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Introduction

Waiting lines, or queues, have been an everyday-life phenomenon for a long
time. A modern mathematical treatment uses concepts from probability the-
ory and aims at an understanding of the time-evolution of certain probabilities.
A more detailed analysis discriminates between different types of queueing sys-
tems and uses a 3-descriptor code of the form A/S/n, where A stands for the
distribution of arrivals of customers, S for service time distribution and server
peculiarities, and n for the number of servers. We study the so-called M/M? /1
model, which is described in detail below and in Chapter 2.

Another problem we are interested in is concerned with systems involving
units which may fail to function, are repairable and are backed up by standby
units. Again, we are interested in the evolution (in time) of failure/ availability
probabilities. For details we refer to Chapter 3 and 4. In both types of models
we use the fact that the probabilities we are interested in are the solutions of
certain systems of partial differential equations with appropriate initial /boundary
conditions. This goes back to Cox [Cox55]|, and for the M/M?P/1 model in
particular, to M. L. Chaundhry and J. G. C. Templeton [CT83|. In the cases
studied in Chapter 3 and 4 the same observation goes back to |[Gup95| and
|Yeh97|. The basic idea we are following, and which goes back to G. Gupur (see
|GZ98|, [GLZ01] and [Gup02]), is to verify that these differential equations can
be written in the form of an abstract Cauchy problem which is well-posed, so that
the theory of Cy—semigroups is applicable. In all cases which we are considering,
the correponding semigroups are even positive, which considerably facilitates the
discussion of the asymptotics of solutions. We continue to give a more detailed
account of the content of the respective chapters.

In Chapter 1, we first recall some basic definitions and results on Banach
lattices and positive operators. We continue to outline the general framework,
developed by G.Greiner |Gre87/|, into which all our examples fit; last we concen-
trate our attention to the asymptotic behaviour of positive semigroups on Banach
lattices and collect the results used later.

Chapter 2 is devoted to an analysis of the M/M?P /1 queueing model. In this
model there is a single-server which can serve B customers simultaneously. The
service starts as soon as there is one customer in the queue. The arrival of the
customers in the queue is at random. The arrival times of the customers as well
as the service times are distributed exponentially. We first write the system as an
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abstract Cauchy problem, prove well-posedness of the problem and irreducibility
and positivity of the corresponding semigroup and analyze the spectrum of the
generator. The main conclusion on the asymptotic behaviour of the solutions of
this problem is stated in Theorem 2.5.2.

In Chapter 3, the model of a repairable system with primary as well as sec-
ondary failures is considered. The mathematical model for the system was estab-
lished by Surendra M.Gupta (see [Gup95|). We rewrite the model as an abstract
Cauchy problem, and prove well-posedness of the problem and positivity and ir-
reducibility of the corresponding semigroup. Through a spectral analysis of the
generator we obtain existence of a unique steady state to which all solution con-
vergence as time tends to infinity.

In Chapter 4, we discuss a parallel maintenance system with two compo-
nents. In [Yeh97|, L.Yeh established the mathematical model of the system and
obtained existence of a steady-state solution. In [Guo03|, Guo Weihua proved
the existence and uniqueness of a nonnegative solution of the system by using
classical analysis methods. By using Cy— semigroup theory, well-posedness of
this problem is verified. Finally, the asymptotic behaviour of the solutions is

obtained through a spectral analysis of the generator and by applying a recent
result from [EFNSOQ7].
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CHAPTER 1

Preliminary Results in Semigroup Theory

We assume that the reader is already familiar with the basic functional anal-
ysis and the theory of Cy-semigroups on Banach spaces and refer to [ENO0O|,
[ENO06|, [Gol85| and [Paz83|.

1.1. Positive Operators

The theory of positive operators on Banach lattices is used throughout this
thesis. Therefore we recall some basic definitions and properties of Banach lat-
tices and positive operators. These results about Banach lattices and positive
operators can be found, e.g., in [Sch74]|, [Nag86| and [MN91].

We start by defining an order relation on vector spaces.

DEFINITION 1.1.1. A relation > is said to be an order relation on a nonempty
set E if the following conditions are satisfied

(i) (reflexivity) x < z for every z € E,
(ii) (anti-symmetry) z <y and y < x implies z = y,
(iii) (transitivity) <y and y < z implies z < z.

DEFINITION 1.1.2.

(i) A real vector space E is called an ordered vector space if there is an
order relation < defined on E such that for f,g € E

f<g=f+h<g+h forall hek
f<g= af <ag forall a>0.

(ii) An ordered vector space E is called a vector lattice if any two elements
f,g € E have the supremum (i.e. least upper bound)

sup(/f, 9)

and the infimum (i.e.greatest lower bound)

inf(f,g).

Clearly, the notation g > f means that f < g. Moreover, f > 0 means that
f>0and f#0.If g < f, then the set

g, f1:={heE:g<h<[f}
7
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is called an order interval. Let E be an ordered vector space. We denote by
E, :={f € E: f >0} the positive cone of E. If f € E,, then we say that f is
positive. If F is a vector lattice, then the positive part of f € E is

f7 = sup(f,0),
and the negative part of f is

[~ = sup(=f,0),
while the absolute value or modulus of f is

|f1 := sup(f, = f).

Note that f = f* — f~and |f| = f"+ f~.
We now give the definition of lattice norm and Banach lattice

DEFINITION 1.1.3.

(i) A norm ||.|| on a vector lattice E is called a lattice norm if
I <lgl =71 < lgll, for f,9 € E.

(ii) A vector lattice endowed with a lattice norm is called a normed vector
lattice.
(iii) A complete normed vector lattice is called a Banach lattice .

Complex Banach lattices will be used in our thesis. Therefore we now intro-
duce the concept of a complex Banach lattice.

DEFINITION 1.1.4. Let E be a real Banach lattice, then its complexification
Ec:=FE xiFE
with scalar multiplication

(Oé—i—%ﬁ)(f,g)Z(af—ﬁg,ﬁf+ag) for a7ﬁ€R7(fag)EE(C

is called a complex Banach lattice.

The space E is the real part of E¢. For f,g € Ec we write f > gif f,ge F
and if f > g holds. The modulus of (f,g) € E¢ is

[(f,9)] == sup [(cos¢)f + (sing)g|.

0<¢p<2m

We can show that the modulus indeed exists, see [Nag86, Sect.C-1 7|. More-
over, the norm on FE¢ is defined by

I 9 e = (> 9 -

Important classes of Banach lattices that play a significant role later are provided
by AL-spaces, see [Sch74, Def.I1.8.1].
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DEFINITION 1.1.5. A Banach lattice F is an AL-space if

1+ gl = LA+ 1lgll
for all f,g € E..

The space C and L&(€, p) are complex Banach lattices. The underlying real
vector lattices are R endowed with the usual order and L% (€2, 1) endowed with
the order

f>g it f(z)>g(z) for almost all z € .
Moreover, for f € Li(Q, 1) the modulus is

[fl(@) = [f(@)], =€

In this thesis, spaces like
C" x I'(Lg(Q, 1))
occur. They are complex AL-spaces with underlying real spaces
R x 1 (LY (2, ).
Their order is given by
(fi)ien = (gi)ien if fi > g forall ieN.
The modulus of (f;)ien € C* x IN(LE(Q, 1)) is

|(fi)ien| = (|fil)ien-

We now turn our attention to operators and semigroups on these spaces and
give the definition of positive operator and positive semigroup.

DEFINITION 1.1.6. Let £ be a real Banach lattice.
(i) A linear operator T on E is called positive (" > 0 in symbols) if

Tf>0 forall f>0.

(ii) A linear operator T' on E is called strictly positive (7' > 0 in symbols)
if
Tf>0 forall f>0.
(iii) A strongly continuous semigroup (S(t)):>o on E is called positive if
S(t) >0 for all t > 0.

We can extend this definition to operators on complex vector lattices mapping
the underlying real part into the real part. In this case, positivity or strict
positivity means that the restriction of the operator to the real part is positive
or strictly positive, respectively.

Note that for a positive operator T' on a vector lattice £ the inequality

TFI<T|f]

holds for all f € E, see [Sch74, p.5§].
The following subspaces play an important role in the theory of positive op-
erators.



10 PRELIMINARY RESULTS IN SEMIGROUP THEORY

DEFINITION 1.1.7. A linear subspace F of a real or complex Banach lattice
FE is called an ideal in FE if

feF |g|<|f|]=g€F.

REMARK 1.1.8.
(i) The ideals in C™ are the subspaces

Jg i ={r = (2)1<i<n €C":2; =0 for i€ H},
where H is an arbitrary subset of {1,--- n}, see [Sch74, p.2|.
(ii) Let E = L{(Q, ). Every closed ideal in Lg(€2, i) is of the form
Iy :={f € E: f(x) =0 for almost all z € M},

where M is a measurable subset of (). Conversely, every set [, is a
closed ideal in LL(Q, 1), see [Sch74, Example T11.1.2].

The ideal E; generated by f € E, is the smallest ideal containing f. By
[Sch74, Example 11.2.1] the equality

neN

holds.

DEFINITION 1.1.9. Let f € E,. If E; = E, then f is called a quasi-interior
point of F .

REMARK 1.1.10. A function f € L{(Q, 1) is a quasi-interior point if and only
if f(x) > 0 for almost all = € Q. In this case, we write f > 0.

Irreducibility of the semigroups is very useful in discussing the asymptotic
behaviour. In the following we briefly recall the basic definition for positive
operators and positive semigroups.

DEFINITION 1.1.11.
(i) A positive linear operator B on E is called irreducible if there is no
non-trivial closed ideal in £/ which invariant under B.
(ii) A positive semigroup (S(t)):>o on E is called irreducible if there is no
non-trivial closed ideal in E which invariant under (S(t)):>o.

According to [Nag86, Def.C-III 3.1|, we state the following equivalent asser-
tions to irreducibility of a semigroup on Banach lattice F.

PROPOSITION 1.1.12. Let B be the generator of a positive semigroup (S(t))¢>o-
The following assertions are equivalent.

(i) The semigroup (S(t))i>o is irreducible.
(i) If f € E and f >0, then R(vy, B)f > 0 for (some) all v > s(B).
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1.2. Well-posedness of the abstract Cauchy problem

In this section we present some definitions and tools to study problems arising
in our context.
We recall the following definitions from [ENOO, Def. 11.6.1 (ii)].

DEFINITION 1.2.1. Let X be a Banach space and let (B, D(B)) be a linear
operator on X, and uy € X. The initial value problem

du(t)
i Bu(t), te€][0,00), (ACP)
u(0) = up.

is called the abstract Cauchy problem associated to (B, D(B)) with initial value
Uug-

DEFINITION 1.2.2. A function u(.,up) : [0,00) — X is called a classical
solution of (ACP) if

(i) u(.,up) is continuously differentiable,
(ii) u(t,up) € D(B) for all t > 0, and
(iii) (ACP) holds,

According to [ENOO, Def. I1.6.8] we have the following definition.

DEFINITION 1.2.3. The problem (ACP) is called well-posed if
(i) for every initial value ug € D(B) there exists a unique classical solution
u(.,up) of (ACP),
(ii) D(B) is dense in X, and
(iii) for every sequence (u,),en € D(B) satisfying

lim u, =0

n—oo
one has

lim w(t, u,) =0

n—od

uniformly on compact intervals [0, to].

We now characterize the well-posedness of (ACP) as follows, see |[ENOO,
Cor.I1.6.9].

PROPOSITION 1.2.4. For a closed operator (B, D(B)) on X the associated
abstract Cauchy problem (ACP) is well-posed if and only if (B, D(B)) generates
a strongly continuous semigroup on X.

Therefore, to solve an abstract Cauchy problem means to show that the op-
erator (B, D(B)) generates a strongly continuous semigroup on X. If (ACP) is
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well-posed, then, by [ENO0O, Prop.I1.6.2|, the unique classical solution is given
by the orbit of ug under the semigroup (7(t)):;>o generated by B, i.e.
u(t) =T(t)ug, t=>0.

Next, we are interested in generators of positive semigroups. To this porpose we
give the following definition from [Nag86, p.249|

DEFINITION 1.2.5. A linear operator (B, D(B)) on a real Banach lattice E
is called dispersive if for every z € D(B) there exists a x € E’ such that ||x|| <
1 {z,x) = ||| and (B, ) < 0.

Generators of positive contraction semigroups are characterised by the follow-
ing theorem , see [Nag86, Thm.C-II 1.2].

THEOREM 1.2.6. (Phillips theorem) Let B be a densely defined operator on a
real Banach lattice E. The following assertions are equivalent.

(1) B is the generator of a positive contraction semigroup.
(ii) B is dispersive and v — B is surjective for some vy > 0.

1.3. Characteristic Equation

We now consider a class of operators (A, D(A)) which are constructed in a
particular way. We start from a closed linear operator (A,,, D(A4,,)), called the
maximal operator. Moreover, we take another Banach space 0X the boundary
space and use boundary operators L,® € L(D(A,,),0X). In the following we
always assume that L is surjective.

DEFINITION 1.3.1. The operator (A, D(A)) is defined as
Ap = Ampa
D(A) = {pe€ D(A,.) | Lp= Pp}.
Under appropriate assumptions, it is possible to characterize the spectrum
o(A) and give an explicit representation of its resolvent. The abstract framework
for this was developed by G. Greiner in [Gre87]. We sketch these results. The

starting point is the operator (Ag, D(Ap)) which is the restriction of A, to the
kernel of L, i.e.

D(A¢) = {pe D(A,)| Lp=0},
Aop = Amp'

The domain D(A,,) of the maximal operator A,, decomposes, using |[Gre87,
Lemma 1.2], as follows.

LEMMA 1.3.2. For v € p(Ay) one has
D(A,,) = D(Ay) @ ker(y — A,,).
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Since L is supposed to be surjective and D(Ap) = ker L, we conclude from
the above decomposition that the restriction L|ker(y—4,,) of L to ker(y — A,,) is
bijective. It follows from the closed graph theorem that the inverse of L|xer(y—4,,)
is bounded.

DEFINITION 1.3.3. For v € p(Ay), the operator D, := (Ll|xer(y—a,,)) " is called
Dirichlet operator corresponding to A,, and L.

The operators D, and ® allow to characterise the spectrum o(A) and the
point spectrum o,(A) of A. Before doing so we extend the given operators to the
product X x 0X as in [KS05, Sect. 3], see also [Rad06|, [HRO7b].

DEFINITION 1.3.4.
(i) X == X x 0X.

i) o= (M 0). D0 = D) x (0}
() X == X x {0} = D(4,) x {0} = D(Ay).
) B <§) 8) D(B) = D(A,,) x OX.

(iv

(v) Ai= Ao+ B = ((I)A_mL 8) . D(A) == D(4,) x {0}

REMARK 1.3.5.
(i) Note that p(Ag) 2 p(Ay). For v € p(Ap) the resolvent of A, is given by

R(y, Ao) = (R%Ao) %,) |

(ii) The part Ay, of Ain A is

A0
DiAl) = D) < (0}, Al = (5 )
Hence, A|y, can be identified with the operator (A4, D(A)).

The following shows that the spectrum of A is characterised by the spectrum
of operators on the boundary space 0.X.

CHARACTERISTIC EQUATION 1.3.6. Let v € p(Ag). Then
(i)
vE€o,(A) <= 1€0,(dD,).
(ii) If, in addition, there exists v € C such that 1 ¢ o(®D.,,), then
vye€o(A) <<= 1eoa(®D,).
PROOF. As in [KS05, Prop. 3.3|,we first show the equivalence
veo(A) & 1eoa(®D,). (1)
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We can decompose v — A as
v—A=7y—-Ay—B=(Z-BR(y,A0))(v — Ao). (2)

We conclude from this that the invertibility of v — A is equivalent to the invert-
ibility of Z — BR(~, Ap). From

B Idy 0
T = BR(y, A) = (—(I)R(’y, Ag) Idyx — (I)D,Y> ’ (3)

one can easily see that Z — BR(v, Ag) is invertible if and only if 1 ¢ o(®D,).
This proves (1). Since by our assumption 1 ¢ o(®D., ), it follows that v, € p(A).
Therefore, p(.A) is not empty. Hence we obtain from [ENOO, Prop. IV.2.17| that

o(A) = a(A),

since A is the part of A in Aj. This shows (ii).
To prove (i) observe first that A and A have the same point spectrum, i.e.,

op(A) = 0,(A).

Suppose now that 1 € 0,(®D,). Then there exists 0 # f € 0X such that
(Idsx — ®D,)f = 0. Since 0 # (”27) € D(A), we can compute

b=4 (D8f> - (—‘N{f?;i Ao) Idox ’ ‘I’Dw> <(7 _L%TZ}DJ)
(—@152?;(, Ao) Idox 2 ‘I’Dv> <?>

(([dax —O oD, f) - (8) '

This shows that v € 0,(A).
Conversely, if we assume that v € 0,(A), then there exists 0 # f € D(A,,)

such that (y — A) ({) = 0. From

() = o= (3)

- (-cbé%y(, Ag) Idax g @Dy) ((7 _L?m)f>

< (v = An)f )
—OR(v, Ao)(v — Ap) f + (Idox — @D,)Lf

we conclude that f € ker(y — A,,) and thus
0= —®R(v, A)(y — An)f + (Idox — ®D,)Lf = (Idoy — ®D.)LF.
It follows from Lemma 1.3.2 that Lf # 0 and hence 1 € 0,(®D,). O
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The boundary space 0X will be much smaller than the state space X in most
cases. So it is easier to determine the spectrum of ®D, than to compute the
spectrum of A directly.

For later use, we determine the resolvent of A in terms of the resolvent of Ay,
the Dirichlet operator D, and the boundary operator ®.

LEMMA 1.3.7. Suppose that there exists vy € C such that 1 ¢ o(®D.,) and
let v € p(Ao) N p(A). Then

R(v,A) = R(y, Ay) + D, (Id — ®D.) ' ®R(y, Ay).

PROOF. Under our assumption, we see from the Characteristic Equation 1.3.6
that 1 ¢ o(®D,) and it follows from the proof that v—.A is invertible with inverse

(v=A) = (y—A) (T - BR(v,A)) .
Using the explicit representation (3) for Z — BR(,.Ay) we obtain

» Idx 0
(Z — BR(v,A)) " = (([dax _ (I)D,y)*ch)R(%AO) (Idsx — @Dv)l) )

and hence »
Riv, A) = (R('y) D,(Idyx — ®D,) )

0 0
where R(v) = (Idx + D,(Idsx — ®D.) '®)R(v, Ap). Since A is the part of A in
Xy and since
(R(’Y) 0) = R(’V7"4>|Xo = R(’V7A|Xo)7
it follows that
R(v, A) = R(y).
0]

REMARK 1.3.8. The problems we investigate in this thesis are formulated
by partial differential equations involving nontrivial boundary conditions. These
problems will be rewritten as abstract Cauchy problems of the form (ACP) and
we will apply semigroup theory to prove the existence and uniqueness as well as
the asymptotic stability of the solutions.

All our operators will arise in the abstract form of Definition 1.3.1. Here, the
maximal operator is a differential operator on its natural maximal domain while
the boundary space consists of functions"on the boundary". The domain D(A)
of A incorporates the boundary conditions of the underlying problems.

We will determine the spectra of these operators in detail using the Charac-
teristic Equation 1.3.6.
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1.4. Asymptotic Stability of Positive Semigroups

The main subject of this thesis is to discuss the asymptotic behaviour of
the solutions of the previous problems using the theory of irreducible positive
semigroups. Therefore, we first collect some results on this aspect from [Nag86]|
and [Sch74].

Let E be a Banach lattice and (B, D(B)) be the generator of a positive
semigroup (S(t)):>0 on E. The fixed space of the semigroup (S(t)):>o is

fix(S(t))izo = [ |Hx(S(t)) = {z € E: S(t)z = = for all t > 0}.
>0
According to [ENO0O, Cor. IV.3.8 (i)] we have the equality
fix(S(t))i>0 = ker B. (4)

To study the asymptotic behaviour of the semigroup (S(¢)):>o the following
compactness property is useful.

LEMMA 1.4.1. Let E be an AL-space and let the positive semigroup (S(t))i>o0
be irreducible and bounded. If 0 € o,(B), then {S(t) : t > 0} C L(E) is relatively
compact for the weak operator topology. In particular, it is mean ergodic, i.e.

T

lim ! S(s)z ds

r—oo T J
exists for all z € E.
PROOF. From the assumption 0 € 0,(B) and (4) it follows that there exists
0 # z € fix(S(¢))i>0. By the positivity of the semigroup, the inequality
S()"|2l = S#)"[S(t)z] < S(t)" 2| (5)

holds for all n € N and t > 0, see [Sch74, p.58]. Note that semigroup (S(t))i>o is
bounded by assumption, therefore (S(¢)"|z|)nen is norm-bounded. From [Sch74,
Prop.I1.8.3] we know that the sequence converges to an element z; > 0. In this
step we use that E is an AL-space. From

S(t)zo = S(t) lim S(t)"|z| = lim S(t)" 2| = 20

we obtain that zo € fix(S(t)):>0. Thus, we can assume without loss of generality
that z > 0.

Since the semigroup is irreducible, we obtain from [Nag86, Prop.C-111 3-5(a)]
that z is a quasi-interior point of £ which means that

E, = U[—nz,nz]
n>1

is dense in F.
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Take w € [—nz,nz]. Then
—nz=-—nS(t)z < S{t)w < nS(t)z = nz

for all ¢ > 0. Since the order interval [—nz, nz| is weakly compact, see [Sch74,
p.92|, the orbit {S(t)w : t > 0} is relatively weakly compact. So far we have
shown that the orbit of the elements w from the dense subset E, of E are rela-
tively weakly compact. Since the semigroup (S(t)):>0 is bounded, it follows from
[ENO0O0, Lem.V.2.7| that {S(¢) : ¢ > 0} C L(F) is relatively compact for the
weak operator topology. By [ENO0O, Lem.V.2.7| we obtain that the semigroup
(S(t))+>0 is mean ergodic. O

Using the mean ergodicity of the semigroup we can decompose E into the
direct sum of ker B and rgB. If the semigroup is irreducible, then ker B is one-
dimensional. If in addition o(B) N iR = 0,(B) NiR = {0}, then the semigroup
converges strongly to one dimensional projection onto ker B. This is a conse-
quence of the Arendt-Batty-Lyubich-Vu Theorem 1.4.2.

THEOREM 1.4.2. Let E be an AL-space and the positive semigroup (S(t))i>o0
be irreducible, and bounded. If

o(B)NiR = 0,(B)NiR = {0},
then E can be decomposed into the direct sum
E= El S E27

where By = fix(S(t))>0 = ker B is one-dimensional and spanned by a strictly
positive eigenvector p € ker B of B. In addition, the restriction (S(t)|g,)i>0 is
strongly stable.

PROOF. Since the semigroup (S(t)):>0 is mean ergodic by Lemma 1.4.1, the
space E can be decomposed into

E=%kerB®rgB =: E1 ® F>,

where ker B = fix(S(t))i>0 , £1 and E, are invariant under (S(t));>0, see [ENOO,
Lem.V.4.4]. There exists Z € ker B such that Z > 0, confer the proof of Lemma
1.4.1. Moreover, by the same construction as in the proof of [EN0O, Lem.V.2.20(i)],
we find 2/ € F’ such that 2’ > 0 and B’z = 0. Hence we obtain that

dimker B =1

and that Z is strictly positive, i.e. Z>> 0, see |[Nag86, Prop. C-III 3.5].
We now consider the generator (B, D(Bs)) of the restricted semigroup (S2(t)):>0
where
BQ’U = BU, D(BQ) == D(B) N EQ.
and Sy(t) = S(t)|g,. Since by Lemma 1.4.1 every z € E has a relatively weakly
compact orbit. (Sa(t));>o is totally ergodic on X, i.e., (e7*S(t))i>0 is mean
ergodic for all @ € R by [ABHNO1, Prop. 4.3.12]. This implies that ker(By —iat)
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separates ker(Bj—iat) for all @ € R, see [EN0QO, Thm. V.4.5]. By our assumption
ker(By — iat) = {0}, thus ker(B) — iat) = {0} for all a« € R. Hence, it follows
that o0,(Bj) N ‘R = (. Applying the Arendt-Batty-Lyubich-Va Theorem, see
[ABHINO1, Thm. 5.5.5|, we obtain the strong stability of (75(t)):>o0- O



CHAPTER 2
The Dynamic M/M? /1 Queueing System
2.1. Introduction

The M/M? /1 queueing model describes a single server queue which can at
most serve B € N customers simultaneously. This problem has been studied
in [GZ98| and [Gup02|, where the authors showed the well-posedness of the
M/M?P /1 queueing model. Here, we give a more detailed analysis of the time-
dependent solution and show the existence of a unique positive steady state so-
lution of this model. Some of our results will appear in [HRO7a]

In this model, the server starts service as soon as there is at least one customer
in the queue. If a customer arrives while the server is busy, then the customer joins
the queue. There is assumed to be an infinite supply of customers. The customers
arrive at random and their arrival obeys a Poisson process with parameter A,
the so-called arrival rate. The service time is exponentially distributed with
parameter pu, the so-called service rate. The mean service rate is i

For these parameters we assume the following.

GENERAL ASSUMPTION 2.1.1. The parameters X and u fulfill

0<A<p.
The ratio
A
pi=—
1

is called traffic rate or traffic intensity. From the above general assumption it
follows that p < 1.

We need two time parameters to describe the above system. The parameter
t € [0,00) counts the time of the evolution of the whole system, whereas = €
[0, 00) counts the elapsed service time. The service time z is reset to 0 whenever
a new service starts.

Doo(t) gives the probability that the queue is empty and the server is idle at
time ¢t. Moreover, p,(z,t)dx,n € NU {0}, gives the probability that at time ¢
there are n customers in the queue and the elapsed service time lies in (z, x + dz],
B is maximum size of service.

19
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According to [CT83], the M/M? /1 queueing model can be expressed by the
equations

( dpoo(t *
p(;’;( ) = —Apoo(t) +M/ poa(x,t)de,
0
Opoa(x,t)  Opoa(x,t)
M 2 d = —
(MQ) 5t 5 (A + w)po1(z,t),
apn,1($7t) apn,1($at) .
L ot + O - _<)‘ + ,u)an(iC, t) + )‘pn*Ll(xv t)v n =1

For x = 0 the boundary conditions

B oo
poa(0,t) = M/ pra(@, t)dz + Apoo(t),
(BCuq) k=1 0

pn,l(oat) = ,U/ pn+B,1(x7t)dxa n=>1
0

are imposed and we consider the usual initial condition

Poo(0) = c €0, 1],
(ICmq) {pn(9€70) = fu(z) forn >0,

where f, € L'[0,00). But the most important initial condition at time ¢ = 0 is

po,o(o) =1,

1C
( MQ’O){pn,l(x,m—o, n >0,

which means that at time £ = 0 the server as well as the queue are empty.

2.2. The Problem as an Abstract Cauchy Problem

We reformulate the underlying problem as an abstract Cauchy problem with
an operator (Apq, D(Apg)) on the state space Xy := C x I'(L[0,00)). For
= (poo, o1 (-);p11(+),-..)" € Xpq, the norm of p is defined as

[Pl == [pool + Z [P, 1 ()] £10,00)-
n=0
In the following, ¥ denotes the linear functional
v =C foul)= [ f) e
Moreover, the operator D on W10, 00) is defined as

Dfi= (S
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With these operators we build a mazimal operator (A,,, D(A.,)) on X as

A oy 0 0

0 D 0 0
AMQ . 0 X D O ,
" 0 A D

D(AMQ) .= cgzl(v.vlﬁl[c.),oo.)).

As boundary space we choose

8XMQ = ll
and define the boundary operators as
AN AR
) M , i I
LMQ : D(AmQ) — 8X]V[Q, PLa — LMQ pa | T pl,l(o) s

and the operator ®y,q € L(Xnq, 0Xng) is given by operator matrix

B
A0 o ey 00000
Dro=[00 00 - 0 w 0 0
00 00 - 0

-0 0 py

Then, we obtain the operator (Anq, D(Ang)) on Xjpq corresponding to the
underlying problem as
Augp = AN°p,
D(Aumq) = {p € D(AL®) | Lugp = Puep}-
With these definitions the above equations (MQ), (BCugq), (ICumg) can be
reformulated as the abstract Cauchy problem

dp(t
%) = Auop(t), te[0,00),
p(O) = (Ca f17 f27 N ')t € XMQ
So if Ay is the generator of a strongly continuous semigroup (Thq(t))i>0 and
the initial value in (ICyq) satisfies p(0) = (¢, f1, f2,...)" € D(Aug), then the
unique solution of (BCyq), (BCumg) and (ICyq) is given by
poo(t) = (Tuq(t)p(0))
Pua(;t) = (Tuet)p(0)nsr(z),  n=0.
For this reason it suffices to study (AC Pyq).

(ACPyq)
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2.3. Boundary Spectrum

In this section we use Characteristic Equation 1.3.6 to investigate the bound-
ary spectrum o,(Apg) of Ay . We first characterise o(Apg) by the spectrum
of an infinite scalar matrix, i.e. an operator on the boundary space 0.Xq. To do
so we apply techniques and results from [Gre87|. In particular, we need more
information on the resolvent set of the operator (Ag'?, D(AN?)) defined by

D(Ay'?) = {p e D(AN?) | Lugp =0},
Aépr = AM@p
The resolvent set and the resolvent of the operator Aéw ?is given as the following.

LEMMA 2.3.1. Let Sy :={y € C| Ry > —p and v # —A}. Then Syq C

p(AY?) and for ~ € Smq the resolvent of AY'@ is given as

L SWR(yD) 0 0
0 R(v, D) 0 0

R(y,AY9) =1 0 AR*v,D)  R(,D) 0
0 MNRYy,D) AR(y,D) R(v,D)

where N
(RO, D)f)(a) = e 0 [ (s)ds
0
Jor f € LY0,00).

PROOF. We first show that for v € Sy;q the operator R(v, Ay'?) is bounded.
We denote by C.[0,00) the space of continuous functions with compact support.
For f € C.]0,00) we estimate

IR D) fllirjomy = AMKRWJNﬁ@NdI

/ e(ﬂ‘x‘:fy+>\+,u)m/ e(%’er)\Jru)s‘f(s)‘ ds dx
0 0

IN

o0

1
B {_%V+>\+u

o 1
+ = o Ryt Az £ (0| dor
| w5 (2

1
= m”f”ma,oo)-
The denseness of C.[0,00) in L'[0,00) and the above estimate implies that
1

Ry + N+

e(%’er)\Jru)x/ €(§R7+)\+u)s’f(s>’ds
0 0

IRy, D)I| <



2.3. BOUNDARY SPECTRUM 23

Threfore,

MR (. D) < — (—> <
kz_% (L )||—§)%'y+/\+u; Rov + A+ 4 >

if 3y > —p. This implies that the supremum of the column sums of R(v, Aé\m)
taken in the norm are finite, and hence R(fy,Ag/[Q) is a bounded operator on
XMQ-

Clearly, the operator R(~, Aé\m) is the inverse of v — Aéw. O

The following consequence will be used for the computation of the boundary
spectrum of Ayq

COROLLARY 2.3.2. The resolvent set of Aéw contains the imaginary axis,
ie.,

iR C p(4y"?).
The following abbreviations are used in the sequel
Fi=y+A+pu
and
Ai=~v+ A\

The eigenfunctions of AM? are determined as follows.

LEMMA 2.3.3. For v € C,Ry > —pu, and v # —\ the following holds.

» = (100,201(-),po1 ("), pra(+), ) € ker(y — AMQ) (6)
p=—
Her
_ 7
Po.o TA’ ( )
pua(@) =e77 ) sratenpg, n 20, (8)
k=0

and  (cp)n>1 € 1.

PROOF. We first verify that each p given as in (7)-(8) is contained in D(AM@).

Note that for £k € N
—RT'z, k _
/0 ¢ = W
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Using this we estimate the norm

[e%¢) n k
_ A

1aillzipee) = / T3 N e
0 k=0

VAN
(7=
o
3
=
|
=
Q)
<
!
8
8
ol
&
=

= Z |Cn+1—k|W'

k=0

Since Ry > —p and the series ;7 (#r)* converges absolutely. Therefore we can
estimate using the Cauchy product

0o 00 n )\k
Z 1Prllztoee) = Z Z 1] (RT)k+1
n—0 n=0 k=0
R R
= 52 () el
k=0 n=0
< 0.

Hence, the norm ||p[| , 4m@ of p is finite and p € D(AMQ) We can easily compute
that each p as in (7)-(8) satisfies

(v — Ay @)p = 0.

Conversely, we assume that p € ker(y— AM?). We get a system of differential
equations from (v — AM@)p = 0. Solving this we immediately get (7)-(8). From

0 o o9
Z |cn‘ = Z |pn,1(0>| < Z |pn,1|oo
n=1 n=1 n=1

< Z |pn,1|W1*1[O,oo) < HPHD(A%Q)

n=1
< o0

we obtain that (c,),>1 € ' O
Moreover, since Lyq is surjective, Lurqly,_ane) @ ker(y — A39) — 0Xuq
is invertible for any v € p(AyQ), see Chapter 1. We denote its inverse by
Df‘Y/IQ = (LMQ\ker(%A%Q))’l : 0X g — ker(y — AMQ),
and call it Dirichlet operator. We now give the explicit form of D%Q using the
operators €; : C — L'[0,00), k € N defined by

/\k
(e1()) (@) = eZpahe 097, e e €,z € [0,00).
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LEMMA 2.3.4. Let v € C such that Ry > —u and v # —\. Then the operator
DyQ has the form

d; 0 0 O
e 0 0 O
€1 €0 0 0

MQ _

Dv | e € ¢ 0 )
€3 €2 €1 €p
where
d171 = H

Y+ F A+ p)

We now characterise the spectrum o(Aysq) and the point spectrum o,(Apq)
of A with the help of the operators D9 and ®;q. For this purpose we need the
explicit form of ®y;qD}?

REMARK 2.3.5. Let v € C such that &y > —p and v # —A. Then

aj;  a1p a3 -0 ayp appyr 00
Sl S
MQ T T T T T T
ProD, = pABT2 B B 8 pA2 ph )
TB+3 TB+2 TBT1 T4 3 2 T
where
B
U pUNF
ari- = +Z k+1°
A+ p)T r
k=1
B+1—k \
R k
ark: = = (=), for2< k< B+1.
I — T
1=

Using the Characteristic Equation 1.3.6 we investigate the boundary spectrum
of A in more detail.

LEMMA 2.3.6. Under the General Assumption 2.1.1, the spectral bound s(Anq) =
0 is an eigenvalue of Aprg.

PROOF. It suffices to prove that 1 € o,(®yoDy'?), by the Characteristic
Equation 1.3.6. Define p := ﬁ and q := “ﬁ First, we can compute @MQDéVIQ :
P —1as

B B— B—

Zk:gﬁqk Zkzo;qu Zk:gz;q’“ o ptpg p 000

Pq Pq Pq° e pq pq p O
<I>MQDéwQ: B+2 B+1 B 3

pq pq pq pq p¢* pqg P
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The equation ® MQDéW @ =cis equivalent to the following system of equa-
tions:

B B—-1 B-2
ar=0_pd")er+ O pd)e2+ (Y pd*)es + -+ (p+ pa)es + pepa,
k=0 k=0 k=0
n+B
n=pY ¢ Fe, n>2.
k=1
This system is again equivalent to
B B-1 B—2
e =0 pd")er+ O pd)ea+ (O pd*)es + -+ + (0 + pa)es + pepaa,
k=0 k=0 k=0
Cn+1 — GCp
Cpimpy = L0 S0 ()
+nt 1—¢

We now define the function
f ‘R — R, T = f(l’) — q(B+1)ac o q(B+1)ac+1 . qx +q.
Clearly, f is continuously differentiable and

f'(z) = (B4 1)(1 — q) IngeBrema _1p gena,

Since the traffic intensity p = ﬁ < 1, it follows that ¢ = 2~ <

Y L and thus
(B+1)(1—¢q) > 1. Hence we can estimate

2

F0)=(B+1)(1—¢)Ing—1Ing < 0.

Therefore, there exists xy > 0 such that f'(z) < 0 for all € (0,z), hence f is
decreasing on (0, (). But since f(0) = 0 and liril f(z) = ¢ > 0, there exists

a > 0 such that f(a) =0 or ¢"*f(a) = 0, respectively. Thus, we obtain that

(n+l)a _ . na

(B+n+1)a _ 4 99
q —=
I—q
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We conclude that for ¢, := ¢"*,n > 2, the equations (x) are fulfilled. The first
equation of the above system yields

B-1 B-2
o= pd)e + O pd ) + -+ (0 + pg)d” + pg P
k=0 k=0

B-1 B-2
=p* Y " +pd* > ¢+ + 0+ pg)g” +pg P
k=0 k=0

a]' — qB a]' — qB_l a 2 a
2 +pq3—++pq3—+pq(3+l)
l1—gq l1—gq l1—gq
— q2a(1 . qB> + q3a(1 . fol) N qBa(1 . q2) + q(B+1)a(1 . q)
— q2a(1 + qa +q2a 4. +q(B—1)a)
. q2a+B(1 + qa—l + q2(a—1) 4t q(B—l)(a—l))
90 | 1 — q" _ qu — ¢Blel)
1— q° 1— q(a—l)
20 (1= ¢")(1—¢*") — (¢" — ¢")(1 - ¢%)
(1-¢)(1—q ") ’

1—g¢q

=pq

and hence

2a—p1 (1= ¢") (1 — ¢ 1) — (¢" —¢")(1 — ¢*)
(1—¢)(1—q*")

Obviously, ¢ := (¢,)neny € ' and thus c is a fixed point of CIDMQD(J)V[Q. By the

Characteristic Equation 1.3.6 we conclude that 0 € o,(A). O

1 =4q

Indeed, 0 is the only spectral value of A on the imaginary axis as the following
lemma shows.

LEMMA 2.3.7. Under the General Assumption 2.1.1, the spectrum o(Anq) of
Ang satisfies
O'(AMQ) NiR = {O}
PROOF. Let v =ai,a € R\ {0}, and let I' = v + A + p.
Recall the explicit representation of ® MQDy Q from Remark 2.3.5. For j > 2
we estimate the jth column sum of @y D9 as

0 [e%} k
Iz A poo 1 p
(@D 9)y] < = (—) =L = < 1.
Z ©Tn m% r)) -2 =

T

For the first column sum we obtain

fe'e) [e’¢) k o] k

PA @ A 7 A L
DL ONESC SIS of E SRS SYE N SN
— M@ = (N T = \ T T =\ |T| T[] — A
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Hence,

®,,0DMY| = OD. )| < ———

and thus the spectral radius fulfills
T‘((I)MQD,]\Y/[Q> < ”PhZMQDiV[QH < 1.
Therefore, 1 ¢ o(ProD}'?) which implies by the Characteristic Equation 1.3.6

that v & o(Aug), i-e.
U(AMQ) NiR = {O}

2.4. Well-Posedness of the System

In this section we prove the well-posedness of (ACPyq). For this purpose we
check that Ay fulfills conditions in the Phillips theorem, see Theorem 1.2.6.

LEMMA 2.4.1. Ang : D(Amg) — R(Amqg) C Xug is a closed linear operator
and D(Ang) is dense in Xprq-

PROOF. We will prove the assertion in two steps.

Let us first prove that (Ayq, D(Amg) is closed. Suppose that
lim PM@ = p'e,
n—oo

lim Ayo(PY?) = (Fug)'

for any given

PMQ = (p), pi (), 0 (), P37 (2), -+ ) € D(Anrq),
M 0 0 0 0
P9 = (pi, oo (@), p (), P8 (), -+ ) € Xag,
where Fag = (fo0, foa(®), fi1(), for(2),---) € Xuo-
Namely,
lim pf) = pio,
im [ p (@) — p @)z =0, = 0,1,2, -
nLIEO |pj,1 (.Z') pj,l (ﬂf)| T 7(] ] )
0

It follows from this

lim pgﬁ)(x)dx = / pg-?l) (r)dx, j=0,1,2,---.
0

n—oo 0
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Furthermore,
—)\p +Mfo p01 z)dx
dpg 1 () n
(n) podz — (A +M>p01)( ) ffo,(o)
dplnl(ff) (n n) 0,1(T
——— —(A+ + Apy1 (x
iy (P = iy |~ ~ TR
e T = (A + M)pz () + )\p1,1 (z) fai1()
CAY@ ™ () 4 apl) :
dz (A + H)pg 1 (@) + Pa1 (z)

| i (=) [ 9] = fuo

,gg—@%f)—u+ P6 (@)] = fou(®),
<,Hy—wﬁf)—Q+u»ﬁ@%%m$®ﬂ=ﬁﬂ@,
7£m—®§9)—@+MWQ@%am@uﬂ=ﬁﬂw,
7£J_®%F)—@+NW$@%%Wﬁ®ﬂ=ﬁA@,

Integrating both sides of the second equation from 0 to 3,3 > 0, we have

B d ) Jé] d(n)l‘
tm [P g = [ P o p e
0

It yields
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Similarly, integrating both sides of j* equation from 0 to 3,3 > 0, we have

8
w [ O ) o)+l @)l
n—oo Jg x

oo (@) n n
|t T O @) + Al )
0

It yields

Tlim [=p7(8) = 97 (0) = (A + )

?\a

8
pﬂummwAA@ax>
B B
=—é%@—mﬁ@%—@+w[ép§(ﬂw+l o

pj—l,l(x)

fjﬂ(l’)dl’,j = 172737"' .

(10)
Since [ \pg? (z)|dz < oo and [°|f;(x)|dx < oo for j = 1,2,3,--- . Tt follows
from (9) and (10) that pg 1) (B) is absolutely continuous for i = 0,1,2,3,--- and

P (B) = =+ wpS1(B) — for(B) € L0, 00),
P B) =~ + P (8) + a1 (8)

i fia(B) € L'0,00),7 =1,2,3,--- .

From the form of Lysg, P and lim PMQ = PéV[Q we show that

Larg(Py"®)t = ®arg(Py")".

Therefore, P)"% € D(Apq) and

Jim p5(3) = =+ o) Jim 97 (9)
=11 (),

—(A+ ) lim pf7(8) + A lim ", ,(8) -
:p](,l)(ﬂ)vj = 1a2737 to

foa(B)

lim p}) (8) =

n—oo

)
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From the above deduction we have

—Apl + i /
0

(0)

B dp0,1 ()
dx
dp(@)
dz
~dpi)(x)
dx
dpS) (x)

dx

\

0
Pos
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(I)dl‘ = f()’g

— (A i (@) = fou(x),

)

— A+ (@) + (@) = fial@),
— (A P (@) + MO (@)] = foa (),

— (A )P (x) + AP ()] = faa(2),

This shows that Ao (P ?)t = (Fag)', hence (Anrg, D(Ang)) is closed operator.
We now prove that D(Apq) is dense in X 0.
By the definition of the norm in Xy, it is easy to see that

pool + D [1Pnallzoee) < 00

n=0

for any p € Xyg. Therefore, for any € > 0 there exists a positive integer N such

that > " \ [|PnallL0,00) < €. We define
EMQ =

It is obvious that Fyq is dense in Xyq.
Let

Gug =

(p0,0apO,l(x)upl,l(x>a T 7pN,1(x)7 Oa O) e

(p0,07p0,1($)ap1,1(73)7 e 7pq,1('r)7 07 07 e

Pi1 € L[0,00), 1= 0, l,
)12,---,N, N is a finite

positive integer

pi1 € C5°[0, 00), there exists
a number ¢; > 0, such that
pia(z) =0for z € [0, ¢;],
i=0,1,2,--- ,q.

)

Then from [Ada75| we know that Gjq is dense in Eyq.
From above discussion we know that, in order to prove denseness of D(Apq)
is dense in Xq, it is sufficient to prove that D(Ay ) is dense in G-

Take any p € G, there exists a finite number ¢ > 0 and ¢; > 0, 4

1,2,---,q, such that
p(x) = (po,o;po,l(fﬁ)apl,l(x); T

pii(z) =0forx € [0,¢], 1 =0,1,2,---

7pq,1<'r)7070' o )7

g
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This leads to p;1(z) = 0 for z € [0,2s], where 0 < 2s < min{cy,c1,¢2, -+, ¢4}
Without loss of generality, we may assume that ¢ is large enough so that
l = q — B is positive. Set

fs(o) = (p0,07 f§,1(0)7 ff,l(o)’ f25,1(0)7 B fls,l(o)v B fls-i-B,l(O)a 0,0,--- )
B [oe) o0
= (po,o»#Z/ pra(z)de + )\Po,onu/ pB+1.(x)dx,
k=1 2s 2s
M/ pB+2,1('r)dx7"' ,,LL/ pB+l,1(x>dx70707"')>
2 2

S S

fs(x) = (pO,Oaf(L)g,l(I)ufls,l(x)W o 7flf1<x>7"' >fls+B,1(x)70707 ’ )

where

[ (0)(1 = £)%, z €0,
fii(x) = —ci(z —s)° (x —25)% x € s,2s]
pzl($)7 T € [2s,00)
5(0) f5 (1 —2%)%da .
¢ = =012, 1,
fs ( )% (x — 28)2dx
(@) =pia(x), j=l+11+2,-- 1+ B.

It is easy to verify that f°(x) € D(Amg) and

o - f5||B—Z/ F11(@) = pus (0)]de
S [ el — 52— 25)%
;)/; C; |l S X S X
l s T
3 [0 - e
_Z| +Z|f§1 |——>O as s — 0.

This shows that D(Apq) is dense in Gprg. Therefore D(Apq) is dense in Xpq.
O

We will show the dispersivity of the operator A using the same proof as in
[GLZO01].

LEMMA 2.4.2. The operator Apq s dispersive .
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PROOF. For p(:l:) = (Po,oapm( )Pl 1(2),p21(), ) € D(Augq), we define
q(z) = (90,0, 90,1(2), q1.1(7), q2,1(2), - ) € Xprg = R X I°°(L>[0, 00)) by

1 if  poo >0,
L0 if peo <0.
1 if ppi(x) >0,
= ] Poa(7) n=123---
0 if pni(z) <0,
Namely,
(. +
P00 i poo >0,
do,0 = § Po,0
| 0 if  poo < 0.
(4
pnl .
T f n > 07
Gn1 =\ Pn,1 it paale) n=123---
0 if pua(e) <0,

Note that |lg|| < 1 and (p,q) = ||[pT]|. We need the following equalities in order
to estimate (Apyqp, q) for p € D(Aug) :

[e.e]

Z[pm(o)] [p0,1(0)] " + Z Pl
)\[po,o]+ +u Z /Ooo[pk71(27)]+dx
+py /Ooo[pnw(x)]*dx

= uzl /Ooo[pn,l(x)]erx + Apoo) ™ (11)

If we set V,, = {x € [0,00)|pn(z) > 0} and W,, = {z € [0,00)|p,(z) < 0} for
n > 1, then by a short argument, from the absolute continuity of p,(x) it follows
that

/000 @sz’—;() ( ) dr = /n dprzil(x) [p;iii;]—i_dx n / n dpvzi;( ) [p;nll((lzi
(z)
()

dpnl pnl $]+

-
-

dpn 1

Vn

/oodpnl
0
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=[pn1( I
~[Paa(0)]F, n>0. (12)

By (11) and (12), for p € D(A), we have
(Anmqp, @) = (=Apoo + ,U/ po1(x) dz)qo0
0

" /OO( dpii;( 2 — (A + wWpo(x))goa(z) dx

+ Z / dpnl A+ )pna () + APn-1.1(2))gn 1 () da

= —Apool” ‘HMZO,O/ po1(x) dx
0

_ /OOo dpcz,i;(iv) 1(z) de — (N + M)/ [po(2)]" dw

0

+Z [ @i = 3+ [ a0

+)‘Z/ Pr—11(2)gn 1 () dx
n=1 0

o0

= —A[poo] + 1qo,0 po1(z) dx
0

+ [poa]™ = (A + ) /OO[Po,l(iv)]+ dz

+ Z Poa (O = (A + p) / [poa(2)]* da]
0
n=1 0
= —Alpoo]” + MQ0,0/ po(x)dx + Z Pl
0

~S () / s (@) de] 23 / D1 (#)gua () da

< —Apoo]t + MQO,O/ po1(x) dx
0

"y / T pua (@] do + Alpogl*
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— (A +p) Z /Ooo[pn,l($)]+ dx
+ )‘Z/Ooopnl,l(x)qmﬂx) dx

= o [ (e =23 [l o
[Tl 3 [ o)
< s [ it =23 [l o
ST CC IR oy

< MQ0,0/ po1(z)dx — M/ [po.1(z)]" dx
0 0

— jlgoo — 1) / " poa(@)]* dz < 0. (13)

In the inequality (13) we used

/OOO Pr—1,1(2)gn 1 (x)dz < /Ooo[pn_Ll(x)an’l(x)dx

S/ [prn-11(x)]Tdx, n>2
0

and
/Ooopo,l(l")d:v < /Om[p071($)]+d$.

From the inequality (13) together with Definition 1.2.5 we obtain that Ayq is
dispersive. O

We also obtain the surjectivity of v — Ayq for v > 0.
LEMMA 2.4.3. For 0 <y € R, we have v € p(Ang).

PROOF. Let 0 < v € R. For j > 2, we can estimate the j** column sum of
DD, as
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and the first column sum as

- A e A F e A g 1
DrDYy = A+ BN (D) <EY T (S) =K<
> 0w = e+ 13 (7) < £ (5) = w5+
Since the column sums are all equal from the (B +1)** column on, it follows that

¢] o

MQ) _ MQy MQy
®rnq Dy H—-igiﬁK¢MQDw )i 1;%%1%:(®MQDV )ij <1

and therefore
r(@meD)'?) < [ @nDY || < 1.

Using the Characteristic Equation 1.3.6 we conclude that v € p(Apq) for v >
0. O

Combining Lemma 2.4.2 and Lemma 2.4.3 with Theorem 1.2.6 we get the
following result.

THEOREM 2.4.4. The operator (Ang, D(Amg) is the generator of a positive
strongly continuous contraction semigroup on Xpq.

From Proposition 1.2.4 and Theorem 2.4.4 we deduce the following result.

THEOREM 2.4.5. The system (BCuq), (BCug) and (ICygo) has a unique
positive solution p(x,t) which satisfies

Ip(, )l =1, vt €[0,00).

PROOF. We know from Proposition 1.2.4 and Theorem 2.4.4 that the associ-
ated abstract Cauchy problem (ACPyq) has a unique positive time-dependent
solution p(x.t) which can be expressed as

p(:t, t) = TMQ(t)p(O) == TMQ(t>(17 0, O, O, tee ) (14)
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Let P( ) (l' t) (p0,0(t)ap(),l(xvt)7p1,1(x7t)ap2,1($at)7p3,1(x7t)a'")7then P(t)
satisfies the system of equations:

d t o
dpoolt) _ —Apoo(t) +p [ poa(x,t)de, (15)
it ;

0 1 0 )t

pogf ) __ AL (3t ppoate, ), (16)
Opn1(z,t Opn1(x,t

: ’éix ) - : ’;(tx ) B ()\ + M)pn,l<x7t) + )‘pnfl,l(xat)a n 2 17 (17)
p01(0,t) = Zﬂ/ Pr(z, t)dx + Apoo(t), (18)
pn,1<07t) = /’l’/ pn+B,1(I7t)dI7 n Z 17 (19)

0

P(0) = (1,0,0,0,0,---). (20)

Integrating the left sides of (16) and (17), we have
> apn 1($7t)
2P e = pa(00,t) — pua(0, ¢
| e = pao0.) = pusl0.)
= —pn1(0,t),n=0,1,2,3,---. (21)

Using (15)—(21) we compute

i Z

= —Apoo(t) +M/ po1(z,t)dx

0

[T Opoa(w,t) /oo
/ a—l’ ()\ + /1/> ; p()’l(l’, t)dl’

Opna(z,t) o
+Z/ p 1 ()\—i-u)/ Pz, t)de
0
+ /\/ pn—l,l(x7t)dx]
0

= —)\po,()(t) -+ /L/ p071(:13, t)dl'
0

T poa(0,) — (A + p) / pou (2, £)da
0

S i 0,8 = A+ ) Y / Pz, t)da
n=1 n=1 0
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+ /\Z/ Pn-11(z, t)dz
n=1"0
= —Apoo(t) + mel(o,t) — uZ/ Pna(x,t)dz
n=0 n=1"0
= an,l(oa t) — [Apoo(t) + ,MZ/ P, t)dx]
n=0 n=1"0

oo B o0
=3 0.0~ Do)+ 1> [ puslotide
n=1 0

n=0
+n Z / pn,l(xa t>dx]
n=B+1"0
- anJ(Oat) - an,l(oa t) = 0 (22)
n=0 n=0

By (14) and (22) we ob_tain
d[P@)I _ dl|Taue(t)PO)]

= 0.
dt dt
Therefore,
[Tae®) PO = L@ = PO = 1.
This shows ||p(-,t)|| = 1,Vt € [0, 00). O

2.5. Asymptotic Stability of the Solution

In this section we use the results on positive semigroups collected in Sectionl1.1
to investigate the asymptotic stability of the solution of the system.

First we show the irreducibility of the semigroup via the representation of the
resolvent of Ay from Lemma 1.3.7 in terms of the resolvent of Ay’ and the
operator ®yq and D@,

LEMMA 2.5.1. The semigroup (Tag(t))iso generated by (Ang, D(Amg)) is
wrreducible.

PRroOF. It suffices to show that there exists v > 0 such that 0 < p € Xy
implies R(vy, Ang)p > 0, see Proposition 1.1.12. By Lemma 1.3.7 we have to
prove that there exists v > 0 such that 0 < p € X,/ implies

R<77 ASJQ)p + (IdaX]MQ - (I)MQD']yWQ)ichMQR(ﬁY? AéMQ)p > 0.

Suppose that v > 0 and 0 < p € Xpyg. Then also R(’y,AéwQ)p > 0 and
chQR(%Aé”Q)p > 0. Since it follows from the proof of Lemma 2.4.3 that
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|®roDY @] < 1 for any v > 0, the inverse of Idyx,,, — PuqD)'? is given
by the Neumann series

o0

(Idox,yg — PargDY0) ™ =) (@D )",

n=0
We know from the form of ®,,oD}/? that for every i € N, there exists k € N
such that the real number ((®yoDM@)*®yqR(7, A)'?)p); > 0, i.e.
(Idoxyg — PrgDY'?) ' PrigR(y, Ag')p > 0
and by the form of Dé\m we have
DM?(Idpx,, — PargDY) 0 pqR(y, A)")p > 0.

This implies
Therefore the semigroup (Thsq(t))i>o is irreducible. O

We now prove our main result on the asymptotic behaviour of the solution of
the queueing system. Combining Lemma 2.5.1 with the results from Section 1.4
we obtain the strong convergence of the semigroup to a one-dimensional equilib-
rium.

THEOREM 2.5.2. The space Xpg can be decomposed into the direct sum
Xno = Xy ® Xio

where Xyq = fix(Thq(t))i=0 = ker Ayq is one-dimensional and spanned by a
strictly positive eigenvector p € ker Ayg of Apg and (TMQ(t)]XZQ\/[Q)tEO is strongly
stable.

PROOF. By Theorem2.4.4, Lemma 2.3.7 and Lemma 2.5.1 we know that the
assumptions of Theorem 1.4.2 are fulfilled, hence the assertion follows. 0J

We reformulate the above theorem as our final result.
COROLLARY 2.5.3. There exists p’ € X},o, p' > 0, such that for all p € Xyrq
lim T (t)p = (¢, p)P,
where ker Ay = (p), p > 0.

By Corollary 2.5.3 we obtain asymptotic stability of the solution of the M /M? /1
queueing model.

COROLLARY 2.5.4. The time-dependent solution of the system (M Q), (BCaq)
and (ICysq) converges strongly to the steady-state solution as time tends to in-
finite, that is, lim; . p(+,t) = ap, where a > 0 and p as in Lemma 2.5.3.






CHAPTER 3

The System with Primary and Secondary Failures
3.1. Introduction

As science and technology develop, electronic productions and networks are
used everywhere. So, the stability analysis of such systems becomes more and
more important.

In this section, we consider the model of a repairable system with primary as
well as secondary failures. In the system there are three independent identical
units. In system one of those units operates, the extra units act as warm standby.
If the operating unit fails, a warm standby unit is instantaneously switched into
operation. The operating unit submits three kind of failures, failures that unit
itself cause as it operates, common cause failures such as fire, earthquake, flood,
explosion, etc. and human error failures. There is one repairman available to
repair these units. Once repaired, these units are as good as new. The repair
times are arbitrarily distributed.

According to [Gup95|, the model for the system with primary and secondary
failures can be expressed by a system of integro-differential equations

dpgt(t) = —(A+ 20+ Aoy + Ang )0 () + ppa (1) + 2_; /O " @i e,
(R) dpdl—t(t) = (A +20)po(t) — (1 + A+ a + Aoy + Ay )pi(t) + ppa(t),

dp;_]ft) = (A i) — (14 At Ay + Au (D),

Opi(z,t) i Ipi(, ) = —p;(x)pi(z,t), i=3,4,5.

Ot ox
For x = 0 the boundary conditions

( pg(O,t) = )\pg(t), t > O,

2
pa(0,8) = Aepilt), >0,
=0

2
p5(07t) - Z )‘hlpl<t)7 t> 07
1=0

41

\
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are prescribed, and we consider the usual initial condition

pO(O) =cc (Ca
(ICR){ L _ .
pz(o) - bi7l — 1,2,]7](1:,0) - f](x)’j - 374a 57

where f;(z) € L'[0,00). The most interesting initial condition

pO(O):17
({Cry) a1 o i
pl(o) - 07Z - ]-727])](‘7:70) - 07] - 37475'

Here (z,t) € [0,00) x [0,00); p;(t) represents the probability that the system is
in state ¢ at time ¢,4 = 0,1,2; p;(x,t) represents the probability that at time ¢
the failed system is in state j and has an elapsed repair time of z, j = 3,4,5; A
represents failure rate of an operating unit; \., represents common-cause failure
rates from state ¢ to state 4, ¢ = 0,1,2; ), represents human-error rates from
state 7 to state 5, ¢ = 0, 1, 2; « represents failure rate of standby unit; u represents
constant repair rate if the system is operating; p;(z) represents time-dependent
system repair-rate when the failed system is in state j and has an elapsed re-
pair time of = for j = 3,4,5 which satisfies p;(z) > 0(j = 3,4,5); A\, (i =
0,1,2), A\, (4 =0,1,2), \, p and « are positive constants.
We require the following for the failure rate p;(x).

GENERAL ASSUMPTION 3.1.1. The function p; : Ry — Ry is measurable and
bounded such that lim p;(x) exists and

pl) = lim pi(z) > 0,5 = 3,4,5, 1o 1= min(ul), p, )

In [Gup95| the author established the model and studied the time-dependent
availability of the system by using Laplace transform and discovered that the
time-dependent availability decreases as time increases for exponential repair-
time distribution.He used the steady -state solution and the time-dependent so-
lution for calculating the system availability. But he did not discuss the well-
posedness of the model and its asymptotic behavior. Investigation of the time-
dependent solution of the model and its asymptotic behavior is important from
the point of view of theory and applications. Therefore, in this chapter we discuss
the well-posedness of the model and prove the asymptotic stability of the time-
dependent solution of this system using spectral theory and semigroup methods.

3.2. The Problem as an Abstract Cauchy Problem

In this section we rewrite the underlying problem as an abstract Cauchy
problem on a suitable space Xg, see [ENOO, Def. 11.6.1]. As the state space for
our problem we choose

Xp = C?x (L'0,00))3.
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It is obvious that Xy is a Banach space endowed with the norm

2 5
pll == Z Ipil + Z 1Pall10,00),
=0 n=3

where p = (po, 1, p2, p3(2), pa(2), ps(2))" € X.
For simplicity, let

ap . = )\+2a+/\cg+>\hoy
a; . = /,L+>\+O{+>\cl+)\h17
ag: = P+ A+ Ay + Any,

and we denote by 1; the linear functionals
B0 =€ fouf) = [ @@ s =340
Moreover, we define the operators D; on W0, 00) as
Dif =~ f— i, fEWM0,00), j=8,4.5

respectively. To define the appropriate operator (Ag, D(Ag)) we introduce a
“maximal operator” (A% D(AR)) on Xy given as

—Qo K 0 3 s s

A 200 —ay 7 0O 0 O

AR . 0 Ao —ay 0 0 0
meo 0 0 0 D3 0 0|’

0 0 0 0 Dy O

0 0 0 0 0 Ds

D(AR) = C* x (W0, 00))%.

To model the boundary conditions (BCr) we use an abstract approach as in
e.g. [CENNO3|. For this purpose we consider the “boundary space”

8XR = (Cg,

and then define “boundary operators” L and ®r. As the operator Ly we take

Po Po
Lr:D(A}) — 0X — L = 0
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and the operator ®p € L(Xg,0Xg) is given by the matrix

0 0 A 000
S S WD VI ) )
)\ho Ahl )\h2 0 0 0

The operator (Agr, D(ARg)) on Xg is then defined as
Arp = Ajlp, D(Ag) := {p € D(A}) | Lrp = ®rp}.

With these definitions the above equations (R), (BCg) and (ICg) are equiv-
alent to the abstract Cauchy problem
dp(t)

I Agpp(t), te0,00),

p(0) = (¢, by, ba, f1, fo, f3)' € Xr.

(AC Pg)

If Ar is the generator of a strongly continuous semigroup (Tr(t));>0 and the

initial value in (ICg) satisfies p(0) = (c,b1,ba, f1, f2, f3)! € D(Ag), then the
unique solution of (R), (BCg) and (ICg) is given by

pi(t) = (Tr(t)p(

p(wt) = (Ta(t)pl

For this reason it suffices to study (AC Pg).

))H‘l) O S Z S 2a

0
)us1(z),  3<n <5,

3.3. Boundary Spectrum

In this section we use the Characteristic Equation 1.3.6 to discuss the bound-

ary spectrum oy(Ag) of Ar. For this purpose, we first define the operator
(Ag, D(AF)) as

D(AF) = {pe D(A}) | Lrp =0},
Allp = Afp.

We give the the representation of the resolvent of the operator AL needed below
to prove the irreducibility of the semigroup generated by the operator Ag.

LEMMA 3.3.1. Let

—Qo 1% 0
A:=(A+2a0 —a1 u (23)
0 A +a —as

and set Sp = {y € C| Ry > —po} \ 0(A). Then we have
Sk € p(AD).
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Moreover, if v € Sg, then

where

11 Ti2 T13 Ti4a Ti5 T16
T21 T22 T23 T24 T25 71726

31 T32 7133 T34 7135 T36
R(,}/ AR>: 5 ) ) 5 ) )
» 410

11
1,2
1,3
1,4
1,5
1.6
2.1
2,2
2,3
2.4
25
2.6
3,1
32
733
T34
35

3.6
T4,4
55

76,6

0 0 0 rg 0 0|
0 0 0 0 rs5 0
0 0 0 0 0 6.6

(yta1)(y+az)—p(A+a)
(v+ao)(v+a1) (v+az) —p(A+a) (y+ao) —p(A+2a) (v+az) ?
plytaz)
(y+ao) (y+a1) (y+az) —p(A+a) (v4ao) —p(A+2a) (y+az) ?
12
(y+ao)(v+a1r)(v+az) —p(A+a) (v+ao) —p(A+2a) (y+az2)’
[(y+a1) (y+a2)—pA+a)|vs R(v,Ds)
(v+ao)(v+a1) (v+az)—p(A+a) (y+ao)—p(A+20) (v+az2) ?
p(y+a2)paR(v,D4)
(y+ao)(vt+a1)(v+az) —p(A+a) (v+ao) —p(A+2a) (y+az2)’
125 R(v,Ds)
(v+ao)(v+a1) (v+az) —p(A+a) (y+ao) —p(A+2a) (v+az) ?
(A +2a)(y+a2)
(y+ao) (v+a1) (v+az) —p(A+a) (v+ao) —p(A+2a) (v+az2)’
(y+ao) (y+az2)
(y+ao) (v+ar)(v+az) —p(A+a)(v+ao) —p(A+2a) (y+az2)’
u(y+ao)
(v+ao)(v+a1) (v+az) —p(A+a) (y+ao)—p(A+20) (v+az2) ?
(AM20) (y+a2)v3R(v,D3)
(v+ao)(v+a1) (v+az) —p(A+a)(y+ao)—p(A+20) (v+az2) ?
(Atao) (y+a2)PaR(v,D4)
(v+ao)(v+a1) (v+az) —p(A+a) (y+ao) —pu(A+2a) (v+az) ?
p(v+ao)s R(v,Ds)

(y+ao) (v+a1)(v+az) —p(A+a) (v+ao) —p(A+2a) (v+az2)’
(A2a)(A+a)
(y+ao)(v+a1)(v+az) —p(A+a) (v+ao) —p(A+2a) (y+az2)’
(v+ao) (A +a)

(v+ao)(v+a1) (v+az)—p(A+a)(y+ao)—p(A+20) (v+az2) ?
(y+ao)(y+a1)—p(A+2a)
(v+ao)(v+a1) (v+az) —p(A+a) (y+ao)—p(A+20) (v+az2) ?
(A +2a) (A +a) 3 R(7,D3)
(v+ao)(v+a1) (y+az) —p(A+a)(y+ao)—p(A+20) (v+az2) ?
(A +ao)(A+a)aR(v,D4)

(y+ao) (y+a1) (y+az) —p(A+a) (v4ao) —p(A+2a) (y+az) ?
[(A+ao)(A+a1)—p(A-2a)]vs R(v,Ds5)
(y+ao)(v+a1)(y+az) —p(A+a) (v+ao) —p(A+2a) (y+az2)’

R( ) D3)7
R(77 D4)7
R(v, D).

45
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The resolvent operators of the differential operators D;(j = 3,4,5) is given by
(R(v,Dj)p)(x) = e N “j(g)dg/ o 1584y (5 ds
0
for p € L0, 00).

PROOF. A combination of [Gre84, Prop. 2.1] and [Nag89, Thm. 2.4] yields
that the resolvent set of Al satisfies

p(AF) 2 Sk

For v € Sk we can compute the resolvent of A explicitly applying the formula
for the inverse of operator matrices, see [Nag89, Thm. 2.4|. This leads to the
representation (24) of the resolvent of AZ.

Clearly, knowing the operator matrix in (24),we can directly compute that it
represents the resolvent of AL O

The following consequence is useful to compute the boundary spectrum of
Ag.

COROLLARY 3.3.2. The imaginary axis belongs to the resolvent set of A,
ie.,
iR C p(Af).

The eigenvectors in ker(y — A%) can be computed as follows.

LEMMA 3.3.3. For v € C, we have
p € ker(y — AR) (25)

p = (po, p1, 02, 03(-), pa(-), ps(-))' € D(A,,), with
(v +a)(y+a) —pA+ o)
v+ ao)[(y + a) (v + az) — (A + @)] — p(A + 20) (7 + a2)

poz(

5 00
j=3

(A +20) (7 + a2) S0y 5 f° puy()e 25 1@ gy
v+ ao)[(y 4+ ar1)(y + az2) — p(A+ )] — p(A + 20) (v + a2>>
A+ a)A+2a) 3005 [0 py(a)e e lo m©de gy
v+ ao)[(7 + a1) (v + a2) — pA + )] — p(A + 20) (7 + as)’

p;(z) = cj/ i (x)e o 1O gy — 3 4.5, (29)
0

P = ( (27)

P2 = ( (28)

where ¢z, ¢4, c5 € C.
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PRrROOF. If for p € Xg,(26)-(29) are fulfilled, then we can easily compute
that p € ker(y — A). Conversely, condition (25) gives a system of differential
equations. Solving these differential equations, we see that (26)-(29) are indeed
satisfied. O

Moreover, since L is surjective,
Lglker(y—an) : ker(y — A) — 0Xp

is invertible for each v € p(Af), see |Gre87, Lemma 1.2]. We denote its inverse
by
DR = (LR|ker(’y*A§1)>_1 : aXR - ker(v - Aﬁ)

5
and call it “Dirichlet operator”.
We can give the explicit form of Df as follows.

LEMMA 3.3.4. For each y € p(Af), the operator DF has the form

dig dip dis
22,1 Zilg,z 3273
Di=lay o o]
0 dsp O
0 0 d6,3
where
di 4 (v + a1) (v + az) — p(A + )] fo 13 (z)e o [7 u3(E)dE oy
, (7—1—&0)[(7—1‘@1)(74—@2) A+ a)] — p(\ =+ 2a)(y + ay)’
dy 5 (7 + a1)(y + a2) — p(A + )] fo pa(z)e e [§ pa(E)dE
? 7 Gt a0+ a)( T a) — s+ a)] — O+ 20) (7 + a2)°
d 3 (7 + a1)(y + a2) — p(A + )] fo [i5(z)e —ya— [ s (E)dE ]y
; (’Y+ao)[(7+a1)(’y+a2) 1A+ )] — p(A+20) (7 + a2)’
dyy = A+ 20) (v + az) [J° ps(z)e™ 12l 13O gy
; (v + ag)[(v+ a1)(y + az) — p(A+ )] — p(A + 2a) (7 + az)’
dyy — (A +2a) (7 + az) [ pa(x)e 7= I m©O% gy
| (v + ao)[(v + a) (v + a2) — p(A + )] = p(A + 2a)(y + az)’
dys — (A +20) (7 + ag) [ ps(x)e =5 1©dE gy
: (v + ao)[(y + a))(y + az) — p(A+ )] — p(A + 2a) (v + az)’
dyy — A+ @)\ +20) [ pg(x)e 17 Jo 1O gy
: (v 4 ao)[(v + a1) (7 + az) — pA + )] — p(A + 20) (v + ay)’
dso = EA + a) (A + 2a) fooo M4(:E)e*'m*fow 1a(€)dE o

(v + ao)[(v + ar) (v + az) — (A + )] — p(A + 2a) (v + az)’
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A+ @)X +2a) [ ps(x)e e lo #s)d gy
(v + ao)[(v + a1) (7 + a2) — p(A + )] = p(A + 20) (7 + a2)’

dyy = / pig(z)e 7 Jo #e(&dE g
0

d3,3

d572 = / /.14(:1;)677937‘[‘01 N4(§)d£ dl-’
0

dgs = / 15 (2)e " I3 1s(&)de 1,0
0

The operator ®z D/ can be computed explicitly for v € p(Af).

REMARK 3.3.5. For v € p(A{) the operator @D/ can be represented by the
3 X 3-matrix
ain1 Ai2 ais

@RDf = | @21 a22 23],
a31 32 433
where
. A+ @) (A + 2a) [ pg(z)e™ 75— Jo 1O gy
1,1 =

( Jo #
(v +ao)[(v + a)(y + as) — u(A + )] = p(A+20) (v + az)’
A+ a)(\ + 2a) foo Ve 1@ #al©)dE gy
v+ ao)[(v + a) (v +az) — M(A+a)] p(A+2a)(y + az)’
( Jo »
) ) —

Q12 = (

A+ @)\ =+ 2a) [ ps(z)e 77— Jo 1O gy
v+ ao)[(y + ar)(y + as ()\+oz)] p(A =+ 2a) (v + as)’
_ Aa[(r +an)(y 4+ az) = g+ )] + Ay (A +20) (7 + az) + Ay (A + a) (A + 20)
(v +ao)[(v + a1)(y + az2) — p(A + )] = (A + 20) (7 + a2)

x/ pig(z)e 1% Jo 1 ©dE g
0

Aeo (v + ar)(y + ag) — p(A + )] + Aoy (A + 20) (7 + a2) + Ay (A + @) (A + 20
(v + ao)[(v + a1) (v + az2) — p(A + )] = (A + 2a) (7 + az)

" / () eI gy
0

_ Aal(v +a)(y +az) = p(A+ )] + Ay (A +20) (7 + a2) + Ao, (A + @) (A + 2a)

a3 = (

Q29 =

. (v + a0)[(7 + @) (7 + a2) — p(r + )] — pu(h + 20) (7 + a2)
w [ psw)em I w0 gy
oy = Al @) (04 as) = O+ 0)] £ 0, (A -+ 20)(5 4 ) + My (At @)(A +20)

(v + ao)[(v + a1)(y + az) — (A + )] — p(A + 20)(y + az)
% /oo pig(z)e 1% Jo 1 ©dE g
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s Mo (7 + @) (v + az) — p(A + )] + Apy (A + 2a) (7 + az) + A, (A + @) (A + 2a)
> (v +ao)[(v + a1) (v + az) — p(A + a)] — p(A + 20) (7 + az)

x/ pig(z)e” 7" Jo #al&)dE gg
0

_ Anl(y+a) (v +az) = pA+ )] + A, (A +20) (7 + ag) + A, (A + @) (A + 2a)
o (v +ao)[(v + a1) (v + az) — p(A + a)] — (A + 20) (7 + az)

></ pis(z)e 77 Jo 1 (OdE g
0

Using the Characteristic Equation 1.3.6 we can show that 0 is in the point
spectrum of Ag.

LEMMA 3.3.6. For the operator (Ar, D(Agr)) we have 0 € 0,(Ag).

PROOF. By the Characteristic Equation 1.3.6 it suffices to prove that 1 €
o,(PrDY). Since

bin bip b3
CI)RD?: ba1 baa b3 |,
bs1 bso b33

where
b A+ a) (A + 2a)
Y aglaras — p(N + @) — p(A + 2a)ay”
A+ a) (A + 2a)
bl,2 = 9
apaag — p(A + a)] — (A + 2a)aqy
A+ a) (A + 2a)
b1,3 = )
apayas — (A + a)] — p(A + 2a)aq
b — Aeglaras — p(A + )] + Ay (A + 2a)ag + Ao, (A + ) (A + 2a)
v aglaraz — p(A + )] — p(A + 20)az ’
Aeolarags — (A + )] + Aey (A + 2a)as + Aoy (A + @) (A + 2a)
b2,2 = )
(v +ao)[(v + a1)(y + az) — p(A + )] = p(A + 2a) (7 + az)
b = Aeolaras — (A + )] + Ay (A + 2a)ag + Aey (A + ) (A + 2a)
23 aparas — (A + )] — p(A + 2a)ay ’
b — Anolaras — p(A + )] + Ap, (A + 2a)ag + Apy (A + @) (A + 2a)
L= ao[a1a2 — ,u(/\ + Oé)] - M()\ + 206)@2 ’
b — Anolaras — (A + )] + Ap, (A + 2a)as + Apy (A + ) (A 4 2a)
52 aglaras — p(\ + )] — p(A + 2a)ay ’
b = Anolaraz) — p(A + )] + Ap, (A + 2a)as + Apy (A + @) (A + 2a)
33 = )

apayags — (A + )] — p(A + 2a)aq
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We can compute the j column sum (j = 1,2, 3) of the 3 x 3-matrix @D as
follows.

3

D (®rD§)i; = by + by +bs;

A+ a)(A + 2a)
aglaras — p(A + )] — p(A + 2a)aq
N Aeolaras — p(A + )] + Aoy (A + 2a0)ag + Aoy (A + ) (A + 2a)
aglaras — p(\ + )] — p(A + 2a)as
N Anolaras — p(A + )] + Ap, (A + 2a)ag + Apy (A + @) (A + 2a)
aglaraz — p(A + )] — p(A + 2a)as
(Ao + Ang)araz — p(A + )] + (Ae; + Ay ) (A + 2a0)aq
aplaras — p(A + )] — p(A + 2a)aq
(A4 Aoy + Ac)) (A + @) (A + 20)
aglaras — p(\ + )] — p(A + 2a)as
_ lao = (A +20)J[aras — p(A + )] + [a1 — (1 + A + @)](A + 20)ay
aglaras — p(A + )] — p(A + 20)as
(a2 — p)(A + a)(A + 20)
aplaras — p(N + )] — p(A + 2a)aq
aglaraz — p(A + a)] — aras(A + 200) + p(A + @) (A + 2a)
aolnis — O+ )] — O+ 20)a
N aras(A + 2a) — p(A + 2a)as — ag(A + o) (A + 2a)
aglaraz — (A + )] — p(A + 20)as
N as(A 4+ @) (A + 2a) — p(A + a)(A + 2a)
aplaras — p(A + )] — p(A + 2a)aq
_ aglarag — p(A+ a)] — p(A +2a)ay
aglaraz — p(A + )] — p(A + 2a)as

This shows that ®zDE is column stochastic, its transpose (®rDE)! is row sto-
chastic and hence 1 € o,((®rD)"). Since 0,(PrDE) = o,((PrDE)Y), also
1 € 0,(PrDE) holds. Therefore, by the Characteristic Equation 1.3.6 we con-
clude that 0 € 0,(Ag). O

Indeed, 0 is even the only spectral value of Ag on the imaginary axis.

LEMMA 3.3.7. Under the General Assumption 3.1.1, the spectrum o(Agr) of
AR satisfies

O'(AR) NiR = {O}
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PROOF. For any a € R,a # 0,C = (ry,79,73) € C3, we consider the resolvent
equation (Id — ®pDE)Q = C.This equation is equivalent to the following system
of equations:

(1 —ahi)q1 — ahaga — ahzqz =11,
—bhiq1 + (1 — bha)ga — bhsqs = 72, (%)
—chiqi — chaga + (1 — chs)hs = 3,
where
B A+ a)(A + 2a)
(ai + ao)[(ai + a1)(ai + ag) — p(A + )] — p(A + 2a)(ai + az)’
Aeol(ai + ar)(ai + az) — (A + )] + Aoy (A + 2a)(ai + az) + Aoy (A + @) (A + )
(ai + ap)[(ai + a1)(ai + az) — p(A + )] — p(A + 2a)(ai + az)
. Anol(ai + ay)(ai + ag) — p(A + )] + Ap, (A + 20) (ai + az) + Apy (A + a)( A+ )
(ai 4 ag)[(ai + a1)(ai + az) — p(A + )] — p(A + 2a)(ai + az)

hj = / py()e o 1O d j =3, 4,5,
0

b:

Since for a # 0, we have

1—ahy —ahy  —ahs
—ahy 1 —ahy —ahs | = (1 —ahy)(1 — bhy)(1 — chs) — abchyhohs — abchyhohg
—Chl Ch2 1— Chg

— ac(1l — bhg)hihg — be(1 — ahy)hohs — ab(1 — chs)hihg
=1 — bhy — ahy + abhihy — chg + cbhahs + achyhs
— abchihsohs — achihs — bchaohs — abhihy + abchihahs
=1—ahy — bhy — chs # 0,

i.e., the determinant of the coefficient of the equations (x) is not equal to 0. It

follows that the equation (Id—®pDE)Q = C has exactly one solution. Therefore,
1 ¢ o(®rDE). This implies by the Characteristic Equation 1.3.6 that ai ¢ o(Ag),
le

O'(AR) NiR = {O}
U

3.4. Well-posedness of the System

The main gaol in this section is to prove the well-posedness of the system. In
order to prove this, we will need some lemmas.

LEMMA 3.4.1. Agr : D(AR) — R(Agr) C Xg is a closed linear operator and
D(ARg) is dense in Xg.
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PROOF. We will prove the assertion in two steps.
We first prove that Ag is closed. For any given

By = (5,07, p5 57 (), p{7 (), p§V (2)) € D(AR),

0 0 0
Py= ), p”, p, 030 (), p (2), p () € X

We suppose that

lim f)n:.P()7

n—oo

lim AR(Pn)t = (FR)t,
where FR = (.f07f17f27f3(x)7f4($>7f5(x)) € XR- That iS,
hm pz ) - p£0)7 (2 - 07 ]-a 2)

lim [ [p{” (@) = p)” (x)]dw = 0, (j = 3,4,5).

n—oo 0

Then we obtain from the General Assumption 3.1.1 that

lim pg-n)(x)uj(x)dx :/ pg-o)(x),uj(x), Jj=3,4,5.
0

n—oo 0

Furthermore,
—aop” + ppl"” + Zz 3f? i p, (z)dz
(A +2a)p” . )alpl J(r )upg
lim Ar(P,)" = lim gj;jr(?)pl — 512) —
n—00 n—e0 T & T ps(x)ps (x)
— P — ()l (@)

P = () ()

fi

f2
f3()
fa(z)
fs()
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This is equivalent to the following system of equations:

(

n—oo

5 0
1ﬂn[—%mpg”%-up¥”-F§Z:]/ (@)™ (2)da) = fo,
i=3 Y0

lim [(A + 2a)py"” — apl” + upl”] = £,

n—oo

lim [()\ + Oé)pg ) — (12]?2 ] fg,

P

tim [ ol )] = (o)
(n) (.

tim [ @) = i),

tim [~ 225 ) ) @) = fo(a)

\ n—0o0 dz

Integrating both sides of last three equations from 0 to 3 > 0, we have

] ) (0 B ) (g
lim /0 [_% _ uj(w)pgn)(x)] _ /0 lim [_dp]d (2) B uj(ar)p§n)($)]

n—oo n—oo

/fj ,j=3,4,5.

This yields

8
:/0 fi(2),j = 3,4,5. (30)

We know from the boundedness of y;(x) that [5|u;(x 0 ( )|dz < oo. Fur-

ther, we have [ |f;(z)|dz < oo. It follows from (30) that pg (B) is absolutely
continuous and

P (B) = —; ()P (B) — fi(x) € L0, 00).

Therefore, Py € D(Ag) and

lim p"(8) = lim [~;(8)pS" (8)] — f;(x) = P\ (B).

n—o0 n—oo



54 THE SYSTEM WITH PRIMARY AND SECONDARY FAILURES

From the above deduction we have
4

5 poo
—agpy” + ¥+ / pi(2)p” (w)dz = fo,
i=3 70

A+ 20)p — apl® + upl” = 11,
(A+ O‘)pgo) — a2p§0) = fa,

0,
_dpd—() — u3(2)pS () = f3(x),
) xr 0
_dwd_gc() — (@) () = falx),
©) xr 0
\ _dpsdx( ) o M5(x)pé )(I) = f5($)

This shows that Ag(Pp)" = (Fr)*, hence (Ag, D(AR)) is closed.
We now prove that D(Ag) is dense in Xz. We define

p,eC,1=0,1,2
pi(x) € C3°[0,00), 7 = 3,4,5} ‘
Then by [AdaT75| Eg is dense in Xg. If we define

pi(x) € C*[0,00) and

there exists a number

«a; such that p;(z) =0, [’
forz € (0,04, i =3,4,5

En— {p<x> — (90, p1, 72, Pa(2), Pa(), p5 ()

Hp = p(x) = (po,p1,P2,P3($),p4($),p5($))

then Hp is dense in Eg. Therefore, in order to prove that D(Ag) is dense in Xg,
it suffices to prove that D(Ag) is dense in Hg. Take any
p(x) = (po, p1, P2, p3(x), pa(x), ps(2)) € Hp,

then there exist numbers a; such that p;(z) = 0, for all z € [0, ] (i = 3,4,5), i.e,
pi(z) = 0 for z € [0, s], here 0 < s = min{as, a4, as}. We introduce a function

©*(0) = (05, ¥1, ¥2, ¢3(0), ¥1(0), ¥5(0))

2 2
= (Do, D1, D2, AP2, D Ae,Din Y An,pi)

1=0 =0
©°(x) = (@5, @1, V3, p3(x), pi(x), Pi(z)),
where

p:(0)(1—2%)* ifwel0s) .
{pl(x) if z € [s,00), 1=34,5.
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It is easy to verify that ¢®(z) € D(Ag). Moreover

5 s 5
S S T s S
o=l =3 [ et = TP = 31015 0 ass—o.
=3 i=3

This shows that D(Ag) is dense in Hg. O
LEMMA 3.4.2. (Ag, D(AR)) is a dispersive operator.
PROOF. For p € D(Ag), we may choose

ol )T et Ips()]t [pa2)] ' [ps(a)]t
#lw) = po pm p2 | ops(x) T opa(z) 7 ps(x) )

Y

where

T ‘ if -
[ i]+ _ Di 1 pi >0 =012 [ Z(x)]_;,_ _ pz(x) 1 pz(x) >0 =345
0 ifp; <0 0 if pi(z) <0

If we define W, = {x € [0,00) | p;(z) > 0} and Q; = {z € [0,00) | ps(z) <0}
for © = 3,4, 5, then we have

Fdpi(@) )] [ dpi@) )] dpi(z) [pi( .
/0 dr  pi(x) dx—/Wi dx x) d +/ dm pz d
dpz( )]+ dpz
:/W & ) © /
:/ Wd —[p(0)]F, i=3,4,5, (31)
| momteris < [ @noras, i34 (32)

By (31), (32) and the boundary conditions on p € D(A) we obtain that

(Arp, ¢) = {—aopo + pp1 + Z /OOO pi(w)pi(x)dx} [p;(])+

[p1]+

+{(A+2a)py — ar1p1 + pp2} »
1

+Z J ) e B

[pz] i

+ {()\ -+ Oé)pl — a2p2}
P2

pi(z)
=—ao[po]++up o o, 23/ i (@) pi(x
+ (A +20) [plﬁpo—al[pl] +u[ ]+p1+(>\+a) P2 ]+p1

D1 D2
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5
— as[pa]* Z/ dplx pil dx — Z/ wi(z)[pi(x)) T dx
=3

pi(w

P
Z—ao[P0]++Mp1 ” Z/ pi(@)pi(@

Po

]-‘r

+ (A +2a) [ppi*po —ar[p]" + #[p] p+ (A +a) [ppi+p1
— az[pa]” Z Z/ 11i() [pi(x)] " da

- g + [po]* | [po]” - ooll, () da

= —ao[po]" + pup: e ;/0 pi(z)pi(z)d

+ (A + 2a) [plfrpo —ar[p]T + p [p;j*pl + (A +«) [p;ierl

— ag[pa] ™ + {[Ap2]T + [Meopo + Ay 1 + Aeypa] T

+ oo+ Myps + Mapa] Z / " @)l do

< —ag[po]™ + pupr fa) 7 Mz )pi(z
+(A+2a)%po—a1[p1]++u[pi <A+a>[pi
— as[pa]™ 4 {A[p2] T+ { Ao [Po] T+ ey [p1]T + Ay [p2] T}

Ol + 2]+ Ml = 3 [ @)l s

(>‘Co + )‘ho )[po] ()‘01 + )\hl - aU)[pl]Jr ()‘ + )‘02 + )‘hz — Qo
+
=+ up 1 pO Z/ Mz pz dl’ + <)‘ + 20‘) [p];] Po
1
[p]* [pa] ™ L[ +
+ pt (A +a) p1— Z pi(@)[pi(x)] " dz
D1 Y2 —3 J0

:_()\+2a)[p0]+_(M+>\+a>[p1]+—u[p2] +Np1[p(]]

LS [T ool + 200 2y 422

)[p2

]+
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+ (A +a) [p;;,m — Zz:; /OOO wi()[pi(x)] T dx

_ +_ +_ + [po]®
< —(A+20)[po] " — (u+ A+ a)[p1]" — plpa]” + ups o,

+ +

LS [ im0 2B 2,
+ A+ ) [p;i+p1 — ; /000 wi(x)[pi(z)] " dx

< —(A+20)[pol " = (u+ A+ ) [p]" — plpa] + plpi]* [p;(]>+
+ MM[Z?2]+ + (A +a) " (] *

D1 D2
< —(A+20)[po] " = (p+ A+ ) [p] " = plpa] T+ plpi]*
[p]f -1) 2; /OOO i () [ps ()] " dx 4 (A + 2a) [po]
+ p[p2] "+ (A + ) [pa]”

=B 03 [T @) <o

This shows from Definition 1.2.5 that (Ag, D(Ag)) is a dispersive operator. [

+

LEMMA 3.4.3. If v € R,y > 0, then v € p(Ag).

PROOF. Let v € R,y > 0, then all the entries of @RDf are positive and we
have

aol(v + @) (7 + az) — (A + )] — (A + 20) (7 + az) — ¥(A + 20) (3 + as)
=A+20+ A, + M) (Y+Hu+AFa+ A F ) (Y Fp+H A+ A + Any)
— (A4 200+ Aoy + Mg ) ppX 4 @) — (N +20) (7 + pr 4+ X+ Aoy + Any)

— YA+ 20)(y+ p+ A+ Aoy + Any)

= [(A+ 204+ Ay + Ao ) V(Y + 11+ X+ Aoy + Any)

— YA+ 2a)(y + A+ Ay + Ay

A [N 42004 Ay + Apg ) (7 4 g+ A4 Aey + Any)

— A+ 20) (7 F A+ Aoy + Any)]
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+ [()‘ + 20+ /\Co + /\ho)(A_f— a+ /\01 + )‘h1)<’7+:u+ A+ )‘02 + )‘hz)
(A4 2a 4+ Mgy + Ang ) t( A+ )] >0

—

ao[(v + a1)(y + az) — (A + )] — p(A + 2a) (v + az) > y(A + 2a2) (7 + az). (33)

We also have
/O iy (e IS i g /0 iy (w)e 5 1 ©d gy — 1. (34)

Using (33) and (34) we can estimate the j column sum as

3

> (@rDE),

Z__ A+ a)(A + 2a) fooo wi(x)e o=y 1i(€)de gy
(Y4 ao)[(v + an) (v + a2) — (A + )] — p(A + 20) (7 + az)
Aeol(v+ a1)(y + az) — (A + )] + Aoy (N + 2a) (7 + a2) + ey (A + @)X + @)
(v + ao)[(v + a1)(y + a2) — (A + )] = p(A + 20)(y + az)

x/ uj@)eﬂr*f(fw(&)d& dx
0

Ano (v + a1) (v + ag) — p(A + @) + Ay (A + 20) (7 + @) + A, (A + @) (A + @)
(v + ao)[(v + a1) (v + az2) — p(A + )] — (A + 22) (v + ag)

x/ Mj<x>efw*f5”w(£)d£ dx
0

- YA 4 20) (v + ag) + (v + a1)(y + az) — p(X + a)]
(v + ao)[(v + a1)(y + az) — (A + )] — p(A + 20)(y + az)

x/ Mj@)eﬂw*ffw(f)d& dx
0

- Yy +a) (v + a2) — p(A + )] + y(A + 20) (7 + a2)
(v + ao)[(v + a1) (v + az2) — p(A + )] — (A + 2a)(y + ag)

X / 1 (x)e ™13 Jo 1O gy < 1,
0

_|_

}

It follows from this that ||®zDX|| <1, and thus also
r(®pD)) < |®RDJ| < 1.

Therefore, 1 ¢ o(®rDZ). Using the Characteristic Equation 1.3.6 we conclude
that v € p(Ag) for v € R,y > 0. O

From Lemma 3.4.1, Lemma 3.4.2 and Lemma 3.4.3 we immediately obtain
the following result.
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THEOREM 3.4.4. The operator (Ag, D(AR)) generates a positive contraction
Co—semigroup (Tr(t))t>0.-

From Proposition 1.2.4 and Theorem 3.4.4 we can state our main result.

THEOREM 3.4.5. The system (R),(BCg) and (ICgyo) has a unique positive
solution p(x,t) which satisfies ||p(.,t)|| =1, t € [0, 0).

PROOF. From Proposition 1.2.4 and Theorem 3.4.4 we obtain that the asso-
ciated abstract Cauchy problem (ACPg) has a unique positive time-dependent
solution p(x,t) which can be expressed as

p(CL’, t) = TR(t)p(()) = TR(t)(la 07 07 07 T ) (35)

Let P(t) = p(z,t) = (po(t), p1,p2, p3(x,t), pa(x,t), ps(x,t)), then P(t) satisfies the
system of equations:

0 o (t) + (1) + Z | wtomiz, @)
2 — (04 20)p0lt) - aupr () + palt), 7
P2 — (3t i (0) — aapalt) 39
el LD o), (39)
) _ LD ), (10
) _ ALY ot ), (1)
p3(0,t) = Apa(t)], t >0, (42)
pa(0,t) = i Ae,pi(t), t>0, (43)
ps(0,1) = i Api(t), >0, (44)
P(0) = (1;0?0, 0,0,---). (45)

Since

= Ip.(x,t .
/ p]a(x )dx = pj(00,t) —p;(0,1) = —p;(0,1), j = 3,4,5. (46)
0
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Using (36)—(46) we Compute

[Pl dpz / 3p] zt)
dt +Z

1= 0

— —aopo(t) + (1) + Z / " )i, ),
+ (A4 2a)po(t) — arpi(t) + pupa(t) + (A + a)pi(t) — azps(t),

30 [ e ol

= (—aog+ A+ 2a)po(t) + (1 —ar + A+ ) + (1 — az)p2(t)

+ij(0’t)
:—Zp]Ot Z (0,1) = 0. (47)

By (35) and (47) we obtain
diP@)l _ dTr(#)PO)]

= 0.
dt dt
Therefore,
ITr(@®) PO = [[P@)] = PO = 1.
This shows ||p(-,¢)|| = 1, Vt € [0, 0). O

3.5. Asymptotic Stability of the Solution

In this section we investigate the asymptotic stability of the system using the
results on positive semigroup collected in Section 1.1. We express from Lemma
1.3.7 the resolvent of Ag in terms of the resolvent of A the Dirichlet operator
Dﬁ and the boundary operator ®g. The representation for the resolvent of Af
shows that it is a positive operator for v > 0. This property is very useful in the
following lemma to prove the irreducibility of the semigroup (Tg(t)):>0 generated
by (Ag, D(Ag)). For the notation and terminology concerning positive operators
we refer to the books [Sch74| and [Nag86].

LEMMA 3.5.1. The semigroup (Tr(t))i>0 generated by (Ar, D(AR)) is irre-
ducible.

PROOF. We know from [Nag86, Def. C-III 3.1] that the irreducibility of
(Tr(t))i>0 is equivalent to the existence of v > 0 such that 0 < p € X implies
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R(y,A)p > 0. We now suppose that v > 0 and 0 < p € Xg. Then also
R(vy, Af)p > 0 and ®rR(~y, A})p > 0. It follows from the proof of Lemma 3.4.3
that ||®zD|| < 1 for all v > 0. Hence the inverse of Idyx, — PrDJ can be
computed via the Neumann series

oo

(Idox, — ®DE)™ = (D"

n=0
We know from the form of @RDf that for every i € {1,2,3} there exists k € N
such that the real number ((®zDI)*®@rR(7, Aff)p); > 0. Therefore,
(Idox,, — ®rDY) ™' ®rR(y, Af)p >0,
and by the form of D? we have
DY (Idpx,, — ®rDY) ' ®rR(v, Af)p > 0.

This implies
R(")/, AR)p > O,
and hence (Tr(t)):>o is irreducible. O

We now prove our main result on the asymptotic behaviour. Combining
Lemma 3.5.1 with the results from Section 1.4 we obtain the strong convergence
of the semigroup to a one-dimensional equilibrium.

THEOREM 3.5.2. The space Xg can be decomposed into the direct sum
Xp=X,® X3,

where X3 = fix(Tg(t))i>0 = ker A is one-dimensional and spanned by a strictly
positive eigenvector p € ker Ag of Ag and the restricted semigroup (TR(t)|X122)tZO
15 strongly stable.

PROOF. Combining Theorem 3.4.4, Lemma 3.3.6, Lemma 3.3.7, Lemma 3.5.1
with Theorem 1.4.2, we obtain the proof of the theorem. [l

We rewrite the above theorem as the following.
COROLLARY 3.5.3. There exists p’ € X5, p' > 0, such that for all p € Xp
lim Tr(t)p = (v, p)p,
where ker Ag = (p), p > 0.

Since the semigroup gives the solutions of the original system, we obtain our
final result.

COROLLARY 3.5.4. The time-dependent solution of the system (R), (BCg)
and (ICpy) converges strongly to the steady-state solution as time tends to infi-
nite, that is, lim; .., p(+,t) = ap, where @ > 0 and p as in Corollary 3.5.3.






CHAPTER 4

A Parallel Maintenance System with Two Components
4.1. Introduction

In this section, we consider the model of a parallel maintenance system with
two components. Parallel systems consisting of two repairable units are a usual
phenomenon in our daily life, for example, the parallel connection of two bulbs
with the same power, the parallel connection of two computers with the same
power, etc. So the study of these systems is important in view of theory and
practice.

The mathematical model of parallel maintenance system with two components
was first put forward by L.Yeh, see [Yeh97|. He assumed that the state of a
system forms a continuous-time Markov chain or a higher-dimensional Markov
process after introducing some supplementary variables and derived a formula for
evaluating the rate of occurrence of failures for the system. As an application of
the theory, he studied the maintenance model for a two-component system. But
he did not discuss the well-posedness of the model and its asymptotic behavior.
In 2003, Guo Weihua proved that the model has a unique positive time-dependent
solution by using classical analysis methods, see [Guo03].

According to |Yeh97|, the model for the parallel maintenance system with
two components can be expressed by a system of integro-differential equations

2

o0 _ 5y + () + > rowa,
3]?151; x) N 3]718(;, x) = g+ m(@)p(t 7)),
(PS) ¢ Opa(t,x)  Opalt, @) _
0 + o7 = —()\1 + Tg(l‘))pg(t, x)v
apsé? z) | ‘92938(2 D (@)t )+ dopr (1 ),
\ 81)46()? z) | 32948(2; z) _ —ro(2)palt, x) + Mipa(t, ).

63
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For x = 0 the boundary conditions

[ p1(£,0) = Aupolt) + / " palt, 2)ra(@)de,

(BCps) pa(t,0) = dopo(t) + /OO ps(t, z)r(x)dz,

| pi(t,0)=0,i=3,4

are prescribed, and we consider the usual initial condition

po(0) =c€C,
(]CPS) {pj(o’x) — f](a’;)’j = 1,2,3,4,

where f;(z) € L0, 00). The following initial condition is most interesting

pO(O) =1,
IC
(ICpsy) {pj(o,:c) =0,j=1,2,3,4.

Here (x,t) € [0,00) x [0,00). Let po(t) denote the probability that two units
are both working at time ¢; p; (z, t)dx gives the probability that unit 2 is working,
unit 1 fails and the failed unit has elapsed repair time lying in (z, z+dz]; ps(z,t)dx
describes the probability that unit 1 is working, unit 2 fails and the failed unit
has elapsed repair time lying in (x,z + dz]; ps(x,t)dx gives the probability that
both units fail, unit 1 has elapsed repair time lying in (z,z + dz| and unit 2
is waiting for repair; py(z,t)dx gives the probability that both units fail, unit 2
has elapsed repair time lying in (z,x + dz| and unit 1 is waiting for repair; A\
represents the rate of occurrence of failures for unit 1, Ay represents the rate of
occurrence of failures for unit 2; r;(x)(i = 1,2) is the hazard function.

We require the following for the failure rate r;(z)(i = 1, 2).

GENERAL ASSUMPTION 4.1.1. The functions r; : Ry — Ry are measurable
and bounded such that lim r;(x) exists and

r@ = lim ri(x) >0, =12, re := min(r),r?)

4.2. The Problem as an Abstract Cauchy Problem

The underlying problem is rewritten as an abstract Cauchy problem on a
suitable space Xpg, see [ENOO, Def. I1.6.1]. As the state space for our problem
we choose

Xpg :=C x (L0, 00))*.

It is obvious that Xpg is a Banach space endowed with the norm

4
Ipll == 1pol + > IPallLj0.00),
n=1
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where p = (po, p1(2), p2(), p3(x), pa(2))" € Xps.
For simplicity, we denote by 1; the linear functionals

¢ L'[0,00) — C, f=i(f) = / ri(z)f(z) dz, i=1,2.
0
Moreover, we define the operators D; on Wh1[0, 00) as

d

Dif:= —%f— (A2 +71)f,
d

Dof :=——f = (M +m)f,
d

Dsf - = —d—f -/,
x
d

D4f L= _%f - T2f7 fOI’ f € Wl,l[oa 00)7

respectively. To define the appropriate operator (Apg, D(Apg)) we introduce a
“maximal operator” (APS D(AP%)) on Xpg given as

—(M+A) 1 Yy 00
0 Dy 0 0 0
APS = 0 0 Dy, 0 0|,
0 N 0 Dy 0
0 0 N 0 Dy

D(APS) = C x (W0, 00))™

To model the boundary conditions (BCpg) we use an abstract approach as in
e.g. [CENNO3|. For this purpose we consider the “boundary space”

aXps = C4,

and then define “boundary operators” Lpg and ®pg. As the operator Lpg we
take

Do Do

e i | (2
Lps : D(APS) = 0Xps, pale) | = L | palo) | o= | 200 |

p3(x) p3(x) pg(o)

pa(e) pa(z) =

and the operator ®pg € L(Xpg, 0Xpg) is defined by the matrix

M 00 0 1y
Ppo - /\2001#10
PS=10 00 0 0
000 0 0



66 A PARALLEL MAINTENANCE SYSTEM WITH TWO COMPONENTS FAILURES

The operator (Aps, D(Aps)) on Xpg is then defined as
Apsp = A5p, D(Aps) :={p € D(A}®) | Lpsp = ®psp}.

With these definitions the above equations (PS),(BCps) and (ICpg) are
equivalent to the abstract Cauchy problem

dZ—Ef) = Apsp(t), t€[0,00),

p(0) = (¢, f1, fo, f3, f1)' € Xps.

If Apg is the generator of a strongly continuous semigroup (Tps(t))t>0 and the
initial value in (ICpg) satisfies p(0) = (¢, f1, f2, f3, f1)! € D(Apg), then the
unique solution of (PS), (BCpg) and (ICpg) is given by

po(t) = (Trs(t)p(0))
pn(z,t) (Tes(t)p(0))ns1(z),  1<n<4

(AC Ppg)

4.3. Boundary Spectrum

In this section, the boundary spectrum o,(Apg) of Apg is investigated using
the Characteristic Equation 1.3.6. For this purpose, we start from the operator

(AP D(AE®)) defined by
D(Ag®) = {p € D(A®) | Lpsp = 0},
Ag®p = Al%p.
The following lemma gives the representation of the resolvent of the operator

AP needed below to discuss the irreducibility of the semigroup generated by the
operator Apg.

LEMMA 4.3.1. For the set Sps :={y € C| Ry > —roo} \ {—(\1 + A\2)} we
have

Sps € p(A7").

Moreover, if v € Spg, then

s11 s12 s13 00
0 522 0 0 0
Ry, Af)=[ 0 0 s535 0 0|, (48)
0 54,2 0 S4.4 0
0 0 55,3 0 55,5
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where

S12 = mwlR('%Dl);
S1,3 = msz(%Dﬁ,
$22 = R(v,D1),

s33 = R(

S4,2 = —(

s1a = R(v,D3),
853 = —(

ss5 = R(v,Dy).
The resolvent operators of the differential operators D;(j = 1,2,3,4) is given by

(R Dyp)a) = OO [ lrmeelin @ s,
0

(R DaJp)a) = e el @i [ sy (s)as,
0
(R(7, Dy)p)(x) = e7ro=Jo m(&)ds / 1y i O% p (s)ds,
0

(R(y, Da)p)(z) = e o 28 / o 2Ok p(5)ds,
0
for pe L'0,00).

PROOF. A combination of [Gre84, Prop. 2.1] and [Nag89, Thm. 2.4] yields
that the resolvent set of AJ'S satisfies

p(AJ®) 2 Sps.

For v € Spg we can compute the resolvent of A explicitly applying the formula
for the inverse of operator matrices, see [Nag89, Thm. 2.4|. This leads to the
representation (48) of the resolvent of AFS.

Clearly, knowing the operator matrix in (48), we can directly compute that
it represents the resolvent of ALS. O

The following consequence will be used to compute the spectrum of Apg.

COROLLARY 4.3.2. The imaginary axis belongs to the resolvent set of AF®,
ie.,

iR C p(A7”)

The elements in ker(y — APS) can be expressed as follows:
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LEMMA 4.3.3. For v € C, we have

p € ker(y — ALS) (49)

b= <p07pl(')7p2<’)>p3('>7p4('))t S D<Am>> thh
dy > —(yAa)e— T ru(€)de
X 'S d
7+/\1+)\2X/0 ri(z)e 0 T
_i_L X =
Y -+ )\1 + )\2
n(z) = dle—(w+/\2)w—f0’” n(é)dﬁ

Do =
ro(x) e~ A= Jo 2O g (50)

o1
02
53
54

p2(x) = dae” OrtAe=orae
p3(z) =[di(1—e )‘2‘”) +d ]e vo—[o (€ £
(z) = [do(1 — ’)‘””)—i—d4]e vo— [y r2(§)d§

(51)
(52)
(53)
(54)

palx

PRrROOF. If for p € Xpg, (50)-(54) are fulfilled, then we can easily compute
that p € ker(y— AL). Conversely, the condition (49) gives a system of differential
equations. Solving these differential equations, we see that (50)-(54) are indeed
satisfied. O

Moreover, since Lpg is surjective, it follows from |[Gre87, Lemma 1.2] that
Lps|xer(y—arsy : ker(y — AL®) — 0Xpg
is invertible for each v € p(AL®). We denote its inverse by
Dfs = (Lps|ier(y_ars)) " 1 0Xps — ker(y — AL,

and call it “Dirichlet operator”.
We can give the explicit form of Dﬁ as follows.

LEMMA 4.3.4. For each v € p(ALl®), the operator Dfs has the form
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where
1 & -
g = w [ ry(x)eOrPre- S m©de gy
wo= <) @
1 >0
PR w [ py(w)e- el ra(de gy
b2 7+M+A2‘A (@)
dyy = e~ (rHA2)z— [ 11 (&)dé“,
dsy = e~ (vHA2)z— [ r€)dg
dyy = e Jo Tl(ﬁ)di(l _ 6_)‘”),
dyz = e 1o rl(f)df’
dss = e Jo2OdE( _ o=Muwy,
dey = e1oJdra(©)de,

The operator ®zDP® can be computed explicitly for v € p(A§*).

REMARK 4.3.5. For 7 € p(A{®) the operator ®pgD!® can be represented by
the 4 x 4-matrix
aypi ai2 0 Q1.4

ps | a1 agp asz 0
CesD" =10 o0 o o |
0 0 0 0
where
)\1 /OO _( _ [z
g = [ (m)e (e € g
RS v N S
A /°° ~( e
19 = ———— X ro(2)e~(VFAE=fg r2(8)dE 7,0
12 Y + )\1 + )\2 0 2( )
+/ TQ(x)e—W—fozm(ﬁ)d&(l _ 6—>\1a:)7
0
Ao /°° ~( e
S N R S S A L
271 fy + Al + )\2 0 1( )
+/ Tl(x)e—’ﬂ—fozﬁ(i)dﬁu _ 6_)‘”),
0
)\2 /OO _( _ [z
Qoo — — 22« ro(z)e” A= Jg r2(E)dE g
2= Sy )

oo
2= [ ra(w)e e A O,
0

a4 :/ rg(x)e_w—foz”(g)dfdx.
0

We now show that 0 is in the point spectrum of Apg.
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LEMMA 4.3.6. 0 is an eigenvalue of (Aps, D(Aps)) with geometric multiplicity

one.

PROOF. Let ApsP = 0, this is equivalent to the following system of equations.

where

— (A1 + Xo)po + Z /OOO ri(x)p;(x)dz = 0,

ap(;;fﬂ) = — (g + (@) (@),
8%29(:@ = — (A1 + ro(@))pa(a),
apasiﬂf) = —r1(2)ps(z) + Xopr (2),
8p§i$) = —ro(z)pa() + Mipa(2),

p1(0) = Aipo + /Ooop4(x)7"2($)d$7

p2(0) = Aapo +/ ps(x)ri(x)de,
0
pi(0) = 0,7 = 3,4,

Solving (55), (56), (57), (58) and (59) we obtain that

__ % ~ —Xoa— [ r1(€) de
= (T )e 0
A+ Ay /0 1)

Po
= /OO ro(z)e Mo Jo 2(8) d€
)\1 + )\2 0
pi(r) = alef)‘”*fdr ri(€) dg
pa(x) = agef)‘”*foz r2(£) dé)
P3(IE) = aze” Jo r() d¢ + Gl(l —e )\2:(:)6— Jori(8) dg7
P4($) = aze Jo r2(8) d¢ + CL2(1 _ 6—)\1:(:)6— Jo m2(8) dg7
Combining (66), (67) with (60), (61) and (62) we have

a1 = p1(0) = A\ipo + az — a2/ 7"2($)€_/\1I_f0w r2(8) & dr,
0

az = p2(0) = Aopo + a1 — a1 / ry(z)e 2 Jo 1O 4 gy
0

(55)

(56)
(57)
(58)

(59)
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Using the following abbreviations,

a:=1-— / r2(x)€—/\1x—f0”” r2(8) dE g,
0

B:i=1-— / 1 (x)e_’\”_fom (&) de gy
0

we obtain from (68) and (69) that

/\20[ + )\1
= 1
“a=Tz aﬁ (71)
M0+ )\2
= 2r T2, )
2 1— Ozﬁ (72)

Substituting separately (70), (71) and (72) into (64), (65), (66) and (67) we obtain
that

Aocr + Ay /w “Naa— [T 1 (€) de
= ri(z)e 2o M dx
Po [()\1 + /\2)(1 - Ozﬁ) 0 1< )
B+ Ao /Oo =3 ra(€) d
+ ro(x)e” ¥ Jo 2 dz|po, 73
()\1 + )\2)(1 — Oéﬁ) 2( ) ]p() ( )
M0+ M e (e a
— 22— fo 71 4
pi(z) == 1 ab o 118 dep, (74)

pala) = S22l 0 i (75)
ps(x) = Afofagl (1 — e 2m)e o m@©dep (76)
pila) = 221 e Oy, ()
This shows that 0 is an eigenvalue of Apg. By (73), (74), (75), (76) and (77) we
can easily see that the geometric multiplicity of 0 is one. U

If X} denotes the dual space of Xpg, then
X5 = C x (L*[0,00))*.
It is obvious that X;¢ is a Banach space endowed with the norm

||CI|| = max(|q0|, ||q1||L°°[0,oo)7 HQQHLC’O[O,oo)a HQ3||L°°[O,OO)7 HQ4”L°"[O,OO))7
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where ¢ = (qo, ¢1(2), ¢2(2), g3(2), q1())" € Xpg. Let (Apg, D(Apg)) be the ad-
joint operator of (Aps, D(Aps)), then (Apg, D(A%g)) can be expressed as
—(A1 + A2)qo + A1q1(0) + A2ga(0)
— 2D 4y (1) g0 — (Mo + 71 (2)) a1 () + Nags ()
Apsa = | =8 4 ry(@)ag — (A + o)) a(e) + () |
dqd%x) +71(2)g2(0) — 1 (2)gs ()
Mt 4 ()1 (0) — ro(x) ()

i )

o € L*[0,00), ¢;(z)is an

. x

D(Aps) = (@0, 01(2), 32(7), 43(2), ga()) absolute continuous function,
and ¢;(x) is finite, i = 1,2, 3,4

LEMMA 4.3.7. 0 is an eigenvalue of (Apg, D(Apg)) with geometric multiplicity
one.

PRroOOF. Consider the equation Apgq = 0. This is equivalent to the following
system.

— (M1 4+ A2)q0 + Miar(0) + Aaga(0) = 0, (78)
dqcllg(sa:) = (Mo + 11 (2))q1(2) — Aogz(z) — r1(2)q0, (79)
dq;i:z:) = (A1 + m2(2))ga(2) — Aiqu(x) — ra(2)q0, (80)
a%? = 71(x)gs(x) — r1(2)g2(0), (81)
aqgix) = r5(2)qa(x) — r2(7)q1 (0), (82)
" ¢1(00) = g2(00) = g3(00) = qa(00) = w. (83)

Solving (79)-(82) we have
a1 (l’) = ble)\zx-i-foz r1(§) d§ + b36x\2x+f0»"0 r1(€) dg(e—)\w; - 1)

_ )\2q2<0)e>\2x+f5 r1(§) d¢ /x oS TE) A€ g

_ q2(0)€A2x+fg' r1(€) d§<€—)\(;z . 1)

- QO€A2$+f°z r1(€) dg /z T (T)e_)‘”‘FfoT r1(€) d¢ dr, (84)
o () = byeMrHo m2(6) jbwmﬂo" ra(€) d (A _ 1)

g (0) M ra(€) de / T TS ral€) de g
0
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— qu(0)eN T € de e )

— goeM* o 72(9) df/ rz(T)e**lTﬂJrz(&) « dr, (85)
0
qu(x) = baelo 2O % 4 g1(0) — g1 (0)edo O %, (87)

Multiplying e=*2*~Jo 718 4€ on hoth sades of (84), multiplying e~ o=Jo 72() & op
both sides of (85), multiplying e~ Jo "1(8) % on both sides of (86) and multiplying
e~ Jo 28 d€ on hoth sides of (87), then using (83) we deduce

by = )\2q2(0>/ M2ty i) dg dx+q0/ ri(z)e 22 Ti©) de o (88)
0 0

by = A1q1(0) / Metlo 72O 4 gy 4 g / ro(x)e Moo € de gy (g9)
0 0
b3 = QQ(O)a (90)
Substituting (88)—(89) into (84)—(87) we derive

01(2) = haga(0) X2+ 1(6) e / Al T & gy

xT

4 qoe_’\2m+f; r1(€) d¢ / r (x)e—)\zx-l-foz r1(§) d§ dI, (92)

q2(.1') = )\1q1 (0)6)\1x+f(l)r r2(§) df/ 6)\11+J‘(T ro(€) d€ dl‘

T

+ q06_>\1x+f01 r2(§) d§ /OO TQ(I)G—Alx-l-foz r2(§) d§ dz, (93)

g3(x) = q2(0), (94)

() = q1(0) (95)

From (92), (93), (94) and (95) it follows that
¢ (0) = )\2612(0)/ Mo T € 4 g 4 QO/ Je 2o O 4 gy (96)
0
Ch( ) — )\1(]1(0)/ e/\lfL“Jrfoac r2(§) d§ dr + % / 7“2 *)\1934’]‘0:0 ro(€) d¢ dr (97)
0

q3(0) = ¢2(0), (98)
4(0) = ¢:(0). (99)

Solving (96)—(99) we obtain
¢1(0) = ¢2(0) = ¢3(0) = ¢4(0) = go. (100)
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Combining (100) with (92), (93), (94) and (95) we have
01 (z) = @2(7) = g3(7) = qu(x) = go. (101)

This shows that 0 is an eigenvalue of (A}g, D(Apg)). From (101) it follows that
the geometric multiplicity of 0 is one. U

Indeed, 0 is even the only spectral value of Apg on the imaginary axis.

LEMMA 4.3.8. Under the General Assumption 3.1.1, the spectrum o(Apg) of
Apg satisfies

O'(Aps) NiR = {O}
PROOF. Let ai € 0(Apg) for some 0 # a € R and consider the 4 x 4-matrix

bii bz 0 bia

1
b b b 0
ps __ | 621 022 023
PrsDa” =10 0 0 o |
0 0 0 0
where
b _ —(ai+X2)x fo r1(€)dE d
MU i+ )\1 + A % / ri(@ o
by o — —(ait+A1)z— [ ra dfd
27 it )\1 + Ao / o

[ a1 ),

b1 = —(ait+Az)z— [ r1( déd:v

al + )\1 + Ao /
+/ Tl([E) —atx— fo 7‘1(§)d§(1 —)\gx) dx,
0

Ao o0
bpg = —————— X 1o (2)e (@A) T g r2(6)dE g,
227G+ A+ N /0 2(7) ’

0

b1y :/ TZ(x)e—w—fo“”rz(S)dﬁ dz.
0

The General Assumption 4.1.1 implies that there exists r € R, such that
ri(z) > 0 for all z € [r,r+2%]. Using the abbreviation s;(z) := r;(z)e” Jo me ey —
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1,2, we compute

IN

<

/T—"—_
T

/ ri(x)e 7 Jo ri©dE gy
0

00
/ ’
0

—aix
S

(x)dx

2

R—y
(& S;

(x) dx

2

_l_

‘ e " si(x) da +/ si(x)
0

/T—"—_
T

75

T ) e}
/ e "s(x) dm—l—/
21
0 r4+=
a
/ )
21
r+7

The first term on the right hand side of the above inequality can be estimated as

21
T E—y
(& S;
r

(x) dx

r
T

IN

T
T
/T'
m
/T+a
r
s
/T+a
r
s
/T+E
r

e r+a
/ e “s(x) dx +/

i r+
[

+ =
+

m
a
s
a
s
a

2w
[
r

2w

e si(x) da

L

|
e "si(x) dx —I—/

L
e~ s (x) dr — / e s (x4 1) da

e_ai(”g)si (96 + %) dx

e~ (si(w) — s (x+ I)) da

|si(z) — si (z+ Z)| da

(si(z)+si(z+Z)) do

2

si(x) da:—%ﬁ?

a

si(x) dx

SZ(I) dl‘,

where we used the strict positivity of r;(x) on [7’, r—+ %’r] in the last inequality.

We thus obtain

/ ri(x)e_w_f(f ri(€)dE 1
0

r—|—2—7r T o]
</ ‘ si(x) —|—/ si(x) dx—l—/
r 0 7“+27T

si(x) dx

a
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o0
= / si(x) dx = 1. (102)
0

Using (102) we can estimate each column sum of absolute entries of ®pgD,,; as

4
> 1 @psDE )] = [bral + [b2a]
i=1
> —(aitXo)z—[§ ri(E)dE
|a2+)\1—|—)\2x/0 (@ g
+ % —(ai+A2)z— [ r1( dEdm
|CLZ + )\1 + )\2 /;
+/ T1<l’> —aiz— fo r1(€) d{(l 7)\233) dl’|
0
A1 = Xa) )
|r1(x)e (a7,+ 2 fO T‘l(f £| dx
\/a2 )\1 + )\2) 0
A2 y /oo I () e~ @itA2)a=[5 T1€)de | gy
\/CL2 )\1 + )\2) 0
+ [ et - o) do
0
A - ar— [T r1(€)d
X r(z)e 2" Jom(©de go
\/a2 (A1 4+ A2)? 0
As ></ 1”1(x)e”\2"’“"’f50Tl(é)d£ dx
\/a2 (M +2X)2 Jo
—i—/ ri(z)e ’fox”(@df(l —e’)‘”) dx
0
</ Tl(x)e_kzx_foz”(g)dgdx
0
+ / rl <I>ei fOCC 7’1(5)d£(1 _ ef)\2m)
0
= / ri(z)e” Jo m(©de g — 1, (103)
0
4
D N @psDES)ia| = [b1a] + [b2]
i=1
A1

TS,
—i—/ rg(x)e’aix’fow ’“2(5”5(1 — e”\lx) dx|
0

y /oo r2 (I«>6 (az—i-)\l fO ) E)d&dm
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A2
at + A+ Ao
A2
\/CZQ )\1 + )\2
A1
\/a2 (A + A2

+ [ Iratageie 01— ) o
0
A2 - “iz— [T d
7 X ro(z)e M Jo 12(8dE gy
0

\/CL2 )\1 + )\2
B X / rg(x)e’)‘lx’fg r2(8)dE gy
0

A
—i—/ ro(z)e _foz”(é)dg(l —e_)‘””) dx
0

+ | ></ ro(z)e (@A) —Jo ra( O |
0

\/CL2 )\1+)\2

< /‘X’ TQ(x)e_AN?—foz r2(€)dE g,
0
—+ /OO T2<x>ef fow r2(£)d§<1 . e*)\lm)
0
= /OO T’Q(x)e_f(fm(g)dfdz =1,
0
[ ek,
0

< / ri(z)e” Jo m(©de g — 1,
0

> U @psDy)is| = [bas| =

> [ @psDE )il = |bral =

< / ro(x)e o 2 O% gy — 1.
0

Using (103), (104), (105) and (106) we derive
1®ps Dy < 1,

/ Tg(:zc)e—“i”"_ﬁ”(g)dﬁdx
0

thus the spectral radius fulfills
r(@psDL®) < | @psDY®| < 1.

7

) X/ |7~2( ) —(ait+ 1)z fo TQ(E)d§| dx
0

o
) X/ |T2( ) (al+/\1 fo 7'2(§)d§| dl»
0

(104)

(105)

(106)

By the Characteristic Equation 1.3.6 we obtain that ai ¢ o(Apg) for all a €

R, a 7& 0, i.e.7 O'(Aps) NiR = {0}

O
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4.4. Well-posedness of the System

In this section we prove the well-posedness of the system. In order to do this,
we will need some lemmas.

LEMMA 4.4.1. Apgs : D(Aps) — R(Aps) C Xpg is a closed linear operator
and D(Apg) is dense in Xpg.

PROOF. We first prove that (Aps, D(Apg) is closed operator. For given

Py = (0§, 9" (), p57 (), p§7 (), p () € D(Aps),
Py =, p0 (), p (), p (), 17 (2)) € Xps,

we suppose that

lim Pn:P(),

n—oo

lim APS<Pn)t = (FPS)ta

where Fpg = (ho, hy(x), ha(x), h3(x), ha(x)) € Xpg. That is,

() _ (0)

lim py” =py”,
S O PR () s
lim Ip;"/(x) —p; ' ()|de = 0,(1 = 1,2,3,4).

n—oo

Then we obtain from the General Assumption 4.1.1 that

lim W@Wmm@wiész><@,j=Lz

n—oo 0

Furthermore,

()" (x)dw

— (A1 + )\2)190 + ZJ o i b
0

J
d@< — (g + 1 (2)p" (@)
i A(R,) = Jim (d;DQd—x (A1 + r2(2))ps” (x) = | hale
@LL+AMw> ri(z)p§"(
()"

(
d“ D pd () —

xZ

)ps” (x)
) (n)

T2\ )Py

z)
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This is equivalent to the following system of equations:
(

lim [~ (A1 + Aa)pl +Z/ z)dz] = h,
g@—@%?ﬁwk+n@mﬁwﬂ—mux
tin [ ol )] = o),
1 [ 45 00) — (@ 0] = halo)
) 0 — @ )] - o)

Integrating both sides of the last four equations from 0 to 3, we have

8 (n) T
lim /0 [—dpld—x() — (Ao + i (2)pl" (2)]

n—oo

8 () (.
::A tim [P, @ )

n—oo €T

[ - - Gn @) @)
B () (e

= [ im0 (o)
8

_ /0 hal),
B (n)

tin [T ) - @) o)
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_ /Oﬁh4(x).

15}
lim [—p™ (3) + p{ (0) — /0 (s + 1 (2))p{" () da]

n—oo

This yields

B8
_ /0 ha (), (107)

B
= [ hata), (108)
B B
im [=5”9)+ 5570+ % [ @) = [l @)l

n—oo

6
= p08) +p2(0) + o / P () - / (@) (2)da
Z/ﬁh:a(f)? (109)
8 B
lim [~ (8) + p{(0) + A, / () — / ro(e)p" ()]

n—oo

8 B
= 0(8) + 0 (0) + A / PO () - / ra(a))p (2)de

B
_ /0 ha(2). (110)

We know from the boundedness of 7;(x),j = 1,2 that [J|r;(z)p ( )dz < oo
and [ |r;(x p]H( z)|dz < 00,5 = 1,2. Further, we have [ |h )|dx < 00,1 =

1,2,3,4. It follows from (107), (108), (109) and (110) that pi (6) is absolutely
continuous and

PO(B) = —(Aa + 1 (3P (B) — hn(B) € L0, 00),
P (B) = —(M\1 +12(8)p8”(B) — ha(3) € L0, 00),
pi2(8) = 2P (8) + 1 (8)pL(B) — hs(8) € L0, 00),
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Pi7(3) = py (8) + ra(B)pS” (8) — ha(B) € L'[0, 00).
Therefore, Py € D(Apg) and
Tlim " (8) = Tim [~ (A + 71(8))p)” (8)] = I (8) = p1"(8),

Jim 5" (8) = lim [~(h + r2(8))p5”(8)] = ha(5) = 95" (8).
Jim p§™(8) = Tim Mopt” (8) + r(8)p5”(8)) — ha(8) = 5" (8),
Tim p{™ (3) = lim p§™ (8) + ra(8)p” ()] — ha(8) = (9.

From the deduction above, we have

O+ Ao)pd +Z/ ri()p” (x)dz = ho,

—@%fﬁ—«&+wm>m9<>—hx@7
_@%}2_4M+wx>m§<> ha().

B |\ f0) — (P (5) = o),

- 0 ) - (@) - o)

This shows that Aps(FPy)" = (Fps)', hence (Apg, D(Apg)) is closed.
Now we prove that D(Apg) is dense in Xpg.

We define

Po S R7pl<x) € 080[0? 00)7
Eps = ¢ p(x) = (po, 1, p2, p3(x), palz), ps(z)) | . _ :

i=1,2,3,4

Then by [AdaT75| Eg is dense in Xg. If we define

pi(x) € C*[0,00) and

there exists a number

a; such that p;(z) =0, ’

forz €[0,04],i=1,2,3,4

Hps = ¢ p(x) = (po,p1(x), p2(x), p3(x), pa(x))

then Hpg is dense in Epg. Therefore, in order to prove that D(Apg) is dense in
Xpg, it suffices to prove that D(Apg) is dense in Hpg. Take any

p(x) = (po, p1(x), p2(2), p3(x), pa()) € Hps,

then there exist numbers «; such that p;(x) = 0, for all x € [0, 4] (i = 1,2,3,4),
i.e, pi(x) = 0 for z € [0,s], here 0 < s = min{ay, az, a3, as}. We introduce a
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function

7°(0) = (15, 77(0), 75(0), 75(0), 74(0))

o0

= (po, Mpo + pa(x)ra(z)dz, Aapo +/ ps(x)ri(z)dz,0,0)
0 0

T (x) = (15, 71,75, 73 (%), T4 (%), 75 (7)),
where

T (x) = 1=1,2,3,4.

pi(z) if z € [s,00),

{718(0)(1 — )2 ifr e [0,s)
It is easy to verify that 7°(z) € D(Ag). Moreover

4 s 4
€T S
p-r1=3 [ 1O - D=3 w0 — 0, ass—o.
i=1 70 i=1

This shows that D(Apg) is dense in Hpg, hence in Xpg.
LEMMA 4.4.2. (Apg, D(Apg)) is a dispersive operator.

PROOF. For p = (o, p1 (%), pa(x), ps(x), pa()) € D(Aps), we define

q= (QO;Q1(x>7QZ(x)>Q3(x)7Q4(x)) € X;‘Sv

where
qo = [ Pllsgn(po), ¢i(x) = [|Pl[sgny (pi(x)),i = 1,2,3,4,
and
1 ifp; >0,
sgn+(po) = {0 if i <0,

i=1,23,4.
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If we define L; = {z € [0,00)|p;(x) > 0} and M; = {z € [0,00)|p;(z) < 0} for
1=1,2,3,4, then we have

> dp;(x)
g sgn (pi(z
0 X

ngr pi(x)) dx

ng (pi(x)) dz

/
J
-5
-,
-l

d sgm (pi(z)) do
p
d
[
= —[pi( ],2—1234 (111)
/ ri(z)p; sgn+p,dx</ o) tdr,j =1,2,i=1,2,3,4, (112)
0 0
/ 1 (T)prr2 () sgn (pi dl’</ () [pr2 (@
0 0
k=1,2,i=1234, (113)
4 2 .
SO = SO = Ban®) + [ patatirale)dal
i=1 i=1 0

+ [Aapo(t) + /0°° p3(z, t)ry(x)dx]*
< (v Mool + / (@) lpaa)] e
—I—/OOO Tg(:p)[p4(x)]+dx. (114)

Using (111), (112), (113), (114) and the boundary conditions on p € D(Apg) we
obtain that

(Apsp, ) = [—(M1 + A2)po + Z/ x)dx]|| Pllsgn.(po)
v / T g @)@l Plsgn (0 (@)
b [T 0k @) Pl (a(e)
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. dps
+/ [— di z) + Xopi1(x) — ri(z)ps(2)]|| P|lsgn (ps3(x))
0

[T (o)~ raa @ Plgn ()

= PO+ Malpsgn (o) + 3 [l sons (on)da

b [T g a)) = O ) (s (1 0)

[T s aa)) = O+ ra)pate)sgms (pa(o)

/ I om(oa()) + Ao () s (pa(a)

) )

/ D) g () + Mpata)sgms (oa(2)
) )

— ro(x)pa(z )39n+(p4($) I

< IPI{I=(h + o) o) +Z/ B)[*da]

—ri(z)ps(z )89n+(p3( )

T / (a1 (@)) @) + / m[—(Al T ro(2) fpa()]Jdz
+ Ao /Ooo[pl(:v)]+dx — /000 r1(z)[ps(x)|tdr + A /Ooo[pg(a:)]+da:

- [T @i e+ i)
— 1 PI{= (M + Aol — / " (@) s ()] Fda

—/ +d:17—|—2p, 1 <o.
0

By Definition 1.2.5 we obtain that (Apg, D(Apg)) is a dispersive operator. [
LEMMA 4.4.3. If v € R,y > 0, then v € p(Aps).

PROOF. Let v € R,~ > 0, then all the entries of @psts are positive and
we can estimate each column sum as

A (Y 2)z— [ r1(€)déE
2 n(ds g
S W X/o ri(z)e” 0 x

a1+ a1 =
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st [T ol e g
Y 1 2 0
+/ Tl(x)e—w—fozh(ﬁ)dﬁ(l _ e—Azx)

0

8 1 2 0

+/ rl(x)e—w—fozh(f)dﬁ(l _ e—Azx)
0
</ Tl( ) _('7"!‘)\2 fo 7’1 dgdx
0
+/ rl(x)efvx*fo“l(i)dfu — )
0

:/ ry(z)e 17 Jo m(OdE gy < 1,
0

A /°°
Ao+ Qg0 = ———— X ro(2)e~ (AT fg r2(8)dE g,
1,2 2,2 PN VI ; 2 ()
+/ TQ(x)e—w—fozﬁ(f)dé(l _ e—/\lx)
0
+ % rolx YHA2)z— [ m2(E) € ]
Y+ A+ A 2()e”
_ )\1 + >\2 % / 7"2(.%')6 (v 1)z fO ra( dfdx
ry + )\1 + )\2 0

+/ TQ(x)e—W—fozm(f)d&(l _ e—)qx)
0
</ r2(x) —(v A1)z — [ ra( dﬁdx
0
+/ TQ(x)e—w—fozrz(E)%G _ e—/\lx)
0

:/ ro(x)e @S0 2O gy < 1
0

0 0

a4 = / ro(x)e 1o 2O gy < / ro(z)e™Jo 2O gy — 1.
0 0

It follows from this that [|®psDF?|| < 1, and thus also

T((I)psD,fS) < ||q)psD$s|| < 1.

85
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Therefore, 1 ¢ o(®pgDL). Using the Characteristic Equation 1.3.6 we conclude
that v € p(Apg) for vy € R,y > 0. O

Combining Lemma 4.4.1, Lemma 4.4.2, Lemma 4.4.3 with Theorem 1.2.6 we
immediately obtain the following result.

THEOREM 4.4.4. The operator (Aps, D(Apg)) generates a positive contraction
Co-semigroup (Tps(1))i>o-

Using Proposition 1.2.4 and Theorem 4.4.4 we can state our main result.

THEOREM 4.4.5. The system (PS),(BCps) and (ICpgo) has a unique posi-
tive solution p(t, x) which satisfies ||p(t,.)|| = 1,t € [0,00).

PROOF. From Proposition 1.2.4 and Theorem 4.4.4 we obtain that the asso-
ciated abstract Cauchy problem (ACPpg) has a unique positive time-dependent
solution p(t, ), which can be expressed as

p(t,x) = Tps(t)p(0) = Tps(t)(1,0,0,0,---). (115)

Let P(t) = p(t,x) = (po(t), p1(t,x), pa(t, x), ps(t, ), pa(t, x)), then P(t) satisfies
the system of equations:

2

dpgt(t) = — (A1 + Ag)po(t) + ; /000 ri(z)pi(z, t)dz, (116)
apl(;i, r) _apla(i, x) (Mg + r1(2))p1 (¢, 2), (117)
(9]92(;7;, ) _ _3]328(2 ) — (M +ro(2))pr(t, ), (118)
apﬁgi, ) _ _apfia(i; z) —r(x)ps(t,x) + Aap1(t, ), (119)
8}7451; 1’) _ _8?4(;;, .T) — r2($>p4(t, :E) + /\1p2(t’ g;)7 (120)
p1(t,0) = Aipo(?) —I—/O pa(t, z)ro(z)de, (121)
p2(t,0) = Aapo(t) + /OOO ps(t, z)ri(x)dz, (122)
pi(t,0) =0,i = 3,4, (123)
P(0) = (1,0,0,0,0,---). (124)

Since

/ apét7x)dx = pi(t,00) = pi(t,0) = —pi(t,0),i = 1,2,3,4. (125)
0 a



4.5. ASYMPTOTIC STABILITY OF THE SOLUTION 87

Using (116)—(125) we compute

AP dpot) < /wamt,x)
. dt +ZZI 0 ot de

— (v a0+ Y [ r@pta)ds,

ox

+ /Ooo[_w — (/\1 + 7‘2(:E))p1(t,$)},

+ /OOO[_%Z"T) —ri(z)ps(t, x) + Aapi(t, 2],

+ /OOO[—M — (/\2 + Tl(ff))pl(trl‘)}v

+ /OOO[_%ZQ:) — TQ(x)p4(t,$) + )\1p2(t’ ZE)],

= —A\ipo(t) — Aapo(t) — /OOO ri(z)ps(t, z)dx

— /000 r2(@)pa(t, x)d + Zpi((),t)

4 4

=3 p(0.0)+ Y pl0.1) =0, (126)

i=1 i=1
By (115) and (126) we obtain
d|P@)| _ dl[Tes(t)PO)]

dt dt =0
Therefore,
[Tps()PO)[| = [P@)[| = [[PO)[| = 1.
This shows ||p(-, ¢)|| = 1, Vt € [0, 0). O

4.5. Asymptotic Stability of the Solution

While the semigroup (Tps(t))i>0 generated by (Aps, D(Aps)) is not irre-
ducible, we know that its fixed space is one-dimensional with a strictly positive
eigenvector and no other imaginary eigenvalues of A except 0 (see Lemma 4.3.6
and Lemma 4.3.8 ). This means that the semigroup (T(t)) is relatively weakly
compact and we can apply [EFNS07, Thm. 2.5] to obtain "almost weak conver-
gence".
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THEOREM 4.5.1. For all p € Xpg there exist p' € Xpg,p' > 0 and a set
M C Ry with density 1 such that
Tps(t)p = (¥, p)p ast € M, t — oo,
where ker Aps = (p), p > 0.

Since the semigroup gives the solutions of the original system, we obtain the
asymptotic behaviour of this system.

COROLLARY 4.5.2. The time-dependent solution of the system (PS), (BCps)
and (ICpg) converges almost weakly to the steady-state solution as time tends
to infinity.



Table of symbols

domain of A

fixed space of the semigroup (S(%)):>0

kernel of T’

space of bounded linear operators on X

space of complex valued integrable functions on
Q) with respect to p

space of complex valued integrable functions on
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real part of Z

spectral radius of T’

range of T’

resolvent set of A
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spectral bound of A

spectrum of A
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point spectrum of A

residual spectrum of A
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Zusammenfassung in deutscher Sprache

Wir diskutieren in dieser Arbeit ein Warteschlangen-Modell, und zwar, in
der iiblichen Notation, das M/M? /1 Modell, sowie zwei Zuverlisigkeitsmodelle,
welche jeweils durch abstrakte Cauchyprobleme beschrieben werden. Die in allen
drei Féallen gemeinsame Vorgehensweise ist so, dass die Wohlgestelltheit des jew-
eiligen Cauchyproblems gezeigt wird. Danach wird iiber eine Spektralanalyse
des Generators die Asymptotik der Losungen bestimmt. Wir erhalten jeweils
"steady-state solutions", gegen die die Losungen fiir ¢ — oo konvergieren. In den
ersten beiden Féllen ist die Halbgruppe irreduzibel und die Konvergenz ist in der
Norm. Im letzten Fall ist Irreduzibilitit nicht gegeben. Es gelingt aber durch An-
wendung eines neuen Resultats aus [EFINSO7| der Nachweis des fast-schwachen
Konvergenz.
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