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Zusammenfassung

Die vorliegende Arbeit umfasst die drei Grundpfeiler evidenzbasierter ,,4-dimensionaler“
Strahlentherapie: biologische Dosis-Wirkungs-Modelle, probabilistische Deformationsmo-
delle der Patientengeometrie sowie Methoden zur Evaluation und Optimierung der vom
sich bewegenden Gewebe akkumulierten Dosis in statistischen Sinne. Im Zuge dessen
werden klassisch verwendete statische Patientenmodelle durch neuartige dynamische Pa-
tientenmodelle ersetzt.
Die Anwendung derartig präziser und umfassender Strahlentherapie-Konzepte führt zu
komplexen, fundamental andersartigen Dosisverteilungen. Dies ist nur dann medizinisch
unbedenklich, wenn entsprechende biologische Modelle für die Dosisoptimierung im Pa-
tienten vorhanden sind. Modelle, die die Wahrscheinlichkeit von Nebenwirkungen in
gesundem Gewebe beschreiben, wurden auf klinische Daten grosser, an Prostata- und
Rektalkrebs behandelter Patientengruppen angewendet. Dadurch konnten Modellpara-
meter für chronische Rektal- und akute Dünndarm-Nebenwirkungen bestimmt werden.
Mögliche systematische Fehler solcher Modelle, die in Form spezifischer Dosis-Volumen-
Korrelationen auf die Behandlungsmethode zurückzuführen sind, werden diskutiert und
quantitativ mittels einer Hauptkomponentenanalyse (PCA, von engl. principal compo-
nent analysis) von Dosis-Volumen-Histogramm-(DVH)-Daten untersucht.
Es wurden zwei Ansätze zur ,,4-dimensionalen“ geometrischen Modellierung für zwei in
der Strahlentherapie auftretende Unsicherheiten entwickelt. Für zufällige geometrische
Unsicherheiten erweist sich die Anwendung einer PCA auf Stichproben von Organgeome-
trien als effiziente Methode, statistische Ersatzmodelle abzuleiten, die die komplexen bio-
mechanischen Vorgänge patientenindividueller Organbewegung in Form von Deformations-
Eigenmoden zusammenfassen. Diese Methodik wurde auf das für Beckenbestrahlungen
relevante Problem interner Organbewegungen von Prostata, Rektum und Blase angewen-
det. Zur Modellierung quasi-periodischer Atembewegungen wurde ein schneller und ge-
nauer Algorithmus zur elastischen Bildregistrierung entwickelt. Als solcher dient er als
zentrales Element beim Erstellen probabilistischer Thoraxmodelle, die auf 4D-atemkorre-
lierten CT-Bildinformationen basieren. Der Algorithmus führt starre Registrierungen für
eine grosse Zahl kleiner Bild-Teilbereiche durch. Dabei kommt ein neues, physikalisch mo-
tiviertes Regularisierungsschema auf Basis einer automatischen Klassifizierung der lokalen
Registrierungsgüte zum Einsatz.
Schliesslich wird eine klinisch praktikable Implementierung von 4D-intensitätsmodulierter
Radiotherapie (IMRT) präsentiert, welche die biologische Optimierung des Erwartungs-
wertes der Dosis im bewegten Gewebe realisiert. Dies wird durch explizite Optimierung in
mehreren Geometrieinstanzen erreicht. Der Algorithmus benutzt einen anspruchsvollen
semi-analytischen Nadelstrahlalgorithmus in Verbindung mit einem Monte-Carlo Dosis-
berechnungsverfahren, um die physikalische Dosisdeposition in den beweglichen Volumen-
elementen der Gewebematrix dynamischer Patientengeometrien präzise zu bestimmen.
Anhand eines Planungsbeispieles für die Bestrahlung bewegter Lungentumore unter freier
Atmung wird gezeigt, daß 4D-IMRT ähnlich gute Ergebnisse wie atemgetriggerte Be-
strahlung erzielt. Es kann deshalb als effizientere Alternative zu atemgetriggerter Be-



strahlung ohne verlängerte Behandlungszeiten angesehen werden. Zusätzlich wird eine
klinisch relevante Anwendung für 4D-Evaluation in Gestalt einer Studie beschrieben, in
der verschiedene intensitätsmodulierte Planungsmethoden für Prostatabestrahlung mit
Photonen und Protonen hinsichtlich ihrer Robustheit gegenüber Organbewegung ver-
glichen werden.
Zusammenfassend zeigen die in dieser Arbeit vorgestellten Entwicklungen, daß evidenz-
basierte 4D-Strahlentherapie eine umfassende und leistungsfähige Verallgemeinerung ge-
genwärtiger, auf statischen Patientengeometrien beruhenden Verfahren ist. Dies ist ein
wichtiger Schritt hin zu einem neuen Paradigma, welches dem dynamischen Charakter
der Bestrahlung von Patienten Rechnung trägt.



Summary

The present work comprises the three cornerstones of evidence-based “4-dimensional”
radiotherapy: biological dose-effect models, probabilistic patient geometry deformation
models and methods for evaluation and optimization of accumulated dose-to-moving-
tissue in a statistical sense. For this purpose, commonly used static patient models are
substituted by novel dynamic patient models.
The application of such precise and comprehensive radiotherapy concepts results in com-
plex, fundamentally different dose distributions. This is only safe if adequate quantitative
biological models for dose optimization in the patient exist. Normal tissue complication
probability (NTCP) models were applied to clinical data of large patient populations
treated for prostate and rectal cancer, and parameters are derived for chronic rectal and
acute small bowel toxicity. Potential biases of such models introduced by the treat-
ment technique in terms of specific patterns of dose-volume correlations are discussed and
quantitatively investigated with a principal component analysis (PCA) of dose-volume
histogram (DVH) data.
Two 4-dimensional geometric modelling approaches for two major types of uncertainties
encountered in radiotherapy were developed. For random geometric uncertainties, a PCA
of organ geometry samples proves an efficient method to create statistical surrogate mod-
els that summarize the complex biomechanical processes involved in patient-individual
organ motion in terms of deformation eigenmodes. The method was applied to the prob-
lem of internal motion of prostate, rectum and bladder as relevant for pelvic radiotherapy.
For modelling of quasi-periodic respiratory motion, a fast and accurate deformable reg-
istration algorithm was developed as central tool for the creation of probabilistic thorax
models based on 4D respiration correlated CT image information. The algorithm per-
forms rigid registrations for a large number of small subregions and introduces a new,
physically motivated regularization scheme on the basis of an automatic assessment of
local registration quality.
Ultimately, a clinically feasible implementation of 4D-intensity modulated radiotherapy
(IMRT) is presented that realizes biological optimization of the expected dose-to-moving-
tissue by explicit optimization in multiple instance geometries. The algorithm makes
use of an advanced semi-analytical pencil-beam algorithm in combination with Monte
Carlo dose computation to accurately determine the physically deposited dose in the
moving tissue elements of dynamic patient geometries. Based on a planning example of
free-breathing treatment of moving lung tumors, 4D-IMRT is shown to perform similar
to gated treatment and thus constitutes an more efficient alternative to gating without
prolonged treatment times. Finally, a clinically relevant application of 4D-evaluation is
described in terms of a study comparing the robustness against organ motion of different
intensity modulated prostate planning approaches for photon and proton irradiation.
Summarizing, the developments presented in this work render evidence-based 4D-radio-
therapy as comprehensive and powerful generalization of current static patient geometry
approaches. This is an important step to a new paradigm that accounts for the dynamic
nature of patient treatment.
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Chapter 1

Introduction

The history of therapeutic use of radiation dates back over hundred years. Nowadays
radiotherapy is one of the three main modalities in the fight against cancer and contributes
to more than 50% of all cancer treatments – as single modality or in combination with
surgery and chemotherapy. Thus technical as well as methodical advances in this field
clearly have the potential for an overall improvement of treatment outcome in terms of
survival rates and quality of life.

The fundamental challenge of radiotherapy is treatment of the tumor with sufficient
dose while minimizing harm to adjacent normal tissues due to unavoidable co-irradiation.
For a long time, significant improvement of the tradeoff between these goals was hampered
mainly by technical limitations preventing tight shaping of the radiation dose to the
tumor region. In the last two decades developments in treatment and imaging technology
along with the dramatic increase of computer power enabling virtual treatment simulation
and -optimization pushed the frontier of possibilities in favor of more precise irradiation
and thus higher therapeutic doses. One of the key concepts is the idea of irradiation
with modulated instead of homogeneous photon radiation intensity (intensity modulated
radiotherapy, IMRT [15, 14, 16]), which is a powerful technique for tailoring the radiation
dose to a predefined region with previously unprecedented precision. In the near future the
clinical introduction of other types of radiation with physically favorable dose deposition
characteristics such as protons (intensity modulated proton therapy, IMPT [31]) or heavy
ions promises further improvements in this direction.

The biological dose-response of tumors and normal tissues is relatively steep, which is
why uncertainties in dose translate into relatively large loss of tumor control or increase
of complication risk. Thus it is of vital importance for successful and save treatment
to minimize uncertainties in the applied dose. One of the factors here are dosimetric
uncertainties that are are introduced by the challenges encountered for dose calculation
of complex, irregular shaped radiation fields in presence of large density inhomogenieties
in the patient body. In the last decade, this has been successfully addressed by the in-
troduction of advanced dose calculation methods into clinical practice, ultimately with
Monte-Carlo algorithms as most precise dose calculation methods for dosimetric treat-
ment simulation [20].
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2 CHAPTER 1. INTRODUCTION

A major problem in radiotherapy are geometric uncertainties of various nature. In-
evitably, the exact position and/or shape of the tumor and adjacent normal tissues
(organs-at-risk, OARs) at time of treatment differs from the geometric configuration in
the pre-treatment image information used to generate a patient’s treatment plan. Typi-
cal sources of uncertainties are differences in patient positioning relative to the radiation
equipment during the treatment course, as well as internal organ motion due to breathing
or digestion activities. The magnitude of all relevant geometric uncertainties has to be
regarded already in the process of treatment planning to prevent serious deterioration
of tumor dose. In the common approach [1, 2], the tumor volume as seen in a single
pre-treatment CT scan (clinical target volume, CTV) is enlarged by a margin, and the
resulting larger planning target volume (PTV) is irradiated instead. In this way, coverage
of the CTV is sought to be guaranteed even in the presence of geometric uncertainties. A
large margin, however, goes at the expense of irradiating additional normal tissue which
in turn limits the possible therapeutic dose to the PTV. As knowledge about individual
uncertainties is incomplete prior to treatment, typically generic population-based mar-
gins are applied based on unspecific information about uncertainties in a population of
patients. Thus, within the PTV-concept margin reduction by individualization or reduc-
tion of uncertainties is an important means to facilitate tumor dose-escalation. In recent
years, this has driven major developments in imaging technology, enabling tumor localiza-
tion prior to or during treatment sessions (image-guided radiotherapy, IGRT), optionally
combined with methods to adaptively individualize margins based on image information
that becomes available during the treatment course (adaptive radiotherapy, ART [72, 73]).

Remaining random uncertainties and tumor motion during the irradiation itself still
necessiate non-vanishing margins within the PTV-concept. Especially in the presence of
large geometric variations, planning based on a static patient geometry and PTV region
is an insufficient model of reality, posing major conceptual constraints to attempts at
further dose-escalation. An important example in this context is radiotherapy of lung
tumors, which still fails frequently. It is the premise of this PhD work that new geometric
modelling and optimization concepts that capture patient geometry as a dynamic entity
are indispensable to unlock the full potential of radiotherapy. The basis of this is the
development of methods for creating “4-dimensional” patient models which explicitly
incorporate geometric uncertainties of the 3-dimensional patient geometry in terms of
individual deformation characteristics. Ultimately, this enables new treatment planning
concepts based on the accumulated dose-to-moving-tissue for tumor and OARs, which
are the biologically relevant quantities as opposed to the static PTV- and OAR-doses
employed in the conventional PTV-concept as mere surrogates.
The radiotherapy concepts described above introduce new types of largely inhomogeneous
dose distributions characterized by steep dose gradients between tumor and adjacent
OARs and a significant redistribution of dose within the surrounding normal tissues. This
deviation from longstanding clinical practice carries the danger of undesirable side effects
if dose-response of complications is not well understood, highlighting the importance of
reliable models of normal tissue dose-response relationships. In this sense, save dose-
escalation using new radiotherapy techniques has to be accomplished with the concept of
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evidence-based biological optimization, which aims to translate biological knowledge and
past clinical experience into quantitative biological models for dose optimization.

With these premises in mind, this PhD work adresses the following three key issues:

• Evidence-based biological modelling (chapter 2): Extracting quantitative in-
formation about normal tissue dose-response from clinical data is demanding and
requires large sets of patient data with long follow-up time and a sufficient vari-
ability of dose patterns in the clinical dataset. Great care has to be taken with
dose-response models for the prospective use with new radiotherapy techniques, as
such models can only be based retrospectively on past clinical data. Differences in
clinical practice in terms of dose prescription and treatment technique lead to dif-
ferences in the characteristics of dose distributions and their correlated variability,
which can induce a model bias. In section 2.1 this effect is investigated in detail
based on the example of rectal side-effects in the treatment of prostate cancer. In
section 2.2 clinical data of 319 prostate and 152 rectal cancer patients are used
to adapt and compare a number of biological models for chronic rectal bleeding
and acute diarrhea, respectively, as important dose limiting side effects in pelvic
radiotherapy.

• 4-dimensional patient models (chapter 3): The ultimate method for modelling
tissue deformations is the use of biomechanical models explicitly describing phys-
ical properties of the different tissue materials [70]. This, however, is challenging
not only due to incomplete knowledge of tissue parameters and the vast amount
of variables involved to describe deformation fields, but also because of the com-
plex and often unknown boundary conditions driving deformations in real patients.
Radiotherapy is mainly faced with either random or quasi-periodical deformable
organ motion, and surrogate models for both phenomena have been developed in
this work as efficient alternatives to full biomechanical modelling. Section 3.1 in-
troduces an approach to model random deformable uncertainties of 3-dimensional
organ geometries. The method employs a method from multidimensional statistics
– principal component analysis (PCA) – to determine patient individual ’deforma-
tion modes’ which serve as a statistical model of correlated organ deformations
between treatment sessions, and was applied to patient data of prostate, bladder
and rectum. Section 3.2 presents a new approach of deformable image registra-
tion for direct image-based modelling of quasi-periodical respiratory motion and
deformations based on time-resolved ’4-dimensional’ image datasets of the thorax
(respiratory correlated computed tomography, RCCT). This allows construction of
patient-individual probabilistic models of the thorax region. Apart from this, the
algorithm can also be applied to multimodality deformable registration problems of
other organ sites encounterd in radiotherapy.

• 4-dimensional radiotherapy planning (chapter 4): The development of 4-
dimensional patient models facilitates new radiotherapy concepts that implement
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“4-dimensional” optimization and evaluation based upon the accumulated dose-
to-moving-tissue instead of static dose surrogates as in the PTV-concept. Such a
4D-IMRT optimization method and its application to lung planning is presented in
section 4.1. The algorithm performs concurrent optimization in multiple RCCT-
geometries, thereby explicitly incorporating respiratory motion into planning. Dedi-
cated dose calculation methods are employed for realistic modelling of dose-buildup
and -scattering in the thorax region. The final plan dose is calculated using a 4D-
Monte Carlo (MC) algorithm as currently most precise dose calculation method in
the presence of large tissue inhomogeneities. Based on a patient example, it could
be shown that 4D-IMRT optimization outperforms common PTV-based planning
approaches in terms of therapeutic tumor dose and efficiency of application. In
section 4.2 an example for 4D-evaluation is given in terms of a study comparing
the robustness of IMRT and IMPT against organ motion. The methodology al-
lows retrospective comparison of different radiotherapeutic approaches based on the
accumulated dose-to-moving-tissue for simulated treatment courses.

Summarizing, the methods developed in this PhD work appreciate that patients can-
not be regarded as static in the process of dose optimization. Application of new, more
precise radiotherapy concepts leads to fundamentally different dose distributions, which
is only safe if quantitative biological models for dose optimization exist. Accordingly,
this thesis provides the following three cornerstones of 4-dimensional biological optimiza-
tion: biological models, probabilistic deformation models and methods for evaluation and
optimization of accumulated dose in a statistical sense.



Chapter 2

Evidence-based biological modelling

Radiotherapy techniques like IMRT, IMPT and “4D radiotherapy” concepts constitute
powerful tools to control the physical dose distribution with a large number of degrees
of freedom, and undoubtedly bear potential of improved cure rates through higher ther-
apeutic doses. Normal tissue doses will nevertheless deviate from established practice.
Safe dose-escalation obviously requires a profound understanding of the dose-response of
normal tissues to the largely inhomogeneous dose distributions produced by such new
techniques. In this sense, evidence-based biological modelling intends to translate clinical
experience about dose-response into quantitative biological models for dose optimization.

Clinical data from the past provide a valuable source of information about normal-
tissue dose-response. However, retrospective biological modelling on such datasets is
fraught with practical challenges and problems. Firstly and most obviously, datasets with
a large number of patients and toxicity events, as well as sufficiently long follow-up times
are necessary to draw statistically reliable conclusions. For many organs only few of such
datasets have been published, and the comparability of different studies is additionally
hampered by differences in the schemes used for grading toxicities and the treatment
techniques. In fact, the latter deserves special attention when trying to extract quanti-
tative information about dose-response for prospective clinical use with new treatment
techniques, as every dose prescrition scheme and treatment technique induces specific
patterns of dose-volume correlations in patient populations which can introduce a model
bias. This has been investigated in detail in this PhD work on the example of rectal
dose-response in prostate radiotherapy as presented in section 2.1.
Section 2.2 summarizes the results of restrospective clinical studies for chronic rectal and
acute small bowel complications as examples for biological modelling in terms of normal
tissue complication probability models (NTCP). Such empiric or semi-empiric models pa-
rameterize the vast information about inhomogeneous dose distributions and correspon-
ding outcome data from large patient populations into few-parametric models that assign
a single probability value to an individual treatment plan. This enables evidence-based
ranking of alternative plans in the planning process according to their predicted compli-
cation risk. The relevance of such biological models for dose optimization is discussed in
section 2.3.

5



6 CHAPTER 2. EVIDENCE-BASED BIOLOGICAL MODELLING

2.1 Correlated dose variability and retrospective bio-

logical modelling

A first step in complication modelling is the reduction of 3D dose distributions to dose-
volume histograms (DVHs). Based on this, correlations of parameters derived from the
DVHs and reported toxicities are investigated. An inherent problem is the influence of
the treatment technique on the results of modelling. For a given patient population,
the treatment technique induces correlations between DVH bins of different dose levels
owing to the interaction of the given beam directions and shapes with the variability of
the patient geometries. As this can deteriorate the prospective use of such models for
other patient populations treated using different techniques, such correlations should be
considered when interpreting and comparing the results of different studies.
The method at hand to analyze the correlated variability of DVH shapes in a given patient
population is principal component analysis (PCA). In this PhD work, PCA was applied
to rectal wall DVHs of a population of prostate cancer patients that were treated with a
four-field box 3D-CRT technique (Söhn et al. 2007 [59], see Appendix A).

2.1.1 Principal component analysis (PCA) of DVH data

Due to the very nature of DVHs of a patient population treated with the same treat-
ment technique the volume values V1, . . . , Vp of the p DVH-dosebins are highly correlated,
which implies that the underlying dimensionality of this multivariate statistical problem
is actually much smaller than p. By calculating the eigenvectors of the covariance matrix,
PCA allows to find the statistically independent ’eigenmodes’ of variability, which are
ordered by their statistical importance in terms of the corresponding eigenvalues. An
eigenmode is a p-dimensional vector defining differential volume change for each dosebin,
thereby representing correlated DVH-shape change. Mathematically, the p eigenmodes
define a new coordinate system, in which each DVH can be (exactly) represented by p new
coordinates c1, . . . , cp (”principal components”, PCs). In other words, each DVH can be
represented as a linear combination of all p modes weighted by the corresponding values
of c1, . . . , cp. If the overall variability of the dataset is clearly dominated by few PCs, this
offers the possibility to approximately represent the most important features of individual
DVH morphology by the first few parameters {c1, . . . , cM}, with M ≪ p. Further details
can be found in Appendix A. The use of PCA in a different context (geometric modelling)
is described in sect. 3.1.

Fig. 2.1a shows the rectal wall DVHs of 319 patients treated at the William Beau-
mont Hospital (Royal Oak, MI) with a four-field box 3D-CRT technique. The first three
eigenvectors resulting from a PCA of the DVHs are shown as fig. 2.1b together with the
corresponding eigenvalues. For this population, the first eigenmode represents correlated
variability of the DVH dataset around the mean DVH in the range ∼5-75Gy, and thus
the first PC essentially describes the variation of the fraction of rectal wall volume which
is inside the irradiated volume. This is why the first PC correlates with dosimetric mea-
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Figure 2.1: (a) Rectal wall dose-volume histograms (DVHs) of 319 patients treated with
a four-field box 3D-CRT technique, plotted together with the population-mean DVH.
(b) First three eigenvectors resulting from a principal component analysis (PCA) of the
DVH dataset. (c)/(d) Scatterplots of the first principal components (PCs), c2 vs. c1 and
c3 vs. c1, for the 319 DVHs. The color coding in (a), (c) and (d) indicates the grade
of chronic rectal bleeding developed by the patients. The scatterplots in (c) and (d)
suggest increased toxicity of grade ≥ 2 if combinations of the PCs are simultaneously
large. (adapted from [59])
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sures like the mean dose or V60 as shown in appendix A. The second eigenvector describes
anticorrelated variability of the low and high dose region (∼5-40/50-75Gy). Thus, the
second PC is related to the fraction of rectal wall volume which is inside the 4-field over-
lap region (∼presciption dose and less) and therefore not in the 2-field overlap region
(∼half the presciption dose and less). The third mode describes correlated variability of
volumes receiving intermediate doses (∼40-45Gy) and doses above ∼70Gy. It essentially
results from variations of the prescribed 4-field box dose itself, which obviously also af-
fects the dose in the 2-field overlap. This variability of dose levels in the population is
a consequence of the particular dose prescription scheme applied to this specific patient
population. As can be expected from the pattern of the third eigenmode in fig. 2.1b, the
third principal component shows correlation to the maximal dose (appendix A).

The spectrum of eigenvalues is clearly dominated by few values: about 93.6% (96.2%)
of the DVH shape variability can already be described by the first two (three) PCs.
Scatterplots showing the distribution of the first PCs (c2 vs. c1 and c3 vs. c1) for the
319 DVHs are plotted as fig. 2.1c and 2.1d. The PCs itself – irrespective of toxicity –
do not show significant clustering, which corresponds to a fairly regular distribution of
DVH shapes for the given eigenvectors in visual agreement to fig. 2.1a. This supports
the applicability of PCA, which to a certain extent is based on the assumption that the
underlying distribution of input data is approximately Gaussian.

2.1.2 DVH-PCA and toxicity

Investigation of the correlations of principal components and toxicity gives insight into
the specific influence of the treatment technique on toxicity modelling.

Points corresponding to DVHs associated with chronic rectal bleeding of grade ≥ 2
were marked colorcoded in the scatterplots in fig. 2.1c and 2.1d. Severe toxicity of
grade ≥ 3 appears to be associated with positive values of the first two PCs, corres-
ponding to increased volumes especially in the high dose region in the 4-field overlap
as discussed above. Concerning toxicity of grade ≥ 2, the scatterplots suggest increased
toxicity rates if combinations of PCs are simultaneously large. This was analyzed by
multivariate logistic regression for the first two and three PCs. As shown in appendix A,
both models revealed significant correlations of combinations of PCs and toxicity. The
corresponding linear combinations of eigenvectors give rise to ’compound modes’, which
express the DVH pattern variability (relative to the population-mean DVH) that causes
largest changes of toxicity according to the respective logistic regression model.

Thus, in principle the DVH-PCA approach could be applied to clinical treatment plan-
ning by penalizing DVH patterns that deviate from the population-mean DVH according
to the compound modes. However, such a phenomenological ’DVH-PCA based NTCP
model’ has to be used with caution. as it is limited to 4-field techniques only and does
not allow extrapolation to techniques such as IMRT with many more degrees of freedom
and thus larger variability of dose distributions.
Limited extrapolability, however, is a drawback shared to some extend by all NTCP
models. In this context it is illustrative to distinguish DVH-shape variability in a patient
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population imposed by the treatment technique from the ’biologically relevant’ variability
in dose-levels, i.e. the variability that leads to significantly different risks of toxicity. If (one
or more) dominating PCs show correlation with toxicity (as for the patient population
used in the study above), the treatment technique obviously induces ’biologically relevant’
variability. Conversely, if none of the dominating PCs correlates to toxicity, basing NTCP
models on such a population might lead to misinterpretations. This risk is particulary
pertinent for directly dose-volume based NTCP models (eg. cutoff-dose models, see next
section) as will be discussed in sect. 2.3

2.2 Biological models for optimization

A normal tissue complication probability (NTCP) model assigns a complication probability
for an organ at risk to a generally inhomogeneous dose-distribution. This enables evidence
based ranking of alternative plans in the planning process according to their predicted
complication risk. The functional form of such a model can be based on a mechanistic
description of biological processes, or might be designed to result in a phenomenological
’fit of the data’. The models regarded in this work are of the following general form:

• First, a summary measure µ is calculated from the dose distribution. The quantity µ
serves as a ranking function by imposing an order among individual plans according
to their complication risk.

• Then, a function, NTCP(µ), which assigns complication probabilities to the values
of the summary measure is defined. Such a function is required to continuously map
µ to the interval [0, 1], while preserving the ranking imposed by the numerical values
of the summary measure. This is afforded by the class of sigmoid-type functions.

Two important types of NTCP-models can be distinguished: Dose-volume based models
use a single DVH-parameter (eg. the volume VD irradiated to a certain dose-level D)
as summary measure. This gives rise to dose-volume constraints in classical, i.e. non-
biological treatment planning, which are widely used in current clinical practice.
In contrast, EUD-like models define an equivalent uniform dose, EUD = f−1

(
∑

i νif(Di)
)

,
as surrogate parameter calculated using all bins (νi, Di) of a DVH, where the form of the
(monotonic) function f depends on the model. A number of models define EUD as
Lebesque a-norm of the dose, i.e. as the following power-law relationship [43]:

EUDPL =

(

∑

i

νiD
a
i

)1/a

(2.1)

Here a ∈ [1 . . .∞] is a parameter associated with the strength of the volume effect for the
organ under consideration, which reflects quantitatively how organs react to inhomoge-
neous dose distributions in terms of high doses to small volumes. Two types of normal tis-
sue behavior are distinguished in the context of biological modelling as extremes: Organs
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with a large volume effect show relatively large tolerance to partial overdosage (parallel
organs, eg. lung). The other extreme are so-called serial organs which are sensitive to par-
tial overdosage, i.e. high doses are only tolerated if confined to small subvolumes. In this
case the dose-volume parameter a expresses the specific increase in overall dose-tolerance
with reduction of the partial volume receiving high doses. Such organs are formally mod-
elled as series (’chain’) of independent functional subunits, where the (local) destruction
of single subunits leads to functional obliteration of the whole organ. Typical examples for
serial organs are spinal cord and other neural structures which are characterized by large
a-values (eg. spinal cord: a ≈ 20), rendering the maximum dose as dosimetric parameter
most relevant for toxicity for a → ∞.

In this work, retrospective clinical studies for two predominantly serial organs – rectum
and small bowel – were conducted, aiming to determine biological parameters of these
organs as relevant for pelvic radiotherapy.

2.2.1 Late rectal complications in prostate radiotherapy

In this study (Söhn et al. 2007 [60], see Appendix B), one dose-volume based and five
EUD-like NTCP models for chronic rectal bleeding of grade ≥ 2 were applied to a popu-
lation of 319 prostate cancer patients treated with a 3D-CRT technique to doses between
70.2 and 79.2Gy (same population as used in sect. 2.1). In the following, the results of
the study are briefly summarized based on two of the considered models as representative
examples.

Cutoff-dose model In this phenomenological dose-volume based model the summary
measure µ is given by the proportion VDc

of the OAR receiving doses equal to or above
a (cutoff) dose level Dc. For given Dc, logistic regression was used to test for correlation
of VDc

and toxicity. Thus, in terms of the general NTCP model scheme presented above,
the NTCP function is given by the two-parametric (sigmoid-type) logistic function

NTCPlogistic(µ) =
1

1 + exp (−β0 − β1µ)
(2.2)

Poisson-EUD model This model utilizes mechanistic concepts to describe predom-
inantly serial tissue dose-response and derives the following NTCP-function based on
Poissonian statistics [8]:

NTCPpoisson(EUDPL) = 1 − exp

[

− ln 2 ·

(

EUDPL

D50

)a ]

, (2.3)

with D50 as dose causing 50% complication probability and the volume-effect parameter
a as steepness parameter of this sigmoid-type function. The power-law EUD, eq. (2.1),
serves as summary measure in this model.
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Figure 2.2: (a)/(b) Cutoff-dose logistic regression model and (c) Poisson-EUD model for
chronic rectal bleeding of Grade ≥ 2: (a) Values of the LogLikelihood (LL) in dependence
of the cutoff dose Dc; models with LL above the dashed horizontal line show a significant
correlation (α < 0.05) between VDc

and toxicity. (b)/(c) Predicted probability of bleeding
according to (b) the cutoff-dose logistic regression model with Dc = 73.7Gy, plotted as
a function of the relative volume receiving ≥ 73.7Gy, and (c) the Poisson-EUD model,
plotted as a function of the equivalent uniform dose EUDPL, eq. (2.1). The ’×’-symbols
represent toxicity (1/0 for patients with/without toxicity, respectively). (from [60])

The models were fitted to the patient data using maximum likelihood estimation
[23]. This method allows assessment of the statistical significance of a model fit by the
likelihood-function L, which is usually specified as LogLikelihood in terms of its natural
logarithm.
Fig. 2.2 shows the fit results for the two models under consideration. Concerning the
cutoff-dose model, fig. 2.2a shows the LogLikelihood values of different logistic regression
model fits when varying the cutoff dose Dc. For all dose levels in the range Dc ∼ 50-80Gy
a significant correlation (α < 0.05) of the relative volume irradiated with doses ≥ Dc

and chronic rectal bleeding of grade ≥ 2 was found. As will be discussed in sect. 2.3,
this characteristics is closely related to the specific treatment technique applied for the
patient population under consideration. As example for a model fit, fig. 2.2b depicts
the NTCP curve for the local maximum at Dc = 73.7Gy. The NTCP curve resulting
from the Poisson-EUD model is shown in fig. 2.2c. As obvious by comparison with the
observed complication rates this EUD-based model describes the data very well, and a
clear correlation of EUD and toxicity could be observed. The optimal fit was found for a
volume-effect parameter of a = 13.5 ± 3.8 and a reference dose of D50 = 78.5 ± 0.6Gy.

2.2.2 Acute Small Bowel reactions in pelvic radiotherapy

The dose-volume relationship of acute small bowel reactions (diarrhea of grade ≥ 3) was
studied on a population of 152 rectal cancer patients treated predominantly with a three-
field 3D-CRT technique (Appendix C). In this study, a cutoff-dose logistic regression
model (see sect. 2.2.1) was used to test for correlations of VDc

(absolute small bowel vol-
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Figure 2.3: Cutoff-dose logistic regression model of acute diarrhea of grade ≥ 3: (a) Values
of the LogLikelihood in dependence of the cutoff dose Dc; all models reach a significance
level of α < 0.05 as marked by the dashed horizontal line as threshold. (b) Predicted
probability of diarrhea according to the model for Dc = 15Gy, plotted as a function of
small bowel volume receiving at least 15Gy.

ume receiving doses above a cutoff dose Dc) and toxicity.
Fig. 2.3 depicts the corresponding fit results. According to this model, significant correla-
tions of VDc

and toxicity exist for all dose-levels Dc in the range 5-45Gy for the population
under consideration. The most significant model was found for Dc = 15Gy (fig. 2.3a).
The corresponding NTCP curve is plotted in fig. 2.3b, showing a steep increase of toxicity
for larger small bowel volumes receiving doses of 15Gy and more. Similar findings applied
when only the pre- and postoperatively irradiated patients were considered as subgroups
(Appendix C). Thus for patients treated with similar 3D-CRT techniques it is advisable
to minimize the volume V15Gy. For patients treated with different treatment techniques,
however, other dosimetric measures might be more relevant as discussed in the following.

2.3 Discussion and Conclusions

The studies about chronic rectal and acute small bowel complications presented in this
work provide valuable quantitative information about dose-response relationships for
evidence-based dose optimization of future patient treatment in pelvic radiotherapy.

Concerning rectal complications, the results clearly confirm a volume effect for chronic
rectal bleeding of grade 2 or worse which can be described very well with EUD-like models.
The volume effect parameter of the power-law EUD, eq. (2.1), was determined to be in
the order of a ≈ 12-13, which was recently confirmed by two other studies based on large,
independent patient populations (Fellini et al. 2008 [18]: a ∼ 11.8 (1119 patients); Tucker
et al. 2008 [63]: a ∼ 12.5 (1023 patients)). Thus, a volume-effect parameter of a ≈ 12-13
can be regarded as well established for prospective EUD-based treatment planning.
Apart from this, correlations of single dose-levels with toxicity were investigated in this
work in terms of a cutoff-dose logistic regression model. This directly dose-volume based
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model generally fitted the data worse, but still found significant correlation of rectal wall
relative volume above single cutoff-dose levels Dc in the range ∼50-80 Gy and toxicity
for the patient population under investigation. This can be clearly traced back to the
4-field box technique used, which induces correlations of all DVH dosebins in this dose
range as shown by the first two eigenvectors resulting from a PCA of the DVH data (sect.
2.1.1). In fact, the finding that VD correlates to bleeding for all doses D ∼ 50-80Gy
is in contradiction to results of some other studies that reported significant correlations
for D ∼ 40-50Gy [24], 40.9Gy [64] or 60Gy [74]. In these studies a six-field conformal
technique was used for all or part of the treatment/population, which induces different
correlations of the DVH dosebins among the patients, and is the likely reason for these
differences. Generally speaking, if a treatment technique generates correlations in the dose
distributions of a population, the biological significance of certain dosimetric variables may
be attached to correlated, yet biologically insignificant variables. These latter variables
”lend” their biological significance from the truly significant parameters to which they
are correlated. This risk is particulary pertinent if dose-volume constraints (i.e. cutoff-
dose models) are assessed for their clinical significance. PCA of DVH data is a powerful
method to reveal such correlations (sect. 2.1).

Concerning acute small bowel complications, the planned value of V15Gy, i.e. the small
bowel volume receiving doses above 15Gy, was found most relevant for developing diarrhea
of grade 3 or worse in a population of rectal cancer patients predominantly treated with
a three-field 3D-CRT technique (pelvic treatment to 45Gy). Thus, treatment planning
with similar three-field techniques may use this dosimetric parameter as constraint to
prevent excessive small bowel reactions to irradiation. Of note, for such techniques the
fraction of small bowel volume that is covered by only one of the three treatment beams
is closely related to the value of V15Gy. Following the discussion above, this suggests
that the observed correlations of V15Gy and toxicity may be influenced by the three-field
technique used for the study’s patient population. In this context, two studies by other
authors (Roeske et al. 2008 [49] and Fiorino et al. 2008 [19]) that used different treatment
techniques (IMRT and four-field box/IMRT), found the high dose levels as most relevant
for developing acute diarrhea. As these studies are also different in other aspects (toxicity
endpoints; volume definition; treatment concepts), a final conclusion about the truly
’biologically relevant’ dosimetric parameters for this kind of toxicity necessitates further
studies, such as applying EUD-based models to small bowel data.
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Chapter 3

4-dimensional geometric modelling

Radiotherapy is confronted with geometric uncertainties of various nature such as differ-
ences in the geometric configuration (position, shape) of the tumor and adjacent organs
at time of treatment as compared to planning. This can lead to a degradation of tumor
dose and increased toxicity if it is not appropriately compensated for in the process of
planning and treatment.

Geometric uncertainties arise from the impossibility of reproducible patient position-
ing relative to the radiation equipment prior to a treatment session (setup errors) as
well as internal organ motion relative to the patient’s bony structure. In this context,
intrafractional uncertainties refer to geometric changes happening in the timescale of a
treatment session, such as internal organ motion caused by breathing. Interfractional un-
certainties are differences of patient setup and -geometry between the repeated treatment
sessions of a multifractionated treatment course. Differences of the patient geometry can
have rigid and non-rigid components. Mathematically, rigid motion can be described rel-
atively simple as combination of a translation and rotation, while modelling of non-rigid
geometric changes, i.e. deformations, is demanding. In current clinical practice, the influ-
ence of deformations is usually neglected, which is a valid approximation for uncertainties
like interfractional setup errors in treatment of pelvic or intracranial tumors, and to some
extent also for internal motion of certain tumors. Especially internal organ motion, how-
ever, shows significant deformable components. Important examples are deformations
within the pelvic region caused by inter- and intrafractional changes in bladder and rec-
tum filling, as well as respiratory deformations within the thorax. As a consequence, the
moving tissue elements accumulate dose at different positions of the treatment beam dur-
ing irradiation. Thus, new radiotherapy concepts that aim to incorporate the accumulated
tumor and normal tissue dose into optimization and evaluation (chapter 4) inherently have
to account for deformations. In this sense “4-dimensional modelling” refers to methods
that allow for efficient modelling of inter- and intrafractional deformations of the patient
geometry.

Two such methods have been developed in this PhD work to address deformable uncer-
tainties of both random and quasi-periodical character. Section 3.1 introduces a method
to extract the fundamental ’deformation modes’ from random organ deformation samples.

15
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Based on the example of interfractional prostate, bladder and rectum deformations, the
method is shown to facilitate efficient low-order parametric modelling of such deformable
uncertainties. Section 3.2 presents the use of a novel deformable registration method for
modelling quasi-periodical respiratory deformations based on RCCT (“4D-CT“) datasets.

3.1 Modelling of random deformable uncertainties

An effective method of modelling deformations and correlated organ motion in terms of
so-called eigenmodes which represent the essential characteristics of individual geometric
variations was developed (Söhn et al. 2005 [58], see Appendix D). The method is based on
a Principal Component Analysis (PCA) of random organ geometry samples. The PCA-
approach allows for reducing the large dimensionality of deformation data from multiple
CT-studies to a few-parametric statistical model of organ deformation.
After a brief introduction into the basic ideas of the method in section 3.1.1, exemplary
applications of the method for new planning and evaluation approaches in radiotherapy
of prostate cancer are presented in section 3.1.2. Its impact and use in the context of
other new radiotherapeutic applications is discussed in section 3.1.3.

3.1.1 Principal component analysis (PCA) of random organ ge-

ometry samples

Given multiple 3-dimensional organ geometries as seen in a series of N CT scans of an
individual patient, a straightforward parametrization of a geometry i is given by the
3M-dimensional vector

p(i) = (x1(i), . . . , xM(i)) ∈ ℜ3M , i = 1 . . . N (3.1)

of positions xj(i) ∈ ℜ3 of j = 1 . . .M points distributed over the organ surface or the
entire organ. Here ’organ geometry’ may refer to a single anatomical organ or a com-
posite geometry of multiple organs, where in the latter case eq. (3.1) is to be understood
as collection of points distributed over multiple anatomical organs. For the following it
is important that for each point index j the series xj(1), . . . , xj(N) refers to the same
anatomical position, i.e. the set of geometry vectors {p(i)}i=1...N is a collection of corres-
ponding points.

For many phenomena in radiotherapy involving deformations information about the
exact anatomical and physical processes that drive the deformations is not available. Thus
it is desirable to develop a surrogate model of the deformation process. For this, the set of
geometry vectors {p(i)}i=1...N is assumed to represent random samples from a stochastic
process of organ motion/deformation. Obviously, due to anatomical reasons the displace-
ments of the M organ points are highly correlated, which implies that the underlying
dimensionality of this multivariate problem is actually much smaller than 3M . This mo-
tivates a surrogate model that follows the idea to substitute biomechanical properties
of moving/deforming organs by observed correlations in the motion of tissue elements.
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The method at hand to extract information about correlated organ deformations from
this 3M-dimensional problem with N samples is an approach from multivariate statistics,
the Principal Component Analysis (PCA) [38, 27]. This involves calculation of the mean
geometry p̄ ∈ ℜ3M and the covariance matrix C ∈ ℜ3M×3M :

p̄ =
1

N

N
∑

i=1

p(i) (3.2)

C =
1

N − 1

N
∑

i=1

(

p(i) − p̄
)

·
(

p(i) − p̄
)T

(3.3)

Here () · ()T denotes the outer product of the two 3M-dimensional vectors. Being inter-
ested in correlations in the movement of the M organ points, the covariance matrix is
diagonalized. The resulting eigenvectors ql ∈ ℜ3M of the covariance matrix are the mu-
tually uncorrelated modes of deformation, so-called eigenmodes. Each eigenvector defines
a 3D-vector field of correlated displacements for the M organ points. Each eigenvalue
quantifies the variance of the N geometry samples in the (3M-dimensional) direction of
the corresponding eigenmode. Thus the eigenmodes with largest eigenvalues represent
the ’principal’ deformation modes, that span the space of largest variability.

New geometry samples can be simulated within the low dimensional ’deformation
space’ by deforming the mean shape with a weighted sum of eigenmodes:

psimul = p̄ +

L
∑

l=1

clql (3.4)

where the sum runs over the first L dominating eigenmodes, and, according to the the-
ory of PCA, the coefficients cl ∈ ℜ obey Gaussian distributions with the corresponding
eigenvalues as variances. In this way, PCA provides a low dimensional, statistical model
of individual organ deformation.

Quantitative evaluation

The potential of the PCA-method to model geometric variability of clinical patient data
was investigated based on the example of collective motion/deformation of prostate, blad-
der and rectum as important model system in radiotherapy of pelvic tumors (see Appendix
D).
For this study, data of 4 example patients with N = 15 − 18 manually contoured organ
geometries each were used. The input data to the PCA-model according to eq. (3.1) were
generated using a finite element method. Based on these data, the spectrum of eigenvalues
was found to be dominated by only few values, which indicates that deformable motion
of prostate/bladder/rectum as composite geometry is governed by only few independent
processes that describe patient individual characteristics of internal organ motion and
deformation. Specifically, about 80% of the overall geometric variability could be repre-
sented by the first 4 eigenmodes according to the PCA model.
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Figure 3.1: (a) transversal and (b) sagittal view of the pelvic region in the planning CT
scan for the example patient. The color-overlay shows the coverage probability distri-
butions of internal organ motion for prostate, bladder and rectum as calculated with a
PCA-model of the three organs. The contours depict the positions and shapes of the
organs as seen in the planning CT.

The capability of the PCA model to represent measured organ geometries according to
eq. (3.4) was evaluated by calculating residual errors of organ surface points for a varying
number L of dominating eigenmodes. It could be shown that the residual errors decrease
fast with increasing number of eigenmodes used in the PCA model. Using L = 4 eigen-
modes, the organ surface residuals of all four patients were found to be well below 2mm
for all three organs.

3.1.2 Applications of the PCA-method in radiotherapy

PCA is an efficient way to statistically model patient individual organ deformation char-
acteristics. The key to this is given by eq. (3.4). This equation describes how synthetic
organ geometries not measured previously can be generated, which follow the multidimen-
sional statistics of the deformation samples used as input to the model. Two important
applications of this are described in the following: The prediction of coverage probability
distributions and the dosimetric evaluation of treatment courses.

Prediction of coverage probability distributions for use in probability-based
treatment planning

Mathematically, the coverage probability distribution associated with a moving/deforming
organ structure is a scalar field of values in the range [0 . . . 1], which for each point within
the patient gives the frequency of being covered by any part of the organ. Coverage
probabilities have been used in the field of radiotherapy as advanced method for margin
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Figure 3.2: IMRT treatment planning incorporating coverage probability as generated
with the PCA-model into optimization: (a) transversal and (b) sagittal view of the dose
distribution of an example plan for the patient shown in fig. 3.1. The directions of the
incident treatment beams are depicted by yellow lines.

definition [61] as well as in the context of probabilistic treatment planning [9, 10]. The
latter approach incorporates information about organ specific coverage probabilities into
the optimization process by associating an importance factor to each tumor and OAR
voxel according to its coverage probability. For the example of prostate radiotherapy,
this approach provides a favorable ratio of tumor vs. OAR doses as well as improved
plan robustness in a population of patients when compared to conventional margin-based
planning [10].

At time of planning the actual patient individual coverage probability is unknown.
Thus a surrogate distribution predictive for the treatment course has to be estimated.
For this, Baum et al. 2006 [10] used five pre-treatment CT scans, and calculated the
coverage probability of internal organ motion by directly using the five nominal geometry
samples as discrete model of organ motion. In this context, the PCA-method provides
an advanced statistical model of organ motion/deformation that can be used for coverage
probability generation as demonstrated by Söhn et al. 2004 [56] and Price and Moore
2007 [48].
As example for use in prostate radiotherapy, fig. 3.1 shows the coverage probabilities
of internal organ motion for prostate, bladder and rectum as generated with the PCA-
method. The example patient showed significant geometric variability, which is reflected in
the spatially wide-spread coverage probability distributions of all three organs and their
large mutual overlap. These distributions were used to create a coverage probability-
based prostate treatment plan (fig. 3.2). For this plan a poisson cell-kill EUD of 74Gy
in 37 fractions was prescribed to the prostate, see eq. (4.7), with serial EUD constraints
to rectum and bladder as dose-limiting organs. In the overlap regions of prostate and
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rectum/bladder the trade-off between the conflicting goals of dosimetric tumor coverage
and OAR sparing could be solved by the optimizer based on the predicted coverage
probabilities of the organs, which results in satisfying tumor coverage even in the presence
of considerable internal organ motion in the course of treatment (see also fig. 3.3 in the next
subsection). This is an important advantage over conventional margin-based planning,
where the considerable overlaps of PTV and rectum/bladder lead to ill-defined trade-off
problems during plan optimization, typically preventing sufficient dose coverage of the
PTV or excessive dose to the OARs.

Dosimetric treatment course evaluation

Geometric uncertainties as introduced by internal organ motion and other sources of error
translate into dosimetric uncertainties at time of treatment planning. The PCA-method
provides a powerful tool for ’virtual treatment simulations’ with full information about
motion of individual organ points by sampling organ geometries psimul ∈ ℜ3M from the
’deformation space’ spanned by the patient individual eigenmodes according to eq. (3.4).
This facilitates predictive dosimetric evaluation of treatment plans by simulating a mul-
titude of treatment courses and their accumulated organ doses.
Fig. 3.3 shows an example, where a composite PCA-model initialized with N = 5 in-
put geometries of internal motion of prostate, bladder and rectum is used to calculate
distributions of cumulative EUDs of the three organs for a given dose distribution. For
this, 1000 treatment courses with 37 fractions each were simulated by sampling altogether
37.000 composite organ geometries of prostate, bladder and rectum from a PCA-model
according eq. (3.4) with L = 3 dominating modes. For each of the simulated treatment
courses the accumulated organ doses were calculated using the dose distribution of the
coverage probability plan described above (fig. 3.2) as example. This allows quantifica-
tion of the EUD distributions of the three organs (fig. 3.3c) as well as investigation of
EUD-correlations in terms of joint distributions (fig. 3.3d). For this example, the cover-
age probability plan proves robust with respect to the dose to prostate, which shows only
small variability around the prescribed EUD of 74Gy. Absolute values of bladder and
rectal wall EUDs are acceptable, however, especially for rectal-wall the EUD variability
is relatively large due to the large geometric variability of rectum (see also fig. 3.3a).

3.1.3 Discussion and Outlook

The work presented in this PhD thesis is the first application of PCA to model patient-
individual organ deformation characteristics. Based on the example of deformable motion
of prostate, bladder and rectum, it could be shown that patient-individual deformation
characteristics as taken from a multiple CT study can typically be modelled by .4 dom-
inating eigenmodes (Söhn et al. 2005 [58]). This facilitates the creation of low-order
parametric statistical organ motion/deformation models, rendering the PCA-method as
powerful tool for ’virtual treatment simulations’ with widespread potential for use in the
context of probabilistic treatment plan optimization and evaluation as well as adaptive
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Figure 3.3: Use of the PCA-model for dosimetric treatment course simulation.
(a) transversal CT slice of the example patient in figs. 3.1&3.2 with contours for bladder,
prostate and rectum as seen in the planning CT and the first four daily pretreatment CTs.
These organ geometries were used as input for the PCA-model. (b) The mean geometry
of the PCA-model as 3D-view in front of the dose distribution of the coverage probability
plan in fig. 3.2. (c) EUD distributions resulting from repeat PCA-based treatment course
simulations (1000 simulated treatment courses of 37 fractions each). Information about
the internal EUD-correlation structure is readily available in this approach, as shown in
the scatterplot (d) for the example of prostate–rectal wall treatment course EUDs. [pa-
rameters of EUD calculations: prostate: poisson cell-kill EUD with α = 0.4, see eq. (4.7);
bladder/rectal wall: serial (power-law) EUD, eq. (2.1), with a = 8.0/12.0]
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radiotherapy.
Two exemplary applications of this have been presented in section 3.1.2. In the first ex-
ample, a probabilistic prostate treatment plan was created which utilized a PCA-model
of prostate/bladder/rectum for predictive generation of patient-individual coverage prob-
ability distributions of the three organs. As second important application of PCA, a
dosimetric evaluation of the coverage probability plan as example was performed by re-
peated calculation of the accumulated dose-to-moving-tissue for a large number of sim-
ulated treatment courses. The resulting EUD distributions are a direct measure of plan
robustness against organ motion. Apart from this, the method allows spatially resolved
visualization of dosimetric uncertainties (not shown) based on dose accumulated within
moving tissue elements, as the motion of individual tissue elements is explictly modelled
by PCA. Such local dose uncertainty information provides valuable guidance in treatment
plan evaluation and robust optimization schemes [36]. The PCA-model in this example
used N = 5 organ geometry samples as input. This reflects a typical situation encountered
in adaptive radiotherapy concepts where a new, adapted treatment plan is to be created
based on image information aquired in the first week of treatment [71, 39]. Thus, in ro-
bust adaptive radiotherapy schemes, PCA-based dosimetric treatment course evaluation
has potential as a central tool to quantify robustness of plan adaptations.

Apart from its application to model random deformable uncertainties as shown for the
example of prostate, bladder and rectum, PCA has been proposed for other applications
in radiotherapy. Zhang et al. 2007 [75] used PCA to model respiratory motion of lung
based on displacement fields determined with deformable registration of RCCT-datasets
as input. Two dominating modes were found adequate to model lung motion. As respi-
ratory motion is of non-random and non-gaussian nature (section 3.2), the PCA-method
had to be adapted to account for the non-gaussian character of this problem. Birkner et
al. 2007 [13] used PCA to analyze and model patient setup uncertainties in head and neck
radiotherapy as seen in portal image (PI) datasets. Such uncertainties were quantified as
2D-shifts of a number of typically 3-5 rectangular PI-subregions, which served as input
for PCA. In this way, patient-individual translational, rotational, ’nodding’ or ’tilting’
modes could be identified. This can serve as quantitative basis for an appropriate choice
of margins in different anatomical regions and for different setup methods and -equipment.
Papiez and Langer 2006 [45] applied PCA to model target uncertainties in terms of rigid
3D-shifts, thereby generalizing commonly used margin-’recipes’ (Stroom et al. 1999 [61],
van Herk et al. 20000 [66]) to the case of correlations between shift-components. Another
application of PCA in radiotherapy is model-based organ segmentation [47, 46], where
population-based PCA-models of anatomical shape variability [32] are used to guide au-
tomatic segmentation algorithms.

A practical issue relevant for future implementation of PCA-methods into clinical
workflow is the problem of efficient generation of input data in terms of sets of corres-
ponding points according to eq. (3.1). This can be done with image-based deformable
registration methods as in [75], or based on manual organ contours as defined by physi-
cians. In the latter case, finite element methods (FEM) as in [58] can be applied to register
the data samples. However, for clinical use numerically less expensive alternative methods
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are desirable. This has been addressed by Söhn et al. 2004 [56] and Price and Moore 2007
[48], who proposed simplified schemes for generation of registered sets of corresponding
points from manually segmentated data. Possible inaccuracies resulting from approxi-
mations made in such schemes typically manifest themselves as statistically uncorrelated
errors (’noise’) which appear only in eigenmodes with small eigenvalues. The problem of
input data generation has recently been adressed in detail by Merck et al. 2008 [42].

Summarizing, PCA is an efficient method to quantify the essential characteristics of
correlated organ motion/deformation in terms of few dominating eigenmodes. These span
the patient-individual deformation space of the treatment geometry, which provides an
efficient statistical surrogate model of organ mobility with full information about motion
of individual tissue elements. Thus PCA has potential as fundamental ’4D-tool’ for new
probabilistic treatment evaluation and optimization schemes based on accumulated dose-
to-moving-tissue.

3.2 Modelling of quasi-periodical deformable uncer-

tainties

Respiratory motion is the main process inducing intrafractional quasi-periodical geomet-
rical uncertainties in the field of radiotherapy. Here, novel time-resolved 3D-imaging
techniques like respiratory-correlated computed tomography (RCCT) provide “4D” im-
age information with previously unprecedented quality, which enables direct modelling of
quasi-periodical respiratory motion based on deformable image registration. For this pur-
pose, a fast model-independent deformable image registration algorithm was developed
in this work (Söhn et al. 2008 [57], see Appendix E).
After section 3.2.1 gives a brief introduction into the basic ideas of the algorithm, sec-
tion 3.2.2 shows how this can be used to construct patient-individual probabilistic thorax
models for 4D-radiotherapy. The significance of the presented deformable registration
algorithm in this context, as well as its potential for other applications is discussed in
section 3.2.3.

3.2.1 Model-independent deformable image registration by Lo-

cal Matching of Anatomical Features

Given a reference (source) image and a target image, deformable image registration algo-
rithms optimize a set of image transformation parameters based on a similarity measure
to align the images. A multitude of algorithms has been proposed [22, 35, 40, 52], which
differ in the type of transformation and the similarity measure. Common to the majority
of algorithms is that similarity is quantified by global similarity measures. As opposed
to this, the basic idea of the the algorithm proposed here is to break down the problem
of global deformbable registration to (fast) local rigid registrations of small subvolumes
– denoted as “featurelets“ –, which are regularly distributed over the image region to
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(a) reference image w. featurelet grid (c) resulting deformation field(b) target image w. registered featurelets

Figure 3.4: Featurelet-based deformable registration for a lung example patient (sagittal
view). (a) Grid of reference featurelets in the exhale CT. (b) Registered featurelets in
the inhale CT after local registration and relaxation. The colors refer to the results of
the local registration quality assessment (see fig. 3.5). (c) Red-green overlay of inhale
and exhale CT and the displacement field as calculated by the deformable registration
algorithm.

be registered. This concept is motivated by deformable registration of organs like lung
which comprise a large number of internal anatomical features. Assuming that these lo-
cally show only a small amount of deformation and thus can be treated as locally rigid,
featurelet-based deformable registration allows fast, model-independent deformable image
registration of both mono- and multimodal registration problems. In the literature, this
class of algorithms is also known as template- or block-matching [50, 28, 37].

In short, featurelet-based deformable registration as developed in this work can be
described as a five-step algorithm:

Step 1: Initialization of the featurelet grid The image region to be be registered is
covered by a regular 3D grid of equally sized rectangular 3D regions (“featurelets”)
in the reference image (see fig. 3.4a). The featurelet size is a parameter of the
algorithm to be chosen according to the typical size of distinct anatomical features.
For lung registration, a value of ∼15mm was found to be appropriate as edge length
of featurelet regions. This typically results in ∼103 featurelets needed to cover the
thorax region.

Step 2: Local rigid registration It is assumed that reference and target image are
rigidly preregistered such that center of mass shift and bulk rotation vanish. The
basic idea of the algorithm is to individually register each reference featurelet to the
target image in terms of a local translation, i.e. to determine a 3D-shift vector δXi

for each featurelet i such that the similarity between the reference featurelet and
the shifted target featurelet is maximized within a predefined search region.
Several similarity measure functions have been proposed for quantification of image
similarity [22]. The algorithm shows great flexibility with respect to the similariy
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Figure 3.5: Examples for the three typical situations encountered in local rigid registra-
tion of featurelet regions: distinct (a-c), degenerate (d-f) or no/indistinct (g-i) similarity
optimum. First column: featurelet position in the reference image; second column: (reg-
istered) featurelet in the target image; third column: NMI as similarity measure for all
possible shifts of the featurelet inside of search region. (from [57])

measure, which may be chosen according to the nature of the registration problem.
Generally, the normalized mutual information (NMI) is a robust similarity measure
for inter- and intra-modality registration problems. Alternatively, the correlation
coefficient (CC) may be used as numerically efficient similarity measure for intra-
modality registration.

Step 3: Assessment of local registration quality The local registration quality de-
pends on the amount of image information available inside of a featurelet region.
Essentially three situations can be distinguished. In the first, ideal case, the local
image information is sufficient to allow unambiguous featurelet registration. Fig.
3.5a-c depicts a typical example for this situation, where the optimal position of
the target featurelet is characterized by a unique, distinct optimum of the similarity
measure. In the second case, local image information does not allow unique fea-
turelet registration, which is expressed as a degenerate optimum of the similarity
measure function (fig. 3.5d-f). In the third case, the featurelet covers a region with
low or no image contrast, thus the similarity measure function shows low similarity
values for all possible shifts and no clear optimum (fig. 3.5g-i). An automatic cate-
gorization scheme to distinguish the three cases has been developed. The scheme is
based on the absolute values of the similarity measure within the search region as
well as the eigenvalues of the Hessian (curvature) matrix at the similarity measure
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optimum (details in appendix E).

Step 4: Relaxation Due to inevitable local registration ambiguities or misregistrations
(second and third case described above), a featurelet-based registration ansatz solely
based on local image information produces unphysical deformation fields which lo-
cally violate injectivity and continuity requirements. This has to be corrected for by
imposing additional assumptions which ensure physically meaningful deformation
fields. This is realized in the algorithm by moving mis- and ambiguously regis-
tered featurelets (second and third case described above) to positions minimizing
the overall deformation energy of the featurelet grid. For featurelets with degener-
ate similarity optimum (second case) the additional constraint to stay within the
degenerate optimum is imposed.
Numerically, minimization of the deformation energy was implemented as a relax-
ation algorithm: Assigning a virtual mass mi to each featurelet, the dynamics of
the i-th target featurelet as represented by its center position Xi is subject to the
following physically motivated equation of motion:

miẌi = −D · Ẋi + F
[i]
internal + F

[i]
external (3.5)

Here D is a damping factor, and the dynamics is driven by two types of forces, which
are typically referred to as ’internal’ and ’external’ force [40]. The internal force gives
rise to the deformation energy of the featurelet grid. In the present implementation,
F

[i]
internal for a featurelet i was modelled as resulting force imposed by virtual springs

connected to the centers of all direct 3D-neighbors. For featurelets with degenerate
similarity optimum the locally available image information enters the relaxation
process through the external ’image force’, which is represented by the gradient of
the similarity measure here. More details about the numerical implementation of
the relaxation step are given in appendix E.

Step 5: Calculation of the global deformation field The shift vectors δXi of the
target featurelets after local registration and relaxation (fig. 3.4b) represent the
displacement field sampled on the regular grid of featurelet centers in the reference
image. From this, the deformation field at any position (fig. 3.4c) is obtained by
B-spline interpolation [51].

3.2.2 Patient-individual probabilistic thorax models

The respiratory-correlated CT (RCCT) technique [21, 67] allows to reconstruct thorax
geometries of different respiratory phases, which provides a straightforward way to repre-
sent the dynamics of patient-individual breathing motion in terms of multiple phase CTs.
An example for a RCCT dataset of a lung cancer patient is shown in fig. 3.6.

Applications in 4D-radiotherapy that aim to explicitly incorporate quasi-periodical
geometrical uncertainties into dosimetric evaluation and optimization (sect. 4.1) require
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Figure 3.6: Coronal view of a RCCT-dataset, which was reconstructed into eight res-
piratory phases equally distributed over the full breathing cycle. The RCCT technique
allows separate reconstruction of phases in the inhale (’In’) and exhale (’Ex’) branch of
the breathing curve for user-defined respiratory levels in the range 0 . . . 100 (0=full expi-
ration, 100=full inspiration). Breathing excursion of the tumor for this example patient
is 2.9cm.

patient-individual thorax models with information about motion of individual tissue ele-
ments. The central tool for this is deformable registration relating image-voxels of different
RCCT-geometries in terms of displacement fields.
The potential of featurelet-based deformable registration (sect. 3.2.1) for creation of ac-
curate thorax models has been evaluated in Söhn et al. 2008 [57]. Evaluation based on
a virtual thorax phantom with known displacement field showed that ∼95% of all lung
voxels had registration residuals ≤ 3mm with an average of 1.1 ± 1.2mm. This was sup-
ported by data of four patients, where the inhale-exhale registration residuals were found
to be 1.6 ± 1.0mm based on anatomical landmarks distributed over the lung.

For calculation of the dose-to-moving-tissue as key quantity of 4D-radiotherapy infor-
mation about the relative time spend in each breathing phase is required. As can be seen
in fig. 3.7a, breathing curves may show significant irregularities over the time-scale of a
treatment fraction. This very nature of breathing as quasi -periodical process renders de-
terministic modelling of respiratory motion infeasible. However, a probabilistic description
in terms of the probability density function (pdf) of the breathing curve provides infor-
mation about the relative time spend in each respiratory phase on average. Thus, each
phase CT of an RCCT-dataset is associated with a weight factor expressing the relative
importance of the respective instance geometry to represent a ’snapshot’ of the underlying
dynamic process (fig. 3.7b). In combination with information about geometric motion of
the tissue elements from deformable registration, this constitutes a probabilistic thorax
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Figure 3.7: (a) Breathing curve of the example patient from fig. 3.6 as recorded during
aquisition of the RCCT. (b) Relative time spend in the different breathing phases the
RCCT dataset as derived from the pdf of the breathing curve in (a).

model, enabling patient-individual calculation of the expected dose-to-moving-tissue (see
also sect. 4.1 and appendix F)

3.2.3 Discussion and Outlook

Rigorous biomechanical deformation modelling [70] is difficult as a priori information
about tissue properties [17] and tissue boundary conditions [29] is not available or subject
to uncertainties. Thus, it is the idea of deformable registration algorithms to comple-
ment the limited knowledge of physical properties by image information. The deformable
registration algorithm developed in this work follows the concept of dividing the global
registration problem into rigid registrations of a multitude of small image subvolumes
(“featurelets”). It is the advantage of the presented algorithm that it allows model-
independent registration in image regions with sufficient local image information, while
it provides physically reasonable interpolation by means of minimization of elastic energy
in regions with no or ambiguous image information. This concept proves especially effi-
cient for RCCT-based deformable registration of lung with its numerous internal image
features, but has also been successfully applied to intermodality registration of head-and-
neck datasets (Söhn et al. 2008 [57]).

Deformable registration algorithms are a central tool of “4D radiotherapy”. As shown
in sect. 3.2.2, deformable thorax models based RCCT datasets employ patient-individual
deformation fields to estimate dose-to-moving-tissue. As this involves multiple deformable
registrations, algorithmic performance in terms of calculation speed is an important
issue with respect to clinical feasibility. In this context it is a strength of the pre-
sented featurelet-based algorithm that it allows computational parallelization in a straight-
forward manner. This facilitates calculation times well below 1 min on recent multi-
processor/-core computer hardware for full registration of two 3D-image datasets, and
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thus puts “online deformable registration” in reach. This is profitable also for other ap-
plications in adaptive radiotherapy such as dose accumulation based on daily treatment
images [53, 34], online re-optimization [69] and contour propagation for fast re-contouring
of online image datasets or interactive “4D-contouring” on RCCT datasets [68, 33, 76].

Summarizing, the presented algorithm allows accurate, ’almost-online’ multi-modality
deformable registration. Apart from its use in generation of probabilistic thorax models,
it bears promise as versatile basic tool in adaptive and 4D-radiotherapy applications.
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Chapter 4

4-dimensional radiotherapy:
evaluation and optimization

Conventional radiotherapy planning approaches employ a static patient model based on
a single CT scan to define the gross-tumor volume (GTV) and organs at risk (OARs) and
to determine the dose distribution. This, however, is only a snapshot of the dynamic pro-
cesses present in patient treatment. Inevitable geometric uncertainties such as rigid and
non-rigid interfractional setup errors or intrafractional organ motion cause discrepancies
between this planning CT scan and the treatment geometries. The common method to
account for geometric uncertainties is the extension of the clinical target volume (CTV)
by a margin, and to ensure coverage of the resulting larger planning target volume (PTV)
(ICRU report 50 [1]). With regard to internal organ motion (eg. breathing) the ICRU re-
port 62 [2] additionally introduced the concept of the internal target volume (ITV) as hull
of possible tumor positions relative to bony structures. An ITV-to-PTV margin accounts
for setup errors. Similarly, the ICRU report 62 [2] proposes the concept of expanding
OARs to planning organ at risk volumes (PRVs). It is the fundamental conceptional
shortcoming of this conventional approach that treatment plan quality is scored using a
static dose distribution evaluated based on static surrogate volumes (PTV, OARs/PTVs)
only. This is a rather incomplete model of reality in the presence of large geometric un-
certainties, which can both alter the positions of the CTV and OARs relative to the dose
and the dose distribution itself.

The term “4-dimensional radiotherapy” refers to new treatment planning concepts that
explicitly utilize dynamic patient models to determine the accumulated dose-to-moving-
tissue to the moving and deforming CTV/OAR-structures. As opposed to the PTV- and
OAR-/PRV-doses considered in static planning, this is the truly relevant quantity for plan
optimization and evaluation. Following the notion of ’beam’s-eye-view’ (BEV) in conven-
tional radiotherapy, the transition from static dose surrogates to the actual accumulated
dose-to-moving-tissue is denoted as ’tissue-eye-view’ (TEV). In TEV, the accumulated
dose changes physically – due to changes in the density distribution – as well as physi-
ologically, as tissue elements move away from the planning position. The former can be
approximated by explicit dose recalculation in multiple instances of the patient geometry.

31
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The latter requires displacement field information from deformable image registration or
statistical deformation models as described in chapter 3. Formally, this is expressed by the
following equation for the dose-to-moving-tissue Daccum as accumulated from the instance
dose distributions Dk of N geometric instances:

Daccum =

N
∑

k=1

wk · D̃
k =

N
∑

k=1

wk · (Wk ◦ Dk). (4.1)

Here the wk’s are instance weight factors to be chosen according to the specific dose
accumulation problem, D̃k are the instance dose distributions as warped to a common
reference geometry for the purpose of dose accumulation, and Wk is the warping operator
which mediates the coordinate transformation:

D̃(x) = (W ◦ D)(x) = D(x + d(x)), (4.2)

where d = d(x) ∈ ℜ3 is the displacement field reflecting the local anatomical shifts
between the reference and instance geometry.

New methods for optimization and evaluation based on the accumulated dose-to-
moving-tissue have been developed in this thesis. Section 4.1 introduces a concept for
“4D-IMRT planning” of moving lung tumors. Section 4.2 presents a clinically relevant ap-
plication of “4D-evaluation” in terms of a study comparing different IMPT/IMRT prostate
planning approaches with respect to robustness against organ motion. The challenges and
capabilities of such new “4D-radiotherapy” concepts are discussed in section 4.3.

4.1 4D-IMRT planning of lung

A clinically feasible implementation of biological optimization in tissue-eye-view and its
application to free-breathing treatment of moving lung tumors is presented in the fol-
lowing (see also Appendix F). The method is based on a patient-individual probabilistic
thorax model (sect. 3.2.2) for optimization of the expected dose-to-moving-tissue and in-
corporates advanced dose calculation methods for realistic modelling of dose deposition
in the presence of large tissue density inhomogeneities.
After an introduction into the concept of biological 4D-optimization in section 4.1.1, the
potential of the method as compared to a number of conventional static approaches is
presented based on an example lung patient with large breathing excursion (section 4.1.2).

4.1.1 Biological optimization in tissue-eye-view

Preliminaries: IMRT dose calculation in a static geometry

In IMRT concepts, the modulation of irradiation fields is expressed as fluence distribu-
tion Φ which is numerically represented by a set of fluence weights {φ} of n discrete fluence
elements (beamlets or segments). For static dose calculation, the dose Di to voxel i in the
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fixed treatment room coordinate system is given by the weighted sum of contributions
from all fluence elements as expressed by the static dose operator T :

Di =

n
∑

j=1

Tijφj (4.3)

Here Tij is the dose deposited in voxel i by fluence element j, i.e. T∗j holds the static dose
distribution of fluence element j, which is determined based on the density information
of a single planning geometry.

Dynamic patient models

According to eq. (4.1), the calculation of the accumulated dose-to-moving-tissue, Daccum,
is based on a representation of the patient’s dynamics by multiple deformable instance
geometries. For 4D-radiotherapy of lung, such a dynamic patient model has been pre-
sented in sect. 3.2.2 in terms of a RCCT-based probabilistic thorax model, which uses
a deformable image registration algorithm to determine the warping operators Wk in
eq. (4.1). In this model, the instance weight factors wk (with

∑N
k=1 wk = 1) are provided

by the probability density function (pdf) of the patient’s breathing curve. Thus, Daccum

in eq. (4.1) becomes an expected dose-to-moving-tissue, 〈D〉.

IMRT dose calculation in tissue-eye-view

Optimization of 〈D〉 is the aim of 4D-IMRT planning of free-breathing lung treatment.
For this, eq. (4.1) can be written in terms of the fluence weights by expressing the instance
doses Dk through eq. (4.3):

〈D〉i =
N
∑

k=1

wk ·
n
∑

j=1

(Wk ◦ T k)ijφj =
n
∑

j=1

〈T 〉ijφj (4.4)

Here 〈T 〉 is the motion-averaged version of the static instance dose operators T k with

〈T 〉ij =

N
∑

k=1

wk · (Wk ◦ T k)ij . (4.5)

〈T 〉∗j is the expected dose-to-moving-tissue of a single beamlet j (fig. 4.1). For beamlet-
based IMRT-optimization of the fluence distribution, 〈T 〉ij can be precalculated by sepa-
rate warping of all beamlets according to eq. (4.5), which allows efficient updates of 〈D〉
according to eq. (4.4) during iterative dose optimization.

Pencil-beam dose calculation algorithm A dedicated pencil-beam algorithm was
used for beamlet-based IMRT pre-optimization (Jeleń, Söhn and Alber 2005 [25], see
Appendix G; Jeleń and Alber 2007 [26]). The algorithm incorporates lateral and longitu-
dinal inhomogeneity corrections and was commissioned to Monte Carlo dose calculations
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(a) (b) (c) (d)

Figure 4.1: Beamlet warping: (a)/(b) beamlet doses calculated in the exhale/inhale
CT of an example RCCT dataset, (c) beamlet dose of the inhale CT warped to the
exhale reference geometry and (d) expected dose-to-moving-tissue of the beamlet, 〈T 〉∗j,
accumulated using all 8 CTs from the RCCT dataset according to eq. (4.5). Shown are
the isodose lines of 95/70/40/10/5% isocentre dose for this beamlet as calculated with
the pencil-beam algorithm.

(see below). As depicted in fig. 4.1a&b, the algorithm models effects like penumbra-
broadening from lateral scatter and reduced dose deposition in low-density regions, as
well as dose re-buildup in high-density areas.

4D-Monte Carlo (MC) dose calculation A fast Monte Carlo algorithm (XVMC
[20, 54]) was used for dose calculation of the segmented plan in the final step of optimiza-
tion. MC algorithms explicitly model the physical processes of radiation transport and
deposition by simulating the trajectories of a large number of particles and their inter-
action with matter, and thus can be regarded as most precise dose computation method
available in the presence of density inhomogeneities.

4D-dose calculations require separate dose computations in each of the N instance
geometries. Thus, calculation time scales with N for most dose calculation methods.
For MC algorithms, however, the calculation time is determined by the overall number
of simulated particle histories nhist. As the statistical accuracy of the accumulated dose
solely depends on this number, 4D-MC calculations can be performed with a reduced
number of histories in the single instance geometries.
This is accounted for in the algorithm presented here by reducing the number of simulated
histories for each instance geometry, nhist,k, according to the respective instance weight, i.e.
nhist,k = wk ·nhist. This leads to noisy instance dose distributions with reduced statistical
accuracy (stat. variance σ2

k ∼ 1/nhist,k). However, assuming Gaussian propagation of
errors when summing up the warped instance doses according to eq. (4.1), the overall stat.
variance σ2 of the accumulated dose distribution is determined by the overall number of
histories as desired: σ2 ∼

∑

k w2
k · σ

2
k = 1/nhist. Thus, 4D-MC allows efficient calculation

of the accumulated dose essentially independently of the number of instances.

Constrained biological optimization based on isoeffects

The isoeffect framework was used to incorporate knowledge about the dose-response char-
acteristics of different tissues into optimization in terms of cost functions [4, 6, 7]. In this
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concept, two dose distributions are regarded as equivalent with respect to their radiobio-
logical effect to tissue, if their isoeffects

G =
∑

i

νig
(

〈D〉i
)

(4.6)

are equal. Here g(D) is the local effect density for the organ under consideration, and
the sum is defined over all organ voxels (νi: relative voxel volume). This gives rise to
the definition of the corresponding isoeffective dose Diso = g−1

(

G
)

, which is motivated
by the equivalent uniform dose (EUD) [44] and can be seen as generalized EUD (see also
sect. 2.2). It is the strength of the isoeffect concept that it allows incorporation of both
physical and biologically motivated costfunctions and objectives [6]. Subsequently, the
isoeffects used for the lung planning example below are briefly introduced.

Tumor control Based on the standard Poisson TCP model, the local effect density is
defined as the surviving fraction of clonogenic cells:

gpoisson(D) = e−αD (4.7)

The corresponding isoeffective dose is the poisson cell-kill EUD [44].

Normal tissue parallel complication mechanism Motivated by NTCP models de-
scribing radiobiological effects in tissues with parallel complication mechanisms (eg. lung),
the local effect density is defined as [4, 7]

gparallel(D) =

(

1 +

(

d0

D

)k
)

−1

(4.8)

with k, d0 as parameters of the sigmoidal function modelling local dose-response. The
corresponding isoeffect can be interpreted as mean damage, i.e. as fraction of the organ
that is functionally obliterated.

Maximum dose To avoid target hotspots or to control maximum OAR doses, a physical
overdose constraint

gmax(D) = (D − Dmax)
2 · Θ(D − Dmax) (4.9)

is defined (Θ(·): Heaviside step function). The corresponding isoeffective dose is the root
mean square (rms) overdosage inside of the volume of interest.

In order to ensure the existence of a solution for a given set of prescriptions, IMRT-
optimization was implemented in terms of a constrained optimization problem [6, 5],
where tumor cell survival is minimized (i.e. tumor control is maximized) while isoeffects
to critical structures are constrained to maximum tolerable values:

arg min
Φ

Gpoisson

(

{

〈D〉i(Φ)
}

)

(4.10a)

such that Gm

(

{

〈D〉i(Φ)
}

)

≤ Vm gm

(

〈Diso,m〉
)

, m = 1 . . .M (4.10b)

and φj ≥ 0 ∀φj ∈ Φ (4.10c)

Here eq. (4.10b) represents the M isoeffect constraints on the volumes of interest Vm.
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Figure 4.2: DVHs of the different plans: (a) target DVHs; (b) DVHs of the OARs.

4.1.2 Comparison with alternative methods: A planning study

The 4D-IMRT planning algorithm was implemented into the clinical IMRT-planning soft-
ware Hyperion [3] and its potential for improving free-breathing treatment of moving
lung tumors were tested for an example patient with large breathing excursion (∼ 2.9cm)
in a planning study. The probabilistic thorax model of this patient was based on eight
RCCT phase CTs (shown in fig. 3.6) with the exhale CT as reference geometry for de-
formable registration and dose accumulation. The instance weight factors were determined
from the breathing curve recorded during aquisition of the RCCT (fig. 3.7).

The 4D-plan (abbreviated as “4Dp” in the following) was compared to three other
static approaches: a static PTV-plan for free-breathing treatment (“FBp”), where the
ITV (hull of all eight CTV positions in the phase CTs) was used as PTV; a static PTV-
plan for exhale gating (“GATINGp”), where the PTV encompassed the CTVs of the three
phase CTs around the exhale state; and a tracking plan (“TRACKp”) as idealized ’gold-
standard’, for which an optimal static PTV-plan was created separately for each phase
CT with the respective CTV as PTV, thereby simulating optimal ’life’-tracking during
treatment. These three approaches were optimized based on static dose distributions
as calculated on static CT geometries (respective average CTs for FBp and GATINGp;
the single phase CTs for TRACKp). To allow for direct dosimetric comparison, the
probabilistic thorax model was used to determine the expected dose-to-moving-tissue for
the three plans. All plans were subject to the same prescription (see tab. 4.1) and other
planning parameters to ensure comparability. More details are given in Appendix F.

The DHVs of the different plans are shown in fig. 4.2, and the corresponding isoeffects
and EUDs are summarized in tab. 4.1. All plans show very similar OAR doses as pre-
scribed, however, large differences were found for the target doses. TRACKp provided the
best coverage (53.0Gy accumulated CTV-EUD) as could be expected for this idealized
planning approach. In contrast, the lowest target dose of all plans was found for FBp with
45.1Gy static EUD to the PTV. Fig. 4.3a depicts the respective static dose distribution
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(a) FBp
static dose

(b) FBp
accumulated dose

(c) 4Dp
accumulated dose

Figure 4.3: Coronal view of the MC-dose distributions of the (a)/(b) static free-breathing
PTV-plan and (c) 4D-plan. For the former, (a) shows the static dose distribution as cal-
culated on the average CT, while (b) depicts the accumulated dose 〈D〉 in tissue-eye-view
(exhale CT). Shown are the isodose lines for 57.8/52.2/49.5/44.0/38.5/22.0/16.5/11.0Gy
and the contours of the PTV (orange) and the CTV as seen in the exhale CT (red).

objective constraints
target target right lung left lung skin*

poisson EUD rms overdosage parallel, mean rms overdosage parallel, mean rms overdosage

[Gy] >55Gy [Gy] damage [%] >20Gy** [Gy] damage [%] >20Gy [Gy]

prescription 55.0 2.0 5.0 0.05 1.0 0.10

FBp
–static 45.1 1.9 5.1 0.05 0.1 0.10

–accum. 47.4 3.2 5.0 0.18 0.1 0.10
4Dp

–accum. 50.2 2.0 5.0 0.05 0.1 0.10
GATINGp

–static 49.3 1.9 5.0 0.05 0.1 0.10
–accum. 50.9 2.3 5.0 0.11 0.1 0.10

TRACKp
–accum. 53.0 1.6 4.7 0.02 0.0 0.04

Table 4.1: Prescribed and resulting isoeffects/EUDs for the different plans. For FBp and
GATINGp, the values denoted by ’static’ refer to the static dose distributions calculated
on the respective average CTs as used for optimization (target: free-breathing-PTV or
gating-PTV, respectively). All other values refer to the accumulated dose distribution 〈D〉
(target: CTV). [*unspecified tissue inside of skin contour; **applied only to voxels with
≥2cm distance to the target]
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and planning geometry. Due to the large breathing excursion, the PTV encompassed a
relatively large region and thus could not be covered well for the given constraints in
this approach. The ’real’ dose distribution in tissue-eye-view, 〈D〉, is actually higher by
about 2Gy (tab. 4.1), and shows significant target overdosage and dose inhomogeniety.
This renders the static PTV-dose as poor predictor of the actual dose-to-moving-tumor.
Major differences are also manifested visually (fig. 4.3a,b). As significant dose-builup can
happen only inside of the high tissue density of the moving CTV, the high dose region
of the FBp is centered around the tumor in TEV. However, considerable spread-out of
doses in the range ∼10-30Gy to surrounding lung tissue is the consequence of dose blur-
ring due to breathing motion. As compared to this, the expected dose of 4Dp conforms
substantially better to the tumor (fig. 4.3c), as this was explicitly optimized in this ap-
proach. Quantitatively, a target coverage of 50.2Gy accumulated CTV-EUD was found for
4Dp (tab. 4.1). Thus, for free-breathing treatment of lung tumors 4D-optimization offers
the possibility of improved coverage of the moving target without exceeding overdosage
constraints, and provides similar results as for gating (tab. 4.1).

4.2 4D-evaluation of IMPT/IMRT prostate radiotherapy

A study investigating the sensitivity of different static IMPT and IMRT prostate plan-
ning approaches with respect to organ movement was performed as part of this PhD
project (Appendix H). Organ motion and rectal gas filling with related changes of a
patient’s density distribution render IMPT particularly prone to a degradation of the
actual accumulated dose-to-moving-tissue as compared to the static planning dose distri-
bution. The study identified planning strategies that improve plan robustness for both
treatment modalities, and thus serves as a clinically relevant example for the application
of 4D-evaluation.

IMPT and IMRT treatment plans were evaluated for four patients with an average
of 16 CT datasets per patient. The plans were calculated on one CT dataset and recal-
culated on CTs taken during the treatment course. The resulting dose distributions Dk

were then accumulated to a reference geometry (planning CT) according to eq. (4.1) with
equal weights to arrive at a measure for the actual dose-to-moving-tissue of the whole
treatment course. The displacement fields used for dose accumulation of prostate, blad-
der and rectal wall were based on a finite element model of these organs [70].
All IMPT/IMRT treatment plans followed the static, PTV-based planning concept cur-
rently applied in the clinical IMRT routine in Tübingen university hospital to account for
geometric uncertainties. The CTV was defined as hull of the prostate contours from the
first three CTs to account for internal organ motion, and a 7mm CTV-to-PTV margin
was applied to account for remaining uncertainties. The same hull concept was used for
bladder and rectum to arrive at planning-organ-at-risk volumes (PRVs) for these organs.

A number of different planning strategies was investigated. Apart from “standard”
IMPT/IMRT plans that used the original planning CT for dose calculation, another set of
treatment plans was created with a water density overwrite for rectal gas in the original
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Figure 4.4: DVHs of an IMRT- and IMPT-plan for (a) prostate, (b) bladder and (c) rectal
wall for an example patient (patient A of the study in Appendix H). For both plans, the
most robust approaches were used, i.e. water density overwrite for rectal gas in the original
planning CT and in case of IMPT also the field dependent initial spot weights. In red, the
DVHs after recalculation on the single treatment CTs. In dotted green, the accumulated
DVH on the first three geometries, representing the expected DVH at time of planning.
In solid green, the accumulated DVH on the treatment CTs, representing the actual dose-
to-moving-tissue. In dashed green, the mean DVH on the treatment CTs resulting from
averaging the single DVHs. See also tab. 4.2 for the corresponding EUD values.

planning CT to estimate the influence of rectal gas filling. Additionally, two different
methods of initial spot weight definition were implemented for IMPT (details in Appen-
dix H), as the final ’optimum’ spot weight pattern – and its sensitivity to geometric
changes – depends on the initial values owing to the high degeneracy of the IMPT opti-
mization problem.

Based on plan recalculation in the treatment CTs and dose accumulation, standard
IMPT was found highly sensitive to internal geometric uncertainties. A clinically unac-
ceptable degradation of accumulated GTV doses and large interfraction spread of EUD
values was observed especially for patients with rectal gas filling in the planning CT. A
similar level of plan robustness against organ movement as for IMRT, however, could be
achieved for IMPT if the methods of water density overwrite for rectal gas in the planning
CT and field dependent initial spot weights were applied. An improvement of the accumu-
lated dose-to-moving tissue for prostate and rectal wall was observed also for IMRT with
the method of water density overwrite for rectal gas. DVHs of an example patient with
relatively large organ motion are shown in fig. 4.4 for the two most robust IMPT/IMRT
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patient A all patients
prostate bladder rectal wall prostate bladder rectal wall

EUD [Gy] EUD [Gy] EUD [Gy] EUD [Gy] EUD [Gy] EUD [Gy]

IMRT planned 78.7 61.3 64.4 77.6 ± 1.2 59.9 ± 1.4 63.9 ± 1.9
IMRT realized
–accumulated 78.7 65.6 63.5 77.4 ± 1.6 62.2 ± 2.5 64.4 ± 0.8

–mean 78.7 ± 0.1 67.1 ± 3.2 63.6 ± 1.2 – – –

IMPT planned 78.7 59.8 64.4 77.7 ± 1.1 58.5 ± 1.1 63.3 ± 2.0
IMPT realized
–accumulated 78.5 63.8 63.7 77.4 ± 1.4 60.8 ± 2.1 63.7 ± 0.8

–mean 78.5 ± 0.1 66.2 ± 3.3 64.6 ± 1.1 – – –

Table 4.2: Planned and realized EUDs for the example patient in fig. 4.4 and averages
for all four patients considered in the study in Appendix H. Here ’planned’ denotes the
EUD accumulated on the three organ geometries used for PTV/PRV definition, repre-
senting the expected EUD based on a pretreatment estimate of motion. Further, ’realized
– accumulated’ denotes the accumulated EUD on the treatment CTs, representing the
actual dose-to-moving-tissue. Finally, ’realized – mean’ was calculated by averaging the
EUD values on the single treatment geometries without deformable registration for dose
accumulation. [parameters of EUD calculations: prostate: poisson cell-kill EUD with
α = 0.4, see eq. (4.7); bladder/rectal wall: power-law EUD, eq. (2.1), with a = 8.0/12.0]

plans. The EUD-values are given in tab. 4.2. Both plans are similarly robust against
interfractional changes with respect to prostate and rectal wall doses, while bladder doses
show a relatively large spread (red DVH curves in fig. 4.4; standard deviations given under
’realized – mean’ in tab. 4.2). Accordingly, the accumulated dose-to-moving tissue (solid
green) for bladder deviates significantly from its planned value (dotted green), reflecting
systematic geometric differences of bladder configuration at time of planning as compared
to the treatment geometries. For prostate and rectum, differences between realized and
planned doses were much smaller, reflecting again the robustness of both plans in this
respect. Similar findings apply to the other patients, as the population-averages in tab.
4.2 show.
It should be mentioned that comparable results were found if the dose distributions Dk

on the treatment CTs were not explicitly recalculated, but approximately substituted by
the planning dose distribution Dk ∼ Dplan in the process of dose-accumulation according
to eq. (4.1) (see Appendix H).

The calculation of the actual accumulated dose-to-moving tissue relies crucially on
deformable organ registration. If displacement field information is not available, straight-
forward surrogates for accumulated doses are mean DVHs and EUDs resulting from av-
eraging the DVH and EUDs of the single treatment geometries. Here the present study
showed systematic differences between such mean metrics (dashed green DVH curves in
fig. 4.4; values given under ’realized – mean’ in tab. 4.2) and the accumulated values. The
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accumulated DVHs determined based on deformable organ registration had less extreme
doses on both sides for both IMRT and IMPT, as under- and overdosage averages out on
the level of single tissue elements. This cannot be modelled correctly by averaging treat-
ment DVHs or EUDs, as spatial information is lost in these dosimetric measures. The
differences were largest for bladder and rectal wall, where the accumulated EUDs were
lower by up to 2.9Gy and 1.7Gy, respectively, for the four patients under consideration.
Thus, the mean DVHs and EUDs can be used only as conservative estimates.

4.3 Discussion and Outlook

The concept of optimization and evaluation in ’tissue-eye-view’ (TEV) considers the dose-
to-moving-tissue by accumulating doses of multiple geometric instances of the patient ge-
ometry to a reference geometry based on patient-individual geometric 4D-models (chap-
ter 3). It is the strength of such “4D-radiotherapy” approaches, that the two major para-
doxes of conventional PTV-based concepts are overcome, which arise as a consequence
of using a static geometry as patient model: (1) The necessity to expand physiologi-
cal structures to PTV and OAR/PRV volumes to account for geometrical uncertainties.
Doses calculated based on these non-physiological surrogate volumes are not well rep-
resentative for the actual, biological relevant dose-to-moving tissue especially for large
geometric uncertainties and density changes as in the lung planning example (sect. 4.1.2).
Moreover, resulting PTV-OAR/PRV overlaps lead to ill-defined optimization problems
with mutually conflicting objectives, and thus a loss of control over the tradeoff between
target coverage and OAR sparing. (2) The question which density grid to use for dose-
calculation. This is a problem of conventional static planning especially in the presence
of large geometrical changes, where the dose distribution itself dynamically changes as for
lung (sect. 4.1.2) or in the presence of rectal gas cavities (sect. 4.2). These problems do
not exist in 4D-radiotherapy concepts, which realize prescription and dose-scoring on the
non-overlapping physiological structures of CTV and OARs, albeit in multiple instances
of the patient geometry, which need to be combined by deformation models.

The presented 4D-planning algorithm (sect. 4.1) combines advantages of similar 4D-
radiotherapy concepts presented by other authors in the literature. The first implemen-
tation of pdf-based TEV-optimization for real patient data was presented by Birkner et
al. [11] (see also [12]) in terms of an adaptive framework for prostate radiotherapy, where
a few CTs taken during the first days of treatment were used to determine and optimize
the expectation values of doses to prostate, bladder and rectum. At variance with the
method presented in this PhD work, the dose distribution itself was calculated only in
the planning geometry, which is a good approximation for the pelvic region as shown by
Birkner [12]. This is supported by the results of the prostate IMRT/IMRT study pre-
sented in sect. 4.2, which found explicit dose re-calculation in the instance geometries of
minor importance for quantification of the accumulated organ dose and plan robustness
of prostate radiotherapy. However, for head-and-neck, lung or breast-cancer cases with
large density inhomogeneities and tissue-air interfaces this is not a valid approximation.
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McShan et al. [41], Trofimov et al. [62] and Lin et al. [30] presented implementations
of pdf-based TEV-optimization, where dose was explicitly calculated for each geometry
instance. In contrast to these implementations, the 4D-planning method presented in
this PhD work incorporates a 4D-Monte Carlo (MC) algorithm for dose calculation of
the segmented 4D-plan. This not only allows for realistic modelling of dose deposition
especially in the presence of large tissue inhomogeneities, but also has the great advantage
over other dose calculation methods that calculation time is essentially independent of
the number of geometry instances (sect. 4.1.1). This renders 4D-MC the method of choice
for dose calculation in future 4D-radiotherapy applications.

The 4D-planning approach introduced in this work explicitly incorporates random
errors into optimization, while systematic errors deserve special attention. As for conven-
tional planning, a major challenge are setup errors which should ideally be avoided through
frequent image-guidance, optionally combined with adaptive concepts. Apart from such
geometrical systematic errors, 4D-planning is additionally prone to model biases intro-
duced by misestimation of the patient’s motion-pdf and displacement fields as discussed
in detail in Appendix F. Thus methods for quantification of the sensitivity of individual
treatment plans to uncertainties will be an important topic of future research. Gen-
erally, it is desirable to explicitly incorporate measures of robustness into the planning
process [65, 55], which will constitute the foundation for a widespread introduction of
4D-radiotherapy into clinical practice.



Chapter 5

Conclusions

The introduction of computed tomography into clinical practice made tumor definition
and radiotherapy planning based on a 3-dimensional model of the patient possible. In the
following years, research in the field of radiotherapy planning concentrated on methods
to improve 3D-dose calculation and -conformation to predefined target structures. This
was brought to perfection by today’s state-of-the-art techniques like IMRT which provide
for precise dose conformation to targets of almost arbitrary shape, and even open up the
possibility of biologically guided dose painting. Yet, treatment planning is conventionally
based on a single CT scan which is of limited precision if inter- or intrafractional geometric
uncertainties cause deviations from this snapshot of the patient. Thus, major improve-
ments of radiotherapy planning can only be expected by the development and incorpora-
tion of dynamic patient models which facilitate calculation of the dose-to-moving-tissue
as central quantity of “4-dimensional radiotherapy”. A safe transition to such advanced
methods which inevitably produce new types of dose distributions invariably needs to be
augmented by a profound understanding of biological dose-response.

Based on these premises, the developments presented in this work address and exem-
plarily realize the three cornerstones of evidence-based 4-dimensional radiotherapy : biolo-
gical modelling, probabilistic deformation models as well as evaluation and optimization
of dose-to-moving-tissue (Tissue-Eye-View).

The influence of the treatment technique on the results of biological modelling has
been investigated for chronic rectal toxicity in the treatment of prostate cancer. The
method of principal component analysis (PCA) quantitatively reveals treatment specific
dose-volume correlations present in population data, and it could be shown that these
especially influence direct dose-volume based models. This has to be considered when
applying biological models derived from past clinical experience to new planning and
treatment methods. As shown consistently by this work and recent related studies, rectal
dose-response can be modelled well with EUD-based NTCP-models, and quantitative
parameters are given.

Further, 4D-modelling approaches for two major types of geometric uncertainties en-
countered in radiotherapy – random and quasi-periodic uncertainties – were developed as
basis of 4D-optimization and -evaluation. For random uncertainties, efficient statistical
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surrogate models of patient-individual organ motion and deformation can be based on a
PCA of organ geometry samples. As shown for internal motion of prostate, bladder and
rectum, PCA allows creation of compact dynamic models with full information about
motion of individual tissue elements. For quasi-periodic respiratory uncertainties, proba-
bilistic thorax models can be derived from 4D-image information. With respect to clinical
applicability, a fast and accurate deformable registration algorithm has been developed
as central tool for such applications.

Ultimately, an implementation of 4D-IMRT planning for free-breathing treatment of
lung is described. The algorithm is based on a probabilistic thorax model and realizes
direct, biological IMRT-optimization of the expected dose-to-moving-tissue by explicit
optimization in multiple instance geometries. The use of advanced pencil beam and 4D-
Monte Carlo dose calculation methods ensures accurate estimation of the dose-to-moving-
tissue in all stages of the optimization, and allows calculation of fully-segmented 4D-plans
in clinically realistic time frames in the order of an hour on current PC hardware owing
to parallel computation. It is shown that this planning concept performs similar to gated
lung treatment with respect to accumulated tumor and OAR-doses and thereby provides
an efficient alternative to gating in day-to-day delivery without prolonged treatment time.

The more such comprehensive 4D-methods enhance treatment specificity, the more
the robustness of plans against model uncertainties will become an important issue of
future research. In this context, methods for quantification of the sensitivity of individual
treatment plans to uncertainties will be of great relevance for clinical implementation and
acceptance of 4D-radiotherapy and other high precision concepts, and explicit incorpora-
tion of robustness measures into optimization will constitute the basis of further improved
and safe patient treatment.

The approaches presented in this work envision the future of a 4D-radiotherapy plan-
ning paradigm that appreciates the dynamic character of patient treatment and the in-
tricate biological dose-response relationships in the presence of complex inhomogeneous
dose distributions. The refinement of probabilistic dynamic patient models as well as
research concentrating on the topic of robust planning will pave the way to a widespread
introduction of 4D-radiotherapy into clinical practice.
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[7] M. Alber. Normal tissue dose-effect models in biological dose optimisation. Z. Med.
Phys., 18(2):102–110, 2008.

[8] M. Alber and F. Nüsslin. A representation of an NTCP function for local complication
mechanisms. Phys. Med. Biol., 46(2):439–447, 2001.
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PHYSICS CONTRIBUTION

PRINCIPAL COMPONENT ANALYSIS-BASED PATTERN ANALYSIS OF

DOSE–VOLUME HISTOGRAMS AND INFLUENCE ON RECTAL TOXICITY

MATTHIAS SÖHN, DIPL.PHYS.,* MARKUS ALBER, PH.D.,* AND DI YAN, D.SC.y

*Section of Biomedical Physics, University Hospital for Radiation Oncology, Tübingen, Germany;
and yDepartment of Radiation Oncology, William Beaumont Hospital, Royal Oak, MI

Purpose: The variability of dose–volume histogram (DVH) shapes in a patient population can be quantified using
principal component analysis (PCA). We applied this to rectal DVHs of prostate cancer patients and investigated
the correlation of the PCA parameters with late bleeding.
Methods and Materials: PCAwas applied to the rectal wall DVHs of 262 patients, who had been treated with a four-
field box, conformal adaptive radiotherapy technique. The correlated changes in the DVH pattern were revealed as
‘‘eigenmodes,’’ which were ordered by their importance to represent data set variability. Each DVH is uniquely
characterized by its principal components (PCs). The correlation of the first three PCs and chronic rectal bleeding
of Grade 2 or greater was investigated with uni- and multivariate logistic regression analyses.
Results: Rectal wall DVHs in four-field conformal RT can primarily be represented by the first two or three PCs,
which describe �94% or 96% of the DVH shape variability, respectively. The first eigenmode models the total ir-
radiated rectal volume; thus, PC1 correlates to the mean dose. Mode 2 describes the interpatient differences of the
relative rectal volume in the two- or four-field overlap region. Mode 3 reveals correlations of volumes with inter-
mediate doses (�40–45 Gy) and volumes with doses >70 Gy; thus, PC3 is associated with the maximal dose. Accord-
ing to univariate logistic regression analysis, only PC2 correlated significantly with toxicity. However, multivariate
logistic regression analysis with the first two or three PCs revealed an increased probability of bleeding for DVHs
with more than one large PC.
Conclusions: PCA can reveal the correlation structure of DVHs for a patient population as imposed by the treat-
ment technique and provide information about its relationship to toxicity. It proves useful for augmenting normal
tissue complication probability modeling approaches. � 2007 Elsevier Inc.

Prostate cancer, Rectal toxicity, Dose–volume histograms, Principal component analysis, Normal tissue complica-

tion probability.

INTRODUCTION

Advances in modern radiotherapy (RT), such as three-dimen-

sional conformal RT (3D-CRT) and intensity-modulated RT,

have enabled accurate tailoring of dose distributions to target

volumes and better sparing of adjacent normal structures,

thereby facilitating increased target doses. Safe dose escala-

tion, however, requires reliable information about normal

tissue complications and its dependence on dose and volume.

For prostate RT, the essential dose-limiting organs are the

bladder and rectum, with chronic rectal bleeding as one of the

most relevant side effects. A first step to correlating compli-

cations with the applied doses is a reduction of the 3D dose

distributions to dose–volume histograms (DVHs) at the

expense of losing information about location. Several studies

have found significant correlations between the parameters

derived from rectal DVHs and the incidence of bleeding

(1–8). However, the studies differ in the parameters used as

summary measures of the DVH. In one approach, correla-

tions of single DVH features such as the maximal dose or

the value of a single DVH point (i.e., the volume VDc
receiv-

ing doses greater than a cutoff dose level Dc or the dose DVc
to

a cutoff volume Vc) and toxicity are investigated (1, 2, 5–8).

In another approach, a comprehensive surrogate value such

as an effective volume (9, 10), the mean dose, or another

generalized equivalent uniform dose (EUD) (11, 12) is calcu-

lated and tested for its correlation with toxicity (3, 6–8).

Some of these studies aimed to quantify complication risk
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in terms of normal tissue complication probability (NTCP)

models and determine the corresponding model parameters

(3, 4, 6, 8).

An inherent problem of outcome modeling, especially of

direct dose–volume-based approaches (i.e., models that con-

sider only single DVH features), is the influence of the treat-

ment technique on the results of modeling. For a given patient

population, the treatment technique used induces correlations

between DVH bins of different dose levels owing to the inter-

action of the given beam directions and shapes with the var-

iability of the patient geometries. Because this can deteriorate

the prospective use of such models for other patient popula-

tions treated using different techniques, these correlations

should be considered when interpreting and comparing the

results of different studies. Thus, a method that explicitly re-

veals the correlation structure of a DVH data set is desirable.

Recently, Dawson et al. (13) and Bauer et al. (14, 15) pro-

posed the use of principal component analysis (PCA) to

analyze the partial volume effects of normal tissues to RT

and applied it to DVHs of the liver and parotid gland (13)

and rectal wall (15), respectively. With this multivariate ap-

proach, the correlated variability of DVH shapes in a given

patient population can be quantitatively described in terms

of ‘‘eigenmodes’’, which provide information about the cor-

relation structure inherent in the DVH data set. Moreover,

PCA allows characterization of individual DVHs using

a few parameters, the ‘‘principal components’’ (PCs) (formal

definition given below in the subsection ‘‘PCA of DVH

data’’). Regarding the PCs as a summary measure of individual

DVH morphology, correlations with toxicity can be assessed

using logistic regression models in a purely phenomenologic

manner. However, the value of these models is restricted

to the treatment technique for which they were derived.

Bauer et al. (14, 15) analyzed two data sets comprising 52

and 119 rectal wall DVHs of patients treated with a six-field

3D-CRT technique with a prescription dose of 70.2 Gy

and 75.6 Gy, respectively, and found correlations of some

of the dominating PCs with rectal bleeding of Grade 2 or

greater.

In the present study, PCA was applied to rectal wall DVHs

of 262 prostate cancer patients treated with a four-field box,

3D-CRT adaptive RT (ART) technique, thereby revealing

correlations of different dose levels for the population as

imposed by this treatment technique. Correlation of the first

three PCs and chronic rectal bleeding of Grade 2 or greater

was then investigated with logistic regression analysis. The

same patient population was used in a parallel study (4), in

which six EUD- and dose–volume-based NTCP models

were applied to the data. This allowed a comparison of the

different approaches with respect to their power to describe

the data and make predictions.

METHODS AND MATERIALS

Patient data
The patient data set used comprises 262 prostate cancer patients

treated between 1999 and 2002 at the William Beaumont Hospital.

This patient data set, with a minimal follow-up time of 1 year (see

below), represents a subgroup of a patient population used in a par-

allel study (5). For additional details, we refer to that study and limit

the present description to information relevant for the following

investigation. The clinical characteristics of the patient population

have been previously described (7, 16).

The patients were part of a phase II dose-escalation study and

underwent 3D-CRT with image-guided off-line correction under

an ART protocol (17, 18). In brief, a four-field box technique was

used for the initial treatment plan of the first week and the adapted

plan. The initial planning target volume (PTV) was defined based

on the clinical target volume plus a 1-cm uniform margin. For the

adapted plan, information from daily portal and computed tomogra-

phy (CT) imaging was used to form a patient-specific confidence-

limited PTV (cl-PTV), thereby considering random and systematic

errors as estimated from the first week. Beam apertures for the ini-

tial/adapted plan were defined according to the PTV/cl-PTV in the

beam’s eye view, with a PTV-to-field edge margin of 7 mm every-

where, but 11 mm at the superior and inferior edges of the cl-PTV.

The final dose to the cl-PTV was limited by the dose–volume con-

straints of rectal wall and bladder. For the rectal wall, these were

D30% = 75.6 Gy for the minimal dose received by 30% of the target

volume and 82 Gy for the minimal dose received by D5% = 82 Gy of

the target volume. For each patient, the dose level (minimal cl-PTV

dose) was chosen individually so as to meet the rectum and bladder

constraints and was one of the following doses as defined by the

study protocol: 70.2, 72, 73.8, 75.6, 77.4, and 79.2Gy.

Cumulative DVHs. For DVH calculation, a composite planning

dose was used. It included the initial treatment plan for the first

week before correcting the systematic error and then the adaptive

plan for the rest of the treatment after beam aperture correction ac-

cording to the cl-PTV. The dose distributions of both plans were cal-

culated using Pinnacle 6.2b (ADAC Laboratories, Milpitas, CA)

according to the CT geometry (density information) of the planning

CT scan. The overall dose was defined as the sum of the initial and

adapted (physical) dose distributions. An in-house–developed soft-

ware program was used to calculate the DVHs of the rectal wall,

which was defined according to the solid rectum contours of the

planning CT with 3–4-mm wall thickness. The dose bin size used

for calculation of the DVHs was 0.1 Gy, with the volume defined

as relative (percentage) volume.

Follow-up information. The toxicity variable regarded in this

study was chronic rectal bleeding, for which the grading was deter-

mined using the Common Terminology Criteria for Adverse Events

(CTCAE), version 3.0 (19). Although the full patient population, as

described in our previous study (4), comprised 319 patients, in the

present study we considered only those patients with a follow-up

time of $1 year. This resulted in a median clinical follow-up for

the remaining 262 patients of 3.2 years (range, 1.0–6.4 years), with

an interquartile range of 2.3–4.2 years (25th to 75th percentile).

Principal component analysis of DVH data
Given n observations of p variables, a method from multivariate

statistics, PCA, can be used to analyze and describe the correlated

variability of the p variables in a data set. First applications of

PCA in the field of RT have been proposed only recently and en-

compass automatic model-based organ segmentation (20) and mod-

eling of organ deformations (21). Regarding the volume values of

the dose bins as variables, PCA can also be applied to a set of

DVHs to efficiently describe the variance of organ DVH shapes

present in a patient population as first proposed by Bauer et al.

(14, 15) and Dawson et al. (13). For our study, we used p = 850
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variables (dose range, 0–84.9 Gy, with a bin size of 0.1 Gy) for

discretization of n = 262 rectal wall DVHs.

Because of the very nature of DVHs of a patient population

treated with the same treatment technique, the volume values V1,

.., Vp of the p dose bins are highly correlated, implying that the un-

derlying dimensionality of this multivariate statistical problem is ac-

tually much smaller than p. By calculating the eigenvectors of the

covariance matrix, PCA allows one to find the statistically indepen-

dent ‘‘eigenmodes’’ of variability. Ordered by the statistical impor-

tance as given by the corresponding eigenvalues, each of these

modes models a different ‘‘dimension’’ of DVH shape variability

present in the data set. Uncorrelated and erratic solitary features in

a DVH give rise to very small or zero eigenvalues. An eigenmode

is a p-dimensional vector defining differential volume change for

each dose bin, thereby representing correlated DVH shape change.

Mathematically, the p eigenmodes define a new coordinate system,

in which each DVH can be (exactly) represented by p new coordi-

nates c1, .., cp (PCs). In other words, each DVH can be represented

as a linear combination of all p modes weighted by the correspond-

ing values of c1, .., cp. By definition, the first PC shows the largest

statistical variance over the data set of n DVHs, c2 the second larg-

est, and so forth. Thus, if the overall variability of the data set is

clearly dominated by few PCs, this offers the possibility to approx-

imately represent the most important features of individual DVH

morphology by the first few parameters (c1, .., cM), with M « p.

Additional details can be found in the Appendix.

DVH-PCA and toxicity
The PCA was performed on the DVH data set, irrespective of

rectal complications associated with the DVHs. Plotting the result-

ing first eigenmodes over the dose revealed the major types of cor-

related DVH shape variability in the data set and the relevant dose

ranges for this. The eigenmodes were then used to calculate the

PCs of each DVH. The value of the ith PC of a DVH is essentially

calculated by summing up the differences of the relative volume

values of the DVH and the mean DVH, for each dose bin weighted

by the corresponding entry of the ith eigenmode (see Appendix, Eq.

A5). Thus, depending on the actual shape of an eigenmode, each

PC value has a characteristic dosimetric meaning. Possible correla-

tions of the PCs to widely used dosimetric variables such as the

rectal wall relative volume receiving a dose $D (VD), mean and

maximal dose were assessed by linear regression analysis. Of

note, there is no reason that such a correlation exists for each of

the PCs.

We investigated the correlations of the PC values and chronic

rectal bleeding of Grade 2 or greater. Therefore, scatterplots of the

dominating PCs, in which each point corresponds to a DVH, were

generated, and the points were marked according to the associated

complication. Ideally, DVHs with a complication could be distin-

guished from others by their PC values (i.e., by ‘‘clustering’’ of

points associated with the complication in such scatterplots and/or

by correlation of the PC values and the complication rate).

Logistic regression analysis
The correlations of PCs and toxicity can be analyzed quantita-

tively by logistic regression analysis. For this, the probability of

chronic rectal bleeding, Ptox, is defined as a (logistic) function of

one or more PCs, which represent certain features of individual

DVH shapes (uni- or multivariate logistic regression, see Eqs. 1

and 2, below). If correlations are found by fitting of a logistic regres-

sion model to data of a patient population, such a model can be

regarded as a phenomenologic NTCP model with Ptox as NTCP

function and the values of one or more PCs as a summary measure

of the DVH shape and, thereby, the applied rectal dose. Compared to

the widely used cutoff-dose and cutoff-volume NTCP models, which

consider the position of single DVH points as a summary measure

(4, 6), features of the whole DVH are considered in such PCA-based

NTCP models. The advantage of regarding only single DVH points is

the straightforward interpretability; however, possibly relevant dose–

volume information from other parts of a DVH and about its overall

pattern are neglected by such models. In contrast, PCA-based models

explicitly incorporate this information.

For the univariate case, the logistic regression model is written as

follows:

PtoxðcÞ ¼
1

1þ expð � b0 � b1cÞ
(1)

The variable c denotes a single PC (such as c1 or c2), and b0, b1 are

the parameters to be fitted to the data.

The method of choice for fitting such a model to sparse, dichoto-

mous data (‘‘0’’ for bleeding less than Grade 2, ‘‘1’’ for bleeding of

Grade 2 or greater) is the maximal likelihood estimation (22, 23)

(see also, Rancati et al. [3]). This method determines the optimal

parameters by maximizing the likelihood function L (or the log-

likelihood, log(L) [LL]), which describes the probability of the

occurrence of the observed data under the given model. The

significance of a model was defined by p < 0.05, according to the

likelihood ratio test. Uncertainties of the model parameters were

assessed using the variance-covariance matrix of the parameters

calculated around the maximum of the log-likelihood function as

described in Jackson et al. (23). The 68% confidence intervals for

the parameters can be estimated by the square root of the diagonal

elements.

Because more than one eigenmode can signify dose distribution

changes that affect the risk of complications, logistic regression

analysis with a single PC might not capture the whole picture.

The scatterplots (Fig. 2) suggest that a linear combination of the

dominant PCs exhibits a stronger correlation with toxicity. This

can be analyzed using logistic regression analysis of a higher order:

Ptoxðc1;.; cMÞ ¼
1

1þ exp

�

� b0 �
P

M

i¼1

bici

� (2)

Depending on the number M of dominant PCs used for logistic

regression analysis, the model has M + 1 fit parameters.

The goodness of fit estimation followed that off Cox and Snell

(22); additional information can be found in Jackson et al. (23). De-

noting by LLobs the actual (maximized) value of the log-likelihood

for the model fitted to the observed patient population, the probabil-

ity of obtaining a value smaller than LLobs (i.e., a worse fitting

model) can be assessed according to the statistical distribution of

LL. The latter can be obtained under the assumption of a normal dis-

tribution from analytical formulas for the mean hLLi and variance

SLL (see Eqs. A4 and A5 in Jackson et al. [23]). If this probability

is too large, the model ‘‘overfits’’ the data; if it is too small, the

model does not fit the data well. According to Rancati et al. (3),

values between 30% and 70% indicate a satisfactory fit.

The presented logistic models differ in the number of parameters.

Generally, models with more parameters can be expected to fit the

data better, however, at the expense of greater complexity. We

used the Akaike information criterion (AIC) (24, 25) (see also

Tucker et al. [6]) to quantify the tradeoff between a model’s quality

of fit (associated with the likelihood value) and its complexity
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(expressed by the number of model parameters n). It is defined as

AIC =�2 LL + 2 n. Models with smaller AIC values are considered

to provide a better (in the sense of more efficient) fit to the data than

models with larger AIC.

Statistical analysis was performed with Mathematica, version 5.0

(Wolfram Research, Champaign, IL); the PCA itself was imple-

mented in C++.

RESULTS

The observed toxicity rates in the population of 262 pa-

tients were as follows: 16.8% (n = 44) had Grade 2 chronic

rectal bleeding and 1.9% (n = 5) developed Grade 3 toxicity.

One patient (0.4%) had Grade 4 toxicity.

The DVHs of all 262 patients are plotted in Fig. 1a. The

first three eigenvectors resulting from PCA of the DVHs

are shown as Fig. 1b, together with the corresponding eigen-

values. The first mode represents the correlated variability of

the DVH data set around the mean DVH in the range of �5–

75 Gy, thus DVHs systematically greater than or less than the

mean DVH have a positive or negative first PC, respectively

(see Eqs. A4 and A5). In brief, the first PC essentially de-

scribes the variation of the fraction of the rectal wall volume

that is inside the irradiated volume. In contrast, the second

eigenvector describes the anticorrelated variability of the

low- and high-dose region (�5–40 vs. 50–75 Gy), that is,

the DVHs with increased relative volumes in the high-dose

region and simultaneously decreased relative volumes in

the low-dose region have a positive second PC (and vice

versa). Thus, the second PC is related to the fraction of the

rectal wall volume that is inside the four-field overlap region

(approximately the prescription dose and less) and therefore

not in the two-field overlap region (approximately half of the

prescription dose and less). The third mode describes the

correlated variability of the volumes receiving intermediate

doses (�40–45 Gy) and doses greater than �70 Gy. It

essentially results from variations of the prescribed four-field

box dose itself (which obviously also affects the dose in the

two-field overlap). This variability in dose levels in the

population is a consequence of the particular dose prescrip-

tion scheme of the ART concept.

The spectrum of eigenvalues is clearly dominated by a few

values: about 93.5% and 96.1% of the DVH shape variability

can already be described by the first two and three PCs, re-

spectively. In contrast, the overall contribution of all greater

modes is <4% (data not shown).

Scatterplots showing the distribution of the first PCs (PC2

vs. PC1 and PC3 vs. PC1) for the 262 DVHs are plotted in

Fig. 2. The PCs itself (irrespective of toxicity) do not show

significant clustering, corresponding to a fairly regular distri-

bution of DVH shapes in the data set and in visual agreement

with the data in Fig. 1a. This supports the applicability of

PCA, which to a certain extent is based on the assumption

that the underlying distribution of input data is approximately

gaussian, and large deviations from this property would dete-

riorate the interpretability of the results of PCA. Generally,

DVHs with all PC values around zero have shapes close to

the mean DVH (dashed line in Fig. 1c), and a positive PC1

value is associated with an increased percentage of volume

in the dose range of�5–75 Gy, as discussed previously. Con-

sequently, PC1 correlates highly with the mean dose (Fig. 3a,

R = 0.999) and shows a weak correlation with, for example,

V60, i.e., the volume receiving a dose of 60 Gy and higher

(Fig. 3b, R = 0.89). The PC3 showed a weak correlation to

the maximal dose (Fig. 3c, R = 0.91), as could be expected
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Fig. 1. (a) Rectal wall dose–volume histograms (DVHs) of all 262
patients. (b) First three eigenvectors resulting from principal compo-
nent analysis of these DVHs. Percentage of data set variability
described by the corresponding eigenvectors (see Eq. A6) shown.
(c) DVHs of patients with rectal bleeding of Grade 2 or greater
(cyan, orange, and magenta indicate Grade 2, 3, and 4, respectively),
together with the population-mean DVH (dashed line).
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from the plot of the third eigenvector in Fig. 1b. PC2 did not

show a significant correlation with any of the aforementioned

dosimetric measures.

Points corresponding to DVHs associated with chronic

rectal bleeding of Grade 2 or greater are color coded in

Fig. 2. The respective DVHs are shown, together with the

population-mean DVH, in Fig. 1c. Severe toxicity of Grade

3 or greater appeared to be associated with positive values

of the first two PCs (Fig. 2a), corresponding to increased vol-

umes especially in the four-field overlap region (Fig. 1c).

However, the small number of patients with severe toxicity

in our population (n = 6) did not allow the investigation of

this with sufficient statistical quality. While for Grade 2 or

greater toxicity no clear clustering was obvious from the

scatterplots, the correlation of toxicity with the PCs was

analyzed using logistic regression analysis.

Logistic regression analysis. The correlation with toxicity

of the first three PCs as single variables was investigated

using Eq. 1. According to this analysis, PC2 was the only var-

iable significantly associated with chronic rectal bleeding of
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Fig. 2. Scatterplots of the first principal components, (a) c2 vs. c1 and (b) c3 vs. c1, for 262 rectal wall dose–volume
histograms (DVHs). DVHs associated with chronic rectal bleeding of Grade 2 or greater indicated by color coded disks
(cyan, orange, and magenta indicate toxicity Grade 2, 3, and 4, respectively).
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Grade 2 or greater (p = 0.03). The parameter estimates and

their uncertainties are given in Table 1. The log-likelihood

value of this model was LLobs = �125.5, and the probability

of finding a fit with a smaller log-likelihood was found to be

50.0% (estimated log-likelihood distribution, hLLi � SLL =

�125.5 � 9.1), indicating that the fit is acceptable.

Although neither PC1 nor PC3 as a single variable showed

significant correlation with toxicity, the data presented in

Fig. 2 suggest increased toxicity rates if combinations of

PCs are simultaneously large. This was analyzed by multivar-

iate logistic regression according to Eq. 2 for the first two or

three PCs (Table 1). Both models proved to be significant

(p = 0.047 and p = 0.02, respectively) and provided accept-

able fits according to the log-likelihood distribution test.

As example, Fig. 4 shows a scatterplot of the first two PCs,

overlayed with the isotoxicity lines of the logistic regression

model with PC1 and PC2 as variables. The toxicity gradient

has an inclination of f = 78.2�, i.e., the toxicity rate increases

if both c2 and c1 increase (see Eq. 2 for positive coefficients

b1, b2), corresponding to increasing relative volumes in the

high-dose region (�45–75 Gy; see Eq. A4 and discussion

of eigenmodes above), as could be expected. In Fig. 5, the

data from Fig. 4 have been projected to an axis with angle

f = 78.2�, and the resulting toxicity rates were plotted,

together with the rates predicted by the multivariate logistic

regression model, which allowed additional evaluation of

the quality of fit (c2 = 0.53; upper limit for 1 degree of free-

dom, error level a = 5%; c
2

#3.84).

For the multivariate logistic regression models, the DVH

pattern variability (relative to the population-mean DVH),

which correlates most significantly to toxicity, can be

expressed by ‘‘compound modes.’’ These are given by the

linear combination of eigenvectors that corresponds to

variations of PCs in the direction of the toxicity gradient

(i.e., the variations that cause the largest changes in toxicity

according to the model). Figure 6 shows the resulting com-

pound modes of the logistic regression models for the first

two and three PCs. As discussed above for the model with

PC1 and PC2 as variables, the corresponding compound

model expresses that increased relative volumes in the dose

range of �45–75 Gy correlate with bleeding. For the model

with PC1, PC2, and PC3 as variables, the resulting com-

pound mode was strongly influenced by the third eigenvector

because of the comparatively large coefficient b3 (Table 1),

providing a hint of the increased biologic importance espe-

cially of the highest doses for the development of bleeding.

This was true even though PC3 showed a smaller variability

in our patient population than did PC2 (as expressed by the

corresponding eigenvalues and visually obvious in Fig. 2);

however, because PCA was performed irrespective of toxic-

ity, a smaller variability of a PC in a population does not nec-

essarily imply less importance for describing toxicity. To
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Fig. 3. Correlations between principal components (PCs) and dosimetric measures: (a) first PC and mean dose; (b) first PC
and V60; and (c) third PC and maximal dose.

Table 1. Estimated parameter values for different logistic regression models

Logistic regression Parameter estimates (68% CI) LL hLLi � SLL P (%) AIC

c1 NS �126.8 NS NS NS
c2 b0 = � 1.5 � 0.1 �125.5 � 125.5 � 9.1 50.0 254.9

b1 = 2.9 $ 10�3 � 1.0 $ 10�3

c3 NS �126.1 NS NS NS
c1, c2 b0 = � 1.5 � 0.1 �124.7 �124.7 � 9.1 50.0 255.3

b1 = 6.0 $ 10�4 � 3.4 $ 10�4

b2 = 2.9 $ 10�3 � 1.0 $ 10�3

c1, c2, c3 b0 = � 1.5 � 0.1 �122.9 �122.9 � 9.1 50.0 253.7
b1 = 6.5 $ 10�4 � 3.4 $ 10�4

b2 = 3.0 $ 10�3 � 1.0 $ 10�3

b3 = 5.2 $ 10�3 � 2.0 $ 10�3

Abbreviations: CI = confidence interval; LL = log-likelihood; hLLi � SLL = estimated log-likelihood distribution; P = resulting probability P
of obtaining smaller LL value than observed; AIC = Akaike information criterion; NS = model not significant.
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mention, the local maximum of the compound mode 1+2+3

around�40–45 Gy can be attributed to the correlations of in-

termediate doses with the maximal dose as imposed by the

four-field box treatment technique, and thus had no biologic

interpretation here (in our previous study (4), we found no

significant correlation of single dose levels in the range of

�40–45 Gy to bleeding of Grade 2 or greater).

Concerning the log-likelihood (LL), the univariate logistic

regression model for c2 had the lowest LL of the three signif-

icant models under consideration (Table 1). Adding c1 as

a variable to the model improved the LL value, without chang-

ing the AIC value as a measure of fitting efficiency. However,

the three-variate logistic regression model for (c1, c2, c3) leads

to both better LL and AIC values, suggesting that the improved

fit quality is worth the greater complexity of this model.

DISCUSSION

In this study, we followed the approach of Dawson et al.

(13) and Bauer et al. (14, 15) and used PCA to analyze the

rectal wall DVHs and correlation of their PCs with chronic

rectal bleeding for a patient population treated with four-field

3D-CRT ART. The eigenvalue spectrum was dominated by

few components with an intuitive meaning. This is a conse-

quence of the specific shape of the dose distribution of

a four-field box technique, so that the residual uncertainty

is generated by the variability in patient geometry.

In a second step, correlations of the PCs and chronic rectal

bleeding of Grade 2 or greater were investigated. Logistic re-

gression analysis revealed significant correlation of PC2 as

single variable and toxicity. Multivariate logistic regression

models with PC1 or PC1 and PC3 as additional variables

also proved significant. Thus, patients whose DVH deviates

from the mean in the way described by the second eigen-

mode or the compound modes 1+2 or 1+2+3 have a greater

risk of rectal bleeding. The salient feature of all these modes

is a greater portion of rectal wall volume in the four-field

overlap region. At the very least, this shows that rectal

bleeding is subject to a volume effect. Only the most signif-

icant compound mode 1+2+3 indicated that the highest dose

volume has the greatest impact. It is the benefit of the flex-

ible dose prescription scheme applied in this study that the

variability in the maximal dose was large enough to support

this finding.

Thus, as the first obvious conclusion for treatment plan-

ning using four-field box techniques, the toxicity can be re-

duced significantly by reducing the rectal volume inside the

four-field overlap region, in accordance with the results

from other NTCP modeling approaches, as shown in our

previous study (4). Generally, image-guided RT or ART

schemes prove to be efficient for this purpose. In principle,

the DVH-PCA approach could also be applied to clinical

treatment planning in a more direct way as offered by Eqs.

1 and 2 as NTCP functions. After calculating the PCs of an

individual DVH (see Eq. A5), this phenomenologic NTCP

model provides a complication probability for the DVH.

This allows for the penalizing of DVH patterns with exceed-

ingly high predicted NTCPs according to this model.
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ciated with chronic rectal bleeding of Grade 2 or greater indicated as
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represents fit to logistic regression model of Eq. 2.
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However, such a ‘‘DVH-PCA–based NTCP model’’

should be used with caution. Given the presented eigen-

vectors and fitting parameters, it is limited to four-field tech-

niques only and does not allow extrapolation to techniques

such as intensity-modulated RT with many more degrees of

freedom and, consequentially, a larger variability of dose

distributions. In a parallel study, different dose–volume-

and EUD-based NTCP models were applied to essentially

the same patient population (4). These findings revealed that

the EUD-based models in particular have similar or better LL

and AIC values [the corresponding values for the 262

patients in the present study were as follows: LL = � 123.2

(�123.1) and AIC = 252.3(250.2) for the Logit-EUD and

serial reconstruction unit model, respectively (4)] and are

thus preferable to describe this data set.

Limited ability to extrapolate, however, is a drawback

shared to some extent by all NTCP models. In this context,

it is illustrative to distinguish the DVH shape variability in

a patient population imposed by the treatment technique

from the ‘‘biologically relevant’’ variability in dose levels

(i.e., the variability that leads to significantly different risks

of toxicity). If one or more dominating PCs show a correlation

with toxicity (as occurred for our patient population), the

treatment technique used obviously induces ‘‘biologically

relevant’’ variability. Conversely, if none of the dominating

PCs correlates with toxicity, basing NTCP models on such

a population might lead to misinterpretations.

Moreover, the DVH correlations imposed by the treatment

technique affect the results particularly of directly dose–

volume-based NTCP models (e.g., cutoff-dose models) and

can lead to apparent contradictions in different studies. For

example, in our population, significant correlations of VD

with toxicity were found for all dose levels in the range of

�50–80 Gy, with greatest significance for doses >70 Gy

(4). This can be clearly traced back to the four-field box tech-

nique used, which induces correlations of all DVH dose bins

in the range of �50–75 Gy, as shown by the first two PCA

eigenvectors. However, the finding that VD correlates with

bleeding for all doses of �50–80 Gy is in contrast to the re-

sults of some other studies that reported significant correla-

tions for doses of �40–50 Gy (2), 40.9 Gy (6), or 60 Gy

(8). In all these studies, a six-field conformal technique had

been used for all or part of the treatment or population. This

treatment technique induces different correlations of the

DVH dose bins among the patients, which is the likely reason

for these differences. Generally, if a treatment technique gen-

erates correlations in the dose distributions of a population,

the biologic significance of certain dosimetric variables

(e.g., maximal dose, VD, and so forth, depending on the organ

and toxicity under consideration) can be attached to corre-

lated, yet biologically insignificant, variables. These latter

variables ‘‘lend’’ their biologic significance from the truly

significant parameters to which they are correlated. This

risk is particularly pertinent if dose–volume constraints

(i.e., cutoff dose models) are assessed for their clinical

significance.

CONCLUSIONS

Dose-volume histogram-PCA provides valuable informa-

tion about the correlation structure of DVHs generated by

a treatment technique in a patient population and its relation-

ship to toxicity, and thereby proves to be an important tool to

augment NTCP modeling approaches.
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APPENDIX

Principal Component Analysis

Given a data set of n DVHs, discretization of the ith DVH

results in the p-dimensional vector Xi = (Vi1, .., Vip), where

Vij is the volume value of the jth dose bin. The values of these

p variables are highly correlated, implying that actually much

fewer variables are necessary to appropriately describe the

data set. PCA is a method to find a statistically motivated

transformation of the variables into uncorrelated ‘‘principal

components’’, which are ordered by their contribution to

model the data set variability.

For the purpose of PCA, the mean DVH

X ¼ 1
n

Pn
i¼1 Xi ¼ ðV1;.;VpÞ and the p � p-dimensional

covariance matrix

C ¼
1

n� 1

X

n

i¼1

ðXi � XÞ,ðXi � XÞ
T

(A3)

are calculated, where the column vector Xi � X describes the

difference of the ith DVH from the mean DVH, and () $ ()T

denotes the outer product of two vectors. The non-zero

off-diagonal elements of this matrix reflect the correlations

between the p variables. Diagonalization (in our implementa-

tion, the algorithm for diagonalization was taken from Press

et al. [26]) of C corresponds to the change to a coordinate sys-

tem, in which the correlations between the variables vanish.

The new coordinate system is defined by the eigenvectors

of the covariance matrix (normed, kqlk ¼ 1), which are the

statistically independent modes of correlated volume change:

ql = (dVl1, .., dVlp). Each DVH can be represented by a linear

combination of these modes:

Xi ¼ Xþ
X

p

l¼1

c
½i�
l ql (A4)

The coefficients cl
[i] are the new coordinates of the ith

DVH, its ‘‘principal components’’ (PCs), and are calculated

as the following scalar product:
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c
½i�
l ¼ ðXi � XÞ,ql (A5)

The PCs are ordered according to their statistical var-

iance s
2(cl) over the data set of n DVHs, which is given

by the corresponding eigenvalues: s
2(cl) = ll. The rela-

tive eigenvalue ~ll then is a measure for the contribution

of the lth PC to the overall variability present in the data

set:

~ll ¼ ll

�

X

p

j¼1

lj (A6)

The aim of the PCA approach is to describe individual

DVHs and their variability by a few dominating PCs, which

is approximately possible if a prevailing portion of the overall

variability according to Eq. A6 can be described by a few

dominating PCs.
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Appendix B

Incidence of Late Rectal Bleeding in
High-Dose Conformal Radiotherapy
of Prostate Cancer using
Equivalent Uniform Dose-
Based and Dose-Volume-Based
Normal Tissue Complication
Probability Models

published in
International Journal of Radiation Oncology, Biology and Physics 2007; 67(4): 1066-1073

71





doi:10.1016/j.ijrobp.2006.10.014

CLINICAL INVESTIGATION Prostate

INCIDENCE OF LATE RECTAL BLEEDING IN HIGH-DOSE CONFORMAL
RADIOTHERAPY OF PROSTATE CANCER USING EQUIVALENT UNIFORM

DOSE–BASED AND DOSE–VOLUME–BASED NORMAL TISSUE
COMPLICATION PROBABILITY MODELS

MATTHIAS SÖHN, DIPL. PHYS.,* DI YAN, D.SC.,† JIAN LIANG, PH.D.,† ELISA MELDOLESI, M.D.,†

CARLOS VARGAS, M.D.,‡ AND MARKUS ALBER, PH.D.*

*Section for Biomedical Physics, University Hospital for Radiation Oncology, Tübingen, Germany; †Department of Radiation
Oncology, William Beaumont Hospital, Royal Oak, MI; ‡Radiation Oncology, University of Florida, Gainesville, FL

Purpose: Accurate modeling of rectal complications based on dose–volume histogram (DVH) data are necessary
to allow safe dose escalation in radiotherapy of prostate cancer. We applied different equivalent uniform dose
(EUD)–based and dose–volume–based normal tissue complication probability (NTCP) models to rectal wall
DVHs and follow-up data for 319 prostate cancer patients to identify the dosimetric factors most predictive for
Grade > 2 rectal bleeding.
Methods and Materials: Data for 319 patients treated at the William Beaumont Hospital with three-dimensional
conformal radiotherapy (3D-CRT) under an adaptive radiotherapy protocol were used for this study. The
following models were considered: (1) Lyman model and (2) logit-formula with DVH reduced to generalized
EUD, (3) serial reconstruction unit (RU) model, (4) Poisson-EUD model, and (5) mean dose– and (6) cutoff
dose–logistic regression model. The parameters and their confidence intervals were determined using maximum
likelihood estimation.
Results: Of the patients, 51 (16.0%) showed Grade 2 or higher bleeding. As assessed qualitatively and quanti-
tatively, the Lyman- and Logit-EUD, serial RU, and Poisson-EUD model fitted the data very well. Rectal wall
mean dose did not correlate to Grade 2 or higher bleeding. For the cutoff dose model, the volume receiving >

73.7 Gy showed most significant correlation to bleeding. However, this model fitted the data more poorly than
the EUD-based models.
Conclusions: Our study clearly confirms a volume effect for late rectal bleeding. This can be described very well
by the EUD-like models, of which the serial RU- and Poisson-EUD model can describe the data with only two
parameters. Dose–volume–based cutoff-dose models performed worse. © 2007 Elsevier Inc.

Prostate cancer, Rectal toxicity, Normal tissue complication probability, Volume effects, Dose–volume histo-
grams, Equivalent uniform dose.

INTRODUCTION

The essential dose-limiting organs in prostate radiotherapy
are the bladder and rectum. One of the most relevant side
effects that can significantly compromise a patient’s quality
of life is chronic rectal bleeding.

Conventional external beam radiotherapy (RT) treatment
typically does not allow prostate doses beyond 65 to 70 Gy
without an unacceptably high risk of rectal toxicity, al-
though higher tumor doses are favorable for improved tu-
mor control. The possibility of dose escalation beyond 70
Gy to the prostate is based on the volume–effect of rectum,

i.e., the observation of increased tolerance to high doses if
the high dose region is confined to a small volume. Tech-
nically, this becomes feasible because of conformal tech-
niques such as three-dimensional conformal radiotherapy
(3D-CRT) or intensity-modulated radiotherapy (IMRT), es-
pecially when aided by image-guided adaptive approaches.

Safe dose escalation necessitates accurate quantitative
modeling of the volume effect based on the detailed dose–
volume information provided by modern treatment planning
systems. Numerous studies have established evidence of a
significant correlation between parameters derived from
rectal dose–volume histograms (DVHs) and toxicity (see
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Refs. 1–4 and references therein). However, only a few
publications have quantified the risk of rectal complications
in terms of normal tissue complication probability (NTCP)
models (5–9). Such empiric or semiempiric models param-
eterize the vast information about inhomogeneous dose
distributions and corresponding outcome data from large
patient populations into few-parametric models that assign a
single probability value to an individual treatment plan.
This enables evidence-based ranking of alternative plans in
the planning process according to their predicted complica-
tion risk. Two important types of NTCP-models can be
distinguished. The first are dose–volume–based models,
which use a single DVH parameter (e.g., the volume VD

irradiated to a certain dose-level D) for ranking plans ac-
cording to their complication probability. In contrast, EUD-
like models define an equivalent uniform dose, EUD �
f�1��ivif�Di��, as surrogate parameter calculated using all
bins (�i, Di) of a DVH, where the form of the (monotonic)
function f depends on the model. Besides possible differ-
ences in the quality of fit as investigated in this study, it
should be mentioned that the choice between dose–volume–
based vs. EUD-like models when used for treatment plan-
ning, especially IMRT, affects the process of plan optimi-
zation (10–12).

In this study, we apply one dose–volume–based and five
EUD-like NTCP models for chronic rectal bleeding of
Grade � 2 to a population of 319 prostate cancer patients
treated with a 3D-CRT adaptive radiotherapy (ART) tech-
nique to doses between 70.2 and 79.2 Gy at the William
Beaumont Hospital. This is, so far, the largest published,
single-institution patient population studied for fitting of
rectal NTCP-models. Thus, this study not only provides
valuable information for identification of the superior mod-
eling approaches but also statistically well-based estimates
of the corresponding model parameters.

METHODS AND MATERIALS

Patient data
Data for 319 prostate cancer patients treated between 1999 and

2002 at the William Beaumont Hospital were used for this study.
The characteristics of this patient population have been described
in previous studies (3, 13). The patients were part of a Phase II
dose-escalation study and underwent 3D-CRT with image-guided
off-line correction under an ART protocol.

All patients had one pretreatment planning CT scan, daily portal
images to determine and correct for setup errors, four additional CT
scans during the first week of the treatment used for individual

adaptation of the treatment plan, and weekly CT scans in the follow-
ing to preclude undetected drifts. The (solid) rectum was contoured on
the initial CT scan from the anal verge or ischial tuberosities (which-
ever was higher) to the sacroiliac joints or rectosigmoid junction
(whichever was lower). Rectal wall was defined based on the solid
rectum contours with 3- to 4-mm wall thickness.

The ART scheme used has been described elsewhere (14, 15). In
short, a four-field box technique with 18 MV photons was used
both for the initial treatment plan of the first week and the follow-
ing adapted plan. In the first week, the patients were treated for a
dose of 9 Gy to the target, where the planning target volume
(PTV), was generated based on the clinical target volume (CTV),
of the initial CT (prostate, or prostate � seminal vesicles) with a
population-based margin of 1 cm. For the adapted plan, informa-
tion from daily portal imaging and the five CT scans available after
the first week of treatment were used to estimate setup error and
individual prostate mobility, which allowed to define a (generally
smaller) patient-specific PTV.

The final dose to the PTV was limited by dose–volume con-
straints of rectal wall and bladder based on the geometry of the
initial planning CT image. For rectal wall these were: (1) D30% �
75.6 Gy, and (2) D5% � 82 Gy. The possible dose levels (minimal
prostate dose) were chosen under the requirement to meet rectum
(and bladder) constraints, and were as follows: 70.2, 72, 73.8, 75.6,
77.4, and 79.2 Gy.

For each patient the dose distributions of the initial and adapted
plan were calculated using Pinnacle 6.2b (ADAC Laboratories,
Milpitas, CA). An in-house developed software was used to cal-
culate DVHs of the rectal wall. This software used the contours
from the initial (planning) CT and calculated the overall dose as
sum of initial and adapted (physical) dose distributions. The DVH-
dose bin size was 0.1 Gy, with volume defined as relative (per-
centage) volume irradiated.

The rectal toxicity variable regarded in this analysis is chronic
rectal bleeding. The follow-up scheme defined examinations at
3-month intervals during the first 2 years, and every 6 months from
the second to the fifth year. As mentioned above, this study is
based on the patient population analyzed in Vargas et al. (3, 13).
However, for the current study, all patient files were re-examined
to improve follow-up time. Complications were graded based on
the Common Terminology Criteria for Adverse Events (CTCAE)
v 3.0 (Table 1). Of the 331 patient datasets, 12 used by Vargas et
al. could not be used because of technical problems in restoring
dose distributions or lost, incomplete, or inconsistent follow-up
information. The median clinical follow-up for the remaining 319
patients was 2.8 years (range, 0.1–6.4), with an interquartile range
of 1.5 to 4.0 years (25th–75th percentile).

The NTCP models
An NTCP model assigns a complication probability for an organ

at risk to a generally inhomogeneous dose distribution. The func-

Table 1. Toxicity score for chronic rectal bleeding based on Common Terminology Criteria for
Adverse Events (v. 3.0)

Grade Description

1 Mild hemorrhage/bleeding; intervention (other than iron supplements) not indicated
2 Symptomatic and medical intervention or minor cauterization indicated
3 Transfusion, interventional radiology, endoscopic or operative intervention indicated
4 Life-threatening consequences; perforation/dysfunction requiring urgent intervention
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tional form of such a model can be based on a mechanistic
description of biologic processes, or might be designed to result in
a phenomenologic fit of the data.

The models considered in this work are of the general forms
described below.

First, a summary measure �, such as the mean dose, an equiv-
alent uniform dose (EUD), or similar, is calculated from the dose
distribution. The quantity � serves as a ranking function by im-
posing an order among individual plans according to their com-
plication risk.

Next, a function, NTCP(�), which assigns complication proba-
bilities to the values of the summary measure is defined. Such a
function is required (1) for continuously mapping � to the interval
[0, 1], while (2) preserving the ranking imposed by the numerical
values of the summary measure. This leads to the class of sigmoid-
type (S-shaped) functions, wherein the following probit, logit,
Poissonian, and logistic formulae are used.

We applied six different models to our data, where the endpoint
was chosen to be chronic rectal bleeding of Grade � 2. These
models differ in the summary measure used and/or the functional
form of the NTCP function as described in the following.

Lyman-EUD model
The most widely used phenomenological approach is the family

of Lyman models (16–20), which uses the probit function

NTCPprobit(�) �
1

�2�
�

��

s·����50�
exp��x2 ⁄ 2�dx (1)

to map the summary measure � to the interval [0, 1] of compli-
cation probabilities. This integral essentially yields the error func-
tion, where the parameter s is the slope of the sigmoid response
curve at the steepest point � � �50, for which the NTCP function
predicts 50% complication probability. Usually the slope param-
eter s is replaced by its inverse m according to s � 1/(m · �50).

Different DVH reduction schemes have been used for defining
the summary measure �, such as an effective volume as in the
LKB model (18) or an effective dose (21). In the following, the
generalized equivalent uniform dose (22) is used, which defines
EUD as Lebesque a-norm of the dose, i.e., in terms of the follow-
ing power–law relationship:

� : � EUDPL � ��i
viDi

a�1⁄a (2)

The sum is calculated over all bins (�i, Di) of the differential DVH,
and a is a parameter associated with the strength of the volume
effect for the organ under consideration (range, a� [1. . . � ]): For
a¡� the EUD is the maximum dose (i.e., no volume effect),
whereas for a � 1 Eq. (2) gives the mean dose (large volume
effect).

Summarizing, the Lyman-EUD model as used in our study is
described by 3 parameters: a, m, and EUD50 (usually termed D50).

Logit-EUD model
This model also uses the generalized EUD Eq. (2) as summary

measure �, although it differs from the Lyman-EUD model in the
choice of the NTCP function. Here the logit function

NTCPlogit(�) �
1

1 � ��50 ⁄ ��k (3)

is chosen as sigmoid shape function (6, 10). Its two parameters �50

(i.e., D50) and k are determined by the EUD, which causes a
complication rate of 50%, and the slope of the NTCP curve here.
Thus, together with the parameter a of the EUD, this model has
three parameters.

Serial reconstruction unit model
In contrast to the two previous phenomenologic NTCP models,

the serial reconstruction unit model, which has been proposed
recently by Alber and Belka (23), arises from certain general
assumptions about the biological processes causing normal tissue
complications.

The model regards radiation induced complications as the con-
sequence of local failure of dynamic repair processes. As an
assumption, the latter is attributed to the finite range of the repair
mechanisms, which finds its correlate in the model by the descrip-
tion of finite-sized reconstruction units and their microscopic
dose–response. Borrowing analogies from thermodynamics and
statistical physics, the authors derive the following expression to
describe the macroscopic dose–response in terms of the NTCP for
homogeneous irradiation of the partial volume V of an organ with
the dose D:

NTCPSRU(V, D) � 1 � exp��Vexp�	�D � D0��� (4)

where 	 is an organ specific sensitivity parameter and D0 is a
reference dose.

For inhomogeneous dose distributions an equivalent uniform
dose, which would give the same macroscopic dose–response
when applied homogeneously to the whole organ (V � 1), can be
defined as

EUDSRU �
1

	
log��i

viexp�	Di�� (5)

Consequently, the NTCP function then reads:

NTCPSRU�EUDSRU� � 1 � exp��exp�	�EUDSRU � D0��� (6)

Summarizing, the serial reconstruction unit model has the two
parameters 	 and D0 to be fitted. Note that in contrast to the
previously described models, which have the volume effect pa-
rameter a of the power-law EUD as a third parameter, here the
sensitivity parameter 	 is inherently coupled to the same value in
the EUD and NTCP function.

Poisson-EUD model
Similarly to the serial reconstruction unit model, this model uses

mechanistic concepts to describe predominantly serial tissue dose–
response. Assuming that complication is a consequence of local
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dose–response of noninteracting subunits, the following NTCP-
function can be derived based on Poissonian statistics (24):

NTCPpoisson�EUD� � 1 � exp���EUD

D0
�a	

� 1 � exp��ln2 · �EUD

D50
�a	(7)

with a reference dose D0 (or a dose D50 causing 50% complication
probability) and a volume–effect (steepness) parameter a. The
EUD is given by Eq. (2), where, according to this model, the
exponent of EUD and the steepness parameter of the NTCP
function have the same value. Thus, unlike the Lyman- and Logit-
EUD models, the Poisson-EUD model has only two parameters.

Mean dose logistic regression model
An association of the rectal mean dose with chronic rectal

bleeding has been reported by some authors (7, 8). To test for such
an association based on our data, we used logistic regression as a
standard method from statistics for this purpose. In terms of the
general NTCP model scheme presented above, here the NTCP
function is given by the two-parametric logistic function

NTCPlogistic��� �
1

1 � exp(�
o � 
1�)
(8)

with the mean dose Dmean � �i viDi as summary measure �. Note
that Dmean is a special case of the EUD, Eq. (2), for fixed parameter
a � 1. Thus, this model has only the two parameters 
0 and 
1.

Cutoff dose logistic regression model
In classical, i.e., nonbiological treatment planning approaches,

dose limitation to organs at risk (OAR) is usually implemented in
terms of dose–volume constraints. For a given treatment-tech-
nique, the most relevant dose level(s) predictive for toxicity can be
determined by retrospectively fitting a sigmoid type NTCP func-
tion to outcome data of a patient population.

In this phenomenological approach, the summary measure � is
given by the proportion VDc

of the OAR receiving doses equal to or
above a (cutoff) dose level Dc. In the present study, VDc

is regarded
as relative volume, formally: VDc

� �i|�Di�Dc�
vi, where �i is the

discretized form of the differential DVH, and only dose bins i with
Di � Dc are used in the sum.

For given value Dc we used logistic regression Eq. (8) to test for
correlation of VDc

and chronic rectal bleeding, resulting in two fit
parameters 
0 and 
1. This was systematically repeated for all
possible Dc up to 85 Gy in increments of 0.1 Gy to assess the
significance of such a logistic regression model for different cutoff
doses. Thus, altogether the model has the three parameters Dc, 
0,
and 
1.

Fitting procedure
The method of choice for fitting such models to sparse, dichot-

omous response data (0/1, if patient shows bleeding of Grade � 2
or � 2, respectively) is maximum likelihood estimation (Jackson
et al. (25) and references therein; see also Ref. 6). In this method
the optimal model parameters are determined such as to maximize
the probability of occurrence of the observed data, which is given
by the so-called likelihood function L. Because of its smallness,

numerically this is usually implemented as maximization of the
natural logarithm ln(L), the LogLikelihood (LL). In our implemen-
tation, the software package Mathematica version 5.0 (Wolfram
Research Inc., Champaign, IL) was used. To reduce calculation
time, the DVH discretization was changed to 0.5 Gy when fitting
the Lyman-, Logit-, Poisson-EUD, and serial reconstruction unit
models.

Uncertainties of the model parameters were assessed using the
variance–covariance matrix of the parameters calculated around
the maximum of LL as described in (25). The 68% confidence
intervals for the parameters can be estimated by the square root of
the diagonal elements.

The goodness of fit of each individual model has been quantified
in two ways. The first method follows Jackson et al. (25). If the
actual (maximized) value of the LL for the NTCP model fitted to
the observed patient population is denoted by LLobs, the probabil-
ity P of obtaining a value smaller than LLobs (i.e., a worse fitting
model) purely by chance can be assessed based on the statistical
distribution of LL. This can be obtained from analytical formulae
for the mean �LL� and variance SLL (see Eq. A3 and A4 in Jackson
et al.) under the assumption of a normally distributed LL. If this
probability turns out to be too large, the model “overfits” the data;
if it is too small, the model does not fit the data well. According to
Rancati et al. (6) values between 30% and 70% indicate a satis-
factory fit.

Additionally, a chi-square goodness-of-fit test was performed
for each model: A histogram of the observed patient data was
calculated, and the resulting group complication rates fi

(obs) were
compared with the corresponding rates fi

(fit) predicted by the re-
spective NTCP model by determining �2 � �N �fi

�obs� �

fi
�fit��2⁄fi

�fit�, which approximately follows a chi-square distribution
with N�1�n degrees of freedom (N � number of histogram bins;
n � number of model parameters).

Intermodel comparison: Akaike information criterion
A widely used measure allowing to compare competing models

is the AIC (26, 27); see also (7). Generally, for fits of different
models to a given dataset a larger likelihood value indicates a
better fit to the data. The AIC quantifies the tradeoff between the
model’s quality of fit (associated with the likelihood value) and its
complexity (expressed by the number of model parameters n), and
is defined as AIC � �2LL � 2n. Models with smaller AIC values
are considered to provide a better (in the sense of more efficient)
fit to the data than models with larger AIC.

RESULTS

Of the 319 patients, 45, 5, and 1 (14.1%, 1.6%, and 0.3%)
showed chronic rectal bleeding of Grade 2, 3, and 4, re-
spectively. Thus, altogether 51 patients (16.0%) showed
chronic rectal bleeding of Grade � 2, which is the endpoint
for the following model fits.

EUD-based models, mean dose model
Parameter estimates and their 68% CIs for the Lyman-,

Logit-, Poisson-EUD, and serial reconstrunction unit model
are given in Table 2. The plots of the corresponding NTCP-
curves are shown in Fig. 1a to 1d. As obvious in these plots
by comparison with the observed complication rates, all
four models fit the data very well. Quantitatively, this is
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manifest by the small values of �2: For example, the fit of
the serial reconstruction unit model (Fig. 1c) resulted in a �2

of 0.03, where the upper limit of �2 for an acceptable fit is
5.99 according to Chi-square statistics (2 degrees of free-
dom; � � 0.05). As described later here, the goodness of fit
was also determined based on the LL, �LL� and SLL. These
values together with the resulting probability P of obtaining
a smaller LL are given in Table 2. Again, for all four models
P indicates acceptable fits.

Concerning the mean dose logistic regression model, it
turns out that Dmean does not significantly correlate to
chronic rectal bleeding of Grade � 2 (p � 0.11). The worse
fit quality of this model in comparison with the four above-
mentioned EUD-based models is also expressed by its sig-
nificantly lower LL value (Table 2). Thus, this model is not
considered further in this study.

Cutoff dose model
Figure 2a shows the LL values of different logistic re-

gression model fits when varying the cutoff dose Dc. For all
dose levels in the range Dc � 50 to 80 Gy, a significant
correlation (� � 0.05) of the relative volume irradiated with
doses � Dc and chronic rectal bleeding of Grade � 2 was
found for our patient population. The curve has maxima at
Dc � 73.7 Gy and 79.6 Gy. Figure 2b depicts the model fit
for Dc � 73.7 Gy: As obvious, the fit quality is slightly
worse than for the EUD-models. However, both the value of
P in Table 2 and a �2 of 1.06 (upper limit according to
Chi-square statistics [1 degree of freedom, � � 0.05]: 3.84)
show that the fit is acceptable. Formally, this is also the case
for the model with Dc � 79.6 Gy (plot not shown; �2 � 2.24
� 3.84). However, as only a part of our patient population
receives doses above 79.6 Gy to nonvanishing volumes of
rectal wall, the distribution of the summary measure V79.6 Gy

itself is strongly shifted to small values, thereby compro-
mising the statistical strength of the patient dataset in the
region of larger V79.6 Gy.

Comparison of the models
Both visually from Fig. 1 and according to the LL values

in Table 3, the four EUD-based NTCP models fit the data of
chronic rectal bleeding of Grade � 2 equally well. How-
ever, as the Akaike information criterion shows, both two-
parametric NTCP models (serial reconstruction unit model
and Poisson-EUD model) have the lowest AIC-values (Ta-
ble 3) and thus, can be considered to fit the data most
efficiently.

Compared with these models, the AIC-values of the two
cutoff-dose models (Dc � 73.7 Gy and 79.6 Gy) are con-
siderably larger, which is caused by both the smaller LL
values (indicating worse fit quality itself) and the larger
number of model parameters. Thus the EUD-based models
provide a quantitatively better and more efficient descrip-
tion of our dataset.

DISCUSSION AND CONCLUSIONS

In this study, six dose–volume–based or EUD-like NTCP
models were fitted to late rectal bleeding data of a large,
consistently treated patient population (319 patients),
thereby aiming to identify the most accurate approach for
quantifying the risk of chronic rectal bleeding based on
planned dose distributions of rectum and allowing statisti-
cally robust estimation of the corresponding model param-
eters.

Our results clearly confirm the volume effect for chronic
rectal bleeding of Grade 2 or worse. Quantitatively, this can
be described very well with the four EUD-like models,

Table 2. Chronic rectal bleeding grade � 2: Estimated parameter values for the six normal tissue
complication probability models, observed LogLikelihood (LL) values, estimated LL distribution,

and resulting probability of obtaining a smaller LL value than observed

Model Parameter estimates (68% CI) LL �LL� 	 SLL P (%)

Lyman-EUD model a � 11.9 	 3.8 �134.5 �134.6 	 10.5 50.4
m � 0.108 	 0.027

D50 � 78.4 	 2.1
Logit-EUD model a � 12.1 	 3.8 �134.5 �134.5 	 10.5 50.0

k � 15.4 	 4.5
D50 � 78.1 	 2.1

Serial RU model 	 � 0.179 	 0.047 �134.5 �135.6 	 10.6 54.0
D0 � 80.6 	 0.9

Poisson-EUD model a � 13.5 	 3.8 �134.5 �135.6 	 10.6 54.1
D50 � 78.5 	 0.6

Mean dose model — �138.9 — —
Cutoff dose model
Dc � 73.7 Gy 
0 � �2.88 	 0.34 �136.1 �136.1 	 10.7 50.0


1 � 0.050 	 0.013
Dc � 79.6 Gy 
0 � �2.10 	 0.16 �135.3 �135.3 	 10.7 50.0


1 � 0.068 	 0.015

Abbreviations: EUD � equivalent uniform dose; RU � reconstruction unit. Dash indicates that
model is not significant.
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where the serial reconstruction unit and the Poisson-EUD
model fitted the data most efficiently according to the small-
est AIC values, as they need only two parameters to de-
scribe the dataset. Thus according to our data, these two
models can be considered to provide the most concise
approach to quantifying the risk of chronic rectal bleeding
of Grade 2 or worse. The cutoff-dose model, a directly
dose–volume based model, generally fitted the data worse,
but still found significant correlation of rectal wall relative
volume above single cutoff-dose levels Dc in the range � 50
to 80 Gy (most significant for Dc � 73.7 and 79.6 Gy) for

our patient population. Mean dose did not correlate to late
rectal bleeding of Grade � 2.

For the three models incorporating the power–law EUD
Eq. (2), i.e., the Lyman-, Logit-, and Poisson-EUD model,
the parameter describing the volume effect was found to be
in the order of a 
 12 (Table 2). Accounting for uncertain-
ties in parameter estimation, this is consistent to Burman et
al. (5), who found n 
 0.12 (different definition of volume
effect parameter: a � 1/n, i.e., a � 8.3). It is also in
agreement with the data published by Skwarchuk et al. (28)
which yield a � 10.3 (fit based on Fig. 3 of the cited paper).

Fig. 1. Predicted probability of chronic rectal bleeding of Grade � 2 according to the different equivalent uniform
dose–based normal tissue complication probability (NTCP) models: (a) Lyman–EUD model Eq. (1); (b) Logit-EUD
model Eq. (3); (c) serial reconstruction unit model Eq. (6); (d) Poisson-EUD model Eq. (7). NTCP is plotted as function
of the corresponding equivalent uniform dose, EUDPL Eq. (2) or EUDSRU Eq. (5). The x-symbols represent reply
toxicity (1/0 for patients with/without toxicity, respectively). For each NTCP-model, the observed toxicity rates are
shown in centers of equally sized bins (except for two bins in the low incidence region, which were combined). Errors
shown are binomial. �2 of the fit and the upper threshold according to Chi-square statistics (� � 5%) are given for each
model.
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However, it is in contradiction to findings of Rancati et al.
(6) (a � 4.3, 68% CI � 3.6—5.6) and Tucker et al. (7) (a
� 0.3, with large uncertainty a � 0–32.3 [95% CI]).

Because of the ART-protocol used, which defined differ-
ent prescription dose levels depending on individual organ
geometry and mobility, the patient population shows a wide
range of DVH shapes and thus large variability of dose–
volume combinations, which is advantageous for robust
fitting of NTCP models. However, possible statistical biases
are introduced by the treatment technique and specific char-
acteristics of the patient population itself.

This is indeed the case as becomes most evident for the
results of the cutoff-dose model, Fig. 2a: The (local) maxima
of the LL at Dc � 73.7 and 79.6 Gy are strongly influenced by
the different prescription dose levels defined by the ART
protocol (70.2, 72, 73.8, 75.6, 77.4, and 79.2 Gy), whereas the
finding that all models with Dc in the range � 50 to 80 Gy are

formally significant can be traced back to the four-field box
treatment technique used, which induces correlations of all
DVH dose-bins in this range. Quantitatively, such correlations
can be assessed by principal component analysis (29, 30); a
detailed investigation of the use of DVH– principal component
analysis in the context of NTCP modeling will be presented in
a subsequent publication.

In this context, a comparison with results from other publi-
cations is elucidating. Both Jackson et al. (2) and Tucker et al.
(7) found significant correlations of intermediate doses � 40 to
45 Gy with toxicity in contradiction to our findings. This is
likely because of differences in the treatment technique (6-field
3D-CRT vs. 4-field box in combination with 6-field 3D-CRT
boost), which induces specific correlations between dose-bins.
Thus an important conclusion is that results of DVH-based
models like the cutoff-dose model are superimposed by char-
acteristics of the treatment technique and patient population,
which compromises inferences about radiobiological effects
and extrapolability of results gained from a certain treatment
technique to others.

With regard to the mean dose model, our results are in
contrast to the studies of Zapatero et al. (8), Tucker et al.
(7), who found a correlation of mean dose and chronic rectal
bleeding of Grade � 2. Again, this might be because of
differences in the treatment technique or the grading scheme
used; in this context, it should be mentioned that Grade �
3 bleeding correlated to mean dose for our population
(p � 0.045; data not shown).

With respect to the magnitude of the volume effect for
rectum, our results can be compared with values published for
other organs (5): Lung (a 
 1.1) and liver (a 
 3.1) are typical
organs with a large volume effect, while e.g., spinal cord
shows only a small volume effect (a 
 20.0). Thus, for our

Fig. 2. Cutoff-dose logistic regression model of chronic rectal bleeding Grade � 2: (a) Values of LogLikelihood (LL)
in dependence of the cutoff dose Dc; models with LL above the dashed horizontal line reach a significance level of
� �0.05. (b) Predicted probability of bleeding according to the model for Dc � 73.7 Gy (local maximum of LL
according to (a)), plotted as a function of the relative volume receiving � 73.7 Gy.

Table 3. Comparison of the normal tissue complication
probability models using the Akaike information criterion (AIC

value)

Model n LL AIC

Lyman-EUD model 3 �134.54 275.1
Logit-EUD model 3 �134.51 275.0
Serial RU model 2 �134.53 273.1
Poisson-EUD model 2 �134.55 273.1
Mean dose model 2 �138.89* —
Cutoff dose model (73.7 Gy) 3 �136.08 278.2
Cutoff dose model (79.6 Gy) 3 �135.34 276.7

Abbreviations: EUD � equivalent uniform dose; LL � Log-
Likelihood; n � number of model parameters; RU � reconstruc-
tion unit.

* Model is not significant (p � 0.05).

1072 I. J. Radiation Oncology ● Biology ● Physics Volume 67, Number 4, 2007



data, the EUD-like models suggest a rather small volume effect
of rectal bleeding (a 
 13.5 for the Poisson-EUD model, Table
2). As illustration of this, a plan should not have more than
2.4% (1.7%) of rectal volume irradiated with 80 Gy (82 Gy) to
have the same EUD (and thus same NTCP) as an otherwise
identical plan with 72 Gy to 10% of the volume.

If the presented EUD-based models are used for dose
optimization, e.g., for IMRT dose escalation, it is always

preferrable to err toward smaller volume effects. In conse-
quence, a EUD-based optimization of prostate RT with the
parameters derived here will severely penalize high dose
regions in the rectum, perhaps for some patients to an extent
that prevents satisfying PTV coverage. Hence, the data
suggest that safe dose escalation to the prostate can be
achieved only by image guided and adaptive strategies to
reduce the extent of the PTV.

REFERENCES

1. Boersma LJ, van den Brink M, Bruce AM, et al. Estimation of
the incidence of late bladder and rectum complications after
high-dose (70–78 Gy) conformal radiotherapy for prostate
cancer, using dose–volume histograms. Int J Radiat Oncol
Biol Phys 1998;41:83–92.

2. Jackson A, Skwarchuk MW, Zelefsky MJ, et al. Late rectal
bleeding after conformal radiotherapy of prostate cancer (II):
Volume effects and dose–volume histograms. Int J Radiat
Oncol Biol Phys 2001;49:685–698.

3. Vargas C, Martinez A, Kestin LL, et al. Dose–volume analysis
of predictors for chronic rectal toxicity after treatment of
prostate cancer with adaptive image-guided radiotherapy. Int J
Radiat Oncol Biol Phys 2005;62:1297–1308.

4. Peeters STH, Lebesque JV, Heemsbergen WD, et al. Local-
ized volume effects for late rectal and anal toxicity after
radiotherapy for prostate cancer. Int J Radiat Oncol Biol Phys
2006;64:1151–1161.

5. Burman C, Kutcher GJ, Emami B. Fitting of normal tissue
tolerance data to an analytic function. Int J Radiat Oncol Biol
Phys 1991;21:123–135.

6. Rancati T, Fiorino C, Gagliardi G, et al. Fitting late rectal
bleeding data using different NTCP models: Results from an
Italian multi-centric study (AIROPROS0101). Radiother On-
col 2004;73:21–32.

7. Tucker SL, Cheung R, Dong L, et al. Dose–volume response
analysis of late rectal bleeding after radiotherapy for prostate
cancer. Int J Radiat Oncol Biol Phys 2004;59:353–365.

8. Zapatero A, García-Vicente F, Modolell I, et al. Impact of
mean rectal dose on late rectal bleeding after conformal ra-
diotherapy for prostate cancer: Dose–volume effect. Int J
Radiat Oncol Biol Phys 2004;59:1343–1351.

9. Peeters STH, Hoogeman MS, Heemsbergen WD, et al. Rectal
bleeding, fecal incontinence, and high stool frequency after
conformal radiotherapy for prostate cancer: Normal tissue
complication probability modeling. Int J Radiat Oncol Biol
Phys 2006;66:11–19.

10. Wu Q, Mohan R, Niemierko A, et al. Optimization of inten-
sity-modulated radiotherapy plans based on the equivalent
uniform dose. Int J Radiat Oncol Biol Phys 2002;52:224–235.

11. Bär W, Schwarz M, Alber M, et al. A comparison of forward
and inverse treatment planning for intensity-modulated radio-
therapy of head and neck cancer. Radiother Oncol 2003;69:
251–258.

12. Bos LJ, Schwarz M, Bär W, et al. Comparison between
manual and automatic segment generation in step-and-shoot
IMRT of prostate cancer. Med Phys 2004;31:122–130.

13. Vargas C, Yan D, Kestin LL, et al. Phase II dose escalation
study of image-guided adaptive radiotherapy for prostate can-
cer: Use of dose–volume constraints to achieve rectal isotox-
icity. Int J Radiat Oncol Biol Phys 2005;63:141–149.

14. Martinez AA, Yan D, Lockman D, et al. Improvement in
dose escalation using the process of adaptive radiotherapy
combined with three-dimensional conformal or intensity-

modulated beams for prostate cancer. Int J Radiat Oncol
Biol Phys 2001;50:1226 –1234.

15. Yan D, Lockman D, Brabbins D, et al. An off-line strategy for
constructing a patient-specific planning target volume in adap-
tive treatment process for prostate cancer. Int J Radiat Oncol
Biol Phys 2000;48:289–302.

16. Lyman JT. Complication probability as assessed from dose–
volume histograms. Radiat Res 1985;104:S13–S19.

17. Kutcher GJ, Burman C. Calculation of complication probabil-
ity factors for non-uniform normal tissue irradiation: The
effective volume method. Int J Radiat Oncol Biol Phys 1989;
16:1623–1630.

18. Kutcher GJ, Burman C, Brewster L, et al. Histogram reduction
method for calculating complication probabilities for three-
dimensional treatment planning evaluations. Int J Radiat On-
col Biol Phys 1991;21:137–146.

19. Lyman JT, Wolbarst AB. Optimization of radiation therapy,
III: A method of assessing complication probabilities from
dose–volume histograms. Int J Radiat Oncol Biol Phys 1987;
13:103–109.

20. Lyman JT, Wolbarst AB. Optimization of radiation therapy,
IV: A dose–volume histogram reduction algorithm. Int J Ra-
diat Oncol Biol Phys 1989;17:433–436.

21. Mohan R, Mageras GS, Baldwin B, et al. Clinically relevant
optimization of 3-D conformal treatments. Med Phys 1992;
19:933–944.

22. Niemierko A. A generalized concept of equivalent uniform
dose [Abstract]. Med Phys 1999;26:1100.

23. Alber M, Belka C. A normal tissue dose response model of
dynamic repair processes. Phys Med Biol 2006;51:153–172.

24. Alber M, Nüsslin F. A representation of an NTCP function for
local complication mechanisms. Phys Med Biol 2001;46:439–
447.

25. Jackson A, Haken RKT, Robertson JM, et al. Analysis of clinical
complication data for radiation hepatitis using a parallel architecture
model. Int J Radiat Oncol Biol Phys 1995;31:883–891.

26. Akaike H. Information theory and an extension of the maxi-
mum likelihood principle. In: Petrov BN, Csaki F, editors.
Second international symposium on information theory.
Budapest: Academiai Kaido, 1973: 267–281.

27. Akaike H. A new look at statistical model identification. IEEE
Trans Automatic Control 1974;19:716–723.

28. Skwarchuk MW, Jackson A, Zelefsky MJ, et al. Late rectal
toxicity after conformal radiotherapy of prostate cancer (I):
Multivariate analysis and dose–response. Int J Radiat Oncol
Biol Phys 2000;47:103–113.

29. Dawson LA, Biersack M, Lockwood G, et al. Use of principal
component analysis to evaluate the partial organ tolerance of
normal tissues to radiation. Int J Radiat Oncol Biol Phys
2005;62:829–837.

30. Söhn M, Yan D, Liang J, et al. Influence of dose volume
histogram (DVH) pattern on rectal toxicity [Abstract]. Int J
Radiat Oncol Biol Phys 2005;63(Suppl. 1):S58–S59.

1073NTCP models for late rectal bleeding ● M. SÖHN et al.



Appendix C

Predicting Grade 3 Acute Diarrhea
during Radiation Therapy for Rectal
Cancer Using a Cutoff-Dose Logistic
Regression Normal Tissue
Complication Probability Model

accepted for publication in the
International Journal of Radiation Oncology, Biology and Physics

81





Predicting Grade 3 Acute Diarrhea during Radiation Therapy for Rectal
Cancer Using a Cutoff-Dose Logistic Regression Normal Tissue Complication

Probability Model∗

John M. Robertson, M.D.†

William Beaumont Hospital, Department of Radiation Oncology,
3601 W. Thirteen Mile Rd, Royal Oak, MI 48073
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Purpose: Understanding the dose volume relationship of small bowel irradiation and severe acute
diarrhea may help reduce the incidence of this side effect during adjuvant treatment for rectal cancer.

Methods and Materials: Consecutive patients treated curatively for rectal cancer were reviewed
and the maximum grade of acute diarrhea was determined. The small bowel was outlined on the
treatment planning CT scan and a dose volume histogram was calculated for the initial pelvic
treatment (45 Gy). Logistic regression models were fitted for varying cutoff-dose levels from 5 Gy
to 45 Gy in 5 Gy increments. The model with the highest LogLikelihood was used to develop a
cutoff-dose normal tissue complication probability (NTCP) model.

Results: There were a total of 152 patients (48% preoperative, 47% postoperative, 5% other),
predominantly treated prone (95%) with a three-field technique (94%), and a protracted venous
infusion of 5-fluorouracil (78%). Acute grade 3 diarrhea occurred in 21%. The largest LogLikelihood
was found for the cutoff-dose logistic regression model with 15 Gy as the cutoff-dose although the
models for 20 Gy and 25 Gy had similar significance. According to this model, highly significant
correlations (p < 0.001) between small bowel volumes receiving at least 15 Gy and toxicity exist in
the considered patient population. Similar findings applied to both the preoperatively (p = 0.001)
and postoperatively irradiated groups (p = 0.001).

Conclusion: The incidence of grade 3 diarrhea was significantly correlated with the volume of
small bowel receiving at least 15 Gy using a cutoff-dose NTCP model.

Keywords: Rectal cancer, three dimensional treatment planning, acute toxicity, diarrhea, normal tissue
complication probability

I. INTRODUCTION

Prospective randomized trials of adjuvant con-
ventionally fractionated combined chemotherapy
and radiation therapy (RT) for rectal cancer have
found the incidence of severe acute diarrhea to be
12% to 39% for preoperative treatment (1-4) and
18% to 35% for postoperative treatment (1, 4-7).
Severe acute diarrhea has contributed to the fail-
ure to complete therapy, either due to research de-
fined criteria or patient preference (6, 7). Failure
to complete therapy is less of a problem for pre-
operative treatment, reportedly only about 10% or
less (1, 3, 4), but occurred in as many as 20% and
50% of patients enrolled in prospective postopera-
tive treatment trials (1, 6).

Diarrhea in rectal cancer patients is multifac-
torial (8). In the preoperatively treated patients
the presence of an unresected rectal cancer can
cause altered bowel habits interpreted as diarrhea.

In postoperatively treated patients, the surgery
itself has been significantly associated with anal
incontinence (9), which would be interpreted as
grade 3 toxicity according to the Common Termi-
nology Criteria (10). Irradiation of the rectum it-
self with essentially no RT given to the small bowel
has been reported to occasionally cause diarrhea
in patients treated for prostate cancer, presumably
due to proctitis (11). Diarrhea is also a common
side effect of chemotherapy alone, particularly in
regimens including bolus 5-fluorouracil (5-FU) and
irinotecan, with up to one third of patients expe-
riencing grade 3 or 4 diarrhea (12). Newer agents,
such as targeted therapies, have encountered severe
acute diarrhea as the dose limiting toxicity in stud-
ies of preoperative treatment for rectal cancer (13).

Efforts to minimize the irradiated volume of
small bowel have led to multiple well-known ma-
neuvers, such as placing the patient in a prone
position, cradles or “belly-boards” for small bowel
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exclusion, treatment with a full bladder, and mul-
tiple fields for RT (14). Avoidance of the small
bowel has also been used to justify studies of In-
tensity Modulated RT (IMRT) or Intensity Mod-
ulated Arc Therapy (IMAT) (15-18). Previous re-
search has shown that the development of grade 3
diarrhea was significantly associated with the vol-
ume of small bowel irradiated for all dose levels (19,
20), although the two studies disagreed with re-
gard to the postoperatively treated patients. In
this study, a normal tissue complication probabil-
ity (NTCP) analysis was applied to a larger group
of patients for the incidence of grade 3 diarrhea in
terms of a cutoff-dose Logistic Regression model in
order to determine the small bowel volume above
the respective cutoff-dose level most significant for
developing and predicting toxicity.

II. METHODS AND MATERIALS

Consecutive patients treated with curative in-
tent using pelvic RT for biopsy proven rectal cancer
were reviewed after obtaining Human Investigation
Committee permission. All patients were treated
by a single radiation oncologist (JMR). Techniques
to exclude the small bowel were routinely used if
tolerated by the patient. Typically, this was a
prone position on a customized vacuum bag cra-
dle with rigid foam placed under the pubis and
chest (21, 22). Patients were instructed in bladder
distension techniques and told to have a full blad-
der for simulation, treatment planning CT scans
and for treatment.

Between 1 1
2

to 2 hours before the treatment plan-
ning CT scan, patients were given diluted barium
(300 ml) orally. Treatment planning CT scans were
obtained with transverse images at 3 or 5 mm in-
tervals through the pelvis only or the abdomen
and pelvis using a helical CT scanner. These im-
ages were transferred to a Pinnacle treatment plan-
ning station (ADAC Laboratories, Milpitas, CA)
and the entire volume of small bowel was outlined
on every CT slice. This included both opacified
and unopacified loops, as previous experience has
shown that outlining only the opacified areas can
fail to identify critical portions of small bowel (23).

Treatment typically used a posterior to anterior
and opposed lateral field arrangement unless other
field arrangements, such as addition of an anterior
to posterior field or IMRT, were necessary to ful-
fill the homogeneity requirement. The minimum
intended dose was 45 Gy at 1.8 Gy per fraction
at the isocenter with a maximum inhomogeneity
of 105%. All treatment fields used the same bor-
der definitions, described in detail before (19, 20)
and identical to INT 0114 (6) and INT 0144 (24).
The small bowel was routinely excluded from the

lateral treatment fields after a dose of 45 Gy and
treatment was typically given to at least 50.4 Gy.

The maximum diarrhea toxicity grade was as-
signed using the NCI Common Terminology Crite-
ria v3.0 (Table 1) (10). Acute diarrhea was gener-
ally managed with oral antidiarrheal medications
and avoidance of dietary fiber until improvement.
Grade 3 diarrhea that failed to improve, was rapid
in onset, or occurred at a low dose in high risk
patients may also have been managed with field
modification and/or a treatment break.

The intended small bowel dose for the initial
45 Gy was used in order to develop a predictive
model. The absolute volume of the outlined small
bowel in cubic centimeters was compared instead
of the percentage as the entire small bowel was
not imaged for all patients. Additionally, devel-
oping a model that required imaging and volume
definition of the entire small bowel may be im-
practical for routine clinic use. The small bowel
dose-volume histogram was calculated for the ini-
tial pelvic treatment to 45 Gy with the absolute
volume of small bowel to be treated to each dose
between 5 and 40 Gy reported at 5 Gy intervals,
as was done in the previous experience (19, 20).

To find the most relevant dose level(s) predictive
for acute grade 3 diarrhea, logistic regression as a
standard method from statistics was used, which
provides a phenomenological approach to NTCP
modeling in terms of the so-called cutoff-dose lo-
gistic regression model (25). Here, VDc

is defined
as the volume of small bowel irradiated to doses
equal to or above a cutoff-dose level Dc. For given
value of Dc. the two-parametric logistic function

NTCPlogistic(VDc
) =

1

1 + exp(−a − bVDc
)

(1)

is used to test for correlation of VDc
and toxicity

in terms of a logistic regression with a and b as fit
parameters. Fitting was performed for all possible
values of Dc as available from the small bowel dose-
volume histogram, i.e. all values in the range 5 to
45 Gy in increments of 5 Gy.

The method used to fit the models to sparse,
dichotomous response data (zero or one, if the pa-
tient developed grade less than 3 or grade 3 di-
arrhea, respectively) was maximum likelihood es-
timation (25, 26). This method determined the
optimal model parameters to maximize the prob-
ability of occurrence of the observed data, which
is given by the so-called likelihood function L. Be-
cause of its smallness, numerically this is usually
implemented as maximization of the natural log-
arithm ln(L), the LogLikelihood. In our imple-
mentation, the software package Mathematica ver-
sion 5.0 (Wolfram Research Inc., Champaign, IL)
was used.
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Grade Description

1 An increase of less than four stools per day over baseline or a mild increase in
ostomy output compared to baseline.

2 An increase of four to six stools per day over baseline, intravenous fluids indicated
for less than 24 hours, or a moderate increase in ostomy output compared to
baseline. Not interfering with activities of daily living.

3 An increase of more than six stools per day over baseline, incontinence, intravenous
fluids for 24 hours or more, hospitalization, or a severe increase in ostomy output
compared to baseline. Symptoms interfere with activities of daily living.

4 Life-threatening consequences (e.g., hemodynamic collapse).

TABLE 1: Acute diarrhea grading as defined by the Common Terminology Criteria for Adverse Events (v3.0)
(Adapted from 10)
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FIG. 1: LogLikelihood for the logistic regression models
applied to the small bowel volume of all 152 patients
at dose levels from 5 Gy to 45 Gy in 5 Gy increments.
The model with the highest significance was found for
a cutoff-dose of 15 Gy.

III. RESULTS

There were a total of 152 patients (Table 2).
Treatment was given in a uniform fashion, with
95% of patients treated prone and 94% treated
with a three-field technique. Preoperative treat-
ment was given in 48%, postoperative in 47%, with
5% treated for a local recurrence or as primary
treatment. All but two patients received concur-
rent chemotherapy, which was a continuous infu-
sion of 5-FU in 78%, bolus 5-FU with leucovorin in
13%, capecitabine in 4% and bolus 5-FU in 2%.

Acute diarrhea was grade 0 in 32 patients (21%),
grade 1 in 62 patients (41%), grade 2 in 26 patients
(17%) and grade 3 in 32 patients (21%). There
were no patients with grade 4 or 5 diarrhea.

According to the LogLikelihood values for mod-
els with different cutoff-doses at 5 Gy steps be-
tween 5 Gy and 45 Gy the cutoff-dose logistic re-
gression model with highest significance was found
for 15 Gy, although the models for 20 Gy and 25 Gy
were of similar significance (Figure 1).

The cutoff-dose logistic regression model for the
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FIG. 2: The normal tissue complication probability
(NTCP) of grade 3 diarrhea according to the cutoff-
dose logistic regression model compared to the volume
of small bowel receiving at least 15 Gy on the treatment
planning dose-volume histogram. The red Xs along the
top of the graph show the individual small bowel vol-
umes of each patient with grade 3 diarrhea. The green
Xs along the bottom show the volumes of patients with-
out grade 3 diarrhea.

volume of small bowel receiving at least 15 Gy was
investigated further. The range of small bowel vol-
umes between the minimal and maximal volume
was divided into 6 equally-sized bins for histogram
construction. The 3 highest volume histogram bins
had very few patients and were combined for a to-
tal of 4 bins overall (0 to 130 cc, 130 to 260 cc,
260 to 390 cc, and greater than 390 cc). This was
used to construct a plot showing the incidence of
grade 3 acute diarrhea for each small bowel volume
receiving a dose equal to or above the cutoff-dose
(Figure 2). When the volume of small bowel re-
ceiving 15 Gy or less was 130 cc or less, the NTCP
was 11%. The correlation found for the data was
highly significant (p < 0.001) with an area under
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Characteristic Number patients

Treatment position
145 Prone

7 Supine

Treatment technique

143 PA and opposed laterals

6 AP, PA and laterals

2 IMRT

1 Opposed laterals

RT/Surgery Sequence

73 Preoperative treatment

72 Postoperative treatment

7 Other (wide local excision or
locally recurrent)

Chemotherapy

119 Continuous infusional 5-FU
(with leucovorin in 7; with
irinotecan in 1)

20 Bolus 5-FU with leucovorin

8 Capecitabine

3 Bolus 5-FU alone

2 None

IMRT= Intensity Modulated Radiation Therapy

5-FU = 5-fluorouracil

TABLE 2: Treatment Characteristics
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FIG. 3: As Figure 1, but only for postoperatively
treated patients.

the receiver operating characteristic curve of 0.71.

The incidence of grade 3 diarrhea was 29% for
postoperative treatment (21 of 72 patients) and
14% for preoperative treatment (10 of 73 patients)
(p = 0.03). The LogLikelihood analysis for post-
operative treatment found the highest significance
for the 15 Gy dose level (Figure 3). The cutoff-
dose logistic regression model at the 15 Gy dose
level found a highly significant (p = 0.001) rela-
tionship (Figure 4). The LogLikelihood analysis
for preoperative treatment found the highest sig-
nificance for the 15 Gy, 20 Gy, and 25 Gy dose lev-
els (Figure 5). The cutoff-dose logistic regression
model at the 15 Gy dose level was highly signifi-
cant (p = 0.001). As there were only 10 events in
this group, the two largest dose bins (260 to 390 cc,

100 200 300 400 500 600 700
0

0.2

0.4

0.6

0.8

1

4�31

8�23
5�13

4�5

N
T

C
P

Volume (cc)

FIG. 4: As Figure 2, but only for postoperatively
treated patients.

and more than 390 cc) were combined into one bin
of more than 260 cc (Figure 6).

IV. DISCUSSION

This was the largest study performed of the rela-
tionship of the irradiated small bowel volume and
the development of grade 3 diarrhea (19, 20, 27-30).
Aside from the total number of patients, this study
also had the largest number of grade 3 events, al-
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FIG. 5: As Figure 1, but only for preoperatively treated
patients.
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FIG. 6: As Figure 2, but only for preoperatively treated
patients. Because there were fewer events than the data
shown in Figure 2 and Figure 4, the largest two volume
bins were combined into one bin (see text).

lowing the analysis of this endpoint, in contrast to
other reports that included grade 2 diarrhea (27-
30). Given the importance of grade 3 or higher
toxicity in the conduct of clinical trials, with treat-
ment held for grade 3 diarrhea in prospective ran-
domized trials (6), this analysis was probably more
appropriate. Although this was the largest num-
ber of grade 3 events in publications analyzing the
dose-volume relationship of diarrhea, the incidence
was in agreement with other trials of preoperative
and postoperative therapy (1-7). Additionally, no
patients had grade 4 or higher diarrhea, supporting
the safety of the management of this patient group.

One particular advantage to this study was that
the treatment approach was nearly uniform, with
almost all patients treated prone with a three-field
technique in a cradle for small bowel exclusion,
and concurrent continuous infusional 5-FU. The
weekly evaluation, toxicity assignment, and toxic-
ity management were also consistent throughout,

as all patients were managed by a single physi-
cian. These factors likely increased the uniformity
of management and evaluation, reducing these con-
founding variables as much as possible. As such,
the volumetric data determined here can probably
be generalized, at least to rectal cancer. Certainly
other chemotherapy combinations may alter the in-
cidence and severity of diarrhea, but the volumetric
relationship and the necessity to study the lower
dose portions of the dose volume histogram would
probably still exist.

The relationship between the three-
dimensionally determined irradiated small bowel
volume and the development of diarrhea has been
well established (19, 20, 28, 30). Other than our
own research (19, 20) which included patients
reported here, two other studies have examined
the relationship between three-dimensionally
determined small bowel volume and acute diar-
rhea (28, 30). The first study included 41 patients
treated preoperatively for rectal cancer (28) and
substantively agreed with the study reported here.
All patients were treated in a prone position to
45 Gy with concurrent bolus 5-FU with leucovorin
during the first and fifth week. Thirteen patients
had grade 2 (9 of 41) or grade 3 (4 of 41) acute
diarrhea, using the Common Terminology Crite-
ria v3.0. All small bowel volumes tested, at 5 Gy
increments from 5 Gy to more than 42.75 Gy,
were significantly associated with the maximum
diarrhea scores, although the greatest significance
was for the lower dose thresholds of 5 Gy through
30 Gy. The other study in rectal cancer was
also supportive of the findings reported here, and
included 28 patients treated in a supine position
with concurrent 5-FU, leucovorin and oxaliplatin
for T4 tumors or locally recurrent disease (30).
The volumetric analysis was performed using
grade 2 or higher diarrhea that occurred in 18
patients, and reported a relationship at the 15 Gy
volume, with an incidence of diarrhea of 52% for
patients with more than 150 cc of small bowel
compared to only 11% for patients with 150 cc or
less.

The utility of the 15 Gy dose level was solid-
ified in the current report. In our previous work,
we noted that significant dose volume relationships
were found for each dose from 5 Gy to 40 Gy and
that the dose volume relationship was nearly flat
for the dose levels between 15 Gy and 40 Gy (19,
20). This was likely to be technique related, as the
patients were nearly all irradiated using a three-
field technique and the dose levels of 15 Gy and
above are all linked. The LogLikelihood analysis
performed here showed that 15 Gy had the highest
significance, although the 20 Gy and 25 Gy dose
volume levels were also important. Thus, stud-
ies analyzing the relationship of diarrhea and small
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bowel volume should include the 15 Gy dose vol-
ume in the analysis.

The usefulness of the 15 Gy dose level as an
avoidance structure for trials using IMRT or IMAT
remains to be determined. A study of helical to-
motherapy, without chemotherapy, used a similar
dose volume parameter (15 Gy dose volume to
150 cc or less) derived from our previous data and
encountered no grade 3 diarrhea, supporting this
approach (31). However, because the dose levels
are technique dependent, the recommendation to
minimize the 15 Gy dose level is preliminary and
additional clinical data using IMRT and/or IMAT
will be necessary before safe dose and volume rec-
ommendations can be finalized.

It is important to recognize that this was not ac-
tually the V15, or volume of small bowel receiving
at least 15 Gy. In order to derive the actual dose
volume parameters, each patient with an event,
such as grade 3 diarrhea, would have their indi-
vidual DVH calculated for the dose and volume at
the time point at which they manifested grade 3 di-
arrhea. This typically occurred at a median dose of
30.6 Gy with a range of 12.6 to 43.2 Gy in our pre-
vious analysis (20). The purpose here was not to
investigate the mechanism of dose and small bowel
toxicity, but to develop a predictive model using
pretreatment parameters.

The incidence of grade 3 diarrhea was 29% in
postoperatively treated patients which was some-
what higher than the overall 21% incidence re-
ported in a prospective trial of RT with a pro-
tracted venous infusion of 5-FU (5). In our pre-
vious work, there was some disagreement on the
value of small bowel DVH analysis for the postop-
erative patients. The initial report found a signif-
icant relationship of small bowel dose and volume
in 40 patients, predominantly comprised of post-
operative patients (19). In the follow up report,
containing 39 postoperatively treated patients, the
small bowel volumes were not statistically signifi-
cantly different between patients with and without
grade 3 diarrhea (20). The current study appears
to have settled the issue, with a significant associ-
ation in 72 patients.

The incidence of grade 3 diarrhea in preoper-
atively treated patients was 14%, in agreement
with other preoperative studies (1-4). The observa-
tion of a significant relationship between irradiated
small bowel volume and grade 3 diarrhea agreed
with our previous work (20). This finding was
somewhat unexpected, given the established mo-
bility of the small bowel in preoperatively treated
patients (23).

Patients with rectal cancer have a number of
potential causes for diarrhea, specifically the tu-
mor itself or rectal surgery, proctitis from RT, and
chemotherapy. Studies of diarrhea in gynecologic

cancers may be helpful, as there is no rectal tumor
or rectal surgery, although RT is typically given
to the whole pelvis, usually to a lower dose. Pa-
tients with cervix cancer in place should be anal-
ogous to the preoperative rectal cancer group as
there is often no pelvic surgery, whereas patients
with endometrial cancer and resected cervix can-
cer should be similar to the postoperative low an-
terior resection rectal cancer group as they are
treated postoperatively. Two studies using three
dimensionally calculated small bowel volumes for
gynecologic cancer patient have been reported (27,
29). The first study analyzed 29 women with cervi-
cal cancer, 18 with endometrial cancer and 3 with
other gynecologic cancers, approximately one half
of whom received concurrent weekly cisplatin (27).
All patients were treated in a supine position us-
ing IMRT. Grade 2 diarrhea was defined as use
of frequent medications and occurred in 14 (28%)
of the patients. The small bowel volume that re-
ceived 25%, 50%, 75% and 100% (corresponding
to absolute doses of 11 Gy, 22.5 Gy, 33.75 Gy and
45 Gy, respectively) was found to be nearly asso-
ciated (p = 0.06) for the 25% and 50% volumes
but highly significantly associated for the higher
dose volumes (p = 0.009). Both prior surgery and
chemotherapy were not related to the development
of diarrhea. On multivariate analysis, the only sta-
tistically significant factor was the 100% volume
of small bowel. The other study in gynecologic
cancers came to different conclusions. This report
analyzed the small bowel volume in 80 gynecologic
cancer patients and divided them into a group of
49 patients without abdominal surgery and another
group of 31 with abdominal surgery (29). Concur-
rent monthly cisplatin with infusional 5-FU was
used in 36 patients in the first group and 14 in the
second group, but was not significantly associated
with the development of grade 2 or higher diarrhea.
Treatment was given to the whole pelvis with the
patient in a supine position. Using grade 2 plus 3
diarrhea (defined by the Common Toxicity Crite-
ria v2.0), the low dose volume of small bowel, corre-
sponding to the 16 Gy volume, was most significant
for the patients without abdominal surgery, while
the full dose volume was most significant for the
patients with abdominal surgery. Thus, the gyne-
cologic data was somewhat mixed, with the high
dose volume significantly associated with toxicity
for all patients in one study but not for postoper-
ative patients in the other study.

An objective measurement of small bowel dam-
age would be of great help in determining these re-
lationships. One candidate is the plasma citrulline
level, which is an amino acid that is not incorpo-
rated into proteins and is mainly produced by en-
terocytes of the small bowel (32). The potential
role of plasma citrulline levels has been reported
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for studies of benign conditions leading to short-
ened gut or reduced small bowel enterocyte mass

as well as myeloablative therapy (33), although it
has not been studied specifically for RT.
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Abstract
We present a method of modelling inter-fractional organ deformation and
correlated motion of adjacent organ structures in terms of so-called eigenmodes.
The method is based on a principal component analysis (PCA) of organ shapes
and allows for reducing the large dimensionality of geometry information from
multiple CT studies to a few-parametric statistical model of organ motion
and deformation. Eigenmodes are 3D vectorfields of correlated displacements
of the organ surface points and can be seen as fundamental ‘modes’ of the
patient’s geometric variability. The amount of variability represented by the
eigenmodes is quantified in terms of corresponding eigenvalues. Weighted
sums of eigenmodes describe organ displacements/deformations and can be
used to generate new organ geometries. We applied the method to four
patient datasets of prostate/rectum/bladder with N = 15–18 CTs to assess
interfractional geometric variation. The spectrum of eigenvalues was found to
be dominated by only few values, indicating that the geometric variability of
prostate/bladder/rectum is governed by only few patient specific eigenmodes.
We evaluated the capability of this approach to represent the measured organ
samples by calculating the residual errors for the organ surface points, using
a varying number of eigenmodes. The distribution of residual errors shows
fast convergence with the number of eigenmodes. Using 4 dominating modes,
the range of residual errors for the four patients was 1.3–2.0 mm (prostate),
1.4–1.9 mm (rectum) and 1.5–1.9 mm (bladder). Thus, individual geometric
variation taken from multiple imaging data can be described accurately by
few dominating eigenmodes, thereby providing the most important factors to
characterize deformable organ motion, which can assist adaptive radiotherapy
planning.

(Some figures in this article are in colour only in the electronic version)
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1. Introduction

Modern radiotherapy approaches aim to tailor the high dose region to a 3D target volume with
high accuracy. However, the quality and toxicity of the actual treatment are compromised
by geometrical uncertainties in the treatment process due to motion of the target and its
adjacent organs relative to the treatment beams. These uncertainties result from patient set-up
errors, i.e. shifts or rotations of the patient’s bony structures or external markers relative to
the geometry in the planning CT scan, and internal organ motion, i.e. geometric changes
relative to the bony structures or external markers. Although the target errors can be reduced
significantly with image based set-up methods, the steep dose gradient around the target and
inevitable variability of the adjacent organs at risk necessitate quantitative characterization of
the remaining uncertainties for planning and evaluation. Rigorous modelling of internal organ
motion and deformations is complex and has been addressed only by a few authors.

To simulate internal organ motion including deformations, Mageras et al (1996) sampled
deformations taken from a database of multiple CT studies and mapped these to the organ
contours of the planning CT scan of an individual patient, thereby realizing a statistical
population based bootstrap model to study the effects of internal organ motion on treatment
parameters. As an obvious shortcoming of this approach only deformations observed in
the database of patients can be reproduced. Hoogeman et al (2002) simulated rectum
motion by deforming the rectum shape of the planning CT scan on a slice-by-slice basis
with corresponding probability distributions that were found for a population of reference
patients. This allows generation of deformations not present in the group of reference patients
on a statistical basis. However, the developed method is limited to studying the influence
of rectum shape changes on treatment parameters. Both of the latter two methods model
organ shape variability on a population basis, while individual patient characteristics enter the
models merely through the organ geometries of the planning CT scan.

Individual organ shape changes as observed in multiple (pre-)treatment CT images
were addressed by Yan et al (1999), who used a finite element (FE) method incorporating
biomechanical properties of the tissues to calculate the displacements of the organ tissue
elements for the different CT scans. These displacement fields were used both to reconstruct
the dose delivered in the first few fractions and to predict the distribution of the patient
specific organ motion. The latter was used to estimate the cumulative dose in the subsequent
fractions and adapt the treatment plan accordingly. For the prediction process intermediate
geometries were generated based on interpolation between all pairs of measured (pre-)
treatment geometries. However, this implicitly implies the assumption of a uniform statistical
distribution between the measured geometries. The validity of this approximation has not
been investigated by the authors.

So far the most general statistical framework to model deformable organ motion for
radiotherapy was proposed by Fontenla et al (2001a). Using a set of appropriate parameters
to describe observed organ shape changes, the method is based on a non-parametric statistical
density estimation of the underlying multivariate probability distribution. The theoretical
framework for incorporating both population based and individual deformation as well as
set-up information was developed. In an accompanying paper (Fontenla et al 2001b) the
method was applied to data of prostate cancer patients to model individual organ deformation
(without using population based data). Though theoretically appealing, this approach suffers
from the problem of slow convergence of the non-parametrically estimated distribution to
the ‘true’ underlying probability distribution if the number of parameters used to describe
organ shape changes is too large. Consequently, in the example only 6–12 parameters per
organ were used to describe the geometric changes of prostate/bladder/rectum via affine
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transformations. The errors introduced by this approximation were not quantified by the
authors.

All approaches cited above have the shortcoming that they apply only to single organs
of interest, while correlated motion of adjacent organs structures is not taken into account.
However, with respect to applications in 4D planning and evaluation this is desirable and thus
addressed in this work. We use a method from multivariate statistics, principal component
analysis (PCA), to quantitatively determine the most important modes of correlated motion and
deformation present in a series of (pre-)treatment organ geometries, which were parametrized
by sets of corresponding organ surface points. This approach provides a few-parametric
statistical model of individual organ deformation. In this paper we give an introduction to the
method and test the implementation for data of prostate cancer patients. The accuracy of the
PCA organ model to represent the measured organ geometries is evaluated.

2. Theory

2.1. Parametrization of organ geometries

We consider inter-fractional internal organ motion/deformation as given by a series of N
(pre-)treatment CT scans of an individual patient. In the following, organ motion/deformation
is understood as change of organ geometry as given by its shape. Organ shape is parametrized
by the set of positions of M organ surface points: if �xj(i) denotes the position of the j th point
in the ith CT, then the surface shape vector

pi = (�x1(i), . . . , �xM(i)) ∈ �3M (1)

represents the geometry of the organ in the ith CT (i = 1, . . . , N).
In case simultaneous motion/deformation of more than one organ is to be modelled, the

surface shape vectors p
organ A

i ∈ �3MA, p
organ B

i ∈ �3MB , etc, are concatenated to form a vector
of dimension 3(MA +MB + · · ·), which represents the composite geometry of the organs under
consideration.

In the following, it is important that each �xj in (1) corresponds to the same anatomical
position in each of the N CTs, i.e., the series of corresponding positions �xj(1), . . . , �xj(N)

provides anatomical point-tracking information. Methods for generation of such datasets
based on (pre-)treatment CT scans have been published elsewhere (Yan et al 1999) and are
not part of the organ model presented in the following. However, we refer to this issue below
in section 4.

2.2. Statistical model of organ geometric change based on PCA

It is assumed that the set of surface shape vectors {pi}i=1,...,N can be seen as samples from
a random process. Obviously, for anatomical reasons displacements of the M surface points
due to organ motion and deformation are highly correlated, which implies that the underlying
dimensionality of this multivariate statistical problem is actually much smaller than 3M .
Thus we are interested in correlated displacements of the surface points. For this 3M-
dimensional problem with N samples we use a method from multivariate statistics, principal
component analysis (e.g. Manly 2004, Joliffe 2002). This type of approach is known as a
point-distribution model (PDM) in the literature (Cootes et al 1994) and has been applied to
problems like population modelling of anatomical shape variability (Lorenz and Krahnstöver
2000) or automatic 3D organ segmentation (Pekar et al 2004). In appendix A we present an
instructive example of PCA for a two-dimensional dataset.
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Decomposition of organ geometry samples into eigenmodes. Applied to the problem of
organ geometric change, PCA works as follows. The first two moments of the probability
distribution, i.e. the mean shape vector p̄ ∈ �3M and the covariance matrix C ∈ �3M×3M , are
calculated according to

p̄ = 1

N

N
∑

i=1

pi (2)

C = 1

N − 1

N
∑

i=1

(pi − p̄) · (pi − p̄)T (3)

= 1

N − 1
PPT . (4)

Here the column vector pi − p̄ is called the centred shape vector, i.e. the vector describing the
displacements of the geometry at time ti relative to the the mean shape, and ( ) · ( )T denotes
the outer product of these two 3M-dimensional vectors. Forming a matrix P ∈ �3M×N from
the N centered shape vectors, the covariance matrix can be rewritten to the compact form
in (4).

In case the probability distribution which governs the assumed random process is a
multivariate normal distribution, it is already uniquely characterized by these first two
moments. For the problem of internal organ motion/deformation considered here, the exact
type of probability distribution is unknown a priori. However, considering only the first two
moments can still serve as an approximation, where the covariance matrix represents the organ
geometric variability.

Correlations of the 3M variables are reflected by the existence of nonzero off-diagonal
elements of the covariance matrix, implying that the probability distributions of the variables
are not independent (see appendix A for a low-dimensional analogue). Diagonalization
of the covariance matrix3 results in eigenvectors ql ∈ �3M , which represent statistically
independent modes of deformation, the so-called eigenmodes. Under the assumption of a
multivariate Gaussian distribution these eigenmodes approximately describe the deformation
characteristics. Each eigenmode defines a 3D vectorfield of correlated displacements δ�xj ∈ �3

for the M surface points: ql = (δ�x1,l, . . . , δ�xM,l).
The eigenvectors give a new basis of the 3M-dimensional parameter space, in which the

assumed multivariate normal distribution decomposes into 1D Gaussian distributions along the
directions of the eigenvectors. As in the 2D example presented in appendix A, quantitatively
each eigenvalue λl is the statistical variance of the N measured geometry samples projected
on the lth eigenvector as new basis vector

σ 2
l = λl. (5)

Construction of organ geometries using eigenmodes. The eigenvalues impose an importance
ranking on the eigenmodes with respect to the representation of geometric variability. The
dominant eigenmodes, i.e., the eigenmodes with largest eigenvalues, are the ‘principal’
deformation modes, which span the space in which the majority of deformations occur.
New geometry samples can be generated by deforming the mean shape by a weighted sum of
L dominating eigenmodes

3 As the number of surface points M is typically in the order of 103, direct diagonalization of C ∈ �3M×3M is
numerically not feasible; in appendix B a method of efficient numerical implementation is described.
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p = p̄ +
L

∑

l=1

clql , ‖ql‖ = 1. (6)

According to the theory of PCA, the coefficients cl ∈ � obey Gaussian distributions with the
corresponding eigenvalues as variances (cp equation (5)). Thus the dominating eigenmodes
can serve as statistical model of individual organ motion/deformation with only a small
number of parameters.

3. Quantitative evaluation

The capability of the PCA model to represent the measured organ geometry samples using
only few dominating eigenmodes was evaluated. The steps of this procedure are described in
the following.

Representation of measured geometries using the PCA-model. For each of the N measured
organ geometries pi (equation (1)), the coefficients cl in equation (6) are determined so as to
get an optimal representation p[L]

i,opt of the respective organ geometry using only L eigenmodes:

p[L]
i,opt = p̄ +

L
∑

l=1

cl,opt(i)ql . (7)

The optimal coefficients are supposed to minimize the difference
∥

∥p[L]
i,opt − pi

∥

∥, i.e., p[L]
i,opt is

given by the projection of the 3M-dimensional vector pi on the subspace spanned by the
L eigenvectors ql as basis vectors. The coefficients cl,opt(i) are therefore calculated as the
following scalar product:

cl,opt(i) = (pi − p̄) · ql with ‖ql‖ = 1; l = 1, . . . , L. (8)

Quantization of shape similarity. As a measure for the quality of the representation of the
i = 1, . . . , N measured organ geometries pi by linear combinations of eigenmodes according
to (7), we regarded the shape similarity of pi and p[L]

i,opt. This was quantized as an average
local surface distance in the following way.

• For each of the j = 1, . . . ,M surface points of p[L]
i,opt, the minimal distance d

[L]
i,j to the

surface of the measured geometry pi was determined. The search region was centred
around the position of the corresponding point �xj(i) (see equation (1)) and limited by the
direct neighbours of �xj(i) on the measured surface. d

[L]
i,j is the local representation error

or local residual.
• For each surface point the results for the N different geometries were averaged, giving the

value of the average local residual d̄
[L]
j for each point:

d̄
[L]
j = 1

N

N
∑

i=1

d
[L]
i,j , j = 1, . . . ,M (9)

A histogram of these values gives an overview of the overall quality of representation.
Moreover, a colour-coded projection of the values d̄

[L]
j onto the organ surface(s) allows

localization of the parts of the organ with systematically increased residuals.
• Additionally, the standard deviations �d

[L]
j of the local residuals were calculated and

visualized correspondingly. A locally high standard deviation together with non-vanishing
average local residual reveals the spatial regions of geometric variability that is not
described properly by using only L dominating eigenmodes for the PCA model.
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• Finally, the average of d̄
[L]
j over all M surface points, the overall (mean) residual

R[L] = 1

M

M
∑

j=1

d̄
[L]
j , (10)

as well as the corresponding standard deviation can be calculated as comprehensive
measure for the quality of the PCA-model with L eigenmodes.

Convergence characteristics. The overall residual R[L] as defined in (10) was calculated for a
varying number L of eigenmodes. This is done separately for each organ under consideration
to get organ and patient specific convergence characteristics, which addresses the question
of how many dominating eigenmodes are needed to give a sufficient model of individual
geometric variability.

Residuals at organ interfaces. With regard to requirements of treatment planning, the quality
of modelling correlated geometric variability at organ interfaces, which are usually located
in regions with steep dose gradient (e.g. the prostate/rectum- and prostate/bladder-interface),
is of special interest. Therefore we define the organ interface residual R̃[L] analog to (10)
as mean value of the average local residuals d̄

[L]
j of surface points of two adjacent organs in

the interface region. For our study, the points on both respective organ surfaces were chosen
following the criterion that the distance to the other organ was �4 mm (based on the mean
geometry p̄).

4. Materials

We applied the method to datasets of four prostate cancer patients, who were treated at the
William Beaumont Hospital in supine position. Each patient received N = 15–18 CT scans.
The planning CT scan was obtained with 20 cc urethra contrast. The repeat CT scans were
aquired on the first four treatment days and subsequently twice a week immediately before or
after treatment delivery.

The repeat CT scans were matched on the planning CT scan using bony anatomy, thereby
reducing the geometric variability, which is to be described by the PCA model, to internal organ
motion/deformation. The contours of prostate, bladder and rectum were manually delineated
on a slice-by-slice basis by the same physician for each patient CT-dataset. Contours of the
rectum start at the anus and end at the position at which the rectum turns into the sigmoid
colon.

The sets of corresponding points, forming the surface shape vectors of the organ
geometries as described in section 2.1, were taken from datasets which were generated by the
finite element method (FEM) from Yan et al (1999) applied to the above CT/contour data.
This method is based on a biomechanical model of tissue and provides the position of each
tissue element of the organs in the repeat CT scans, when the positions of corresponding
boundary points on the organ surfaces are given. As described in Liang and Yan (2003),
the (initial) boundary point correspondence was determined by assuming that the points were
uniformly distributed along the contours starting from the most posterior borderline of each
organ. Optionally, the positions of the boundary points can be optimized by iteratively reducing
the energy of the deformed organ mesh between repeated FEM steps, thereby improving the
registration accuracy (see Liang and Yan 2003). However, for the data used in this study the
latter, numerically intense step has not been performed.

Extraction of the tissue elements on the organ surface typically resulted in several thousand
surface points. To ensure a constant surface density of points for all organs under consideration,
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Figure 1. Spectra of eigenvalues for the four patient datasets (relative values: sum of all eigenvalues
normalized to 100%).

the number of surface points was reduced accordingly, if necessary. For the four patients
considered in this study this resulted in M = ∼350–680 surface points for prostate, ∼740–960
for rectum (outer surface) and ∼640–820 for bladder. Finally, these point datasets were
triangulated, which allowed 3D visualization of the organ surfaces.

5. Results

Performing a simultaneous PCA for the ∼1500–2000 surface points used to describe the
geometry of all three organs takes a few seconds on a 2 GHz PC.

The spectra of eigenvalues are shown in figure 1. For all four patients these are clearly
dominated by only a few eigenvalues, indicating that the geometric variability of the measured
organ samples is concentrated in few deformation modes only.

Figure 2 gives an exemplary visualization of the first dominating eigenmodes of one
of the patients. This patient had large bladder motion/deformation present in the measured
geometry samples, which also manifests itself in the deformation fields given by the dominating
eigenmodes. In the first two eigenmodes, bladder deformation is associated with correlated
movement and deformation of prostate and rectum, whereas in the third eigenmode prostate
undergoes only minor geometric changes. Thus for this patient the third eigenmode models
bladder variability which is uncorrelated to motion of the prostate, whereas the first two modes
can be interpreted as ‘bladder-filling driven’ correlated motion/deformation of all three organs.

The character of the single eigenmodes differs significantly for different patients (data
not shown) and depends on the individual overall geometric variability of a patient and the
relative magnitude of variability among the organs. Thus a general association of a specific
eigenmode with variability of a specific organ is not possible.

Figures 3 and 4 show detailed data of prostate/rectum/bladder residuals for the PCA-
models of two different patients, where the number L of dominating modes used to represent
the measured organ geometries was varied. Both the histograms of the average local residuals
d̄

[L]
j as defined in equation (9) and the values of the overall residuals R[L], equation (10), show

enhanced decrease with the first few dominating eigenmodes, where the order of magnitude
of the residuals and the convergence characteristics is patient and organ specific.

Of the three organs under consideration, the geometric variability of bladder is the largest,
as can be seen in diagrams (f), where the value of R[0] is a measure for the variability present
in the dataset itself (for L = 0 effectively the differences of the measured samples to the mean
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Figure 2. Visualization of the displacement fields given by the first three eigenmodes of patient 4
(first eigenmode in first row etc). Shown are sagittal 3D views of prostate (red), rectum (brown)
and bladder (yellow). The centre column gives 3D views of the mean geometry p̄, whereas the
left/right colums are deformations of the mean geometry by the respective normed eigenvector
ql according to p = p̄ ± σl · ql with the variance σ 2

l given by the eigenvalue λl . The arrows
illustrate the direction and relative magnitude of the local surface motion/deformation. Input of
the prostate/rectum/bladder-PCA model for patient 4 were N = 18 geometry samples; number
of surface points: Mprostate = 629,Mrectum = 750 and Mbladder = 613. (Animations available as
multimedia attachments in online version).

shape are calculated). However, R[L]
bladder reduces significantly to a level of � 2 mm when using

only 3–4 eigenmodes to model the variability.
Modelling rectum variability is more complex, which becomes evident in the

comparatively slower convergence characteristics (figures 3 and 4 (c) and (d)). Nevertheless,
the overall residual also is in the order of � 2 mm for L = 4.

Individual differences in organ variability can be illustrated by means of figures 3 and 4
(a) and (b) for prostate. Patient 1 shows only small prostate motion, thus already the mean
shape (L = 0) fairly represents most of the sample geometries, and the overall residual does
not significantly reduce further for an increasing number of modes L. Contrary to this, patient
4 exhibits large prostate variability. However, this patient shows fast convergence of R[L] for
prostate: the variability can essentially be represented already by the first two eigenmodes
(cp figure 4(b)). This agrees with the observation from figure 2 that the prostate variability
represented by the third eigenmode of patient 4 is of minor magnitude only.

Table 1 summarizes the results of prostate, rectum and bladder for all four patients:
using L = 4 dominating eigenmodes, all overall residuals are in the range of 1.3–
2.0 mm. The residuals R̃[L] for surface points in the interface regions of prostate/rectum
and prostate/bladder, which give a measure for the capability of a multi-organ PCA model
to accurately represent correlated geometric variability of these adjacent organs, are shown
in table 2 for all four patients: using L = 4 dominating eigenmodes, these residuals are in
the range of 0.8–1.9 mm (1.3–2.2 mm) for points on the prostate/rectum- (prostate/bladder-)
interface, i.e. in the order of the overall residuals for the respective organs.
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Figure 3. Patient 1: quality of representation of measured geometries using L dominating
eigenmodes for the PCA-model. The left column shows histograms of the average local residuals
d̄

[L]
j , equation (9), of prostate (M = 378 surface points), rectum (M = 950) and bladder

(M = 726) for L = 0, . . . , 5. Right column: values of the overall residual R[L], equation (10),
for varying L; the bars represent the corresponding standard deviations. Input of the
prostate/rectum/bladder-PCA model for patient 1 were N = 15 geometry samples.

This remaining amount of modelling error is due to the fact that higher eigenmodes were
ignored. The residuals mainly reflect the uncorrelated errors/artefacts (‘noise’) in the dataset,
as discussed below. The magnitude of this ‘noise’ is in the order of ∼1 mm as can be estimated
by the convergence characteristics of the overall residual R[L] for L → N − 1: it is essentially
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Figure 4. Same as figure 3 with data of patient 4 (number of organ surface points: Mprostate = 629,
Mrectum = 750 and Mbladder = 613; N = 18 geometry samples used for PCA). Patient 4 has large
variability of prostate, which can be described using the first two dominating modes.

a linear decrease for all organs, which is a convergence characteristics to be expected for such
‘noise’ in the dataset. Another reason is the finite resolution of the organ shape definition
(slice distance of adjacent contours as drawn by a physician: 1.5 mm for prostate, 3 mm for
rectum/bladder).

Typically, the eigenmodes with small eigenvalue, i.e. modes of higher order (� 5,
patient dependent), show unphysical geometric variability like adverse displacements of
adjacent points or organ slices with small magnitude (data not shown). These modes model
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(a) local representation errors (b) average local residuals (c) standard deviations

Figure 5. Colour-coded projections of residual data on prostate surface of patient 4 (3D view),
L = 3 dominating eigenmodes used for PCA-model. (a) Local representation errors d

[L]
i,j for

geometry i = 14 (as contoured in CT 14). (b) Average local residuals d̄
[L]
j , equation (9),

projected to the mean shape of prostate. (c) Corresponding standard deviations �d
[L]
j of the

local representation errors. (Note that to prevent partial covering of prostate in 3D view the
adjacent parts of rectum (brown) and bladder (yellow) were clipped.)

Table 1. Overall residuals R[0] and R[4], equation (10), of the organs for all four patients. R[0] is a
measure for the geometric variability of the respective organs present in the patient datasets, while
R[4] is the overall residual when using 4 dominating eigenmodes for a prostate/rectum/bladder
PCA-model. (values in [mm]).

R
[0]
prostate R

[0]
rectum R

[0]
bladder R

[4]
prostate R

[4]
rectum R

[4]
bladder

Patient 1 1.9 ± 0.8 3.3 ± 1.4 6.4 ± 4.3 1.3 ± 0.6 1.9 ± 0.8 1.9 ± 0.9
Patient 2 2.9 ± 0.9 4.2 ± 2.1 4.3 ± 2.8 2.0 ± 0.6 1.8 ± 0.7 1.8 ± 0.7
Patient 3 2.2 ± 0.7 2.6 ± 0.8 5.5 ± 2.6 1.3 ± 0.4 1.5 ± 0.4 1.8 ± 0.6
Patient 4 3.8 ± 0.9 3.3 ± 1.2 5.9 ± 2.8 1.3 ± 0.6 1.4 ± 0.5 1.5 ± 0.7

Table 2. Organ interface residuals R̃[0] and R̃[4] for organ surface points on the prostate/rectum
resp. prostate/bladder interface (average number of points: 69 (range 52–94) for the prostate/
rectum- and 127 (range 101–148) for the prostate/bladder-interface). (values in [mm]).

R̃
[0]
pros−rect R̃

[0]
pros−blad R̃

[4]
pros−rect R̃

[4]
pros−blad

Patient 1 1.8 ± 0.6 2.9 ± 0.8 0.8 ± 0.2 2.0 ± 0.5
Patient 2 3.2 ± 0.5 3.7 ± 1.3 1.9 ± 0.4 2.2 ± 0.8
Patient 3 2.6 ± 0.4 2.9 ± 1.0 1.2 ± 0.3 1.6 ± 0.5
Patient 4 4.9 ± 0.5 3.8 ± 0.7 1.1 ± 0.3 1.3 ± 0.5

(pseudo-)correlations among the surface point displacements which are present in the input
dataset due to inevitable uncorrelated errors in establishing point-correspondence for the
surface points when initializing the boundary conditions of the FE-model. Another reason are
input data artefacts stemming from the process of manual contouring of the organ structures
on a slice-by-slice basis, which—for some of the organ shape samples—results in locally
highly non-smooth, non-anatomical surface shapes. As modelling of this type of (pseudo)
‘geometric variability’ is not desirable, these ‘noise-modes’ of higher order should be ignored
for a PCA-model.

As an example, figure 5 visualizes the spatial distribution of residual errors for
prostate (patient 4), when L = 3 dominating eigenmodes are used to represent measured
geometries. Figure 5(a) shows the geometry as contoured in CT 14 with the colour-
coded local representation errors (‘local residuals’), i.e. the local differences to the optimal
representation of this geometry; see equation (7). For this example the surface points with
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largest representation error are concentrated in a region where the transversal contour(s) have
local contouring errors, as visible in the depicted 3D view. Figures 5(b) and (c) give the spatial
distributions of the average local residual and its standard deviation, thereby summarizing the
statistics of the local representation errors for all measured geometries (N = 18 for patient 4).
Again the surface points with increased average local residual are concentrated in certain
regions which roughly coincide with the regions of nonzero standard deviation. As discussed
in section 3, this allows localization of the regions with local variability which is not completely
modelled using only L = 3 dominating eigenmodes. The extent of these regions reduces for
increasing L (not shown). However, this is not always desirable, as the increased average local
residual and corresponding standard deviation may indicate localized contouring uncertainties
(e.g. due to badly localizable organ boundaries in the CT image) and might not reflect real
anatomical variability.

6. Discussion and conclusion

At first sight, organ motion as represented by displacement vector fields is of a complex
nature. However, correlations between the displacements of the tissue elements suggest
that the underlying dimensionality of this problem is possibly low. The linear statistical
method of principal component analysis can be used to decompose the observed geometric
variability into modes of correlated motion with large variability, describing the essential
characteristics of individual organ motion/deformation, and with low variability, mainly
representing uncorrelated ‘noise’ in the dataset.

For prostate/rectum/bladder motion the information about individual geometric
variability as taken from a multiple CT study can typically be expressed by � 4 patient-specific
dominating eigenmodes. This is in accordance with the finding that geometrical information
taken from a few initial CTs (∼5) is already sufficient for a robust individual adaption of
the treatment plan (Yan et al 2000, Birkner et al 2003), which could not be expected, if the
underlying statistical process is of large dimensionality. It should be noted here that a PCA-
model with N input samples has only N −1 eigenmodes with nonzero eigenvalue; thus at least
5 initial CTs are (mathematically) necessary to give an estimation for the four-dimensional
eigenmode space mentioned above. However, a rigorous investigation about the minimal
number of initial CTs needed for a robust and accurate prediction of individual geometric
variability is beyond the scope of this paper.

PCA could in principle also be used to model single organs only (e.g. motion/deformation
of rectum independent of prostate). As would be expected due to the less complex variability
to be modelled in this case, plots of the residuals corresponding to figures 3 and 4 show faster
convergence (data not shown). Thus single organ PCA-models typically consist of a smaller
number of eigenmodes to achieve the same modelling accuracy as a corresponding multi-organ
PCA model. Note that this is achieved at the expense of losing information about correlated
motion/deformation of the adjacent organs.

The eigenmode approach is a simple way to model dose warping on a statistical
basis as needed for 4D-planning and evaluation: for hollow organs, sums of eigenmodes
immediately represent the required deformation fields of surface tissue elements; for solid
organs, interpolation into the interior from the positions of the organ surface points (Kaus et al
2005) or explicity extending the surface shape vector (1) by positions of interior organ points
can be used to efficiently calculate approximate deformation fields for multiple geometries,
which are defined by the shape space of the dominating eigenmodes.

Possible applications of the eigenmode approach in the field of (adaptive) treatment
planning start from equation (6), which describes how new geometry samples from the shape
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space given by the dominating eigenmodes can be generated. For example, this might be used
for patient-specific prediction of organ dose distributions based on a PCA of geometries of few
initial treatment days, or for prediction of coverage probabilities, which have been proposed
for indivualized margin definition in the literature (Stroom et al 1999). However, a detailed
discussion and evaluation of clinical applications is beyond the scope of this paper and has to
be subject to future investigations.

In this work the sets of corresponding surface points used as input of the PCA method
were taken from finite element data. However, with respect to clinical applications a simpler
method starting directly from contour information would be desirable. This has been addressed
in a previous study (Söhn et al 2004); the resulting dominating eigenvalues and eigenmodes
are essentially the same as for FE-input data (not shown). This can be understood by the fact
that inaccuracies/differences in generating the simplified point correspondence of the surface
points are statistically uncorrelated and thus appear only in eigenmodes with small eigenvalue.

As mentioned in section 5, manual organ delineation on a slice-by-slice basis may lead to
unphysical organ shapes used as input samples, which affects the quality of the PCA-model.
Data pre-processing methods, such as contour smoothing or algorithms for automatic 3D
organ delineation, which use (population-based) PCA-organ shape models (e.g. Pekar et al
2004), might help to reduce these types of artefacts, though can be a source of specific errors
themselves.

From a statistical viewpoint, these delineation artefacts can be seen as local shape outlier
or intra-sample outlier. A modification of PCA, the so-called robust PCA (RPCA), has been
developed for handling analogous outlier problems in the field of PCA-based automatic image
recognition (De La Torre and Black 2001). Implementation of such an RPCA method could
help to overcome the problems associated with contour artefacts on an inherent statistical
basis.

Another problem—generally for radiotherapy planning—is inter-sample outliers, i.e.,
single CTs representing an extreme deformation of the organ geometry compared to the
variability shown by all other CTs (e.g. caused by an accidentally non-controlled bladder or
rectum filling). Potentially leading to an overestimation of individual variability, the use of
such an extreme geometry as input sample for a PCA model may actually not be desired. Also
here, RPCA methods developed in the field of computer vision (Xu and Yuille 1995) may help
to automatically detect such outliers.

To summarize, PCA of organ geometries is an efficient method to extract the essential
information of individual correlated geometric variation from multiple imaging data in a
quantitative way, while neglecting uncorrelated ‘noise’. Linear combinations of the resulting
few dominating eigenmodes span the characteristic deformation space of the treatment
geometry of a patient, which can both be used to represent measured geometries with good
accuracy as shown and to generate new ‘intermediate’ geometries on a statistical basis, taking
the correlated movement of the adjacent organs into account.
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Appendix A. General idea of principal component analysis (PCA): a 2D example

In this appendix we elucidate the basic features of the PCA-method by means of a low
dimensional example.



5906 M Söhn et al

Figure A1. General illustration of the PCA-method applied to a dataset of N repeated measurements
of M = 2 variables x1 and x2: the eigenvectors of the 2 × 2-dimensional covariance matrix are the
principal axes of a multivariate (2D) Gaussian distribution; the corresponding eigenvalues are the
variances of correlated change of the variables along these axes.

Suppose M = 2 variables x1 and x2 obey a multivariate (2D) normal distribution P Gauss

with expectation value µ = (µ1, µ2) ∈ �2 and correlation matrix � ∈ �2×2:

P Gauss(x;µ,�) ∼ exp
[− 1

2 (x − µ) · �−1 · (x − µ)T
]

(A.1)

where x = (x1, x2) ∈ �2. Note that for the special case of a diagonal correlation matrix,
� = diag

(

σ 2
1 , σ 2

2

)

, equation (A.1) simplifies to a product of 1D Gaussian distributions:
∼exp

(−(x1 − µ1)
2
/(

2σ 2
1

)) · exp
(−(x2 − µ2)

2
/(

2σ 2
2

))

.
Figure A1 shows an exemplary scatter plot of a distribution (A.1) with nonzero expectation

value and covariances �1,2 = �2,1 �= 0.
If x(1), . . . , x(N) are samples from this distribution, the mean value x̄ =

1
N

∑

i=1,...,N x(i) and the empirical covariance matrix

C = 1

N − 1

N
∑

i=1

(x(i) − x̄) · (x(i) − x̄)T ∈ �2×2 (A.2)

are (unbiased) estimators for µ and �.
Diagonalization of (A.2) results in C̃ = diag(λ1, λ2) with the eigenvalues of the covariance

matrix as diagonal entries. This corresponds to a rotation of the coordinate system with the
eigenvectors as new basis vectors. In the rotated coordinate system the normal distribution
can be written as a product of 1D Gaussian distributions, where the variances are given by the
eigenvalues of the covariance matrix:

σ 2
l = λl. (A.3)

Thus the eigenvectors are the principal axes of the 2D normal distribution as depicted in
figure A1, and the eigenvalues are a measure for the variability of the dataset along the
directions of the eigenvectors.

The relative magnitude of the eigenvalues provides information about the grade of
correlation between the variables which is present in the sample dataset: if λ1 � λ2 (as
in the example of figure A1), the two variables x1 and x2 are strongly correlated with large
variability along the direction of the first eigenvector, whereas the small variability in direction
of the second eigenvector can be interpreted as ‘noise’. In this case, the variability of the sample
set is already well described by a 1D probability distribution with perfect correlation between
the variables. This can be generalized for the case of more than two variables M > 2: if
the spectrum of eigenvalues is dominated by a few large values, the variability of the dataset
is concentrated in the subspace spanned by the corresponding eigenvectors, i.e. the effective
dimensionality of the dataset is actually smaller than the number of variables M.
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Appendix B. Diagonalization of the covariance matrix: efficient numerical
implementation

Applying the PCA method to N organ geometric samples as described in section 2.2 leads to
the problem of diagonalizing a 3M × 3M covariance matrix. As the number of points M is
typically in the order of 103, this is numerically infeasible in terms of computation time.

Generally, the covariance matrix C = 1
N−1PPT (equation (4)) has 3M eigenvectors and

eigenvalues. However, noting that C is calculated from only N (	 M) sample vectors, it can
be shown that the covariance matrix is of rank N − 1 (or less) and thus cannot have more than
N − 1 nonzero eigenvalues. In this case the related eigenvalue problem of the much smaller
implicit covariance matrix

C̃ = 1

N − 1
PT P ∈ �N×N (B.1)

can be solved instead (Murakami and Kumar 1982, Lorenz and Krahnstöver 2000).

• The eigenvalues λ̃i of C̃ provide the nonzero eigenvalues of C:

λi = λ̃i , i = 1, . . . , N. (B.2)

• The N corresponding eigenvectors qi ∈ �3M of the correlation matrix C are calculated
from the eigenvectors q̃i ∈ �N of C̃ according to

qi = Pq̃i

|Pq̃i | . (B.3)

In our implementation the algorithm for diagonalization of the matrix (B.1) was taken
from Press et al (1992).
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With respect to the demands of adaptive and 4D-radiotherapy applications, an algorithm is pro-
posed for a fully automatic, multimodality deformable registration that follows the concept of
translational relocation of regularly distributed image subvolumes governed by local anatomical
features. Thereby, the problem of global deformable registration is broken down to multiple inde-
pendent local registration steps which allows for straightforward parallelization of the algorithm. In
a subsequent step, possible local misregistrations are corrected for by minimization of the elastic
energy of the displacement field under consideration of image information. The final displacement
field results from interpolation of the subvolume shift vectors. The algorithm can employ as a
similarity measure both the correlation coefficient and mutual information. The latter allows the
application to intermodality deformable registration problems. The typical calculation time on a
modern multiprocessor PC is well below 1 min, which facilitates almost-interactive, “online” usage.
CT-to-MRI and CT-to-cone-beam-CT registrations of head-and-neck data sets are presented, as well
as inhale-to-exhale registrations of lung CT data sets. For quantitative evaluation of registration
accuracy, a virtual thorax phantom was developed; additionally, a landmark-based evaluation on
four lung respiratory-correlated CT data sets was performed. This consistently resulted in average
registration residuals on the order of the voxel size or less �3D-residuals �1−2 mm�. Summariz-
ing, the presented algorithm allows an accurate multimodality deformable registration with calcu-
lation times well below 1 min, and thus bears promise as a versatile basic tool in adaptive and
4D-radiotherapy applications. © 2008 American Association of Physicists in Medicine.
�DOI: 10.1118/1.2836951�

Key words: deformable image registration, multimodality registration, mutual information

I. INTRODUCTION

With the advent of developments in “4D-radiotherapy” ap-
plications like adaptive radiotherapy, 4D-planning, etc., and
the increasing use of daily image information in the clinical
routine, the problem of �deformable� image registration has
recently won growing attention in the field of radiotherapy.1

Special requirements for registration algorithms for use in
this field are imposed by the broad spectrum of treatment
sites and the need to handle image information from various
modalities, as well as limited time-frames for the planning
and treatment process. Thus, a deformable registration algo-
rithm should be able to handle both intra- and intermodality

registration problems in a model-independent way. In other
words, ideally no manual segmentation or other user interac-
tion is required, nor special assumptions or prior knowledge
about the organ site to be registered such as atlases are nec-
essary. In view of possible “online” applications, it should
allow registration of full data sets within a few minutes with
an accuracy appropriate for radiotherapy applications. Ide-
ally, it would be an inherently parallel algorithm to take ad-
vantage of recent trends of computer hardware.

Most of the methods proposed for application in radio-
therapy stem from the numerous image registration concepts
developed before in the medical field2–4 and other fields.5
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Generally speaking, the common principle of all algorithms
is to determine the optimal values of a certain set of image
transformation parameters based on the use of a similarity
measure, which allows a rough categorization of the different
methods.

Concerning the similarity measure, point-based and
voxel-based registration concepts can be distinguished.
Point-based methods minimize the distance between seg-
mented homologous features �points, curves, or surfaces�,
and thus typically require user interaction and/or preprocess-
ing. Finite-element methods are a special type of point-based
methods.6 In contrast, voxel-based methods work based on
the image intensity information itself using mathematical
similarity measures like the sum of squared distance, corre-
lation coefficient �CC�, correlation ratio �CR�, or mutual in-
formation �MI�,1,2 or iteratively determine deformations
based on image gradients like optical flow methods.7 While
CR- and MI-based algorithms can handle both intra- and
intermodality registrations, all other voxel-based and point-
based methods are restricted to intramodality problems or
require preprocessing of the image data sets.

Concerning the type of image transformation used, the
algorithms differ in the degrees of freedom �DOF� used for
modeling deformations. Deformation fields can be repre-
sented in a nonparametric way by B-splines8 or
thin-plate-splines.9 Here, a similarity measure like MI is op-
timized by simultaneously adapting the positions of a set of
spline control points as variables, thereby facilitating multi-
modality deformable registration. However, the number of
control points �and thus the DOF of the transformation� is
practically limited by the computation time for a large num-
ber of control points. This has recently been addressed by
Pekar et al.,10 who proposed a physics-based parametric ap-
proach using a comparatively small number of control points
irregularly distributed over the image domain. Another way
to speed up calculations was proposed by Shekhar et al.,11

who optimized the global similarity measure by subsequently
adapting only small subgroups of B-spline control points,
which potentially allows parallelization of the algorithm. In
contrast to spline- and other control point-based transforma-
tions, algorithms based on free-form deformations �FFD�
have “unlimited” DOF by defining each voxel shift as an
independent variable, thereby having the full ability to repro-
duce local deformations. To avoid ill-posedness, FFD algo-
rithms need to be subject to constraints �e.g., smoothness,
limited elastic energy� and/or perform regularizations during
iterative voxel-based adaptation of the deformation field. Ex-
amples for FFD algorithms are the optical flow method,12

“demons” algorithms,13 viscous fluid algorithms,14,15 varia-
tional approaches,4,16 and several others. While FFD algo-
rithms can show good performance for intramodality regis-
tration problems,17–20 the direct application to intermodality
problems is generally hampered by performance problems
when MI is used instead of simpler and faster similarity mea-
sures, or even conceptually impossible as for optical flow.

While the voxel-based algorithms mentioned so far treat
deformable registration as a global problem and optimize a
global similarity measure for the whole image region to be

registered, a few concepts premised on local template/block
matching have been proposed as well.21–23 Lau et al.21 pre-
sented a hierarchical approach to individually register small
cubic image subregions by local optimization of a similarity
measure. The cubic subregions were regularly distributed on
a 3D grid and partly overlapped the nearest neighbors. This
resulted in a sparsely sampled vector field of shifts for the
centers of the subregions, which was regularized by a median
filter and interpolated by a Gaussian function to ensure a
locally smooth transformation. Malsch et al.23 performed
multiple CC-based local registrations of small rectangular
subvolumes irregularly distributed over the region to be reg-
istered. The global deformation field was determined by a
modified thin-plate spline interpolation of the template vol-
umes’ shift vectors. As a successful local registration re-
quires sufficient local image information inside a subvolume,
a set of anatomical landmarks was automatically identified in
a preprocessing step and was used for optimal selection and
initial placement of the templates. This algorithm was tested
for CT-CT registrations of different organ sites and showed
very good accuracy by landmark-based evaluation.

The algorithm presented in this paper shares the concept
of fast local subvolume matching with the two aforemen-
tioned approaches, and thus allows parallelization of the in-
dependent rigid registration problems on multiprocessor/
multicore computer systems. By using MI as a local
similarity measure, we show that this concept can be ex-
tended to intermodality registration problems. In contrast to
Malsch et al.,23 a preprocessing step for identification of ana-
tomical features is not necessary for our algorithm, as the
subregions are distributed on a regular grid over the image
region to be registered. This facilitates simpler interpolation
schemes between the shift vectors based on trilinear or
B-spline interpolation. In contrast to the regularization
scheme used by Lau et al.,21 possible local misregistrations
are detected by a novel local match quality assessment
scheme and corrected for by minimization of the elastic en-
ergy of the displacement field under consideration of image
information. The following sections describe the details of
the algorithm �Sec. II A� and the validation studies carried
out �Sec. II B�. Application to different image data sets and
quantitative results are presented in Sec. III.

II. MATERIALS AND METHODS

II.A. Registration algorithm

We propose an algorithm for fast deformable registration
of organs which comprise a sufficient number of internal
anatomical structures. It is assumed that these features are
deformed only by a small amount and can be treated as rigid.
A typical example here are 4D respiratory-correlated CT
�RCCT� data sets of lung, which show numerous internal
image features like bronchial and vascular branches/
bifurcations, etc.

This facilitates a featurelet-based approach of image reg-
istration: the problem of global deformable registration for
the whole organ is broken down to �fast� individual rigid
registrations of small subvolumes �“featurelets”�, regularly
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distributed over the whole region of interest �Secs. II A 1 and
II A 2�. For a part of the featurelets a local lack of unique
anatomical image information or image artifacts leads to ill-
defined optimal positions or misregistration of individual
featurelets, which have to be identified �Sec. II A 3�. In a
subsequent step, such ambiguities or misregistrations are cor-
rected for by iterative minimization of the local deformation
energy under consideration of local image information if
possible �relaxation step, Sec. II A 4�. Finally, the global dis-
placement field is calculated from the shifts of the featurelets
by interpolation �Sec. II A 5�. The algorithm provides model-
independent deformable registration, as no specific informa-
tion about tissue properties is needed and no a priori as-
sumptions about the geometry being registered are made.

Figure 1 shows a flowchart of the algorithm; details are
presented in the following subsections. The method for
evaluation of the registration accuracy is described in
Sec. II B.

II.A.1. Step 1: Initialization of the featurelet grid

The image region to be registered is covered by a regular
3D grid of equally sized rectangular 3D regions in the refer-
ence image. Figure 3 shows the exhale and inhale CTs of a
thorax RCCT data set, with the exhale/inhale CT as
reference/target image for deformable registration, respec-
tively.

The featurelet size is a parameter of the algorithm which
has to be chosen according to the typical extent of distinct
anatomical features �e.g., bronchial/vascular branches in the
case of lung�. In principle, a smaller featurelet size �and thus
larger number of featurelets� allows a better resolution of the
deformation field in terms of the registration of finer details.
However, the robustness of the registration is deteriorated if
the featurelet size is chosen too small. A systematic investi-
gation of the optimal featurelet size will be presented in the
Appendix for the example of lung registration.

Denoting the reference image by A and the voxel intensity
at position pa in the reference image by A�pa�, the ith refer-
ence featurelet Ai can be formally described as

Ai�pa� = �A�pa� ∀pa � �rect�Xa,i�
0 elsewhere

� , �1�

where �rect�Xa,i� denotes a rectangular region as the domain
of the ith featurelet, centered around Xa,i.

II.A.2. Step 2: Local rigid registration of featurelets

It is assumed that the images are rigidly preregistered so
that the center of the mass shift and the bulk rotation vanish.
The basic task of the algorithm is to individually register
each reference featurelet to the target image B, i.e., to find a
transformation Ti between Ai and the corresponding target
featurelet,

Bi�pb� = �B�pb� ∀pb � Ti��rect�Xa,i��
0 elsewhere

� , �2�

which maximizes the similarity between Ai and Bi. For rea-
sons of algorithmic efficiency, it is desirable to restrict the
search space of possible transformations to translations, i.e.,
Ti��rect�Xa,i��=�rect�Xa,i+�Xi���rect�Xb,i�, with �Xi denot-
ing a 3D-shift vector to be determined for each featurelet.
This simplification is valid if the deformations/local rotations
present in the data set are small over the domains � of the
featurelets.

Several similarity measure functions such as the sum of
squared intensity differences �SSD�, the correlation coeffi-
cient �CC�, and mutual information �MI� have been proposed
for quantification of image similarity.2 SSD is the simplest

FIG. 1. Flow chart representing the featurelet-based image registration algorithm. The algorithm can be divided into the five steps depicted, which are
described in Secs. II A 1, II A 2, II A 3, II A 4, and II A 5.
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and fastest intramodality similarity measure; however, it is
not robust against variations of absolute intensity differences
for equivalent structures �e.g., lung density changes during
respiratory cycle�.

For intramodality registration �especially CT-CT�, CC is a
more robust similarity measure. The correlation coefficient
of a reference featurelet Ai and its corresponding �shifted�
target featurelet Bi reads �featurelet index i dropped�

CC�A,B� =
	pa��rect�Xa��A�pa� − Ā� · �B�T�pa�� − B̄�


	pa��rect�Xa��A�pa� − Ā�2 · 	pa��rect�Xa��B�T�pa�� − B̄�2
. �3�

Here, T�·� is the translation operator, and Ā and B̄ are the
average voxel values in the domains of the reference and
�shifted� target featurelet, respectively.

Unlike CC, the entropy-based mutual information
approach24–26 can be applied both to intra- and intermodal
registration problems. In our algorithm, we used the normal-
ized mutual information27 �NMI� to quantify similarity of
featurelets regions,

NMI�A,B� =
H�A� + H�B�

H�A,B�
. �4�

H�A� and H�B� denote the marginal entropies of the voxel
intensity values inside of the featurelet domains, and
H�A ,B� is the corresponding joint entropy. For the purpose
of calculating image entropies, histograms of intensity values
need to be calculated, where an appropriate number of bins
has to be chosen. In our implementation, we follow a study
of Filev et al.28 about the related problem of 2D-subregion
registration, where a number of 32 /32�32 bins was found
to be most appropriate for calculation of the marginal/joint
entropy, respectively.

We implemented both CC and NMI as similarity mea-
sures: NMI is required for intermodality registration, and the
computationally less expensive CC was implemented to as-
sess its performance for intramodality registration. For the
purpose of determining the optimal featurelet shift, the re-
spective similarity measure was maximized within a rectan-
gular local search region, allowing 3D shifts �X with a step
size given by the voxel size in each direction. The dimen-
sions of the search region are parameters of the algorithm,
and should be chosen large enough to capture the maximal
displacement in the region to be registered. As the similarity
measure function can have more than one maximum in the
search region, we implemented the optimization essentially
as an exhaustive search. To speed up the calculation, an
adaptive multigrid approach was used: in a first step the
similarity measure was evaluated on a coarse search grid
�average in-plane step size: 2 voxels per dimension, i.e., un-
dersampling by factor of 4�, thereby roughly determining the
positions of candidates for maxima. In a second step, the

overall maximum was determined by an exhaustive search
on a refined search grid around the candidates with the step
size given by the voxel size.

II.A.3. Step 3: Assessment of local registration
quality

The configuration of the similarity measure in the search
region and especially around the optimum provides impor-
tant information about the registration quality of the indi-
vidual featurelets. In essence, three cases can be distin-
guished:

• Case I: Ideally, the local image information of a feature-
let is sufficient to allow unambiguous registration to a
corresponding target image subregion. Figures
2�a�–2�c� depict a typical example for this situation,
where the optimal position of the target featurelet is
characterized by a unique, distinct optimum of the simi-
larity measure.
However, for a part of the featurelets this is not the
case. Two main types of problems can be identified:

• Case II: The local image information does not allow an
unique registration of a featurelet, which is expressed as
a degenerate optimum of the similarity measure func-
tion. A typical example is shown in Figs. 2�d�–2�f�.

• Case III: The featurelet covers a region with low or no
image contrast; thus, the similarity measure function
shows low similarity values for all possible shifts and
no clear optimum. Figures 2�g�–2�i� show an example
for this case.

In the latter cases the correct position of the target featurelet
cannot be determined based on image contrast alone, but
additional information from adjacent featurelets has to be
used. This is implemented in terms of a subsequent relax-
ation step �see Sec. II A 4� for which the featurelets were
categorized according to the three cases described above by
the following criteria:

• Similarity measure values: If no local optimum of the
similarity measure can be found, or if the value of the
global optimum inside the search region is below a pre-
defined threshold value �CCthresh or NMIthresh�, the re-
spective featurelet is assumed to have bad registration
quality �case III above, Fig. 2�i��.
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• Eigenvalues of Hessian matrix at optimum: If a maxi-
mum above the similarity measure threshold can be
found, a criterion assessing the grade of its distinctive-
ness is needed. This criterion uses the curvature matrix
of the maximum. The eigenvalues of this curvature ma-
trix are a measure for the curvature of the similarity
measure function in the three orthogonal principal di-
rections. At a true maximum, these eigenvalues are
negative. Thus, if all three eigenvalues are below a pre-
defined threshold EVthresh, the registered featurelet is
assumed to have good registration quality �case I above,
Fig. 2�c��. Otherwise, the featurelet is categorized to
have a degenerate optimum as the registration in the
direction of the lowest curvature is not reliable �case II
above, Fig. 2�f��.

CCthresh �or NMIthresh� and EVthresh are parameters of the al-
gorithm that need to be determined separately for each simi-
larity measure, and their appropriate values also depend on
the image modalities to be registered. As the parameter
EVthresh controls the classification between case I- and case II
featurelets, its value has to be chosen appropriately to the
typical “feature content” in the respective image region to be
registered. Thus, its optimal value will also depend on the
organ site to be registered, where class-solutions for head-
and-neck, thorax, etc. should be obtainable. A systematic in-
vestigation of the optimal thresholds will be presented in the
Appendix on the example of lung registration.

II.A.4. Step 4: Relaxation

Due to inevitable local registration ambiguities or misreg-
istrations, a deformable registration ansatz solely based on
local image information produces unphysical deformation
fields which locally violate injectivity and continuity require-
ments. This has to be corrected for by imposing additional
assumptions which assure physically meaningful deforma-
tion fields. In our implementation this is realized by moving
the respective featurelets �cases II and III� to positions mini-
mizing the overall deformation energy of the featurelet grid.
For case II featurelets the additional constraint to stay within
the degenerate optimum is imposed. Elsewhere, registration
accuracy is ensured by keeping the positions of the correctly
registered featurelets �case I�.

Numerically, minimization of the deformation energy was
implemented as a relaxation algorithm: Assigning a virtual
mass mi to each featurelet, the dynamics of the ith-target
featurelet as represented by its center position Xb,i is gov-
erned by

miẌb,i = − D · Ẋb,i + Fsprings
�i� + Fimage

�i� . �5�

Here, D is a damping factor, and the dynamics is driven by
two types of forces, which are typically referred to as “inter-
nal” and “external” force.3 The internal forces give rise to the
deformation energy of the featurelet grid and are represented
by Fsprings

�i� for each featurelet i, which is the resulting force
imposed by virtual springs connected to the center of each
3D neighbor �in total: 26�,

Fsprings
�i� = k · 	

l��neighbors�
�
Xb,i − Xb,l
 − L0

�i,l�� , �6�

where k is the spring constant, and L0
�i,l�= 
Xa,i−Xa,l
 the base-

line distance of the center positions in the regular featurelet
grid in the reference image.

The external force Fimage
�i� introduces constraints originat-

ing from image information, thereby ensuring a “fit” to the
locally available data. The image force for the ith-target fea-
turelet in our model is given by the gradient of the similarity
measure S, Eq. �3� and �4�, at the respective position Xb,i,
i.e.,

Fimage
�i� = �i · �S�Ai,Bi� , �7�

with �i acting as a balance of the spring forces. A Savitzky-
Golay smoothing filter29 �polynomial degree M =2, window
size nL=nR=2� was used for the gradient calculations to im-
prove numerical stability and convergence.

A second-order Runge-Kutta method29 was used to calcu-
late the evolution of Eq. �5�. Due to the damping term, the

asymptotic equilibrium with Ẋb,i=0= Ẍb,i for all featurelets
represents the state of minimal deformation energy. The pa-
rameters used were k=0.9 and D=1.4; m=1 for the feature-
lets assessed as cases II and III, and m=107��1� for the
well-registered featurelets �case I�, thereby effectively fixing
these. The image force, Eq. �7�, is used only for the feature-
lets with degenerate similarity optimum �case II�, for which
the multipliers are initialized as �i= 
Fsprings

�i� 
 /�S with �S as

FIG. 2. Examples for the three typical situations encountered in local rigid
registration of featurelet regions �2D views of 3D featurelets and search
regions�: distinct �a�–�c�, degenerate �d�–�f�, or no/indistinct �g�–�i� similar-
ity optimum �case I/II/III; see Sec. II A 3�. First column: featurelet position
in the reference image; second column: �registered� featurelet in the target
image with the �projected� 3D-shift vector represented as line; third column:
local similarity �here: normalized mutual information, NMI� for all possible
shifts of the featurelet inside of search region.
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the mean image gradient in the neighborhood of the initial
position, thereby having Fsprings

�i� and Fimage
�i� numerically in the

same order.

II.A.5. Step 5: Calculation of global deformation
field

The shift vectors �Xi of the target featurelets Eq. �2� rela-
tive to the corresponding reference featurelets Eq. �1� repre-
sent the displacement field sampled on the regular grid of
featurelet centers in the reference image. The deformation
field at any position can be obtained by B-spline interpola-
tion between the �Xi, thereby ensuring continuity or continu-
ous derivatives if required. For the results presented in this
study, a B-spline of order 1, which is analogous to trilinear
interpolation, was used.

II.B. Validation studies

The registration quality was assessed visually by red-
green overlay of the registered data sets. Additionally, a more
quantitative evaluation of registration accuracy is desirable.
We implemented two methods to estimate registration re-
siduals on the example of 4D-lung deformable registration as
described in the following.

II.B.1. Virtual thorax phantom

For real patient data sets the true deformation field against
which to compare the algorithm is not accessible. Instead, a
known deformation field could be applied to a given image
data set to generate an artificial deformed image. Using these
two images as input for a deformable registration algorithm
to be evaluated, the known underlying deformation field
should be retrieved.

Guerrero et al.12 and Wang et al.17 used thin-plate splines
with a limited number of fiducial points taken from real pa-
tient data to generate a deformation field, while Crum et al.19

derived a deformation field from a biomechanical model of
the organ site using finite-element calculations. For this
study, we used an independent, free-form deformable regis-
tration algorithm described in Zhang et al.18 and Lu et al.4

for creation of a virtual thorax phantom. The deformation
field was calculated by using this algorithm for registration
of the exhale and inhale state CTs of a lung RCCT patient
data set. Notice that the registration accuracy of the algo-
rithm is irrelevant for the purpose of creation of the virtual
phantom, provided that the deformation field roughly repre-
sented the physiological deformations in the original lung
dataset.

The virtual phantom for the evaluation studies encom-
passed an artificially deformed exhale state CT and the origi-
nal inhale state CT with known underlying deformation field
between these.

II.B.2. Landmark-based evaluation on RCCT patient
test cases

Organs like the liver and lung show a large number of
internal anatomical structures, which facilitates a landmark-
based evaluation approach of registration accuracy.9,22,23,30

We evaluated registration accuracy of the presented algo-
rithm using lung RCCT data sets. The positions of NAL vas-
cular or bronchial bifurcations as anatomical landmarks �AL�
were marked by a physician in the inhalation and exhalation
CTs, and the corresponding displacements �pk

�actual� of the k
=1, . . . ,NAL landmarks were determined and compared to
the displacements �pk

�predicted� calculated by deformable reg-
istration. The registration residuals

Rk = �pk
�predicted� − �pk

�actual�, �8�

are a direct measure for the alignment accuracy of the algo-
rithm. For a comprehensive overview we calculated mean
and standard deviation for the 3D residuals 
R
 and for each
vector component separately, and determined the maximal
3D residuals.

III. RESULTS

III.A. Patient test cases

III.A.1. Intramodality registration „CT-CT…

The algorithm was tested on five RCCT patient data sets
of the thorax region. These were acquired on a Siemens So-
matom Open �Siemens Medical Solutions, Erlangen, Ger-
many� in spiral RCCT mode31 and re-sorted into ten respira-
tory phases with a slice thickness of 3 mm and in-slice voxel
size of 1 mm.

One of these patient data sets was used for generation of a
virtual thorax phantom �Sec. II B 1�; the results will be pre-
sented below in Sec. III B. A quantitative evaluation of reg-
istration accuracy using anatomical landmarks �Sec. II B 2�
was based on the other four data sets; see Sec. III C for
results.

As an example, Fig. 3 shows the grid of featurelets before

FIG. 3. Grid of featurelets in sagittal view �a� before registration and �b�
after local registration and relaxation. The featurelet centers are marked by
crosses �if in plane� or open circles �if they lie outside the shown sagittal
plane; featurelets that moved completely out-of-plane are omitted in �b��.
For each featurelet �b� indicates the result of automatic assessment of reg-
istration quality �cf. Fig. 2� as used for the relaxation step �Sec. II A 4�.
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and after exhale-to-inhale registration for patient 1. The size
of the featurelets was chosen to be 15�15�5 voxels
=14.6�14.6�15 mm, resulting in �10 400 featurelets for
the whole CT as a region of interest for registration. The size
of the rectangular local search region for individual featurelet
registration was 9�9�6 voxels. NMI was used as a simi-
larity measure in this example. The parameters used for the
assessment of local registration quality �Sec. II A 3� were
NMIthresh=1.05 and EVthresh=−0.01.

As indicated in Fig. 3�b�, featurelets with a distinct NMI-
optimum �case I in Sec. II A 3; in this example �29% of all
featurelets� can be typically found in areas with a high den-
sity of clearly visible anatomical structures, while, e.g., fea-
turelets at the diaphragm show mostly degenerate similarity
optima as expected �case II; �37%�. The latter featurelets
thus needed correction of their shifts in the relaxation step
�Sec. II A 4�. In areas with low image contrast such as air in
lung or deep inside tissue areas, the featurelet shift could not
be determined using local image information �case III;
�34%�; consequently such featurelets were shifted to posi-
tions corresponding to minimal deformation energy in the
relaxation step. The final registration result is visualized in
Fig. 4. Except for a noticeable misregistration around the
posterior part of the diaphragm, which is characterized by
non-negligible rotations/local deformations on a scale
smaller than the featurelet size used, the overall registration
quality appears satisfactory with all visible major image fea-
tures registered accurately.

A quantitative evaluation is presented in Secs. III B and
III C. For more details about the dependence of the fraction
of case I/II/III featurelets on the registration parameters, we
refer to Table III in the Appendix.

III.A.2. Intermodality registration „CT-CBCT,
CT-MRI…

To demonstrate intermodality performance, we applied
the algorithm—using NMI as a similarity measure—to head-
and-neck test cases.

In Fig. 5, a pretreatment cone-beam CT �CBCT; Elekta

Synergy XVI, Elekta Ltd., Crawley, UK� was registered to a
planning �helical� CT as reference image. Prior to registra-
tion, the image data were resampled to have equal resolution
�voxel size: 1.1�1.1�2.0 mm�. A featurelet size of 15
�15�5 voxels was chosen, resulting in �5200 featurelets
covering the whole data set. The parameters used for regis-
tration were 9�9�4 voxels as search region size,
NMIthresh=1.05, and EVthresh=−0.01. A comparison of Figs.
5�c� and 5�d� shows that—even in the presence of dental
metal artifacts �mainly in the reference CT� and strong
shading/cupping artifacts in the CBCT—a substantial reduc-
tion of the residuals could be gained through deformable
registration. This is especially obvious in the area of the
nasal cavities and the upper spine.

FIG. 5. Exemplary CT-CBCT head-and-neck registration: �a� CT as refer-
ence and �b� CBCT as target image; �c�/�d� overlays before/after registration.

FIG. 4. The data set of Fig. 3, shown as �a� overlay of exhale and inhale CT before registration, and �b� after registration �inhale CT deformed to exhale CT
using the deformation field�.
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As a second example, Fig. 6 shows a CT-MRI registra-
tion. The voxel size of both input data sets was 1.3�1.3
�3.0 mm. A number of �1800 featurelets of dimension
21�21�7 voxels each was used for registration with the
following parameters: search region size 10�10�8 voxels;
NMIthresh=1.11, and EVthresh=−0.01. The result of the regis-
tration is depicted in Fig. 6.

General conclusions about the performance of the pre-
sented algorithm for CT-MRI registration problems are
planned to be subject to more quantitative future research on
a larger number of data sets.

III.B. Virtual thorax phantom

Voxelwise evaluation of registration residuals was per-
formed based on a virtual thorax phantom as described in
Sec. II B 1. Mean and standard deviation of the �a priori�
displacements of this phantom were 2.9�2.8 mm. Using
the �inhale deformed to� exhale CT as reference and the
�original� inhale CT as the target image for deformable reg-
istration, the 3D residuals could be reduced to 1.1�1.2 mm
for a typical choice of registration parameters �featurelet size
15�15�5 voxels; size of search region 15�15
�8 voxels; NMIthresh=1.05; EVthresh=−0.01�. A comprehen-
sive overview of the results in terms of histograms for the
displacement field and the 3D residuals is provided by Fig. 7,
which illustrates the substantial reduction of residuals by the

presented algorithm. Similarly to the findings in Sec. III A 1
�see also Fig. 4�, the voxels with residuals �4 mm ��2% of
all lung voxels� are predominantly located around the
diaphragm.

Due to the detailed statistical information about registra-
tion accuracy, a virtual phantom is especially useful for de-
termination of optimal values for the different registration
parameters. For a systematic investigation we refer to the
Appendix.

III.C. Landmark-based evaluation

Landmark-based evaluation �Sec. II B 2� was performed
based on lung RCCT data sets of four patients �voxel size:
1�1�3 mm�, which had NAL=11−15 homologous points
marked inside a single lung lobe. The magnitude of breathing
motion was determined by the displacements �pk

�actual� of the
k=1, . . . ,NAL landmarks between the inhale and exhale CTs.
Averaging over all 55 landmarks of all patients, this resulted
in 0.1�1.7 mm in right-left �RL�, −1.1�1.7 mm in
anterior-posterior �AP�, and −7.0�5.6 mm in inferior-
superior �IS� direction, with 7.8�5.1 mm for the 3D mo-
tion. After deformable registration, the corresponding regis-
tration residuals Rk, Eq. �8�, were determined. This resulted
in −0.3�0.8 mm in RL, 0.0�0.9 mm in AP, and
0.1�1.5 mm in IS direction averaged over all patients, with
1.6�1.0 mm for the 3D residuals. Table I summarizes the
results for the different patients. Obviously, for all three di-
rections the residuals are considerably smaller than the
breathing motion itself and in the order of the voxel size or
smaller.

Following a plot visualization introduced by Coselmon
et al.,9 Fig. 8 gives a detailed overview of the observed RL/
AP/IS shifts and the corresponding inhale-exhale registration
residuals for all landmarks of all patients. As to be expected
from Table I, most of the landmarks show small residuals in
the order of the voxel size in the respective direction or
smaller, with maximal residuals of −2.1 /2.9 /4.2 mm in the
RL/AP/IS direction. As an additional finding, increased re-
siduals are not systematically associated with larger shifts of
landmarks �i.e., breathing motion itself�.

To avoid a possibly biased evaluation of registration ac-
curacy, the physician marking the anatomical points was
asked to distribute the landmarks regularly over the lung
volume. Thus, for each of the datapoints of the plots in Figs.

FIG. 6. Exemplary CT-MRI head-and-neck registration: �a� CT as reference and �b�/�c� MRI as target image before/after registration.

FIG. 7. Distribution of 3D residuals based on deformable registration of the
virtual thorax phantom.
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8�a�–8�c�, the abscissa values were chosen to represent the
relative RL/AP/IS positions in the considered lung lobe for
the respective patient as defined by

pk,z − 1
2 �Zmin

lung + Zmax
lung�


Zmin
lung − Zmax

lung

�9�

for the relative IS position �and correspondingly for RL and
AP�. Here, pk,z is the IS coordinate of the kth landmark as
manifest in the reference CT of the respective patient, and
Zmin

lung�Zmax
lung� is the minimum �maximum� IS extent of the lung

lobe in the reference CT. From the plots in Fig. 8, the posi-
tions of the landmarks used for evaluation were distributed
fairly regularly, and no systematic association of the size of
the residuals with the relative landmark position exists.

III.D. Calculation time

The calculation times of the test cases presented in Sec.
III A are summarized in Table II. The step of local rigid
registration of the featurelets �Sec. II A 2� was the most time-
consuming part of the algorithm. However, this part can be
parallelized, and thus a major speedup can be expected by
the growing availability of multiprocessor/multicore com-
puter hardware. To assess the efficiency of parallelization,
the calculation time has been determined when using a vary-
ing number of CPUs �1/2/8 processors� on a multiprocessor
PC; see Table II. This shows that parallelization of the local
rigid registration step allows efficient speedup, which scales
almost linearly with the number of available CPUs. Using all
eight CPUs of the PC, the overall calculation time ranged
from 14 s for the CT-CBCT test case to 38 s for the CT-CT
test case.

For more details on the influence of the registration pa-
rameters on the calculation time, we refer to the Appendix.

IV. DISCUSSION

“Featurelet”-based deformable registration, i.e., the divi-
sion of global deformable registration into rigid registration

of a multitude of small image subvolumes �“featurelets”�
proves to be an efficient concept both for intra- and inter-
modal registration. The division into subproblems allows
parallelization in a straightforward manner, which puts “on-
line deformable registration” with calculation times well be-
low 1 min on recent multiprocessor/-core computer hardware
in reach.

The presented algorithm has been applied to exemplary
patient test cases such as inhale-exhale registration of thorax
CTs as well as CT-CBCT and CT-MRI registration of head-
and-neck data sets, which resulted in visually satisfactory
registration results. A rigorous quantitative evaluation for
lung registration based on a virtual thorax phantom and
manually placed landmarks in four patient data sets consis-
tently resulted in a sub-voxel-size 3D alignment accuracy of
1–2 mm in terms of the mean and standard deviation of the
3D residuals �voxel dimensions: 1�1�3 mm�, as de-
manded for deformable registration applications in the field
of radiotherapy.

Deformable registration algorithms have to consider two
sources of information: image information and physical
properties. Often, a priori information about tissue
properties32 and tissue boundary conditions33 is not available
or subject to uncertainties. It is the advantage of the pre-
sented featurelet-based algorithm that it allows model-
independent registration in image regions with sufficient lo-
cal image information. However, in regions with no or
insufficient image information, it provides physically reason-
able interpolation by means of minimization of elastic
energy.

The basic premise of the featurelet concept is that the
deformations present in a data set can be locally approxi-
mated by rigid registrations. Thus, featurelet-based registra-
tion in the form of the presented algorithm has its limits for
organs and image regions with non-negligible local deforma-
tions, which deteriorate the possibility of local rigid �trans-
latory� featurelet registration. In the case of inhale-exhale
registration of the lung, we observed such problems mostly

TABLE I. Mean and standard deviation of the inhale-exhale registration residuals Rk, Eq. �8�, and the breathing
motion �displacements �pk

�actual�� according to the k=1, . . . ,NAL anatomical landmarks between the inhale and
exhale state CTs. The final row gives mean and standard deviation taken over all landmarks of all patients.

Inhale-exhale registration residuals of landmarks �mm�
[w/o registration, i.e., breathing motion (mm)]

Patient NAL RL AP IS 3D

1 15 −0.3�0.8 −0.1�0.7 −0.4�1.1 1.3�0.9; max: 3.6
(�0.3�0.9) (�1.3�1.5) (�7.8�4.8) (8.2�4.6; max: 15.4)

2 11 0.2�0.7 0.3�1.2 0.0�1.2 1.5�1.0; max: 3.6
(�0.6�0.9) (�1.7�1.1) (�2.7�2.8) (4.2�1.5; max: 6.1)

3 14 −0.1�0.9 −0.5�0.8 0.5�1.4 1.8�0.7; max: 2.9
(1.2�2.7) (�0.1�2.4) (�9.4�6.0) (10.4�5.5; max: 21.2)

4 15 −0.7�0.6 0.2�0.7 0.2�1.9 1.8�1.3; max: 4.6
(0.1�1.1) (�1.3�1.3) (�7.2�6.1) (7.8�5.7; max: 21.3)

Average −0.3�0.8 0.0�0.9 0.1�1.5 1.6�1.0; max: 4.6
�	NAL=55� (0.1�1.7) (�1.1�1.7) (�7.0�5.6) (7.8�5.1; max: 21.3)
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in the area of the diaphragm/diaphragm-chest wall interface
�see, e.g., Fig. 4�. Another phenomenon is the sliding of or-
gan surfaces relative to adjacent structures, which is the case
for the liver or lung relative to the chest wall. Thus, an effi-
cient detection of featurelets in such “problematic” regions

and modified algorithmic handling of local registration of
these featurelets should be the subject of future develop-
ments to further improve the presented algorithm. Here, pos-
sible directions of research are featurelet transformations be-
yond translatory rigid registration, as well as hierarchical34

FIG. 8. Overview plot of the results of inhale-exhale registration for the anatomical landmarks of the four patients: The ordinate values of the dot markers give
the displacements of the landmarks, while the �signed� lengths of the lines represent the values of the corresponding registration residuals, Eq. �8�. The
abscissa values are the relative positions of the landmarks, Eq. �9�.

TABLE II. Calculation times for deformable registration of the test cases presented in Sec. III A using a
dual-quadcore PC �2 Intel Xeon X5355 processors @ 2.66 GHz, 8 CPU cores altogether�. The calculation times
for local rigid registration �Sec. II A 2� and relaxation of the featurelet grid �Sec. II A 4� are specified separately.
Additionally, the calculation time of the local rigid registration step has been determined separately using 1, 2,
and 8 processors.

Registered region Rigid registration �s� Overall �s�
Test case �voxels� �1/2/8 CPUs� Relaxation �s� �1/2/8 CPUs�

Thorax �CT-CT� 360�270�120 171/89/24 13 185/103/38
H&N �CT-CBCT� 225�225�115 64/33/9 4 69/38/14
H&N �CT-MRI� 378�210�70 120/62/16 2 122/64/19
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or multigrid approaches that subdivide the domain used for
calculation of the similarity measure to subfeaturelet regions.

V. CONCLUSIONS

Applications in “4D-radiotherapy” such as �4D� online
adaptive planning, interactive 4D contouring on RCCT data
sets, or image-guided �4D� treatment dose accumulation for
proper treatment evaluation require near real-time deform-
able registration. This demand is addressed by the presented
deformable registration algorithm, which is based on the
principle of multiple fast local registrations of small feature-
let regions and a subsequent novel correction scheme for
mismatched featurelets. As shown by a number of intra- and
intermodality image registration examples, its speed and par-
allelizability open up possibilities for “online deformable
registration” with sufficient accuracy for radiotherapy appli-
cations.

In its present implementation the algorithm uses rectangu-
lar featurelet regions of finite fixed size and thus shows limi-
tations in image regions with large local deformations. Fu-
ture research will focus on overcoming such limitations, e.g.,
by the inclusion of models for specific applications. It is a

unique advantage of featurelet-based registration that its
principle does not depend on a model, so that maximum
portability and versatility for use with different organ sites
and image modalities is guaranteed.
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APPENDIX: INFLUENCE OF MATCH PARAMETERS
ON REGISTRATION ACCURACY AND
CALCULATION TIME

Due to the comprehensive statistical information about
registration accuracy that can be derived from voxelwise

TABLE III. Registration residuals inside of lung for NMI- or CC-based registration with different parameters used. �R and 	R denote the mean and standard
deviation of the 3D residuals, and RX% is the X-percentile of the distribution of residuals ��7.8�105 voxels used for comparison�. The last three columns
show the number of featurelets used for registration of the right lung, the fraction of case I/II/III featurelets �see Sec. II A 3 and Fig. 2�, and the calculation
times �rigid registration/relaxation/overall� as determined on a dual-dualcore PC �2 Intel Xeon 5150 processors @ 2.66 GHz, 4 CPU cores altogether, 2 CPUs
used for the calculations�.

Featurelet size Search radius NMIthresh or EVthresh �R�	R R95% /R99% /R99.9% Number of Featurelets Calculation timea

XY/Z �voxel� XY/Z �voxel� CCthresh � � � � �mm� �mm� featurelets case I/II/III �%� �s�

A 1.02 0.99�0.94 2.86/4.39/7.00 44.1/55.4/0.5 14.5/3.6/19.2
B 1.05 −0.02 0.97�0.95 2.85/4.46/7.08 44.1/53.5/2.4 14.2/3.6/18.9
C 11/5 9/4 1.15 0.97�0.96 2.95/4.55/6.62 2677 44.1/44.9/11.0 14.1/3.2/18.5
D 1.25 1.14�1.08 3.36/4.91/6.81 38.6/30.2/31.2 14.3/2.5/17.9
E −0.005 1.06�1.10 3.28/5.46/8.33 85.3/12.3/2.4 14.3/1.5/16.9
F 1.05 −0.01 0.98�1.00 2.99/4.88/7.82 71.3/26.3/2.4 14.4/2.2/17.8
G −0.04 1.09�0.93 2.91/4.36/6.87 11.8/85.8/2.4 14.2/4.7/20.1

H −0.005 1.02�1.01 3.06/4.88/7.53 85.2/12.0/2.8 13.7/1.2/16.0
N M I I 15/5 9/4 1.05 −0.01 1.00�0.96 2.97/4.58/6.71 1666 72.5/24.7/2.8 13.7/1.7/16.4

J −0.02 1.04�0.99 3.05/4.57/6.70 45.7/51.5/2.8 13.7/2.7/17.5
K −0.04 1.20�0.98 3.15/4.61/6.71 14.2/83.0/2.8 13.8/7.2/22.2

L 19/9 9/4 1.05 −0.01 1.18�1.13 3.52/5.19/7.34 713 69.8/26.6/3.5 15.9/1.5/18.4

M 9/3 9/4 1.05 −0.03 0.97�0.97 2.88/4.72/7.27 5755 19.9/78.1/2.0 19.2/7.0/27.5

N 6/3 0.96�0.89 2.80/4.25/6.11 73.5/23.6/2.9 8.4/1.4/11.0
O 15/5 12/5 1.05 −0.01 1.06�1.07 3.26/5.14/7.87 1666 71.7/25.1/3.2 27.2/1.9/30.2
P 14/6 1.10�1.19 3.42/6.06/9.38 71.4/25.6/2.9 40.2/2.1/43.5
Q 15/8 1.10�1.22 3.44/6.04/10.1 71.2/25.6/3.2 51.5/2.2/54.7

C C

R 9/3 −0.04 1.01�1.00 2.97/4.66/7.61 5755 34.1/64.5/1.4 11.9/7.3/20.5
S 11/5 9/4 0.35 −0.02 1.08�0.98 2.98/4.63/7.40 2677 44.1/53.8/2.1 9.8/2.8/13.8
T 15/5 −0.01 1.23�1.13 3.46/5.24/7.49 1666 54.6/43.1/2.3 9.9/2.0/13.0
U 19/9 −0.005 1.32�1.12 3.57/5.08/7.34 713 59.6/37.6/2.8 12.1/1.6/14.8

Input displacement field 2.92�2.81 8.51/12.30/14.80 –

aNotice that the calculation times of registration experiments with different featurelet sizes are not directly comparable due to the different size of the
registered volumes �=number of featurelets� featurelet size�.
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evaluation, a virtual phantom is especially useful for param-
eter studies seeking to determine optimal parameter combi-
nations of a deformable registration algorithm.

Using the �inhale deformed to� exhale CT as the reference
and the �original� inhale CT as the target image for the
featurelet-based registration algorithm, repeated registration
experiments were performed under variation of the following
parameters: featurelet size �the X- and Y-size was chosen to
be equal for all experiments�, size of rectangular search re-
gion �X- and Y-sizes chosen equal�, NMIthresh or CCthresh, and
EVthresh �Sec. II A 3�. The results for NMI- and CC-based
registration are presented in Table III. For these studies, the
registration accuracy was determined in terms of 3D residu-
als for each voxel inside the right lung of the virtual phantom
and is summarized as mean �R and standard deviation 	R

over all lung voxels, as well as the 95%-, 99%-, and 99.9%
percentiles. Additionally, Table III specifies the fraction of
case I/II/III-featurelets �Sec. II A 3� and the calculation time
for each parameter set.

Experiments A–Q in Table III used NMI as a similarity
measure. In experiments A–D the influence of the parameter
NMIthresh on the registration accuracy was investigated. It
turns out that the latter is fairly insensitive to this parameter
as long as it does not exceed a value of �1.15, which obvi-
ously is the typical NMI “noise level” for this registration
problem: Generally, if the similarity measure threshold is set
too high, unnecessarily many featurelets are erroneously
classified as “case III” featurelets �“noisy match;” compare
Sec. II A 3 and Fig. 2�i��, thereby possibly ignoring available
local image information in the subsequent relaxation step. To
be on the safe side, we chose NMIthresh=1.05 for the follow-
ing experiments.

In experiments E–G �H–K� the influence of the parameter
EVthresh was investigated. Again, the registration accuracy
turns out to be fairly insensitive to this parameter within a
certain range. However, to obtain optimal registration quality
a slightly different value of EVthresh should be chosen for
different featurelet sizes: For a featurelet size of 11�11
�5 voxels /15�15�5 voxels the optimal value for
EVthresh is �−0.02 /−0.01, respectively.

Concerning the influence of the featurelet size on the reg-
istration accuracy, a comparison of experiments B, I, L, and
M shows that for large featurelets the residuals increase: The
validity of the approximation that deformations are small
over the domain of a featurelet is compromised for too large
featurelets, which leads to misregistrations. Note that the cal-
culation time increases both for very small and large feature-
let sizes. Thus, parameter set I �featurelet size 15�15
�5 voxels� appears as a good compromise of registration
accuracy and calculation time.

Experiments N–Q show that the registration accuracy
moderately depends on the size of the search region �due to
possible multiple local optima of the similarity measure
function, if similar structures exist in the vicinity of a ana-
tomical feature�.

Based on this, we used a featurelet size of 15�15
�5 voxels, NMIthresh=1.05, and EVthresh=−0.01 as param-
eters for the CT-CT and CT-CBCT registrations of patient
data presented in Sec. III.

Similar parameter studies were performed for CC as a
similarity measure. The results are shown as experiments
R–U in Table III, which already represent parameter sets
with optimal EVthresh for a given featurelet size. A value of
�0.35 was found to be a reasonable value for CCthresh in all
experiments. According to these experiments, smaller fea-
turelet sizes are favorable for CC-based registration �param-
eter sets R, S�. With respect to calculation time, CC-based
registration is typically 20%−30% faster compared to NMI-
based registration. Notice, however, that the applicability of
CC as a similarity measure is restricted to intramodality reg-
istration problems.
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Purpose: The common method of IMRT-planning in the presence of geometric uncertainties uses
a static CT dataset for dose calculation as substitute for dose accumulation in the moving tissue. We
present the implementation of a probability-based 4D-planning approach which explicitly optimizes
the accumulated dose-to-moving tissue estimated using the patient’s probability density function
(pdf) of respiratory motion. This is termed “optimization in tissue-eye-view” (TEV).

Materials and Methods: The method incorporates 4D-Monte Carlo (MC) dose calculation in mul-
tiple geometries of a respiratory correlated CT dataset. The instance doses are weighted according
to the breathing pdf and accumulated in a common reference geometry which involves dose warping
based on deformable registration. The algorithm produces deliverable MLC segments and was tested
on an example lung cancer patient dataset with large target excursion. Accumulated doses of the
moving target and OARs of this plan (4Dp) were compared to corresponding margin-based static
IMRT-plans for freebreathing (FBp) and gated (GATINGp) treatment as well as target tracking
(TRACKp).

Results: TRACKp provided best target coverage. Both 4Dp and GATINGp gave similar results
for target coverage and lung dose, with significantly better target coverage than for FBp.

Conclusions: The presented 4D-planning concept offers an alternative to gating by providing the
optimal dose for freebreathing IMRT treatment. While the focus of this study was 4D-lung planning,
the approach can be generally applied for IMRT optimization in randomly deforming patient models.

Keywords: 4D-radiotherapy, IMRT, deformable geometries, deformable image registration, 4D-Monte Carlo
dose calculation

I. INTRODUCTION

The currently most common planning approach em-
ploys a single CT scan to geometrically define the gross-
tumor volume (GTV) and organs at risk (OARs) to de-
termine the dose distribution. However, the existence
of inevitable geometrical uncertainties such as rigid and
non-rigid interfractional setup errors or intrafractional
organ motion causes a discrepancy between the dose de-
livered to the moving tissue and computations performed
on the static geometry. The common method to account
for this is the extension of the clinical target volume
(CTV) by a margin, and to ensure coverage of the re-
sulting larger planning target volume (PTV) (ICRU re-
port 501). With regard to internal organ motion (eg.
breathing) the ICRU report 622 additionally introduced
the concept of the internal target volume (ITV) as hull of
possible tumor positions relative to bony structures. By
using the PTV as surrogate merely for planning, CTV
coverage is sought to be guaranteed in the presence of
uncertainties.
A large PTV margin, however, goes at the expense of
irradiating additional healthy tissue. Moreover, it may
happen that the PTV overlaps with adjacent OARs. In

this case an ill-defined tradeoff decision between PTV
coverage and OAR sparing has to be made. Finally, the
very position uncertainty of the target can have an im-
pact on the density distribution, rendering the dose cal-
culation itself uncertain. A pragmatic and efficient way
for margin reduction is the use of image guidance (IGRT),
optionally combined with adaptive concepts to individu-
alize treatment margins3. However, remaining intrafrac-
tional uncertainties of random nature (eg. prostate) or
periodic nature (freebreathing treatment of lung) neces-
sitate non-vanishing margins.

The problems encountered in PTV-based planning are
a consequence of planning on a static patient geome-
try, which is a rather incomplete model of reality in the
presence of large geometrical deviations. The actually
relevant quantity is the accumulated dose in the mov-
ing/deforming CTV/OAR-structures. The accumulated
dose changes physically – due to changes in the density
distribution – as well as physiologically, as tissue voxels
move away from the planning position.
As first step from the static ’beam-eye-view’ (BEV)
to this ’tissue-eye-view’ (TEV), it was realized already
1987 by Leong4 that random errors lead to blurring
of the dose distribution as seen in TEV. For random
positional errors, this can be approximately modeled
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by dose-convolution5, fluence-convolution6 or isocentre-
sampling7. These methods model only the effect of rigid
body motion on dose. Ultimately the dose accumulated
by the moving tissue needs to be estimated, which re-
quires information about local displacement vectors be-
tween different geometries. Dose distributions of differ-
ent geometries are then ’warped’ and accumulated to a
reference geometry. Such TEV-based dose evaluation has
first been proposed by Yan et al. 19998. The combination
with the use of Monte Carlo (MC) dose calculation rep-
resents a powerful tool for evaluation of ’4D-doses’ espe-
cially for regions with large tissue density heterogeneities
like lung9,10.

The possibility to account explicitly for accumulated
dose in deforming geometries enables ’4D-planning’. As
at the time of planning the exact individual motion pat-
tern during the treatment course is unknown, such ap-
proaches have to make assumptions about the probability
density function (pdf) of motion. The basic idea of pdf-
based TEV-optimization then is to use the expectation
value of dose as planning surrogate.
Such an approach was first implemented for real patient
data in terms of an adaptive framework by Birkner et
al.11 for prostate, bladder and rectum. The dose dis-
tribution itself was calculated only in the planning ge-
ometry, which is a good approximation for the pelvic
region. However, for head-and-neck (H&N), lung cases
etc. with large inhomogeneities and tissue-air inter-
faces this is not a valid approximation. McShan et
al.12 presented an implementation of pdf-based TEV-
optimization called MIGA (multiple instance geometry
approximation), where dose is explicitly calculated for
each geometry instance. This was presented on a H&N
case for rigid shifts. Trofimov et al.13 applied a method
similar to MIGA for planning of a lung and liver case,
where organ deformations as obtained from deformable
registration were considered. Zhang et al.14 presented
4D inverse lung planning using multiple geometries of
a respiratory-correlated CT-dataset for breathing-pdf-
weighted dose accumulation based on deformable regis-
tration. Differently from MIGA, dose calculation was
performed on a single geometry (average density CT) for
speed-up reasons.

The approaches mentioned above presented non-
segmented plans using pencil beam (PB) or convolution
superposition (CVSP) algorithms for beamlet dose cal-
culation. In this study we present an implementation
of pdf-based TEV-optimization with MC-based dose cal-
culation in multiple geometries, resulting in a fully seg-
mented freebreathing ’4D-plan’. For dynamic MC the
calculation time does not scale with the number of ge-
ometry instances10. This facilitates 4D-planning with
MC accuracy in time frames comparable to conventional
static planning.

In the following, we apply the algorithm to the prob-
lem of freebreathing lung treatment for a clinical test
case with large breathing excursion. The results of 4D-
planning in terms of accumulated dose to tumor and

lung are compared to margin-based static IMRT-plans
for freebreathing and gated treatment as well as track-
ing.

II. MATERIALS AND METHODS

A. Concepts

1. IMRT dose calculation in a static geometry

Given a fluence distribution Φ in terms of the fluence
weights {φ} of n beamlets or segments as discrete fluence
elements, the dose Di to voxel i in the fixed treatment
room coordinate system is given by the weighted sum of
contributions from all fluence elements as expressed by
the dose operator T :

Di =

n
∑

j=1

Tijφj (1)

T∗j holds the static dose distribution of fluence element
j, which is determined based on the density information
of a single planning geometry. Therefore, T is the static
dose operator.

2. Representation of the patient’s dynamics by multiple
deformable geometries

For lung patients, the respiratory-correlated CT
(RCCT) technique allows to reconstruct CT geometries
of different respiratory phases which provides a straight-
forward way to represent the dynamics of patient indi-
vidual breathing motion in terms of multiple phase CTs.
For this study the RCCT dataset was aquired using
a Siemens Somaton Open in spiral RCCT-mode. The
scanner software allows separate, amplitude-based recon-
struction of phases in the inhale (’In’) and exhale (’Ex’)
branch of the breathing curve for user-defined respiratory
levels in the range 0 . . . 100 (0=full expiration, 100=full
inspiration).

TEV-optimization uses information about motion of
all tissue elements within the relevant structures to en-
able calculation of dose-to-moving-tissue. This requires
deformable registration providing displacement fields
that relate image voxels of different RCCT-geometries.
For this study, a featurelet-based deformable registration
algorithm15 was used.

3. Probabilistic description of breathing motion

As in fig. 1a, significant irregularities in the breath-
ing curve can be observed over the time of a treatment
fraction, which renders deterministic modelling of res-
piratory motion for calculation of dose-to-moving-tissue
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FIG. 1: (a) Breathing curve of the example patient during
aquisition of the RCCT. (b) Relative time spend in the dif-
ferent breathing phases of the RCCT dataset as derived from
the pdf of the breathing curve in (a).

infeasible. However, a probabilistic description of breath-
ing in terms of the probability density function (pdf) of
the breathing curve provides information about the rela-
tive time spent in each breathing phase on average. Thus
each phase CT can be associated with a weight factor
expressing the relative importance of the respective in-
stance geometry to represent a ’snapshot’ of the under-
lying dynamic process (fig. 1b).

4. IMRT dose calculation in multiple deformable geometries

The 4D-planning concept presented here optimizes the
expected dose accumulated by the moving tissue ele-
ments.

For this, the dynamics of the patient geometry is dis-
cretized into N instances (sect. II A 2). Each of these in-
stances is associated with an instance weight wk (wk < 1,
∑N

k=1 wk = 1; sect. II A 3).
The instance geometries are used for determining the
(static) dose operators T k and thereby the static dose
distributions Dk (eq. 1). Chosing one of the instance
geometries (k = 1, say) as reference geometry, dose accu-
mulation is realized by warping the instance doses to the

reference geometry using the displacement vectors be-
tween corresponding tissue elements (sect. II A 2). The
accumulated dose 〈D〉 can then be expressed as weighted
average:

〈D〉 =

N
∑

k=1

wk · D̃k =

N
∑

k=1

wk · (Wk ◦ Dk) (2)

Here D̃k is the k-th instance dose as warped to the refer-
ence geometry, which can be formalized by introduction
of a warping operator Wk (with W1 = Id as identity op-
erator).
This is illustrated in fig. 2 for the example of a beamlet
dose distribution: Fig. 2a/b show (static) dose distribu-
tions Dexhale and Dinhale in the treatment room coor-
dinate system. The effect of the warping operator on
Dinhale, i.e. D̃inhale, is shown in fig. 2c: This is the dose
deposited in the tissue voxels in the inhale geometry as in
fig. 2b, but represented in the reference coordinate sys-
tem of the exhale geometry. Finally, fig. 2d shows the
accumulated dose 〈D〉.

For the purposes of IMRT optimization, eq. 2 can be
rewritten in terms of the fluence weights by expressing
the instance doses Dk through eq. 1:

〈Di〉 =

N
∑

k=1

wk ·

n
∑

j=1

(Wk ◦ T k)ijφj =

n
∑

j=1

〈Tij〉φj (3)

is the accumulated dose in voxel i of the reference geom-
etry with

〈Tij〉 =

N
∑

k=1

wk · (Wk ◦ T k)ij . (4)

〈T 〉 is the motion-averaged version of the static dose op-
erator T (fig. 2d).

a. Beamlet precalculation For beamlet-based
IMRT-optimization of the fluence distribution, 〈Tij〉 can
be precalculated by separate warping of all beamlets
according to eq. 4. This allows efficient update of the
accumulated dose distribution 〈D〉 according to eq. 3
during iterative optimization.

b. 4D-MC dose calculation For MC algorithms cal-
culation time depends on the overall number of simulated
particle histories nhist which is split according to the in-
stance weights wk among the dose calculations for the
multiple instances, i.e. nhist,k = wk · nhist. Thus MC
allows efficient calculation of the accumulated dose es-
sentially independent of the number of instances.

5. Constrained optimization based on isoeffects

The isoeffect framework is used for the optimization
costfunctions to quantify dose-response characteristics of
different tissues16,17. The quantities used for the purpose
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(b)

(c) (d)

(a)

FIG. 2: Beamlet warping: (a)/(b) beamlet doses calculated in
the exhale/inhale CT. (c) beamlet dose of inhale CT warped
to exhale reference geometry; (d) beamlet dose as accumu-
lated using all 8 CTs.

of this study are:

• poisson cell-kill EUD (equivalent uniform dose) to
describe tumor control18

• normal tissue parallel complication model, quan-
tifying the mean damage to an organ caused by
irradiation16,17

• maximum dose, controlled by a physical overdose
constraint in terms of the root mean square (rms)
overdosage above a threshold dose.

In order to ensure the existence of a solution for a given
set of prescriptions, we implement IMRT-optimization
in terms of a constrained optimization problem19, where
local tumor cell survival is minimized (i.e. tumor control
is maximized) while isoeffects to critical structures are
constrained to maximum tolerable values.

B. Implementation

The methods described in this study were imple-
mented into the clinical IMRT-planning software Hy-

perion, which allows constrained, EUD-based biologi-
cal optimization based on MC-dose distributions20. In
short, Hyperion uses a two-stage ansatz of IMRT-
optimization: The first stage optimizes the fluence map
based on a discretization into beamlets, where beamlet
dose calculation is performed using a dedicated pencil-
beam algorithm with 3D-density corrections21. For
the second stage, the fluence distribution is segmented,
and henceforth both segment-weights and -shapes are
iteratively optimized based on MC-calculated segment
doses22. For the latter the fast MC-code XVMC is
used23,24.

C. Patient test case

We tested the presented algorithm for IMRT-planning
of a moving lung tumor, where the intrafractional quasi-
periodic breathing motion was explicitly incorporated
into optimization.
Planning was based on a RCCT dataset with eight CTs
(0/25/50/75In and 100/75/50/25Ex, sect. II A 2; voxel
size: 1×1×3mm). The corresponding instance weight
factors are given in fig. 1b. The tumor had a diameter
of 2.4cm and was located posteriorily in the lower right
lung (see figs. 2, 3). The breathing excursion was 2.9cm,
mainly in cranio-caudal (CC) direction.

To allow comparison of the 4D-planning method to
other approaches, the following four plans were created:

a. 4D-plan (4Dp): In this approach, the expected
dose to the CTV was optimized by explicit dose-
calculation in all eight breathing phases and pdf-based
dose accumulation as described in sect. II A 4. The ref-
erence geometry was the exhale CT.

b. static freebreathing PTV-plan (FBp): The PTV
of this plan was the ITV which incorporated the CTV-
positions in all eight RCCT phases. Dose-calculation
was based on the average density CT (fig. 3a) which
was constructed by weighted averaging for each voxel
the Hounsfield-values of all RCCT phases (weight factors
wk).

c. static exhale-gating PTV-plan (GATINGp): The
PTV of this plan was given by an ITV that covered the
CTV-positions in the RCCT-phases 0In, 25In and 25Ex.
The latter two phases were considered to incorporate in-
evitable geometric uncertainties of the exhale position
during the gating window. Dose-calculation was based
on the exhale-average density CT resulting from weighted
averaging of the 0In/25In/25Ex-CTs (fig. 3d).

d. tracking plan (TRACKp): To simulate target
tracking, an optimal static IMRT-plan was determined
separately for each of the instance geometries, with the
target for each plan given by the CTV in the respective
phase CT. The instance dose distributions of the result-
ing eight plans were retrospectively warped and accu-
mulated to the reference phase. This idealized ’tracking
plan’ is based on the assumption that continuous ’live’-
tracking without residuals is possible.

For all plans, the availability of imaging devices for
daily online, target-based setup correction is assumed,
and residual setup errors are neglected as simplification.
In particular, no additional setup margin were applied.

The prescription and other planning parameters were
chosen equally for each planning method to guarantee
comparability. The prescription was as follows:

• target: 55.0Gy in 10 fractions to the respective
target (prescribed as poisson cell-kill EUD with
α = 0.5); overdosage constraint: max. 2Gy rms
overdosage above 55Gy.

• right (ipsilateral) lung (volume without target):

parallel contraint: max. 5% mean damage (k = 3,
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d0 = 20Gy); overdosage constraint: max. 0.05Gy
rms overdosage above 20Gy for voxels with ≥ 2cm
distance to target.

• left (contralateral) lung: parallel constraint: max.
1% mean damage.

• unspecified tissue inside of skin contour: over-
dosage constraint: max. 0.1Gy rms overdosage
above 20Gy.

Eleven beam angles were chosen initially for each plan
(20/155/175/195/ 215/235/270/295/310/325/345◦), but
the optimizer automatically switched off unfavourable
beams with low contribution to the plan. The param-
eters for the sequencer were chosen such as to perform
conversion of the beamlet-based fluence maps into seg-
ments with high fidelity.

Other planning parameters were: 3×3×3mm3 voxel
size for dose calculation; 4×2mm2 beamlet size; 6MV
photon beams; ∼ 3.5 · 106 simulated histories/segment
(corresponding to 3% MC-accuracy/segment) assuming
Elekta BeamModulator with 4mm leaf width as MLC
hardware.

III. RESULTS

A. Dose distributions

The planning geometry and MC-dose distributions for
the different plans are shown in fig. 3, the DVHs are
plotted as fig. 4 and table I summarizes the resulting
isoeffects and EUDs. For the two PTV-based plans two
types of dose distributions are specified: the static dose
calculated in the average CT as used for planning and
the accumulated dose to allow for comparison.

Following the isotoxic prescription, all plans show very
similar OAR doses, while differences mainly reflect in the
target dose (fig. 4, tab. I). None of the plans fully met the
presciption of 55.0Gy EUD due to the strict OAR con-
straints, however, significant differences were found. The
best coverage was found for TRACKp (53.0Gy accumu-
lated CTV-EUD) as could be expected for this idealized
planning approach. In contrast, the lowest target dose
of all plans was found for FBp with 45.1Gy static EUD
to the PTV. For this planning method the PTV encom-
passed a relatively large region and thus could not be
covered well for the given constraints. Recalculation of
this plan on the different RCCT-phases showed that the
accumulated EUD to the CTV was actually higher by
about 2Gy, however, significant target overdosage and
dose inhomogeniety was found for the CTV. A simi-
lar difference between static PTV-dose and accumulated
CTV-dose was found for GATINGp (tab. I). This ren-
ders the static PTV-dose as poor predictor of the actual
dose-to-moving-tumor. Due to its smaller PTV region,
GATINGp shows a significantly better target coverage
(50.9Gy accumulated CTV-EUD) than FBp. A similar

target coverage of 50.2Gy was found for 4Dp. Compared
to FBp this is a significant improvement without exceed-
ing the respective overdosage constraint, which also re-
flects in a better and steeper DVH of 4Dp.

Fig. 3 gives an insight into how the approaches redis-
tribute dose to arrive at different target coverage under
isotoxic conditions. For the two PTV-based plans (FBp
and GATINGp) the static dose distribution conforms
to the respective PTV-region as prescribed (figs. 3a,d).
As the gating-PTV is significantly smaller than the FB-
PTV, less volume of lung as main dose-limiting organ is
irradiated, facilitating higher target doses as compared to
the FBp. Breathing motion causes lung tissue to move
in and out of the irradiated PTV-region, while only the
moving CTV stays inside. This leads to considerable dose
blurring for the accumulated dose, manifest as spreadout
of the low-dose region in CC-direction while the higher
doses are confined to a smaller region around the CTV
(figs. 3b,e). The latter can be partly contributed to the
fact that significant dose-buildup can happen only inside
the high tissue density of the moving CTV, thus dose
’follows’ the tumor.
Compared to FBp, 4Dp conforms the accumulated dose
significantly better to the CTV (fig. 3c). While the dose-
blurring effect in CC-direction is reduced, thereby spar-
ing tissue in the ITV-region, a larger volume anteriorily
and posteriorily of the CTV receives doses between 10-
30Gy, effectively rendering 4Dp isotoxic to FBp (tab. I).

B. Fluence distributions

Fig. 5 shows fluence distributions from a number of
beams for FBp and 4Dp. While FBp has locally increased
fluence mainly at the field edges (penumbra sharpening),
4Dp typically concentrates fluence in areas with high-
est probability of CTV occupancy (the breathing phases
around exhale, see fig. 1b) as seen in the respective BEV
projection. This can be interpreted as fluence redistribu-
tion between breathing phases, where underdosage dur-
ing phases that are occupied only short in time (phases
around inhale) is compensated for by increased fluence
in regions of high CTV occupancy.

The approaches resulted in deliverable plans with 9-11
beams and ∼60-100 segments. We computed the total
delivered radiation energy Erad,rel (product of monitor
units and segment area, summed up for all segments) rel-
ative to TRACKp, which had the minimal value. While
4Dp is similarly efficient to TRACKp in terms of total
energy (Erad,rel = 1.02), both static PTV-based plans
resulted in Erad,rel = 1.06.

C. Numerical performance

To quantify the numerical overhead of the 4D-planning
method as compared to conventional static margin-based
planning, we found an increase of about 35% in calcula-
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FIG. 4: DVHs of the dose distributions shown in fig. 3: (a) target DVHs; (b) DVHs of the OARs.

objective constraints

target target right lung left lung skin/unspecified

poisson EUD rms overdosage parallel, mean rms overdosage parallel, mean rms overdosage

[Gy] >55Gy [Gy] damage [%] >20Gy* [Gy] damage [%] >20Gy [Gy]

prescription 55.0 2.0 5.0 0.05 1.0 0.10

FBp

–static 45.1 1.9 5.1 0.05 0.1 0.10

–accumulated 47.4 3.2 5.0 0.18 0.1 0.10

4Dp

–accumulated 50.2 2.0 5.0 0.05 0.1 0.10

GATINGp

–static 49.3 1.9 5.0 0.05 0.1 0.10

–accumulated 50.9 2.3 5.0 0.11 0.1 0.10

TRACKp

–accumulated 53.0 1.6 4.7 0.02 0.0 0.04

TABLE I: Prescribed and resulting isoeffects/EUDs for the different plans. For FBp and GATINGp, the values denoted
by ’static’ refer to the static dose distributions calculated on the respective average CTs as used for optimization (target:
freebreathing-PTV or gating-PTV, respectively). All other values refer to the accumulated dose distribution (target: CTV).
[*applied only to voxels with ≥2cm distance to the target]

tion time when comparing 4Dp with FBp. The main
cause for the prolonged calculation time is the initial-
ization of the beamlets with the pencil-beam algorithm,
which in case of the 4D-approach involves explicit beam-
let dose-calculations in all instance geometries and warp-
ing to the reference geometry.

IV. DISCUSSION AND CONCLUSIONS

The 4D-planning concept of optimization in ’tissue-
eye-view’ (TEV) for freebreathing lung treatment facil-
itates direct IMRT-optimization of accumulated dose-
to-moving-tissue by explicit optimization in multiple

instance geometries. The concept formulates treat-
ment planning as pdf-based probabilistic optimization
problem11–14,25,26 (and references therein), using the
patient-individual breathing-pdf to describe quasiperi-
odic respiratory uncertainties. Deformable registration
as central tool is used to warp and accumulate the
separately calculated and pdf-weighted instance doses
to a common reference geometry. In this way, the
beamlet/segment-doses are locally convolved with the lo-
cal respiratory uncertainties. IMRT-optimization is then
based on these ’blurred’ beamlet/segment-doses which
represent the expectation value of the accumulated dose-
to-moving-tissue. It is the strength of this approach that
it removes the two main paradoxes of conventional PTV-
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FIG. 5: Beam-eye-view of the fluence distributions of eight beam directions for the freebreathing PTV-plan and 4D-plan (white
contours: freebreathing PTV).

based planning that arise as a consequence of planning on
a static patient geometry: (1) The question which den-
sity grid to use for dose-calculations — this is a problem
of static PTV-based planning especially in the presence
of large geometric changes, where the dose distribution
itself dynamically changes due to movement. (2) The
problem of PTV-OAR overlaps — this leads to multi-
ple voxel associations and thus an ill-defined optimiza-
tion problem. These problems do not exist for 4D-TEV
optimization, where prescription and dose scoring can
be realized based on the non-overlapping, physiological
structures of CTV and OARs.

The presented implementation of 4D-TEV optimiza-
tion incorporates concurrent 4D-MC dose calculation in
the multiple phase CTs of a RCCT-dataset to assure ac-
curate estimation of dose-to-moving-tissue with calcula-
tion times essentially independent of the number of in-
stances N . This facilitates calculation of fully-segmented

4D-plans in clinically realistic time frames. The use
of other dose calculation methods is conceivable, for
which, however, calculation time scales with N . Address-
ing this, Zhang et al. 200814 presented an accelerated,
approximate 4D-dose-calculation scheme for 4D-inverse-
planning.
Planning assumed daily volumetric imaging and setup
to the daily mean target position for all presented
plans. Based on a challenging patient example with
large breathing excursion, we found that freebreathing
treatment with the 4D-approach performed similarly well
to gated treatment both with respect to accumulated
target- and OAR-doses. Thus it provides a less demand-
ing alternative to gating in day-to-day delivery with-
out sharing the disadvantage of a reduced duty cycle
and thereby prolonged treatment time. Idealized tar-
get tracking performed superior to all other approaches.
This finding might be specific to the example patient who



M. Söhn et al. : IMRT optimization in a deforming patient model 9

showed an unusually large breathing excursion of 2.9cm.
A future planning study with more patients should help
to identify the influence of tumor excursion, size as well
as relative position on the relative performance of the ap-
proaches. Recently, Zhang et al. 200814 reported com-
parable performance of a related 4D inverse planning ap-
proach and target tracking based on four patients.

The present study focused on incorporation of
quasiperiodic intrafractional uncertainties in terms of res-
piratory deformation. Other uncertainties, that were not
explicitly considered yet, are discussed in the following.
Generally, a major source of error in lung treatment are
patient setup errors. Several studies found significant
daily variation of the mean tumor position27 and cor-
responding internal correlates28. Concerning systematic
errors, the safest way of incorporation into planning is
a setup margin around the (moving) CTV. As this is
contrary to the original intention of 4D-TEV planning,
future development of alternative methods is desirable.
In general, it is advisable to minimize systematic er-
rors by online image-guided setup to the daily mean tar-
get position29,30. Random setup errors can be approx-
imately incorporated by combining the presented 4D-
method with isocentre-sampling methods7, or by explic-
itly optimizing in additional multiple shifted instances12.
An important issue is the robustness of the 4D-TEV ap-
proach to changes of the breathing pattern during the
course of treatment. As for all pdf-based 4D-planning
approaches, optimization is performed in the frequency
domain of motion and consequently such methods are
insensitive to changes in the breathing curve itself (i.e.
the exact spatial positions of tissue elements over time)
as long as the motion is a stationary process that is de-
scribed by the same pdf as assumed during planning.
However, potential differences in the breathing pattern
between planning and treatment expressed by a differ-
ent pdf translate to uncertainties in the accumulated

dose. Quantification of the sensitivity of the presented
4D-planning method to such uncertainties can be per-
formed in a straightforward way by variation of the in-
stance weights according to the expected uncertainties
and is subject to future research. Generally, it is desir-
able to explicitly incorporate measures of robustness into
the planning process25, which has been recently proposed
for breathing-pdf uncertainties26.
Another aspect of breathing pattern uncertainties are
changes in the motion amplitude. As these can lead to
systematic errors, image-based monitoring of tumour ex-
cursion and the use of an appropriate margin around the
CTV might be advisable. Recent studies suggest that the
extent of tumor motion itself as seen in an RCCT seems
to be stable for a majority of patients27,28,31, but more
studies in this direction are desirable with respect to re-
quirements of 4D-planning. Moreover, a combination of
4D-planning with 4D-adaptive concepts along the lines
of corresponding margin-based concepts29 could help to
identify patients who could benefit from replanning.
Registration errors of the deformable registration algo-
rithm are another source of possible systematic errors in
calculation of accumulated dose. While the algorithm
used for this study has been shown to have residuals
≤ 3mm (voxelsize used for dose calculation) for more
than 95% of all voxels in lung15, generally a careful vi-
sual evaluation of the registration quality for all phases is
advisable to prevent registration errors especially around
the tumour. As registration errors in different phases are
spatially uncorrelated, dosimetric errors decrease with
the number of instances used for dose accumulation.

To conclude, 4D-optimization with deliverable seg-
ments and realistic doses was presented. The method
generates robust fluence distributions and unsophisti-
cated plans for rapid delivery, thereby providing an al-
ternative to gating. Apart from its application to lung, it
has potential for other entities like H&N, breast or liver.
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M. Söhn et al. : IMRT optimization in a deforming patient model 10

temporal resolution”, Int. J. Radiat. Oncol. Biol. Phys.
60(3), 942–950 (2004).

10 P. J. Keall, J. V. Siebers, S. Joshi and R. Mohan, “Monte
Carlo as a four-dimensional radiotherapy treatment-
planning tool to account for respiratory motion”, Phys.
Med. Biol. 49(16), 3639–3648 (2004).

11 M. Birkner, D. Yan, M. Alber, J. Liang and F. Nüsslin,
“Adapting inverse planning to patient and organ geometri-
cal variation: algorithm and implementation”, Med. Phys.
30(10), 2822–2831 (2003).

12 D. L. McShan, M. L. Kessler, K. Vineberg and B. A.
Fraass, “Inverse plan optimization accounting for random
geometric uncertainties with a multiple instance geometry
approximation (MIGA)”, Med. Phys. 32(5), 1510–1521
(2005).

13 A. Trofimov, E. Rietzel, H.-M. Lu, B. Martin, S. Jiang,
G. T. Y. Chen and T. Bortfeld, “Temporo-spatial IMRT
optimization: concepts, implementation and initial re-
sults”, Phys. Med. Biol. 50(12), 2779–2798 (2005).

14 P. Zhang, G. D. Hugo and D. Yan, “Planning study com-
parison of real-time target tracking and four-dimensional
inverse planning for managing patient respiratory motion”,
Int. J. Radiat. Oncol. Biol. Phys. 72(4), 1221–1227 (2008).
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Abstract
Dose optimization for intensity modulated radiotherapy (IMRT) using small
field elements (beamlets) requires the computation of a large number of very
small, often only virtual fields of typically a few mm to 1 cm in size. The
primary requirements for a suitable dose computation algorithm are (1) speed
and (2) proper consideration of the penumbra of the fields which are composed
of these beamlets. Here, a finite size pencil beam (fsPB) algorithm is proposed
which was specifically designed for the purpose of beamlet-based IMRT. The
algorithm employs an analytical function for the cross-profiles of the beamlets
which is based on the assumption of self-consistency, i.e. the requirement that an
arbitrary superposition of abutting beamlets should add up to a homogeneous
field. The depth dependence is stored in tables derived from Monte Carlo
computed dose distributions. It is demonstrated that the algorithm produces
accurately the output factors and cross-profiles of typical multi-leaf-shaped
segments. Due to the accurate penumbra model, the dose distribution features
physically feasible gradients at any stage of the iterative optimization, which
eliminates the problem of large discrepancies in normal tissue dose due to
misaligned gradients between optimized and recomputed treatment plans.

1. Introduction

Dose computation for radiotherapy photon beams has always had to find the balance between
available computation power, accuracy requirements and the dosimetric paradigm. Each dose
calculation approach inevitably employs approximations that limit the range of its applicability.
In particular, new, complex treatment techniques such as 3D conformal radiotherapy or
intensity modulated radiotherapy (IMRT) require high spatial accuracy. Commonly, dose
computation methods have been developed towards broad beam applications. In this paper,

0031-9155/05/081747+20$30.00 © 2005 IOP Publishing Ltd Printed in the UK 1747
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we present an algorithm which is designed for the specific requirements of beamlet-based dose
optimization for IMRT.

One approach to IMRT optimization starts with the discretization of the radiation fields
into small elements, called beamlets. A beamlet corresponds to a complex fluence distribution:
all particles that pass through a small rectangular opening in the field in a given plane. It
becomes apparent that in the presence of collimator scatter, the fluence distribution of a
beamlet depends on the position of all collimators, usually multi-leaf collimators (MLCs)
and jaws. Consequentially, the interpretation of a beamlet as a ‘unit fluence element’ is to
some extent over-simplified, and in any case rather unwieldy for direct dose computation.
This is also true for Monte Carlo dose computation algorithms, which could in principle
be used to compute the fluence phase space for arbitrary fluence elements. However, these
methods also need to be commissioned by broad beam measurements, because small field
measurements are confounded by dosimetric problems. Thus, even Monte Carlo methods
are limited in their accuracy for calculation of beamlet dose distributions. Moreover, given
that the optimum size of a beamlet for MLC delivery is about 2 mm times the leaf width
(Bortfeld et al 2000), it would not only be very difficult and approximate to compute the dose
distribution from physical principles, but also exceedingly time consuming, even in the age
of affordable supercomputer power in the shape of PC clusters. At this resolution, an average
five field prostate plan amounts to 2500 beamlets, while head and neck treatment plans can
easily exceed 15 000 beamlets.

One of the marks of IMRT is that there can be a beam edge anywhere in the field, in
particular if the projections of organs of risks and the target overlap. Many MLC segments
are used to irradiate the target volume. As a consequence, the dose, especially in the mostly
shielded organs at risk, stems from out-of-field penumbra dose (leakage, scatter) to a large
degree, rather than primary fluence. Here, it is absolutely essential to use the correct measure
of the beam penumbra during the dose optimization to facilitate the accurate placement of dose
(or rather exposure time) gradients. Failure to do so leads to overdose of critical structures
which goes unnoticed during the optimization process (Schwarz et al 2003).

Therefore, we formulate the requirements for a dose computation algorithm for beamlet-
based IMRT as:

• it does not require accurate fluence modelling, e.g. can be commissioned from broad beam
measurements;

• it predicts the proper penumbra anywhere in the field;
• it allows order of magnitude 104 beamlet dose computations in a reasonable time.

The essential idea in the following is that the dose distribution of a beamlet can be
interpreted as the difference between two broad beams with an incremental change of, say, the
position of one leaf. Conversely, any composition of equally weighted, abutting beamlets
should approximate a broad beam dose distribution. This property of self-consistency
is central to the development in section 2. A similar line of argument was followed in
appendix B of the paper by De Gersem et al (2001). There, a self-consistent analytic cross-
profile is used to construct the approximate incremental difference between broad beam
dose distributions. In section 3, we investigate the properties of this method with respect
to the composition of broad beams from beamlet dose distributions. Results of the fitting
procedure used to define the beamlet cross-profile shape on the basis of broad beams are
presented and performance of the algorithm is tested in a water phantom. Next, the accuracy
of the method is compared to Monte Carlo in selected examples of field shapes typical
for IMRT. In section 4, the presented method is discussed in the context of IMRT dose
optimization.
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2. Methods

The common concept of pencil beam (PB) algorithms uses a pencil kernel which can be
understood as a convolution of some unit photon fluence of a monodirectional beam with the
energy spread distribution in water. The potential of convolution-based models employing
point kernels for dose calculation in radiotherapy was exploited by different investigators
(Boyer and Mok 1984, Mackie et al 1985, Mohan et al 1986, Ahnesjö et al 1987) but the
long computation time of the full 3D convolution has led to the development of group of
algorithms based on 2D convolution of pencil beam kernels (Mohan and Chui et al 1987,
Ahnesjö et al 1992). The pencil kernels are usually obtained by means of Monte Carlo
calculations (Mohan et al 1986, Mackie et al 1988), either directly as pencil kernels or as a
superposition of point kernels. Application of kernels obtained in this way is complicated
as it requires knowledge about the energy spectrum and primary fluence distribution and the
electron contamination of the modelled photon beam. In order to avoid these difficulties,
methods have been developed to derive kernels directly from broad beam measurements
by deconvolution (Chui and Mohan 1988) or differentiation of parameters like the product
of output factor and tissue-phantom ratio (Bortfeld et al 1993), scatter-to-primary ratio
(Ceberg et al 1996) or the scatter dose (Storchi and Woudstra 1996, Storchi et al 1999).

The pencil kernel may derive from a finitely sized unit fluence (as opposed to an
infinitesimally narrow ray) under consideration of the particular geometry of the multileaf
collimator used to shape the IMRT fields. This approach was studied by Bourland and Chaney
(1992) and improved by Ostapiak et al (1997). Both works assume that the radiation beam
can be geometrically divided into identical finite size pencil beams that allow to reconstruct
the dose distribution of the full beam by superposition. These finite size pencil beams are self-
consistent in the sense that they can be used to construct arbitrary field shapes, or conversely,
do not depend on the broad beam from which they were derived. Finite size pencil beam
kernels are generated in these models by Monte Carlo simulations. The following method
constructs an analytical form of a finite size pencil beam kernel (fPBK) from broad beam
dose distribution with an emphasis on self-consistency in order to compute beamlet dose
distributions. Thus, it follows the same concept as a finite size pencil beam algorithm.

The main assumption of the model is that a self-consistent analytical function, with
parameters determined by a fitting procedure from cross-profiles of broad beam dose
distributions calculated with Monte Carlo, can be used to describe the shape of the fPBK.
Depth dependence of the dose is in turn reproduced by means of a ‘family’ of depth curves
used to scale the amplitude of the profiles. These depth curves are also obtained from Monte
Carlo calculations for different field sizes. Due to self-consistency of the fPBK, the dose
distribution of a broad beam can be composed of a sum of abutting beamlets. By choosing
the size of the beamlets appropriately and small enough, arbitrary MLC field shapes can be
created.

2.1. Self-consistent cross-profile

In order to construct the analytical form of the pencil beam kernel, let p(x) be a dose cross-
profile of a semi-infinite field with field edge at x = 0 (figure 1). Assume that p(x) can be
approximated for x < 0 by a sum of exponentials:

p(x) = 1

2

n
∑

i=1

wi exp(uix) (1)
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Figure 1. Cross-profile p(x) of semi-infinite field with edge at x = 0 and pencil beam cross-profile
of width 2x0 as the difference between two semi-infinite fields shifted by 2x0.

with weight factors wi > 0,
∑n

i=1 wi = 1 and slopes ui > 0. Requiring self-consistency, the
profile for x � 0 reads

p(x) = 1 − 1

2

n
∑

i=1

wi exp(−uix) (2)

so that two abutting semi-infinite fields of this shape add up to a constant dose distribution.
We define a one-dimensional finite size pencil beam cross-profile of width 2x0 as the

difference between two semi-infinite fields shifted by 2x0 (figure 1). If the profile is centred
about x = 0, it derives from p(x + x0) − p(x − x0) as

P(x, �w, �u, x0) =











∑n
i=1 wi sinh(uix0) exp(uix) for x < −x0

1 − ∑n
i=1 wi exp(−uix0) cosh(uix) for −x0 � x � x0

∑n
i=1 wi sinh(uix0) exp(−uix) for x0 < x.

(3)

Note that with this definition, the profile is normalized to
∫ ∞

−∞
P(x, �w, �u, x0) dx = 2x0. (4)

In practice, it is often sufficient to truncate the sum in (3) after the second element, see
figure 3. Then, one exponential f (x, u2, x0) would model the primary penumbra which results
from the collimation of primary fluence (source size, shape of leaf ends) and the electron spread
at the field edge, while the other f (x, u1, x0), with a much shallower tail-off, would model
off-axis head scatter and phantom scatter distributions. We define

f (x, ui, x0) = P(x, 1, ui, x0). (5)

In two dimensions, the dose distribution F(x, y, �w, �ux, �uy, x0, y0) of a pencil beam of
width (2x0, 2y0) is defined as the product of two independent one-dimensional profiles with
equivalent weights wi

3:

F(x, y, �w, �ux, �uy, x0, y0) = w1fx(x, u1x, x0)fy(y, u1y, y0)

+ (1 − w1)fx(x, u2x, x0)fy(y, u2y, y0) (6)

where fx, fy denote components as described above in the x and y directions respectively
(parameters u1 and u2 along the x and y axes may differ slightly due to linac construction

3 The requirement of equivalent weights is convention rather than necessity.
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Figure 2. Typical pencil beam cross-profiles for widths 2x0 = 1, 2, 4 and 10 mm.

details e.g. distance between source and collimator jaws). Again, it can be shown that the
profile is normalized to

∫ ∞

−∞

∫ ∞

−∞
F(x, y, �w, �ux, �uy, x0, y0) dx dy = 4x0y0. (7)

Some examples for this function are shown in figure 2.
The parameters u1x, u1y, u2x, u2y, w1 depend on phantom depth and distance-to-source

which is a consequence of geometrical broadening and secondary photon production, i.e.
phantom scatter, which will primarily affect w1 and u1. This is taken into account in the
definition of the full dose distribution of a beamlet below.

2.2. Single beamlet dose distribution

The full dose distribution of a beamlet derives from a product of a scaling factor A(d, θ)

(dependent on the depth d and offset θ from the central beam axis) and the function
F(x, y, �w, �ux, �uy, x0, y0) (equation (6)). Let D(�r) be the dose distribution of a beamlet.
Let �r and �a originate in the source point and let �a be a unit vector in the direction of the
beamlet. �ra denotes the projection of �r onto �a. Then

D(�r) = F

(

x

ra

,
y

ra

, �w(d), �ux(d), �uy(d), x0, y0

)

· A(drad, θ) ·
(

1

ra

)2

(8)

where x, y are the projections of �r − �ra onto the unit vector of the x-axis and y-axis of the
plane perpendicular to the beamlet direction, d is the geometrical depth of the point �ra below
the patient surface, A(drad, θ) is the scaling factor for profiles as a function of the radiological
depth and off-axis distance, defined along raylines with offset θ to the central beam axis,
drad is the radiological depth of the point �ra , θ is the angle between the central axis of the
beam and the beamlet and ra is the length of �ra in units of the source-to-isocentre distance.

With this definition, the geometric broadening of the penumbra due to the divergent
beam geometry is factored into the first two variables, while a (usually much smaller) depth-
dependent broadening can be taken into account directly by the tabulated steepness parameters
u1 and u2. Effects such as off-axis beam softening or central depression are absorbed in the
angular variability of the A(d, θ) curves. Note that A(d, 0)(1/ra)

2 for large fields tends to the
central axis depth–dose curve as the value of the function F(x, y, �w, �ux, �uy, x0, y0) becomes
close to unity.
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Figure 3. Beam penumbra of a 10 × 10 cm2 6 MV field in depths of 5, 10 and 20 cm. All
profiles are scaled in the x direction and dose to map onto each other. It can be seen that the
steepness of primary and secondary penumbra can be assumed to be constant with depth and that
both components can be described well by an exponential function. The relative weight of both
components changes with depth due to phantom scatter.

The factors A(d, θ) facilitate also the introduction of longitudinal density corrections by
using the concept of radiological depth. For a given geometrical depth d, where the dose
calculation is performed, the density weighted depth along the ray line is calculated and used
to read the value of the tabulated A(d, θ) factor.

Due to the divergent geometry of the radiation beam, abutting beamlets calculated
according to (8) are self-consistent only on a spherical surface centred on the radiation
source point. Usually, the dose distribution of a broad beam is measured in a plane, but
for sufficiently small beamlets this fact can be neglected for commissioning the pencil beam
kernel.

2.3. Beam commissioning

The beam commissioning procedure for the presented algorithm determines tables of
parameters used in (8): w1(d), uix(d), uiy(d) and A(d, θ) and is a two-stage process. Starting
from Monte Carlo computations of various fields in a water phantom with a source–surface
distance of 90 cm, in a first step, the steepness parameters uix, uiy and weights w1 are
determined depending on field size and depth. These parameters are determined for a variety
of field sizes to show that they depend only very weakly on field size (otherwise the assumption
of self-consistency would not be warranted). The Monte Carlo code XVMC was used for all
simulations with a virtual source model (Fippel 1999, Fippel et al 1999, Fippel et al 2003)
that was commissioned for an Elekta Precise linear accelerator (Elekta, Crawley, UK).

Cross-profiles acquired at various depths are geometrically rescaled to isocentre distance
(see figure 3). Note that due to the self-consistency, it is possible to set the width of the
analytical cross-profile 2x0, 2y0 to the width of the master profile at isocentre distance. The
function given in (6), rewritten to account for y = 0 for x profile and vice versa, is fitted with a
least-squares Levenberg–Marquardt algorithm (Press et al 1992) to the rescaled Monte Carlo
cross-profiles. The auxiliary factor a accounts for depth-dependent changes of the profile
amplitude.
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Figure 4. Commissioned values of u1, u2 and w1 for the 6 MV and 15 MV photon beams for
10 × 10 cm2 field (broken curves are result of smoothing and interpolation).

a · F(x, 0, �w, �ux, �uy, x0, y0)

=



































w1 sinh(u1xx0) exp(u1xx)(1 − exp(−u1yy0))

+ (1 − w1) sinh(u2xx0) exp(u2xx)(1 − exp(−u2yy0)) for x < −x0

w1(1 − cosh(u1xx) exp(−u1xx0))(1 − exp(−u1yy0))

+ (1 − w1)(1 − cosh(u2xx) exp(−u2xx0))(1 − exp(−u2yy0)) for −x0 � x � x0

w1 sinh(u1xx0) exp(−u1xx)(1 − exp(−u1yy0))

+ (1 − w1) sinh(u2xx0) exp(−u2xx)(1 − exp(−u2yy0)) for x0 < x.

(9)

The values of u1x, u1y, u2x, u2y and w1 resulting from the fitting procedure, interpolated
and smoothed as shown in figure 4 are tabulated for depths from 0 to 300 mm in 2 mm
increments for field sizes 4 × 4, 10 × 10 and 20 × 20 cm2 and stored in look-up tables.

In a second step, the scaling factor A(d, θ) is computed by

A(d, θ) = D(R tan θ) · R2 cos−2 θ

F (R tan θ, 0, �w(d/ cos θ), �ux(d/ cos θ), �uy(d/ cos θ), x0, y0)
(10)
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Figure 5. Dependences of the fit parameters on the field size and source–surface distance
(parameters defined at depth of 10 cm): (a) for beam energy 6 MV, (b) for beam energy
15 MV. ◦—SSD 75 cm, •—SSD 85 cm, —SSD 90 cm, �—SSD 95 cm.

where R is the nominal source distance of the considered Monte Carlo calculated profile
D(x) along the central axis, and d is its depth. Note that (R tan θ) is a parametrization of the
off-axis position x of the profile and (d/ cos θ) is the depth of a calculated point x along the
ray. From this, a table of A(d, θ) curves can be obtained as a function of offset θ and depth d
and stored in the base data file for different field sizes.

3. Results

3.1. Commissioned profile parameters

Input data for the beam commissioning procedure are depth–dose curves and cross-profiles
computed with the Monte Carlo code XVMC (Fippel 1999) for a set of square fields (2 × 2,
4 × 4, 6 × 6, 8 × 8, 10 × 10, 15 × 15, 20 × 20 and 25 × 25 cm2) in the standard set-up of
source–surface distance (SSD) of 90 cm, source–isocentre distance (SID) of 100 cm for two
energies: 6 MV and 15 MV in the homogeneous water phantom.

Some curves of commissioned values for the profile steepness parameters u1, u2 and the
weight w1 for photon beam energies 6 MV and 15 MV (field size 10 × 10 cm2) are presented
in figure 4. The plots demonstrate that, while steepness parameters u1 and u2 remain almost
constant with depth, the weight w1 representing the ratio between secondary and primary
penumbra component increases, reflecting the increase of phantom scatter.

As the steepness parameters and weights depend only slightly on the field size and the
source–surface distance (figure 5) commissioned values of parameters were tabulated only for
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4 × 4, 10 × 10 and 20 × 20 cm2 fields and used to calculate the scaling factor curves A(d, θ)

for various fields.

3.2. Output factors

From (6), it is possible to derive an expression for the output factor of rectangular fields of
size 2x0 × 2y0 centred around the central axis. The output factor is the ratio of the dose at the
central axis of a given field relative to a reference field. For the dose at reference depth on the
central axis we obtain

OF (x0, y0) = F(0, 0, �w, �ux, �uy, x0, y0)

F (0, 0, �w, �ux, �uy, xr , yr)

= w1(1 − exp(−u1xx0))(1 − exp(−u1yy0))+

w1(1 − exp(−u1xxr))(1 − exp(−u1yyr))+
(1 − w1)(1 − exp(−u2xx0))(1 − exp(−u2yy0))

(1 − w1)(1 − exp(−u2xxr))(1 − exp(−u2yyr))
(11)

where 2xr, 2yr is the field size of the reference field. Figure 6 displays a remarkable agreement
between output factors for a set of square fields computed by Monte Carlo and calculated from
(11) using parameters obtained from fitting of a cross-profile of a 10 × 10 cm2 field at depth
10 cm. Monte Carlo computed and finite size pencil beam (fsPB) calculated output factors
are in accordance within 2% for fields from 2 × 2 cm2 to 25 × 25 cm2.
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4 × 4, 6 × 6, 8 × 8, 10 × 10, 15 × 15, 20 × 20 and 25 × 25 cm2 fields (6 MV, SSD 90 cm).

3.3. Phantom tests

3.3.1. Square fields. Tests of the accuracy of the algorithm were performed in a virtual water
phantom by comparison with Monte Carlo. Cross-profiles and depth–dose curves computed
with the finite size pencil beam algorithm were compared to corresponding Monte Carlo
calculation results for the following field sizes: 2 × 2 cm2, 4 × 4 cm2, 6 × 6 cm2, 8 ×
8 cm2, 10 × 10 cm2, 15 × 15 cm2, 20 × 20 cm2 and 25 × 25 cm2. Plots for source-
surface distance of 90 cm are presented in figures 7 and 9 for photon beam energies 6 MV
and 15 MV. The algorithm was tested additionally for different SSD distances: 75, 85 and
95 cm. Depth–dose curves for these cases are presented in figures 8 and 10 for the field sizes
2 × 2 cm2, 4 × 4 cm2, 6 × 6 cm2, 10 × 10 cm2, 15 × 15 cm2 and 20 × 20 cm2.

The accuracy of the dose computation with the proposed algorithm, in comparison to
the Monte Carlo results, was evaluated using formulae and tolerances proposed by Venselaar
et al (2001). According to this concept, the ratio of dose deviation between Monte Carlo and
finite size pencil beam computation results and local Monte Carlo calculated dose is used as
a measure of discrepancy.

δ = DPB − DMC

DMC
· 100%. (12)

An exception from this formula is recommended by the cited work and other investigators
(Van Dyk et al 1993) in the low dose regions outside the geometrical field outline. Due
to inherent uncertainties present both in the dose measurements and calculations for those
regions, it is considered to be more useful to relate the deviation to the dose at a point at the
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Figure 8. Monte Carlo (symbols) and fsPB (lines) calculated depth–dose curves for 2 × 2, 4 × 4,
6 × 6, 10 × 10 and 20 × 20 cm2 fields for 6 MV with (a) SSD 95 cm, (b) SSD 85 cm (c) SSD
75 cm.

same depth on the central axis. For the calculations performed to commission and validate
finite size pencil beam algorithm, the accuracy of Monte Carlo was 1% of the value on the
central axis (Fippel et al 1999), resulting in the equal absolute error everywhere in the field,
but increase of the relative error in low dose regions. Therefore, the fitting procedure assigns
weights to fitted points and allows larger deviations in those regions.

For simple geometries (homogeneous phantom, different SSD values, square or
rectangular fields, oblique incidence allowed), the criteria proposed in the work of Venselaar
et al (2001), based on Van Dyk et al (1993) and Fraass et al (1998) and experience with
modern treatment planning systems (Venselaar and Welleweerd 2001), are the following:

• for points on the central beam axis beyond the dmax: δ = 2%
• for points in the build-up region: δ = 10%
• for points beyond the dmax not on the central axis: δ = 3%
• for points outside the geometrical beam edges: δ = 3% when related to the dose value on

the central axis (δ = 30% when related to the local dose value).

For penumbra regions, due to large dose gradients, accuracy criteria are expressed in
millimetres as the acceptable shift of isodose lines placement, and are 2 mm for the simple
geometry described above.

The overall depth–dose curve (DDC) accuracy for SSD 90 cm, calculated as the mean
deviation of dose values for all points, is within 1% for all field sizes considered and for both
energies (figures 7 and 9). Locally the deviation exceeds 1%, mostly for larger fields like
20 × 20 or 25 × 25 cm2, reaching up to 4% in the build-up region where the statistical noise
of Monte Carlo leads to suboptimal fitting results for cross-profiles.
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Figure 9. Monte Carlo (symbols) and fsPB (lines) calculated depth–dose curves for 2 × 2, 4 × 4,
6 × 6, 10 × 10 and 20 × 20 cm2 fields and cross-profiles at 2, 10 and 20 cm for 2 × 2, 4 × 4,
6 × 6, 8 × 8, 10 × 10, 15 × 15, 20 × 20 and 25 × 25 cm2 fields (15 MV, SSD 90 cm).

The accuracy of depth–dose calculation remains within 1–2% for SSD distances within
75–95 cm for both energies. Only locally, in the build-up region and at larger depths
(>20 cm) for SSD 75 cm, deviations around 4% were observed and overall accuracy for
smallest fields at SSD 75 cm for energy 15 MV was constantly worse—in the order of 4%.

For both investigated beam energies, dose values in the plateau of cross-profiles and
outside the geometrical beam edges, calculated with finite size pencil beam and Monte Carlo
methods, agree within 2% for smallest fields and for fields greater than 15 × 15 cm2 at large
depths. Even better agreement of about 1% was observed for the remaining cases. At small
depths, the distortion of profiles by central depression is reproduced accurately (plots for depth
2 cm presented in figure 7 and 9).

In the penumbra regions the accuracy expressed as the magnitude of the shift of the 50%
isodose line reveals misalignment of around 0.5 mm for all evaluated field sizes, but reaches
up to 3.5 mm for edges of penumbra (10% and 90% isodoses), especially for large fields.

3.3.2. Irregular fields. The results of dose computation with the finite size pencil beam
algorithm were checked for some typical segment shapes obtained during IMRT treatment
planning of breast and head-and-neck cases. Three examples are shown below:

(a) an elongated, narrow and slightly off-axis segment, beam energy 6 MV (figure 11)
(b) a small segment (mean radius � 1.5 cm) at large off-axis distance (around 10 cm in both

directions), beam energy 6 MV (figure 12)
(c) a large segment of irregular shape not containing the isocentre, beam energy 15 MV

(figure 13).
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Figure 10. Monte Carlo (symbols) and fsPB (lines) calculated depth–dose curves for 2 × 2,
4 × 4, 6 × 6, 10 × 10 and 20 × 20 cm2 fields for 15 MV with (a) SSD 95 cm, (b) SSD 85 cm.
(c) SSD 75 cm.

For this test, distributions of the dose deposited in the water phantom irradiated with fields
of selected shapes were calculated with finite size pencil beam and Monte Carlo. Comparison
reveals that the dose distributions calculated with the Monte Carlo method are reproduced
with an accuracy of about 2% for cases (a) and (c) except for regions shielded only with
multileaf collimator leaves (figures 11 and 13). The algorithm was commissioned for fields
created by collimator blocks and MLC leaves and does not model properly transmission
through leaves and effects like interleaf leakage. Cross-profiles of fields (a) and (c) reveal
that the penumbra region is placed in these cases with spatial accuracy of 1 mm. For the
small off-axis segment presented as case (b) fsPB calculation results overestimate the dose,
compared to Monte Carlo, by at most 4% and penumbra misalignment is in order of 2–3 mm
(figure 12).

3.4. Clinical tests

The proposed algorithm was tested for two clinical cases: head-and-neck, using a beam of
energy 6 MV and a prostate case calculated for a beam of energy 15 MV. For both cases,
dose distributions of a single conformal beam (for the prostate case at angle 0◦ and for the
head-and-neck case at 70◦) were calculated using either the fsPB algorithm or Monte Carlo.
The results of the calculations are shown in figures 14 and 15.

Dose distributions in the selected planes were evaluated using the concept of χ -factor
(Bakai et al 2003) being a refinement of γ -evaluation method proposed by Low et al (1998).
For all clinical tests the following acceptance citeria, acknowledged as a goal for dose
calculation (ICRU 1987), were used: �d = 2 mm of misalignment and �D = 2% dose
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Figure 11. Results of dose computation for an exemplary IMRT segment (photon beam energy
6 MV): (a) segment localization and shape (jaw positions marked as X1, X2, Y1 and Y2),
(b) finite size pencil beam (left) and Monte Carlo (right) computed dose distributions at 15 cm depth,
(c) profiles at depth 15 cm for y = 120 mm and for x = 85 mm—fsPB (lines) and MC (symbols).

difference (relative to the local value of the Monte Carlo calculated dose). Especially in
the prostate case, a fundamental difference between Monte Carlo and pencil beam algorithm
can be made out in the persistent deviation along the field edges. This discrepancy occurs
in regions shielded by the MLC leaves only, where the leaf transmission is not modelled
properly and is in order of 2% of the central axis dose. For both cases, regions expanding
form the isodose line 1% outwards, where the discrepancy exceeds chosen acceptance criteria
are present, but the deviation, related to the dose on the central axis remains for those regions
within 0.5%.

The third clinical example is a nine beam head-and-neck plan performed using
simultaneous integrated boost technique with three targets planned to 50, 60 and 70 Gy with
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Figure 12. Results of dose computation for an exemplary IMRT segment (photon beam energy
6 MV): (a) segment localization and shape (jaw positions marked as X1, X2, Y1 and Y2),
(b) finite size pencil beam (left) and Monte Carlo (right) computed dose distributions at 15 cm depth,
(c) profiles at depth 15 cm for y = 55 mm and for x = 55 mm—fsPB (lines) and MC (symbols).

the constraint of 35 Gy equivalent uniform dose for the spinal cord. The presented plan,
computed on a dose grid of (3.2 mm)3, with photon beam energy of 6 MV consists of
233 segments to be delivered with an Elekta MLC. The dose distribution computed with
Monte Carlo and the proposed finite size pencil beam algorithm in an exemplary slice and
the corresponding χ -factor distribution are presented in figure 16 and reveal satisfactory
agreement, especially in the large gradient area around the spinal cord.

4. Discussion

The algorithm presented here was designed for the purposes of beamlet-based IMRT
optimization. It is sufficiently fast (approximately 4000 beamlets/min for a head and neck
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Figure 13. Results of dose computation for an exemplary IMRT segment (photon beam energy
15 MV): (a) segment localization and shape (jaw positions marked as X1, X2, Y1 and Y2),
(b) finite size pencil beam (left) and Monte Carlo (right) computed dose distributions at 15 cm
depth, (c) profiles at depth 15 cm for y = 150 mm and for x = 150 mm—fsPB (lines) and MC
(symbols).

case on a (3 mm)3 dose grid on a 2.66 GHz Intel Xeon PC) in order to pre-compute and
store the beamlet dose distributions prior to optimization. Due to its construction, the dose
gradients within modulated fields are always very close to deliverable dose gradients. As a
consequence, the intermediate dose distributions during iterative optimization never become
unrealistic, which is an important factor for fast convergence (Laub et al 2000, Jeraj et al 2002)
and also guarantees that a re-computation with a high-precision dose algorithm like Monte
Carlo does not show gross discrepancies, especially in the dose gradients around organs at
risk.

A second objective in the algorithm design was that commissioning should be possible
with broad beam measurements to avoid systematic measurement errors for small field sizes.
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Figure 14. (a) Dose distributions obtained with Monte Carlo and finite size pencil beam algorithm
(overlapped) for head-and-neck case, beam energy 6 MV, (b) corresponding χ -factor distribution
(�d = 2 mm, �D = 2% relative to the local value of the Monte Carlo calculated dose, full
line—patient contour, values >3 are not resolved).
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Figure 15. (a) Dose distributions obtained with Monte Carlo and finite size pencil beam algorithm
(overlapped) for prostate case, beam energy 15 MV, (b) Corresponding χ -factor distribution
(�d = 2 mm, �D = 2% relative to the local value of the Monte Carlo calculated dose, values >3
are not resolved).

As was shown with the computation of output factors for small fields, this objective could be
achieved without compromising accuracy for smallest fields. This is of particular importance
for MLC-based IMRT delivery.

As for any specialized dose computation algorithm, simplifying assumptions had to be
made. This is mostly the assumption of self-consistency and field size and SSD independence
of the penumbra component that originates from accelerator head and phantom scatter. The
problems with small fields and short SSD at 15 MV stem from this approximation, but seem
acceptable. For more standardized conditions, the accuracy of the fsPB algorithm is sufficient
for all practical purposes. Its obvious shortcomings are the lack of lateral density correction
and the inclusion of MLC leaf shape effects like tongue and groove and inter-leaf scatter.



1764 U Jeleń et al
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Figure 16. (a) Dose distributions obtained with finite size pencil beam algorithm (left) and Monte
Carlo (right) for a nine beam head-and-neck plan, beam energy 6 MV. (b) Corresponding χ -factor
distribution (�d = 2 mm, �D = 2% relative to the local value of the Monte Carlo calculated
dose, full line—patient contour, values >3 are not resolved).

While it is not clear how the latter can be included in this framework, the former is the subject
of current research.

The algorithm presented here has been in clinical use for IMRT planning since 2001 in
combination with the Monte Carlo code XVMC as a second stage verification computation.
The concept of pre-computation and storage of beamlet dose distributions as well as the
close proximity between optimized (with fsPB) and final dose (with Monte Carlo) is a crucial
element in accelerating IMRT routine planning.
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Abstract

Purpose: Intensity modulated radiotherapy with photons (IMRT) and protons
(IMPT) produces dose distributions that have high conformality to the PTV and
sufficient sparing of the OAR if calculated on a single static CT. For prostate pa-
tients, organ movement with related changes of the density distribution in the irra-
diated volume occurs during the treatment course. We evaluated the sensitivity of
IMPT and IMRT plans to organ movement.

Methods and Materials: IMPT and IMRT treatment plans were evaluated for 4
patients with an average of 16 CT data sets per patient. The treatment plans were
recalculated on all treatment CTs, the dose was accumulated in the reference ge-
ometry by means of a deformable registration algorithm. Accurate dose calculation
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methods were applied for both IMPT and IMRT.

Results: With IMPT unacceptably low total doses in the GTV were observed for
patients with gas in the rectum in the planning CT. To achieve similar total EUD
and EUD spread as with IMRT, two methods were crucial for IMPT - a rectal gas
water-equivalent density overwrite in the original planning CT and initial beam
weight setting to achieve a homogeneous dose distribution over the whole PTV for
each field separately. An improvement of the total EUD for prostate and rectum
wall was observed also for IMRT with the water-equivalent density overwrite of the
rectal cavities.

Conclusions: The sensitivities of IMPT and IMRT to organ movement are of
the same order if applying appropriate planning strategies. The latter is especially
crucial for IMPT.

Key words: Intensity modulated radiation therapy, Proton therapy, Organ
motion, Prostate cancer, Monte Carlo

1 Introduction

The method with the largest potential in proton therapy is IMPT [1] as it offers the largest
degree of freedom by optimizing the energy fluence of narrow proton beams. However, the
more heterogeneous the dose distributions of each field in the PTV is, the more carefull
one has to be regarding the robustness of the treatment plan [2].

In order to decide whether the rather costly proton therapy is beneficial for prostate
patients compared to modern photon irradiation techniques, several treatment planning
comparisons were performed ([3], [4], [5], [6], [7], [8], [9]). Similar dose distributions were
usually found in the high dose region, for the low and intermediate dose levels, protons
were superior.

However, proton beam ranges are also very sensitive to the material crossed, and by
uncertainties about the material the Bragg peak can be shifted or in the presence of lat-
eral heterogeneities distorted (e.g. [10], [11]). To diminish the influence of heterogeneities
caused by a rectal gas filling and to increase the volume of the rectum, proton therapy is
often performed with a rectal balloon filled with water (e.g. [12]).

Zhang et al. [7] have shown the impact of changing patient geometries for prostate treat-
ment with passive scattering proton therapy and IMRT. They compared the mean dose
values for 10 patients resulting from 8 CTs per patient and reported not worse dose
distribution changes for protons as for IMRT.

However, due to the high conformality and heterogenous dose distributions of the fields,
IMPT can be expected to be potentially more sensitive to organ movements than the
passive scattering technique. In this study we therefore tried to estimate the influence of
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organ movement on the accumulated dose distribution during the irradiation course for
IMRT and IMPT.

2 Methods and Materials

IMPT and IMRT treatment plans were evaluated for 4 patients from the William Beau-
mont Hospital (Royal Oak, USA) with an average of 16 CT data sets per patient. The
treatment plans were calculated on one CT data set and recalculated on the CTs taken
during the irradiation course (treatment CTs). As we wanted to see the influence of the
choice of the initial CT, the procedure was repeated two to three times for each patient
for the first three CT geometries with the same planning contours and prescription. Three
of the four patients had residuals of the contrast agent in the bladder and/or rectum in
the first CT. For these patients, the treatment planning was performed on the second and
third CT only.

Following the clinical IMRT routine in Tübingen, the CTV, rectum and bladder were
created as a hull of the contours from the first three CTs based on [13]. The PTV re-
sults from the expansion of the CTV by a 7 mm margin. For IMRT 9 equidistant fields
(0,40,80,120,160,200,240,280,320 degrees) and for IMPT two opposing fields from 90 and
270 degrees were applied. The same PTV and OAR prescription was used for IMRT and
IMPT. A dose grid of 3x3x3mm3 was defined. The treatment planning system for both
IMRT and IMPT was Hyperion [14]. The dose prescription was based on the EUD concept
with the Poisson cell kill model for the PTV and serial constraints for the OAR. The goal
for PTV was 78 Gy (α = 0.4), the constraints were for the bladder an EUD of 60 Gy
(k=8) and for rectum 65 Gy (k=12; entire rectum volume, representing the late effects
like rectal bleeding [15]) and 48 Gy (k=4; volume not overlapping with PTV, representing
the acute reactions). Additionally, quadratic overdosage constraints were applied for the
PTV and healthy tissue. The constraints can not be exceeded, thus the optimization al-
gorithm was trying to find the best PTV coverage within the given toxicity levels. Further
details about the optimization concept can be found in [16], [17], [18]. To estimate the
influence of gas volumes in rectum, another set of treatment plans was created with rectal
gas water-equivalent density overwrite in the original planning CT.

All CTs were matched to the bony structures around the prostate. Thus daily patient setup
corrections (shifts, rotations) to reach the position of the planning CT were simulated.
The dose was recalculated on each matched CT. The approach of correction to bony
structures is applied routinely for all IMRT prostate patients in Tübingen. With this
approach, the material changes seen by the proton beam can be expected to be smaller
than for soft tissue based patient setup schemes. The evaluation of the robustness for
target based patient setup is out of the scope of this paper and should be subject of
further investigation.

To evaluate the total dose to organs correctly, the dose distributions from all CTs were
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warped and accumulated in the reference geometry with a deformable organ registration
algorithm [19] for the prostate, bladder and the rectum wall. From the accumulated dose
distributions the accumulated EUDs were evaluated for the entire organs.

Due to the high degeneracy of the optimization problem in IMPT, many solutions fulfill
the optimization constraints. Thus, the final ”optimum” beam weights depend very much
on the initial conditions. Two methods were used to define the initial conditions. In the
first method, beams from all fields were optimized at the same time starting with a con-
stant beam weight. In the second method, two optimizations stages were introduced - in
the first stage, beams were optimized for each field separately with relaxed skin (unspec-
ified tissue within the skin contours) constraints and in the second stage all preoptimized
beams from both fields were optimized again at the same time. The second method is
thus similar to the approach of Paul Scherer Institut (Villingen, Switzerland) where the
beams are assigned with initial beam weights leading to a homogeneous spread out Bragg
peak [1], [20].

The initial beam size is σx = σy = 3 mm, the beams were placed on a raster of 4 mm x
4 mm on the spot plane and 4 mm water equivalent Bragg peak spacing in depth. The
dose was calculated with a pencil beam algorithm [21] that was also implemented in the
commercially available treatment planning system CMS XiO (St. Louis, USA). As we were
interested in effects due to changing heterogeneities, a high level beam decomposition was
chosen (121 subbeams per beam; corresponds to approximately 1.5 mm subbeam distance)
and because of the higher initial proton energies also the large angle scatter correction
was used. For these settings, we previously reported a systematic error of less than 1.5%
if compared with the Monte Carlo code VMCpro [22] for prostate cases [23]. In case gas
was found in the rectum in the original CT, an additional treatment plan was performed
with the gas cavity overwritten with water-equivalent density.

IMRT was calculated for an Elekta linear accelerator with Elekta Beam Modulator as
MLC for the nominal energy of 15 MV. The Monte Carlo algorithm XVMC [24] with
the virtual source model [25] was used for the treatment plan segment optimization. The
number of primary particle histories was set to achieve a statistical uncertainty of 2.5%
per field segment.

3 Results

Robustness of treatment plans was considered for different approaches (planning CT rec-
tal gas density with and without overwriting to water-equivalent density, different setting
of initial beam weights). The dose was recalculated on each treatment CT geometry,
warped to the first geometry with the deformable organ registration algorithm, accumu-
lated and finally the EUDs were evaluated. Concurrently, the dose was recalculated on
each treatment geometry, the EUDs were evaluated separately and the mean EUDs of
all configurations were calculated (See Table 1). As a measure of robustness we consider

4



Table 1
Accumulated EUD after recalculation in the treatment CTs for patients with largest amount

of rectal gas in the planning CT (Patient A with planning CT nr 0, patient B with CT nr 1,
patient C with CT nr 2). 2nd column, the mean EUD over all treatment CTs and its standard
deviation. ’W’ marks the rectal gas water density overwrite in the original planning CT, ’Sep’
marks the IMPT optimization method with field dependent initial spot weights.

A0 B1 C2
EUD [Gy] EUD [Gy] EUD [Gy]

accum. mean accum. mean accum. mean
Prostate α = 0.4
IMRT 78.4 78.3 ± 0.2 78.1 78.0 ± 0.3 76.5 76.6 ± 0.8
IMRT W 78.7 78.7 ± 0.1 78.1 78.0 ± 0.3 77.8 77.8 ± 0.6
IMPT 68.4 64.1 ± 11.3 52.8 51.5 ± 10.9 71.5 65.9 ± 12.4
IMPT Sep 74.4 70.4 ± 8.6 67.7 65.8 ± 7.7 73.3 67.9 ± 10.6
IMPT W 77.9 77.8 ± 0.9 77.9 77.6 ± 1.8 77.5 77.3 ± 1.2
IMPT W Sep 78.5 78.5 ± 0.1 78.2 78.1 ± 0.2 77.4 77.4 ± 1.0
Bladder
IMRT 65.1 66.6 ± 3.1 61.0 61.9 ± 3.2 59.7 61.0 ± 4.0
IMRT W 65.6 67.1 ± 3.2 61.0 61.9 ± 3.2 60.3 61.8 ± 4.2
IMPT 63.0 65.5 ± 3.2 60.2 61.6 ± 4.4 58.6 60.6 ± 4.5
IMPT Sep 63.8 66.2 ± 3.1 60.2 61.5 ± 3.3 58.1 60.2 ± 4.5
IMPT W 63.1 65.4 ± 3.4 59.9 61.4 ± 4.1 58.6 60.6 ± 4.7
IMPT W Sep 63.8 66.2 ± 3.3 60.1 61.5 ± 3.4 58.4 60.4 ± 4.6
Rectum wall late
IMRT 66.2 66.4 ± 1.0 67.0 67.8 ± 1.8 66.3 66.3 ± 1.9
IMRT W 63.5 63.6 ± 1.2 64.3 65.0 ± 1.9 65.1 65.1 ± 2.7
IMPT 57.4 58.3 ± 3.5 63.3 64.0 ± 2.6 53.1 56.3 ± 9.3
IMPT Sep 57.6 58.3 ± 2.8 63.3 64.1 ± 1.5 55.7 58.2 ± 7.3
IMPT W 65.3 66.4 ± 1.8 65.1 66.3 ± 2.7 62.1 64.4 ± 6.5
IMPT W Sep 63.7 64.6 ± 1.1 64.9 66.0 ± 1.3 62.6 64.3 ± 3.9
Rectum wall acute
IMRT 54.2 53.7 ± 1.8 54.1 55.0 ± 2.3 55.3 54.4 ± 2.6
IMRT W 51.1 50.5 ± 1.7 52.0 52.7 ± 2.3 52.6 51.8 ± 3.3
IMPT 39.7 39.9 ± 4.0 47.3 48.3 ± 3.2 37.8 39.8 ± 9.6
IMPT Sep 40.2 40.4 ± 3.6 48.2 49.3 ± 2.6 38.9 40.6 ± 8.5
IMPT W 47.5 47.9 ± 2.4 50.4 51.8 ± 3.4 45.9 47.1 ± 7.3
IMPT W Sep 46.5 46.8 ± 2.1 50.3 51.7 ± 2.4 46.1 47.1 ± 5.6

the difference between the planned EUD and the applied EUD (both accumulated and
evaluated separately) and its variability.

For IMPT the sensitivity to organ motion was strongly dependent on the method of
optimization (initial beam weights) and on the gas cavities in the rectum. Starting the
optimization from same beam weights lead to two patched fields accordingly to pub-
lished data (e.g. [20]). This method resulted in a higher spread of the EUD values in
the treatment CTs in prostate and rectum wall (Table 1). The accumulated EUD to the
prostate was up to about 25 Gy (plan B1 in Table 1) lower than the prescribed value.
More robust plans could be achieved with preoptimizing the beam weights for each field
separately, but still the difference to the prescribed value can be up to about 10 Gy (plan
B1). Best results for IMPT in terms of robustness provided a combination of the rectal
gas water-equivalent density overwrite in the original planning CT and preoptimizing the
fields separately (Figures 1, 2). Under these conditions, comparable results as with IMRT
were achieved for the EUD in the prostate and the serial constraints with high coefficients
(higher dose parts of the organs) for the bladder and the rectum wall (Table 2). Starting
the optimization from the same beam weights and using the rectal gas water-equivalent
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Table 2
Accumulated EUD for all plans with rectal gas water density overwrite in the original planning
CT for IMRT and IMPT. IMPT is with field dependent initial spot weights. ’planned’ denotes
the EUD accumulated on the three organ contours used for the hull definition on the original
plan, ’realized’ denotes the accumulated EUD on the treatment CTs from the fourth CT onward.

A0 A1 A2 B1 B2 C1 C2 D1 D2
Prostate α = 0.4 [Gy] [Gy] [Gy] [Gy] [Gy] [Gy] [Gy] [Gy] [Gy]
IMRT W planned 78.7 78.6 78.7 78.0 78.0 77.5 77.5 75.4 75.6
IMRT W realized 78.7 78.4 78.5 78.1 78.4 77.4 77.8 74.6 74.9
IMPT W Sep planned 78.7 78.7 78.6 78.1 78.1 77.7 77.6 76.0 75.9
IMPT W Sep realized 78.5 78.6 78.5 78.2 78.1 77.6 77.4 75.2 75.1
Bladder
IMRT W planned 61.3 61.4 61.4 58.2 58.1 60.2 60.4 59.0 59.0
IMRT W realized 65.6 65.3 65.6 61.0 61.0 59.9 60.3 60.6 60.6
IMPT W Sep planned 59.8 59.7 59.5 56.9 57.0 59.1 59.0 58.0 57.9
IMPT W Sep realized 63.8 63.4 63.2 60.1 60.2 58.7 58.4 59.6 59.5
Rectum wall late
IMRT W planned 64.4 64.3 64.3 63.2 63.6 66.5 66.7 61.2 61.3
IMRT W realized 63.5 63.3 63.3 64.3 65.0 64.8 65.1 65.0 65.1
IMPT W Sep planned 64.4 64.2 63.9 63.0 62.9 65.6 65.6 60.2 60.3
IMPT W Sep realized 63.7 63.6 63.2 64.9 64.5 62.8 62.6 64.2 64.1
Rectum wall acute
IMRT W planned 51.7 51.6 51.6 51.5 51.7 53.8 53.9 51.0 51.3
IMRT W realized 51.1 51.0 50.9 52.0 52.3 52.6 52.6 55.4 55.6
IMPT W Sep planned 46.9 46.7 46.4 48.8 48.9 48.9 48.8 45.7 45.7
IMPT W Sep realized 46.5 46.4 46.0 50.3 49.9 46.3 46.1 52.1 52.0

density overwrite in the original planning CT was less robust than with the separate field
preoptimizing. Although it lead to similar accumulated EUDs for the prostate and rectum
wall, the spread of the EUDs in the treatment CTs was much higher (e.g. the mean EUD
standard deviation for prostate increased from 0.1 Gy to 0.9 Gy for plan A0 and for the
rectum wall late effects from 1.3 Gy to 2.7 Gy for plan B1).

An improvement of the accumulated prostate and rectum wall EUD with rectal gas water-
equivalent density overwrite in the original planning CT was observed also for IMRT
(Table 1). The sensitivity was, however, not as large as for IMPT compared to IMRT.
The accumulated EUD for prostate is larger by up to 1.0 Gy and the decrease of EUD
(k=12) for the rectum wall between 1.2 Gy and 2.7 Gy. Bladder EUD did not change
significantly. An example of the EUD sensitivity to the different optimization methods is
presented in Figure 2. In the following, unless explicitly stated otherwise, we present only
results for the most robust approaches (i.e. rectal gas water-equivalent density overwrite
for IMRT and IMPT and separate field preoptimizing for IMPT).

The DVHs and therefore EUDs showed a systematic difference between the mean values
resulting out of averaging the DVH and EUDs without considering the deformable organ
registration and accumulated values with deformable organ registration (Table 1, Figure
3). The DVHs with deformable organ registration had less extreme doses on both sides
for both IMRT and IMPT. While for the prostate the accumulated EUD of the treatment
CTs was equal or higher than the mean EUD by up to 0.3 Gy, the systematic differences
were especially large for the OARs. For bladder the accumulated EUD was lower by 1.0
Gy to 2.9 Gy than the mean EUD. The accumulated EUD for the late effects on the
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Fig. 1. Left, the dose distributions of the original plan for patient C (planning CT number 2) for
one field (Gantry 90o) obtained with the different IMPT techniques - initial weights constant
(top), initial weights corresponding to homogeneous PTV coverage for each field without (IMPT
Sep) and with (IMPT W Sep) rectal gas water-equivalent density overwrite in the planning CT
(middle, bottom). The colored points represent the Bragg peaks and the optimized beam weight
(lowest = blue, highest = red). Right, the corresponding total plan dose distributions after
recalculation on another CT (CT number 3).

rectum wall was equal or lower by up to 1.7 Gy. For acute effects on the rectum wall,
the difference of accumuluted EUD to the mean EUD reached from 0.8 Gy to -1.6 Gy.
Thus, the mean DVH and mean EUD should be used only as a conservative estimate, for
the real dose volume histograms and EUD a deformable organ registration algorithm is
necessary.

When using different planning CT data sets, the comparison of the accumulated EUDs
shows only small differences both for IMRT and IMPT (Table 2). Thus, the choice of
planning CT is not critical neither for IMRT nor for IMPT as long as either a CT without
rectal gas cavities is chosen or the density of the cavities is overwritten with the water-
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Fig. 2. EUDs for patient C (planning CT number 2) after recalculation on the treatment CTs for
different optimization methods (’W’ marks the rectal gas water-equivalent density overwrite and
’Sep’ the setting of field dependent initial beam weights). The EUDs belonging to the contours
of the first three CTs (planning contours) are evaluated on the planning dose distribution.

Fig. 3. The DVH comparison for IMRT and IMPT for patient A (planning CT number 0). For
both methods, the most robust approaches were used, i.e. rectal gas water-equivalent density
overwrite in the original planning CT for the rectal cavities and in case of IMPT also the field
dependent initial beam weights (IMRT W, IMPT W Sep). In red, the DVHs after recalculation
on the single treatment CTs. In green and dotted, the accumulated DVH of the planning dose
distribution on the first three contours. In green and solid, the accumulated DVH on the treat-
ment CTs. In green and dashed, the mean DVH on the treatment CTs resulting from averaging
the single DVHs. .

equivalent density.

For patient D, the OAR constraints were too tight to reach the goal of 78 Gy in the PTV
because of the large movements of the organs resulting in a big overlap of the PTV and
the OAR hulls. An accumulated planning EUD to the prostate of 75.4 Gy (planning CT
nr 1) and 75.6 Gy (planning CT number 2) was reached for IMRT and 76.0 Gy and 75.9
Gy for IMPT respectively. Another effect of the big overlap is the heterogeneous dose
distribution in the PTV for the original plan. The dose heterogeneity obviously leads to
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Table 3
Accumulated EUD averaged over all plans and patients (total of 9). The lower EUD index

defines in which CTs the dose was calculated. The upper index marks contour sets which were
used for dose evaluation. ’realized’ denotes all CTs after the first three CTs. ’planned’ denotes
the original CT (i.e. the planning CT). E.g. for EUDrealized

planned the dose was not recalculated for
each CT, but the deformed organ contours were used for dose accumulation.

Prostate [Gy] Bladder [Gy] Rectum wall [Gy]
IMRT W α = 0.4 k = 8 k = 12 k = 4

EUDplanned
planned 77.6 ± 1.2 59.9 ± 1.4 63.9 ± 1.9 52.0 ± 1.0

EUDrealized
realized 77.4 ± 1.6 62.2 ± 2.5 64.4 ± 0.8 52.6 ± 1.8

EUDrealized
planned 77.4 ± 1.5 62.2 ± 2.5 64.7 ± 0.6 52.9 ± 1.7

EUDplanned
planned − EUDrealized

realized 0.2 ± 0.4 -2.3 ± 1.7 -0.4 ± 2.2 -0.6 ± 2.2

EUDplanned
planned − EUDrealized

planned 0.2 ± 0.4 -1.8 ± 1.7 -0.9 ± 1.9 -0.9 ± 2.1

EUDrealized
realized − EUDrealized

planned 0.0 ± 0.2 0.0 ± 0.2 -0.4 ± 0.4 -0.3 ± 0.2

IMPT W Sep

EUDplanned
planned 77.7 ± 1.1 58.5 ± 1.1 63.3 ± 2.0 47.4 ± 1.4

EUDrealized
realized 77.4 ± 1.4 60.8 ± 2.1 63.7 ± 0.8 48.4 ± 2.6

EUDrealized
planned 77.6 ± 1.4 60.9 ± 2.2 63.9 ± 0.7 48.5 ± 2.7

EUDplanned
planned − EUDrealized

realized 0.3 ± 0.3 -2.2 ± 1.8 -0.4 ± 2.6 -1.0 ± 3.3

EUDplanned
planned − EUDrealized

planned 0.1 ± 0.3 -2.4 ± 1.8 -0.5 ± 2.5 -1.0 ± 3.4

EUDrealized
realized − EUDrealized

planned -0.1 ± 0.1 -0.2 ± 0.1 -0.1 ± 0.3 -0.1 ± 0.1

an increase of the sensitivity to organ motions expressed by the largest degradation of
the dose in the prostate in the patient collective (Table 2) of about 0.8 Gy for patient
D for both techniques. Within our margin concept, the choice is therefore between an
increased toxicity in the OAR via relaxing the constraints and increased sensitivity to
organ motions.

With 0.8 Gy being the largest degradation, the hull+margin concept of the initial three
CTs proved to be very robust for the prostate for both IMPT and IMRT. For the OARs
the hull concept was less robust. For patient A, the prescription of 60 Gy for the bladder
hull was exceeded in the realized accumulated dose to the bladder by up to 5.6 Gy with
IMRT and 3.8 Gy with IMPT. For this patient the first bladder contour was abnormally
large reaching about 2 cm further in the cranial direction than most of the following
bladder contours. Thus a lot of volume far away from the PTV was included to the
bladder hull leading to an underestimation of the EUD on the treatment CTs if compared
to the planning EUD. The hull concept for the rectum was conservative enough to lead
to accumulated EUDs of rectum wall being only maximally by 0.1 Gy larger than the
prescribed 65 Gy to the rectum hull.

By averaging the accumulated EUD over all patients and plans, we could quantify the
plan population robustness. For the prostate, the difference between the original treatment
plan EUD and the accumulated EUD on the treatment CTs was very low both for IMRT
and IMPT - a decrease of 0.2±0.4 Gy, respectively 0.3±0.3 Gy (EUDplanned

planned−EUDrealized
realized

in Table 3).
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The difference between the original treatment plan EUD and the accumulated EUD on the
treatment CTs were biggest for the bladder with an increase of 2.3±1.7 Gy for IMRT and
2.2 ± 1.8 Gy for IMPT. The difference between the accumulated EUD on the treatment
CTs and the accumulated EUD evaluated on the original planning dose distribution with
the contours from the treatment CTs (EUDrealized

realized − EUDrealized
planned in Table 3) was very

small: 0.0 ± 0.2 Gy, respectively −0.2 ± 0.1 Gy. This indicates that the influence of the
changing overall density distribution during the course is marginal for both IMRT and
IMPT (EUDrealized

realized −EUDrealized
planned in Table 3), if compared to the variation of the bladder

contours (size, shape, position) during the irradiation course (EUDplanned
planned −EUDrealized

planned ).

Similarly, but to a lesser extent than for the bladder, the population based accumulated
EUD increases also for the rectum wall by 0.4±2.2 Gy (late effects) and 0.6±2.2 Gy (acute
effects) for IMRT and 0.4 ± 2.6 Gy and 1.0 ± 3.3 Gy, respectively, for IMPT. Again, the
organ form and position changes play a more important role than the overall CT density
changes with EUDrealized

realized − EUDrealized
planned having negligible values of −0.4 ± 0.4 Gy (late

effects) and −0.3 ± 0.2 Gy (acute effects) for IMRT and −0.1 ± 0.3 Gy and −0.1 ± 0.1
Gy respectively for IMPT.

Thus, to estimate the planning EUD reliability, recalculation of the dose on the treatment
CTs is not crucial and the evaluation on the planning CT dose distribution with the
treatment CT contours is sufficient.

The maximum dose in the OAR is often higher for IMPT than for IMRT. For the same
EUD constraint, the sharp gradients in IMPT can result in reduced high dose volumes
but with higher maximum dose. In this study, we did not try to tighten the constraints
further as the main purpose of this work was to compare the sensitivity of IMPT and
IMRT under same conditions.

4 Discussion

The robustness of IMRT and IMPT treatment plans to the inter-fractional organ changes
was evaluated for four patients with an average of 16 CT data sets per patient. The
robustness of the the treatment plans was very much dependent on the treatment planning
approaches.

The rectal gas water-equivalent density overwrite in the planning CT is especially im-
portant for the stability of the dose distribution in IMPT. With gaseous cavities in the
overlapping parts of PTV and rectum, lower maximal energies are necessary for proton
beams crossing this area to reach the distal edge of the PTV. In case of the rectum being
filled with more dense material in the following CTs, not enough dose is delivered to these
distal parts of the PTV. An additional problem is the dose distortion of beams crossing
the lateral heterogeneity interface of gas and tissue leading to a different shape of dose
distribution in case this interface disappears. In case there are gas cavities in the following
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Fig. 4. The isodose distribution from the sagittal view in the isocentric plane for a 5x5cm2

photon field (gantry 90o). Left, the original CT, right a density overwrite of rectal gas filling
with water-equivalent density. A problem arises, if the PTV overlaps with the cavity as the
optimizer compensates for the dose loss due to lateral scatter.

CTs, the Bragg peaks are shifted into the healthy tissue on the opposing side of the field
entrance and cause a dose increase here, fortunately mostly outside of OARs.

The rectal gas water-equivalent density overwrite in the planning CT helps to improve
the dose distribution also for IMRT. The reason is different than in case of IMPT. We
believe that the improvement is mainly caused by the improved penumbra in water due
to preventing the secondary electron disequilibrium at the gas/soft tissue interface. The
effect leads to less dose in the overlapping and neighboring part of the PTV and the rectal
gas cavities, forcing the optimizer to deliver more dose to the rectum region than in case
of water-equivalent density overwriting (Figure 4). Thus, to obtain better robustness of
the plan for both IMPT and IMRT, one should prefer performing the plan optimization
on a planning CT with rectal cavities artificially overwritten with water instead of the
exact original CT with gas cavities. Another possibility of diminishing the influence of
the rectal gas cavities is the real filling of rectum with water with help of a rectal balloon
(e.g. [12]). A further aspect of the use of rectal balloons is the potential reduction of the
organ movements. Thus the use of rectal balloons might lead to an increase of the plan
robustness.

The hull+margin concept of the initial three CTs lead to very robust results for the
prostate for both IMPT and IMRT. To further increase the dose to prostate without
increasing the toxicity and to increase the robustness for OARs, more sophisticated ap-
proaches like coverage probability distribution ([26]) or adaptive treatment planning (e.g.
[13], [17]) will be necessary.

The solution space is usually more highly degenerate for IMPT and the initial conditions
can thus play an important role for the final solution. These solutions can also have
different sensitivities (Table 1). An interesting problem in this context is the choice of
the cost functions as the degeneracy originates from the particular formulation of the
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cost functions. An indirect way of forcing the optimizer to deliver a rather homogeneous
dose distribution per field and thus potentially increase the robustness is tightening of the
skin constraints (not shown here). However, a too large tightening of the skin constraints
leads to a less optimal solution for the OARs and/or the PTV. It appears therefore to be
more straightforward to start from a solution with beam weights optimized for robustness
(homogeneity) directly instead of trying to optimize for robustness only indirectly via the
skin constraints. Another potential way of influencing the homogeneity of dose per field
is the use of regularisation techniques such as fluence smoothness penalty functions.

The problem of Hounsfield Unit (HU) uncertainties was not considered in this work. While
IMRT is expected to be robust against HU changes in the order of 1% to 3%, such changes
can lead to several millimeters shift of the Bragg peak in IMPT. In case the HU error is
systematic for the whole patient this can lead to a distortion of the whole dose distribution
[27]. Even with daily CTs and repositioning, setup errors will occur to some extent. We
did not consider the influence of setup errors.

5 Conclusions

The appearance of large gas cavities in the rectum in the original treatment planning CT is
the only geometrical factor significantly degrading the dose distribution in the following
CTs for IMPT. This problem can be overcome by overwriting of the rectal gas in the
original CT with water-equivalent density.

Another important factor for the sensitivity of the IMPT plan is the choice of the initial
proton beam weights. If starting from identical weights, the solution is more sensitive to
the geometrical changes with respect to the variance of dose per fraction which can affect
biological fractionation effects. In contrast, the IMPT plans become more robust if setting
the initial weights such as to obtain a homogeneous coverage of the PTV from each field
separately.

Overwriting of the rectal gas in the original CT with water-equivalent density and setting
the initial weights of proton beams to obtain a homogeneous coverage of the PTV from
each field separately, the sensitivity of IMPT to organ motions is of the same order as
with IMRT. The changes of the organ shapes and positions are more important to the
accumulated dose in prostate and OAR than the material changes.

The choice of the initial CT for treatment planning was not critical for the results neither
for IMRT nor for IMPT.

In terms of estimated probability of late rectal and bladder complications and the prostate
coverage in the realized treatment, IMPT was mostly equal or slightly better than IMRT
and it is unclear whether the difference is of clinical relevance.
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