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ABSTRACT

In this PhD thesis the segment-based approach for multiple sequence align-
ment, initially introduced by the DIALIGN program, is thorougly investigated
and substiantially improved. The segment-based approach belongs to the class
of local alignment methods and thus is very strong in finding locally conserved
motifs, whereas global methods align the input sequences globally from the be-
ginning to end without specifically looking at locally occuring conserved motifs.
Local alignments and especially segment-based methods therefore play an im-
portant role in molecular biology research, which is underscored by the fact
that the results of this PhD thesis have already been extensively used in various
biological research areas.

Initially we present a complete re-implementation of the DIALIGN approach
in chapter 3 – DIALIGN-T – which also embraces several improvements, such
as the exclusion of low-scoring sub-fragments and weight score factors yielding
a statistical superior method on local and global benchmark databases. How-
ever DIALIGN-T still uses a greedy and, therefore, very naive strategy to build
the final alignment so that in chapter 4 we re-formulate the assembling phase
as an optimization problem that is NP-complete, but for which we can proove
it to be a fixed parameter tractable (FPT) in the number of input sequences,
under reasonable assumptions. Since we are interested in approaches that are
useful in practice, we develop a plane-sweep algorithm that optimally solves
the assembling problem whereby its computational time basically grows with
the number of simultaneously occuring conflicting situations. By exploiting the
ideas of the plane-sweep algorithm, we extend it, in chapter 5, to a full al-
gorithmic framework which acts as a basis for developing further optimal or
near-optimal heuristics for assembling an alignment from a given set of input
similarities. Inspired by this framework, we improve, in chapter 6, DIALIGN-T
to its most recent version DIALIGN-TX, which incorporates substiantial im-
provements by combining greedy and progressive strategies for assembling the
alignment. In order to measure the quality of our improvements, we used the
standard benchmark databases BAliBASE and BRaliBASE II on global align-
ments and the artifically generated databases IRMBASE and DIRMBASE on
local alignments. The results show that DIALIGN-TX is currently outperform-
ing all other methods on the local benchmark databases while still providing
very good results on global alignments, i.e. it even outperforms the very popu-
lar global alignment program CLUSTAL W on the global benchmark database
BAliBASE 3.

Altogether we conclude that DIALIGN-TX is one of the strongest methods on
the important class of local alignments while still providing very good results
on global alignments and consuming in practice only a reasonable amount of



computational time. In combination with the algorithmic framework we obtain a
rich basis or future improvements to the segment-based approach for computing
general and (biological) domain-specific multiple sequence alignments.

5



ZUSAMMENFASSUNG

In dieser Dissertation wird der Segment-basierte Ansatz zur Lösung des Mul-
tiplen Sequenz Alignment Problems, der initial mit dem DIALIGN Program
eingeführt wurde, untersucht und substantiell weiterentwickelt. Der Segment-
basierte Ansatz zählt zu den lokalen Alignment Methoden, die insbesondere
bei der Suche nach lokal konservierten Motiven den globalen Methoden, die
die Eingabesequenzen ohne spezifische Berücksichtigung von lokal konservierten
Motiven global von Anfang bis Ende alignieren, überlegen sind. Lokalen Align-
ment Methoden und insbesondere der Segment-basierte Ansatz spielen aus diesem
Grund eine wichtige Rolle in der molekularbiologischen Forschung. Dies zeigt
sich unter anderem auch darin, dass die Ergebnisse dieser Arbeit bereits mehrfach
für verschiedene biologische Fragestellungen erfolgreich eingesetzt wurden.

In Kapitel 3 wird mit DIALIGN-T eine signifikant verbesserte Re-Implementation
des Segment-basierten Ansatzes vorgestellt. Im Rahmen dieser Verbesserungen
werden insbesondere niedrig bewertete und damit störende Sub-Fragmente aus-
geschlossen sowie zusätzlich über Gewichtungsfaktoren die Priorität der einzel-
nen Fragmente in der Assemblierungsphase optimaler vergeben. Jedoch wird
innerhalb DIALIGN-T nach wie vor ein naives ’greedy’ Verfahren eingesetzt,
um das finale Alignment aus der Menge der errechneten Fragmente zusammen-
zufügen, so dass wir diese Assemblierungsphase daher in Kapitel 4 als mathe-
matisches Optimierungsproblem formulieren, welches NP-vollständig ist. Wir
zeigen jedoch, dass dieses Problem, unter angemessenen Rahmenbedingungen,
’Fixed Parameter Tractable’ (FPT) in der Anzahl der Eingabesequenzen ist.
Da wir uns für in der Praxis gut anwendbare Ansätze interessieren, entwickeln
wir den sogenannten Plane-Sweep Algorithmus, der das Assemblierungsprob-
lem exakt löst und dessen Komplexität im Wesentlichen nur mit der Anzahl der
parallel auftretenden Konfliktsituationen steigt. Basierend auf der Grundidee
des Plane-Sweep Algorithmus, leiten wir anschließend ein ganzes algorithmis-
ches Frameworks in Kapitel 5 ab, welches als Grundlage zur systematischen En-
twicklung weiterer optimaler und fast-optimaler Algorithmen/Heuristiken dient.
Insbesondere wurde durch dieses Framework die Entwicklung von DIALIGN-TX
in Kapitel 6 inspiriert. DIALIGN-TX stellt momentan die neueste Version des
DIALIGN Ansatzes dar und setzt eine kombinierte Methode aus progressiven
und greedy Strategien ein. Um die Alignment-Qualität zu messen, wurden für
globale Alignments die Datenbanken BAliBASE 3 und BRAliBase II als Ref-
erenz verwendet; für lokale Alignments wurden die künstlichen Datenbanken
IRMBASE und DIRMBASE erzeugt, die aus in Zufallssequenzen implantierte
konservierten Motive bestehen. Anhand unserer Benchmark-Ergebnisse zeigen
wir, dass DIALIGN-TX allen anderen aktuell populären Methoden auf lokalen
Alignments qualitativ überlegen ist, aber auch zu sehr guten Resultaten auf



globalen Alignments führt. Insbesondere sind die Ergebnisse von DIALIGN-TX
auf der globalen Benchmarkdatenbank BAliBASE 3 signifikant besser als die
des sehr populären globalen Alignment-Programs CLUSTAL W.

Zusammenfassend schließen wir, dass DIALIGN-TX eine der stärksten Metho-
den auf der wichtigen Klasse der lokalen Alignments darstellt, dabei ebenfalls auf
globalen Alignments sehr gute Ergebnisse liefert und im praktischen Einsatz in-
nerhalb vernünftiger Zeitschranken läuft. In Kombination mit dem algorithmis-
chen Framework erhalten wir eine reichhaltige Basis für zukünftige Verbesserun-
gen des Segment-basierten Ansatzes zur Berechnung von allgemeinen und (bi-
ologisch) Domänen spezifischen Multiplen Sequenz Alignments.
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1. INTRODUCTION

In the more than fifty years ago since the DNA double-helix structure was
explored by Watson and Crick [86], molecular biology has come a long way.
With the years, the field of bioinformatics emerged to support various research
areas in molecular biology by giving computational assistance in processing
large input data sets with respect to biological questions, like ’Why are some
organisms prone to a certain disease and others not?’, and ’Is this species in an
immediate or indirect ancestral relationship to another?’.

Within this PhD thesis we will focus on one of the basic problems in bionfor-
matics: the multiple sequence alignment problem. We will especially discuss the
segment-based approach to this problem. Briefly, when computing a multiple
sequence alignment, one tries to find all the similarities that all, or just a part,
of the given input protein or DNA/RNA sequences share. By solving that prob-
lem, biologists are supported in answering basic research questions, e.g. a gene
is suspected to encode whether an organism is immune to a specific virus and
biologists compare the genes of different organisms using a multiple sequence
alignment to prove or disprove such a conjecture.

As already mentioned in [75], traditional approaches to multiple sequence align-
ment are either global or local methods. Global methods align sequences from
the beginning to the end [14, 77, 34]. Based on the Nedleman-Wunsch objec-
tive function [59], these algorithms define the score of an alignment by adding
up scores of individual residue pairs and by imposing gap penalties, they try
to find an alignment with maximum total score in the sense of this definition.
By contrast, most local methods try to find one or several conserved motifs
shared by all of the input sequences [85, 47, 17]. During the last several years, a
number of hybrid methods have been developed that combine global and local
alignment features [53, 60, 8, 25]. One of these methods is the segment-based
approach to multiple alignment [53], where alignments are composed of pairwise
local sequence similarities. Altogether, these similarities may cover the entire
input sequences – in which case a global alignment is produced – but they may
as well be restricted to local motifs if no global homology is detectable. Thus,
this approach can return global or local alignments – or a combination of both
– depending on the extent of similarity among the input sequences.

Instead of comparing single residue pairs, the segment-based approach compares
entire substrings of the input sequences to each other. The basic building blocks
for pairwise and multiple alignment are un-gapped pairwise local alignments of
each pair of the input sequences. Such local alignments are called fragment
alignments or fragments; they may have any length up to a certain maximum
length M . Thus, a fragment f corresponds to a pair of equal-length substrings
of two of the input sequences. Pairwise or multiple alignments are composed of



1. INTRODUCTION

such fragments; the algorithm constructs a suitable collection A of fragments
that is consistent in the sense that all fragments from A can be represented
simultaneously in one output multiple alignment.

Note that since multiple alignments are composed of local pairwise alignments,
conserved motifs are not required to involve all of the input sequences. Unlike
standard algorithms for local multiple alignment, the segment-based approach is
therefore able to detect homologies shared by only two of the aligned sequences.
With its capability to deal with both globally and locally related sequence sets
and its ability to detect local similarities involving only a subset of the input
sequences, the segment approach is far more flexible than standard methods
for multiple alignment. It can be applied to sequence families that are not
alignable by those standard methods; this is the main advantage of segment-
based alignment compared to more traditional alignment algorithms.

This thesis is divided into four chapters, starting with the basic background ma-
terial in chapter 2. After reviewing the basics and presenting a short overview of
the presently popular alignment algorithms, we will introduce DIALIGN-T [75]
in chapter 3 as a complete re-implementation of the segment-based approach
based on the idea of DIALIGN [53]. DIALIGN-T already incorporates several al-
gorithmic improvements that make DIALIGN-T statistically superior compared
to the previous version DIALIGN 2.2 on various benchmark databases like the
well-known BAliBASE 2.1 [78]. DIALIGN-T collects all fragments coming from
a pairwise alignment phase and then adds them in a greedy way to the final
multiple sequence alignment, i.e. all fragments are sorted in descending order
by a specific weighting function and then added one by one into the alignment
whereby fragments that do not fit into the alignment are discarded partially or
even in full.

Assembling the alignment from a given set of fragments in a greedy way is
quite a naive approach so we will investigate this sub-problem in more detail
in chapter 4, where we show that it is NP-complete but luckily also fixed-
parameter tractable in the number of sequences, under reasonable assumptions.
As we head towards approaches that are useful in practice, we will then present
a plane-sweep algorithm for optimally solving the assembling problem. The
plane-sweep algorithm is only sensitive to conflicting situations that occur in
parallel and therefore its computational complexity only grows with ’difficult’
and distantly related input sequences. Inspired by this plane-sweep algorithm,
we extend its idea to a full algorithmic framework in chapter 5, which forms a
basis for systematically deriving optimal or near-optimal heuristics to solve the
problem of assembling an alignment of a given set of input fragments while still
being practically useful.

Once we have established this algorithmic framework, we will use it in chapter
6 to derive the DIALIGN-TX [74] program, which embraces a substantially im-
proved method for assembling the final alignment from the fragments found in
the pairwise alignment phase using a combined greedy and progressive strategy.
DIALIGN-TX is based on a guide tree and to detect possible spurious sequence
similarities, it employs a vertex-cover approximation on a conflict graph. We
performed benchmarking tests on a large set of nucleic acid and protein se-
quences and conclude that for finding isolated homologous regions (i.e. the
local alignment case) DIALIGN-TX statistically (significantly) outperforms all
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1. INTRODUCTION

other popular methods while still providing very good results on global align-
ments, which is underscored by the superiority of DIALIGN-TX compared to
the very popular global aligner CLUSTAL W [40, 77] method on the global
benchmark database BAliBASE 3.

Altogether, the relevance of the segment-based approach is supported by the
extensive and successful use of the programs DIALIGN-T and DIALIGN-TX
by the molecular biology community in various research areas [38, 30, 89, 61,
68, 2, 16, 67, 65] giving a good indication that the segment-based approach with
its local character plays a relevant role in biological research. Finally, we present
in chapter 7 further ideas about how to improve the segment-based approach,
which are on the agenda for future work.
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2. BACKGROUND

The problem of finding multiple sequence alignments (MSAs) arises from the
fundamental biological motiviation of finding similarities and differences in a set
of DNA, RNA or protein sequences in order to answer questions of phylogeny
such as those concerning potential ancestral relationships or to facilitate clin-
ical research. In this chapter, we outline the necessary biological background
and explain the core problem from an algorithmic viewpoint as an optimiza-
tion problem. Furthermore, we discuss the computational complexity and the
classical algorithmic approaches of pairwise and multiple sequence alignments.
For further background beyond what is outlined in this chapter the reader may
consult the books from Gusfield [37] and Böckenhauer/Bongartz [7], upon this
chapter is also built. Since finding multiple sequence alignments is an NP-
complete problem, many heuristical algorithms and their implementations have
evolved over the last two decades so at the end of this chapter we will give a
short overview of some of the most popular current alignment programs.

2.1 Biological background

Deoxyribonucleic acid (DNA) is the basic building block for any presently
known living organism by coding the genetic instructions of the constituent
cells. Briefly, it is a recipe for the construction and functioning of each cell and
thus for the overall organism by determining all relevant parameters such as
the organism’s size, shape, metabolism and its proneness to diseases. Therefore
investigating the DNA of organisms is a fundamental issue in biological and clin-
ical research. From a chemical point of view, the DNA consists of two opposite
polymers that are comprised of the four nucleotides adenine (abbreviated by A),
cytosine (C), guanine (G) and thymine (T) attached to a phosphate/sugar back-
bone. The nucleotides adenine and guanine are fused five- and six-membered
heterocyclic compounds and belong to the so-called purines while cytosine and
thymine are six-membered ring compounds that belong to the class of pyrim-
idines [5]. The two opposite polymers are arranged as a double helix [86] and are
connected via hydrogen bonds between the attached nucleotides whereby they
only exist between adenine and thymine and between guanine and cytosine.
DNA sequences encode the information necessary for constructing proteins in
specific regions that we call genes. Between these genes the non-coding regions
are generally of unknown functionality although some are known to be involved
in the regulation of the use of genes or general replication mechanisms.

Proteins play a vital role in almost all biological processes such as the con-
strucion of cells and they are comprised of sequences of amino acids that are
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Fig. 2.1: Schematic depiction of the chemical DNA structure (courtesy of Madeleine
Price Ball).

determined by their respective genetic coding region in the DNA. Amino acids
consist of a central carbon denoted by Cα which has an amine (NH2) (except
proline) and a carboxyl (COOH) functional group attached and are distin-
guished by their individual organic substituent R (see Figure 2.2). Altogether
there are 20 different standard amino acids occurring in proteins which are all
listed in Table 2.1 together with their abbreviations and their codons that en-
code them in the DNA. Apart from the 20 standard amino acids there exist a
few very rare ”non-standard” amino acids that seldom occur in proteins, like
selenocysteine [22].

Proteins emerge by the chaining of amino acids along peptide bonds between
the carboxyl and the amine group. The sequence of characters representing the
chain of amino acids of a protein is referred to as the primary structure of a
protein. The secondary 3D-structure of a protein also plays a very crucial role
in molecular biology and bioinformatics (e.g. [28]), however, its consideration
is omitted in the discussion of the multiple sequence alignment problem within
this thesis.

The process of constructing proteins from genes as coding regions in the DNA
is comprised of two steps, transcription and translation. During the first tran-
scription step, the DNA is copied into the so-called messenger RNA (mRNA)

14
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Fig. 2.2: The general structure of an amino acid where the carboxyl group is located
on the right and the amino group on the left (courtesy of Yassine Mrabet).

by RNA polymerase, which takes place in the cell nucleus. Subsequently, the
mRNA is translated by ribosomes into the sequence of amino acids outside the
cell nucleus in the cytoplasm. In this process, three consecutive nucleotides, also
referred to as codons, always encode one amino acid. Combinatorially there are
64 possible codons that encode the twenty standard amino acids as well as the
three stop codons that indicate the end of a protein coding region, which are the
TAA, TGA and the TAG codons. The beginning of a coding region is regularly
only indicated by codons that also encode amino acids, like ATG for methionine,
which is also the predominant start codon in eukaryotes.

2.2 Problem description

DNA and protein sequences have been decoded for many organisms on a char-
acter level, i.e. the sequences and their nucleotides or amino acids are known
and represented by strings of characters. However, biologists are interested in
the investigation of functional or evolutionary homologies in a set of sequences,
which can be translated into the problem of aligning the given sequences such
that the similarities and differences can be clearly depicted. Yet, real-world
data tends to be very large, which makes it impossible to work out the align-
ments manually and thus automated algorithms are required to compute the
alignments within a reasonable time. In the following sections we formulate
the general problem of finding multiple sequence alignments as an optimisation
problem which is, unfortunately, NP-complete and thus very time-consuming
to solve. As a result, many heuristics have been implemented over the last two
decades and we will outline some of the popular ones including DIALIGN-T
and DIALIGN-TX, which are subject to more detailed discussion in chapters 3
and 6.

15



2. BACKGROUND

Name Abbrev. Letter Codons

Alanine Ala A GCT GCC GCA GCG
Arginine Arg R CGT CGC CGA CGG AGA AGG
Asparagine Asn N AAT AAC
Aspartic acid Asp D GAT GAC
Cysteine Cys C TGT TGC
Glutamine Gln Q CAA CAG
Glutamic acid Glu E GAA GAG
Glycine Gly G CGT GGC GGA GGG
Histidine His H CAT CAC
Isoleucine Ile I ATT ATC ATA
Leucine L Leu TTA TTG CTT CTC CTA CTG
Lysine K Lys AAA AAG
Methionine Met M ATG
Phenylalanine Phe F TTT TTC
Proline Pro P CCT CCC CCA CCG
Serine Ser S TCT TCC TCA TCG AGT AGC
Threonine Thr T ATC ACC ACA ACG
Tryptophan Trp W TGG
Tyrosine Tyr Y TAT TAC
Valine Val V GTT GTC GTA GTG

Tab. 2.1: Amino acids together with their abbreviations and their codons.

2.2.1 Computing pairwise alignments

Before we formally explain the problem of computing multiple sequence align-
ments, we will start with the sub-problem of computing pairwise alignments,
which is basically a problem of matching two strings that encode a DNA or
protein sequence by their alphabet; for DNA sequences, the alphabet is defined
by the nucleotides as

ΣD = {A,C,G, T}

and for protein sequences by the amino acids as

ΣP = {A, V, L, I, F, P,M, S, T, C,W, Y,N,Q,D,E,K,R,H,G}.

An alignment of two strings, then, is defined by inserting gaps in the two strings
such that equal or ’similar’ letters occur at the same position. More precisely,
the formal definition of an alignment is as follows:

Definition 2.1
Let t = t1 . . . tm and u = u1 . . . un be two strings of an alphabet Σ, i.e. t, u ∈ Σ∗

whereby the gap symbol − is not part of Σ. Let Σ′ = Σ∪{−} the gap-amended
alphabet and h : (Σ′)∗ → Σ∗ a homomorphism defined by h(a) = a for all a ∈ Σ
and h(−) = λ, whereby λ denotes the empty string.

Then a (pairwise) alignment of t and u is defined as a pair of strings (t′, u′) each
of length l ≥ max{m,n} over the alphabet Σ′ such that the following conditions
hold:

1. l = |t′| = |u′| ≥ max{|t|, |u|} (| · | denotes the length of a string),

16



2. BACKGROUND

2. h(t′) = t and h(u′) = u,

3. there is no position i at which t′ and u′ both have a gap represented by
the gap symbol −, i.e. for all 1 ≤ i ≤ l either ti 6= − or ui 6= i is true.

For example let t = GACGGATTATG and u = GATCGGAATAG be two DNA sequences.
Then a possible alignment of t and u could be

t′ = GA-CGGATTATG
u′ = GATCGGAATA-G

which has one gap in each sequence and only one mismatch at the 8th position.
In this example, the alignment seems to be ’good’ because a lot of positions con-
tain equal characters in both sequences. The quality assessment of alignments
plays a central role in finding biologically meaningful alignments, which brings
us to the definition of scoring systems that assess quality of alignments.

Definition 2.2
A scoring system s is given as a function that assigns a real-valued score to an
alignment as follows:

s : Σ′∗ × Σ′∗ → R.

Let t and u be two sequences and s a scoring system. Then an alignment (t′, u′)
of t and u is called optimum with respect to s if it maximizes the score s(t′, u′)
among all possible alignments of t and u.

Of course, the complexity of algorithms for finding optimum alignments greatly
depends on the underlying scoring system. In the next subsection we will dis-
cuss the most popular scoring systems that provide a good trade-off between
biological quality of the optimum alignments with respect to the scoring system
and the resulting algorithmic complexity.

Scoring systems and substitution matrices

Almost all popular scoring systems are based on a symmetric substitution matrix

w : Σ× Σ→ R

that is derived from the mutation probabilities and is used together with a gap
penalty g ∈ R that penalizes insertions and deletions. The scoring for two
characters a, b ∈ Σ′ is then s(a, b) = w(a, b) if a, b ∈ Σ and set to s(a, b) = g if a
or b equals the gap character −. Eventually the score for an alignment s(t′, u′)
of two sequences t and u is defined by the sum of s along all positions

s(t′, u′) :=
∑

1≤i≤|t′|=|u′|

s(t′i, u
′
i) =

∑
1≤i≤|t′|=|u′|

w(t′i, u
′
i)

We call such a scoring system simple and we will shortly see that finding an
optimum alignment with an underlying simple scoring system is quite easy using
dynamic programming approaches. Sometimes the simple scoring system is

17
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extended by using affine gap penalties that impose higher costs for the opening
of a gap compared to costs for the extension of a gap. More formally, it is
comprised of a substitution matrix w = (·, ·), an gap-open penalty go ∈ R and
a gap-extension penalty ge ∈ R and for an alignment (t′, u′) of two sequences
t, u ∈ Σ′∗ the score s(t′i, u

′
i) for any position is defined by

s(t′i, u
′
i) =


w(t′i, u

′
i) if t′i, u

′
i 6= −

go if t′i = − or u′i = − and i = 1
go if i > 1 and t′i = − and t′i−1 6= −
go if i > 1 and u′i = − and u′i−1 6= −
ge else.

In other words, a fragment of consecutive gap characters in one sequence of the
alignment is scored by go + lge whereby l is the length of this segment full of
gaps. This has the effect that opening a gap is more costly than extending an
already existing one; go and ge are mostly chosen to be negative. Such a simple
scoring system with affine gap costs is often used for locally related sequences,
which means that they are expected of having homologies only in certain local
areas and are not expected to be globally homologous.

However, in order to obtain a biologically relevant alignment, we are very much
dependent on the choice of a suitable substitution matrix. Usually, for DNA
sequences one chooses m ≥ 1 and a match is scored by m, a mismatch by −m
and the gaps are penalized by g < 0 whereby the latter varies across the dif-
ferent algorithms but usually we have g << −1 since insertions or deletions in
DNA sequences are less likely to occur compared to mutations whereby all 12
different mutations occur with equal probability. For protein sequences, the mu-
tation probabilities between the different amino acids vary due to the chemical
structure and thus a simple ’match and mismatch scoring’ as in the DNA case
would be too coarse-grained. As a result, various scoring matrices for amino
acids have been developed. For amino acid substitution there are two com-
monly used series of matrices: the PAM (Point Accepted Mutation) matrices,
that were developed in the late seventies [15] and the very popular BLOSUM
(BLOcks of amino acid SUbstitution Matrix) [39] matrices.

The PAM substitution matrix:
We will now explain how the PAM matrices are constructed. In order to do
that, we need to have a notion of an accepted mutation, which is defined to be a
mutation that is not impairing the functionality of the overall protein and thus
it can be successfully inherited. Let t and u be two protein sequences; then we
can say that t and u have a PAM-distance of 1 if t can be constructed from u by
a series of accepted point mutations (i.e. no deletions and insertions) such that
there is one accepted point mutation in every hundred amino acids on average.
We can easily extend the definition of this distance measure for distances > 1
and we observe that two protein sequences that have a PAM-distance of k do
not necessarily differ in k percent of the positions since multiple mutations may
occur at the same position. Now, a k-PAM-matrix is a substitution matrix that
is suitable for comparing two protein sequences that have a PAM-distance of k
but we will first explain how we would construct it under ideal circumstances.
We assume that we have arbitrarily many pairs of homologous protein sequences
of equal biological functionality and of PAM-distance of k for each of those pairs.
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Furthermore, we assume that we know the optimum alignment for each of these
pairs and we call the set of these pairs of aligned sequences A. Now we can
define the symmetric k-PAM-matrix PAMk as

PAMk(ai, aj) = log
(

freq(ai, aj)
freq(ai) · freq(aj)

)
, ai, aj ∈ ΣP ,

whereby 0 ≤ freq(ai, aj) ≤ 1 is the relative occurrence of an aligned column
containing ai and aj in A and 0 ≤ freq(ai) ≤ 1 is the relative occurrence of ai
in all sequences of A. Basically the PAM matrix entry for ai and aj describes
the relative probability of the occurrence of (ai, aj) as accepted mutation in an
alignment versus a random occurrence of this pair. Of course we only described
how the PAM matrix would be constructed on the basis of a given ideal set of
homologous sequence pairs of PAM-distance k, which is usually not the case. In
practice, however, we start with a set A of pairs of very similar sequences of a
common ancestor and that have a PAM-distance of one. Due to their high simi-
larity it is very easy to determine the best biological alignment for each sequence
pair, from which we can compute the PAM1 matrix and freq(·, ·), freq(·) as
above. Let F be a (20× 20)-matrix such that the entry

F (i, j) =
freq(ai, aj)
freq(ai)

describes the mutation probability ai → aj for each pair of amino acids (ai, aj)
in the set A (independently of the occurrence of ai). The kth power F k of F gives
us an approximation of the mutation probability ai → aj for each pair (ai, aj)
of amino acids in sequences of PAM-distance k which allows us to approximate
the k-PAM matrix as follows:

PAMk(i, j) = log
(
freq(ai) · F k(i, j)
freq(ai) · freq(aj)

)
= log

(
(F k(i, j)
freq(aj)

)
.

Lemma 2.1
The above definition of PAMk yields a symmetric matrix.

Proof: We will show the symmetry of PAMk by induction over k. By the
definition of F , this is obvious for k = 1. Assuming that PAMk−1 is symmetric,
we then get the following equation for an arbitrary pair (ai, aj) of amino acids:

PAMk(i, j) = log

 ∑
1≤l≤20

F k−1(ai, al) · freq(al, aj)
freq(al) · freq(aj)


= log

 ∑
1≤l≤20

F k−1(al, ai) · freq(al, aj)
freq(ai) · freq(aj)


= log

 ∑
1≤l≤20

F k−1(al, ai) · freq(aj , al)
freq(ai) · freq(aj)


= PAMk(j, i).

The second equation is due to the symmetry of PAMk−1 and the third is due
to the symmetry of freq(·, ·) which completes the proof.

19



2. BACKGROUND

Usually the PAM-distance of two given input sequences from which an align-
ment should be computed is unknown, therefore in practice, PAM-matrices with
the standard values of k = 40, 100, 250 are used.

The BLOSUM substitution matrix:
Another very popular series of substitution matrices are the BLOSUM matrices
[39], which are built from the BLOCKS-database which contains information
about homologous regions of closely related proteins that have been retrieved
from a set of multiple sequence alignments. We will shortly outline the con-
struction of the BLOSUM matrices starting with looking at gap-free intervals
in the above mentioned multiple sequence alignments that we call blocks. The
BLOCKS-database is comprised of blocks that have a certain minimum length.
A block in the BLOCKS-database having length n and that is is part of a mul-
tiple sequence alignment of k sequences s1, . . . , sk can be regarded as an n× k
matrix B(i, j). Some rows of such a block can be identical or almost identical,
however, we are now interested in those pairs of lines that do not coincide in
at least a certain percentage of positions. More formally, we regard all pairs of
matrix entries (B(i1, j), B(i2, j)), 1 ≤ j ≤ n such that the rows i1 and i2 differ
in at least x percent of positions. In order to determine the BLOSUM-x-matrix,
we compute the set P of row-pairs of all blocks in the BLOCKS-database that
differ in at least x percent positions. We then derive the relative occurrences
freq(ai) and freq(ai, aj) for each pair of amino acids (ai, aj) in this set P .
Then the BLOSUM-x-matrix is then given by

BLOSUMx(i, j) = 2 · log2

(
freq(ai, aj)

freq(ai)freq(aj)

)
, ai, aj ∈ ΣP

whereby in practice these values are rounded to the next integer. In contrary
to the PAM-matrices, which are computed from very closely related sequence
pairs, the BLOSUM-matrices are derived from evolutionarily distantly related
protein sequences (at least for high x), which is of advantage since computing
an alignment becomes less trivial for distantly related input sequences. The
BLOSUM62 matrix (see Figure 2.3) in this series turned out to be the most
valuable representative because it produces the best results in various algorith-
mic setups for multiple sequence alignments [77, 75]) and, therefore, is also used
in the DIALIGN-T and DIALIGN-TX algorithms.

Global pairwise alignments

In this subsection we will elaborate on the problem of finding an optimum
global pairwise alignment of two DNA or protein sequences with respect to the
underlying scoring scheme. Global alignments focus on aligning the sequences
completely in an optimal way whereas local alignments, which are the subject
of the next subsection, aim at finding homologous substrings of the given input
sequences. We start with the definition of the optimization problem.

Definition 2.3
Let Σ = ΣD or Σ = ΣP be an alphabet and

s : Σ′∗ × Σ′∗ → R
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Fig. 2.3: The BLOSUM62 substitution matrix for amino acids ([39]).

be a scoring system on Σ′. Then the optimization problem of two input se-
quences t, u ∈ Σ∗ is given by finding an alignment (t′, u′) ∈ Σ′∗ ×Σ′∗ such that
the score s(t′, u′) is maximized.

Initially, we will discuss an algorithm for computing optimum pairwise global
alignments in the case of a simple scoring system being comprised of a sub-
stitution matrix w and a gap penalty g < 0 based on a dynamic program-
ming approach which is a special case of the Needleman-Wunsch algorithm [59].
Thereafter, we will present a modified algorithm for the case of a simple scoring
system with affine gap costs often also referred to as the Gotoh-algorithm [31].

Hence, let t = t1 . . . tm and u = u1 . . . un be two sequences over the alphabet Σ
and s be a simple scoring system with the substitution matrix w and the gap
penalty g. Including the empty word, we have m+1 prefix strings of t and n+1
prefix strings of u, on which we iteratively compute a (m+ 1)× (n+ 1)-matrix
M containing the similarity scores of the optimum alignment for each pair of
prefixes, i.e. M(i, j) is constructed such that it contains the optimum alignment
of t1 . . . ti and u1 . . . uj . Of course, M(m,n) then contains the overall optimum
alignment of t and u. In the following we will call M the similarity matrix of t
and u. The basic idea of the dynamic programming approach is to compute the
optimum alignment of prefixes of t and u from the optimum alignment of shorter
prefixes that have been determined in a previous step of the algorithm. Initially,
we fill the first row M(i, 0), 1 ≤ i ≤ m and the first column M(0, j), 1 ≤ j ≤ n
with the trivial alignment of the prefix aligned with the respective number of
gap symbols and, consequently, we get the scores

s(M(i, 0)) = g · i

and
s(M(0, j)) = g · j.

Now we want to explain how to obtain the optimum alignment between t1 . . . tj
and u1 . . . ui to be stored in M(i, j) under the assumption that we know the
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best alignment for all shorter prefixes of t and u, i.e. all prefix pairs of t and
u with maximum length i − 1 and j or i and j − 1. Looking at a pairwise
alignment as a (2× l)-matrix we have three possibilities for how the last column
in the optimum alignment for t1 . . . tj and u1 . . . ui may look. Either the last
column is given by (ti, uj) (case 1) or (ti,−) (case 2) or (−, uj) (case 3). Since
s is a simple scoring scheme that sums up the sums scores for each column, we
conclude for the three cases as follows:

• Case 1 (match/mismatch): M(i, j) is given by M(i − 1, j − 1) amended
by the column (ti, uj) having score s(M(i− 1, j − 1)) + w(ti, uj).

• Case 2 (insertion): M(i, j) is given by M(i−1, j) amended by the column
(ti,−) having score s(M(i− 1, j)) + g.

• Case 3 (deletion): M(i, j) is given by M(i, j − 1) amended by the column
(−, uj) having score s(M(i, j − 1)) + g.

Therefore, we go through all three cases and choose the one that maximizes
the score s(M(i, j)) to determine M(i, j). If we iterate from row M(i, ·) to row
M(i+ 1, ·) and the columns from left to right we only have to store the relevant
case in M(i, j) and a pointer to its respective predecessor entry M(i− 1, j− 1),
M(i, j − 1) or M(i, j − 1). Altogether we obtain the following theorem.

Theorem 2.1
The Needleman-Wunsch algorithm described above computes an optimum global
pairwise alignment of two sequences t = t1 . . . tn and u = u1 . . . um with respect
to a simple scoring scheme s in linear running time O(nm) and space O(nm).

The simple scoring scheme penalizes each gap with a unique gap cost g whereas
it often makes more sense biologically to impose lower costs to an extension
of an already existing gap compared to the costs of opening a new gap, for
example, when comparing complementary DNA (cDNA) with genome DNA.
Let us remember the above mentioned affine gap costs that are given by a gap-
open penalty go and a gap-extension penalty ge and so a gap of length l is then
penalized by

g(l) := go + l · ge.

Having a simple scoring scheme with affine gap costs still allows us to use a
dynamic programming approach to compute an optimum alignment. The algo-
rithm we will outline in the following is also referred to as the Gotoh algorithm
[31]. Again let t = t1 . . . tm and u = u1 . . . un be the sequences over the al-
phabet Σ we want to align using a simple scoring scheme with affine gap costs
comprised of a substitution matrix w, a gap open penalty go ∈ R and a gap
extension penalty ge ∈ R. As before, we iteratively compute the similarity ma-
trix M(·, ·) that contains the best known alignment for the prefixes t1 . . . ti and
u1 . . . uj in M(i, j). We additionally introduce the matrices T (·, ·) and U(·, ·)
such that T (i, j) (respectively U(i, j)) contains the best alignment for the pre-
fixes t1 . . . ti and u1 . . . uj ending with a gap in t (respectively u). The matrices
are initialized as follows

• M(0, 0) is set to the empty alignment with score 0
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• U(0, j) is set to the empty alignment with an artificial score of −∞ for all
1 ≤ j ≤ n.

• M(i, 0) = U(i, 0) is set to the trivial alignment (i.e. i-th prefix of t aligned
against i gap symbols) with score g(i) for all 1 ≤ i ≤ m.

• T (i, 0) is set to the empty alignment with an artificial score of −∞ for all
1 ≤ i ≤ m.

• M(0, j) = T (0, j) is set to the trivial alignment (i.e. j-th prefix of u
aligned against j gap symbols) with score g(j) for all 1 ≤ j ≤ n.

Again we iterate row by row through the matrix index by the prefix lengths and
explain how to compute the optimum alignment for (i, j) inM(i, j), T (i, j), U(i, j)
according to their definition under the assumption that we already have com-
puted the optimum alignment for shorter prefixes of t and u in M,T and U , i.e.
prefix pairs of length maximum i− 1 and j or i and j − 1. First we update the
auxiliary matrices T and U beginning with T (i, j), for which we have the cases
of extending an already existing gap ending in t (Case 1) or opening a new gap
(Case 2), i.e.

• Case 1: T (i, j− 1) amended by the column (−, uj) having score s(T (i, j−
1)) + ge

• Case 2: M(i, j − 1) amended by the column (−, uj) having a score of at
least s(M(i, j − 1)) + go + ge

Depending on which case yields the higher score, we update T (i, j). Analogously,
we obtain the following two similar cases for U and store the better one in U(i, j):

• Case 1: U(i − 1, j) amended by the column (ti,−) having score s(U(i −
1, j)) + ge

• Case 2: M(i − 1, j) amended by the column (ti,−) having a score of at
least s(M(i− 1, j)) + go + ge

Having computed T (i, j) and U(i, j) we are now equipped with all prerequisites
to determine an optimum solution for prefixes of length i and j of t and u using
affine gap costs to be stored in M(i, j). According to the case of non-affine gap
costs we end up with the follwing three cases for M(i, j):

• Case 1: M(i − 1, j − 1) amended by the column (ti, uj) having score
s(M(i− 1, j − 1)) + w(ti, uj)

• Case 2: T (i, j) having a score of at least s(T (i, j))

• Case 3: U(i, j) having a score of at least s(U(i, j))

Depending which case yields the highest score, we set M(i, j) which concludes
the description of the algorithm. Again we apply the same strategy of storing
the alignments in T,U and M as in the case of non-affine gap costs and state
the following theorem:
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Theorem 2.2
The Gotoh algorithm described above computes an optimum pairwise global
alignment of two sequences t = t1 . . . tn and u = u1 . . . um with respect to a
simple scoring scheme s with affine gap costs in linear running time O(nm) and
space O(nm).

Finally it is important to know that the quadratic space requirement O(nm)
in both algorithms presented in this subsection can be reduced to linear space
using the divide and conquer strategy of the Hirschberg algorithm [41].

Local pairwise alignments

In contrast to a global pairwise alignment, a local alignment of two input se-
quences t and u is a global alignment of appropriate substrings of t and u.
Finding optimum local pairwise alignments becomes biologically relevant when
one is interested in homologous regions of two input sequences that are highly
divergent outside these regions. More precisely, the problem is defined as fol-
lows:

Definition 2.4
Let t and u be two sequences over an alphabet Σ (Σ = ΣP or Σ = ΣD) and let
s be a simple scoring scheme with the substitution matrix w and gap penalty
g < 0. Then an optimum local alignment of t and u is given by an optimum
pairwise alignment (t′l, u

′
l) of two substrings tl and ul of t and u such that its

score s(t′l, u
′
l) is maximized over all such substrings of t and u.

Similar to the case of global pairwise alignments, we apply a dynamic program-
ming approach , which is also called the Smith-Waterman algorithm [71] and it
is pretty much similar to the Needleman-Wunsch algorithm. We store the opti-
mum alignment of a suffix pair for the prefixes ti, . . . , tj and u1, . . . , uj of t and
u in the similarity matrix M under M(i, j). Since we are interested in optimum
alignment of the best substrings of t and u, we initially set M(i, 0) = 0 and
M(0, j) = 0 for all 1 ≤ i ≤ n and 1 ≤ j ≤ m. We now explain how to compute
M(i, j) under the assumption that we have computed the entries of M for all
shorter prefixes of t and u, i.e. all prefix pairs of t and u with maximum length
i and j − 1 or i − 1 and j. Contrary to the Needleman-Wunsch algorithm, we
have now to deal with four instead of three cases in order to determine M(i, j):

• Case 1: M(i, j) is set to the the empty suffix pair and thus has score 0.

• Case 2: M(i, j) is given by M(i−1, j−1) amended by the column (ti, uj)
having score s(M(i− 1, j − 1)) + w(ti, uj).

• Case 3: M(i, j) is given by M(i − 1, j) amended by the column (ti,−)
having score s(M(i− 1, j)) + g.

• Case 4: M(i, j) is given by M(i, j − 1) amended by the column (−, uj)
having score s(M(i, j − 1)) + g.
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Again we set M(i, j) to the case that maximizes the score. In contrast to
the Needleman-Wunsch algorithm for global pairwise alignments, the optimum
local alignment is not necessarily stored in M(n,m) since M(n,m) contains the
optimum global alignment for the best suffix pair of t and u. The optimum local
alignment can, however, be found in the overall matrix M at the position with
maximum score. Applying the same strategy for storing the alignments in M
as in the Needleman-Wunsch algorithm we obtain the following theorem:

Theorem 2.3
The Smith-Waterman algorithm described above computes an optimum local
pairwise alignment of two sequences t = t1 . . . tn and u = u1 . . . um with respect
to a simple scoring scheme s in linear running time O(nm) and space O(nm).

Also, in this case, the quadratic space requirement O(nm) can be reduced
to a linear space consumption using the divide and conquer strategy of the
Hirschberg algorithm [41].

Heuristics for database searches

Although the algorithms presented in the previous subsection provide the exact
optimum pairwise alignments in polynomial time, they are often not satisfactory
for searches in large DNA or protein databases since they require too much com-
putational time. As a result, often faster but heuristical algorithms that do not
guarantee an optimum solution but a satisfying approximation thereof within
reasonable computing time are used in practice. Among the various heuristics,
the most popular ones are the FASTA [62] and the BLAST [4] methods. Both
methods are based on finding very short substrings of the query sequence q and
all database sequences d ∈ D of exact or very high scoring similarity and subse-
quently try to assemble them to longer alignments by taking only the candidates
of high statistical significance into account, whereby the statistical significance
is assessed by the probability that such an alignment may occur at random.

2.2.2 The general multiple sequence alignment problem

After having elaborated the computation of pairwise sequence alignments, we
now discuss the problem of optimally aligning a number of input sequences
t1, . . . , tk over an alphabet Σ according to a scoring scheme suitable for assessing
the quality of multiple sequence alignments.

Definition 2.5
Let t1 = t11 . . . t1m1 , . . . , tk = tk1 . . . tkmk

be k sequences over an alphabet Σ
(Σ=ΣD or Σ=ΣP ), i.e. ti ∈ Σ∗, 1 ≤ i ≤ k whereby the gap symbol − is not
part of Σ. Let Σ′ = Σ ∪ {−} be the gap-amended alphabet and h : (Σ′)∗ → Σ∗

a homomorphism defined by h(a) = a for all a ∈ Σ and h(−) = λ, whereby λ
denotes the empty string.

Then a multiple sequence alignment of t1, . . . , tk is defined as a tuple of strings
(t′1, . . . , t

′
k) of length l ≥ max{mi|1 ≤ i ≤ k} over the alphabet Σ′ such that all

of the following conditions hold:
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1. l := |t′1| = |t′2| = . . . = |t′k|,

2. h(t′i) = ti for all 1 ≤ i ≤ k,

3. there is no position 1 ≤ j ≤ l at which all t′i have a gap represented by
the gap symbol −, i.e. for all 1 ≤ j ≤ l there exists a 1 ≤ i ≤ k where
t′ij 6= −.

The length l = |t′i| is also called the length of the multiple sequence alignment
(t1, . . . , tk)

In the following we will focus on a simple scoring scheme for assessing the
biological relevance of a multiple sequence, which is a straightforward extension
of the simple scoring scheme for pairwise alignments by summing up the pairwise
alignment scores.

Definition 2.6
A general scoring scheme s for multiple sequence alignments over an alphabet
Σ is given by a function

s : (Σ′∗)∗ → R.

A sum of pair scoring scheme, or shortly SP-scoring scheme, for multiple se-
quence alignments over an alphabet Σ is induced by a symmetric substitution
matrix

w(·, ·) : Σ′ × Σ′ → R

over the gap amended alphabet Σ′ = Σ ∪ {−} as follows: the SP-scoring s on
multiple sequence alignments of k sequences is given by the function s : (Σ′∗)k →
R whereby

s(t1, . . . , tk) =
∑

1≤i<j≤k

w(ti, tj).

Having an SP-scoring s for multiple sequence alignments over an alphabet Σ, we
can now define the problem of finding an optimum multiple sequence alignment.

Definition 2.7
Let t1 = t11 . . . t1m1 , . . . , tk = tk1 . . . tkmk

be k sequences over an alphabet Σ and
let s be a scoring scheme for multiple sequence alignments. Then a multiple se-
quence alignment (t′1, . . . , t

′
k) is called optimum with respect to s if s(t′1, . . . , t

′
k) is

maximized on the set of all possible multiple sequence alignments of (t1, . . . , tk).
We define the associated decision problem SP-MS-Align as follows:
Input: The input is given by an integer k > 0 and a set of sequences T =
(t1, . . . , tk) over an alphabet Σ together with an SP-scoring scheme s over Σ
and a threshold value M .
Output: YES, if there is a multiple sequence alignment of T with an s-score
equal or greater than M . Otherwise the output is NO.

In contrast to finding optimum pairwise alignments, the problem of finding an
optimum multiple sequence alignment is far more difficult, as it can be shown
[84] to be NP-complete even in the case of a simple underlying SP-scoring.
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s 0 1 a b −
0 −2 −2 −1 −2 −1
1 −2 −2 −2 −1 −1
a −1 −2 0 −k −1
b −2 −1 −k 0 −1
− −1 −1 −1 −1 0

Tab. 2.2: SP-scoring scheme for the construction in the proof of theorem 2.4

Theorem 2.4
The decision problem SP-MS-Align is NP-complete.

Proof [84, 7]: Initially we look at the Dec(0,1)-Shortest-Superseq (Dec(0,1)
stands for decimals 0 and 1) problem which is given by the question of whether
a given set S = (s1, . . . , sk) of strings over the alphabet {0, 1} have a common
supersequence of length |t| ≤ N , whereby N is a threshold as part of the input.
We remember that a supersequence of S = (s1, . . . , sk) is a string r such that for
all 1 ≤ i ≤ k si can be obtained from r by deleting characters. Middendorf [50]
has already shown that Dec(0,1)-Shortest-Superseq is NP-complete so we are
now going to give a polynomial time reduction of Dec(0,1)-Shortest-Superseq to
SP-MS-Align in order to prove the theorem.

Therefore, let S = (s1, . . . , sk) be a set of strings over the alphabet {0, 1} and N
be the threshold value of the given Dec(0,1)-Shortest-Superseq instance. We now
construct N + 1 SP-MS-Align instances by using the same sequences amended
by two sequences using the new symbols A and B such that the alphabet for the
multiple sequence alignment problem is given by Σ = {0, 1, a, b}. Furthermore,
we will now define the SP-scoring s and the threshold M of the SP-MS-Align
instance such that every solution of the multiple sequence alignment with a score
≥M contains no column with 0 and 1. Obviously, such a solution would yield a
supersequence for S so that we then only have to show that it has a maximum
length of N . Since we do not know how many 0- and 1-columns we are going to
end up with, we have to construct N + 1 instances of the SP-MS-Align problem
as follows:

• For all i, j ∈ N with i+ j = N , we define Xi,j = S ∪ {ai, bj}

• We set the threshold value M := −((k− 1) · ‖S‖+ (2k+ 1) ·N), whereby
‖S‖ =

∑
1≤i≤k |si| is defined as the total length of all strings in S.

• Let the SP-scoring scheme s be defined as in Table 2.2.

It is now sufficient to show that S has a common supersequence r of length
≤ N if and only if one of the Xi,j admits a multiple sequence alignment with
SP-score ≥M with respect to s.

For the first implication, we assume that we have for oneXi,j a multiple sequence
alignment A = (s′1, . . . , s

′
k, α, β) with score s(A) ≤ M , whereby α denotes the

a-row and β the b-row. We define A′ to be the restriction of A to the first k
rows of s′1, . . . , s

′
k and will now prove that the score of A′ is always (k−1) · ‖S‖,
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regardless of A. Let us look at the single columns of A′ where we observe that
a column with l gap symbols has a scoring of

−(l · (k − l) + 2 · (k − l)(k − l − 1)
2

) = −(k − 1) · (k − l).

If x denotes the number of columns in A′ and y the number of gap symbols in
A′ we get ‖S‖ = k · x − y. Furthermore, let lp denote the number of gaps in
column p of A′ for 1 ≤ p ≤ x; then we obtain for the scoring of A′

s(A′) = −
x∑
p=1

((k − 1) · (k − lp)) = −(k − 1)
x∑
p=1

(k − lp)

= −(k − 1) · (k · x− y) = −(k − 1) · ‖S‖.

In the next step we are going to prove that Xi,j admits an alignment of SP-score
≥ M only if such an alignment has length ≤ N and it has no column where a
and 1 or b and 0 occur in parallel.

In the case when x ≥ N , the comparison of the rows α and β reduces the score
by at least N if there is no column in which a and b appear simultaneously.
Every column in which a and b both occur reduces this score further by at least
k. In the other case where we have x < N , there are overlaps of a and b symbols
in the rows α and β and the SP-score is therefore maximum −(N + (N −x) ·k).

Now we determine the SP-score of the comparisons of α and β with s′1, . . . , s
′
k.

Let x again be the length of the alignment A and z the number of pairs of gap
symbols in this comparison which then has a score of at most −2k ·x+ z. Since
α contains x− i and β contains x− j gap symbols, we conclude, together with
the fact that i+ j = N , that z ≤ k · (x−N). Hence the comparison of α and β
with s′1, . . . , s

′
k contributes an SP-score of at most

−2kx+ k · (x−N) = −k · (x+N).

Of course, the columns in which a occurs together with 1, or b occurs together
with 0, reduce the SP-score further. Altogether we conclude for the overall score
for the alignment that

s(A) ≤ −(k − 1) · ‖S‖ −max{N,N + k(N − x)} − k(x+N). (2.1)

The right side of inequality 2.1 is maximized if x ≤ N . If there is no column in
which a and 1 or b and 0 occur in parallel, the right side is exactly M , which
we have defined to be

M = −((k − 1) · ‖S‖+ (2k + 1) ·N).

Thus, if there is an alignment of Xi,j with SP-score ≥ M , then it must have
length ≤ N and there is no column that contains a and 1 or b and 0. From the
latter we immediatly see that there is also no column where 0 and 1 occur in
parallel and thus the common supersequence r = r1 . . . rN of s1, . . . , sk of length
N can be as follows: For each 1 ≤ l ≤ N we set rl = 0 if αl = a and rl = 1 if
βl = b.
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Now it remains to prove that if we are given a common supersequence r of
s1, . . . , sk of length N we find an Xi,j that admits a multiple sequence align-
ment of score ≥ M . Let i be the number of 0-symbols and j be the number of
1-symbols in r. It is sufficient to show that there exists a multiple sequence align-
ment of Xi,j with an SP-score of at least M . Since r is a supersequence, there
is an alignment between r and each si without mismatches for all 1 ≤ i ≤ k. To
construct a multiple sequence alignment of Xi,j , we take all these mismatch-free
alignments and align the A symbols with the 0-columns and the B-symbols with
the 1-columns. Analogous to the calculations for inequality 2.1, we find that
this alignment has score M , which finishes the proof of the theorem.

Recalling the Needleman-Wunsch algorithm described in subsection 2.2.1 and its
dynamic programming approach, we are now going to extend it for the compu-
tation of optimum multiple sequence alignments with respect to an SP-scoring.
Therefore, let T = (t1, . . . , tk) be a set of k > 0 input sequences over an alphabet
Σ and s an associated SP-scoring scheme. Let n be the maximum length of all
sequences in T . Because we want to extend the two-dimensional dynamic pro-
gramming approach to k dimensions , we construct a k-dimensional similarity
matrix M(·, . . . , ·). For any 1 ≤ ij ≤ |tj | with 1 ≤ j ≤ k we store the optimum
alignment for the prefixes t11 . . . t1i1 , . . . , tk1 . . . tkik in M(i1, . . . , ik), similar to
the two-dimensional problem, and of course M has O(nk) entries. Additionally,
we fix a lexicographical ordering on the k-dimensional index of M induced by
the sequence number in first order and the prefix length in second order. The
traversal order for computing M is then along this lexicographical ordering. In
the algorithm we initially set M(0, . . . , 0) to the empty alignment with score 0
and we set M(0, . . . , ij , . . . , 0) for all 1 ≤ j ≤ k and all 1 ≤ ij ≤ |tj | to the
trivial alignment of the ij-th prefix of tj aligned with ij number of gap symbols
in every other sequence 6= tj , which has a score of

s(M(0, . . . , ij , . . . , 0)) = ij ·
k(k − 1)

2
w(−,−) + (k − 1)

∑
1≤l≤ij

w(tjl,−).

Let 0 ≤ ij ≤ |tj | for 1 ≤ j ≤ k and assume we already know the optimum
alignment for all prefixes

t11 . . . t1(i1−d1), . . . , tk1 . . . tk(ik−dk)

with (d1, . . . , dk) ∈ {0, 1}k\{(0, . . . , 0)} in M(i1 − d1, . . . , ik − dk)) so that
we again have to show how we compute the optimum alignment for the pre-
fixes t11 . . . t1i1 , . . . , t1k . . . tkik in M(i1, . . . , ik) therefrom. Since we have a k-
dimensional similarity matrix M , we have to consider 2k − 1 cases which are
naturally enumerated by all tuples (d1, . . . , dk) ∈ {0, 1}k\{(0, . . . , 0)}. For
each case (d1, . . . , dk), the candidate alignment for M(i1, . . . , ik) consists of
M(i1 − d1, . . . , ik − dk) amended by a column c = (c1, . . . , ck) ∈ Σ′k that has
for each sequence tj , 1 ≤ j ≤ k a gap symbol if dj = 0 and tjij if dj = 1. For
each of these cases the SP-score is given by

M(i1 − d1, . . . , ik − dk) +
∑

1≤a<b≤k

w(ca, cb).

After having computed all these 2k−1 cases, we choose the one with the highest
score and store it in M(i1, . . . , ik) and finally end up with the optimum align-
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ment in M(|t1|, . . . , |tk|). Again similar to the pairwise case, we do not want to
waste space and therefore actually only store the winning case in M(i1, . . . , ik)
together with a pointer to the predecessor entry M(i1 − d1, . . . , ik − dk).

Theorem 2.5
Let k > 0 and t1, . . . , tk be k sequences over the alphabet Σ together with an
SP-scoring s. Then the above described extension of the Needleman-Wunsch
algorithm computes an optimum multiple sequence alignment in time O(2knk)
whereby n denotes the length of the longest sequence.

Due to its exponential time bound, the dynamic programming approach for find-
ing optimum multiple sequence alignments is only suitable for input instances
comprised of very few and very short sequences thus significantly restricting its
usefulness in practice. As a result, many approximative heuristics have emerged
and we will give an overview of the presently most popular ones in section 2.3.
However, before that, we will have a closer look at the segment-based approach,
which is the central topic of this thesis.

2.2.3 The segment-based approach

As already described in [75], traditional approaches to multiple sequence align-
ment are either global or local methods. Global methods align sequences from
the beginning to the end [14, 77, 34]. Based on the Needleman-Wunsch objec-
tive function [59], these algorithms define the score of an alignment by adding
up scores of individual residue pairs and by imposing gap penalties; they try to
find an alignment with maximum total score in the sense of this definition. By
contrast, most local methods try to find one or several conserved motifs shared
by all of the input sequences [85, 47, 17].

During the last several years, a number of hybrid methods have been developed
that combine global and local alignment features [53, 60, 8, 25]. One of these
methods is the segment-based approach to multiple alignment in the DIALIGN
family [53, 75, 74] where alignments are composed of pairwise local sequence
similarities. Altogether, these similarities may cover all input sequences – in
which case a global alignment is produced – but they may also be restricted to
local motifs, occurring only in some of the input sequences, if no global homology
is detectable. Thus, this approach can return global or local alignments – or a
combination of both – depending on the extent of similarity among the input
sequences.

However, since multiple alignments are composed of local pairwise alignments,
conserved motifs are not required to involve all of the input sequences. Un-
like standard algorithms for local multiple alignment that only detect conserved
motifs shared by all input sequences, the segment-based approach is therefore
additionally able to detect homologies shared by only two of the aligned se-
quences. With its capability to deal with both globally and locally related
sequence sets and with its ability to detect local similarities involving only a
subset of the input sequences, the segment approach is far more flexible than
standard methods for multiple alignment. It can be applied to sequence families
that are not alignable by those standard methods; this is the main advantage of
segment-based alignment compared to more traditional alignment algorithms.
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Both local and global approaches are useful for different classes of inputs coming
from various biological domains and the segment-based methods like the DI-
ALIGN family turned out to perform especially well on local alignments while
still being a well-performing alternative when seeking global alignments. We
will elaborate on this further in chapters 3 and 6.

We will now explain the idea of the segment-based approach in more detail. As
already mentioned, instead of comparing single residue pairs, the segment-based
approach compares entire substrings of the input sequences to each other. The
basic building blocks for pairwise and multiple alignment are un-gapped pairwise
local alignments involving two of the sequences under consideration. Such local
alignments are called fragment alignments or fragments; they may have any
length up to a certain maximum length M . Thus, a fragment f corresponds to
a pair of equal-length substrings of two of the input sequences, or more precisely:

Definition 2.8
Let t1, . . . , tk ∈ Σ∗ be k sequences over an alphabet Σ. A segment of sequence
ti is a triple (ti, pi, li) ∈ Σl with pi, li > 0 and 1 ≤ pi + l ≤ |ti| and naturally
associated with

(ti, pi, li) = tipi
. . . ti(pi+l−1).

A fragment f between two sequences ti and tj is then a gap-free alignment
of two segments (ti, pi, l) and (tj , pj , l) of equal length l and we denote it by
f = (ti, pi, tj , pj , l). Let s be an SP-scoring scheme over Σ; then the score of a
fragment is naturally given by

s(f) =
∑

0≤r<l

s(ti(pi+r), tj(pj+r)).

In the segment-based approach, pairwise or multiple alignments are composed
of such fragments and algorithms following this approach construct a suitable
collection A of fragments that is consistent in the sense that all fragments from
A can be represented simultaneously in one output multiple alignment.

2.3 Common multiple sequence alignment approaches

As already mentioned, global alignment approaches try to align the input se-
quences from beginning to the end whereas local methods are focused on finding
locally conserved motifs that share only a part or even all input sequences. In
the following subsection we will give a short overview of the currently most
popular alignment programs for the two classes of global and local alignment
approaches. In the chapters 3 and 6 especially, we will elaborate in more detail
on their qualitative performance on various benchmarks of locally and globally
related input sequences.

2.3.1 Global alignment strategies

CLUSTAL W

CLUSTAL W is a very widely used alignment program for computing predom-
inantly global alignments [40, 77] and it implements a progressive approach
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introduced in the 1980s for the classical multiple sequence alignment problem
in [26].

CLUSTAL W basically consists of the three following steps. Initially, CLUSTAL W
computes a distance matrix that contains a numerical score indicating the di-
vergence for each pair of input sequences. Therefore, an approximative pairwise
alignment is computed for each pair of input sequences based on k-tuple matches
together with a fixed penalty for every gap. Typically, k = 1, 2 for protein and
k = 2, 3, 4 for nucleotide sequences. Additionally, CLUSTAL W offers alter-
natively the option to use full dynamic programming for computing optimum
pairwise alignments in this step using a simple scoring scheme with affine gap
costs.

After having calculated the distance matrix, CLUSTAL W builds a guide tree
from all input sequences using the neighbour-joining method [69]. This guide
tree assumes a phylogenetic order of the input sequences based on the scores in
the previously computed distance matrix.

The final stage progressively aligns larger and larger groups of sequences along
the guide tree. Starting at the leaves, it aligns two groups of alignments
identified by the child nodes of each parent node in a bottom-up manner.
Thus, at each stage two sequences or sub-alignments are aligned using a full
dynamic programming algorithm whereby the score between one position in
one alignment/sequence and another is determined by the average of all SP-
scores from the underlying scoring scheme. In the process of aligning two sub-
alignments/sequences gaps are penalized by affine gap costs and gaps that have
been previously introduced in one sub-alignment remain fixed.

T-COFFEE

T-COFFEE (Tree-based Consistency Objective Function For alignmEnt Evalu-
ation) is quite similar to CLUSTAL W. However it incorporates some substantial
improvements [60]. Similar to CLUSTAL W, it initially determines a distance
matrix in order to obtain a divergence measurement for each pair of sequences.
The major improvement comes with the computation of a library of alignment
information using all pairwise alignments between each pair of sequences by
using local and global alignment algorithms. This library also takes transitive
information into account, i.e. the similarity scoring of segment s1 in sequence
t1 and s2 in sequence t2 is also influenced by the similarity of segments s3 in
sequence t3 with s1 and s2.

After having computed the library, the guide tree is determined using the
neighbour-joining method and finally the alignment is computed along this guide
tree making extensively use of the library. In general, T-COFFEE thus provides
qualitatively higher output alignments compared to CLUSTAL W.

A recent extension of T-COFFEE is M-COFFEE [81] which is a meta-method
of assembling multiple sequence alignments combining the output of several
individual methods including those outlined in this subsection.
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MUSCLE

The approach implemented in the alignment program MUSCLE (MUltiple Se-
quence Comparison by Log-Expectation) [25] is comprised of three stages. Sim-
ilar to CLUSTAL W, a distance matrix is computed whereby a k-mer distance
is used. A k-mer is a contiguous subsequence of length k. Related sequences
tend to have more k-mers in common than expected by chance and thus the k-
mer distance is derived from the fraction of k-mers in common in a compressed
alphabet. Upon this distance matrix a guide tree is constructed using the UP-
GMA (Unweighted Pair Group Method with Arithmetic Mean) method [72]. A
progressive alignment is constructed by following the branching order of this
tree.

The second stage improves the progressive alignment by using the output of
the previous stage to compute the Kimura distance [45] between each pair of
sequences; the computation of the Kimura distance requires an underlying align-
ment. By the use of the Kimura distance, a finer distance matrix than the one
of the previous step is computed which is then used to compute an improved
multiple sequence alignment in subsequent progressive steps.

The final iterative refinement stage deletes an edge from the tree of stage 2
and performs a progressive alignment for the two sub-trees whereby the sub-
trees are arranged using a log-expectation scoring. Finally, the alignments of
the two sub-trees are aligned to one final alignment. If the resulting alignment
scores better (w.r.t. to an SP-scoring) it is kept as the currently best known,
otherwise it is discarded. The last stage is repeated until convergence or a user
defined-limit has been reached.

PROBCONS

PROBCONS implements a different approach [19] while still having a progres-
sive stage. Altogether five stages take place in PROBCONS starting with the
computation of the posteriori-probability matrix for the underlying Pair Hidden
Markov Model for each pair of residues of different sequences. Thereafter, the
so-called probability consistency transformation is computed, which additionally
incorporates the similarity of residues x and y to residues of sequences (other
than those containing x and y) into the xy pairwise comparison.

Thereafter, a guide tree is constructed using a scoring from the resulting align-
ment of the Hidden Markov Model of the first stage and a hierarchical cluster-
ing. The guide tree then forms the basis for carrying out a progressive alignment
whereby the previously computed probability consistency transformation acts
as underlying scoring and gaps are penalized by 0. Finally, and similar to MUS-
CLE, the alignment is partitioned randomly into two groups of sequences and
then realigned whereby the better outcome is preserved.

MAFFT

The MAFFT multiple sequence alignment program offers a variety of different
sub-methods with different accuracy and running times [43, 42]. The G-INS-i,
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L-INS-i and E-INS-i methods especially produce the most qualitatively valuable
output in general and are comprised of four steps. Initially, pairwise alignments
are constructed whereby G-INS-i uses global alignment with an Fast Fourier
Transformation (FFT) approximation [43], whereas the other two methods L-
INS-i and E-INS-i incorporate local alignment information using the FASTA34
program [62]. From that a guide tree is constructed using the UPGMA approach
with a modified linkage.

Then every pairwise alignment is divided into gap-free fragments. Those frag-
ments then get assigned an importance value involving the SP-score and the
frequency of its residues occurring in gap-free fragments. The importance val-
ues for each fragment are then further processed into an importance matrix
assigning a score for each pair of residues of different sequences. Extending
this importance matrix to sub-alignments, it is used to progressively build the
multiple sequence alignment along the guide tree. In a final stage, the resulting
alignment is iteratively refined based on the approaches described in [6, 32] us-
ing the weighting scheme proposed in [33]. We remark that the E-INS-i method
also performs quite well on local alignments, which we will see in more detail in
chapter 6.

2.3.2 Local alignment strategies

In contrast to global alignment strategies, which have been more emphasized
in past research, the local alignment algorithms that focus more on finding
locally isolated homologous regions have emerged recently and now also play a
significant role in biological research. In the following we will outline the most
popular representatives of this class, including DIALIGN-T and DIALIGN-TX,
both of which have been developed as part of this thesis.

POA

The POA (Partial Order Alignment) [48, 35] starts with a very fast construc-
tion of a distance matrix for each pair of input sequences like the previously
described global methods, but using the BLAST bit scores [4]. The BLAST bit
score is, briefly, a value calculated from the number of gaps and substitutions
associated with each aligned sequence - the higher the score, the more signif-
icant the alignment. Next a guide tree is constructed via the application of
agglomerative nearest-neighbour clustering, i.e. Kruskal’s Minimum Spanning
Tree algorithm [13].

In this algorithm a multiple sequence is regarded as a DAG (directed acyclic
graph), in which individual sequence letters are represented by nodes. Di-
rected edges are drawn between consecutive letters in each sequence and aligned
residues are fused into a single node whereby redundant edges are pruned. This
representation of an alignment in the progressive stage along the guide tree is
used when aligning two sub-alignments based on a Smith-Waterman scoring
[71].

POA obtains its local character by using, on the one hand, a Smith-Waterman-
based scoring and, on the other hand, a truncated gap penalization, which highly
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favours few but very long gaps over many small gaps.

DIALIGN

The approach implemented in DIALIGN [53, 51] differs quite a lot from the
previously described methods as it does not use any progressive strategy. Es-
sentially, DIALIGN is a segment-based algorithm starting off at the initial stage
by computing optimum segment-based pairwise alignments using an objective
weight function. More precisely, a resulting pairwise alignment contains a set
of consistent fragments, where ’consistency’ means that they all can be real-
ized in parallel in the alignment. Contrary to the other approaches that are
based on an SP-scoring with a more or less complicated gap penalization, DI-
ALIGN assigns a higher weight to a fragment the less probable its occurrence
is at random (with at least the same SP-score in sequences of the same length).
For that it uses a substitution matrix s (BLOSUM62 for protein sequences and
simple match/mismatch for DNA matrices) and approximatively computes for
each fragment f having length lf between sequence s1 of length l1 and sequence
s2 of length l2 the probability P (s(f), lf , l1, l2) of the random occurrence of a
fragment in sequences of length l1 and l2 having the same length lf and at least
the similarity score s(f). Finally, the weight score w(f) is set to the negative
logarithm of this probability, i.e

w(f) := − log (P (s(f), lf , l1, l2)) .

Using this weight score, DIALIGN computes for each pair of input sequences
the optimum set of consistent fragments accordingly, using a modified space-
efficient dynamic programming approach. In its final stage, DIALIGN sorts
all these fragments in descending order w.r.t the weight scoring w(·) and adds
them greedily to a final multiple sequence alignment: beginning with the highest
scoring it decides whether the current fragment fits into the already existing
alignment (i.e. whether it is consistent with it) and if so, it adds it; otherwise
the fragment will be discarded.

DIALIGN-T

DIALIGN-T is a complete re-implementation of DIALIGN which incorporates
several improvements [75] yielding a significant advantage over several bench-
mark databases. In the pairwise stage, DIALIGN is restricted to fragments
of length 40 whereas DIALIGN-T supports fragments up to a length of 100.
However, this raises the problem of very long fragments containing low-scoring
middle parts, where it would be more appropriate to break it into two or more
sub-fragments. This is compensated for in DIALIGN-T by not allowing low scor-
ing regions in long fragments thus ending up with only those very long fragments
that actually carry biologically meaningful information from the beginning to
the end. The two other major improvements take place in the modified greedy
stage, where we use a modified weighting for determining the order in which the
fragments are considered. In this modified weighting we scale the weight score
w(f) of each fragment f of sequences s1 and s2 by a factor coming from the
overall similarity score of the sequences s1 and s2 in relation to the similarity
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score of all other sequence pairs. This procedure favours fragments coming from
highly similar sequences over fragments between less similar sequences. The sec-
ond improvement in this stage is that fragments that are found not to fit into
the alignment are not discarded as a whole but are cut such that the remainder
becomes consistent and is re-inserted into the sorted list for later consideration.
As part of this thesis we will describe DIALIGN-T in more detail in the next
chapter.

DIALIGN-TX

Besides some newer features, such as the support of anchor points, DIALIGN-
TX has been substantially improved by using a combination of greedy and
progressive strategies in the stage where fragments from the pairwise alignment
phase are combined. The new method we developed initially computes a guide
tree T for the set of input sequences based on their pairwise similarity scores. We
divide the set of fragments contained in the respective optimal pairwise align-
ments into two subsets F and G, where F consists of all fragments with weight
scores below the average fragment weight score in all pairwise alignments, and
G consists of the fragments with a weight score above or equal to the average
weight. In the first step, the set G is used to calculate an initial multiple align-
ment A in a progressive manner along the guide tree T . During this progressive
step, two sub-alignments are merged using a conflict graph that contains edges
for every conflict between any pair of fragments of the two sub-alignments (to
be merged). Of course there may be conflicts that involve triples or more gen-
erally m-tuples of fragments, however, we only take care of ’pair conflicts’ since
they have the highest probability of occurring. We resolve the pair conflicts by
removing a vertex cover computed by the 2-approximation of Clarkson [11] for
the weighted vertex cover problem. The remainder is then aligned greedily as
implemented in the previous version of DIALIGN-T. The low-scoring fragments
from set G are later added to A in a, again, greedy way after the progressive
phase has been completed, provided they are consistent with A. In addition,
we construct an alternative multiple alignment B using the greedy approach
implemented in the previous version DIALIGN-T. Finally, the program returns
either A or B, depending on which one of these two alignments has the highest
weight score. In chapter 6 we will explain DIALIGN-TX in more detail.
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In this chapter, we present a complete re-implementation of the segment-based
approach to multiple protein alignment that contains a number of improvements
compared to the previous version DIALIGN 2.2. DIALIGN-T has been devel-
oped as part of this thesis and the results have already been published in [75],
which is the basis for this chapter.

The DIALIGN approach is superior to Needleman-Wunsch-based multi-alignment
programs on locally related sequence sets. However, it is often outperformed
by these methods on datasets with global but weak similarity at the primary-
sequence level.

In this chapter, we discuss the strengths and weaknesses of DIALIGN in view
of the underlying objective (weight) function. Based on these results, we pro-
pose several heuristics to improve the segment-based alignment approach. For
pairwise alignment, we implemented a fragment-chaining algorithm that favours
chains of low-scoring local alignments over isolated high-scoring fragments. For
multiple alignment, we use an improved greedy procedure that is less sensitive to
spurious local sequence similarities. To evaluate our method on globally related
protein families, we used the well-known database BAliBASE [78]. For bench-
marking tests on locally related sequences, we created a new reference database
called IRMBASE, which consists of simulated conserved motifs implanted into
non-related random sequences.

On the BAliBASE, DIALIGN-T performs significantly better than the pre-
vious version of DIALIGN and is comparable to the standard global aligner
CLUSTAL W, though it is outperformed by some recently developed programs
that focus on global alignment. On the locally related test sets in IRMBASE,
our method outperforms all other programs that we evaluated.

In the next section we will describe the detailed procedure for determining the
fragments from the pairwise dynamic programming. The subsequent section
describes the amended method of assembling those fragments such that the
influence of less related sequences is reduced and a more sophisticated way of
dealing with inconsistent fragments is used. Finally, we will compare DIALIGN-
T with other popular alignment programs on benchmark databases and present
the results before we end this chapter with a conclusion.

3.1 Pairwise computation of the fragments

In this section we describe the pairwise alignment phase of DIALIGN-T, where,
for each pair of sequences, the optimum set of consistent fragments is determined
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according to the carefully chosen object weighting function.

3.1.1 The objective function in DIALIGN-T

From a computer scientist’s point of view, sequence alignment is an optimisa-
tion problem. Most alignment algorithms are – explicitly or implicitly – based
on an objective function, i.e. on some kind of scoring scheme assigning a quality
score to every possible alignment of a given input sequence set. Based on such
a scoring scheme, different optimisation algorithms are used to find optimal
or near-optimal alignments. For multiple alignment, a variety of optimisation
techniques have been proposed. These algorithms differ substantially from each
other with regard to their computational complexity and in view of their ability
to find or approximate numerically optimal alignments. However, the most im-
portant feature of an alignment program is not the optimisation algorithm that
it uses, but rather the underlying objective function that is used to score possible
output alignments. If the objective function is biologically wrong by assigning
high scores to biologically meaningless alignments, then even the most efficient
optimisation algorithms are only efficient in finding mathematically high-scoring
nonsense alignments. With a more realistic objective function, however, even
simple-minded heuristics may lead to biologically plausible alignments.

The objective function that we use in the segment-based approach of DIALIGN-
T is defined as follows: each possible fragment (segment pair) f is assigned a
weight score w(f) depending on the probability P (f) of random occurrence of
such a fragment. More precisely, the program uses a similarity function s assign-
ing a score s(a, b) to each possible pair (a, b) of residues. For protein alignment,
one of the usual substitution matrices can be used; for alignment of DNA or
RNA sequences, the program simply distinguishes between matches and mis-
matches. For a fragment f , its Needleman-Wunsch score NW [f ] is calculated
that is defined as the sum of similarity values of aligned nucleotides or amino
acid residues (note again that fragments do not contain gaps). To define the
weight score w(f) of f , we consider the probability P (f) of finding a fragment f ′

of the same length as f and with a Needleman-Wunsch score NW [f ′] ≥ NW [f ]
in random sequences of the same length as the input sequences. w(f) is then
defined as the negative logarithm of this probability; see [51] for more details.
The total score of a – pairwise or multiple – alignment is defined as the sum of
weight scores of the fragments it is composed of; gaps are not penalised. The
idea is that the less likely a given fragment collection occurs just by chance, the
more likely it is biologically relevant so the higher its score should be. Thus,
while standard alignment approaches try to find an alignment that is most likely
under the assumption that the input sequences are related by common ancestry
[23], we try to find an alignment that is most unlikely under the assumption
that the sequences are not related. A pairwise alignment in the sense of the
above definition corresponds to a chain of fragments, and an alignment with
maximum total weight score can be found using a recursive fragment-chaining
procedure [55]; for multiple alignment, a greedy heuristic is used [1, 51].

As explained above, DIALIGN defines the score S(A) of an alignment A =
{f1, . . . , fk} as the sum of weight scores w(fi) of its constituent fragments, and
these weight scores are, in turn, defined as negative logarithms of probabilities
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P (fi) of their random occurrence. Thus, the score S(A) is calculated as

S(A) =
∑
f∈A

w(f) =
∑
f∈A

− logP (f) = −log
∏
f∈A

P (f)

and searching for an alignment with maximal score is equivalent to searching for
a consistent collection of fragments A = {f1, . . . , fk} with a minimal product
of probabilities

∏
f∈A P (f). But, considering the product of fragment proba-

bilities means considering the probability of their joint occurrence under the
assumption that these events are independent of each other. This would be
reasonable if we searched for an arbitrary fragment collection with low proba-
bility of random occurrence. In our approach, however, we require a fragment
collection to be consistent, so the set of allowed combinations of fragments is
drastically reduced. The probability of finding a consistent set of fragments is
consequently far smaller than the product of the probabilities of finding all of
the corresponding individual fragments. Thus, by using the product

∏
f∈A P (f),

DIALIGN generally over-estimates the probability P (A) of random occurrence
of an alignment A.

In our context, the crucial point is that the probabilities P (A) – and therefore
the scores S(A) – are not uniformly over-estimated – or under-estimated, respec-
tively – for all possible alignments, but that there is a large difference between
global and local alignments. For a global alignment Ag that covers most of the
sequences, the discrepancy between the real probability P (Ag) of its random
occurrence and the approximation

∏
f∈Ag

P (f) used by DIALIGN is far more
significant than for a local alignment Al. This is because a global alignment cor-
responds to a dense collection of fragment, so here the consistency constraints
are much tighter than in a local alignment consisting of only a few isolated frag-
ments. As a result, DIALIGN relatively over-estimates the probability P (Ag)
of a global aligment Ag compared with an alternative local alignment Al, so it
under-estimates the score S(Ag) compared with the score S(Al).

3.1.2 Approximation of the objective function

It is very time-consuming to compute the weight score for each fragment exactly,
therefore, DIALIGN 2.2 and DIALIGN-T use approximative calclulations with
sufficient accuracy and with a reasonable running time.

The previous implementation, DIALIGN 2.2, uses pre-calculated probability
tables to calculate fragment weight scores; these tables are based on the BLO-
SUM 62 substitution matrix. They were calculated years ago and are difficult
to re-calculate if a user wants to employ another similarity matrix. It is there-
fore not possible to run DIALIGN 2.2 with substitution matrices other than
BLOSUM 62. In DIALIGN-T, we use a rather efficient way estimating the
probabilities that are used for our weight score calculations. We pre-calculated
probability tables for a variety of substitution matrices. In addition, the user
can re-calculate these tables ‘on the fly’ for arbitrary matrices with a moderate
increase in program running time.

As explained in section 3.1.1, we define the weight score of a fragment f involving
sequences Si and Sj as

w(f) = −logP (f)
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where P (f) denotes the probability of the occurrence of a fragment f ′ of the
same length as f and with Needleman-Wunsch score NW [f ′] ≥ NW [f ] in ran-
dom sequences of the same length as Si and Sj . By random sequences we mean
independent identically distributed (iid) sequences where each residue occurs at
any position with probability 1/4 for nucleic acid sequences and 1/20 for pro-
tein sequences. In the following, we outline how our program approximates the
probabilities P (f).

In the first step, we estimate the probability P̃ (s, n) of finding a fragment f ′ of
length n and with Needleman-Wunsch score NW [f ′] ≥ s in random sequences
of length 2 ·n. Note that P̃ (s, n) depends on the underlying substitution matrix
but not on the length or composition of the input sequences Si and Sj . The
numerical values P̃ (s, n) are estimated as follows:

1. Random experiments are performed to obtain preliminary estimates P̃exp
for P̃ . The experimental values P̃exp should approximate P̃ with sufficient
accuracy for values of n and s where enough experimental data is available.
This is the case if P̃ (s, n) is not too small.

2. For small values of P̃ (s, n), we first compute the probability P1(s, n) for a
single random fragment f ′ of length n to have a Needleman-Wunsch score
NW [f ′] ≥ s. P1(s, n) can be easily calculated as a sum of convolution
products using an iterative procedure that computes P1(s, n) from all pairs
of (P1(s1, n), P2(s2, n)) with s1 + s2 = s. Similar to [51], small values of
P̃ are estimated using the approximation formula

P̃ (s, n) ≈ P1(s, n) · (n+ 1)2.

3. All in all, we define P̃ for a given value s by first considering the trivial
case n = 1 and then defining for n = 2, . . . ,M :

P̃ (s, n) =
{
P1(s, n) · (n+ 1)2 if P1(s, n) · (n+ 1)2 < P̃ (s, n− 1)
Pexp(s, n) else.

The procedure described for estimating P̃ (s, n) is computationally demanding.
Since the values P̃ (s, n) do not depend on the input sequences, we pre-calculated
these probabilities for several standard substitution matrices and stored their
values in auxiliary files from which they are retrieved during the program run.

In the second step, we use P̃ (s, n) to estimate the probability P (s, n) of finding a
fragment f ′ of length n with Needleman-Wunsch score NW [f ′] ≥ s in sequences
of the same length as the input sequences. This step is computationally less
expensive and can therefore be carried out during the program run. Let li and
lj be the lengths of the input sequences Si and Sj , respectively. Similar to [51],
we compute P (s, n) as

P (s, n) =
{

1− (1− P̃ (s, n))lilj/(4n
2) if this value is > PT

P̃ (s, n) · li · lj/(4n2) else.

where PT is a threshold parameter. During a program run, the values P (s, n)
are calculated for all possible values of n and s before the pairwise alignment of
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sequences Si and Sj is carried out. The negative logarithms

− logP (s, n)

are stored in a look-up table from which they are retrieved during the pairwise
alignment to define the fragment scores.

We pre-calculated the probabilities P̃ (s, n) for several substitution matrices
of the BLOSUM family. To determine the experimental probability values
Pexp(s, n), we carried out 106 random experiments for each relevant pair of
parameters (s, n). Here, we considered values for n between 1 and a maximum
fragment length M = 100. Files with the resulting values of P̃ (s, n) values are
delivered together with the DIALIGN-T software package. To calculate P (f),
we use a threshold probability PT = 10−8. Our program can also be used
to calculate the values P̃ (s, n) for arbitrary user-defined substitution matrices.
Calculating these values using 105 random experiments for each value of n and
s takes around 20 minutes on a Linux workstation (RedHat 8.0) with an 1.5
Ghz Pentium 4 processor and 512 MB Ram. In our experience, 105 random
experiments are sufficient to obtain high-quality probability estimates.

3.1.3 Dynamic programming

Altogether the initial stage of DIALIGN-T consists of computing for each pair
si, sj of the input sequences s1, . . . , sk an optimum pairwise alignment as a set
of fragments Fi,j that optimize the sum of weight scores with respect to the
objective function described in subsection 3.1.1∑

f∈Fi,j

w(f)→ max

In DIALIGN-T we use the space-efficient pairwise dynamic programming algo-
rithm also implemented in DIALIGN 2.2 and proposed in [54, 55]. This approach
essentially consumes only linear space in the general case and is therefore very
suitable for large input sequences.

Let t = t1, . . . , tm and u = u1, . . . , un be two input sequences for which we
construct a comparison matrix that is very much similar to the similarity matrix
(see chapter 2) and analogously is also indexed by all possible prefix pairs of
t and u. This matrix is processed in a column-by-column manner from left to
right. Let F denote the set of all possible fragments between t and u and for
each fragment f ∈ F that starts in the currently processed column i we store
the weight score of an optimum alignment ending in f together with a pointer
to the predecessor of f (i.e. the second-last fragment in the alignment) in a
linked list Fi′ associated with column i′ where f ends. Assuming that we know
all optimum alignments for all prefixes t1 . . . ti−1 and u1 . . . uj , 1 ≤ j ≤ n in
column i− 1, we can easily compute this optimum alignment for f .

Hence we proceed as follows from left to right - column by column. For the
current column i we compute all optimum alignments for fragments that start
in column i by extending the optimum alignments from the previous column
i − 1. Then we compute the optimum alignments for column i by again using
column i − 1 and the linked list Fi, as follows: Either the optimum alignment
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for prefix t1 . . . ti and u1 . . . uj is determined by the optimum alignment for the
prefix t1 . . . ti−1 and u1 . . . uj stored in the previous column or it is given by the
highest scoring alignment in Fi ending in ti and ul with an l ≤ j. After having
computed the alignments for column i we forget about column i − 1 and the
list Fi since they won’t be needed in further steps. After all columns have been
processed, we apply a trace-back beginning at the last entry of column m in
order to retrieve the optimum pairwise alignment.

Lemma 3.1
The overall runtime for computing all pairwise alignments is then O(k2n2 ·Lmax)
for k input sequences having maximum sequence length n and a maximum
fragment length of Lmax.

In DIALIGN-T the maximum fragment length is bounded by 100 so the overall
number of fragments looked at is m·n·100 when computing a pairwise alignment
of two sequences of length m and n. In practice the algorithm does not consider
fragments having a computed weight score w(f) = 0, which applies to most of
the fragments yielding a significant speed-up. So far the dynamic programming
stage is similar to DIALIGN 2.2 [54, 55] and in the next subsection we will
explain the qualitative improvements within DIALIGN-T for this stage.

3.1.4 Excluding low-scoring sub-fragments

In the previous subsections, we systematically explained the objective function
and the dynamic programming algorithm used in DIALIGN 2.2. We observe
that DIALIGN 2.2 is biased towards isolated local similarities due to the ob-
jective function used. If the program can choose between (a) a global pairwise
alignment consisting of many fragments with low individual fragment scores and
(b) an alternative local alignment consisting of only a few isolated fragments with
higher individual scores, it tends to prefer the second type of alignment. Conse-
quently, for sequences with weak but global similarity, DIALIGN is vulnerable
to spurious random similarities.

An improved objective function that used a better approximation to the prob-
ability P (A) of random occurrence of an alignment A would have to take into
account the combinatorial constraints given by our consistency condition. Defin-
ing such an objective function would be mathematically challenging and would
drastically deteroriate the running time of the program. For DIALIGN-T, we
therefore use the objective function that has been used in previous versions
of DIALIGN. However, we introduce two heuristics to counterbalance the bias
in this objective function towards isolated local alignments: One is the exclu-
sion of low-scoring sub-fragments described in this section and the other is the
introduction of weight score factors, which will be described in subsection 3.2.2.

The pairwise alignment algorithm that we are using is a modification of the
space-efficient fragment-chaining algorithm described in the previous subsection.
At each position (i, j) in the comparison matrix, this algorithm considers all
fragments (= segment pairs) starting at (i, j) up to a certain maximum length
M. For protein alignment, the previous program DIALIGN 2.2 uses a default
value of M = 40; M can be reduced to speed up the program, but this may result
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Fig. 3.1: Exclusion of low-scoring regions from alignment fragments. The scoring
scheme used in DIALIGN gives relatively high weight scores to single frag-
ments with high Needleman-Wunsch scores (a). In our new approach, we
exclude low-scoring sub-regions within long fragments by applying a stop
criterion for fragment extension. This can result in the replacement of a
long fragment f by multiple sub-fragments (b) or in a completely different
alignment (c).

in decreased alignment quality. Initially, the length limitation for fragments has
been introduced to reduce the program running time; in this way the time
complexity of the pairwise fragment-chaining algorithm is reduced from O(l3)
to O(l2) where l is the maximum length of the two sequences. One might
think that increasing the maximum fragment length M would result in improved
alignment quality, but in fact, we observed that with slightly increased values
for M , better alignments were obtained. However, with values M > 50, the
quality of the produced alignments decreased dramatically.

In systematic test runs, we observed that for large values of M , output align-
ments often contain long fragments involving a mixture of high-scoring and
low-scoring sub-fragments. With an ideal objective function, a single long
fragment f containing low-scoring sub-fragments would automatically receive
a lower score than the chain of short fragments that would be obtained from f
by removing those low-scoring sub-fragments. As a result, output alignments
would tend to consist of shorter fragments rather than of longer fragments with
low-scoring sub-regions. For reasons explained in the previous section, however,
the scoring scheme used by DIALIGN over-estimates single long fragments com-
pared with chains of smaller fragments that would be obtained by removing
low-scoring regions from those long fragments.

In our new approach, we use the following heuristics to prevent the algorithm
from selecting long fragments with low-scoring sub-regions. We define a length
threshold L for low-quality sub-fragments. Sub-fragments of length ≥ L with
negative Needleman-Wunsch scores are allowed within short fragments but are
excluded in fragments of length ≥ T where T < M is a parameter that can be
adjusted by the user. For a pair of input sequences S1 and S2 and given values
for the parameters T,M and L, our new algorithm proceeds as follows. Let
f(i, j, k) denote the fragment of length k that starts at position i in sequence
S1 and at position j in sequence S2, respectively. By S1[k], we denote the k-th
character in sequence Si. As in the original DIALIGN algorithm, we traverse the
comparison matrix for S1 and S2, and at every position (i, j), we consider frag-
ments starting at this position; suitable fragments are then added to a growing
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set F of candidate fragments from which the algorithm selects a fragment chain
with maximum total score with respect to the underlying objective function
[55]. If a region of low quality occurs, the maximum fragment length M(i, j) for
fragments starting at (i, j) is reduced from M to T . More formally, we perform
the following steps for fragments starting at a fixed position (i, j):

1. Initially, the maximum length for fragments starting at (i, j) is M(i, j) =
M .

2. We start with length k = 1, i.e. we consider the fragment f(i, j, 1).

3. If the current fragment length k exceeds M(i, j) then the procedure stops
and we continue with fragments starting at (i, j + 1).

4. If the similarity score s(S1[i+ k− 1], S2[j+ k− 1]) of the last residue pair
in f(i, j, k) is not negative, we take the fragment f(i, j, k) into account
by adding it to the set F and continue with step 7. Otherwise, we detect
the potential beginning of a low-quality sub-fragment starting at positions
i+ k − 1 and j + k − 1.

5. In this case we do a look-ahead and calculate the NW-score of the potential
low-scoring fragment f(i+ k − 1, j + k − 1, L), which is defined as

NW [f(i+ k− 1, j + k− 1, L)] =
L−1∑
p=0

s(S1[i+ k− 1 + p], S2[j + k− 1 + p]).

6. If NW [f(i + k − 1, j + k − 1, L)] < 0, we actually detect a low-quality
sub-fragment. If k > T , the procedure stops and no further increase of k
is considered, otherwise we set M(i, j) = T .

7. The length k is incremented by 1 and we continue with the step 3.

By default, our program uses a length threshold for low-quality sub-fragments
of L = 4 and the maximum length of fragments containing such regions of low
quality is T = 40. These values have been determined based on systematic
test runs on BAliBASE. At this point, we want to mention the impact of the
parameters L and T on the quality of the produced output alignments. For
example, with values L = 3 or L = 5, the alignment quality is dramatically
worsened compared with the default value L = 4.

Our stop criterion for low-scoring sub-fragments not only improves the quality
of the resulting alignments but also reduces the program running time. The
runtime of our pairwise algorithm is proportional to the number of fragments
that are considered for alignment. Thus, the worst-case time complexity is
O(l1 · l2 ·M) where l1 and l2 are the lengths of the input sequences. By exclud-
ing long fragments with low-scoring sub-fragments, we ignore a large number of
fragments that would have been considered for alignment in previous program
versions. Therefore, our new heuristics allow us to increase the maximum pos-
sible fragment length from M = 40 to M = 100 without excessively increasing
the total number of fragments that are to be looked at. A further extension of
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M is prohibited due to numerical instabilities. Altogether, the resulting align-
ments can reflect the extension of existing homologies more realistically than
the previous version of DIALIGN with only a moderate increase in program
running time.

3.2 Assembling the multiple sequence alignment

Having computed the set of all fragments from the pairwise alignment phase,
we will now describe how we assemble them in DIALIGN-T. As in the previous
version, DIALIGN 2.2, the idea is to build the alignment greedily, however, with
some new improvements.

3.2.1 Consistency data structure

DIALIGN-T starts with an empty alignment A and successively adds consistent
fragments to it. By aligning two positions of two sequences we naturally impose
constraints for other pairs of positions to be alignable in order to receive an over-
all consistent multiple sequence alignment. We keep track of those constraints
in the data structure of predecessor and successor frontiers that are introduced
in [1] and also used being used in DIALIGN 2.2. Let s1, . . . , sk be the set of in-
put sequences and A the initial alignment of those sequences without any gaps.
We define the two functions PredFA and SuccFA that assign for each position
r in sequence i the minimum and maximum position in sequence j that it can
be aligned consistently to in A, i.e. PredFA(i, r, j) is the minimum position in
sequence j that the position r of i can be consistently aligned to without de-
stroying any alignment of positions in A; SuccFA(i, r, j) is defined analogously,
but instead of the minimum possible position in sequence j it is set to the max-
imum position in sequence j. We initialize PredFA with −1 and SuccFA(·, ·, j)
with |sj |+1. Obviously we have PredFA(i, r, j) = SuccFA(i, r, j) = p if position
r of sequence i is aligned with position p of sequence j. If position r of sequence
i is not aligned to any position of sequence j, the value of PredFA(i, r, j) is the
maximum position in sequence j that is aligned in A to any previous position
< r in sequence i plus 1; analogously SuccF (i, r, j) is the minumum position in
sequence j that is aligned to any subsequent position > r in sequence i minus
1.

We assume that we have calculated all PredFA and SuccFA with respect to
alignment A and found that aligning position r of sequence i with position p in
sequence j is consistent to A, i.e.

PredFA(i, r, j) ≤ p
SuccFA(i, r, j) ≥ p.
PredFA(j, p, i) ≤ r
SuccFA(j, p, i) ≥ r,

whereby the first two inequalities are true if and only if the last two are true and
vice versa due to the definition of PredFA and SuccFA. We also conclude that
checking if position r in sequence i is alignable to position p in sequence j can
be done in time O(1) if the predecessor and successor frontier data structure
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is in place. If we now align those two positions in A and call the resulting
alignment A′ we have to update PredFA to PredFA′ and SuccFA to SuccFA′
appropriately. We do this by iterating through all possible positions r′ and all
sequence pairs 1 ≤ i′, j′ ≤ k with i′ 6= j′, 1 ≤ r′ ≤ |si′ | and setting:

PredFA′(i′, r′, j′) =

 max{PredFA(i′, r′, j′), P redFA(j, p, j′)} if PredFA(i′, r′, i) >= r
max{PredFA(i′, r′, j′), P redFA(i, r, j′)} if PredFA(i′, r′, j) >= p
PredFA(i′, r′, j′) else

and

SuccFA′(i′, r′, j′) =

 min{SuccFA(i′, r′, j′), SuccFA(j, p, j′)} if SuccFA(i′, r′, i) <= r
min{SuccFA(i′, r′, j′), SuccFA(i, r, j′)} if SuccFA(i′, r′, j) <= p
PredFA(i′, r′, j′) else.

Of course we only have to update PredFA and SuccFA in all but the above men-
tioned ’else’-case. To further speed up the update of the frontier data structure,
we additionally store a bit-valued orphan flag for each position r in every se-
quence i indicating whether this position has been aligned at all to any other
position in any other sequence or not. For any orphan position in sequence i,
we do not maintain the data structure but we store a pointer to the equivalent
PredFA of the immediately previous position in sequence i that is aligned to any
other position and a pointer to the equivalent SuccFA to the next immediate
position that has already been aligned.

For the computational complexity of the update of this data structure we con-
clude:

Theorem 3.1
Let s1, . . . , sk be k sequences over an alphabet Σ and Â the empty (trivial)
alignment over those sequences. The initial frontiers PredFÂ and SuccFÂ can
be computed in time O(n · k2), whereby n denotes the length of the longest
input sequence.

Let A be an arbitrary and consistent alignment on s1, . . . , sk and PredFA and
SuccF the respective frontiers. Furthermore, let (i, p) and (j, r) be a position
p in sequence i and a position r in sequence j, respectively. Checking whether
(i, p) and (j, r) can be consistently aligned in A can be solved in time O(1) and
in the positive case the respective update of PredFA to PredFA′ and SuccFA
to SuccFA′ can be done in time O(n · k2) whereby A′ is the alignment A plus
the alignment of (i, p) with (j, r).

If we now want to add a fragment f of length l starting at position p in sequence
i and at position r in sequence j to an alignment A, we iterate through all
pairs of positions (i + t, j + t) with 0 ≤ t < l and check whether they are
alignable according to PredFA and SuccFA. If so, we can add fragment f to
the alignment A by again iterating through the same l pairs of positions and
updating the predecessor and successor frontier functions accordingly for each
pair.

3.2.2 Weight score factors

As mentioned above, DIALIGN uses a greedy optimisation procedure for mul-
tiple alignment. The order in which fragments are included into the multiple
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alignment is determined based on their weight scores. A general problem with
this greedy approach is that if a erroneous fragment is accepted for multiple
alignment, it cannot be removed later on. Note that even a single wrong choice
in the greedy procedure can impair the quality of the resulting alignment dra-
matically. Thus, special care has to be taken to prioritise fragments for the
greedy algorithm. We observed that in many cases spurious but high-scoring
fragments from pairwise alignments are inconsistent with a good overall multiple
alignment. Due to their weight scores, however, such fragments may be incor-
porated into the multiple alignment by the original DIALIGN, thereby leading
to output alignments of lower quality.

As explained in subsection 3.1.4, the weight score of a fragment depends on
the probability of its random occurrence in sequences of the same length as the
input sequences. Thus, weight scores are based purely on intrinsic properties
of fragments – and on the length of the input sequences – but they do not take
into account the context of a fragment within the pairwise alignment. In reality,
however, the context of a fragment is crucial to assess its reliability. If a fragment
f is part of a high-scoring pairwise alignment, then f is, of course, far more likely
to be biologically significant than if the same fragment f were found isolated in
otherwise un-related sequences. Therefore, the overall similarity between two
sequences should be taken into account if fragments are ranked prior to the
greedy procedure.

In DIALIGN-T, we adopt the following approach: we multiply the weight score
of each fragment by the square of the total weight score of the respective se-
quence pair divided by the overall weight score of all pairwise alignments. Let
S1, . . . , Sn be the input sequences and let f be a fragment involving sequences
Si and Sj . Next, let w(Si, Sj) denote the total weight score of the pairwise
alignment for Si and Sj – i.e. the sum of weight scores of an optimal chain
of fragments – and let W be the total sum of weight scores of all pairwise
alignments. That is, we define

W =
∑

1≤i<j≤n

w(Si, Sj).

We then define the adjusted weight score

w′(f) = w(f) ·
(
w(Si, Sj)

W

)2

and in our greedy algorithm, fragments are sorted according to their adjusted
scores w′(f). In this way, we prefer fragments belonging to sequence pairs of
high similarity to those from weakly related sequence pairs. Altogether, this
weight adjustment respects the similarity of the sequence pairs better than the
previous method and hence may keep the greedy procedure from adding isolated
spurious fragments that would have led to a lower-scoring and biologically less
meaningful output alignment. The sorted list of fragments from the optimal
pairwise alignments is kept in a binary heap structure that can be updated
efficiently when inconsistent fragments are removed or modified as explained in
the next subsection.
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3.2.3 Dealing with inconsistent fragments

In the original DIALIGN approach, an inconsistent fragment f is completely
discarded in the greedy procedure, even if just a few residue pairs are incon-
sistent with the current alignment. In such a situation, it would of course be
more sensible to remove only those inconsistent residue pairs from f and give
the remaining sub-fragments a second chance in the greedy selection process.
It is easy to see that a fragment f is consistent with an existing alignment A if
and only if each pair of aligned residues in f is consistent with A. In our new
implementation, we use the following procedure for non-consistent fragments.
An inconsistent fragment f is processed from left to right. Starting with the
left-most residue pair, we remove all inconsistent residue pairs until we find the
first consistent pair p. Next, we consider all consistent residue pairs starting
with p until we again find an inconsistent residue pair. In this way, we ob-
tain a consistent sub-fragment f ′ of f for which we calculate the weight score
w(f ′). By construction, f ′ is consistent with the existing alignment and could,
in principle, be added to the list of accepted fragments.

However, we do not immediately include f ′ into the growing multiple alignment
since the score w(f ′) might be smaller than the original score w(f). Instead, we
insert f ′ at the appropriate position in our sorted list of fragments depending on
its adjusted weight score w′(f ′). We therefore use a binary heap structure such
that consistent sub-fragments of inconsistent fragments can be efficiently re-
positioned according to their newly calculated adjusted weights. The remainder
of f is treated accordingly, i.e. inconsistent residue pairs are removed and the
remaining consistent sub-fragments are inserted at appropriate positions in the
list of candidate fragments. Note that with our weighting function w, the weight
score w(f ′) of a sub-fragment f ′ contained in a fragment f can, in general, be
larger than the weight w(f). In the above situation, however, we necessarily
have w(f ′) ≤ w(f) [and therefore w′(f ′) ≤ w′(f)] since we assumed that f is
part of the optimal pairwise alignment of two sequences. If the score w(f ′) of
a sub-fragment of f exceeded w(f), then f ′ would have been selected for the
optimal pairwise alignment instead of f .

3.3 Benchmark results

We evaluated the performance of our program and compared it to alternative
multi-alignment software tools using a wide variety of benchmark sequences.
As a first set of reference data, we used the well-known BAliBASE 2.1 [78].
BAliBASE has been used in numerous studies to test the accuracy of multiple-
protein-alignment software. It should be mentioned that, although some of the
reference sequences in BAliBASE contain insertions and deletions of moderate
size, BAliBASE is heavily biased towards globally related protein families. All
BAliBASE sequences contain homologous core blocks with verified 3D structure;
alignment programs are evaluated according to their ability to correctly align
these blocks. According to the BAliBASE authors, these core blocks cover 58 %
of the residues in the database. However, sequence similarity is clearly not re-
stricted to those regions of verified 3D structure so, in reality, far more than 58 %
of the total sequence length are homologous to other sequences in the respective
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sequence families. Also, the sequences in BAliBASE are not realistic full-length
sequences, but they have been truncated by the BAliBASE developers in order
to remove non-related parts of the sequences. As a result, BAliBASE consists
almost entirely of globally related sequence sets; this is why global alignment
programs such as CLUSTAL W perform best on these benchmark data.

To study the performance of alignment programs on locally related sequence
sets, Lassmann and Sonnhammer used artificial random sequences with im-
planted conserved motifs [46]. Random sequences are frequently used to evalu-
ate computational sequence analysis tools; they are particularly useful to study
the specificity of a tool, see e.g. [73, 36, 63]. Unfortunately, the benchmark data
by Lassmann and Sonnhammer are not publicly available. Therefore, we set up
our own benchmark database for local multiple protein alignment that we called
IRMBASE (Implanted Rose Motifs Base).

As Lassmann and Sonnhammer did in their previous study, we produced groups
of artificial conserved sequence motifs using the ROSE software tool [73]. ROSE
simulates the process of molecular evolution. A set of ‘phylogenetically’ related
sequences is created from a user-defined ‘ancestor’ sequence according to a phy-
logenetic tree. During this process, sequence characters are randomly inserted,
deleted and substituted under a pre-defined stochastic model. In this way, a
sequence family with known ‘evolution’ is obtained, so the ‘correct’ multiple
alignment of these sequences is known. Note that these alignments contain mis-
matches as well as gaps. We inserted families of conserved motifs created by
ROSE at randomly chosen positions into non-related random sequences. In this
way, we produced three reference sets, ref1, ref2 and ref3, of artificial protein
sequences. Sequences from ref1, ref2 and ref3 contain one, two and three mo-
tifs, respectively. Each reference set consists of 60 sequence families, 30 of which
contain ROSE motifs of length 30 while the remaining 30 families contain motifs
of length 60. Twenty sequence families in each of the reference sets consist of 4
sequences each, another 20 families consist of 8 sequences while the remaining
20 families consist of 16 sequences. In ref1, random sequences of length 400 are
added to the conserved ROSE motif while for ref2 and ref3, random sequences
of length 500 are added.

For both BAliBASE and IRMBASE, we used two different criteria to evaluate
multi-alignment software tools. We used the sum-of-pair score, where the per-
centage of correctly aligned pairs of residues is taken as a quality measure for
alignments. In addition, we used the column score where the percentage of cor-
rect columns in an alignment is the criterion for alignment quality. Both scoring
schemes were restricted to core blocks within the reference sequences where the
‘true’ alignment is known. For IRMBASE, the core blocks are defined as the
conserved ROSE motifs. In general, the sum-of-pairs score is more appropri-
ate than the column score because this latter score ignores all correctly aligned
residues in an alignment column if a single residue in this column is mis-aligned.
However, there are situations where the column score is more meaningful than
the sum-of-pairs score. This is the case, for example, for BAliBASE reference
sets containing ‘orphan sequences’.

To compare the output of different programs to the respective benchmark align-
ments, we used C. Notredame’s program aln compare [60]. Tables 3.1 and
3.2 summarise the performance of DIALIGN-T, DIALIGN 2.2, CLUSTAL W,
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Method ref1 ref2 ref3 Total

DIALIGN-T 94.07% 92.69% 92.68% 93.14%

DIALIGN 2.2 92.26% 92.72% 91.87% 92.28%

T-COFFEE 1.37 91.18% 85.61% 87.81% 88.20%

PROBCONS 1.09 66.74% 68.30% 77.92% 70.98%

POA V2 90.26% 43.61% 36.85% 56.91%

MUSCLE 3.5 36.16% 37.84% 52.30% 42.10%

CLUSTAL W 1.83 8.02% 12.69% 20.16% 13.62%

Tab. 3.1: Performance of seven protein multi-alignment programs on the IRMBASE
1.0 database of benchmark alignments. Percentage values are sum-of-
pairs scores, i.e. the percentage of correctly aligned residue pairs of ROSE
motifs contained in the IRMBASE sequence families.

MUSCLE, PROBCONS, T-COFFEE and POA on IRMBASE while Tables 3.3
and 3.4 show their accuracy on BAliBASE. In addition, Tables 3.5, 3.6, 3.7
and 3.8 contain the percentage of sequence sets where DIALIGN-T is outper-
formed by the other programs that we tested. Tables 3.1 and 3.2 show that, on
locally related sequence families, DIALIGN-T is significantly superior to the al-
gorithms DIALIGN 2.2, T-COFFEE, MUSCLE, POA and CLUSTAL W. Only
DIALIGN-T, DIALIGN 2.2, T-COFFEE and (in a very reduced way) PROB-
CONS produced reasonable results on IRMBASE 1.0. However, DIALIGN-T
is the fastest and most accurate amongst all methods that we looked at. We
would like to emphasize that the performance of multi-alignment methods on
simulated data only roughly reflects their performance on real data. Neverthe-
less, in the absence of real-world benchmark data for local multiple alignment,
the results on IRMBASE can give us an idea of how different algorithms deal
with locally conserved motifs.

For globally related sequence families, Tables 3.3 and 3.4 show that, on average,
DIALIGN-T outperforms DIALIGN 2.2 and POA on BAliBASE 2.1 while its
performance is similar to CLUSTAL W. By contrast, the previous version DI-
ALIGN 2.2 is clearly outperformed by CLUSTAL W on these data sets. Finally,
DIALIGN-T is still outperformed on many of the BAliBASE test sequences by
T-COFFEE, MUSCLE and PROBCONS; the latter-most program is currently
the best-performing multiple aligner on BAliBASE. The superiority of our new
approach compared to DIALIGN 2.2 and POA is clearly statistically significant
according to the Wilcoxon Matched Pairs Signed Rank Test [87]. On BAl-
iBASE reference sets ref1, ref2 and ref3, where sequences contain only small
insertions and deletions, the performance of DIALIGN-T is roughly comparable
to CLUSTAL W, but still significantly worse than T-COFFEE, PROBCONS
or MUSCLE. Our program is statistically significantly superior or equal to all
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Method ref1 ref2 ref3 Total

DIALIGN-T 82.28% 78.36% 79.71% 80.12%

DIALIGN 2.2 79.46% 77.82% 78.24% 78.51%

T-COFFEE 1.37 75.35% 66.60% 69.21% 70.19%

PROBCONS 1.09 33.13% 37.95% 51.26% 40.78%

POA V2 73.00% 12.46% 07.45% 30.97%

MUSCLE 3.5 09.41% 10.89% 22.37% 14.22%

CLUSTAL W 1.83 00.00% 00.83% 05.14% 01.92%

Tab. 3.2: Performance of seven protein multi-alignment programs on IRMBASE
using column scores as the quality criterion. Thus, percentage values
denote the percentage of correct alignment columns of the ROSE motifs
in IRMBASE.

Method ref1 ref2 ref3 ref4 ref5 Total

DIALIGN-T 82.76% 91.28% 75.34% 86.43% 93.30% 84.69%

DIALIGN 2.2 81.40% 89.56% 68.93% 91.24% 94.14% 83.59%

T-COFFEE 1.37 84.67% 93.24% 80.32% 75.80% 96.20% 85.95%

PROBCONS 1.09 90.37% 94.61% 84.34% 89.20% 98.07% 91.11%

POA V2 74.66% 88.32% 63.14% 82.62% 76.71% 76.76%

MUSCLE 3.5 88.25% 93.59% 82.36% 85.62% 97.80% 89.21%

CLUSTAL W 1.83 86.43% 93.22% 75.79% 81.09% 86.10% 86.15%

Tab. 3.3: Performance of seven protein multi-alignment programs on the BAliBASE
benchmark database using sum-of-pairs scores as the evaluation criterion.
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Method ref1 ref2 ref3 ref4 ref5 Total

DIALIGN-T 73.22% 43.43% 44.69% 66.13% 77.05% 65.65%

DIALIGN 2.2 71.49% 37.42% 35.03% 81.88% 84.47% 64.82%

T-COFFEE 1.37 75.32% 53.44% 52.20% 45.09% 86.96% 68.20%

PROBCONS 1.09 83.21% 59.76% 61.34% 71.09% 91.86% 77.23%

POA V2 63.21% 39.02% 25.57% 57.22% 47.18% 54.18%

MUSCLE 3.5 80.79% 56.37% 56.74% 62.65% 91.57% 74.13%

CLUSTAL W 1.83 78.39% 56.24% 48.87% 50.44% 63.89% 68.48%

Tab. 3.4: Performance of seven protein multi-alignment programs on BAliBASE
using column scores.

Method ref1 ref2 ref3 Total

DIALIGN 2.2 20.00%+ 23.33%0 23.33%+ 22.22%+

T-COFFEE 1.37 40.00%0 31.67%+ 41.67%+ 37.78%+

PROBCONS 1.09 20.00%+ 15.00%+ 21.67%+ 18.89%+

POA V2 16.67%+ 0.00%+ 0.00%+ 5.55%+

MUSCLE 3.5 5.00%+ 5.00%+ 0.00%+ 3.33%+

CLUSTAL W 1.83 0.00%+ 0.00%0 0.00%0 0.0%+

Tab. 3.5: Percentage of sequence families where DIALIGN-T is outperformed on
IRMBASE 1.0 by alternative methods according to the sum-of-pairs score.
The symbol + denotes statistically significant superiority, − statistically
significant inferiority and 0 non-significant superiority or inferiority of
DIALIGN-T. Significance has been calculated according to the Wilcoxon
Matched Pairs Signed Rank Test with p ≤ 0.05.
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Method ref1 ref2 ref3 Total

DIALIGN 2.2 11.67%+ 21.67%0 23.33%+ 18.89%+

T-COFFEE 1.37 36.67%0 30.00%+ 26.67%+ 31.11%+

PROBCONS 1.09 18.33%+ 01.67%+ 16.67%+ 16.67%+

POA V2 15.00%+ 00.00%+ 00.00%+ 05.00%+

MUSCLE 3.5 05.00%+ 05.00%+ 00.00%+ 03.33%+

CLUSTAL W 1.83 00.00%+ 00.00%+ 00.00%+ 00.00%+

Tab. 3.6: Percentage of sequence families where DIALIGN-T is outperformed on
IRMBASE 1.0 by other methods according to the column score. Notation
is as in Table 3.5.

Method ref1 ref2 ref3 ref4 ref5 Total

DIALIGN 2.2 28.05%+ 21.74%+ 16.67%+ 16.67%0 41.67%0 26.24%+

T-COFFEE 1.37 58.54%− 86.96%− 75.00%− 25.00%0 50.00%0 60.99%−

PROBCONS 1.09 71.95%− 82.61%− 100.00%− 33.33%0 75.00%− 80.14%−

POA V2 20.73%+ 34.78%+ 16.67%+ 33.33%0 0.00%+ 21.99%+

MUSCLE 3.5 71.95%− 73.91%− 83.33%− 25.00%0 75.00%− 69.50%−

CLUSTAL W 1.83 53.66%− 56.52%0 58.33%0 16.67%0 8.33%+ 47.52%0

Tab. 3.7: Percentage of sequence families where DIALIGN-T is outperformed on
BAliBASE 2.1 by other methods according to the sum-of-pairs score.
Notation is as in Table 3.5.
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Method ref1 ref2 ref3 ref4 ref5 Total

DIALIGN 2.2 26.83%+ 13.04%+ 16.67%+ 16.67%0 50.00%0 24.82%+

T-COFFEE 1.37 56.10%− 73.91%− 66.67%0 25.00%0 50.00%0 56.74%−

PROBCONS 1.09 80.49%− 82.61%− 75.00%− 25.00%0 66.67%− 74.47%−

POA V2 20.73%+ 26.09%0 08.33%+ 16.67%0 00.00%+ 18.44%+

MUSCLE 3.5 73.17%− 73.91%− 83.33%− 16.67%0 66.67%− 68.79%−

CLUSTAL W 1.83 52.44%− 69.57%− 50.00%0 16.67%0 08.33%+ 48.23%0

Tab. 3.8: Percentage of sequence families where DIALIGN-T is outperformed on
BAliBASE 2.1 by other methods according to the column score. Notation
as in Table 3.5.

tested methods, except MUSCLE and PROBCONS, on the sequence sets with
larger insertions or deletions (ref4 and ref5 of BAliBASE).

Overall, the relative performance of the different alignment tools is similar under
the two alternative evaluation criteria that we used (sum-of-pairs and column
scores) – although, the absolute values of the column scores are, of course, lower
than the sum-of-pairs scores. Maybe surprisingly, both versions of DIALIGN
are superior to all other programs in our study on the locally related sequences
from IRMBASE, while on the other hand, DIALIGN was outperformed by al-
ternative methods on reference sets 4 and 5 of BAliBASE. These sequence sets
are also considered locally related because they contain larger insertions and
deletions than other BAliBASE sequences. The reason for this apparent dis-
crepancy is that the ref4 and ref5 sequence sets in BAliBASE are not truly
locally related, but they still show some similarity outside the conserved core
blocks. In IRMBASE, by contrast, sequence similarity is strictly limited to the
conserved motifs.

Since we re-implemented the DIALIGN algorithm from scratch and used a va-
riety of novel program features, it is not possible to tell exactly to what ex-
tent each of these features contributed to the improved program performance.
Systematic test runs with varying parameters indicate, however, that the su-
periority of DIALIGN-T compared to the previous program DIALGIN 2.2 on
locally as well as on globaly related sequence families is mainly due to the pro-
gram features explained in section 3. The improvement that we achieved with
these heuristics is statistically significant. The features explained in section 4
also improved the program’s accuracy, though here the improvement was not
statistically significant.

Table 3.9 shows the running time for the seven programs that we tested in our
study. DIALIGN-T is around 6 % slower than the previous implementation DI-
ALIGN 2.2 on BAliBASE 2.1, but on IRMBASE, DIALIGN-T is approximately
30 % faster than DIALIGN 2.2. In DIALIGN, the CPU time for multiple align-
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Method Average runtime Average runtime
on IRMBASE 1.0 on BAliBASE 2.1

DIALIGN-T 2.36 1.38

DIALIGN 2.2 3.33 1.30

T-COFFEE 1.37 27.54 7.64

PROBCONS 1.09 12.37 2.66

POA V2 1.44 0.58

MUSCLE 3.5 9.37 0.60

CLUSTAL W 1.83 1.41 0.47

Tab. 3.9: Average running time (in seconds) per multiple alignment for the 180
sequence families of IRMBASE and for 141 sequence families in BAli-
BASE 2.1. Program runs were performed on a Linux workstation (RedHat
8.0) with a 3.2 GHz Pentium 4 processor and 2 GB Ram.

ment is mainly spent on pairwise alignments that are performed before frag-
ments are included into the multiple alignment. As explained in section 3.1.3,
the runtime for pairwise alignment is roughly proportional to the number of
fragments that are considered for alignment and, for sequences of length l1 and
l2 and a maximum fragment length M , up to l1 × l2 ×M fragments are to be
considered. In our program, DIALIGN-T, the maximum fragment length M is
increased to 100 compared to 40 for the original DIALIGN program. Neverthe-
less, the program running time is only slightly increased for the globally related
protein families from BAliBASE and considerably decreased for the locally con-
served sequences from IRMBASE. This is due to the heuristic stop criterion for
fragments introduced in section 3.1.3. The slowest program in our comparison
was T-COFFEE, which is more than eleven times slower than DIALIGN-T on
IRMBASE and more than five times slower on BAliBASE. POA was the fastest
method. On BAliBASE, the program PROBCONS produces the best results in
terms of alignment accuracy. The program is, however, the second slowest pro-
gram after T-COFFEE on both BAliBASE and IRMBASE. MUSCLE provides
so far the best tradeoff between running time and quality on globally related
sequence families, but when it comes to local alignments both running time and
alignment quality decrease drastically. The memory consumption of our method
has been improved compared to DIALIGN 2.2.

3.4 Conclusion

Initially, it should be mentioned that the benchmarks were conducted in the
year 2005 and thus already reach a few years back. In chapter 6 we present the
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benchmark results under present conditions with respect to recent benchmark
databases and the most recent available versions of the program whereby we
observe that there is no substantial difference in the qualitative and performance
results on the different benchmark database versions and alignment program
versions when comparing those ’old’ results with the new ones (see chapter 6).
Having said that, the qualitative results in this chapter still hold for the most
recent versions of the benchmark databases (i.e. BAliBASE and IRMBASE)
and the different programs.

With the development of DIALIGN-T, we significantly improved the segment-
based approach to multiple protein alignment on both local and global bench-
mark data. The new heuristics that we introduced, generally favour consistent
groups of low-scoring fragments over isolated higher-scoring fragments. We thus
improved the program performance on globally related sequence sets where the
segment approach was previously inferior to programs such as CLUSTAL W
and POA. On these data sets, our new method is significantly more accurate
but only slightly slower than DIALIGN 2.2. On BAliBASE, the performance
of our approach is now comparable to the popular global alignment program
CLUSTAL W. For locally related protein families, DIALIGN-T performs sig-
nificantly better and is also considerably faster than the previous DIALIGN
2.2, which was, till then, the best available method for locally related protein
families. In addition to these improvements, it is now possible to use arbi-
trary user-defined substitution matrices, which was not possible for the original
DIALIGN program. To further enhance the performance of our method, we
use a combination of greedy and progressive strategies which has become the
successor program, DIALIGN-TX; see chapter 6.

Finally, there are some general remarks on parameter tuning and program eval-
uation in multiple sequence alignment. As mentioned above, we identified suit-
able values for our parameters T and L, based on test runs with BAliBASE, and
we assume that this is how the program parameters for most multiple protein
aligners have been tuned during recent years. Therefore, the question has been
raised whether current protein alignment programs are overfitted with respect to
BAliBASE. Parameter overfitting is a serious problem for many bioinformatics
algorithms. For example, many gene-prediction programs have a large number
of parameters to adjust, so it is easy to tune these programs to perform well
on a given set of training data. For such programs it is, therefore, absolutely
necessary to clearly separate training data that are used for parameter tuning
from test data that are used to evaluate the program. The situation is totally
different in multiple alignment. Most multi-aligners have only a very small num-
ber of parameters to adjust. For our algorithm, for example, the only important
parameters to tune are T and L. BAliBASE, on the other hand, comprises a
large variety of test sequences for global multiple alignment. It consists of 139
sequence sets, each of which contains several core blocks, so there is a total of
several hundred core blocks that are used to test alignment quality. It is ab-
solutely impossible to tune a small number of parameters in such a way that
they work well only on BAliBASE but not on other globally related protein
sequences. Thus, if an alignment program performs well on BAliBASE, one
can safely assume that it also works well on other globally related protein se-
quences, even if BAliBASE has been used to adjust its parameter values. In
fact, it turned out that the parameters that we tuned on BAliBASE work well
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not only for these global test data but also on the totally different artificial local
test sequences from IRMBASE.

The real problem with BAliBASE is its heavy bias towards globally related
sequence sets. This does not only refer to the selection of protein families
that are included into BAliBASE. As mentioned above, many protein sequences
in the current release of BAliBASE are not real-world protein sequences, but
have been artificially truncated by the developers of BAliBASE in order to
make them globally related. With these non-realistic global test sequences,
the BAliBASE authors carried out a systematic program evaluation and – not
surprisingly – found out that global alignment programs generally performed
better than local methods [79]. The picture could have been totally different
if realistic full-length proteins had been used instead of truncated sequences.
To counterbalance the bias towards global test sets in BAliBASE, we created
an additional benchmark data set consisting of simulated conserved domains
embedded in non-related random sequences. The performance of alignment
programs on artificial sequences should not be over-estimated as the design of
such datasets is necessarily somewhat arbitrary. Nevertheless, our test runs on
these simulated data give a rough impression of how different alignment methods
perform on locally related data sets. In [30], it has been shown that DIALIGN-
T is one of the best performing methods on amino acid sequences that differed
only by short regions of deleted residues.

Finally, it should be mentioned that the performance of multiple-protein align-
ers under varying conditions is possible, for example by using, the full-length
BAliBASE sequences or other benchmark databases such as SABmark [82, 83],
Prefab [25] or Oxbench [64].
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As described in chapter 2, the multiple sequence alignment problem can be tack-
led in various ways, but almost all successful algorithms are based upon con-
structing pairwise alignments in the initial step. When looking at the different
algorithmic approaches in general and at the segment-based approach in partic-
ular one immediately faces two crucial sub-problems: the first one is to define an
appropriate objective function, i.e. a scoring scheme that assesses the relevance
of possible sequence similarities. The second problem is to design optimisation
algorithms for optimal or near-optimal alignment in the sense of the underlying
objective function. Here, efficiency in terms of computational complexity is very
important since input data from real-world biological studies tends to be large.
Most standard algorithms for multiple sequence alignment are based on an ob-
jective function that sums substitution scores for aligned amino acid residues
and subtracts a penalty for each gap in an alignment [59]. Finding an optimal
multiple-sequence alignment under this scoring scheme is already NP-complete
as shown in subsection 2.2.2; as a result, all algorithmic approaches to multiple
alignment are heuristics. Typically, they start off with pairwise alignments that
can be computed very efficiently w.r.t. time. Most standard methods follow
a progressive scheme by traversing a guide tree, thereby successively aligning
pairs of sequences or sub-alignments by treating each sub-alignment as a se-
quence [40, 77, 60, 25, 19, 42]. There is strong evidence that the information
contained in the initial pairwise alignments is already biologically valuable; see
chapters 3, 6 and [74, 75, 60, 42]. While previously published versions of DI-
ALIGN [74, 75, 53, 52] rely on time-efficient greedy heuristics that can lead
to strongly sub-optimal alignments, our goal in this chapter and the next is
to calculate optimal or near-optimal multiple alignments from pairwise local
similarities in order to derive new efficient heuristics that replace the greedy
assembly of fragments. Obviously, the quality of the given input similarities
also influences the alignment quality to a great extent but we will not elaborate
on the computation of pairwise alignments or other possible types of pairwise
input data that may be useful as input for the algorithmic approaches presented
here.

In this chapter we discuss the general problem of constructing multiple sequence
alignments from local pairwise similarities, which is NP-complete in very simple
cases. We will look at the intrinsic complexity in more detail by giving a modi-
fied version of the k-dimensional dynamic programming algorithm presented in
subsection 2.2.2 that has running time O(4kn2) and hence proves the problem
of constructing the multiple sequence alignment from consistent pairwise local
alignments to be fixed parameter tractable (FPT) in the number of sequences k
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having a maximum sequence length of n. The class FPT [21] contains all prob-
lems that are computable in a time that is polynomial in the input size n and
arbitrarily (mostly exponentially) large in another (hopefully small) parameter
k.

Furthermore, we will present a plane-sweep approach that also solves the prob-
lem exactly, however, with a time bound ofO(2k(k−1)Cw ·n3+n4) where n denotes
the input size and where Cw denotes the maximum horizontal spread of all con-
flicts, i.e. local pairwise similarities that cannot be included simultaneously in
one multiple alignment. This algorithm, in contrast, has the advantage that it
runs in polynomial time in the case the number of conflicts is strictly bounded,
i.e. the exponential factor practically only comes into play when many simul-
taneous conflicts arise and thus makes the algorithm more suitable for solving
the problem exactly for closely related input sequences compared to the modi-
fied dynamic programming. Additionally, in the next chapter the plane-sweep
approach will motivate us to derive a more general algorithmic framework for
developing systematical heuristics to solve the problem of constructing multiple
sequence alignments from a given set of pairwise similarities specific to various
problem domains.

4.1 The maximum fMSA-subgraph problem

In this chapter, we consider the following optimization problem. We are given
a set of input sequences and a set F of local gap-free alignments of pairs of our
input sequences; such alignments are called fragments or fragment alignments.
A fragment f , therefore, consists of a pair of equal-length contiguous substrings
or segments of two of the input sequences.

Fig. 4.1: A fragment as a gap-free alignment between two segments of length l
between the sequences si and sj starting at the positions x and y, respec-
tively.

Given a weight function w : F → R+
0 , we are looking for a consistent set of frag-

ments F ′ with maximum total weight such that each f ′ ∈ F ′ is a sub-fragment
of an f ∈ F ; sub-fragment means that f ′ consists of a subset of consecutive
positions of f . Furthermore, consistency means that all alignments contained
in F ′ can be simultaneously integrated into one single multiple alignment of the
input sequences.

In this chapter, we make two additional assumptions:
Assumption 1: Firstly, we assume that any two segments belonging to frag-
ments from the set F are either disjoint or coincide. In the situation of the
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DIALIGN algorithms, we can fulfil this condition by appropriately chopping
the fragments into multiple subfragments; by doing that we then would have
to deal with an appropriate weighting of those sub-fragments since the original
objective function is not linear in the sense that the weight sum of two sub-
fragments f1 and f2 of a fragment f is usually lower than the weight of the
original fragment f . Another issue that rises when chopping the fragments F
of DIALIGN according to this assumption is that the number of fragments to
consider may grow to O(k · |F|) whereby k is the number of sequences. This is
because each endpoint of an original fragment in F in sequence i splits at most
one fragment into two sub-fragments in every pair of layers (i, j) with 1 ≤ j ≤ k
and j 6= i. Later on, in chapter 5, we will relax this assumption using a more
generalized model.

Fig. 4.2: Two fragments f1 and f2 that do partially overlap in the middle sequence
(left) are divided into four subfragments (right) f ′1, . . . , f

′
4 such that the

assumption that fragments either coincide or are disjoint on each sequence
is being met.

We now want to associate the problem of finding an optimum subset of fragments
such that all can be realized in a consistent way with a layered graph drawing
problem.

Using the above assumption, we can identify each segment of a fragment with
a node and the fragment itself as a weighted edge between those nodes having
the weight score from the objective function as its edge weight. Those nodes
are then placed on layers that are in a straightforward correspondence to the
input sequences. This layered graph representation will help us to investigate
the problem. Since our aim is to build a consistent multiple sequence alignment
from a given set of input sequences, we now look at how this problem trans-
lates to the graph representation. We observe that a subset of fragments that
constitutes a valid multiple sequence alignment depicts the segments of each
fragment strictly overhead, i.e. each residue pair of the fragment has the same
x-coordinate in the output. Hence a subset of fragments admits a valid multiple
sequence alignment if and only if the corresponding subgraph of the layered
graph according to the above association allows a drawing such that each edge
can be drawn as a vertical straight line and the order of the nodes on each layer
adheres to the order of the corresponding segments in each sequence (see Figure
4.3).

Assumption 2: Another assumption we make in our model is that for any two
fragments f1, f2 involving the same pair of sequences, either both segments of
f1 are strictly to the left of the segments of f2 in the respective sequences, or
vice versa. In other words, we assume that the restrictions of F to every pair

60



4. CONSTRUCTING MULTIPLE SEQUENCE ALIGNMENTS FROM
PAIRWISE LOCAL SIMILARITIES

Fig. 4.3: The fragment representation of the problem (left) is translated to the
graph representation such that a valid multiple sequence alignment can
be obtained iff the graph representation allows a drawing such that every
edge is drawn as a vertical straight line by respecting the order of the
nodes on each layer as given by the fragment representation.

of input sequences is consistent in the sense that they all can be realized as a
pairwise alignment and thus this is also called the pairwise consistency condition
or shortly PWCC.

Later on in this and the subsequent chapter we will explain how to deal with
situations when the above assumptions are relaxed.

Formally, we define the fragment MSA instance (or shortly fMSA) as follows:

Definition 4.1
An fMSA instance M = (G = (V,E), k, w, L = (l1, l2)) is given by:

1. a graph G = (V,E)

2. k > 1 pairwise disjoint horizontal layers in the 2-dimensional plane

3. a real-valued weight function w that assigns a weight w(e) > 0 to every
edge e ∈ E

4. an injective function L = (l1, l2) that assigns to each node v the two
integers L(v) = (l1(v), l2(v)) whereby 1 ≤ l1(v) ≤ k and l2(v) > 0

such that the following conditions hold:

1. For each edge e = (v, w) ∈ E the inequality l1(v) 6= l1(w) is true.

2. For any two edges (v1, w1) and (v2, w2) with l1(v1) = l1(v2), l1(w1) =
l1(w2) either

(a) l2(v1) < l2(v2) and l2(w1) < l2(w2) or

(b) l2(v1) > l2(v2) and l2(w1) > l2(w2) holds.

The latter is also referred to as the pairwise consistency condition or
PWCC.
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We abbreviate the size |M | of an fMSA instance by n and for all pairs of i and
j between 1 and k we denote the subset of all edges that connect the nodes on
layer i and layer j by Ei,j , i.e. it consists of all e = (v, w) ∈ E with l1(v) = i
and l1(w) = j. The function L = (l1, l2) can be regarded as a function that
embeds each node v ∈ V into the 2-dimensional plane by assigning a layer l1(v)
and an ordering number l2(v) to all nodes on this layer.

The problem of finding a maximum consistent subset of fragments then trans-
lates to the fMSA-subgraph problem:

Definition 4.2
Given an fMSA instance M = (G, k,w, l1, l2), the maximum fMSA-subgraph
problem of M is given by: Find a subset E′ ⊂ E of edges such that the graph
(V,E′) can be drawn in the two-dimensional plane and the following conditions
are met:

1. Any two nodes v and w with l1(v) = l1(w) have the same y-coordinate
and the x-coordinate of v is less than that of w iff l2(v) < l2(w)

2. Any two nodes v and w with l1(v) 6= l1(w) have different y-coordinates

3. all edges are drawn as vertical straight lines.

We call such a drawing a multiple sequence drawing and we call GE′ = (V,E′)
an fMSA-subgraph. If the sum

W (E′) :=
∑
e∈E′

w(e)

is maximal under the above conditions we call GE′ a maximum fMSA-subgraph.

Since all edges are drawn as vertical straight lines we immediately conclude:

Lemma 4.1
The drawing of an fMSA-subgraphs is invariant under the vertical ordering of
the layers, which makes it well-defined. In the same vein, we see that for every
fMSA-subgraph there is exactly one drawing modulo application of homeomor-
phisms and re-ordering of the layers.

4.2 NP-Completeness

Though it has been shown in [44] that finding a maximim fMSA-subgraph is
already NP-complete, we will provide, using a different representation of the
problem, an alternative proof and elaborate more on the computational com-
plexity of finding maximum fMSA-subgraphs. We will show in detail that even
very simple fMSA instances already carry the intrinsic complexity.

Definition 4.3
An fMSA instance M = (G, k,w, l1, l2) is called simple if for all e ∈ E w(e) = 1
and for each pair 1 ≤ i, j ≤ k there exists at most one fragment that connects
sequences i and j.

62



4. CONSTRUCTING MULTIPLE SEQUENCE ALIGNMENTS FROM
PAIRWISE LOCAL SIMILARITIES

The corresponding decision problem is now captured by the following definition.

Definition 4.4
The decision problem of an fMSA instance M = (G = V,E), k, w, l1, l2) is given
by the pair (M,R) where R is a positive number and the question: Is there an
fMSA-subgraph E′ of E of the fMSA instance M such that

W (E′) =
∑
e∈E′

w(e) > R.

We call this the ‘Maximum fMSA-Subgraph Problem’ or shortly MMSP.

Theorem 4.1
The Maximum fMSA-Subgraph Problem (MMSP) is NP-complete even for the
class of simple fMSA instances.

As already mentioned, the above formulation of the maximum fMSA-subgraph
problem for instances that do not necessarily meet the PWCC is equivalent to
the maximum weight trace formulation used in [44] where it is shown that find-
ing a maximum fMSA-subgraph is NP-complete even in the cases where every
sequence contains at most two characters and there is at most one fragment
between each pair of sequences. However, we will furnish a new alternative
proof by reducing the problem of determining a maximum planar subgraph of
the 2-layer drawing problem, where the order on the upper layer is fixed, to
our problem. Eades and Whitesides [24] have shown that this problem, called
2L-MSP-1L-fix, is NP-hard even for the case in which the upper layer contains
only vertices of degree one while the lower layer has vertices of degree one or two.

Proof of Theorem 4.1: Let M = (G = (V,E), k, w, l1, l2) be an fMSA in-
stance. By guessing a maximum subset E′ ⊂ E and using the polynomial data
structure of section 3.2 and Theorem 3.1 to determine whether it forms a valid
fMSA-subgraph, we see that MMSP is in NP. Thus it remains to show that
finding a maximum fMSA-subgraph is also NP-hard.

We next describe how to transform a 2L-MSP-1L-fix problem instance P into
an appropriate simple MMSP-problem instance P ′ in polynomial time and size.
Thereafter we will show that a solution for P ′ induces an optimal solution for
P and conclude that MMSP is NP-complete. The proof is given in two steps:
First we allow weighted edges. Then we show how to modify the construction
such that only uniformly weighted edges are present.

Let the 2L-MSP-1L-fix problem P be given by two sets U = u1, ...ul and
B = b1, ...bn of vertices where U is ordered by x-coordinates while B is not.
The edges connect vertices from U and B in a bipartite way such that the de-
gree of all u ∈ U is restricted to be one, while the degree of every b ∈ B is either
one or two.

1. The weighted case: For the upper layer U , we introduce a single layer Lu
containing the vertices u1, ..., ul ordered from left to right according to the order
given by the 2L-MSP-1L-problem. We simply identify the names for the vertices
from the same set of the two problems since the correspondence is immediate.
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The representation of the lower layer B is more difficult. Every vertex bi ∈ B
with degree 2 connected to vertices us and ut is simulated by the two vertices
bri, bli and edges (bli, us) and (ut, bri) where, in this case, we assume us to be
located to the left of ut. Since we demand the problem to be simple, we need
to place the vertices bri, bli in two different unique layers lbri and lbli . To keep
bli left of bri we insert a vertical dummy edge called separation edge ei between
the two new layers separating bli and bri such that bli is situated left and bri
situated right of ei. With the appropriate choice y for its weight, we can prevent
that the two vertices from changing their order in the optimal solution, since
ei then belongs to any optimal solution. For nodes bi ∈ B with degree 1 we
proceed analogously, but we omit the edge (br, ut).

Now we consider any two vertices bi and bj from the lower layer of the original
2L-MSP-1L problem. In the MMSP, the order of bi and bj should not be fixed.
So we consider the two pairs of layers assigned to bri and bli as well as to brj and
blj . We insert, in total, four dummy nodes clij to the left of bli, crij to the right
of bri as well as clji to the left of blj and crji to the right of brj . The four nodes
are connected by a pair of so-called crossing edges (clij , crji) and (crij , clji).
Clearly, at least one of the crossing edges is excluded in any solution of the fMSA-
subgraph problem. Adjusting the weight z of the crossing edges accordingly, we
can ensure that exactly one edge out of each pair of crossing edges is contained
in any optimal solution of the fMSA-subgraph problem. It is obvious that each
crossing edge (clij , crji) drawn vertically indicates the horizontal order of bi and
bj . On the opposite site, for a fixed total order of the vertices in b, exactly one
out of every pair of crossing edges can be drawn vertically.

Choosing the weights: We choose y = (2n)4 and z = (2n)2, where n = |B|,
which implies O(n) = O(|P |).

Fig. 4.4: In an optimal solution, the separation edges ei and ej are all realized,
while for each pair of indices i, j, exactly one of the crossing edges is
realized. This ensures that the optimal solution corresponds to a valid
layout.

Correctness: By construction, each solution of the MMSP especially assigns
x-coordinates to the vertices and so it fixes an order of the vertices bri, bli for

64



4. CONSTRUCTING MULTIPLE SEQUENCE ALIGNMENTS FROM
PAIRWISE LOCAL SIMILARITIES

all i.

Observation 1: All separating edges must exist in any optimal solution. Each
is contributing weight (2n)4 to the solution. We are not allowed to omit one of
the separating edges with weight (2n)4, since it would mean a larger loss than
the sum of the weights of all other edges having a sum of weight bounded by
4n3 + 2n.

Observation 2: For any two pairs of nodes bi and bj , there is a conflict formed
by the two crossing edges and the separating edges. By combining this with
Observation 1 we see that at least one of the crossing edges must be deleted for
each pair of nodes bi and bj and therefore a minimum of n · (n− 1)/2 crossing
edges have to be removed. However, we immediately get a valid solution by
fixing an arbitrary order of the bi’s and removing all edges of weight 1 (that
are neither a separating edge nor a crossing edge) that have a total weight of
n < z = (2n)2. Such a solution would obviously embrace exactly n · (n − 1)/2
crossing edges. Combining this with the choice z = (2n)2, we see that any
optimal solution keeps exactly one of the crossing edges for each pair of bi
and bj , which ensures that all pairs of nodes bri, bli and brj , blj are properly
separated in an unique order.

Hence, we conclude that the sum of the weight of the edges is

n · (2n)4 + n(n− 1)/2 · (2n)2 +R

in any optimum solution. The first term describes the n separating edges of
weight y = (2n)4, the second one sums the n(n−1)/2 remaining crossing edges,
each of weight y = (2n)2, and R is the number of edges of weight 1 that repre-
sent the original edges from the 2L-MSP-1L-problem and hence is bounded by
2n. The sum of weights is thereby fixed in the first two terms for all optimum
solutions and therefore any optimum solution of the MMSP with R edges of
weight 1 gives us a solution of the 2L-MSP-1L-problem that is comprised of
exactly the same R edges. Furthermore, by construction, any solution of the
2L-MSP-1L-problem yields an fMSA-subgraph that realizes the same edges as
the original edges in the 2L-MSP-1L-problem and induces the same ordering of
the nodes in B. Altogether we conclude the existence of a one-to-one correspon-
dence of the optimum solutions of both problems, which finishes the proof of
the weighted case.

2. The unweighted case: We now show how to simulate the edges with
weights greater than one. Let e = (v, w) be an edge of weight W where v ∈ L
and w ∈ L′ in the fMSA instance constructed above. For this edge, we introduce
W − 1 extra layers Li for all 1 ≤ i ≤ W . Then we insert vertices vi on every
layer Li and connect vi to vj with a unit-weight edge if j > i. Furthermore,
we insert edges (v, vi) and (w, vi) for all i, also with weight 1. We call this
construction a bundle, which replaces the original edge e.

Note that the bundle contains W (W + 1)/2 edges and the degree of each edge
within the bundle subgraph is W . To destroy an alignment of vertices from the
same bundle means to destroy the edge connectivity of the bundle, which means
the removal of at least W edges. This property now has the same effect as the
weight W on the original single edge.
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There are two kinds of edges that yield bundles: the crossing and the sepa-
rating edges in the fMSA instance. We replace all those edges by bundles of
corresponding sizes according to the above construction, whereby we now choose
a different weight y = (2n)7 for the separation edges to compensate for the much
higher overall number of edges.

As before, a solution of the simple MMSP problem keeps all the bundles of
the separation edges complete, since destruction of an alignment would mean a
loss of weight (2n)7, which is more than the total weight of all crossing bundles
and ‘ordinary’ edges. Analogous to the above, we argue that from each pair of
crossing bundles, exactly one bundle remains complete and the other is destroyed
by the removal of (2n)2 edges.

Hence the optimal solution for the simple MMSP problem with uniform weights
has total weight of

n · (2n)7((2n)7 + 1)/2 + n(n− 1)/2 · (2n)2((2n)2 + 1)/2
+n(n− 1)/2 · ((2n)2((2n)2 + 1)/2

−(2n)2)
+R.

The first term denotes the total weight of the separation bundles, the second
is the total weight of the non-destroyed crossing bundles and the third is the
total weight of the destroyed crossing bundles. Furthermore, as before, R is
the number of edges of weight 1 that represent the original edges from the 2L-
MSP-1L-problem P with bottom layer B. The sum of the first three terms is
fixed for any problem of size |B| = O(|P |) and therefore the R ‘ordinary’ edges
directly describe a planar solution of the 2L-MSP-1L-problem and hence the
maximization of its total weight. Analogous to the weighted case, we observe
a one-to-one correspondence between the optimum solutions of both problems,
which concludes the construction and finalizes the NP-completeness proof.

4.3 Efficient dynamic programming

We recall from subsection 2.2.2 the k-dimensional dynamic programming al-
gorithm for solving the general multiple sequence alignment problem which
has running time O(2knk) and is based on a k-dimensional matrix of size nk,
whereby n denotes the length of the longest sequence. We can easily use this
algorithm for our optimization problem of finding an optimum alignment of a
given fMSA instance M = (V,E, k, w, l1, l2) as follows: We again identify each
layer with a sequence and each node as a unique single character in this sequence
ordered by l2. The similarity score for each pair of characters is then given by
the weight function w if there exists a corresponding edge or −∞ otherwise.

Since for all 1 ≤ i, j ≤ k with i 6= j the set Ei,j of edges between layer i
and j comes from a valid pairwise alignment (due to the pairwise consistency
condition) we have for any position x in sequence i and any other sequence j 6= i
at most one edge in E that contains this node, whereas in the general multiple
sequence alignment problem there may be n such edges. We will now exploit
this fact to optimize the dynamic programming algorithm from section 2.2.2.
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Therefore let M initially be the k-dimensional similarity matrix that stores
the best known solution in M(p1, . . . , pk) up to position pi in sequence i for
all 1 ≤ i ≤ k, whereby we start counting from 0 onwards and position 0 is
associated with the initial gap symbol. We modify the algorithm such that we
first go completely through sequence 1 from left to right, then through sequence
2, etc. until we are finished with sequence k. Let us assume we have gone
through the first l − 1 sequences and are now ready to process position p of
sequence l. Due to the PWCC, there are at most 2l−1 action points, which
means that when we compare this position with all other entries in the matrix,
which has dimension l − 1 at this processing step, we only have to consider
those entries in the matrix that are associated with an edge connected to our
actual position p in sequence l. The PWCC, which demands that all edges for
each pair of input sequences form a consistent alignment, restricts the number
of edges/fragments that position p in sequence l belongs to, to at most one for
each other sequence.

Since there is maximum one such edge for every of the l − 1 sequences already
processed, we get at most 2l−1 entries in the matrix that are relevant to process,
i.e. at most 2l−1 action points. Altogether we then have maximum n2l−1 action
points for sequence l and the overall sum of action points is then∑

1≤l≤k

n2l−1 = n(2k − 1) = O(2kn).

We will now explain how we can restrict the size of the matrix from O(nk), in
general, to the number of actions points O(2kn). Therefore, we initially change
the index range for M from {1, . . . , n}k to {1, . . . , nk} whereby the index k-tuple
(p1, . . . , pk) is translated uniquely to the new index∑

1≤i≤k

nipi

and the entry of the original matrix M(p1, . . . , pk) can be now found in

M(
∑

1≤i≤k

nipi).

From the way we traverse the matrix starting with sequence 1 from left to right,
etc. up to sequence l from left to right the natural ordering of the numbers
1, . . . , nk is exactly the same as the processing order of the respective positions
in the similarity matrix M . Let a and b be two action points with 1 ≤ a < b ≤ nk
such that there is no other action point between a and b. We now arrange the
action points as a double-linked list L whereby each list element of action point
a carries the similarity matrix entry M(a) as payload. Thus we can omit the
overall storage of M by using L instead and we can thereby reduce the storage
size down to O(2kn). When we now come to position p in sequence l we can
immediately determine the new maximum 2l−1 action points determined by its
outbound edges to sequences 1, . . . , l − 1. We then sort those action points in
time O((l − 1)2l−1) and add them one by one from left to right to the linked
list L. In the original dynamic programming algorithm, we immediately have
access to the relevant 2k predecessor entries in M that are relevant to process
position p in sequence l, which is not the case with our linked list. Hence we
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have to seek those entries in the linked list by traversing it once from the start
to the end and updating a data structure holding the relevant 2k predecessor
entries imposing an additional time of

O

2k +
∑

1≤t≤l

n2t−1

 = O
(
2k + n(2l − 1)

)
= O

(
2k + 2ln

)
.

Assuming we have n > k we get an overall running time for the algorithm of

O

 ∑
1≤l≤k

(
n2l−1 · ((l − 1)2l−1 + 2k + 2ln)

)
≤ O

(k − 1)2kn ·
∑

1≤l≤k

(
2l−1

)+O

n2 ·
∑

1≤l≤k

(
4l−1

)
≤ O

(
k2kn · 2k + n24k

)
≤ O

(
4k · n2

)
.

Theorem 4.2
The modified k-dimensional dynamic programming algorithm described above
has an overall running time ofO

(
4k · n2

)
for an fMSA instanceM = (G, k,w, l1, l2)

with a maximum sequence length n > k. Moreover, the problem of finding a
maximum fMSA-subgraph is fixed parameter tractable (FPT) with parameter
k.

In distantly related sequence pairs it may be unclear how the correct pairwise
alignment looks and maybe multiple competing pairwise alignments of a se-
quence pair may occur. In such a situation, one wants all or some of those
competing pairwise alignments to be considered when assembling the multi-
ple sequence alignment, however, the PWCC would then clearly not be met.
Since this is still an interesting case, we now investigate the complexity in the
case when the pairwise consistency condition does not necessarily hold and also
determine which additional parameter carries the intrinsic complexity in such
situations.

Definition 4.5
Let m > 0 be such that for any sequence pair 1 ≤ i < j ≤ k and any position
p in sequence i the number of edges between sequence i and j that have one
endpoint in p is bounded by m. We then call m the maximum pairwise segment
spread (MPSS).

Of course, in fMSA instances that meet the PWCC, the maximum pairwise
segment spread m is always m = 1 and in the general case it is always maximum
n, whereby n is again the length of the longest sequence. We will now look at
the impact of the modified dynamic programming algorithm when we have to
deal with a situation where the PWCC does not necessarily hold und we may
have m > 1. For that, let us again assume that we have gone through the
first l − 1 sequences and are about to process position p of sequence l in our
modified dynamic programming algorithm; then we now have at most (m+1)l−1
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Fig. 4.5: If the PWCC holds, position p can be part of at most one edge to each
other sequence (left). Generally however there can be arbitrary many
edges from p to each other sequence. The maximum possible number of
such edges is called the maximum pairwise segment spread (MPSS) and
in this example (right) it is bounded by 5.

action points occurring, which analogously yields an overall running time for the
algorithm of

O

 ∑
1≤l≤k

(
n(m+ 1)l−1 · ((l − 1)(m+ 1)l−1 log(m+ 1) + (m+ 1)k + (m+ 1)ln)

)
≤ O

(k
log(m+ 1) + 1

m+ 1
(m+ 1)kn ·

∑
1≤l≤k

(m+ 1)l

+O

n2 ·
∑

1≤l≤k

(m+ 1)2l−1


≤ O

(
(k(m+ 1)kn · (m+ 1)k+1 + n2(m+ 1)2k+1

)
≤ O

(
(m+ 1)2k+1 · n2

)
(the log(m+ 1) comes from sorting the action points for each position p).

We therefore conclude the following theorem:

Theorem 4.3
The problem of finding a maximum fMSA-subgraph of a given fMSA instance
M = (G, k,w, l1, l2) when the PWCC does not hold is FPT in the number of
sequences k and the maximum pairwise sequence spread plus 1, i.e. m+ 1, and
has a running time of O

(
(m+ 1)2k+1 · n2

)
.

4.4 The plane-sweep approach

The running time of the modified k-dimensional dynamic programming algo-
rithm of the previous section is invariant under the number of conflicting sit-
uations, i.e. a collection of fragments that cannot all be realized in parallel
without violating the consistency. Thus it is not useful for exactly solving large
real-world inputs, especially in cases where the input sequences do not give
rise to many parallely conflicting situations, e.g. for rather long but few input
sequences. To compensate for this shortfall, we will give an alternative algo-
rithm based on a plane-sweep approach and which leads to high computational
complexity only if the number of parallely conflicting situations becomes very
high.

Roughly, the algorithm is based upon a plane-sweep approach adding the edges
in a left-to-right manner using an appropriate sorting of the edges whereby it
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keeps a set S of possible candidate solutions and tries to incorporate the next
edge in each of the already existing candidates in S. This incorporation possibly
involves some splits of candidates into a set of alternatives which is healed by a
subsequent consolidation step that reduces the pool of candidates without losing
all options for an optimum solution.

4.4.1 Conflicting cycles

Conflicting cycles pose the major obstacle to valid subgraphs and hence they are
required to be looked at in more detail. Briefly, a conflicting cycle is a minimum
set of edges that can not all be realized in parallel, but when removing only one,
the remainder becomes a valid fMSA-subgraph. More precisely:

Definition 4.6
Let C ⊂ E of a fMSA instance M = (G = (V,E), k, w, l1, l2) and for all 1 ≤
i, j ≤ k we set Ci,j = C ∩ Ei,j . We call C a conflicting cycle iff all of the
following conditions hold:

1. The size of all Ci,j is either 0 or 1.

2. All C\Ci,j with Ci,j 6= ∅ yield a maximal fMSA-subgraph of the fMSA
instance induced by C ⊂ E.

The set of all conflicting cycles of a given fMSA instance M is denoted by C(M).

Fig. 4.6: Depiction of a conflicting cycle between four sequences and involving four
edges.

Lemma 4.2
Let C := C(M) be the set of all conflicting cycles of an fMSA instance M . Any
F ⊂ E induces an fMSA-subgraph GE\F = (V,E\F ) of M if and only if for
every C ∈ C there exists a pair (i, j) with Ci,j 6= ∅ and Ci,j ⊂ F .

Proof: By condition 2 of definition 4.6, any F that induces an fMSA-subgraph
has to destroy every conflicting cycle. Hence, we assume we have an F ⊂ E that

70



4. CONSTRUCTING MULTIPLE SEQUENCE ALIGNMENTS FROM
PAIRWISE LOCAL SIMILARITIES

destroys all conflicting cycles in C, but there is at least one e = (u, v) ∈ E\F
that cannot be drawn vertically with a maximal subset of U = E\F as per the
definition of fMSA-subgraphs. Then there is a chain of edges f1, . . . , fl ∈ U such
that f1 has one endpoint in the same layer as v and fl one endpoint in the same
layer as w such that E∪{e} fulfills all four requirements for a conflicting cycle as
per definition 4.6. The existence of such a chain is obvious since otherwise there
would be no alternative connection between layer l1(v) and l1(w) that crosses
e and thus would prevent e being drawn vertically. Altogether, the existence of
U finishes the proof.

One important ingredient for obtaining proper bounds of the plane-sweep algo-
rithm is the cycle-width, which we will now define in our context.

Definition 4.7
Let M be any fMSA instance and let C be any conflicting cycle of M . Then
the cycle-width w of C is defined as follows:

cw(C) = max
(r,s),(t,u)∈C

{|l2(r)− l2(u)|, |l2(s)− l2(t)|}.

The max-cycle-width Cw of M is then defined to be the maximum among all
cycle-widths of conflicting cycles occurring in M, i.e.

Cw(M) = max
C∈C

cw(C).

The cycle-width describes the maximum l2-difference of any two nodes occurring
in a conflicting cycle and thus gives an intuitive measurement of how far the
cycle spreads horizontally. Later we will discover the importance of the max-
cycle-width in more detail when we investigate the complexity of the plane-sweep
algorithm.

The handling of conflicting cycles in the algorithm requires an auxiliary graph
Ga = (Va, Ea) that contains two distinct nodes ue, ve for every edge e = (u, v) ∈
E. For any two edges e = (u, v) and f = (p, q) that meet all of the following
conditions we add a directed edge (ue, pf ) to Ea.

• l1(u) 6= l1(q)

• l1(v) = l1(p)

• l2(v) ≤ l2(p)

Lemma 4.3
There is a 1-to-1 correspondence between the conflicting cycles of M and the
directed cycles in Ga. The auxiliary graph Ga can be constructed in O(n) time.

Proof: This is quite straightforward since the edges connecting nodes of a
directed cycle of Ga immediately result in a conflicting cycle and vice versa.

If we want to know whether two edges e = (u, v) and f = (p, q) in E are
part of a common conflicting cycle C, we perform depth-first searches to find
directed paths in Ga from each of the nodes ue, ve to each of the nodes pf , tf
and backwards which makes 8 searches in total. We then try to combine the
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Fig. 4.7: Construction of the auxiliary graph Ga whereby each conflicting cycle
corresponds to a directed cycle in the auxiliary graph Ga.

resulting paths to all possible directed cycles containing one of the nodes ue, ve
and one of the nodes pf , tf . Finally e and f are part of a common conflicting
cycle if and only if at least one could be realized, which concludes the proof.

Lemma 4.4
The cycle-width Cw of any fMSA instance M can be determined in time O(n3).

Proof: This is obvious by using a depth-first search in the auxiliary graph
Ga for each pair of edges e, f ∈ E to find out if they are part of a common
conflicting cycle and if so, we compute all l2 differences of all four relevant node
combinations of e and f .

4.4.2 The index function

Another instrument we need is the index function that assigns an index value
to every candidate solution and whenever two candidates obtain the same index
we will only keep the one with the higher weight sum thus allowing us to control
the computational complexity. As already mentioned, the algorithm considers
one edge of E after the other in a left-to-right manner. In order to keep track
of which edges have already been processed we associate a flag ‘seen(e)’ with
each edge e ∈ E which equals 1 iff e has already been processed. Additionally,
we maintain a pool S of possible candidate solutions and introduce a bit-vector
valued index function ind(·) : S → {0, 1}r on S which we will define shortly.
The number r varies from step to step and therefore depends on S. We regard
E to be subdivided into E1 ⊂ E and E0 ⊂ E, where E1 is comprised of all edges
with seen(e) = 1 and E0 embraces all edges with seen(e) = 0. At any stage in
the algorithm we define Ri,j to be the subset of edges e ∈ E1 ∩ Ei,j such that
there exists a conflicting cycle Ce with Ce ∩E0 6= ∅ and e ∈ Ce. The size of the
index is given by

r :=
∑

1≤i<j≤k

|Ri,j |

and we fix a lexicographical ordering on the set of all pairs (i, j) with 1 ≤ i, j ≤ k.
Each set Ei,j , and thereby also each Ri,j , is naturally ordered by the function
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l2 due to the pairwise consistency condition (PWCC): let e = (u, v) ∈ Ei,j and
f = (p, q) = Ei,j such that u and p are on layer i, l1(u) = l1(p) = i, then the
PWCC demands l2(u) < l2(v) iff l2(v) < l2(q).

To facilitate the understanding of the index function, we interpret ind(·) to be
a function having values in blocks of bit-valued vectors as follows:

{0, 1}|R1,2| × {0, 1}|R1,3| × . . .× {0, 1}|Rk−1,k|.

Then the index function is defined such that for any S ∈ S, the l-th bit in the
(i, j)-th block of ind(S) is set to 1 iff the l-th edge of Ri,j (w.r.t the ordering of
Ri,j given by HM ) belongs to S; otherwise it is set to 0.

4.4.3 Description of the plane-sweep algorithm

The previous subsections endow us with the necessary preparations to now for-
mulate the final algorithm. Initially, we start with an empty set of solution
candidates S = ∅ and also compute the auxiliary graph Ga. Furthermore, we
initialize all Ri,j := ∅. Then, the algorithm first considers all edges (v, w) with
l2(v) = 1 or l2(w) = 1 and thereafter all edges with l2(v) = 2 or l2(w) = 2 and
so on. We track this behaviour by introducing the progress number l which is
initially set to 1 and incremented whenever all edges with l2 number equal to l
in one of their endpoints have been consumed. The iterative processing of the
edges is comprised of three stages as long as there are unprocessed edges e ∈ E
with seen(e) = 0 available. After each iteration the set of candidate solutions
S can be uniquely enumerated by the index function and thus has a maximum
size of 2r whereby r denotes the current index size. The three stages for each
iteration are as follows:

1. Choose: In the case where there is no unseen edge available we finish
the algorithm. As long as there is no unseen edge (v, w) with l2(v) = l or
l2(w) = l, we increase the progress number l by 1 and finally choose an arbi-
trary edge e = (v, w) with l2(v) = l or l2(w) = l.
2. Split: Let e be the edge chosen in the previous stage and let 1 ≤ i, j ≤ k
be the pair of integers such that e ∈ Ei,j . In case e is the very first edge to be
processed we create the solution candidate S := {e}, add it to S and proceed
to the next stage. In all other cases we iterate through the set S and for each
S ∈ S we determine the set of PS,e of split-solutions according to e as follows:
If e can be added to S without violating the fMSA-subgraph conditions we set

PS,e := {S ∪ {e}};

otherwise we start with PS,e = {S} and for each subset S′ ⊂ S such that
S′e := S′ ∪ {e} defines a valid fMSA-subgraph and such that S′ realizes exactly
the same edges that do not belong to the index as S we add S′e to PS,e. We
compute PS,e by iterating through all 2r possible configurations of the index
that may determine such an S′ and performing linear searches in Ga restricted
to E1∪{e} to find out if e closes a conflicting cycle in the candidate S′, whereby
r denotes the current index size.
3. Consolidate: This stage starts with setting seen(e) := 1 and

Pe :=
⋃
S∈S

PS,e.
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Thereafter we increase the index by adding e to it and by adjusting all Ri,j .
The latter adjustment can only reduce or maintain the sizes of each Ri,j and
is necessary since edge e, which is now processed, has possibly closed the last
conflicting cycle of edges belonging to some of the Ri,j ’s. We then compute the
new index for all P ∈ Pe and for any two P1, P2 ∈ Pe with the same index and
we erase the one with the lower weight, W (P1) or W (P2). Then the remaining
solutions form the new S as the result of the current iteration.

After all edges have been processed, we choose any solution S ∈ S realizing the
maximum weight W (S) in S to be the output solution.

We directly get the following upper bound of the algorithm’s running time:

Lemma 4.5
The plane-sweep algorithm has running time

O
(
4rmax · n3 + n4

)
where rmax denotes the maximum index size of r throughout all iterations.

Proof: Initially, by Lemma 4.3, the auxiliary graph Ga can be constructed in
time O(n). Hence we now have to look at the n iterations of the three steps
‘Choose’, ‘Split’ and ‘Consolidate’, whereby the ‘Choose’ step can easily be done
in O(n). The split step requires time O(2r · 2r ·n2) to compute for maximum 2r

candidates in S the set PS,e, each in time O(2r ·n2). Regarding the ‘Consolidate’
step, the computation of S and the weights of all its candidates can be done in
time O(2r · 2r · n) since

|Pe| ≤ 2r · 2r

and by again using the auxiliary graph Ga the update of all Ri,j can be achieved
in time O(n3). Hence for the ‘Consolidate’ step we need time O(22rmax ·n+n3).
Altogether we iterate over O(n) edges which yields an overall computational
complexity of O

(
4rmax · n3 + n4

)
which completes the proof.

Although the algorithm is naturally only sensitive to the number of simultane-
ously occuring conflicting cycles, we may end up with O(4rmax) = O(4n) in the
worst case. However, we will later see how this upper bound can be significantly
reduced using the max-cycle-width.

4.4.4 Correctness

Before we elaborate more on the algorithm’s performance, we show that the
plane-sweep algorithm indeed finds a maximum fMSA-subgraph and therefore
fulfills its intended purpose. For this proof we need the definition of the following
invariant.

Definition 4.8
The following is defined as the ‘Plane-Sweep Invariant’:
PSI: There exists a candidate S′ ∈ S, a subset E′1 ⊂ S′ and a subset E′0 ⊂ E0

such that
S′\E′1 ∪ E′0

is a maximum fMSA-subgraph of the fMSA instance M . In this case we say
that S′ is extensible to a maximum fMSA-subgraph of M .
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Using this definition it is sufficient to show the following:

Lemma 4.6
The invariant PSI remains true after each iteration that processes the next edge
e in the plane-sweep algorithm presented above.

Proof: Before any edge has been considered PSI is trivially true. Therefore, by
induction, we have to show that if PSI is true and a new edge e ∈ E is processed
PSI is not violated. Hence, we now assume PSI holds and accordingly we choose
S′ which is extensible to a maximum fMSA-subgraph. Therefore, let E′1 ⊂ S′

and E′0 ⊂ E0 such that S′\E′1∪E′0 is a maximum fMSA-subgraph ofM according
to PSI. We are now going to show that PSI remains valid after having added
the next edge e ∈ E. According to Lemma 4.2, every edge of E′1 must have a
conflicting cycle in common with at least one edge in E′0 since otherwise such
an edge could be added to S′\E′1 ∪E′0 giving us a solution candidate with even
higher weight, which contradicts PSI. We recall that for every pair 1 ≤ i < j ≤ k
the set Ri,j is only reduced ‘from left’ by a subset R̂i,j ⊂ Ri,j iff there is no
unseen edge f such that there is a conflicting cycle embracing f and edges in
R̂i,j . Hence we conclude that E′1 only contains edges that are part of the index
R, which is comprised of all Ri,j with 1 ≤ i < j ≤ k.

We now have to distinguish two cases: Either e fits into S′ without removing
edges from S′ or it does not.
Case 1: Assume S′ ∪ {e} forms a valid alignment. The ‘Consolidate’ step can
replace the candidate S′ ∪ {e} only by a candidate S′′ which has at least the
same weight sum and differs from S′ ∪{e} only in edges that are not a part of a
yet unclosed conflicting cycle (since by its choice S′′ can replace only candidates
with the same index). If e /∈ E′0, this means that S′′ and S′ ∪ {e} differ only in
edges E\E′1 and S′′\(E′1 ∪ {e}) ∪ E′0 or S′′\E′1 ∪ E′0 forms a maximum fMSA-
subgraph depending on whether e ∈ S′′ or not. Otherwise, if e ∈ E′0, the
candidate S′′\E′1∪(E′0\{e}) would be a maximum fMSA-subgraph for the same
reason that the edges in E′0\{e} do not have a conflicting cycle in common with
edges in which S′′ and S′ ∪ {e} have differences.
Case 2: Assume S′ ∪ {e} does not form a valid alignment. If e /∈ E′0, S′

can again be replaced in the ‘Consolidate’ step only by another candidate S′′

with the same weight as S′ and differing only in edges that do not have a
conflicting cycle in common with edges in E′0 and thus we obtain a maximum
fMSA-subgraph by S′′\E′1 ∪E′0. Otherwise, if e ∈ E′0, the ‘Split’ step generates
a candidate S′′ ∈ PS′,e such that S′′\E′′1 ∪ (E′0\{e}) gives us a maximum fMSA-
subgraph. The subsequent ‘Consolidate’ step may replace S′′ by S′′′, however,
it must again have at least the same weight as S′′ and differ only in edges not
belonging to E′′1 such that S′′′\E′′1 ∪ (E′0\{e}) would be a maximum fMSA-
subgraph.

Altogether we have shown PSI remains true after having processed e and by
induction it is therefore true across all iteration steps, which completes the
proof.
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4.4.5 Performance investigation

The main computational complexity comes from the index size during the iter-
ations of the three stages in the algorithm. At the moment it is not clear if the
maximum index size rmax can be even Ω(n), which would yield a running time
exponential in n. The following theorem explains how we the computational
complexity can be properly bounded by giving more detailed insight into the
intrinsic complexity of the problem.

Theorem 4.4
Let M = (G = (V,E), k, w, l1, l2) be an fMSA instance with k layers and max-
cycle-width Cw := Cw(M); then the plane-sweep algorithm is an FPT-algorithm
in parameters k and Cw and has a running time of O(2k(k−1)Cw · n3 + n4).

Proof: From Lemma 4.5 we conclude that the running time of the plane-sweep
algorithm is bounded by O(4rmax ·n3 +n4) whereby rmax is the maximum index
- in other words, it is the maximum of

|R| =
∑

1≤i<j≤k

|Ri,j |

across all iterations. Hence it is sufficient to show that at any stage of the
algorithm, Ri,j is bounded by Cw for all 1 ≤ i < j ≤ k since then the index
would be bounded by

|R| ≤
∑

1≤i<j≤k

Cw =
k(k − 1)

2
Cw.

Because of the definition of the pairwise consistency condition that the edges
between each pair of layers form a valid fMSA-subgraph we can choose the
rightmost edge e′ = (u, v) of Ri,j that, by definition, is comprised of all seen
edges in Ei,j and that belong to uncompleted conflicting cycles. Assume the
current progress number is l. By the ‘Choose’ step either l2(u) ≤ l or l2(v) ≤ l
and without loss of generality we can therefore assume for e′ and every other
edge in Ri,j that its endpoint in layer i has an l2-value less than or equal to l.

Again due to the pairwise consistency condition it is prohibited that any two
different edges in Ei,j share a common edge in layer i or layer j and therefore
their endpoints always have a different l2-number in each layer. Hence we can
assign a unique number l2,i(e) to all edges in e ∈ Ri,j that is given by the
l2-number of the node belonging to layer i. We recall that Ri,j is defined to
contain only edges that are part of uncompleted conflicting cycles and that the
definition of the maximum cycle-width Cw describes the maximum l2-difference
of any two nodes in any conflicting cycle. This especially means that for every
edge e ∈ Ri,j , all conflicting cycles that e is part of will be fully considered at
latest when the progress number l2,i(e) +Cw has been completed, giving us, for
the current progress number l, the inequality l2,i(e)+Cw ≥ l (otherwise, e would
not be part of the index). Since we have chosen layer i to have l2 numbers for
Ri,j less than the current progress number l, we conclude for each edge e ∈ Ri,j

l ≥ l2,i(e) ≥ l − Cw.
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Thus the unique l2,i number for each edge in Ri,j is bounded in an interval of
size Cw and therefore the size of Ri,j is at most Cw. Since there are k·(k−1)

2 pairs
of layers, the maximum index size rmax is thus bounded by k(k−1)Cw

2 . Using
Lemma 4.5 we obtain for the overall running time

O
(
4rmax · n3 + n4

)
≤ O(2k(k−1)Cw · n3 + n4),

which completes the proof.

4.4.6 Relaxing the pairwise consistency condition

Until now, we have only investigated cases where the input fMSA instance meets
the pairwise consistency condition (PWCC), which means, in other words, that
for each pair of sequences all input similarities form a valid pairwise alignment.
In some situations when the sequences are very distantly related, there may
exist multiple competing alternatives for the pairwise alignment and thus it
may be helpful to consider some or all alternatives in parallel by relaxing the
PWCC by allowing these competing alternatives to occur in the input. In such
cases the plane-sweep algorithm will definitely deliver the correct result since it
doesn’t exploit the PWCC, but the impact on the running time of the algorithm
is obviously not within the same bounds given in the previous section. We will
therefore elaborate in the following on how to alter the plane-sweep algorithm
and on controlling the computational complexity.

Fig. 4.8: A pair of layers where the pairwise consistency condition PWCC does
not hold since not all edges can be realized simultaneously in an fMSA-
subgraph.

Let us look at the maximum cycle-width Cw, which is now also determined by
cycles comprised solely of two edges coming from the same pair of layers, hence,
we have to expect higher values for Cw compared to the previous case where the
PWCC holds. Luckily, we can modify the algorithm such that its complexity
is still controlled by the number of layers k and the maximum cycle-width Cw,
which of course can be Ω(n).

The issue when controlling the complexity lies in the fact that in the case where
the PWCC does not necessarily hold we lack the natural l2-ordering of the edges
in Ei,j and in turn also the natural ordering in Ri,j being used in the proof of
Theorem 4.4. Nevertheless, the endpoints of the edges in Ei,j are still ordered
on the layers i and j separately by l2 and we therefore apply two orderings
on Ei,j : one with respect to layer i and one with respect to layer j, which of
course doubles the index. More precisely, we define a new ordering function l′2
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as a derivate of the l2 function that assigns for every edge e ∈ Ei,j an ordering
number l′2(e, i) among all edges in Ei,j which is given by the l2 value of the node
in layer i. Since the PWCC does not necessarily hold, this definition does not
yet yield a unique ordering and we thus have to find a way of handling the nodes
of degree > 1. This is done by using the ordering induced by their respective
neighbour nodes on layer j, which gives us a valid sub-numbering for all edges
that have the same l2 value on layer i. We arrange this numbering such that
all nodes of Ei,j are uniquely numbered consecutively from 1 to |Ei,j | on layer i
by l′2(·, i). Furthermore, we modify the plane-sweep algorithm by using the new
function l′2 instead of l2 in the ‘Choose’ step. The index function in the original
algorithm is given by assigning 0 or 1 to edges of Ei,j with i < j and is denoted
by Ri,j whereby the edges of Ri,j are ordered strictly by l2, which is well-defined
if the PWCC holds. If we now double the index by adding all Rj,i with i < j
to it and change the underlying ordering function for Ri,j and Rj,i to l′2(·, i)
and l′2(·, j), respectively, we immediately obtain a well-defined strict ordering
for Ri,j and Rj,i. Additionally, we alter the algorithm such that Ri,j and Rj,i
are always amended by edges with l′2(·, i)- and l′2(·, j)-number, respectively, less
than or equal to the current processing number l. All in all, by the above
construction, the original Ri,j has now been split into two subsets that are not
necessarily disjoint and the overall index is now less than or equal to twice its
original size. Obviously, our modifications of the plane-sweep algorithm do not
affect the correctness and thus yield the following theorem.

Theorem 4.5
Let M be an fMSA instance of k layers and max-cycle-width Cw := Cw(M)
that does not meet PWCC, then the modified plane-sweep algorithm is an FPT-
algorithm in the two parameter k and Cw having running time O(4k(k−1)Cw ·
n3 + n4).

We conclude that by relaxing the PWCC, the plane-sweep algorithm can be
modified slightly such that the computational complexity can still be bounded
by an appropriate factor only depending on the number of layers k and the
maximum cycle-width Cw. However, we have to expect higher values for Cw
since the absence of the PWCC gives rise to more conflicting cycles, which
of course are determined by how ‘inconsistent’ the pairwise alignments are.
Especially in the extreme case when there is an edge between each pair of nodes
on each pair of layers, the cycle-width Cw immediately becomes Ω(l) whereby l
is the maximum number of nodes in one layer.

In the next chapter 5 we will see how we can carry the basic idea of the plane-
sweep algorithm further by giving a general algorithmic framework for solving
the fMSA-subgraph/subset problem heuristically or exactly.
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In the preceding chapter we described a plane-sweep algorithm that solves the
fMSA-subgraph problem exactly by being sensitive only to the number of par-
allely arising conflicting situations. We will now keep the idea of iterating the
three steps ‘Choose’, ‘Split’ and ‘Consolidate’ on a set of possible solution can-
didates but will extend it further to a more general framework of algorithms for
both, computing maximum MSA-subgraphs or heuristic approximations thereof.
The design of the framework is very generic such that it covers the two extremes:
the plane-sweep algorithm and the implementations of DIALIGN, DIALIGN-T
and DIALIGN-TX (see chapter 6). Up to now we have used for the sake of sim-
plicity, a restricted model where the fragments either coincide or are completely
disjoint on each sequence, i.e. do not partially overlap. That model allowed
us to use a graph representation of the assembly problem. However, in this
chapter we will relax this condition and introduce the notion of the generalized
fMSA-subgraph problem where fragments may overlap or even whole multiple
sub-alignments may be allowed.

5.1 Framework definition

In order to give the framework a more general character we introduce the notion
of a generalized fMSA instance:

Definition 5.1
Let M = (G = (V,E), k, w, L = (l1, l2)) be a given fMSA instance that may or
may not be pairwise consistent and let E be a subdivision of E, i.e. it consists of
subsets of E whereby the union of all those subsets yields back E. Furthermore,
let ŵ be an extension of w from elements of E to the set of all subsets of E,
which we denote by 2E . Then we call (M, E , ŵ) a generalized fMSA instance,
E a generalized similarity set being comprised of subsets similarities and ŵ a
generalized weight function.

A standard fMSA instance M = (G = (V,E), k, w, l1, l2) can be associated with
a generalized one in a straightforward way by defining E to be comprised of all
{e} for each e ∈ E and setting ŵ = W , whereby for each E′ ⊂ E and the

W (E′) :=
∑
e∈E′

w(e).

In the previous chapter the restricted model of fMSA instances only allowed
fragments that do not partially overlap on the sequences and we thus had to
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chop a fragment f into appropriate sub-fragments f1, . . . , fi associated with
edges e1, . . . , ei such that they fit into that restricted model. In the generalized
setup we can combine those chopped sub-fragments back into their original
fragment by adding the subset Ef = {e1, . . . , ei} to E and setting ŵ(Ef ) :=
w(f), whereby w is the original objective function on the set of fragments.
However, the generalized model even allows whole multiple sub-alignments with
individual weights that may or may not account for gaps, thus allowing a wide
variety of inputs from simple fragments up to anchor points and conserved motifs
a priori known.

Fig. 5.1: Two examples of elements in E in generalized fMSA instances that may
contain a chain of edges or even whole sub-alignments.

Of course the problem we want to solve on generalized fMSA instances is the
following.

Definition 5.2
Let (M, E , ŵ) be a generalized fMSA instance. We call the problem of finding a
set S ⊂ E with maximum weight ŵ(S) the generalized fMSA-subgraph problem
and S a generalized maximum fMSA-subgraph .

The definition above is in the same vein as the definition of the generalized
maximum weight trace problem in [49], although it is slighty more general in the
sense that the generalized maximum weight trace problem assesses the weight
of a solution by the sum of weights of the chosen edges whereas the generalized
fMSA-subgraph problem may have a different objective function ŵ.

The algorithmic framework is similar to the plane-sweep algorithm in the outer
structure and also based on an iterative concept. During all iterations a set
of possible candidate solutions S is computed that initially contains only the
trivial candidate S = ∅ whereby the weight of the candidates are assessed by
the generalized weight function ŵ. Essentially, the framework is parameterized
by the following three sub-routines:

• NEXT E(): returns the next unseen edge set e from E to be consumed.

• SPLIT CAND(S,E′): has a solution candidate S and the current edge
set E′ ∈ E as parameter and returns a set of new possible solution candi-
dates based on S and E′ that may or may not contain E′ or only parts of
it.
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• CONS(S): returns a consolidated set of solution candidates S.

Altogether we obtain the following algorithmic framework:

Algorithm 1 fMSA (M , NEXT E(·), SPLIT CAND(·, ·), CONS(·))
S ← {∅}
for all E′ ∈ E do
SEEN(E′)← 0

end for

while there is E′ ∈ E with SEEN(E′) = 0 do
E′ ← NEXT E()
S ′ ← ∅
for all S ∈ S do
S ′ ← S ′ ∪ SPLIT CAND(S,E′)

end for
S = CONS(S ′)
SEEN(E′)← 1

end while

Let S̃ ∈ S be a candidate with maximum weight ŵ(S).
RETURN ← S̃

In all DIALIGN implementations [53, 52, 75, 74], fragments are represented by
a chain of consecutive nodes in two sequences and therefore can easily be as-
sociated with elements of E whereby the weight is determined by the objective
function w of DIALIGN. The set of solution candidates has size 1 throughout
the whole algorithm in all DIALIGN variations and no real splits are considered
at all due to the usage of a very trivial implementation of SPLIT CAND, i.e.
either a fragment fits and an augmented candidate is returned or it raises a
conflict and the candidate remains unchanged. Furthermore, the programs DI-
ALIGN and DIALIGN-T each incorporate a greedy NEXTE() implementation
while DIALIGN-TX employs a more sophisticated method of selecting the frag-
ments (see chapter 6 and [74]) by combining greedy and progressive strategies.
Analogously, the plane-sweep algorithm from chapter 4 obviously fits into this
framework, too. However, in contrast to the DIALIGN methods, the plane-
sweep algorithm considers all possibilities of inserting an edge e into a given
candidate S when splitting the candidates while its ‘Consolidate’ step always
keeps at least one candidate that is extensible to a maximum fMSA-subgraph.

5.2 The minimum removal problem

The DIALIGN programs, on the one hand make, use of a rather straightforward
implementation whereas the plane-sweep algorithm, on the other hand, includes
a very complex implementation SPLIT CAND(S, e). However, in order to de-
velop efficient heuristics, we are particularly interested in pragmatic approaches
between those two extremes. Intuitively speaking, the question of what are the
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lowest costs of inserting an edge e in a candidate solution S naturally arises,
i.e. the problem of removing a minimum weighted subset of edges from S such
that e can be inserted without violation the fMSA-subgraph definition. More
formal, we can define this problem as follows:

Definition 5.3
Let M = (G = (V,E), k, w, L = (l1, l2)) be an fMSA instance, G′ = (V ′, E′)
an fMSA-subgraph of M and e′ = (u, v) ∈ E. We are now interested in a
subgraph G′e′ = (V ′e′ , E

′
e′) of G′ such that G′e′ together with e′ yields a valid

fMSA-subgraph of M . We call this the removal problem of (G′, e′) and we call
E′\E′e′ a removal of (G′, e′). The minimum removal problem is then given by
finding a removal of (G′, e′) with minimum weight.

In the following, we show how the removal problem can be solved in polyonimal
time by reducing it to a min-cut/max-flow instance Fe′ = (Ve′ , Ee′ , ce′) com-
prised of a set of nodes V , edges E between those nodes and a capacity function
ce′ that assigns a non-negative number ce′(e) to each edge e ∈ E. The con-
struction of Fe′ is also illustrated in Figure 5.2. Initially, we remove all edges
e ∈ E′ that do not lie on a common conflicting cycle with e′. We enumerate the
layers from bottom to top (arbitrarily) such that the bottom and top layers are
given by l1(u) and l1(v), respectively. For each layer, we introduce a leftmost
and a rightmost node si and tj and edges that connect consecutive nodes on
each layer from si to tj . On the bottom layer, the leftmost node is labeled s
(the source) and the top layer the rightmost node is labeled t (the sink). Due
to symmetry we can assume w.l.o.g. that the immediately next node on layer
l1(u) of s is u itself and we remove the edges (s, u) and (v, t). Finally we assign
flow capacities to the edges; the capacities of edges e ∈ E are given by their
weights c(e) = w(e) and the capacities of the horizontal edges that connect to
two nodes on the same layer are set to T where

T = k ·

(
1 +

∑
e∈E′

w(e)

)2

.

Finally, we set the capacity of the leftmost and rightmost vertical edges con-
necting the nodes s, t, si, tj to T 2. We know from section 4.4.1 that it requires
time O(n) to answer the question whether two edges are part of a common
conflicting cycle. We thus need O(n2) time to build the max-flow instance
Fe′ = (VF , EF , c).

Lemma 5.1
Let Ẽ ⊂ E be a minimum cut of Fe′ with respect to s and t; then Ẽ ∩ E
constitutes a minimum removal of (G′, e′).

Proof: Let Ẽ be any removal of (G′, e′); then by definition the insertion of e
after removing Ẽ yields an fMSA-subgraph, i.e. it allows all remaining edges
of E, and especially e, to be drawn vertically. If we now transfer this drawing
to the flow instance (VF , EF \Ẽ) and additionally remove from every layer the
unique horizontal edge that is crossed by e′, we immediately receive a valid cut
of Fe′ . To conclude the proof of the lemma, we have now to show for a minimum
cut Ẽ of Fe′ that the set Ẽ∩E constitutes a valid removal of (G′, e′) compatible
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Fig. 5.2: The max-flow/min-cut problem induced by the fMSA removal problem.

with the canonical correspondence. Therefore we assume the opposite is true
and thus can identify a set D = (d1, . . . , dk−1) of edges in E′ that together with
e′ form a conflicting cycle. We can assume that the edges in D are naturally
ordered from bottom to top and enumerated exactly as such. Obviously, Ẽ
contains no edge connecting two s-nodes or two t-nodes of capacity T 2 since the
removal of all other edges in E and exactly one horizontal edge of weight T in
every layer, except on the top-most and bottom-most layer, would yield a cut
of weight

(k − 2) · T + T < k · T < T 2.

This observation also shows that on every layer except the bottom-most and
top-most, exactly one horizontal edge of capacity T is contained in Ẽ. Let now
x be the bottom-most layer such that the incoming node vx (from the bottom)
of an edge dx = (ux, vx) ∈ D can be reached by a path f from s that traverses
only those vertical edges that interconnect s and si nodes. Since the edges (s, u)
and (v, t) do not exist and due to our observation that exactly one horizontal
edge of every layer is missing in E′, the layer x cannot be the bottom layer
and the top layer would meet the requirements for x if no other layer does.
If we now add dx to f , we can further extend f to a path that reaches t by
traversing horizontally to the corresponding node ti and from there to t, which
is made possible by the choice of the bottom-most r and dx (see also Figure
5.3). Finally, the existence of the path f is in contradiction to the fact of Ẽ
being a cut, which concludes the proof.

We are going to use the push-relabel maximum flow algorithm using Sleator’s
and Tarjan’s dynamic tree data structure [70, 29] to solve the induced maximum
flow problem. This algorithm has running time O(V E log(V 2/E)), whereby V
denotes the number of nodes and E the number of edges E. Let n = |M | be the
size of the fMSA instance. Then we get by our construction of the flow instance
|V | ≤ O(n) and |E| = O(n) and thus we conclude the following theorem.

Theorem 5.1
Let M = (G = (V,E), k, w, L = (l1, l2)) be an fMSA instance of size n, G′ =
(V ′, E′) an fMSA-subgraph of M and e′ = (u, v) ∈ E. Then the above algorithm
computes a minimum removal of (G′, e′) in time O(n2 log(n)).
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Fig. 5.3: Every conflicting path of e′ has to be interrupted in an optimum min-cut
since otherwise s and t can be connected by path f .

Coming back to the algorithmic framework, this efficient algorithm for finding
minimum removals is suspected of being very useful in the ‘Split’ phase when
developing new heuristics along the framework. For instance, let S ∈ S be
a candidate solution and e ∈ E the current edge to process; of course, the
universal approach (as in the plane-sweep algorithm) would be to consider all
possible removals of (S, e), as the plane-sweep algorithm does, whereas in the
DIALIGN implementations no removal at all is taken into account. Between
those extremes, the minimum removal R may give rise to a useful threshold for
removals to look at in the ‘Split’ phase, e.g. removals with a weight sum that
exceeds the weight sum of R by more than X percent are discarded.

5.3 Conclusion

The algorithmic framework for generalized instances of the fMSA-subgraph
problem embraces various approaches that are based on assembling the align-
ment purely from the valuable pairwise similarities. In particular all DIALIGN
implementations and the plane-sweep algorithm are prominent extremes. The
simple DIALIGN implementations do not even seek subsets of a candidate so-
lution in which an otherwise conflicting edge e (or fragment as a chain of edges)
can be inserted, whereas the very complex but also time-consuming plane-sweep
algorithm always considers all such alternatives. To close this chasm, we have
presented a polynomial time algorithm for optimally inserting a given similarity
edge into a given candidate solution as a tradeoff between those two extremes,
which opens new possibilities for further developing sophisticated and efficient
approximation algorithms using the algorithmic framework. Our framework is
limited in the sense that there is no accounting for gaps between two different
similarities in E and, at first glance, it therefore tends to be more appropriate for
long and locally related sequence sets rather than for short and globally related
ones. However, this restriction is only valid if the relevant gaps are not already
implicitly covered by the given similarities in the sense that they are part of ele-
ments in the generalized similarity set E and penalized locally by the generalized
weight function ŵ. In other words, the missing sensitivity for gaps in the outer
routines of the algorithmic framework are conjectured to be partly compensated
for by the careful choice of E and the definition of ŵ, which also asseses the rel-
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evance of the candidate solutions. Additionally, the idea of a gapped alignment
graph in [3] may be helpful in future in order to further reduce the bias towards
locally related input sequences. We omitted in this chapter the discussion of
the proper choice of the weight functions as well as the detailed handling of
gaps and always assumed them to be part of our input. Obviously, there is a
qualitative correlation between the strategy for selecting the input similarities,
the weighting function and the assembly strategy and therefore we will focus in
our future work on the development of efficient combined strategies for comput-
ing the relevant pairwise data along with a generalized weight function and the
proper algorithmic parameterization of the framework for assembling them us-
ing the algorithmic framework. Depending on the specific biological domain one
is interested in, such a stragegy would also be applicable for the development
of alignment programs that are optimized towards special biological questions.
Altogether, we conclude that the algorithmic framework gives us a rich toolset
for future improvements to the segment-based approach for computing general
and (biological) domain-specific multiple sequence alignments.
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In chapter 3 we described DIALIGN-T, which is a reimplementation of the
multiple-alignment program DIALIGN. Due to several algorithmic improve-
ments, it produces significantly better alignments on locally and globally related
sequence sets than previous versions of DIALIGN. However, like the original
implementation of the program, DIALIGN-T uses a a straightforward greedy
approach to assemble multiple alignments from local pairwise sequence similar-
ities. Such greedy approaches may be vulnerable to spurious random similar-
ities and can therefore lead to suboptimal results. In this chapter, we present
DIALIGN-TX, a substantial improvement of DIALIGN-T that combines our
previous greedy algorithm with a progressive alignment approach inspired by
the algorithmic framework described in chapter 5. The results of this chapter
have already been published in [74]

Our new heuristic produces significantly better alignments, especially on glob-
ally related sequences, without excessively increasing the CPU time and memory
consumption. The new method is based on a guide tree; to detect possible spuri-
ous sequence similarities, it employs a vertex-cover approximation on a conflict
graph. We performed benchmarking tests on a large set of nucleic acid and
protein sequences. For protein benchmarks, we used the benchmark database
BAliBASE 3 and an updated release of the database IRMBASE 2 for assessing
the quality on globally and locally related sequences, respectively. For align-
ment of nucleic acid sequences, we used BRAliBase II for global alignment and
a newly developed database of locally related sequences called DIRMBASE 1.
IRMBASE 2 and DIRMBASE 1 are constructed by implanting highly conserved
motifs at random positions in long unalignable sequences.

On BAliBASE3, our new program DIALIGN-TX performs significantly better
than the previous program DIALIGN-T and outperforms the popular global
aligner CLUSTAL W, though it is still outperformed by programs that focus
on global alignment like MAFFT, MUSCLE and T-COFFEE. On the locally
related test sets in IRMBASE 2 and DIRMBASE 1, our method outperforms
all other programs while MAFFT E-INSi is the only method that comes close
to the performance of DIALIGN-TX.

6.1 Assembling alignments from fragments

The major improvement in DIALIGN-TX, compared to DIALIGN-T, lies in
a new strategy for assembling the fragments using progressive and greedy ap-
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proaches, whereas DIALIGN-T is only based on a greedy approach (see chapter
3).

Formally, we consider the following optimization problem: we are given a set
S = {s1, . . . , sk} of input sequences where li is the length of sequence si. A
fragment f is a pair of two equal-length segments from two different input
sequences. Thus, a fragment represents a local pairwise gap-free alignment of
these two sequences. Each possible fragment f is assigned a weight score w(f)
which, in our approach, depends on the probability P (f) of random occurrence
of such a fragment. More precisely, if f is a local alignment of sequences si
and sj , then P (f) is the probability of finding a fragment of the same length
as f with at least the same sum of matches or similarity values for amino acids
in random sequences of length li and lj , respectively. For protein alignment, a
standard substitution matrix is used and for DNA alignment a simple match-
mismatch matrix is taken.

Let F be the set of all possible fragments. The optimization problem is then
to find a consistent set A ⊂ F of fragments with maximum total weight, i.e. a
consistent set A maximizing

W (A) :=
∑
f∈A

w(f).

A set of fragments is called consistent if all fragments can be included into one
single alignment; see [58]. Fragments in A are allowed to overlap if different
pairs of sequences are involved. That is, if two fragments f1, f2 ∈ A involve se-
quence pairs si, sj and sj , sk, respectively, then f1 and f2 are allowed to overlap
in sequence sj . If two fragments involve the same pair of sequences, no overlap
is allowed. It can be shown that the problem of finding an optimal consistent
set A of fragments is NP-complete (Constructing multiple sequence alignments
from pairwise data, Subramanian et al., in preparation). Therefore, we are moti-
vated in finding intelligent approximations that deliver a good tradeoff between
alignment quality and CPU time.

To decrease the computational complexity of this problem, we restrict ourselves
to a reduced subset F ′ ⊂ F and we will first search for a consistent subset
A ⊂ F ′ with maximum total score. As in previous versions of DIALIGN, we
use pairwise optimal alignments as a filter. In other words, the set F ′ is defined
as the set of all fragments contained in any of the optimal pairwise alignments
of the sequences in our input data set. Here, we also restrict the length of
fragments using some suitable constant.

For multiple alignment, previous versions of DIALIGN used the above outlined
greedy approach. We call this approach a direct greedy approach, as opposed
to the progressive greedy approach that we introduce in this chapter. A mod-
ification of this direct greedy approach was also used in our reimplementation
DIALIGN-T. Here, we considered not only the weight scores of individual frag-
ments (or their overlap weights [53]) but also took into account the overall degree
of similarity between the two sequences involved in the fragment. The rationale
behind this approach is that a fragment from a sequence pair with high overall
similarity is less likely to be a random artefact than a fragment from an other-
wise non-related sequence pair which is undermined by the positive effect of the
weight score factors introduced in DIALIGN-T; see chapter 3.
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6.1.1 Combining segment-based greedy and progressive alignments

To overcome the difficulties of a direct greedy algorithm for multiple alignment,
we combined greedy features with a progressive alignment approach [26, 76, 14,
40]. Roughly, the new method we developed first computes a guide tree for the
set of input sequences based on their pairwise similarity scores. The sequences
are then aligned in the order defined by the guide tree. We divide the set
of fragments contained in the respective optimal pairwise alignments into two
subsets F0 and F1 where F0 consists of all fragments with weight scores below
the average fragment score in all pairwise alignments, and F1 consists of the
fragments with a weight above or equal to the average weight. In a first step,
the set F1 is used to calculate an initial multiple alignment A1 in a progressive
manner. The low-scoring fragments from set F0 are added later to A1 in a direct
greedy way, provided they are consistent with A1. In addition, we construct an
alternative multiple alignment A0 using the direct greedy approach implemented
in previous versions of DIALIGN and DIALIGN-T. The program finally returns
either A0 or A1, depending on which one of these two alignments has the highest
score.

To construct a guide tree for the progressive alignment algorithm, we use straight-
forward hierarchical clustering. Here, we use a weighted combination of complete-
linkage and average-linkage clustering based on pairwise similarity values R(p, q)
for pairs of cluster (Cp, Cq). Initially, each cluster Ci consists of one sequence si
only. The similarity R(i, j) between clusters Ci and Cj (or leaves i and j in our
tree) is defined to be the score of the optimal pairwise alignment of si and sj
according to our objective function, i.e. the sum of the weights of the fragments
in an optimal chain of fragments for these two sequences. In every step, we
merge the two sequence clusters Ci and Cj with the maximum similarity value
R(i, j) into a new cluster. Whenever a new cluster Cp is created by merging
clusters q and r (or a node p in the tree is created with children q and r), we
define the similarity between p and all other remaining clusters m to be

R(m, p) := 0.1 · 1
2

(R(m, p) +R(m, q)) + 0.9 ·max (R(m, p), R(m, q)) .

The choice of this function was inspired by MAFFT [43, 42]; it also worked very
well in our situation on globally and locally related sequences after experiments
on BAliBASE 3, BRAliBase II, IRMBASE 2 and DIRMBASE 1.

6.1.2 Merging two sub-alignments

The final multiple alignment of our input sequence set S is constructed bottom-
up along the guide tree. Thus, the crucial step is to combine two sub-alignments
represented by nodes q and r in our tree whenever a new node p is created. In
the traditional progressive alignment approach, this is done by calculating a
pairwise alignment of profiles, but this procedure cannot be directly adapted
to our segment-based approach. Let Aq and Ar be the existing subalignments
of the sequences in clusters Cq and Cr, respectively, at the time where these
clusters are merged to a new cluster Cp. Let Fq,r be the set of all fragments
f ∈ F connecting one sequence from cluster Cq with another sequence from
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cluster Cr. Now, our main goal is to find a subset Fp ⊂ Fq,r with maximum
total weight score that is consistent with the existing alignments Aq and Ar. In
other words, we are looking for a subset Fp ⊂ Fq,r with maximum total weight
such that

Ap = Aq ∪Ar ∪ Fp
describes a valid multiple sequence alignment of the sequence set represented
by node p.

It is easy to see at this time that before clusters Aq and Ar are merged, every
single fragment f ∈ Fq,r is consistent with the existing (partial) alignments
Aq and Ar and therefore consistent with the set of all fragments accepted so
far. Only groups of at least two fragments from Fq,r can lead to inconsistencies
with the previously accepted fragments. Thus, there are different subtypes of
consistency conflicts in Fq,r that may arise when Aq and Ar are fixed. There are
pairs, triples or, in general, l-tuples of fragments of Fq,r that give rise to a conflict
in the sense that the conflict can be resolved by removing exactly one fragment
of such a conflicting l-tuple. Statistically, pairs of conflicting fragments are the
most frequent type of conflict, so we will take care of them more intelligently
rather than using only a greedy method. Since, in our approach, the length of
fragments is limited, we can easily determine in constant time for any pair of
fragments (f1, f2) if the set

Aq ∪Ar ∪ {f1, f2}

is consistent, i.e. if it forms a valid alignment, or if there is a pairwise conflict
between f1 and f2. Here, the data structures described in [1] are used. With
unbounded fragment length, the consistency check for the new fragments (f1, f2)
would take O(|f1| × |f2|) time where |f | is the length of a fragment f .

This gives rise to a conflict graph Gq,r that has a weighted node nf for every
fragment f ∈ Fq,r. The weight w(nf ) of node nf is defined to be the weight
score w(f) of f , and for any two fragments f1, f2 there exists an edge connecting
nf1 and nf2 iff there is a pairwise conflict between f1 and f2, i.e. if the set
Aq ∪ Ar ∪ {f1, f2} is inconsistent. We are now interested in finding a good
subset of Fq,r that does not contain any pairwise conflicts in the above sense.
The optimum solution would be obtained by removing a minimally weighted
vertex cover from Gq,r. Since the weighted vertex cover problem is NP-complete
we apply the 2-approximation given by Clarkson [11]. This algorithm roughly
works as follows: in order to obtain the vertex cover C, the algorithm iteratively
adds the node v with the maximum value

degree(v)
w(v)

to C. For any edge (v, u) that connects a node u with v, the weight w(u) is
updated to

w(u) := w(u)− degree(v)
w(v)

and the edge (u, v) is deleted. This iteration is followed as long as there are
edges left.
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Note that it is not sufficient to remove the vertex cover C from Fq,r to ob-
tain a valid alignment since, in the construction of C, only inconsistent pairs
of fragments were considered. We therefore first remove C from Fq,r and we
subsequently remove further inconsistent fragments from Fq,r using our direct
greedy alignment as described in chapter 3. A consequence of this further re-
duction of the set Fq,r is that fragments that were previously removed because
of pairwise inconsistencies may became consistent again. A node nf1 may have
been included into the set C and therefore removed from the alignment because
the corresponding fragment f1 is part of an inconsistent fragment pair (f1, f2).
However, after subtracting the set C from Fq,r, the algorithm may detect that
fragment f2 is part of a larger inconsistent group, and f2 is removed as well. In
this case, it may be possible to include f1 again into the alignment. Therefore,
our algorithm reconsiders, in the final step, the set C to see if some of the pre-
viously excluded fragments can now be reincluded into the alignment. This is
again done using our direct greedy method.

6.1.3 The overall algorithm

In the previous section, we discussed all ingredients that are necessary to give
a high-level description of our algorithm to compute a multiple sequence align-
ment. For clarity, we omit algorithmical details and data structures such as
the consistency frontiers that are used to check for consistency because these
features have been already described in chapter 3.
We use a subroutine PAIRWISE ALIGNMENT (si, sj , A) that takes two se-
quences si and sj and (optionally) an existing consistent set of fragments A
as input and calculates an optimal alignment of si and sj under the secondary
constraint that this alignment is consistent with A and that only those posi-
tions in the sequences are aligned that are not yet aligned by a fragment from
A. Note that in DIALIGN, an alignment is defined as an equivalence relation
on the set of all sequence positions, so a consistent set of fragments corresponds
to an alignment. Therefore, we do not formally distinguish between alignments
and sets of fragments.

Next, a subroutine GREEDY ALIGNMENT (A,F ′) takes an alignment A
and a set of fragments F ′ as arguments and returns a new alignment A′ ⊃ A
by adding fragments from the set F ′ in a directly greedy fashion. For de-
tails on these subroutines see also [75]. Furthermore, we use a subroutine
BUILD UPGMA(F ′) that takes a set F ′ of fragments as arguments and re-
turns a tree and a subroutine MERGE(p, F ′) that takes the parent node p and
the set of fragments F ′ as arguments and returns an alignment of the set of
sequences represented by node p. Those two subroutines have been described in
the previous two subsections. A pseudo-code description of the complete algo-
rithm for multiple alignment is given in Algorithm 2. The algorithm calculates a
first alignment A0 using our novel progressive approach and a second alignment
A1 with the greedy method previously used in DIALIGN. Finally, the align-
ment with the higher numerical score is returned. For the progressive method,
fragments, i.e. local gap-free pairwise alignments from the respective optimal
pairwise alignments are considered. Fragments with a weight score above the
average fragment score are processed, first following a guide tree as described
in the main text. Lower-scoring fragments are added later, provided they are
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consistent with the previously included high-scoring fragments. Note that the
output of the sub-routine PAIRWISE ALIGNMENT is a chain of fragments.
This is equivalent to a pairwise alignment in the sense of DIALIGN.

As in the original version of DIALIGN [53], the process of pairwise alignment
and consistency filtering is carried out iteratively. Once a valid alignment A
has been constructed by removing inconsistent fragments from the set F ′ of
the fragments that are part of the respective optimal pairwise alignments, this
procedure is repeated until no new fragments can be found. In the second and
subsequent iteration steps, only those parts of the sequences that are not yet
aligned are considered and optimal pairwise alignments are calculated under the
consistency constraints imposed by the existing alignment A.

6.2 Further program features

Beside the improvements to the optimization algorithm described above, we in-
corporated new features into DIALIGN-TX that were already part of the orig-
inal implementation of DIALIGN. DIALIGN-TX now supports anchor points
the same way DIALIGN 2.2 does [56, 58]. Anchor points can be used for vari-
ous purposes, e.g. to speed up alignment of large genomic sequences [10, 8], or
to incorporate information about locally conserved motifs. This can be done,
for example, using the N-local-decoding approach [12, 18] or other methods for
motif finding.

DIALIGN-TX also now comes with an option to specify a threshold parameter
T in order to exclude low-scoring fragments from the alignment. Following an
approach proposed in [57], the alignment procedure can be iterated, starting
with a high value of T and with lower values in subsequent iteration steps.
By default, in the first iteration step of our algorithm, we use a value of T =
− log2(0.5) for the pairwise alignment phase, while in all subsequent iteration
steps, a value of T = 0 is used. With a user-specified threshold of T = 2 for
the first iteration step, the threshold value remains −log2(0.5) in all subsequent
steps, and with a chosen threshold value of T = 1, the value for the subsequent
iteration steps is set to −log2(0.75).

An optimal pairwise alignment in the sense of our segment-based approach is
a chain of fragments with maximum total weight score. Calculating such an
optimal alignment takes O(l3) time where l denotes the (maximum) length of
the two sequences since all possible fragments are to be considered. If the
length of fragments is bounded by a constant L, the complexity is reduced to
O(l2 × L). In practice, however, it is not meaningful to consider all possible
fragments. Our algorithm processes fragments starting at a pair of positions
i and j with increasing fragment length. To reduce the number of fragments
considered, our algorithm stops processing longer fragments starting at i and
j if the previously visited short fragments starting at the same positions have
low scores. More precisely, we consider the average substitution score of aligned
amino acids or the average number of matches for DNA or RNA alignment,
respectively, to decide if further fragments starting at i and j are considered.

To reduce the run time for pairwise alignments, we implemented an option called
fast mode. This option uses a lower threshold value for the average substitu-
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Algorithm 2 DIALIGN-TX (s1, . . . , sk)

F ← ∅
for all si, sj such that i < j do
F ← F ∪ PAIRWISE ALIGNMENT (si, sj , ∅)

end for

/* initial computation of A1: original DIALIGN alignment */
A1 ← ∅
A1 ← GREEDY ALIGNMENT (A1, F )

/* initial computation of A0: ”progressive DIALIGN” alignment */
a = AV ERAGE(w(f)|f ∈ F )
F0 = {f ∈ F |w(f) < a}
F1 = {f ∈ F |w(f) ≥ a}
T = BUILD UPGMA(F )

while there is an unprocessed non-leaf node in T do
Let p be an unprocessed non-leaf node such that the child-nodes are either
marked as processed or are leaves.
A′(p)←MERGE(p, F1)
PROCESSED(p)← TRUE

end while

A0 ← A′(ROOT (T ))
A0 ← GREEDY ALIGNMENT (A0, F0)

/* adding further fragments to A1 */
while additional fragments can be found do
F ← ∅
for all si, sj such that i < j do
F ← F ∪ PAIRWISE ALIGNMENT (si, sj , A1)

end for
A1 ← GREEDY ALIGNMENT (A1, F )

end while

/* adding further fragments to A0 */
while additional fragments can be found do
F ← ∅
for all si, sj such that i < j do
F ← F ∪ PAIRWISE ALIGNMENT (si, sj , A0)

end for
A0 ← GREEDY ALIGNMENT (A0, F )

end while

if W (A0) > W (A1) then
RETURN ← A0

else
RETURN ← A1

end if
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tion scores or number of matches. By default, during the pairwise alignment
phase, fragments under consideration are extended until their average substi-
tution score is at least 4 for amino acids (note that our BLOSUM62 matrix
has 0 for the lowest score possible) and 0.25 for nucleotides. With the fast
mode option, this threshold is increased by 0.25, which has the effect that the
extension of fragments during the pairwise alignment phase is interrupted far
more often than by default. This option, however, reduces the sensitivity of the
program. We observed speed-ups up to factor 10 on various benchmark data
when using this option while the alignment quality was still reasonably high,
in the sense that the average sum-of-pair score and average column score on
our benchmarks deteroriated by around 5% − 10% only. We recommend using
this option for large input data containing sequences that are not too distantly
related. Hence, this option is not advisable for strictly locally related sequences,
where we observed a reduction of the alignment quality almost down to a score
of zero. However, in the latter case, this option is not necessary since the orig-
inal similarity score thresholds of 4 for amino acids and 0.25 for nucleotides
are effective enough to prevent DIALIGN-TX from unnecessarily looking at too
many spurious fragments.

6.3 Benchmark results

In order to evaluate the improvements of the new heuristics, we had several
benchmarks on various reference sets and compared DIALIGN-TX with its pre-
decessor DIALIGN-T 0.2.2 [75], DIALIGN 2.2 [51], CLUSTAL W2 [77], MUS-
CLE 3.7 [25], T-COFFEE 5.56 [60] POA V2 [35, 48], PROBCONS 1.12 [20]
& PROBCONSRNA 1.10, MAFFT 6.240 L-INSi and E-INSi [43, 42]. We per-
formed benchmarks for DNA as well as for protein alignment. As globally related
benchmark sets we used BRAliBase II [27, 88] for RNA and BAliBASE 3 [78]
for protein sequences.

The benchmarks on locally related sequence sets were run on IRMBASE 2 for
proteins and DIRMBASE 1 for DNA sequences, which have been constructed
in a very similar way as IRMBASE 1 [75] by implanting highly conserved motifs
generated by ROSE [73] in long random sequences. IRMBASE 2 and DIRM-
BASE 1 both consist of four reference sets ref1, ref2, ref3 and ref4 with one,
two, three and four (respectively) randomly implanted ROSE motifs. The ma-
jor difference compared to the old IRMBASE 1 lies in the fact that in 1/s cases
the occurrence of a motif in a sequence has been omitted randomly, whereby
s is the number of sequences in the sequence family. The benchmark results
for IRMBASE 2 and DIRMBASE 1 now tell us how the alignment programs
perform in cases when it is unknown whether every motif occurs in every se-
quence, thus providing a more realistic basis for assessing the alignment quality
on locally related sequences compared to the situation in the old IRMBASE 1
where every motif always occurred in every sequence.

Each reference set in IRMBASE 2 and DIRMBASE 1 consists of 48 sequence
families, 24 of which contain ROSE motifs of length 30 while the remaining
families contain motifs of length 60. Sixteen sequence families in each of the
reference sets consist of 4 sequences each, another 16 families consist of 8 se-
quences while the remaining 16 families consist of 16 sequences. In ref1, random
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sequences of length 400 are added to the conserved ROSE motif while for ref2
and ref3, random seqences of length 500 are added. In ref4 random sequences
of length 600 are added.

For both BAliBASE and IRMBASE, we used two different criteria to evaluate
multi-alignment software tools. We used the sum-of-pair score (SPS) where the
percentage of correctly aligned pairs of residues is taken as a quality measure for
alignments. In addition, we used the column score (CS) where the percentage
of correct columns in an alignment is the criterion for alignment quality. Both
scoring schemes were restricted to core blocks within the reference sequences
where the ‘true’ alignment is known. For IRMBASE 2 and DIRMBASE 1,
the core blocks are defined as the conserved ROSE motifs. To compare the
output of different programs to the respective benchmark alignments, we used
C. Notredame’s program aln compare [60].

6.3.1 Results on locally related sequence families

The quality results of our benchmarks of DIALIGN-TX and various alignment
programs on the local aligment databases can be found in Tables 6.1 and 6.2 for
the local protein database IRMBASE 2 and in Tables 6.3 and 6.4 for the local
DNA database DIRMBASE 1. The average CPU times of the tested methods
are listed in Table 6.5. When looking at the results, DIALIGN-TX clearly
outperforms all other methods on sum-of-pairs score (SPS) and column score
(CS) with the only exception that MAFFT E-INSi outperforms DIALIGN-TX
on the SPS on IRMBASE 2 whilst in turn DIALIGN-TX is around 3.5 times
faster and significantly outperforms MAFFT-EINSi on the CS. The superiority
of DIALIGN-TX compared to DIALIGN-T 0.2.2 is not statistically significant
on IRMBASE 2, however, it is on DIRMBASE 1 which is due to a very low
sensitivity threshold parameter for the DNA case set by default in DIALIGN-
T 0.2.2, which allowed fragments solely comprised of matches. In all other
comparisons DIALIGN-TX is significantly superior to the other programs with
respect to the Wilcoxon Matched Pairs Signed Rank Test [87]. DIALIGN 2.2,
DIALIGN-T 0.2.2 (only for protein), MAFFT L-INSi and MAFFT E-INSi were
the only other methods that produced reasonable results.

On IRMBASE 2 our new program DIALIGN-TX is around 1.64 times slower
compared to DIALIGN-T, however, it is still faster than DIALIGN 2.2. On
DIRMBASE 1 we observed that DIALIGN-TX is 4.26 times slower than DIALIGN-
T (which is due to the reduced sensitivity in DIALIGN-T 0.2.2) and we also
see that DIALIGN-TX is around 2.04 times slower than DIALIGN 2.2. Al-
though IRMBASE 2 and DIRMBASE 1 are constructed in a similar way, we see
that T-COFFEE and PROBCONS behave quite well on the protein alignments
whereas they perform very poorly in the DNA case, while the other methods
ranked about equally in the protein and DNA cases. Overall, we conclude from
our benchmarks that DIALIGN-TX is the dominant program on locally related
sequence protein and DNA families that consist of closely related motifs embed-
ded in long unalignable sequences.
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Tab. 6.1: Sum-of-pairs scores of various alignment programs on the benchmark
database IRMBASE 2

Method (Protein) REF1 REF2 REF3 REF4 Total

DIALIGN-TX 89.42 94.90 93.75 93.64 92.93
DIALIGN-T 0.2.2 89.670 94.190 93.930 93.120 92.730

DIALIGN 2.2 90.430 93.40− 91.78−− 92.98− 92.15−−

CLUSTAL W2 07.13−− 10.63−− 19.87−− 26.17−− 15.95−−

T-COFFEE 5.56 72.67−− 77.80−− 83.03−− 83.48− 79.24−−

POA V2 87.56− 49.57−− 41.90−− 37.56−− 54.15−−

MAFFT 6.240 L-INSi 82.780 84.29− 84.15−− 82.42−− 84.41−−

MAFFT 6.240 E-INSi 90.530 94.370 93.110 94.79+ 93.20+

MUSCLE 3.7 32.67−− 34.82−− 54.19−− 57.84−− 44.88−−

PROBCONS 1.12 78.78−− 86.82−− 87.29− 87.69−− 85.15−−

Average sum-of-pair scores (SPS) of the benchmarked programs on the core blocks
(given by the implanted conserved motifs) of IRMBASE 2. Minus symbols denote
statistically significant inferiority of the respective method compared with DIALIGN-
TX, while plus symbols denote statistically significant superiority of the method. 0

denotes non-significant superiority or inferiority of DIALIGN-TX. Single plus or minus
symbols denote significance according to the Wilcoxon Matched Pairs Signed Rank
Test with p ≤ 0.05 and double symbols denote significance with p ≤ 0.001.

Tab. 6.2: Column scores of different programs on IRMBASE 2

Method (Protein) REF1 REF2 REF3 REF4 Total

DIALIGN-TX 64.17 77.36 70.30 72.23 71.02
DIALIGN-T 0.2.2 67.040 75.810 70.400 70.440 70.930

DIALIGN 2.2 68.520 73.32− 65.34− 69.50− 69.17−−

CLUSTAL W2 00.00−− 00.00−− 00.11−− 02.86−− 00.74−−

T-COFFEE 5.56 34.84−− 40.87−− 43.62−− 49.56−− 42.22−−

POA V2 50.99− 16.95−− 11.79−− 10.18−− 22.47−−

MAFFT 6.240 L-INSi 37.81−− 39.54−− 32.79−− 38.75−− 32.22−−

MAFFT 6.240 E-INSi 45.70− 52.37−− 43.11−− 54.82−− 49.00−−

MUSCLE 3.7 04.65−− 06.87−− 14.80−− 19.65−− 11.49−−

PROBCONS 1.12 36.77−− 43.47−− 41.89−− 43.56−− 41.42−−

Average column scores (CS) of the benchmarked programs on the core blocks of IRM-
BASE 2. The symbols are analogous to Table 6.1.
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Tab. 6.3: Sum-of-pairs scores on DIRMBASE 1

Method (DNA) REF1 REF2 REF3 REF4 Total

DIALIGN-TX 94.38 92.85 95.44 95.70 94.59
DIALIGN-T 0.2.2 64.00−− 61.22−− 64.96−− 65.24−− 63.85−−

DIALIGN 2.2 92.61− 91.10− 94.62− 94.13− 93.12−−

CLUSTAL W2 06.79−− 08.27−− 18.51−− 29.09−− 15.66−−

T-COFFEE 5.56 14.71−− 18.88−− 32.08−− 43.39−− 27.62−−

POA V2 32.03−− 27.40−− 28.78−− 32.18−− 30.10−−

MAFFT 6.240 L-INSi 52.40−− 48.81−− 49.77−− 57.47−− 52.36−−

MAFFT 6.240 E-INSi 92.420 84.15−− 87.91− 89.36− 88.46−−

MUSCLE 3.7 48.17−− 54.40−− 56.57−− 60.24−− 56.84−−

PROBCONSRNA 1.10 13.00−− 12.94−− 20.28−− 32.56−− 19.69−−

Average sum-of-pair scores (SPS) of the benchmarked programs on the core blocks of
DIRMBASE 1 . The symbols are analogous to Table 6.1.

Tab. 6.4: Column scores on DIRMBASE 1.

Method (DNA) REF1 REF2 REF3 REF4 Total

DIALIGN-TX 74.39 69.03 71.57 75.11 72.52
DIALIGN-T 0.2.2 29.60−− 28.63−− 35.51−− 35.85−− 32.40−−

DIALIGN 2.2 69.950 68.190 71.250 72.480 70.47−

CLUSTAL W2 00.00−− 00.00−− 02.19−− 04.99−− 01.80−−

T-COFFEE 5.56 00.00−− 00.18−− 04.01−− 08.44−− 03.16−−

POA V2 05.63−− 07.32−− 04.12−− 06.81−− 05.97−−

MAFFT 6.240 L-INSi 21.45−− 11.93−− 16.02−− 22.30−− 17.93−−

MAFFT 6.240 E-INSi 40.28−− 41.99−− 45.77−− 51.01−− 44.76−−

MUSCLE 3.7 14.18−− 16.18−− 19.62−− 30.43−− 20.10−−

PROBCONSRNA 1.10 00.73−− 00.05−− 01.34−− 04.31−− 01.61−−

Average column scores (CS) of the benchmarked programs on the core blocks of DIRM-
BASE 1. The symbols are analogous to Table 6.1.
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Tab. 6.5: Program run time on IRMBASE 2 and DIRMBASE 1

Method Average runtime Average runtime
on IRMBASE 2 on DIRMBASE 1

DIALIGN-TX 1.0 4.47 9.84
DIALIGN-T 0.2.2 2.73 2.31
DIALIGN 2.2 4.98 4.82
CLUSTAL W2 1.86 1.36
T-COFFEE 5.56 26.41 365.88
POA V2 1.81 1.20
MAFFT 6.240 L-INSi 8.47 5.33
MAFFT 6.240 E-INSi 15.35 8.39
MUSCLE 3.7 6.34 4.87
PROBCONS(RNA) 1.12(1.10) 28.27 18.54

Average running time (in seconds) per multiple alignment for sequence families
on IRMBASE 2 and DIRMBASE 1. Program runs were performed on a Linux
workstation with a 3.2 GHz Pentium 4 processor and 2 GB RAM.

Tab. 6.6: Sum-of-pairs scores on BAliBASE 3

Method (Protein) RV11 RV12 RV20 RV30 RV40 RV50 Total

DIALIGN-TX 51.52 89.18 87.87 76.18 83.65 82.28 78.83
DIALIGN-T 0.2.2 49.30− 88.760 86.290 74.660 81.95− 80.14− 77.31−−

DIALIGN 2.2 50.730 86.66− 86.910 74.050 83.310 80.690 77.52−−

CLUSTAL W2 50.060 86.430 85.160 72.50− 78.930 74.24− 75.36−−

T-COFFEE 5.56 58.22++ 92.27++ 90.92++ 79.09+ 86.03+ 86.09+ 82.41++

POA V2 37.96−− 83.19−− 85.28− 71.93− 78.22−− 71.49−− 72.17−−

MAFFT 6 L-INSi 67.11++ 93.63++ 92.67++ 85.55++ 91.97++ 90.00++ 87.07++

MAFFT 6 E-INSi 66.00++ 93.61++ 92.64++ 86.12++ 91.46++ 89.91++ 86.83++

MUSCLE 3.7 57.90+ 91.67++ 89.17+ 80.60+ 87.26+ 83.390 82.19++

PROBCONS 1.12 66.99++ 94.12++ 91.68++ 84.61++ 90.24++ 89.28++ 86.40++

Average sum-of-pair scores (SPS) of the benchmarked programs on the core blocks of
BAliBASE 3. The symbols are analogous to Table 6.1.
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Tab. 6.7: Column scores on BAliBASE 3

Method (Protein) RV11 RV12 RV20 RV30 RV40 RV50 Total

DIALIGN-TX 1.0 26.53 75.23 30.49 38.53 44.82 46.56 44.34
DIALIGN-T 0.2.2 25.320 72.550 29.200 34.90− 45.230 44.250 42.76−

DIALIGN 2.2 26.500 69.55− 29.220 31.23− 44.120 42.50− 41.49−−

CLUSTAL W2 22.740 71.590 21.980 27.23− 39.550 30.75− 37.35−−

T-COFFEE 5.56 31.340 81.18++ 37.81+ 36.570 48.200 50.630 48.54++

POA V2 15.26−− 63.84−− 23.34− 28.23− 33.67−− 27.00−− 33.37−−

MAFFT 6 L-INSi 44.61++ 83.75++ 45.27++ 56.93++ 59.69++ 56.19+ 58.57++

MAFFT 6 E-INSi 43.71++ 83.43++ 44.63++ 58.80++ 58.33++ 58.94++ 58.37++

MUSCLE 3.7 33.03+ 80.46++ 35.220 38.770 45.960 44.940 47.58++

PROBCONS 1.12 41.68++ 85.52++ 40.49++ 54.37++ 52.90++ 56.50++ 55.66++

Average column scores (CS) of the benchmarked programs on the core blocks of BAl-
iBASE 3. The symbols are analogous to Table 6.1.

Tab. 6.8: Sum-of-pairs scores on BRAliBase II

Method (DNA) G2In rRNA SRP tRNA U5 Total

DIALIGN-TX 1.0 72.08 91.69 82.92 78.53 77.80 80.42
DIALIGN-T 0.2.2 54.68−− 69.13−− 60.81−− 64.44−− 67.87−− 63.53−−

DIALIGN 2.2 71.720 89.89−− 81.47−− 78.570 76.16−− 79.37−−

CLUSTAL W2 72.680 93.25+ 87.40++ 86.96++ 79.56+ 83.80++

T-COFFEE 5.56 73.790 90.94+ 83.900 81.650 79.13+ 81.73+

POA V2 67.22−− 88.92−− 85.47++ 76.91− 77.280 79.02−−

MAFFT 6.240 L-INSi 78.93++ 93.85+ 87.46++ 91.79++ 82.80++ 86.84++

MAFFT 6.240 E-INSi 77.39++ 93.80+ 87.24++ 90.60++ 80.46++ 85.71++

MUSCLE 3.7 76.42++ 94.04+ 87.06++ 87.27++ 79.71+ 84.69++

PROBCONSRNA 1.10 80.08++ 94.48++ 88.07++ 92.58++ 84.76++ 87.90++

Average sum-of-pair scores (SPS) of the benchmarked programs on BRAliBase II. The
The symbols are analogous to Table 6.1.
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Tab. 6.9: Column scores on BRAliBase II

Method (DNA) G2In rRNA SRP tRNA U5 Total

DIALIGN-TX 1.0 60.85 84.33 70.95 68.05 62.71 69.03
DIALIGN-T 0.2.2 36.51−− 50.00−− 42.34−− 52.01−− 50.34−− 46.43−−

DIALIGN 2.2 60.900 81.08−− 68.53−− 67.590 60.11− 67.29−−

CLUSTAL W2 61.240 86.720 76.61++ 76.20++ 65.11+ 72.85++

T-COFFEE 5.56 60.240 82.56− 71.630 69.230 62.930 69.010

POA V2 55.21−− 80.38−− 73.77++ 66.030 61.630 67.12−−

MAFFT 6.240 L-INSi 65.23+ 87.49+ 76.75++ 84.59++ 68.46++ 76.25++

MAFFT 6.240 E-INSi 63.84+ 87.34+ 76.59++ 83.29++ 65.71++ 75.04++

MUSCLE 3.7 63.200 87.97+ 76.57++ 78.01++ 64.34+ 73.64++

PROBCONSRNA 1.10 68.70++ 88.60++ 77.55++ 85.46++ 71.73++ 78.19++

Average column scores (CS) of the benchmarked programs on BRAliBase II. The
symbols are analogous to Table 6.1.

Tab. 6.10: Run time on BAliBASE 3 and BRAliBase II

Method Average runtime Average runtime
on BAliBASE 3 on BRAliBase II

DIALIGN-TX 1.0 33.37 0.15
DIALIGN-T 0.2.2 27.79 0.08
DIALIGN 2.2 45.41 0.09
CLUSTAL W2 8.72 0.07
T-COFFEE 5.56 315.78 1.95
POA V2 8.07 0.04
MAFFT 6.240 L-INSi 19.51 0.26
MAFFT 6.240 E-INSi 28.26 0.27
MUSCLE 3.7 10.49 0.05
PROBCONS(RNA) 1.12(1.10) 168.65 0.24

Average running time (in seconds) per multiple alignment for sequence families
on BAliBASE 3 and BRAliBase II. Program runs were performed on a Linux
workstation with a 3.2 GHz Pentium 4 processor and 2 GB RAM.
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6.3.2 Results on globally related sequence families

The results of our benchmark on the global alignment databases are listed in
the Tables 6.6 and 6.7 for BAliBASE 3 and in Tables 6.8 and 6.9 for core blocks
of BRAliBase II. The average CPU times of all methods can be found in Table
6.10. According to the Wilcoxon Matched Pairs Signed Rank Test, DIALIGN-
TX outperforms DIALIGN-T 0.2.2, DIALIGN 2.2, POA and CLUSTAL W2 on
BAliBASE3 whereby DIALIGN-TX is the only method following the DIALIGN
approach that significantly outperforms CLUSTAL W2. Since the methods
T-COFFEE, PROBCONS, MAFFT and MUSCLE are focused on global align-
ments, they significantly outperform DIALIGN-TX on BAliBASE 3. Overall,
PROBCONS, MAFFT L-INSi and E-INSi are the superior methods on BAl-
iBASE 3. On BAliBASE 3, the new DIALIGN-TX program is around 1.22
times slower than the previous version of DIALIGN-T and around 1.36 times
faster than DIALIGN 2.2.

We get a slightly different picture in the RNA case that we examined using
BRAliBase II benchmark database that has an even stronger global character
and is the only benchmark database that we used that does not come with
core blocks. DIALIGN-TX significantly outperforms POA and all other ver-
sions of the DIALIGN approach altough it is still inferior to the global meth-
ods CLUSTAL W2, MAFFT, MUSCLE and PROBCONSRNA. The difference
between T-COFFEE and DIALIGN-TX on BRAliBase II is quite small, i.e. T-
COFFEE outperforms DIALIGN-TX only on the SPS whereas there is no sig-
nificant difference on the CS. Since MAFFT and PROBCONSRNA have been
trained on BRAliBase II the dominance of those methods (especially PROB-
CONSRNA) is not very surprising. Regarding CPU time DIALIGN-TX is
approximately 1.7 times slower than DIALIGN-T 0.2.2 and DIALIGN 2.2 on
BRAliBase II.

6.4 Conclusion

In this chapter, we introduced a new optimization algorithm for the segment-
based multiple-alignment problem. Since the first release of the program DI-
ALIGN in 1996, a direct greedy approach has been used where local pairwise
alignments (fragments) are checked for consistency one-by-one to see if they can
be included into a valid multiple alignment. In this approach, the order in which
fragments are checked for consistency is basically determined by their individ-
ual weight scores. Some modifications have been introduced, such as overlap
weights [53] and a more context-sensitive approach that takes into account the
overall significance of the pairwise alignment to which a fragment belongs [75].
Nevertheless, a direct greedy approach is always sensitive to spurious pairwise
random similarities and may lead to alignments with scores far below the pos-
sible optimal score (e.g. [80, 56], Pöhler and Morgenstern, unpublished data).

The optimization method that we have introduced herein is inspired by the so-
called progressive approach to multiple alignment introduced in the 1980s for the
classical multiple-alignment problem [26]. We adapted this alignment strategy
to our segment-based approach using an existing graph-theoretical optimization
algorithm and combined it with our previous direct greedy approach. As a result,
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we obtain a new version of our program that achieves significantly better results
than the previous versions of the programs, DIALIGN 2 and DIALIGN-T.

To test our method, we used standard benchmark databases for multiple align-
ment of protein and nucleic-acid sequences. Since these databases are heavily
biased toward global alignments, we also used a benchmark database with simu-
lated local homologies. The test results on this data confirm some of the known
results on the performance of multiple-alignment programs. On the globally
related sequence sets from BAliBASE and BRAliBase, the segment-based ap-
proach is outperformed by classical, strictly global alignment methods. How-
ever, even on these data, we could achieve a considerable improvement with
the new optimization algorithm used in DIALIGN-TX. On the simulated local
homologies, our method clearly outperforms other alignment approaches, and
again the new algorithm introduced in this chapter achieved significantly better
results than older versions of DIALIGN. Among the methods for global multiple
alignment, the program MAFFT [43, 42] performed remarkably well, not only
on globally related sequences, but also on locally related ones.
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In this thesis we elaborated on the segment-based approach, which is a promising
alternative method for solving the multiple sequence alignment problem since
segment-based methods are very suitable for detecting locally conserved motifs
regardless of whether they involve only some or all of the input sequences.
The major challenge in the segment-based approach is finding the fragments,
assigning suitable weight scores to them and assembling those fragments into
a multiple sequence alignment such that the resulting alignment depicts the
relevant biological structure.

We see from the results of DIALIGN-T in chapter 3 that the quality of the input
fragments and the quality of the method for assembling them both play a crucial
role in the quality of the overall alignment when applying the segment-based
approach. As a major focus, we looked in chapter 4 at the assembling method
theoretically and proved that, under reasonable assumptions, it is a fixed pa-
rameter tractable (FPT) problem in the number of sequences. Since there are
various biological domains that influence the structure of the input data, we de-
veloped an algorithmic framework in chapter 5 for systematically developing op-
timal or near-optimal heuristics to solve the problem of assembling an alignment
from a given set of input sequences specific to the structural nature of the input
data. This framework especially inspired the development of DIALIGN-TX as
a further improvement of DIALIGN-T (chapter 6). DIALIGN-TX combines the
progressive strategy, comparable to global methods like CLUSTAL W and T-
COFFEE, and the original greedy strategy of DIALIGN 2.2 and DIALIGN-T. In
order to benchmark DIALIGN-TX, we used the BRAliBase II database for DNA
sequences and the BAliBASE database for protein sequences for global align-
ments - both are quite standard for such benchmarks. For local alignments, i.e.
to measure the ability of a program to find locally isolated homologous regions,
we created the IRMBASE for proteins and DIRMBASE for DNA sequences by
arbitrarily implanting artifically generated highly related motifs in otherwise
unrelated random sequences. Our benchmarks showed that the recent version
of DIALIGN-TX outperforms all other methods on local alignments while still
performing very well on global alignments, e.g. it outperforms the very popular
global method CLUSTAL W on BAliBASE 3.

In contrast to our focus on improving the assembling of the fragments in the
segment-based approach, we did not look too much at the pairwise alignment
phase. Only the exclusion of low-scoring sub-fragments in DIALIGN-T (see
chapter 3) affects the pairwise alignment whereby we always used the objective
weight score function of DIALIGN 2.2. We observe a bias of the objective
function toward local isolated similarities, which negatively impacts the quality
of the greedy approach. Of course, this effect is compensated for by the various
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improvements especially by the progressive strategy and also the exclusion of the
low-scoring sub-fragments in DIALIGN-TX. Therefore, further research should
focus on the improvement of the objective function in combination with the
assembling method of the resulting fragments. An idea in that direction would
be to additionally consider in the objective function the situation in which a
fragment occurs. At the moment, the weight score of a fragment f depends
only on its length, its substitution-matrix score and the length of the sequences
it occurs in. However, it is also worth looking at the distance to the neighbour
fragments in the same sequence pair rather than only looking at the sequence
length. Such an approach would bring a more global character to the objective
function and may help to reduce the current weakness of the segment-based
approach on highly globally related sequences. This can be done, for instance, by
looking at the global context of low scoring fragments and therefrom determining
whether it is a spurious match or a fragment of biological relevance: if such a
low scoring fragment occurs in a chain together with other low scoring fragments
with only small gaps in between, it is more likely that it is not a spurious match
and the whole chain is suspected of being biologically meaningful. Overall,
we conclude that there is still room for further improvement of the segment-
based approach on global alignments by adjusting the objective function in
combination with the assembling strategy.

As another concluding remark, already published in [75], it is worth addressing a
fundamental limitation of most multi-alignment methods, including DIALIGN-
T and DIALIGN-TX: these methods implicitly assume that homologies and con-
served motifs occur in the same relative order within the input sequences. There
are two major reasons for making this assumption. First, an order-preserving
multiple alignment that represents homologies by inserting gap characters into
the input sequences provides a convenient visualisation of existing homologies.
Second – and more importantly – the order-preservation constraint greatly re-
duces the noise created by random similarities. A program that returns all
detectable local or global similarities among the input sequences without the
above ordering constraints would necessarily return many spurious random sim-
ilarities. To reduce this noise, arbitrary threshold parameters would have to be
applied which, in turn, could prevent a program from detecting some of the
real homologies. With the ordering constraint that is implicitly imposed by
most alignment programs, weak homologies can be detected, provided they are
order-consistent with other detected similarities, i.e. if they fit into one single
output alignment. Many evolutionary events such as insertions, deletions and
substitutions preserve the relative ordering among sequence homologies. In this
situation, order-respecting alignment methods are, in principle, able to represent
all true biological homologies in one multiple alignment. Nevertheless, for dis-
tantly related protein families, non-order-preserving events such as duplications
or translocations need to be taken into account. Such events play an important
role in the comparative analysis of genomic sequences, which has become an
important area of research in recent years [63]. Some promising algorithms for
the multiple alignment of genomic sequences have been proposed that are able
to deal with non-order-conserving evolutionary events [66, 9]. Also here, further
progress in multiple protein alignment can be expected if these ideas are applied
to protein alignment algorithms.

Altogether, the resulting programs DIALIGN-T and DIALIGN-TX of this the-
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sis have been extensively used in molecular biology research, e.g. [38, 30, 89,
61, 68, 2, 16, 67, 65], providing strong evidence that the segment-based ap-
proach of computing multiple sequence alignments is a very relevant method
and therefore should also be worked on more in future. We showed that the
segment-based method implemented in DIALIGN-TX provides very good results
on local alignments and by improving it in the future on the objective function
in combination with the assembling method the qualitative gap between it and
the purely global methods like T-COFFEE, PROBCONS and MAFFT on global
alignments is very likely to be closed, giving us an alignment framework of a
very universal character for computing general and (biological) domain-specific
multiple sequence alignments.
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