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Abstract

In this report we present a new surface reconstruction technique from
unstructured point clouds for piecewise smooth objects, such as scans of
architectural and other man-made artifacts. The new technique oper-
ates in three conceptual steps: First, a set of basis functions is computed
and a topology is established among these functions that respect sharp
features using a RANSAC technique. Second, a linearized, statistically
motivated optimization problem is solved employing this discretization.
Lastly, an implicit function based meshing technique is employed to de-
termine a clean, manifold mesh representation. The main benefit of our
new proposal in comparison to previous work is its robustness and effi-
ciency, which we examine by applying the algorithm to a set of synthetic
and real-world benchmark data sets.



1 Introduction

Surface reconstruction from point clouds is meanwhile a classic topic in com-
puter graphics. Reconstruction problems of this type arise in many areas of
computer graphics, in particular when using 3D acquisition devices. In this
paper, we examine an important special case, the reconstruction of piecewise
smooth objects, i.e. objects that consist of smooth patches and crease lines of
infinite curvature. This class of objects is of strong interest in practice because
many man made objects, such as buildings or machine parts, are (at least ap-
proximately) of this structure. Typically, such objects can be represented using
a fairly low complexity representation of smooth patches and boundary curves,
while a high resolution point cloud is necessary to acquire the objects initially.
In consequence, many traditional surface reconstruction techniques have high
computational demands or even fail completely because of the high sampling
requirements to represent the lines of first order singularity, which could be
avoided by taking the special structure of the objects into account.

Our new proposal consists of three building blocks: First, we derive a
quadratic energy function for the reconstruction of smooth surfaces. The energy
function is an approximation of the statistically motivated, non-linear formula-
tion in [JWB106, HAWO07]. The energy function is discretized on a set of hi-
erarchically adapted local quadratic basis functions that parametrize the shape
space under consideration with a small number of coefficients and optimized
by solving a simple sparse linear system. In a second step, we detect regions
that are not well represented in this low-dimensional function space. We apply
a RANSAC-based segmentation algorithm [FB87, SWKO07] that creates multi-
ple basis functions at sharp creases, breaks their topological connectivity ac-
cordingly and associates the original data points with the corresponding parts.
Solving again for the global optimum of our energy function, we now obtain a
piecewise smooth reconstruction with explicitly represented crease lines. These
lines are well behaved, i.e. they themselves are piecewise smooth, as imposed by
the smoothness constraints of the smooth patches. The third part of the algo-
rithm then constructs a clean manifold mesh by blending and clipping implicit
functions derived from the local basis functions. The output mesh is feature
aware: The curvature information of the smooth patches is provided in terms
of triangle normals and the crease lines are tessellated explicitly, appearing as
a subset of the triangle edges.

The main advantages of our new proposal are efficiency and robustness:
Unlike previous statistical techniques [JWBT06,DTB06|, the hierarchical adap-
tation of the basis functions and the linearized optimization technique allow
for a very efficient reconstruction of smooth surface patches. In comparison
to [HAWO7], we adapt the support of our basis functions at sharp features
rather than resorting to high resolution sampling, which drastically reduces
computational costs in our application area. The approach is also robust: The
RANSAC based fitting has been proven to reliably and robustly segment objects
into smooth parts [SWKO07|. Even in case the segmentation fails, it only affects
the degrees of freedom present in the basis functions. The algorithm might miss
a feature or overrepresent it, but this cannot have catastrophic consequences on
the result.

The remainder of the paper is structured as follows: Section 2 discusses the
relation to previous techniques more in detail. Section 3 describes the recon-



struction algorithm and its components. We present results of our reconstruc-
tion system from synthetic and real-world architectural scans in Section 4 and
evaluate the algorithm’s robustness under different noise conditions. Section 5
concludes the paper and points into possible future research directions.

2 Related Work

Surface reconstruction algorithms were pioneered by the work of Hoppe et
al. [HDD'92|, who estimate and unify point normals and then extract a triangle
mesh via a reconstructed distance function. Amenta and colleagues [ABK98] ap-
proach the reconstruction problem from a computational geometry point of view,
focusing on topology reconstruction. Carr et al. [CBCT01] use Radial Basis
Functions to define the surface. The Moving Least Squares (MLS, [ABCO'03])
approach defines the surface as an invariant set of a projection operator, com-
puted as a numerical optimization step on a locally constructed implicit func-
tion. Ohtake et al. [OBAT05] subdivide data points hierarchically using an
octree. In the nodes, they represent the surface with quadratic functions which
are blended together globally by weights summing to one (Multi-level Partition
of Unity, MPU). In [KBHO06|, Kazhdan and colleagues describe surface recon-
struction as a spatial Poisson problem. Recently, statistical data analysis and
machine learning techniques, such as Diebel et al. [DTB06], who address the
problem with Bayesian statistics, have gained some attention. Gal and col-
leagues [GSHT07| describe how to incorporate priors from a model database
with additional information, as normals, to be used in the reconstruction pro-
cess.

Dinh and colleagues [DGS01] approximate the surface in regions containing
sharp creases by employing anisotropic basis functions. The amount and di-
rections of the anisotropy are detected automatically using PCA. However, the
creases are only enhanced, while remaining smooth. Therefore, the extraction
of a triangle mesh with sharp creases is not directly possible.

Some approaches, as Reuter et al. [RJTT05], require for explicit user in-
teraction to enrich the geometry of the input. Their projection operator ac-
counts for high-frequency features building upon user-defined tags. The MPU
approach [OBAT05] or the Algebraic Point Set Surfaces of Guennebaud and
Gross [GGO07] are able to represent sharp features if correct normals are given,
which is not the case in scanned datasets. Estimated normals (e.g. using PCA),
however, smooth out the singularities. Therefore, both approaches require man-
ual tagging of points around features. In contrast, our system is able to infer
exactly this information automatically and can therefore be used as a prepro-
cessing for their data representations.

Lipman and colleagues [LCOLO07] build a system to handle sharp features
upon the MLS projection scheme. They compute a singularity indicator field
based on the error of the MLS approximation. During the MLS projection, a
spline representation is used to segment smooth surface parts; then the MLS
procedure is applied to each subset individually. The main drawback of their
approach is that restricting the datasets to a single singularity within each influ-
ence radius significantly limits possible inputs (e.g. corners cannot be handled).

Another MLS extension is proposed by Fleishman et al. [FCOS05]. In the
projection process, points in a local influence radius are segmented into subsets



from smooth surface parts. For this segmentation, a robust forward search
paradigm is applied to iteratively find reference planes with corresponding point
subsets. The sets are filled with the points with the lowest residual from the
plane model. With each new point a bivariate polynomial fit is updated until
the residuals exceed a certain threshold. After this fitting process the point
subset is removed and the algorithm is restarted on the remaining points. Its
main problem is that the robust fitting of points is only applied to the reference
planes, which makes the algorithm less stable in angled regions. We, in contrast,
also fit curved primitives (sphere, cylinder). Additionally, they argue that the
robust fit can be done efficiently by choosing random points spatially close to the
first sample. However, in the presence of noise, this approach becomes instable
compared to choosing points as far from each other as possible. Our RANSAC
sampling draws the samples without such a constraint. Even tough this requires
more sampling iterations, we perform computationally well, because we do not
need to compute the fitting of a polynomial with each added sample.

Jenke et al. [JWB™06] detect and optimize for sharp creases within a Bayesian
framework. They assume that singularities in the reconstruction can be found
in surface parts with high estimated curvature. Based on this assumption, they
mark points as singularity points and handle them separately in the optimiza-
tion process. The global nature of their optimization is problematic because
the whole detection pipeline fails, if only a small part of a singularity is not
detected correctly. Additionally, because of the high number of optimization
parameters required (position of each point) and its non-linear nature, we are
able to outperform [JWB™06| by an order of magnitude while maintaining the
same reconstruction quality. This is mainly due to the adaptive subdivision of
the input data and the powerful representation with polynomials representing
large sets of data points. By disregarding the costly preprocessing (see Section
4) this ratio becomes even more severe. Especially the performance issue makes
their approach impractical for large scenes.

In [KBSSO01], Kobbelt et al. describe an enriched distance function repre-
sentation which employs more than one distance value at each point and can
therefore be used for feature preserving triangulation via the Marching Cubes.
They, however, also require for correct normals to detect sharp creases and —
what is even more important — they already assume a triangle mesh as input,
which is not available from scanning systems.

Our data structure with an octree and basis functions is built upon the
work of Huang and colleagues [HAWO07] which, again, is similar to the MPU
representation [OBAT05]. They address the problem of registering a set of
scans to a global reference system. The surface reconstruction part is carried
out on increasing detail levels. An important difference to our approach is that
they do not allow for the reconstruction of sharp creases. In order to somehow
overcome this limitation, a high sampling ratio is required, which is very often
not available (e.g. see the outdoor scan in Section 4). For applications such
as urban environment modeling, however, it is mandatory to provide triangle
meshes with sharp features. A performance issue arises from the non-linear
nature of their optimization routine and the fact that their octree structure is
not used for adaptivity (optimization on same depth level for all nodes). This
causes problems with ill-sampled and noisy regions while being unnecessarily
expensive in planar regions.



3 Algorithm

(a) Input (b) Preprocessing (c¢) Octree-Setup,/ (d) Singularities/ (e) Triangulation
Optimization Optimization

Figure 1: Reconstruction pipeline. Input: unstructured noisy point data — pre-
processing: normal and curvature estimation at each point (brighter color corre-
sponds to higher curvature) — creation of a spatial data structure and numerical
optimization for basis function coefficients — segmentation along singularities
via RANSAC and optimization — mesh extraction.

As input to the algorithm, we expect an unstructured point cloud. We do
not need surface normals in the data. In a preprocessing step, we estimate
the curvature and a (rough) normal at each point. Then, we subdivide the
data into an octree structure and setup our reconstruction representation in
the leaf nodes. Therefore, in each leaf node, we estimate a local coordinate
system and initialize a set of basis functions. We call this representation in the
nodes Local Surface Function (LSF). It is uniquely identified (assuming fixed
local coordinate frames) by the coefficients of the basis functions. This allows
us to compute our reconstruction as the minimum of an energy function defined
over these coefficients. For smooth surfaces, the set of coefficients minimizing
the energy function already gives the final reconstruction. However, we use this
solution as an intermediate step to detect leaf nodes as singularity candidates
(exploiting assumptions on the noise level in the data). The powerful and robust
RANSAC is used to segment such singularity candidates into smooth subsets
and replace them by a new node for each such subset with an individual LSF
representation. Then, the energy optimization procedure is applied again to
obtain the final reconstruction. In a postprocessing phase we extract a triangle
mesh.

3.1 Data Preprocessing

For the computation of a rough normal direction and the curvature, we need a
local influence radius o as a user-parameter. Algorithms are imaginable, though,
to estimate it from the input (e.g. with Tensor Voting [MLTO00] using different
radii or by analyzing the eigenvalues of the covariance matrix of local neigh-
borhoods). In order to estimate the normal direction, we follow [HDD*92] and
estimate local reference frames T at each point via PCA using its o-neighbors.
Afterward, the normal directions are globally unified. Please note that close to
feature lines, these normal directions differ from the exact surface normals of
the original surface. We estimate the curvature at each data point d; by fitting
a 2" order polynomial in the least-squares sense to the o-neighborhood:

fu,v) = co + c1u + cov + czuv + cqu? + csv?



From the Mean Curvature H and the Gaussian Curvature K [Opr97],
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we compute a single curvature value as the maximum of the principle curva-
tures derived from H and K. We remove noise in the curvature field, if o is
small relative to the noise level in the data, by smoothing it with a Gaussian
kernel. Finally, we estimate the noise standard deviation o,se in the input
data (assuming Gaussian noise) from the distances of the data points to their
corresponding fitted polynomials.

3.2 Adaptive Surface Representation

Our surface representation is based on an octree data structure over the data.
We stop the recursive subdivision process of the octree if a cell contains no more
than 14,4 points. n4.4 is estimated as the average number of points in the o-
neighborhood in the data. In order to guarantee stability of the optimization,
we make sure that the surface patch of each octree node contains at least a o-ball
of data points. If that is not the case, we add points from adjacent nodes (dou-
ble assignment of points does not disturb our reconstruction process). In flat
regions, this deep subdivision is not required (or not even desired). Therefore,
we propose a detail-adaptive representation: for each leaf node, we determine
the maximum curvature curv,,,, estimate of all data points contained. Inner
nodes are then merged, if all their child leaf nodes with bounding box size b
and according diagonal d = v/3b meet the criterion described in Figure 2 (the
curvature curv,,q, implies a circle with radius r = L nae = 30 degrees):
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Figure 2: Detail-adaptive curvature criterion.

For each leaf node containing data points, we then estimate a local coordinate
system, consisting of two tangential directions and a normal, which is used to
transform world-space points into the local coordinate system: T : (z,y,z) —
(u,v,n). Again, we estimate these local coordinate systems via PCA and align
them according to the data normals (Figure 3a). Please note that in contrast
to [HAWO7] we do not need to realign the coordinate systems, because they are
based on the data points which remain fixed. The surface in each leaf node is
then represented with Ng basis functions b; and their corresponding coefficients



¢;, parameterized via the tangential directions:

fPRxR—=R f(u,v)=

We call the combination of a coordinate system with a set of locally defined
basis functions a Local Surface Function (LSF).

(a) Hierarchical
sentation:
is represented in
leaf nodes of an octree

repre-
the surface
the

structure via local
coordinate systems (tan-
gential directions: green,
blue; normal direction:
red) and a set of basis

(b) Consistency: we min-
imize the integral (light
gray area) of difference be-
tween adjacent local sur-
face functions fr and f; in
two adjacent leaf node cells
Cy and C; over a border
area Ay via Monte-Carlo
integration (blue points).

(c) Singularities: noise level
Onoise 1s exceeded in cell (left):
detection of primitives and seg-
mentation of data points from
smooth surface parts; then, cre-
ation of new subnodes with indi-
vidual coordinate frames T; and
LSFs f;.

functions (green shaded
disks).

Figure 3: Reconstruction algorithm: hierarchical octree representation, consis-
tency energy term, singularity detection.

3.3 Optimization

Since the coordinate systems remain fixed, the reconstruction is completely
described via the coefficient vector ¢ of all coefficients ¢; in the LSFs. We
assemble an energy function used to determine the optimal reconstruction result.
We use the following notation: N¢j is the number of points in octree cell Oy,.
No is the number of leaf nodes containing LSFs. The point p = (u; k, Vj %, k)
denotes the j** data point in cell Oy, transformed into its local coordinate system.
The combined reconstruction energy function consists of three components:
a data fitting term E, a smoothness term £ and a consistency term between
adjacent patches F.. The combined energy functional is formulated as

E = )\fEf + AsEs + AcE..

Data Fitting: The first term enforces the reconstructed surface to lie close
to the data points — the data fitting term E;. We formulate it by penalizing
the distances (height values) of the data points from the LSF:

No No,k Ng
Br= -3 ST onbiug vin) — nip)®
NO NC’k. ‘ ) 7> 75 75
k=1 wog=1 =1

Smoothness: In order to control the smoothness of the surface, we intro-
duce an additional term following the ideas of [JWBT06, HAW07|. We constrain



the curvature of the local surface functions by minimizing the integral of the
sum of squared principal curvatures (integration domain is [—1,1]?, because the
LSFs are scaled to this domain within each octree cell):

1 No .1 1
No = J-1/4

Consistency: Neither the data fitting nor the smoothness term guarantee
consistency between adjacent cells. In order to achieve this, we add an energy
component minimizing the difference between the LSF between cell C and its
counterparts in all adjacent cells (C; € N(CY%)) in the cell border regions (see
Figure 3b):

Eo= > e ! f1)2dA,
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where f; and f] are the LSF of nodes k and [ transformed into a common
coordinate system, with an integration domain Aj; in the same coordinate
system. In practice, this integral is — depending on the choice of basis functions —
mathematically involved to compute. Therefore, we use Monte-Carlo integration
with |M| samples. This means that for the consistency between nodes k and [,
we randomly choose points f; on the LSF of node [ and corresponding closest
points f/* on the LSF of node k to approximate the integral:

No [ M|
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In practice, this is solved by the same formulation as the data fitting term,
replacing the data points by the consistency points. Our experiments showed
that using 4 samples close to the touching plane of the two adjacent cell bounding
boxes for each adjacent node is sufficient. Since the positions of the consistency
points change with optimized LSFs, we update them several times in the solution
process. In both the formulation of the fitting term and the consistency term, we
only use the height values of the points in the coordinate system normal direction
instead of the distance values from the surface functions. These height values,
however, are an accurate approximation of the distance in our formulation,
because the maximum curvature within each node is small due to the adaptive
representation.

Using the energy functions as described above, we are able to infer an op-
timization system of the form cAc + bc + d, where A € RV*N is a positive
definite matrix and c is the solution vector (c,b € RY). The size of the matrix
N = NNy computes from the product of the number of basis functions times
the number of local surface cells. The scalar d does not influence the minimum
solution. This is found by solving the linear system Ac = b, which can be done
rather efficiently. Each of the three energy components builds a sparse matrix
which again is important for fast optimization. In all our examples we used the
weights Ay =1, A; = 0.1 and A. = 2.



3.4 Singularities

Implied by the data fitting energy E'¢ we get an estimate of the noise distribution
in a node. Additionally, we can compute the probability p of the noise level in a
node given the noise distribution ,,,;sc as estimated in the preprocessing phase.
If this probability p is low (in all our examples the criterion is: opeisenode >
20n0ise, Which means p < 0.05), we assume that this value results from an
invalid LSF due to singularities in the cell — such cells are marked as singularity
candidates.

An obvious approach to handle them is to subdivide the singularity candi-
date leaf nodes into subsets belonging to smooth surface parts. The question
is, how to find such a segmentation. A technique, which has already shown
its stability for a similar problem [SWKO07] is the RANSAC [FB87|. This ran-
domized approach can be used to detect primitives in point sets; in our case
planes, cylinders and spheres. The basic idea is rather simple: a set of sample
points is randomly drawn from the point set. These points are used to dispense
a guess for a primitive candidate (e.g. a plane is uniquely described by three
sample points). Then, all other points in the point set are checked against the
primitive guess. This is done by computing a score based on the distances of
the points to the primitive guess (only points are considered with a distance
smaller than 20,,;s¢). The procedure is carried out nranysac times (in our
case nransac = 150) and the guess with the highest score is kept. All points
that fit into the primitive (again based on o,,ise) are discarded from the point
set and the segmentation algorithm is restarted on the reduced point set (Figure
3c).

An important question is, if it is reasonable to assume that the leaf node
subsets can be segmented using these three simple primitives. In our context
it is reasonable, because only small parts of the surface are investigated that
locally at least resemble such primitives (especially for 'man-made’-objects).
Furthermore, the primitives in the segmentation are only used as a temporal
approximation and not as the final reconstruction. In practice, we never expe-
rienced any problems with this assumption. However, it can theoretically not
be avoided that a larger number of segments is found than required, since de-
pending on the set of basis functions chosen, this representation could represent
a bigger variety of surfaces than the primitives.

After the primitives have been detected, a new LSF is created for each subset
and used to replace the singularity candidate leaf node in the data structure.
In order to improve the stability of both the primitive detection and the final
reconstruction optimization, we slightly enlarge the set of points used in the
detection phase by adding points from adjacent nodes. We also fill up the data
points for each newly created LSF in order to meet the constraints applied when
first creating the leaf nodes in the octree structure.

After the processing of all leaf nodes in the octree, the optimization routine
is applied again. The only modification required here, is that not all spatially
adjacent nodes are used for the consistency energy term E., but only those
corresponding to the same smooth surface part. We ensure this, by comparing
the normals inferred from the LSFs of adjacent nodes at the intersection. If
the scalar product falls below a threshold of 0.9, the nodes are not considered
neighbors.



3.5 Triangulation

The final step in our reconstruction pipeline is the extraction of a triangle mesh.
Therefore, we interpret our representation with LSFs as an implicit function
by computing the distance from the surface. A very-well studied approach
to extract a triangle mesh from an implicit function is the Marching Cubes
(MC, [LC87]) algorithm. We apply it in each LSF node and obtain a triangle
soup. FKither the height of a point over the basis function representation is
used or the closest point on the surface is computed using an iterative approach
projecting the point onto the surface in surface normal direction (more accurate
in bended regions). In order to get a consistent triangulation, we subdivide
all leaf nodes to the same depth. A special handling, however, is required at
singularity nodes. Here, we apply the marching cubes once for each subset-node
and clip at planes implied by adjacent nodes, as similarly applied in [JWB™T06].
The final mesh is then stitched together by snapping of spatially close vertices
and a projection operator which projects mesh vertices onto the surface.

In order to overcome some triangulation artifacts caused by the MC (e.g.
thin triangles), standard mesh enhancement or simplification techniques can
be applied on the resulting triangle mesh (we used a modified version of the
Quadric Error Metrics [GH97] for Figure 1 and in the block example in the
accompanying video). The space requirements for the MC triangles are never
severe compared to the input point data, not even for large scenes, because even
leaf nodes from the lowest depth level (used for the triangulation) cover a large
number of data points. This effect could be improved even more by employing
an adaptive triangulation scheme, e.g. as described in [KKDHO07].

4 Results

We have implemented a system prototype in C++. We tested the functionality
of the technique on a variety of datasets, both synthetic and acquired by scan-
ning systems. For the timings in Table 1, we used an Intel Core 2, 2.13 GHz
System with 2 GB of RAM.

We used the same 2"?-order monomials as basis functions for the local surface
representation as in the preprocessing stage. However, in order to use other basis
functions one only has to implement an evaluation call for each basis function
and to adjust the smoothness term E,. For the 2"%-order monomials in node k
it computes to F, = 2052)”,C + 40121,1« + 4c§’k.

We use a Conjugate Gradient solver [She94| to solve the optimization prob-
lem. For performance reasons, we use an indexed octree referencing the actual
points in a point set, speed up nearest-neighbor queries by keeping an additional
knn-octree structure and cache neighbor relationships.

Noise: We evaluated the stability of our representation in terms of robust-
ness under different noise levels. The representation using patches, which cover
a large number of data points, shows much better robustness compared to a
point-based representation. The critical part of the process is the singularity
detection part — to distinguish features from noise. We created a test dataset
(Figure 4) and iteratively increased the noise level as long as the detection of
the primitives was successful. The points which were detected as belonging to
primitives were color-coded (plane: red; cylinder: green; sphere: blue). The left
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part of Figure 4 shows the dataset corrupted with Gaussian noise of standard
deviation of 0.5% of the bounding box size, the right with 0.75% of the bound-
ing box size. With the lower noise level, the primitives are detected correctly
leading to a correct reconstruction (lower row); however, with the higher noise
level, the RANSAC method fails.

Figure 4: Stability under different noise levels: extraction of primitives (top
row; planes: red, cylinders: green, spheres: blue). Successful reconstruction
(left) and failed reconstruction (right, front corner).

Synthetic data: We also tested our approach on well-known synthetic
datasets: fandisk (Figure 5, top), block (Figure 5, middle) and bunny (Figure
5, bottom). The fandisk dataset is especially interesting because parts of the
surface cannot be represented correctly by the three primitives plane, cylinder
and sphere. However, the reconstruction (middle row) is still able to detect the
sharp creases and the LSF-representation allows for a correct extraction of the
triangle mesh. The block dataset was corrupted by Gaussian noise (standard
deviation = 0.5% of bounding box size). This dataset is especially challenging in
regions where the holes intersect, because there the angle between the intersect-
ing surfaces is rather low. Still, our singularity detection approach successfully
segments the leaf nodes. The reconstruction of the bunny datasets shows the
adaptive subdivision and how well smooth parts of a surface are reconstructed.

Real-word data: The most interesting datasets, are those coming from
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Figure 5: Synthetic examples: fandisk (first row): input data, reconstruction
with LSFs, triangulation; block (second row): input data, estimated curvature,
reconstruction with LSFs, triangulation; smooth example: bunny (third row):
estimated curvature, reconstruction with LSFs, triangulation.

scanning systems. Figure 6 shows the scan of a building interior floor. This
dataset was acquired by a mobile device assembling the scene from laser range
scan slices with color information. The main issue with this dataset is that
during the iterative scene assembly, registration errors occur which result in
‘shadow’ walls parallel to the main surface. This obviously hurts our Gaussian
noise assumption. However, it can be seen from the reconstruction result (Figure
6, top, right) and the detected singularity nodes (Figure 6, bottom, left) that our
reconstruction system still handles the data correctly. We successfully extract
a triangle mesh (bottom, middle) and create a textured model from the input
data (bottom, right). Please note, that inaccurate color assignments are already
inherent in the data.

We also tested our system on an outdoor dataset (Figure 7) acquired by
the same system. Here, the main challenge is that the point sampling is much
less uniform and the dataset even contains some large holes (left image). The
reconstruction is therefore somewhat coarser and regards high-frequency details
in the data as noise (bushes, small boxes). The adaptive reconstruction of our
approach can be observed in the middle image; the right image again shows a
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textured rendering of the final reconstructed surface. In both example datasets
some rough outliers resulting e.g. from windows or extremely specular surfaces
were removed manually. Alternatively, it seems possible to use the singularity
detection step for this purpose, which has not yet been exploited.

Figure 6: Real-world example: scan of a department floor: input data (top left),
estimated curvature (top middle), reconstruction with local coordinate frames
(top right), detected singularity nodes (bottom left), triangulation (bottom mid-
dle), textured triangle mesh (bottom right).

Figure 7: Real-world example: scan of an outdoor environment: input data
(left), reconstructed LSFs (middle), textured triangle mesh (right). Please note,
that the complete reconstruction is based on very few and simple basis functions.

Timings: Table 1 lists the timing results for the examples in the paper. It
becomes obvious that a significant amount of computation time is required for
the preprocessing. Since we only need a rough estimate for the curvature and
only few consistent normals in the octree creation process, the preprocessing
could be sped up significantly. The different timings in the singularity detec-
tion process result from different sizes of the local point sets used to detect
the primitives and from the different number of singularity candidates. The
bunny example is computationally more expensive due to its large number of
LSFs resulting from the surface details. The timings imply that the recon-
struction complexity is roughly linear with the number of input points, however
this strongly depends on properties of the data such as sampling spacing and
number /size of singularities.
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Model/ Prepro- Octree/ Optimi- Singu- Trian-

#points cessing #LSF-nodes zation larities gulation
carved object/192k 22.1s 1.7s/1604 5.3s 1.9s 0.3s
fandisk/400k 39.7s 3.5s/1742 9.95s 9.3s 1.4s
block/200k 21.4s 1.6s/715 7.51s 32.6s 0.5s
bunny/1000k 149.3s 12.4s/5712 45.8s - 9.3s
floor/1140k 160.0s 8.9s/880 16.0s 16.5s 0.6s
outdoor/177k 40.8s 1.6s/450 5.2s 13.0s 0.6s

Table 1: Timing results in seconds.

5 Conclusions and Future Work

In this paper we presented a novel method for the reconstruction of a surface
representation from unstructured point geometry information. We preserve and
enhance sharp creases in the input data and exploit this information in the final
triangulation step. We use a hierarchical subdivision of the scene and represent
the surface with a coordinate system and a set of basis functions in the leaf nodes
(LSF). In order to handle sharp creases, we automatically detect nodes which
possibly contain a singularity and segment the smooth surface parts using the
RANSAC principle. In order to find the coefficients of the LSFs and therefore
our final reconstruction, we assemble an energy function consisting of a data
fitting, a smoothness and a consistency term, which we optimize by solving
a linear system. We specifically address datasets of man-made objects with
partly simple (close to planar) parts and sharp features. Especially, in terms of
performance and robustness, our method beats existing approaches.

A typical problem with an octree representation results from discretization
artifacts. If a noisy surface is close to the touching plane of two adjacent cells,
two parallel surface parts could result in the reconstruction. In future work,
we would like to investigate if one can overcome this limitation by breaking up
the octree structure and use a representation more adaptive to the data. Also,
we would like to consider the problem in a more statistical way and investigate
other possible priors which — especially for 'man-made’ datasets with many
symmetries — could allow for a more faithful reconstruction of datasets with
even finer structures.
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