
Algorithms for the Calculation
and Visualisation of

Phylogenetic Networks

Dissertation

der Fakultät für Informations- und Kognitionswissenschaften
der Eberhard-Karls-Universität Tübingen

zur Erlangung des Grades eines

Doktors der Naturwissenschaften
(Dr. rer. nat.)

vorgelegt von

Dipl.-Math. Tobias Klöpper

aus Bremen

Tübingen

2008

Tag der mündlichen Qualifikation: 02.05.2008

Dekan: Prof. Dr. M. Diehl

1. Berichterstatter: Prof. Dr. D. H. Huson

2. Berichterstatter: Prof. Dr. D. Bryant

Erklärung

Hiermit erkläre ich, dass ich diese Schrift selbständig und nur mit den ange-
gebenen Hilfsmitteln angefertigt habe und dass alle Stellen, die im Wortlaut
oder dem Sinne nach anderen Werken entnommen sind, durch Angaben der
Quellen kenntlich gemacht sind.

Tübingen, Januar 2008 Tobias Klöpper

iv

Zusammenfassung

Die Evolutionstheorie beschreibt die Entwicklung der Arten als einen stetigen
Prozess der Anpassung an die Umwelt. Im klassischen Modell entwickelt sich
eine Spezies durch Mutationen und Speziation weiter. Diese Ereignisse lassen
sich durch phylogenetische Bäume darstellen. Wird das evolutionäre Mod-
ell jedoch um Ereignisse, wie zum Beispiel Rekombination, erweitert kann
dieses nicht mehr anhand eines Baumes dargestellt werden. Phylogenetis-
che Netzwerke sind eine Klasse von Graphen, welche entwickelt wurden, um
diese zusätzlichen Ereignisse zu modellieren. Diese Netzwerke können in zwei
Klassen unterteilt werden: die expliziten Netzwerke, welche die evolutionären
Abläufe direkt modellieren und die impliziten Netzwerke, welche nicht di-
rekt die evolutionären Abläufe modellieren, sondern die von den Abläufen
erzeugten Signale.

Gegenstand dieser Arbeit ist die Entwicklung von neuen Algorithmen
zur Rekonstruktion und Visualisierung von expliziten phylogenetischen Netz-
werken. Dabei wird eine Lösung bei der Rekonstruktion als optimal angese-
hen, wenn sie den evolutionären Aufwand minimiert. Ein Problem, welches
bei der Rekonstruktion dieser Netzwerke auftritt, ist die hohe Anzahl an
möglichen Graphen, von welchen gewählt werden kann, um eine optimale
Lösung zu erhalten, und daß es keine Möglichkeit gibt, diese Wahl effizient
zu gestalten. Ein Weg die Anzahl von Graphen, welche betrachtet wer-
den müssen dennoch zu reduzieren, ist die Zerlegung des Problems in kleine
voneinander unabhängige Einheiten.

Durch eine intelligente Reduzierung der betrachteten Graphenklasse, kon-
nte gezeigt werden, daß eine eindeutige Zerlegung des Problems in unabhän-
gige Teilprobleme möglich ist. Desweiteren wurde ein effizienter Algorithmus
entwickelt, welcher die Berechnung der optimalen Lösungen für die unabhän-
gigen Teilprobleme ermöglicht.

Außerdem wurde ein Algorithmus entwickelt, welcher es erlaubt, explizite
phylogenetische Netzwerke zu zeichnen. Die Entwicklung des Algorithmus
wurde so gestaltet, daß vorhandene Algorithmen zur Visualisierung von phy-
logenetischen Bäumen erweitert werden. Hierzu wird eine Modifizierung des
phylogenetischen Netzwerks durchgeführt und eine Optimierung zur Min-
imierung sich überschneidener Kanten entwickelt.

Im weiteren Teil der Arbeit werden zwei Softwareprojekte vorgestellt,
welche zum Ziel haben, die Erreichbarkeit von neuen Methoden und die
Aussagekraft von großen phylogenetischen Graphen zu verbessern. In dem
ersten Projekt wurde ein Managementsystem für Plugins entwickelt, welches
erlaubt, eine installierte Software nachträglich mit neuen Methoden (Plugins)

vi

zu erweitern. In dem zweiten Projekt wurde eine Software entwickelt, welche
phylogenetische Graphen mit zusätzlichen Informationen zu annotieren er-
laubt.

Abstract

Evolution describes the development of species as a steady adaption to the
environment. In the classical model, a species develops by mutation and
speciation events, which can be modelled using phylogenetic trees. How-
ever, if the evolutionary model is generalized by integrating events such as
recombination, a tree can no longer describe the process. Phylogenetic net-
works are a class of graphs that have been developed to describe these more
complex processes. These networks can be divided into two groups: those
networks that model evolutionary events explicitly and those networks that
do so implicitly.

In this thesis, we focus on the development of new algorithms for the
reconstruction and visualization of explicit phylogenetic networks. A recon-
struction is called optimal if it minimizes the evolutionary costs. The large
number of possible graphs from which one can choose an optimal solution
presents one of the hardest problems in the reconstruction, since no possibil-
ity exists to choose the right one efficiently. One possible way to reduce the
number of graphs one has to choose from, is to break down the problem into
smaller independent sub-problems.

By carefully reducing the class of phylogenetic networks under consider-
ation, we were able to show that indeed the main problem can be broken
up into smaller parts. Furthermore, we developed an efficient algorithm for
calculating all optimal solutions for each independent sub-problem.

In addition, we developed an algorithm that is capable of drawing explicit
phylogenetic networks. The algorithm was designed in such a way that the
algorithms available for drawing phylogenetic trees can be generalized to
draw explicit phylogenetic networks. To do so, we modified the explicit
phylogenetic network and extended the tree drawing algorithm by adding an
optimization step, which minimizes the number of crossing edges.

Furthermore, we present two software projects which aim at extending
the availability of new phylogenetic methods within SplitsTree and increasing
the useablility of large phylogenetic graphs. In the first project, we imple-
mented a management system for plugins, which allows the application to
dynamically integrate new methods that are stored on a database in the
Internet. In the second project, we developed software that allows for the
annotation of phylogenetic graphs within SplitsTree.

viii

Acknowledgments

I am tremendously thankful to Daniel Huson, who has given me the chance
to write this PhD on the very interesting field of phylogenetic networks.
He not only made this thesis possible, but also provided a perfect working
environment in every respect. At all times, Daniel encouraged and supported
my scientific career. Whenever I got lost in my research, he listened to my
problems and provided clues to bring me closer to the solution. Furthermore,
he supported my interest in scientific projects not directly related to my thesis
and for this, I am extremely thankful. I am also indebted to David Bryant
for the co-supervision of this thesis.

In addition to my two supervisors, I am very thankful to Kay Nieselt, who
was the first person to introduce me to the research field of phylogenetics.

I would also like to thank all former and current staff of the department
of Algorithms in Bioinformatics - namely Marine Gaudefroy-Bergmann, Jan
Schulze, Regula Rupp, Alexander Auch, Christan Rausch, Juliane Damaris
Klein, Suparna Mitra, Olaf Delgado Friedrichs and Tobias Dezulian for a fun
and productive time together. Thereby, I am especially indebted to Daniel
Richter for sharing an office with me, and his good sense of humor. Besides
the many persons I have met at the Institute, I would like to thank C. Nickias
Kienle, Georg Zeller and Andreas Schmidt for long talks about football, even
longer nights playing poker and all the fruitful scientific discussions. Fur-
thermore, I thank Dirk Fasshauer, Anand Radhakrishnan and Stefan Pabst
for their interest in my scientific work.

I am especially attached to my family, who have supported me my whole
life and who have given me the possibility and strength to walk this road.
My whole love is devoted to my wife Katrin, who has supported me all this
years and who fills my life with joy.

Finally, I would like to thank my good luck for this great life!

x

In accordance with the standard scientific protocol, I will use the personal
pronoun “we” to indicate the reader and the writer, or (as explained in
Appendix B) my scientific collaborators and myself.

xi

Tree of Life by Ernst Häckel (1874) [Hae74]

xii

Contents

1 Introduction 1

2 Background 7
2.1 Splits and Clusters . 7
2.2 Split Networks . 9
2.3 Consensus and Z-Super Networks 10
2.4 Reticulate Networks . 11

3 Decomposing Galled Networks 19

4 Calculating Galled Networks 35
4.1 Hybridization Networks . 38
4.2 Recombination Networks . 45

5 Drawing Reticulate Networks 51
5.1 Basic Notations . 52
5.2 Drawing Reticulate Networks 52
5.3 Integration of Reticulate Networks into SplitsTree 4 58

6 A Plugin Management System for Java Software 61
6.1 The Management System . 62
6.2 Implementation Details . 65
6.3 Integration into SplitsTree 4 70

7 Annotation of Phylogenetic Graphs using Jloda 73
7.1 Integration into Jloda . 74
7.2 Implementation Details . 77
7.3 Integration of Glyphs into SplitsTree 4 83

8 Discussion 85

A Publications 89
A.1 Published Manuscripts . 89
A.2 Other Published Manuscripts 91

B Contributions 93

Literatur 95

xiv CONTENTS

Chapter 1

Introduction

The ability of the living to adapt to their environment is the focus of many
scientific studies. A classic example of an animal adapting to its environment
is the peppered moth in England. In general, peppered moths will spend the
day resting on trees or lichen. The original predominant species in England
had a light coloration similar to the coloring of the trees and lichen they
where resting on, which effectively camouflaged them against their predators
(mainly birds). During the Industrial Revolution, many species of lichen died
out and the trees were blackened by soot. Consequently, the light colored
moths became easy targets for their predators. At the same time, a second
type of peppered moth with dark coloration became the new predominant
type in England, since their coloration effectively camouflaged them against
their predators [Ket55; Ket56; Maj02].

The ability to mutate enables organisms to specifically adapt to their en-
vironment and ensures their survival. The optimization process triggered by
the adaption is generally called evolution. The fundamental properties of the
evolutionary process were first recognized and described by C. Darwin and W.
Whewell [Wal58; Dar59]. In his famous book, The Origin of Species, Darwin
introduced the basic principles of his theory of evolution, the “Struggle for
Existence” and “Natural Selection”, which are still valid today. He deduced
these principles from his studies about the variation within species. One con-
sequence of these principles is the emergence of new subspecies by speciation
and selection. Furthermore, new subspecies could develop far apart from the
original species and thus be considered an independent new species. Dar-
win also recognized that this evolutionary process could be visualized using
a directed tree structure, where nodes in the tree correspond to speciation
events and edges to adaptation (mutation) events. The first evolutionary
tree drawn by Darwin is shown in Figure 1.1. Consequently following the
idea of evolution he deduced the existence of a Tree of Life “which fills with
its dead and broken branches the crust of the earth, and covers the surface
with its ever-branching and beautiful ramifications” [Dar59].

The science of reconstructing the evolutionary history of a group of species
is called phylogeny. Phylogeny uses either morphological characters or genetic
information to model such an evolutionary history. As there is a vast amount
of genetic sequence information available today, most algorithms use these
to calculate a most likely evolutionary history.

2 Introduction

Figure 1.1: The First Phylogenetic Tree Darwin’s first sketch of an evolution-
ary tree from his First notebook on Transmutation of Species (1837). [Dar37]

The fundamental idea of Darwin, that of reconstructing a universal Tree of
Life, has been very actively researched ever since. For example, Ernst Häckel
became famous for his work on this topic, being the first to place apes closest
to humans, and also for his artistic drawing of phylogenetic trees. An exam-
ple of his drawing is shown at the beginning of this thesis. With the methods
available today, the rapid sequencing of large amount of genetic information
and the rapid assembly of whole genomes, the reconstruction of a Tree of Life
seems to become an achievable task. An important question that can be de-
duced from the information sampled so far is the question about the existence
of such an universal tree. One argument against a Tree of Life can be derived
from bacteria. Some bacteria can not only pass their genetic information to
their offsprings, but also exchange genetic information via transformation
(exogenous DNA is picked up from the environment), transduction (integra-
tion of foreign DNA through a bacteriophage) or conjugation (transfer of
DNA via direct cell contact). Furthermore, the endosymbiotic theory gives
strong evidence that the origin of the mitochondria and the plastids of eukary-
otic cells lie in the prokaryotic kingdom and that these organelles have been

3

taken inside the cells by endosymbiosis [Mer05; Sch83; SDJ04; MGL99]. The
mechanisms of some bacteria described above and the endosymbiotic events
cannot be modeled using a tree-like graph structure. In contrast, these events
point to a web-like evolutionary history and consequently, one speaks about
a Web of Life rather than a Tree of Life. An intensively lead discourse about
the validity of both theories exists; for example, see [DB07].

As mentioned above, phylogenetic relationships have traditionally been
modeled using trees. The internal vertices of a phylogenetic tree correspond
to speciation events and the edges correspond to mutation events. In this
thesis we will concentrate on a natural generalization of these graphs called
phylogenetic networks, which can model not only mutation and speciation
events but also recombination events. The work related to this thesis started
in 2004. At this point in time, the term Phylogenetic Network was used
to describe many different concepts. For example, in [GB05], Gusfield and
Bansal define a phylogenetic network as containing only nodes of indegree
zero, one or two. Splits networks [BD92; HB06] are also graphs that model
phylogenetic information in a non-treelike way, but their internal nodes do
not necessarily fulfill the requirements of a phylogenetic network as given
above.

The ambivalent use of technical terms leads to an unclear definition of
phylogenetic networks. Maybe this is one of the reasons why methods of
phylogenetic network reconstruction are not well established. One funda-
mental finding that we published very early was an overview of the different
classes of phylogenetic networks [HKLS05]. In fact, it is useful to distinguish
between two main classes: implicit phylogenetic networks that provide tools
to visualize and analyze phylogenetic signals that are incompatible with a
tree model, such as split networks [BD92; HB06], and explicit phylogenetic
networks that provide explicit scenarios of reticulate evolution, such as hy-
bridization networks [SZ00; LR04; NWL04; HKLS05; BS06], HGT networks
[HLT04] and recombination networks [Hud83; SH05; LSH05; HK07; DGS07].
An overview of different phylogenetic networks can be seen in Figure 1.2.

The overview of different types of phylogenetic networks in Figure 1.2,
reflects the structural affinity between split networks and reticulate networks
first introduced in [HKLS05]. Determining more general assertions about the
mathematical relationship of these two types of networks is an interesting
challenge. Because of the advantages both types of networks have on their
own, a deeper and more complete understanding of the relationship between
these two types of phylogenetic networks can prove beneficial and may help
these methods to become more evolved in standard phylogenetic analysis.

Structural Overview of this Thesis

In the following chapter, we introduce the foundations necessary for the sci-
entific part of this thesis. In Chapter 3, we introduce a new theorem that
proves a one-to-one correspondence between structural properties of split
networks and reticulate networks. This correspondence gives us the neces-
sary insights to introduce some computational methods, which are able to

4 Introduction

Phylogenetic Networks

Implicit Networks

Hierarchical

Networks
Splits Networks

Consensus Networks

Median Networks

Neighbour Net

Explicit Networks

Reticulate Networks

Recombination

 Networks

Ancestor Recombination

Graphs
Galled Trees

Galled Networks

Hybridisation

 Networks

Figure 1.2: Overview of Different Types of Phylogenetic Networks
The term phylogenetic network encompasses a number of different concepts,
including split networks, and reticulate networks. Phylogenetic networks can
be divided into two types, those that model the evolutionary history of the
data implicitly and those that do so explicitly. The term “phylogenetic net-
work” as it is used by Gusfield and Bansal in [GB05] corresponds to a retic-
ulate network in this graph.

calculate a reticulate network from a set of splits. These methods are in-
troduced in Chapter 4. We believe that being able to calculate an explicit
interpretation from an implicit one and vice versa is an important tool, that
can lead to an deeper understanding of phylogenetic networks. Furthermore,
these transformations allow the analysis of the underlying data by methods
from both research fields. For example, one could apply methods for filtering
split networks [HM03; HSW06] to reduce the complexity of the data or to
screen for possible false positive information. In turn, this may facilitate the
calculation of a reticulate network (an example of this approach is given in
4.6).

The first methods that we introduced for the calculation of a reticulate
network from a split network, visualized the results by modifying the drawing
of a splits graph. This approach does well for the calculations we have pub-
lished so far [HKLS05; HK05; HK07], but the results of such a modification
for more complex reticulate networks will most likely not be as satisfying.
Consequently, the visualization of reticulate networks became a problem that
needed to be solved. The result of our research on this topic is introduced
in Chapter 5. In addition to the visualization algorithm, we introduce an
extension of SplitsTree 4 [HB06], that integrates reticulate networks into the
program.

In general, SplitsTree 4 provides a framework for the calculation and
visualization of phylogenetic trees and networks. The program contains a
vast variety of phylogenetic methods such as evolutionary distance methods,
maximum likelihood distances, tree building methods, split network methods

5

and visualization algorithms. An advantage of SplitsTree 4 is that all algo-
rithms are integrated into its framework architecture via an interface-driven
class loader, making it an easy task to incorporate new methods into the
program. All methods in SplitsTree 4 implement a specific interface that
allows the program to identify plugins dynamically and to integrate them
into the framework at runtime. Unfortunately, SplitsTree 4 never provided
an application for the user which permitted an easy access to this part of
the program. To address this, we developed a system for the administration
of these plugins. In addition, our system also supports the development and
distribution of new plugins.

To visualize important information within a phylogenetic tree, one has
to add an annotation. One method to do so is the annotation of important
clades. Because of the increase of the genetic sequence information available
to the public, the taxonomic size of phylogenetic analysis increases rapidly.
The annotation of a phylogenetic tree containing hundreds or even thousands
of taxa can be very time-consuming. A tight integration of an annotation
into a phylogenetic software can help reduce the time needed. We have ex-
tended the graph library used by SplitsTree 4 to integrate the basic methods
needed for such an annotation. The extension is presented in Chapter 7.
Furthermore, we introduce an application of the extension that provides an
automatic annotation of phylogenetic trees.

6 Introduction

Chapter 2

Background

In this chapter, we introduce the basic notations and mathematical concepts
for this thesis. The first part deals mainly with split networks and their
applications. The second part has its focus on reticulate networks and intro-
duces their mathematical foundations, and also gives a basical introduction
into their history.

2.1 Splits and Clusters

A tree T = (V, E) is a connected acyclic graph with a vertex set V and an
edge set E. A vertex of degree one is called a leaf of T and the set of all
leaves is called the leaf set of T .

A rooted tree T = (V, E, ̺) is a tree (V, E) that has exactly one distin-
guished vertex called the root, denoted by ̺. A rooted tree T has a natural
ordering where v ≤ v′, if v lies on the path from the root to v′. If v ≤ v′, we
say that v is an ancestor of v′ and v′ is a descendant of v. For any edge e,
we denote α(e) to be the ancestor and β(e) to be the descendant of e.

An X−tree is an ordered pair (T, λ), where T is a tree and λ : X → V
is a map from the set of taxa X to the set of nodes V with the property
that, for each v in V of degree at most two, v ∈ λ(X). Roughly speaking,
an X−tree is a tree that is labeled on certain vertices. One special case that
we are particularly interested in is the one where all leaves of an X−tree are
labeled by an unique element of X. A rooted phylogenetic X−tree is a pair
(T, λ), where T = (V, E, ̺) is a rooted tree and λ : X → V is a bijection
from the taxon set X to the leaf set of T .

Any bipartition of X is called an X−split and if A and B are the two
subsets of the bipartition, we denote the X−split as A

B
. If the underlying set

of taxa is obvious, we omit the X and call A
B

a split (we do not distinguish
between the equivalent splits A

B
and B

A
).

Two splits s = A
B
, s′ = A′

B′
are called compatible if and only if at least one

of the intersections A∩A′, A∩B′, B∩A′ or B∩B′ is empty; otherwise, they
are called incompatible. Furthermore, a set of splits Σ is called compatible if
and only if all pairs of splits in Σ are compatible.

Let T = (V, E) be an X−tree. For an edge e in T , the split s of
e is defined by the bipartition of X that is formed by the two connected

8 Background

b6

b1b2

b3

b4

b5
b7

root

(a)

root

b5

b7
b6

b1 b2
b3

b4

(b)

Figure 2.1: Encoding Splits and Clusters The X−tree shown in (a) contains
the X−splits: { b1

b2,b3,b4,b5,b6,b7,̺
, b1,b2

b3,b4,b5,b6,b7,̺
, b1,b2,b3,b4

b5,b6,b7,̺
, b1,b2,b3,b4,b5,̺

b6,b7
, b1,b2,b5,b6,b7,̺

b3,b4
,

b1,b3,b4,b5,b6,b7,̺

b2
, b1,b2,b4,b5,b6,b7,̺

b3
, b1,b2,b3,b5,b6,b7,̺

b4
, b1,b2,b3,b4,b6,b7,̺

b5
, b1,b2,b3,b4,b5,b7,̺

b6
,

b1,b2,b3,b4,b5,b6,̺
b7

}. Rooting the X−tree at vertex ̺ results in the tree shown in (b). The
cluster encoding of this rooted tree is: { {b1, b2, b3, b4, b6, b7}, {b1, b2, b3, b4}, {b1, b2},
{b3, b4}, {b6, b7}, {b1}, {b2}, {b3}, {b4}, {b5}, {b6}, {b7}}.

components of T obtained by removing e from the graph. The set of all
splits Σ obtainable from T in this way is called the splits encoding Σ(T) of
T . An X-tree T ′ is called a refinement of an X-tree T if Σ(T) ⊆ Σ(T ′), that
is, if T ′ = T or if T can be obtained by contracting some edges of T ′.

The conceptual importance of splits in phylogeny is highlighted by the
Buneman Theorem [Bun71]:

Theorem 2.1 Let Σ be a collection of X−splits. Then, an X−tree T exists
such that Σ = Σ(T) if and only if Σ is compatible. Moreover, if such an
X−tree exists, then, up to isomorphism, T is unique.

If T is a rooted X−tree, we can define the cluster c of e to be the set of
descendant taxons i.e. the labeled vertices of the subtree below β(e). The set
of all clusters H obtainable from T in this way is called the cluster encoding
H(T) of T .

For any X−tree (T, λ) one can construct a rooted (X\x)-tree (T x, λx) by
choosing T x to be the rooted tree obtained from T by selecting λ(x) as root
and λx = λ(X\x). Following the argument in [SS03], this construction gives a
bijection between the set of X−trees and the set of rooted (X\x)−trees. For
the split encoding Σ(T) of an X−tree T and the cluster encoding H(T x) of
the constructed rooted (X\x)−tree T x, one can construct a bijection between
Σ(T) and H(T x) with the essential property that each split s = A

B
in Σ(T) is

mapped onto the cluster c in H(T x) for which A = c. The inverse function
ϕ−1 mapes each cluster c in H(T x) onto the split s = c|{X\c}.

In an analogy to splits, two clusters, c and c′ are called compatible if
and only if at least one of the three sets c ∩ c′, c\(c ∩ c′) and c′\(c ∩ c′) is
empty; otherwise, the two clusters are called incompatible. A set of clusters
H is compatible if and only if all pairs of clusters in H are compatible. A
compatible set of clusters is also called a hierarchy on X. Because of the
equivalence between a set of splits and a set of clusters for rooted trees, the
following equivalence theorem also holds:

2.2 Split Networks 9

Theorem 2.2 Let H be a collection of non-empty subsets of X. Then, a
rooted X−tree T exists such that H = H(T) if and only if H is a hierarchy
on X. Moreover, if such an X−tree exists, then, up to isomorphism, T is
unique.

For a more detailed introduction to splits and clusters, see [SS03].

2.2 Split Networks

In this section, we introduce the basic concepts of split networks, which are
used to visualize arbitrary sets of splits. Let G = (V, E) be a finite connected
graph and let C denote a set of colors. An edge coloring is a map ς : E → C
and a path p in G is called properly colored if each edge in p is colored
differently. A coloring ς is called a isometric coloring, if all shortest paths
between two vertices in G are properly colored and use the same set of
colors. A pair (G, ς) consisting of a bipartite, connected, finite, simple graph
G = (V, E) and an isometric coloring ς : E → C is called a splits graph. The
most important property of a splits graph is the following:

Theorem 2.3 Let (G = (V, E), ς : E → C) be a splits graph. For any
c ∈ C, it holds that the graph Gc obtained by deleting all edges of color
c in G consists of precisely two separate connected components, denoted by
G0

c = (V 0
c , E0

c) and G1
c = (V 1

c , E1
c)

Let Σ denote a set of X−splits. A splits graph (G = (V, E), ς : E →
C := Σ), together with a vertex labeling ν : X → V , is said to represent Σ
if for every split A

B
in Σ, the deletion of all edges colored by A

B
produces a

graph consisting of precisely two components, where one component contains
all vertices labeled by A and the other contains all vertices labeled by B. A
splits graph representing a set of splits Σ is called a split network SN(Σ).
If the splits graph of a set of splits Σ is is rooted, one can replace Σ by the
corresponding set of clusters H := ϕ(Σ), thus obtaining a split network for
a set of clusters SN(H). More details about splits graphs can be found in
[DH04].

A netted component Z(H) of a split network SN(H) is a maximal set of
vertices and edges such that any two vertices v, w ∈ Z(H) are connected by
two different vertex-disjoint paths in Z(H) (in graph-theoretic terminology,
a 2−connected component). Suppose we have a set of clusters H. The
incompatibility graph IG(H) = (V, E) of H has a vertex set V = H and
an edge set E, in which two vertices are connected if and only if they are
incompatible.

It is a simple observation that any two clusters c, c′ ∈ H are incompatible
if and only if the edges representing c and c′ are contained in the same netted
component; see [BD92]. Consequently, for a set of clusters H a one-to-one
correspondence exists between the non-trivial connected components of the
incompatibility graph IG(H) and the 2−connected components of Z(H).

10 Background

b5

b6

b7 r3
r4

b8

b9
b3b4

r2 r1

b1
b2

(a)

root

b6

b7 r3
r4

b8

b9
b3b4

r2 r1

b1
b2

(b)

b5

root

Figure 2.2: An Example of a Split Network The graph in (a) is a split
network. Figure (b) shows the removal of a bundle of four parallel edges, producing two
connected components, which represent the split b1,b2,b3,b4,b5,b8,b9,r1,r2,̺

b6,b7,r3,r4
.

2.3 Consensus and Z-Super Networks

In many situations, the joint analysis of a set of phylogenetic trees is an
important step. The problem on how to join a set of phylogenetic trees can
be solved in different ways. The solution depends on the set of phylogenetic
trees T given. In the case where all trees in T are defined on the same set
of labels, the Consensus method [HM03] can be used. The method makes
use of the Buneman Theorem and counts the number of trees in which a
given split occurs. That is, let T = {T1, . . . , Tk} be a set of trees and denote
Σ(T) = ∪T∈T Σ(T) as the set of all splits that occurs in T . The p−consensus
(p ∈ [0, 1)) of T is defined as the set of splits:

Σ(p) = {s ∈ Σ(T) : |{T ∈ T : s ∈ Σ(T)}| > pk}.

If p = 0.5, the consensus is called the majority consensus and it is easy to
show that for any majority consensus, the resulting set of splits is compatible.
Finally, the p−Consensus network Cp(T) for the set of trees T is a split
network representing all splits in Σ(p).

If the set of trees T is partial (i.e. not all trees contain the same set
of labels), the solution is not as straightforward. One method that can be
used to join sets of partial trees is the Z−closure [HDKS04]. The basic idea
of the Z−closure is to expand the set of partial splits Σ(T) until a certain
convergence is achieved. The rule that is used to expand these partial splits
is called the Z−rule and was first introduced by C. Meacham in the context
of inferring phylogenies from multi-state characters [DS04; Mea83; SS01]:

For any two splits S1 = A1

B1
∈ Σ and S2 = A2

B2
∈ Σ:

if A1 ∩A2 6= ∅, A2 ∩B1 6= ∅, B1 ∩B2 6= ∅ and A1 ∩B2 = ∅, then
replace S1 and S2 by S ′

1 = A1

B1∪B2
and S ′

2 = A1∪A2

B2
.

Repeatedly applying this rule to all splits originally contained in, or derived
from Σ(T) until the rule yields no new splits, produces an order dependent
Z-closure Σ̄′. The complete Z-closure Σ̄ is the set of all splits that occurs in
at least one order dependent Z-closure. Finally the Z-closure network Z(T)
for the set of trees T is a split network representing all full X−splits in Σ̄∗.

2.4 Reticulate Networks 11

root

b5

b7

r3

b6

r4
b8 b9 b3 b4 r2

r1 b1

b2

(a)

root

b5

b7

b6

r4

b8

b9

r3

b3 r1 b4
r2

b1

b2

(b)

root

b5

r3

b8 b9

b6
b7

r4
b1

b2

r1

b3
b4r2

(c)

root

b5

b3b4
r2

r1

b2

b1

b6b7
r3

r4
b8

b9

(d)

Figure 2.3: Consensus Network of Three Trees Figures (a), (b) and (c)
show different trees, defined on a common set of taxa. The figure (d) shows the consensus
network representing all splits in the trees.

2.4 Reticulate Networks

Reticulate networks belong to the family of explicit phylogenetic networks.
They comprise, for example, hybridization networks and ancestral recombi-
nation graphs. In the following, we will introduce the basic mathematical
concepts of reticulate networks and then give an overview on recent progress
in this research field.

Mathematical Background

Definition 2.1 Let X be a set of taxa. A rooted reticulate network N =
N(V, E, λ) on X is a connected, directed acyclic graph with vertex set V , edge
set E and vertex labeling λ : X → V , such that:

1. precisely one distinguished vertex ̺ exists, called the root,

2. every vertex n ∈ V is either a tree vertex, v ∈ VT that has exactly one
ancestor, or a reticulation vertex (also called a reticulation) r ∈ VR

that has exactly two ancestors,

3. every edge is either a tree edge leading to a vertex of indegree one, or
a reticulation edge leading to a vertex of indegree two, and

12 Background

4. the set of leaves L (vertices with no descendants) consists only of tree
vertices and is labeled by the set of taxa X, that is, λ maps X bijectively
onto L.

A reticulate network N ′ is called a refinement of a reticulate network
N , if N can be obtained from N ′ by contracting tree edges. Let N be
a reticulate network on X with k reticulation vertices r1, . . . , rk. For any
such reticulation ri, let p(ri) and q(ri) denote the two associated reticulation
edges. Furthermore, we call the vertices α(p(ri)) and α(q(ri)) the connecting
vertices (or connectors) of ri. We can obtain an X-tree from N by choosing
and removing one reticulation edge p(ri) or q(ri) for each reticulation ri. The
set of trees T (N) obtainable in this way is called the induced set of trees or
trees that can be sampled from N . Clearly, the number of different trees that
can be sampled from a network N with k reticulations is |T (N)| ≤ 2k.

It follows from these definitions that each reticulation vertex (or reticula-
tion, for short) r ∈ VR is contained in one or more cycles (in the undirected
graph corresponding to G) of the form C = (r, p(r), w1, e1, . . . , ek−1, wk, q(r),
r), with wi ∈ V and ei ∈ E \ {p(r), q(r)} for all i (Note that additionally, r
can be contained in one or more cycles that do not contain p(r) and q(r)).
Any such cycle C is called a reticulation cycle. Note that a reticulation r
possesses at most one reticulation cycle C of which the backbone (i.e. all
edges in C except p(r) and q(r)) B contains tree edges only; in this case, we
call the cycle a tree cycle and denote it by C(r).

We say that two reticulations r, r′ ∈ VR are dependent if a cycle that
contains both r and r′ exists. If no such cycle exists, then r and r′ are called
independent. Note that in this case, none of the cycles that contain r share
any edges with a cycle that contains r′. More precisely, we say that r and r′

are directly dependent if both r and r′ possess a tree cycle and their tree cycles
share at least one edge. A reticulation network is called weakly dependent if
for any dependent pair of reticulation r1, rn, a chain of reticulations r1, . . . , rn

exists such that any pair ri, ri+1 is directly dependent. We call a rooted
weakly dependent reticulation network a galled network. It follows from the
definition of a galled network that for any two tree edges et, e

′
t contained in

a common cycle C, a chain of reticulations r1, . . . , rn exists, such that et is
an element of the tree cycle of r1, e′t is an element of the tree cycle of rn and
any pair ri, ri+1 is directly dependent. A reticulation that is independent of
all other reticulations is also called a gall [GEL03] and a reticulate network
N that contains only galls is called a galled tree, which is a special type of
galled network. We say that a reticulate network N is overlapping, if every
set of dependent reticulations in N has the property that all corresponding
reticulation cycles intersect “nicely” along a common “backbone”.

Suppose that N = (V, E, λ) is a reticulate network and denote the set
of tree edges of N by ET . For any edge e define R(e) to be the set of
reticulations for which e is an element of the tree cycle, and for any set of
edges E, we define R(E) := ∪e∈ER(e). For any vertex w, let Xw be the set
of all descendant taxons of w and let XT

w be the set of all descendant taxa
of w that are reachable from w through a path not containing any of the
reticulations from R(E) where E is the set of incoming edges of w.

2.4 Reticulate Networks 13

root

b5

b6

b7
r3

r4
b8

b9
b3 b4

r2
r1

b1

b2

(a)

root

b5

b3b4
r2

r1

b2

b1

b6b7
r3

r4
b8

b9

(b)

root

b5

b6

b7
r3

r4

b8

b9

b3 b4

r2
r1

b1

b2

(c)

Figure 2.4: Example of a Reticulate Network The top row presents two
consensus networks. The first one represents the consensus of all splits trees (a) and (b) of
Figure 2.3. The second consensus network represents all splits of the three trees (a), (b)
and (c) of Figure 2.3. Both split networks are examples of an implicit representation of
horizontal transfer of genetic information within the gene trees. An explicit representation
can be seen in (c), which is a reticulate network. Interestingly, the split sets of both
consensus networks can be sampled from this reticulate network.

14 Background

Note that for a reticulation r we have XT
r = Xr, and that for any two

directly dependent reticulations r, r′, the sets Xr and Xr′ are necessarily
disjoint in a galled network. If W is an arbitrary set of vertices, let XW be
the union of all Xw, w ∈ W , and analogously, let XT

W be the union of all XT
w ,

w ∈ W .

A vertex w of N with an incoming edge e is called degenerated if Xw =
XR(e). If follows directly from this definition that all taxa descending from a
degenerated vertex e can only be reached from β(e) through a path containing
a reticulation in R(e).

The set of clusters H(e) corresponding to a tree edge e can now be defined
as {XT

w ∪ XR | R ⊆ R(e)}. We denote the union of all H(e) with e being an
edge in E as H(E). We define H(N) :=

⋃

e∈ET
H(e) and say that N induces

H if H ⊆ H(N). Note that H(N) is equal to the set of clusters ∪T∈T (N)H(T).

Sometimes we need an explicit description of a set of clusters, as we often
have sets of clusters with a constant and a variable part. For this purpose
we define H(C,V) = {C ∪ V | V ∈ V} where C is a set of taxa (the constant
taxa, that occur in all the clusters) and V is a collection of sets of taxa (the
variable parts).

Whenever we try to reconstruct a reticulate network, we are interested
in a minimal solution. Classic minimality is defined as the minimal number
of reticulations needed for the reconstruction [GEL03]. Here we will define
minimality more restrictivly.

Definition 2.2 A reticulate network N is called minimal with respect to H
if and only if N is a network with a minimal number of reticulations that
induces the clusters H, N minimizes the number of pairs of dependent reticu-
lations, and within all those networks, minimizes the number of clusters that
are sampled from edges that lie within reticulation cycles, then the number of
edges that lie within it for each tree cycle and finally, the number of edges.

For a set of clusters H induced by N , there may be clusters c that corre-
spond to more than one tree edge. To eliminate this ambiguity with respect
to the minimality of the network, we will choose one of the edges using the
following three rules: (1) if at least one of the possible edges is not contained
in any cycle we choose an edge outside of any cycle that is as far down the
network as possible; (2) otherwise, if the clusters can be sampled from non-
degenerate tree edges, we choose the edge that is as far down the network as
possible; (3) otherwise, if the clusters can only be sampled from degenerate
tree edges, we choose any one.

We denote HS(e) to the set of clusters that are sampled from e using
these two rules, hence HS(e) ⊆ H(e) and HS(E) is the union of all HS(e)
where e is an edge in E.

Since we are often not directly interested in the set H, but rather in the
fact that this set of clusters H exists such that the galled network is minimal
with respect to that set, we will suppress H and just state that the galled
network is minimal.

2.4 Reticulate Networks 15

Research History

Many analyses that use reticulate networks are based on bipartite data (bi-
nary alignments, splits etc.). For most algorithms available, the evolutionary
model, under which the binary alignments are assumed to have evolved is the
infinite site model [Kim69]. The main assumption of the model is that any
position within an alignment may only mutate once. In the case of binary
characters, this corresponds to a transition from state 0 to state 1 or vice
versa. In general, the primitive state is assumed to be 0, and if it is known,
the model only supports changes from the primitive state 0 to state 1. Even
though the infinite site model is quite restrictive, the model is still a good
approximation, even if the underlying dataset is moderately violating the
assumptions of the model. [Rog92].

One interesting question associated with reticulate networks is how to
reconstruct them, given a set of bipartite data and keeping the number of
reticulations minimal. Minimizing the number of recombination events is
motivated by the scientific principle of parsimony, since these events are
assumed to occur very rarely in evolution. The general problem can be
formulated as follows:

Problem 2.1 Parsimonious Reticulate Network Problem: Given a set of bi-
partite data A, construct a reticulate network N that supports A and contains
a minimal number of reticulations.

It has been shown that the reconstruction of a reticulate network with
a minimal number of reticulations is NP−hard in general [WZZ01; BS06],
giving rise to a number of questions that need to be addressed: Is there a
possibility of obtaining a lower and upper bound for the minimal number of
reticulations events needed for a reconstruction? How can one perfectly, or
greedily, compute a (minimal) reticulate network? How good are the results
of a reconstruction? Is there a consistent way of decomposing a phylogenetic
network into smaller independent problems?

A first lower bound for the calculation of the minimal number of reticu-
lation was introduced by Hudson and Kaplan [HK85] which we will outline
later. Other bounds have been proposed in [MG03; GH04; SH04; BB05;
LSH05; BS06].

Two sites in an alignment A of binary sequences are said to be incompat-
ible if they contain all four gametic types 0 − 0, 0 − 1, 1 − 0 and 1 − 1. If
two sites are incompatible, they must have evolved using at least one recom-
bination event. This test for incompatibility between two sites is known as
the four gamete test. If the ancestral state is known (which is, as explained
at the beginning of this section, 0 − 0), two sites are incompatible if they
contain the gametic types 0 − 1, 1 − 0 and 1 − 1.

The Hudson and Kaplan (HK) bound [HK85] calculates a lower bound
for the number of recombination events in a given alignment A of binary
characters where this alignment has evolved under the infinite sites model.
The bound is computed in two steps. The first step fills a matrix M , where
M(i, j) is 1 if the sites i and j in A are incompatible, and 0 otherwise.

16 Background

The matrix represents a set of local bounds for all pairs of sites. These lo-
cal bounds can be joined together to obtain a global bound, either using the
original algorithm introduced in the article of Hudson and Kaplan (Appendix
2 in [HK85]), or the Composite Method introduced by Myers and Griffith in
[MG03]. The Composite Method uses an integer linear programming for-
mulation of the problem, that can be solved using a dynamic programming
algorithm.

Lower bounds for the number of recombination events in a given align-
ment can be used together with a branch-and-bound approach to reconstruct
the minimal recombination history of an alignment. The algorithm of Lyn-
gsoe et.al. [LSH05] uses this approach to compute this type of a history for
a given alignment of binary sequences. The algorithm assumes that only
single crossovers have occurred and produces a single minimal history. Un-
fortunately, the program does not calculate all minimal solutions, owing to
runtime problems.

The following simpler formulation of the reconstruction problem is trac-
table and different solutions have been proposed [Mad97; NWL04; GEL03;
DGL04]:

Problem 2.2 Parsimonious Galled Tree Problem: Given a set of bipartite
data A, construct a reticulate network N that (a) contains only a minimal
number of independent reticulations and (b) generates A, if one exists.

Because of the hardness of the general reconstruction problem, reducing
the runtime for the calculation of a minimal solution is only possible by
reducing the complexity of the problem. One way to reduce the complexity
of the reconstruction problem is to break the calculation into smaller parts.
Importantly, the calculation of each small part of the reconstruction problem
must be independent of the calculation of any other part. Consequently,
finding a consistent approach to breaking up the calculation has drawn a
lot of attention [BB04; HKLS05; GB05; HK07; DGS07]. The formulation of
a general conjecture, for the decomposition of reticulate networks was first
posed by Dan Gusfield at RECOMB 2005 [GB05]:

Conjecture 2.1 For any Alignment A of binary characters, a fully-decom-
posed phylogenetic network always exists for A which has the minimum num-
ber of recombinations, out of all possible phylogenetic networks for A.

At the same conference, we were among the first to prove a special case
of this Decomposition Theorem [HKLS05]:

Theorem 2.4 [Decomposition Theorem] Let N be a reticulate network and
let H(N) be the set of all clusters that can be sampled from the network. Each
2-connected component of N contains all and only the splits contained in one
connected component of IG(H(N)).

Similar results, using different definitions, interpretations and proofs, can
be found in [BB04; GB05]. This initial formulation gave rise to an algorithm
that is able to solve the following problem for a fixed number of reticulations
efficiently:

2.4 Reticulate Networks 17

a 00000 00000

b 01000 00000

c 11000 00000

d 11100 00000

e 01010 00000

f 01011 00000

g 10111 00000

h 00000 01000

i 00000 11000

j 00000 11100

k 00000 01010

l 00000 01011

m 00000 10111

(a)

b

e

f

g

c

d

m

h

k

l

i

j

a

(b)

Figure 2.5: Counter-example for Conjecture 2.2 published in
[DGS07] The alignment in (a) generates the minimal phylogenetic network shown in
(b). Interestingly, the splits induced by the alignment generate two netted components in
the incompatibility graph of the splits. One resulting from the first five sites and the other
one from the last five sites. Nevertheless, the minimal reticulate network reconstructed
from these splits (shown in (b)) has only one two-connected component.

Problem 2.3 Parsimonious Overlapping Reticulate Network from Gene
Trees Problem: Given a set of X-trees H construct a reticulate network N
containing only independent or overlapping reticulations that supports H and
contains a minimal number of reticulations, if one exists.

Since binary sequences can be interpreted as splits, we were able to extend
this solution to handle alignments of binary sequences [HK05].

In our approach, the calculation of a minimal solution depends on the full
set of clusters that can be sampled from a reticulate network. In a recent
article [HK07], we presented a Decomposition Theorem that holds for non-
degenerate galled networks. Following the lead of [GB05], we also proposed
a general Decomposition Conjecture:

Conjecture 2.2 Given an input set of splits ∆, a minimal reticulation net-
work N exists that explains ∆ so that for any two tree edges e and f of N
we have the following: Any two splits S ∈ ∆ ∩ Σ(e) and S ′ ∈ ∆ ∩ Σ(f) are
contained in the same connected component of IG(∆) if and only if e and f
are contained in a common unoriented cycle of N .

One difference between the conjecture of Gusfield and Bansal to our work
is the restrictive formulation of minimality. We use the term minimality to
describe a unique class of reticulate networks, for which we then prove the
Decomposition Theorem. In contrast, Gusfield and Bansal only state at least
one reticulate network exists that minimizes the number of reticulations for
which the Decomposition Theorem holds. We believe our formulation to be
more favorable since the properties of the resulting network are explicitly
defined. Interestingly, our conjecture is not true in general, as was shown in
[DGS07]. This article provides a very nice counter-example that is shown in
Figure 2.5.

18 Background

In Chapter 3, we will show that Conjecture 2.2 indeed holds for galled
networks. Algorithms for computing minimal reticulate networks are shown
in Chapter 4. An advantage of our approach is that we can use split networks
to obtain a visualization of the clusters. By modifying the split network, we
showed that one can obtain a reticulate network [HKLS05] that can also be
labeled by mutations on the edges and sequences at internal vertices [HK05].
Nevertheless, obtaining a visualization algorithm for reticulate networks that
is independent of split networks seemed to be an important subject. In
Chapter 5 we present an optimization strategy that can be used to alter
existing drawing algorithms for trees, to obtain visualizations of reticulate
networks.

Chapter 3

Decomposing Galled Networks

Galled networks are substantially more general than galled trees. In contrast
to the situation in galled trees where reticulation cycles are edge-disjoint,
multiple reticulation cycles in a galled network may overlap along a common
tree. In this chapter we will focus on the proof of the following Decomposition
Theorem:

Theorem 3.1 [Decomposition Theorem for minimal galled networks] Let N
be a minimal galled network that represents H ⊆ H(N). Then any two
clusters c, c′ are contained in the same connected component of IG(H) if and
only if two edges e, f exists in N with c ∈ (H∩HS(e)) and c′ ∈ (H∩HS(f))
that are contained in a common cycle.

We have published a version of this theorem, restricted to non-degen-
erated galled networks in [HK07]. The degeneracy of some edges within
the networks generates a complex combinatory structure within the sampled
clusters. Consequently, the proof of the theorem is rather complex. Basically,
one can divide the proof into three different parts. In the first part, we prove
some basic structural properties of minimal galled networks. Secondly, we
describe the structural properties of clusters generated by degenerated edges
in detail. Finally, we will prove the theorem.

To formulate our proof, we have to introduce some additional definitions
and results.

Let N be a minimal galled network and r be a reticulation of N with tree
cycle C = (r, p(r), w1, e1, . . . , ek−1, wk, q(r), r).

For 1 ≤ i ≤ k, let ϕC(wi) denote the set of taxons reachable from wi

through a path which passes through no edges in C and no reticulations
directly dependent on r. For 1 ≤ i ≤ k − 1, let R+

C(ei) denote the set of
reticulations r′ with r′ 6∈ R(ei) but r′ ∈ R(ej) for some ej ∈ C, ej descendant
of ei. Finally, let o denote the index in {1, . . . k} for which the outgroup is
an element of ϕC(wo).

It is now straightforward to describe the set of clusters of an edge e in
the cycle C explicitly as

H(e) = H(CT ∪ CR,V) where

CT =
⋃

{ϕC(w) | w ∈ C, w is a descendant of e},
CR =

⋃

{Xr′ | r′ ∈ R+
C(e)} and

V = {XR | R ⊆ R(e)}.

20 Decomposing Galled Networks

The next three lemmatas give insights into the structure of (minimal)
galled networks. The first lemma reflects the simple observation that in a
galled network the descendants of a reticulation can only be reached from the
root of the galled network by paths that contain the reticulation. The second
lemma is a prime example of the structural consequences that minimization
of the number of edges within the reticulation cycles has on the minimal
galled network. The third lemma shows that the degenerated parts within the
network consist of at most one edge each. One of the main implications of this
insight is that we have to gain a detailed understanding of the combinatoric
structure of this edges to be able to prove the decomposition theorem. This
part of the proof begins with the definition following Lemma 3.3.

Lemma 3.1 Let N be a galled network and C = (r, p(r), w1, e1, . . . , wi,
ei, . . . , ek−1, wk, q(r), r) a cycle in N . If for 1 < i < k, the vertex wi is a retic-
ulation with either ei = p(wi) or ei−1 = p(wi), we have either ei−1 = q(wi)
or ei = q(wi) respectively.

Proof: Since a cycle is not oriented, we only show the proof for one direction.
That is let wi be a reticulation and ei = p(wi) be its first reticulation edge.
Assume ei−1 to be a tree egde. Since ei−1 and ei are contained in a cycle,
a reticulation r′ must exists, such that α(p(r′)) is a descendant of wi and
α(q(r′)) is not a descendant of wi. Consequently, wi is an element of the tree
cycle of r′. Since wi is a reticulation, all the vertices which can be reached
from wi by tree edges are descendants of wi. Thus, α(q(r′)) would be a
descendant of wi, which is a contradiction. So ei−1 cannot be a tree edge,
which proves the lemma. �

Lemma 3.2 Let N be a minimal galled network. Furthermore, let r be a
reticulation in N with tree cycle C = (r, p(r), w1, e1, . . . , wk, q(r), r). For
1 < i < k, we have that if ϕC(wi) = ∅ then R(ei−1) * R(ei).

Proof: Note that for i = o, we cannot have ϕC(wi) = ∅. We show the
proof for i < o, the case i > o is symmetric. Assume ϕC(wi) = ∅ and
R(ei−1) ⊆ R(ei).
We will now compare the clusters that can be sampled from ei to the clusters
that can be sampled from ei−1. To this end, we use the explicit description
of the clusters: H(ei) = H(CT

i ∪ CR
i ,Vi).

• CT
i =

⋃

{ϕC(w) | w ∈ C, w is a descendant of ei} =
⋃

{ϕC(wj) | 1 ≤
j ≤ i}
If ϕC(wi) = ∅ we have {ϕC(wj) | 1 ≤ j ≤ i−1} = {ϕC(wj) | 1 ≤ j ≤ i},
so CT

i−1 = CT
i .

• CR
i =

⋃

{Xr′ | r′ ∈ R+
C(ei)} =

⋃

{R(ej) | j < i} \ R(ei)
First note that

⋃

{R(ej) | j < i − 1} \ R(ei−1) =
⋃

{R(ej) | j <
i} \ R(ei−1).
Since R(ei−1) ⊆ R(ei) we have

⋃

{R(ej) | j < i} \ R(ei) ⊆
⋃

{R(ej) |
j < i} \ R(ei−1)
Now assume these two last sets are not equal. Then there will be a

21

reticulation r′ with r′ ∈
⋃

{R(ej) | j < i} \ R(ei−1) but r′ 6∈
⋃

{R(ej) |
j < i} \ R(ei). So we have r′ ∈ R(ej) for an index j < i and r′ ∈ R(ei)
but r′ 6∈ R(ei−1), which is impossible. Thus, the two sets must be
equal, so CR

i−1 = CR
i .

• Vi = {XR | R ⊆ R(ei)}
From the assumption R(ei−1) ⊆ R(ei), it follows directly that Vi−1 ⊆
Vi.

Thus, all the clusters that can be sampled from ei+1 could also be sampled
from ei, which is a contradiction to the minimality of N ! �

Note that since tree cycles are undirected, it also holds that R(ei) 6⊆
R(ei−1).

Lemma 3.3 Let N be a minimal galled network and e be an tree edge in N .
If every path from β(e) to a taxon in Xβ(e) contains a reticulation in R(e),
then every reticulation in R(e) is a direct descendant of β(e).

Proof: For every subset R′ of R(e), the cluster XR′ can be sampled from e.
Assume that not all the reticulations in R(e) are direct descendants of β(e).
Then an edge e′ below e exists for which the set R′ of reticulations that are
descendants of e′ is not empty. Now any cluster that can be sampled from e′,
equals XR′′ , where R′′ is a subset of R′ and thus also a subset of R. So, any
cluster that can be sampled from e′ can also be sampled from e contradicting
the minimality of N and thus, proving the lemma. �

The next part of the preliminary work for the decomposition theorem is
focused on three parts. The first part builds up a mathematical structure to
reflect the complex structure that can be sampled from degenerated edges
within the reticulation network. The second part proves that for two degen-
erated edges that share a descending reticulation, sets of sampled clusters,
from these edges exists that are contained in the same netted component
(Lemma 3.6). Ensuring that these two sets of clusters are contained in one
netted component is important, but for the theorem to be of any further
value we have to show that at least one other special cluster exists within
this netted component that was not sampled from a degenerated edge. This
special cluster connects the clusters in the sets to the clusters sampled from
the non-degenerated edges in the backbone of the reticulation cycle.

Let H be a set of clusters and R be a set of reticulations, such that every
reticulation in R is contained in a cluster in H and every cluster in H is a
subset of XR.

Definition 3.1 A pair (R′, H ′) with R′ ⊆ R and H ′ = {c ∈ H | c ⊆ XR′}
is called closed with respect to (R, H) if H ′ is not empty and for all clusters
c ∈ H it holds that c ∩ XR′ ∈ {∅, c, XR′}.

If we have R′ and (R, H) then we can define H ′ appropriatly. So if
(R′, {c ∈ H | c ⊆ XR′}) is closed with respect to (R, H) we say that R′ is
closed with respect to (R, H).

22 Decomposing Galled Networks

We say, R′ is minimally closed with respect to (R, H) if it is closed and
it contains no proper subset that is closed.

Note that the following properties hold for closed subsets: For each set
of reticulations R, if we set H = {c | c ⊆ XR} then the pair (R, H) is closed
with respect to itself . Moreover, if (R′, H ′) is closed with respect to (R, H)
and (R′′, H ′′) is closed with respect to (R′, H ′) then R′′ is closed with respect
to (R, H).

If we take two pairs, (R1, H1) and (R2, H2), which are both closed with
respect to (R, H) then it is easy to check that if H1 ∩ H2 is not empty then
(R1 ∩R2, H1 ∩H2) is also closed with respect to (R, H). However, we cannot
conclude that R1∪R2 is also closed with respect to (R, H). But if it is closed,
we are interested in the question, whether H1 ∪ H2 is the corresponding set
of clusters, that is H1 ∪ H2 = {c ∈ H | c ⊆ XR1

∪ XR2
}. To this end, we

define:

Definition 3.2 A pair (R′, H ′) is called decomposable if a set of pairs (R1,
H1), . . . , (Rk, Hk), which are closed with respect to (R, H), exists such that
Ri (R′ and

⋃

1≤i≤k Hi = H ′.

In general, the decomposability of closed sets is of great importance.
The clusters that make a closed set non-decomposable often play a cru-
cial role. Therefore we define ∂H ′ = {c ∈ H ′ | c 6∈ Hi for all (Ri, Hi) 6=
(R′, H ′) closed with respect to (R′, H ′)}.

Note that for every reticulation r in R, there is a non-decomposable closed
subset R′ of R such that r ∈ R′ ⊆ R. So every reticulation is contained in a
non-decomposable closed subset.

Lemma 3.4 Let (R′, H ′) be non-decomposable. If ∂H ′\{XR′} is non-empty,
then for any r ∈ R′ there exists a cluster c in ∂H ′\{XR′} with Xr ⊆ c.

Proof: Assume no cluster c in ∂H ′\{XR′} with Xr ⊆ c exists. If r is
not contained in any closed subset (Ri, Hi) of (R′, H ′) with Ri (R′, the
set (R′\{r}, H ′\{XR′}) would be closed with respect to (R′, H ′) and conse-
quently ∂H ′\{XR′} would be empty, which contradicts the assumption of the
lemma.

Consequently, r must be contained in at least one closed subset (Ri, Hi)
of (R′, H ′) with Ri (R′. Choose (Ri, Hi) to be maximal. We show that
(R′\Ri, H

′\Hi) is closed with respect to (R′, H ′).
Note that for any cluster c′ in ∂H ′\{XR′} holds c′ ∩XRi

= ∅ and for any
cluster c in H ′ we have c ∩ XRi

∈ {∅, c}. Any cluster c with c ∩ XRi
= c is

contained in Hi. Thus we have for any cluster c in H ′\Hi that c∩X(R′\Ri) ∈
{∅, c, X(R′\Ri)}. Furthermore, at least one cluster c in ∂H ′\{XR′} with c ∩
X(R′\Ri) = c exists since ∂H ′\{XR′} is non-empty. Thus, (R′\Ri, H

′\Hi) is
closed with respect to (R′, H ′), which leads to a contradiction of the non-
decomposable closedness of (R′, H ′). �

Lemma 3.5 Let (R′, H ′) be non-decomposable. Then for any pair of clusters
c1, ck in ∂H ′ \ {XR′}, a chain c1, c2, . . . , ck exists such that ci in ∂H ′ \ {XR′}
and ci is incompatible with ci+1.

23

Proof: The proof is separated into two parts. In the first part, we show that
no single cluster exists that is compatible with all other clusters, and in the
second part, we show the general claim.

Assume a cluster c in ∂H ′ \{XR′} exists that is compatible with all other
clusters in ∂H ′ \ {XR′}. Let R′′ ⊆ R′ denote the set of all reticulations r′′

with Xr′′ ⊆ c, that is XR′′ = c. Note that since XR′ is not in ∂H ′ \ {XR′},
it follows that R′′ (R′. We need to show that R′′ is closed with respect to
(R′, H ′), so for c′ ∈ H ′ we want to show that c′∩XR′′ ∈ {∅, c′, XR′′}. Because
XR′′ = c, we can also show that c′ ∩ c ∈ {∅, c′, c}.

• If c′ ∈ ∂H ′ \ {XR′} then by the assumption c′ is compatible with c,
therefore c′ ∩ c ∈ {∅, c′, c}.

• If c′ = XR′ then c′ ∩ XR′′ = XR′ ∩ XR′′ = XR′′ .

• Finally for (Ri, Hi) closed with respect to (R′, H ′) and c′ ∈ Hi, we have
c′ ⊆ XRi

. Observe that since Ri is closed and c 6∈ Hi we know that
c ∩ XRi

∈ {∅, XRi
}. If c ∩ XRi

= ∅ then c′ ∩ c ⊆ XRi
∩ c = ∅, and if

c ∩ XRi
= XRi

then c′ ⊆ XRi
⊆ c and so c ∩ c′ = c′.

So R′′ is closed with respect to (R′, H ′) and thus, c = XR′′ can not be in
∂H ′ \ {XR′}. So it is not possible to find a cluster in ∂H ′ \ {XR′} that is
compatible with all other clusters in ∂H ′ \ {XR′}.

Now we can divide the clusters in ∂H ′ \ {XR′} into blocks of clusters
H1, . . . , Hk for which it holds that for any pair of clusters in a block, a chain
of clusters exists such that consecutive elements in the chain are incompatible.
Note that any cluster in ∂H ′ \ {XR′} can only be present in one block. For
any block Hi, denote Ri as consisting of the reticulations r for which Xr is
present in a cluster in Hi. We will show that Ri is closed with respect to
(R′, H ′):

• Note that for every closed subset Rc of R′, either Rc∩Ri = ∅ or Rc ⊆ Ri.
So for every cluster c that is contained in a closed subset (Rc, Hc) of
(R′, H ′), we get c ∩ XRi

∈ {∅, c}.

• For c in Hi or c = XRi
, we have c ∩ XRi

= c.

• For c in Hj with j 6= i assume c ∩ XRi
6= ∅. Then ci ∈ Hi exists

with c ∩ ci 6= ∅. Since c and ci are in different blocks, they must be
compatible, so either ci ⊂ c or c ⊂ ci.

– If c ⊂ ci then c is contained in XRi
; therefore c ∩ XRi

= c.

– If ci ⊂ c then all the clusters in Hi that are incompatible with ci

are also contained in c:
Assuming that c′i ∈ Hi is incompatible with ci, then ci ∩ c′i 6= ∅
and ci 6⊆ c′i, therefore c ∩ c′i 6= ∅ and c 6⊆ c′i. Because c and c′i
must be compatible, we get c′i ⊆ c. Since every cluster in Hi is
connected to ci by a chain of incompatible clusters, every cluster
in Hi is contained in c, thus c ∩ XRi

= XRi

24 Decomposing Galled Networks

So Ri is closed with respect to (R′, H ′). Since Hi contains clusters from
∂H ′, this implies that Ri = R′ for all blocks.

Assume we have two different blocks, H1 and H2. Then for any reticu-
lation r in R′, we find two clusters c1 ∈ H1 and c2 ∈ H2 such that Xr ⊂ c1

and Xr ⊂ c2, and thus c1 ∩ c2 6= ∅. Since c1 and c2 are in different blocks,
they must be compatible, so either c1 ⊂ c2 or c2 ⊂ c1. Assume with out lost
of generality that c1 ⊂ c2. By the same argument as above, we infer that in
this case every cluster in H1 must be contained in c2, so XR1

⊆ c2. Since
R1 = R′, we get c2 = XR′ , which is a contradiction since c2 is in H2 which is
a subset of ∂H ′ \ {XR′}. So we can not have two different blocks. �

For closed subsets, we are interested in clusters that contain only taxa
descending from a certain set of reticulations. This links the degenerated
elements of a galled network to closed sets. Let N be a minimal galled net-
work and r a reticulation with tree cycle C = (r, p(r), w1, e1, . . . , wk, q(r), r),
denote E∗

r to be the set of edges in C that lead to degenerated vertices. Note
that because of Lemma 3.3 we have E∗

r ⊆ {e1, ek−1}. Furthermore, denote
ET

r as any other edge in C \ {p(r), q(r)}.

Lemma 3.6 Assume N to be a minimal galled network and let r be a retic-
ulation in N with tree cycle C = (r, p(r), w1, . . . , wk, q(r), r) such that E∗

r =
{e1, ek−1}. We denote (R1, H1) to be the maximal non-decomposable closed
set with respect to (R(e1),H

S(e1)) that contains r (Possibly R1 = R(e1)).
Analogously denote (Rk−1, Hk−1) to be the maximal non-decomposable closed
set with respect to (R(ek−1),H

S(ek−1)) that contains r.
Then it holds that all clusters in ∂H1 are contained in the same netted

component as all clusters in ∂Hk−1.

Proof: Note that as a consequence of Lemma 3.4, at least one cluster c1 in
∂H1 exists such that Xr (c1 and at least one cluster ck−1 in ∂Hk−1 with
Xr (ck−1. We prove this lemma, by demonstrating that in any case where
the two sets of clusters are not contained in the same netted component, we
can either sample the clusters of H1 at ek−1 or we can sample the clusters in
Hk−1 at e1, contradicting the minimality of N .

Since c1 and ck−1 bot contain Xr we have that c1 ∩ ck−1 6= ∅ and conse-
quently, if both clusters are not incompatible with each other, either c1 ⊂ ck−1

or ck−1 ⊂ c1.
Let us assume without lost of generality that ck−1 ⊂ c1. If ck−1 = XRk−1 ,

than we could sample all clusters in Hk−1 at edge e1, contradicting the min-
imality of N .

Thus let ck−1 not be equal to XRk−1 . Bear in mind, that according
to Lemma 3.5, for any pair c1, cl of clusters in ∂Hk−1\{XRk−1} a chain
c1, c2, . . . , cl exists such that ci and ci+1 are incompatible. Denote C1 to
contain all clusters of ∂Hk−1\{XRk−1} that are incompatible with ck−1 and
iterativly denote Ci+1 to contain those clusters in ∂Hk−1\{XRk−1} that are
not contained in

⋃i

j=1 Cj, but that are incompatible with a cluster in Ci. We

will show via induction that either a cluster in ∂Hk−1 exists that is incom-
patible with c1 or all clusters in ∂Hk−1 are contained in c1.

25

For any cluster c1 in C1 we have c1 ∩ ck−1 6= ∅ and c1\(c1 ∩ ck−1) 6= ∅.
Consequently, c1 ∩ c1 6= ∅ and c1\(c1 ∩ c1) 6= ∅. Therefore, either c1 is
incompatible with c1, or c1 ⊂ c1.

Assume that for all clusters ci in Ci, it holds that ci ⊂ c1. We have to
show that any cluster in Ci+1 is either incompatible with c1 or contained in
it.

For any cluster ci+1 in Ci+1, a cluster ci in Ci exists such that ci+1 is
incompatible with ci and ci ⊂ c1. Again, we have ci+1 ∩ ci 6= ∅ and ci\(ci+1 ∩
ci) 6= ∅; consequently, ci+1 ∩ c1 6= ∅ and c1\(ci+1 ∩ c1) 6= ∅. Thus either ci+1

is incompatible with c1, or ci+1 ⊂ c1.
Consequently, if all clusters in ∂Hk−1\{XRk−1} are compatible with c1,

they must be contained in c1 and thus, could be sampled on edge e1. Futher-
more, because of Lemma 3.4, the cluster XRk−1 must also be contained in c1.
This contradicts the minimality of N .

Finally note that a symmetric argument holds for the case c1 ⊂ ck−1 and
consequently the lemma holds.

�

Lemma 3.7 Let (R′, H ′) be non-decomposable and closed with respect to
(R(E∗

r),H
S(E∗

r)). At least one cluster c in HS(ET
r) exists such that c sepa-

rates XR′.

Proof: First, note that R′ contains at least two reticulations: If a reticulation
r′ exists such that R′ = {r}, then H ′ = {Xr} and the cluster Xr has been
sampled from an edge in a reticulation cycle, the network N will not be
minimal, since we could add an edge between r and its descendants and then
sample Xr from this edge, which is not in a reticulation cycle.

We prove the lemma by contradiction. Suppose none of the cluster sam-
pled from edges in ET

r seperates XR′ . Consequently, the minimality of N
forces us to use the same tree cycles for all reticulations in R′; thus ET

r′ = ET
r′′

for all r′, r′′ ∈ R′. We show that in this case N is not minimal:
Remove all the reticulations in R′ from N . Attach a new reticulation

rnew to the first and the last vertices that are shared by all tree cycles of
the elements of R′. (Since ET

r′ = ET
r′′ for all r′, r′′ ∈ R′, the tree cycle of

rnew contains at least this part of all other tree cycles). Next, attach two
new vertices n1 and n2 as descending vertices to rnew. Choose an arbitrary
reticulation r′ in R′ and reconnect it as a descending vertex to n1. Finally,
reconnect all other reticulation in R′ \ {r′} to n1 and n2.

Note that the new network N ′ which was obtained from N in the way
we just described, displays the same clusters as N . Consider a cluster c
sampled from an edge e in ET

r ∪ E∗
r . If e is in ET

r , then the cluster still can
be sampled from e in the new network. If e is in E∗

r , then we have to discerm
whether Xr′ is contained in c. Note that since (R′, H ′) is closed with respect
to (R(E∗

r),H
S(E∗

r)), we know that c ∩ XR′ ∈ {∅, c, XR′}. If c ∩ XR′ = ∅,
then the cluster c still can be sampled from e. If c ∩ XR′ = c, then c ⊆ XR′ ,
and therefore c can be sampled either from the edge connecting n1 to rnew

(if Xr′ is contained in c) or from the edge connecting n2 to rnew (if Xr′ is
not contained in c). Finally, if c ∩ XR′ = XR′ , then e is in the tree cycle

26 Decomposing Galled Networks

of all reticulations in R′ and thus is also in the tree cycle of rnew, so c still
can be sampled from e. Furthermore, note that N ′ contains exactly as many
reticulations as N : In the new network, r′ is no longer a reticulation, but
in compensation we added a new reticulation rnew. However, the important
innovation is that rnew is not dependent on any reticulations in R′ \{r′}, and
consequently N was not minimal. �

Lemma 3.8 For every subset R′ of R(E∗
r) (not necessarily closed) and every

cluster c in HS(ET
r) that seperates XR′, it holds that c is incompatible with

XR′.

Proof: Assume c to be a cluster in ET
r that seperates XR′ . From Lemma

3.3, follows that at least one vertex wj exists such that ϕC(wj) is contained
in c. Therefore, c separates XR′ and c contains at least one taxon that is not
in XR′ ; thus c and XR′ are incompatible. �

Lemma 3.9 Let (R′, H ′) be non-decomposable and closed with respect to
(R, H). If a cluster c in HS(ET

R) is incompatible with XR′ and ∂H ′\{XR′}
is non-empty, there exists at least one cluster c′ in ∂H ′\{XR′} that is in the
same netted component as c.

Proof: Let ∂H ′\{XR′} be non-empty and c be a cluster from ET
R that is

incompatible with XR′ . Assume no c′ in ∂H ′\{XR′} exists such that c and
c′ are incompatible, so for any cluster c′ in ∂H ′\{XR′} it holds that at least
one of the sets c ∩ c′, c′\(c ∩ c′) or c\(c ∩ c′) must be empty. Since at least
one vertex wj exists such that ϕC(wj) is contained in c, c\(c ∩ c′) cannot be
empty. Thus, either c′\(c ∩ c′) is empty, i.e. c′ is contained in c, or c ∩ c′ is
empty. Therefore, ∂H ′\{XR′} can be divided in two disjoint sets of clusters:
the ones that are contained in c and the ones that are disjoint to c. Since
these two sets are compatible, we can conclude by Lemma 3.5 that one of
them is empty. So either all clusters in ∂H ′\{XR′} are contained in c, or
they all are disjoint to c.

Denote R′′ as the minimal set of reticulations in R′ such that for every
cluster c′ in ∂H ′\{XR′} it holds that c′ ⊆ XR′′ . Now because of the previous
observation, either XR′′ is contained in c or XR′′ is disjoint to c, so R′′ can
not contain all reticulations in R′, because c separates XR′ . To show that R′′

is closed with respect to (R′, H ′), take an arbitrary cluster c′ from H ′ and
consider c′ ∩ XR′′ :

• For c′in ∂H ′\{XR′} we have c′ ∩ XR′′ = c′.

• If c′ is in any closed subset Hi, then we have to distinguish two cases:

– If for all reticulations r with Xr ⊆ c′, we have r 6∈ R′′ then c′ ∩
XR′′ = ∅.

– If at least one reticulation r ∈ R′′ with Xr ⊆ c′ exists then there
must be a cluster cr in ∂H ′\{XR′} with Xr ⊆ cr. Since Hi is
closed, we know that cr∩XRi

∈ {∅, cr, XRi
}. Since Xr is contained

in c′, and thus in XRi
, we know that cr ∩XRi

is not empty. Since
cr cannot be in Hi, cr ∩ XRi

cannot be cr. Therefore we get
cr ∩ XRi

= XRi
, so c′ ⊆ XRi

⊆ cr ⊆ XR′′ and thus, c′ ∩ XR′′ = c′.

27

Since R′′ is closed with respect to (R′, H ′), a maximally closed subset Rj

with XR′′ ⊆ XRj
must exist, and therefore ever cluster in ∂H ′\{XR′} would

be in Hi, a contradiction to the construction of ∂H ′\{XR′}. �

We have so far shown a group of very useful properties for closed pairs
that will help use to more clearly understand the sets of clusters that can
be generated from edges within the minimal galled network. For example
assume any degenerated edge e for which it holds that (R(e),H(e)) contains
two maximally closed pairs (R1, H1), (R2, H2), such that H(e)\

⋃2
l=1 Hl is

empty. The question arrises if this is a contradiction to the minimality of the
galled network. Interestingly this is not necesserly the case. If a r1 in R1 and a
r2 in R2 exist such that r1 and r2 are directly dependent, keeping the clusters
in H1 and H2 together on one edge minimizes the network. Otherwise, if no
such r1 and r2e exists, we would need to map each closed pair onto its own
edge, minimizing the pairs of dependent reticulations. We formalize this
observation in the following lemma:

Lemma 3.10 Consider a degenerated edge e and let (R1, H1), . . . , (Rk, Hk)
be all maximum closed pairs with respect to (R(e),H(e)). Let a maximum
closed pair (Ri, Hi) exist with the property that there is no cluster c in H(e) =
H(e)\

⋃k

l=1 Hl with XRi
⊂ c. For any j 6= i, a reticulation rj in Rj and a

reticulation ri in Ri must exist such that ET
rj
∩ ET

ri
is non-empty.

Proof: For simplicity of notation, let i = 1 and j = 2. Assume that a
r1 in R1 and a r2 in R2 exist such that ET

r1
∩ ET

r2
is empty. Furthermore,

let there be no cluster c in H(e)\
⋃k

l=1 Hl with XRi
⊂ c. The following

construction leads to a contradiction: Attach a new vertex n1 via the edge e1

as a descendant to α(e), remove all reticulations in R1 from β(e) and re-attach
them as descendants to n1. The clusters in H1 can now be sampled from e1

and since c in H(e)\
⋃k

l=1 Hl with XRi
⊂ c exists, there is no cluster that

cannot be sampled in the original galled network that cannot be sampled in
the modified galled network. The important innovation is that r1 and r2 are
independent, since the only edge that was shared by their tree cycles was e;
thus we are able to minimize the number of pairs of dependent reticulations
further, which is a contradiction to the assumption that N is minimal. �

Now we have all definitions and properties necessary for the proof of the
theorem:

Proof: “⇒”:

This direction is easy and was first shown in [HKLS05]. Let e and f be
two edges not contained in a cycle. Then a cut-edge h exists (or at least a
cut-vertex, which can be refined to provide a cut-edge h) that separates e
and f . The edge h induces the same cluster c in every tree T ∈ T (N). Thus,
every cluster c′ ∈ H(N) subdivides either c or X\{c}, but not both sets.
This implies the claim.

“⇐”:

28 Decomposing Galled Networks

The proof is separated into four main steps. Let r be an arbitrary retic-
ulation with tree cycle C = (r, p(r), wr

1, e
r
1, . . . , e

r
k−1, w

r
k, q(r), r) and denote

f as the index of the first edge in C that is contained in ET
r and l as the

index of the last edge in C contained in ET
r . In the first step, we show

that a set of clusters in HS(er
f) exists that is incompatible with a set of

clusters in HS(er
l). In the second step, we show that the sampled clusters

HS(ET
r \{ef , el}) are contained in the same netted component as the clusters

of the first step. In these first two steps, we use the symmetric properties
that arise from the undirected tree cycles and restrict our attention to the
two cases (a) o /∈ {f, l + 1} and (b) o = l + 1.

The first two steps ensure that for any non-degenerated tree edge e in a
cycle of N for which a reticulation r′ in R(e) exists such that e /∈ {er′

f , er′

l },
the clusters sampled from e are contained in the same netted component.
Consequently, we show in the third step that for any non-degenerated tree
edge e in N that is contained in a cycle and for which it holds that for any
r′ in R(e), e ∈ {er′

f , er′

l } the set of clusters HS(e) are contained in the same
netted component.

Finally, in the fourth step, we show that all clusters sampled from a
degenerated edge are contained in the same netted component as the clusters
sampled in the tree cycles of reticulations that directly decend from the
degenerated edge.

First step:
We start out the proof with the case where we assume E∗

r = {e1, ek−1}.

Case (a):
Either (R(er

1),H
S(er

1)) is non-decomposable and closed with respect to
itself, or a set (R1

1, H
1
1), . . . , (R

1
l , H

1
l) of maximally non-decomposable closed

subsets exists such that HS(er
1) = ∪l

m=1H
1
m. We denote (R1, H1) as either

(R(er
1),H

S(er
1)) or the maximal non-decomposable closed subset that con-

tains r. Using a symmetric argumentation for ek−1 we denote (Rk−1, Hk−1)
as either (R(er

k−1),H
S(er

k−1)) or as the maximally non-decomposable closed
subset that contains r.

Since N is minimal, at least one cluster cf in HS(er
f) and a reticulation

r1 in R1 exists such that Xr1
(cf . We denote the set

⇀

H
S

R1 (er
f) as consisting

of all those clusters in HS(er
f) that contain at least one Xr1

with r1 ∈ R1.

By symmetry, at least one cluster cl in HS(er
l) and a rk−1 in Rk−1 also exists

such that Xrk−1
⊂ cl. Analogously to er

f , define
⇀

H
S

Rk−1 (er
l) to consist of all

those clusters in HS(er
l) that contain at least one Xrk−1

with rk−1 ∈ Rk−1.

We will show that the sets of clusters
⇀

H
S

R1 (er
f) and

⇀

H
S

Rk−1 (er
l) are con-

tained in the same netted component. First note that by Lemma 3.6, we
know that all the clusters in ∂H1 and and all the clusters in ∂Hk−1 are con-
tained in the same netted component if they are non-empty. By Lemma 3.8
and Lemma 3.9, any cluster in HS(er

f) not completely containing or missing

XR1∪Rk−1 is in the same netted component as ∂H1 and ∂Hk−1. We have

to consider two cases, (a.I) all clusters in
⇀

H
S

R1 (er
f)∪

⇀

H
S

Rk−1 (er
l) completely

29

contain XR1∪Rk−1 , or (a.II) at least one cluster exists that does not.

In Case (a.I), the set of clusters
⇀

H
S

R1 (er
f) and

⇀

H
S

Rk−1 (er
l) are incompatible

since only clusters in
⇀

H
S

R1 (er
f) contain ϕC(β(ef)), clusters in both sets contain

XR1∪Rk−1 , and only clusters in
⇀

H
S

Rk−1 (er
l) contain ϕC(β(el)).

In Case (a.II) any cluster c′ in
⇀

H
S

R1 (er
f) or

⇀

H
S

Rk−1 (er
l) not completely

containing XR1∪Rk−1 is in the same netted component as ∂H1 and ∂Hk−1.

Any cluster in
⇀

H
S

Rk−1 (er
l) completely containing XR1∪Rk−1 is incompatible

with any cluster in
⇀

H
S

R1 (er
f) because only clusters in

⇀

H
S

Rk−1 (er
l) contain

ϕC(β(el)). Any cluster completely containing XR1∪Rk−1 shares at last one

Xr′, with r′ ∈ R1 ∪ Rk−1, with any cluster in
⇀

H
S

R1 (er
f), and only clusters

in
⇀

H
S

R1 (er
f) contain ϕC(β(ef)) and vice versa. Consequently, all clusters are

contained in the same netted component.

Case (b):

Let (R1, H1) and (Rk−1, Hk−1) be defined as in Case (a). Again, since N
is minimal, at least one reticulation r1 in R1 and a cluster cf in HS(er

f) exists

such that Xr1
(cf . Let

⇀

H
S

R1 (er
f) be the set of all those clusters in HS(er

f)
that contain at least one Xr1

with r1 ∈ R1. Using a symmetric argument
as in the Case (a) and again the minimality of N , at least one cluster cl in

HS(er
l) and a rk−1 in Rk−1 exist such that Xrk−1

6⊂ cl. We define
↼

H
S

Rk−1 (er
l)

as the set of all those clusters in HS(er
l) that are disjoint to at least one Xrk−1

with rk−1 ∈ Rk−1.

Again, we will show that the sets of clusters
⇀

H
S

R1 (er
f) and

↼

H
S

Rk−1 (er
l) are

contained in the same netted component. Note that the remarks about ∂H1

and ∂Hk−1, as well as the clusters
⇀

H
S

R1 (er
f) and

↼

H
S

Rk−1 (er
l) given in Case

(a), also apply to this case. We have to consider two cases, (I) all clusters

in
⇀

H
S

R1 (er
f) completely contain and all clusters in

↼

H
S

Rk−1 (er
l) are disjoint to

XR1∪Rk−1 , or (II) or at least one cluster exists for which Case (I) does not
apply.

In Case (I) both sets of clusters are incompatible since only the clusters

in
⇀

H
S

R1 (er
f) contain XR1∪Rk−1 , all clusters in

⇀

H
S

R1 (er
f)∪

↼

H
S

Rk−1 (er
l) contain

ϕC(β(er
f)) and only clusters in

↼

H
S

Rk−1 (er
l) contain ϕC(β(er

l)) ∪XR(er
l
)\R(er

l−1
).

Note that either ϕC(β(er
l)) is non-empty, or by Lemma 3.2, XR(er

l
)\R(er

l−1
) is

non-empty for all clusters in
↼

H
S

Rk−1 (er
l).

In Case (II), any cluster c′ not completely containing or missing XR1∪Rk−1

is in the same netted component as ∂H1 and ∂Hk−1. All clusters in
↼

H
S

Rk−1

(er
l) completely missing XR1∪Rk−1 are incompatible with all cluster in

⇀

H
S

R1

(er
f), because only clusters in

↼

H
S

Rk−1 (er
l) contain ϕC(β(er

l)) ∪ XR(er
l
)\R(er

l−1
),

clusters of both sets contain ϕC(β(er
f)), and only clusters in

⇀

H
S

R1 (er
f) contain

30 Decomposing Galled Networks

elements from XR1∪Rk−1 .

Symmetrically, all clusters in
⇀

H
S

R1 (er
f) completely containing XR1∪Rk−1

are incompatible with all cluster in
↼

H
S

Rk−1 (er
l), because only clusters in

↼

H
S

Rk−1 (er
f) completely contain XR1∪Rk−1 . Clusters of both sets contain

ϕC(β(er
f)) and only clusters in

↼

H
S

Rk−1 (er
l) contain ϕC(β(er

l)) ∪XR(er
l
)\R(er

l−1
).

Consequently, all clusters are contained in the same netted component.
Note that if one of the edges er

1, er
k−1 is not be degenerated, this proof can

be easily altered. For example, if er
k−1 is not degenerated, we set (Rk−1, Hk−1)

to equal ({r}, ∅) and the argument given above still holds. Note that in this
case, R1∪Rk−1 = R1, since r is an element of Rk−1, and the argument about
({r}, ∅) being closed can be skipped. If both edges are not degenerated, the
set R1 ∪ Rk−1 becomes {r} making case (II) and the argument about the
closeness of the pairs redundant.

Second step:

Assuming Case (a):

For any edge er
i in C with f < i <= o, we define the set

⇀

H
S

R1∪Rk−1 (er
i)

as consisting of all those clusters that contain at least one Xr′ with r′ ∈
R1 ∪ Rk−1. We now show that these clusters are contained in the same

netted component as
⇀

H
S

R1 (er
f) and

⇀

H
S

Rk−1 (er
l). Consequently, we have to

show this for all cases given in the first step. Thus, we have to consider
Cases (a.I) and (a.II) from the first step.

If we have Case (a.I) the set of clusters
⇀

H
S

R1∪Rk−1 (er
i) is incompati-

ble with
⇀

H
S

Rk−1 (er
l) since only clusters in

⇀

H
S

R1∪Rk−1 (er
i) contain ϕC(β(er

f)).

All clusters in
⇀

H
S

Rk−1 (er
l) completely contain XR1∪Rk−1 and all clusters in

⇀

H
S

R1∪Rk−1 (er
i) contain at least one Xr′ with r′ ∈ R1 ∪Rk−1, and only clusters

in
⇀

H
S

Rk−1 (er
l) contain ϕC(β(el)).

Any cluster in
⇀

H
S

(ei)\H
S
R1∪Rk−1(e

r
i) is incompatible with

⇀

H
S

R1 (er
f) since

only clusters in H(er
i)\

⇀

H
S

R1∪Rk−1 (er
i) contain ϕC(β(er

i)) ∪ XR(er
i)\R(er

i−1
), the

clusters from both sets contain ϕC(β(er
f)), and only clusters in

⇀

H
S

R1 (er
f)

contain an Xr′ with r′ ∈ R1 ∪ Rk−1.
If we have Case (a.II), any cluster not completely containing or missing

XR1∪Rk−1 is contained in the same netted component as ∂H1 and ∂Hk−1.

Any cluster in
⇀

H
S

R1∪Rk−1 (er
i) completely containing XR1∪Rk−1 is incompatible

with
⇀

H
S

Rk−1 (er
l), since only clusters in

⇀

H
S

R1∪Rk−1 (er
i) contain ϕC(β(er

f)). All

clusters in
⇀

H
S

Rk−1 (er
l) contain at least one Xr′ with r′ ∈ R1 ∪ Rk−1 and all

clusters in
⇀

H
S

R1∪Rk−1 (er
i) completely contain XR1∪Rk−1 , and only clusters in

⇀

H
S

Rk−1 (er
l) contain ϕC(β(el)). All clusters in

⇀

H
S

(ei)\H
S
R1∪Rk−1(e

r
i) that are

completely disjoint to XR1∪Rk−1 are incompatible with the set
⇀

H
S

R1 (er
f), since

31

the arguments of the above case still hold.

For any edge ei in C with o < i < l we again define the set
⇀

H
S

R1∪Rk−1 (er
i)

to consist of all those clusters that contain at least one Xr′ with r′ ∈ R1 ∪
Rk−1.

If we have Case (a.I), the set of clusters
⇀

H
S

R1∪Rk−1 (er
i) is incompatible

with
⇀

H
S

Rk−1 (er
f) since only clusters in

⇀

H
S

R1∪Rk−1 (er
i) contain ϕC(β(el)), all

clusters in
⇀

H
S

R1∪Rk−1 (er
i) contain at least one Xr′ with r′ ∈ R1 ∪ Rk−1 and

al clusters in
⇀

H
S

Rk−1 (er
f) completely contain XR1∪Rk−1 , and only clusters in

⇀

H
S

Rk−1 (er
f) contain ϕC(β(ef)). The set of clusters HS(er

i)\
⇀

H
S

R1∪Rk−1 (er
i)

is incompatible with
⇀

H
S

Rk−1 (er
l) since only clusters in HS(er

i)\
⇀

H
S

R1∪Rk−1

(er
i) contain ϕC(β(er

i)) ∪ XR(er
i)\R(er

i+1
), the clusters from both sets contain

ϕC(β(el)), and only clusters in
⇀

H
S

Rk−1 (er
l) contain XR1∪Rk−1 .

If we have Case (a.II), any cluster not completely containing or missing
XR1∪Rk−1 is contained in the same netted component as ∂H1 and ∂Hk−1.
The other clusters are analogous to Case (a.I).

Assuming Case (b):

For any edge er
i with f < i < l, we define the set

⇀

H
S

R1∪Rk−1 (er
i) as

that consisting of all those clusters that contain at least one Xr′ with r′ ∈
R1 ∪ Rk−1.

If we take Case (b.I), this set is incompatible with
↼

H
S

Rk−1 (er
l) since only

clusters in
⇀

H
S

R1∪Rk−1 (er
i) contain an Xr′ with r′ ∈ R1 ∪ Rk−1, the clus-

ters in both sets contain ϕC(β(er
f)), and only clusters in

↼

H
S

Rk−1 (er
l) contain

ϕC(β(er
l)) ∪ XR(el)\R(el−1).

On the other side, all clusters in HS(er
i)\

⇀

H
S

R1∪Rk−1 (er
i) are incompatible

with
⇀

H
S

R1 (er
f) as the same arguments as in Case (a.I) hold.

If we take Case (b.II), note that all clusters in HS(er
i) that are not com-

pletely containing or missing XR1∪Rk−1 are contained in the same netted

component as
⇀

H
S

R1 (er
f) and

↼

H
S

Rk−1 (er
l). Any cluster in HS(er

i) completely

containing XR1∪Rk−1 is incompatible with
↼

H
S

Rk−1 (er
l), since the first set com-

pletely contains XR1∪Rk−1 and all clusters in
↼

H
S

Rk−1 (er
l) are disjoint to at

least one Xr′ with r′ ∈ R1∪Rk−1, th clusters in both sets contain ϕC(β(ef)),

and only clusters in
↼

H
S

Rk−1 (er
l) contain ϕC(β(er

l)) ∪ XR(el)\R(el−1).
Any cluster in HS(er

i) that is disjoint to XR1∪Rk−1 is incompatible with
HS

R1(er
f), since any cluster of the first kind contains ϕC(β(er

i))∪XR(ei)\R(ei−1).
The clusters of both sets contain ϕC(β(ef)), and all cluster in HS

R1(er
f) contain

at least one Xr′ with r′ ∈ R1.

Third step:
We have to show that for any edge e that (1) is contained in a cycle in

N and (2) for which it holds that for any reticulation r′ ∈ R(e) the edge

32 Decomposing Galled Networks

e is contained in {er′

f , er′

l }, the set of clusters sampled from this edge are
contained in the same netted component.

We first denote R(β(e)) as that containing those reticulations r′ in R(e)
for which β(e) ∈ {wr′

f , wr′

l+1} and analogously define R(α(e)). Furthermore,
define the set R(β(e)) as that consisting of the following sets of reticulations:

• R′ = {r′}, where r′ ∈ R(e) is a direct descendant of β(e);

• R′ ⊆ R(ed), where ed is a degenerated edge directly descending from
β(e), and a reticulation r′ ∈ R(e) exists such that R′ is the maximal
proper closure of r′ in (R(ed),H(ed)).

There are two cases to consider: (I) either R(β(e)) or R(α(e)) is empty,
and (II) R(β(e)) and R(α(e)) are non-empty.

Assume Case (I):

First assume R(α(e)) to be empty. Note that R(e) ⊆ ∪R′∈R(β(e))R
′ and

the sets in R(β(e)) reflect those sets that are discussed in the first step of
the proof.

If R(e) (∪R′∈R(β(e))R
′, a R′ ∈ R(β(e)) exists such that R′ ∩ R(e) 6= R′.

Furthermore, a r′ ∈ R′ exists that is not an element of R(e). Consequently,
all c ∈ HS(e) must contain Xr′ . From the definition of R(β(e)), follows that
there is an r′′ ∈ R′ with r′′ ∈ R(e). Considering the tree cycle of r′′, it follows
from the definition of R(β(e)) that e ∈ {er′′

f , er′′

l }. We choose er′′

f = e without

loss of generality and recall from step one that the set of clusters
⇀

H
S

R′ (er′′

f)

is contained in the same netted component. Since
⇀

H
S

R′ (er′′

f) = HS(e), the
proposition follows.

Now let R(e) = ∪R′∈R(β(e))R
′. Any cluster c ∈ HS(e) must contain at

least one Xr′ with r′ ∈ R(e), otherwise it will be sampled outside of all
cycles. For any pair of clusters c, c′ ∈ HS(e), either a pair r′, r′′ ∈ R′ exists
(note that r′ = r′′ is possible) with R′ ∈ R(β(e)), such that Xr′ (c and
Xr′′ (c′ or there does not exists such a pair. If the pair r′, r′′ exists, we
may select any r′ ∈ R′ and consider the tree cycle of r′. Again, it follows
from the definition of R(β(e)) that e ∈ {er′

f , er′

l }. We choose er′

f = e without

loss of generality and recall from step one that all clusters in
⇀

H
S

R′ (er′

f) are
contained in the same netted component and consequently c and c′ are as
well. If no such set R′ exists both clusters are incompatible with each other,
since r′ 6= r′′ and both clusters contain ϕC(β(e)).

Now assume R(β(e)) to be empty and note that in this case we have
α(e) = wr′

o for all r′ ∈ R(e). We define R(α(e)) analogously to R(β(e))
and again R(e) ⊆ ∪R′∈R(α(e))R

′. If R(e) (∪R′∈R(α(e))R
′, a R′ ∈ R(α(e))

exists such that R′ ∩R(e) 6= R′. Furthermore, a r′ ∈ R′ exists that is not an
element of R(e) and consequently, all c ∈ H(e) must be disjoint to Xr′. From
the definition of R(α(e)), follows that there is an r′′ ∈ R′ with r′′ ∈ R(e).
Considering the tree cycle of r′′, it follows from the definition of R(α(e)) that
e ∈ {er′′

f , er′′

l }. We choose er′′

l = e without loss of generality and recall from

33

step one that the set of clusters
↼

H
S

R′ (er′′

l) is contained in the same netted

component. Since
↼

H
S

R′ (er′′

l) = H(e), the proposition follows.
Now let R(e) = ∪R′∈R(α(e))R

′. Any cluster c ∈ HS(e) must be disjoint to
at least one Xr′ , where r′ ∈ R(e), otherwise the cluster would be sampled
outside of all cycles. Again, for any pair of clusters c, c′ ∈ HS(e), we have
that either pair r′, r′′ ∈ R′ exists with R′ ∈ R(α(e)) such that Xr′ * c and
Xr′′ * c′, or we do not. If the pair r′, r′′ exists, we may select any r′ ∈ R′

and consider the tree cycle of r′. It follows from the definition of R(α(e))
that e ∈ {er′

f , er′

l }. We choose er′

l = e without loss of generality and recall

from step one that all clusters in
↼

H
S

R′ (er′

l) are contained in the same netted
component and consequently c and c′ as well. If these two reticulations do
not exist, both clusters are incompatible with each other, since r′ 6= r′′ and
both clusters contain ϕC(β(er′

f)).

Assuming Case (II):
We define two sets of clusters: the set H(β(e)), for which each element

contains at least one Xr′ with r′ ∈ R(β(e)); and the set H(α(e)), for which
each element misses at least one Xr′ with r′ ∈ R(α(e)). It is straightforward
to see from Case (I) that the clusters in H(β(e)) are contained in one netted
component and the clusters in H(α(e)) are also contained in one netted
component. We have to show that the elements of these two sets and the
cluster that contains XR(α(e)) and excludes XR(β(e)) are contained in the same
netted component. If H(α(e)) and H(β(e)) are not contained in the same
netted component, they must be disjoint. This can only be accomplished if
for any cluster c in H(β(e)) it holds that any cluster c′ in H(α(e)) is contained
in c. But than the network would not be minimal, i.e. we could add a new
vertex in the middle of e and reconnect the directly descending edges of α(e)
and β(e) associated with R(α(e)) and R(β(e)) to this vertex, making both
sets of reticulations independent. Consequently, at least one cluster c∗ must
exist that violates this rule, that is c∗ is an element of H(α(e)) and H(β(e)).
Consequently, the cluster is excluding at least one Xr′ with r′ ∈ R(α(e)). As
the cluster contains at least one Xr′′ with r′′ ∈ R(β(e)) it is incompatible
with the cluster that contains XR(α(e)) and excludes XR(β(e)).

Fourth step:
In this step, we have to prove that all clusters sampled from a degenerated

edge are contained in the same netted component. Thus, let e be a degener-
ated edge in N . Furthermore, let r be a reticulation in R(e) and consequently,
E∗

r 6= ∅. We will show that the set of clusters HS(E∗
r) is contained in the

same netted component as the set of clusters in HS(ET
r). First, remember

that according to Lemma 3.7, for any set (R′, H ′) that is non-decomposable
and closed with respect to (R(E∗

r),H
S(E∗

r)) at least one cluster cT in HS(ET
r)

exists that separates XR′ . From Lemma 3.8, we know that XR′ and cT are
incompatible. Furthermore, from Lemma 3.9, we know that if ∂H ′\{XR′}
is non-empty, at least one cluster c′ in ∂H ′\{XR′} exists that is incompat-
ible with cT . Finally, Lemma 3.5 ensures, that all clusters in ∂H ′\{XR′}
are contained in the same netted component. Thus for any set (R′, H ′) that

34 Decomposing Galled Networks

is non-decomposable and closed with respect to (R(E∗
r),H

S(E∗
r)) the set of

clusters ∂H ′ is contained in the same netted component as H(ET
r).

We have to show that for any cluster c in HS(E∗
r) a set (R′, H ′) exists

that is non-decomposable and closed with respect to (R(E∗
r),H

S(E∗
r)) such

that c is contained in ∂H ′. For any set(R′, H ′) that is closed with respect to
(R(E∗

r),H
S(E∗

r)) and for which ∂H ′ is non-empty the set ∂H ′ is contained in
the same netted component as H(ET

r). If we denote ((H1, R1), . . . , (Hk, Rk))
as the set of all closed sets of (R(E∗

r),H
S(E∗

r)) with the property that Ri (
R′, then by definition, H ′ = ∂H ′∪

⋃

i Hi. For any set (Ri, Hi), this argument
holds as well, and since (R(E∗

r),H
S(E∗

r)) is closed with respect to itself, for
any cluster c in HS(E∗

r) a set (R′, H ′) non-decomposable and closed with
respect to (R(E∗

r),H
S(E∗

r)) exists such that c is contained in ∂H ′. �

Chapter 4

Calculating Galled Networks

In this chapter, we give a detailed introduction to our solution to the prob-
lem of constructing galled networks from a set of splits, and we show how
converting the underlying (sequence) information into splits on the one hand
simplifies the reconstruction but, on the other hand raises new questions.

A split network can be seen as a direct way to represent a set of binary
classifications of a group of taxa. The information stored within this split
network is only a subset of the information stored in a set of trees or an
alignment, even if we use all splits within the set of trees or all splits that
can be generated from the alignment. For example, given a set of splits we
can not decide which split was generated by which tree; this information is
lost in the conversion. Therefore, ensuring that the information we lose is
not essential for the calculation of an explicit network is important. The
general problem one would like to solve can be stated as:

Problem 4.1 Parsimonious non-degenerated Galled Network from Split Set
Problem: Given a set of splits Σ, construct a minimal non-degenerated galled
network N that represents Σ.

From the definition of a non-degenerated galled network, we know that
a backbone tree exists to which the reticulations can be connected. We pro-
pose an algorithm which applies this property by identifying those minimal
sets R ⊂ X with which Σ|X\R is compatible. If the set is compatible, the
algorithm can use it as a possible split encoding for the backbone tree. The
backbone tree is accepted by the algorithm, if for all reticulations r ∈ R,
the incompatible splits in Σ|X\(R\{r}) form a path within it. If they do, the
algorithm connects each reticulation to the start and end edge of the path.
In detail, the algorithm works as follows:

Algorithm 4.1 (Construct minimal galled network from splits)
Input: Set of splits Σ on X
Output: Minimal galled network N that explains Σ, if one exists, or fail.

for k = lowerbound, . . . , upperbound do
for each possible choice of a subset R ⊂ X of cardinality k do

if Σ′ := Σ|X\R is compatible then
Build a rooted backbone tree T that represents Σ′

36 Calculating Galled Networks

for each putative reticulation vertex r ∈ R do
Let E be the set of all edges in the backbone
tree for which there exists an incompatible split in Σ|X\(R\{r})

if E is contained in a path in T then
attach r in the middle of the start- and end-edge
of such a shortest path

else we can not attach all vertices of R, try next choice of R
if all r ∈ R were successfully attached and

the resulting network N represents Σ then
return N

return fail.

Whenever the algorithm succeeds, we have a solution to the “Parsimo-
nious Non-degenerated galled network from Split Set Problem”. Because of
the minimality of the non-degenerated galled network, all reticulations are
connected to one vertex in the backbone tree (the one added in the middle of
an edge), and there might even be more than one reticulation connected to
such a vertex. If we would like to resolve these connecting vertices further,
the resulting galled network will no longer be minimal. Interestingly, the
number of reticulations does not change and those the relaxed definition of
minimality given by [GEL03] still applies. Refining a galled network is indeed
an interesting topic and we will discuss it in detail in the next section.

Refining the connections of the reticulations is a post-modification of
the resulting minimal galled network. The subsequent application of several
modifications may be desirable. Therefore, we see a complete reconstruction
as a set of steps, some of which are mandatory and some of which are not. In
detail, the complete reconstruction can be divided into the following steps:

4.1.a) Bound the number of reticulations:
Find a lower and upper bound for the number of reticulations.

4.1.b) Reconstruct a minimal galled network:
Use Algorithm 4.1 to reconstruct a minimal galled network.

4.1.c) Apply additional constrains or modifications (optional):
Check if additional constrains hold, given the solution, or apply modi-
fications to the minimal galled network found.

Finding lower and upper bounds for reticulate networks has been described
elsewhere (for example, see [BB04; LSH05; MG03]) and an algorithm solving
the second step has been presented above. In the next section, we show a
post-modification, that may be applied to minimal galled networks.

Resolving the Connecting Vertices

We have already discussed the loss of information that is connected with
transforming sets of trees or alignments into splits. In this section, we show
that as a consequence of the transformation, the resolution of the connect-
ing vertices is ambiguous, for a set of splits, and that we need additional
information to solve this problem in a meaningful way.

37

Since the reconstruction of a minimal galled network ensures that the tree
cycles of all reticulations will be maximal, resolving the connecting vertices
will lead to a placement of the connectors for any reticulation, on the first
and last tree edge of the associated tree cycle. So we actually resolve tree
edges and not tree vertices. Let R(e) denote the set of all reticulations
connected an edge e of the backbone tree. In Figure 4.1, we show an example
of two reticulations connected to an edge in the backbone tree. Each of the
individual diagram represents one of the possible combinations. The splits

that can be generated from this edge are
{

A
{r1,r2}∪B

, A∪{r1}
B∪{r2}

, A∪{r2}
B∪{r1}

, A∪{r1,r2}
B

}

for Figures (a), (b), (d)and (e); and
{

A
B∪{r1,r2}

, A∪{r1}
B∪{r2}

, A∪{r1,r2}
B

}

for Figures

(e) and (f). Since none of the split sets is unique, the problem cannot
be solved unambiguously for two reticulations connecting to an edge of the
backbone tree and consequently, cannot be solved in general given a set of
splits.

(a) (b) (c)

(d) (e) (f)

Figure 4.1: The Placement of Connectors is Ambiguous An edge in a
backbone tree is indicated by the horizontal line, and the two subtrees are labeled TA

and TB. Two reticulations, r1 and r2 connect to this edge. The second reticulation edge
of r1 is always connected to the subtree TA. The second reticulation edge of r2 is either
connected to the subtree TA (upper part of the figure) or to the subtree TB (lower part of
the figure). Either r1 is closer to TA than r2 ((a), (d)) or r2 is closer to TA than r1 ((b),
(e)) or both are equally distant from TA ((e), (f)).

Facing this ambiguity, the question arises how to resolve a minimal galled
network in a meaningful way. Assume the splits were generated from a set
of trees T = {T1, . . . , Tn}. Some of these trees may be refinements of the
backbone tree in the way that some edges of the backbone tree are (partially)
resolved in these. Thus, these trees would give rise to an ordering of the
reticulations associated with such edges and consequently the ordering in
which we can resolve these edges, leading to a refinement of the minimal
galled network.

The general idea behind this approach is to define an evolutionary block as
a set of splits ΣEB that is a subset of all splits Σ, for which it is assumed that
the splits within this evolutionary block form one consistent evolutionary
event. For example, the splits in each tree of T can be seen as such an

38 Calculating Galled Networks

evolutionary block. For each tree edge and each evolutionary block ΣEB, we
may define a partial ordering. Let OrdP (e) be the set of all partial orderings
we obtained from a set of evolutionary blocks with respect to an edge e of
the backbone tree. It is straight forward to construct a directed graph from
the set of all these partial orderings. We call this graph the ordering graph
OG(e).

For simplicity, we add two artifical vertices to the sorting processes, rep-
resenting the source α(e) and sink β(e) of the edge. Consequently, α(e)
represents the smallest and β(e) the largest element with respect to all or-
derings in the graph. To find a solution, we first have to collapse any cycles
within the ordering graph to one vertex, since these represent conflicts within
the ordering. Using a Depth First Search, we obtain an ordering of all ver-
tices of OG(e) (see [THCS01], Chapter 6 for details on topological sorting).
With this ordering, we can refine the edge e of the minimal galled network
and by applying this ordering to all tree edges in the reticulate network, we
are able to fully refine it.

In the simplest case, we use all splits as one evolutionary block. This
might lead to orderings for connecting vertices, but we would like to point
out that there is no certainty about these orderings, since the ordering may
be caused by lack of additional information. In the latter, we show how
evolutionary blocks can be defined for hybridization and recombination net-
works, and how these can be used to obtain partial orderings for the ordering
graph.

4.1 Hybridization Networks

A hybridization network is a special kind of reticulate network, that is aimed
at explaining a set of (partial gene) trees T = {T1, T2, . . . , Tn} in terms of
hybridization. More precisely, a reticulate network N is the hybridization
network of T , if T can be sampled from N .

As explained in Section 2.3, a set of gene trees T can be combined into
one set of splits, using either the Consensus method if all trees in T contain
the same set of labels, and the Z-closure method otherwise. Since Algorithm
4.1 is independent of the method that generates the set of splits, it is also
possible to use a different method. The generated set of splits can then be
used as input for the calculation.

Next we explain how to obtain partial orderings for a connecting edge
from a set of X−trees T = {T1, T2, . . . , Tn}. Assume that N is a minimal
galled network such that the set of splits Σ(T) is represented by N . For
each X−tree T in T , T|X\R is equal to the backbone tree BT . For each tree
edge e in the backbone tree BT , a path in the tree T exists that gives a
(partial) ordering of the reticulations that connect to e. Thus, the trees T
give rise to a set of orderings for e. We use this set as input for the ordering
graph OG(e). For example, in Figure 4.2, the partial orderings given for the
backbone edge to which r1 and r2 connect are: α(e) < r2 < r1 < β(e) for
tree (a), α(e) < β(e) for tree (b) and α(e) < r1 < β(e) for tree (c).

Notably, if T corresponds to the complete set of trees that can be sampled

4.1 Hybridization Networks 39

root

b5

b7

r3

b6

r4
b8 b9 b3 b4 r2

r1 b1

b2

(a)

root

b5

b7

b6

r4

b8

b9

r3

b3 r1 b4
r2

b1

b2

(b)

root

b5

r3

b8 b9

b6
b7

r4
b1

b2

r1

b3
b4r2

(c)

root

b5

b6

b7 r3 r4
b8

b9

b3 b4

r2
r1

b1
b2

(d)

Figure 4.2: Ordering Reticulations Along an Edge Figures (a), (b) and (c)
show the trees introduced in Section 2.3. The last figure shows the hybridization network
that is generated by the consensus network containing all splits. The partial orderings
given for the backbone edge to which r1 and r2 connect are: α(e) < r2 < r1 < β(e) for
tree (a), α(e) < β(e) for tree (b) and α(e) < r1 < β(e) for tree (c).

40 Calculating Galled Networks

from a galled network N , the topological sorting applied to the orderings
given by T will give rise to the correct ordering and consequently, will allow
the algorithm to successfully reconstruct N .

Example for a Hybridization Network

For the first example, we obtained three gene trees relating different fungal
species from TreeBASE [SDPE94], that were published in [PB03]. These
trees are based on the mitochondrial small subunit ribosomal DNA, the
nuclear internal transcribed spacer and on a part of the glyceraldehyde-3-
phosphate gene. We constructed the set of all splits using the Z-closure
method and obtained the network shown in Figure 4.3. We applied Algo-
rithm 4.1 to the split network and obtained the hybridization network shown
in Figure 4.4. We found a total of seven netted components. All netted com-
ponents could be resolved to present a hybridization history. Even though
our algorithm was able to calculate the history, the plausibility of the net-
works is somewhat unclear. The overall split network seemed to contain a
lot of distortion and consequently, the result should be seen as a proof of
concept.

The second example contains two gene trees of buttercups based on the
chloroplast JSA region and the nuclear ITS gene[LMH+01]. These two
trees are known to contain reticulate events [HSW06]. In [HKLS05], we
were able to reconstruct a hybridization network by removing problematic
splits from the consensus network shown in Figure 4.5. Fortunately, a later
article [HSW06] provided a method for reducing distortion in phylogenetic
networks, which, when applied to this example, enables Algorithm 4.1 to
provide a simple hybridization history, shown in Figure 4.6.

4.1 Hybridization Networks 41

root

Exserohilum_pedicillatum

Stemphylium_vesicarium

Pleospora_herbarum

Stemphylium_callistephi
Stemphylium_botryosum

Alternaria_solani

Alternaria_porri

Alternaria_dauci

Alternaria_macrospora
Alternaria_crassa

Alternaria_tenuissima
Alternaria_destruens

Alternaria_arborescens
Alternaria_alternata

Alternaria_longipes

Ulocladium_chartarum

Ulocladium_consortiale
Ulocladium_atrum

Ulocladium_botrytis
Alternaria_cheiranthi

Embellisia_indefessa
Alternaria_carotiincultae

Alternaria_radicina

Alternaria_petroselini

Alternaria_selini

Alternaria_smyrnii

Alternaria_brassicicola

Alternaria_japonica

Ulocladium_alternariae

Embellisia_leptinellae

Embellisia_proteae

Embellisia_hyacinthi

Embellisia_novae-zelandiae
Nimbya_caricis

Nimbya_scirpicola

Embellisia_allii

Lewia_infectoria
Alternaria_infectoria

Alternaria_ethzedia

Alternaria_triticina

Figure 4.3: Example of a hybridization network The split network that
represents all splits present in the three gene trees taken from [PB03].

42 Calculating Galled Networks

root
Exserohilum_pedicillatum

Stemphylium_vesicarium

Pleospora_herbarum

Stemphylium_callistephi
Stemphylium_botryosum

Alternaria_solani

Alternaria_porri

Alternaria_dauci

Alternaria_macrospora
Alternaria_crassa

Alternaria_tenuissima
Alternaria_destruens
Alternaria_arborescens

Alternaria_alternata

Alternaria_longipes

Ulocladium_chartarum

Ulocladium_consortiale

Ulocladium_atrum

Ulocladium_botrytis

Alternaria_cheiranthi
Embellisia_indefessa

Alternaria_carotiincultae
Alternaria_radicina

Alternaria_petroselini

Alternaria_selini

Alternaria_smyrnii

Alternaria_brassicicola

Alternaria_japonica

Ulocladium_alternariae

Embellisia_leptinellae

Embellisia_proteae

Embellisia_hyacinthi

Embellisia_novae-zelandiae

Nimbya_caricis

Nimbya_scirpicola

Embellisia_allii

Lewia_infectoria
Alternaria_infectoria

Alternaria_ethzedia
Alternaria_triticina

Figure 4.4: Example of a hybridization network Corresponds to the hy-
bridization network calculated by our algorithm. The network is meant as a proof of
concept and as an example of a reticulation network containing a number of netted com-
ponents (the example contains seven), rather than a biological meaningful application.

4.1 Hybridization Networks 43

Ranemoneus

Rlyallii2

RlyalliiFJ

RlyalliiTB

Rlyallii3

Rverticillatus1
Rverticillatus2

Rnivicola

Rhaastii_piliferus1
Rhaastii_piliferus2

Rbuchananii1
Rlyallii1

Rlyallii4

Rbuchananii4
Rbuchananii2

Rlyallii5

Rhaastii_haastii1
Rgrahamii

Rhaastii_haastii2
Rgrahamii2

Rscrithalis

Rinsignis1
Rinsignis2

Rgodleyanus1
Rgodleyanus2

Renysii2

Renysii3

Rcrithmifolius_crithmifoilus
Rcrithmifolius_crithmifoilus2

Rcrithmifolius_paucifolius

Rgracilipes1
Rgracilipes2

Renysii1

Rpinguis1
Rpinguis2

Rgunnianus

Rsericophyllus4

Rsericophyllus5
Rsericophyllus8

Rsericophyllus2
Rsericophyllus6

Rviridis

Rpachyrrhizus1
Rpachyrrhizus2

Rsericophyllus1
Rsericophyllus3

(a)

Ranemoneus

Rlyallii2

RlyalliiTB
RlyalliiFJ Rlyallii3

Rhaastii_haastii1
Rhaastii_haastii2

Rgrahamii
Rgrahamii2

Rhaastii_piliferus1
Rhaastii_piliferus2Rlyallii4

Rlyallii5

Rbuchananii4

Rlyallii1

Rbuchananii1
Rbuchananii2

Rverticillatus1
Rverticillatus2

Rscrithalis

Rinsignis1
Rinsignis2

Rnivicola

Rcrithmifolius_crithmifoilus
Rcrithmifolius_crithmifoilus2

Renysii3

Rcrithmifolius_paucifolius

Rgodleyanus1
Rgodleyanus2

Rgracilipes1
Rgracilipes2

Renysii1Renysii2 Rgunnianus

Rsericophyllus1
Rsericophyllus2

Rsericophyllus3
Rsericophyllus6

Rviridis

Rpachyrrhizus1
Rpachyrrhizus2

Rpinguis1

Rpinguis2

Rsericophyllus8
Rsericophyllus4

Rsericophyllus5

(b)

Ranemoneus
Rgrahamii2

Rgrahamii
Rhaastii_haastii1
Rhaastii_haastii2

Rgunnianus

Rpachyrrhizus2

Rsericophyllus3
Rsericophyllus2
Rsericophyllus6

Rviridis

Rsericophyllus8
Rsericophyllus5

Rsericophyllus4

Rpinguis1

Rpinguis2

Rscrithalis

Renysii1

Rgracilipes1

Renysii2

Rgodleyanus1
Rgodleyanus2

Rinsignis1

Rinsignis2

Renysii3

Rcrithmifolius_crithmifoilus
Rcrithmifolius_crithmifoilus2

Rcrithmifolius_paucifolius

Rnivicola

Rverticillatus2
Rverticillatus1

Rlyallii1
Rbuchananii1

Rbuchananii4

Rlyallii5
Rlyallii4 Rhaastii_piliferus1

Rlyallii3
Rlyallii2

RlyalliiTB
RlyalliiFJ

Rbuchananii2

Rsericophyllus1

Rpachyrrhizus1

Rhaastii_piliferus2

Rgracilipes2

(c)

Figure 4.5: Buttercup Gene Trees and Consensus Network The top row
shows two gene trees of 46 buttercups, based on the chloroplast ITS region ((a)) and the
nuclear JSA gene ((b)) [LMH+01]. Figure (c) shows the consensus network of all splits in
the two gene trees.

44 Calculating Galled Networks

Ranemoneus
(outgroup)

Rpinguis2

Rpinguis1

Rsericophyllus4
Rsericophyllus5

Rsericophyllus8

Rsericophyllus3
Rsericophyllus2

Rsericophyllus6

Rviridis

Rpachyrrhizus1

Rgunnianus
Rscrithalis

Rcrithmifolius_paucifolius

Rcrithmifolius_crithmifoilus2
Rcrithmifolius_crithmifoilus

Renysii3

Renysii2

Rgracilipes2

Renysii1

Rgodleyanus1
Rgodleyanus2

Rinsignis1
Rinsignis2

Rnivicola

Rverticillatus2
Rverticillatus1

Rhaastii_piliferus2

Rlyallii4

Rbuchananii1
Rlyallii1

Rbuchananii4

Rlyallii5

Rgrahamii
Rhaastii_haastii1

Rhaastii_haastii2
Rgrahamii2

Rlyallii3

Rlyallii2

RlyalliiTB
RlyalliiFJ

Rgracilipes1

Rhaastii_piliferus1

Rpachyrrhizus2

Rsericophyllus1

Figure 4.6: Buttercup Hybridization Network The hybridization network
that can be obtained by first using the FilterSupernetwork method [HSW06], allowing
each split to have, at most, one distortion in both trees; and secondly, applying Algorithm
4.1 to the resulting split network. This example has first been published in [HKLS05]
without the FilteredSuperNetwork method. The result shows clearly that R. Nivicola

is a hybrid arising between R. insignis and R. verticallatus, which is known in literature
[HSW06]. Furthermore, the network indicates two further possible hybridization scenarios:
R. enysii3 as a hybrid arising between R. enysii2 and R. crithmifolius crithmifolius, and
R. pinguis which seems to have arisen from R. secricophyllus and some unknown other
species.

4.2 Recombination Networks 45

4.2 Recombination Networks

In this section, we look at the problem of determining a recombination net-
work that explains a given alignment A of binary sequences which have
evolved under a model of mutation-, speciation- and recombination events.
This problem is of interest in population genetics [GM96; Hei93; Hud83],
were the concept of an ancestor recombination graph was introduced and
studied, particularly from a statistical point of view. In the following, we
make some simplifying assumptions:

1. all sequences have a common ancestor (which is not necessarily true in
population studies),

2. any position in the alignment A can mutate at most once in the network
(known as the “infinite sites” model), and optionally,

3. recombinations are always single crossovers.

Condition 1 is required such that the arising network has a single root
vertex. Condition 2 allows us to interpret every non-constant column in
a given alignment A of binary sequences as defining a split S = A

B
of the

taxon set X, as discussed below. The third condition is not required for our
approach, but an additional filter step can be used in our algorithm to return
only those solutions that have this property. We define a recombination
network as follows:

Definition 4.1 Given an alignment A of binary sequences of length n, a
recombination network N that explains A is a reticulation network, together
with [DGL04]:

1. a labeling γ of all vertices by binary sequences of length n, such that
the leaves of N are appropriately labeled by A,

2. a corresponding labeling δ of each tree edge e by those positions that
change along e, and optionally

3. a corresponding labeling ρ of each reticulation vertex vr indicating the
crossover position for the recombination at vr.

In the approach described here, labeling a reticulation vertex vr with
a crossover position ρ(vr) is redundant, as we can easily infer the possible
crossover positions from δ(pr) and δ(qr). However, if an additional method
is being used to determine an optimal crossover position independently, then
the labeling ρ can be of use.

Let X = {x1, . . . , xn} be a set of taxa and let

A =

∣

∣

∣

∣

∣

∣

∣

∣

a11 a12 . . . a1m

a21 a22 . . . a2m

. . .
an1 an2 . . . anm

∣

∣

∣

∣

∣

∣

∣

∣

46 Calculating Galled Networks

be a corresponding alignment of binary sequences. Any non-constant
column i in A gives rise to an X-split

{xj |aji=0}

{xj |aji=1}
. Let Σ(A) = {S1, . . . , Sk},

with k ≤ m and denote the set of all splits that can be obtained in this way.
We generate a map ρ that maps each column i of A onto the corresponding
split in Σ(A). We say that the split network SN(A) := SN(Σ(A)) represents
A.

Let N be a galled network that represents SN(A). In the following, we
describe how to find a solution for resolving the connecting vertices in N . For
each edge e in the backbone tree BT of N , we denote ρ−1(e) = ∪s∈Σ(e)ρ

−1(s)
as the set of all positions in the alignment that support e. We choose those
intervals I of ρ−1(e) that are maximal compatible as evolutionary blocks. For
each interval I ∈ I, the set of splits Σ(I) = ∪i∈Iρ(i) defines a split network
SN(Σ(I)) that gives rise to a partial ordering of e. We use the set of all such
partial orderings, obtained from I to build the ordering graph OG(e) and to
resolve the connecting vertices. Note that this method does not guarantee a
complete ordering of each edge in the backbone tree.

After we have found a galled network N , we label the vertices and edges
in a two-step approach. First, we define a labeling γBT of the vertices in the
backbone tree by binary sequences and then define a labeling γN that will
completely label the vertices of the galled network N .

Let v ∈ T be the vertex corresponding to some fixed taxon x1 ∈ X. We set
γT (v) as equal to the input sequence a1 associated with x1. Then, we traverse
the backbone tree BT and do the following: let e be the edge that we cross
in the traversal from vertex a to b. Assume that a has already been assigned
a label γBT (a) = w1 . . . wm and that b has not. We obtain γBT (b) = z1 . . . zm

by setting zi = 1 − wi for each column i of A with ρ(i) ∈ Σ(e), and zi = wi

otherwise.

To obtain the labeling γN , of the galled network N , we set the label
γN(vr) of a reticulation vertex vr to the input sequence associated with the
corresponding taxon. We now need to label the connector vertices of N . For
each edge e in the backbone tree BT with connectors α(e), w1, . . . , wk, β(e)
let W C

j denote the set of reticulations connecting to vertex wj. Let δj,k be
equal to one, if for all vertices in W C

j . the label at position k is the same
and zero otherwise. We begin labeling the connectors by w1. To obtain the
label γN(wj) = u1 . . . um of the connector wj let the label of wj−1 and β(e)
be given by γN(vj−1) = y1 . . . ym and γBT (α(e)) = z1 . . . zm respectively. If
yi = zi, we set ui = yi, or if zi 6= yi and δj,k = 1, we set ui = zi; or we set
ui = 2.

The labeling of a connector vertex is not necessarily binary, since the
ordering of the connecting vertices might not be completely resolved. But
any ambiguous labeling is restricted to one edge of the backbone tree. Note
that it is indeed possible to define a binary labeling of the connector vertex.
However, the labeling may result in an increase of crossovers. The labeling
for fully resolved reticulate networks is shown in [HK05].

For any edge e, we define δ(e) as the sequence delta between α(e) and
β(e), that is, the set of all positions in the labeling for which either α(e)
and β(e) are binary and differ, or for which α(e) and β(e) differ and α(e) is

4.2 Recombination Networks 47

ambiguous. The labeling of the edges depends on the root ̺ that is given
but again the dependency only affects one edge of the backbone tree at a
time. The problem here again is that if we have an incomplete ordering of
an edge e in the backbone tree, we might be unable to define exactly when
a mutation actually happened. If this is so, we place the ambiguous states
outside of the reticulation cycle [GEL03; HK05].

Assume that we are given an alignment A of binary sequences of length
m, for a set of taxa X = {x1, . . . , xn}. The following algorithm computes a
recombination network N for A:

Algorithm 4.2 (Construct galled network from binary sequences)
Input: Alignment A of binary sequences
Output: Minimal galled network N that explains A, if one exists, or fail.

Compute Σ(A) and the mapping σ of columns to splits.
Compute the split network SN(A).
Compute a minimal galled network N .
if N contains a solution then

Apply modifications.
Compute the dissolving of the connecting vertices.
Compute the vertex labeling γ for the backbone tree BT
and extend it to the reticulate network N .
For each edge e, set δ(e) to the sequence delta between α(e) and β(e).

else return fail

Example of a Recombination Network

We obtained a set of binary characters from an analysis of a restriction map
from the rDNA cistron [KBR98]. The analysis was performed on 16 species
of the mosquito subfamily Culicinae together with the outgroup Anopheles
albimanus. The analysis scored 26 sites of which 18 were polymorphic. In the
original publication, this dataset was analyzed using a number of different
tree-reconstruction methods with inconclusive results. We included this set
in an earlier publication and were able to obtain a solution for a subset of
the complete taxon set [HK05].

The complete split network is shown in Figure 4.7 (b). The resulting
recombination network is shown in Figure 4.8. In Figure 4.8 (a), we show the
recombination network and the labeling of those edges that are important to
the recombinations. The algorithm was able to distinguish the emergence of a
possible recombination of Aedes triseriatus from the emergence of Armigeres
subalbatus and Aedes triseriatus. In Figure 4.8 (b), we show the labels of the
vertices involved in the recombination scenarios.

48 Calculating Galled Networks

Aedes albopictus 1111010101 0100010101 010010

Aedes aegypti 1111010100 0100010101 000010

Aedes seatoi 1111010101 0100010101 010000

Aedes flavopictus 1111010101 0100010101 010010

Aedes alcasidi 1111010101 0100010101 010000

Aedes katherinensis 1111010101 0100010101 010000

Aedes polynesiensis 1111010100 0100010101 010010

Aedes triseriatus 1011010100 0110010101 000000

Aedes atropalpus 1011010100 0100010111 000010

Aedes epactius 1011010100 0100010111 000010

Haemagogus equinus 1011010100 0110010101 010000

Armigeres subalbatus 1011010100 0100010101 000000

Culex pipiens 1111011100 0100011101 001011

Tripteroides bambusa 1111011100 0100010101 000010

Sabethes cyaneus 1111010100 1100010101 010000

Anopheles albimanus 1101110110 0101110101 110100

(a)

10

25

2

22

13

root

Anopheles albimanus

Aedes seatoi
Aedes alcasidi

Aedes katherinensis

Aedes flavopictus
Aedes albopictus
Aedes polynesiensis

Tripteroides bambusa

Culex pipiens

Aedes aegypti
Aedes epactius

Aedes tropalpus

Armigeres subalbatus

Aedes triseriatus

Haemagogus equinus

Sabethes cyaneus

(b)

Figure 4.7: Binary Alignment and Split Network In (a), we show an align-
ment of binary sequences obtained from the restriction maps of the rDNA cistron (length
≈ 10 kb) of twelve species of mosquitoes using eight 6 bp recognition restriction enzymes
[KBR98]. In (b), the split network computed from the data in (a) is shown. Edges of
incompatible splits are labeled by the corresponding mutation positions.

4.2 Recombination Networks 49

19

22

2, 13, 25
2

2, 25

2510

22, 25

22

13

22

7

2

25

10

root

Anopheles albimanus

Aedes seatoi
Aedes alcasidi

Aedes katherinensis

Aedes flavopictus

Aedes albopictus
Aedes polynesiensis

Tripteroides bambusa

Culex pipiens

Aedes aegypti

Aedes epactius

Aedes tropalpus

Armigeres subalbatus

Aedes triseriatus

Haemagogus equinus

Sabethes cyaneus

(a)

11110101010100010101010010

root

Anopheles albimanus

Aedes seatoi
Aedes alcasidi

Aedes katherinensis

Aedes flavopictus
Aedes albopictus

Aedes polynesiensis

Tripteroides bambusa

Culex pipiens

Aedes aegypti

Aedes epactius Aedes tropalpus

Armigeres subalbatus
Aedes triseriatus

Haemagogus equinus

Sabethes cyaneus

11110101010100010101010000

10110101000100010101000010

10110101000100010101000000

10110101000110010101000000

11110101000100010101000010

11110101000100010101010000
10110101000100010101010000

10110101000110010101010000

(b)

Figure 4.8: Example of a Recombination Network In (a), we show the
recombination network calculated from the data shown in Figure 4.7. The edges involved
in a possible recombination are labeled with their corresponding mutations in the align-
ment. In (b), we labeled the vertices involved in the possible recombinations with their
corresponding sequences.

50 Calculating Galled Networks

The second example is taken from a study of gene histories of Fusarium
gaminearum, the fungus causing wheat scab [KOC00]. The analysis con-
tained 28 sequences of the TRI101 protein with a length of 1336 bp. The
sequences cluster into seven geographical regions. Prior phylogenetic recon-
struction as well as parsimony analysis showed strong evidence for intra-genic
recombination within strain 28721. We generated a binary representation
of the sequences using a standard encoding method and then applied our
method to the resulting binary sequences. The resulting recombination net-
work is shown in Figure 4.9 (b), showing strain 28721 as a recombination
of the Asian (strains 13818, 6101, 26156 and 28720) and African (strains
29010, 28436 and 28723) clusters.

root

O13393

26754
26752
26755

28585
2903
28718

29010
28436

28723

28721

13818
6101
26156

28720

28439

6394
5883

13383
28336

28063
29169

25797
29148

29105
29011
29020
26916

(a)

root

O13393

26754
26752
26755

28585
2903
28718

29010
28436
28723

28721

13818
6101

26156
28720

28439

6394
5883

13383
28336

28063
29169

25797
29148 29105

29011
29020
26916

(b)

Figure 4.9: Example of a Recombination Network In (a), we show the split
network of 28 strains of the TRI101 gene of Fusarium gaminearum. In (b), we show the
reconstructed recombination network with strain 28721 as a recombination of the Asian

and African clusters.

Chapter 5

Drawing Reticulate Networks

Phylogenetic networks are graphs representing phylogenetic relationships be-
tween different taxa, and are usually employed when a tree is not an adequate
representation of the data.

Because of the complex nature of phylogenetic networks, not only their
calculation but also their visualization is a challenging problem. In general,
the visualization methods for phylogenetic trees are based upon the hierarchi-
cal structure of the trees; unfortunately, phylogenetic networks do not feature
this structure. Furthermore, methods used for visualizing phylogenetic trees
graphically display characteristics of the phylogenetic information. An opti-
mal visualization of reticulate networks should preserve these characteristics
as much as possible.

The software currently available for the calculation and analysis of retic-
ulate networks consists of a variety of basic implementations of algorithms
developed to solve the computational task of network reconstruction [DGL04;
GB05; HK07; HKLS05; HK05; SH05]. Most of the software has only com-
mand line interfaces which typically lack an appealing visualization of the
results. It is, however, essential, for the better integration of reticulate net-
works into standard phylogenetic analysis, to provide easy access to those
methods for biologists and an appealing visualization of the results.

SplitsTree 4 [HB06] incorporates a variety of methods for the calculation,
visualization and interpretation of phylogenetic trees and implicit phyloge-
netic networks. Two main advantages of SplitsTree 4 are the graphical user
interface (GUI) and the integration of algorithms via an interface-driven
class loader, resulting in an extendable plugin architecture. Furthermore,
SplitsTree 4 allows the user to edit the graph interactively and change edge
lengths, edge widths, edge labels, vertex labels, vertex positions and colors.
These features make SplitsTree 4 very suitable for integrating of complex
graphs such as phylogenetic networks, as can be seen, for example, from the
integration of split networks.

In this section, we present an extension of SplitsTree 4 that enables the
program to handle reticulate networks. The extension solves two important
problems: the visualization of these networks and an efficient integration of
reticulate networks into SplitsTree 4.

52 Drawing Reticulate Networks

5.1 Basic Notations

Let us first recapitulate some notation from Chapter 2.

A rooted tree T has a natural ordering of the vertices, such that v ≤ v′ if
v lies on the path from the root to v′. If v ≤ v′, we say that v is an ancestor
of v′ and v′ is a descendant of v. For any set of vertices V , a vertex v is called
minimal with respect to V if for all v′ in V , it holds that v ≤ v′. For any edge
e, we use α(e) and β(e) to denote the source and target of e, respectively.

It follows from the definition of a rooted reticulate network that each
reticulation r ∈ VR is contained in one or more cycles in the corresponding
undirected graph of the form C = (r, p(r), w1, e1, . . . , ek−1, wk, q(r), r), with
wi ∈ V and ei ∈ E \ {p(r), q(r)} for all i. (Note that additionally, r can also
be contained in one or more cycles that do not contain p(r) and/or q(r)).
We say that two reticulations r, r′ ∈ VR are dependent if a cycle that contains
both r and r′ exists.

For any reticulation vertex r, let p(r) and q(r) denote the two associated
reticulation edges. Furthermore, let vr

p and vr
q denote the two ancestors

of r with respect to p(r) and q(r). The lowest single ancestor lsa(r) of a
reticulation r is the minimum of all vertices in V that is connected to r by
two paths p and p′ that share no vertices except for lsa(r) and r.

5.2 Drawing Reticulate Networks

One important approach to drawing trees is the equal angle algorithm which
was developed by Meacham (see [Fel04]). It guarantees that edges do not in-
tersect and the runtime of the algorithm is linear with respect to the number
of leaves. Our algorithm for visualizing recombination networks generalizes
this algorithm. To be able to draw reticulate networks, our algorithms adds
an ordering step at each vertex, which chooses an optimal ordering of the
descending edges, thereby minimizing the number of crossings between retic-
ulation edges and other edges. It can easily be altered for use with any
drawing algorithm for trees.

We will start out with a description of the equal angle algorithm and
then define some basic properties of the optimization. Finally, we will give
solutions to the problem of minimizing crossing edges in a drawing of a
reticulate network, and the optimal placement of reticulation vertices.

The equal angle algorithm is a recursive algorithm that starts at an in-
ternal vertex of a tree. For each subtree connected to this vertex, it assigns
an angle proportional to the fraction of leaves it contains. In the next step,
it assigns, to each subtree, a sector of the circle corresponding to its angle
and draws the edge to the subtree in the middle of the sector. It places
the sector of the subtree in a way that the sector is centered on the end of
the branch and the branch is pointing at the bisector of the angle. It then
recurses to the starting vertex of the subtree and assigns each newly discov-
ered subtree a fraction of the angle proportional to its size. Each subtree is
then placed in the sector of the starting vertex. The recursion is repeated
until the algorithm has assigned angles to each branch of the tree. The only

5.2 Drawing Reticulate Networks 53

modifications for rooted trees are the explicit starting point at the root of
the tree and that only a fraction of the cycle is used to draw the tree. For a
detailed description of the algorithm, see [Fel04].

The rooted equal angle algorithm is not directly applicable to a reticulate
network since for each reticulation, the algorithm has to decide which of the
reticulation edges it wants to use; either choice may be suboptimal. The idea
behind our approach is to use neither of them. The influence of a reticulation
upon the graph structure is bounded by the reticulation and its lowest single
ancestor, so therefore we decided to define an auxiliary edge between those
two vertices and let the algorithm to use the auxiliary edges for the layout
of the graph. When the algorithm reaches a vertex, each descending edge
is checked for its status (being either a tree-edge, an auxiliary-edge or a
reticulation-edge), and only tree- and auxiliary-edges are considered in the
drawing process.

With these modifications to the rooted equal angle algorithm, it is possible
to visualize reticulate networks, but such a visualization is not very appealing.
To obtain an improved method, we will address two key problems. The first
problem is the crossing of reticulation edges: even though it can not always
be avoided, the number of such events should be minimized. The second
problem is that the auxiliary edges are artifical edges and their optimal edge
length must be determined. In the following, we will show solutions to these
two problems.

Minimizing crossing edges

Edges that cross each other are undesirable when drawing a graph and their
number should therefore be minimized. It is well known that solving this
problem is, in general, computationally hard [MGS76]. The equal angle
algorithm assures that we only have to deal with reticulation edges crossing
other edges. Furthermore, the construction of the auxiliary edges implies that
edges that can be crossed by the reticulation edges are descendent edges
of the lowest single ancestor of the reticulation. The optimization starts
at the root of the networks and optimizes the arrangement of the directly
descending vertices. It then continues the optimization iteratively at each
directly descending vertex in the determined order given and continues until
it has optimized all placements.

Let V T
v be the set of tree vertices directly below a vertex v and let V I

v be
the set of reticulation vertices connected to v by auxiliary edges. We say that
a tree path p(v, v′) from a vertex v to a vertex v′ exists if v′ is a descendant of
v and every edge in p(v, v′) is either a tree- or auxiliary-edge. Furthermore,
we say that a reticulation r is easily reachable from a vertex v if a tree path
p(v, vr

p) exists. Finally, let Rv be the set of all reticulations that are easily
reachable from the vertex v.

The set Rv can be divided into those reticulations r for which v = lsa(r),
which we will again denote by RG

v ; v is a descendant of lsa(r), denoted by
RD

v ; and v is an ancestor of lsa(r), denoted by RA
v . If v is the root, RD

v is
empty. The set RD

v can be divided further. Since for a reticulation r in RD
v ,

the vertices directly below lsa(r) have been previously sorted, we can denote

54 Drawing Reticulate Networks

R
D

v as the set containing those r in RD
v for which r has a lower rank than

the directly descending vertex of lsa(r) leading to v via a tree path.

f

a

b

c

d

e

g

h

i

r_1

r_2 r_3

r_4

r*

v

v*
(a)

f

a

b

c

d

e

g

h

i

r_1

r_2 r_3

r_4

r*

v

v*
(b)

Figure 5.1: Example of the Layout Optimization Figure (a) shows an
reticulate network. The reticulation edges of the network are shown as dashed lines.
Removing the reticulation edges and integrating the auxiliary edges into the networks
leads to a tree structure, as shown in (b) (auxiliary edges are drawn as dashed lines). The
set of easily reachable edges Rv of the vertex v contains the reticulations r1, r2, r3, r4 and

r∗. The set RD
v only contains r∗ and is equal to R

D

v . The placement of r∗ has cost 1 since
the reticulation edges only cross the edge that leads to leaf g. The placement of r4 has
cost 2, since the reticulation edges to the right crosses r1 and r3.

The aim of our optimization is to find a linear arrangement of the vertices

5.2 Drawing Reticulate Networks 55

in V T
v ∪ V I

v such that in the subtrees of the vertices in V T
v ∪ V I

v , the number
of reticulation edges intersecting with tree edges is minimized. We define
the optimal linear arrangement graph OLAv(V, E) of a vertex v as one that
contains a vertex representative for any vertex in V T

v ∪V I
v . We add a weighted

edge between any two vertices (vi, vk) in V and set the weight wik of the edge
to |RD

vi
∩ RD

vk
|. More formally:

Problem 5.1 With

xik =

{

1 if vertex i takes position k,
0 otherwise,

∀i, k

minimize

∑

(i,j)∈E

wijxikxjl |k−l|+
∑

i∈V

|RD
vi
∩R

D

n | xik |k|+
∑

i∈V

|RD
vi
∩(RD

n \R
D

n)| xik | |V |−k|

subject to
∑

i∈(V)

xik = 1 and
∑

k∈{1,...,|V |}

xik = 1, ∀i, k

The optimal linear arrangement problem is well known to be NP−hard
[GJ83]. Nevertheless, this arrangement problem is, in general, less complex
than minimizing all crossing edges at once. Interestingly, a couple of ad-
ditional constraints exist that we may apply to the ordering, leading to a
“greedy” solution that works well in most cases. One constraint that can
place upon the structure is that any reticulation r should be positioned be-
tween vr

p and vr
q in the ordering. Consequently, one should place vr

p and vr
q

before placing r.
Another constraint represents the dependency of the reticulations upon

each other. For any pair of reticulation r, r′ in RG
v , we say that r is less than r′

if and only if a tree path p(r, vr′

p) exists. To meet the first restriction, one has
to place r before one can place r′. The graph that can be constructed from
the relations between the reticulations must be acyclic, since the reticulation
network is acyclic. Consequently, one can use a standard topological sorting
algorithm to obtain a linear ordering Ordl(R

G
v) for the reticulations in RG

v .
The optimization algorithm iterates through the ordering and at each

reticulation r, it first places vr
p and vr

q , if necessary, and then r. If all retic-
ulations are placed, the algorithm processes all descending tree edges that
have not yet been placed. At each step, the algorithm places the vertex at
the position that minimizes the score given in Problem 5.1. After all vertices
have been placed in the linear arrangement, the result is returned to the main
method.

56 Drawing Reticulate Networks

Optimal placement for reticulation vertices

Having calculated the angle and optimal arrangement for each edge, we have
to place the vertices. Tree vertices can be placed in the same way as in the
standard equal angle algorithm. But since auxiliary edges do not come with a
given length, the algorithm has to calculate an optimal placement for each of
the reticulation vertices. Such a placement has to incorporate the conditions
of the equal angle algorithm, otherwise one might face unnecessary crossings
between edges. Note that there are two cases for which the algorithm has to
consider different placement methods. In the first case, the vertices vr

p and vr
q

of a reticulation r are both different from the lowest single ancestor lsa(r);
in the second case, one of them is equal to lsa(r).

In both cases, the algorithm places the reticulation vertex r on the bisec-
tor of the sector assigned to its auxiliary edge. In the first case, the distance
between r and lsa(r) should be larger than the minimum distance between
lsa(r) and the line l(vp, vq), indicating that r is a descendant of vp and vq.
In other words, the algorithm assumes that the angles vqvpr and vpvqr are
positive. In the second case, assume that vq is equal to lsa(r). The algo-
rithm first calculates the point on the bisector rt that has the same distance
to lsa(r) as vp and then ensure that the angle between rtvpr is positive. We
added an option to the algorithm so that the user can specify the (maximum)
value of this angle; the standard value is 15◦.

5
.2

D
ra

w
in

g
R

e
tic

u
la

te
N

e
tw

o
rk

s
5
7

root

Alternaria_smyrnii

Alternaria_carotiincultae
Alternaria_radicina

Alternaria_petroselini

Alternaria_selini

Embellisia_novae-zelandiae
Embellisia_hyacinthi

Embellisia_proteae
Embellisia_leptinellae

Embellisia_allii

Nimbya_scirpicola
Nimbya_caricis

Lewia_infectoria
Alternaria_infectoria
Alternaria_ethzedia
Alternaria_triticina

Exserohilum_pedicillatum

Stemphylium_botryosum

Stemphylium_callistephi

Pleospora_herbarum
Stemphylium_vesicarium

Alternaria_japonica
Ulocladium_alternariae

Alternaria_brassicicola

Alternaria_cheiranthi
Embellisia_indefessa

Ulocladium_consortiale
Ulocladium_atrum
Ulocladium_botrytis

Ulocladium_chartarum

Alternaria_dauci
Alternaria_macrospora
Alternaria_crassa

Alternaria_solani
Alternaria_porriAlternaria_tenuissima

Alternaria_destruens
Alternaria_arborescens

Alternaria_alternata

Alternaria_longipes

Figure 5.2: Example of the drawing algorithm The figure shows the drawing of a reticulation network that we recently published [HK07]. It is
based on three gene trees described in [PB03].

58 Drawing Reticulate Networks

5.3 Integration of Reticulate Networks into

SplitsTree 4

We started to integrate reticulate networks into SplitsTree 4 in our RECOMB
2005 article [HKLS05]. Originally, such methods were squeezed into the
existing data structures within SplitsTree 4. The program itself is built
around a group of core classes, each one representing a different type of
information. The standard file format of SplitsTree 4 is the Nexus [MSM97]
file format and each core class has its own Nexus representation (called a
Nexus class). Consequently, developing a Nexus representation of reticulate
networks is essential for their integration into SplitsTree 4.

The integration of a new core class into SplitsTree 4 is a complex process.
Most of the functionality had to be extended to support this new class. One of
the more interesting elements of this extension is the graphical user interface
in the Algorithm Window of the SplitsTree 4 program.

The Reticulate Nexus block

To build a Nexus representation for a reticulate network, one needs to find
an efficient way to encode it as a string. We decided to use a version of the
extended Newick (eNewick) [MM06] format. In general, the eNewick format
allows labels to be present up to two times within the network. A label is
allowed to appear once as a leaf and once as an internal label. Whenever a la-
bel occurs twice, the leaf is identified with the internal vertex, thus providing
a network with vertices of indegree two.

A lot of research has lately been focused on proving some interesting de-
composition theorems [GB05; HK07; HKLS05] for reticulate networks (see
also Chapter 3). The general motivation of these theorems is that the calcu-
lation of a reticulate network with a minimal number of reticulation events
from some given information is hard [WZZ01; BS07]. The idea is to decom-
pose each network into its two-connected components and to calculate the
minimal solutions of each two-connected component separately. Following
the idea of decomposing reticulate networks, each two-connected component
may have several solutions and the possible combinations of these solutions
grow exponentially, which is a problem if the number of two-connected com-
ponents is large. Consequently, we decided that the Nexus representation of
the network needs to reflect the two-connected components.

Note that any reticulate network contains either a two-connected compo-
nent or a tree like element, that contains the root. We call this particular
element the root component. The two-connected components are called net-
ted components and for each netted component, a number of solutions may
exist. Any connected component that is not a two-connected component is
a tree component. Each tree component may appear more than once within
the possible configurations. The way in which these three basic elements are
combined is left to the user.

We now describe the Nexus notation for reticulate networks; the sche-
matic of this notation is shown in Figure 5.3:

5.3 Integration of Reticulate Networks into SplitsTree 4 59

Begin Reticulate;
Dimensions

NTax = number-of-taxa
NRootComponents = number-of-root-components
NNettedComponents = number-of-netted-components
NTreeComponents = number-of-tree-components;

[Format

[ActiveRoot = position-of-active-root-component]
[ActiveNettedComponents =

positions-of-active-netted-components]
[ShowLabels = [Internal] [TreeComponents]

[NettedComponents]]
]
TreeComponents

[name = tree-component-specification;]
[name = tree-component-specification;]
...

NettedComponents

[netted Component name =]
[name = netted-component-specification;]
[name = netted-component-specification;]
...

[netted Component name =]
[name = netted-component-specification;]
[name = netted-component-specification;]
...

...
RootComponents

name = root-component-specification;
name = root-component-specification;
...

End;

Figure 5.3: Reticulate Nexus Block Schematic Shown is a schematic of the
Reticulate nexus block as it its implemented in SplitsTree 4. The block is divided into
three parts: Dimensions contains all informations about the dimensions of the reticulate
network; Format is an optional element that describes the configuration of the reticulate
network; and TreeComponents, NettedComponents and RootComponents contain the string
representations of the reticulate network.

In general, one needs to save the components containing the root in the
RootComponents section. Any such string should either be formatted in
standard eNewick, in Newick format where any two leaves with the same
label are identified by the name of a tree component, or in Newick format
where at least one leaf is labeled with the name of a netted component.

The NettedComponents section contains a list of all two-connected

60 Drawing Reticulate Networks

components. Each one must be identified by a unique name and there must
be at least one string representation given for each one . Any such string
must either be formated in eNewick, or in Newick format where any two
leaves with the same label are labeled with the name of a tree component.

The TreeComponents section contains a list of uniquely named strings
in Newick format, where leaves can be labeled with the name of netted com-
ponents.

In the Dimensions section, the dimension of the Nexus block is given, i.e.
the number of taxa (NTax), RootComponents (NRootComponents), Net-
tedComponents (NNettedComponents) and TreeComponents (NTree-
Components).

In the optional Format section, the details about the representation of
the network are given. The ActiveRoot must be a positive integer that
is less than NRootComponents and specifies the RootComponents that
should be used. The ActiveNettedComponents must be a list of integers,
separated by a blank character, of length NNettedComponents specifying,
for each netted component, which netted component specification should be
used. The ShowLabels variable can be used to label internal vertices by
the labels given in the NRootComponents, ActiveNettedComponents
or TreeComponents sections.

Interactive Exploration of a Result

Another advantage of SplitsTree 4 is the interactivity between the program
and the user. Because of the Reticulate class, this interactivity can be opti-
mally used for reticulate networks.

In SplitsTree 4, specific parameters for phylogenetic analyses are config-
ured through the Algorithm Window. Besides the algorithms, this window
provides the functionality to modify the underlying data. We augmented
the window with the new Reticulate tab. In addition to the default sub-tab
Method, we implemented the sub-tab Filter. It allows the user to change the
root component and the configurations for each netted component interac-
tively. The user can browse through the set of solutions, and changes in the
configuration are directly visualized on the main view.

Chapter 6

A Plugin Management System
for Java Software

The development of a management system for plugins was motivated by our
experience with plugins in SplitsTree 4.

SplitsTree 4 ([HB06]) provides a framework for the calculation and vi-
sualization of phylogenetic trees and networks. It is programmed in Java
and has a command line interface as well as a graphical user interface. The
program contains a vast variety of phylogenetic methods such as evolution-
ary distance methods, maximum likelihood distances, tree building methods,
split-network methods and visualization algorithms. It allows the user to
import and export data in different file formats and to save visualizations
in various graphics formats. Another advantage of SplitsTree 4 is that all
algorithms are integrated into its framework architecture via an interface-
driven class loader, making it an easy task to incorporate new methods into
the program. All methods in SplitsTree 4 implement a specific interface that
allows the program to identify plugins dynamically and to integrate them
into the framework at runtime.

One of the main problems associated with plugins is in their distribution.
The only possibility for SplitsTree 4 to distribute new plugins so far, was to
release a new version, containing these. Every user who wanted to use newly
developed methods within SplitsTree 4 had to install the new version of the
software. This approach essentially contradicts the design of the software,
which allows plugins to be integrated into the software at runtime. This
seems to be one reason why only a few plugins have been developed for this
application by researchers outside our own research group. Through personal
communication it became apparent that there is a community of developers
who would like to implement new plugins for SplitsTree 4 and a community
of users who would appreciate new methods to be integrated dynamically
into the application.

Since most of the applications developed in our group allow plugins to be
dynamically integrated at runtime, it became desirable to develop a general
system which could be easily adapted for different programs. The design of
the developed system has been adapted especially for this purpose and needs
only minimal interaction with the underlying software. In this chapter, we
present this generic concept and explain how it has been integrated into

62 A Plugin Management System for Java Software

SplitsTree 4.

The plugin management system consists of a defined format in which
plugins are programmed, a central submission facility for new plugins, a
remote access to the centrally stored plugins, and the possibility of sharing
plugins privately. The general concept of our solution is that a plugin consists
of a particular core class (in the case of SplitsTree 4, this is a Transformation)
and a set of Java libraries. The developer has to use our software (the Plugin
Creator) to create a Plugin Archive from these files. The Plugin Archive can
then be submitted to our central plugin database (via a web interface) or be
distributed directly to the software users. A software user has to download
the centrally stored plugins (via the Plugin Overview or the web page) or
provide Plugin Archives, to integrate them.

The first section of this chapter describes the design and layout of the
management system. The second section focuses on the implementation de-
tails and the last section describes the integration into SplitsTree 4.

6.1 The Management System

The management system was designed on the basis of a use-case analysis.
The use-case diagram for the system is shown in Figure 6.1. Basically, two
types of users can be distinguished; the developer and the software user,
where the developer extends the software user. Furthermore, there are three
phases that can be distinguished: the Plugin Development, the Plugin Dis-
tribution and the Plugin Usage phase. The Plugin Development phase is
restricted to the developer. In the Plugin Distribution phase, the developer
acts as provider and the software user as customer. In the Plugin Usage
phase, the software user integrates the plugin into the application. The sys-
tem provides software for the support of all three phases and consequently
presents a complete system for managing plugins.

To adjust the management system to the users needs optimally, we first
have to implement the software concept Plugin. Based upon the software in
our research group that uses plugins, it is assumed that a plugin contains a
core class (e.g. implementing a Java interface). A plugin may also contain
a set of Java libraries (used by the central class) and source files. In ad-
dition to these software elements, a plugin should also contain information
about the author, the version and a description. In this context, we have to
distinguish between information that is identical in all versions of a plugin
(name, author, description etc.) and information that changes from version
to version (version number, supported software versions etc.). These two cat-
egories of information are associated with each other, but can be addressed
independently. Consequently, we allocate a plugin to one category represent-
ing the general plugin information and another category containing version
specific information. To ensure a smooth transfer of information between
the different phases of the management system, the integrity of a plugin has
to be guaranteed. To do so, we have defined the structure Plugin Archive
and developed the Plugin Creator application. The Plugin Creator should
be used at the end of the Plugin Development phase to generate a Plugin

6.1 The Management System 63

the developer must be a

registered user of the

webpage to upload Plugin

Archives to the Plugin

Manager Webpage

Plugin Creator

Plugin Overview

Developer

User

Plugin Development

Plugin Usage

Plugin Distribution

Plugin Manager Webpage

generate Plugin Archive

private Communication

verification

design implementation

fail

central database

success

receives Plugin Archive

send back to developer

obtains Plugin Archive

manage Plugin

provides Plugin Archive

provides Plugin Archive

provides Plugin Archive

<< uses >>

<< uses >>

provides Plugin Archive

Figure 6.1: Use-Case Diagram of the Plugin Management System
There are two different kinds of users: the developer and the application user. Further-
more, the system can be divided into three phases: the Plugin Development phase, the
Plugin Distribution phase and the Plugin Usage phase. The Plugin Development phase is
restricted to the developer, and at the end of this phase, the developer obtains a Plugin
Archive. During the Plugin Distribution phase, the developer can either submit his Plugin
Archive to the central database, or distribute it directly to the user. The user can access
the plugin in the Plugin Usage phase by either providing a Plugin Archive to to the Plugin
Overview or by using the application to download plugins from the central database.

Archive from the programmed components.

The Plugin Creator is an application that allows the developer to integrate
all necessary information and classes of the plugin into a Plugin Archive. The
Plugin Creator is a stand-alone application that is distributed with Splits-
Tree. The two main options in the Plugin Creator are the creation of a new
plugin or the creation of a new version of an already installed plugin. At the

64 A Plugin Management System for Java Software

startup, the Plugin Creator will ask for general information (e.g. the plugin
name, the name of the developers, email contact, a short description of the
plugin and the associated publication). When sufficient information has been
given, the application proceeds to collect the plugin main class, additional
Java archives and the source files. Finally, the Plugin Creator generates a
Plugin Archive in a designated folder.

After the Plugin Development phase is completed, the Plugin Distribution
phase begins. There are two ways of distributing plugins: the official and the
private way.

For the official way, we have updated the SplitsTree 4 homepage and
implemented an area that allows developers to submit Plugin Archives or to
manage Plugin Archives that have already been submitted. A developer that
would like to submit a new plugin has to register first. After access has been
granted, the developer can start uploading Plugin Archives. Furthermore,
the developers can discontinue their older or no longer supported plugins,
change information of already uploaded plugins, and/or change their personal
information.

The private way of distributing plugins is implemented in our software,
but should only be used for developmental purposes and not as a regular
method of distribution. One apparent problem that is associated with this
way of distribution, is the consistency of plugin names and versions. The up-
load of a Plugin Archive into the central database allows a consistent associ-
ation of all elements of a plugin. The version-specific information is uniquely
associated with the general information and consequently, new versions can
always be uniquely linked with their general information. This can not be
guaranteed in the unregistered case. Accordingly, the Plugin Creator distin-
guishes between both cases. However, distributing a developmental version
via the central database does not seem appropriate and consequently, the
system supports private distribution.

The last phase in the system is the Plugin Usage. A natural dependency
exists between the application of the management system and the content
application. To minimize the dependency between these two elements, plug-
ins are installed into a local folder that is chosen by the content application.
The content application has to integrate the plugins that are stored in this
local folder dynamically (for an example, see Section 6.3).

The Plugin Overview is the application in the management system that
is responsible for the local administration of the plugins. This program not
only provides the means for the administration, but also for the integration
of new plugins. All available plugins and versions are synchronized to a local
plugin database upon request. The local plugin database is stored in a flat
file and accessed via a HSQLDB driver (http://hsqldb.org). The user can
choose to install, remove, upgrade or downgrade any available plugin from an
interactive list. If a plugin is to be installed, the Plugin Manager downloads
the necessary Plugin Archive from the central database to a local folder and
deploys the files. Alternatively, the user may provide a Plugin Archive to
the Plugin Overview via a file chooser. Any up- or downgrade will erase the
installed version of the plugin and deploy the new version. The new plugins
will be available to the user directly after installation, without restarting

6.2 Implementation Details 65

SplitsTree.
Since, in general, company networks block most network ports, we had to

develop a solution that provides a connection to the central database using a
port that is in typically open, or can be used with a proxy. The port that is
especially suited for this is the HTTP port. Therefore we have implemented
a HTTP-tunneling-script that provides access to the central database via an
encrypted connection through HTTP.

6.2 Implementation Details

The implementation of the management system has to include a set of prop-
erties that can be deduced from the use-case diagram shown in Figure 6.1.
For example, the management of plugins installed by an user is implemented
using a local database. This database must be synchronized to the central
database that is installed on a web server. Furthermore, the local database
must distinguish between plugins added via the web server and those added
from a local Plugin Archive.

The central plugin database is a MySQL database and is accessed via a
MySQL Connector (http://www.mysql.com). The local plugin database is
stored in a flat file and accessed via a HSQLDB driver (http://hsqldb.org).
Both databases contain two tables, Plugin and Version. Every entry in
the Version table is associated with exactly one entry in the Plugin table.
Whenever an entry is written into the Plugin or Version table of the central
database, an unique registration identifier is generated. Plugins in the user
database that contain a registration identifier can be identified as plugins
from the central database. The central database contains a third table User,
for the management of the users of the developer web-site.

The access to the databases is controlled by the database handles. Each
database has its own database handle, which implements the interface data-
base.DBHandle (see Figure 6.2). The methods that are implemented by the
interface can be divided into two groups:

• those methods for the access to the database: openDB() and closeDB();
and

• those methods that handle requests to the database: getPreparedState-
ment(), executeSQLStatement() and executeSQLQuery().

The method getPreparedStatement() is used to avoid SQL-injections, the
method executeSQLStatement() executes a statement and returns true if the
execution was successful, and the method executeSQLQuery() executes a
query and returns the result in a java.sql.ResultSet. In addition to the com-
pulsory methods of the interface, the database handle for the local database
database.HSQLHandle implements the methods createDB(), for the initializa-
tion of the local database, and the method syncOfflineDBWithOnlineDB(),
to synchronize the local database with the central database.

66 A Plugin Management System for Java Software

For each table in the databases, we have created a Java class represent-
ing an entry in the table, i.e. database.PluginData for the Plugin table,
database.VersionData for the Version table and database.UserData for the
User table. Each of these classes implements the interface database.DataSet
which provides the fundamental functions isNew(), updateIntoDatabase(),
writeIntoDatabase(), delete() and toString(). Additionally, the classes Plug-
inData and VersionData implement the interface IODataSet, which describes
the necessary methods for the synchronization between the different elements
of the management system, e.g. the input and output handling. The meth-
ods read() and readHTML() initialize the object from a file and the methods
write() and writeHTML() write the object to a file. Additionally, the Plugin-
Data class, implements the methods getVersions(), which extracts all entries
from the Version table that are associated to the PluginData object; and
getInstalledVersion() to obtain the VersionData object representing the in-
stalled version of the plugin. The VersionData class implements the method
isValid(), which returns true if the version is supported by the content appli-
cation; and the static method isValidVersion(), which controls if the version
is in a format that is supported by the software. The UserData class is only
used by the central database and is used for the management of the users
of the web-site. It implements the static methods checkPassword(), which
returns true if the password corresponds to the user; createPassword(), which
creates a password of a given length; and encryptString(), which encrypts a
given string using a sha1 encryption method [NIS95].

To facilitate the management of a plugin and its available versions, we
have implemented the additional class data.Plugin, which holds exactly one
PluginData and one VersionData object. Furthermore, it contains all infor-
mation about files included in the Plugin Archive of the version (the primary
class, Java libraries and source files). Accordingly, the class implements the
necessary functionality to generate a Plugin Archive (zip()). It can also re-
trieve all information contained in a Plugin Archive (readZipFile()). The
method removeOfflinePluginsWithSameName() removes all plugins from the
given database which are not registered in the central database and have the
same name. Finally, the class implements the two static methods installPlu-
gins() and uninstallPlugins() to install and un-install a given list of plugins
into/from a given directory.

6
.2

Im
p
le

m
e
n
ta

tio
n

D
e
ta

ils
6
7

+isNew(db : DBHandle) : boolean

+updateIntoDatabase(db : DBHandle) : boolean

+writeIntoDatabase(db : DBHandle) : void

+delete(closeDB : boolean, db : DBHandle) : void

+toString() : String

<<Interface>>

DataSet

+isValid(mainProgramVersion : String) : boolean

+isValidVersion(versionString : boolean) : boolean

VersionData

+isValid(mainProgramVersion : String) : boolean

+isValidVersion(versionString : boolean) : boolean

+checkPassword(userName : String, password : String, db : DBHandle) : bo...

+generatePassword(length : int) : String

+encryptString(s : String) : String

UserData

+getVersions(closeDB : boolean, db : DBHandle) : LinkedList<VersionData>

+getInstalledVersionData(closeDB : boolean, db : DBHandle) : VersionData

PluginData

+openDB()

+closeDB()

+getPreparedStatement(sql : String) : PreparedStatement

+executeSQLStatement(stmt : PreparedStatement) : boolean

+executeSQLQuery(stmt : PreparedStatement) : ResultSet

+closeStatement() : void

<<Interface>>

DBHandle

MySQLHandle

+createDB() : void

+syncOfflineDBWithOnlineDB(mainProgramVersion : String) : void

+getAllOfflineBDPluginData() : LinkedList

HSQLHandle

web database

local database

+zip(dest : String, comment : String) : void

+readZipFile(zipFile : File) : void

+removeOfflinePluginsWithSameName(db : DBHandle) : void

+installPlugins(toInstall : HashMap, db : DBHandle, po : PluginOverview) : boolean

+uninstallPlugins(toUninstall : HashMap, db : DBHandle, po : PluginOverview) : void

Plugin

+InstallPlugins() : AbstractAction

+UninstallPlugins() : AbstractAction

+UpdateListOfPlugins() : AbstractAction

+AddOfflinePluginsToDatabase() : AbstractAction

+ClearOfflinePlugins()

PluginManager

+createPlugin() : Plugin

PluginCreator

+getServerPluginFolder()

+getMysqlTunneling()

+getDatabaseName()

+getDatabaseUser()

+getDatabasePW()

+getPluginFolder()

+getOfflineInstallPath()

+setServerPluginFolder(folder : String)

+setMysqlTunneling(scriptPath : String)

+setDatabaseName(name : String)

+setDatabaseUser(user : String)

+setDatabasePW(pw : String)

+setPluginFolder(folder : String)

+setOfflineInstallPath(path : String)

PluginManagerSettings

+read(r : Reader) : void

+readHTML(r : Reader) : void

+write(w : Writer) : void

+writeHTML(w : Writer) : void

<<Interface>>

IODataSet

1

0..*

11

11 1

<<use>>

11

<< extends>>

Figure 6.2: Class Diagram of the Plugin Management System The class diagram of the management system is divided into three parts.
The left-hand part corresponds to the classes that handle the access to the database. The middle part contains the interfaces for the DataSet objects and the
objects themselves. The right-hand part describes the User interfaces, along with their support classes.

68 A Plugin Management System for Java Software

Figure 6.3: The Plugin Creator The Plugin Creator is a graphical user interface
to the Plugin class that allows users to create a Plugin Archive. The first frame of the
software (left) prompts for the necessary plugin and user information. The locations of
the plugin files and the output directory are entered in the second frame.

The user interface to the management system is provided by the two
classes gui.PluginCreator and gui.PluginOverview.

The Plugin Creator is shown in Figure 6.3. Basically, it is a graphical
user interface for the Plugin class. It fills in all the necessary information
of the Plugin class, so that the zip() method creates a valid Plugin Archive.
The Plugin Creator is divided into two parts. In the first part, the user
provides the necessary general information. The mandatory fields Plugin
Name, Version, Author(s) and email must be filled with valid information
and the additional fields Web-site and Reference are optional. In the second
part, the user can supply the files of the plugin. The Transformation is
the main class of the plugin and is mandatory. In addition, the user can
also supply Java libraries needed by the main class in the Jar-Archive field.
Finally, the Plugin Archive will be generated at the given location.

The PluginOverview is shown in Figure 6.4. It is a GUI-driven interface
to the local database, that manages the locally installed plugins. It provides
six basic functions:

• Install to install plugins that are marked in the Select column of the
list;

• Add from File to add a Plugin from a Plugin Archive (download-able
from the SplitsTree web-page or privately shared) to the list;

• Update to update the list of plugins using the central database (access
to the Internet is mandatory for this option to work);

6.2 Implementation Details 69

Figure 6.4: The Plugin Overview The Plugin Overview contains a JTable that
displays the local plugin database, and a set of buttons to manipulate the local database
and to install or un-install the plugins into/from the designated folder.

• Uninstall to remove plugins that are marked in the Select column of
the list;

• Clear List to remove all plugins from the list that are not installed
and not part of the central database.

• Close to close the PluginOverview.

Since the management system is designed to serve for more than one soft-
ware, there is a central configuration class gui.PluginManagerSettings. Most
of the configuration elements of the class are independent of the application
but some must be set at the startup. To accomplish the interaction between
the PluginManagerSettings and the Plugin Creator or Plugin Overview, the
two user interfaces do not contain a main() function. To start them, one has
to write a class that configures a PluginManagerSettings object and creates
one of the user interfaces using this object. The settings that must be set
before starting one of the user interfaces, are:

• pluginFolder the local folder where plugins should be stored,

• serverPluginFolder the location on the server where the Plugin Ar-
chives are stored,

• databaseName the database name for the main application,

70 A Plugin Management System for Java Software

• MysqlTunneling the location on the server of the MYSQL-tunneling
script.

• mainProgramVersion the version of the main application.

6.3 Integration into SplitsTree 4

SplitsTree 4 provides a set of core objects that are used to store the data.
Each of these objects reflects one type of data, for example, distances, trees or
splits. Also, each object corresponds to a “Nexus block” ([MSM97]), which is
the standard file format of SplitsTree 4. Any plugin in SplitsTree 4 transforms
one data object into another data object. These transformations are directed
from Unaligned → Characters → Distances → Trees → Quartets → Splits
→ Network. For example, a Characters object can be transformed into a
Network object, but a Network object can not be transformed into a Splits
object. For a plugin to be recognized by SplitsTree 4, it has to implement
one of the interfaces corresponding to these possible transformations. We
have implemented an interface for each possible transformation and named
these accordingly. For example, a transformation from Distances to Splits
must implement the interface Distances2Splits.

Consequently, a plugin in SplitsTree 4 consists of a Transformation and
potentially some additional classes that must be provided in a Java library.
Using the software splits.progs.SplitsTreePluginCreator, the developer can
generate a Plugin Archive for SplitsTree 4. This Plugin Archive can then
be uploaded into the central database or privately distributed. In the Win-
dow menu of SplitsTree 4, we added the new sub-menu Plugin Manager that
will start the Plugin Overview interface.

In addition to these two applications, we have redesigned the SplitsTree
4 homepage and added some new elements. The SplitsTree 4 web-site can
be found at:

http://www-ab2.informatik.uni-tuebingen.de/splitstreePluginManager/.

The publicly available pages contain sections for downloads, documenta-
tion, web-start and developers. The documentation page contains the Splits-
Tree 4 manual and the accumulated FAQs. The SplitsTree 4 application, as
well as publicly available plugins, can be obtained from the download sec-
tion. It is possible to start SplitsTree 4 as a web-start application. A link to
this feature is provided in the web-start section. Since only registered users
are able to upload plugins into the system, the developer section contains
a link that leads to a registration form. At the registration page, a new
user has to enter some personal information (username, name, e-mail and
affiliation). Additionally, to prevent automatic registration, each user has to
insert a CAPTCHA string [LvAL04] that is displayed as an image. Upon
successful registration, the system sends an email with the user information
and a generated password to the administrator. If the information provided
is valid, the administrator sends the password to the new user.

Registered user can log into the system in the developer section. The
developer pages contain sections for an individual’s plugins (private plug-

6.3 Integration into SplitsTree 4 71

SplitsTree 4 Web page

-Maunual Download

-FAQ

-API

Documentation

-SplitsTree

-Official Plugins

Download

-User Login

-User Registration

Developer

-Webstart application

Webstart

Private User Page

-Plugin and Version Overview

-Change Plugin

-Add Version

-Attribut

Private Plugins

-Add new Plugin

Add Plugin

-Change Personal Information

-Change Password

Personal Information

-Change User Data

-Change Login Name

-Change Password

-Delete User

Change User Data

Administrator User Page

<< extends >>

<< login >>

Figure 6.5: Structure Diagram of the SplitsTree Web-site The SplitsTree
4 homepage is divided into four main areas. The Documentation area contains the manual,
FAQ and API of the software. The Download area contains the installer for SplitsTree
4 and a list of all official plugins. The Web-start area starts SplitsTree 4 as a web-start
application. The new area Developer is the interface for the developer section of the web
site. Any registered user can log into this area. The user can manage the plugins, add new
plugins and administrate his/her user profile. The administrator has additional access to
the management site for the users.

72 A Plugin Management System for Java Software

ins), a section to upload new plugins (add plugins), and a section for his/her
personal information (change personal data). The private plugin section pro-
vides the developer with a list of his/her plugins. The edit page of any of
these plugins allows the developer to change the information about the plu-
gin, to add/delete versions of the plugin, or to delete the plugin all together.
To upload a new plugin to the system, the add plugin section provides the
developer with the opportunity to browse his/her file system for the Plu-
gin Archive. The system checks whether the Plugin Archive is valid and,
if so, it transfers the plugin information into the database and places the
Plugin Archive in a folder on the web-server. If a developer wants to change
his/her personal information (including the password), he/she can do so with
a form in the change personal data section. If the developer is logged in as
an administrator, an additional section will be shown. In this section, the
administrator is able to change personal user information, the username, or
the password of a registered user. It is also possible to delete a registered
user completely.

List of Available Plugins for SplitsTree

• Supertree:
Author: Wim Hordijk
Description: SuperTree Algorithms for ancestral divergence dates and
nested taxa
Email: wim@santafe.edu
Reference SuperTree Algorithms for ancestral divergence dates and
nested Taxa (Semple et. al. 2003)[SDH+04]

• RefinedBunemanTree:
Author: Lasse Westh-Nielsen and Christian N. S. Pedersen
Description: Computes the Refined Buneman Tree
Email: lasse@birc.dk
Reference: Computes the Refined Buneman Tree (Brodal et al. 2002)
[BFO+03]

Chapter 7

Annotation of Phylogenetic
Graphs using Jloda

The integration of additional information into phylogenetic graphs is a com-
mon technique to clarify complex results. A simple example of such an
annotation is the labeling of edges in a phylogenetic graph with bootstrap
values. Another possibility is the labeling of functional or taxonomic groups
as can be seen in Figure 7.1. In the following, we will use the term glyph to
represent either a geometric object or a string that is used to label a graph.

The integration of glyphs into phylogenetic software is a challenging prob-
lem. The software must not only allow the interaction with the actual phy-
logenetic graph, but also the interactive integration of additional geometric
objects into the graphical display. However, integrating these annotations
should only lead to a minimal increase of the complexity in the software,
since usability is important for the success of any software.

The library Jloda has been developed in our research group as a graph
library especially aimed at phylogenetic graphs. Jloda provides the graphical
and functional basis of many of our software projects (SplitsTree, Dendro-
scope, Megan). One of the main features of the library is an interactive user
interface to modify the underlying graph. Nevertheless, the library has not
been intended to provide secondary graphical objects besides the phyloge-
netic graph.

Consequently, Jloda had to be adjusted to provide an interactive inte-
gration of glyphs into the interface. Furthermore, a variety of glyphs had
to be implemented. In this context, two additional design elements had to
be taken into account. Firstly, Jloda displays a graph with the help of its
own transformation class that maps the graph from its coordinate system to
the coordinate system of the displaying Java panel. Secondly, Jloda saves
its graphs in a simple string-based format and consequently, glyphs must
support this system.

Since glyphs can move freely within the coordinate system of the graph,
the system must employ a two-step transformation. The first transformation
represents the affine relocation of the glyph within the coordinate system of
the graph. The second transformation maps the glyph from the coordinate
system of the graph onto the displaying Java panel. It is worthwhile to
note that each glyph has its own transformation for the affine relocation

74 Annotation of Phylogenetic Graphs using Jloda

Figure 7.1: Example of an Annotation of a Phylogenetic Tree Unrooted
phylogenetic tree relating Syntaxin members involved in endosomal trafficking, published
in [TKF07]. The figure reflects the increase of Syntaxins within the animal kingdom.
Furthermore, fungi and apicomplexans species seem to possess at least two distinct pro-
teins related to endosomal trafficking,whereas plants seem to have undergone at least two
independent genome duplications.

within the coordinate system of the graph, but all glyphs use the same second
transformation. Furthermore, for the interactivity of the glyphs, changes on
the Java panel must be transformed back to the coordinate system of the
graph.

In this chapter, we will introduce an implementation of interactive glyphs
into Jloda, which enables an user to integrate additional information into a
graph, and the integration of this functionality into SplitsTree 4. Finally, we
will introduce an algorithm for drawing phylogenetic graphs that provides
an automatic visualization of annotated groups within the graph.

7.1 Integration into Jloda

As mentioned above, Jloda is a library developed in our group specifically
for phylogenetic graphs. The core graph classes of the library are contained
in the package jloda.graph. All classes representing a graph are deduced
from the class jloda.graph.Graph. The deduced classes representing phy-
logenetic graphs are contained in the package jloda.phylo. Furthermore,
the library provides an interactive interface for the visualization of graphs
contained in jloda.graphview. The primary class for the visualization of a
graph is jloda.graphview.GraphView, which extends the Java core object
java.awt.JPanel. Each GraphView has exactly one graph associated with

7.1 Integration into Jloda 75

it. Jloda itself not only provides the foundations for the visualization, but
also the interactive access to it. Furthermore, the library contains imple-
mentations of some standard phylogenetic drawing algorithms contained in
jloda.phylo.

Jloda provides two primary elements: the implementation of graphs and
an implementation for their interactive visualization. This substructure of
the library is not only reflected by the breakdown into two distinct packages,
but also by the dependency of the two classes Graph and GraphView upon
each other. Every graph class in Jloda has its own coordinate system (Graph
World), which is independent of the coordinate system of the GraphView
class (Device World). The Graph World can be mapped onto the Device
World and vice versa, using the class jloda.util.Transform. This way of im-
plementing the connection between these two elements has the benefit that a
developer working on visualization algorithms can focus on the Graph class,
whereas a developer interested in developing a different view can focus on
the GraphView class. Another benefit is that the (costly) calculation of the
layout is independent of its visualization, thus changing the size, rotation or
mirroring of the Device World does not imply the recalculation of the layout,
but only adaption of the Transform class.

The conceptual integration of the glyphs into the program operation is
shown in Figure 7.2. All glyphs are deduced from a shape (usually java.-
awt.geom.Rectangle2D) and contain an internal transformation of the shape
onto the Affine Glyph World. This internal transformation allows, as the
name suggests, the glyph to be affinely transformed and is designed so that
it allows the Affine Glyph World to be mapped onto the Graph World via
an identity mapping. Accordingly, one can use the class Transform already
included in Jloda to map a glyph onto the Device World. In return, any
user interaction with a glyph in the Device World is inversely mapped onto
the Affine Glyph World, allowing the internal transformation to be adapted
according to the changes within the Affine Glyph World. An important
advantage of this approach is the simple representation of a glyph as a string.
Only the underlying dimensions of the shape, the configuration of the internal
transformation and the appearance of the glyph have to be saved.

7
6

A
n
n
o
ta

tio
n

o
f
P

h
y
lo

g
e
n
e
tic

G
ra

p
h
s

u
sin

g
J
lo

d
a

<<component>>

GraphView

<<component>>

Glyph
<<component>>

GraphEditingListener

Device World

Affine Glyph WorldShape

Graph World

<<component>>

Imput and Output handling

<<component>>

GlyphManager

IGlyph

GraphUpdateListener

toString

identity Transform

internal Transform

jloda.Transform

<< uses >>

Figure 7.2: Component Diagram of the Integration of Glyphs into Jloda Glyphs are integrated into Jloda using two components.
The GraphView is extended with the Glyph Manager. It manages the glyphs that are added to the GraphView. The GlyphEditingListener implements the
GraphUpdateListener interface and provides the interactivity between the glyphs in the GraphView and the user. Both components use the IGlyph interface
of the glyphs for access. All glyphs contain an internal transformation to map the underlying shape to the Affine Glyph World. The transformed shapes are
mapped via an identity transformation to the Glyph World. The Glyph World is than mapped to the Device World using the Jloda.Transform object.

7.2 Implementation Details 77

To separate the implementation of the glyph management from the Glyph-
View class, we have implemented the jloda.graphview.glyphs.GlyphManager
class that centralizes the administration. Each GlyphManager class is as-
sociated with one GraphView class and is responsible for the access and
modification of the glyphs contained in the GraphView. The GlyphManager
class provides the necessary methods for the creation (addGlyph()), dele-
tion (deleteGlyph()) and retrieval (getGlyph()) of a glyph. Additionally, the
GlyphManager provides methods for selection (setGlyphSelected()) and des-
election (removeSelectedGlyph()). Furthermore, one can change the appear-
ance of selected glyphs, for example by using the GlyphManager methods
updateFontOfSelectedGlyphs(), updateLineColorOfSelectedGlyph() or update-
FontDStyleOfSelectedGlyphs(). The default settings for adding new glyphs
can be altered using the methods setFont(), setFontStyle(), setLineWidth(),
setArcType() etc.. The default settings can be restored using the methods
resetGlyphStyle().

Each glyph supports different visualizations and ways to modify its ap-
pearance. Different appearances can be set using the method setSelectedG-
lyphDrawMode(); selection of the next supported form uses setNextSelect-
edGlyphDrawMode().

The order in which glyphs are drawn can be changed using the methods
decreaseSelectedGlyphsLevel(), increaseSelectedGlyphsLevel(),
setAbsoluteMinLevelForSelectedGlyphs() and setAbsoluteMaxLevelForSelect-
edGlyphs(). Furthermore, one can retrieve glyphs ordered by their level
using the methods getGlyphsSortedByLevel() and getSelectedGlyphsSorted-
ByLevel(). Glyphs that have been added to the graph are managed according
to the interfaces they implement. A developer can use the GlyphManager
to access the glyphs and does not need to care about the detailed properties
each glyph implements.

Jloda allows adjustment of the interactivity of the GraphView surface by
replacing the listener jloda.graphview.GraphUpdateAdapter with a class that
implements the interface jloda.graphview.GraphUpdateListener. We have de-
signed the class GlyphEditingListener that implements this interface and pro-
vides an interactive access to the glyphs. If this listener is activated, it allows
a user to modify the glyphs interactively (e.g. scale, translate, resize, rotate).
Details about modifying glyphs are discussed in Section 7.3.

Due to their design the glyphs present an independent extension of Jloda,
which minimizes modifications to the core implementation.

7.2 Implementation Details

In this section, we describe the design and implementation of the glyphs and
discuss some problems related to specific glyphs. One problem is the inter-
face for user interaction with the glyphs, e.g. depending on the action of the
user, the software must decide on how to change the glyph. To solve this
problem, we decided to use specific buttons for each possible action, one for
each change to the glyph. The glyph is then modified in reaction to button
and mouse movements. This is a simple, yet effective way to provide the

78 Annotation of Phylogenetic Graphs using Jloda

necessary flexibility for glyph-drawing. The buttons are drawn directly onto
the Java pane containing the phylogenetic graph. Furthermore, the buttons
have to adapt to the transformations applied to the underlying glyph. Con-
sequently we implemented our own buttons, which we describe in detail in
Section 7.2. The more complex design of the glyphs is also described in Sec-
tion 7.2. All classes related to this project are contained in the new package
jloda.graphview.glyphs.

Buttons

Buttons are small graphics that are used to control the interaction of the
user with the glyphs. To ensure this basic functionality, all buttons have to
implement the interface jloda.graphview.glyphs.IButton. Methods that need
to be implemented for a button are draw() (which draws the button using
the Graphics2D Object provided), hit() (returns true if the given Point2D
is contained in the boundary of the button), setLocation() (sets the location
of the button), getLocation() (returns the location of the button) and get-
Style() (returns the drawing style of a button, either IButton.RECTANGLE
or IButton.CYCLE) methods. All buttons support both drawing styles and
the default drawing style used is IButton.CYCLE, since the appearance is
smoother than the IButton.RECTANGLE style. The size of a button de-
pends upon its style and is set at compile time in the interface class us-
ing final integers. All implemented buttons are deduced from the base class
jloda.graphview.glyphs.ButtonBase which implements the method getTopLeft-
Corner(). This method is used by all glyph drawing methods. We have
implemented five different button types, and each button type has its own
draw() method that provides a unique appearance. The class diagram of the
buttons can be seen in Figure 7.3. Examples of the buttons can be seen in
Figure 7.5

Glyphs

We have implemented glyphs for basic geometric figures such as lines (LineG-
lyph) rectangles (RectangleGlyph), sectors of an oval (Arc2DGlyph and the
special case OvalGlyph) and strings (StringGlyph). All graphic elements are
implemented on the basis of the java shape classes and generalized according
to the special needs. As can be seen from Figure 7.4, glyphs can implement
up to three different interfaces. The interface Jloda.graphview.glyphs.IGlyph,
which assures the presence of the basic geometric operations, is manda-
tory for every glyph. Additionally, a glyph can implement the interface
Jloda.graphview.glyphs.IBoundableGlyph, which allows the glyph to draw spe-
cial objects at the end and start of the glyph as can be seen in Figure 7.5.
The third interface, Jloda.graphview.glyphs.IArcGlyph, provides the possibil-
ity of interactively changing the internal arcs of glyphs as shown in Figure 7.5.

The methods of the interface IGlyph can be divided into four basic groups:

7.2 Implementation Details 79

+draw(gc : Graphics2D) : void

+hit(xDevice : int, yDevice : int) : boolean

+setLocation(p : Point2D) : void

+getLocation() : Point2D

+getStyle() : byte

+setStyle(style : byte) : void

+setAnchorPlacement(mode : byte) : void

<<Interface>>

IButton

DeleteButtonMoveButtonResizeButtonRotateButton

+getTopLeftCorner() : Point2D

ButtonBase

AngleResizeButton

<<implements>>

<<extends>> <<extends>><<extends>> <<extends>><<extends>>

Figure 7.3: Class Diagram of the Design of the Button Classes All
Buttons used in Jloda implement the IButton interface, which provides the basic function-
ality needed. The ButtonBase class is a basic implementation of the IButton interface.
All Button classes extend this basic implementation.

• methods that assure the interactivity in the Device World: translate(),
resize(), rotateAbout(), hit(), getCenter() and getBounds();

• methods that map the glyph onto the Device World: draw();

• methods that change the appearance of the glyph: getLineWidth(),
setLineWidth(), getLineColor(), setLineColor(), getFillColor(), setFill-
Color(), getLabelLocation(), setLabelLocation(), getFont(), setFont();
and

• supporting methods: getSupportedEditModi(), toString(), getLabel()
and setLabel().

The methods translate(), resize() and hit() take values from the Device
World and the Transform object as input. The methods getCenter() and
getBounds() return the center and bounds of the glyph mapped from the
Affine Glyph World to the Device World. The method draw() uses the given
Transformation class to map the glyph to the Device World and draws it,
using the given Graphics2D object.

8
0

A
n
n
o
ta

tio
n

o
f
P

h
y
lo

g
e
n
e
tic

G
ra

p
h
s

u
sin

g
J
lo

d
a

+draw(gc : Graphics2D, trans : Transform, editMode : int) : void

+resize(xDevice : int, yDevice : int, trans : Transform) : void

+translate(xDiff : double, yDiff : double, trans : Transform) : void

+rotateAbout(angle : double) : void

+updateOrientation(trans : Transform) : void

+hit(xDevice : int, yDevice : int, trans : Transform) : int

+getCenter(trans : Transform) : Point2D

+getBounds(trans : Transform) : Rectangle

+toString() : String

+getSupportedEditModi() : Vector

+getLabel() : String

+setLabel(label : String, position : Point2D) : void

<<Interface>>

IGlyph

-lineColor : Color = Color.Black

-fillColor : Color = null

-label : String = ""

-labelLocation : Point2D = null

-level : int = 0

-lineWidth : int = 1

-font : Font = Default-PLAIN-10

-buttonStyle : byte = IButton.Cycle

GlyphBase

+extendStart(xDevice : int, yDevice : int, trans : Transform) : void

+extendEnd(xDevice : int, yDevice : int, trans : Transform) : void

<<Interface>>

IArcGlyph

+getSupportedBoundingModes() : char[]

+setBoundingMode(mode : char, Parameter) : void

+getBoundingMode() : char

<<Interface>>

IBoundableGlyph

LineGlyph Arc2DGlyphOvalGlyphStringGlyph RectangleGlyph

BoundableGlyphBase

<<implements>> <<implements>>

<<extends>>

<<implements>>

<<extends>> <<extends>><<extends>> <<extends>>

<<extends>>

Figure 7.4: Class Diagram of the Design of the Glyph Classes Glyphs in Jloda can implement up to three different interfaces. The
basic interface that must be implemented by all glyphs is the IGlyph interface, which provides the basic functionality. The BoundableIGlyph and IArcGlyph
interfaces augment the glyphs with additional functionality. A basic implementation of the IGlyph interface is provided by the GlyphBase class, and the
BoundableGlyphBase class is an extension of the GlyphBase class that also implements the IBoundableGlyph interface. The five glyphs implemented in Jloda
either extend the GlyphBase or BoundableGlyphBase classes.

7.2 Implementation Details 81

The Glyphs do not implement the interface directly, but rather extend the
base class jloda.graphview.glyphs.GlyphBase ,which provides the functionality
to change the appearance of the glyph. The basic appearance properties
of a glyph are lineWidth, lineColor (defining the border appearence of the
glyph), fillColor (defining the background color), label, labelLocation (a label
of the glyph and its location in the Affine Glyph World), font (the font
of the label), buttonStyle (the style of the editing buttons, which is either
IGlyh.CIRCULAR or IGlyph.RECTANGLE) and level. The level of a glyph
defines the order in which the glyphs and the graph are drawn. The graph
has the fixed level 0 and the level of a glyph can be any integer value. The
draw() method contained in GraphView, draws all glyphs in the order given
by their levels, starting at the minimum level. As soon as it reaches level 0
it draws the graph and then continues with glyphs that have a higher level.

In addition to the IGlyph interface, the LineGlyph and Arc2DGlyph also
implement the interface IBoundableGlyph, which allows the end points of
the glyphs to be drawn as either orthogonal lines, circles, squares or ar-
rowheads. This is well suited to, for example marking taxonomic groups
within the graph. An example is given in Figure 7.5. In addition, to the
IBoundableGlyph interface, the Arc2DGlyph class also implements the in-
terface IArcGlyph, allowing the user to change the start and extend angle of
the arc interactively.

In general, the transformations allow a user to mirror glyphs, with the
obvious exception of the class StringGlyph. Instead of mirroring strings
(making them unreadable), we have implemented a special extension in the
draw() method of this class. When a mirroring is performed by the Transform
class, the method calculates the relative rotation of the glyph in the Device
World from the bounding rectangle and rotates the string accordingly. This
modification ensures that the string is readable at all the time. An example
of the mirroring of a string can be seen in Figure 7.5.

Each glyph contains a set of possible drawing modes (IGlyph.ACTIVE,
IGlyph.INACTIVE, IGlyph.RESIZEANGLE), allowing the glyph to adjust
its appearence depending upon the mode that is selected when calling the
draw() method. The default mode is IGlyph.INACTIVE. If the mode is
changed to IGlyph.ACTIVE, the user can edit the size, rotation and loca-
tion of the glyph or delete it. The mode IGlyph.RESIZEANGLE is used to
support the IArcGlyph interface and allows the user to resize the angle of
the Arc2DGlyph object, as can be seen in Figure 7.5.

82 Annotation of Phylogenetic Graphs using Jloda

(a) (b)

(c) (d)

(f)(e)

Figure 7.5: Example of Glyphs Figures (a) and (b) show an example of a selected
Arc2DGlyph. The glyph shown in Figure (a) is rotated around its center so that it fits
the two taxa labels. The start and extend angle of the glyph shown in Figure (b) has
been altered to fit the two taxa labels better. The two Arc2DGlyphs shown in Figure (c)
have been altered with different styles. Figure (d) shows two LineGlyphs with arrowheads
at their ends. In the last two figures ((e) and (f)), we show a string before and after
mirroring.

7.3 Integration of Glyphs into SplitsTree 4 83

7.3 Integration of Glyphs into SplitsTree 4

We have integrated glyphs into SplitsTree 4 using two different approaches.
The first part of the integration allows the user to manually add, edit and
remove glyphs by hand using a GUI, and the second part is an automatic
visualization algorithm for annotated groups within a phylogenetic tree or
network.

The interaction of the user with the glyphs within SplitsTree 4 is con-
trolled by two software elements. The first element SplitsTree uses is the
GlyphUpdateListener described in Section 7.1, to allow the user to change
the size, rotation and location of the glyph or to delete it. To create new
glyphs and to change the visual properties of the glyphs, we have imple-
mented a GUI that is shown in Figure 7.6. When the user activates this
GUI, the GraphUpdateListener that is used by the GraphView is stored and
replaced by the GlyphUpdateListener. The glyphs can then be edited us-
ing the mouse for activation and reshaping, and the GUI for changing their
appearence.

Figure 7.6: The Graph Editor for the Integration of Glyphs into a
GraphView The top six buttons of the Graph Editor are used to create the different
glyphs. The style settings of a selected glyph can be altered using the middle panel of the
GUI. The Get button obtains the style settings of a glyph, the Apply button changes the
style of selected glyphs according to the given style, and the Reset button resets all glyph
properties to their default values.

We implemented a special GUI to interface the automatic visualization
algorithm [Sch06]. The TaxaSet Viewer is used to group sets of taxa in a
hierarchical fashion. The visualization algorithm uses the created hierarchy
to extend the given GraphView with glyphs. The idea of the algorithm is to
find the best fitting arc to be drawn around the positions of a set of taxa.
This is done by finding the optimal placement of a cycle around the taxa
vertices and truncate it to an arc at the positions of the first and the last
vertex of the designated set. The algorithm requires a circular ordering of

84 Annotation of Phylogenetic Graphs using Jloda

all taxa. For instance, the Equal Angle Algorithm provides this property by
assigning each taxon a unique angle.

In the first step, the algorithm extracts all groups from the hierarchy each
group is assigned the level it has in the hierarchy. The level is used later in the
algorithm to shift groups of taxa outwards to avoid collisions with the arcs
of overlapping groups. In the second step, the vertices are sorted according
to the given cyclic ordering. If the relevant taxa of a marked group are
not consecutive, they are split into consecutive subgroups. In the next step,
the initial and final vertex of a set with respect to the circular ordering is
extracted, and the optimal arc for the set of taxa is calculated. In the last
step, the algorithm optimizes the arcs and creates the glyphs according to
the calculated settings. Details about calculating the arc can be found in
[Sch06].

Figure 7.7: Example of the Automatic Annotation Algorithm This
shows the phylogenetic tree discussed in the introduction of Chapter 7.1. The annotations
have been drawn using the automatic annotation algorithm.

Chapter 8

Discussion

The decomposition theorem is an important tool for the efficient computation
of minimal reticulate networks. We have given the proof that a one-to-one
correspondence exists between the netted components of a splits network and
the maximal two-connected components of a minimal (eventually degener-
ated) galled network. An interesting property of this decomposition theorem
is that it only holds for a rather restrictive definition of minimality. If the
minimality would be relaxed, for example, by not minimizing the pairs of
dependent reticulation in the galled network, the decomposition theorem is
no longer valid as the example in Figure 8.1 shows. Most interestingly, the
special properties of a galled network imply that minimizing the number of
reticulations and minimizing the number of pairs of dependent reticulations
are not mutually exclusive. In general, this does not hold and it is a chal-
lenging question whether the decomposition theorem holds for either one of
these two minimization objectives.

Another interesting facet of our work is that minimizing the number of
edges within the network leads to a maximal depth of degenerated edges of
one. The set of clusters that can be sampled from a degenerated edge is
the set of all possible combinations of the directly descending reticulations.
Consequently, it seems important to more clearly understand the role of these
degenerated edges in the evolutionary process and the conflicting signals that
can be sampled from these.

If we wish to alter the calculation algorithm given in Chapter 4 in such a
way that it applies to a degenerated galled network, we have to account for
a group of problems. The first one would be the placement of degenerated
edges within the backbone tree, which seems to be a complex process. Fur-
thermore, allowing for degeneration within a galled network, makes it clear
that dissolving the connecting vertices of a degenerated galled network is a
mandatory step in the reconstruction, rather than optional, as it is for the
non-degenerated galled network.

Because of the minimality of a galled network, the influence of a false
negative (or missing) split would most probably not result in an incorrect
solution. Nevertheless, it would be interesting to see how a reticulate net-
work changes when the given set of splits is shrinking. Another facet is
formulating minimal generating sets for reticulate networks, or at least for
galled networks, which could provide valuable insights into the combinatorial

86 Discussion

c

b

a

r3

k

r4

r5

o

e

r2

f

r1

g

h

d

(a)

c

b

a

r3

k

r4

r5

o

e

r2

f

r1

g

h

d

(b)

z

c

b

a

r3

k

r4

r5

o

e
r2

f

r1

g

h

d

(c)

Figure 8.1: Minimal Galled Networks Three different galled networks are
shown. The galled network in (a) is not minimal. If we sample H(N) from (a), we
see that (b) is a minimal representation of H. If the set of clusters H(z) of the edge z

would comprise the two clusters Xr1
∪ Xr2

and Xr3
∪ Xr4

only, (b) is no longer minimal,
but (c) is. The only difference between (b) and (c) is that the number of pairwise depen-
dent reticulations is smaller in (c) than it is in (b). In fact, this is a counter-example to
the Decomposition Theorem in the case where we only minimize the number of reticula-
tions and the number of edges (as defined in [HK07]), since the cluster Xr1

∪ Xr2
is not

incompatible with any cluster that is an element of the tree cycle of r3 or r4.

87

structure of these graphs. More importantly, the problem of false positive
information within a given set of splits seems to have a greater influence on
the reconstruction process. There are two ways to address this problem: fil-
tering false positive splits from the input set before reconstruction begins, or
identifying false positive splits while reconstructing the network. There are
some solutions available for the first approach (for example, see [HSW06]),
but so far we have not seen a solution for the second one. Finally, the recon-
struction may lead to more than one minimal solution. Ordering the given
solutions by some likelihood would be an considerable advantage.

One aim of this thesis was getting better access to reticulate network
methods for users. We believe that SplitsTree 4 is perfectly suited to pro-
vide this. Not only does SplitsTree 4 already provides a variety of methods
for calculating splits networks, but the application is also designed in such
a way that it allows new methods to be integrated easily. Nevertheless, for
an successful integration, we had to develop a visualization method. The
algorithm we presented in this thesis solves this problem. Together with the
integration of the reticulate Nexus class into SplitsTree 4, we have imple-
mented an easy-to-use and powerful tool for reticulate networks. We believe
that modifying the graph with auxiliary edges is the best way to solve the
computational problem. It enables us to formulate the problem as a local
optimization, for which we have given a fast and accurate greedy solution.
Nevertheless, we believe that developing further local optimization strategies
may result in even better solutions. It might be interesting to calculate the
optimal solution, since the problem is small in most cases. Furthermore, it
could be of some interest to choose different weights for the crossings, de-
pending upon the relative length of the subtrees. Finally, we believe that
extending the algorithm to un-rooted reticulate networks may also prove an
interesting topic.

Developing a Plugin Management System for SplitsTree 4 is another step
aimed at providing better access to reticulate networks. Even though the
system is applicable to any phylogenetic method for SplitsTree 4, the devel-
opment of this application allows us to distribute newly developed method
for SplitsTree 4 more easily. Basically, the Plugin Management System is
only rounding off the underlying software, since SplitsTree 4 has always been
able to integrate new method dynamically. The only part missing in Splits-
Tree 4, in this connection, was the ability for users to find and manage
newly available methods easily. Since SplitsTree 4 is not the only software
in our research group that uses Java-based plugin technology, we focused
on developing a system that was as independent of the underlying software
as possible. We believe that our system represents a good balance between
software independency and usability. Further work that could be of interest
is an automatic update mechanism for SplitsTree 4 itself, allowing users to
update their version of the application dynamically.

Since the reconstruction of large phylogenetic trees and networks has be-
come a common technique, visualizing the substantial elements within such
a large phylogenetic graph is an important element of phylogenetic analysis.
In general, this annotation is done by hand and can take up large amounts of
time. Developing an automatic annotation algorithm for phylogenetic trees

88 Discussion

seemed to be an interesting subject. The foundation for such an integration
was the availability of basic geometrical shapes and text in the visualization
library. Unfortunately, integrating such elements into a graph library is a
complex task. The solution we presented in this thesis provides the user of
the Jloda library with the ability to add this type of annotation as addi-
tional elements into their phylogenetic graph. Furthermore, we provided an
algorithm that is able to annotate a given taxonomy into the phylogenetic
graph, thus providing fast and accurate insights into the structure. The main
problem with such an annotation is its quality. Consequently, we provided
the user with the possibility to edit the added elements by hand, changing
their size, rotation, color etc.. Having provided the underlying infrastructure
for an automatic annotation tool, it is an interesting next step to provide
further algorithms for the this task.

Appendix A

Publications

A.1 Published Manuscripts

1. Daniel H. Huson and Tobias H. Kloepper. Beyond Galled Trees
- Decomposition and Computation of Galled Networks. Pro-
ceedings of RECOMB 2007, Lecture Notes in Computer Science, 2007,
volume 4453, pages 211-225.

Reticulate networks are a type of phylogenetic network that
are used to represent reticulate evolution involving hybridiza-
tion, horizontal gene transfer or recombination. The simplest
form of these networks are galled trees, in which all reticula-
tions are independent of each other. This paper introduces a
more general class of reticulate networks, that we call galled
networks, in which reticulations are not necessarily indepen-
dent, but may overlap in a tree-like manner. We prove a
Decomposition Theorem for these networks that has impor-
tant consequences for their computation, and present a fixed-
parameter-tractable algorithm for computing such networks
from trees or binary sequences. We provide a robust im-
plementation of the algorithm and illustrate its use on two
biological datasets, one based on a set of three gene-trees and
the other based on a set of binary characters obtained from
a restriction site map.

2. Daniel H. Huson and Tobias H. Kloepper. Computing Recombina-
tion Networks from Binary Sequences. In Proceedings of ECCB
2005, Bioinformatics, 2005, volume 21, supplemental 2, pages ii 159-
165.

Phylogenetic networks are becoming an important tool in
molecular evolution, as the evolutionary role of reticulate
events such as hybridization, horizontal gene transfer and
recombination is becoming more evident, and as the avail-
able data is dramatically increasing in quantity and quality.
This paper addresses the problem of computing a most par-
simonious recombination network for an alignment of binary

90 Publications

sequences that are assumed to have arisen under the “infinite
sites” model of evolution, with recombinations.

Using the concept of a splits network as the underlying data-
structure, this paper shows how a recent method designed for
the computation of hybridization networks can be extended
to also compute recombination networks. The proposed ap-
proach is illustrated using a number of real biological datasets
and the algorithm will be made available as part of the Splits-
Tree 4 program.

3. Daniel H. Huson, Tobias H. Kloepper, Pete J. Lockhart and Mike A.
Steel. Reconstruction of Reticulate Networks from Gene Trees.
Proceedings of RECOMB 2005, Lecture Notes in Computer Science,
2005, volume 3500, pages 233-249.

One of the simplest evolutionary models has molecular se-
quences evolving from a common ancestor down a bifurcat-
ing phylogenetic tree, experiencing point-mutations along the
way. However, empirical analyses of different genes indicate
that the evolution of genomes is often more complex than can
be represented by such a model. Thus, the following prob-
lem is of significant interest in molecular evolution: Given
a set of molecular sequences, compute a reticulate network
that explains the data using a minimal number of reticula-
tions. This paper makes four contributions toward solving
this problem. First, it shows that there exists a one-to-one
correspondence between the tangles in a reticulate network,
the connected components of the associated incompatibility
graph and the netted components of the associated splits
graph. Second, it provides an algorithm that computes a
most parsimonious reticulate network in polynomial time, if
the reticulations contained in any tangle have a certain over-
lapping property, and if the number of reticulations contained
in any given tangle is bounded by a constant. Third, an al-
gorithm for drawing reticulate networks is described and a
robust and flexible implementation of the algorithms is pro-
vided. Fourth, the paper presents a statistical test for distin-
guishing between reticulations due to hybridization, and ones
due to other events such as lineage sorting or tree-estimation
error.

4. Tobias H. Kloepper and Daniel H. Huson. Integration of explicit
phylogenetic networks into SplitsTree 4. Accepted to BMC Evo-
lutionary Biology.

SplitsTree provides a framework for the calculation of phy-
logenetic trees and networks. It contains a wide variety of
methods for the import/export, calculation and visualiza-
tion of phylogenetic information. The software is developed

A.2 Other Published Manuscripts 91

in Java and implements a command line tool as well as a
graphical user interface.

In this article we, present solutions to two important prob-
lems in the field of phylogenetic networks. The first prob-
lem is the visualization of explicit phylogenetic networks. To
solve this, we present a modified version of the equal angle
algorithm that naturally integrates reticulations into the lay-
out process and thus leads to an appealing visualization of
these networks. The second problem is the availability of ex-
plicit phylogenetic network methods for the general user. To
advance the usage of explicit phylogenetic networks by bi-
ologists further, we present an extension to the SplitsTree
framework that integrates these networks. By addressing
these two problems, SplitsTree is the first program that in-
corporates implicit and explicit network methods with stan-
dard phylogenetic tree methods in a graphical user interface
environment.

A.2 Other Published Manuscripts

1. David Bryant, Daniel H. Huson, Tobias H. Kloepper and Kay Nieselt-
Struwe. Distance Corrections on Recombinant Sequences . Pro-
ceedings of WABI 2003, Lecture Notes in Computer Science, 2003, vol-
ume 2812, pages 271-286.

Sequences that have evolved under recombination have a
lsquomosaicrsquo structure, with different portions of the
alignment having evolved on different trees. In this paper
we study the effect of mosaic sequence structure on pairwise
distance estimates. If we apply standard distance corrections
to sequences that evolved on more than one tree then we are,
in effect, correcting according to an incorrect model. We
derive tight bounds on the error introduced by this model
mis-specification and discuss the ramifications for phyloge-
netic analysis in the presence of recombination.

2. Daniel H. Huson, Tobias Dezulian, Tobias H. Kloepper and Mike Steel.
Phylogenetic Super-Networks from Partial Trees. IEEE/ACM
Transactions on Computational Biology and Bioinformatics, 2004, vol-
ume 1, pages 151-158.

In practice, one is often faced with incomplete phylogenetic
data, such as a collection of partial trees or partial splits.
This paper poses the problem of inferring a phylogenetic
super-network from such data and provides an efficient al-
gorithm for doing so, called the Z-closure method. Addi-
tionally, the questions of assigning lengths to the edges of
the network, and how to restrict the “dimensionality” of the

92 Publications

network, are addressed. Applications to a set of five pub-
lished partial gene trees relating different fungal species, and
to six published partial gene trees relating different grasses,
illustrate the usefulness of the method and an experimental
study confirms its potential. The method is implemented as
a plug-in for the program SplitsTree4.

3. Tobias H. Kloepper, C. Nickias Kienle and Dirk Fasshauer. An elab-
orate classification of SNARE proteins sheds light on the con-
servation of the eukaryotic endomembrane system. Molecular
Biology of the Cell, 2007, volumne 18(9), pages 3463-3471.

Proteins of the SNARE (soluble N-ethylmalemide-sensitive
factor attachment protein receptor) family are essential for
the fusion of transport vesicles with an acceptor membrane.
Despite considerable sequence divergence, their mechanism
of action is conserved: heterologous sets assemble into mem-
brane-bridging SNARE complexes, in effect driving mem-
brane fusion. Within the cell, distinct functional SNARE
units are involved in different trafficking steps. These func-
tional units are conserved across species and probably re-
flect the conservation of the particular transport step. Here,
we have systematically analyzed SNARE sequences from 145
different species and have established a highly accurate clas-
sification for all SNARE proteins. Principally, all SNAREs
split into four basic types, reflecting their position in the four-
helix bundle complex. Among these four basic types, we es-
tablished 20 SNARE subclasses that probably represent the
original repertoire of a eukaryotic cenancestor. This reper-
toire has been modulated independently in different lines
of organisms. Our data are in line with the notion that
the ur-eukaryotic cell was already equipped with the vari-
ous compartments found incontemporary cells. Possibly, the
development of these compartments is closely intertwined
with episodes of duplication and divergence of a prototypic
SNARE unit.

Appendix B

Contributions

1. Chapter 3- Decomposing Galled Networks.

The fundamental ideas in this chapter was published in the
RECOMB2007 article by Daniel Huson and myself [HK07].
The proof presented in this thesis is a generalization of the
one presented there. The idea and structure of the proof
are my own. However, Regula Rupp has greatly influenced
the writing of the proof with her deep understanding of the
mathematical problems related to it.

2. Chapter 4- Calculating Galled Networks.

The design and implementation have been inspired by our
first article on this field [HKLS05]. The idea of how to la-
bel the resulting minimal galled network with sequences and
mutations was developed in collaboration with Daniel Huson.

3. Chapter 5- Drawing Explicit Phylogenetic Networks.

This work started in 2005, when Phillippe Gambette visited
our group and I started discussing this problem with him.
The solutions we discussed never resulted in a working visu-
alization. Nevertheless, it gave me the idea of the algorithm
presented here. Thanks to Daniel Huson’s deep understand-
ing of SplitsTree, he was able to assist me in the integration
of the Reticulate Nexus class into the application.

4. Chapter 6- A Plugin Management System for Java.

The Plugin Management System was first implemented in
the diploma thesis of Sabine Luff [Luf07]. Unfortunately,
the implementation was unstable and, in many parts, not
consistent. Consequently, I redesigned and reimplemented
the complete system and kept only the layout of the GUIs,
for which I had given specific instructions. The web page of
the project was designed with and implemented by C. Nickias
Kienle.

94 Contributions

5. Chapter 7- Annotation of Phylogenetic Graphs using
Jloda.

The system was designed with Daniel Huson. The imple-
mentation was done by myself. The automatic annotation
algorithm was designed with and implemented by Andreas
Schmidt [Sch06].

Bibliography

[BB04] V. Bafna and V. Bansal. The number of recombination
events in a sample history: conflict graph and lower bounds.
IEEE/ACM Transactions in Computational Biology and Bioin-
formatics, 1(2):78–90, 2004.

[BB05] V. Bafna and V. Bansal. Improved recombination lower bounds
for haplotype data. In Proceedings of the Ninth International
Conference on Research in Computational Molecular Biology
(RECOMB), pages 569–584, 2005.

[BD92] H.-J. Bandelt and A. W. M. Dress. A canonical decomposition
theory for metrics on a finite set. Advances in Mathematics,
92:47–105, 1992.

[BFO+03] G.S. Brodal, R. Fagerberg, A. Östlin, C.N.S.Pedersen, and S.S.
Rao. Computing refined buneman trees in cubic time. Lecture
Notes in Computer Science, 2812:259–270, 2003. Springer Verlag.

[BS06] M. Bordewich and C. Semple. Computing the minimum num-
ber of hybridisation events for a consistent evolutionary history.
submitted, 2006.

[BS07] M. Bordewich and C. Semple. Computing the hybridization
number of two phylogenetic trees is fixed-parameter tractable.
IEEE/ACM Trans. Comp. Biol. and BioInf., 4(3):458–466, 2007.

[Bun71] P. Buneman. The recovery of trees from measures of dissimi-
larity. In F. R. Hodson, D. G. Kendall, and P. Tautu, editors,
Mathematics in the Archaeological and Historical Sciences, pages
387–395. Edinburgh University Press, 1971.

[Dar59] Charles M.A. Darwin. The Origin of Species - by Means of Nat-
ural Selection. John Murray, 1859.

[Dar37] Charles M.A. Darwin. First notebook on transmutation of
species, 1937.

[DB07] W. . Doolittle and E. Bapteste. Inaugural Article: Pattern plural-
ism and the Tree of Life hypothesis. Proceedings of the National
Academy of Sciences, 104(7):2043–2049, 2007.

96 BIBLIOGRAPHY

[DGL04] S. Eddhu D. Gusfield and C. Langley. The fine structure of galls
in phylogenetic networks. INFORMS J. of Computing Special
Issue on Computational Biology, 16(4):459–469, 2004.

[DGS07] V. Bafina D. Gusfield, V. Bansal and Y.S. Song. A decomposition
theory for phylogenetic networks and incompatible characters. J.
Comput. Biol., 2007. In press.

[DH04] A. W. M. Dress and D. H. Huson. Constructing splits graphs.
IEEE/ACM Transactions in Computational Biology and Bioin-
formatics, 1(3):109–115, 2004.

[DS04] T. Dezulian and M. A. Steel. Phylogenetic closure operations and
homoplasy-free evolution. In Proceedings of the meeting of the
International Federation of Classification Societies (IFCS) 2004,
ed. D. Banks, L. House, F. R. McMorris, P. Arabie, and W.
Gaul, pages 395–416. Springer-Verlag, Berlin, 2004.

[Fel04] J. Felsenstein. Inferring Phylogenies. Sinauer Associates, Inc.,
2004.

[GB05] D. Gusfield and V. Bansal. A fundamental decomposition the-
ory for phylogenetic networks and incompatible characters. In
Proceedings of the Ninth International Conference on Research
in Computational Molecular Biology (RECOMB), pages 217–232,
2005.

[GEL03] D. Gusfield, S. Eddhu, and C. Langley. Efficient reconstruction of
phylogenetic networks with constrained recombination. In Pro-
ceedings of the 2003 IEEE CSB Bioinformatics Conference, pages
173–213, 2003.

[GH04] D. Gusfield and D. Hickerson. A new lower bound on the number
of needed recombination nodes in both unrooted and rooted phy-
logenetic networks. Technical Report ICD-ECS-06, University of
California, Davis, 2004.

[GJ83] M.R. Garey and D.S. Johnson. Crossing number is np-complete.
SIAM J. Alg. Discr. Math., 4:312–316, 1983.

[GM96] R. C. Griffiths and P. Marjoram. Ancestral inference from samples
of DNA sequences with recombination. J. Computational Biology,
3:479–502, 1996.

[Hae74] Ernst H.P.A. Haeckel. Anthropogenie oder Entwicklungsgeschichte
des Menschen. Wilhelm Engelmann, Leipzig, 1874.

[HB06] D. H. Huson and D. Bryant. Application of phylogenetic networks
in evolutionary studies. Molecular Biology and Evolution, 23:254–
267, 2006. Software available from www.splitstree.org.

BIBLIOGRAPHY 97

[HDKS04] D. H. Huson, T. Dezulian, T. Kloepper, and M. A. Steel. Phy-
logenetic super-networks from partial trees. IEEE/ACM Trans-
actions in Computational Biology and Bioinformatics, 1(4):151–
158, 2004.

[Hei93] J. Hein. A heuristic method to reconstruct the history of se-
quences subject to recombination. J. Mol. Evol., 36:396–405,
1993.

[HK85] R. R. Hudson and N. L. Kaplan. Statistical properties of the
number of recombination events in the history of a sample of
DNA sequences. Genetics, 111:147–164, 1985.

[HK05] D.H. Huson and T.H. Kloepper. Computing recombination net-
works from binary sequences. Bioinformatics, 21(suppl. 2):ii159–
ii165, 2005. ECCB.

[HK07] Daniel H. Huson and Tobias H. Kloepper. Beyond galled trees -
decomposition and computation of galled networks. accepted to
RECOMB2007, 2007.

[HKLS05] D.H. Huson, T. Kloepper, P.J. Lockhart, and M.A. Steel. Recon-
struction of reticulate networks from gene trees. In Proceedings
of the Ninth International Conference on Research in Computa-
tional Molecular Biology (RECOMB), pages 233–249, 2005.

[HLT04] M. Hallett, J. Largergren, and A. Tofigh. Simultaneous iden-
tification of duplications and lateral transfers. In Proceedings of
the Eight International Conference on Research in Computational
Molecular Biology (RECOMB), pages 347–356, 2004.

[HM03] B. Holland and V. Moulton. Consensus networks: A method for
visualizing incompatibilities in collections of trees. In G. Benson
and R. Page, editors, Proceedings of “Workshop on Algorithms in
Bioinformatics”, volume 2812 of LNBI, pages 165–176. Springer,
2003.

[HSW06] D.H. Huson, M.A. Steel, and J. Whitfield. Reducing distortion in
phylogenetic networks. In P. Bücher and B.M.E. Moret, editors,
Algorithms in Bioinformatics, LNBI 4175, pages 150–161, 2006.

[Hud83] R. R. Hudson. Properties of the neutral allele model with inter-
genic recombination. Theoretical Population Biology, 23:183–201,
1983.

[KBR98] A. Kumar, W.C. Black, and K.S. Rai. An estimate of phylogenetic
relationships among culicine mosquitoes using a restriction map of
the rDNA cistron. Insect Molecular Biology, 7(4):367–373, 1998.

[Ket55] H.B.D. Kettlewell. Selection experiments on industrial melanism
in the lepidoptera. Heredity, 9:323–342, 1955.

98 BIBLIOGRAPHY

[Ket56] H.B.D. Kettlewell. Further selection experiments on industrial
melanism in the lepidoptera. Heredity, 10:287–301, 1956.

[Kim69] M. Kimura. The number of heterozygous nucleotide sites main-
tained in a finite population due to steady flux of mutation. Ge-
netics, 61:893–903, 1969.

[KOC00] B. K. Tacke K. O’Donnell, H. C. Kistler and H. H. Casper. Gene
genealogies reveal global phylogeographic structure and reproduc-
tive isolation among lineages of fusarium graminearum, the fun-
gus causing wheat scab. Proc. Natl. Acad. Sci. USA, 97(14):7905–
7910, 2000.

[LMH+01] P. J. Lockhart, P. A. McLenachan, D. Havell, D. Glenny, D. H.
Huson, and U. Jensen. Phylogeny, dispersal and radiation of
New Zealand alpine buttercups: molecular evidence under split
decomposition. Ann Missouri Bot Gard, 88:458–477, 2001.

[LR04] C. R. Linder and L. H. Rieseberg. Reconstructing patterns of
reticulate evolution in plants. Am. J. Bot., 91(10):1700–1708,
2004.

[LSH05] Rune B. Lyngsø, Yun S. Song, and Jotun Hein. Minimum recom-
bination histories by branch and bound. In WABI, pages 239–250,
2005.

[Luf07] S. Luff. Implementation of a plugin management system for split-
stree. Master’s thesis, University of Tuebingen, Center for Bioin-
formatics, 2007.

[LvAL04] M. Blum L. von Ahn and J. Langford. Telling humans and com-
puters apart automatically, 2004.

[Mad97] W. P. Maddison. Gene trees in species trees. Syst. Biol.,
46(3):523–536, 1997.

[Maj02] Michael E.N. Majerus. Moths. HarperCollins(UK), 2002.

[Mea83] C. A. Meacham. Theoretical and computational considerations
of the compatibility of qualitative taxonomic characters. In
J. Felsenstein, editor, Numerical Taxonomy, volume G1 of NATO
ASI Series. Springer, Berlin, 1983.

[Mer05] C. Mereschkowsky. über natur und ursprung der chromatophoren
im pflanzenreiche. Biol. Centralbl., 25:593–604, 1905.

[MG03] S. R. Myers and R. C. Griffiths. Bounds on the minimal number of
recombination events in a sample history. Genetics, 163:375–394,
2003.

[MGL99] G. Burger M.W. Gray and B.F. Lang. Mitochondrial Evolution.
Science, 283(5407):1476–1481, 1999.

BIBLIOGRAPHY 99

[MGS76] D.S. Johnson M.R. Garey and L. Stockmeyer. Some simplified np-
complete graph problems. Theoretical Computer Science, 1:237–
267, 1976.

[MM06] M.M. Morin and B.M.E. Moret. Netgen: generating phylogenetic
networks with diploid hybrids. Bioinformatics, 22(15):1921–1923,
2006.

[MSM97] D.R. Maddison, D.L. Swofford, and W.P. Maddison. NEXUS: an
extendible file format for systematic information. System. Bio.,
46(4):590–621, 1997.

[NIS95] NIST. Secure hash standard. Federal Information Processing
Standard, FIPS-180-1, 1995.

[NWL04] L. Nakhleh, T. Warnow, and C. R. Linder. Reconstructing retic-
ulate evolution in species - theory and practice. In Proceedings of
the Eight International Conference on Research in Computational
Molecular Biology (RECOMB), pages 337–346, 2004.

[PB03] B. M. Pryor and D. M. Bigelow. Molecular characterization
of Embellisia and Nimbya species and their relationship to Al-
ternaria, Ulocladium and Stemphylium. Mycologia, 95(6):1141–
1154, 2003.

[Rog92] A. Rogers. Error introduced by the infinite-site model. Mol. Biol.
Evol., 9(6):1181–1184, 1992.

[Sch83] A.F.W. Schimper. über die entwicklung der chlorophyllkörner
und farbkörper. Bot. Zeitung, 41:105–114,121–131,137–146,153–
162, 1883.

[Sch06] A. Schmidt. Taxa set highlighting for splitstree 4. Master’s thesis,
University of Tuebingen, Center for Bioinformatics, 2006.

[SDH+04] C. Semple, P. Daniel, W. Hordijk, R.D.M. Page, and M. Steel.
Supertree algorithms for ancestral divergence dates and nested
taxa. Bioinformatics, 20(15):2355–2360, 2004.

[SDJ04] M.T. Brown S.D. Dyall and P.J. Johnson. Ancient Invasions:
From Endosymbionts to Organelles. Science, 304(5668):253–257,
2004.

[SDPE94] M. J. Sanderson, M. J. Donoghue, W. Piel, and T. Eriksson.
Treebase: a prototype database of phylogenetic analyses and an
interactive tool for browsing the phylogeny of life. Amer. Jour.
Bot., 81(6):183, 1994.

[SH04] Y.S. Song and J. Hein. On the minimum number of recombination
events in the evolutionary history of DNA sequences. J. Math.
Biol., 48:160–186, 2004.

100 BIBLIOGRAPHY

[SH05] Y.S. Song and J. Hein. Constructing minimal ancestral recombi-
nation graphs. J. Comp. Biol., 12:147–169, 2005.

[SS01] C. Semple and M. A. Steel. Tree recontruction via a closure
operation on partial splits. In Computational Biology (proceedings
of JOBIM 2000), LNCS 2066. Springer-Verlag, 2001.

[SS03] C. Semple and M. A. Steel. Phylogenetics. Oxford University
Press, 2003.

[SZ00] T. Sang and Y. Zhong. Testing hybrization hypotheses based on
incongruent gene trees. System. Biol., 49(3):422–424, 2000.

[THCS01] R. L. Rivest T. H. Cohen, C.E. Leiserson and C. Stein. Introduc-
tion to Algorithms, second edition. PWS, 2001.

[TKF07] C.N. Kienle T.H. Kloepper and D. Fasshauer. An elaborate clas-
sification of snare proteins sheds light on the conservation of the
eukaryotic endomembrane system. Mol. Biol. Cell, 18(9):3463–
3471, 2007.

[Wal58] Alfred R. Wallace. On the tendency of varieties to depart in-
definitely from the original type. In Proceedings of the Linnean
Society of London, volume 3, pages 53–62, 1858.

[WZZ01] L. Wang, K. Zhang, and L. Zhang. Perfect phylogenetic networks
with recombination. Journal of Computational Biology, 8(1):69–
78, 2001.

Lebens- und Bildungsweg

Tobias Heinz Klöpper, geboren am 27. Mai 1977 in Bremen

1983 - 1987 Besuch der Grundschule an der Robinsbalje

1987 - 1994 Besuch der Gesamntschule Hermannsburg

1994 - 1995 Besuch der Lapeer East High School (Michigan, USA)

06/1995 Honorary Diploma

1995 - 1997 Besuch des Schulzentrums Huchting

06/1997 Abitur

09/1997 - 02/2003 Studium der Mathematik an der Universität Göttingen

02/2003 Diplomarbeit mit dem Titel Stationäre Prozesse und
fast sichere Grenzwertsätze

01/2001 - 06/2002 Angestellter bei Prof. Dr. Peter Gruss, Abteilung
für Mollekulare Zellbiologie, Max-Plank-Institut für bio-
physikalische Chemie Göttingen, für Programmierar-
beiten im Rahmen des AMGEN- Projekt

03/2003 - 01/2004 Wissenschaftlicher Mitarbeiter bei Dr. Kay Nieselt, In-
stitut für Informatik, Arbeitsbereich Proteomics Algo-
rithmen und Simulation

seit 02/2004 Wissenschaftlicher Mitarbeiter bei Prof. Dr. Daniel H.
Huson, Universität Tübingen, Institut für Informatik,
Arbeitsbereich Algorithmen der Bioinformatik. Anfer-
tigung einer Dissertation mit dem Titel: Algorithms for
the Calculation and Visualisation of Phylogenetic Net-
works

Ko-Betreuung durch Prof. Dr. David Bryant, Univer-
sität Auckland

	1 Introduction
	2 Background
	2.1 Splits and Clusters
	2.2 Split Networks
	2.3 Consensus and Z-Super Networks
	2.4 Reticulate Networks

	3 Decomposing Galled Networks
	4 Calculating Galled Networks
	4.1 Hybridization Networks
	4.2 Recombination Networks

	5 Drawing Reticulate Networks
	5.1 Basic Notations
	5.2 Drawing Reticulate Networks
	5.3 Integration of Reticulate Networks into SplitsTree 4

	6 A Plugin Management System for Java Software
	6.1 The Management System
	6.2 Implementation Details
	6.3 Integration into SplitsTree 4

	7 Annotation of Phylogenetic Graphs using Jloda
	7.1 Integration into Jloda
	7.2 Implementation Details
	7.3 Integration of Glyphs into SplitsTree 4

	8 Discussion
	A Publications
	A.1 Published Manuscripts
	A.2 Other Published Manuscripts

	B Contributions
	 Literatur

