then inserted in [P ].

If the maximal population sizeN is exceeded, classifiers are deleted throughout
the whole population. The deletion probability of a classifier is proportional to its
action set size as. If the classifier’s fitness is significantly lower than the average,
but its experience is large enough, its deletion probability is further increased.

The reproduction of new classifiers in [A] by the genetic algorithm and the
deletion of classifiers in [P ] results in accurate, maximally general classifiers as
proposed in Wilson’s Generality Hypothesis [17]. In the following, we call these
accurate, maximally general classifiers optimal classifiers. The optimal classifiers
can only evolve when the Covering Challenge [11], the Schema Challenge [11],
and the Reproductive Opportunity [10] are met:

3.1 Covering Challenge

The XCS needs a sufficient number of classifiers in order to cover all input states.
When an input state is not covered and N classifiers already exist, the XCS must
delete an existing classifier to make room for a new covering classifier. If this
occurs too often, the XCS is not able to evolve optimal classifiers. To avoid too
many deletions, each input state must be matched by at least one classifier after the
population is filled up. Hence, the probability P (cover) of at least one classifier
covering a certain input state must be high enough [11]:

P (cover) = 1−

(

1−

(

1 + P#

2

)L
)N

(1)

Clearly, setting P# and N high enough guarantees that P (cover) is high enough.

3.2 Schema Challenge

The GA needs sufficiently accurate start classifiers to evolve optimal classifiers.
Therefore, the conditions of the classifiers must contain enough specified bits (i.e.,
bits that are not the don’t-care symbol). As mentioned in the introduction, we call
the number of specified bits the problem dimension. For now, we assume that at
least k bits must be specified. In the next section, we explain how to estimate k for
complex problems.

If the probability P (representative) that each start classifier hast at least k
bits specified is high enough, then the challenge is met [11]:

P (representative) = 1−

(

1−
1

n

(

1− P#

2

)k
)N

(2)

By setting P# low and N high enough, P (representative) becomes sufficiently
high. Note that the Covering and the Schema Challenge ask for different settings
for P#.
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3.3 Reproductive Opportunity

While the Schema Challenge ensures that the initial classifiers are sufficiently accu-
rate, the Reproductive Opportunity ensures that the sufficiently accurate classifiers
have a chance to reproduce. Therefore, the probability for a classifier cl taking part
in [A] must be greater than its probability for being deleted [10]:

1

n

(

1

2

)L·scl

>
2

N
(3)

The specificity scl can be calculated as follows:

scl =
k + (L− k)s([P ])

L
.

The average specificity in the population s([P ]) is estimated by the mutation rate
µ. The relation between (s([P ]) and µ is derived in [10].

The Reproductive Opportunity is taken by setting N high enough.

4 Estimating the problem dimension k
For solving the Schema Challenge and the Reproductive Opportunity, one needs
to know the problem dimension k. In earlier papers like [10], it was simple to
specify k since all start classifiers needed the same number of specified bits and
the classifiers were not overlapping.

In this section, we show how to estimate the equivalent problem dimension k
for complex problems including overlapping classifiers and different k’s for differ-
ent classifiers.

As the population size N and the number of required learning steps grow with
the size of k [19], we want k to be as small as possible but still large enough to
ensure that all optimal classifiers can evolve. If we neglected the requirement that
k should be as small as possible, we could simply set k to the maximum of all
occurring kcls.

kmax = max
cl∈[P ]

(kcl) (4)

As the classifiers with the most specified bits are most difficult to evolve, kmax

ensures that all optimal classifiers can evolve.
When we want to work with a smaller k, we have to risk that not all optimal

classifiers can evolve. Hence, we have to decide which classifiers are important to
solve the problem. Therefore, we give each optimal start classifier a weight wcl

according to its importance and calculate k as the weighted average.
Our weight function is based on following ideas:

1. A classifier matching only infrequent system inputs is not as important as
a classifier matching frequent system inputs, as it seldom contributes to the
overall performance.
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2. Only the classifiers that gain the best reward are applied in the exploit mode.
Proportional to the probability P (exploit) that the XCS runs in the exploit
mode, classifiers that gain a high reward become more important.

3. When an action is propagated by many classifiers, it is not important that all
of the classifiers exist.

Putting all things together, we can estimate k, under the assumption that [P ]
only consists of optimal classifiers, as

kavg =
∑

cl∈[P ]

wcl

w
kcl (5)

with the weights

wcl = P (explore) 1

|[A]|
P (cl in [A]|explore)kcl

+ P (exploit)
1

|[A]|
P (cl in [A]|exploit)kcl

and the total weight

w =
∑

cl∈[P ]

wcl.

As the XCSworks either in explore or in exploit mode, P (exploit) = 1−P (explore)
holds. The probability P (cl in [A]|explore) is 1

n because an action is chosen ran-
domly from all actions in the explore mode; whereas P (cl in [A]|exploit) is one
divided by the number of optimal classifiers which earn the highest reward.

With the equivalent problem dimension kavg and the formulae (1), (2), and (3),
we can now approximate N .

5 Subsuming the classifiers after learning

After learning, we expect all the important, accurate, and maximally general clas-
sifiers to exist. Additionally, there are inaccurate and too specific classifiers since
the GA still evolves new classifiers.

In the following, we introduce a method which selects the optimal classifiers
from all the others. With this, we can reduce the population size N considerably.

The algorithm consists of two steps:

1. Subsuming:
Let cl1 and cl2 be two classifiers with the same action. The classifier cl1
subsumes cl2 if the following conditions are fulfilled:

(a) The condition of cl1 covers the condition of cl2.
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(b) cl1 is at least as accurate as cl2.
(c) cl1 is experienced enough.

2. Deletion of superfluous classifiers:
A classifier is not required if

(a) other clas sifiers also cover its condition and
(b) it is not accurate or not experienced enough

and is thus deleted.

The algorithm works similarly to the methods GA Subsumption and Action Set
Subsumption, which are described in [18]. Since the latter two are applied during
learning, they allow over-general, short-time accurate classifiers to subsume accu-
rate classifiers [10] and thus, hinder the evolution of optimal classifiers and cause
an extended learning time or even poor performance. As our method is applied
after learning, these disruptive effects do not occur.

6 Experimental setup

As test system for our estimation of kavg and N as well as for our subsuming
method, we use the core-allocation problem described in [9].

The core-allocation problem (L, i) is defined as follows: We want to allocate i
cores out of L cores while some of the L cores are already occupied. The system
input s is a binary string of length L with each bit representing one core. If a bit is
set to zero, the core is free; if it is set to one, it is occupied. There is one action for
each possible allocation of i cores out of L cores and one action for the case when
no allocation is possible. Hence, there is a total of

(

L
i

)

+ 1 actions. The action ”no
valid allocation is possible” is encoded as 0, all other actions are encoded with the
combinadic function [20].

We choose the core-allocation problem as test system, because, depending on
L and i, the number and structure of the optimal classifiers vary considerably which
gives us the opportunity to test kavg as the equivalent problem dimension for vari-
ous cases.

In the following, we consider a correctness rate of over 90% as good enough
for our purposes.

6.1 Optimal Classifiers

Let us first have a look at a classifier with an action #= 0. The classifier receives
a reward of 1000, if the allocation encoded by the action is free. Therefore, all
cores from the allocation must be free (see Table 1). If at least one of the specified
i cores is occupied, the classifier receives no reward. Hence, for each action #= 0
i+ 1 optimal classifiers exist: one classifier whose condition has all bits, specified
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by the allocation, set to 0 and i classifiers whose conditions each have one of the
specified bits set to one, the other are set to#.

Let us now have a closer look at action zero. A classifier which represents
action zero gains a reward of 1000 if no allocation is possible. Therefore, at least
L − i + 1 cores must be occupied. If at least i cores are free, the classifier gains
no reward. Thus,

(

L
L−i+1

)

classifiers exist whose conditions each have L − i + 1

different bits set to 1 and
(

L
i

)

classifiers whose conditions each have i different bits
set to 0.

6.2 Special case: Action Zero

A classifier with action zero receives a reward of 1000 if actually no valid action is
possible. Therefore, the probability is:

P (Action 0 gets reward 1000) =
L
∑

j=L−i+1

(

L

j

)

2−L (6)

Table 2 displays the probabilities for the individual problems for 1 ≤ i ≤ L ≤ 10.
As expected, action zero is the best action when many cores have to be allocated
(large i). The bold numbers indicate that action zero gains a reward of 1000 for at
least 90% of all cases. In these problems, the optimal classifiers are not required
since the XCS can simply always choose action zero. Therefore, it needs only one
classifier per action whose condition consists only of don’t-care terms. Since our
estimation of k builds on the assumption that optimal classifiers are required, we
will estimate a problem dimension too large for these problems. We see in the next
subsection, that the corresponding k values are small, so our estimation is not far
away from the optimum.

6.3 Estimating the problem dimension k

Table 3: Probability distributions for the problem (4, 3), with
pexplore =

1
|[A]|P (cl in [A]|explore) and

pexploit =
1

|[A]|P (cl in [A]|exploit)

s cl in [M ]
pexplore pexploitcl.C cl.a cl.p

0000 0 0 0# 0 0.0 0.05 0.00
0 0#0 0 0.0 0.05 0.00
0#0 0 0 0.0 0.05 0.00
#0 0 0 0 0.0 0.05 0.00
0 0 0# 1 1000.0 0.20 0.25
0 0#0 2 1000.0 0.20 0.25
0#0 0 3 1000.0 0.20 0.25
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s cl in [M ]
pexplore pexploitcl.C cl.a cl.p

#0 0 0 4 1000.0 0.20 0.25
0001 0 0 0# 0 0.0 0.20 0.00

0 0 0# 1 1000.0 0.20 1.00
###1 2 0.0 0.20 0.00
###1 3 0.0 0.20 0.00
###1 4 0.0 0.20 0.00

...
0011 ##1 1 0 1000.0 0.20 1.00

##1# 1 0.0 0.20 0.00
###1 2 0.0 0.20 0.00
##1# 3 0.0 0.10 0.00
###1 3 0.0 0.10 0.00
##1# 4 0.0 0.10 0.00
###1 4 0.0 0.10 0.00

...
0111 #1 1# 0 1000.0 0.07 0.33

#1#1 0 1000.0 0.07 0.33
##1 1 0 1000.0 0.07 0.33
#1## 1 0.0 0.10 0.00
##1# 1 0.0 0.10 0.00
#1## 2 0.0 0.10 0.00
###1 2 0.0 0.10 0.00
##1# 3 0.0 0.10 0.00
###1 3 0.0 0.10 0.00
#1## 4 0.0 0.07 0.00
##1# 4 0.0 0.07 0.00
###1 4 0.0 0.07 0.00

...
1111 1 1## 0 1000.0 0.03 0.17

1#1# 0 1000.0 0.03 0.17
1##1 0 1000.0 0.03 0.17
#1 1# 0 1000.0 0.03 0.17
#1#1 0 1000.0 0.03 0.17
##1 1 0 1000.0 0.03 0.17
1### 1 0.0 0.07 0.00
#1## 1 0.0 0.07 0.00
##1# 1 0.0 0.07 0.00
1### 2 0.0 0.07 0.00
#1## 2 0.0 0.07 0.00
###1 2 0.0 0.07 0.00

9



s cl in [M ]
pexplore pexploitcl.C cl.a cl.p

1### 3 0.0 0.07 0.00
##1# 3 0.0 0.07 0.00
###1 3 0.0 0.07 0.00
#1## 4 0.0 0.07 0.00
##1# 4 0.0 0.07 0.00
###1 4 0.0 0.07 0.00

We use kavg as k. To identify |[A]| and P (cl in [A]|exploit), we first search all
matching optimal classifiers for each system input s.

Then, we can calculate |[A]| and P (cl in [A]|exploit) for each system input s
(see Table 3). As all system inputs are equally probable, we get the overall values
by simply adding up the single values. P (explore) is set to 0.2.

Table 4 displays the estimated k values. The estimated ks for the problem (L, i)
and (L,L − i + 1) are approximately the same, as a valid allocation for (L, i) is
only possible if and only if no allocation is found for (L,L− i+ 1).

Comparing the estimations kavg and kmax, kavg is on average 4.4 smaller than
kmax, resulting in considerably smaller population sizes.

6.4 Estimating the population size N

We calculate N with k from Table 4.
N shall be as small as possible, but large enough to fulfill the formulae (1), (2)

and (3). We say that the challenges are fulfilled when the probabilities P (cover)
and P (representative) are at least 0.9. Therefore, the don’t-care probability P#

is chosen from {0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}, so that it fits best.
Table 5 shows the calculated population sizes.

7 Results
We run all experiments with 1 ≤ i ≤ L ≤ 10.

First, we want to show that our k estimations are accurate. Therefore, since
k is proportional to N , we let the experiment set run with the newly calculated
population size N , with 3

4N and with 1
2N . When the XCS with the population

size N reaches a correctness rates of over 90%, then the k values are large enough.
When the performance with smaller population sizes declines, our k values must
not be smaller.

Next, we want to show that our subsumption method works. In order to do so,
we take the classifiers from the previous experiments with population size N and
apply the subsumption method to them. Then, we analyze the performance of the
subsumed classifiers.
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Table 1: Optimal classifiers for the problem (4, 3)

condition C action a reward p
000# 1 1000
1### 1 0
#1## 1 0
##1# 1 0
00#0 2 1000
1### 2 0
#1## 2 0
###1 2 0
0#00 3 1000
1### 3 0
##1# 3 0
###1 3 0
#000 4 1000
#1## 4 0
##1# 4 0
###1 4 0
11## 0 1000
1#1# 0 1000
1##1 0 1000
#11# 0 1000
#1#1 0 1000
##11 0 1000
000# 0 0
00#0 0 0
0#00 0 0
#000 0 0
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Table 2: P (Action 0 gets reward 1000) for the problem (L, i)

i\L 1 2 3 4 5 6 7 8 9 10
1 .5 .25 .12 .06 .03 .02 .01 .0 .0 .0
2 .75 .5 .31 .19 .11 .06 .04 .02 .01
3 .88 .69 .5 .34 .23 .14 .09 .05
4 .94 .81 .66 .5 .36 .25 .17
5 .97 .89 .77 .64 .5 .38
6 .98 .94 .86 .75 .62
7 .99 .96 .91 .83
8 1.0 .98 .95
9 1.0 .99
10 1.0

Table 4: Estimated k for the core-allocation problem (L, i)

i\L 1 2 3 4 5 6 7 8 9 10
1 1.0 1.4 1.5 1.5 1.5 1.4 1.3 1.2 1.1 1.1
2 1.4 1.9 2.3 2.5 2.6 2.5 2.4 2.3 2.2
3 1.6 2.3 2.9 3.3 3.5 3.6 3.6 3.5
4 1.6 2.5 3.3 3.8 4.2 4.5 4.6
5 1.6 2.6 3.5 4.2 4.8 5.2
6 1.4 2.6 3.6 4.5 5.2
7 1.3 2.4 3.6 4.6
8 1.2 2.3 3.5
9 1.1 2.2
10 1.1
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Table 5: Estimated N for the core-allocation problem (L, i)

i\L 1 2 3 4 5 6 7 8 9 10
1 11 23 37 48 68 91 121 159 208 274
2 16 54 132 250 384 616 945 1391 2003
3 19 97 354 962 2030 3493 5942 9927
4 20 141 741 2800 7969 17888 33037
5 24 174 1258 6426 24176 70198
6 27 228 1800 12039 58653
7 31 297 2600 19036
8 36 378 3782
9 43 480
10 51

Finally, we test if the subsumed classifiers can deal with unforeseen events
that require self-adaptation. Therefore, we let cores fail without the environment
noticing it.

The performance of the XCS is measured with the averaged correctness rate
over the last 50 exploitation steps. Repeated simulations show the same results as
presented in the following subsections and lead to the same conclusions.

We use the C implementation from [21], version 1.2. The parameters are set to
the default values, except: α = 1.0, ε0 = 0.01, θGA = 250, µGA = 0.1, χGA =
0.5; Action Set and GA subsumption are turned off. N and P# are calculated
individually as described before.

7.1 Core allocation problem during learning

Figure 1 shows the correctness rates depending on N . The y-axis depicts the cor-
rectness rate, the x-axis the three different experiment sets with the population sizes
N , 0.75N and 0.5N . We can see that with the calculated population size N , all
experiments have a correctness rate of at least 90%. When we reduce the popula-
tion size to 0.75N , the results are slightly worse; about 30% of the problems have
a correctness rate between 80% and 90%. When we decrease the population size
further to 0.5N , only 24% of the experiments have a correctness rate of over 90%.
In 20% of the experiments, the XCS has severe difficulties in choosing the right
action; the correctness level drops below 70%.

In 6.2, we calculated P (Action 0 gets reward 1000). 13 from 55 problems have
a probability greater than 0.9 (see Table 2) meaning that they have a correctness
rate of over 90% when the XCS simply chooses action zero all the time. Since
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Figure 1: Correctness of the core-allocation problem depending on N

these problems can be solved without the optimal classifiers, we assume that they
can also be solved with a much smaller population size than calculated and indeed,
these problems reach a correction rate of over 90% in all three experiment sets.
We indicate those problems with the black line at the correctness level of 24%.
Hence, if we exclude those problems from our observations, no problem from the
experiment set with population size 0.5N reaches a correctness level of over 90%.

We conclude that the XCS is able to learn all of the problems with our N
estimations, but is not able anymore to learn all problems when we reduce each
N to one half. That means that our N and thus also our k estimations are large
enough to ensure reliability, but not too large since the performance declines when
we reduce N .

7.2 Subsuming of classifiers

We apply our subsuming method on the experiment set with normal population
size N after learning.

Figure 2 displays the number of classifiers for the problems with ten cores.
The x-axis refers to the problems and the y-axis to the number of classifiers on
a logarithmic scale. We use a logarithmic scale because the number of classifiers
before subsuming is much larger than afterwards. The white bar depicts the number
of classifiers before subsuming, the gray bar after subsuming, the black bar shows
the number of classifiers from [9], and the patterned bar refers to the number of
optimal classifiers. In [9], the XCS is applied to the same problem instances with
the two methods GA subsumption and Action Set Subsumption activated; they both
subsume during learning.

We can see that the subsuming method reduces the number of classifiers sig-
nificantly. For the problems (10, i), i = 1, . . . , 6, the number of classifiers after
subsuming is a bit larger than the number of optimal classifiers.
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For the problems (10, i), i = 7, . . . , 10, the number of subsumed classifiers is
even smaller than the number of optimal classifiers. Once again, this can be at-
tributed to action zero. With i close to L, P (Action 0 gets reward 1000) increases
(see Table 2). Because more and more input states require action zero, not all opti-
mal classifiers are still required, and thus the number of classifiers drops below the
number of optimal classifiers.

As we can see, for problems with small and large i, the XCS with the settings
from [9] requires more classifiers than we need after subsuming, but less classifiers
than we need before subsuming. For medium-sized i, the number of classifiers is
nearly the same for subsuming during and after learning.

The results remain the same for problems with L < 10.
In the worst case, problem (2, 1), 17% of the classifiers, in the best case, prob-

lem (10, 10), even 95% of all classifiers are superfluous. On average, the number
of classifiers can be reduced to 27% of classifiers before subsuming.

To sum up, subsuming after learning reduces the number of classifiers to the
dimension of optimal classifiers. When we use the methods GA subsumption and
Action Set Subsumption, we need at least as many classifiers as we require when
we subsume after learning. For many problem instances, subsuming after learning
reduces the number of classifiers more than subsuming during learning. In the next
section, we will see, that our newly introduced subsuming method additionally
offers a higher level of reliability.

7.3 Core allocation problem after subsuming

In the next experiment set, we use the classifiers from Figure 2 as initial classifiers.
In addition, we turn the GA off; this has several reasons: First, the XCS does

not need the GA component anymore, so we can save space. Second, since we
assume that we already have optimal classifiers, there is no need to search any
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Figure 3: Correctness with subsumed classifiers

further. Since the classifiers can still adjust their reward, they are also still able to
adapt to unforeseen events as we will see in the next section. Third, if we allow the
GA to take place, the classifiers are not static; new classifiers are discovered and
old ones are deleted. Hence, if we turn the GA off, no good classifier can be lost,
and we do not need additional space for the new classifiers that the GA discovers.

The Figure 3 shows the correctness rates without subsuming, with subsuming
after learning and with subsuming with the methods GA subsumption and Action
Set Subsumption [9].

Obviously, the performance is best without subsuming. As we can see in the
chart, when we subsume after learning, the XCS worsens slightly since in 20% of
the problems the correctness rate is between 80% and 90%. When we subsume
during learning, the correctness rate is in 20% of the problems between 80% and
90%, in 20% even below 80%.

In conclusion, subsuming after learning requires at least as many classifiers as
subsuming during learning, but the performance remains on a higher level. Com-
paring the results between no subsuming at all and subsuming after learning, we
come to accept the slight loss of performance in favor of reducing the number of
classifiers.

7.4 Self-adaptation to failing cores

Next, we analyze how well the XCS can self-adapt after subsuming. In [9] is
shown that the XCS is able to self-adapt when GA subsumption and Action Set
Subsumption are activated. We test now if the XCS maintains this capacity when
the newly introduced subsuming method is used instead.

Therefore, one or more cores fail, and the XCS has to adapt to the new situation.
A failed core is still monitored as free, but cannot be allocated.

We take the same experimental setup as in Section 7.3. The XCS runs the first
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Figure 4: Correctness with core failure

150000 time steps normally before the first core fails. After another 100000 time
steps, the next core fails and so forth. In the problem (L, i) maximum L− i cores
can fail since there is no valid allocation possible otherwise.

If for a problem all optimal classifiers exist, the core failure does not influence
the performance of the XCS; the reward of the classifiers which want to allocate
the failed core simply adjusts to zero.

As we see in Figure 4, the performance of the XCS remains nearly the same
after one core has failed. The performance is even slightly better compared to be-
fore; the number of problems whose correctness rate is below 90% drops from 11
to below 5. The average overall performance is between 94% and 97% in all exper-
iment sets. Hence, the new subsuming method does not affect the self-adaptation
capacities of the XCS.

8 Conclusion

In this report, we showed how to estimate the population size for complex problems
and how to reduce the number of classifiers after learning.

Butz et al. already estimated the population size for regular problems [10]. We
showed how k can be approximated for complex problems as a weighted average
of all occurring problem dimensions. The weights are calculated according to how
often the classifiers can be applied, how large the rewards they gain are and with
how many classifiers they are in the action set. We showed that the performance of
the XCS with our estimated population size N is always above 90% with an aver-
age value of 96%. When we reduce the population size by one half, the correctness
rate drops severely.

Since the classifiers which evolve during learning are only partially required
- some are too specific and thus already covered by more general classifiers and
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others are not accurate as they are newly discovered in the GA - we introduced a
subsuming method to eliminate the superfluous classifiers. In so doing, we could
reduce the number of required classifiers to 27% and needed at most slightly more
classifiers than optimal classifiers exist.

After subsuming, we decided to turn off the GA, so we could work with a
fixed number of classifiers and without having to fear to loose any good classifiers.
A few problems had a performance loss of at least 5%, but for the majority of
problems the performance did not suffer at all. We accept the slight degradation of
performance in favor of reducing the number of classifiers.

Then, we showed that even without the GA the subsumed classifiers are able
to adapt to unforeseen events because the classifiers can adapt to failing cores with
only adjusting their rewards.

To sum up, the results show that the population size of the XCS for learning
can be estimated even for complex problems and the number of classifiers after
learning can be reduced to the dimension of the number of optimal classifiers.
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Appendix

Derivation of the optimal start classifiers

In our report, for the core allocation problem (L, i) we set the optimal start classi-
fiers equivalent to the optimal classifiers; the optimal start classifiers must ensure
that the optimal classifiers can evolve. In the following, we will prove that the
optimal classifiers for the core allocation problem (L, i) can only evolve out of
themselves:

Let us consider a classifier cl1 having i1 zeros on the positions corresponding
to the allocation with i1 < i. We assume further that all other classifiers with the
same action have less zeros on the corresponding positions. We would like that the
GA selects cl1 because it is closest to the optimal classifier since it shares more
positions with the corresponding optimal classifier than any other classifier in [A].
Hence, cl1 needs fewer alterations to evolve to the optimal classifier and is thus the
best choice as parental individuum. Therefore, the fitness of cl1 must be greater
than the fitness of all other classifiers in [A]. Since fitness behaves inversely to
the reward prediction error ε, cl1.ε must be smaller than the prediction errors of all
other classifiers in [A].

In the following, we will show that cl1 has the largest prediction error ε in [A],
and is hence not selected in the GA, which explains why it is unlikely that the
optimal classifiers evolve from classifiers with less zeros.
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In [10] Butz et al. show that the prediction error ε of a classifier can be calcu-
lated as follows when only two reward levels (0 and 1000) are possible:

cl.ε = 2000(Pc(cl)− P 2
c (xl)).

Pc(cl) is the probability of the classifier cl predicting the correct reward. As we
can see, cl.ε acts like a reverse parable with its maximum at Pc(cl) = 0.5.

The classifier cl1 only gains the reward 1000 when all other i− i1 bits are zero:

Pc(cl1) =
1

2i−i1
≤

1

2

All other classifiers have at least i2 = i1 − 1 zeros on the corresponding positions.
Consider a classifier cl2 with i2 zeros:

Pc(cl2) =
1

2i−i2
=

1

2i−(i1−1)
=

1

2

1

2i−i1
=

1

2
Pc(cl1)

As Pc(cl2) < Pc(cl1) ≤
1
2 holds, cl2.ε < cl1.ε. Consequently, cl1 has the largest

prediction error in [A].
The same applies for the optimal classifiers with (L− i+ 1) ones.

Results in Numbers

The following table lists the numerical results for the problem (L, i) with
1 ≤ i ≤ L ≤ 10. The shortcut bs stands for before subsuming, as for after sub-
suming, opt for optimal and cl for classifiers.

(L, i) N p corr(N ) corr(.75N ) corr(.5N ) corr(as) #cl(bs) #cl(as) #cl(opt)

(1,1) 11 .2 1.0 1.0 0.82 1.0 5 4 4
(2,1) 23 .2 1.0 0.95 0.86 1.0 12 10 7
(2,2) 16 .2 0.97 0.95 0.78 1.0 8 6 6
(3,1) 37 .2 0.99 0.88 0.75 0.87 18 6 10
(3,2) 54 .2 0.99 0.8 0.74 1.0 28 15 15
(3,3) 19 .2 0.92 0.9 0.88 0.88 10 7 8
(4,1) 48 .2 0.9 0.76 0.43 0.99 40 26 13
(4,2) 132 .2 0.99 0.91 0.71 1.0 72 30 28
(4,3) 97 .2 0.95 0.88 0.76 1.0 63 24 26
(4,4) 20 .2 0.95 0.93 0.93 0.95 13 7 10
(5,1) 68 .3 0.98 0.86 0.43 0.97 48 19 16
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(L, i) N p corr(N ) corr(.75N ) corr(.5N ) corr(as) #cl(bs) #cl(as) #cl(opt)

(5,2) 250 .2 0.98 0.88 0.63 0.97 171 50 45
(5,3) 354 .2 0.97 0.89 0.78 0.95 207 53 60
(5,4) 141 .2 0.92 0.88 0.85 0.91 87 35 40
(5,5) 24 .3 0.97 0.97 0.97 0.97 17 10 12
(6,1) 91 .4 0.98 0.92 0.5 0.97 67 25 19
(6,2) 384 .2 0.93 0.89 0.29 0.88 268 62 66
(6,3) 962 .2 0.97 0.93 0.8 0.97 589 139 115
(6,4) 741 .2 0.95 0.85 0.8 0.94 461 92 110
(6,5) 174 .2 0.92 0.87 0.87 0.89 127 26 57
(6,6) 27 .4 0.98 0.98 0.98 0.98 14 4 14
(7,1) 121 .5 0.97 0.92 0.81 0.98 87 26 22
(7,2) 616 .2 0.95 0.34 0.22 0.88 422 123 91
(7,3) 2030 .2 0.97 0.93 0.81 0.93 1332 191 196
(7,4) 2800 .2 0.96 0.94 0.84 0.96 1827 261 245
(7,5) 1258 .2 0.91 0.87 0.84 0.89 885 126 182
(7,6) 228 .2 0.94 0.93 0.93 0.94 164 33 77
(7,7) 31 .5 0.99 0.99 0.99 0.99 18 2 16
(8,1) 159 .6 0.98 0.96 0.84 0.98 122 45 25
(8,2) 945 .3 0.95 0.89 0.26 0.93 688 187 120
(8,3) 3493 .2 0.96 0.91 0.82 0.95 2431 382 308
(8,4) 7969 .2 0.97 0.95 0.88 0.94 5224 700 476
(8,5) 6426 .2 0.95 0.92 0.86 0.94 4332 528 462
(8,6) 1800 .2 0.91 0.9 0.82 0.89 1299 172 280
(8,7) 297 .3 0.96 0.96 0.95 0.96 219 36 100
(8,8) 36 .6 1.0 1.0 1.0 0.98 29 17 18
(9,1) 208 .7 0.99 0.96 0.91 1.0 162 61 28
(9,2) 1391 .4 0.96 0.92 0.53 0.95 1090 297 153
(9,3) 5942 .2 0.96 0.91 0.25 0.95 4386 792 456
(9,4) 17888 .2 0.97 0.95 0.89 0.95 12835 1487 840
(9,5) 24176 .2 0.95 0.94 0.9 0.91 17452 1508 1008
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(L, i) N p corr(N ) corr(.75N ) corr(.5N ) corr(as) #cl(bs) #cl(as) #cl(opt)

(9,6) 12039 .2 0.91 0.9 0.87 0.88 8862 881 798
(9,7) 2600 .2 0.93 0.93 0.86 0.93 1921 283 408
(9,8) 378 .4 0.98 0.98 0.94 0.98 292 41 126
(9,9) 43 .7 1.0 1.0 1.0 1.0 31 2 20
(10,1) 274 .7 0.99 0.99 0.91 1.0 229 60 31
(10,2) 2003 .4 0.96 0.93 0.4 0.96 1607 397 190
(10,3) 9927 .2 0.96 0.93 0.25 0.95 7686 1301 645
(10,4) 33037 .2 0.95 0.93 0.88 0.89 25274 2709 1380
(10,5) 70198 .2 0.93 0.9 0.88 0.83 52912 3573 1974
(10,6) 58653 .2 0.92 0.9 0.87 0.85 44527 2664 1932
(10,7) 19036 .2 0.91 0.9 0.89 0.9 14448 1157 1290
(10,8) 3782 .2 0.95 0.94 0.88 0.95 2879 217 570
(10,9) 480 .4 0.99 0.99 0.95 0.99 348 34 155
(10,10) 51 .7 1.0 1.0 1.0 1.0 37 2 22

Parameter Settings
In the implementation we used [21], the XCS parameters can be set with a config-
uration file. The parameters maxPopSize and dontCareProb are set for each exper-
iment individually (see N and p in the previous subsection), the other parameters
are set as follows:

nrExps 1
maxNrSteps 250000
testFrequency 500
maxPopSize 9927
initializePopulation 0
alpha 0.1
beta 0.2
gamma 0.8
epsilon0 0.01
nu 5

thetaGA 250
fitnessReduction 0.5
tournamentSize 0.4
selectTolerance 0.001
crossoverType 0
forceDifferentInTournament 0
chiGA 0.5
muGA 0.1
doGeneralizationMutation 0
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doNicheMutation 1

doMAM 1
doGAErrorBasedSelect 0

delta 0.1
thetaDel 20
deletionType 1
dontCareProb 0.20
doGASubsumption 0
doActionSetSubsumption 0
thetaSub 200
exploreProb 0.2
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