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1 General introduction 

1.1 The sixth sense - immune receptors 

A diversity of cellular sensors have evolved in order to discriminate between self, 

altered self (tumors) and non-self (viruses, bacteria and eukaryotic parasites) in or 

around mammalian cells. Basically, there are two types of defense mechanisms, which 

differ in the receptors used to recognize pathogens: innate and adaptive (also known as 

acquired).  

Innate immune recognition is mediated by germline encoded pattern-recognition 

receptors (PRR), which are characterized by broad specificities for conserved and 

invariant features of microorganisms (1, 2). PRR engagement leads to host 

inflammatory, anti-pathogen and cell death effector mechanisms mediated by  

macrophages, neutrophils, natural killer cells (NK cells), and the complement system. 

This provides a first line of defense, which optimally controls an infection in the first 

four days before an initial adaptive immune response takes place. 

Adaptive immune recognition is mediated by antigen-specific receptors. The genes 

encoding these receptors are assembled from gene segments in the germ line, and 

somatic recombination of these segments yields a diverse repertoire of receptors with 

random but narrow specificities (3). This diversity is further increased by additional 

mechanisms, such as non-templated nucleotide addition, gene conversion and (in the 

case of B cells) somatic hypermutation, generating a highly diverse repertoire of 

receptors with the potential to recognize almost any antigenic determinant in a 

specific manner. These specific antigen receptors are clonally distributed on T and B 

lymphocytes, which allows clonal selection of pathogen-specific receptors and is the 

basis for immunological memory. Since, in a non-immune individual, only an 

extremely small fraction of the adaptive immune cell repertoire (e.g., one in a million) 

will have an antigen receptor capable of recognizing a specific antigen, clonal 

amplification of these specifc cells takes days to evolve. T-helper (TH) cells marked by 

the co-receptor CD4 on the cell surface and cytotoxic T cells (CTL) expressing CD8 

recognize antigenic peptides bound to major histocompatibility complex (MHC) class 

II and class I molecules (also called human leukocyte antigens, HLA), respectively. 

They are the cells of the so-called cellular immunity. As the term HLA indicates, these 



General introduction 

 2

molecules are also involved in rejection of transplanted non-self tissue based on the 

fact, that every person has an individual set of HLA alleles, which bind different types 

of peptides and are co-recognized by T cells. B cells can recognize almost any type of 

antigen by binding to a specific three-dimensional molecular determinant. They 

constitute humoral immunity.  

 

     
 

The innate and adaptive immune system complement each other (4) (Figure 1.1). 

Microbial antigens are taken up by professional antigen-presenting cells (APCs), such 

as dendritic cells (DCs), in the peripheral tissues and are delivered to the lymph nodes 

or spleen through the lymph or blood, respectively, where they are recognized by 

antigen-specific B and T cells. Since specificity of B and T cell antigen receptors is not 

directly linked to the origin of the antigen, the differentiation of lymphocytes into a 

particular effector-cell type and their localization to the site of infection are regulated 

by the instructions provided by the innate immune system, generally in the form of 

cytokines and chemokines, respectively: for specific T cell activation, and in the case 

of TH (CD4+) cells for differentiation into one of several types of effector TH cell (TH1, 

TH2 and TH17, characterized by different cytokine production), it is essential that PRRs 

induce DCs to produce cytokines and to express cell-surface signals; for specific B cell 

Figure 1.1 Recognition of pathogens
and activation of the immune 
response (1). Pathogens induce a
fast innate immune response through 
PRRs, which activates the 
appropriate set of cells of the 
antigen-specifc adaptive immune 
response. An adaptive immune 
response results in boosting of the 
same innate immune response that 
instructed the adaptive immune 
response. 
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activation against so called T-dependent antigens (mostly proteins) effector TH cells, 

which have previously been activated by DCs, are necessary. 

In addition to the conventional T and B cells, there are lymphocytes with innate-like 

characteristics. The innate-like B-1 cells reside in the peritoneal and pleural cavities 

and produce mainly antibodies of the IgM class against some common bacterial 

polysaccharides and some self antigens (5). Innate-like T cells recognize the non-

classical MHC molecules class Ib molecules, which present bacteria-specific ligands, 

for example, bacterial lipids or formylated peptides in the case of the CD1 and H-2M3 

families, respectively. In a way, these MHC-like molecules function as PRRs, 

presenting microbial ligands to specialized T cells (6). Some non-classical MHC 

molecules might themselves be ligands for T cell receptors, without presenting any 

other molecules. In this case, the expression of these molecules is thought to be 

inducible by the engagement of PRRs on specific cell types, such as mucosal epithelial 

cells (7). 

1.1.1  Vaccination 

Prophylactic vaccines aim to generate an effective, specific and long-lasting cellular 

and humoral immunological memory against infectious agents for protection against 

future infection and disease caused by the pathogen. There are three basic types of 

prophylactic vaccines: live attenuated vaccines, inactivated whole cell vaccines and 

subunit vaccines. Live attenuated vaccines are made from weakened, or attenuated, 

viruses or bacteria that are designed to mimic some of the early stages of infection 

without causing disease. Inactivated whole cell vaccines are made by growing the 

infectious organism in culture media or mammalian cells and then inactivating the 

organisms. Subunit vaccines are derived from individual antigens that can be purified. 

Although several serious pathogens have been successfully fought by vaccination yet, 

for example smallpox virus (see chapter 1.2.2) or poliomyelitis virus 

(www.polioeradication.org), there are numerous pathogens which remain a great 

challenge for the human organism.  

Therapeutic vaccines aim to strengthen or modify the immune response in patients 

already suffering from the disease. Great effort is being devoted to developing 

therapeutic vaccines against tumors, AIDS, hepatitis B, tuberculosis, malaria, and 

autoimmune diseases (8). The vaccination-based induction of a specific anti-tumor 
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immune response bears the potential to reject malignant cells or at least to support 

current therapies in a highly specific manner.  

1.1.2  T cell induction by MHC class I and II antigen presentation 

Adaptive cellular immunity by T cells is mediated by binding of the specific T cell 

receptor (TCR), which is composed out of an α- and β-chain, to MHC-peptide 

complexes (9). CD8+ T cells recognize the complex of MHC class I molecules with 

peptides of 8 to 12 amino acids derived mainly from intracellularly produced and 

degraded proteins (10). CD4+ T cells recognize peptides of 9 to 25 amino acids, which 

are mainly derived from membrane-bound proteins or from extracellular proteins 

internalized by endocytosis, on MHC class II molecules, which, physiologically, are 

exclusively expressed by APCs, e.g., DCs (11). 

Molecules of each MHC class are expressed by three genetic loci (called HLA-A, -B, 

and -C for human class I and HLA-DR, -DQ and -DP for human class II) that encode 

structurally similar but non-identical proteins. Each of these loci shows a tremendous 

genetic polymorphism, with hundreds of different allelic forms having been defined 

(www.anthonynolan.com/HIG). This creates a very large genetic pool of structurally 

distinct HLA class I and II, from which a small subset (six alleles each) are represented 

in any individual human being. Most of the polymorphic differences among MHC 

molecules encoded by different genes and alleles alter the structure and specificity of 

the peptide-binding groove. Hence, the MHC polymorphism results in an increase in 

the overall information content displayed population-wide on cells for inspection by 

the immune system. Any of the HLA-A, -B, and -C alleles  binds a repertoire of 

peptides, which share an amino acid sequence motif corresponding to two or more 

essential amino acids, the so-called peptide anchor residues (10, 12, 13). Pockets in the 

peptide-binding groove of MHC molecules contain particular amino acids 

corresponding to the anchor residues of the peptide ligand (14-16). Most HLA class I 

require anchor residues at position 2 and at the C-terminus (www.syfpeithi.de). A B 

lymphoblastoid cell displays an estimate of 10,000 to 20,000 different peptides at 

greater than one copy by an individual class I and II MHC allelic form (12), 

representing a potential total display of 30,000 to 120,000 peptides.  

Peptide fragments binding on HLA class I are generated in the cytoplasm of any 

nucleated cell by proteasome-mediated proteolytic cleavage of cellular endogenous 
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proteins (self-HLA ligands), of viral proteins in case of infection (non-self-HLA 

ligands), and of products of self-genes that have undergone mutations (altered HLA 

ligands), e.g., during malignant transformation (17). After targeting of misfolded or 

nonfunctional proteins (18, 19) as well as of proteins designated for degradation (20) 

by ubiquitination (21, 22), they are recognized by proteasomes, which are multi-

proteinase complexes (23). In case of interferon (IFN)-γ stimulation, a cell switches 

from synthesis of the constitutive 20S core proteasome to synthesis of the 

immunoproteasome by exchange of the subunits harbouring the catalytic sites by 

immunosubunits called MECL1, LMP2 and LMP7 (24). The immunoproteasome is 

able to enhance generation of peptides presented on HLA class I (25). Proteasomes 

generate precursor HLA ligands with the final C-terminus, which are further trimmed 

by peptidases either in the cytosol (26) or in the endoplasmic reticulum (ER) (27). The 

peptides generated in the cytosplasm are transported into the ER by the transporter 

associated with antigen processing (TAP) (28). In the lumen of the ER, MHC class I 

molecules composed out of the polymorphic α-chain and the non-polymorphic β2-

microglobulin (a/β2m-heterodimers) (Figure 1.2a) are loaded with peptides (Figure 

1.2b) through interactions in the peptide-loading complex, which includes the 

transmembrane glycoprotein tapasin, the chaperone calreticulin and the thiol 

oxidoreductase ERp57 (29). Accumulated MHC class I α/β2m-peptide-complexes are 

then transported to the cell surface. 

 

           

Figure 1.2 HLA class I structure (14). a) Side view of the complex composed of the 
membrane-spanning α-chain (domains α1, α2, and α3) and the non-covalently bound β2-
microglobulin (schematic). Peptide binding occurs in the groove between domains α1 and α2. b) 
Peptide (red) bound in the peptide binding groove (top view; electron density). 
 

a              b    
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DCs can potentially initiate CTL responses through the process of direct antigen 

presentation (as just described) or through cross-presentation, which refers to the 

generation of HLA class I-peptide complexes from exogenous protein, e.g., from 

apoptotic cells (30-33). The priming of anti-pathogen or anti-tumor responses is often 

dependent on cross-priming, which is therefore an important issue in the context of 

vaccinations. The fact that, first, many viruses show strict tissue tropism and do not 

detectably infect DCs and, second, viruses often interfere with antigen presentation, 

may have contributed to the evlution of cross-priming (34). Both direct and cross-

presentation lead to cell surface expression of HLA class I-peptide-complexes along 

with costimulatory molecules, such as CD80 and/or CD86, needed to induce naïve 

CD8+ T cells. However, when a TLR ligand activates a DC, rapid maturation occurs 

and thus uptake of exogenous antigen is substantially decreased (35, 36). This finding 

is particularly critical for protein-based vaccines.  

 
 

 

Figure 1.3 Proposed pathways for cross-presentation by MHC class I molecules (37). For 
explanation see text below. 

 

Presently, three mechanistic pathways are proposed for cross-presentation by HLA 

class I (Figure 1.3, (37)): The first model (Figure 1.3a) proposes that endocytosed or 

phagocytosed antigens are translocated into the cytosol, where they are degraded into 

antigenic peptides by the proteasome before being transported into the lumen of the 

ER by TAP. In the ER, the peptides are loaded onto nascent MHC class I molecules for 

   a    b    c 
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presentation at the cell surface. An important revision (Figure 1.3b) of the first model 

was made by studies showing that phagosome formation in macrophages and DCs 

might involve fusion with the ER, as the phagosomes contain ER-associated molecules 

such as calnexin, calreticulin, TAP and glucose-6-phosphatase, and Sec61. Sec61 is 

known to be involved in retrotranslocation of misfolded proteins from the ER to the 

cytosol for degradation, and thus it has been proposed that Sec61 might be involved in 

the translocation of proteins located in phagosomes to the cytosol. Recent findings 

provide evidence of an indispensable function for the early endocytic compartment in 

the cross-presentation of soluble antigens (Figure 1.3c) (32). Furthermore, this work 

establishes that recruitment of TAP to the early endosomal compartments is regulated 

by signaling through Toll-like receptor (TLR) 4 and MyD88 (32). Additional recent 

research demonstrates that human plasmacytoid DCs cross-present exogenous antigens 

to memory CD8+ T cells through the early endocytic compartment (33).  

 

 

Figure 1.4 HLA class II structure  (38). a) Side view of the complex composed out of the 
membrane-spanning α-chain (domains α1 and α2) and β-chain (domains β1 and β2). Peptide 
binding occurs in the groove between domains α1 and β1 (schematic). b) Peptide (red) bound in 
the peptide binding groove (top view; schematic). 

 

Peptide fragments binding on MHC class II molecules (Figure 1.4b, (38)) are generated 

in the endocytic pathway (39). The two polymorphic membrane-spanning chains α 

and β of HLA class II (Figure 1.4a, (38)) are synthesized into the lumen of the ER and 

associate with preformed trimers of the invariant chain (Ii) to form nonameric (αβIi)3 

complexes (40-42). Ii occupies the peptide-binding site of the HLA class II, therewith 

preventing premature peptide binding. Ii is also required to direct the complex out of 

the ER and to chaperone the HLA class II from the biosynthetic pathway to 

endosomes, either directly via the trans-Golgi-network or via the plasma membrane 
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(dominant) (43-45). Upon arrival in acidic endosomal compartments, the Ii luminal 

domain is progressively degraded by lysosomal proteases, breaking up the nonameric 

complex but leaving a contiguous internal segment of Ii, the class II-associated 

invariant-chain peptide (CLIP), associated to the peptide-binding groove of the now 

liberated HLA class II-αβ dimers (46). CLIP is then replaced from the peptide-binding 

groove by locally generated peptides of 9 to 25 amino acids, with the aid of the 

chaperone HLA-DM (47, 48). In contrast to HLA class I, the peptide binding groove of 

HLA class II is open at both ends and thus allows for binding of longer peptides with 

generally up to 25 amino acids ((38), www.syfpeithi.de). Although antigen loading 

occurs predominantly in late endosomes, some HLA class II-peptide complexes can be 

generated in early endosomes or lysosomes, or even at the plasma memrane (49-51). 

Macropinocytosis and degradation of pathogenic antigens into peptides is stimulated 

in maturing DCs (52, 53).  

CD8+ and CD4+ T cells are primed in the lymph nodes upon recognition of a specific 

non- or altered-self peptide presented by HLA class I or class II, respectively, together 

with costimulatory molecules on matured DCs, which have migrated into the lymph 

nodes after uptake of antigen (Figure 1.5, (54)) (55). Activated CD8+ and CD4+ T cells 

migrate into the periphery to exert their effector function as CTL or TH cells. 

Cytotoxicity is mediated by CTL through indirect killing of target cells by release of 

the cytokines TNF-α and IFN-γ, through induction of apoptosis in target cells via 

death receptor triggering (binding of the CTL-expressed Fas ligand FasL to the Fas 

receptor CD95, which is upregulated in target cells by IFN receptor signaling), or 

through direct killing of target cells by release of perforin and granzyme B into the 

intercellular space between CTL and target cell (56). TH1 cells secrete IFN-γ and 

interleukin (IL)-2 leading to activation of macrophages and CD8+ T cells (57). TH2 cells 

support a humoral immune response by secretion of IL-4 leading to activation of 

antibody secreting B cells and the complement system (58). Regulatory T cells (Treg), 

which are able to inhibit autoreative T cell responses, are also CD4+ and in addition 

constitutively express CD25 (59). 
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Figure 1.5 T cell induction by MHC class I and II antigen presentation (54). Antigen taken up 
by immature DCs in the periphery is processed and presented by matured DCs to naïve T cells in 
the lymphnodes in the form of MHC class I and II-peptide-complexes together with costimulatory 
proteins. Activated T cells proliferate and differentiate to effector T cells (CTL, TH, Treg), which 
exert their function in the periphery. 

1.1.3  Anti-viral immune response 

Since all viruses replicate within host cells, the main targets of innate immune 

recognition are viral nucleic acids, which are discriminated from self nucleic acids on 

the basis of specific chemical modifications and structural features that are unique to 

viral RNA and DNA, and on the basis of the cellular compartments where only viral 

nucleic acids are normally found (60, 61). This sensing of viral infection within cells 

results in the production of type I interferons IFN-α and IFN-β, which induce the 
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expression of more than hundred IFN-inducible genes both in the infected cell and in 

neighbouring cells by autocrine and paracrine IFN-mediated signaling, respectively 

(62-64). In addititon, a special subset of DCs, plasmacytoid DCs (pDCs), are triggered 

by the intracellular PRRs TLR3, TLR7/8 and TLR9 recognizing viral dsRNA (65), 

ssRNA (within endosomes) (66) and DNA (rich in CpG) (67, 68), respectively, which 

results in the production of systemic levels of type I IFN (69). Another type of DCs, 

myeloid DCs (mDCs), also express subsets of TLRs and, when stimulated, express high 

levels of IL-12, but little type I IFN (70). mDCs are crucial for the activation of  T cells 

during viral infections (71). 

The type I IFN-induced transcripts encode proteins that mediate the antiviral response 

(Figure 1.6, (72)). Some of these proteins (e.g., PKR and OAS) are enzymes whose 

activities are dependent upon viral co-factors (e.g., dsRNA). When such co-factors are 

provided, enzyme function evokes cellular changes, e.g., translational arrest. Other 

type I IFN-inducible factors trigger cell-cycle arrest (e.g., the G1/S phase-specific 

cyclin-dependent kinase inhibitor p21) and others promote the presentation of viral 

antigens to adaptive immune cells (e.g. by upregulating MHC class I and the antigen-

processing machinery). IFN-α/β also has immunomodulatory functions: promotion of 

DC maturation, upregulation of activities of NK cells and CD8+ T cells, and induction 

of synthesis of IL-15, a factor that promotes the division of memory CD8+ T cells.  

 
 

 
NK cells play an important role in bridging the innate and adaptive immune system 

during viral infections by mediating elevated cytotoxicity during early viral infetions 

Figure 1.6 Antiviral effects 
mediated by IFN-induced 
gene transcripts (72).  
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(73, 74). Upon priming by various soluble factors including type I IFN and by 

recognizing host stress proteins (MICA, MICB, ULBP1) by the NKG2D receptor, they 

can kill virus-infected target cells under particular conditions and boost the 

maturation and activation of DCs, macrophages, and T cells through a combination of 

cell surface receptors and cytokines including IFN-γ and TNF-α. Conversely, NK cells 

can also kill immature DCs, activated CD4+ T cells and hyperactivated macrophages. 

These NK cell regulatory functions are kept in balance by the recognition of 

constitutively expressed self molecules (e.g., MHC class Ia and MHC class Ib 

molecules) by means of inhibitory receptors (e.g., KIR or CD94-NKG2A).   

The early proinflammatory cytokine responses promote a classical TH1 response of 

mixed phenotypes with high IFN-γ, moderate IL-2, and low IL-4 levels, which leads to 

activation of macrophages, stimulation of CTL, and upregulation of MHC-based 

antigen presentation on DC (75). CD8+ T cell responses can be induced to extremely 

high levels with intense expansion. Activated CTL halt the spread of infection by 

killing virus-infected cells through direct cell-to-cell contact and by the release of 

soluble mediators (e.g., cytokines, such as IFN-γ and TNF-α, as well as perforin and 

granzyme) (76-78). In addition, antibody production (e.g., for neutralization of virus) 

by B cells is aided by CD4+ T cell cytokine responses (57, 58). 

1.1.3.1  Immune response to poxviruses 

The immune response against poxviral infections (see chapter 1.1.3.1) is reliable on 

IFN-γ and other TH1 cytokines provided by NK cells and macrophages to promote an 

effective CTL response including granzyme and perforin, and an effective antibody 

response (79). Recovery from secondary infection is dependent on the generation of 

neutralizing antibody.  

Viruses employ multiple strategies to evade or modulate the host immune system 

including antigenic variation (antigenic drift by mutations, or antigenic shift, e.g. 

Influenza virus), interference with antigen processing and presentation, modulation of 

cytokine production, prevention of viral antigen presentation, and abrogation of the 

induction of cell death. Vaccinia virus (VACV) secretes soluble proteins to bind the 

host cytokines (B15R), complement factors C3b and C4b, chemokines, interferons 

(B18R/B19R, B8R), and their receptors (80). Furthermore, the virus has strategies to 

inhibit intracellular antiviral effects of class I interferons (E3L, K3L; (81, 82)) and to 

interfere in various intracellular steps of the IL-1R and TLR signaling pathways, 
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ultimately regulating the NF-κB pathway and interferon regulatory factors (IRFs) 

(A52R, A4R, K1L, N1L; (83-85)). In addition, VACV produces proteins directly 

interfering with apoptosis of the host cell and thereby impairing CTL mediated lysis 

(F1L). 

1.1.3.2  The broad CTL response induced by poxviruses 

Immunization with VACV induces lifelong protection from smallpox disease and can 

serve as a benchmark for the type of immunity that other vaccines should induce. 

After immunization, CD8+ T cells are induced against VACV or attenuated strains such 

as MVA (see chapter 1.2.3.1) (86-88). They are polyfuctional (IFN-γ, MIP-1β, TNF-α, 

CD107a, IL-2, perforin, and granzyme), make much more IFN-γ than cells with fewer 

functions and express an unusual memory phenotype (CD45RO− CD27intermediate) (89). 

This polyfunctional CD8+ T cell profile is induced in response to both the vector and 

the inserts (see chapter 1.2.3.2) and is consistent with virus-specific CD8+ T cell 

responses observed in well-controlled persistent infections such as CMV, EBV, and 

nonprogressive HIV-1 infection (90-92). This suggests that maintenance of highly 

polyfunctional, virus-specific CD8+ T cells is beneficial and contributes to effective 

antiviral immunity. 

More than 200 human and mouse VACV- and/or MVA-specific CTL epitopes have 

been identified covering several different HLA alleles as well as the mouse alleles Kb,d 

and Db,d (79, 93-108). These epitopes have been found in about hundred different 

VACV/MVA proteins meaning that half of the VACV/MVA proteome is targeted by 

the cellular immune response (93). Two thirds of the proteins contain a single epitope, 

while 10% of the antigenic proteins contain three or more epitopes. This broad 

epitope repertoire is contrary to smaller genome viruses which exhibit marked 

immunodominance (109).  

Although a high number of CTL epitopes has been identified by many different 

research groups, there was only little overlap between the studies (93, 110). Several 

reasons could explain this observation: first, most groups attempted to narrow their 

focus to a selected group of antigens; second, different virus strains (permissive and 

non-permissive), different model systems (humans and HLA-transgenic mice (110)), 

and different methods (T cell screening by IFN-γ ELISPOT, Tetramer-staining, 

intracellular cytokine staining and HLA ligand analysis) were used for the analyses; 

third, vaccinations modes (prime and boost), routes of infection, virus dose and time 
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points of analysis after vaccination were inconsistent (93). For example, analyses using 

permissive versus non-permissive strains, prime- versus boost-vaccinations, T cell 

screening versus HLA ligand analysis are likely to detect different percentages of CTL 

primed by cross-presentation and by direct presentation (111, 112). 

1.1.3.3  Identification of viral T cell epitopes 

Essentially, two basic methodologies are being employed for identification of T cell 

epitopes, which are either based on identification of epitope-specific T cells in 

peripheral blood mononuclear cells (PBMCs) of immune donors, or on sequencing of 

viral MHC ligands isolated from virus-infected cells: 

The first method to identify T cell epitopes uses stimulation of PBMC of immune 

individuals followed by the measurement of the T cell response ex vivo or after 

expansion of low abundant memory T cells by peptide stimulation or of naïve T cells 

by in vitro priming. Analyzed are cytokine production (by intracellular cytokine 

staining (ICS; e.g. IFN-γ) or by IFN-γ-enzyme-linked imunosorbent spot assay 

(ELISPOT)), cytotoxicity (by chromium (51Cr) release “kill” assay or granzyme B-

ELISPOT) or presence of TCR-specific T cells (by tetramer staining) (113-116). Several 

techniques have been utilized to screen PBMC, including genome wide scanning 

(117), phage display/DNA libraries (118, 119), combinatorial peptide libraries (120-

122) and expression cloning strategies (123). Less PBMC have to be screened by 

predicting peptides that may bind on a certain MHC allele using computer algorithm-

based epitope prediction, for example SYFPEITHI (www.syfpeithi.de, (124)) and 

Bimas (www-bimas.cit.nih.gov/molbio/hla_bind) (125-128). The bioinformatic 

algorithm of SYFPEITHI is based on identified amino acids commonly occurring at 

anchor positions in naturally MHC-presented peptides, whereas the algorithm of 

Bimas is based on binding studies of synthetic peptides. Using this still quite laborious 

approach, immunodominant epitopes are detected that are frequent in the population 

and induce a measurable T cell response in vitro. However, detection is often 

restricted to the most immunogenic viral epitopes. Epitopes resulting from 

posttranslational modifications or frame shifts are not detected. A more recent 

development in screening of PBMC is the identification of T cell responses by the 

loading of HLA tetramers with arrays of peptides using conditional HLA ligands (129). 

This technique allows for rapid high throughput detection of epitope-specific T cell 
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responses. Like all other approaches based on flow cytometry, this method enables 

only detection of frequent CD8+ T cells (>0.01% of CD8+ cells).  

The second methodology is based on isolation and sequencing of viral HLA ligands 

from cells infected in vitro by mass spectrometry (MS) (130-134). An analytical 

approach to apply MS for the identification of viral epitopes in the plethora of self-

epitopes was first described using an in silico subtractive method, which compares the 

MS spectra from infected cells and non-infected cells (132). The sensitivity of the 

technology was considerably improved through the use of stable isotopes, for example 

by the SITE technology (stable isotope tagging of epitopes) for the detection of viral 

HLA class I epitopes (133) and a similar strategy for identification of class II epitopes 

(135). SITE is based on metabolic labeling of endogenously synthesized proteins 

during infection and can therefore not be utilized to identify MHC ligands from 

infected organisms. MS-based approaches are generally less biased than T most cell-

based methods, since no predictions are used and immunogenic epitopes of all viral 

proteins are detected irrespective of inducing a detectable T cell response in an 

individual. However, MS analyses imply a technical bias: individual peptides might 

not be detected by the mass spectrometer and for detection of low abundant viral 

MHC ligands sensitive instrumentation and high numbers of infected cells may be 

needed. Yet, epitopes resulting from posttranslational modifications or frame shifts 

may be detected. Most importantly, only MHC ligand analysis identifies the epitopes, 

which are actually presented by infected cells and which thus may provide protection 

from infection. 

Mass spectrometry also enabled estimates of the abundance of individual peptides on 

the cell surface and of the complexity of the overall repertoire. By standardizing 

against the ion current of known amounts of model peptides spiked into extracts, 

many MHC-peptides have been estimated at one copy or less per cell (136, 137), at 10 

to 400 copies per cell (138, 139), and a single viral peptide from cells infected with 

measles virus has been found at 100,000 copies per cell (132). The number of peptide-

MHC complexes required for T cell recognition varies from several thousand per 

target cell to as few as one (137, 140-145). Some studies have shown a direct 

correlation between cell surface densities of individual peptide antigens and the 

magnitude of the immune response to them (146-150), but other studies have shown 

exactly the opposite (132, 137, 151). Higher doses of peptide antigen can actually 

reduce the magnitude of an immune response in vivo (132, 152). Finally, there are 



General introduction 

 15

examples of self-peptides that become antigens on cancer cells (153, 154), suggesting 

that the immune response may be initiated because their level of presentation is 

altered.  

Criteria to rate how ‘defined’ a potential epitope is, which has been found by any of 

the described approaches, have been proposed by Yewdell (155):  

- No star: Responses are measured by overlapping peptides; no effort is made to 

characterize determinants in a systematic manner. 

- One star : The highest affinity peptide in a suspected peptide sequence is 

determined by testing various lengths of synthetic peptides compatible with class I-

binding algorithm predictions, and peptides bind to class I molecule with a KA of <10-7 

M or activate CD8+ T cells at concentrations of <10-9 M. CD8+ T cells induced by the 

peptide are shown to recognize histocompatible cells expressing the source protein. 

While this evidence provides confidence that cells can generate the determinant from 

its source protein, it is not definitive, since CD8+ T cells might still cross-react with 

another peptide from the same protein. 

- Two stars : One-star criteria plus one of the following: peptides eluted from cells 

co-elute with the synthetic putative peptide via HPLC analysis that offers reasonable 

discrimination between distinct peptides. Half-star bonus for using multiple solvent 

systems to increase the resolution of peptide separation, or for demonstrating that 

CD8+ T cell recognition of cells synthesizing source protein is abrogated by introducing 

a missense mutation into the sequence encoding the putative determinant, with 

another half-star bonus for introducing the mutation into the source pathogen itself. 

- Three stars : Two-star criteria plus mass spectroscopy identification of 

determinant from source-organism-infected cells. 

- Four stars : Three-star criteria, but attained using cells directly obtained 

from animals infected with the source organism.  

1.1.4  Anti-tumor immune response 

Certain human tumors, particularly melanoma and renal cell carcinoma (RCC), can 

occasionally undergo spontaneous regression (156, 157). Several observations support 

the view that CTL are the major anti-tumor effectors in humans. First, 

immunosuppressed transplant recipients display higher incidences of non-viral 

tumors, such as melanomas, colon, lung, pancreas, bladder, kidney, and endocrine 
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system cancers, than immunocompetent control populations (158). Second, the 

presence of lymphocytes within the tumor is often a positive prognostic indicator of 

patient survival (159). Third, a minority of cancer patients (<5%) are able to develop 

spontaneous innate and acquired immune responses to the tumors they bear (160, 

161). Therefore, stimulation of tumor-specific CD8+ T lymphocytes  has become the 

focus of many clinical trials (so called ‘cancer immunotherapy’), in which multiple 

antigen delivery strategies have been tested in hundreds of patients (summarized in 

(162)). These trials have demonstrated that vaccines are safe, immunogenic, and yield 

a low frequency of objective clinical responses. Several immune evasive mechanisms 

account for a limited effectiveness of endogenous or vaccine-induced immune 

responses to tumors (Figure 1.7, (163, 164)). Induction of a broad immunity to 

multiple tumor-associated antigens (TAAs), and activation of persistent T cells may be 

important. Additional modes of amplifying immune responses (lymphodepletion, 

cytokine support, inhibition of negative immune self-regulation) are now being tested 

and should improve clinical responses from 5-10% response seen currently (162). 

Importantly, CD4+ TH cells have been shown to be required for generating and 

maintaining potent antitumor immunity (165).  

 

Figure 1.7 Mechanisms that limit immune responses against tumors (163).  
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1.1.4.1  Tumor-associated antigens 

Peptide antigens associated with MHC class I or class II molecules are the molecular 

targets for T cell recognition of cancer. Since, in 1991, the first molecularly defined 

human TAA recognized by CTL was described (166), several studies utilizing 

expression cloning of TAA cDNAs, reverse immunology, HLA ligand analysis, genetic 

approaches, and serological identification of antigens by recombinant expression 

cloning (SEREX) have been performed to identify a number of TAAs, which can be 

presented by HLA class I and II on tumor cells or APCs ((167-171), 

www.cancerimmunity.org/peptidedatabase/Tcellepitopes). Reverse immunology refers 

to prediction of epitopes from an already identified TAA on the basis of known HLA-

peptide motifs. HLA ligand analysis involves eluting and fractionating of TAA peptides 

naturally presented by HLA on tumor cells by reverse-phase high performance liquid 

chromatography (HPLC) and mass spectrometry (MS) (LC-MS/MS). Genetic 

approaches are used to identify tumor genes coding for the epitopes recognized by 

isolated patient T cell clones reactive against autologous tumors. SEREX is based on 

the recognition of TAA by cancer patients’ autologous sera. According to the pattern 

of expression in neoplastic and normal tissues, TAAs can be classified into five major 

categories: 1) proteins expressed only in testis/placenta (which lack HLA expression), 

2) proteins specific for the (tumor) tissue, 3) proteins with altered amino acid 

sequence, 4) proteins derived from oncogenic viruses (for example, herpesviruses) 5) 

ubiquitous proteins over-expressed in tumor cells, 6) proteins with tumor-

associated/specific alterations in posttranslational modification of amino acid side 

chains ((162, 172-176), Table 1.1).  

For cancer immunotherapy it has to be taken into account that TAAs, which are 

highly overexpressed in tumor tissue but are also found in at least some normal tissues, 

bear the risk of inducing autoimmunity in contrast to TAA, which have emerged by 

mutation. TAAs are generally tumor- and patient-specific. In addition, presentation of 

epitopes is dependent on the patient’s set of HLA alleles. Cancer immunotherapy is 

therefore a rather individual therapy against tumors. 

Most TAAs used for epitope-based cancer immunotherapy are considered to be ‘self-

antigens’. Therefore, one of the main challenges is to effectively and safely break 

tolerance to TAA, for example by adjuvants, addition of heterologous helper peptides, 

inclusion of cytokines, autologous DCs pulsed with different TAAs, adoptive transfer 
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of ex vivo cultured effector T cells, or viral vectors producing a set of epitopes in 

parallel to viral antigens (162).  
 

Table 1.1 Tumor Antigen Categories 

TAA category Antigen characteristics Genes 

Cancer - testis Expressed in various tumors but not normal 
tissues except testis and placenta 

MAGE, GAGE, BAGE,        
NY-ESO-1 

Differentiation Shared between tumors and normal tissues 
from which they arose 

Tyrosinase, Melan-A/MART-
1, gp100, TRP-1, TRP-2 

Tumor-specific Generated by point mutations or splicing 
aberrations in ubiquitous genes 

p53, Ras, CDK4, β-catenin, 
TRP-2/INT2 

Tumor virus Produced by oncogenic viruses (e.g., HPV) HPV16 E7 

Tumor-
associated 

Over-expressed in histologically different 
types of tumors 

Survivin, MUC1/2, AFP, 
EphA2 

Posttranslational 
modification 

Containing altered posttranslational 
modification in malignant cells 

glycosylated MUC-1, 
tyrosinase(D370N),         
β-catenin(pS33), 

IRS2(pS1100) 

 

One subclass of the sixth category of TAAs (Table 1.1) is special in the way that they 

are not defined by altered protein expression but by altered cellular signaling, and 

thereby they are directly linked to cellular growth control processes: proteins 

differentially modified by posttranslational phosphorylation in transformed cells 

compared to non-malignant cells (176, 177). Degradation of these proteins generates 

so called phosphopeptides that are uniquely or differentially presented on malignant 

cells by MHC class I molecules. CTL against tumor-specific phosphopeptides derived 

from some of these proteins have been generated and their ability to selectively 

recognize tumor cells has been demonstrated ((176), see chapter 1.1.4.2). Three 

observations support an intensified search for phosphopeptide epitopes as TAA 

candidates for cancer immunotherapy. First, malignant transformation leads to 

alterations in protein kinase pathways regulating cell growth, differentiation, and cell 

death (136, 178). Second, deregulated signaling cascades often lead to increased 

protein phosphorylation (179). Third, rapid protein degradation by the proteasome is 

an important mechanism for regulating the activity of many transcription factors, cell 

growth modulators, signal transducers, and cell cycle proteins (171, 180, 181). This 
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degradation often depends on E3 ubiquitin-ligases whose activity in turn depends on 

phosphorylation of the target protein (21, 22, 171). 

Signalling pathways and hence phosphorylation of proteins might be changed by 

several ways in the case of cellular transformation. First, up-regulation of 

phosphorylation at specific sites has been associated with transformation. Certain 

phosphorylation sites in some proteins become constitutively phosphorylated during 

oncogene activation, for example, in c-Jun and in the tumor suppressor gene product 

p53 (182). c-Jun becomes activated by phosphorylation of the two serines S63 and S73, 

and has been reported to be phosphorylated in both leukemia and lung cancer cells. 

Phosphorylation of the p53 tumor suppressor protein has been described for a number 

of serine residues, among these S9, S15, S37, S315, S392, and S378 (183, 184). Second, upon 

the critical event resulting in activation of the transforming phenotype, some 

protooncogenes characteristically acquire novel kinase activities leading to the 

appearance of novel phosphorylation sites (185, 186). For example, in leukemia, c-abl 

protooncogene becomes activated by its translocation to chromosome 22 giving rise to 

a BCR-ABL fusion protein (136, 187). A crucial difference between the fusion protein 

and the normal c-abl is that only the chimeric protein exhibits tyrosine kinase activity 

(185), resulting in autophosphorylation of a number of tyrosine residues of the BCR-

ABL fusion protein (136, 188), as well as causing a constitutive increase in tyrosine 

phosphorylation of other cellular proteins. Third, transformation-associated 

posttranslational modification of a cellular protein might alter the pattern of peptide 

fragments that are generated from it.  

1.1.4.2  HLA ligands with differential posttranslational modifications as CTL 

inducers - phosphopeptides 

Only little is known about the effect of naturally occurring posttranslational 

modifications of peptides on MHC class I restricted antigen presentation in vivo. They 

may affect antigen processing, MHC binding, and interaction with the TCR. So far, it 

has been described that T cells can specifically recognize MHC class I  and class II 

restricted peptides which have been posttranslationally modified (189-191). MHC class 

I presented peptide modifications include change of asparagine to aspartate (175), 

modification of cysteine (192), glycosylation of serine (174, 193, 194), and 

phosphorylation of serine, threonine or tyrosine (176, 195, 196).  
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It has been shown, that phosphorylated peptides can be transported by TAP, can bind 

to MHC class I molecules, and can be discriminated by CTL from the corresponding 

unphosphorylated ligands (195). Naturally processed HLA class I ligands have been 

identified from several cell lines by LC-MS/MS (196), and CTL against HLA-presented 

phosphopeptides specifically found on tumor cell lines have been detected (176).  

Consistent with the ability of CTL to discriminate between phosphorylated and non-

phosphorylated peptides, molecular modeling of one of the HLA-A*0201 

phosphopeptide complexes suggests that the phosphate moiety is accessible for the 

TCR (Figure 1.8, (177)). Moreover, the prominence of this functional group and its 

electronegativity may make it an effective immunogen eliciting a diverse CTL 

response. Whereas some phosphopeptides are involved in TCR contacts, others may 

enhance binding to the HLA. The solution of HLA-bound phosphopeptide structures 

in complex with specific T cell receptors has not been shown so far. 
 

 

Figure 1.8 Structural model of HLA-A*0201 complexed to the 
phosphorylated peptide RTLpSHISEA (177). The phosphate 
moiety points away from the HLA binding groove. 

 

Phosphorylated HLA ligands are of great interest, since phosphorylation of tyrosine, 

serine, and threonine residues (Figure 1.10a) by cellular kinases is a tightly regulated 

posttranslational cytosolic event, which can be deregulated by inflammation, 

intracellular infection, cellular activation, and malignant transformation. This may 

result in the generation of sufficient amounts of phosphopeptides for presentation on 

HLA to induce T cells (see 1.1.4.1). Moreover, a large number of phosphorylated viral 

proteins have been characterized, which also might generate phosphopeptide 

fragments for HLA presentation. Viruses with multiple known protein 

phosphorylation sites include EBV, adenovirus, HIV, and influenza virus (197-199).  

Several phosphorylation sites of proteins and their functional roles are known 

(www.phosphosite.org). The identified phosphorylated HLA ligands have added 

several novel ones to the list (176, 196).  
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1.1.4.3  Identification of phosphorylated HLA ligands 

Stoichiometry of protein phosphorylation is often low. Therefore, in a standard LC-

MS/MS experiment, the chance of detecting and sequencing phosphopeptide MHC 

ligands is quite low. Phosphopeptide enrichment is consequently a prerequisite to 

study phosphorylation on a global level.  

Several phosphopeptide enrichment methods have been developed in the field of 

proteomics (200): 1) Antibodies raised to phosphorylated residues that are 

independent of the surrounding sequence can be used to purify phosphorylated 

proteins and peptides (201, 202). 2) Immobilised metal affinity chromatography 

(IMAC) is the most widely used method for enriching phosphorylated peptides or 

proteins (203). The positive charge of transition metals such as Ga3+ or Fe3+ bind 

negatively charged phosphate groups with high affinity (Figure 1.9a) and elution is 

readily achieved by competition with sodium phosphate or EDTA. 3) Metal oxide-

affinity purification (MOAC) is particularly performed with titanium dioxide (TiO2) 

(204) (zirconium and aluminum metal oxides are also applied (205, 206)) used in the 

form of poros TiO2 beads or microspheres (Figure 1.9b). Phosphopeptides bind at low 

pH. Specificity has been further improved by adding 2,5-dihydroxybenzoic acid 

(DHB). Elution is achieved at high pH with ammonium bicarbonate or hydroxide 

(207). 4) Strong cation exchange chromatography (SCX) separates proteins or peptides 

based on their solution charge state. At low pH, phosphopeptides are charged more 

negatively because of the negative phosphate group and therefore elute earlier in a salt 

gradient than non-phosphopeptides (208). Phosphorylated MHC ligands have been 

enriched by Fe3+-based IMAC, so far (176, 196). 

In addition to these native phosphorylation strategies, several chemical derivatisation 

strategies have been developed exploiting various aspects of phosphate groups, such as 

their labile nature and the subsequent reactivity of the dephosphorylated group to 

nucleophiles, for tagging (200, 209). Other chemistries such as methyl-esterification 

were developed to improve the specificity of metal affinity chromatography (210). 

Additionally, methyl-esterification may be used to isotopically label peptides for 

relative quantification purposes (209, 211). 
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Figure 1.9 Phosphopeptide enrichment. a) Fe3+-based IMAC (203); b) TiO2-based MOAC (207) 
 

Phosphorylation of amino acid side chains often shows greater susceptibility to 

cleavage by collision-induced fragmentation (CID) in MS than the peptide backbone 

(200). This characteristic may be used in different analytical strategies: 1) Detection of 

the low mass ‘marker’ ions generated from the modification itself, 2) Detection of the 

loss of the modification from the peptide precursor.  

In positive ionisation CID MS/MS experiments, phosphopeptide ions are labile and 

thus produce a significant neutral loss of phosphoric acid (H3PO4), corresponding to 

mass depletion of 98 Da, via gas-phase β-elimination from phosphoserine and 

phosphothreonine residues (200), and less often a neutral loss of HPO3 corresponding 

to mass depletion of 80 Da (Figure 1.10b, c). The number of phosphate groups on the 

phosphopeptide can be determined from the frequency neutral loss occurs from the 

precursor ion. Unique product ions of dehydroalanine (69 Da) from phosphoserine 

(pS), and dehydroaminobutyric acid (83 Da) from phosphothreonine (pT) are 

generated (200).  

Techniques such as precursor ion monitoring, neutral loss monitoring and neutral loss 

triggered MS3 fragmentation are frequently applied in phosphopeptide MS-analysis  

(200). Phosphotyrosine (pY)-containing peptides yield a characteristic immonium ion 

at m/z 216.04 in the positive ion mode (Figure 1.10d). When phosphopeptides are 

fragmented in the negative ion mode, a characteristic product ion (PO3-) is generated 

giving rise to a peak at m/z 79 in the product spectrum (Figure 1.10c). These two 

precursor ion-scanning modes are most commonly implemented on triple quadrupole 

mass spectrometers.  

a   

 

                    

 

 

 

 

 b 
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Figure 1.10 Phosphopeptide characteristics. a) Phosphorylated amino acids; b) Neutral loss of 
98 Da from phosphoserine (equivalently for phosphothreonine, not shown); c) Generation of the 
negative precursor ion -79 Da / neutral loss of HPO3, 80 Da; d) Phosphotyrosine immonium ion 
generated by a combination a- and y-type-cleavge. 
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1.2 Vaccinia Virus  

1.2.1  Poxviridae - Orthopoxviruses 

1.2.1.1  Classification 

The Poxviridae comprise a family of complex DNA viruses that replicate entirely in 

the cytoplasm of vertebrate or invertebrate cells (Figure 1.11). 

 

 

Figure 1.11 Taxonomy of main viruses infecting humans (based on the International 
Committee on Taxonomy of Viruses Database (ICTVdB)) 

 

The distinguishing properties of the family Poxviridae include a cytoplasmic site of 

replication and a large complex virion, which contains enzymes that synthesize 

mRNA and a genome composed of a single linear dsDNA molecule of 130 to 300 kb 

containing nonoverlapping genes and a hairpin loop at each end. Poxviruses are 

divided into the subfamilies Chordopoxvirinae and Entomopoxvirinae, based on 

vertebrate and insect host-range (Figure 1.12). DNA sequencing and bioinformatic 

analysis confirm the genetic relationship between the poxvirus subfamilies.  
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Figure 1.12 Poxvirus phylogenetic tree as described in (212): Branch lengths are not to scale. 
Taxonomic groups are labelled and shaded. The term "clade II" poxviruses is refers to the group 
of yatapox, deerpox, capripox and suipox, as per convention (213). Numbers above branches are 
percent bootstrap values, numbers below the branches indicate the percentage of gene trees 
that supported the branch. 
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The subfamily of Chordopoxvirinae consists of eight genera: Orthopoxvirus, 

Parapoxvirus, Avipoxvirus, Caripoxvirus, Leporipoxvirus, Suipoxvirus, 

Molluscipoxvirus, and Yatapoxvirus. Members of the same genus are closely related 

genetically and have a similar morphology and host-range. Two members of this 

family, smallpox causing variola virus (VARV) and the dermatotropic molluscum 

contagiosum virus (MOCV), are obligate human pathogens, but others can be 

transmitted from animals to humans as zoonoses.  

Orthopoxviruses have been studied intensively. The prototype orthopoxvirus vaccinia 

virus (VACV) has been propagated as the smallpox vaccine for 200 years.  VACV has a 

broad cellular tropism in vitro and potential host-range in vivo, but there is no clearly 

identified animal reservoir for the virus in nature. VACV was the first animal virus 

seen microscopically (Figure 1.12), grown in tissue culture, accurately tittered, 

physically purified, and chemically analyzed.  

         

Figure 1.13 Poxvirus morphology. a) First microscopic documentation of VACV (214); 
b) Electron microscopic image of VACV (215); c) Thin section of CPXV (electron 
microscopy by Frank Fenner). lb, lateral bodies; c, core; bar  represents 100 nm 

DNA sequencing reveals that genes common to VARV, ectromelia virus (ECTV), 

camelpoxvirus (Figure 1.14, (215)), VACV, and cowpoxvirus (CPXV) are greater than 

90% identical. CPXV contains all genes present in other orthopoxviruses, suggesting 

that it most closely resembles the ancestral member of this genus, whereas the other 

orthopoxviruses have lost genes. 

 

Figure 1.14 Examples of host-restricted poxviruses (215). Some poxviruses, like variola virus  
(smallpox) (a), ectromelia virus (mousepox) (b) or camelpoxvirus (c) remain largely restricted to 
one host species and rarely, if ever, cause zoonotic infections outside that species. Other 
poxviruses can infect multiple zoonotic host species. 

a b c
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1.2.1.2  Virion structure 

Virions of poxviruses are large compared to other animal viruses (360 x 270 x 270 nm) 

(Figure 1.13b). They are generally brick-shaped, or pleomorphic and consist of a 

lipoprotein structure, the outer membrane, a biconcave core, and lateral bodies (Figure 

1.13c). During replication, two infectious forms of virus are produced: intracellular 

mature virion (IMV) and extracellular enveloped virion (EEV), which acquires an 

additional envelope composed of host cellular membrane and virus-specific proteins.  

1.2.1.3  Virus entry into host cells 

VACV mature virions (MVs) use macropinocytosis and apoptotic mimicry to enter 

host cells (216): Virus particles move along actin-containing filopodia to the cell body, 

where they are internalized after inducing the extrusion of large transient membrane 

blebs. The induction of blebs, the endocytic event, and infection are all critically 

dependent on the presence of exposed phosphatidylserine in the viral membrane. 

Surface-exposed cellular phosphatidylserine triggers the uptake of cellular apoptotic 

debris (217). Late-stage vaccinia-infected cells undergo apoptosis. MV spread is 

therefore likely to be connected with apoptosis and a preprogrammed macropinocytic 

response of neighboring cells to apoptotic bodies. This allows the virus to enter many 

different cell types, because phosphatidylserine-mediated clearance of apoptotic 

material is common to most cells (217, 218). By mimicking an apoptotic body, MVs 

may avoid immune detection as they spread to surrounding cells, because 

macropinocytosis of apoptotic debris suppresses the activation of innate immune 

responses (218).  

1.2.1.4  Virus replication 

The virus replicates and matures in the cytoplasm of the host cell within so called viral 

factories, distinct sites that are surrounded by membranes derived from the rough ER 

that support viral replication  (Figure 1.15, (215)) (219, 220). Fully permissive viral 

replication is characterized by three waves of viral mRNA and protein synthesis 

(known as early, intermediate and late), which are followed by morphogenesis of 

infectious particles (221). This type of genetic programming is known as a cascade 

mechanism, because the products of each stage regulate the next. A complete early 

transcription system is present within the core of the virus particle, providing a 

mechanism for the synthesis of viral early mRNA soon after infection and accounting 
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for the fact that purified poxvirus DNA is not infectious. VACV encodes its own 

enzymes and proteins required for gene transcription, genome replication, virion 

production, and morphogenesis and, for the most part, does not depend on host cell 

proteins for these processes. In addition, VACV infection induces a rapid and massive 

shutdown of host gene expression that acts at several levels (222-225). 

 

 

Figure 1.15 Fully permissive poxvirus replication cycle (215). EEV, extracellular 
enveloped virion; IMV, intracellular mature virion; IEV, intracellular enveloped virion 
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Following entry into the cytoplasm, virus cores are transported on microtubules to 

sites of transcription, and mRNA transcription is detected within 20 minutes (226). 

After the core is released into the cytoplasm, early mRNAs encode growth factors, 

immune defense molecules and enzymes and factors needed for replication of the viral 

DNA and for transcription of the intermediate class of genes (221). About half of the 

viral genome is transcribed prior to DNA replication (227). The core is uncoated and 

DNA replication begins 1-2 hours after infection and results in the generation of about 

10,000 genome copies per cell (228). Following DNA replication, intermediate gene 

transcripts encode enzymes and factors for late gene expression. Products of the late 

genes form virion structural proteins, enzymes including RNA polymerase, and early 

transcription factors (221). 

Assembly begins with the formation of discrete membrane structures (229). The 

concatemeric DNA intermediates are resolved into unit genomes and are packaged in 

immature virions. Maturation proceeds to the formation of infectious IMV. These are 

wrapped by modified trans-Golgi and endosomal cisternae and are then transported to 

the periphery of the cell along microtubules. Fusion of the wrapped virions with the 

plasma membrane results in release of EEV. After fusion with the plasma membrane, 

stimulation of actin tails beneath extracellular virion particles acts to enhance cell-to-

cell virus spread (230). 

1.2.1.5  Gene expression 

Expression kinetics have been described for a variety of the 223 annotated VACV 

genes. These studies, and work done to define promoters and transcription complexes, 

have led to the definition of four temporal gene classes and three distinct promoter 

types. The promoters have been named early, intermediate, and late, with each 

promoter associated with one gene class (221). In addition, some genes have elements 

of early and late promoters in their upstream region, giving rise to a fourth class 

referred to as early/late.  

A recent analysis of expression kinetics using a genome tiling array approach has 

revealed another class of genes: 35 genes of mostly unknown function exhibited 

immediate-early expression (Figure 1.16, (231)).  

All poxvirus genes consist of a continuous open reading frame (ORF) and there is no 

evidence of RNA splicing (221). 
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Figure 1.16 Function and expression levels of genes in the different classes (231). 
A) The four gene classes with the fraction (%) of each class having a certain function 
indicated. B) Groups of genes associated with a specific function, with the fraction (%) 
of each group belonging to each kinetic class indicated. C, D) Median ORF expression at 
each time point for genes within each functional category (C) and kinetic class (D). 

1.2.2  Smallpox Disease and its eradication by VACV-based 
vaccination 

Smallpox disease is believed to have originated over 3,000 years ago in India or Egypt. 

For centuries, repeated epidemics swept across continents, decimating populations and 

profoundly influencing human history.  

The disease is caused by VARV and was a febrile rash illness and had two main forms: 

variola major and variola minor (World Health Organization (WHO), www.who.int/ 

mediacentre/factsheets/smallpox/en/), both forms showing similar lesions. The disease 

followed a milder course in variola minor, which had a case-fatality rate of less than 

1%. The fatality rate of variola major was around 30%. Between 65–80% of survivors 

were marked with deep pitted scars (pockmarks), most prominent on the face. 

Blindness was another complication. No effective treatment was ever developed 

against the disease.  

In 1798, the English physician Edward Jenner reported the observation, that infectious 

agent, which caused lesions on the skin and mucosal surfaces on cows and their 

human caretakers could be used to prevent smallpox infection (232). This process, 
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termed variolation, involved the intentional introduction of dried CPXV induced 

pus/scabs into healthy individuals and led to a more benign course of disease with a 

death rate of approximately 1%. This was the beginning of both the eventual 

eradication of VARV and of vaccination in general. The vaccination procedure was 

later refined so that people were inoculated with pure preparations of live VACV, an 

orthopoxvirus of unknown origin, closely related to VARV and CPXV, and containing 

sufficient antigenic cross reactivity to provide protection from VARV. In 1977, 

through a world-wide vaccination campaign headed by the WHO, VARV was 

declared eradicated (233, 234). The seed virus (VACV strain Lister Elstree) used to 

produce the vaccine is being held for WHO by the WHO Collaborating Centre for 

Smallpox Vaccine in Bilthoven, the Netherlands. 

Vaccination usually prevents smallpox infection for at least ten years (WHO). If 

symptoms appear, they are milder and mortality is less in vaccinated than in non-

vaccinated persons. Even when immunity has waned, vaccinated persons shed less 

virus and are less likely to transmit the disease. 

1.2.2.1  Adverse effects of VACV vaccination 

VACV-based smallpox vaccination has some adverse effects (235-238). Historically, 

14-52 people per million primary vaccinees had serious or life-threatening adverse 

reactions to the vaccine, and one to two people per million died because of the 

vaccine. Serious side-effects included inadvertent inoculation, eczema vaccinatum, 

progressive vaccinia, fetal vaccinia, generalized vaccinia, and erythema multiforme 

major. In particular, VACV occasionally infects the brain and causes postvaccinal 

encephalitis, which can be lethal or result in permanent brain damage.  

Consequently, as smallpox became rarer, the dangers of vaccination began to outweigh 

its benefits. Routine smallpox vaccination stopped in the US in 1972, and in 1980 the 

World Health Organization recommended that all countries stop vaccination.  

1.2.2.2  Inflammative autoimmune myocarditis 

Individual cases of cardiac complications, including myocarditis, pericarditis, and 

arrhythmias were reported in the four decades before routine vaccination was 

stopped, usually diagnosed after death, since cardiac enzymes and echocardiograms 

used to diagnose myocarditis today were unavailable in the 1960s and 1970s (239, 

240). Most reports were from Europe and Australia, where the VACV strain Lister 
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Elstree was used, which was thought to be more “reactogenic” than the New York City 

Board of Health (NYCBOH) strain (Dryvax®; Wyeth Laboratories Inc, Marietta, Pa) 

used in the US (235).  

However, during a Dryvax®-based smallpox vaccination campaign in the US started in 

December 2002 (see chapter 1.2.3.1), the frequency of adverse events that was 

anticipated on the basis of historical data was lower than expected, but there were 

higher-than-anticipated vaccination-related myopericarditis cases, which led to much 

publicity of and controversy about the program (134, 236, 241). Autoimmune 

eosinophilic-lymphocytic myocarditis could be diagnosed in vivo by biopsy shortly 

after vaccination providing histological evidence for eosinophil-mediated cardiac 

myocyte necrosis (242). The lymphocytic component consisted mainly of CD3+ T cells, 

of which about 25% were CD8+. PCR showed that myocytes were virus-free.  

1.2.3  The impact of Orthopoxviruses today 

1.2.3.1  The new fear of smallpox disease – vaccine update 

By the end of 1983 all known remaining stocks of VARV were held in only two WHO 

Collaborating Centres - the U.S. Centers for Disease Control and Prevention (CDC) in 

Atlanta, Georgia, and the Research Institute for Viral Preparations in Moscow, Russia 

(in 1994, the Russian stocks were transferred to Kotsovo, Russia) (233).  After 9/11 and 

the anthrax letters, however, there is concern that VARV may exist outside the WHO 

designated repository laboratories and may be used as a bioweapon (243). If this 

happened, exposed individuals and their contacts, possibly even whole populations, 

would have to be vaccinated as quickly as possible, since today very few people are 

probably fully protected against smallpox (244, 245).  

Even if VARV never again infects humans, there are other poxviruses that can cause 

serious human disease. In 2003, an outbreak of human monkeypox occurred in the US 

due to the inadvertent importation of monkeypox virus (MPXV) in a shipment of 

rodents from west Africa (246, 247). An even more pathogenic variant resulting in 

mortality rates of 10–15% is found in central Africa (113, 248, 249). The animal 

reservoir for MPXV in Africa remains unknown, although several indigenous 

members of the squirrel species are likely candidates, but the features that predispose 

this virus to zoonotically infect man and other primates are unknown. If MPXV were 
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to establish a reservoir status in a susceptible north American rodent species, such as 

prairie dogs (250), the public health consequences would be considerable.  

For these eventualities, many countries still have stockpiles of first-generation calf-

lymph-derived smallpox vaccines, but these contain different VACV strains causing 

different frequencies of adverse effects (236, 238).  

In October 2002, the US Department of Defense recommended smallpox vaccine for 

eligible volunteers whom public health authorities might designate to investigate 

initial smallpox cases. Then, in December 2002, a large-scale smallpox vaccination 

program, mainly involving army and health care personnel, but also interested 

civilians, has been started (134). The program is still ongoing with more than 1 million 

having been vaccinated so far. Unexpected issues, such as the development of 

vaccination-related myopericarditis were discovered during the implementation of 

this program (134, 241, 251). 

The smallpox vaccines currently licensed in the USA and UK are live, attenuated 

VACV derived from calf lymph (Dryvax®, last produced in 1982 by Wyeth), a first-

generation vaccine (238). Although this type of vaccine was used to eradicate smallpox 

worldwide, previous manufacturing methods using calf lymph are no longer 

acceptable because of the absence of controls in the process and the potential risk of 

contamination with the infectious agent associated with the prion disease bovine 

spongiform encephalitis.  

Therefore, a second-generation cell-cultured smallpox vaccine (CCSV) produced by 

using the NYCBOH or Lister-Elstree VACV strains have been developed and seem to 

be a safe and immunogenic alternative to the first-generation calf-lymph derived 

vaccine for both VACV-naïve and non-naïve people (134, 252, 253). 

However, the serious adverse effects of VACV vaccination prevent the widespread use 

of a VACV-based vaccine in a civilian population without an outbreak. Furthermore, 

the vaccine is contraindicated in up to 30% or more of the population, including 

infants, pregnant women or women who are breastfeeding infants, the 

immunocompromised, those with eczema or exfoliative skin disorders, people who 

live in the same house or are in intimate contact with people with the above 

conditions, and people with cardiovascular conditions (such as a history of myocardial 

infarction, angina, congestive heart failure, cardiomyopathy, stroke or transient 

ischaemic attack, chest pain or shortness of breath with activity, or any cardiac 

condition under the care of a physician) (US Centers for Disease Control and 
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Prevention, ww.bt.cdc.gov/agent/smallpox/vaccination/contraindications-clinic.asp; 

(251, 254)).  

A third-generation vaccine based on modified vaccinia virus Ankara (MVA), a highly 

attenuated replication-deficient strain of VACV, is currently being tested (89, 243, 

255, 256). MVA was attenuated by Mayr et al. towards the end of the campaign for the 

eradication of smallpox in 1975 by more than 570 passages of the VACV strain 

chorioallantois vaccinia virus Ankara (CVA) in chicken embryo fibroblasts (CEF) 

(257). Thereby, MVA has lost about 15% of the CVA genome (ca. 30 kb) including 

several host-range genes and with it the ability to replicate efficiently in primate cells; 

limited replication has been demonstrated in certain mammalian cell lines, like BHK 

and BS-C-1 cells  (258-262). The 193 ORFs mapped in the MVA genome (178 kb) 

probably correspond to 177 genes, 25 of which are split and/or have suffered 

mutations resulting in truncated proteins particularly affecting the host interactive 

proteins, but also involving some structural proteins. MVA no longer encodes many of 

the soluble inhibitors of cytokine and chemokine function as well as other factors that 

play a role in immune evasion. Its safety and its ability to protect against the 

development of poxvirus infections in several animal models has been demonstrated 

(263-265). MVA was used in almost 120,000 Caucasian individuals with no reported 

side effects, although many of the subjects were among the population with high risk 

of developing complications (263).  

1.2.3.2  Modified vaccinia virus Ankara as viral vector 

Viruses are natural gene delivery systems inducing immune responses and have been 

developed as such (for review see (266)). Several features have made poxviruses highly 

attractive for use as viral antigen delivery systems: the capacity to stably carry up to 25 

kb of recombinant DNA (267), precise virus-specific control of target gene expression, 

lack of persistence or genomic integration in the host, wide tropism, high 

immunogenicity as vaccine, no yet identified interference mechanisms with host cell 

antigen processing or presentation, and ease of vector and vaccine production (268-

270). Even if there might exist low preexisting anti-vector immunity in formerly 

vaccinated individuals (245), this appears to be a less significant problem (271). 

In 1982, it was first shown that genes coding for immunogenic proteins can be 

inserted into VACV DNA without impairing the ability of the virus to grow in tissue 

culture (272). Animals infected with these recombinant VACV containing genes 
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coding for a variety of immunizing proteins were protected against challenge infection 

with the corresponding infectious agent (Hepatitis B virus (273), rabies (274), malaria 

(275)).  

Concerns about the safety of VACV as viral vector have been addressed by the 

development of non-replicating vectors (268, 276), such as MVA (see chapter  1.2.3.1, 

(269-271)), other highly attenuated strains of VACV (e.g. NYVAC, a derivative of 

VACV strain Copenhagen, from which 18 ORFs were specifically deleted (277)) and 

avipoxvirus vectors being replication-competent only in avian tissue (278). 

Because of their well-established safety (see chapter 1.2.3.1, (263)), recombinant MVA 

are today among the most promising live viral vector systems for humans, capable of 

evoking potent cellular and humoral immune responses against their insert 

immunogens, especially when used in a DNA-prime / virus-boost immunization 

schedule (270, 279, 280). Despite its limited replication, MVA provides similar levels 

of recombinant gene expression as replication-competent VACV in human cells (269), 

and levels of antibody and T cell responses, and protection proved to be at least equal 

to that induced by recombinant VACV in the same systems. The enhanced 

immunogenicity of recombinant MVA may largely be attributed to the deletion of 

certain immune evasion genes (258, 259). 

Numerous phase I/II clinical trials with recombinant MVA as vaccine against 

infectious diseases, such as HIV, malaria, or tuberculosis, and tumors have been 

performed or are under way (95, 279-288).  

1.2.3.3  Orthopoxviruses as oncolytic viruses 

Oncolytic virotherapy is an emerging biotherapeutic platform based on genetic 

engineering of viruses capable of selectively infecting and replicating within cancer 

cells (289-291). Although VACV shows no specific preference to bind and infect 

transformed cells, several studies have shown increased viral replication levels in 

tumors (292), and a VACV strain with deletions of the genes that encode thymidine 

kinase and the vaccinia growth factor showed preferential replication in rapidly 

growing tumor cells while becoming attenuated for overall virulence (293, 294). 

VACV has many of the features thought necessary for an effective oncolytic virus: a 

short life cycle, rapid spread, strong lytic ability, well-defined molecular biology (295). 

The ability to insert multiple genes into poxviruses in order to increase their 

therapeutic potential or to assist in the virus’ visualization is further a great advantage 
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of poxvirus-based vectors (292, 296). Importantly, a broad spectrum of clinical 

experience has been obtained with VACV. The virus produces no known disease in 

humans, and has already demonstrated anti-tumor efficacy in trials with vaccine 

strains (295).  

Although attempts have been made to target VACV binding to specific cell types by 

engineering virion surface proteins that mediate host cell binding (297), such attempts 

have never circumvented the ability of the virus to bind to and enter mammalian cells 

promiscuously. It is likely that future use of oncolytic poxviruses will involve 

exploiting the signaling differences between normal and transformed cells so that the 

oncolytic virus will spread efficiently in tumor cells, as well as deliver therapeutic 

transgenes to assist in tumor killing and immunotherapy (215, 297, 298).  

Other poxviruses have also been tested as oncolytic viruses, for example, myxoma 

virus, which is normally restricted to non-human cells, but replicates nevertheless 

robustly in human tumor cells (299, 300). 
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1.3 Aims of thesis 

Viral and phosphorylated HLA ligands are difficult to identify in the multitude of self- 

and non-phosphorylated HLA ligands, respectively. Low abundancy of these special 

peptides compared to other ligands may be a further complication. Both subsets of 

peptides require additional strategies for their identification. The aim of this thesis was 

to establish techniques which enable the specific analysis of the two HLA ligand 

repertoires, viral HLA class I ligands (Part I) and phosphorylated HLA class I and II 

ligands (Part II), and which avoid analysis of the complete HLA ligand repertoire of 

cells. 

 

Questions to be answered by this thesis were: 

 

Part I:  

- Which HLA class I ligands are presented by MVA-infected cells? 

- Are these ligands immunogenic? Do they provide protection against viral 

infection? 

- Is there a correlation between presentation of viral HLA ligands and the steady 

state amount of viral intracellular protein? 

- Does MVA-infection induce presentation of individual human self-HLA 

ligands? 

 

Part II: 

- Which phosphorylated HLA ligands are presented by tumor tissue (renal cell 

carcinoma)? Are the phosphorylations contained in these ligands described to 

be associated with malignant cellular processes? 

- Does the tumor present phospholigands which are lacking on corresponding 

healthy renal tissue? 

- Are phosphorylated peptides presented by HLA class II? 
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2 Materials and Methods 
 

TFA, acetonitrile, formic acid, HPLC water, DMSO, and β-mercaptoethanol were 

from Merck (Darmstadt, Germany). 

2.1 Materials and Methods of Part I 

2.1.1  Cell lines and antibodies  

The human B lymphoblastoid cell line (B-LCL) JY expressing HLA-A*0201 and 

B*0702, (ECACC Cat.no. 94022533) and the human HLA-A*0201 transfected CML cell 

line K562/A*0201 (301) were used as described (113) and maintained in RPMI 1640 

(C.C.Pro, Neustadt, Germany) containing 10% FCS (Pan Biotech, Aidenbach, 

Germany) and supplemented with 2 mM L-glutamine, 100 U/ml penicillin and 100 

μg/ml streptomycin (Bio Whittaker, Verviers, Belgium). 

IgG2a antibodies B1.23.2 (anti-HLA-B, C) (302) and W6/32 (anti-HLA-A, B, C) (303) 

were purified from hybridoma supernatants using protein A Sepharose beads (GE 

Healthcare, Uppsala, Sweden). 

2.1.2  Virus  

MVA was routinely propagated and titrated following standard methodology as 

described (304) by Wolfgang Kastenmüller (Institute of Virology, Technical University 

Munich and Helmholtz Center Munich).  

For infection with MVA, 1.4 x 1010 JY cells were incubated at 2.8 x 1010 cells/l with 

MVA to obtain a multiplicity of infection of 7. After 2 h, infected cell suspensions 

were diluted to 5.2 x 109 cells/l and maintained for 10.5 h at 37°C. 

2.1.3  Donors  

Donors 1 and 2 (HLA-A*0201 positive) were immunized twice with MVA in an 

interval of 30 d. Blood was taken as indicated in Figure 3.4. This was done by Ingo 

Drexler (Institute of Virology, Technical University Munich and Helmholtz Center 

Munich). Dryvax® vaccinees were HLA-A*0201 positive and blood samples were taken 
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25 y, 29 y, and 44 y post vaccination for donors 3, 4, and 5, respectively. PBMC were 

isolated using Ficoll density centrifugation (Lymphocyte Separation Medium, PAA 

Laboratories, Pasching, Austria). This study was approved by the Ethics committees of 

the University of Tubingen and of the Technical University Munich. 

2.1.4  Isolation of HLA class I ligands 

HLA ligands were obtained by immunoprecipitation of HLA molecules from 1.4 x 1010 

cells of MVA- and mock-infected JY using a slightly modified protocol (305) that 

involves the antibodies B1.23.2 and W6/32 coupled to CNBr-activated sepharose 

(Roche, Mannheim, Germany) followed by acidic elution and size exclusion 

ultrafiltration. To separate HLA-A and -B ligands affinity chromatography based on 

two distinct columns was performed: the first column was loaded with B1.23.2 (an 

antibody binding to HLA-B/C) and the second one with antibody W6/32 (binding to 

HLA-A/B/C). Therefore, HLA-B*0702 bound to B1.23.2 first whereas HLA-A*0201 

bound to W6/32 and ligands from both HLA molecules were eluted separately. 

2.1.5  Peptide modification and analysis  

Modification of peptides was carried out as described (306). In brief, lysine side chains 

of peptides were blocked by O-methyl isourea hemisulfate (Acros Organics, Geel, 

Belgium). Peptides were desalted using Peptide Cleanup C18 Spin Tubes (Agilent, Palo 

Alto, CA, USA) and subsequently nicotinylated on the column for 15 min at room 

temperature using a 20 mM light (H4) or heavy (deuterated, D4) 1-([1H4/2D4] 

nicotinoyloxy)succinimide solution in 50 mM phosphate buffer pH 8.5. After 

aminolysis of undesirable nicotinylated tyrosine esters, peptides were eluted by 50 μl 

of 50% acetonitrile, 1% formic acid.  

Peptide analysis was carried out as described (307) using an Ultimate HPLC system 

(Dionex, Amsterdam, Netherlands) with a gradient ranging from 15 to 55% solvent B 

within 170 min. The mix of the peptide samples from MVA- and mock-infected JY 

cells was recorded in an LC-MS experiment without fragmentation using a hybrid 

quadrupol orthogonal acceleration time of flight mass spectrometer (Q-TOF I, 

Micromass, Manchester, UK), equipped with a micro-electrospray ionization source, as 

described (305, 307). For peptide sequence analysis the sample derived from MVA-
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infected cells was analyzed in a separate LC-MS/MS experiment. Fragment spectra 

were evaluated manually and database searches (NCBI, Expressed Sequence Tag) were 

carried out using the MASCOT search engine (www.matrixscience.com) (308). All 

viral HLA ligand sequences are available at www.syfpeithi.de. 

2.1.6  Peptides  

HLA-A*0201 restricted peptides derived from MVA proteins (Table I), HCMV pp65495-

503 (NLVPMVATV), EBV BMLF1259-267 (GLCTLVAML), Influenza virus M158-66 

(GILGFVFTL) and HIV-1 RT476-484 (ILKEPVHGV) were synthesized by standard Fmoc 

chemistry using an Economy Peptide Synthesizer EPS 221 (ABIMED, Langen, 

Germany). Purity of peptides was analyzed by HPLC (Varian Star; Zinsser Analytics, 

Munich, Germany) and identity confirmed by MALDI-MS (GSG future; GSG, 

Bruchsal, Germany). This was done by Patricia Hrstić (Department of Immunology, 

Institute of Cell Biology, University of Tübingen). MVA synthetic peptides were 

further measured by LC-MS/MS (modified as described above) and fragmentation 

spectra were compared to the spectra obtained from endogenous MVA peptides. For T 

cell experiments all peptides were dissolved in 10% DMSO at 1 mg/ml.  

2.1.7  Recombinant HLA molecules and fluorescent tetramers  

Biotinylated recombinant HLA class I molecules and fluorescent HLA tetramers for 

CD8+ T cell analysis were produced as described (309). Briefly, fluorescent tetramers 

were generated by co-incubating biotinylated HLA-A*0201 monomers with PE- or 

Allophycocyanin-conjugated streptavidin (Molecular Probes, Leiden, The 

Netherlands) at a 4:1 molar ratio. 

2.1.8  In vitro sensitization of human CD8+ T cells using synthetic 
peptides  

PBMC were cultured in IMDM (Bio Whittaker, Verviers, Belgium) containing 10% 

heat-inactivated human serum (PAA) and 50 μM β-mercaptoethanol (Merck, 

Darmstadt, Germany). IL-4 and IL-7 (5 ng/ml; R&D Systems, Wiesbaden, Germany) 

were added after thawing PBMC in DNase (3 μg/ml; Sigma-Aldrich) containing 
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medium and washing them once in medium without DNase. On d1 peptides (1 μg/ml) 

prepared as mixtures of five peptides each were added to PBMC: mix 1: F12L404-412, 

G5.5R27-35, B19R207-215, A23R273-281, B8R18-27; mix 2: C7L74-82, A48R187-195, B22R79-87, H3L184-

192, A47L155-163; mix 3: O1L247-255, E5R93-101, D12L62-70, D12L251-259, B22R178-186; mix 4: 

O1L335-344, J6R303-311, B15R91-101) and IL-4 and IL-7 (5 ng/ml) were added. On d3, d5 and 

d7, IL-2 (2 ng/ml, R&D Systems) was added. Medium was exchanged after d9 when 

necessary. On d12, part of the cells were used for IFN-γ ELSPOT assay. The remaining 

cells were restimulated by addition of peptide (1 μg/ml), followed by IL-2 (2 ng/ml) 24 

h later and analysis by combined tetramer / intracellular IFN-γ staining on d20. 

2.1.9  IFN-γ ELISPOT assay  

IFN-γ ELISPOT was performed essentially as described (113) except 5 x 105 

PBMC/well were seeded in coated 96-well nitrocellulose plates (MSHAN4B50, 

Millipore, Bedford, MA) and 5 x 104 K562/A*0201 cells/well and 1 μg/ml peptide were 

added. An HLA-A*0201 restricted HIV-peptide was used as negative control; positive 

control wells contained PHA (Roche). After 26 h at 37°C cells were transferred into a 

96 well plate and maintained for further investigation. Remaining cells were removed 

by washing once with PBS/0.05% Tween 20 (Serva, Heidelberg, Germany), once with 

sterile water and five times with PBS Tween. Captured IFN-γ was detected by 

incubation for 2 h at room temperature with biotinylated mAb anti-hIFN-γ (7-B6-1, 

0.33 μg/ml; Mabtech, Nacka Strand, Sweden) in PBS 0.5% BSA (Sigma-Aldrich). After 

washing with PBS Tween the plates were incubated with ExtrAvidin 

Alkalinphosphatase (1:100; Sigma-Aldrich) for 1 h at room temperature. Unbound 

complex was removed by washing. Peroxidase staining was performed with BCIP/NBT 

(5-bromo-4-chloro-3-indolylphosphate toluidine and nitroblue tetrazolium; B5655, 

disolved in water; Sigma-Aldrich) for 7 min. Spot numbers were automatically 

determined (Immunospot Image Analyzer, series 1; ImmunoSpot Software Version 

3.2e; both Cellular Technology, Cleveland, OH). To calculate the number of cells 

responding to a particular peptide, the mean spot numbers induced by the control 

peptide were subtracted from mean spot numbers induced by MVA peptides.  
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2.1.10 Tetramer staining  

1 day after ELISPOT analysis the transferred cells were stained by tetramers (in each 

case using a tetramer containing a peptide other than the peptide used for stimulation 

in ELISPOT analysis) using PE-tetramers for MVA peptides, Allophycocyanin-

tetramers for control peptides, anti-CD8-PE Cy7 and anti-CD4-FITC (BD Biosciences, 

Heidelberg, Germany). Cells were incubated 30 min with fluorescent HLA-A*0201 

tetramers, followed by 20 min incubation with the antibodies in the dark at 4°C. After 

resuspending with PBS containing 1% paraformaldehyde, 2% FCS (inactivated at 56°C 

for 30 min; Pan, Aidenbach, Germany), 2 mM EDTA and 0.01% sodium azide cells 

were analyzed on a FACSCalibur cytometer (BD Biosciences). 

2.1.11 Combined tetramer / intracellular IFN-γ staining  

After two rounds of peptide/IL-2 in vitro sensitization PBMC were washed in IMDM, 

resuspended at 2 x 107 cells/ml, and cultured for 7 h in IMDM containing either one of 

the MVA peptides or a control HLA-A*0201 restricted HIV peptide (10 μg/ml) and 

Golgi-Stop solution (BD Biosciences). Stimulation with PMA/Ionomycin was used as 

positive control. Cells were stained using the PE-tetramers mentioned above, anti-

CD8-PE Cy7, the Cytofix/Cytoperm Plus kit for permeabilization and anti-IFN-γ-FITC 

(BD Biosciences). Cells were analyzed on a FACSCalibur cytometer (BD Biosciences). 

2.1.12 Proteomic analysis 

At 12.5 h post infection JY cells were used for analysis of intracellular proteins as 

described (310) with slight modifications. Approximately 200 μg of intracellular 

proteins extracted from MVA- and mock-infected cells were separated by 2D-PAGE 

(first dimension: pH 3-10NL, 24 cm (Biorad, Hercules, USA), 70 kVh; second 

dimension: 12% SDS-PAGE). Gels were stained by Flamingo fluorescent staining 

(BioRad) and scanned  using a  laser scanner (FLA 5100, Fujifilm, Tokyo, Japan) and by 

silver staining as described (311) and scanned on a flatbed scanner (Powerlook 2100 

XL, UMAX, Willich, Germany). Protein preparations from two infection experiments 

were subjected to 2D-PAGE in duplicates. All eight gels were comparatively evaluated 

using differential image analysis software (Progenesis SameSpots, Nonlinear Dynamics, 
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Newcastle upon Tyne, UK). All spots representing proteins which were unique or 

overexpressed upon MVA infection were excised manually from the gels, digested 

with trypsin, and peptide fragments were analyzed by LC-MS/MS as described (310). 

Significant overexpression was defined for spots detected >1.6-fold higher upon MVA 

infection and an ANOVA value of <0.05 comparing the gels of both conditions. Even 

though the majority of analyzed proteins was overexpressed in both experiments, 

differential spots detectable on gels of only one of the two experiments were also 

analyzed. Peptide sequences were identified using the MOWSE algorithm as 

implemented in the MASCOT software (Matrix Science, London, UK) (308) and using 

the NCBI database (as of 30/04/2007) containing human and MVA protein sequences. 

The proteomic analysis was done by Mirita Franz-Wachtel, Inga Buchen, Johannes 

Madlung, Claudia Fladerer, and Tobias Lamkemeyer (Institute of Cell Biology, 

Proteome Center Tübingen, University of Tübingen). 

2.1.13 Vaccination of HLA-A*0201-transgenic mice against a 
lethal challenge with VACV strain Western Reserve (VACV 
WR) 

For peptide vaccination, HLA-A*0201 transgenic HHD+/+ ß2m-/- Db-/- HHD II mice (95) 

were immunized subcutaneously with pools of synthetic peptides (0.03 mg/peptide; 

Biosynthan, Berlin, Germany) and synthetic CpG-ODN 1668 (10 nMol; TIB-Molbiol, 

Berlin, Germany). 

Quantification of antigen-specific CD8+ T cell responses. PBMC isolated on d7 from 

vaccinated mice were stimulated with peptide pools (Early/Late pep) or a control 

peptide (Control pep) for 5 h. HLA-A*0201 restricted control peptides were Tyr369-377 

(derived from human tyrosinase), FluM58-66 (derived from the A/PR/8/34 Influenza 

virus matrix protein M1) and pp65495-503 (derived from the human cytomegalovirus 

internal matrix protein pp65). Brefeldin A (1 mg/ml; Sigma-Aldrich) was added for the 

last 3 h. Cells were live/dead stained with ethidium monoazide bromide (Molecular 

Probes, Leiden, the Netherlands) and blocked with anti-CD16/CD32-Fc-Block (BD 

Biosciences). Surface markers were stained with Allophycocyanin-conjugated anti-

CD8 and anti-CD62L-PE (Caltag, now Invitrogen, Carlsbad, USA). Intracellular IFN-γ 

staining was performed with anti-IFN-γ-FITC (clone XMG1.2) using the 

Cytofix/Cytoperm kit for permeabilization (BD Biosciences Pharmingen). Data were 
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acquired by FACS analysis on a FACSCanto (BD Biosciences) and were analyzed with 

FlowJo (Tree Star, Ashland, USA) software.  

Protection assays. 8 days after immunization with virus or after peptide immunization 

(see A), mice were infected intranasally with VACV WR (originally provided by 

Bernard Moss (NIH, Bethesda, USA)) diluted in 30 μl PBS, and monitored for more 

than 3 weeks with daily measurement of individual body weights as described 

previously (95). Mice suffering from severe systemic infection and having lost >30% of 

body weight were sacrificed. The mean change in body weight was calculated as 

percentage of the mean weight for each group on the day of challenge. This 

experiment was performed by Georg Gasteiger, Wolfgang Kastenmüller, Anya Krefft, 

and Ingo Drexler (Institute of Virology, Technical University Munich and Helmholtz 

Center Munich). 

2.2 Materials and Methods of Part II 

2.2.1  Tissues and cell lines 

Renal cell carcinoma tissue (RCC414) (classified T1bNxM1) and surrounding healthy 

renal tissue were excised from a patient (HLA-A*02, -A*24, -B*07, -B*35) at the 

University clinic Tubingen by Jörg Hennenlotter and stored as described (305). This 

study was approved by the Ethics committees of the University of Tubingen.  

The human B lymphoblastoid cell line (B-LCL) JY (ECACC Cat.no. 94022533; HLA-

DRB1*04, -DRB1*13) and the human melanoma cell line MaMel-8a (European 

searchable Tumour Line Database ESTDAB-105; expressing HLA-DRB1*01) were 

maintained in RPMI 1640 (C.C.Pro, Neustadt, Germany) containing 10% FCS (Pan 

Biotech, Aidenbach, Germany). 

Monoclonal IgG2a antibodies W6/32 (anti-HLA-A, B, C) (303) and L243 (anti-HLA-

DR) (312) were purified from hybridoma supernatants using protein A Sepharose 

beads (GE Healthcare, Uppsala, Sweden). 
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2.2.2  Peptides 

Peptides were synthesized by standard Fmoc chemistry using an Economy Peptide 

Synthesizer EPS 221 (ABIMED, Langen, Germany). Purity of peptides was analyzed by 

HPLC and identity confirmed by MS. This was done by Patricia Hrstić. 

2.2.3  Isolation of MHC ligands and stable isotope labeling 

MHC ligands were obtained by immunoprecipitation of MHC molecules from 

approximately 2 x 1010 cells  (JY, MaMel-8a) or from RCC and healthy renal tissue 

using a slightly modified protocol (305) that involves the antibodies B1.23.2 and 

W6/32 coupled to CNBr-activated sepharose (Roche, Mannheim, Germany) followed 

by acidic elution and size exclusion ultrafiltration. Phosphatase inhibitor cocktails 1 

and 2 (Sigma-Aldrich, St. Louis, MO, USA) were added to the lysate of JY cells. 

Modification of peptides was carried out as described (306). Isolation of MHC ligands 

from RCC and healthy renal tissue was done by Anneke Neumann. 

2.2.4  Phosphopeptide enrichment 

Samples of modified peptides were taken to dryness and resolved in 40 μl of loading 

buffer (50% acetonitrile/water, 6% trifluoric acid, pH<1). TiO2 (Titansphere 5 micron, 

loose media, GL Sciences, Tokyo, Japan; GELoader Tips, Eppendorf, Hamburg, 

Germany) microcolumns were packed as described (207). For centrifugation in a 

microcentrifuge, TiO2-microcolumns were inserted into a cut tip (epT.I.P.S. 2-200 

μL, 53 mm, Eppendorf), a bottom-cut 0.5 ml tube and a 1.5 ml tube (Safe-Lock micro 

test tubes, Eppendorf) (see Figure 4.1). Columns were sequentially loaded with 

solutions using GELoader tips (Eppendorf) and centrifuged in the tip-holding tubes 

(Figure 4.1) at 10,000 rpm (MHC class I peptides) or 11,000 rpm (MHC class II 

ppeitdes) in a conventional tabletop microcentrifuge without letting the TiO2 run dry. 

Centrifugation times depended on the amount of peptides contained in the sample 

(approximately 20 s for 10 μl, 30 s for 20 μl and 50 s for 40 μl for MHC class I peptides 

at 10,000 rpm; for MHC class II peptides centrifuagtion times were about three times 

as long at 11,000 rpm). Solutions used for enrichment were essentially as described 

(207, 313). Columns were equilibrated three times with 20 μl loading buffer and the 
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sample was loaded on the column three times. The column was washed twice with 20 

μl of loading buffer, and twice with 10 μl of water. The flowthrough of the sample was 

pooled with the flowthrough of washing solutions for analysis of unbound peptides. 

Column-bound peptides were eluted by 5 times 10 μl and once 30 μl of elution buffer 

(1% ammonia, 20% acetonitrile, pH∼11). The eluate was taken to dryness and resolved 

in solvent A for LC-MS/MS analysis. 

2.2.5  Peptide analysis  

Peptide analysis was carried out as described (307) using a reversed phase HPLC 

system (CapLC, Waters, Manchester, UK; C18-column PepMap 75 μm x 25 cm 

(Dionex LC Packings, Sunnyvale, CA, USA); solvents: A: 4 mM ammonium acetate 

adjusted to pH 3.0 by formic acid, B: 80% acetonitrile/water and 2mM ammonium 

acetate adjusted to pH 3.0 by formic acid) with a gradient ranging from 10 to 50% 

solvent B within 90 min. LC-MS/MS- and LC-MS-analyses were performed using a Q-

TOF Ultima (Waters) equipped with an ESI source as described (305, 307). Fragment 

spectra were evaluated manually and database searches (NCBI, Expressed Sequence 

Tag) were carried out using the MASCOT search engine (www.matrixscience.com) 

(308). Identity of several endogenous peptides was confirmed by synthetic peptides.  
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3 Results and Discussion Part I  

3.1 Long-term immunity against actual poxviral HLA ligands as 
identified by differential stable isotope labeling  

This chapter (except Figure 3.3) was submitted by the authors below and has been 

accepted by the Journal of Immunology on August 27, 2008 for publication. 
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3.1.1  Abstract 

Viral peptides are presented by HLA class I on infected cells to activate CD8+ T cells. 

Several immunogenic peptides have been identified indirectly by epitope prediction 

and screening of T cell responses to poxviral vectors including modified vaccinia virus 
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Ankara (MVA) currently being tested as recombinant or smallpox vaccines. However, 

for the development of optimal vaccination and immunomonitoring strategies it is 

essential to characterize the actual viral HLA ligand repertoire of infected cells. We 

used an innovative approach to identify naturally processed MVA HLA ligands by 

differential HPLC-coupled mass spectrometry. We describe twelve viral peptides 

presented by HLA-A*0201 and three by HLA-B*0702. All HLA-A*0201 ligands 

participated in the memory response of MVA-immune donors and several were 

immunogenic in Dryvax® vaccinees. Eight epitopes were novel. Viral HLA ligand 

presentation and viral protein abundance did not correlate. All ligands were expressed 

early during the viral life cycle and a pool of three of these mediated stronger 

protection against a lethal challenge in mice as compared to late epitopes. This 

highlights the reliability of the comparative mass spectrometry-based technique to 

identify relevant viral CD8+ T cell epitopes for optimizing the monitoring of protective 

immune responses and the development of effective peptide-based vaccines. 

3.1.2  Introduction 

Viruses are one of the main factors which modify the repertoire of HLA ligands, the 

peptides associated with human MHC molecules. Viral HLA ligands are presented to T 

cells carrying the appropriate TCR in order to elicit a specific cellular immune 

response, thus making infected cells visible to the immune system. T cell responses 

were shown to play an essential role in clearance of poxvirus infections (238, 254, 

314). Smallpox disease, caused by variola virus (VARV), was eradicated in the 1970s by 

vaccination with cross-protective vaccinia virus (VACV, Dryvax®) (237). Although, in 

general, vaccinations aim to induce a strong antibody response to achieve viral 

clearance, vaccinees with T cell defects failed to control the infection after 

immunization (238, 254). 

Despite the eradication of smallpox, there are several reasons for studying the cellular 

immune response to VACV. First, there is a constant threat that VARV may be 

reintroduced by acts of bioterrorism or that forms of new pathogenic poxviruses may 

evolve from, for example, zoonotic human monkeypox virus (MPXV) (243, 249). Since 

smallpox vaccination was stopped in the late 1980s, a large part of the population is 

unprotected. Dryvax®, the only currently licensed vaccine against smallpox, carries 

the highest rate of side effects of any approved vaccine. Therefore, modified vaccinia 
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virus Ankara (MVA), an attenuated replication-deficient strain of VACV, is currently 

being tested as a safer third-generation vaccine (89, 243, 255, 256). A more detailed 

understanding of the CTL response to MVA allows both the development of epitope-

based vaccines promising a safe, stable and handy alternative to traditional vaccination 

strategies, as well as the monitoring of clinical trials by following MVA-specific T cell 

responses (93, 315). Furthermore, MVA has been successfully introduced as a highly 

immunogenic recombinant viral vector vaccine for immunotherapy of infectious 

diseases and cancer (270), which requires the assessment of T cell epitope-specific 

responses elicited against vector and recombinant antigens. 

Several CD8+ T cell epitopes of MVA and other VACV strains have been identified by 

indirect approaches applying epitope prediction (e.g. using www.syfpeithi.de) and 

subsequent T cell screening of immune donors, both human (95-104) and mouse (79, 

105-108). Despite the increasing number of epitopes published, there is an ongoing 

need for further investigation. First, although thousands of peptides have been 

screened, covering approximately 35% of the large viral DNA genome which encodes 

more than 200 non-overlapping open reading frames (ORF), the published 

determinants represent only a fraction of the total anti-viral CTL response (93). 

Second, only a small number of the identified epitopes have been validated so far (93). 

Third, our recent work challenges the indirect strategy to identify epitopes which is 

based on the monitoring of T cell responses alone: upon a first vaccination with MVA, 

T cells were primed against viral peptides that were not necessarily presented by 

infected cells but cross-presented by non-infected cells (316). During a second 

infection, however, only T cells with the ability to recognize viral peptides that were 

efficiently presented on infected cells participated in the recall response and mediated 

survival (112). Therefore, the identification of the viral HLA ligands which are 

actually presented on infected cells appears crucial for the design and monitoring of 

protective prophylactic vaccines. 

Thus, we set out to identify peptide ligands presented on HLA class I of virus-infected 

cells by mass spectrometry (MS). MS allows the identification of the exact chemical 

composition of T cell epitopes, including those generated by posttranslational 

modifications. Thus, directly sequenced HLA ligands have been considered to be more 

reliable than determinants identified solely by T cell analysis (155), which is 

mandatory to accurately determine the magnitude of specific CD8+ T cell responses or 

the functionality of the CD8+ T cells that respond to an epitope. So far, only one MVA-
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derived HLA ligand has been identified by mass spectrometry, however, without 

demonstrating immunogenicity (134). Ideally, immunologically relevant viral T cell 

epitopes are confirmed both as HLA ligands and as T cell stimulators. 

The challenge in MS-based discovery of viral HLA ligands is to pinpoint the signals 

derived from viral sequences among the hundreds of signals produced by human self-

peptides. In the past, nanoHPLC-coupled tandem MS analyses (LC-MS/MS) performed 

with chemically synthesized predicted epitopes and endogenously processed peptides 

isolated from virus infected cells were compared in order to reveal the presence of the 

predicted epitope (131). In order to systemically search for viral HLA ligands, two 

strategies relying on the comparison of HLA ligands from virus-infected and non-

infected cells have been applied. First, in silico subtraction of the two respective 

nanoHPLC-coupled MS analyses (LC-MS) (132), and second, metabolic stable isotope 

labeling of HLA ligands prior to purification (133, 135).  

Here, we describe a novel approach to identify viral HLA ligands by differential stable 

isotope labeling of HLA ligands purified from MVA infected and mock-infected cells. 

This strategy is based on a technique recently established in our laboratory (307) to 

compare the repertoires of HLA ligands of tumor and healthy tissue (306, 317). We 

found 15 viral peptides of which twelve were presented by HLA-A*0201 and three by 

HLA-B*0702. Nine peptides have not been described as CTL epitopes so far. All HLA-

A*0201 ligands were actual memory CTL epitopes in MVA vaccinees. Eight of these 

epitopes were novel. All ligands were expressed early during the viral life cycle, 

although late protein synthesis was not impaired. Importantly, early viral HLA ligands 

mediated protection against a lethal respiratory challenge in mice while late viral 

peptides previously described as CTL epitopes were inefficient. 

3.1.3  Results 

3.1.3.1  Identification of 15 MVA-derived HLA-A*0201 and HLA-B*0702 

ligands 

In order to identify MVA-derived HLA ligands presented by HLA-A*0201 and B*0702, 

we differentially analyzed the ligands isolated from MVA- and mock-infected cells of 

the human B-LCL JY after 12.5 h of infection. Figure 3.1 schematically illustrates the 

further experimental procedure. HLA-presented peptides were chemically modified 

by covalently-linked stable isotope tags: peptides isolated from MVA-infected cells 
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with heavy (deuterated, D4) nicotinic acid (NIC) and peptides isolated from mock-

infected cells with light (hydrogenated, H4) NIC. The two pools of tagged peptides 

were mixed, and the peptides were separated by nanoHPLC and analyzed online by 

MS. HLA ligands present on both MVA- and mock-infected cells were detected as 

doublets with a mass difference of 4 Da, due to the four deuterium atoms of D4NIC 

(Figure 3.1, lower central panel) replacing four hydrogen atoms present in H4NIC. In 

contrast, viral HLA ligands presented only by infected cells appeared as single peaks 

(Figure 3.1, upper central panel; Figure 3.2). The peptides corresponding to single 

peaks were then sequenced by fragmentation using LC-MS/MS analysis (Figure 3.1, 

right panel; Figure 3.2). All viral peptides identified were synthesized chemically and 

analyzed by the same procedure to verify their sequences (Figure 3.2; data not shown).  

We discovered twelve viral HLA ligands among the peptides isolated from HLA-

A*0201 (Table 3.1). Seven of these were novel (Figure 3.2), while four had previously 

been published as CTL determinants (see Table 3.6 for references), and one peptide 

(A48R187-195: IVIEAIHTV) had been described before as an MVA-derived HLA-A*0201 

ligand identified by LC-MS/MS (134), but had not been confirmed as CTL epitope. In 

addition, we detected three viral HLA ligands among the peptides isolated from HLA-

B*0702 (Table 3.1), one of which was also novel (Figure 3.2).  

In total, we confirmed six established CTL epitopes as well as one MVA-derived HLA 

ligand, and additionally found eight novel ligands which represent potential CTL 

epitopes. All twelve viral HLA ligands were detected within an intensity range of one 

order of magnitude, suggesting an absolute quantity of about 150-1500 specific 

peptide/MHC-complexes per cell. This is in line with the absolute quantity of viral 

HLA ligands published for other viruses ((12), reviewed in (130)). Peptides presented 

at lower levels may be missed by this approach. 

The lower number of viral peptides identified for HLA-B*0702 in comparison to HLA-

A*0201 reflects the more stringent HLA-B*0702 peptide motif, which requires the 

relatively infrequent proline residue in position 2 within its ligands 

(www.syfpeithi.de). The HLA-A*0201 motif, in contrast, is less restrictive, with 

frequent amino acids as anchors in position 2 (leucine, methionine, valine, isoleucine) 

and 9 (valine, leucine, isoleucine, alanine). 
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Figure 3.1 Strategy of differential MS-based HLA ligand analysis. HLA ligands were purified 
from extracts of MVA-infected (right) and mock-infected (left) cells. Peptide ligands were 
labeled differentially by chemical modification of the N-terminus with light isotopes (mock-
infected, 105 Da, H4NIC) and heavy isotopes (MVA-infected, 109 Da, D4NIC) of nicotinic acid, 
giving respective peptides a difference in mass to charge ratio (Δm/z) of 2 Da (z = 2). LC-MS 
analysis of a mix of both pools revealed the quantity of a peptide in the MVA-infected sample 
relative to the quantity in the mock-infected sample (double peak with Δm/z = 2, lower central 
panel; isotopic peaks appear in m/z = 0.5 Da intervals). HLA ligands potentially derived from 
MVA proteins are present in only one pool and are found as single peaks (upper central panel). 
The right panel representatively depicts the sequencing of a peptide of interest by separate LC-
MS/MS-analysis, which generates fragmentation spectra. Identification of other newly identified 
MVA peptide sequences is shown in Figure 3.2. 
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Figure 3.2 Identification of MVA HLA ligands by LC-MS and LC-MS/MS. syn. = synthetic 
peptide; z = 2 in LC-MS data, z = 1 in LC-MS/MS data; Gua = guanylated (as described in (307), 
reactivity of lysine side chains was blocked by chemical reaction with O-methyl isourea 
hemisulfate before nicotinylation (D4NIC) of peptide N-termini) 
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Table 3.1   MVA-derived HLA ligands identified by differential MS analysis of MVA- and mock-
infected B-LCL 

      

Sequence ORFa Epitope 

locationb 

Proteina Locus 

tagc 

Temporal 

expressiona 
      

HLA-A*0201:      
      

KLIIHNPELd B19Re 207-215 (234) IFN-α/β-receptor-like secreted glycoprotein 187 early 

KLFSDISAI E5R 93-101 (317) abundant component of the virosome 052 early 

SLKDVLVSV G5.5R 27-35 (63) DNA-dependent RNA polymerase subunit rpo7 075 early 

TLLDHIRTA B22R, 

C16Lf 

178-186 (188) hypothetical proteinf 189, 

004.5 

early 

ALDEKLFLI A23R 273-281 (382) intermediate gene transcription factor VITF-3 

45kDa large subunit 

134 early/late 

KITSYKFESV B8R 18-27 (226) soluble interferon-gamma receptor-like 176 early/late 

IVIEAIHTV A48R 187-195 (204) thymidylate kinase 161 early/late 

KLFTHDIML D12L 62-70 (287) mRNA capping enzyme small subunit 109 early/late 

RVYEALYYV D12L 251-259 (287) mRNA capping enzyme small subunit 109 early/late 

KVDDTFYYV C7L 74-82 (150) possible host defense modulator 018 early 

FLTSVINRV F12L 404-412 (635) involved in plaque and EEV formation 042 early/late 

GLNDYLHSV O1L 247-255 (405) hypothetical protein 059 early 
      

HLA-B*0702:      
      

IPDEQKTIIGLg B15R 91-101 (143) hypothetical protein 183 early 

MPAYIRNTL J6R 303-311 (1286) DNA-dependent RNA polymerase subunit rpo147 090 early 

RPMSLRSTII O1L 335-344 (405) hypothetical protein 059 early 

a ORF, temporal expression and protein description according to VACV WR nomenclature (NCBI: NC_006998) and as 
described in (231). 

b Amino acid position in protein according to VACV strain Acambis 3000 Modified Virus Ankara (MVA) (NCBI: AY603355). In 
brackets, the number of amino acids of the protein is indicated. 
c Locus tag according to Vaccinia virus strain Acambis 3000 Modified Virus Ankara (MVA) (NCBI: AY603355).  
d  Sequence in VACV WR: ELIIHNPEL 
e  Previously B18R 
f ORF and protein description according to VACV COP nomenclature (NCBI: M35027), since protein is deleted in VACV WR. 
g  Sequence in VACV WR: IPDEQKT[IREISA]IIGL 

 

3.1.3.2  Comparison between the levels of viral protein expression and viral 

HLA ligand presentation 

An intriguing characteristic of the proteins processed to the identified HLA ligands 

was their exclusive temporal expression early or early/late during the viral life cycle in 

MVA infected B-LCL (Table 3.1) despite the unimpaired expression of late genes in 

these cells (data not shown). This was surprising, since it had been shown for cells 

other than DC that proteins with late temporal expression can already be detected 4 h 
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after infection, 6.5 h earlier than the time point at which the infected B-LCL were 

harvested for HLA ligand purification (231, 304). Therefore, we analyzed the levels of 

viral protein expression and viral HLA ligand presentation in infected B-LCL 

simultaneously. Comparative differential image analysis of 2D gels containing proteins 

from MVA- and mock-infected cells revealed several abundant proteins solely or 

predominantly expressed in the infected cells (Figure 3.3). Furthermore, we 

specifically checked for expression of the proteins which gave rise to HLA ligands by 

predicting their theoretical spot coordinates on the gels. Differentially detected 

protein spots were digested by trypsin and fragments were sequenced by LC-MS/MS. 

Peptide digestion products derived from proteins of both viral (Table 3.2) and human 

origin (data not shown) were detected. Six of 24 identified viral proteins were late 

viral gene products (Table 3.2) indicating that late proteins were available for 

proteasomal processing at the time cells were harvested for HLA ligand analysis. 

Under the conditions used for this experiment, several viral proteins would not be 

detected due to their extreme size or pI: B22R and G5.5R would be missed due to their 

low molecular weight of 7.3 kD each, while detection of E5R is unlikely due to its 

high pI of 10. Proteins detectable on the 2D gels had a MW of more than 14 kD and a 

pI between 4 and 9. Altogether, 69 MVA proteins do not match the above 

characteristics and thus most likely should not be detected by this method. 

Interestingly, there was little or no correlation between the relative abundance of 

intracellular viral proteins and directly processed viral peptides presented on HLA. 

Only two of the 24 most abundant MVA proteins were source proteins for identified 

HLA ligands, namely B8R (ligand KITSYKFESV18-27) and C7L (ligand KVDDTFYYV74-

82), although CTL determinants for other proteins had been described previously 

(Table 3.2). Interestingly, B8R and C7L provide immunodominant epitopes in mice 

and humans, respectively (96, 97, 99, 100, 107). On the other hand, eleven out of 13 

source proteins for which we found HLA ligands were not detected using this 

approach suggesting that most viral HLA ligands were derived from proteins of low 

abundance at 12.5 h post infection. 
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Figure 3.3 Analysis of differentially expressed intracellular proteins 12.5 h post 
infection. Representative 2D-PAGE images of experiments performed with protein extracts 
of mock-infected (A) and MVA-infected (B) B-LCL JY. (B) MVA proteins identified by LC-
MS/MS of tryptic digests are designated. Differentially expressed proteins identified as 
human are not indicated. (C) Alignment of gels A and B (gel A: red; gel B: blue; merged: 
black). The proteomic analysis was performed by Mirita Franz-Wachtel, Inga Buchen, 
Johannes Madlung, Claudia Fladerer and Tobias Lamkemeyer (Institute of Cell Biology, 
Proteome Center Tübingen, University of Tübingen). 
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Table 3.2    Intracellular MVA proteins identified in B-LCL by proteomic analysis 12.5 h post 
infectionc 

ORFa Temporal 
expressiona 

Mw 

theor./exp. 
pI 

theor./exp. 
Number 

of tryptic 
peptides 
detected 

Number of 
known  

HLA-A*0201 
or B*0702 
epitopes 

Number of 
other known 
HLA-A and -B 

epitopes 

A3L late 72.6/61.0 6.37/6.30 13 - 2 (101) 
A4L late 30.9/39.0 4.91/4.90 7 - - 
A6L late 43.1/40.0 5.71/5.60 19 2 (98, 99) - 
A37R early 29.8/27.0 5.61/5.50 10 - - 
A44L early 39.3/39.0 6.71/7.00 12 - - 
A46R early/late 27.6/32.0 4.85/4.90 4 1 (98) - 
B1R early 34.3/32.0 8.95/8.80 8 - - 
B8R early/late 31.1/35.0 6.81/5.70 8 1b 4 (99) 
B12R early 33.3/34.0 8.11/8.10 3 - - 
C7L early 18.0/18.0 5.95/5.90 3 1 (96-100),b 1 (99) 
E3L early/late 21.5/26.0 5.19/5.00 11 - 1 (101) 
E4L early/late 29.8/38.0 5.17/4.90 2 - - 
F2L early 16.4/17.0 8.53/5.60 6 - - 
F4L  early 36.9/38.0 4.92/4.90 11 1 (99) - 
F13L late 41.8/41.0 6.55/7.10 10 - - 
G8R early/inter-

mediate 
29.9/29.0 6.60/5.80 7 - 1 (99) 

H5R early/inter-
mediate 

22.3/34.0 6.86/5.60 3 - - 

H7R late 16.9/16.0 6.73/6.00 4 - - 
I3L early 30.0/34.0 5.68/5.50 11 - 2 (98, 99, 101) 
J2R early 18.6/19.0 5.55/5.80 4 1 (98) 1 (110) 
J4R early 20.7/25.0 8.56/7.10 3 - - 
K7R early 17.5/17.0 4.75/4.70 4 - - 
L4R late 28.4/28.0 6.64/5.70 7 - - 
N2L early 20.3/21.0 6.95/6.60 8 1 (99) - 
a ORF description and temporal expression according to VACV WR nomenclature (NCBI: NC_006998) and as described in 
(231). 
b Shown in this study, printed bold. 
c The proteomic anaylsis was performed by Mirita Franz-Wachtel, Inga Buchen, Johannes Madlung, Claudia Fladerer and 
Tobias Lamkemeyer (Institute of Cell Biology, Proteome Center Tübingen, University of Tübingen). 

 

3.1.3.3  Long-term recognition of HLA-A*0201 ligands by specific IFN-γ 

producing CD8+ T cells in MVA vaccinees 

We studied the immunogenicity of the identified HLA-A*0201 ligands by IFN-γ 

enzyme-linked immunospot (ELISPOT) assay of PBMC derived from two HLA-

A*0201 positive donors immunized twice with MVA. An initial screen of PBMC taken 

before vaccination and up to 30 days post boost (p.b.)2 indicated that immunization 

induced specific IFN-γ production in response to four out of five HLA ligands tested 

(Figure 3.4). Since specific responses against two peptides, A48R187-195 and C7L74-82, 

were seen in both donors and no responses were detected in PBMC isolated from 
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preimmune samples of either donor, we concluded that these responses were induced 

by immunization and were not generated by in vitro peptide/IL-2 stimulation prior to 

analysis. 

 

Figure 3.4 IFN-γ responses of MVA-immunized donors to MVA-
derived HLA-A*0201 ligand peptides varies with time post 
vaccination. Blood was taken from donors at the indicated time 
points. PBMC sensitization and IFN-γ ELISPOT assay were performed 
essentially as described in Materials and Methods except: PBMC were 
expanded by administration of peptide on d1 and a single dose of IL-2 
on day 3; the assay was performed without adding K562/A*0201 cells 
as APC; data was collected from single or duplicate measurements; 
spot forming cells (SFC) were calculated by subtracting the number 
of spots induced by an irrelevant HIV HLA-A*0201 epitope. 

 

We extended our study to the complete panel of HLA ligands and analyzed in vitro 

expanded PBMC taken 2.5 years p.b. by flow cytometry using combined 

MHC/peptide-tetramer and intracellular IFN-γ staining (Figure 3.5, Table 3.3). For all 

peptides except B8R18-27, tetramer positive CD8+ T cell populations were found in 

donor 1 (Figure 3.5, left panels), indicating that these HLA ligands are A*0201 

restricted CTL epitopes and are simultaneously recognized as part of the long-term 

memory response to MVA. CD8+ T cell populations identified by tetramers specific for 

eight out of eleven epitopes were functional and responded to in vitro stimulation 

with the specific MVA peptide by downregulating the TCR and producing IFN-γ 
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(Figure 3.5, right panels). Since the populations recognized by tetramers specific for 

the remaining three peptides, B19R207-215, A23R273-281 and D12L251-259, were small (less 

than 0.06%), our assay may not have been sensitive enough to detect production of 

IFN-γ by a fraction of these cells reliably. However, TCR downregulation as an 

indication of activation was clearly observed in response to two of these HLA ligands: 

B19R207-215 and A23R273-281. In donor 2, CD8+ T cell populations specific for eight out of 

twelve HLA ligands were detected by tetramer staining (Table 3.3). Six of these 

populations specifically responded to in vitro stimulation with TCR downregulation 

and IFN-γ production. Stimulation with E5R93-101 induced IFN-γ producing CD8+ T 

cells, which, however, were not stained by the matching tetramer, possibly due to a 

low affinity TCR (Table 3.3). 

 

 

Figure 3.5 CD8+ T cells specific for MVA-derived HLA ligands are HLA-A*0201 restricted and 
produce IFN-γ. Cells from donor 1 restimulated as described in Methods were treated for 7 h 
with either the MVA peptide indicated (right panels) or an irrelevant HIV HLA-A*0201 restricted 
epitope (left panels) prior to combined tetramer / intracellular IFN-γ staining. Gates were set 
on CD8+ lymphocytes and numbers indicate the percentage of cells in each quadrant. 
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Table 3.3   Comparison of CD8+ T cell responses specific for MVA-derived HLA ligands in MVA 
vaccinees 

   

 Donor 1 Donor 2 
     

 ELISPOT  
(1 stim.) 

Tetramer / intracellular IFN-γ 
(2 stim.) 

ELISPOT  
(1 stim.) 

Tetramer / intracellular IFN-γ 
(2 stim.) 

Peptidea,b IFN-γ c TCR d TCR↓d IFN-γ d IFN-γ c TCR d TCR↓d IFN-γ d 
         

B19R207-215 - + + - - - - - 
E5R93-101 - + + +/- + - - + 
G5.5R27-35 ++ + + + - + + + 
B22R178-186

e + + + +/- - + + +/- 
A23R273-281 + + + - - - - - 
B8R18-27 - - - - - - - - 
A48R187-195 +++ + + + + + +/- +/- 
D12L62-70 - + + + - + + - 
D12L251-259 - + - - - + +/- - 
C7L74-82 +++ + + + +++ + + + 
F12L404-412 ++ + + + + + + + 
O1L247-255 ++ + + + + + + + 

a ORF description according to VACV WR nomenclature (NCBI: NC_006998). 
b Amino acid position in protein according to VACV strain Acambis 3000 Modified Virus Ankara (MVA), (NCBI: AY603355). 

c Relative amounts of spot forming colonies determined by IFN-γ ELISPOT after 1 round of in vitro peptide/IL-2 
stimulation: + 18-60, ++ 61-200, +++ >200 per 5 x 105 PBMC  

d Relative percentage of CD8+ lymphocytes determined by combined tetramer / intracellular IFN-γ staining after 2 
rounds of in vitro peptide/IL-2 stimulation: TCR: + tetramer-positive cells, - tetramer-negative; TCR↓: + TCR 
downregulation detectable by tetramer staining for majority of tetramer-positive T cells, +/- TCR downregulation 
detectable for minority of tetramer-positive cells, - tetramer-negative; IFN-γ: + IFN-γ producing cells, +/- few IFN-γ 
producing cells, - no IFN-γ producing cells. 
e ORF description according to VACV COP nomenclature (NCBI: M35027), since protein is deleted  in VACV WR. 

 

Analysis of the same samples by IFN-γ ELISPOT assay after a single round of in vitro 

expansion gave similar results: eight epitopes were recognized in at least one donor 

and four were recognized in both (Figure 3.6). In addition, IFN-γ production in 

response to A23R273-281 by PBMC from donor 1 was observed, confirming this HLA 

ligand as a T cell epitope. 

In summary, all twelve MVA-derived HLA-A*0201 ligands which we identified were 

immunogenic, eleven of these provided long-term T cell memory. We demonstrate 

that the cellular immune response to MVA infection is based on simultaneous 

recognition of many different CTL epitopes with donor-specific variations in the 

epitope-specific CD8+ T cell frequencies and in the epitope-hierarchy. This finding is 

consistent with earlier analyses of human T cell responses to MVA (100) and other 

viruses such as CMV (318), EBV (319) and Influenza virus (160). Four HLA ligands 

proved to be common epitopes in the long-term response to MVA vaccination: C7L74-

82, the immunodominant epitope, as well as A48R187-195, F12L404-412 and O1L247-255. 
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Figure 3.6 MVA-immunized donors show IFN-γ production in 
response to a broad repertoire of MVA-derived HLA-A*0201 
ligands. PBMC expansion and IFN-γ ELISPOT assay were carried out as 
described in Materials and Methods. SFC were determined in 
triplicate; error bars indicate the SEM. Values three times higher 
than the HIV-peptide induced background were considered as 
positive. 

 

3.1.3.4  Long-term recognition of MVA-derived HLA-A*0201 ligands by CD8+ 

T cells from Dryvax® vaccinees 

Since we observed T cells specific for the MS-identified HLA ligands more than 2 

years after immunization in MVA vaccinees, we investigated long-term memory T cell 

responses specific for these peptides in PBMC from donors vaccinated with the VACV 

Dryvax® vaccine more than 25 years ago. Since the sequences of the MVA-derived 

HLA-A*0201 ligands are identical to those in VACV Dryvax® (Table 3.4), we 

anticipated that these ligands could also be immunogenic in the course of classical 

smallpox vaccination. Analysis of tetramer-specific CD8+ T cells derived from in vitro 

expanded PBMC of three HLA-A*0201 positive Dryvax® vaccinees at 25 to 45 years 

p.b. revealed specificity for seven of the identified HLA-A*0201 ligands (Table 3.5). All 

three donors contained CD8+ T cells specific for two of the common epitopes 

identified in the previous experiments with MVA vaccinees, C7L74-82 and F12L404-412, 

while two donors contained T cells specific for G5.5R27-35 and O1L247-255. These results 

suggest that one round of prime-boost vaccination with MVA or Dryvax® was 
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sufficient to induce a long-lived cellular immune response to several identical 

epitopes. 

To determine if the MVA epitopes described in this study can potentially cross-protect 

against infection by other VACV strains or orthopoxviruses, we compared the 

sequences of the MVA-derived HLA ligands to those derived from VACV Dryvax®, 

VACV WR and VARV, as well as monkey pathogenic MPXV, which has been 

described recently to cause human disease (320). Seven sequences were conserved 

between all strains (Table 3.4), including three of the common epitopes shown to be 

cross-reactive between MVA and VACV Dryvax® (Table 3.5). While the 

immunodominant epitope C7L74-82 is identical in the VACV strains, it differs by two 

amino acids in MPXV, making it unlikely that this epitope can provide protection 

against MPXV. 

 

Table 3.4  Comparison of peptide sequences of MVA-derived HLA ligands among orthopox-
viruses 

      

Peptide MVAa VACV Dryvaxb VACV WRc VARVd MPXVe 
      

HLA-A*0201:      
      

B19R207-215 KLIIHNPEL * ELIIHNPEL ELIIHNPAL ELIIHNPEL 
E5R93-101 KLFSDISAI * * * KLFSDISVI 
G5.5R27-35 SLKDVLVSV * * * * 
B22R178-186 TLLDHIRTA * deleted * TLLDHILTA 
A23R273-281 ALDEKLFLI * * * * 
B8R18-27 KITSYKFESV * * TITSYKFESV * 
A48R187-195 IVIEAIHTV * * * * 
D12L62-70 KLFTHDIML * * * * 
D12L251-259 RVYEALYYV * * * * 
C7L74-82 KVDDTFYYV * * * KVDYTLYYV 
F12L404-412 FLTSVINRV * * * * 
O1L247-255 GLNDYLHSV * * * * 
      

HLA-B*0702:      
      

B15R91-101 IPDEQKTIIGL IPDEQKT-IIGL IPDEQKT-IIGL IPDEQKT-IIGL IPDEQKT-IIGL 
J6R303-311 MPAYIRNTL * * * MPTYIRNTL 
O1L335-344 RPMSLRSTII * * * * 

a VACV strain Acambis 3000 MVA (NCBI: AY603355) 

b VACV strain Acambis 2000 (NCBI: AY313847), substrain isolated from the Dryvax® vaccine.  
c VACV strain Western Reserve (NCBI: NC_006998) 
d VARV strain Bangladesh 1975 (NCBI: L22579)  
e MPXV strain Zaire (NCBI: NC_003310) 

* = identical sequence to MVA 

- = IREISA; amino acid sequence deleted in MVA 
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Table 3.5 Comparison of CD8+ T cell responses to 
shared vaccinia epitopes in VACV Dryvax® 
vaccineesa 

    

Peptideb,c Donor 3 
(25 y) 

Donor 4 
(29 y) 

Donor 5 
(> 40 y) 

    

B19R207-215 0.08 0.02 0.02 
E5R93-101 0.03 0.04 0.02 
G5.5R27-35 0.10 0.06 <0.01 
B22R178-186

d 0.32 0.03 0.01 
A23R273-281 0.01 0.02 <0.01 
B8R18-27 0.04 0.01 0.03 
A48R187-195 0.04 0.02 1.19 
D12L62-70 0.01 0.02 0.01 
D12L251-259 0.03 0.02 0.01 
C7L74-82 0.14 0.28 1.33 
F12L404-412 0.08 0.08 0.19 
O1L247-255 0.16 0.09 0.01 

a Tetramer staining was carried out after one round of in vitro 
peptide/IL-2 stimulation. Tetramer+ CD8+ CD4- lymphocytes 
>0.05% are considered significant and indicated in bold.  

b ORF description according to VACV WR nomenclature (NCBI: 
NC_006998). 
c Amino acid position in protein according to VACV strain 
Acambis 3000 Modified Virus Ankara (MVA), (NCBI: AY603355). 
d ORF description according to VACV COP nomenclature (NCBI: 
M35027), since protein is deleted  in VACV WR. 

 

3.1.3.5  Vaccination with actual HLA ligands provides protection against a 

lethal VACV challenge in HLA-A*0201-transgenic mice 

All of the HLA ligands identified in this study were peptides derived from early viral 

proteins. Recently, we found that T cells recognizing such peptides were capable of 

dominating the response to a secondary VACV infection. Therefore we tested whether 

vaccination with the identified peptides would be able to clear an orthopoxviral 

infection. Importantly, HLA-A*0201 transgenic HHD mice were fully protected 

against a lethal respiratory challenge with the virulent VACV strain WR after a single 

immunization with a pool of three peptides derived from early gene products 

identified in this study (B8R18-27, G5.5R27-35 and C7L74-82) (Figure 3.7b). In contrast, 

peptides from late viral proteins (A6L6-14, H3L184-192 and I1L211-219) which dominate the 

primary response in this mouse model after MVA immunization ((112), Figure 3.7a) or 

induced much higher CD8+ T cell frequencies when applied in this study as pooled 

peptide vaccine (Figure 3.7a), were less protective. These animals showed a dramatical 

loss of weight (similar to the control group) and suffered prolonged disease progression 

(> 25 days), while all mice in the early peptide group were fully recovered by day 14. 
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Of note, the addition of CpG ODN as an adjuvant in all peptide vaccine preparations 

showed some unspecific protective capacity as demonstrated by survival of control 

peptide vaccinated mice which was most likely mediated by the innate immune 

response. 

 

 

Figure 3.7 Vaccination with HLA ligands provides protection against a lethal VACV challenge 
in HLA-A*0201-transgenic mice. Mice were immunized s.c. with pools of peptides derived from 
either early (Early Pep pool: B8R18-27, G5.5R27-35, C7L74-82) or late viral gene products (Late Pep 
pool: A6L6-14, H3L184-192, I1L211-219) or control peptides (Control Pep pool: Tyr369-377, FluM58-66, 
pp65495-503) or i.m. with MVA wt (108 IU) or PBS. On day 7 mice were bled and PBMC were tested 
for reactivity against the immunized peptides using intracellular IFN-γ staining. Reactivity 
against control peptides was below 0.1%. MVA-immunized mice were tested for reactivity 
against the early or late peptide pool (A). On day 8 mice were challenged with VACV WR (106 
PFU) intranasally. (B) Relative weight loss over time. In the mock-immunized group, all mice 
were dead by day 7, one mouse in the control and one mouse in the late group also died on day 
7 (n=5). This experiment was performed by Wolfgang Kastenmüller, Georg Gasteiger, and Ingo 
Drexler (Institute of Virology, Technical University Munich and Helmholtz Center Munich). 

 

3.1.4  Discussion 

Identification of viral HLA ligands by LC-MS/MS analysis has resulted in a better 

understanding of the cellular anti-viral immune response. The major challenge has 

been to find a limited number of signals derived from the virus in the multitude of 

self-peptides. Planz et al. used a tedious “predict-calibrate-detect” strategy to identify 

an HLA ligand from borna disease virus (131), while de Jong and van Els have 

developed elegant approaches based on in silico subtraction and metabolic labeling to 

study measles and respiratory syncytial viruses (132, 133). Unfortunately, these 

strategies have not become routine and the number of viral HLA ligands known is still 
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very limited. So far, only one MVA-derived HLA ligand has been found by LC-MS/MS 

analysis of peptides isolated from infected cells (134).  

The strategy described in this study, differential analysis of HLA ligands by chemical 

stable isotope labeling after purification of peptides, combines several advantages. 

First, comparative measurements of HLA ligands from infected and mock-infected 

cells eliminate the need for ligand prediction. Second, identification of single peptide 

peaks in a survey LC-MS scan is time-effective using manual evaluation, and 

algorithms providing automatic evaluation are expected to become available shortly. 

Third, the presence of a constant normalizing signal based on the self-peptides limits 

the requirement for reproducibility in chromatographic retention, peptide ionization 

and selection for fragmentation. Finally, this approach can be applied to tissue taken 

from any organism, and may allow comparative analysis of different sites of infection.  

Using differential stable isotope labeling of HLA ligands purified from infected and 

mock-infected cells, we discovered fifteen MVA-derived ligands, twelve restricted to 

HLA-A*0201 and three to HLA-B*0702 (Table 3.1). Eight ligands represent novel 

sequences. One peptide, A48R187-195, had been described by Johnson et al. (134), and six 

ligands matched known CTL epitopes (references see Table 3.6). Nine proteins from 

which HLA ligands were derived are among the 29 previously described immunogenic 

early proteins (93), and four proteins, B19R, E5R, G5.5R and B15R, were newly 

identified in this study to contain relevant human CTL epitopes (Table 3.6). The 

proteins bearing HLA ligands functionally belong to two groups: proteins with 

immunomodulatory or host range and virulence function (B8R, B15R, B19R, C7L and 

F12L (231, 321, 322)) and proteins functionally connected to DNA replication or 

transcription (E5R, A48R, G5.5R, A23R, D12L and J6R (231)). The function of O1L is 

unknown. The novel immunogenic proteins B15R and B19R are known cytokine 

receptors of VACV and play a pivotal role in the VACV mediated interference with 

the immune response (321, 323). Less is known about the function of the two other 

proteins newly identified as T cell epitope sources: E5R is located in cytoplasmic sites 

of viral DNA replication, where it associates with the proteins H5R and E3L, which 

were both detected as abundant proteins in this study (324); G5.5R has been described 

as a subunit of the DNA-dependent RNA polymerase (325). Two proteins, O1L and 

D12L, bear two HLA ligands each, suggesting high immunogenicity. 

Notably, we exclusively detected HLA ligands from viral gene products expressed 

early or early/late during the viral life cycle (231) (Table 3.1). This is consistent with 



Poxviral HLA ligands provide long-term immunity 

 66

our previous observation that presentation of peptides derived from late viral antigens 

to specific T cells by infected mouse target cells was very inefficient, but could be 

restored by the expression of the same viral antigens under the control of early 

promoters (112). This finding indicates a bias for early viral antigens to be processed 

and presented on MHC class I molecules of infected APC. However, since T cell 

responses against late viral proteins are found in humans and mice, the data support 

the concept that T cells are efficiently crossprimed upon MVA vaccination (316), 

particularily, when considering that late protein synthesis is blocked in MVA infected 

DC (304). 

Several mechanisms can be invoked to explain the inability to detect HLA ligands 

from late proteins on infected cells. Early and late viral gene products are transcribed 

and translated in distinct cellular compartments (219, 220) possibly resulting in 

variable availability for antigen processing. Alternatively, the initiation of cell death 

during the course of infection may reduce the loading capacity of the cellular antigen-

presenting machinery thus reducing the abundance of HLA ligands from late viral 

proteins (188).  

Several studies have described a number of early as well as late epitopes of MVA and 

replication-competent VACV strains based largely on T cell analysis of immunized 

donors (95-100, 103). Our data concurs with the finding that VACV-specific CTL 

epitopes are predominantly derived from early proteins (99). We also confirm C7L74-82 

as the immunodominant epitope, and F12L404-412 and O1L247-255 as subdominant 

epitopes. However, using the MS-based technique we were able to detect only four of 

the 24 published HLA-A*0201 restricted MVA epitopes as HLA ligands, but then only 

two out of the remaining 20 were derived from source proteins, from which we found 

HLA ligands (Table 3.6). One reason might be that different virus strains have been 

used for these studies. Particularly, replication-competent VACV strains might differ 

in pattern of antigen presentation or immunogenicity compared to MVA.  In addition, 

several other factors may affect this limited overlap between the actual repertoire of 

MVA HLA ligands described here and previously identified HLA-A*0201 restricted 

CTL determinants described for MVA or replication-competent VACV. First, 

technical restrictions within the LC-MS/MS analysis are likely to prevent the 

detection of all MVA-derived HLA ligands. Even if a peptide is presented by a 

sufficient number of HLA molecules to produce a signal with sufficient intensity, a 

peptide peak may be missed due to co-elution of peptides of similar molecular weight 
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or suppression of peptide ionization by co-eluting peptides (326). Furthermore, some 

peptide sequences are difficult to detect due to their chemical characteristics, as may 

be the case for the epitope B22R79-87 (96, 100) containing a cysteine residue which can 

react by oxidation. Another possible reason for the limited overlap might be inherent 

to the in vitro infection model that we chose to generate the material for our HLA 

ligand analysis. We used one defined cell type and analyzed one time point post 

infection. In addition, cross-presentation of epitopes might add to the repertoire of 

CTL determinants in vivo. A third explanation may be the individual heterogeneity of 

subdominant epitopes, e.g. many VACV Dryvax® epitopes were characterized solely 

by IFN-γ production in a single donor (99). In contrast, ten out of twelve HLA-A*0201 

ligands identified in this study were recognized by more than one of the five donors 

tested suggesting that they are immunologically highly relevant. Finally, the limited 

overlap might also be a result of differing T cell assay protocols. In contrast to some 

other groups, we restimulated the PBMC of vaccinees twice in order to clearly detect 

the T cells with specificity for the HLA ligands presented by MVA-infected cells. 

In summary, the MS-based technique used here seems to be a reliable method to 

identify clinically relevant viral CTL epitopes and could be applied to other large-

genome pathogens or recombinant antigens expressed by MVA. We identified twelve 

HLA-A*0201 and three HLA-B*0702 ligands derived from MVA. Nine of these 15 

peptides were novel. All HLA-A*0201 ligands were shown to be actual CTL epitopes in 

MVA-immune donors. These peptides, preferably common and more dominant 

epitopes such as C7L74-82, F12L404-412, G5.5R27-35, O1L247-255 and A48R187-195, are essential 

to monitor CD8+ T cell responses to MVA-based vaccines in clinical trials and may be 

used as correlates of protection. In addition, they seem suitable to be included e.g. as 

an epitope-based component in a smallpox vaccine which might be considered as a 

low-cost, safe and stable alternative to traditional vaccines against bioterrorist 

smallpox threats.  
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Table 3.6 Newly identified and published epitopes of the viral HLA ligand source proteins  
       

ORF (temporal 
expression)a 

Epitope 
locationb 

Sequence MHC 
restriction 

Ligand on 
B-LCL JY 

CD8+ T-cells 
in MVA-
vaccinees 

References 

       

B19R (early) 207-215 KLIIHNPELd HLA-A*0201 yes yes - 
E5R (early) 93-101 KLFSDISAI HLA-A*0201 yes yes - 
G5.5R (early) 27-35 SLKDVLVSV HLA-A*0201 yes yes - 
B15R (early) 91-101 IPDEQKTIIGLe HLA-B*0702 yes n/a - 
B22R (early)c 178-186 TLLDHIRTA HLA-A*0201 yes yes - 
             79-87 CLTEYILWV HLA-A*0201 no yes (96, 100) 
 72-80 TVADVRHCL HLA-B*07 n/a n/a (110) 
A23R (early/late) 273-281 ALDEKLFLI HLA-A*0201 yes yes - 
 287-295 HDVYGVSNF HLA-B*4403 n/a n/a (101) 
 297-305 IGMFNLTFI H2-Db n/a n/a (107) 
B8R (early/late) 18-27 KITSYKFESV HLA-A*0201 yes yes - 
 110-118 TEYDDHINLf HLA-B*4001 n/a n/a (99) 
 124-132 DMCDIYLLY HLA-A*2601, 

HLA-A*2902, 
HLA-A*0101 

n/a n/a (99) 

 138-147 FGDSKEPVPY HLA-A*2601, 
HLA-A*2902, 
HLA-A*0101 

n/a n/a (99) 

 262-271 FLSMLNLTKYg HLA-A*2902, 
HLA-A*0101 

n/a n/a (99) 

 20-27 TSYKFESV H2-Kb n/a n/a (97, 107) 
A48R (early/late) 187-195 IVIEAIHTV HLA-A*0201 yes yes (134) 
 58-66 TYNDHIVNL HLA-A*2301 n/a n/a (101) 
D12L (early/late) 62-70 KLFTHDIML HLA-A*0201 yes yes - 
 251-259 RVYEALYYV HLA-A*0201 yes yes (98) 
 14-22 VLLPFYETL H2-Kb n/a n/a (107) 
C7L (early) 74-82 KVDDTFYYV HLA-A*0201 yes yes (96, 97, 99, 100) 
 31-40 KLKIISNDYK HLA-A*0301 n/a n/a (99) 
F12L (early/late) 404-412 FLTSVINRV HLA-A*0201 yes yes (99) 
 286-295 NLFDIPLLTV HLA-A*0201 no n/a (99) 
J6R (early) 303-311 MPAYIRNTL HLA-B*0702 yes n/a (99, 103) 
 332-340 NQVKFYFNK HLA-A*0301 n/a n/a (99) 
 542-551 AGLLSDHKSN H2-Kb n/a n/a (105) 
O1L (early) 247-255 GLNDYLHSV HLA-A*0201 yes yes (99) 
 335-344 RPMSLRSTII HLA-B*0702 yes n/a (99) 

a ORF description and temporal expression according to VACV WR nomenclature (NCBI: NC_006998) and as described in 
(231). 
b Amino acid position in protein according to VACV strain Acambis 3000 Modified Virus Ankara (MVA), complete genome 
(NCBI: AY603355) or as described by the reference, if sequence differs in MVA. 
c ORF and protein description according to VACV COP nomenclature (NCBI: M35027), since protein not present in VACV 
WR. 
d Sequence in VACV WR: ELIIHNPEL 
e Sequence in VACV WR: IPDEQKTI--- 

f VACV Dryvax® CTL epitope; homologous sequence in MVA: TEYDDH--- 
g No homologous sequence in MVA. 

n/a, not applicable 
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3.2 MVA infection upregulates presentation of cytoskeleton-
derived self-peptides on HLA-A*0201 

3.2.1  Introduction 

Myocarditis is an inflammatory heart disease often associated with a previous viral 

infection (327-331). VACV-based smallpox vaccination has been reported to induce 

autoimmune eosinophilic-lymphocytic myocarditis as a serious side effect (134, 236, 

240, 241). It has been diagnosed by biopsy in human individuals shortly after 

vaccination providing histological evidence for eosinophil-mediated cardiac myocyte 

necrosis (242). The lymphocytic component consisted mainly of CD3+ T cells, of 

which about 25% were CD8+. PCR showed that myocytes were virus-free.  

It has been suggested that myocarditis may develop due to autoimmune responses 

directed against cardiac tissue (332-336). The inflammatory immune response caused 

upon infection may break tolerance by mechanisms of molecular mimicry, bystander 

activation, and loss of immune regulation (337-342). The innate immune response to 

infection and release of cardiac myosin or other cardiac antigens may contribute to the 

overall enhanced inflammatory state in the myocardium (331). Once initiated, the 

immune responses leading to myocarditis can be perpetuated by exposed and 

presented cardiac antigens in the presence of inflammatory cytokines (330, 343, 344). 

A marked increase in expression of MHC class I and II molecules by the myocardium 

of patients with active myocarditis has been shown (327).  

Recently, CD8+-based autoimmunity has been demonstrated to be induced by DCs 

during HIV infection by cross-presentation of caspase-cleaved apoptotic self antigens 

mainly derived from the cytoskeleton (345). The chronic T cell activation in HIV-

patients has been shown to be largely attributable to T cells specific for multiple 

subdominant self peptides rather than HIV-specific T cells.  

We hypothesized that presentation of human self-HLA ligands on virus-infected cells, 

which are lacking on non-infected cells, might induce self-reactive T cells during 

infection. The technique used to identify MVA-derived HLA class I ligands, 

differential analysis of peptides presented by MVA infected and mock-infected cells, is 

ideal to identify not only viral HLA ligands but also self-ligands which are specifically 

presented by infected cells or whose presentation is upregulated upon viral infection. 
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No myocarditis cases have been reported with MVA so far, suggesting that the 

attenuated virus is not capable of inducing autoimmune-reactive cells. Yet, cells 

infected by replication-competent VACV might upregulate the same human self-

ligands as the attenuated VACV strain MVA. Therefore, we analyzed the relative 

abundance of human self-HLA class I ligands on MVA-infected versus mock-infected 

cells.  

3.2.2  Results 

3.2.2.1  Identification of differentially overpresentated human HLA-A*0201 

ligands upon MVA infection 

In order to identify human self-ligands specifically or overpresented by HLA-A*0201 

on the human B-LCL JY upon infection with MVA, we differentially analyzed the 

ligands isolated from MVA- and mock-infected cells after 12.5 h of infection. For this 

purpose, HLA-presented peptides were chemically modified by covalently-linked 

stable isotope tags: peptides isolated from MVA-infected cells with heavy (deuterated, 

D4) nicotinic acid (NIC) and peptides isolated from mock-infected cells with light 

(hydrogenated, H4) NIC. The two pools of tagged peptides were mixed, and the 

peptides were separated by nanoHPLC and analyzed online by MS. HLA ligands 

present on both MVA- and mock-infected cells representing human self-peptides were 

detected as doublets with a mass difference of 4 Da due to the four deuterium atoms of 

D4NIC (Figure 3.1, lower central panel) replacing four hydrogen atoms present in 

H4NIC. Single peaks may either represent peptides derived from viral proteins or from 

human self-proteins which are specifically synthesized and/or degraded upon 

infection. Peptides were sequenced by fragmentation using LC-MS/MS analysis.  

Although no human self-HLA ligands exclusively presented on the infected cells were 

identified, two out of 409 self-ligands evaluated were found highly overpresented 

upon MVA-infection (Figure 3.8). The HLA-A*0201-restricted peptides were derived 

from two proteins associated with the cytoskeleton, myosin 1G (ALVDHVAEL, 

upregulated by factor 5.3, and C14orf49/nesprin-3 (ALAQRLLEV, upregulation by 

factor 6.6). The abundance of 95% of all ligands differed maximally by the factor of 1.7 

(log2 [Intensity HLA ligands(D4NIC/H4NIC)] = -0.8 to 0.8; Figure 3.8). Taking into 

account that only about 50% of analyzed cells were infected, upregulation of the 

ligands was likely even more pronounced than by the evaluated factors. 
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Figure 3.8 Two out of 409 human HLA ligands evaluated were overpresented 
on B-LCL JY upon MVA-infection. Normalized intensity ratios of peptide doublet 
peaks in the LC-MS analysis performed with an 1:1 mix of the peptide pools 
isolated from MVA-infected (D4NIC-modified) and mock-infected (H4NIC-modified) 
cells were evaluated. Almost all peptides were presented in equal abundancies 
on infected and mock-infected cells. Peptides upregulated upon MVA-infection 
were identified by LC-MS/MS analysis as derived from myosin 1G (factor 5.3) and 
nesprin-3 (factor 6.6). 

3.2.3 Discussion and Outlook 

By analyzing the relative abundance of directly presented HLA class I ligands of 

MVA-infected versus mock-infected cells, two human self-HLA ligands were found 

highly upregulated in MVA-infected B-LCL, suggesting either specifically induced 

synthesis and/or degradation upon infection. Strikingly, both peptides were derived 

from proteins associated with the cytoskeleton. Nesprin-3 is an outer nuclear 

membrane protein binding to the cytoskeletal linker protein plectin which can 

directly cross-link the actin and the intermediate filament cytoskeletal system (346). 

Myosin 1G is a member of the class I myosin proteins, which are nonfilament-forming 

myosins thought to play a role in intracellular transport and locomotion (347). It is 
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expressed in cardiac tissue (see www.genecards.org: GeneCard for protein-coding 

MYO1G, Microarray Integrated Expression by GeneNote and GNF GeneAtlas Data). 

Cytoskeletal alterations have been shown upon VACV-infection: formation of virally-

induced microvilli, disruption of actin stress fibres and formation of actin tails in the 

cytoplasm of the host (348, 349). Morevoer, cytoskeletal derived proteins have been 

shown to play a major role in virally induced autoimmune reactions including 

myocarditis (345, 350). It is therefore imaginable that the increased presentation of the 

self-HLA ligands derived from nesprin-3 and myosin 1G in association with infection 

might be capable of inducing an autoimmune response in case the infection is virulent. 

As MVA, replication-competent VACV might upregulate the two human self-HLA 

ligands in host cells, perhaps even in a more pronounced manner due to complete 

synthesis and egress of virions. It remains to be shown, whether VACV Dryvax®-

vaccinees, who had suffered from autoimmune reactions following vaccination, carry 

memory CD8+ T cells recognizing these two ligands.  
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4 Results and Discussion Part II  

4.1 Identification of natural MHC class II presented 
phosphopeptides and tumor-derived MHC class I 
phospholigands  

This chapter has been submitted by the authors below for publication. 

 

Verena S. Meyer,* Jörg Hennenlotter,† Hans-Georg Rammensee,* Stefan Stevanović,*1  

*Department of Immunology, Institute of Cell Biology, University of Tübingen, D-

72076 Tübingen, Germany; †Department of Urology, University of Tübingen; 
1corresponding author 

 

The author of this thesis designed, performed and evaluated the experiments leading 

to the results described in this chapter. Tissue was excised by Jörg Hennenlotter†. 

Peptide isolation from tissue and synthesis of peptides were done by Anneke 

Neumann* and Patricia Hrstić*, respectively.  

 

Abbreviations used in this paper: B-LCL, B lymphoblastoid cell line; HLA, human 

leukocyte antigens; LC-MS, nanoHPLC-coupled MS analysis; LC-MS/MS, nanoHPLC-

coupled tandem MS analysis; MHC, major histocompatibility complex; m/z, mass to 

charge ratio of peptide ion; pS, phosphoserine; pT, phosphothreonine; RCC, renal cel 

carcinoma 

4.1.1  Abstract 

MHC molecules present protein-derived peptides to T lymphocytes. By developing 

TiO2-based microcentrifugation columns, we identified the first phosphorylated MHC 

class I ligands from tumor tissue (renal cell carcinoma) and, by comparison to healthy 

renal tissue, found one Brf1-derived ligand as potentially tumor-associated. We 

further discovered the first natural phosphorylated MHC class II ligands. They 

revealed several novel phosphorylation sites of significant transmembrane receptors, 

such as Frizzled 6, CXCR4 and CD20.  
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4.1.2  Introduction 

Major histocompatibility complex (MHC) molecules, also referred to as human 

leukocyte antigens (HLA), present peptides to be recognized by the T cell receptor of 

T lymphocytes. There are two classes of MHC molecules differing in the origin and 

length of the peptides presented and the T cells recognizing the peptide/MHC-

complexes (351). Peptides which are produced endogenously and are degraded to a 

length of 8 to 12 amino acids by the proteasome and other proteases in the cytoplasm 

and endoplasmic reticulum are presented by MHC class I molecules (352-354). In 

contrast, MHC class II molecules bind peptides which are mostly derived from 

exogenous or transmembrane proteins but also from cytosolic proteins and are 

degraded to a more variable length of 9 to 25 amino acids by various proteases 

originating from the lysosomal compartment (355-361). Peptide/MHC class I-

complexes are recognized by CD8+ T cells, also called cytotoxic T cells (76-78), those of 

MHC class II are recognized by CD4+ T cells including TH1 cells, which exert helper 

activity for the induction and maintenance of CD8+ T cells via activation of antigen 

presenting cells and secretion of cytokines (57, 58). Recognition of a peptide derived 

from a disease-associated protein, e.g., a viral or a tumor-specific protein, in presence 

of a costimulatory signal triggers a T cell-mediated immune response (for review see 

(54)). Anti-tumor immunity optimally requires the participation of both tumor cell-

directed cytotoxic CD8+ T cells and CD4+ T helper cells (362-367).  

Tumor cells differ from non-malignant cells in the activity of protein kinase pathways 

regulating cell growth, differentiation, and apoptosis (136, 178, 179).  Endogenous 

MHC class I peptides containing a posttranslational phosphorylation are discrimated 

from non-modified peptides by CD8+ T cells in vivo (176, 195, 196). Hence, peptides 

containing a tumor-associated phosphorylation represent potential tumor antigens 

(176). By comparing the repertoires of MHC class I bound phosphopeptides of cancer 

cell lines with the one of a B lymphoblastic cell line (B-LCL), phosphopeptides 

restricted to the tumor cell lines and common to all tumor cell lines studied could be 

identified (176). 

Phosphopeptide enrichment is essential for specifically identifying MHC-presented 

phosphopeptides in the multitude of non-phosphorylated peptides. Several methods 

have been developed to enrich phosphorylated peptides (200). Yet, most approaches 

have been used in the field of proteomics investigating peptides generated typically by 
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tryptic digestion. These peptides share a certain physicochemical behaviour, since 

digestion products contain lysine at the C-terminus and are typically longer than 

MHC class I peptides. Zarling et al. (176, 196) have been successful in enriching MHC 

class I phosphopeptides from cell lines by using Fe3+-immobilized metal-affinity 

chromatography linked to C18-HPLC-coupled mass spectrometry (LC-MS). However, 

MHC class II presented phosphopeptides have not been found using this technique 

although several cell lines have been searched for (196). Yet, it has been demonstrated 

that CD4+ T cells can distinguish a phosphorylated MHC class II epitope from the non-

phosphorylated peptide (368).  

For application in immunotherapy, it is necessary to investigate whether a peptide 

containing a potentially tumor-associated phosphorylation is presented in vivo by a 

patient’s tumor. Thus, it is crucial to not only investigate cell lines (176) but actual 

tumor tissue. In this study, we show that MHC class I presented phosphopeptides can 

be isolated from renal cell carcinoma (RCC) tissue and can be identified by HPLC-

coupled mass spectrometry after offline-enrichment by a newly developed TiO2-based 

centrifugation technique. In order to identify potentially tumor-restricted 

phosphopeptides we compared the repertoire of phosphopeptides presented by a 

patient’s tumor tissue to the one presented by the same patient’s healthy renal tissue.  

Moreover, by applying the TiO2-microcentrifugation technique, we enriched and 

identified the first phosphopeptides naturally presented by MHC class II molecules of 

an EBV-transformed B-LCL and a tumor cell line. This finding clearly contradicts the 

former observation that phosphorylated peptides may only be presented by MHC class 

I molecules  (196). We demonstrate that phosphorylated MHC class II ligands contain 

phosphosites of plasmamembrane receptors involved in cancerogenesis and thus 

represent a potential new source for tumor-specific CD4+ T cell antigens.  

4.1.3  Results 

4.1.3.1  Offline-enrichment of MHC presented phosphopeptides by TiO2-

microcentrifugation columns 

To perform this study, we advanced an offline-technique using TiO2-microcolumns, 

which was established by Larsen et al. (207), by the development of centrifugation 

tubes (Figure 4.1). In contrast to air pressure created manually with a syringe as 

described by Larsen et al. (207), centrifugation allows for a stable flow of solvents 
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through the microcolumns. Enrichment of synthetic peptides (Table 4.1) showed 

quantative separation of phosphopeptides from non-phosphorylated peptides (Figure 

4.2). Yet, two phosphorylated peptides were not retained by the column: 

SYVKpTKMGL and KRFpSFKKSF. Both peptides contained basic amino acids next to 

or indirectly surrounding the phosphorylated residue (basic amino acids printed bold 

in Table 4.1). In contrast, a peptide equivalent to SYVKpTKMGL but containing acidic 

residues instead of the basic ones next to phosphothreonine (peptide SYVDpTEMGL, 

(Table 4.1) was retained by TiO2. This suggests that enrichment of peptides with two 

or more basic residues next to or surrounding the phosphogroup might be missed by 

this method. Importantly, peptides in the flowthrough which have not bound to TiO2 

may be analyzed as well (Figure 4.2). Thus, the method allows analysis of both 

phosphorylated and non-phosphorylated MHC ligands of a sample using the eluate 

and the flowthrough, respectively. We established a centrifugation protocol both for 

MHC class I and class II peptides, the latter requiring longer centrifugation times and 

higher g values due to their length (see Material and Methods). 

 

Figure 4.1 Preparation of TiO2-microcentrifugation 
columns (from right to left). GELoader tips are 
loaded with TiO2 as described by Larsen et al. (207). 

 

Table 4.1 Synthetic peptides used for 
phosphopeptide enrichment (Figure 4.2) 

Peptide [M+H]2+ eluate flowthrough
ALASHLIEA 462.8 - +
ALNELLQHV 518.8 - + 
RVAPEEHPVL 573.8 - + 
VLRENTSPK 522.3 - + 
VLRENTpSPK 562.3 + - 
RLDpSYVRSL 594.8 + - 
MPHEKHYpTL 618.3 + - 
SYVDpTEMGL 547.7 + - 
SYVKpTKMGL 553.8 - + 
KRFpSFKKSF 627.9 - + 
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Figure 4.2 MS analysis of the ten synthetic peptides listed in Table 4.1. 
Before enrichment, flowthrough (combined flowthrough of the sample and 
washing solutions), eluate. P = Phosphopeptide. Synthesis of peptides was done 
by Patricia Hrstić (Department of Immunology, Institute of Immunology, 
University of Tübingen). 

 

4.1.3.2  Identification of phosphorylated MHC class I ligands from tumor 

tissue and corresponding healthy tissue 

To identify potentially tumor-restricted phosphorylated HLA ligands, MHC class I-

peptide complexes were extracted by immunoaffinity chromatography from a patient’s 

RCC tissue (classified T1bNxM1) and from surrounding healthy tissue expressing HLA-

A*02, -A*24, -B*07, -B*35. Peptide ligands were separated from MHC molecules by 

acidic elution and size exclusion filtration. Peptides derived from tumor and healthy 

tissue were differentially labled by stable isotopes (deuterated and hydrogenated 

nicotinic acid) giving respective peptides a mass difference of 4 Da. Phosphopeptides 

from both modified pools were enriched using the TiO2-microcentrifugation columns 

and analyzed by HPLC-coupled ESI-Q-TOF-MS/MS (LC-MS/MS).  
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In total, we found 16 phosphorylated peptides as determined by detection of the 

neutral loss of 98 Da per phosphate group from the parent ion, which corresponds to 

phosphoric acid and occurs at phosphorylated serine or threonine residues but not 

tyrosine residues (data not shown). We were able to identify sequences of eleven 

phosphoserine (pS)- or phosphothreonine (pT)-peptides, out of which eight peptides 

were fragmented in the LC-MS/MS analysis of the tumor tissue and nine were 

fragmented in the analysis of the healthy tissue (Table 4.2). Two phoshopeptides were 

exclusively fragmented in the tumor tissue analysis, three exclusively in the healthy 

tissue analysis. Eight peptides matched the peptide motif of HLA-B*0702, and one 

peptide each was HLA-A*02, -A*24 and -B*35 restricted. Phosphorylation sites of nine 

peptides were known, two have been identified newly: pS1044 of the protein V-erb-b2 

erythroblastic leukemia viral oncogene homolog 3 (Erbb3, alternative name Her3) and 

pS139 of the protein Familiy with sequence similarity 128, member B (Fam128b). One 

peptide was a known HLA ligand: KPRpSPVVEL from the protein Adrenergic beta 

receptor kinase 1 (Adrbk1) (196).  

Presence of a peptide in one of the samples was further investigated by an LC-MS 

analysis (without fragmentation of peptides) performed from a mix of the two 

differentially labled peptide pools (Table 4.2). In this analysis, which allowed direct 

comparison of both samples, two peptides were detected as single peaks representing 

one peptide exclusively present in the tumor tissue (with an intensity ratio of 5.7 to 

background) and one peptide being present only in the healthy tissue (with an 

intensity ratio of 7.7 to background) (Table 4.2). All other peptides, which had been 

found fragmented only in the analysis of one of the samples, appeared as pairs (i.e., 

peaks with a 4 Da difference in the mass to charge ratio (m/z)) in the LC-MS run. 

Hence, out of eleven phosphopeptides one peptide was detected as tumor-restricted: 

RPRLQHSFpSF presented by HLA-B*35 and derived from the protein butyrate 

response factor 1 (pS203-Brf1195-204). Interestingly, the HLA-B*07 restricted 

phosphopeptide FPRRHpSVTL found in both the tumor and healthy tissue derives 

from the same protein (pS54-Brf149-57). The two MHC presented peptides contained two 

out of three known phosphorylations of Brf1 (291, 369, 370). Yet, phosphorylation of 

S54 had not been confirmed by MS so far. Brf1 is a zinc finger protein that – in the 

unphosphorylated state - regulates mRNA levels by targeting transcripts containing 

AREs (AU-rich elements) into the decay pathway (371).  
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Table 4.2 Phosphorylated HLA class I ligands identified from RCC tumor tissue and the corresponding healthy tissueb 

 
a Underlined residues indicate known phosphosites (www.phosohosite.org). 
b Isolation of peptides from tissue was done by Anneke Neumann (Department of Immunology, Institute of Cell Biology, University of Tübingen). 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 

  LC-MS/MS LC-MS     

Peptide a HLA Tumor Healthy Tumor Healthy Gene GeneID Position Phosphosite 

RPRLQHSFpSF B*35 + - + - ZFP36L1 (BRF1) zinc finger protein 36, C3H type-like  677 195-204 (338) pS 203 

FPRRHpSVTL B*07 + + + + ZFP36L1 (BRF1) zinc finger protein 36, C3H type-like  677 49-57 (338) pS 54 

KAFpSPVRSV A*02 + + + + ID2 inhibitor of DNA binding 2, dominant negative helix-loop-helix protein 3398 2-10 (134) pS 5 

RFKpTQPVTF A*24 + + + + LOC387763 hypothetical LOC387763 387763 365-373 (435) pT 368 

RPRSLpSSPTVTL B*07 + + + + NEDD4L  neural precursor cell expressed, developmentally down-regulated 4-like 23327 423-434 (955) pS 428 

SPFKRQLpSL B*07 + - + + NUMB  numb homolog (Drosophila) 8650 288-296 (651) pS 295 

MPRQPpSATRL B*07 + + + + FAM128B family with sequence similarity 128, member B 80097 134-143 (158) pS 139 

KPRpSPVVEL B*07 + + + + ADRBK1 (GRK2) adrenergic, beta, receptor kinase 1 156 667-675 (689) pS 670 

RPFpSPREAL B*07 - + + + LUZP1 leucine zipper protein 1 7798 742-750 (1076) pS 745 

RPQRApTSNVF B*07 - + + + MYL9 (MRLC1) myosin, light chain 9, regulatory 10398 14-23 (172) pT 19 

RPRGpSQSLL B*07 - + - + ERBB3 (HER3) v-erb-b2 erythroblastic leukemia viral oncogene homolog 3 (avian) 2065 1040-1048 (1342) pS 1044 
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4.1.3.3  Naturally presented MHC class II ligands contain phosphorylations 

Although we were able to isolate MHC class II presented peptides from the RCC tissue 

used for analysis of phosphopeptides presented by MHC class I, the amount of peptides 

isolated was seemingly too little to detect phosphopeptides after enrichment. 

Therefore, we analyzed MHC class II bound peptides extracted from two cell lines, a 

human EBV-transformed B-LCL (JY: HLA-DR4, -DR6) and a human melanoma cell 

line (MaMel-8a: HLA-DRB1*01), for presence of phosphopeptides.  

We detected 57 phosphopeptides in the LC-MS/MS analysis of JY, and 48 in the 

analysis of MaMel-8a (data not shown); identification of sequences was possible for 27 

and 20 phosphopeptides, respectively (Table 4.3, Table 4.4). As typical for MHC class 

II ligands, most peptides were found in differing length variants, i.e., peptides can be 

grouped to seven ligands discovered from JY and ten from MaMal-8a (denoted as such 

in the following); one ligand was found in both analyses. We found peptide variants 

containing one, two or three phosphorylations. In the majority of peptides serine 

residues were phosphorylated; only one ligand carried the phosphorylation at a 

threonine residue. Nine out of 16 ligands were derived from transmembrane proteins. 

The source proteins of the other seven ligands were known to be located either in the 

cytoplasm and/or the nucleus. In contrast to the phosphorylation sites of the identified 

MHC class I ligands described above, the phosphorylation sites of the MHC class II 

ligands were mostly unknown: we newly defined twelve phosphorylation sites, four of 

which were the first phosphorylation sites described for the respective source proteins 

at all (pS35-CD20, pS624- and pS629-Frizzled 6, and pS414-Actin-related protein 10 

homolog). Strikingly, the majority of the newly described phosphorylation sites were 

contained in transmembrane proteins (nine out of twelve), whereas most of the 

known phosphorylation sites were contained in soluble proteins (four out of seven).  
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Table 4.3 Phosphorylated HLA class II ligands presented by the EBV-transformed B-LCL JY 

Peptide a Gene GeneID Position Phosphosites Protein location/function (phosphosite location) 
    GpSpSLKILSKGKRGG CXCR4 chemokine (C-X-C motif) receptor 4 7852 323-336 (352) pS324, pS 325 plasmamembrane receptor (cytoplasmic) 
    GpSpSLKILSKGKRGGH   323-337 (352) pS324, pS 325  
    GpSpSLKILSKGKRGGHS   323-338 (352) pS324, pS 325  
    GpSpSLKILSKGKRGGHSpS   323-339 (352) pS324, pS 325, pS 339  
  RGpSpSLKILSKGKRGGHS   322-338 (352) pS324, pS 325  
SRGpSpSLKILSKGKRGGHS   321-338 (352) pS324, pS 325  
    GSpSLKILSKGKRGGHS   323-338 (352) pS 325  

  GPKPLFRRMpSSLVG MS4A1 (CD20) membrane-spanning 4-domains, subfamily A, member 1 931 26-39 (297) pS 35 plasmamembrane receptor (cytoplasmic) 
  GPKPLFRRMpSSLVGP   26-40 (297) pS 35  
  GPKPLFRRMpSSLVGPT   26-41 (297) pS 35  
  GPKPLFRRMpSSLVGPTQ   26-42 (297) pS 35  
SGPKPLFRRMpSSLVGPTQ   25-42 (297) pS 35  

    pSPTIEAQGTSPAHDN LRMP (JAW1) lymphoid-restricted membrane protein 4033 75-89 (499) pS 75 ER transmembrane (cytoplasmic) 
    pSPTIEAQGTSPAHDNI   75-90 (499) pS 75  
    pSPTIEAQGTSPAHDNIA   75-91 (499) pS 75  
  ApSPTIEAQGTSPAHD   74-88 (499) pS 75  
  ApSPTIEAQGTSPAHDN   74-89 (499) pS 75  
  ApSPTIEAQGTSPAHDNI   74-90 (499) pS 75  
  ApSPTIEAQGTSPAHDNIA   74-91 (499) pS 75  
SApSPTIEAQGTSPAHDN   73-89 (499) pS 75  

    KSVKALSSLHGDDQDpS IGF2R insulin-like growth factor 2 receptor 3482 2394-2409 (2491) pS 2409 lysosomal transmembrane receptor (cytoplasmic) 
TTKSVKALSSLHGDDQDpS   2392-2409 (2491) pS 2409  

pSKQDIRGTKTEQSTIG KIAA1109 84162 1682-1697 (5500) pS 1682 transmembrane 

      pSNVTASPTAPACPSDKPA TNIP1 TNFAIP3 interacting protein 1 10318 94-111 (636) pS 92 cytoplasm, nucleus 
    DpSNVTASPTAPACPSDKPA   93-111 (636) pS 92  
GKDpSNVTASPTAPACPSDKPA   91-111 (636) pS 92  

FDKHTLGDpSDNES FTH1 ferritin, heavy polypeptide 1 2495 171-183 (183) pS 179 cytoplasm 
 

a Underlined residues indicate known phosphosites (www.phosphosite.org).
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Table 4.4 Phosphorylated HLA class II ligands presented by the melanoma cell line MaMel-8a 

Peptide a Gene GeneID Position Phosphosites Protein location/function (phosphosite location) 
      ASISRLpSGEQVDG FZD6 frizzled homolog 6 (Drosophila) 8323 623-635 (706) pS 629 plasmamembrane receptor (cytoplasmic)  
      ASISRLpSGEQVDGK   623-636 (706) pS 629  
      ASISRLpSGEQVDGKG   623-637 (706) pS 629  
      ApSISRLpSGEQVDGKG   623-637 (706) pS 629, pS 624  
SPAASISRLpSGEQVDGKG   620-637 (706) pS 629  
SPAApSISRLSGEQVDGKG   620-637 (706) pS 624  

KYpSPGKLRGN MXRA7 matrix-remodelling associated 7 439921 142-151 (204) pS 144 transmembrane 

YDLMDNKDKGSpS FAM62A extended-synaptotagmin-1 23344 1093-1104 (1104) pS 1104 intracellular membranes (cytoplasmic) 

VSKVMIGpSPKKV TNS3 tensin 3 (tumor endothelial marker 6) 64759 1434-1445 (1445) pS 1441 putative transmembrane 
     VMIGpSPKKV   1437-1445 (1445) pS 1441  

FSDpSEEEGEGGRKNSSN HDAC1 histone deacetylase 1  3065 420-436 (482) pS 423 nucleus 
FSDpSEEEGEGGRKN   420-433 (482) pS 423  

YTLPRQATPGVPAQQpSPSM AOF2 (LSD1) amine oxidase (flavin containing) domain 2  23028 834-852 (852) pS 849 nucleus 

FDVGKTQPPLMKRAFpSTEK ACTR10 actin-related protein 10 homolog (S. cerevisiae)  55860 399-417 (417) pS 414 cytoplasm  

TPSQHSHSIQHpSPERSGSGSVGN BCLAF1 BCL2-associated transcription factor 1 9774 257-279 (920) pS 268 cytoplasm, nucleus 

        IRSRpTPSASNDDQQE SGTA small glutamine-rich tetratricopeptide repeat (TPR)-containing, alpha 6449 299-313 (313) pT 303 cytoplasm 
  RSQIRSRpTPSASNDDQQE   296-313 (313) pT 303  
LRSQIRSRpTPSASNDDQQE   295-313 (313) pT 303  

  FDKHTLGDpSDNES FTH1 ferritin, heavy polypeptide 1 2495 171-183 (183) pS 179 cytoplasm 
LFDKHTLGDpSDNES   170-183 (183) pS 179 

 

a Underlined residues indicate known phosphosites (www.phosphosite.org). 
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4.1.4  Discussion 

Altered cellular signaling is often associated with malignant transformation (136, 178, 

179). Since signaling pathways are regulated to a large part by phosphorylation, the 

phosphorylation status of several cellular proteins differs between normal and 

malignant cells (136, 179). In addition, increased turnover of individual proteins is also 

marked by an increase of phosphorylation, since phosphorylation may target a protein 

for ubiquitinylation and thus degradation by the proteasome (20). Phosphorylated 

MHC class I ligands, which are derived mainly from cytoplasmic proteins, have been 

shown to exist, and the phosphorylation has been demonstrated to be due to 

differential phosphorylation of the corresponding source protein (176). MHC ligands 

containing phosphorylations which are specifically relevant for the proliferation of 

tumor cells represent potential targets for T cell-based cancer immunotherapy. To 

identify such ligands, in former studies, the repertoires of phosphorylated MHC class I 

ligands presented by tumor cell lines were compared to the repertoire presented by an 

EBV-transformed B-LCL (176). However, tumor cell lines bear the risk of presenting 

MHC ligands which contain phosphorylations reflecting in vitro conditions. With 

regard to application in cancer immunotherapy, it is crucial to investigate which 

phosphopeptides are actually presented in vivo. Therefore, we advanced a 

phosphopeptide enrichment technique for identifying phosphorylated MHC class I 

ligands from a patient’s RCC tissue. In order to assess whether a phosphopeptide may 

be cancer-related, we equivalently analyzed the phosphorylated peptides presented by 

the corresponding healthy renal tissue. Unexpectedly, nine out of eleven 

phosphopeptides identified were presented both by the tumor and by the healthy 

tissue. This suggests that these ligands might rather be typical for kidney tissue than 

associated to malignant transformation. Alternatively, the healthy tissue might have 

been influenced by the same growth factors as the tumor tissue, since both tissues 

were derived from the same kidney. Only two peptides were specific for either tissue. 

One phosphorylated MHC ligand was exclusively found presented by the tumor tissue: 

a peptide derived from the protein butyrate response factor 1 (Brf1): pS203-Brf1195-204. 

Interestingly, another phosphorylated MHC ligand derived from Brf1 was found in 

both tissues, tumor and healthy: pS54-Brf149-57. We cannot exclude that the peptide 

pS203-Brf1195-204 was present below detection limit in the healthy tissue. Yet, according 
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to literature phosphorylation of pS203 and pS54 may be regulated by two distinct 

pathways: it has been shown that phosphorylation is carried out in vivo by PKB/Akt 

(pS203) (369) and in vitro by MK2 (both pS203 and pS54) (370). Unphosphorylated Brf1 

regulates mRNA levels by targeting transcripts containing AU-rich elements (AREs) 

into the decay pathway (291). AREs containing mRNAs include highly regulated 

mRNAs, in particular transcripts from genes expressed upon stimuli by growth factors, 

such as cell-cycle genes and oncogenes (372-376). It has been demonstrated that 

PKB/Akt mediated phosphorylation of S203 and S92 inhibits Brf1 from promoting its 

regulatory mRNA decay activity (369). MK2-mediated phosphorylation of S203, S92 and 

S54 inhibits mRNA decay activity as well (370). The fact that we found the MHC ligand 

containing pS203 exclusively in the tumor tissue points into the direction that PKB/Akt 

activity might be upregulated specifically in the tumor tissue, whereas MK2 activity 

seems to be equal in both tissues. PKB/Akt regulates many key effector molecules 

involved in cell survival (377) and its activity has been shown to be frequently 

increased in RCC (378). The kinase is regulated by the PI3K signaling pathway, a 

pathway suppressed by tumor suppressor protein PTEN, which is often mutated or 

deleted in tumors, including RCC (379-383). Increased mRNA stability has been 

implicated in malignancy (reviewed in (376, 384, 385)). Thus, we conclude that the 

Brf1-derived phosphopeptide pS203-Brf1195-204 might represent an MHC ligand 

reflecting a cellular phenomenon connected to tumor progression. This finding 

demonstrates that the identification of phosphorylated MHC class I ligands from 

tumor tissue compared to healthy tissue appears to be a valuable strategy to identify 

tumor-associated MHC ligands for immunotherapy. 

Surprisingly, we did not find any of the phosphorylated HLA-A*02 ligands, which 

were identified by Zarling et al. on three tumor cell lines (melanoma and ovarian 

carcinoma) but not on EBV-transformed B-LCL (176). A reason for the lack of overlap 

might be that we used a different phosphopeptide enrichment technique and 

chemically modified the peptides in a different manner before analysis. However, we 

found several of these phosphopeptides presented by an HLA-A*02 expressing RCC 

cell line (Table 4.5, peptides were modified chemically as well). This rather indicates 

that the peptides might have been below detection limit in the analysis of the RCC 

tissue. Yet, we detected the one HLA-A*02 ligand, which we identified from the renal 

tissue (pS5-ID22-10), also in the analysis of the RCC cell line with similar signal 

intensity. The most probable explanation for the lack of overlap is that we examined 
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primary tumor tissue instead of tumor cell lines. The repertoires of phosphorylated 

MHC ligands seem to differ less between tumor cell lines cultured in vitro than to 

tumor tissue in vivo. This observation emphasizes the need to analyze actual tumor 

tissue rather than tumor cell lines in order to define tumor-associated 

phosphopeptides for immunotherapy. 
 

Table 4.5 Phosphorylated HLA-A*02 ligands presented by the RCC cell line RCC68 

Peptidea Gene (GeneID) Position Phosphosite
VMIGpSPKKV TNS3 tensin 3 (64759) 1437-1445 (1445) pS 1441 
TLApSPSVFKST C13orf34 chromosome 13 ORF 34 (79866) 38-48 (559) pS 41 
AVVpSPPALHNA BRD4 bromodomain containing 4 (full length transcript variant) (23476) 855-865 (1362) pS 858 
RQIpSQDVKL AMPD2 adenosine monophosphate deaminase 2 (isoform L) (271) 165-173 (879) pS 168 
RLLpSPLSSA RAVER1 ribonucleoprotein, PTB-binding 1 (125950) 581-589 (756) pS 584 
RQDpSTPGKVFL  NR2C1 nuclear receptor subfamily 2, group C, member 1 (7181) 61-71 (467) pS 64 
RTFSPpTYGL DMN desmuslin (23336) 426-434 (1253) pT 31 
SMTRpSPPRV SFRS2B splicing factor, arginine/serine-rich 2B (10929) 248-256 (282) pS 52 
 

a Underlined residues indicate known phosphosites (www.phosphosite.org). 

 

The majority of phosphorylated MHC class I ligands identified were presented by 

HLA-B*07, while only one HLA ligand each was found HLA-A*02-, A*24- and B*35-

restricted (Table 4.2). This bias might be due to the fact that basic amino acids at the 

N-terminus (applicable for eight out of eleven phosphopeptides identified) seem to be 

favorable for the fragmentation and detection of phosphopeptides by ESI-MS and that 

N-terminal arginine or lysine residues are found more frequently among HLA-B*07 

ligands than among ligands of other HLA alleles (see peptide motifs at 

www.syfpeithi.de). This suggests that some combinations of HLA alleles might be 

more beneficial for the identification of tumor-associated phosphopeptides from a 

patient’s tumor tissue than others.  

Proteins which are normally not degraded by the MHC class I but the MHC class II 

antigen processing pathway are membrane proteins (386). This class of proteins 

includes plasmamembrane receptors which play a major role in cellular signaling and 

are frequently phosphorylated upon stimulation. Presented on the cell surface by 

MHC class II molecules, phosphorylated peptides derived from such receptors might 

be of similar relevance for cancer immunotherapy as MHC class I phosphopeptides,  

since anti-tumor immunity is dependent not only on CD8+ T cells but also on CD4+ T 

cells (362-367). Although MHC class II molecules are normally only expressed by cells 

of the immune system, tumors have been shown to express MHC class II molecules as 

well (171, 387). Former studies pointed into the direction that phosphorylated MHC 
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class II ligands do not exist (196). In this study, we could show the contrary. Using the 

TiO2-microcentrifugation columns, we enriched and identified MHC class II 

phosphopeptides from both an EBV-transformed B-LCL and a melanoma cell line.  In 

summary, we identified 47 peptides, which were partly length variants of the same 

core ligand and contained up to three phosphorylations, mostly of serine residues. 

Twelve out of 19 phosphorylation sites identified were unknown; of three proteins we 

discovered the first phosphorylation sites at all. As expected, the majority of ligands 

were derived from transmembrane proteins and most of the novel phosphorylation 

sites are contained in these ligands. On the other hand, most known phosphorylation 

sites were contained in soluble proteins. Thus, the analysis of phosphorylated MHC 

class II ligands represents a method to identify novel phosphorylation sites in 

particular of transmembrane proteins, which seem to be undiscovered to a higher 

extent than those of soluble proteins. 

Several of the MHC class II ligands identified were derived from receptors which play 

a significant role in cellular signaling: Chemokine receptor 4, CD20, and Insulin-like 

growth factor 2 receptor (B-LCL JY); Frizzled 6 (melanoma cell line MaMel-8a). 

Phosphorylations contained in these ligands were located at the cytoplasmic part of 

the receptors. Thus, a function of these phosphorylations in signaling is likely. The 

two novel phosphorylation sites found within the ligand derived from the receptor 

Frizzled 6 are particularly noteworthy; they are the first phosphorylation sites 

identified for this protein. Frizzled 6 is a member of the Frizzled familiy of 7-

transmembrane-domain-receptors, which bind secreted Wnt proteins (388, 389). The 

Wnt signaling pathways are involved in the regulation of tissue and cell polarity, 

embryonic development, and the regulation of proliferation (390). Inappropriate 

activation of the Wnt signal transduction pathway plays a role in a variety of human 

cancers. The tumor suppressor protein APC (Adenomatous polyposis coli), a negative 

regulator for Wnt signaling, has been shown to be inactivated in most colon cancers 

(391-393). The majority of Frizzled receptors are coupled to the β-catenin canonical 

signaling pathway, which leads to the activation of Dishevelled proteins (Dvl), 

inhibition of GSK-3 kinase, nuclear accumulation of β-catenin and activation of Wnt 

target genes (390); yet, transduction of signals by Frizzled receptors is largely 

unknown (394). In contrast, Frizzled 6 has been shown to abrogate Wnt signaling in a 

ligand-dependent manner by inhibiting the ability of β-catenin to activate 

transcription of Wnt target genes (395). Accordingly, Frizzled 6 has been suggested as 
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a tumor suppressor protein. Cytoplasmic C-terminal phosphorylation, as found in this 

study within the Frizzled 6-derived MHC class II ligand of a melanoma cell line might 

possibly inactivate the receptor and promote its internalization and degradation with 

the consequence of increased expression of β-catenin target genes. This hypothesis 

would be consistent with previous observations that Frizzleds transduce signals 

through G-proteins (396-398) and that phosphorylation of the C-terminus by G-

protein-coupled receptor-associated protein kinases (GRKs) is associated with 

attenuation of signaling, receptor internalization, and protein turnover (399). In any 

case, knowledge of the first two phosphorylation sites within the C-terminus of 

Frizzled 6 will likely advance investigation of the Wnt/Frizzled/β-catenin signaling 

pathways.  

Similarly, within the MHC class II ligands identified from a B-LCL, we have found 

two additional phosphorylation sites and confirmed the only one known of the 

chemokine (C-X-C motif) receptor 4 (CXCR4), a G-protein coupled recepetor, which 

is internalized upon ligand-dependent phosphorylation (400). All three 

phosphorylation sites identified in the MHC class II ligand (pS324, pS325, pS339) and 

phosphorylation of S338 have been proposed to be critical for internalization of the 

receptor (400). We demonstrate that internalized CXCR4 is indeed phosphorylated at 

S324, S325 and S339 as well as degraded and presented on MHC class II. S338 was not found 

phosphorylated within the MHC class II ligands and one ligand lacking 

phosphorylation of S324 was detected, suggesting that phosphorylation of these two 

serines might not be essential for internalization and degradation. CXCR4 is expressed 

in many cancers where it may regulate tumor cell growth and migration and therefore 

might be a target in cancer treatment (401, 402). CXCR4 has further been shown to act 

as (co-)receptor for the entry of some HIV strains and to promote Env-mediated fusion 

of the virus and thus has been proposed as target for antiviral drug development (403-

405).  

Also worth mentioning, we have found the first phosphorylation site within the 

receptor CD20, a B-cell antigen located in proximity to MHC class II molecules, 

against which therapeutical antibodies are directed in treatment of B-cell non-

Hodgkin’s lymphoma and autoimmune disorders (406-409). In summary, our results 

show that analysis of phosphorylated MHC class II ligands represents a convenient 

way to increase knowledge of natural phosphorylation sites within significant 

plasmamembrane receptors. 
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One crucial question remains to be answered in the next step: can all phosphorylated 

ligands be distinguished from their unphosphorylated counterparts by CD4+ T cells? 

Discrimination has been shown previously (368), however, it seems possible that 

recognition of the phosphorylation is dependent on its location within an MHC class 

II ligand: a phosphorylation in the central part of a peptide and thereby within the 

binding groove of the MHC class II molecule might be recognized rather than a 

phosphorylation located at the peptide’s termini. Among the peptides identified were 

both cases. The answer to this question will determine the relevance of individual 

phosphorylated MHC class II ligands for application in cancer immunotherapy. 
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5 Summary / Zusammenfassung 
 

Human leukocyte antigens (HLA) present protein-derived peptides to T lymphocytes. 
The knowledge of HLA ligands presented by certain types of cells (e.g., virus infected 
or cancer cells) allows for stating against which molecular compounds, so called 
epitopes, a T cell-based immune response may be directed. 
    This thesis concentrated on the selective indentification of viral and phosphorylated 
HLA ligands by HPLC-coupled mass spectrometry. Peptides of viral origin are 
presented on HLA class I by virus-infected cells to CD8+ cytotoxic T cells (CTL), 
which kill the infected cell upon recognition. Phosphorylated HLA class I ligands have 
raised hope to play a role in the immune response to cancer, since cellular signaling, 
which is often altered in malignant cells, includes phosphorylation of proteins. 
Identification of viral or phosphorylated HLA ligands is challenging due to their low 
frequency and potential low abundance compared to that of self-ligands and non-
phosphorylated peptides.  
     A novel approach using differential stable isotope labeling of HLA ligands purified 
from infected and mock-infected cells was applied to identify naturally processed viral 
HLA ligands. The virus analyzed was modified vaccinia virus Ankara (MVA), which is 
currently being tested as recombinant and smallpox vaccine. 15 viral peptides of 
which twelve were presented by HLA-A*0201 and three by HLA-B*0702 were found. 
Nine peptides have not been described as CTL epitopes so far. All HLA-A*0201 ligands 
were actual memory CTL epitopes in MVA vaccinees. Eight of these epitopes were 
novel. All ligands were expressed early during the viral life cycle, although late 
protein synthesis was not impaired. Importantly, early viral HLA ligands mediated 
protection against a lethal respiratory challenge in mice while late viral peptides 
previously described as CTL epitopes were inefficient. Thus, knowledge of the 
peptides which are actually presented by infected cells is crucial for optimizing the 
monitoring of protective immune responses and for the development of effective 
peptide-based vaccines.  
     In addition, this differential analyis revealed two human self-HLA ligands which 
were highly upregulated in the MVA-infected cells, suggesting either specifically 
induced synthesis and/or degradation of the source proteins upon infection. Both 
ligands were derived from cytoskeletal proteins. Unusually high presentation of self-
ligands in association with infection might potentially induce self-reactive T cells 
playing a role in autoimmune responses observed during vaccinia virus vaccination. 
     By developing TiO2-based microcentrifugation columns, the first phosphorylated 
HLA class I ligands presented by tumor tissue (renal cell carcinoma) were identified. 
By comparison to the ligands of healthy renal tissue one phosphorylated Brf1-derived 
HLA ligand was found as potentially tumor-associated. Moreover, the first natural 
phosphorylated HLA class II ligands were discovered. They revealed several novel 
phosphorylation sites of transmembrane receptors playing a significant role in 
malignant signaling, such as Frizzled 6, CXCR4 and CD20. 
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Zusammenfassung: 
Humane Leukocyten-Antigene (HLA) präsentieren aus Proteinen stammende Peptide 
den T-Lymphocyten. Die Kenntnis von HLA-Liganden, die von bestimmten Zelltypen 
(z.B. Virus-infizierten oder Krebszellen) präsentiert werden, ermöglicht es Aussagen 
zu treffen, gegen welche molekularen Komponenten, so genannte Epitope, eine T-
Zell-Antwort gerichtet sein kann.   
    Fokus dieser Arbeit war die gezielte Identifizierung von viralen und 
phosphorylierten HLA-Liganden mittels HPLC-gekoppelter Massenspektrometrie. 
Peptide viralen Ursprungs werden von HLA Klasse I auf virus-infizierten Zellen den 
CD8+ cytotoxischen T-Zellen (CTL) präsentiert, die die infizierte Zelle nach 
Erkennung abtöten. Bezüglich phosphorylierten HLA Klasse I-Liganden besteht die 
Hoffnung, dass sie in der Immunantwort gegen Krebs eine Rolle spielen, da die 
zelluläre Signalweiterleitung, die in malignen Zellen oft gestört ist, Phosphorylierung 
von Proteinen umfasst. Die Identifizierung von viralen oder phosphorylierten HLA-
Liganden ist dadurch erschwert, dass diese im Vergleich zu Liganden aus zelleigenen 
Proteinen und nicht-phosphorylierten Liganden in geringer Anzahl und 
möglicherweise auch Menge auftreten.  
    Zur Identifizierung von natürlich prozessierten viralen HLA-Liganden wurde ein 
neuer Ansatz verfolgt, der auf der differenziellen Markierung von HLA-Liganden aus 
infizierten und nicht-infizierten Zellen mit stabilen Isotopen beruht. Bei dem 
untersuchten Virus handelte es sich um das Modified Vaccinia Virus Ankara (MVA), 
das zurzeit als rekombinanter und Pocken-Impfstoff getestet wird. Es wurden 15 virale 
Peptide identifiziert, davon wurden zwölf auf HLA-A*0201 und drei auf HLA-B*0702 
präsentiert. Neun dieser Peptide wurden zuvor noch nicht als T-Zell-Epitope 
beschrieben. Alle HLA-A*0201-Liganden erwiesen sich tatsächlich als CTL-Epitope in 
MVA-Impflingen. Acht dieser Epitope waren neu. Alle Liganden stammten aus 
Proteinen, die früh im viralen Lebenszyklus gebildet werden, und dies obwohl die 
späte Proteinsynthese nicht gehemmt war. Eine wichtige Beobachtung war, dass 
Mäuse durch Impfung mit frühen viralen HLA-Liganden gegenüber einer letalen 
eingeatmeten Viruslast geschützt waren, während späte Peptide, die zuvor als CTL-
Epitope beschrieben worden waren, diesen Schutz nicht boten. Um den Verlauf von 
schützenden Immunantworten optimal zu überwachen und um effektive Peptid-
basierte Impfstoffe zu entwickeln, ist es also unverzichtbar, die Peptide, die tatsächlich 
von infizierten Zellen präsentiert werden, zu kennen.  
    Durch diese differenzielle Analyse wurden zusätzlich zwei humane HLA-Liganden 
gefunden, die auf den MVA-infizierten Zellen stark überpräsentiert waren, was darauf 
hinweist, dass die Proteine, aus denen diese HLA-Liganden stammten, durch die 
Infektion hervorgerufen verstärkt synthetisiert und/oder abgebaut wurden. Beide 
Liganden stammten aus Proteinen des Cytoskeletts. Ungewöhnlich starke Präsentation 
von Liganden körpereigener Proteine in Verbindung mit einer Infektion könnte 
selbst-reaktive T-Zellen aktivieren, die eine Rolle in den Autoimmunreaktionen 
spielen könnten, die bei Impfungen mit dem Vaccinia Virus aufgetreten sind.  
    Mittels selbst entwickelter TiO2-Mikrozentrifugationssäulchen gelang es, die ersten 
phosphorylierten HLA Klasse I-Liganden aus Tumorgewebe (des Nierenzellcarcinoms) 
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zu identifizieren. Durch den Vergleich mit Liganden, die aus gesundem Nierengewebe 
identifiziert wurden, wurde ein phosphorylierter HLA-Ligand aus dem Protein Brf1 
gefunden, der möglicherweise in Verbindung mit dem Tumorwachstum stehen 
könnte. Außerdem wurden die ersten endogenen phosphorylierten HLA Klasse II-
Liganden entdeckt. Sie enthielten einige bisher nicht bekannte Phosphorylierungs-
stellen von Transmembranrezeptoren, die eine bedeutende Rolle in der Signal-
transduktion von Krebszellen spielen, wie zum Beispiel Firzzled 6, CXCR4 und CD20. 
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