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Zusammenfassung

Um einen umfassenden Einblick in die genetische Vielfalt und molekular-
biologische Funktionalitidt eines Organismus zu bekommen, ist die Sequen-
zierung dessen Genoms unabdingbar. Allerdings erlaubt keine der gegenwérti
gen Sequenziertechnologien, das gesamte Genom in einem einzigen Schritt
“abzulesen”. Stattdessen wird eine grofie Menge an kurzen Fragmenten
(Reads) produziert, die um ein Vielfaches kiirzer sind als das urspriingli-
che Genom. Um letztendlich die vollstindige Genomsequenz zu erhalten,
werden die Reads mittels Algorithmen der Genomassemblierung moglichst
optimal miteinander verkniipft. Die maschinelle Automatisierung der DNA-
Sequenzierung basierte lange Zeit ausschlielich auf einer Methode, die in
den siebziger Jahren von Frederick Sanger entwickelt wurde. Seit dem Jahr
2005 jedoch kommt eine neue Generation von Sequenziertechnologien auf
den Markt, die es nun ermdoglichen, in kiirzerer Zeit eine grofle Menge Se-
quenzierdaten bei reduzierten Kosten zu produzieren. In dieser Arbeit wer-
den verschiedene Methoden und deren Implementierungen vorgestellt, die
solche Sequenzdaten verarbeiten und fiir die biologische Interpretation auf-
arbeiten.

Obwohl die neuen Sequenziertechnologien vielféiltige Optimierungen ver-
sprechen, bleibt die Genomassemblierung eine ernstzunehmende Herausfor-
derung fiir Bioinformatiker und Biologen. Eines der hier vorgestellten Pro-
gramme ist OSLay. Es berechnet unter Einbeziehung eines verwandten Refe-
renzgenoms sogenannte Scaffolds. Diese Scaffolds, eine definierte Menge von
geordneten assemblierten DNA-Fragmenten, sind spéter hilfreich fiir die kor-
rekte Zusammensetzung und somit auch fiir die abschlieende Fertigstellung
der Genomsequenz.

Der Einsatz von Hochdurchsatz-Technologien férdert die ErschlieBung
und den Ausbau neuer molekular-biologischer Forschungsfelder. So profitiert
zum Beispiel der junge Forschungszweig der Metagenomik stark von die-
sen neuen Entwicklungen. Dessen Schwerpunkt ist die genomischen Analyse
von nicht-kultivierbaren mikrobiellen Organismen, die in diversen Habitaten
(Biotopen) gefunden werden. In dieser Arbeit werden Methoden vorgestellt,
die einerseits die Haufigkeitsverteilungen von Spezies visualisieren und die
andererseits die Analyse mikrobieller Eigenschaften innerhalb eines Metage-
noms ermoglichen. Hauptaugenmerk liegt jedoch auf einer neuartigen Me-
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thode, die, basierend auf einer Homologiesuche, Reads mit Hilfe der Gene
Ontology funktionell klassifiziert. Die intuitive Graphvisualisierung von GO-
Analyzer ist Teil der MEGAN Software und erlaubt die effiziente Analyse
von einem, sowie den Vergleich der gefundenen Genprodukte von mehreren
metagenomischen Datensétzen.

Die sich rasant entwickelnden Sequenziertechnologien erfordern inno-
vative Softwarelosungen, die die Hochdurchsatz-Daten nicht nur verarbei-
ten, sondern auch helfen, sie nutzbar machen. Um das Testen und Be-
werten von Software zu erleichtern, wurde MetaSim, ein Simulationspro-
gramm fiir DNA-Sequenzen, entwickelt. Basierend auf einer Datenbank be-
kannter Genomsequenzen generiert MetaSim simulierte Readsequenzen, die
parametrisierbaren Fehlermodellen unterliegen, welche die Fehlerraten und
-typen bekannter Sequenziertechnologien widerspiegeln. Zusétzlich kénnen
Spezieshéufigkeiten festgelegt werden, um ganze Metagenome zu modellie-
ren.

In dieser Arbeit werden neben OSLay, GOAnalyzer und MetaSim weitere
Methoden und Erkenntnisse vorgestellt, die die Auswertung und Interpre-
tation von genomischen und metagenomischen Datensédtzen unterstiitzen.



Abstract

The sequencing of the genome is the first step to gain profound insights
into the genetic diversity and the molecular-biological functions of an or-
ganism. The existing approaches to sequence DNA do not allow to “read”
a whole genome sequence at once in a single step. Instead, many short frag-
ments (reads) are produced that are actually orders of magnitude shorter
than the original genome. To finally obtain the complete genome sequence,
genome assemblers try to piece the reads back together. For a long time,
the automatized and machine-based sequencing of DNA was dominated by
an approach originally conceived by Frederick Sanger in the 1970s. Since
2005, several new (“next-generation”) sequencing technologies appeared on
the market that are able to generate much more sequencing data in shorter
time and at lower costs compared to the Sanger sequencing. This thesis
introduces several computational methodes that process and structure this
sequencing data to assist in their biological analysis and interpretation.

Despite the improvements of the new sequencing technologies, genome
assembly still poses serious challenges for (computational) biologists to ob-
tain a finished genome sequence. In this work, a software (OSLay) is de-
scribed that computes so-called scaffolds by ordering and sorting large frag-
ments (contigs) of an unfinished genome assembly with regard to a related
reference genome. The computed ordering of fragments later facilitates the
successful completion of the final genome sequence.

The application of high-throughput technologies accelerates biological
research and enables new sorts of large-scale genome investigations. One
emerging research discipline that strongly benefits from these advancements
is metagenomics. It is the study of uncultured microbial organisms directly
derived from their natural environment. In this work, methods are presented
to facilitate the visualization of species abundances and to enable the analy-
sis of microbial properties of a metagenomic sample. Furthermore, a major
focus is given to a novel homology-based approach for the functional anno-
tation of metagenomic reads based on the Gene Ontology. Incorporated into
the MEGAN software and provided with an intuitive graph visualization,
the GOAnalyzer can be used to efficiently explore and compare the gene
products of one or more metagenomic data sets.

The fast-evolving sequencing technologies demand for innovative soft-
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ware concepts that are able to efficiently deal with high-throughput data.
To support the testing and benchmarking of computational methods, a se-
quencing simulator software is introduced. Based on known genome se-
quences, MetaSim simulates sequencing reads that may serve as verifiable
test data sets for any type of read processing software. The synthetic reads
are generated according to adaptable error models reflecting the typical er-
ror characteristics of various sequencing technologies. Additionally, species
abundance profiles can be determined to model realistic metagenome data
sets.

Beside the introduction of OSLay, GOAnalyzer and MetaSim, additional
methods and findings are presented in this thesis that support the analysis
and interpretation of genomic and metagenomic data sets.
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In accordance with the standard scientific protocol, I will use the personal
pronoun “we” to indicate the reader and the writer or (as explained in
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Chapter 1

Introduction

Every living organism on our planet possesses a genome that is composed
of one or several DNA (deoxyribonucleotide acid) molecules determining
the way the organism is built and maintained. The DNA molecules are
divided into sets of discrete sequence stretches which encode for the genetic
information that is translated into proteins.

Since 1970, researchers have made an effort to develop strategies to
“read” the DNA sequence because the knowledge of an individual genome
sequence provides deep insights into the biological functions and the evolu-
tionary history of this organism. Moreover, a couple of diseases are caused by
genetic disorders that are only diagnosable by studying sequence variations
within certain regions on the DNA sequence. A widely applied strategy for
DNA sequencing is the “chain-termination method” introduced by Frederick
Sanger in 1977 (Sanger et al.,[1977). The importance of this method over the
last 20 years can be explained with its applicability to the machine-based au-
tomatization of DNA sequencing. This automatization step accelerated the
development towards other high-throughput sequencing technologies, which
eventually, opened the flood-gates to an extensive amount of sequence data.

Still, the sequencing of whole genomes turns out to be very challenging
and time-consuming because only short sequences called reads (<1000 base
pairs) can be produced. The genome shotgun sequencing approach, devised
by Sanger (Sanger et al.,|1982)), deals with the problem to reconstruct longer
sections of a genome: the idea is to sequence cloned and randomly sampled
fragments of the genome to obtain short, overlapping reads. The random
sampling and the cloning step ensures to cover each position of the origi-
nal genome sequence with a sufficient number of reads. Using specialized
algorithms, these reads are pieced back together to obtain the final genome
sequence. Today, there exists a couple of genome assembly strategies and
tools that try to resolve this “jigsaw-puzzle” problem efficiently. The genome
shotgun strategy has already been successfully applied to many organisms,
such as the bacterium Haemophilus influenzae (Fleischmann et al.; 1995)),
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the fruit fly Drosophila melanogaster (Fleischmann et al., [1995) and even
parts of the human genome (Venter et al., [2001)).

However, due to some characteristics of the DNA (e.g. repeat regions)
and some technical aspects, the assembly problem is far from being solved.
For example, the complete reconstruction of a single contiguous sequence
in the end of the assembly process sometimes fails and results in DNA
fragments resembling a gapped genome sequence. To fill these gaps with
sequence data, the fragments need to be ordered and orientated, i.e. they
need to be set into the context of the original genome. Several procedures
exist to obtain a consistent scaffold of fragments; one of them is presented
in this thesis.

The Sanger technology dominated the sequencing market for several
years. Eventually, since 2005, new (“next-generation”) sequencing technolo-
gies have been commercially launched which promise to produce much more
sequencing data in shorter time and at lower cost compared to the Sanger
technology. The development of the 454, Genome Analyzer and SOLiD plat-
forms (Margulies et al.l 2005; Bentley, [2006; |Shendure et al., [2005) was en-
abled by advancements in microfluidics, surface chemistry, and enzymology,
and led to a significant increase of diverse (re-)sequencing projects. Also, for
the first time, the ultimate goal, the cost-effective and standardized sequenc-
ing of human genomes, becomes likely to be accessible in the near future.
Although the new technologies are able to produce significantly more data
per sequencing run, the mentioned assembly problems still remain. There-
fore, innovative algorithmic solutions are of great need that are capable of
processing the new data flavors.

A relatively new research field, called metagenomics, also benefits from
the advancements of the new technologies. As a major part of the free-living
microbes (>99%) is assumed to elude the cultivation under laboratory condi-
tions, new methods are required to enable the direct sequencing of organisms
contained in environmental samples. In contrast to the Sanger sequencing,
the emerging next-generation sequencing technologies avoid library prepara-
tion issues and therefore, enable researchers to generate unbiased sequencing
data directly from the environment. However, the computational analysis
of metagenomic data sets is a challenging task because the initial sequencer
output consists of large volumes of short, anonymous reads, i.e. the species
origin of a read is unknown. These reads are structured (optionally as-
sembled) and taxonomically classified to gain knowledge about the complex
species composition of the studied habitat.

Another focus is given to the functional analysis of the metagenome by
detecting coding sequences (genes) on the DNA fragments. These genes
are either annotated to known functions and gene products or classified as
hypothetical proteins if no homologous sequence can be found in reference
databases. Obviously, there is great hope to discover unique biosynthetic
capabilities and pathways that are encoded in genomes of still unnoticed



microbes. For example, striking insights have already been obtained by
studying different environments such as seawater (Rusch et al. [2007)), soil
(Daniel, 2005)), air (Tringe et al., 2008|) and various biofilms (Tyson et al.,
2004). Furthermore, researchers apply metagenomic methods to understand
the complexity of the human microbiome that is composed of a large number
of microorganisms “whose collective genome contains at least 100 times as
many genes as our genome” (Gill et al., [2006)).

The resulting excess of data is remarkable: For example, the Global
Ocean Sampling project sampled water probes in the Atlantic and Pacific
and predicted about 6.21 million hypothetical proteins, almost doubling
the number of known proteins present in databases at that time (Rusch
et al., |2007)). Hence, this example points out the need for novel algorithmic
approaches and innovative software tools that allow the efficient organization
and interpretation of metagenomic data sets.

Overall, the advent of next-generation sequencing technologies have had
a strong bearing on several (new) research fields like the high-throughput
sequencing of human genomes (personalized medicine), genome assembly,
paleogenomics (Hofreiter, [2008) and metagenomics. It will certainly lead
to further exciting discoveries and insights which, until recently, seemed to
be hardly achievable. However, this promising era of “flowing” sequencing
data actually poses a lot of challenges regarding the efficient handling and
interpretation of the data.

This thesis describes several novel approaches and software tools that
support the analysis, the interpretation, and the simulation of sequencing
and metagenomic data.

Chapter 2 gives an introduction into the historical and theoretical back-
ground of DNA sequencing, assembly and metagenomics. It highlights the
main historical developments towards modern sequencing technologies and
its computational challenges regarding genome assembly. Furthermore, it
includes an overview of representative metagenomic projects and typical
analysis pipelines for the computational analysis of the taxonomical and
functional content of an environmental sample.

Chapter 3 outlines an algorithmic approach addressing the scaffolding
problem of a genome assembly. Here, an heuristic strategy is described that
is able to detect the layout of unordered DNA fragments in reference to
a closely-related genome sequence. This concept has been implemented as
software tool called OSLay.

In chapter 4, the technical aspects of the MEGAN (MEtaGenome ANa-
lyzer) software are presented. This software allows to organize and interpret
complex metagenomic data sets. Special focus is given to a new algorithmic
approach for the functional metagenome analysis aiming at the classification
of reads according to Gene Ontology terms (Ashburner et al., 2000).

Many read processing tools for genome assembly or metagenomics are
published these days, trying to keep pace with the fast-evolving sequencing
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technolgies. To assist the efficient development, benchmarking and com-
parison of such software solutions, a new tool is described in Chapter 5.
MetaSim provides functionality to generate verifiable test data sets based
on known genome sequences. Reads can be simulated according to adaptable
error models reflecting the typical error characteristics of different sequenc-
ing technologies.

Chapter 6 concludes the topics of this thesis and reviews the achieve-
ments of this work in the context of the current developments in the research
fields of genomics and metagenomics.



Chapter 2

Background and Theory

In the following chapter, a few historic notes and fundamental aspects of
genomics and metagenomics are outlined. Besides the description of the
main biological principles, some technical and computational issues about
DNA sequencing and assembly are covered as well. Of course, focus is
primarily kept on concepts that are important for this thesis.

2.1 The Discovery of DNA

The discovery of DNA (deoxyribonucleic acid) is occasionally associated
with two famous names: Watson and Crick. But their work, published in
1953 (Watson and Crick, 1953), was actually based on previous experiments
and findings of other, rather unknown people. In fact, the first time that a
person identified and isolated DNA, was many years before the 1950s. In
1869, Johann Friedrich Miescher, a Swiss doctor, conducted several exper-
iments on pus found on wound dressings. His laboratory was part of the
former kitchen in the castle of Tiibingen, Germany (Dahm) [2008). He ex-
tracted a mysterious substance from white blood cells (leukocytes) which he
later called nuclein because he assumed that this molecule is derived from
the nucleus. Miescher could show that the properties of this substance differ
significantly from proteins. But still, the common opinion to that time was
that proteins are responsible for the inheritance of genetic information.

In 1919, Phoebus Levene, a Lithuanian biochemistrist, discovered the
constituents parts of the DNA (Levene, [1919): the four organic nucleotides
(bases adenine, guanine, cytosine and thymine), as well as the sugar and
phosphate groups. He also proposed a chain structure in which the nu-
cleotides are repeatedly connected by the phosphate groups. But still, the
importance of the DNA was not apparent to that time. Later, the descrip-
tion of the DNA structure succeeded in the year 1953 when Francis Crick
and James Watson published their work (Watson and Crick, 1953) based
on x-ray analyses performed by Rosalind Franklin (Franklin and Gosling,
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1953). They proposed a double-stranded DNA molecule which is shaped
like a double-helix. Nine years later, Watson and Crick received the Nobel
prize for this pioneering work (Franklin died of cancer aged 37 and could
not be awarded posthumously.)

Based on these and many other studies, it could be shown that DNA
is the carrier of the genetic information and that DNA can be inherited
by the offspring of an organism. In eukaryotes (e.g. animals, plants or
fungi), the DNA is located in the cell nucleus as linear chromosomes. By
contrast, prokaryotes (bacteria or archaea, mostly uni-cellular) which lack
a cell nucleus, contain the DNA, in most cases, as circular chromosome(s).
The sequence of the four bases determines coding and non-coding stretches
of DNA. In the process of transcription, the coding regions are transcribed
into RNA (ribonucleic acid) which is then subsequently translated to gene
products (proteins). The term “genome” means the full set of all inheritable
genetic information of an organism coded in the DNA.

2.2 DNA Sequencing

The process of DNA sequencing is the (partial) reading of the base sequence
of an organisms’ genome. Determining the order of the nucleotides is cru-
cial to get profound insights into the genetic diversity and organization of
an organism. For example, by extracting the coding regions of the DNA
(open reading frames, ORFs), the primary sequence of a protein (sequence
of amino acids) can be determined which then provides information about
the protein’s functionality. The process of ORF finding and function assign-
ment is also called gene prediction and annotation, respectively. Non-coding
regions are occasionally responsible for the regulation of the expression of
genes, i.e. regulatory proteins or transcription factors bind to these regions
to control the synthesis of proteins. Another motivation for sequencing is
the detection of mutations in the nucleotide sequence. The exchange or ab-
sence of bases may reveal genetic disorders which might lead to diseases.
Further, based on the sequence similarity of multiple genomes (or specific
stretches of sequence, also called marker genes), assumptions can be made
concerning the evolutionary relationships between organisms. For example,
the morphology-based classification models (e.g. in Haeckel (1866])) have
difficulties to discriminate between analogy and homology (i.e. similarity
due to evolutionary ancestry) when only comparing observed characteristic
features of several organisms. So, the objectivity of sequence-based, phylo-
genetic analyses are able to refine the systematic classification of organisms
based on morphology.

In general, one potential application for sequencing has significantly
spurred the improvement of sequencing technologies: the cost-effective deci-
phering of the human genome, accessible and affordable for everyone. With
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the personal genome sequence at hand, people anticipate to be able to accu-
rately predict and even to cure diseases more efficiently in the future. The
concept of such a personalized medicine fascinates researchers (as well as
the pharmaceutical industry) and has led to the establishment of the Ar-
chon X Prize for Genomics. In 2006, the Archon foundation announced a
$10 million prize for the team that decodes 100 human genomes in less than
10 days for less than $10,000 per genome (http://genomics.xprize.org).
According to J. Craig Venter, the overall probability that this goal will be
ever achieved is “close to 100%” (Pennisi, 2006).

To conclude this brief list of motivations for sequencing, it becomes clear
that modern biology strongly relies on the extracted sequence of the nu-
cleotides. In any case, sequencing represents the very starting point for
subsequent molecular analyses that are fundamental for research studies in
modern biology. It is the basis for understanding the wide range of molec-
ular processes, the evolutionary classification of living organisms and the
genetic differences that, e.g., makes us humans different from mice. Finally,
being able to read the DNA sequence is indispensable for actually its “edit-
“writing”: DNA sequence modifications (cutting, copying and
insertion of nucleotides) nowadays are standard techniques widely applied
in molecular research.

The following subchapters outline the history of DNA sequencing and the
main technologies, and protocols for the (high-throughput) data collection.
Note that the field of emerging sequencing platforms is quickly moving, so
the following list is only a snapshot of this particular time. The chronological
introduction of the technological advancements may help to understand the
tremendous increase of sequence data uploaded into the databases (Figure

21).

ing” or even

2.2.1 History of DNA Sequencing

In this section, a brief summary is given covering the developments of the
early, manual approaches towards the first, automatic sequencing platforms
that automated DNA sequencing. This overview is mainly based on a com-
prehensive survey (Hutchison) 2007)) that characterizes all technological ad-
vances in more detail.

The description of the double-helical structure of DNA by Watson and
Crick (Watson and Crick, 1953) was an important milestone, but, the first
determination of the DNA sequence occurred almost fifteen years later. Rea-
sons for this delay were for example the length of the DNA which is signif-
icantly longer than protein sequences or the high chemical similarity of the
four bases. In contrast to amino acids whose chemical properties could be
easily differentiated, the detection of the four nucleotides turned out to be
challenging at that time. Another hurdle was the unavailability of DN Aases,
enzymes that cut DNA sequences at specific bases. In case of proteins, the
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Figure 2.1: DDBJ/EMBL/GenBank database growth. At the beginning of 2009,
the number of stored nucleotides passed the 100 Gbp mark. Data from http://wuw.
ddbj.nig.ac. jp/breakdown_stats/dbgrowth-e.html.

precise cutting using proteases was already feasible, thereby enabling re-
searchers to at least partially study protein sequences.

The first publication of a partial DNA sequence was accomplished by Wu
and Kaiser (Wu and Kaiser, [1968)). They first reported the partial sequenc-
ing of the phage lambda DNA in 1968, but the completed 12 base sequence
was not presented until 1971 (Wu and Taylor} [1971). Eventually, the type II
restriction enzymes were discovered by Hamilton Smith (Smith and Wilcox,
1970). These enzymes made it possible to cut large DNA molecules into
smaller pieces which could be then analyzed more easily. The next mile-
stone in DNA sequencing was the description of a novel approach by Sanger
and Coulson in 1975, called the 'plus-and-minus’ method (Sanger and Coul-
son, (1975). This work influenced many upcoming technological approaches
in the following 30 years. For the first time, polyacrylamide gels were used
to separate fluorescently (or radioactively) marked DNA-fragments by size
using gel-electrophoresis. This method was relatively fast and simple and
could read DNA stretches of length ~50 bp (base pairs). However, only
single-stranded DNA sequences could be sequenced and some difficulties
arose when determining the length of homopolymers (single base repeti-
tions). In February 1977, Maxam and Gilbert (Maxam and Gilbert, 1977
presented a similar method that even was applicable to double-stranded
DNA and which produced fairly accurate sequences. Unfortunately, some of
the chemicals used for this approach were toxic and hazardous to the health
of the scientists.
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Eventually, in December 1977, Sanger improved the ’plus-and-minus’
method by reporting the 'dideoxy’ approach (Sanger et al.,|1977)), also called
the chain-termination method. Its success was based on the basic conception
that later allowed the automatization in large-scale sequencing projects. The
main idea is to determine the DNA sequence by an enzymatic elongation of
complementary nucleotides. Some of these nucleotides cause the termination
of the sequence synthesis at specific base positions.

First, the DNA fragment is cloned and a primer sequence is hybridized
to one end of a single strand of the DNA molecule. Starting from the primer,
the complementary strand is elongated by adding the enzyme DNA poly-
merase and the four deoxynucleotides (dAATP, dGTP, dCTP and dTTP).
The trick was then to include small amounts of dideoxynucleotides (ddNTP)
that are similar to dNTPs except of lacking the 3’-OH group. Without the
3’-hydroxy group, the polymerase is not able to further elongate the DNA se-
quence, therefore the sequence synthesis is terminated at this position. Such,
fragments are obtained that contain the primer and a stretch of nucleotides
ending with a specific base. This is done for each of the four nucleotides and
the results are displayed in four lanes on a polyacrylamid-gel by conducting
a gel-electrophoresis separating the chains by their lengths. In contrast to
the ’plus-and-minus’ method, a band is visible for each nucleotide in a con-
secutive run of bases. To that time, a continuous DNA sequence of about
100 bp could be read. At the end of the 90s, the outcome of gel-based se-
quencing could be significantly improved by different labeling of nucleotides
and by enhancements of the used gels. The development of 96-well plates
led to sequence lengths up to 400 bp. Additionally, the amount of sequence
data achievable by a single person per day grew up to 30 kbp.

To further increase the sequencing output, people started thinking about
the machine-based automatization of the sequencing process. In 1986, the
first report of automated sequencing came from a collaboration of Leroy
Hood (California Institute of Technology) and Applied Biosystems (ABI)
(Smith et al., [1986). Basically, a sequencing primer was fluorescently end
labeled using four different dyes for the four sequencing reactions of the
dideoxy method, respectively. The DNA samples then travel through a
single gel. When reaching the level of the scanner unit, the fragments
could be detected by these fluorescent markers. This data was then di-
rectly stored on computers that determined the base sequence of the reads
(base-calling). In 1992, Craig Venter founded The Institute of Genomic Re-
search (TIGR) which was later renamed as J. Craig Venter Institute in 2006
(JCVI, http://www.jcvi.org). Venter’s plan was to establish “sequenc-
ing factories” with 30 ABI 373A automated sequencers to conduct parallel
DNA sequencing. After sequencing large sets of expressed sequence tags
(ESTs), TIGR completed several viral and organelle genomes and even the
first bacterial genome sequences (Haemophilus influenzae and Mycoplasma
genitalium (Fleischmann et al., 1995} |Fraser et all |1995)). With larger
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Figure 2.2: ABI 3700 DNA Sequencer. Picture taken from http://www.
labcentraal.com.

genome sizes, innovative algorithmic solutions were required for obtaining
complete genome sequences. The whole genome shotgun (WGS) method
(first applied in the H. influenzae genome project) and the application of
the 'paired-end’ strategy, had a wide influence on the future developments
of sequencing technologies and upcoming assembler software. (The WGS
method and other concepts of assemblies are outlined in more detail in Sec-
tion . Upon these achievements, many genomes had been sequenced, for
example F. coli, S. cerivisiae, B. subtilis and the first animal genome, the
worm C. elegans (see Table .

After 1996, DNA sequencing was highly automated when new sequenc-
ing machines appeared on the market (ABI prism 310 and ABI prism 3700,
Figure . The tedious work of pouring slab gels was replaced with capil-
laries which were filled with a polymer matrix. Such, samples could be au-
tomatically loaded from the 96-well plate and subsequently analyzed. The
separation of bands became easier and, likewise, longer reads could be gen-
erated. The read length at 99% accuracy was between about 480 bp and
750 bp. In 1998, Venter, as head of the new company Celera Genomics,
acquired 300 machines to approach the next big goal: the sequencing of the
human genome (/3 billion bp). The sequencing factories accomplished to
sequence =50 Mbp per day. This high-throughput approach together with
sophisticated assembly algorithms were first tested on the genome of the
fruit fly (Drosophila melanogaster) (Myers et al., [2000). Eventually, after a
competitive race with the Human Genome Project, a public consortium of
sequencing centers from the United States, Europe and Japan, both teams
presented the first, official draft of the human genome in 2001
2001; Lander et al., 2001). Considered as a huge milestone for humanity,
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this event received much public attention.

However, the “biologists’ hunger for even greater sequencing through-
put” was still not satisfied (Schuster, 2008). The race for more and more
sequence data has just begun (Figure and Table In the meantime,

’ Year ‘ Origin ‘ Mbp ‘
1977 Phage phi 17/ 0.0054
1981 Human mitochondrium | 0.0165
1982 Phage lambda 0.0485
1984 Epstein-Barr virus 0.172
1991 | Human cytomegalovirus 0.237
1995 Haemophilus influenzae 1.83
1997 | Escherichia coli O157:H7 4.6
1997 | Saccharomyces cerevisiae 12
1998 Caenorhabditis elegans 97
2000 | Drosophila melanogaster 120
2001 Homo sapiens sapiens 3,000

Table 2.1: Selection of sequenced genomes using Sanger sequencing. This listing
of genomes indicates the amazing progress and improvement of sequencing technologies
within 24 years.

the ’dideoxy method’ (Sanger sequencing) which had been successfully em-
ployed for the last 30 years, has reached its limits. Although Sanger sequenc-
ing is still used, its days are likely to be numbered. Faster and more-efficient
sequencing technologies promise to increase parallelism and throughput at
reduced costs.

The next sections give an overview of the concepts of the so-called “next-
generation-sequencing” technologies.

2.2.2 Next-Generation Sequencing Technologies

After dominating the last 30 years, Sanger sequencing is not able to keep
pace with the ambitious plans in current genomic research. Although the
performance of Sanger sequencing has been steadily improved over the years
(e.g., read lengths up to 1000 bp), the costs for maintaining and running
the machines are rather high (=~ $500 for 1 Mbp). Moreover, the system
could only produce 50-100 Kbp per run. These numbers obviously indicate
that high-throughput projects like, for example, large-scale resequencing
projects or the decipherment of multiple human genomes can not be easily
accomplished. However, the Sanger technology is still used in sequencing
laboratories if rather high sequence accuracy is required instead of large
volumes of sequence data.
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Beginning in 2005, several new sequencing technologies appeared on the
market that promise to revolutionize genomic studies. They all appeared
in the post-Sanger era and are described as “Next-generation sequencing”
(NGS) technologies. Other innovative systems, already announced for the
following years but still under development, are called “3rd generation” or
“Next-next-generation sequencing” (NNGS) technologies. The primary goal
of all new methods is the reduction of costs while dramatically increasing
the output of sequence data per run. With new developments in chem-
istry and image based processing methods, the reading of the DNA se-
quence has been massively parallelized to gain large volumes of data. These
achievements opened the door for new genomic approaches in molecular bi-
ology and environmental studies (e.g. metagenomics). It is even anticipated
that the new sequencing technologies will become part of every-day medical
practice (personalized medicine). As a consequence of the low sequenc-
ing costs (e.g. due to a reduced reagent volume), large-scale sequencing
projects can now even be conducted by small research institutes in addi-
tion to the major sequencing centers like the Wellcome Trust Sanger In-
stitute (http://www.sanger.ac.uk) or the DOE Joint Genome Institute
(http://www.jgi.doe.gov). Although major sequencing centers are still
contributing a considerable amount of sequences to the databases, their
influence becomes less dominant. Hence, in Marguerat et al.| (2008]), the
authors state that NGS technologies have the capability to “democratize
science”.

Although the NGS technologies rely on different principles and bio-
chemistries, they share some important characteristics. For example, the
cloning step of the source sequence is done in vitro, to avoid any cloning
bias (Sorek et al., 2007). Moreover, in contrast to the Sanger method, all
technologies produce (ultra-)short reads (35-500 bp) which pose difficulties
for subsequent analyses (for instance regarding genome assembly). This
drawback is fairly compensated with an unprecedented scale of produced
sequence data which leads to a high sequence coverage (i.e., the average
number of overlapping reads per base position). The large output of read
sequences is achieved by attaching millions of DNA fragments onto chips.
During the sequencing phase, the fixed fragments are then “read” in parallel
based on imaging data generated within each iterative cycle. Section [2.2.2]
will introduce the concepts of three NGS technologies in more detail.

According to |MacLean et al.| (2009)), some of the (new) applications for
NGS technologies are for example:

e de novo genome assembly (e.g. Farrer et al.| (2009)))

Assembly by alignment (resequencing)

e Gene expression analysis (transcriptomics)

SNP (single nucleotide polymorphism) detection
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e Resequencing of individuals (e.g. the diploid “Watson” genome re-
ported in Wheeler et al.| (2008a)))

e Non-coding RNA characterization
e Identification of protein binding sites (e.g. |Jothi et al.| (2008)))
e Metagenomics (more details on this is presented in Section

Besides the ordinary approaches, some new applications became feasible or
could be improved. For example, the gene expression analysis or RNA-
centered transcriptomic approach may outperform the standard microarray
in the near future. Instead of measuring the fluorescent spots that may
be biased to a certain extent, only the reads have to be counted to infer
how much of a particular RNA molecule is in a sample. Moreover, the
high sequence coverage significantly increases the accuracy for SNP detec-
tion and resequencing projects because sequencing errors can be identified
more easily. Eventually, the research field of environmental genomics or
metagenomics strongly benefits from these technologies because the library
construction and the cloning-host bias known from traditional Sanger se-
quencing is avoided (Schuster, [2008). This issue also applies to the analysis
of ancient DNA of, for instance, mammoth DNA, the mitochondrial genome
sequence of neanderthals, or the extinct Tasmanian tiger (Poinar et al., 2006
Green et al., [2008; Miller et al., 2009a)).

Still, the ultimate goal and driving force for the steady improvement of
NGS technologies is the high-throughput sequencing of the human genome.
Table[2.2]indicates how the costs decreased since 2001. At last, the company
that will be able to win the Archon X Prize (see Section has a valuable
sales argument.

To obtain an overview of the main differences, Table shows a com-
parison of Sanger sequencing and the four major NGS contenders. The NGS
technologies produce much more sequencing data for less dollars, whereas
the advantage of Sanger sequencing is based on the long read length and the
high read accuracy (up to 99,999%). However, once the NNGS technologies
will hit the market within the next five to ten years, the benefit of long read
sequences will not be uniquely subjected to the Sanger sequencing anymore.
In the next subsections, the three NGS technologies are introduced.

454 (Roche)

In 2005, the 454 platform was the first next-generation sequencing technol-
ogy commercially available on the market. The sequencing-by-synthesis ap-
proach (Margulies et al., [2005) introduced by the company 454 Life Science
(Branford, CT, USA) (now marketed by Roche Applied Science) comprises
several pioneering solutions for the library and template preparations and
for sequencing. These approaches have later been partly adopted by other
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| Technology | Costs ($Mio) | Year | Reference ‘
Sanger 300 2001 [ [Venter et al|(2001) |
Sanger 100 2001 | [Lander et al|(2001) |
Sanger 10 2007 Levy et al[(2007) |
Roche (454) 2 2008 | [Wheeler et al| (2008a)) |
Mlumina 1 2008 Ley et al| (2008) |
Mlumina 0.5 2008 Wang et al. (2008) |
Illumina 0.25 2008 Bentley et al.7(2008)4
Helicos 0.048 2009 | Pushkarev et al. (20097

Table 2.2: Costs for sequencing human genomes. Human genome: =3 Gbp. The
Sanger sequencing projects assembled the human genome de novo, whereas the NGS
technologies used resequencing methods, The company Applied Biosysystems estimates
costs of <$0.01 in the near future for their SOLID platform. Table adopted from
Pushkarev et al.| (2009).

Read Length (bp)

Technology | formerly \ now Reads/Run | bp/Run | $/Kbp
Sanger 100 800-1000 100 50-100 Kbp 1
Roche 454 100 400-500 1.25 Mio 1 Gbp 0.05
Illumina GA 35 50-125 140 Mio 28 Gbp 0.002
ABI SOLiD 25 50 750 Mio 40 Gbp 0.002

Helicos 24 32 1075 Mio 37 Gbp <0.0005

Table 2.3: Comparison of sequencing technologies.

Information derived from

(Hutchison, [2007; |Check Hayden|, [2009; [Perkell, |2009; [Pushkarev et al., [2009)) and the
company web sites as of August 2009.

NGS technologies that followed 454 sequencing to the market (Rothberg
and Leamon), 2008). The first 454 NGS machine was the GS20 (Figure [2.4)).
Remarkably, it was able to produce a throughput of 50 single ABI 3730XL
capillary sequencing machines at a fraction of the costs (Schuster, 2008).
Moreover, it was the first non-Sanger technology to sequence an individual
human (Wheeler et al., 2008a)).

The main principles of the 454 technology are an in vitro sample prepa-
ration and a miniaturization of sequencing chemistries that enables to gen-
erate sequencing data in a massively parallel manner. Long DNA samples
are randomly sheared into small fragments (e.g., by nebulization) of sizes
between 500 and 1000 bp. For the library preparation, an adaptor is added
to each end of these fragments, respectively (Figure a). The single
stranded DNA fragments (sstDNA) are then used for the subsequent emul-
sion PCR (emPCR) (Dressman et al., [2003). Therefore, the fragments are
mixed with beads carrying oligonucleotides complementary to the adaptors.
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Figure 2.3: Roche 454 Genome Sequencer 20. Picture taken from http://wuw.
roche-applied-science.com.

The bead-bound library is then set up inside aqueous microdroplets within
an oil emulsion together with amplification reagents (Figure b). Dur-
ing the subsequent amplification step ~ 10 million copies of each sstDNA
template are produced and bound to single beads. This compartmentalized
enzymatic amplification technique is essential because it allows for a clonal
production of templates without the need for host cells, like E. coli. Hence,
the potential loss of sequence coverage due to the cloning bias is avoided.
At the same time, the DNA amplification ensures later to obtain high levels
of signal differing from the background noise. For the sequencing phase, the
beads carrying sstDNA are deposited into 3.5 million wells of a fibre-optic
PicoTiterPlate™ (Figure c and e). The high amount of wells (formerly
1.6 million in 2005) is a key factor to accomplish the high density and par-
allelism of the sequencing reactions. The wells are small enough to allow
only one bead placement per well (55 pwm in depth and a diameter of 44
pm) and such, they act as individual reaction vessels where each reaction is
isolated from other wells. In addition to the sstDNA beads, smaller beads
carrying immobilized enzymes (ATP sulfurylase and luciferase) required for
the pyrophosphate reaction are loaded into the wells (Figure d).

The sequencing itself is carried out by flowing sequencing reagents (nu-
cleotides and buffers) over the plate. Individual nucleotides are sequently
flowed (e.g., A-C-G-T-A-C-G-T...). If the current nucleotide is complemen-
tary to the template strand, the DNA polymerase incorporates one or more
consecutive nucleotides. The number of incorporated nucleotides is propor-
tional to the intensity of the emitted light signal generated by the sequencing
reaction (Figure and Figure f). The light signal for each flow is cap-
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Figure 2.4: 454 sequencing technology. a) Genomic DNA is randomly sheared.
Fragments (sstDNA) are ligated to adaptors. b) The single stranded DNA is attached
to beads. An emPCR reaction amplifies the fragments within water-in-oil reactors. c)
Beads are deposited into wells and d) layered with smaller beads carrying enzymes.
e) Scanning electron micrograph showing part of a PicoTiterPlate f) By incorporating
the sequentially flowed nucleotides, a light signal is emitted. It is captured by a CCD
camera. Picture taken from (Rothberg and Leamon, [2008).

Signal image

P
Luciferase \/.\1/_15' o

Light + oxy luciferin

Figure 2.5: 454 pyrosequencing reaction. Incorporation of a complementary base
generates pyrophosphate (PPi) which is converted to ATP by the sulfurylase. Luciferase
uses the ATP to convert luciferin to oxyluciferin, thereby producing light. Picture taken
from http://www.454. com.
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tured by a CCD camera. The resulting flow grams for each sst DNA bead in
a single well are then translated into sequence space, i.e. the base sequence
is derived from the intensity of the light signals for each nucleotide flow.

The overall read accuracy could be constantly improved over the years.
In Margulies et al.| (2005) an accuracy of 96% has been reported for the
GS20 platform whereas Droege and Hill (2008) mentioned a single-read
accuracy of >99.5% over the first 200 bases. In the meantime, the web
site of Roche 454 says that this accuracy is now (August 2009) applicable
for the first 400 bases for the GS FLX Titanium Series (http://www.454.
com/products-solutions/system-features.asp). These improvements
are mainly due to advancements in fluidics, surface chemistry and enzymol-
ogy (Rothberg and Leamon, 2008). Additionally, with each machine and/or
chemistry upgrade, the read length could be significantly improved (Table
. Interestingly, the average read length depends on the AT and GC con-
tent of the source genome. AT- and GC-rich genomes yield longer sequences
than genomes with neutral AT/GC content (Droege and Hill, 2008). Any-
how, the 454 technology is still the only platform able to generate long reads
up to 500 bp and is therefore, the first choice for de novo genome assembly
and metagenomics.

Sequencing errors occasionally result from the misinterpretation of ho-
mopolymer runs, i.e. stretches of the same base (e.g., TTTTT or AAA).
This leads to single-base insertion or deletions (“overcalling”, “undercall-
ing”), rather than to substitutions which occur rarely (rate down to 1079)
(Droege and Hill, 2008)). This limitation is due to the lack of a reversible
terminator nucleotide preventing the incorporation of more than one nu-
cleotide within a single cycle as stated in MacLean et al. (2009)). Moreover,
the phenomena of leftover nucleotides lead to asynchronous sequencing of
single templates on a bead interfering the polymerase activity. These leftover
nucleotides remain to be in the well, though they are unincorporated lead-
ing to ’carry forward’ or ’incomplete extensions’ that may cause sequencing
errors (Margulies et al., |2005)).

In 2007, the preparation of a paired-end library for 454 sequencing was
introduced (Korbel et al., 2007). With the mate-pair information, short-
reads limitations could be partially omitted, e.g., it enables to assign unique
positions to previously non-unique reads. Also, mate-pairs help to span
repetitive regions in de novo assembly projects or they may assist in the
scaffolding of contigs (for a detailed description refer to Section p.
).

To sum it up, the 454 system was the first NGS technology on the market
setting the standards for upcoming technologies. Its key advantage is the
generation of long (optionally paired-end) read sequences enabling the fast
sequencing of whole genomes without the need for a reference genome. Other
applications are metagenomics, genome resequencing or whole transcript
sequencing studies. (A list of corresponding publications can be found in
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Figure 2.6: lllumina Genome Analyzer. Picture taken from http://www.agrf.
org.au

Droege and Hill (2008)). However, the relatively low sequencing throughput
per run (compared to other NGS technologies) results in the highest cost
per base of any NGS systems (Table .

Genome Analyzer (Illumina)

In 2006, one year after the introduction of the 454 technology, the Solexa
1G sequencer appeared on the market . The technology is
now marketed by the company Illumina (Hayward, CA, USA). For the first
time, a sequencing technology was capable of generating a1 billion bases
(1 Gbp) per sequencer run which significantly decreased the cost per base.
Obviously, this unprecedented raise of data output heated the race of the se-
quencing challenge. The current sequencer model is the Genome Analyzeryy,
(http://www.illumina.com) which is able to generate even more sequence
data per run (see Table and Figure . Based on previous works
catti et al., 2008), the technology features certain characteristics which differ
from the 454 approach: Instead of applying the bead approach of the emul-
sion PCR to amplify the DNA templates, the Illumina technology uses the
so-called bridge PCR (Adessi et al., 2000; Fedurco et al., [2006). Further-
more, read lengths are considerably shorter than 454 reads (between 36 and
125 bp). By incorporating chain-terminating nucleotides, complications re-
garding the homopolymer detection are avoided.

The first preparation step comprises the random shearing of the source
DNA into smaller fragments. Then, adaptors are ligated in vitro onto each
denaturalized template DNA of the shotgun library. One end of the ligated
products is covalently tethered to the planar surface of a solid glass slide
(flow cell). Primers on the slide complementary to the other end of the tem-
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Figure 2.7: DNA Amplification via bridge PCR. The DNA shotgun library is cova-
lently attached to a planar surface where it forms bridge-like structures. After the PCR
step, several million clonal clusters of DNA templates exist on the chip. Picture taken
from (]Shendure and Ji|, |2008|).

plate force the template DNA to bend down to form bridge-like structures.
Finally, the in situ amplification (bridge PCR) generates clonal clusters each
consisting of about &~ 1000 amplicons. These amplicons remain immobilized
and clustered to a single physical location on the slide (see Figure . This
amplification step is essential to provide a strong fluorescent signal resulting
in several millions of isolated spots of DNA all over the microfluidics chip
(100 million samples per cm?).

For the subsequent sequencing, the template DNA is linearized and all
necessary primers, nucleotides and a polymerase are directly added to the
flow cell. The four nucleotides are fluorescently labeled depending on the
type of base. Additionally, they are “reversible chain terminators” which
ensures that the template strand is extended by only one base per cycle.
After each incorporation of a fluorescent base, the flow cell is interrogated
with a laser at several locations. This results in several image acquisitions
at the end of a single synthesis cycle. After the chemical cleavage of the
terminator and the fluorescent label, the process is repeated for the next
nucleotide. Thus, the amount of consecutive cycles determines the read
length.

On the one hand, the usage of chain terminators avoids the misinterpre-
tation of homopolymer lengths, as known from the 454 technology. On the
other hand, complications arise due to the incomplete removal of the fluo-
rescent label or the terminator. This results in substitution errors, rather
than in insertions or deletions. The error rates of the Illumina technology
are comparable to the 454 system. Novel system enhancements provide pro-
tocols for the generation of mate-pairs (2 x 75 bp) with insert sizes between
0.2 and 5 Kbp (http://www.illumina.com).

The decreased sequencing costs and high volumes of data output proved
to be ideal for resequencing projects, targeted sequencing, SNP detection
and gene expression studies. Mentioning the new mate-pair capabilities,
the company even suggests to use the system for analyses such as sequence
assembly, de novo sequencing, and large-scale structural variation detection,
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Figure 2.8: SOLID platform (Applied Biosystems). Picture taken from (Blow

2007).

which, in fact, are application fields for rather long reads technologies, like
454.

One disadvantage that, in a sense, applies to most NGS technologies
is the data-intensive output. Different to 454, the Illumina sequencer gen-
erates more than one image per cycle because more than one location on
the chip has to be scanned per base incorporation. For one sequencing run
generating 36 bp reads and one flow cell, ~800 GB of (temporary) image
data is produced. This demands for efficient transfer and storage solutions
on the part of the selling company but also on the part of the consumer who
faces the problem of effective and cost-saving long-term storage of the data.

SOLiD (Applied Biosystems)

The SOLiD (Supported Oligonucleotide Ligation and Detection) platform
is based on methods described in [Shendure et al| (2005). The company
Agencourt Personal Genomics which was later taken over by Applied Biosys-
tems (Foster City, CA, USA) developed a sequencing technology that uses a
“hybridization-ligation-chemistry”. The first machines commercially avail-
able were introduced in 2007 (Figure . Although SOLiD relies on com-
parable techniques for the library and template preparation (emulsion PCR)
like 454, the sequencing process requires the enzyme DNA ligase instead of
polymerase. The volume of the sequencing data output and the length of
the reads are similar compared to the Illumina system.

At the beginning, the template DNA is amplified by using emulsion PCR.
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Figure 2.9: SOLiID sequencing process. Oligonucleotides which are fluores-
cently labeled are used for the synthesis of the complementary strand. The two-
base-encoding and the repeated cycles covering each base twice improves the qual-
ity of the base-calling. Picture taken from the official SOLID brochure found at
http://www.appliedbiosystems. com.

The beads of the SOLID system are smaller than those of 454, so a higher
density on the array is accomplished. Covalently anchored on the glass slide,
primers bind to the adaptor sequences of the templates. Then, a set of four
fluorescently labeled di-probes are added to the mix. These di-probes are
short oligonucleotides of length 8 bp (octamers) with random sequence, ex-
cept known dinucleotides at the 3’ end (Figure . The fluorescent dye
at the 5" end of the octamer corresponds to the type of dinucleotide. In
case an octamer is complementary to the template, it will be ligated, and
the two specific nucleotides can be called. Therefore, an image is acquired
after the ligation for the same position for all beads on the array. Then,
the fluorescent dye is removed so that other octamers can be ligated. After
several ligations (e.g., 7 ligations for a 35 bp read), the synthesized DNA
is removed and the primer is denaturalized. Then, a new round of ligation
cycles starts by adding a new universal primer positioned one or more bases
back on the template DNA (compared to first cycle). This process is re-
peated from different starting points, therefore, covering each base position
twice. This technique is called two-base-encoding and acts like an error-
correction scheme to ensure accurate base-calls (Shendure and Ji, 2008]).
Currently, an accuracy of 99.94% is reported (99.999% for 15x coverage).

On the one hand, the ligase-based approach helps to avoid polymerase-
induced errors. On the other hand, the length of the reads remains rather
short (up to 50 bp). However, a protocol for the generation of mate-pairs is
also available (2x50 bp).

Because of the short read length, the range of applications for SOLiD
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is similar to Illumina’s technology, such as (targeted) resequencing, small
RNA and transcriptome analysis and SNP detection. The de novo genome
sequencing is only reasonable in conjunction with a long-read technology.

2.2.3 3rd Generation Sequencing Technologies

The 3" generation or next-next-generation sequencing (NNGS) technologies
share a characteristic feature which distinguish them from the 2"¢ genera-
tion (NGS) technologies: the “direct” and fast sequencing of single DNA
molecules. This makes the time consuming sample preparation and, in par-
ticular, the amplification step dispensable. Consequently, the amplification
bias and therefore, synchronization problems during the sequencing do not
play a role anymore. As a consequence, high-quality sequence data can be
generated in relatively short time at lower costs.

At present, three different technologies are of importance, whereas two
of them are still experimental, i.e. the commercial launch is scheduled within
the next years. For a comprehensive list of companies offering sequencing
products, please refer to an article of Blow| (2008a)).

Heliscope (Helicos Biosystems)

Heliscope is the first NNGS platform brought to the market in 2008. It
is marketed by the company Helicos Biosystems (Cambridge, MA, USA).
Its “true single-molecule sequencing” technology (tSMS) was first described
in (Braslavsky et al., [2003)). Although the commercial launch has started
already, the company has been “dogged by sequencing errors” (Check Hay-
den) |2009). The first sold machines have been returned back by unhappy
customers.

However, the idea of the tSMS technology is straight-forward: The ran-
domly fragmented DNA (which does not have to be clonally amplified) is
immobilized onto a glass slide by attaching poly(A)-tails at the templates’
ends. The poly(A)-tails are captured by poly(T) adaptors on the slide. One
fluorescently-labeled base at a time is incorporated to create complemen-
tary strands. Reversible terminators avoid the incorporation of more than
one nucleotide. After the image acquisition using a high-resolution optical
microscope, the fluophore is removed, and the process is repeated.

The typical read length is rather short (about 24-32 bp). Main error
types are deletions (2%) and insertions (1.2%). Substitutions occur only
rarely (0.38%) (Pushkarev et al.l 2009). The key feature of this technology
is the cost-efficiency as recently stated in [Pushkarev et al.| (2009). In this
article, the first single-molecule sequencing of a human genome using the
Helicscope technology is described. The authors claim that their sequencing
has been accomplised at lower cost ($48,000) than previous human sequenc-
ing projects. However, the acquisition costs of the sequencer ($750,000-
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Figure 2.10: Single Molecule Real Time Technology (Pacific Biosciences). The
sequencing reaction takes place in a zepto liter well enabling the real time monitoring

of base incorporations. Picture taken from (Eid et al., [2009).

1,000,000) and its reagents are still relatively high (Check Haydenl 2009).

Pacific Biosciences

The company Pacific Bioscience (Menlo Park, CA, USA) promotes its “Sin-
gle Molecule Real Time” (SMRT) technology (Eid et al. [2009) (http:
//www.pacificbiosciences.com). The sequencing occurs in zepto liter
(10721 wells which contain the immobilized single DNA molecules (Figure
. After adding a high concentration of fluorescently labeled nucleotides
and the polymerase, the sequencing begins. As the complementary strand
grows, the fluophores are cleaved and the light signal is captured by a highly
focused detection system. Due to the small well and the high nucleotide con-
centration, the sequencing rate is expected to be fast (10 bases/sec,
berg and Leamon, [2008)). In Check Hayden| (2009) it is stated that the
SMRT technology will be able to sequence a human genome in less than three
minutes in 2013. Further, the company claims to “generate reads that are
thousands of nucleotides long, at the expense of overall output”
2009). Currently, average read lengths of 568 bp (max: 2,805 bp)
are reported (Check Hayden, 2009) which would really take (meta)genomic
research to the next level. The first commercial release is scheduled for late
2010.

Oxford Nanopore Technologies

Nanopore sequencing is a fairly different approach to read the DNA molecule
(Clarke et al., [2009). Instead of capturing light signals with CCD cameras
to detect base incorporations, the company Oxford Nanopore Technologies
(http://www.nanoporetech.com) modified an a-hemolysin nanopore (inner
distance: 1 nm) for the detection of individual nucleotide monophosphates
(BASE technology). DNA is digested by an exonuclease attached to the
pore. Each nucleotide “falling” through the pore blocks the electrical current
that runs through this pore. Because each nucleotide has a characteristic
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current amplitude, one is able to read the sequence base-by-base. Similar to
the SMRT technology of Pacific Biosciences, the nanopore technology has
the potential to generate long reads (up to several thousand base pairs). As
stated in [Rusk (2009), read accuracy is quite high (99.8%), and the error
correction is expected to be straight-forward. Furthermore, the massive
parallelization of this technology (hundreds of thousands of pores on an
array) will be able to produce large-volume sequencing data in short time.
As of August 2009, no official release date has been announced for this
technology.

2.3 Genome Assembly

As already described in Section the developments of DNA sequencing
technologies have had an enormous impact on genomic research. At first
glance, this is quite surprising regarding the technical shortcomings of all
technologies: instead of the complete genome sequence, the typical output of
sequencer machines is a set of DNA fragments, orders of magnitude shorter
than the original genome sequence (read lengths between 25 and 1000 bp,
see Table . So, to be able to interpret the data, specific computer pro-
grams, called genome assemblers, are employed which piece the DNA frag-
ments (sequencing reads) back together to obtain the original sequence. A
completely assembled sequence is essential for an in-depth investigation of
an organism’s genome and its genetic features. Several different assembly
approaches have been reported in the last years depending on the chosen se-
quencing technology, and therefore, depending on read length, typical error
characteristics and the amount of sequence output. (For a comprehensive
overview of current genome assemblers, please refer to [Scheibye-Alsing et al.
(2009)). Currently, the “ever-changing technology landscape” (Pop, 2009)
leads to the need for improved algorithmic solutions to keep pace with the
tremendous advancements in sequencing technology.

The “shotgun sequencing” technique was introduced by Sanger in 1982
(Sanger et al., 1982)). Its main idea is the random fragmentation of the orig-
inal genome into smaller DNA fragments which are multiply cloned and
then partially sequenced to generate the read sequences. A subsequent
(computer-based) assembling process combines all reads to reconstruct the
original genome sequence. In 1995, Fleischmann et al. applied this strategy
the first time in a large-scale experiment when sequencing the genome of the
bacterium Haemophilus influenzae (Fleischmann et al.| |1995)). Over the last
couple of years, a lot of genomes could be assembled by using the shotgun
method including the 120 MB genome of the fruit fly (Myers et al., 2000)
and parts of the human genome (Venter et al., 2001]).

The current status of sequencing and genome assembly projects (Table
2.4) indicates that Prokaryotes have been sequenced and assembled by far
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most frequently, followed by Eukaryotes, Fungi and Plants. This dispar-

’ Organism \ Complete \ Draft Assembly \ In progress \ Total ‘

Prokaryotes 939 1028 877 2844
Animals 4 75 60 139
Plants 2 11 47 60
Fungi 10 71 42 123
Protists 6 24 24 57

Total 961 1209 1050 3220

Table 2.4: Genome seqencing project statistics. Information derived from http:
//www.ncbi.nlm.nih.gov/genomes/static/gpstat.html|as of August 2009.

ity is mostly due to the simple genome structures of Prokaryotes (genomes
sizes <15 Mbp, high gene coding density, mainly haploid chromosomes and
plasmids) and their relevant role in many human diseases and for molecular
research. Another crucial observation can be made: The amount of projects
classified as “Draft Assembly” always exceeds the number of “Completed”
projects. “Completed” here means that the final and complete genome se-
quence has been successfully assembled and that no more sequencing has
to be done. In contrast “Draft Assemblies” are actually not yet finalized,
i.e. the reconstruction of the original genome sequence could not (yet) be
finished completely: the genome sequence is still fragmented. This may be
due to two reasons: On the one hand, some projects did not aim at a com-
plete genome assembly due to financial limitations or just because the whole
reconstructed sequence was of no interest for the specific research. On the
other hand, and this is the more likely explanation, most of these projects
had profound difficulties to come up with the finalized genome sequence.

What are the obstacles and difficulties that complicate a successful as-
sembly? First of all, genome assembly is like a huge “jigsaw puzzle”: mil-
lions of DNA reads have to be assembled into a complete picture of a genome
(Pop et al.l 2002). But, as already described in Section every sequencing
technology produces data with a underlying error rate which is specific for
each technology. Consequently, the input data (read sequences) for the as-
sembler software contains errors. Secondly, the characteristics of the DNA
itself pose some serious challenges to the assembly process: for example,
repetitive regions, called repeats, complicate the positioning of reads. (For
example, more than 50% of the human genome are repeat sequences not
coding for any proteins.) Further, due to some reasons, specific stretches of
DNA can be hardly sequenced, thus, some regions of the original genome
are underrepresented leading to a fragmented (draft) assembly.

In the next subsections, the typical genome assembly pipeline is de-
scribed starting with the generation of the reads and ending with the finish-
ing of the genome sequence. New concepts for genome assembly are intro-
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duced which account for the specific characteristics of the high-throughput
data derived from new sequencing technologies (resequencing and hybrid
assembly).

2.3.1 Whole Genome Shotgun Assembly

In this subsection, the de novo sequencing of a genome using the Sanger
technology (Section is described. Note, that the methodology is not
directly applicable to the new sequencing technologies.

To sequence a genome de novo, the DNA is first isolated from the or-
ganism, amplified and then physically sheared (e.g. by sonification or neb-
ulization) into random-sized fragments, called inserts (Figure a-c). To
clonally amplify the fragments, they are inserted into stable vectors like plas-
mids or BACs (bacterial artificial chromosomes) whose sequence is known
and which accept the insertion of foreign DNA. The vectors are then cloned
in host cells (in vivo) such as E. coli (Figure d). There exist several
sorts of vectors each capable of propagating clones of different sizes (e.g. 2,
5, 10 and 50 Kbp). The mixture of different cloning systems later facili-
tates the resolution of certain structural variants of the DNA like repeats.
According to [Scheibye-Alsing et al.| (2009), the million copies of the clones
should have the following properties:

e The clones should be highly redundant, i.e. the fragments optimally
cover the entire genome multiple times. For example, a clone coverage
of 10 means that, on average, 10 clones span each base position.

e The clone coverage should be random and even, i.e. no specific region
of the genome is covered by significantly more or less clones (no bias).

e The clones should be stable within the host cell. No recombination or
reorganization during the propagation process should occur.

Unfortunately, in practice, these requirements are rarely satisfied causing
a non random clone distribution and therefore incomplete sequencing. For
example, if an insert sequence is toxic for the host cell, this specific insert
will be missed in the subsequent sequencing and gaps will complicate the
assembly. In contrast, the new sequencing technologies replace the vector
cloning with in vitro approaches (Section , avoiding any cloning bias.
Single molecule sequencing technologies (as described in Section even
completely omit the cloning step.

Following, the sequencing of the clones is performed obtaining a set of
so-called reads. Depending on the chosen sequencing technology, the reads
differ in length (compare Table and error rate distribution. In many
projects, the clones are sequenced from both ends ( “double-barreled shotgun
sequencing”) obtaining mated reads (also called mate-pairs or paired-end
reads) (Figure e) The information of mate-pairs are extremely valuable
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Figure 2.11: Whole Genome Shotgun Assembly. Several steps are needed to obtain
a large collection of reads. a) The original DNA sequence is isolated and b) amplified.
c)+d) The sequences are randomly fragmented into inserts which are then incorporated
into different vectors depending on their lengths. e) After the cloning in host cells, the
fragments are sequenced. f) The set of obtained (paired-end) reads optimally covers the
entire genome multiple times. g) Several assembly steps are conducted to reconstruct
the whole genome sequence.
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Figure 2.12: Overlap and consensus phase. Reads are overlapped and assembled
into contigs.

for the subsequent assembly steps. The known distance (the size of the
clone) and orientation of the pairs of reads later helps to order the assembly
and to reveal structural variants like repeats.

At the end of the sequencing phase, a large set of reads has been gen-
erated that ideally are distributed over the entire genome and that statis-
tically cover each genome position several times (Figure f). A high
over-sampling of reads is important to ensure that each base position in
the genome is sampled by at least one read (Pop, [2009). After cleaning
the reads from unspecific DNA like vector or E.coli sequence fragments, the
main assembly pipeline begins with the search for read overlaps.

Overlap-Layout-Consensus

The first step of the genome assembly pipeline is the combination of all
short read sequences into so-called contigs (contiguous sequences). Hence,
to compute the read overlaps, the assembler employs the sequence similarity
to compute all pairwise alignments between the reads. Many assemblers use
heuristic variants of the Smith-Waterman algorithm (Smith and Waterman,
1981)). This phase is often called the “computational bottleneck” which im-
plicates that it is computationally intensive and thus, very time consuming.
In general, each pair of reads is checked for overlaps which means that the
suffix of a read matches the prefix of another read. The quality of an overlap
is determined by its length and the number of shared base pairs (level of
identity). The required overlap quality depends on the average read length
produced by the sequencer.

The contig sequence is derived from the consensus sequence of all reads
covering specific base positions (Figure . Base quality values provided
by the sequencer ensure to determine the most reliable nucleotide at each
contig position. The more high-quality reads cover a position, the higher the
confidence is that the consensus nucleotide is the correct one. The amount
of reads generated by new sequencing technologies is often an order of mag-
nitude higher than the amount of reads generated with Sanger technology.
Thus, parallelized or grid-based software solutions help to decrease the com-
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Figure 2.13: Mate-pair. Two mated reads m; and my are sequenced from a single
clone. Their distance is given by the mean clone length 1 and a standard deviation o.

puting time. Also, so-called k-mer algorithms based on indexing strategies
are employed (Pop, 2009). As alternative to the greedy overlap method, the
Eulerian fragment assembly was introduced in Pevzner et al.| (2001). By
avoiding the costly computation of pairwise alignments between reads, it is
better suited for next-generation technologies, such as Illumina or SOLiD,
that generate Gbp of short reads per run (see Section . According
to MacLean et al| (2009), the Eulerian assembly approach (also called de
Bruijn graph assembly) is able to “put together bigger contigs and can han-
dle sequencing errors and complex genomes better than their counterparts”.

In practice, the overlap phase suffers from the existence of repeats in
the DNA. If reads are sampled from different regions harboring the same
repeat sequence, they will be erroneously assembled together because they
share the same repeat sequence. Hence, they will form repeat clusters that
are composed of more overlapping reads than would be expected by chance.
Such misassemblies lead to a fragmentation of the final assembly. One pos-
sibility to resolve repeat-induced errors is to identify and mask repetitive
regions a priori using, for example, the software RepeatMasker (Smit et al.|
1996-2004) or a close reference genome whose repeat regions are already
known. Other approaches try to reveal repeats by analyzing the overlapped
reads within repeat clusters or by using the mate-pair information: If one
read of a mate-pair is located within a repeat and the other read is located
outside of this repeat, it becomes feasible to distinguish between different
repeat regions. Reads within identified repeat regions may then be initially
excluded from the assembly.

Scaffolding

The result of the overlap-layout-consensus phase is a set of larger fragments,
called contigs which represent local islands of the original genome. The goal
of the scaffolding phase is to detect the ordering and orientation of the
contigs, thereby, forming larger structures called scaffolds or super-contigs.
By using the mate-pair information (orientation and distance of paired reads
sequenced on a single clone, Figure , it is possible to infer a partial
contig layout. Assuming that one end of a mate-pair is located in one
contig c; and the other end in another contig co, the relative orientation
of ¢; and co can be easily determined. Obviously, the more mate-pairs
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Figure 2.14: Mate-pairs spanning a gap. The relative orientation and ordering of
contigs c¢; and cs can be inferred by the presence of mate-pairs that span the gap
between them. If the mate-pair distances confirm each other, the length of the gap
separating the two contigs can be predicted as well.

span a gap of two contigs, the more likely these contigs will be neighbored
(Figure . It is important that the relative orientation of the mates and
their distance corresponds to the known clone length. If the distances of all
present mate-pairs confirm each other, the gap distance between two contigs
can be predicted as well. For this approach, the use of clone libraries with
different lengths is advantageous. Of course, sequencing errors or a lack of
mate-pairs may complicate the scaffolding.

Three other (complementary) approaches are used in practice: first, an
optical mapping method uses known restriction site cuts along a genome
to infer a contig layout (Samad et al., [1995). Alternatively, contigs can
be reordered by laborious, manual approach: Therefore, primers are synthe-
sized which are complementary to short regions at the ends of single contigs.
Then, a PCR is conducted hoping to reach another contig end to close the
gap. Unfortunately, this strategy is very time-intensive. Another possibility
to order contigs is the homology method: by using the sequence similarity
between two genomes of closely related organisms, the unfinished assembly
can be arranged according to a (already complete) reference genome. Of
course, one has to be aware of any genome rearrangements that affect the
homology data. An algorithmic approach and a software solution for this
problem is presented in Chapter Generally, it is recommended to use
complementary information for the scaffolding process.

In practice, the final contig layout is represented by multiple scaffolds
separated by gaps of unknown size.

Gap-Closure and Finishing

To obtain a one-piece genome sequence (in case of an unichromosomal or-
ganism), all remaining gaps have to be filled with sequence data. Similar
to the scaffolding step, PCR runs are conducted starting at the ends of
neighbored contigs to produce new sequence data that potentially cover the
missing sequence information between them. If this lab approach and the
subsequent assembly runs are successful, a single contig may be obtained
(e.g. in case of prokaryotic genome) which eventually represents the final
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genome sequence: the genome has been finally “closed”. To achieve this
goal, the procedure of combined PCR and reassembly commonly has to be
repeated several times.

The term “finishing” describes the efforts to reexamine the assembly
regarding misassemblies and low coverage regions. Again, the mate-pair in-
formation is highly valuable for the validation of the assembly quality: if,
for instance, the distance between paired-reads significantly deviates from
the stored clone size, this may indicate the presence of errors in the assem-
bly. A common software tool for an in-depth assembly analysis is the tool
Consed (Gordon et al., [1998)). It provides a graphical user interface for the
manual inspection of mate-pairs or ambiguous regions in the assembly. To
complement the mate-pair information, other validation methods like whole
genome comparisons to closely-related reference genomes may be helpful.

However, this phase of the assembly is not always crowned with success:
due to unresolved misassemblies or other technical limitations, many genome
assemblies can not be finalized. Such “draft assemblies” remain fragmented
(compare Table . Many draft assemblies are/were based on Sanger se-
quencing and therefore, they might suffer from the mentioned cloning bias.
Still, people are optimistic to close such genomes in the near future by em-
ploying the NGS technologies that avoid a lot of shortcomings of the Sanger
sequencing (see Section .

2.3.2 Resequencing

Read sequences produced by NGS technologies, such as [llumina GA or ABI
SOLiD are rather short (25 - 125 bp). This size limitation complicates the
sequencing and de novo assembly of unknown genomes. Alternatively, NGS
projects make use of (parts of ) reference genome sequences of closely-related
organisms or strains. The idea is to find the corresponding placement of
each read within the reference sequence. If a unique stretch of sequence is
detected which is very similar or even equal to the read sequence, the read
is “mapped” onto or aligned to the reference genome. The allowed number
of unmatched base positions per read is usually very small (e.g. 2 bp) and
depends on the average read length generated by the sequencer.

Large-scale resequencing projects benefit from the massive data output of
NGS technologies because a high sequence coverage ensures a high mapping
accuracy. This mapping accuracy is needed for effective genotyping analyses,
such as the search for single nucleotide polymorphisms (SNPs) or other
structural variants. In particular for disease and other mutation analyses,
resequencing brings great potential for genomic medicine. An example of
a human resequencing project is described in [Wheeler et al.| (2008a) (the
“Watson” genome). In this study, about 106 million reads have been mapped
to the human reference genome, revealing 3.32 million SNPs.

The mapping of reads onto a reference genome poses a lot of computa-
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tional challenges: A large volume of read data has to be efficiently processed
and aligned to a large reference sequence. Typical alignment programs like
BLAST (Altschul et al., 1990) (“seed-and-extend approach”) are way too
slow and, therefore, they are inappropriate for this task. Several software so-
lutions have been recently developed that use novel, computational concepts
(for example Maq (Li et al., 2008) and Bowtie (Langmead et al., 2009) (for
a comprehensive listing refer to [Trapnell and Salzberg| (2009))). These tools
allow the fast mapping of millions of short reads to a reference sequence on
a single desktop computer.

Obviously, repetitive regions and sequencing errors pose serious chal-
lenges to the alignment process. Here again, the consideration of sequence
quality values, as well as the mate-pair information (Figure helps to
resolve ambiguities regarding the read placement.

2.3.3 Hybrid Assembly

Each sequencing technology has individual characteristics concerning the
read length, the incorporation of errors and the generation of mate-pairs
(among others). For example, the “long” 454 reads suffer mostly from in-
sertion and deletions, whereas the short Illumina reads rather contain sub-
stitution errors. Hence, the presence of several technologies on the market
provides the opportunity to combine their strengths in a hybrid assembly
approach. Such an complementing strategy may help to overcome the short-
comings of each individual technology. As stated in [Pop| (2009), the direct
integration of input data from different technologies is not always possible.
For example, the combination of differing read lengths will pose difficulties in
the overlap phase. Consequently, both data inputs have to be adapted to fit
each other. This has been done for instance in a study described in|Goldberg
et al.| (2006)): in this project a Sanger/454 hybrid assembly was carried out.
To adapt the different types of sequencing data, the 454 contigs were first
fragmented into Sanger-like reads. Subsequently, the Celera assembler used
both, the Sanger reads and the chopped 454 contigs, to assemble a bacterial
genome. A similar approach has been described in Reinhardt et al.| (2009)):
in this study 454 and Illumina reads were used to assemble the genome
of Pseudomonas syringae : Illumina reads were first solely assembled into
contigs to obtain larger fragment lengths similar to 454 reads. The final
assembly produced several large scaffolds “at a fraction of the traditional
cost and without the use of a reference sequence” (Reinhardt et al., [2009).

The hybrid assembly is a promising strategy for a de novo genome as-
sembly. However, basic guidelines have to followed as discussed, for ex-
ample, in |Jeong and Kim| (2008)). In this article, the authors recommend
different assembler and analysis tools depending on the mixture of the in-
put data (e.g., if more 454 than Sanger data is available or vice versa).
Another complication is the mixture of base qualities that may differ be-
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tween the platforms. For example, the 454 assembler (“Newbler”) reports
quality values for contigs which cannot be easily correlated with quality
values of Sanger reads as described in a hybrid-assembly pipeline for the
Arachne assembler (Batzoglou et al., 2002) at the Broad Institute (http:
//www.broadinstitute.org/crd/wiki/index.php/Hybrid_assembly).

As sequencing technologies and assembler tools are further developed,
the support for hybrid assemblies is expected to be improved in the near
future.

2.4 Metagenomics

2.4.1 Motivation and Goals

Biologists estimate that microbes make up more than one-third of earth’s
biomass (Whitman et al., [1998]). Although more than ten million different
species of bacteria colonize our planet (Eisen, 2007), theirs roles in the bio-
sphere is still far from being completely understood. Further, within the last
decades only a minor part (<1%) could be already described and classified
(Eisen) 2007)). In contrast, the knowledge about higher animals and plants
is more advanced: approximately 90-99% of all species are already known
and classified (Snyder et al., 2009).

The advent of the automated DNA sequencing technology help to ob-
tain a glimpse of the rich set of the diversity and functional capabilities of
microbial species. For example, in traditional sequencing projects, single or-
ganisms are isolated and cultivated under laboratory conditions. Although,
such genome projects provide an in-depth analysis of the genome of a single
organism, they fail to completely clarify the role of that organism within its
habitat or ecological niche and the interaction to other species. Eventually,
people noticed that the vast diversity of the microbial world can not be
comprehensively studied by such segregated approaches. The acceptance of
the fact that most naturally occurring microbial species can not be cultured
under laboratory conditions led to the emergence of a new exciting research
discipline called metagenomics.

The term “metagenomics” (also: environmental or community genomics)
was first coined in an article in 1998 (Handelsman et al.l [1998)). It is de-
scribed as the sequencing and analysis of DNA from environmental samples
while bypassing the need for culturing and cloning individual organisms.
The direct study of microbial species in their natural environments has been
made possible by several novel cultivation-independent, molecular methods
and the recent developments in high-throughput DNA sequencing (see Sec-
tion . The analysis of metagenomic data promises to reveal new life
forms and unique biosynthetic capabilities. The gained knowledge is ex-
pected to have an impact for human health, agriculture, food production
and even alternative energy.
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However, to “close the gaps between genotype, phenotype and environ-
ment” (Harrington et al., 2007), the study of metagenomes demands for
capable and intuitive bioinformatic solutions and tools. Considering the
primary output of metagenomic projects, large volumes of sequencing data
which are highly fragmented and noisy, have to be efficiently processed and
structured. The sheer mass of anonymous DNA fragments of a heteroge-
nous, environmental sample presents a major challenge for computational
biologists. In particular, the main tasks that are addressed in typical metage-
nomic projects are:

e Taxonomical analysis
To obtain an overview about the species diversity within the sample,
the individual community inhabitants are detected and characterized.

e Quantitive analysis
The abundances of the contained species are estimated.

e Functional analysis
The functional analysis comprises methods to detect (new classes of)
protein coding genes or to reconstruct metabolic processes and net-
works.

Since the DNA fragments obtained from the sequencer are short, anonymous
reads (i.e. the species origin of each read is unknown), their characterization
and assignment to known (or unknown species) is one of the “hottest topics”
in metagenomic research. Likewise, the prediction and annotation of open
reading frames (ORFs) on metagenomic reads generally suffers from the
limited sequence lengths. The unprecedented complexity of environmental
data means that traditional software tools, like genome assemblers or gene
finding programs, are not applicable to the full extent. As a consequence,
several approaches to analyze a metagenome have been made available that
try to tackle these problems (For a comprehensive overview, please refer to
Kunin et al| (2008)). Frequently, projects use a mixture of different tools
and web-services that allow to interpret the complex data sets. Often, this
leads to an undesirable situation that the results of different projects can be
hardly compared.

The next sections describe the mentioned aspects of a metagenome anal-
ysis in more detail.

2.4.2 Representative Metagenomic Projects

Since 1998, a couple of metagenomic analyses have been reported providing
striking insights into diverse ecological systems, such as seawater, soil, air,
biofilms and the human body. In this subsection, a brief (and incomplete)
overview of the broad range of environmental studies is presented.
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One of the pioneering works was the analysis of ocean surface water
in 2004 conducted by a team led by J. Craig Venter (Venter et al., 2004).
During this first large-scale project, researchers sampled water probes in
the Sargasso Sea near Bermuda. Using whole-genome shotgun sequencing
(Sanger technology), they produced a total of approximately one billion base
pairs. Moreover, more than one million unknown protein sequences have
been predicted. But that boat trip was only a “primer” of the subsequent
Global Ocean Sampling (GOS) project as reported in 2007 (Yooseph et al.|
2007; Rusch et al., 2007). During 2004 and 2007, Venter’s team collected
bacteria at 41 sites in the Atlantic and Pacific, particularly near the Gala-
pagos islands. The data output was stunning (7.7 million reads consisting
of approximately 6.3 billion bp) and required the application of “new com-
parative genomic and assembly methods” like “fragment recruitment” and
“extreme assembly” (Rusch et al.,2007)). This “was easily the largest DNA
sequencing of environmental samples ever accomplished” (Bohannon) 2007)
and certainly, it was also the most expensive one: the funding amounted to
$10 million. The large-scale Sanger sequencing and gene prediction resulted
in 6.12 million hypothetical proteins, almost doubling the number of known
proteins present in databases.

Other projects focussed on viruses rather than bacteria in marine meta-
genomes (e.g. Breitbart et al.| (2002), Culley et al.| (2006) and Williamson
et al. (2008)). Besides the study of species communities in seawater, many
projects focussed on soil samples. It turned out that the typical community
structure (number and abundances of different species) of soil metagenomes
is far more complex compared to other habitats (Handelsman et al.| {1998;
Tringe et al., 2005; Urich et al. 2008)). In addition, the analysis of soil
metagenomes is of interest for the pharmaceutical industry, “as soil organ-
isms have been the main sources of new natural products, including antibi-
otics” (Daniel, 2005)).

It is a well known fact that the number of cells in the human body (10'3)
is far less than the number of microbial cells actually inhabiting our body
(10'4) (Bergl [1996)). Consequently, a global initiative was started to charac-
terize the interaction between microbes and the several parts of the human
body (Turnbaugh et al. 2007). The Human Microbiome Project (HMP)
employs metagenomic strategies to gain knowledge about the complexity
of human microbial communities that help to understand how microbes
“contribute to normal physiology and predisposition to disease” (http:
//nihroadmap.nih.gov/hmp). Several results have been already reported
(Turnbaugh et al., 2006; Gill et al., [2006)).

Further exemplary projects focussed on an airborne metagenome (Tringe
et al.l 2008), microbes in honey bee colony collapse disorder (Cox-Foster
et al., 2007), the hindgut microbiata of termites (Warnecke et al., [2007)), and
on an acid mine drainage biofilm (Tyson et al.; 2004). A large-scale study
using the 454 technology and comparing the metabolic profile of several
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different environments like marine, freshwater, coral-associated, terrestrial-
animal-associated and many others is reported in Dinsdale et al.| (2008).

Interestingly, there is connection between metagenomic and the recently
emerging paleogenomics research which is described as the study of ancient
DNA from extinct organisms (Hofreiter, |2008). Several projects have been
reported that employ methods similar to typical metagenomic approach to
obtain and characterized DNA from bone (Poinar et al., 2006} Green et al.,
2006; [Ramirez et al., [2009) or hair probes (Gilbert et al., |2007; Miller et al.,
2009b; |Zhao et al., [2009).

An up-to-date list of completed, draft and planned projects can be found
at the GOLD database (http://www.genomesonline.org/gold.cgi?want=
Metagenomes)).

2.4.3 Workflow and Methods

In the following subsections, the technical and methodical strategies for the
processing and analysis of environmental sequencing data will be described
and discussed.

Sequencing Technologies

The environmental shotgun sequencing process produces a plethora of DNA
reads that are the starting point for subsequent analyses like assembly or
gene calling.

Many projects used the Sanger technology to generate the read sequences
(e.g. Tyson et al.| (2004), [Rusch et al.| (2007), and [Warnecke et al. (2007)).
The known benefits are the high sequence quality and the length of the
read sequences which is more informative and therefore, attractive for a
robust annotation or assembly. However, the cloning bias (Sorek et al.,
2007) might prevent the sequencing of certain genes, promoters and viral
DNA (Kunin et al., 2008). Due to this reason, high-throughput technologies
like 454 (Roche) that avoid the in vivo cloning step slowly replace the Sanger
sequencing (Blow, 2008b) in metagenomic studies. Since the launching of
the Titanium series, the long 454 reads (up to 500 bp, see Table are
even suitable for (partial) ORF finding or efficient similarity searches.

Other platforms, such as Illumina’s Genome Analyzer and ABI’s SOLiD
(see Section with read lengths only up to 100 bp, have not yet been
produced for metagenomic studies. But this may change soon: In an un-
published article (Mitra et al., [2010), the authors state that the usage of
mate-pairs (paired-end reads) produced by the Illumina sequencer might be
suitable for the taxonomical classification of environmental reads. Anyhow,
the promise of next-next generation sequencing technologies (longer reads
at lower costs, see Section could be a great leap forward for metage-
nomics.
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Assembly

As introduced in Section based on sequence similarity, the assembly
process combines the read sequences into longer fragments called contigs.
Commonly, the sequenced reads obtained from an environmental sample
consist of heterogenous DNA, i.e. the reads are derived from various micro-
bial species that are, in general, only partially sampled. Because of the data
fragmentation and the incomplete genome coverage, the assembly of envi-
ronmental reads is disputable, since the likelihood of a coassembly of similar
reads derived from different species is very high. The resulting chimeric
contigs hardly contribute to an accurate community composition analysis.
On the one hand, coassembled reads may actually originate from related
genomes. On the other hand, it could be observed that even reads from
phylogenetic distant taxa are assembled together because they may share
an almost identical (conserved) stretch of sequence. Due to this reason, it is
not recommended to assemble high complexity microbial communities with
low coverages (Kunin et al 2008; Mavromatis et al., 2007), because they
consist of many different highly abundant species complicating the assem-
bly of unique species populations. To circumvent the problem of chimeric
contigs, an initial binning of the data, prior to the assembly, proved to be
useful (Eisen, [2007): The separation of the reads into different phylogenetic
groups, based on species-specific word frequencies (as reported in Warnecke
et al.| (2007)) or similarity searches, helps to unravel the subsequent as-
sembly process (Binning methods are explained in more details in Section
2.4.3]). Besides all the drawbacks and the mentioned barriers, the assembly
of environmental sequences is actually reasonable for the discovery of genes
(independent of the species origin).

The evaluation of the sequence quality differs from single genome assem-
bly: Normally, the sequence coverage per base position indicates whether
the inferred consensus nucleotide is likely to be correct. In contrast, the
coverage in metagenomic assemblies may also reflect the distribution of the
nonuniform sequence coverages of multiple organisms. As a consequence,
most currently available assemblers, designed for individual genomes, fail
to assemble metagenomic data correctly. For example, atypical high read
coverages that normally represent repetitive regions in single genome as-
semblies, may consequently lead to a fragmentation of the contig sequence
(Kunin et al., [2008)). Due to this reason, researchers are not able to sim-
ply reuse their traditional assembly software pipelines. Instead, alternative
paths have to be followed: for example, a comparative assembly can be per-
formed using a known reference sequence. Another option is to merge the
results of multiple assembler tools (hybrid assembly). So far, no specific
assembler software for metagenomics has been published.
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Community Composition Analysis

The exploration of the community composition (taxonomical analysis) aims
at an association of sequence data (reads, contigs) to phylogenetic groups or
even species and is therefore crucial for gaining knowledge about the species
diversity within a sample.

One of the first molecular methods to count and classify microbial species
used rRNA (ribosomal RNA) marker genes (Woesel 1987) and the rRNA-
PCR technology. The background is that all cell-based organisms share the
same TRNA genes (e.g. the 16S rRNA, a small subunit of the ribosome) with
slightly different base sequences. Based on these differences and reference
databases of known sequences, a species classification can be performed.
Frequently used databases are GreenGenes (http://greengenes.1bl.gov)
and the Ribosomal Database Project (http://rdp.cme.msu.edu). Accord-
ing to Kunin et al. (2008), several marker genes have been tested so far,
such as 16S and 23S (rRNA), RecA (DNA repair protein), EF-Tu, EF-G
(elongation factors) and HSP70 (heat shock protein). Conducting a rRNA-
PCR on a metagenomics sample will ideally amplify all rRNA genes in the
sample. After sequencing these genes, they can be placed onto a reference
phylogenetic rRNA tree indicating the “phylotype” they belong to (Eisen)
2007). However, several issues complicate the application of this procedure:
the rRNA-PCR approach suffers from amplification bias and from problems
due to varying 16S copy number variations between species (Raes et al.,
2007). Additionally, the diversity of viruses can not be detected by this
technique because no conserved marker genes are known for these life forms.
Obviously, incomplete reference databases biases the result of comparative
analyses since only a few microbial lineages are present in current databases.
In general, metagenomic data sets have a “low overall incidence of marker
genes (=~ 1%)” (Kunin et al) 2008). Thus, the classic 16S rRNA analysis
represents only one option among others to explore and to characterize the
community composition of a metagenomic sample.

Other taxonomical binning approaches are based on whole sequence com-
parisons of reads/contigs to genome and protein databases. Such methods
employ the homology to known reference sequences to infer the phylogenetic
origin of the anonymous, environmental DNA fragments. Typical similar-
ity searches are conducted using the BLAST algorithm (e.g. BLASTN or
BLASTX) (Wheeler et al., 2008b)). Although this type of analysis uses more
sequence information compared to single marker genes, it comes with some
disadvantages that one has to be aware of: All similarity searches suffer
from incomplete reference databases that may bias the result (see Section
2.4.4). Organisms that are not present in the database can not be found.
As mentioned in [Valdivia-Granda, (2008), only 2% of the Sargasso sea se-
quences could be overlapped at 90% identity with sequences from existing
databases. Further, commonly applied “Best-BLAST-Hit” analysis meth-
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ods do likely lead to a misinterpretation of the data set because the best
BLAST hit is often not the nearest phylogenetic neighbor due to, for in-
stance, horizontal gene transfer across species borders (Koski and Golding],
2001). To address the problem of the interpretation of BLAST outputs, more
sophisticated analysis methods had been reported in Huson et al.| (2007)) and
Monzoorul Haque et al. (2009) (See Section for an introduction of the
MEGAN analysis pipeline.).

Another software tool, CARMA (Krause et al., [2008a)), obtains a phylo-
genetic classification of reads by searching for protein families in the database
PFAM (Finn et al. 2008). Note that a homology-based, taxonomical anal-
ysis is only reasonable for reads, since (chimeric) contigs can hardly be
assigned to unique species because of the mentioned coassembly problem
(see Section [2.4.3)). In most cases, a reference database consisting of protein
sequences (e.g. NCBI-nr) is used for comparison because coding sequences
are more conserved than the plain nucleotide sequences. Hence, the length
of the reads should not decrease below a certain threshold (e.g. 100 bp),
because longer reads are more informative, i.e. long reads likely cover longer
stretches of coding sequences than short reads, consequently yielding more
true-positive hits (Richter et al., |2007)).

A third binning approach makes use of the sequence composition differ-
ences between phylogenetically distant organisms. For all metagenomic frag-
ments, the frequency of all oligonucleotide signatures (k-mers) is analyzed
and clustered (unsupervised approach) and/or compared to a reference set of
sequences (supervised approach). Unsupervised methods obviously have the
benefit to not suffer from the mentioned database bias. (The computation
of the GC content of DNA sequence is a simple sequence composition-based
method with word size 1.). Existing tools use word sizes between 2 and 8
base pairs whereas longer words fairly increase the accuracy of the results
but lead to higher computational costs. The best results can be obtained
with a word size of 3-6 bp (Kunin et al.l |2008).

Prior to the actual analysis, supervised methods train a model with re-
lated reference data to “learn” how to classify the metagenomic fragments.
Exemplary tools following this principle are Phylopythia (McHardy et al.
2007)) (support vector machine approach) and TACOA (Diaz et al., 2009).
A semi-supervised method has been implemented using a “seeded growing
self-organizing map”, S-GSOM (Chan et al., 2008). It is comparable to
Phylopythia but does not require any knowledge of completed genomes. In-
stead, it uses the flanking sequences of highly conserved 16S rRNA from
the metagenome as seeds to classify other sequences based on their compo-
sitional similarity. A second semi-supervised method is CompostBin (Chat-
terji et al., [2008) which uses hexamer word sizes and other phylogenetic
information to guide the clustering algorithm. Unsupervised methods do
not require any training set: the anonymous fragments are clustered accord-
ing to the word signatures in the sequence composition. Accordingly, this
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method allows to predict phylogenetically novel species groups sharing the
same sequence composition. A mentionable tool is TETRA, a web service
for the analysis and comparison of tetranucleotide usage patterns in DNA
(Teeling et al., [2004).

One major drawback of all sequence-composition-based methods is that
they require very long input sequences (>1 Kbp). However, such sequences
are only available if the environmental reads are assembled into contigs or
if an adequate set of long reads could be obtained from Sanger sequencing
accompanied with all the complications as discussed in Section [2.4.3] Hence,
the composition-based binning of short reads (<500 bp) produced by next-
generation-sequencing technologies is unfeasible.

Another development for a phylogenetic classification is called bar-coding.
It is still experimental but already caused some controversy (Valdivia-Granda,
2008). The idea is too focus on individual motifs with lengths about 50 bp
instead of using common marker genes. However, it is still unclear if this
approach proves to be successful.

In conclusion, the taxonomical binning process is crucial, not only for an
efficient assembly of fragments only belonging to single phylogenetic group,
but also for the deep understanding of the community composition. How-
ever, all approaches show specific limitations, so a strategy complementing
different methods is advisable.

Functional Analysis

To gain knowledge about the functional potential of a microbial community,
two subsequent analyses are performed that are, in general, similar to proce-
dures known from single genome studies: first, open reading frames (ORFs)
have to be identified on the fragments (gene prediction). Then, in a second
step, these genes are annotated, i.e. they are assigned to known biological
functions.

The limiting factor that complicates the functional metagenome analysis
is, again, the highly fragmented nature of the input data. Gene finding on
short reads is challenging because they likely cover only partial ORFs. Addi-
tionally, the assembly of environmental reads into longer fragments (contigs)
occasionally lead to chimeric assemblies or frame-shifts and therefore to in-
correctly predicted gene boundaries (Kunin et al., [2008)). However, there
exist two strategies to identify stretches of sequence that code for proteins:
The homology-based (“evidence-based”) method finds ORFs by perform-
ing a similarity search against reference databases (e.g., by using BLASTX
to search against the NCBI-nr database). This approach can be used for
unassembled reads and contigs. A general drawback is the already men-
tioned database bias that limits the search only to the known fraction of
sequences: novel genes without any database homolog can not be identified.

A second strategy for gene finding is the “ab-initio” method that aims
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at detecting certain sequence features (like start/stop codons or the Shine-
Dalgarno sequence pattern and others) to infer the location of an ORF. Tools
employing this strategy are either trained on typical gene features (e.g.,
fgenesB, http://www.softberry.com) or self-trained on the actual data
set (e.g., GLIMMER (Delcher et al. [1999))). A software called MetaGene
(Noguchi et al., 2006) assumes “correlations between GC content and the
di-codon frequencies” to predict genes. The successor of MetaGene, the pro-
gram MetaGeneAnnotator, additionally contains models of prophage genes
and ribosomal binding sites (Noguchi et al.; 2008). Another tool, called
Orphelia, provides specific pattern models depending on the read lengths
(Hoff et al., 2009). Using machine-learning techniques, the authors claim to
find genes on fragment lengths <300 bp. To enhance the accuracy of the
gene prediction, gene neighborhood approaches are also employed: A search
for gene patterns (described as “genes sharing a distinct genomic neighbor-
hood, initiated by a user provided key gene”) has been implemented in the
program MetaMine (Bohnebeck et al., [2008]).

Facing all the computational challenges one has to keep in mind that an
environmental sample contains genes derived from a set of various organ-
isms. Thus, in general, the detection of genes and their annotation is fairly
independent of a unique species. Hence, to study the functional potential of
a single phylogenetic group or even a single species, a taxonomical binning
of the reads prior to gene calling is advisable. This has been accomplished,
for example, in the analysis of the termite hindgut (Warnecke et al., 2007)).

To annotate the set of ORFs, a homology search is performed com-
paring the potential genes with reference databases containing known and
previously annotated sequences (e.g. PFAM (Finn et al., 2008|), TIGRFAM
(Selengut et al., 2007), COG (Tatusov et al.,|2003), SEED (Overbeek et al.,
2005), STRING (von Mering et al., 2005), Gene Ontology (Ashburner et al.|
2000), NCBI-nr (Wheeler et al., [2008b)). According to |[Kunin et al.| (2008),
future homology-based annotation approaches will incorporate more context
information (gene neighborhood, gene fusion) to enhance the quality of the
results. Moreover, the authors recommend to use both, reads and contigs,
to obtain a comprehensive picture of the biological functions contained a
metagenomic sample. The final step of the functional analysis (not further
discussed here) is the reconstruction of metabolic pathways and networks by
mapping the protein coding genes onto reference pathway collections (such
as KEGG (Kanehisa and Goto, |2000) and SEED (Overbeek et al., 2005))).
A recent work has been published describing a “parsimony approach” for
the inference of pathways for metagenomes (Ye and Doakl, 2009)).

2.4.4 Metagenomic Analysis: Open Issues

The fast-evolving research field of metagenomics has led to an enormous
increase of sequence data. Over the last couple of years, researchers tried to
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obtain first insights into earth’s microbial biodiversity by sampling probes
form various habitats like seawater, soil, air, biofilms, or human and ani-
mal intestinals. Comparing these diverse ecologic systems, researchers re-
vealed a lot of differences regarding the taxonomic compositions and func-
tional annotations (see Section [2.4.2). Still, the number of interesting and
promising sample sites on our planet is high as suspected by the num-
ber of ongoing or planned sequencing projects (GOLD database: http:
//www.genomesonline.org/gold.cgi?want=Metagenomes)).

However, after the first ”gold rush” of the metagenomics era, the re-
search field is currently in a crucial phase of reconsidering the design goals
of metagenomic projects. People start to realize that some methods used to
analyze and to compare metagenomic data need to be reviewed or improved.
As being symptomatic for a young research discipline, common infrastruc-
tures and new computational methods as well as universal data standards
have to be created or adapted.

This section briefly introduces some of the current findings about the
database bias and the comparability of metagenomic projects.

Database Bias

The term database bias describes the imbalance of biological databases cov-
ering only a fraction of all present forms of life and biological functions. For
example, one estimates that to date, less than 1% of all microbial species
can be cultivated in the lab at all and thus, only a negligible part is ac-
tually represented in biological databases (Hugenholtz, 2002). Obviously,
this imbalance, favoring only a few cultivatable species, biases homology-
based methods which depend on sequence comparisons. As of 2009, 82%
of the 3,000 reported bacterial genome projects only focus on Proteobac-
teria, Actinobacteria and Firmicutes (Kyrpides| [2009). Consequently, this
imbalance is also applicable to protein and annotation databases. To ad-
dress the problem of the incomplete representation of bacterial lineages, a
project has been initiated in 2007, called GEBA (Genomic Encyclopedia of
Bacteria and Archaea), that tries to systematically fill the gaps in the tax-
onomy by sequencing representative organisms of underrepresented clades.
The importance of this ambitious project is undoubted, but it will take a
while until a broad clade coverage is achieved.

Another issue about databases has to be kept in mind when interpret-
ing or comparing analysis results: the content of major databases is ever-
changing. Data is permanently added, removed or adapted which may lead
to different results when comparing metagenomic sequences to the database
at different times. This has been studied in a work of Pignatelli and co-
workers (Pignatelli et al., [2008). They tested how taxonomical assignments
and classification of ORFs change after conducting similarity searches on dif-
ferent database releases. Remarkably, significant changes could be observed
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after the addition of newly sequenced genome sequences which emphasizes
the urgent need for sequencing representative organisms within underrepre-
sented lineages.

Needless to say that metagenomic studies also demand for updated
databases which regularly incorporate the latest information and biological
findings. One database which is used intensively in (meta)genomic studies
but lacks recent updates since 2003 is COG (Tatusov et al.l 2003; Kunin
et al., 2008).

Comparability of Metagenomic Data Sets

As the number of completed metagenomic studies increases, a large amount
of comparative projects are initiated to discover significant differences re-
garding the taxonomical and functional content of an environmental sam-
ple. However, the application of various analysis strategies and the usage of
different classification systems often leads to the undesirable situation that
a comparison based on the published data is rarely feasible.: Differences
between the following list of experimental parameters may hamper direct
comparisons of multiple data sets:

e probe sampling (filter size)

e DNA extraction methods

e sequencing technology (read length)

e amount of generated sequence (“coverage”)

e applied read quality filter

e type of assembler software (parameters)

e community complexity of habitat

e type of gene prediction method (parameters/version)
e type of annotation method (parameters/version)
e type of reference database (release date)

e etc.

Considering this list, it becomes obvious that the results of metagenomic
studies are considerably influenced by a multiple of factors and parameters
which often are not well documented in publications or databases. For exam-
ple, the final product of an assembly is a flat file without any evidence about
the actual read coverage and quality (Kunin et al., 2008). By uploading only
the sequence file into biological databases, valuable information needed for
the interpretation of the data will not be available to the community.
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As a consequence, the genomics and metagenomics community made
an effort to propose principles on standardization and the specification of
“metadata descriptors” using a controlled vocabulary. The MIGS/MIMS
standard (Minimum Information about a Genome/Metagenomic Sequence)
(Field et al., 2008; Kottmann et al., 2008) has been introduced “to provide
a diverse set of descriptors for describing the exact origin and processing
of a biological sample” (e.g. pH value, temperature, depth/height and time
of DNA sampling, clone library information, geographical information, host
habitat conditions, etc.). Providing this valuable information, the commu-
nity is enabled to manage, structure and, most importantly, to systemati-
cally compare different data sets. In particular for environmental metadata,
the Genomic Standard Consortium (GSC) proposes a set of terms defining
specific habitat attributes and locations (“Habitat-Lite”) (Hirschman et al.,
2008)). To also encourage researchers to use these standards, in 2009, the
GSC has launched a genomic science journal “Standards in Genomic Sci-
ence (SIGS)” (http://standardsingenomics.org) for the publication of
genome sequencing projects.

So far, only few metadata descriptors are actually used in databases, such
as IMG/M (http://img.jgi.doe.gov/cgi-bin/m/main.cgi) or CAMERA
(http://camera.calit2.net). However, it is anticipated that the
MIGS/MIMS standard will soon be adopted and incorporated into further
sequence databases to facilitate the interpretation of (meta)genomic data.
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Chapter 3

OSLay: Syntenic Layout of
Unfinished Assemblies

3.1 Introduction

The sequencing technologies introduced in Chapter produce large sets
of sequence fragments, called reads. Depending on the size of the reads and
the achieved coverage, a de novo sequencing of a whole genome is feasible.
As explained in Chapter during the assembly phase, the set of reads is
assembled into longer sequences, called contigs. However, these contigs still
need to be set into the context of the original genome, i.e. their actual rela-
tive ordering is unknown. By using, for instance, the mate-pair information
obtained in the sequencing phase, contigs can be ordered and oriented into
scaffolds. Ideally, to get rid of gaps separating contigs, additional sequencing
runs are conducted producing more reads and, likewise, a higher sequence
coverage to fill these gaps.

As a matter of fact, genome finishing and gap closure occasionally are
the most challenging tasks in a genome assembly project. Reasons for the
inability to reduce the number of gaps may be, for example:

e low level of sequence coverage

e features of the genome sequence (e.g. GC content)

cloning bias (in case of Sanger sequencing) (Myers, 1999a)

size and abundance of repetitive sequences in the genome

short read lengths (as for next-generation sequencing technologies)

One approach to close gaps, is the synthesis of sequence primers that are
needed to perform a Polymerase Chain Reaction (PCR) on the original
genome sequence. The primers are located on different contig ends to “walk
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across the gaps”, i.e. to reach another contig end. This lab procedure
is a costly and time-consuming process, thus, the goal is to minimize the
the number of possible contig links. Such a layout of contigs is preferably
obtained by analyzing the mate-pair information.

The intention was to provide a software tool that alternatively uses the
genome sequence of a related organism to infer the relative order and ori-
entation of the target contigs or scaffolds. In contrast to existing software
(at that time), this approach is able to use also a fragmented reference se-
quence (unfinished assembly) to determine a layout for the target contigs
and vice versa (Richter et al.; 2007). In times of constantly growing se-
quence databases, this synteny approach is interesting for research groups
performing sequencing and assembly of closely related strains.

The Optimal Syntenic Layout (OSL) algorithm has been implemented
in a Java software package called OSLay (Optimal Syntenic Layouter).

3.2 Methods

The main idea of the OSL algorithm is permute and flip contigs (or scaf-
folds) of a target assembly while keeping the ordering and orientation in the
reference assembly fixed (Richter et al., 2007). In case the reference assem-
bly is given as single genome sequence, the algorithm can be applied in the
same manner. This scenario facilitates the successful ordering of a target
assembly.

Given a target assembly A = {aq,--- ,a,} consisting of contigs a; and a
reference assembly B = {b1, - - - , by} consisting of contigs b; of genome assem-
bly of a closely related organism. Conducting a local sequence comparison
(e.g. using BLAST or MUMmer (Altschul et al., [1990; Kurtz et al., [2004)))
of both assemblies generates a set of matches M = {mj,ma,--- ,m;}. A
match m is specified as (a, x1, x2,b,y1,Yy2,0), witha € A, 1 < x; < z2 < |al,
be B, 1<y <y <|band o € {—1,+1}, where |a| denotes the length
of a and 1,9, y1,y2 denote relative nucleotide positions within contig a
and b. Following these definitions, this means that a match m is called a

direct match between the interval with indices [z1,- - ,z2] in contig a and
[y1,-+-,y2] in contig b, of o = +1, or a match in which the sequence of
the second interval is reverse-complemented, if o = —1. All contigs of both

assemblies and their matches can be visualized in a comparison grid Z (see
Figure . The positions and orientations of the single matches are later
used to maximize the number of pairs of extended local diagonals. Cru-
cial for this extension approach is the consideration of informative matches:
these matches are “overlap”- or “containment” matches, but not “end-to-
end” matches. Only informative matches guide the layout process of the
target contigs. Consequently, both assemblies should not be too correlated,
that is, contig boundaries should not coincide (i.e. contigs should not start
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Figure 3.1: Comparison grid. Two assemblies A and B are shown together with
their matches M in a comparison grid Z. Cell zp; contains a direct match, whereas
cell z;; contains a reverse-complemented syntenic segment inferred by a local sequence
comparison. Cell z;; and z;; contain informative matches because both matches overlap
a contig boundary of assembly A. Thus, they may be used to obtain a local diagonal
extension between contig a; and a;.

and end at equivalent positions). So, if a match (syntenic segment) overlaps
contig boundaries in assembly A, then this may imply that the concerned
contigs of A can be placed next to each other. For an example of informative
matches refer to Figure 3.1

Usually, BLAST matches are relatively short local matches, even if both
genomes are closely related. However, prevalently, they lie close to a com-
mon diagonal. To facilitate the handling of those matches, a cluster of such
matches is substituted by a summarized match mg that reflects its orienta-
tion and total length.

The OSL Problem

The extension of match diagonals is enabled by the use of “anchor points”
that indicate where a summarized match mg hits (or would hit) a contig
boundary (i.e. borders of a cell in the comparison grid). These points are
specified as connectors ¢ = (y,w, 0), whereas y is the position where mg hits
the border, w is the length and o represents the orientation of ms. Consider
two cells, z;; and zj;, in the same row of the comparison grid. Let C;;ght be

the set of all right connectors associated with z;; and C’,i?f " be the set of all
left connectors associated with z;. Two connectors ¢ = (y,w,0) € C;jght
and ¢ = (¢, w',0) € C’,lé.f " form a local extension if y ~ ' and 0 = o’ (see
Figure|3.2)). Additionally, each extension is assigned a weight w+w’'—|h—h|
which means that the sum of both connectors is penalized with their position
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Figure 3.2: Connectors. Two cells are shown with three summarized matches a;, as
and ag. In contrast to ag, the ends of ; and «s touch (or almost touch) the contig
boundaries, thus generating two connectors ¢; and co. By flipping contig ag, ¢; and co
denote the possibility of extending 1 with as.

difference (see Figure a). In other words, two connectors form a local
diagonal extension in the comparison grid, if they are located at nearly the
same position at both contig boundaries and if their summarized matches
either have 45° or -45° slope. Note, that only either connectors at column
or row boundaries are considered for an extension. This implies that the
sorting of assembly A is independent of the sorting of assembly B and vice
versa.

To order and orientate the complete target assembly, whole row or
columns have to be considered. So, for all target contigs every possible
side combination (left/right) is examined. Given two columns (rows), the
score of matching two contig sides is the sum of weights of all local diagonal
extensions obtained for cells contained in the two columns (rows). The OSL
problem is then to find an ordering and orientation of columns (or rows) of
the grid such that the sum of scores of pairs of adjacent column-sides (or
row-sides, respectively) is maximized (Richter et al. 2007)).

The OSL Graph

The OSL problem of detecting a layout for a target assembly can be re-
formulated as a graph theoretical problem. A layout graph G = (V, E,w)
is defined with a node set V', an edge set E and a weight function w that
assigns positive weights to all edges. For each contig or column a; in the
comparison grid Z, two nodes Ull-ef " and vzight are defined which represent
the left and right side of a;.

Let v{ and v5 be two nodes representing different columns a? and aj with
0,¢ € {left,right}. An edge e can then be defined connecting the nodes Uf
and vf, if the score S of matching the J-side of column a; with the e-side of

column a; is greater than zero. In this case, the edge e is assigned the weight
left
i

€ V generated for a contig a;, an edge is inserted into G (see

equal to S. Additional contig edges are added: for every pair of nodes v
right

and v,
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Figure 3.3: Layout graph. a) Shown are three cells with connectors guiding the layout
process: Dotted lines represent possible side-by-side connections between three target
contigs. b) For the possible contig side connections, the layout graph is built. Additional
contig edges between contig nodes véeft and vzight for column a; are inserted. c) After
removing cycles, all contig nodes are visited in a greedy fashion to layout the contigs.
Here contig aj, needs to be flipped to elongate the diagonals via the connectors ¢4 and

Cg.

Figure b)).

The OSL Algorithm

The OSL problem is NP-hard (Richter et al., [2007)). However, the problem
of finding a contig layout can be solved efficiently. In Richter et al. (2007),
the application of a mazimum weight matching algorithm (Gabow), 1976) is
explained. In the program, a greedy heuristic has been actually implemented
that proved to be quite successful. The idea is to traverse the graph greedily,
i.e. the edges having highest weights are always considered first when visiting
all contig nodes. One precondition is crucial though: occurring cycles in the
graph have to be removed prior to the graph traversal (see Figure c).
A cycle is “broken” by removing an edge of minimum weight. In this way,
each cycle loses less than half of its total weight. Because there may exist
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another solution without cycles, breaking cycles may lead to solutions that
have only half the weight of an optimal solution (2-approximation) (Richter
et al.,|2007). In practice, the experience shows that cycles occur only rarely
in G, so the algorithm often produce “optimal” results.

Algorithm 1: OSL algorithm
Data: Assemblies A, B and matches M
Result: Syntenic contig layout for A
Let F be the set of contig edges
Construct the layout graph G = {V, EU F,w}

foreach cycle C in G do
| Delete the smallest weight edge

end
Greedily traverse G and visit all contig nodes
Infer and report the resulting contig layout for A

3.3 Implementation

The described, theoretical approach has been implemented in an interactive
software tool called OSLay (Optimal Syntenic Layouter). The Java program
is based on a sequence visualization engine provided by CGViz (Friedrichs
et al., 2003)). The processing pipeline of OSLay is shown in Figure In
addition to the BLAST file, OSLay reads in two FASTA files containing the
target contigs and the reference sequence (assembly), respectively. Three
dot-plot images are then produced displaying three different stages of the
algorithm (Figure . The visual presentation of the data significantly
enhance the quality of the results because the user gains immediate feedback
when changing parameters. By using the navigational tools, the user may
interactively explore the results.

OSLay provides a list of eight parameters that affect the outcome of
the algorithm. For example, the maximal distance between summarized
matches and contig boundaries to produce a connector can be set. Further,
the maximal height difference between connectors of two contigs sides can
be adjusted. Additional features are included for resolving potential assem-
bly errors or evolutionary events that differentiate the target and reference
genomes.

1. For instance, inserts may cause unmatched regions in the target con-
tigs. In the case that foreign DNA (e.g. phage DNA) got only inserted
into the target genome, there will be no sequence matches between
the associated target contig and the reference sequence. If the insert
is located near a contig end in the target assembly, connectors might
be placed at a wrong position. By offering the option to trim un-
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Figure 3.5: OSLay’s graphical user interface. The left view (Original Data) displays
the target contigs at the x-axis (ordered by size) and all matches that are obtained by
a BLAST run against the reference sequence at the y-axis. The center view shows
the same match distribution as the first view with one restriction: only summarized
matches that give rise to connectors are shown. Connectors are represented as green
(red) dots at the vertical (horizontal) contig borders. The last view depicts the final
ordering of the target contigs (syntenic layout) after applying the OSL algorithm.
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mislead the contig ordering. They can optionally be disregarded. c) The dot-plot
visualization helps to unveil recombination (and/or misassembly) events. OSLay can
optionally mark these “broken matches” in the dot-plot view.
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matched contig ends, OSLay allows to reset the connector positions
by disregarding the unmatched end (Figure a).

2. Bad sequence quality, misassemblies or other artifacts might hamper
the correct positioning of the connectors. OSLay provides an option to
ignore short matches at contig ends that give rise to “weak connector
extensions” (Figure [3.6]b).

3. Repetitive regions that repeatedly map to contig ends may also pro-
duce misplaced connectors and, such, they may mislead the ordering
process.

To facilitate the application of OSLay, we paid much attention to the
integration of OSLay into typical assembly pipelines. Therefore many differ-
ent output files are produced that are useful for diverse subsequent analyses.
Besides a simple list of contig names in correct order put into supercontigs,
OSLay exports a list of gap distances. This list contains the distances be-
tween succeeding contigs in the layout by measuring the connector height
difference. This information is useful when designing primers on both contig
ends. A third file lists all positions in the (finished) reference sequence where
summarized matches have been mapped to. Further, a multifasta file is ex-
ported that contains all sorted and oriented contig sequences. Sequences are
reverse-complemented (if required) and concatenated within each supercon-
tig. Gaps between succeeding contigs are filled with N’s. The last output is
an ace file that can be imported into the assembly viewer software Consed
(Gordon et al., [1998). Usually, this file is produced by the Phrap assembly
software (http://www.phrap.org). In case of an existing ace file, OSLay
reads in this file and modifies all read coordinates and other related values
according to the computed contig layout. Alternatively, a new ace file can be
generated from the scratch. Having an ace file at hand, the primer design
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with Consed is simplified because contigs that are adjacent in the contig
layout appear as neighbors in the ace file facilitating the primer design.

3.4 Results

In [Richter et al| (2007), we presented contig layouts for two different strains
of Bdellovibio bacteriovorus. The HD100 strain is a predatory Gram-negative
bacterium (Rendulic et al 2004) whereas the host-independet HDHI strain
was evolved from strain HD100 (both about 3.78 Mbp). Both genomes are
highly collinear. The HDHI target assembly consisted of 376 contigs. To
prove OSLay’s capabilities of sorting and orienting contigs in dependance of
the number of reference contigs, different assembly phases of the reference
strain HD100 have been considered (Table and Figure [3.7).

Reference | Supercontigs Total Length of Supercontigs
Contigs (Contigs contained) | (cmp. to Total Genome Length)
66 29 (260) 3,513,114 bp (93%)
27 14 (274) 3,697,854 bp (98%)

11 (277) 3,704,402 bp (98%)
1 1 (286) 3,748,836 bp (99%)

Table 3.1: Result statistics For the four assembly stages of the reference assembly
HD100, the number of ordered target contigs is listed.

The results demonstrate that OSLay is capable of ordering and orientat-
ing the target contigs to obtain (partial) local match extensions, i.e. elon-
gations of local diagonals. Figure nicely shows that with increasing
sequence coverage of the reference assembly, the number of super-contigs
decreases, If the reference assembly is already finished, i.e. it consists of
only one single contig, the detection of a syntenic layout is likely to be
successful.

OSLay has already been successfully applied to several sequenced mi-
crobial genomes at Penn State University, USA and the Ludwig-Maximilian
University in collaboration with the Max-von-Pettenkofer Institute, Munich,
Germany.

3.5 Discussion

The next-generation sequencing technologies (NGS) produce significantly
more bases for less dollars and in less time. Compared to Sanger sequencing,
the achievable sequence coverage is multiple times higher depending on the
number sequencer runs. However, the hurdles of the gap closure phase at the
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Figure 3.8: A. balhimycina vs. S. coelicolor comparison. Shown are the raw
matches obtained from a pairwise BLASTN comparison. No syntenic segments, nor
informative matches are apparent in the dot-plot.

end of an assembly still exist because of the tendency towards (ultra-)short
read lengths (currently 35-500bp for NGS technology, Sanger: 1000bp)

Thus, for gap-closure in de novo sequencing projects, it is advantageous
to have a closely related reference genome at hand. As more and more or-
ganisms or strains of a species are being sequenced these days, users may
profit from the syntenic approach used by OSLay. Obviously, only closely
related organism can be used for ordering and orientation contigs. Genomes
from a more distant pair of taxa (e.g. from different orders or classes of
the taxonomy) may have too few syntenic regions in order to compute suf-
ficient local diagonal extensions. Such a situation arose when contigs of an
(Sanger) assembly of Amycolatopsis balhimycina (=~ 10-11 Mbp) should be
laid out. The genome of the glycopeptide producer A. balhimycina had been
partially sequenced by the Wohlleben group (Institute of Microbiology and
Interdisciplinary Fields, University of Tuebingen, Germany). Unfortunately,
no closely related organism or strain was present in the sequence databases.
We then tried to detect a syntenic layout by comparing the 905 contigs to
the finished genomes of the nearest neighbors in the taxonomy: Nocardia
farcinica and Streptomyces coelicolor. The results were disappointing as
shown in Figure OSLay was not able to build a reasonable (or even
partial) contig layout because no informative syntenic segments appeared in
the dot-plot. In such cases, OSLay’s approach will obviously fail.
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Typical scenarios for the successful application of OSLay are hybrid-
assembly approaches: As, for example, explained in (Goldberg et al.l 2006)
or (Reinhardt et al., 2009)), a genome can be de novo sequenced by com-
bining two different sequencing technologies, for example Roche’s 454 with
[lumina or Sanger with Roche’s 454 technology (see Section p- .
Thus, the target genome is sequenced twice giving rise to two different read
data sets. Since different sequencing technologies have dissimilar character-
istics and error probabilities, hybrid assemblies are an attempt to overcome
shortcomings of the one technology with the benefit of another technology.
The differing contig sets obtained from the two approaches can then be
used as input for OSLay. Hence, contigs from the two assemblies that over-
lap each other give rise to informative matches that enable the detection of
a syntenic layout.

In general, repetitive sequences pose challenges during assembly, se-
quence comparison and, for example, the placement of connectors in the
comparison grid. Consequently, it is recommended to mask repetitive re-
gions by applying programs like RepeatMasker (Smit et al., [1996-2004).
Also, genome rearrangements may lead to erroneous results.

As an outlook, future versions of the OSL algorithm could additionally
integrate the mate-pair information derived from the assembly phase of the
target genome. On the one hand, this additional linkage information could
be used to confirm OSLay’s result. On the other hand, OSLay’s contig
layout may help to determine erroneous mate-pair connections due to mis-
assemblies. Hence, the usage of mate pairs for gap closure is still essential
for successful sequencing projects. And it becomes even more valuable with
the possibility for obtaining mate pairs with NGS technologies (e.g. Illumina
and Roche’s 454). Such a synteny-mate-pair approach could turn out to be
a great enhancement for future scaffolding tools being part of automated
assembly pipelines.

OSLay can be freely downloaded from http://www-ab.informatik.
uni-tuebingen.de/software/oslay.
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Chapter 4

Metagenome Analysis using
MEGAN

4.1 Introduction

The analysis of metagenomes does not only require novel laboratory ap-
proaches but also efficient computational methods and software tools (see
Section p. . The impressive data flood of metagenomic studies
spurs bioinformaticians to forge new paths in software and algorithm de-
velopment. Regarding metagenomic data there are two common issues that
have to be addressed by (computational) biologists when analyzing and pro-
cessing the results: uncertainty and fuzziness. Uncertainty because in the
beginning there is only minor knowledge about the content of the sample.
Fuzziness because environmental samples are (not only at the first glance)
considerably complex.

Over the last years, many software tools have been published address-
ing the two big questions, “Who is out there” and “What are they do-
ing?”, to investigate the species composition and the functional content of
a metagenome (see Section p- . The existing tools and methods
can be classified into two groups: web services and stand-alone software.
Web services comprise databases providing data derived from metagenomic
projects and computation services. Examples for this are CAMERA and
IMG/M (Seshadri et al. 2007; [Markowitz et al., 2008). Both provide func-
tionality to download and to compare existing data from environmental
studies. A typical example for a computation service is MG-RAST (Meyer
et al., 2008). Users are able to upload their individual data sets that are
then analyzed (e.g. compared against each other) on a remote compute clus-
ter. Remote computation of data using public web services is preferable for
research groups without access to local high-performance computer clusters.

In contrast to those web services, stand-alone software has the advantage
that (confidential) data can be processed locally and hence, does not need
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to be transferred to anywhere else. Examples for such software tools are
TACOA, Compost Bin, Phylopythia or MetaGeneAnnotator (Diaz et al.,
2009; (Chatterji et al., [2008; [McHardy et al., [2007; Noguchi et al., 2008).
One of the first metagenomic stand-alone software tools is MEGAN (Huson
et al.) 2007). It was first introduced as “GenomeTaxonomyBrowser” in
Poinar et al. (2006). MEGAN uses a homology-based approach to study
the taxonomical and functional content of environmental sequences. As
of August 2009, it is still the only software available that allows users to
efficiently explore metagenomic data at all levels of detail on a standard
laptop computer. Furthermore, MEGAN’s design puts a focus on a user-
friendly data visualization. Many projects have already applied MEGAN in
their analyses (e.g. Qi et al., 2009; Miller et al., 2009b; Urich et al., 2008}
Frias-Lopez et al., [2008]).

To internally store and access data parsed from a metagenome BLAST
result file, usually several hundreds and even thousands of MB of mem-
ory are required. To enable the usage of MEGAN on standard computers
(with limited RAM), an open file format, called ReadMatchArchive (RMA),
has been recently developed (Huson et al., unpublished). A RMA file effi-
ciently stores the complete read and match information in an incrementally
compressed, binary format. Hence, MEGAN is able to directly access data
within the RMA file without allocating too much space in memory. Conse-
quently, the total memory usage is kept to a necessary minimum. Due to
the compression, the typical size of a RMA file is 10% — 40% of the original
BLAST file. In the near future, the release of a public Java and C++ library
is planned.

In this chapter, MEGAN’s main features and algorithms for the taxo-
nomical and functional analysis are described.

4.2 Preliminaries

Let G = (V, E) be a directed graph. A path on V is a sequence of nodes
(vo,v1,...,vk) € V such that (v;_1,v;) € E for all i = 1,..., k. Such a path
is a cycle if v, = vg. We call vy the origin of the path, (vi,...,vx_1) its
intermediate nodes, and vy its end. The length of path (vg,v1,...,vg) is k.
The shortest/longest distance from u to v is the shortest/longest length of
a path with origin w and end v. A directed graph is acyclic (called DAG)
when it does not contain any cycle. A connected graph without cycles is a
tree. The leaves of a graph are its nodes of out-degree 0. The nodes that are
not leaves are called inner nodes. A DAG is rooted if it contains one root,
i.e. one node with in-degree 0. A node v € V is called child node of u € V
if (u,v) € E. In this case, u is the parent node of v. For u,v € V, a node
w is called the lowest common ancestor (LCA) if w is an ancestor of both u
and v and if w is the end of a path with the longest distance from the root.
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Note that, in contrast to trees, DAGs may contain more than one LCA for
a set of nodes.

4.3 Taxonomical Analysis

As explained in Section the estimation of the community composi-
tion is one of the first steps during a metagenome analysis. It involves the
identification of taxa (organisms) to obtain a taxonomic profile of the envi-
ronmental sample. Starting point is the collection of sequenced fragments
(reads) generated by various sequencing technologies like Sanger (Sanger
et al [1977) or 454 (Margulies et al., |2005) (see Sections [2.2.1] and [2.2.2]).
The classification or separation of read sequences into distinguishable sets
is also called “binning” (see Section [2.4.3).

MEGAN uses a homology-based method to bin reads taxonomically. The
software infers taxon assignments by comparing the given reads with known
sequences contained in databases. The assigned reads are then placed into
the tree graph of the official NCBI taxonomy (Wheeler et al., |2008b) (al-
ternatively, any other taxonomic system might be used). The NCBI tax-
onomy contains the names of all organisms (microorganisms and eukary-
ota) that are represented in the GenBank database (http://www.ncbi.nlm.
nih.gov/Genbank) with at least one nucleotide or protein sequence. Over-
all, about 460.000 taxonomic nodes are contained (as of June 2009). Taxa
are organized into different ranks of the taxonomy, e.g., Kingdom, Phylum,
Class, Order, Family, Genus, down to the species level.

In a preprocessing step, the set of read sequences is compared against
a database of known DNA or protein sequences. For example, BLAST
(Altschul et al., [1990) in conjunction with NCBI databases may be used to
find matches between reads and DNA sequences (BLASTN against NCBI-
nt) or between reads and protein sequences (BLASTX against NCBI-nr).
(Note that MEGAN is not committed to any particular comparison method
or database.) The sequence comparison step is computationally intensive
and, thus, very time consuming: In case of conducting a BLASTX compar-
ison against the NCBI-nr database, each read (e.g., assume more than one
million of reads in a typical data set) has to be translated in all six possible
reading frames and compared to over seven million entries in the NCBI-
nr database. This computation usually has to be performed on a compute
cluster (grid-computing) to obtain a result in reasonable time. The idea is
that the time-consuming BLAST comparison has only to be computed once
because MEGAN itself provides functionality to filter the BLAST matches
(e.g., by using the bit-score parameter). The result of the preprocessing step
is then analyzed using MEGAN. Remarkably, the MEGAN analysis of large
data sets can be carried out on a standard computer (“Laptop Analysis”).
Therefore, the software uses its own efficient data format (RMA-format).
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Figure 4.1: MEGAN pipeline and taxonomical assignment. During a preprocess-
ing step, read sequences are compared against a database of known DNA or protein
sequences. The BLAST result file and the NCBI taxonomy read in by MEGAN to com-
pute a species abundance profile. The reads are placed onto nodes of the taxonomic
tree using a LCA algorithm. The node sizes (and numbers) correspond to the quantity
of assigned reads. The “No Hits"-node contains all reads for which no database ho-
mologue could be found. The “Not Assigned’-node contains filtered reads with poor
bit-scores. (Data set derived from (Tyson et al., 2004))

The result file is interpreted by MEGAN to extract the organism names for
each read and all its BLAST matches (see Figure [77)).

In case all BLAST matches of a read are a derived from a single species,
this read can be directly assigned to that organism node in the taxonomic
tree. In contrast, if matches indicate that a read might be assigned to more
than one organism, MEGAN applies a lowest common ancestor (LCA) algo-
rithm to resolve a representative taxon. Hence, the read will be assigned to
a node at a higher taxonomic level which is the parent node for all organisms
actually obtained for the matches (see Figure for a simplified example
of the LCA algorithm).

By applying this LCA approach, the assignment of reads to taxa reflects
the level of conservation of the sequence (Huson et al) 2007)). It further
helps to avoid false-positive assignments since one considers not only the best
match but all matches of a read that passed the bit-score filter of MEGAN.
In the original paper (Huson et al., 2007), it has been demonstrated that
this approach is able to taxonomically classify reads of different sizes, derived
from different sequencing platforms.

To support the inspection and comparison of two or more data sets at the
same time, MEGAN is able to process and visualize several data sets simul-
taneously. Still based on the taxonomy view, different node visualizations
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Figure 4.2: LCA algorithm. Readl (red) has two matches M1 and M2, each of
which indicates E. coli CFT073 as homologue organism. Then, Readl can be directly
assigned to E. coli CFTO073. In contrast, the matches of Read2 (blue) can be assigned
to three different organisms. In this case, Read?2 is assigned to their LCA.

(e.g. pie charts or heat maps) can be selected to detect differences between
the taxon profiles. If the data sets vary significantly in the number of reads,
the user may conduct a comparison with relative instead of absolute (read
assignment) values.

4.3.1 Visualization of Taxon Profiles
Introduction

The default view that is displayed after computing the taxonomic assignment
of the set of environmental sequences is the tree view (see Figure . Based
on the official NCBI taxonomy, the visual appearance of taxa organized in a
hierarchical tree enables to obtain a first impression of the distribution of the
assigned reads. The node sizes indicate the number of reads being assigned
to a specific taxon. By scrolling the view or by collapsing/expanding and
zooming the set of nodes, the user may inspect the taxonomic profile at
different levels of detail level and taxonomic ranks.

To extend its visual capabilities, a comprehensive chart feature has been
added to MEGAN. The intention was to provide the user with a configurable
chart tool that allows the visualization of the taxon profile(s) as bar and pie
chart. On the one hand, these views allow the presentation of the data in a
more condensed and tree independent way. On the other hand, the charts
can be exported as high quality (vector-based) images for presentations and
publications.

A further goal was to implement a general “MEGAN2Chart” interface
that allows to easily incorporate new chart views for all kinds of analysis
purposes. For example, the evaluation of the microbial attributes (see Chap-
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ter or the COG classification (see Chapter 4.5.1)) greatly benefits from
the chart visualization.

Result

An existing library was used for the bar and pie chart drawing that provides a
lot of convenient methods for presenting charts in 2D and 3D mode (http:
//www.jfree.org/jfreechart). The idea was to build a highly flexible
chart tool as part of the MEGAN software. To illustrate the number of read
assignments in a chart, the user selects taxa of interest in the taxonomy
view. Only these taxa are then displayed as bars or pie sections. Since the
selection of taxa may change during an analysis, it is possible to add/hide
taxa later to/from the chart.

To improve the flexibility for the user, each MEGAN project may have
more than one chart window opened. This is useful if different sets of taxa
should be visualized separately. In case of a comparative MEGAN analysis,
read assignments for each project are visualized simultaneously in the bar or
pie chart. The taxonomy and the chart view are synchronized, i.e. if a data
set changes within the taxonomy view (due to new parameter settings), the
chart view is notified to update its chart.

Here is a brief list of the implemented functionality:

Data sets and taxa can be hidden from the view.

e Data sets and taxa can be sorted and renamed.

e Displayed taxa can be filtered to show only leaf or inner nodes (de-
pending on selected taxa).

e Charts can be customized in a lot of ways: font style, font color, chart
color, 2D /3D mode, the labeling of the axis and the chart arrangement
is adjustable.

e Chart views are scalable.

e Images can be exported to several common image formats (.jpg, .png,
.pdf, .svg).

Figure [4.3] shows an example of a pie chart visualization of a single data
set whereas Figure shows a bar chart illustrating the taxon profile for
two data sets. In|Huson et al. (2009) we used the chart tool to compare
a marine data set (145.000 reads of the Global Ocean Survey (Rusch et al.,
2007)) with a soil data set (140.000 reads) (Tringe et al., 2005). In Figure
the differences of the species abundance between both (normalized) data
sets can be quickly detected.
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Figure 4.3: Pie chart. A 3D pie chart is shown for a single data set. The upper-left
list displays the currently loaded data sets. The bottom-left list contains all taxa that
have been selected in the taxonomy view. Using the tabs at the top of the view, the
user may switch between different chart types. By double-clicking entries in the lists,
single data sets or taxa can be temporarily hidden in the chart. Additionally, the entries
can be sorted either by taxon name or by the amount of assigned reads. List entries
can also be dragged and dropped to change their sequential order.
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Discussion

In general, visualization of biological data significantly helps to reveal struc-
tures and patterns that may otherwise be difficult to spot. Especially in
the research field of metagenomics, the flood of data has to be categorized
and visually organized to obtain an overview about the composition of an
environmental sample. By providing a chart viewer, MEGAN extends its
accessory of visual inspection tools.

Unfortunately, not all described features of the chart viewer are still in-
corporated into current versions of MEGAN. The primary motivation during
the implementation phase of the chart tool was to provide the user the full
control over the displayed data sets and its taxa. For instance, the user was
able to open several chart viewers for a single project. Any nodes could
be selected, independent of their ranks and depth of the nodes in the tree.
Taxon and data set could be renamed without changing the original file
names or taxonomy nodes. Unfortunately, we noted that the usability of
the software suffered from the initially planned broad flexibility. The rea-
son was that the strict consistency between the taxonomy viewer and the
chart tool was affected. As a consequence, the handling of the user-interface
became complicated. After reviewing the functionality of the chart viewer,
only essential features were kept for future software releases. To regain sim-
plified functionality, is was decided to provide only one chart viewer window
for each single project.

Another improvement is that the user does not priorly have to select
nodes in the taxonomic view to draw a chart. Instead, all current leaf nodes
are automatically added to the taxa list of the chart tool when opening the
chart tool. By collapsing the tree at the desired level, the user determines
which nodes are displayed in the chart. By restricting the user only to
leaf nodes, situations may be avoided that, for example, taxon nodes which
contain each other do appear in the same pie chart.

Currently, MEGAN uses the chart functionality to illustrate the distri-
bution of read assignments subject to the taxonomical classification as well
as to Clusters of Orthologous Genes (COG), Gene Ontology (GO) (Chapter
[4.5.1)), and to microbial attributes (Chapter [4.4). The current state of the

chart view is shown in Figure (p. B9).

4.4 Microbial Attributes Classification

4.4.1 Introduction

The taxonomical binning of environmental reads can be further refined
by looking at the identified taxa from another perspective. The NCBI
web site provides a “Prokaryotic Attributes Table” (http://www.ncbi.nlm.
nih.gov/genomes/lproks.cgi) that lists microbial organisms and their
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various physiological features. It contains only those organisms from which
genomic information is present at the NCBI databases. (As of August 2009,
2871 microbial genomes are included.)

The classification is partitioned into five sections (http://web.ncbi.
nlm.nih.gov/genomes/static/gprj_help.html#prok_attributes): cel-
lular features, environment, temperature, pathogenicity and disease (see sup-
plemental Tables [C.1], [C.2] [C.3] [C.4] p. [117] ff). These attributes describe
the detected taxa physiologically and they directly enable the user to obtain
an overview of their habitat preferences. Some attributes are determined via
a controlled vocabulary of predefined tags that simplify the categorization of
the data. For example, the gram stain of a bacterium can be either “posi-
tive”, “negative” or "unknown”. The result section describes how MEGAN
makes use of this classification scheme.

4.4.2 Results

The official classification and nomenclature of the “Prokaryotic Attributes
Table” has been integrated into MEGAN as a separate inspection tool.
At start-up, MEGAN reads in the attributes table which is included in
MEGAN’s installation package. After computing the taxonomical read as-
signment, the user may open the Microbial Attributes Window. Since only
discrete organisms (species) are listed in the attributes table, only leaf nodes
(at species level) found at the Bacteria and Archaea subtree can be classified.

The result of the attribute binning can be inspected either by browsing
a tree-like structure or by displaying the summarized numerical values in
a chart view. For example, Figure displays the attribute data for the
acid mine metagenome (Tyson et al., [2004). Each category (e.g. Oxygen
Requirements) is represented as node in tree view. Each category node can
be expanded to show its attribute nodes (e.g. microaerophilic in case of the
oxygen requirements category). If a taxon has been detected at the species
level by MEGAN and if this organism is known to have a certain attribute, it
is inserted as child node beneath this property node. Selecting this organism
displays a summary of its known attributes.

To obtain a visual summary of the attribute classification, each category
based on controlled vocabulary, can be visualized as pie or bar chart. In our
paper about methods for comparative metagenomics (Huson et al.. 2009),
we presented a chart view as summary of the attributes analysis for a soil
metagenome (Tringe et al., 2005|) (see Figure [4.7)).

4.4.3 Discussion

Using the microbial attributes window of MEGAN enables to obtain an
broad overview about the physiological and environmental features of mi-
crobial organisms within metagenome samples. The included chart view
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Figure 4.6: Microbial attributes window. This window provides a tree like structure
to present the classification of microbial attributes. By selecting an organism, a sum-
mary of its attributes is displayed together with further information (e.g., taxonomical
classification, genome size and GC content). At total, 254 microbial organisms could
be classified for the acid mine metagenome (Tyson et al., 2004).
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Figure 4.7: Microbial attributes chart. As an alternative to the tree view, a summary
of the attibutes analysis is displayed using the chart tool. Here, the analysis of a

subsample of a soil metagenome (Tringe et al., [2005) using multiple pie charts is

shown.
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summarizes the data, whereas the tree view allows for a comprehensive in-
spection of important characteristics of each microbe.

Apart from the software implementation, it has to be noted that this
approach suffers from two issues that evidently bias the results. First of
all, it is obvious that only a small subset of all actually existing species of a
metagenome sample can be identified by MEGAN. Further, only species (sin-
gle organisms) can be used for the assignments of microbial attributes. As-
signments to inner nodes in the taxonomy are disregarded. Due to MEGAN’s
LCA approach (see Section [4.3)), the amount of leaf (species) nodes may be
rather small compared to the total number of nodes in the taxonomy. For
example, it is not surprising that the analysis of the acid mine metagenome
(shown in Figure consists of only 254 detected organisms that can be
classified by this approach, although even in low-complexity habitats, one
would clearly expect a higher number of different organisms.

Secondly, studies have shown that the constitution of the attributes table
and its underlying data may not be yet fully appropriate for comparative
analyses. For example, in|[Huson et al. (2009)), we compared a marine with a
soil data set using the microbial attribute window. Although, both samples
have been derived from distinct environments, the profiles of attributes differ
only insignificantly. The reason for this is most likely due to the database
bias: Still, only a minor set of all existing microbial species is considered in
common (attributes) databases. (See Section p. [42).

Thus, major efforts have to be made to populate biological databases
by discovering and studying new microbial organisms. For example, new
(sequencing) technologies will help to overcome this limitation. The devel-
opment of the last months seems to be promising: at the end of the year
2008, about 1500 organisms were listed in the official NCBI attributes table.
Currently, the amount of characterized organisms could be almost doubled
(2871, as of August 2009). This rapid increase is expected to last or even
to scale up in the next couple of years. Hence, in prospect of more com-
plete databases in the near future, the microbial attributes tool included in
MEGAN provides a detailed insight into the microbial characteristics of an
environmental sample.

4.5 Functional Analysis

4.5.1 Introduction

MEGANSs strenghts are its high-performance, memory efficient processing
and analyzing capabilities for the taxonomical classification of reads. How-
ever, as already stated in Section both, the taxonomical as well as the
functional binning of environmental sequences are fundamental steps in a
typical metagenomic project.

The first approach to integrate a functional analysis into MEGAN was
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based on NCBI’s Clusters of Orthologous Groups (COG) classification (Tatusov
et al., |1997; 2003). COGs have been developed to cluster annotated genes
into functionally related groups. Due to their simple structure and adapt-
ability, COGs are widely accepted and applied in the scientific literature.
Standard homology searches using BLASTX report COG identifiers that
can be easily used to classify the query sequences. Since MEGAN imports
such BLAST result files, a straight-forward COG analysis of the environ-
mental reads is automatically performed. The results can be visualized in
the COG chart view.

Our aim was to extend MEGAN by incorporating a more comprehensive
analysis tool for the functional analysis of read sequences. Similar to the
taxonomical classification, our intention was to provide a fast, (memory-)
efficient and user-friendly tool to visualize and structure functional groups
of gene products. The idea was not to design another gene calling or ORF
finding program (there are already lots of others) but rather to provide
the user with a structured overview of the functional gene annotation for
the set of reads based on the BLASTX hits (e.g. after a homology search
against NCBI-nr). Hence, the new module has been integrated into MEGAN
following its data processing principle (“BLAST only once and filter and
analyze the results afterwards.”).

We decided to use the Gene Ontology (GO) (Ashburner et al., 2000) as
classification structure for binning environmetal sequences. GO is regularly
updated and has widely been used in many biological databases, gene ex-
pression and annotation studies, and it is “the most successful example of
systematic description of biology” (Rhee et al., 2008]). Unique definitions
of gene products and their (hierarchical) relationships among each other
facilitate the analysis of functional data. Further, a lot of mapping files
among different databases and GO exists and could therefore be used for
the comparison between different data sets and projects.

In the light of these benefits, it is remakable that to date, only very few
metagenomic projects have made use of this valuable resource (e.g. Yooseph
et al., 2007; Szczepanowski et al., [2008; [Poretsky et al. [2009) Explana-
tions could be that GO is originally based upon eukaryotic gene annotations
(e.g. derived from fruit fly, yeast, mouse, or rice). However during the last
years, more and more prokaryotic gene annotations have been added (see
http://wuw.geneontology.org/G0.current.annotations.shtml).

Gene Ontology

In general, an ontology is a formal way to represent knowledge in a struc-
tured and well-defined manner (Bard and Rhee| 2004). A set of entities
or so-called terms are associated with unique identifiers linking to external
databases. Terms are (hierarchically) connected through certain types of re-
lationships. In contrast to common databases that solely store data objects,
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the purpose of an ontology is to maintain and structure data about certain
fields of knowledge.

The Gene Ontology is one of the best known bio-ontologies. It adresses
the need for consistent descriptions of gene products in different databases
(http://www.geneontology.org). Therefore, GO provides three sets of
structured vocabularies (ontologies) that describe gene products in terms of
their associated biological processes, molecular functions and cellular com-
ponents. As of August 2009, GO comprises 28089 terms (17025 biological
processes, 2430 cellular components, 8634 molecular functions and 1423 ob-
solete terms). Each GO term is associated with a list of annotated genes de-
rived from more than 40 experimental organisms including animals, plants,
fungi, bacteria and viruses (Bard and Rhee, 2004). Such, users are able
to find all proteins for a specific GO term or, vice visa, all GO terms for
a certain protein. Although the annotated gene products are derived from
a couple of model organisms, the biological vocabularies itself are cross-
specific. Accordingly, the terms describing different elements of molecular
biology are shared by among almost all life forms.

Three ontologies have been developed to describe different attributes of
gene products. Molecular Function describes what a gene product does at
the molecular level. Examples are term definitions like “protein binding”
or “kinase activity”. Biological Process describes a biological objective that
is assembled of molecular functions. Examples are “response to stress” and
“signal transduction”. Cellular Component refers to a place in the cell where
the gene product is usually found. Examples are “nucleus” and “cytosol”.

The terms in GO are hierarchically organized defining parent-child rela-
tionships where children can have more than one parent. Therefore, each of
the three ontologies can be represented by a directed acyclic graph (DAG)
that contains the terms (as nodes) and the relationships among them (as
edges). There are five types of relationships (referring to http://www.
geneontology.org/G0.doc.shtml):

e <is_a>: This refers to the case when a child is an instance of its parent.
For example, X <is_a> Y means that X is a subclass of Y.

e <part_of>: This refers to the case when a child is a component of
its parent. For example, X <part_of> Y means that whenever X is
present, it is always a part of Y, but X has not to be present.

e <regulates>, <positively_regulates>, <negatively regulates>:
These relations describe interactions between biological processes and
other biological processes or molecular functions. For example, X
<regulates> Y means that X modulates the occurence of Y.

Figure [4.8] shows a simple example of a DAG with different relations. To
work with GO, several files and file types are provided at the GO website
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Figure 4.8: Example of GO terms and their relationships. Five terms of the cellular
component ontology are displayed. They are hierarchically structured in a directed acylic
graph (DAG). Black edges represent <is_a>, blue edges <part_of> relations. Here,
membrane part has two parents: first, it is an instance of the term cell part. Secondly,
it exists as part of membrane.

(http://www.geneontology.org/G0.downloads.shtml). The ontology it-
self can be downloaded in OBO format (official text file format for defin-
ing and editing ontologies: http://www.geneontology.org/G0.format.
obo-1_2.shtml) and XML format. Addtionally, the gene association files
for all experimental organisms are available at the GO web page.

4.5.2 Implementation

The intention was to implement a user-friendly software to assign read
matches derived from a BLASTX comparison against NCBI-nr to GO terms.
Generally speaking, MEGANSs strategy to bin reads functionally is the fol-
lowing:

1. The BLASTX result file is parsed.

2. A mapping file and the header information of each BLAST hit is used
to assign reads to GO terms.

3. The GO terms and their relationships within the ontologies are dis-
played in an interactive graph view.

4. Tools for deeper analysis (e.g. charts, comparison mode), summariza-
tion and export of desired data are provided.
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The software module (called GOAnalyzer) and its required resources are
completely integrated into MEGAN. No additional data preprocessing or
further computations have to be priorly conducted by the user.

Generation of Mapping File

As already mentioned, a BLAST file derived from an BLASTX comparison
of read sequences against the NCBI-nr database is used as input for GO-
Analyzer. Since GO identifiers are not reported directly in a BLAST result
file, a mapping is needed to assign read matches to GO terms.

Typical BLAST reports contain one-line descriptions of the top database
matches. These descriptions include different database sequence identifiers
(among other information) to uniquely identify a database match. A certain
identifier syntax is used to identify the source database, such as GenBank
(gblaccession|locus), SwissProt (splaccession|entry name) or Protein
DataBank (pdblentry|chain). Another important database that will be
used in this approach, is the NCBI Reference Sequence Database (RefSeq)
(ref|accession|entry name).

The RefSeq database (Pruitt et al., [2009) is hosted at the NCBI (http:
//www.ncbi.nlm.nih.gov/RefSeq). The current release 36 of RefSeq (July
13, 2009) contains ~ 8.1 million proteins of more than 8600 organisms. In
contrast to primary sequence databases like NCBI GenBank, genomic DNA,
transcripts and proteins contained in RefSeq are validated and checked for
format consistency. Further, RefSeq stores only one example of each natural
biological molecule for major organisms ranging from viruses to bacteria to
eukaryotes. Sequences are non-redundant and regurlarly curated by NCBI
staff and collaborators. Due to these reasons, the RefSeq collection is often
employed as a stable reference for genome annotation, gene identification
and characterization.

RefSeq accession IDs have the following format: two prefix characters
are followed by an underscore character (“_”) and by a sequence of digits
(e.g. YP_123456). The accession prefix represents the type of molecule (Ge-
nomic, mRNA, RNA, protein) and the source of the sequence information.
The NCBI-nr database contains only RefSeq entries belonging to protein
sequences. Table outlines a list of protein related RefSeq identifiers that
can be found in a BLASTX report.

Due to the aforementioned benefits of the RefSeq database, we decided
to use RefSeq accessions found in a BLAST file to map read matches to GO
identifiers. A comprehensive mapping file was found at the Protein Informa-
tion Resource (PIR) web site (http://pir.georgetown.edu). The conven-
tional usage of this mapping file is to link UniProtKB accession numbers of
the Universal Protein Resource Knowledgebase (http://www.uniprot.org)
to a variety of other databases such as EntrezGene, NCBI GI number, PDB,
PFAM and PIRSF (among others). It contains ~ 3.3 Mio mappings of Ref-
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’ Accession | Note

|

AP_123456 | Alternate protein record. This prefix is used for records that
are provided to reflect an alternate assembly or annotation.
The AP_ prefix was originally designated for bacterial pro-
teins but this usage was changed.

NP_123456 | Primarily full-length precursor products but may include
some partial proteins and mature peptide products.

XP_123456 | Model proteins provided by a genome annotation process;
sequence corresponds to the genomic contig.

YP_123456 | No corresponding transcript record provided. Primarily
used for bacterial, viral, and mitochondrial records.

7P _123456 | Annotated on collections of whole genome shotgun sequence
data for a project. Often via computational methods.

Table 4.1: RefSeq accession numbers for protein products. These RefSeq acces-
sions belonging to protein products are reported in a BLASTX result file. (Descriptions
taken from: http://www.ncbi.nlm.nih.gov/RefSeq/key.html)

Seq identifiers to sets of GO terms (A single RefSeq might be linked to more
than one GO term). Because only two out of 21 entries were of interest
for our needs (RefSeq and GO), an individual mapping file was created for
GOAnalyzer.

This file, named ref2go (=~ 41 MB), has been included into MEGAN’s
installation package. It is updated regularly.

LCA Approach to Assign Reads to GO Terms

The assignment of read sequences to GO terms follows the general proce-
dures of the lowest common ancestor (LCA) approach of MEGAN (Figure
p. when classifying reads taxonomically. The main concepts are:

1. The mappings of reads to GO terms follow a many-to-one or (n : 1)—
relationship. This means that a read is allowed to map to at most
one GO term (for each of the three ontologies), but a GO term can be
mapped to many reads.

2. In case a read could be assigned to different GO terms, a variant of the
LCA algorithm is applied in order to return only one representative
GO term. This GO term might be different from the ones that have
been indicated by the BLAST matches of this read.

As we will see later, these two concepts significantly facilitate the analysis
of the large data sets containing millions of environmental read sequences.
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Figure 4.9: Schematic overview illustrating the read to GO term assignment.
Each read is assigned to at most one GO term for each ontology. In this simplified
example, all 5 BLAST matches (M, ...My) are mapped to different GO terms (colored
dots). Each colored dot represents a single GO term (e.g. light green: protein binding,
red: response to stress, yellow: cell communication). They are binned into the three
ontologies. The LCA algorithm then determines the three GO term representatives
(placements) for each read.

At first, the RefSeq identifiers of all BLAST matches that passed
MEGAN’s bit-score filter are mapped to GO terms using the provided
ref2go mapping file. These GO terms are then binned into three sets rep-
resenting the three ontologies (biological process, molecular function and
cellular component) (see Figure [4.9).

After the binning, the GO terms in each set are sorted in descending
order by their number of occurrences. A majority threshold (e.g. 80%) is
applied to keep only those GO terms with the highest number of occurrences
(“hit” GO term nodes). These terms are then used to build an induced
DAG for each ontology. See Figure for an example of an induced DAG.
“Induced” here means that the graph only consists of the given GO term
nodes, the root node and any other intermediate nodes being part of paths
connecting the GO terms with the root node. Hence, by using the parent-
child relationships of GO, the induced GO DAG is built in a bottom-up
manner. Starting at the hit GO term nodes (leaves) and following the paths
up to the root node, the DAG is generated. Next, inner nodes that have
been assigned with reads are disregarded to keep only the GO terms with
the most specific biological meaning.

In contrast to tree graphs, DAGs might contain more than one LCA.
Due to the fact that only a single GO term is actually needed per read, the
most specific LCA has to be selected as ontology representative.
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Figure 4.10: LCA approach. This example describes the application of the LCA
approach to GO terms contained in the Biological Process ontology as shown in Figure
All three GO terms that passed the majority filter (dark green: signal transduction,
red: response to stress, yellow: cell communication) are used for building the induced
DAG bottom-up. Inner nodes are disregarded keeping only the most specific GO term
nodes. In the next step, two LCAs (black nodes) are obtained. If both are assigned with
the same specificity score, the LCA with the longest path to the root node is selected
as representative (placement) within the Biological Process ontology for a single read.

Detection of the Most Specific LCA

The identification of a specific GO term is subject to a three-step filtering
approach. First, a specificity score is calculated and the LCA with the
highest score is selected. In the case that multiple LCAs have the same
specificity, the positions of the LCAs in the DAG evaluated in a second and
third step.

The specificity or information content of a GO term is calculated in
a preprocessing step resulting in a file named goid2specificity.map.gz
that maps GO identifiers to a specificity score. The specificity is based on
the number of annotated genes for a single GO term and its descendants
compared to the total number of annotated genes, as explained in Reference
Genome Group of the Gene Ontology| (2009) and Alterovitz et al. (2007))).
Let p(V,,) be the probability of observing a randomly selected gene to be
annotated by term node V,

k(V,)]
V)= —
) =T kv

whereas k(V},) is the gene set annotated to node V}, and j is the total number
of nodes in GO. The specificity score specScore for V,, is then

(4.1)

specScore(Vy,) = —logy p(Vy) (4.2)

Equation indicates that the informativeness of a GO term decreases
as the frequency of annotated genes increases. This means that the nearer a
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root

Figure 4.11: Detecting the closest LCA in GO DAGs. This example shows a
situation when multiple LCA nodes have the same path distance to the root node. In
this scenario, for each of the two LCA nodes (black) the path lengths to all hit GO
term nodes (red and green) are summed up (left LCA node: 3+1=4, right LCA node
1+1=2). The right LCA node is the closest LCA because its path length is the lowest.

node is located to the root, the more genes are annotated to this node (and
its descendant nodes) and the less informative or specific this node is. This
also implies that the (imaginary) “super root” node being the parent node
of the root nodes “biological process”, “cellular component” and “molecular
function” is assigned with specScore = 0.

Now, if a single LCA node is found with maximal specificity it is consid-
ered as ontology representative for a read. Otherwise the set of LCA nodes
with maximal specificity score is the input for the next filtering step that
evaluates the location of the nodes in the DAG. The goal is to select the
LCA with the longest path to the root node (see Figure . This strategy
assures that GO terms with a rather unspecific biological meaning (located
nearer to the root node) are disregarded. However, occasionally, there are
multiple LCAs having a maximal path length to the root. Then in a third
step, another LCA filtering is applied: for each LCA, the path lengths to all
hit GO term nodes is summed up (top-down) (see Figure . By selecting
the LCA with the shortest path length, the closest GO term according to
its biological meaning is chosen as representative for a read sequence.

At the end of this binning process, each read sequence is assigned to at
most three GO terms. Obviously, situations may occur when a read can not
be mapped to GO terms in all three ontologies at all. Reasons for this are
for example, the lack of high quality matches in the BLASTX file or missing
ref2go mappings.

Finally, the read-to-GO assignment is visualized in an interactive DAG
view. Figure sums up the main steps of the described processing
pipeline.
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Figure 4.12: GOAnalyzer pipeline. Three inputs are needed for a functional
metagenome analysis: the match information of each read from a BLASTX file, the
Gene Ontology and a ref2go file mapping RefSeq identifier to GO terms. After apply-
ing a variant of the LCA algorithm, the found gene products are visualized in a DAG
VIEW.

4.5.3 Results

GOAnalyzer has been developed as a module for the MEGAN software.
The benefit for the user is that once the BLASTX file is imported, both,
taxonomical and functional analyses on the environmental reads can be con-
ducted in one step.

The main window of GOAnalyzer is composed of an overview panel, a
GO term listing and the main DAG view (see Figure . All GO term
assignments previously computed for each read, together with their relation-
ships, are visualized as nodes and edges, respectively. Again, the induced
GO DAG is constructed instead of the whole set of available GO terms. This
helps to substantially reduce the number of displayed GO terms. (The yFiles
graph library (http://www.yworks.com) has been used for graph drawing
and graph layout purposes.)

Different edge colorings represent the different types of GO relationships
(described in Section between the terms. By default, a gradient color
scheme for the nodes indicates the number of assigned read sequences for
each GO term. Nodes without any assigned reads are only inserted into the
DAG (as inner nodes) if they are associated with a path from a hit GO term
node to the root. Several different node drawers are available (see Figure
4.14).

To facilitate the inspection of the set of GO terms, the user is able to
zoom into regions of interest within the DAG. (see Figure . In addition
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Figure 4.13: GOAnalyzer screenshot. The graphical user interface of GOAnalyzer
is separated into three parts: an overview panel (top-left corner), a GO term listing
(left) and the scalable main view with the interactive DAG visualization (right). In this
example, the three ontologies of GO are displayed as separate subgraphs. Shown is a
data set derived from [Tyson et al.| (2004)) (acid mine drainage metagenome) containing
321.426 read sequences which are assigned to 1260 GO terms resulting in 2327 nodes
and 3601 edges (relations).
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Figure 4.14: Node drawers. Several kinds of node drawers are available. Each drawer
indicates the amount of assigned reads differently: a) By default, single data sets are
drawn as rounded rectangle using a color gradient (white — no reads assigned to dark
blue —many reads assigned). A heat map node drawer is shown in b). Its color gradient
comprises all shades between black and red. Other node drawers are c) meters view
and d) pie chart view.
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Figure 4.15: Zoom view. By using the mouse wheel, the user is able to zoom into
the DAG. Such, the assigned GO term can be inspected. Hovering the mouse over a
node brings up a tooltip box with information about the GO term.
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to the visualized DAG, the graphical user interface provides different views
on the extracted GO term information. In adaption to the official Amigo web
interface of GO (http://amigo.geneontology.org), GOAnalyzer provides
a text-based hierarchy that displays the GO terms in a tree-like manner. Its
entries can be collapsed and expanded to browse the content of the GO tree
(Figure [4.15)).

Alternatively, a tabular listing displays the set of GO terms being ex-
clusively assigned to at least one read. By clicking on an entry in the table
or the tree, the DAG view directly zooms and centers the GO term in the
DAG view. To allow for a manual examination of the BLAST hits of the
assigned read, GOAnalyzer provides an inspector window. It displays all
assigned reads together with their matches and BLAST hits for selected GO
terms. Furthermore, the user is able to export all read sequences of selected
GO terms into a multiFASTA file.

By default, the graph is drawn in antialiased mode giving the visualiza-
tion a smoother appearance (e.g. for image export). In case of large data
sets (e.g. more than 5000 displayed nodes), the user may turn off antialiasing
to speed up the processing of the data visualization. Additionally, the detail
level can be further decreased by choosing (Edit — Preferences — Optimize
View for Large Data Sets).

GOAnalyzer has been already applied for a functional analysis of samples
of the woolly mammoth hair and bone. (Zhao et al., 2009, submitted). With
the help of the software, several significant GO terms have been identified
according to their specificity, the amount of assigned reads and their level
in the GO DAG.

High-Level View using GO Slims

By default, GOAnalyzer assigns read sequences to all GO terms available
from the official Gene Ontology. Currently, there are more than 28,000 terms
contained in GO. Obviously, the number of terms will grow in the future as
new definitions of gene products and their relationships will be added.

On the one hand, the wealth of GO terms allows for a distinct and
precise consideration of the involved gene products in a metagenome sample,
i.e. reads can be assigned to rather specific terms near the leaves of the DAG.
On the other hand, reads are likely distributed over the whole GO DAG
and, thus, might hamper to detect the abundance of functional groups of
interest (such as response to stimulus, protein binding or cell wall). Without
a convenient summary feature, the user may have difficulties to obtain the
“big picture”, i.e. the overview of the general, functional profile of the whole
data set.

Hence, in addition to the default view based on the complete set of GO
terms, GOAnalyzer provides the user with a high-level view on the data.
The idea is to categorize the gene products on a basis of a relatively small
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set of high-level GO terms to reduce the complexity of the ontology. The
Gene Ontology Consortium offers several preconfigured “GO slims” on their
web site which contain a subset of GO terms and their relations (http:
//www .geneontology.org/G0.slims.shtml). The GO slims are regularly
downloaded and integrated into MEGAN’s installation package.

Currently, four slims with different focuses are officially maintained as
individual files at the GO website: Generic GO slim, GOA and whole pro-
teome analysis, Plant GO slim and Yeast GO slim. Additionally, a prokary-
otic subset of all GO terms is provided as a category in the GO ontology
file. This subset contains only terms applicable to prokaryotes (e.g., terms
like nucleus and mitochondrion are excluded). Table gives an overview
of the amount of contained terms of each GO slim.

’ Topics/Usage ‘ Terms ‘
GOA and whole proteome analysis | 64
Yeast GO slim 89
Plant GO slim 105
Generic GO slim 131
Prokaryotic subset 8196

Table 4.2: GO slims and subsets maintained by the GO Consortium. All slims
including the prokaryotic subset represent a minor subset of the terms contained in the
official GO (28089 terms, as of August 20, 2009).

Analyzing the functional content of a metagenome, the user may switch
between the mentioned GO slims/subset views and the complete, full view.
In case a GO slim is selected, all computed GO terms of the full view are
mapped to high-level GO terms of the GO slim. This is done by employing
the parent-child relationship of the GO terms: Starting at a hit node v
with assigned reads in the full view, the ontology DAG is traversed bottom-
up until a node wu is approached that is part of the GO slim/subset and
ancestor of v. Then all read matches are assigned to this high-level term
node u. As a result, the large DAG of the full view is replaced by a GO slim
DAG showing only a minor fraction of all available terms. Given this data
summary feature, the user is able to conduct a broad functional classification
of environmental read sequences without having to consider the detail of the
specific fine grained terms (see Figure for an example).

An interesting idea would be to create special GO slims for metagenomic
projects. For example, by selecting GO terms of interest according to dif-
ferent type of habitats (e.g. marine or terrestrial habitats), researcher could
focus their search for gene products on characteristic GO terms.
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Figure 4.16: GOA GO slim. In this example, the same data set as in Figure is
loaded. Compared to the former 2327 nodes and 3601 edges of the full view, the GOA
slim reduces the number of nodes and edges to 58 and 59, respectively.

Comparison Mode

Besides data analyses dealing with only one metagenome sample, studies
comparing many different data sets simultaneously are of great interest. In
the case that different samples are derived from the same habitat, one may,
for instance, analyze differences in the species composition when extracting
samples from various locations or depths of the habitat (e.g., in soil or
marine environment). In contrast, analyses using samples from different
environments are more focused on a general characterization of the habitats.

In Rusch et al| (2007), for example, researchers compared different ma-
rine samples at different locations by looking at the composition of marine
planktonic microbiota which can be found in surface water samples. In con-
trast, another study (Dinsdale et al., 2008)) aimed at a comprehensive com-
parison of metabolic profiles of differing environments, e.g., subterranean
(mine), hypersaline ponds from solar salterns, marine, freshwater, coral-
associated, terrestrial, animal-associated and many others.

Since more and more single metagenomes are described and published,
the amount of studies comparing metagenomes are about to increase. To
support the functional analysis of comparative metagenome studies, GOAn-
alyzer is able to process and visualize the distribution of read assignments
derived from multiple data sets. According to MEGAN’s taxonomical com-
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parison view, the GO term nodes can be drawn using different node drawers
(as depicted in Figures 4.14} 4.17] and |4.18]).

Further features enable the user to quickly find similarities or differences
between data sets at a single glance. For instance, the tabular listing of
the read assignment can be switched to a “heat map” mode. Such, the
background colors of the cells in the table are set according to the num-
ber of reads. The color values are logarithmically scaled (black: no hits,
red: many hits). Especially, when comparing a large number of data sets
(> 4), the color coded visualization of the table helps to quickly deter-
mine differences between the data sets (see Figure . The table also
includes columns listing the specificity score (as explained in Section
and, in case of multiple data sets, the divergence and sum of read assign-
ments for each GO term. The divergence of a GO term V,, is represented
by div(V,) = Z?ig:gjﬁjﬁgg:gﬁgé&;; . It indicates significant differences be-
tween the maximum and minimum amount of assigned reads for all data
sets of a single GO term.

Usually, the amount of sequenced reads derived from several metage-
nomic samples may vary to a certain extent. Even if the lab work was
repeatedly conducted by the same person, or if the samples originated from
the same habitat, this bias has to be considered when comparing multiple
data sets. If the amount of reads differs significantly between data sets, an
intermediate normalization step is usually preferable. If the user already
has decided to normalize the number of reads in the taxonomical analysis
in MEGAN, the data used by GOAnalyzer will be normalized as well: for
each data set d; and for all ¢ = 0,...,k a factor f € R is computed with
fa, = ¢ 7 whereas c¢ is a constant number, e.g. 100,000. This

amount of reads in
factor is then used to scale all read amounts for each GO term. Such, con-
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metabolic process 2.24 1.28 24829 1 G0:0008152
5574 5424 3876 biological_process 1.78 1.44 14874 0 GO:0008150
5314 5394 5962 catalytic activity 1.96 1.12 16670 1 G0:0003824
5238 4655 3854 membrane 3.6 1.36 13747 3 G0:0016020
4020 4686 4876 cytoplasm 4.38 1.21 13582 5 G0:0005737
3881 3542 2945 transport 4.83 1.32 10368 3 G0:0006810
3180 3349 2244 integral to membrane 5.23 1.49 8773 6 G0:0016021
2268 2201 2521 intracellular 3.73 1.15 6990 3 G0:0005622
2121 2158 1803 protein metabolic process 4.69 1.2 6082 4 G0:0019538
1754 1564 1584 cellular process 2.49 1.12 4902 1 G0:0009987
1686 1703 1265 Removal of aminotermin... 6.53 1.35 4654 6 G0:0006508
1610 1668 1789 biosynthetic process 3.52 1.11 5067 2 G0:0009058
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821 645 749 DNA binding 4.67 1.27 2215 3 G0:0003677
779 678 657 cell part 2.66 1.19 2114 2 G0:0044464
758 647 825 regulation of cellular pro... 4.73 1.28 2230 3 G0:0050794
751 560 E220 cell outer membrane 10.44 6.16 1433 5 G0:0009279
749 651 986 Metabolism of carbohyd... 6.06 1.51 2386 3 G0:0005975
696 798 831 oxidoreductase activity 4.25 1.19 2325 2 G0:0016491 Y
645 515 A0 transcription factor activity 6.84 1.61 1561 4 G0:0003700
(331 A5 RSN cinnal trancducar activine A 2Q 171 12058 2 co:nnnagzl Y

Figure 4.19: Colored read assignment table. Screenshot showing the tabular read
assingment. Cells are colored according to the amount of reads assigned to a GO term.
Further information is listed for each term (specificity, divergence, DAG Level, ...) that
support the user when searching for significant differences between multiple data sets.

tents of diverse data sets in terms of read amount are brought to the same
scale.

Chart Tool

In addition to the DAG view or the tabular and tree listings of the read
assignments, GOAnalyzer uses MEGAN’s chart functionality to provide bar
or pie charts for the GO analysis (Figure . Therefore, the user simply
selects a set of designated GO terms in the graph view and clicks the GO
chart button.

4.5.4 Discussion

In this subchapter, a new approach for the functional analysis of metagenome
data has been described. The developed tool has been implemented as part
of the MEGAN software. The Gene Ontology was used to characterize the
functional gene content of a metagenomic sample. The classification of read
sequences is based on a mapping of RefSeq identifiers found in a BLASTX
result file (e.g. after a blasting against NCBI-nr) to GO terms. After apply-
ing a variant of MEGAN’s LCA approach, each read is assigned to a single
GO term in each of the three ontologies. A graphical user interface displays
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Figure 4.20: GO bar chart. Three GO terms have been selected for the bar chart
view. Different colors represent different data sets.

the data in a DAG view and in a tree or tabular listing.

The main algorithmic concept of GOAnalyzer is based on the LCA ap-
proach. Because a BLAST run usually produces tens or even hundreds of
BLAST matches for a single read that all, again, may be mapped to different
GO terms, a single, representative GO term for each read and ontology is
selected by the LCA algorithm.

What are the drawbacks and benefits of the LCA strategy?

Drawbacks First of all, a disadvantage may be the expected loss of accu-
racy. Due to the parent-child relationships of GO, the biological meaning of
a LCA term, being a parent node of a set of GO terms, is always less spe-
cific. In the worst case, the LCA is the root node of the ontology. Specific
gene products located near the leaves of the ontology are not considered any
longer and replaced by a high-level term (high-level terms are defined to be
GO terms located near to the root node). In this way, gene products of
interest might be missed in the result. As a consequence, the composition of
the GO term associated gene products might be rather general (e.g., protein
complex (GO:0043234) instead of proton-transporting V-type ATPase, V1
domain (GO:0033180)). Such situations obviously complicate a distinctive
characterization of a data set.

Another implication of the LCA algorithm is that reads having a large
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Figure 4.21: DAG level test: acid mine metagenome. The number of GO terms
(left) and the number of assigned reads to GO terms (right) at different path levels are
shown for the LCA approach and the best BLAST hit, respectively.

number of matches in the BLAST file (with a certain bit-score, prefiltered
by MEGAN), are more likely to be assigned to high-level GO terms. Even
if most matches are mapped to related gene products, one outlier (match
mapped to functionally distant gene product) might generalize the result.

Facing these problems, we first tried to skip the complete LCA step,
hoping to observe a significant impact on the specificity of the extracted
GO terms, i.e. to find GO terms located nearer to leaf nodes. This test
was performed by selecting only the best BLAST hit for a read instead of
considering all matches that passed the quality filter of MEGAN. We used a
data set of the acid mine drainage metagenome containing 321,000 reads
(Tyson et al., 2004). Each GO term in the GO DAG was assigned with
a level index (tree depth), such that the root node is assigned with level
index 1. If a GO term could be assigned with various levels (i.e. the node is
accessible using multiple paths), the maximal (deepest) level index is used.

The resulting diagrams are shown in Figure [4.21] First, the number of
extracted GO terms and second, the amount of assigned reads per DAG
level have been counted, respectively. In both cases, we expected to see a
shift towards the lower level indices (towards the leaf nodes at level index
14) when selecting the best BLAST hit. But, remarkably, changes are only
insignificant. The distribution remain roughly the same. Note that the best
hit strategy yielded less GO terms and less reads at all. This is due to the
fact, that the best hit is not always associated with a RefSeq identifier and,
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Figure 4.22: DAG level test: mapping file. Distribution of GO terms and RefSeq
identifiers in correspondence to the DAG level of the maping file is shown.

therefore, could not be mapped to a GO term.

The left diagram indicates that most GO terms can be found at mid-
levels 5 to 8. Only few GO terms at levels 11 to 13 have been assigned
with reads. Interestingly, 24.6% and 26.3% of the reads for the LCA and
best-hit approach, respectively, are located at the root node (level 1) (Figure
right diagram). This indicates that many reads could not be assigned
to significant GO terms. However, it could be confirmed that the LCA
approach does not necessarily produce worse results compared to the best-
hit strategy.

To further evaluate the efficiency of the LCA approach, we looked more
closely into the mapping file to find possible evidence for biased results.
Therefore, we used the same approach as described earlier: All mappings of
RefSeq identifiers to GO terms are used to analyze their DAG level distri-
bution. The results are again visualized as a diagram shown in Figure
It can be seen that the distribution of the GO terms in the mapping file
related to the DAG level (shown in in Figure blue bars) is similar to
the GO term distribution in the left diagram of Figure This indicates
that the mapping file itself actually determines the amount of GO terms per
DAG level.

The red bars in Figure represent the distribution of the RefSeq
identifier which have been mapped to GO terms after applying the LCA
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algorithm (note that a RefSeq identifier usually maps to a set of GO terms).
Also here, the RefSeq distribution reveals that 20.5% of all RefSeqs are
located directly at the root node (level 1). This proportion is similar to the
amount of reads mapped to the same level in the acid mine data set (Figure
right diagram).

Both analyzes have shown that, first, omitting the LCA approach is not
the better option. Taking only the best BLAST hit might miss a lot of GO
terms and, at the same time, does not necessarily provide a more significant
amount of specific GO terms. Secondly, results are strongly biased by the
contents of the mapping file. The composition of the mapping file apparently
influences the selection of GO terms, independent of choosing the LCA or
best-hit approach. Since no other mapping file is available at this time, one
has to keep this bias in mind when interpreting the results.

Another side-effect of our homology-based approach is that gene se-
quences in the sample showing no similar base or amino acid sequence
will not likely be detected. For this purpose, ab initio gene prediction
tools and pipelines like Glimmer (Delcher et al., 1999)), fgenesb (http:
//www.softberry.com) or MetaGeneAnnotator (Noguchi et al., 2008) are
more appropriate. And, as mentioned before, homology-based methods suf-
fer from the database bias, i.e. the ever-changing and limited composition

of biological databases (see Chapter p- [42).

Benefits One of the advantages of the LCA approach is the reduction
of complexity in terms of data manageability and memory requirements.
By following the principle “each read is assigned to a single GO term” the
total amount of GO terms is significantly decreased. This complexity reduc-
tion and, at the same time, the substitution of a set of specific GO terms
with a single one, is justifiable, when looking at the composition of typical
metagenomic data sets: Environmental sequencing projects usually produce
between =50,000 and up to tens of millions of read sequences depending
on the employed sequencing technology and read length. Structuring and
classifying this huge amount of data is a challenging task.

Here is a numerical example: assuming a generic set of sequences con-
taining 1 million reads. Running BLASTX against the NCBI-nr database
typically produces about 100 matches per read. After the bit-score filtering
and the mapping of these matches to GO terms, 50 matches per read may
remain. Assuming, each of these 50 matches may have a mapping to at least
15 GO terms. As a result, 750,000,000 GO terms would be generated that
have to be stored and visualized in a convenient manner. This conserva-
tive estimate reveals the complexity that one encounters when processing
metagenomic data.

As GOAnalyzer is a GUI based stand-alone software which is supposed
to be run on standard laptops, its memory usage is of particular impor-
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tance. By restricting the number of GO terms per read to at most three,
only three integer values (the GO identifier) have to be stored and hold
in memory. Consequently, compared to the result of the calculation above,
only 3 million GO terms (4%) need to be considered. The complexity reduc-
tion considerably facilitates the overview and the analysis of the functional
content of a metagenome. As reads are assigned to single GO terms ((n : 1)-
relationship), the extraction and inspection of reads per term can easily be
accomplished. For instance, the user may click on a term node in the DAG
view to export the read sequences into a multi-FASTA file. Multiple as-
signments of the same read to different GO terms would weaken the strict
classification and binning of reads.

Overall, it has to be pointed out that “loss of accuracy” as it has been
priorly described, does not lead to a “loss of correctness”. The LCA of a set
of GO terms is never “wrong” in terms of the biological meaning. It is just
a higher-ranked GO term summarizing its child terms with a more general
description. By selecting a parent node in the DAG, false-positive read
assignments can be avoided and, at the same time, biological correctness is
still assured.

The usage of GO as classification structure for annotating reads, is still
not widely common in published metagenomic studies. Other classifications
used instead are, for example, COG, TIGRFAM, Pfam, or SEED (Tatusov
et al., |1997; [Haft et all [2003; Finn et al., |2008; Overbeek et al., 2005).
However, this diversity of methods obviously complicates the feasibility of
comparative studies, since content, structure and focus differs between these
classifications. GO takes an exceptional position among these classifying
methods and databases. As explained earlier, the GO consortium tries to
determine consistent descriptions of gene products in different databases.
So, there is an obvious tendency to link different namespaces (databases)
covering similar biological content. GO is the first step for a “unification
of biology” (referring to |Ashburner et al. (2000)). For this purpose, there
already exist a lot of mappings to GO (http://www.geneontology.org/
GO.indices.shtml) and more will certainly be added.

Concluding the enumeration of pluses and minuses of our strategy, the
aim of this project was to provide a user-friendly, intuitive and biologically
sound software tool for the functional analysis of metagenomic data. The
main challenge was to create a software tool capable of dealing with the
diversity and richness of typical metagenomic data sets. At same time, the
software should be used on a standard laptop and should allow for conve-
nient, visual analysis of data.

To balance these two points, MEGAN uses the LCA approach in both
cases: in the process of the taxonomical and the functional binning of en-
vironmental read sequences. This strategy enables the user to get a first
insight into the taxonomical and functional composition of a metagenomic
sample in one step. Once the read sequences have been blasted on a com-
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puter cluster, MEGAN and and its extension GOAnalyzer provide both, a
bird’s eye view and a close-up view down to the read sequences and even
BLAST matches. These features make MEGAN the preferable tool for a
comprehensive overview analysis during the first steps of a metagenomic
analysis.



Chapter 5

MetaSim: A Sequencing
Simulator for Genomics and
Metagenomics

5.1 Introduction

The recent developments of next-generation DNA sequencing technologies
opened the flood gates to an extensive amount of sequence data. Prior to
any biological interpretation of the studied DNA and its features, the set of
short sequencing reads has to be processed, aligned, assembled or classified
depending on the type of biological analysis.

For example, for a typical whole genome sequencing project of a single or-
ganism, the reads have to be filtered by quality and then assembled to obtain
the final genome sequence (see Section p- . Once larger assembled
fragments (contigs) are obtained, analyses like gene prediction or motif find-
ing become reasonable. In case of re-sequencing projects (see Section m
p. , the reads have to be mapped to a closely related reference genome
by efficient short read mapping software (Trapnell and Salzberg) 2009). A
different scenario of processing reads is the analysis of environmental DNA
obtained from a community sequencing project (see Section p- . In
contrast to single genome studies, the new discipline of metagenomics fo-
cuses on the analysis of the microbial diversity found in various habitats,
like e.g. ocean (Rusch et al., |2007)), soil (Tringe et al., |2005), mines (Tyson
et al., 2004; Edwards et al. 2006) or the human microbiome (Turnbaugh
et al.l 2007). Due to the high complexity of ecologic systems, the assembly
of reads is very challenging, i.e. the assembly of reads into contigs belonging
to only one species fails or is misleading (see Section p- . To avoid
such complications, the initial steps in metagenomic studies often comprise
the characterization and classification of reads (binning) into separated sets.
On the one hand, reads are classified taxonomically to get an overview about
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the contained organisms (taxonomical analysis). On the other hand, the
functional spectrum of the sample (independent of the species origin) is of
main interest. Therefore, genes are predicted by using homology or ab-initio
approaches (depending on the read lengths) (see Section p- .

Further, the fast and cost-effective generation of sequencing data, enables
researches to perform series of measurements to compare, for instance, the
taxonomical composition of samples derived from the same location within
several time points under varying environmental conditions (Gilbert et al.,
2008). Such comparative studies again depend on powerful, statistical tech-
niques and analysis tools which are able to deal with the highly variable
data (Mavromatis et al., 2007; Mitra et al., [2009)

This overview of different types of read processing presents only an in-
complete list of all common analysis strategies. But it should give an idea
of how the progress of next-generation sequencing technologies (see Sec-
tion is spurring the field of bioinformatic software development. The
amount of developed assembler software is a good measure for this: Between
the year 2000 and July 2009 more than 18 different genome assemblers have
been introduced (Scheibye-Alsing et al. 2009) and more are likely to be
published or at least upgraded in the near future. Regarding metagenomic
studies, the data size generated (measured in base pairs) occasionally ex-
ceeds common single genome sequencing projects. However, it is striking
that the number of specialized software and algorithms for processing en-
vironmental sequences is surprisingly low. As a consequence, many studies
use the classic methods, software or web services that originally were not
intended for metagenomic data.

To sum it up, there is a great demand for improved and specialized
software solutions in both research fields of genomics and metagenomics
that keep up with the rapid developments and improvements of NGS tech-
nologies. The vast collection of current assembly and mapping software for
genomics and the upcoming tools and methods for metagenomics need to
be compared and benchmarked to evaluate their performance and applica-
bility. Standardized test scenarios using simulated and verifiable data are
useful for developers to analyze their programs and for users to select the
software that optimally fits their needs. These considerations motivated
us to develop MetaSim (Richter et al., |2008), a DNA sequencing simula-
tor software for the generation of synthetic reads based on given genome
sequences. A prior study (Mavromatis et al., 2007) provided three data
sets with varying complexity by selecting original sequence reads from 113
isolated genomes. The authors anticipated that the community uses these
precomputed data sets as standard test cases for software testing.

In contrast to this “static” approach, our software MetaSim allows re-
searchers to create their own test data by choosing from a set of source
genomes and error models derived from several sequencing technologies
(Sanger (Sanger et al.l 1977), Roche’s 454 (Margulies et al., 2005) and Illu-
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mina (Bentley, |2006))). These error models (or error probabilities per base
position) are used to modify the original sequence at certain base positions to
reflect real sequencing error patterns of each technology. Further, MetaSim
offers the possibility to load individual error models based on empirical data.

MetaSim takes as input a set of known DNA sequences and an abun-
dance profile. The profile determines the source DNA sequences and their
relative abundances for the simulation read sequneces. The abundance val-
ues can be used to reflect the variable species composition of a metagenome.
This general approach allows users to use MetaSim flexibly as either read
simulator for single genomes or for metagenomes.

Former simulation software tools for Sanger reads were celsim and
GenFrac reported in (Myers, 1999b; Engle and Burks, 1993} 1994). These
tools could be used for the simulation of Sanger reads. Other studies (Chat-
terji et al., 2008; Krause et al., |2008b) used the functionality of ReadSim
(unpublished), a pre-version of MetaSim to produce sequencing reads of dif-
ferent lengths and error characteristics. Some concepts of ReadSim have
been adopted and further improved in MetaSim.

This chapter describes the main implementation details of MetaSim and
summarizes results of a simulation study for benchmarking the MEGAN
software (Huson et al., [2007).

5.2 Implementation

The main steps of MetaSim’s simulation processing pipeline are the selection
of source genome sequences, the configuration of an abundance profile, the
sampling of sequence fragments and the subsequent generation of synthetic
reads according to a chosen error model. MetaSim includes an internal
database (based on http://hsqldb.org) to allow for a convenient selection
of source genome sequences for the simulation. This database locally stores
and maintains all imported genome sequences and can be explored within
the program.

5.2.1 Generation of Species Profiles

As already mentioned, the abundance profile contains names or identifiers
(e.g. NCBI’s gi number) of all sequences selected for simulation. Addi-
tionally, the abundance value determines the relative amount of genome
sequences simulated for a metagenome. The text-based profile file (.mprf)
has a simple structure as shown in this example (The # symbol marks com-
ment lines and % represents the wildcard character.):

### MetaSim taxon profile
# 100 Methanoculleus marisnigri JR1
# 50 Alcanivorax borkumensis SK1
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Figure 5.1: TaxEditor. This visual component enables the user to assign abundance
values via right-clicking on nodes in the taxonomic tree. Different node sizes correspond
to the assigned abundance values. Figure taken from |[Richter et al.| (2008).

#Hi#
100 name "Methanoculleus marisnigri JR1"
50 name "Alcanivorax borky"

Here, 100 genome copies of Methanoculleus marisnigri JR1 and 50 genome
copies of Alcanivoraz borkumensis SK1 are part of this (meta)genome dataset.
This means that the genome sequence of M. marisnigri JR1 occurs twice as
much in the metagenome as the sequence of A. borkumensis SK1.

Alternatively, MetaSim provides a visual component that allows to set
the abundance values for genome sequences directly in a taxonomic tree.
Therefore, an “induced” tree viewer (TaxEditor) of the NCBI taxonomy
(Wheeler et al.l | 2008b)) is integrated that displays the genomes in the database
as nodes in a rooted tree according to their taxonomical relationships (Fig-
ure . An interesting feature is the possibility to set abundance values
not only to species (leaf) nodes (single organisms in the database) but also
to inner nodes in the taxonomy (e.g. at genus level). Such, the abundance
value of an inner node is split and applied to its descendant species which
are available from the database.

5.2.2 Population Sampler

Typical environmental samples contain a vast variety of microbial species.
Most of these organisms (or bacterial strains) are usually still unknown
because they could not be cultured and isolated in the laboratory before.
As a consequence, one can hardly estimate their occurrence and, in general,
the genetic diversity of a sample. When it comes to simulating metagenomes,
one has to keep that in mind. Thus, to mimic the complexity of real world
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data sets, MetaSim provides a population sampler that generates evolved
(mutated) offsprings of single source genome sequences. The calculation is
based on a mathematical model of DNA evolution and a given evolutionary
tree that determines how the offsprings descend from the source genome.
By default, we use the Yule-Harding model to generate phylogenetic trees
(Yule, 1925; [Harding}, |[1971)), but the user may load individual trees as well.
For the model of DNA evolution, the widely known Jukes-Cantor model
(Jukes and Cantor, [1969) has been implemented. It defines the probability
of a change for each base pair, with an adjustable transition rate a (0.001
by default) and time ¢ based on the edge weights of the tree. After applying
the population sampler to a genome sequence, the desired number of evolved
genomes are added to the internal database.

5.2.3 Read Sampling

MetaSim uses different statistical models to simulate the frequency of sim-
ulated reads, the distribution of the read lengths and the probability of
occurring mate-pairs.

First, larger fragments called clones are extracted from the set of genomes
with normally or uniformly distributed lengths. These clones are the ba-
sis for either the read or mate-pair sampling. If only a single genome se-
quence is included in a profile file, the clones are sampled randomly from
this genome sequence (Figure a)). In contrast, a metagenome consists of
many genomes with different lengths and assigned abundances, and there-
fore, the clones have to be sampled from many sequences. So, each genome
sequence s is assigned a weight

We = lg X €g X ag (5.1)

where [ represents the length, c¢s the copy number and as the abundance
value of s. The copy number can be used, for instance, to model the abun-
dance of plasmids versus the organism genomes. For each length of the clone
length distribution, the weights of all sequences are summed up to obtain
the summarized weight ws,,, that is needed to compute a sequence proba-
bility ps = wf:m. Considering the overall lengths distribution, a frequency
value for each sequence is then obtained (Richter et al., 2008]).

After sampling the clones, the actual read sequence is sampled from the
clone ends (Figure b). Again, the read lengths can be either normally
or uniformly distributed. Note, that so far, the read sequence has not yet
been modified to simulate sequencing errors. This final step, the application
of error models on the read sequences, is described in the next paragraph

(Figure c).
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Figure 5.2: Clone and read sampling. a) Clones are randomly extracted from a
single source genome sequence (thick black line). b) Clone ends are used to sample
the read sequence or, optionally, the two reads for a mate-pair. c) The final step is
the application of error models to the read sequences to obtain the modified, synthetic
read sequence.

5.2.4 Read Sequence Modification

In the previous step, the raw read sequences were sampled from the clones.
Next, these reads are modified according to the chosen error model associ-
ated to either the Sanger or Roche’s 454 sequencing technology or to the
empirical error model. The modification of bases reflects the fact, that, due
to various technical reasons, sequencing machines do incorporate errors (in-
dels, substitutions) into the final sequence. These sequencing errors often
complicate or even mislead the subsequent processing (e.g. alignment, gene
finding, etc.). Due to that reason, companies selling sequencers put lots of
effort in improving the overall read quality.

The incorporation of sequencing errors is based on different statistical
models depending on the chosen sequencing technology, as explained in the
following subsections.

Simulation of Sanger Reads

The characteristics of Sanger sequencing have already been introduced in
Section MetaSim uses a similiar approach as reported in |[Myers
(1999b). The empirical observation is that the base quality decreases to-
wards the end of the read. The error rates for insertion, deletions and sub-
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stitutions are fixed values whereas the general error rate per base position
at the beginning of a read is lower than the rate at the read end. The read
length is distributed either normally or uniformly. Optionally, mate-pairs
can be simulated with a certain probability.

Simulation of 454 Reads

Read sequencing following the sequencing-by-synthesis approach has been
introduced in Section (p- . The main concepts of the 454 sequencing
system are reported in |[Margulies et al. (2005)). In short, the four nucleotides
are periodically flowed over hundreds of thousands of beads each contain-
ing many copies of single stranded DNA fragments. Within each flow, light
signals caused by the addition of nucleotides are recorded by a CCD cam-
era. The light intensity directly corresponds to the incorporated number
of nucleotides. Such, single bases and even homopolymers, i.e. consecutive
stretches of equal nucleotides, can be detected. Due to chemical and techni-
cal issues, the signal is subject to fluctuations that may lead to sequencing
errors. MetaSim’s pyrosequencing read simulator is based on data published
in 2005. To that time, an average error rate of ~3% was reported (Margulies
et al., 2005).

Our strategy to simulate 454 reads is to model the process of light emis-
sion and the detection of the observed base sequence in the base-calling
procedure (for details see Richter et al. (2008)). Given a source read se-
quence, for each simulated flow of single nucleotides, all its homopolymers
are extracted. In a second step, the homopolymer lengths are converted
into virtual light emissions using a normal distribution. During the base-
calling, the algorithm then calculates which probable length is to set for the
observed homopolymer length.

The optional generation of 454 mate-pairs follows the protocol reported
in |[Korbel et al. (2007)): two read sequences are generated, a fixed linker
sequence is concatenated connecting both reads. Finally, the error simulator
produces a synthetic mate-pair.

Simulation of Reads Using Empirical Models

The characterization of empirical error rates of DNA sequencing technologies
relies on the divergence between the observed and the expected nucleotide
at specific base positions. In other words, the error rate probability is not
directly determined by the specifications of the sequencer (e.g., light detec-
tion) but rather by the analysis of alignment experiments (empirical data).
Such an experiment to detect possible base indels or substitution may be, for
instance, a resequencing project: Reads are mapped to an already completed
reference genome to detect sequence variations. This approach has already
been applied to characterize typical errors of 454 data (Huse et al., 2007)
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and is therefore an accepted method to reveal error patterns in sequencing
data.

For the MetaSim software project, we received empirical error models
for the Illumina sequencer generated at the Max-Planck-Institute (MPI) for
Developmental Biology, Tiibingen, Germany. The research group of Dr.
Weigel conducted resequencing projects to study mutations in the plant
Arabidopsis thaliana, an important model plant in molecular biology. Based
on 36 bp reads, the error statistics revealed that the substitution errors
occurs most frequently. Further, it was observed that the substitution rate
directly depends on the base at the current and previous position. Another
finding was that the error probability increases towards the read ends (from
~0.0006 to 0.05 for a 36 bp read).

To enable the import of such statistics, a new file format was created
(.mconf) that enables the definition of individual error probabilities for dele-
tions, insertions or substitutions per base position adopting the general ap-
proach of the program GenFrac (Engle and Burks, [1994)). An empirical error
model is based on several mappings, each consisting of three parameters:

e the type of error,
e base at the position where the error occurs and
e base preceding the position where the error occurs.

Hence, in total, 48 mappings are possible to define an individual error
model. Here is an example listing three types of error rates in a .mconf file:

# Set error rates for insertions for every A
INSERTION_ERROR (A)

0.0187

0.0083

# Set error rates for deletions at a C following a G
DELETION_ERROR G(C)

0.00212

0.00256

# All substitutions
SUBSTITUTION_ERROR
0.00699374780209504
0.00841141135948587
0.00830145870238677
0.00879477131238090
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Figure 5.3: MetaSim screenshot.The GUI is divided into three parts: the project tree
(top left), the database and profile view (top right) and the message panel (bottom).
Within a configuration window, the user selects a taxon profile and simulator settings
to finally run the simulation.

MetaSim includes an error model for 36 bp and 62 bp Illumina reads
based on empirical statistics of the MPI, Tiibingen. By adding or removing
error mappings for specific base positions, users may create error models for
other read lengths.

5.3 Results

MetaSim is a Java program and installers for different operating systems
can be downloaded from: http://www-ab.informatik.uni-tuebingen.
de/software/metasim. Besides the interactive graphical user interface (GUT)
(see Figure, MetaSim can be controlled via command-line for automatic
simulation runs.

To perform a simulation, the user initially creates an abundance pro-
file file, and then chooses one of the four pre-configured simulator settings
(Sanger, 454, Illumina, exact reads). The simulator settings are all ad-
justable (e.g. number of reads, length of clones, probability of mate-pairs,...).
For each successful run, a new result folder is added to the current project
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containing a log file and a preview of the final (optionally compressed) mul-
tiFASTA file. A typical simulation run which generates 100 Mbp of sequence
(e.g. 400,000 454 reads of length ~250 bp) takes less than 80 seconds on a
single processor computer.

In the following section, a summary of a simulation study using MetaSim
is presented.

5.3.1 Simulation Study

In Richter et al.| (2008), we exemplary conducted several simulation runs to
benchmark the performance of the MEGAN software (Huson et al., 2007)).
The goal was to measure the sensitivity and specificity of the taxonomical
assignment of reads to nodes in the NCBI taxonomy as described in Sec-
tion For this analysis, three abundance profiles were generated named
simLC, simMC and simHC representing low, medium and high complexity
communities, respectively (in correspondence to Mavromatis et al.| (2007))
(for the complete listing of organisms and abundances see supplemental Ta-
bles |C.5] |C.6| and [C.7, p. [120] ff). The classification of community profiles
into three complexity levels is based on observations of actual environmental
samples. It has been observed that the microbial diversity of different eco-
logical habitats significantly varies depending on environmental factors like,
for example, energy and nutrient sources, temperature range, salinity or oxy-
gen concentration. The ecologic difference becomes evident in the species
diversity and abundance. For example, samples derived from terrestrial
habitats are usually highly complex (many different organisms with simi-
lar abundance), whereas samples from extreme habitats like hydrothermal
vents or bioreactors (Garcia Martin et al., 2006) represent low community
complexity (few dominant organisms besides low abundance ones).

Each of the three abundance profiles have been used to generate three
sets of reads differing in length, applied sequencing error models and other
parameter settings (For a list of all parameter settings refer to Richter et al.
(2008)).). The resulting read data sets comprise ~15 Mbp, respectively.
Consequently, the number of reads differ accordingly depending on the sim-
ulation settings: for 454 reads with read length 100 bp (250 bp), 150,000
(60,000) read sequences were generated. Additionally, the Sanger read data
set consists of 18,750 reads with ~800 bp reads. The resulting read data
sets were blasted against the NCBI-nr database (as of March 2008) and the
BLAST output was imported and processed by MEGAN.

One of the findings was that the number of assigned reads correlates with
the simulated read length. The longer a read sequence is, the more assign-
ments to taxon nodes can be found and the less “No Hits” reads do appear
(“No hits” reads could not be successfully aligned to any sequence in the
database.). This is an obvious fact since longer sequences give rise to more
BLAST high scoring pairs in the database than short ones. Table [5.1] shows
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that there is a clear discrepancy between the assignment rate of short (100
bp) and longer read lengths: almost all sampled Sanger reads (800 bp) could
be assigned to a taxon whereas many short 454 reads could not be aligned
to the any database entries at all. A further result of this analysis (not
presented here) is that the number of correct (true-positive) assignments to
taxa increases with longer read lengths (supplementary information found
in Richter et al.| (2008)).

Simulation Total | % Assigned | %Unassigned | %No Hits
Reads | Reads Reads

simLL.C-454-100 | 150000 | 83.14 0.46 16.40
simLC-454-250 | 60000 | 98.58 0.85 0.57
simLC-S-800 18750 | 99.45 0.55 0.00
simMC-454-100 | 150000 | 81.71 0.52 17.76
simMC-454-250 | 60000 | 98.08 1.02 0.91
simMC-S-800 18750 | 99.28 0.71 0.01
simHC-454-100 | 150000 | 81.68 0.51 17.81
simHC-454-250 | 60000 | 97.55 0.93 1.52
simHC-S-800 18750 | 99.08 0.87 0.05

Table 5.1: Summary of the read assignment rates. For each simulation run, the
percentage of assigned, unassigned and “No Hits" reads are listed. “No Hits" reads
are reads which did not match anything in the NCBI-nr database.

Besides the read length analysis, another question was whether the taxo-
nomical classification of MEGAN reflects the abundance distribution of the
taxon profiles. The simL.C abundance profile (Table consisted only of
two microbial species (E. coli strain K12 substr. MG1655 and M. marisnigri
JR1) that derive from two distinct superkingdoms of the taxonomy (Bac-
teria and Archaea). This is an interesting example because there already
exist a lot of sequenced strains for the genus FEscherichia in the databases
that might complicate the assignment. By contrast, regarding M. maris-
nigri JR1 only rather distantly related species had been sequenced so far.
The MEGAN visualization of the phylogenetic classification of the simLC
abundance profile is shown in Figure Interestingly, the amount of as-
signed reads to E. coli K12 is quite low (192) compared to the originally
sampled read count (3,214). Obviously, the remaining bacterial reads have
been assigned to related E. coli strains or other clades in the Bacteria sub-
tree. this may be due to a high number of genetic functions shared among
bacterial species or due to a too low bit-score quality filter. According to the
expectations, most of the sampled reads (15,366 of 15,509) of M. marsinigri
JR1 have been assigned to the correct taxon. The assignment rate observed
for the simL.C experiment for all three simulation runs is illustrated in Fig-
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Figure 5.4: MEGAN taxonomic analysis of simLC data set. Two arrows indicate
the organisms whose genome sequences were used for the read sampling and simulation
(Sanger technology, 800 bp). Figure taken from [Richter et al.| (2008).

O salmonella enterica subsp. enterica serovar Choleraesuis str. SC-B67 9
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Figure 5.5: Read assignment rate (simLC). For all three simulation runs, the amount
of assigned reads for E. coli str. K12 substr. MG1655 is noticably low. Figure taken
from [Richter et al.| (2008]).

ure [5.5] This finding confirms that the assignment specificity of MEGAN’s
LCA algorithm is influenced by the conservation of the read sequence and
the composition of the database (Huson et al., 2007)). In other words, this
means that the depth of the assignment in the taxonomic tree reflects the
conservation of the input sequence.

The simulation experiments (and further analyses of the simMC and
simHC data sets in [Richter et al.| (2008)) indicate that MEGAN is capable
of binning most simulated reads correctly. A side effect of the LCA algo-
rithm is that reads with many different BLAST matches may be placed to
nodes higher in the taxonomy (nearer to the root). However, this approach
prevents false-positive decisions that may occur if only the best BLAST hit
is taken for the taxonomical placement of a read (Koski and Golding, 2001)).

Eventually, at least three important issues could be tested with the nine
simulated read data sets: 1) What is the assignment specificity of MEGAN
when comparing different read lengths? 2) Does MEGAN’s read assign-
ment reflect the abundance profile determined by the profile files? and 3)
Which sequencing technology is the most appropriate one for an efficient,
taxonomical analysis of environmental samples?

In general, it becomes clear that simulation studies help to unveil strengths
and potential weaknesses of computational tools.

5.4 Discussion

At the time of publication, the MetaSim software filled the gap of miss-
ing simulation software for applications in genomics (regarding sequence
assembly) and metagenomics. New technical improvements and innovative,
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pioneering studies in both research fields still spur software developers to
implement new tools and algorithms. The testing of applications using sim-
ulated, and therefore verifiable data sets facilitate the comparison of different
software tools.

The overall success of a software tool can be measured by its adaptability
and applicability to new or changed conditions and specifications. Besides
the built-in error models for the Sanger and Roche’s 454 sequencing tech-
nologies, MetaSim provides functionality for simulations based on empirical
data. A comprehensive set of error mappings allows for the individual de-
sign of error models independent of the sequencer technology or read lengths.
Such, MetaSim is theoretically able to integrate any upcoming sequencing
technology that will be available in the foreseeable future (e.g. as described
in Eid et al. (2009) and |Clarke et al.| (2009)).

The situation of altering conditions appeared, for instance, when an im-
proved version of the 454 sequencer GS20™ the GSFLX™ (Droege and
Hill, [2008) was introduced, three years after the initial launch of the se-
quencer in 2005 (Margulies et al., [2005). Longer reads and an improved
read accuracy could be achieved by optimizing the chemistry and computer
algorithms of the platform. For example, the read accuracy could be in-
creased from 96% in 2005 to >99.5% in 2008. At the end of 2008 /beginning
of 2009, the next update, GS FLX Titanium™was announced promising
even longer reads (=400 bp reads). These tremendous advancements in
such a short time normally would require a prompt update of read process-
ing softwares like MetaSim. To be clearly here, this is sometimes hard to
achieve. Thus, MetaSim’s import functionality for empirical error models
enables to keep up with recent innovations in the rush for cheaper and faster
sequencer machines.

Future improvements of MetaSim should include the additional genera-
tion of quality values normally derived during the base-calling phase. These
values are crucial, for instance, if reads need to be quality filtered or trimmed
prior to the assembly step (see Section . A good idea would be the
incorporation of the widely used Phred scoring scheme described in [Ewing
et al. (1998)) and [Ewing and Green| (1998)). Although Sanger, 454 and Il-
lumina sequencer systems are based on different technologies, they do all
provide these scores. A phred score of a base is

Qphred =10 loglo(e) (52)

whereas e is the estimated probability of a base being wrong. For example,
if a base has a probability of 1/1000 of being incorrect, it is assigned a value
of 30.

MetaSim has already been mentioned and applied in several studies (Hoff]
et al.l )2009; Rokas and Abbotl 2009; |Zagordi et al., [2009; Monzoorul Haque
et al., 2009). Additionally, our department used MetaSim for a metagenomic
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simulation study (Mitra et al., 2010) and for benchmarking an upcoming
genome assembler, called LOCAS (Klein and Huson, 2009).
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Chapter 6

Concluding Remarks

Central subject of this thesis was the processing and analysis of sequencing
data subject to genomic and metagenomic studies. Several computational
approaches were developed that deal with the complexity of highly frag-
mented DNA sequences occurring in genome assembly projects and in the
analysis of environmental samples. The DNA sequencing landscape has
been remarkably revolutionized in the last years by the second-generation
sequencing technologies. The commercial launch of the first third-generation
sequencing technologies is expected within the the next 2-5 years. This con-
clusion points out the achievements of this work in the light of the current
and upcoming sequencing technologies.

The first software presented, OSLay, employs the synteny between re-
lated genome sequences to sort and order the contigs of an unfinished genome
assembly with regard to a reference sequence. The problem of detecting
a contig layout, which is needed for gap-closure at the end of an assem-
bly, poses a serious challenge independent of the chosen sequencing tech-
nology. While Sanger sequencing suffers from the cloning bias and lower
sequence coverages, next-generation sequencing technologies currently pro-
duce shorter reads which also leads to gapped assemblies. However, this
situation may be improved when single-molecules technologies will be able
to generate >1 Kbp fragments.

OSLay provides a user-friendly interface to examine the contig order-
ing result. Further the graphical output allows the user to detect possible
misassemblies or recombinations between two genome sequences. As a pre-
condition, the availability of a suitable reference genome is mandatory for
the OSLay algorithm. Thus, OSLay might bring great potential for hybrid
assembly projects that use different sequencing technologies for sequencing a
single genome. Because the single assemblies likely differ from each other to
a certain extent, OSLay will be able to sort the contigs of the target assem-
blies with regard to the reference assembly and vice versa. Since many new
sequencing platforms now provide protocols for obtaining mate-pairs, an in-
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corporation of this information into the OSLay algorithm would definitely
improve the quality of the results. Further, the software will benefit from
the increasing number of sequenced genomes that may serve as reference
genomes.

The study of metagenomes is a young and vibrant research field that
led to many different approaches and methods for the analysis of environ-
mental samples. Today, metagenomic projects profit from next-generation
sequencing platforms to gain exciting insights into various ecological niches.
However, the short read technologies like Illumina’s Genome Analyzer and
ABI’s SOLID are still not frequently applied, possibly due to the limited
read length. According to a simulation study (Mitra et al., 2010), this
might change in the near future because the recently introduced mate-pair
protocols facilitate the read classification.

The main computational challenges in metagenomics are the taxonomical
and the functional analysis of environmental samples which are approached
by assembly and homology- or composition-based methods (among others).
In this work, a homology-based method was developed and implemented to
functionally classify environmental reads. By applying a lowest-common-
ancestor approach, GOAnalyzer assigns each read to its encoded biological
function, molecular process and cellular component according to the hierar-
chically ordered terms of the Gene Ontology (Ashburner et al., 2000). Note
that this read-based approach can hardly be applied to assembled contigs be-
cause they may code for more than one (partial) open-reading-frame which
complicates the assignment process. In addition, since vendors of upcoming
third-generation sequencing technology promise read lengths of 1 Kbp and
longer, the algorithm has to be adapted in the future to deal with longer
sequences. Overall, the traditional classification, gene prediction and anno-
tation methods for metagenomic data will greatly benefit from longer read
sequences derived from single-molecule sequencing.

The advancements of next-generation sequencing technologies have stim-
ulated the field of bioinformatic software development, especially for genome
assembly, genome resequencing, and metagenomics. Consequently, there is
a pool of different tools that need to be evaluated by users to select the
software that fits their individual needs. In this thesis, the tool MetaSim
was presented that enables the simulation of synthetic reads based on given
genome sequences. It allows the generation of reads considering specific er-
ror models derived from various sequencing platforms. By providing the
opportunity to determine individual species abundances, MetaSim is also
capable of generating simulated metagenomes that assist the benchmarking
or testing of new methods and algorithms applied to environmental data.

The success of this software strongly depends on regular updates that
consider the latest changes of the sequencing platforms, such as modifi-
cations of error rates or read lengths. To enable the simulation of reads
derived from upcoming sequencing platforms, MetaSim provides function-
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ality to read in empirical error models, thereby, allowing the generation of
reads by setting error rates the lead to base modifications independent of
the sequencing platform. Consequently, to ensure the future applicability of
MetaSim for a broad range of users, the software should be equipped with
multiple error models representing various sequencing technologies. This
feature is important to keep up with the pace of the innovative develop-
ments of DNA sequencing.

To summarize, recent and upcoming sequencing technologies will con-
tinue to be the driving force to broaden the understanding of the biological
diversity of our planet. On the one hand, the rapid technological devel-
opments pose many challenges with regard to biological analyses and effi-
cient data handling and processing. One the other hand, they offer excit-
ing prospects for the research fields of genomics and metagenomics to gain
knowledge about still unknown organisms, their evolutionary history, and
theirs interplays with other life forms within a community.

Besides 63 metagenomic projects, 979 microbial and 116 eukaryal genomes
have been already completed (GOLD database, September 2009: http:
//www .genomesonline.org). More than hundreds of thousands of unknown
genomes are still out there. Let’s go for it!


http://www.genomesonline.org
http://www.genomesonline.org
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Publications

A.1 Published Manuscripts

1. Daniel C. Richter, Stephan C. Schuster and Daniel H. Huson.
OSLay: Optimal Syntenic Layout of Unfinished Assemblies.
Bioinformatics. (2007), volume 23, number 13, pages 1573-1579.

Summary: The whole genome shotgun approach to genome
sequencing results in a collection of contigs that must be
ordered and oriented to facilitate efficient gap closure. We
present a new tool OSLay that uses synteny between match-
ing sequences in a target assembly and a reference assem-
bly to layout the contigs (or scaffolds) in the target assem-
bly. The underlying algorithm is based on maximum weight
matching. The tool provides an interactive visualization of
the computed layout and the result can be imported into
the assembly editing tool Consed to support the design of
primer pairs for gap closure.

Motivation: To enhance efficiency in the gap closure phase
of a genome project it is crucial to know which contigs are
adjacent in the target genome. Related genome sequences
can be used to layout contigs in an assembly.

Availability: OSLay is freely available from: http://www-ab|.
informatik.uni-tuebingen.de/software/oslay

2. Daniel H. Huson, Daniel C. Richter, Christian Rausch, Tobias Dezu-
lian, Markus Franz and Regula Rupp.
Dendroscope: An interactive viewer for large phylogenetic
trees.
BMC' Bioinformatics. (2007), volume 8, pages 460

Background: Research in evolution requires software for
visualizing and editing phylogenetic trees, for increasingly
very large datasets, such as arise in expression analysis or
metagenomics, for example. It would be desirable to have
a program that provides these services in an efficient and


http://www-ab.informatik.uni-tuebingen.de/software/oslay
http://www-ab.informatik.uni-tuebingen.de/software/oslay
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user-friendly way, and that can be easily installed and run
on all major operating systems. Although a large number of
tree visualization tools are freely available, some as a part of
more comprehensive analysis packages, all have drawbacks
in one or more domains. They either lack some of the stan-
dard tree visualization techniques or basic graphics and edit-
ing features, or they are restricted to small trees containing
only tens of thousands of taxa. Moreover, many programs
are difficult to install or are not available for all common
operating systems.

Results: We have developed a new program, Dendroscope,
for the interactive visualization and navigation of phylo-
genetic trees. The program provides all standard tree vi-
sualizations and is optimized to run interactively on trees
containing hundreds of thousands of taxa. The program
provides tree editing and graphics export capabilities. To
support the inspection of large trees, Dendroscope offers a
magnification tool. The software is written in Java 1.4 and
installers are provided for Linux/Unix, MacOS X and Win-
dows XP.

Conclusion: Dendroscope is a user-friendly program for vi-
sualizing and navigating phylogenetic trees, for both small
and large datasets.

3. Daniel C. Richter, Felix Ott, Alexander F. Auch, Ramona Schmid,
Daniel H. Huson.
MetaSimA Sequencing Simulator for Genomics and Metage-
nomics.

PLoS ONE (2008), volume 3, number 10, pages 359-360.

Background: The new research field of metagenomics is pro-
viding exciting insights into various, previously unclassified
ecological systems. Next-generation sequencing technologies
are producing a rapid increase of environmental data in pub-
lic databases. There is great need for specialized software
solutions and statistical methods for dealing with complex
metagenome data sets.

Methodology /Principal Findings: To facilitate the develop-
ment and improvement of metagenomic tools and the plan-
ning of metagenomic projects, we introduce a sequencing
simulator called MetaSim. Our software can be used to gen-
erate collections of synthetic reads that reflect the diverse
taxonomical composition of typical metagenome data sets.
Based on a database of given genomes, the program allows
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the user to design a metagenome by specifying the number
of genomes present at different levels of the NCBI taxonomy,
and then to collect reads from the metagenome using a sim-
ulation of a number of different sequencing technologies. A
population sampler optionally produces evolved sequences
based on source genomes and a given evolutionary tree.
Conclusions/Significance: MetaSim allows the user to simu-
late individual read datasets that can be used as standard-
ized test scenarios for planning sequencing projects or for
benchmarking metagenomic software.

4. Daniel H. Huson, Daniel C. Richter, S. Mitra, Alexander F. Auch and
Stephan C. Schuster.
Methods for comparative metagenomics.
BMC Bioinformatics (2009), volume 10 (Suppl 1):S12

Background: Metagenomics is a rapidly growing field of re-
search that aims at studying uncultured organisms to under-
stand the true diversity of microbes, their functions, coop-
eration and evolution, in environments such as soil, water,
ancient remains of animals, or the digestive system of an-
imals and humans. The recent development of ultra-high
throughput sequencing technologies, which do not require
cloning or PCR, amplification, and can produce huge num-
bers of DNA reads at an affordable cost, has boosted the
number and scope of metagenomic sequencing projects. In-
creasingly, there is a need for new ways of comparing mul-
tiple metagenomics datasets, and for fast and user-friendly
implementations of such approaches.

Results: This paper introduces a number of new methods
for interactively exploring, analyzing and comparing multi-
ple metagenomic datasets, which will be made freely avail-
able in a new, comparative version 2.0 of the stand-alone
metagenome analysis tool MEGAN.

Conclusion: There is a great need for powerful and user-
friendly tools for comparative analysis of metagenomic data
and MEGAN 2.0 will help to fill this gap.
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A.2 Submitted Manuscripts

5. Fangqing Zhao, Ji Qi, Daniel C. Richter, Anne Buboltz, Daniel H.
Huson and Stephan C. Schuster.
Metagenomic analysis of the microbiome associated with the

hairs of extinct woolly mammoths.
PNAS (2009)

Despite the low temperature and low nutrients in the per-
mafrost, a large diversity of microorganisms occupies this en-
vironmental niche. Here, we study the diversity and commu-
nity structure of microbes isolated from unique permafrost
samples, 13 hair and 1 bone specimen from woolly mam-
moths. After analyzing approximate 1 Gb of environmental
sequences from these specimens, we determined that bone
sample contains more soil bacteria suggesting that the tax-
onomic composition of bacterial assemblages varies greatly
between these samples. A number of putative ancient bac-
teria were identified, as they had an elevated DNA damage
rate compared to modern strains, such as strains from Pseu-
domonas, Acinetobacter, Polaromonas, Caulobacter and
Stenotrophomonas. A small proportion of fungal sequences
were found in the mammoth biomes, with six out of the ten
most abundant species being plant pathogens. Psychrophilic
Flavobacterium spp., Psychroflexus spp. and Psychrobacter
spp. dominate the cold adapted bacteria. Comparisons be-
tween the mammoth biomes and modern microbial commu-
nities would shed light on both the ancient microorganisms
associated with woolly mammoths but also those inhabit the
permafrost.
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Contribution

This thesis describes several algorithms and their implementations that re-
sulted from my studies during my PhD. Here, I would like to separate the
contribution of other colleagues or collaborators from my own work.

Chapter OSLay: Syntenic Layout of Unfinished Assemblies
The first time I got in touch with the practical problem of ordering
and sorting contigs for genome assembly was during my Diploma the-
sis at the department of Daniel H. Huson. To that time, my former
colleague, Christian Rausch, gave a talk about that topic at the GCB
2004 (Friedrichs et al.l 2004). Another former member of the group,
Olaf D. Friedrichs, wrote a rudimentary script implementing the algo-
rithm. After my basic JAVA implementation of this approach using
the CGViz framework developed at our department ([Friedrichs et al.,
2003)), I spent a lot of time in the first year of my PhD to further
improve the algorithm. In 2006, during a three-month research stay in
the group of Stephan C. Schuster (PennState University, PA, USA),
I elaborated on the implementation benefiting from valuable contri-
butions by Stephan C. Schuster and his group members. Eventually,
in 2007, I wrote the manuscript (Richter et al., 2007)) and interacted
with the editor and reviewers, whereas Daniel H. Huson and Stephan
C. Schuster contributed many useful comments.

Chapter Metagenome Analysis using MEGAN

In 2006, Daniel H. Huson was a co-author of the pioneering “metage-
nomics to paleogenomics” publication (Poinar et al) 2006) that em-
ployed a metagenomic approach to sequence DNA of a woolly mam-
moth from Siberia. This study has sparked my interests, so I decided to
set my research focus on the computational analysis of metagenomes.
The MEGAN software had been already applied in the mentioned
mammoth study to taxonomically classify the sequencing reads. The
LCA algorithm was described in [Huson et al.| (2007)).
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Becoming aware that MEGAN lacked an alternative graphical presen-
tation of taxonomical results, I first started to work on an universal
charting tool for MEGAN. At the same time, I came across the list of
“Microbial Genome Properties” of the NCBI (http://www.ncbi.nlm.
nih.gov/genomes/lproks.cgi). I realized that no tool exists to ana-
lyze metagenomes regarding its organism properties, so I contributed
code to provide a built-in microbial attribute browser within MEGAN.

In the last months of my PhD, I devoted all my energy into the im-
plementation of a new module that enables MEGAN users to func-
tionally classify metagenomic read sequences. Since MEGAN uses the
BLAST output to infer the taxon assignments for reads, I conceived
a homology-based approach to annotate reads based on BLASTX
matches found in the NCBI-nr database. I decided to map the reads
onto the terms of the Gene Ontology (Ashburner et al., 2000)), whereas
Daniel H. Huson supported me throughout the conception of the al-
gorithm. Additionally, he helped me to integrate my code into the
MEGAN sources. The visualization of the functional classification
was implemented using the yFiles library as recommended by Michael
(Miggi) Schroder, a former Diploma student in our group and current
staff member of the company yWorks (http://www.yworks.com).

Chapter MetaSim: A Sequencing Simulator for Genomics and

Metagenomics

In 2006, Ramona Schmid, a Diploma student supervised by Daniel
H. Huson, worked on a read simulation tool, called ReadSim (http:
//wwu-ab.informatik.uni-tuebingen.de/software/readsim). It
already contained error models for base modifications for the Sanger
and 454 sequencing technology. However, this work remained unpub-
lished. Two years later, Felix Ott, a Diploma student supervised by
my colleague Alexander Auch and me, was assigned the task to imple-
ment a new simulation tool that additionally simulates metagenomic
data sets. Because some (theoretical) work was already accomplished
by Ramona, Felix could build on the concepts of ReadSim. However,
he did a great job in developing a comprehensive and intuitive soft-
ware (MetaSim), whereas Alexander Auch, Daniel H. Huson and I
contributed the conceptual ideas.

Then, Alexander and I conceived the simulation study and the design
of the publication (Richter et al. 2008|). Alexander performed the
BLAST runs and we analyzed and interpreted the results. I wrote
the manuscript, selected the journal and interacted with editors and
reviewers.


http://www.ncbi.nlm.nih.gov/genomes/lproks.cgi
http://www.ncbi.nlm.nih.gov/genomes/lproks.cgi
http://www.yworks.com
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Supplementary Material

C.1 Metagenome Analysis using MEGAN

’ Category ‘ c ‘ Properties

Gram Stain | v/ | positive (positive stain observed)

negative

unknown
Endospores v | yes

no

unknown
Motility v | yes

no (organism has not. yet. been found to be motile)
Shape e.g. coccoid, rod-shaped, or spiral-shaped
Arrangement e.g. single, pairs, tetrad, filaments, rosettes, or chains

Table C.1: Cellular features. General characteristics describing microbial organisms.
Column c indicates controlled vocabulary.
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’ Category ‘ c ‘ Properties ‘
Salinity v" | non-halophilic (0-2% NaCl)
mesophilic (2-5% NaCl)
moderate halophile (5-20% NaCl)
extreme halophile (20-30% NaCl)
Oxygen Req. | v/ | unknown

aerobic

microaerophilic

facultative

anaerobic

Habitat v | unknown

host-associated

aquatic

terrestrial

specialized

multiple

Table C.2: Environmental features. Description of the environment the organism
prefers to live at. Column c indicates controlled vocabulary.

’ Category ‘ c ‘Properties

Opt. Temp. Degree celsius the organism grows best at.

Range v' | unknown

cryophilic (-30 to -2°C)
psychrophilic (-1 to +10°C)
mesophilic (411 to +45°C)
thermophilic (446 to +75°C)
hyperthermophilic (above +75°C)
Habitat v | unknown

host-associated

aquatic

terrestrial

specialized

multiple

Table C.3: Range of temperatures. Range of temperature the organisms prefers to
grow at. Column c indicates controlled vocabulary.
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’ Category ‘ c ‘ Properties

Pathogenic in Organisms that this bacterium is pathogenic in
Disease Name of disease caused by a pathogenic bacterium

Table C.4: Pathogenicity. Information about the pathogenicity of an organism.
Column c indicates controlled vocabulary.
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C.2 MetaSim: A Sequencing Simulator for Ge-
nomics and Metagenomics

[ Abdce | Species [ Mbp [ 454-100 [ 454-250 | S-800 |
[ 90 [ Methanoculleus marisnigri JR1 [ 2.5 [ 82.70 [ 82.16 [ 82.71 ]
[ 10 [ Escherichia coli str. K-12 substr. MG1655 [ 4.6 [ 17.30 [ 17.39 [ 17.29 ]

Table C.5: Species abundance and percentage of sampled reads of the simLC
data set. 454-100: 454 technology. 150.000 reads (length: 100). 454-250: 454
technology. 60.000 reads (length: 250). S-800: Sanger technology. 18.750 reads
(length: 800)

[ Abdce | Species [ Mbp [ 454-100 [ 454-250 | S-800
100 Pseudomonas fluorescens PfO-1 6.4 38.42 38.39 38.18
100 Shigella dysenteriae Sd197 4.6 27.07 27.47 27.25
80 Pasteurella multocida subsp. multocida str. Pm70 2.3 10.82 10.87 10.81
50 Buchnera aphidicola str. APS 6.6 1.97 1.94 1.78
50 Francisella tularensis subsp. tularensis Schu 4 1.9 5.69 5.6 5.56
25 Alcanivorax borkumensis SK2 3.1 4.68 4.57 4.6
25 Candidatus Blochmannia floridanus 7.1 1.03 1.08 1.21
25 Pseudomonas entomophila L48 5.9 8.89 8.65 9.26
5 Escherichia coli str. K12 substr. MG1655 4.6 1.43 1.43 1.40

Table C.6: Species abundance and percentage of sampled reads of the simMC
data set. 454-100: 454 technology. 150.000 reads (length: 100). 454-250: 454
technology. 60.000 reads (length: 250). S-800: Sanger technology. 18.750 reads
(length: 800)

[ Abdce | Species [ Mbp [ 454-100 [ 454-250 | S-800
100 Agrobacterium tumefaciens str. C58 5.7 11.7 11.7 11.3
100 Anabaena variabilis ATCC 29413 7.1 14.7 14.9 14.6
100 Archaeoglobus fulgidus DSM 4304 2.2 4.54 4.41 4.55
100 Bdellovibrio bacteriovorus HD100 3.8 7.84 7.79 7.83
100 Campylobacter jejuni subsp. jejuni 81-176 1.7 3.52 3.6 3.57
100 Clostridium acetobutylicum ATCC 824 4.1 8.6 8.56 8.49
100 Lactococcus lactis subsp. cremoris SK11 2.6 5.38 5.32 5.54
100 Nitrosomonas europaea ATCC 19718 2.8 5.81 5.66 5.59
100 Pseudomonas aeruginosa PA7 6.6 13.6 13.6 14
100 Streptomyces coelicolor A3(2) 9.1 18.7 18.9 18.9
100 Sulfolobus tokodaii str. 7 2.7 5.64 5.59 5.6

Table C.7: Species abundance and percentage of sampled reads of the simHC
data set. 454-100: 454 technology. 150.000 reads (length: 100). 454-250: 454
technology. 60.000 reads (length: 250). S-800: Sanger technology. 18.750 reads
(length: 800)
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