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Introduction

Waiting lines, or queues, have been an everyday-life phenomenon for a long
time. A modern mathematical treatment uses concepts from probability the-
ory and aims at an understanding of the time-evolution of certain probabilities.
A more detailed analysis discriminates between di�erent types of queueing sys-
tems and uses a 3-descriptor code of the form A/S/n, where A stands for the
distribution of arrivals of customers, S for service time distribution and server
peculiarities, and n for the number of servers. We study the so-called M/MB/1
model, which is described in detail below and in Chapter 2.

Another problem we are interested in is concerned with systems involving
units which may fail to function, are repairable and are backed up by standby
units. Again, we are interested in the evolution (in time) of failure/ availability
probabilities. For details we refer to Chapter 3 and 4. In both types of models
we use the fact that the probabilities we are interested in are the solutions of
certain systems of partial di�erential equations with appropriate initial/boundary
conditions. This goes back to Cox [Cox55], and for the M/MB/1 model in
particular, to M. L. Chaundhry and J. G. C. Templeton [CT83]. In the cases
studied in Chapter 3 and 4 the same observation goes back to [Gup95] and
[Yeh97]. The basic idea we are following, and which goes back to G. Gupur (see
[GZ98], [GLZ01] and [Gup02]), is to verify that these di�erential equations can
be written in the form of an abstract Cauchy problem which is well-posed, so that
the theory of C0−semigroups is applicable. In all cases which we are considering,
the correponding semigroups are even positive, which considerably facilitates the
discussion of the asymptotics of solutions. We continue to give a more detailed
account of the content of the respective chapters.

In Chapter 1, we �rst recall some basic de�nitions and results on Banach
lattices and positive operators. We continue to outline the general framework,
developed by G.Greiner [Gre87], into which all our examples �t; last we concen-
trate our attention to the asymptotic behaviour of positive semigroups on Banach
lattices and collect the results used later.

Chapter 2 is devoted to an analysis of the M/MB/1 queueing model. In this
model there is a single-server which can serve B customers simultaneously. The
service starts as soon as there is one customer in the queue. The arrival of the
customers in the queue is at random. The arrival times of the customers as well
as the service times are distributed exponentially. We �rst write the system as an
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4 INTRODUCTION

abstract Cauchy problem, prove well-posedness of the problem and irreducibility
and positivity of the corresponding semigroup and analyze the spectrum of the
generator. The main conclusion on the asymptotic behaviour of the solutions of
this problem is stated in Theorem 2.5.2.

In Chapter 3, the model of a repairable system with primary as well as sec-
ondary failures is considered. The mathematical model for the system was estab-
lished by Surendra M.Gupta (see [Gup95]). We rewrite the model as an abstract
Cauchy problem, and prove well-posedness of the problem and positivity and ir-
reducibility of the corresponding semigroup. Through a spectral analysis of the
generator we obtain existence of a unique steady state to which all solution con-
vergence as time tends to in�nity.

In Chapter 4, we discuss a parallel maintenance system with two compo-
nents. In [Yeh97], L.Yeh established the mathematical model of the system and
obtained existence of a steady-state solution. In [Guo03], Guo Weihua proved
the existence and uniqueness of a nonnegative solution of the system by using
classical analysis methods. By using C0− semigroup theory, well-posedness of
this problem is veri�ed. Finally, the asymptotic behaviour of the solutions is
obtained through a spectral analysis of the generator and by applying a recent
result from [EFNS07].
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CHAPTER 1

Preliminary Results in Semigroup Theory

We assume that the reader is already familiar with the basic functional anal-
ysis and the theory of C0-semigroups on Banach spaces and refer to [EN00],
[EN06], [Gol85] and [Paz83].

1.1. Positive Operators

The theory of positive operators on Banach lattices is used throughout this
thesis. Therefore we recall some basic de�nitions and properties of Banach lat-
tices and positive operators. These results about Banach lattices and positive
operators can be found, e.g., in [Sch74], [Nag86] and [MN91].

We start by de�ning an order relation on vector spaces.

Definition 1.1.1. A relation ≥ is said to be an order relation on a nonempty
set E if the following conditions are satis�ed

(i) (re�exivity) x ≤ x for every x ∈ E,
(ii) (anti-symmetry) x ≤ y and y ≤ x implies x = y,
(iii) (transitivity) x ≤ y and y ≤ z implies x ≤ z.

Definition 1.1.2.
(i) A real vector space E is called an ordered vector space if there is an

order relation ≤ de�ned on E such that for f, g ∈ E

f ≤ g =⇒ f + h ≤ g + h for all h ∈ E
f ≤ g =⇒ αf ≤ αg for all α ≥ 0.

(ii) An ordered vector space E is called a vector lattice if any two elements
f, g ∈ E have the supremum (i.e. least upper bound)

sup(f, g)

and the in�mum (i.e.greatest lower bound)

inf(f, g).

Clearly, the notation g ≥ f means that f ≤ g. Moreover, f > 0 means that
f ≥ 0 and f 6= 0. If g ≤ f , then the set

[g, f ] := {h ∈ E : g ≤ h ≤ f}
7



8 PRELIMINARY RESULTS IN SEMIGROUP THEORY

is called an order interval. Let E be an ordered vector space. We denote by
E+ := {f ∈ E : f ≥ 0} the positive cone of E. If f ∈ E+, then we say that f is
positive. If E is a vector lattice, then the positive part of f ∈ E is

f+ := sup(f, 0),

and the negative part of f is

f− := sup(−f, 0),

while the absolute value or modulus of f is

|f | := sup(f,−f).

Note that f = f+ − f− and |f | = f+ + f−.
We now give the de�nition of lattice norm and Banach lattice

Definition 1.1.3.
(i) A norm ‖.‖ on a vector lattice E is called a lattice norm if

|f | ≤ |g| =⇒ ‖f‖ ≤ ‖g‖, for f, g ∈ E.

(ii) A vector lattice endowed with a lattice norm is called a normed vector
lattice.

(iii) A complete normed vector lattice is called a Banach lattice .

Complex Banach lattices will be used in our thesis. Therefore we now intro-
duce the concept of a complex Banach lattice.

Definition 1.1.4. Let E be a real Banach lattice, then its complexi�cation

EC := E × iE

with scalar multiplication

(α+ iβ)(f, g) = (αf − βg, βf + αg) for α, β ∈ R, (f, g) ∈ EC

is called a complex Banach lattice.

The space E is the real part of EC. For f, g ∈ EC we write f ≥ g if f, g ∈ E
and if f ≥ g holds. The modulus of (f, g) ∈ EC is

|(f, g)| := sup
0≤φ<2π

|(cosφ)f + (sinφ)g|.

We can show that the modulus indeed exists, see [Nag86, Sect.C-I 7]. More-
over, the norm on EC is de�ned by

‖(f, g)‖EC := ‖|(f, g)|‖E.

Important classes of Banach lattices that play a signi�cant role later are provided
by AL-spaces, see [Sch74, Def.II.8.1].
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Definition 1.1.5. A Banach lattice E is an AL-space if

‖f + g‖ = ‖f‖+ ‖g‖
for all f, g ∈ E+.

The space C and L1
C(Ω, µ) are complex Banach lattices. The underlying real

vector lattices are R endowed with the usual order and L1
R(Ω, µ) endowed with

the order
f ≥ g if f(x) ≥ g(x) for almost all x ∈ Ω.

Moreover, for f ∈ L1
C(Ω, µ) the modulus is

|f |(x) = |f(x)|, x ∈ Ω.

In this thesis, spaces like
Cn × l1(L1

C(Ω, µ))

occur. They are complex AL-spaces with underlying real spaces

Rn × l1(L1
R(Ω, µ)).

Their order is given by

(fi)i∈N ≥ (gi)i∈N if fi ≥ gi for all i ∈ N.
The modulus of (fi)i∈N ∈ Cn × l1(L1

C(Ω, µ)) is

|(fi)i∈N| = (|fi|)i∈N.

We now turn our attention to operators and semigroups on these spaces and
give the de�nition of positive operator and positive semigroup.

Definition 1.1.6. Let E be a real Banach lattice.
(i) A linear operator T on E is called positive (T ≥ 0 in symbols) if

Tf ≥ 0 for all f ≥ 0.

(ii) A linear operator T on E is called strictly positive (T � 0 in symbols)
if

Tf > 0 for all f > 0.

(iii) A strongly continuous semigroup (S(t))t≥0 on E is called positive if
S(t) ≥ 0 for all t ≥ 0.

We can extend this de�nition to operators on complex vector lattices mapping
the underlying real part into the real part. In this case, positivity or strict
positivity means that the restriction of the operator to the real part is positive
or strictly positive, respectively.

Note that for a positive operator T on a vector lattice E the inequality

|Tf | ≤ T |f |
holds for all f ∈ E, see [Sch74, p.58].

The following subspaces play an important role in the theory of positive op-
erators.
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Definition 1.1.7. A linear subspace F of a real or complex Banach lattice
E is called an ideal in E if

f ∈ F, |g| ≤ |f | =⇒ g ∈ F.

Remark 1.1.8.
(i) The ideals in Cn are the subspaces

JH := {x = (xi)1≤i≤n ∈ Cn : xi = 0 for i ∈ H},
where H is an arbitrary subset of {1, · · · , n}, see [Sch74, p.2].

(ii) Let E = L1
C(Ω, µ). Every closed ideal in L1

C(Ω, µ) is of the form

IM := {f ∈ E : f(x) = 0 for almost all x ∈M},
where M is a measurable subset of Ω. Conversely, every set IM is a
closed ideal in L1

C(Ω, µ), see [Sch74, Example III.1.2].

The ideal Ef generated by f ∈ E+ is the smallest ideal containing f . By
[Sch74, Example II.2.1] the equality

Ef =
⋃
n∈N

n[−f, f ]

holds.

Definition 1.1.9. Let f ∈ E+. If Ef = E, then f is called a quasi-interior
point of E+.

Remark 1.1.10. A function f ∈ L1
C(Ω, µ) is a quasi-interior point if and only

if f(x) > 0 for almost all x ∈ Ω. In this case, we write f � 0.

Irreducibility of the semigroups is very useful in discussing the asymptotic
behaviour. In the following we brie�y recall the basic de�nition for positive
operators and positive semigroups.

Definition 1.1.11.
(i) A positive linear operator B on E is called irreducible if there is no

non-trivial closed ideal in E which invariant under B.
(ii) A positive semigroup (S(t))t≥0 on E is called irreducible if there is no

non-trivial closed ideal in E which invariant under (S(t))t≥0.

According to [Nag86, Def.C-III 3.1], we state the following equivalent asser-
tions to irreducibility of a semigroup on Banach lattice E.

Proposition 1.1.12. Let B be the generator of a positive semigroup (S(t))t≥0.
The following assertions are equivalent.

(i) The semigroup (S(t))t≥0 is irreducible.
(ii) If f ∈ E and f 
 0, then R(γ,B)f � 0 for (some) all γ > s(B).
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1.2. Well-posedness of the abstract Cauchy problem

In this section we present some de�nitions and tools to study problems arising
in our context.

We recall the following de�nitions from [EN00, Def. II.6.1 (ii)].

Definition 1.2.1. Let X be a Banach space and let (B,D(B)) be a linear
operator on X, and u0 ∈ X. The initial value problem

du(t)

dt
= Bu(t), t ∈ [0,∞),

u(0) = u0.
(ACP)

is called the abstract Cauchy problem associated to (B,D(B)) with initial value
u0.

Definition 1.2.2. A function u(., u0) : [0,∞) −→ X is called a classical
solution of (ACP) if

(i) u(., u0) is continuously di�erentiable,
(ii) u(t, u0) ∈ D(B) for all t ≥ 0, and
(iii) (ACP) holds,

According to [EN00, Def. II.6.8] we have the following de�nition.

Definition 1.2.3. The problem (ACP) is called well-posed if
(i) for every initial value u0 ∈ D(B) there exists a unique classical solution

u(., u0) of (ACP),
(ii) D(B) is dense in X, and
(iii) for every sequence (un)n∈N ⊆ D(B) satisfying

lim
n→∞

un = 0

one has
lim
n→∞

u(t, un) = 0

uniformly on compact intervals [0, t0].

We now characterize the well-posedness of (ACP) as follows, see [EN00,
Cor.II.6.9].

Proposition 1.2.4. For a closed operator (B,D(B)) on X the associated
abstract Cauchy problem (ACP) is well-posed if and only if (B,D(B)) generates
a strongly continuous semigroup on X.

Therefore, to solve an abstract Cauchy problem means to show that the op-
erator (B,D(B)) generates a strongly continuous semigroup on X. If (ACP) is
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well-posed, then, by [EN00, Prop.II.6.2], the unique classical solution is given
by the orbit of u0 under the semigroup (T (t))t≥0 generated by B, i.e.

u(t) = T (t)u0, t ≥ 0.

Next, we are interested in generators of positive semigroups. To this porpose we
give the following de�nition from [Nag86, p.249]

Definition 1.2.5. A linear operator (B,D(B)) on a real Banach lattice E
is called dispersive if for every z ∈ D(B) there exists a χ ∈ E ′ such that ‖χ‖ ≤
1, 〈z, χ〉 = ‖z+‖ and 〈Bz, χ〉 ≤ 0.

Generators of positive contraction semigroups are characterised by the follow-
ing theorem , see [Nag86, Thm.C-II 1.2].

Theorem 1.2.6. (Phillips theorem) Let B be a densely de�ned operator on a
real Banach lattice E. The following assertions are equivalent.

(i) B is the generator of a positive contraction semigroup.
(ii) B is dispersive and γ −B is surjective for some γ > 0.

1.3. Characteristic Equation

We now consider a class of operators (A,D(A)) which are constructed in a
particular way. We start from a closed linear operator (Am, D(Am)), called the
maximal operator. Moreover, we take another Banach space ∂X the boundary
space and use boundary operators L,Φ ∈ L(D(Am), ∂X). In the following we
always assume that L is surjective.

Definition 1.3.1. The operator (A,D(A)) is de�ned as

Ap := Amp,

D(A) := {p ∈ D(Am) | Lp = Φp}.

Under appropriate assumptions, it is possible to characterize the spectrum
σ(A) and give an explicit representation of its resolvent. The abstract framework
for this was developed by G. Greiner in [Gre87]. We sketch these results. The
starting point is the operator (A0, D(A0)) which is the restriction of Am to the
kernel of L, i.e.

D(A0) := {p ∈ D(Am) | Lp = 0},
A0p := Amp.

The domain D(Am) of the maximal operator Am decomposes, using [Gre87,
Lemma 1.2], as follows.

Lemma 1.3.2. For γ ∈ ρ(A0) one has

D(Am) = D(A0)⊕ ker(γ − Am).
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Since L is supposed to be surjective and D(A0) = kerL, we conclude from
the above decomposition that the restriction L|ker(γ−Am) of L to ker(γ − Am) is
bijective. It follows from the closed graph theorem that the inverse of L|ker(γ−Am)

is bounded.

Definition 1.3.3. For γ ∈ ρ(A0), the operator Dγ := (L|ker(γ−Am))
−1 is called

Dirichlet operator corresponding to Am and L.

The operators Dγ and Φ allow to characterise the spectrum σ(A) and the
point spectrum σp(A) of A. Before doing so we extend the given operators to the
product X × ∂X as in [KS05, Sect. 3], see also [Rad06], [HR07b].

Definition 1.3.4.
(i) X := X × ∂X.

(ii) A0 :=

(
Am 0
−L 0

)
, D(A0) := D(Am)× {0}.

(iii) X0 := X × {0} = D(Am)× {0} = D(A0).

(iv) B :=

(
0 0
Φ 0

)
, D(B) := D(Am)× ∂X.

(v) A := A0 + B =

(
Am 0

Φ− L 0

)
, D(A) := D(Am)× {0}.

Remark 1.3.5.
(i) Note that ρ(A0) ⊇ ρ(A0). For γ ∈ ρ(A0) the resolvent of A0 is given by

R(γ,A0) =

(
R(γ,A0) Dγ

0 0

)
.

(ii) The part A|X0 of A in X0 is

D(A|X0) = D(A)× {0}, A|X0 =

(
A 0
0 0

)
.

Hence, A|X0 can be identi�ed with the operator (A,D(A)).

The following shows that the spectrum of A is characterised by the spectrum
of operators on the boundary space ∂X.

Characteristic Equation 1.3.6. Let γ ∈ ρ(A0). Then

(i)
γ ∈ σp(A) ⇐⇒ 1 ∈ σp(ΦDγ).

(ii) If, in addition, there exists γ0 ∈ C such that 1 /∈ σ(ΦDγ0), then

γ ∈ σ(A) ⇐⇒ 1 ∈ σ(ΦDγ).

Proof. As in [KS05, Prop. 3.3],we �rst show the equivalence

γ ∈ σ(A) ⇔ 1 ∈ σ(ΦDγ). (1)
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We can decompose γ −A as

γ −A = γ −A0 − B = (I − BR(γ,A0))(γ −A0). (2)

We conclude from this that the invertibility of γ −A is equivalent to the invert-
ibility of I − BR(γ,A0). From

I − BR(γ,A0) =

(
IdX 0

−ΦR(γ,A0) Id∂X − ΦDγ

)
, (3)

one can easily see that I − BR(γ,A0) is invertible if and only if 1 /∈ σ(ΦDγ).
This proves (1). Since by our assumption 1 /∈ σ(ΦDγ0), it follows that γ0 ∈ ρ(A).
Therefore, ρ(A) is not empty. Hence we obtain from [EN00, Prop. IV.2.17] that

σ(A) = σ(A),

since A is the part of A in X0. This shows (ii).
To prove (i) observe �rst that A and A have the same point spectrum, i.e.,

σp(A) = σp(A).

Suppose now that 1 ∈ σp(ΦDγ). Then there exists 0 6= f ∈ ∂X such that
(Id∂X − ΦDγ)f = 0. Since 0 6=

(
Dγf

0

)
∈ D(A), we can compute

(γ −A)

(
Dγf

0

)
=

(
IdX 0

−ΦR(γ,A0) Id∂X − ΦDγ

) (
(γ − Am)Dγf

LDγf

)
=

(
IdX 0

−ΦR(γ,A0) Id∂X − ΦDγ

) (
0
f

)
=

(
0

(Id∂X − ΦDγ)f

)
=

(
0
0

)
.

This shows that γ ∈ σp(A).
Conversely, if we assume that γ ∈ σp(A), then there exists 0 6= f ∈ D(Am)

such that (γ −A)
(
f
0

)
= 0. From(

0
0

)
= (γ −A)

(
f
0

)
=

(
IdX 0

−ΦR(γ,A0) Id∂X − ΦDγ

) (
(γ − Am)f

Lf

)
=

(
(γ − Am)f

−ΦR(γ,A0)(γ − Am)f + (Id∂X − ΦDγ)Lf

)
we conclude that f ∈ ker(γ − Am) and thus

0 = −ΦR(γ,A0)(γ − Am)f + (Id∂X − ΦDγ)Lf = (Id∂X − ΦDγ)Lf.

It follows from Lemma 1.3.2 that Lf 6= 0 and hence 1 ∈ σp(ΦDγ). �
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The boundary space ∂X will be much smaller than the state space X in most
cases. So it is easier to determine the spectrum of ΦDγ than to compute the
spectrum of A directly.

For later use, we determine the resolvent of A in terms of the resolvent of A0,
the Dirichlet operator Dγ and the boundary operator Φ.

Lemma 1.3.7. Suppose that there exists γ0 ∈ C such that 1 /∈ σ(ΦDγ0) and
let γ ∈ ρ(A0) ∩ ρ(A). Then

R(γ,A) = R(γ,A0) +Dγ(Id− ΦDγ)
−1ΦR(γ,A0).

Proof. Under our assumption, we see from the Characteristic Equation 1.3.6
that 1 /∈ σ(ΦDγ) and it follows from the proof that γ−A is invertible with inverse

(γ −A)−1 = (γ −A0)
−1(I − BR(γ,A0))

−1.

Using the explicit representation (3) for I − BR(γ,A0) we obtain

(I − BR(γ,A0))
−1 =

(
IdX 0

(Id∂X − ΦDγ)
−1ΦR(γ,A0) (Id∂X − ΦDγ)

−1

)
,

and hence

R(γ,A) =

(
R(γ) Dγ(Id∂X − ΦDγ)

−1

0 0

)
,

where R(γ) = (IdX +Dγ(Id∂X −ΦDγ)
−1Φ)R(γ,A0). Since A is the part of A in

X0 and since (
R(γ) 0

0 0

)
= R(γ,A)|X0 = R(γ,A|X0),

it follows that
R(γ,A) = R(γ).

�

Remark 1.3.8. The problems we investigate in this thesis are formulated
by partial di�erential equations involving nontrivial boundary conditions. These
problems will be rewritten as abstract Cauchy problems of the form (ACP) and
we will apply semigroup theory to prove the existence and uniqueness as well as
the asymptotic stability of the solutions.

All our operators will arise in the abstract form of De�nition 1.3.1. Here, the
maximal operator is a di�erential operator on its natural maximal domain while
the boundary space consists of functions"on the boundary". The domain D(A)
of A incorporates the boundary conditions of the underlying problems.

We will determine the spectra of these operators in detail using the Charac-
teristic Equation 1.3.6.
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1.4. Asymptotic Stability of Positive Semigroups

The main subject of this thesis is to discuss the asymptotic behaviour of
the solutions of the previous problems using the theory of irreducible positive
semigroups. Therefore, we �rst collect some results on this aspect from [Nag86]
and [Sch74].

Let E be a Banach lattice and (B,D(B)) be the generator of a positive
semigroup (S(t))t≥0 on E. The �xed space of the semigroup (S(t))t≥0 is

fix(S(t))t≥0 =
⋂
t≥0

fix(S(t)) = {z ∈ E : S(t)z = z for all t ≥ 0}.

According to [EN00, Cor. IV.3.8 (i)] we have the equality

fix(S(t))t≥0 = kerB. (4)

To study the asymptotic behaviour of the semigroup (S(t))t≥0 the following
compactness property is useful.

Lemma 1.4.1. Let E be an AL-space and let the positive semigroup (S(t))t≥0

be irreducible and bounded. If 0 ∈ σp(B), then {S(t) : t ≥ 0} ⊆ L(E) is relatively
compact for the weak operator topology. In particular, it is mean ergodic, i.e.

lim
r→∞

1

r

∫ r

0

S(s)z ds

exists for all z ∈ E.

Proof. From the assumption 0 ∈ σp(B) and (4) it follows that there exists
0 6= z ∈ fix(S(t))t≥0. By the positivity of the semigroup, the inequality

S(t)n|z| = S(t)n|S(t)z| ≤ S(t)n+1|z| (5)

holds for all n ∈ N and t ≥ 0, see [Sch74, p.58]. Note that semigroup (S(t))t≥0 is
bounded by assumption, therefore (S(t)n|z|)n∈N is norm-bounded. From [Sch74,
Prop.II.8.3] we know that the sequence converges to an element z0 
 0. In this
step we use that E is an AL-space. From

S(t)z0 = S(t) lim
n→∞

S(t)n|z| = lim
n→∞

S(t)n+1|z| = z0

we obtain that z0 ∈ fix(S(t))t≥0. Thus, we can assume without loss of generality
that z 
 0.

Since the semigroup is irreducible, we obtain from [Nag86, Prop.C-III 3-5(a)]
that z is a quasi-interior point of E which means that

Ez :=
⋃
n≥1

[−nz, nz]

is dense in E.
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Take w ∈ [−nz, nz]. Then
−nz = −nS(t)z ≤ S(t)w ≤ nS(t)z = nz

for all t ≥ 0. Since the order interval [−nz, nz] is weakly compact, see [Sch74,
p.92], the orbit {S(t)w : t ≥ 0} is relatively weakly compact. So far we have
shown that the orbit of the elements w from the dense subset Ez of E are rela-
tively weakly compact. Since the semigroup (S(t))t≥0 is bounded, it follows from
[EN00, Lem.V.2.7] that {S(t) : t ≥ 0} ⊆ L(E) is relatively compact for the
weak operator topology. By [EN00, Lem.V.2.7] we obtain that the semigroup
(S(t))t≥0 is mean ergodic. �

Using the mean ergodicity of the semigroup we can decompose E into the
direct sum of kerB and rgB. If the semigroup is irreducible, then kerB is one-
dimensional. If in addition σ(B) ∩ iR = σp(B) ∩ iR = {0}, then the semigroup
converges strongly to one dimensional projection onto kerB. This is a conse-
quence of the Arendt-Batty-Lyubich-Vũ Theorem 1.4.2.

Theorem 1.4.2. Let E be an AL-space and the positive semigroup (S(t))t≥0

be irreducible, and bounded. If

σ(B) ∩ iR = σp(B) ∩ iR = {0},
then E can be decomposed into the direct sum

E = E1 ⊕ E2,

where E1 = fix(S(t))t≥0 = kerB is one-dimensional and spanned by a strictly
positive eigenvector p̃ ∈ kerB of B. In addition, the restriction (S(t)|E2)t≥0 is
strongly stable.

Proof. Since the semigroup (S(t))t≥0 is mean ergodic by Lemma 1.4.1, the
space E can be decomposed into

E = kerB ⊕ rgB =: E1 ⊕ E2,

where kerB = fix(S(t))t≥0 , E1 and E2 are invariant under (S(t))t≥0, see [EN00,
Lem.V.4.4]. There exists z̃ ∈ kerB such that z̃ > 0, confer the proof of Lemma
1.4.1. Moreover, by the same construction as in the proof of [EN00, Lem.V.2.20(i)],
we �nd z′ ∈ E ′ such that z′ > 0 and B′z′ = 0. Hence we obtain that

dim kerB = 1

and that z̃ is strictly positive, i.e. z̃ � 0, see [Nag86, Prop. C-III 3.5].
We now consider the generator (B2, D(B2)) of the restricted semigroup (S2(t))t≥0

where
B2v = Bv, D(B2) = D(B) ∩ E2.

and S2(t) = S(t)|E2 . Since by Lemma 1.4.1 every z ∈ E has a relatively weakly
compact orbit. (S2(t))t≥0 is totally ergodic on X2, i.e., (e−iatS(t))t≥0 is mean
ergodic for all a ∈ R by [ABHN01, Prop. 4.3.12]. This implies that ker(B2−iat)
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separates ker(B′
2−iat) for all a ∈ R, see [EN00, Thm. V.4.5]. By our assumption

ker(B2 − iat) = {0}, thus ker(B′
2 − iat) = {0} for all a ∈ R. Hence, it follows

that σp(B′
2) ∩ iR = ∅. Applying the Arendt-Batty-Lyubich-V�u Theorem, see

[ABHN01, Thm. 5.5.5], we obtain the strong stability of (T2(t))t≥0. �



CHAPTER 2

The Dynamic M/MB/1 Queueing System

2.1. Introduction

The M/MB/1 queueing model describes a single server queue which can at
most serve B ∈ N customers simultaneously. This problem has been studied
in [GZ98] and [Gup02], where the authors showed the well-posedness of the
M/MB/1 queueing model. Here, we give a more detailed analysis of the time-
dependent solution and show the existence of a unique positive steady state so-
lution of this model. Some of our results will appear in [HR07a]

In this model, the server starts service as soon as there is at least one customer
in the queue. If a customer arrives while the server is busy, then the customer joins
the queue. There is assumed to be an in�nite supply of customers. The customers
arrive at random and their arrival obeys a Poisson process with parameter λ,
the so-called arrival rate. The service time is exponentially distributed with
parameter µ, the so-called service rate. The mean service rate is 1

µ
.

For these parameters we assume the following.

General Assumption 2.1.1. The parameters λ and µ ful�ll

0 < λ < µ.

The ratio

ρ :=
λ

µ

is called tra�c rate or tra�c intensity. From the above general assumption it
follows that ρ < 1.

We need two time parameters to describe the above system. The parameter
t ∈ [0,∞) counts the time of the evolution of the whole system, whereas x ∈
[0,∞) counts the elapsed service time. The service time x is reset to 0 whenever
a new service starts.

p0,0(t) gives the probability that the queue is empty and the server is idle at
time t. Moreover, pn,1(x, t)dx, n ∈ N ∪ {0}, gives the probability that at time t
there are n customers in the queue and the elapsed service time lies in (x, x+dx],
B is maximum size of service.

19
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According to [CT83], the M/MB/1 queueing model can be expressed by the
equations

(MQ)



dp0,0(t)

dt
= −λp0,0(t) + µ

∫ ∞

0

p0,1(x, t)dx,

∂p0,1(x, t)

∂t
+
∂p0,1(x, t)

∂x
= −(λ+ µ)p0,1(x, t),

∂pn,1(x, t)

∂t
+
∂pn,1(x, t)

∂x
= −(λ+ µ)pn,1(x, t) + λpn−1,1(x, t), n ≥ 1.

For x = 0 the boundary conditions

(BCMQ)


p0,1(0, t) =

B∑
k=1

µ

∫ ∞

0

pk,1(x, t)dx+ λp0,0(t),

pn,1(0, t) = µ

∫ ∞

0

pn+B,1(x, t)dx, n ≥ 1

are imposed and we consider the usual initial condition

(ICMQ)

{
p0,0(0) = c ∈ [0, 1],

pn(x, 0) = fn(x) for n ≥ 0,

where fn ∈ L1[0,∞). But the most important initial condition at time t = 0 is

(ICMQ,0)

{
p0,0(0) = 1,

pn,1(x, 0) = 0, n ≥ 0,

which means that at time t = 0 the server as well as the queue are empty.

2.2. The Problem as an Abstract Cauchy Problem

We reformulate the underlying problem as an abstract Cauchy problem with
an operator (AMQ, D(AMQ)) on the state space XMQ := C × l1(L[0,∞)). For
p = (p0,0, p0,1(·), p1,1(·), . . .)t ∈ XMQ, the norm of p is de�ned as

‖p‖ := |p0,0|+
∞∑
n=0

‖pn,1(·)‖L1[0,∞).

In the following, ψ denotes the linear functional

ψ : L1[0,∞) → C, f 7→ ψ(f) :=

∫ ∞

0

f(x) dx.

Moreover, the operator D on W 1,1[0,∞) is de�ned as

Df := − d

dx
f − (λ+ µ)f.
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With these operators we build a maximal operator (Am, D(Am)) on X as

AMQ
m :=


−λ µψ 0 0 · · ·
0 D 0 0 · · ·
0 λ D 0 · · ·
0 0 λ D · · ·
...

...
...

...
...

 ,

D(AMQ
m ) := C× l1(W 1,1[0,∞)).

As boundary space we choose

∂XMQ := l1

and de�ne the boundary operators as

LMQ : D(AMQ
m ) → ∂XMQ,


p0,0

p0,1

p1,1
...

 7→ LMQ


p0,0

p0,1

p1,1
...

 :=

p0,1(0)
p1,1(0)

...

 ,

and the operator ΦMQ ∈ L(XMQ, ∂XMQ) is given by operator matrix

ΦMQ =


λ 0

B︷ ︸︸ ︷
µψ µψ · · · µψ 0 0 0 · · ·

0 0 0 0 · · · 0 µψ 0 0 · · ·
0 0 0 0 · · · 0 0 µψ 0 · · ·
...

...
...

...
...

...
...

...
...

...

 .

Then, we obtain the operator (AMQ, D(AMQ)) on XMQ corresponding to the
underlying problem as

AMQp := AMQ
m p,

D(AMQ) := {p ∈ D(AMQ
m ) | LMQp = ΦMQp}.

With these de�nitions the above equations (MQ), (BCMQ), (ICMQ) can be
reformulated as the abstract Cauchy problem

dp(t)

dt
= AMQp(t), t ∈ [0,∞),

p(0) = (c, f1, f2, . . .)
t ∈ XMQ.

(ACPMQ)

So if AMQ is the generator of a strongly continuous semigroup (TMQ(t))t≥0 and
the initial value in (ICMQ) satis�es p(0) = (c, f1, f2, . . .)

t ∈ D(AMQ), then the
unique solution of (BCMQ), (BCMQ) and (ICMQ) is given by

p0,0(t) = (TMQ(t)p(0))1

pn,1(x, t) = (TMQ(t)p(0))n+1(x), n ≥ 0.

For this reason it su�ces to study (ACPMQ).
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2.3. Boundary Spectrum

In this section we use Characteristic Equation 1.3.6 to investigate the bound-
ary spectrum σb(AMQ) of AMQ . We �rst characterise σ(AMQ) by the spectrum
of an in�nite scalar matrix, i.e. an operator on the boundary space ∂XMQ. To do
so we apply techniques and results from [Gre87]. In particular, we need more
information on the resolvent set of the operator (AMQ

0 , D(AMQ
0 )) de�ned by

D(AMQ
0 ) := {p ∈ D(AMQ

m ) | LMQp = 0},
AMQ

0 p := AMQ
m p.

The resolvent set and the resolvent of the operator AMQ
0 is given as the following.

Lemma 2.3.1. Let SMQ := {γ ∈ C | <γ > −µ and γ 6= −λ}. Then SMQ ⊆
ρ(AMQ

0 ) and for γ ∈ SMQ the resolvent of AMQ
0 is given as

R(γ,AMQ
0 ) =


1

γ+λ
µ

γ+λ
ψR(γ,D) 0 0 · · ·

0 R(γ,D) 0 0 · · ·
0 λR2(γ,D) R(γ,D) 0 · · ·
0 λ2R3(γ,D) λR(γ,D) R(γ,D) · · ·
...

...
...

...
...

 ,

where

(R(γ,D)f)(x) = e−(γ+λ+µ)x

∫ x

0

e(γ+λ+µ)sf(s)ds

for f ∈ L1[0,∞).

Proof. We �rst show that for γ ∈ SMQ the operator R(γ,AMQ
0 ) is bounded.

We denote by Cc[0,∞) the space of continuous functions with compact support.
For f ∈ Cc[0,∞) we estimate

‖R(γ,D)f‖L1[0,∞) =

∫ ∞

0

|(R(γ,D)f)(x)| dx

≤
∫ ∞

0

e−(<γ+λ+µ)x

∫ x

0

e(<γ+λ+µ)s|f(s)| ds dx

=

[
− 1

<γ + λ+ µ
e−(<γ+λ+µ)x

∫ x

0

e(<γ+λ+µ)s|f(s)| ds
]∞

0

+

∫ ∞

0

1

<γ + λ+ µ
e−(<γ+λ+µ)xe(<γ+λ+µ)x|f(x)| dx

=
1

<γ + λ+ µ
‖f‖L1[0,∞).

The denseness of Cc[0,∞) in L1[0,∞) and the above estimate implies that

‖R(γ,D)‖ ≤ 1

<γ + λ+ µ
.
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Threfore,

∞∑
k=0

λk‖Rk+1(γ,D)‖ ≤ 1

<γ + λ+ µ

∞∑
k=0

(
λ

<γ + λ+ µ

)k

<∞

if <γ > −µ. This implies that the supremum of the column sums of R(γ,AMQ
0 )

taken in the norm are �nite, and hence R(γ,AMQ
0 ) is a bounded operator on

XMQ.
Clearly, the operator R(γ,AMQ

0 ) is the inverse of γ − AMQ
0 . �

The following consequence will be used for the computation of the boundary
spectrum of AMQ

Corollary 2.3.2. The resolvent set of AMQ
0 contains the imaginary axis,

i.e.,

iR ⊆ ρ(AMQ
0 ).

The following abbreviations are used in the sequel

Γ := γ + λ+ µ

and

Λ := γ + λ.

The eigenfunctions of AMQ
m are determined as follows.

Lemma 2.3.3. For γ ∈ C,<γ > −µ, and γ 6= −λ the following holds.

p = (p0,0, p0,1(·), p0,1(·), p1,1(·), · · · ) ∈ ker(γ − AMQ
m ) (6)

⇔
p0,0 =

µc1
ΓΛ

, (7)

pn,1(x) = e−Γx

n∑
k=0

λk

k!
xkcn+1−k, n ≥ 0, (8)

and (cn)n≥1 ∈ l1.

Proof. We �rst verify that each p given as in (7)-(8) is contained inD(AMQ
m ).

Note that for k ∈ N ∫ ∞

0

e−<Γxxkdx =
k!

(<Γ)k+1
.
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Using this we estimate the norm

‖pn,1‖L1[0,∞) =

∫ ∞

0

|e−Γx

n∑
k=0

λk

k!
xkcn+1−k|dx

≤
n∑
k=0

λk

k!
|cn+1−k|

∫ ∞

0

e−<Γxxkdx

=
n∑
k=0

|cn+1−k|
λk

(<Γ)k+1
.

Since <γ > −µ and the series
∑∞

k=0(
λ
<Γ

)k converges absolutely. Therefore we can
estimate using the Cauchy product

∞∑
n=0

‖pn,1‖L1[0,∞) =
∞∑
n=0

n∑
k=0

|cn+1−k|
λk

(<Γ)k+1

=
1

<Γ
(
∞∑
k=0

(
λ

<Γ
)k)(

∞∑
n=0

|cn+1|)

< ∞.

Hence, the norm ‖p‖D(AMQ
m ) of p is �nite and p ∈ D(AMQ

m ).We can easily compute
that each p as in (7)-(8) satis�es

(γ − AMQ
m )p = 0.

Conversely, we assume that p ∈ ker(γ−AMQ
m ).We get a system of di�erential

equations from (γ − AMQ
m )p = 0. Solving this we immediately get (7)-(8). From

∞∑
n=1

|cn| =
∞∑
n=1

|pn,1(0)| ≤
∞∑
n=1

|pn,1|∞

≤
∞∑
n=1

|pn,1|W 1,1[0,∞) ≤ ‖p‖D(AMQ
m )

< ∞
we obtain that (cn)n≥1 ∈ l1. �

Moreover, since LMQ is surjective, LMQ|ker(γ−AMQ
m ) : ker(γ − AMQ

m ) → ∂XMQ

is invertible for any γ ∈ ρ(AMQ
0 ), see Chapter 1. We denote its inverse by

DMQ
γ := (LMQ|ker(γ−AMQ

m ))
−1 : ∂XMQ −→ ker(γ − AMQ

m ),

and call it Dirichlet operator. We now give the explicit form of DMQ
γ using the

operators εk : C → L1[0,∞), k ∈ N de�ned by

(εk(c))(x) := c
λk

k!
xke−(γ+λ+µ)x, c ∈ C, x ∈ [0,∞).
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Lemma 2.3.4. Let γ ∈ C such that <γ > −µ and γ 6= −λ. Then the operator
DMQ
γ has the form

DMQ
γ =



d1,1 0 0 0 · · ·
ε0 0 0 0 · · ·
ε1 ε0 0 0 · · ·
ε2 ε1 ε0 0 · · ·
ε3 ε2 ε1 ε0 · · ·
...

...
...

...
...

 ,

where

d1,1 :=
µ

(γ + λ)(γ + λ+ µ)
.

We now characterise the spectrum σ(AMQ) and the point spectrum σp(AMQ)
of A with the help of the operators DMQ

γ and ΦMQ. For this purpose we need the
explicit form of ΦMQD

MQ
γ

Remark 2.3.5. Let γ ∈ C such that <γ > −µ and γ 6= −λ. Then

ΦMQD
MQ
γ =


a1,1 a1,2 a1,3 · · · a1,B a1,B+1 0 0 · · ·
µλB+1

ΓB+2
µλB

ΓB+1
µλB−1

ΓB · · · µλ2

Γ3
µλ
Γ2

µ
Γ

0 · · ·
µλB+2

ΓB+3
µλB+1

ΓB+2
µλB

ΓB+1 · · · µλ3

Γ4
µλ2

Γ3
µλ
Γ2

µ
Γ

· · ·
...

...
...

...
...

...
...

...
...

 ,

where

a1,1 : =
µλ

(λ+ µ)Γ
+

B∑
k=1

µλk

Γk+1
,

a1,k : =
µ

Γ

B+1−k∑
i=0

(
λ

Γ
)k, for 2 ≤ k ≤ B + 1.

Using the Characteristic Equation 1.3.6 we investigate the boundary spectrum
of AMQ in more detail.

Lemma 2.3.6. Under the General Assumption 2.1.1, the spectral bound s(AMQ) =
0 is an eigenvalue of AMQ.

Proof. It su�ces to prove that 1 ∈ σp(ΦMQD
MQ
0 ), by the Characteristic

Equation 1.3.6. De�ne p := µ
µ+λ

and q := λ
µ+λ

. First, we can compute ΦMQD
MQ
0 :

l1 −→ l1 as

ΦMQD
MQ
0 =


∑B

k=0 pq
k

∑B−1
k=0 pq

k
∑B−2

k=0 pq
k · · · p+ pq p 0 0 · · ·

pqB+1 pqB pqB−1 · · · pq2 pq p 0 · · ·
pqB+2 pqB+1 pqB · · · pq3 pq2 pq p · · ·

...
...

...
...

...
...

...
...

...

 .
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The equation ΦMQD
MQ
0 c = c is equivalent to the following system of equa-

tions:

c1 = (
B∑
k=0

pqk)c1 + (
B−1∑
k=0

pqk)c2 + (
B−2∑
k=0

pqk)c3 + · · ·+ (p+ pq)cB + pcB+1,

cn = p

n+B∑
k=1

qn+B−kck, n ≥ 2.

This system is again equivalent to

c1 = (
B∑
k=0

pqk)c1 + (
B−1∑
k=0

pqk)c2 + (
B−2∑
k=0

pqk)c3 + · · ·+ (p+ pq)cB + pcB+1,

cB+n+1 =
cn+1 − qcn

1− q
, n ≥ 2. (∗)

We now de�ne the function

f : R → R, x 7→ f(x) := q(B+1)x − q(B+1)x+1 − qx + q.

Clearly, f is continuously di�erentiable and

f ′(x) = (B + 1)(1− q) ln qe(B+1)x ln q − ln qex ln q.

Since the tra�c intensity ρ = λ
µ
< 1, it follows that q = λ

µ+λ
< 1

2
and thus

(B + 1)(1− q) > 1. Hence we can estimate

f ′(0) = (B + 1)(1− q) ln q − ln q < 0.

Therefore, there exists x0 > 0 such that f ′(x) < 0 for all x ∈ (0, x0), hence f is
decreasing on (0, x0). But since f(0) = 0 and lim

x→+∞
f(x) = q > 0, there exists

a > 0 such that f(a) = 0 or qnaf(a) = 0, respectively. Thus, we obtain that

q(B+n+1)a =
q(n+1)a − qqna

1− q
.
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We conclude that for cn := qna, n ≥ 2, the equations (∗) are ful�lled. The �rst
equation of the above system yields

qB+1c1 = (
B−1∑
k=0

pqk)q2a + (
B−2∑
k=0

pqk)q3a + · · ·+ (p+ pq)qBa + pq(B+1)a

= pq2a

B−1∑
k=0

qk + pq3a

B−2∑
k=0

qk + · · ·+ (p+ pq)qBa + pq(B+1)a

= pq2a1− qB

1− q
+ pq3a1− qB−1

1− q
+ · · ·+ pqBa

1− q2

1− q
+ pq(B+1)a

= q2a(1− qB) + q3a(1− qB−1) + · · ·+ qBa(1− q2) + q(B+1)a(1− q)

= q2a(1 + qa + q2a + · · ·+ q(B−1)a)

− q2a+B(1 + qa−1 + q2(a−1) + · · ·+ q(B−1)(a−1))

= q2a

[
1− qBa

1− qa
− qB

1− qB(a−1)

1− q(a−1)

]
= q2a (1− qBa)(1− qa−1)− (qB − qBa)(1− qa)

(1− qa)(1− qa−1)
,

and hence

c1 = q2a−B−1 (1− qBa)(1− qa−1)− (qB − qBa)(1− qa)

(1− qa)(1− qa−1)
.

Obviously, c := (cn)n∈N ∈ l1 and thus c is a �xed point of ΦMQD
MQ
0 . By the

Characteristic Equation 1.3.6 we conclude that 0 ∈ σp(A). �

Indeed, 0 is the only spectral value of A on the imaginary axis as the following
lemma shows.

Lemma 2.3.7. Under the General Assumption 2.1.1, the spectrum σ(AMQ) of
AMQ satis�es

σ(AMQ) ∩ iR = {0}.
Proof. Let γ = ai, a ∈ R \ {0}, and let Γ = γ + λ+ µ.
Recall the explicit representation of ΦMQD

MQ
γ from Remark 2.3.5. For j ≥ 2

we estimate the jth column sum of ΦMQD
MQ
γ as

∞∑
i=1

|(ΦMQD
MQ
γ )ij| ≤

µ

|Γ|

∞∑
k=0

(
λ

|Γ|

)k

=
µ

|Γ|
1

1− λ
|Γ|

=
µ

|Γ| − λ
< 1.

For the �rst column sum we obtain
∞∑
i=1

|(ΦMQD
MQ
γ )i1| ≤

µλ

(λ+ µ)|Γ|
+

µ

|Γ|

∞∑
k=1

(
λ

|Γ|

)k

<
µ

|Γ|

∞∑
k=0

(
λ

|Γ|

)k

=
µ

|Γ| − λ
< 1.
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Hence,

‖ΦMQD
MQ
γ ‖ = sup

j≥1

∞∑
i=1

|(ΦDγ)ij| ≤
µ

|Γ| − λ
< 1,

and thus the spectral radius ful�lls

r(ΦMQD
MQ
γ ) ≤ ‖PhiMQD

MQ
γ ‖ < 1.

Therefore, 1 6∈ σ(ΦMQD
MQ
γ ) which implies by the Characteristic Equation 1.3.6

that γ 6∈ σ(AMQ), i.e.
σ(AMQ) ∩ iR = {0}.

�

2.4. Well-Posedness of the System

In this section we prove the well-posedness of (ACPMQ). For this purpose we
check that AMQ ful�lls conditions in the Phillips theorem, see Theorem 1.2.6.

Lemma 2.4.1. AMQ : D(AMQ) → R(AMQ) ⊂ XMQ is a closed linear operator
and D(AMQ) is dense in XMQ.

Proof. We will prove the assertion in two steps.
Let us �rst prove that (AMQ, D(AMQ) is closed. Suppose that

lim
n→∞

PMQ
n = PMQ

0 ,

lim
n→∞

AMQ(PMQ
n )t = (FMQ)t

for any given

PMQ
n = (p

(n)
0,0 , p

(n)
0,1 (x), p

(n)
1,1 (x), p

(n)
2,1 (x), · · · ) ∈ D(AMQ),

PMQ
0 = (p

(0)
0,0, p

(0)
0,1(x), p

(0)
1,1(x), p

(0)
2,1(x), · · · ) ∈ XMQ,

where FMQ = (f0,0, f0,1(x), f1,1(x), f2,1(x), · · · ) ∈ XMQ.
Namely,

lim
n→∞

p
(n)
0,0 = p

(0)
0,0,

lim
n→∞

∫ ∞

0

|p(n)
j,1 (x)− p

(0)
j,1(x)|dx = 0, (j = 0, 1, 2, · · · ).

It follows from this

lim
n→∞

∫ ∞

0

p
(n)
j,1 (x)dx =

∫ ∞

0

p
(0)
j,1(x)dx, j = 0, 1, 2, · · · .
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Furthermore,

lim
n→∞

AMQ(PMQ
n )t = lim

n→∞



−λp(n)
0,0 + µ

∫∞
0
p

(n)
0,1 (x)dx

−dp
(n)
0,1 (x)

dx
− (λ+ µ)p

(n)
0,1 (x)

−dp
(n)
1,1 (x)

dx
− (λ+ µ)p

(n)
1,1 (x) + λp

(n)
0,1 (x)

−dp
(n)
2,1 (x)

dx
− (λ+ µ)p

(n)
2,1 (x) + λp

(n)
1,1 (x)

−dp
(n)
3,1 (x)

dx
− (λ+ µ)p

(n)
3,1 (x) + λp

(n)
2,1 (x)

...


=


f0,0

f0,1(x)
f1,1(x)
f2,1(x)

...

 .

This is equivalent to the following system of equations:

lim
n→∞

[−λp(n)
0,0 + µ

∫ ∞

0

p
(n)
0,1 (x)dx] = f0,0,

lim
n→∞

[−
dp

(n)
0,1 (x)

dx
− (λ+ µ)p

(n)
0,1 (x)] = f0,1(x),

lim
n→∞

[−
dp

(n)
1,1 (x)

dx
− (λ+ µ)p

(n)
1,1 (x) + λp

(n)
0,1 (x)] = f1,1(x),

lim
n→∞

[−
dp

(n)
2,1 (x)

dx
− (λ+ µ)p

(n)
2,1 (x) + λp

(n)
1,1 (x)] = f2,1(x),

lim
n→∞

[−
dp

(n)
3,1 (x)

dx
− (λ+ µ)p

(n)
3,1 (x) + λp

(n)
2,1 (x)] = f3,1(x),

...

Integrating both sides of the second equation from 0 to β, β > 0, we have

lim
n→∞

∫ β

0

[−
dp

(n)
0,1 (x)

dx
− (λ+ µ)p

(n)
0,1 (x)]dx =

∫ β

0

lim
n→∞

[−
dp

(n)
0,1 (x)

dx
− (λ+ µ)p

(n)
0,1 (x)]dx

=

∫ β

0

f0,1(x)dx.

It yields

lim
n→∞

[−p(n)
0,1 (β)− p

(n)
0,1 (0)− (λ+ µ)

∫ β

0

p
(n)
0,1 (x)dx]dx

= −p(0)
0,1(β) + p

(0)
0,1(0)− (λ+ µ)

∫ β

0

p
(0)
0,1(x)dx

=

∫ β

0

f0,1(x)dx. (9)



30 THE DYNAMIC M/MB/1 QUEUEING SYSTEM

Similarly, integrating both sides of jth equation from 0 to β, β > 0, we have

lim
n→∞

∫ β

0

[−
dp

(n)
j,1 (x)

dx
− (λ+ µ)p

(n)
j,1 (x) + λp

(n)
j−1,1(x)]dx

=

∫ β

0

lim
n→∞

[−
dp

(n)
j,1 (x)

dx
− (λ+ µ)p

(n)
j,1 (x) + λp

(n)
j−1,1(x)]dx

=

∫ β

0

fj,1(x)dx.

It yields

lim
n→∞

[−p(n)
j,1 (β)− p

(n)
j,1 (0)− (λ+ µ)

∫ β

0

p
(n)
j,1 (x)dx]dx+ λ

∫ β

0

p
(n)
j−1,1(x)

= −p(0)
j,1(β)− p

(0)
j,1(0)− (λ+ µ)

∫ β

0

p
(0)
0,1(x)dx+

∫ β

0

p
(0)
j−1,1(x)

=

∫ β

0

fj,1(x)dx, j = 1, 2, 3, · · · . (10)

Since
∫∞

0
|p(0)
j,1(x)|dx < ∞ and

∫∞
0
|fj(x)|dx < ∞ for j = 1, 2, 3, · · · . It follows

from (9) and (10) that p(0)
i,1 (β) is absolutely continuous for i = 0, 1, 2, 3, · · · and

p
′(0)
0,1 (β) = −(λ+ µ)p

(0)
0,1(β)− f0,1(β) ∈ L1[0,∞),

p
′(0)
j,1 (β) = −(λ+ µ)p

(0)
j,1(β) + λp

(0)
j−1,1(β)− fj,1(β) ∈ L1[0,∞), j = 1, 2, 3, · · · .

From the form of LMQ,ΦMQ and lim
n→∞

PMQ
n = PMQ

0 we show that

LMQ(PMQ
0 )t = ΦMQ(PMQ

0 )t.

Therefore, PMQ
0 ∈ D(AMQ) and

lim
n→∞

p
′(n)
0,1 (β) = −(λ+ µ) lim

n→∞
p

(n)
0,1 (β)− f0,1(β)

= p
′(0)
0,1 (β),

lim
n→∞

p
′(n)
j,1 (β) = −(λ+ µ) lim

n→∞
p

(0)
j,1(β) + λ lim

n→∞
p

(n)
j−1,1(β)− fj,1(β)

= p
′(0)
j,1 (β), j = 1, 2, 3, · · · .
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From the above deduction we have

−λp(0)
0,0 + µ

∫ ∞

0

p
(0)
0,1(x)dx = f0,0

−
dp

(0)
0,1(x)

dx
− (λ+ µ)p

(0)
0,1(x) = f0,1(x),

−
dp

(0)
1,1(x)

dx
− (λ+ µ)p

(0)
1,1(x) + λp

(0)
0,1(x) = f1,1(x),

−
dp

(0)
2,1(x)

dx
− (λ+ µ)p

(0)
2,1(x) + λp

(0)
1,1(x)] = f2,1(x),

−
dp

(0)
3,1(x)

dx
− (λ+ µ)p

(0)
3,1(x) + λp

(0)
2,1(x)] = f3,1(x),

...

This shows that AMQ(PMQ
0 )t = (FMQ)t, hence (AMQ, D(AMQ)) is closed operator.

We now prove that D(AMQ) is dense in XMQ.
By the de�nition of the norm in XMQ, it is easy to see that

|p0,0|+
∞∑
n=0

||pn,1||L[0,∞) <∞

for any p ∈ XMQ. Therefore, for any ε > 0 there exists a positive integer N such
that

∑∞
n=N ||pn,1||L[0,∞) < ε. We de�ne

EMQ =

(p0,0, p0,1(x), p1,1(x), · · · , pN,1(x), 0, 0, · · · )

∣∣∣∣∣∣∣
pi,1 ∈ L[0,∞), i = 0, 1,

2, · · · , N,N is a �nite
positive integer


It is obvious that EMQ is dense in XMQ.

Let

GMQ =

(p0,0, p0,1(x), p1,1(x), · · · , pq,1(x), 0, 0, · · · )

∣∣∣∣∣∣∣∣∣
pi,1 ∈ C∞

0 [0,∞), there exists
a number ci > 0, such that

pi,1(x) = 0 for x ∈ [0, ci],

i = 0, 1, 2, · · · , q.

 .

Then from [Ada75] we know that GMQ is dense in EMQ.
From above discussion we know that, in order to prove denseness of D(AMQ)

is dense in XMQ, it is su�cient to prove that D(AMQ) is dense in GMQ.
Take any p ∈ GMQ, there exists a �nite number q > 0 and ci > 0, i =

1, 2, · · · , q, such that

p(x) = (p0,0, p0,1(x), p1,1(x), · · · , pq,1(x), 0, 0 · · · ),
pi,1(x) = 0 for x ∈ [0, ci], i = 0, 1, 2, · · · , q.
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This leads to pi,1(x) = 0 for x ∈ [0, 2s], where 0 < 2s < min{c0, c1, c2, · · · , cq}.
Without loss of generality, we may assume that q is large enough so that

l = q −B is positive. Set

f s(0) = (p0,0, f
s
0,1(0), f s1,1(0), f

s
2,1(0), · · · , f sl,1(0), · · · , f sl+B,1(0), 0, 0, · · · )

= (p0,0, µ
B∑
k=1

∫ ∞

2s

pk,1(x)dx+ λp0,0, µ

∫ ∞

2s

pB+1,1(x)dx,

µ

∫ ∞

2s

pB+2,1(x)dx, · · · , µ
∫ ∞

2s

pB+l,1(x)dx, 0, 0, · · · ),

f s(x) = (p0,0, f
s
0,1(x), f

s
1,1(x), · · · , f sl,1(x), · · · , f sl+B,1(x), 0, 0, · · · )

where

f si,1(x) =


f si,1(0)(1− x

s
)2, x ∈ [0, s]

−ci(x− s)2(x− 2s)2, x ∈ [s, 2s]

pi,1(x), x ∈ [2s,∞)

ci =
f si,1(0)

∫ s

0
(1− x

s
)2dx∫ 2s

s
(x− s)2(x− 2s)2dx

, i = 0, 1, 2, · · · , l,

f sj,1(x) = pj,1(x), j = l + 1, l + 2, · · · , l +B.

It is easy to verify that f s(x) ∈ D(AMQ) and

||p− f s||B =
l∑

n=0

∫ ∞

0

|f 1
n,1(x)− pn,1(x)|dx

=
l∑

n=0

∫ 2s

s

|ci|(x− s)2(x− 2s)2dx

+
l∑

n=0

∫ s

0

|f sn,1(0)|(1−
x

s
)2dx

=
l∑

n=0

|ci|
s5

30
+

l∑
n=0

|f sn,1(0)|
s

3
→ 0 as s→ 0.

This shows that D(AMQ) is dense in GMQ. Therefore D(AMQ) is dense in XMQ.
�

We will show the dispersivity of the operator AMQ using the same proof as in
[GLZ01].

Lemma 2.4.2. The operator AMQ is dispersive .
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Proof. For p(x) = (p0,0, p0,1(x), p1,1(x), p2,1(x), · · · ) ∈ D(AMQ), we de�ne
q(x) = (q0,0, q0,1(x), q1,1(x), q2,1(x), · · · ) ∈ X ′

MQ = R× l∞(L∞[0,∞)) by

q0,0 =

{
1 if p0,0 > 0,

0 if p0,0 ≤ 0.

qn,1 =

{
1 if pn,1(x) > 0,

0 if pn,1(x) ≤ 0,
n = 1, 2, 3, · · · .

Namely,

q0,0 =


p+

0,0

p0,0

if p0,0 > 0,

0 if p0,0 ≤ 0.

qn,1 =


p+
n,1

pn,1
if pn,1(x) > 0,

0 if pn,1(x) ≤ 0,

n = 1, 2, 3, · · · .

Note that ‖q‖ ≤ 1 and 〈p, q〉 = ‖p+‖. We need the following equalities in order
to estimate 〈AMQp, q〉 for p ∈ D(AMQ) :

∞∑
n=0

[pn,1(0)]+ = [p0,1(0)]
+ +

∞∑
n=1

[pn,1(0)]
+

≤ λ[p0,0]
+ + µ

B∑
k=1

∫ ∞

0

[pk,1(x)]
+dx

+ µ
∞∑
n=1

∫ ∞

0

[pn+B(x)]+dx

= µ
∞∑
n=1

∫ ∞

0

[pn,1(x)]
+dx+ λ[p0,0]

+. (11)

If we set Vn = {x ∈ [0,∞)|pn(x) > 0} and Wn = {x ∈ [0,∞)|pn(x) ≤ 0} for
n ≥ 1, then by a short argument, from the absolute continuity of pn(x) it follows
that∫ ∞

0

dpn,1(x)

dx
qn,1(x) dx =

∫
Vn

dpn,1(x)

dx

[pn,1(x)]
+

pn(x)
dx+

∫
Wn

dpn,1(x)

dx

[pn,1(x)]
+

pn,1(x)
dx

=

∫
Vn

dpn,1(x)

dx

[pn,1(x)]
+

pn(x)
dx

=

∫
Vn

dpn,1(x)

dx
dx

=

∫ ∞

0

d[pn,1(x)]
+

dx
dx
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= [pn,1(x)]
+|∞0

= −[pn,1(0)]
+, n ≥ 0. (12)

By (11) and (12), for p ∈ D(A), we have

〈AMQp, q〉 = (−λp0,0 + µ

∫ ∞

0

p0,1(x) dx)q0,0

+

∫ ∞

0

(−dp0,1(x)

dx
− (λ+ µ)p0,1(x))q0,1(x) dx

+
∞∑
n=1

∫ ∞

0

(−dpn,1(x)
dx

− (λ+ µ)pn,1(x) + λpn−1,1(x))qn,1(x) dx

= −λ[p0,0]
+ + µq0,0

∫ ∞

0

p0,1(x) dx

−
∫ ∞

0

dp0,1(x)

dx
q0,1(x) dx− (λ+ µ)

∫ ∞

0

[p0,1(x)]
+ dx

+
∞∑
n=1

[−
∫ ∞

0

dpn,1(x)

dx
qn,1(x)dx− (λ+ µ)

∫ ∞

0

[pn,1(x)]
+ dx]

+ λ
∞∑
n=1

∫ ∞

0

pn−1,1(x)qn,1(x) dx

= −λ[p0,0]
+ + µq0,0

∫ ∞

0

p0,1(x) dx

+ [p0,1]
+ − (λ+ µ)

∫ ∞

0

[p0,1(x)]
+ dx

+
∞∑
n=1

[pn,1(0)]+ − (λ+ µ)

∫ ∞

0

[pn,1(x)]
+ dx]

+ λ

∞∑
n=1

∫ ∞

0

pn−1,1(x)qn,1(x) dx

= −λ[p0,0]
+ + µq0,0

∫ ∞

0

p0,1(x)dx+
∞∑
n=0

[pn,1(0)]
+

−
∞∑
n=0

(λ+ µ)

∫ ∞

0

[pn,1(x)]
+ dx] + λ

∞∑
n=1

∫ ∞

0

pn−1,1(x)qn,1(x) dx

≤ −λ[p0,0]
+ + µq0,0

∫ ∞

0

p0,1(x) dx

+ µ
∞∑
n=1

∫ ∞

0

[pn,1(x)]
+ dx+ λ[p0,0]

+
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− (λ+ µ)
∞∑
n=0

∫ ∞

0

[pn,1(x)]
+ dx

+ λ

∞∑
n=1

∫ ∞

0

pn−1,1(x)qn,1(x) dx

= µq0,0

∫ ∞

0

p0,1(x)dx− λ

∞∑
n=0

∫ ∞

0

[pn,1(x)]
+ dx

− µ

∫ ∞

0

[p0,1(x)]
+dx+ λ

∞∑
n=1

∫ ∞

0

pn−1,1(x)qn,1(x) dx

≤ µq0,0

∫ ∞

0

p0,1(x)dx− λ

∞∑
n=0

∫ ∞

0

[pn,1(x)]
+ dx

− µ

∫ ∞

0

[p0,1(x)]
+dx+ λ

∞∑
n=1

∫ ∞

0

[pn−1,1(x)]
+ dx

≤ µq0,0

∫ ∞

0

p0,1(x)dx− µ

∫ ∞

0

[p0,1(x)]
+ dx

= µ(q0,0 − 1)

∫ ∞

0

[p0,1(x)]
+ dx ≤ 0. (13)

In the inequality (13) we used∫ ∞

0

pn−1,1(x)qn,1(x)dx ≤
∫ ∞

0

[pn−1,1(x)]
+qn,1(x)dx

≤
∫ ∞

0

[pn−1,1(x)]
+dx, n ≥ 2

and ∫ ∞

0

p0,1(x)dx ≤
∫ ∞

0

[p0,1(x)]
+dx.

From the inequality (13) together with De�nition 1.2.5 we obtain that AMQ is
dispersive. �

We also obtain the surjectivity of γ − AMQ for γ > 0.

Lemma 2.4.3. For 0 < γ ∈ R, we have γ ∈ ρ(AMQ).

Proof. Let 0 < γ ∈ R. For j ≥ 2, we can estimate the jth column sum of
ΦDγ as

∞∑
i=1

(ΦMQD
MQ
γ )ij =

µ

Γ

∞∑
k=0

(
λ

Γ

)k

=
µ

Γ

1

1− λ
Γ

=
µ

Γ− λ
< 1
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and the �rst column sum as

∞∑
i=1

(ΦMQD
MQ
γ )i1 =

µλ

(λ+ µ)Γ
+
µ

Γ

∞∑
k=1

(
λ

Γ

)k

<
µ

Γ

∞∑
k=0

(
λ

Γ

)k

=
µ

Γ− λ
< 1.

Since the column sums are all equal from the (B+1)st column on, it follows that

‖ΦMQD
MQ
γ ‖ = sup

1≤j

∞∑
i=1

(ΦMQD
MQ
γ )ij = max

1≤j≤B+1

∞∑
i=1

(ΦMQD
MQ
γ )ij < 1

and therefore

r(ΦMQD
MQ
γ ) ≤ ‖ΦMQD

MQ
γ ‖ < 1.

Using the Characteristic Equation 1.3.6 we conclude that γ ∈ ρ(AMQ) for γ >
0. �

Combining Lemma 2.4.2 and Lemma 2.4.3 with Theorem 1.2.6 we get the
following result.

Theorem 2.4.4. The operator (AMQ, D(AMQ) is the generator of a positive
strongly continuous contraction semigroup on XMQ.

From Proposition 1.2.4 and Theorem 2.4.4 we deduce the following result.

Theorem 2.4.5. The system (BCMQ), (BCMQ) and (ICMQ,0) has a unique
positive solution p(x, t) which satis�es

‖p(·, t)‖ = 1, ∀t ∈ [0,∞).

Proof. We know from Proposition 1.2.4 and Theorem 2.4.4 that the associ-
ated abstract Cauchy problem (ACPMQ) has a unique positive time-dependent
solution p(x.t) which can be expressed as

p(x, t) = TMQ(t)p(0) = TMQ(t)(1, 0, 0, 0, · · · ). (14)
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Let P (t) = p(x, t) = (p0,0(t), p0,1(x, t), p1,1(x, t), p2,1(x, t), p3,1(x, t), · · · ), then P (t)
satis�es the system of equations:

dp0,0(t)

dt
= −λp0,0(t) + µ

∫ ∞

0

p0,1(x, t)dx, (15)

∂p0,1(x, t)

∂x
= −∂p0,1(x, t)

∂t
− (λ+ µ)p0,1(x, t), (16)

∂pn,1(x, t)

∂x
= −∂pn,1(x, t)

∂t
− (λ+ µ)pn,1(x, t) + λpn−1,1(x, t), n ≥ 1, (17)

p0,1(0, t) =
B∑
k=1

µ

∫ ∞

0

pk,1(x, t)dx+ λp0,0(t), (18)

pn,1(0, t) = µ

∫ ∞

0

pn+B,1(x, t)dx, n ≥ 1, (19)

P (0) = (1, 0, 0, 0, 0, · · · ). (20)

Integrating the left sides of (16) and (17), we have∫ ∞

0

∂pn,1(x, t)

∂x
dx = pn,1(∞, t)− pn,1(0, t)

= −pn,1(0, t), n = 0, 1, 2, 3, · · · . (21)

Using (15)�(21) we compute

d‖P (t)‖
dt

=
dp0,0(t)

dt
+

∞∑
n=0

∫ ∞

0

∂pn,1(x, t)

∂t
dx

= −λp0,0(t) + µ

∫ ∞

0

p0,1(x, t)dx

−
∫ ∞

0

∂p0,1(x, t)

∂x
− (λ+ µ)

∫ ∞

0

p0,1(x, t)dx

+
∞∑
n=1

∫ ∞

0

[−∂pn,1(x, t)
∂x

− (λ+ µ)

∫ ∞

0

pn,1(x, t)dx

+ λ

∫ ∞

0

pn−1,1(x, t)dx]

= −λp0,0(t) + µ

∫ ∞

0

p0,1(x, t)dx

+ p0,1(0, t)− (λ+ µ)

∫ ∞

0

p0,1(x, t)dx

∞∑
n=1

pn,1(0, t)− (λ+ µ)
∞∑
n=1

∫ ∞

0

pn,1(x, t)dx
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+ λ
∞∑
n=1

∫ ∞

0

pn−1,1(x, t)dx

= −λp0,0(t) +
∞∑
n=0

pn,1(0, t)− µ
∞∑
n=1

∫ ∞

0

pn,1(x, t)dx

=
∞∑
n=0

pn,1(0, t)− [λp0,0(t) + µ

∞∑
n=1

∫ ∞

0

pn,1(x, t)dx]

=
∞∑
n=0

pn,1(0, t)− [λp0,0(t) + µ

B∑
n=1

∫ ∞

0

pn,1(x, t)dx

+ µ
∞∑

n=B+1

∫ ∞

0

pn,1(x, t)dx]

=
∞∑
n=0

pn,1(0, t)−
∞∑
n=0

pn,1(0, t) = 0. (22)

By (14) and (22) we obtain

d‖P (t)‖
dt

=
d‖TMQ(t)P (0)‖

dt
= 0.

Therefore,
‖TMQ(t)P (0)‖ = ‖P (t)‖ = ‖P (0)‖ = 1.

This shows ‖p(·, t)‖ = 1,∀t ∈ [0,∞). �

2.5. Asymptotic Stability of the Solution

In this section we use the results on positive semigroups collected in Section1.1
to investigate the asymptotic stability of the solution of the system.

First we show the irreducibility of the semigroup via the representation of the
resolvent of AMQ from Lemma 1.3.7 in terms of the resolvent of AMQ

0 and the
operator ΦMQ and DMQ

γ .

Lemma 2.5.1. The semigroup (TMQ(t))t≥0 generated by (AMQ, D(AMQ)) is
irreducible.

Proof. It su�ces to show that there exists γ > 0 such that 0 � p ∈ XMQ

implies R(γ,AMQ)p � 0, see Proposition 1.1.12. By Lemma 1.3.7 we have to
prove that there exists γ > 0 such that 0 � p ∈ XMQ implies

R(γ,AMQ
0 )p+ (Id∂XMQ

− ΦMQD
MQ
γ )−1ΦMQR(γ,AMQ

0 )p� 0.

Suppose that γ > 0 and 0 � p ∈ XMQ. Then also R(γ,AMQ
0 )p 
 0 and

ΦMQR(γ,AMQ
0 )p 
 0. Since it follows from the proof of Lemma 2.4.3 that
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‖ΦMQD
MQ
γ ‖ < 1 for any γ > 0, the inverse of Id∂XMQ

− ΦMQD
MQ
γ is given

by the Neumann series

(Id∂XMQ
− ΦMQD

MQ
γ )−1 =

∞∑
n=0

(ΦMQD
MQ
γ )n.

We know from the form of ΦMQD
MQ
γ that for every i ∈ N, there exists k ∈ N

such that the real number ((ΦMQD
MQ
γ )kΦMQR(γ,AMQ

0 )p)i > 0, i.e.

(Id∂XMQ
− ΦMQD

MQ
γ )−1ΦMQR(γ,AMQ

0 )p� 0

and by the form of DMQ
γ we have

DMQ
γ (Id∂XMQ

− ΦMQD
MQ
γ )−1ΦMQR(γ,AMQ

0 )p� 0.

This implies
R(γ,AMQ)p� 0.

Therefore the semigroup (TMQ(t))t≥0 is irreducible. �

We now prove our main result on the asymptotic behaviour of the solution of
the queueing system. Combining Lemma 2.5.1 with the results from Section 1.4
we obtain the strong convergence of the semigroup to a one-dimensional equilib-
rium.

Theorem 2.5.2. The space XMQ can be decomposed into the direct sum

XMQ = X1
MQ ⊕X2

MQ,

where X1
MQ = fix(TMQ(t))t≥0 = kerAMQ is one-dimensional and spanned by a

strictly positive eigenvector p̃ ∈ kerAMQ of AMQ and (TMQ(t)|X2
MQ

)t≥0 is strongly

stable.

Proof. By Theorem2.4.4, Lemma 2.3.7 and Lemma 2.5.1 we know that the
assumptions of Theorem 1.4.2 are ful�lled, hence the assertion follows. �

We reformulate the above theorem as our �nal result.

Corollary 2.5.3. There exists p′ ∈ X ′
MQ, p

′ � 0, such that for all p ∈ XMQ

lim
t→∞

TMQ(t)p = 〈p′, p〉p̃,

where kerAMQ = 〈p̃〉, p̃� 0.

By Corollary 2.5.3 we obtain asymptotic stability of the solution of the M/MB/1
queueing model.

Corollary 2.5.4. The time-dependent solution of the system (MQ), (BCMQ)
and (ICMQ,0) converges strongly to the steady-state solution as time tends to in-
�nite, that is, limt→∞ p(·, t) = αp̃, where α > 0 and p̃ as in Lemma 2.5.3.





CHAPTER 3

The System with Primary and Secondary Failures

3.1. Introduction

As science and technology develop, electronic productions and networks are
used everywhere. So, the stability analysis of such systems becomes more and
more important.

In this section, we consider the model of a repairable system with primary as
well as secondary failures. In the system there are three independent identical
units. In system one of those units operates, the extra units act as warm standby.
If the operating unit fails, a warm standby unit is instantaneously switched into
operation. The operating unit submits three kind of failures, failures that unit
itself cause as it operates, common cause failures such as �re, earthquake, �ood,
explosion, etc. and human error failures. There is one repairman available to
repair these units. Once repaired, these units are as good as new. The repair
times are arbitrarily distributed.

According to [Gup95], the model for the system with primary and secondary
failures can be expressed by a system of integro-di�erential equations

(R)



dp0(t)

dt
= −(λ+ 2α+ λc0 + λh0)p0(t) + µp1(t) +

5∑
i=3

∫ ∞

0

µi(x)pi(x, t)dx,

dp1(t)

dt
= (λ+ 2α)p0(t)− (µ+ λ+ α+ λc1 + λh1)p1(t) + µp2(t),

dp2(t)

dt
= (λ+ α)p1(t)− (µ+ λ+ λc2 + λh2)p2(t),

∂pi(x, t)

∂t
+
∂pi(x, t)

∂x
= −µi(x)pi(x, t), i = 3, 4, 5.

For x = 0 the boundary conditions

(BCR)



p3(0, t) = λp2(t), t > 0,

p4(0, t) =
2∑
i=0

λcipi(t), t > 0,

p5(0, t) =
2∑
i=0

λhi
pi(t), t > 0,

41
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are prescribed, and we consider the usual initial condition

(ICR)

{
p0(0) = c ∈ C,
pi(0) = bi, i = 1, 2; pj(x, 0) = fj(x), j = 3, 4, 5,

where fj(x) ∈ L1[0,∞). The most interesting initial condition

(ICR,0)

{
p0(0) = 1,

pi(0) = 0, i = 1, 2; pj(x, 0) = 0, j = 3, 4, 5.

Here (x, t) ∈ [0,∞) × [0,∞); pi(t) represents the probability that the system is
in state i at time t, i = 0, 1, 2; pj(x, t) represents the probability that at time t
the failed system is in state j and has an elapsed repair time of x, j = 3, 4, 5; λ
represents failure rate of an operating unit; λci represents common-cause failure
rates from state i to state 4, i = 0, 1, 2; λhi

represents human-error rates from
state i to state 5, i = 0, 1, 2; α represents failure rate of standby unit; µ represents
constant repair rate if the system is operating; µj(x) represents time-dependent
system repair-rate when the failed system is in state j and has an elapsed re-
pair time of x for j = 3, 4, 5 which satis�es µj(x) ≥ 0(j = 3, 4, 5); λci(i =
0, 1, 2), λhi

(i = 0, 1, 2), λ, µ and α are positive constants.
We require the following for the failure rate µj(x).

General Assumption 3.1.1. The function µj : R+ → R+ is measurable and
bounded such that lim

x→∞
µj(x) exists and

µ(j)
∞ := lim

x→∞
µj(x) > 0, j = 3, 4, 5, µ∞ := min(µ(3)

∞ , µ(4)
∞ , µ(5)

∞ )

In [Gup95] the author established the model and studied the time-dependent
availability of the system by using Laplace transform and discovered that the
time-dependent availability decreases as time increases for exponential repair-
time distribution.He used the steady -state solution and the time-dependent so-
lution for calculating the system availability. But he did not discuss the well-
posedness of the model and its asymptotic behavior. Investigation of the time-
dependent solution of the model and its asymptotic behavior is important from
the point of view of theory and applications. Therefore, in this chapter we discuss
the well-posedness of the model and prove the asymptotic stability of the time-
dependent solution of this system using spectral theory and semigroup methods.

3.2. The Problem as an Abstract Cauchy Problem

In this section we rewrite the underlying problem as an abstract Cauchy
problem on a suitable space XR, see [EN00, Def. II.6.1]. As the state space for
our problem we choose

XR := C3 × (L1[0,∞))3.
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It is obvious that XR is a Banach space endowed with the norm

‖p‖ :=
2∑
i=0

|pi|+
5∑

n=3

‖pn‖L1[0,∞),

where p = (p0, p1, p2, p3(x), p4(x), p5(x))
t ∈ X.

For simplicity, let

a0 : = λ+ 2α+ λc0 + λh0 ,

a1 : = µ+ λ+ α+ λc1 + λh1 ,

a2 : = µ+ λ+ λc2 + λh2 ,

and we denote by ψj the linear functionals

ψj : L1[0,∞) → C, f 7→ ψj(f) :=

∫ ∞

0

µj(x)f(x) dx, j = 3, 4, 5.

Moreover, we de�ne the operators Dj on W 1,1[0,∞) as

Djf := − d

dx
f − µjf, f ∈ W 1,1[0,∞), j = 3, 4, 5,

respectively. To de�ne the appropriate operator (AR, D(AR)) we introduce a
�maximal operator� (ARm, D(ARm)) on XR given as

ARm :=


−a0 µ 0 ψ3 ψ4 ψ5

λ+ 2α −a1 µ 0 0 0
0 λ+ α −a2 0 0 0
0 0 0 D3 0 0
0 0 0 0 D4 0
0 0 0 0 0 D5

 ,

D(ARm) := C3 × (W 1,1[0,∞))3.

To model the boundary conditions (BCR) we use an abstract approach as in
e.g. [CENN03]. For this purpose we consider the �boundary space�

∂XR := C3,

and then de�ne �boundary operators� LR and ΦR. As the operator LR we take

LR : D(ARm) → ∂XR,


p0

p1

p2

p3(x)
p4(x)
p5(x)

 7→ LR


p0

p1

p2

p3(x)
p4(x)
p5(x)

 :=

p3(0)
p4(0)
p5(0)


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and the operator ΦR ∈ L(XR, ∂XR) is given by the matrix

ΦR :=

 0 0 λ 0 0 0
λc0 λc1 λc2 0 0 0
λh0 λh1 λh2 0 0 0

 .

The operator (AR, D(AR)) on XR is then de�ned as

ARp := ARmp, D(AR) := {p ∈ D(ARm) | LRp = ΦRp}.

With these de�nitions the above equations (R), (BCR) and (ICR) are equiv-
alent to the abstract Cauchy problem

dp(t)

dt
= ARp(t), t ∈ [0,∞),

p(0) = (c, b1, b2, f1, f2, f3)
t ∈ XR.

(ACPR)

If AR is the generator of a strongly continuous semigroup (TR(t))t≥0 and the
initial value in (ICR) satis�es p(0) = (c, b1, b2, f1, f2, f3)

t ∈ D(AR), then the
unique solution of (R), (BCR) and (ICR) is given by

pi(t) = (TR(t)p(0))i+1, 0 ≤ i ≤ 2,

pn(x, t) = (TR(t)p(0))n+1(x), 3 ≤ n ≤ 5.

For this reason it su�ces to study (ACPR).

3.3. Boundary Spectrum

In this section we use the Characteristic Equation 1.3.6 to discuss the bound-
ary spectrum σb(AR) of AR. For this purpose, we �rst de�ne the operator
(AR0 , D(AR0 )) as

D(AR0 ) := {p ∈ D(ARm) | LRp = 0},
AR0 p := ARmp.

We give the the representation of the resolvent of the operator AR0 needed below
to prove the irreducibility of the semigroup generated by the operator AR.

Lemma 3.3.1. Let

A : =

 −a0 µ 0
λ+ 2α −a1 µ

0 λ+ α −a2

 (23)

and set SR := {γ ∈ C | <γ > −µ∞} \ σ(A). Then we have

SR j ρ(AR0 ).
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Moreover, if γ ∈ SR, then

R(γ,AR0 ) =


r1,1 r1,2 r1,3 r1,4 r1,5 r1,6
r2,1 r2,2 r2,3 r2,4 r2,5 r2,6
r3,1 r3,2 r3,3 r3,4 r3,5 r3,6
0 0 0 r4,4 0 0
0 0 0 0 r5,5 0
0 0 0 0 0 r6,6

 , (24)

where

r1,1 = (γ+a1)(γ+a2)−µ(λ+α)
(γ+a0)(γ+a1)(γ+a2)−µ(λ+α)(γ+a0)−µ(λ+2α)(γ+a2)

,

r1,2 = µ(γ+a2)
(γ+a0)(γ+a1)(γ+a2)−µ(λ+α)(γ+a0)−µ(λ+2α)(γ+a2)

,

r1,3 = µ2

(γ+a0)(γ+a1)(γ+a2)−µ(λ+α)(γ+a0)−µ(λ+2α)(γ+a2)
,

r1,4 = [(γ+a1)(γ+a2)−µ(λ+α)]ψ3R(γ,D3)
(γ+a0)(γ+a1)(γ+a2)−µ(λ+α)(γ+a0)−µ(λ+2α)(γ+a2)

,

r1,5 = µ(γ+a2)ψ4R(γ,D4)
(γ+a0)(γ+a1)(γ+a2)−µ(λ+α)(γ+a0)−µ(λ+2α)(γ+a2)

,

r1,6 = µ2ψ5R(γ,D5)
(γ+a0)(γ+a1)(γ+a2)−µ(λ+α)(γ+a0)−µ(λ+2α)(γ+a2)

,

r2,1 = (λ+2α)(γ+a2)
(γ+a0)(γ+a1)(γ+a2)−µ(λ+α)(γ+a0)−µ(λ+2α)(γ+a2)

,

r2,2 = (γ+a0)(γ+a2)
(γ+a0)(γ+a1)(γ+a2)−µ(λ+α)(γ+a0)−µ(λ+2α)(γ+a2)

,

r2,3 = µ(γ+a0)
(γ+a0)(γ+a1)(γ+a2)−µ(λ+α)(γ+a0)−µ(λ+2α)(γ+a2)

,

r2,4 = (λ+2α)(γ+a2)ψ3R(γ,D3)
(γ+a0)(γ+a1)(γ+a2)−µ(λ+α)(γ+a0)−µ(λ+2α)(γ+a2)

,

r2,5 = (λ+a0)(γ+a2)ψ4R(γ,D4)
(γ+a0)(γ+a1)(γ+a2)−µ(λ+α)(γ+a0)−µ(λ+2α)(γ+a2)

,

r2,6 = µ(γ+a0)ψ5R(γ,D5)
(γ+a0)(γ+a1)(γ+a2)−µ(λ+α)(γ+a0)−µ(λ+2α)(γ+a2)

,

r3,1 = (λ+2α)(λ+α)
(γ+a0)(γ+a1)(γ+a2)−µ(λ+α)(γ+a0)−µ(λ+2α)(γ+a2)

,

r3,2 = (γ+a0)(λ+α)
(γ+a0)(γ+a1)(γ+a2)−µ(λ+α)(γ+a0)−µ(λ+2α)(γ+a2)

,

r3,3 = (γ+a0)(γ+a1)−µ(λ+2α)
(γ+a0)(γ+a1)(γ+a2)−µ(λ+α)(γ+a0)−µ(λ+2α)(γ+a2)

,

r3,4 = (λ+2α)(λ+α)ψ3R(γ,D3)
(γ+a0)(γ+a1)(γ+a2)−µ(λ+α)(γ+a0)−µ(λ+2α)(γ+a2)

,

r3,5 = (λ+a0)(λ+α)ψ4R(γ,D4)
(γ+a0)(γ+a1)(γ+a2)−µ(λ+α)(γ+a0)−µ(λ+2α)(γ+a2)

,

r3,6 = [(λ+a0)(λ+a1)−µ(λ+2α)]ψ5R(γ,D5)
(γ+a0)(γ+a1)(γ+a2)−µ(λ+α)(γ+a0)−µ(λ+2α)(γ+a2)

,

r4,4 = R(γ,D3),

r5,5 = R(γ,D4),

r6,6 = R(γ,D3).
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The resolvent operators of the di�erential operators Dj(j = 3, 4, 5) is given by

(R(γ,Dj)p)(x) = e−γx−
R x
0 µj(ξ)dξ

∫ x

0

eγx+
R x
0 µj(ξ)dξp(s) ds

for p ∈ L1[0,∞).

Proof. A combination of [Gre84, Prop. 2.1] and [Nag89, Thm. 2.4] yields
that the resolvent set of AR0 satis�es

ρ(AR0 ) ⊇ SR.

For γ ∈ SR we can compute the resolvent of AR0 explicitly applying the formula
for the inverse of operator matrices, see [Nag89, Thm. 2.4]. This leads to the
representation (24) of the resolvent of AR0 .

Clearly, knowing the operator matrix in (24),we can directly compute that it
represents the resolvent of AR0 . �

The following consequence is useful to compute the boundary spectrum of
AR.

Corollary 3.3.2. The imaginary axis belongs to the resolvent set of AR0 ,
i.e.,

iR ⊆ ρ(AR0 ).

The eigenvectors in ker(γ − ARm) can be computed as follows.

Lemma 3.3.3. For γ ∈ C, we have

p ∈ ker(γ − ARm) (25)
⇔

p = (p0, p1, p2, p3(·), p4(·), p5(·))t ∈ D(Am), with

p0 =
(γ + a1)(γ + a2)− µ(λ+ α)

(γ + a0)[(γ + a1)(γ + a2)− µ(λ+ α)]− µ(λ+ 2α)(γ + a2)

×
5∑
j=3

cj

∫ ∞

0

µj(x)e
−γx−

R x
0 µj(ξ)dξ dx (26)

p1 =
(λ+ 2α)(γ + a2)

∑5
j=3 cj

∫∞
0
µj(x)e

−γx−
R x
0 µj(ξ)dξ dx

(γ + a0)[(γ + a1)(γ + a2)− µ(λ+ α)]− µ(λ+ 2α)(γ + a2)
, (27)

p2 =
(λ+ α)(λ+ 2α)

∑5
j=3 cj

∫∞
0
µj(x)e

−γx−
R x
0 µj(ξ)dξ dx

(γ + a0)[(γ + a1)(γ + a2)− µ(λ+ α)]− µ(λ+ 2α)(γ + a2)
, (28)

pj(x) = cj

∫ ∞

0

µj(x)e
−γx−

R x
0 µj(ξ)dξ dx, j = 3, 4, 5, (29)

where c3, c4, c5 ∈ C.
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Proof. If for p ∈ XR,(26)-(29) are ful�lled, then we can easily compute
that p ∈ ker(γ − ARm). Conversely, condition (25) gives a system of di�erential
equations. Solving these di�erential equations, we see that (26)-(29) are indeed
satis�ed. �

Moreover, since LR is surjective,

LR|ker(γ−AR
m) : ker(γ − ARm) → ∂XR

is invertible for each γ ∈ ρ(AR0 ), see [Gre87, Lemma 1.2]. We denote its inverse
by

DR
γ := (LR|ker(γ−AR

m))
−1 : ∂XR −→ ker(γ − ARm)

and call it �Dirichlet operator�.
We can give the explicit form of DR

γ as follows.

Lemma 3.3.4. For each γ ∈ ρ(AR0 ), the operator DR
γ has the form

DR
γ =


d1,1 d1,2 d1,3

d2,1 d2,2 d2,3

d3,1 d3,2 d3,3

d4,1 0 0
0 d5,2 0
0 0 d6,3

 ,

where

d1,1 =
[(γ + a1)(γ + a2)− µ(λ+ α)]

∫∞
0
µ3(x)e

−γx−
R x
0 µ3(ξ)dξ dx

(γ + a0)[(γ + a1)(γ + a2)− µ(λ+ α)]− µ(λ+ 2α)(γ + a2)
,

d1,2 =
[(γ + a1)(γ + a2)− µ(λ+ α)]

∫∞
0
µ4(x)e

−γx−
R x
0 µ4(ξ)dξ dx

(γ + a0)[(γ + a1)(γ + a2)− µ(λ+ α)]− µ(λ+ 2α)(γ + a2)
,

d1,3 =
[(γ + a1)(γ + a2)− µ(λ+ α)]

∫∞
0
µ5(x)e

−γx−
R x
0 µ5(ξ)dξ dx

(γ + a0)[(γ + a1)(γ + a2)− µ(λ+ α)]− µ(λ+ 2α)(γ + a2)
,

d2,1 =
(λ+ 2α)(γ + a2)

∫∞
0
µ3(x)e

−γx−
R x
0 µ3(ξ)dξ dx

(γ + a0)[(γ + a1)(γ + a2)− µ(λ+ α)]− µ(λ+ 2α)(γ + a2)
,

d2,2 =
(λ+ 2α)(γ + a2)

∫∞
0
µ4(x)e

−γx−
R x
0 µ4(ξ)dξ dx

(γ + a0)[(γ + a1)(γ + a2)− µ(λ+ α)]− µ(λ+ 2α)(γ + a2)
,

d2,3 =
(λ+ 2α)(γ + a2)

∫∞
0
µ5(x)e

−γx−
R x
0 µ5(ξ)dξ dx

(γ + a0)[(γ + a1)(γ + a2)− µ(λ+ α)]− µ(λ+ 2α)(γ + a2)
,

d3,1 =
(λ+ α)(λ+ 2α)

∫∞
0
µ3(x)e

−γx−
R x
0 µ3(ξ)dξ dx

(γ + a0)[(γ + a1)(γ + a2)− µ(λ+ α)]− µ(λ+ 2α)(γ + a2)
,

d3,2 =
(λ+ α)(λ+ 2α)

∫∞
0
µ4(x)e

−γx−
R x
0 µ4(ξ)dξ dx

(γ + a0)[(γ + a1)(γ + a2)− µ(λ+ α)]− µ(λ+ 2α)(γ + a2)
,
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d3,3 =
(λ+ α)(λ+ 2α)

∫∞
0
µ5(x)e

−γx−
R x
0 µ5(ξ)dξ dx

(γ + a0)[(γ + a1)(γ + a2)− µ(λ+ α)]− µ(λ+ 2α)(γ + a2)
,

d4,1 =

∫ ∞

0

µ3(x)e
−γx−

R x
0 µ3(ξ)dξ dx,

d5,2 =

∫ ∞

0

µ4(x)e
−γx−

R x
0 µ4(ξ)dξ dx,

d6,3 =

∫ ∞

0

µ5(x)e
−γx−

R x
0 µ5(ξ)dξ dx.

The operator ΦRD
R
γ can be computed explicitly for γ ∈ ρ(AR0 ).

Remark 3.3.5. For γ ∈ ρ(AR0 ) the operator ΦRD
R
γ can be represented by the

3× 3-matrix

ΦRD
R
γ =

a1,1 a1,2 a1,3

a2,1 a2,2 a2,3

a3,1 a3,2 a3,3

 ,

where

a1,1 =
λ(λ+ α)(λ+ 2α)

∫∞
0
µ3(x)e

−γx−
R x
0 µ3(ξ)dξ dx

(γ + a0)[(γ + a1)(γ + a2)− µ(λ+ α)]− µ(λ+ 2α)(γ + a2)
,

a1,2 =
λ(λ+ α)(λ+ 2α)

∫∞
0
µ4(x)e

−γx−
R x
0 µ4(ξ)dξ dx

(γ + a0)[(γ + a1)(γ + a2)− µ(λ+ α)]− µ(λ+ 2α)(γ + a2)
,

a1,3 =
λ(λ+ α)(λ+ 2α)

∫∞
0
µ5(x)e

−γx−
R x
0 µ5(ξ)dξ dx

(γ + a0)[(γ + a1)(γ + a2)− µ(λ+ α)]− µ(λ+ 2α)(γ + a2)
,

a2,1 =
λc0 [(γ + a1)(γ + a2)− µ(λ+ α)] + λc1(λ+ 2α)(γ + a2) + λc2(λ+ α)(λ+ 2α)

(γ + a0)[(γ + a1)(γ + a2)− µ(λ+ α)]− µ(λ+ 2α)(γ + a2)

×
∫ ∞

0

µ3(x)e
−γx−

R x
0 µ3(ξ)dξ dx,

a2,2 =
λc0 [(γ + a1)(γ + a2)− µ(λ+ α)] + λc1(λ+ 2α)(γ + a2) + λc2(λ+ α)(λ+ 2α)

(γ + a0)[(γ + a1)(γ + a2)− µ(λ+ α)]− µ(λ+ 2α)(γ + a2)

×
∫ ∞

0

µ4(x)e
−γx−

R x
0 µ4(ξ)dξ dx,

a2,3 =
λc0 [(γ + a1)(γ + a2)− µ(λ+ α)] + λc1(λ+ 2α)(γ + a2) + λc2(λ+ α)(λ+ 2α)

(γ + a0)[(γ + a1)(γ + a2)− µ(λ+ α)]− µ(λ+ 2α)(γ + a2)

×
∫ ∞

0

µ5(x)e
−γx−

R x
0 µ5(ξ)dξ dx,

a3,1 =
λh0 [(γ + a1)(γ + a2)− µ(λ+ α)] + λh1(λ+ 2α)(γ + a2) + λh2(λ+ α)(λ+ 2α)

(γ + a0)[(γ + a1)(γ + a2)− µ(λ+ α)]− µ(λ+ 2α)(γ + a2)

×
∫ ∞

0

µ3(x)e
−γx−

R x
0 µ3(ξ)dξ dx,
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a3,2 =
λh0 [(γ + a1)(γ + a2)− µ(λ+ α)] + λh1(λ+ 2α)(γ + a2) + λh2(λ+ α)(λ+ 2α)

(γ + a0)[(γ + a1)(γ + a2)− µ(λ+ α)]− µ(λ+ 2α)(γ + a2)

×
∫ ∞

0

µ4(x)e
−γx−

R x
0 µ4(ξ)dξ dx,

a3,3 =
λh0 [(γ + a1)(γ + a2)− µ(λ+ α)] + λh1(λ+ 2α)(γ + a2) + λh2(λ+ α)(λ+ 2α)

(γ + a0)[(γ + a1)(γ + a2)− µ(λ+ α)]− µ(λ+ 2α)(γ + a2)

×
∫ ∞

0

µ5(x)e
−γx−

R x
0 µ5(ξ)dξ dx.

Using the Characteristic Equation 1.3.6 we can show that 0 is in the point
spectrum of AR.

Lemma 3.3.6. For the operator (AR, D(AR)) we have 0 ∈ σp(AR).

Proof. By the Characteristic Equation 1.3.6 it su�ces to prove that 1 ∈
σp(ΦRD

R
0 ). Since

ΦRD
R
γ =

b1,1 b1,2 b1,3
b2,1 b2,2 b2,3
b3,1 b3,2 b3,3

 ,

where

b1,1 =
λ(λ+ α)(λ+ 2α)

a0[a1a2 − µ(λ+ α)]− µ(λ+ 2α)a2

,

b1,2 =
λ(λ+ α)(λ+ 2α)

a0a1a2 − µ(λ+ α)]− µ(λ+ 2α)a2

,

b1,3 =
λ(λ+ α)(λ+ 2α)

a0a1a2 − µ(λ+ α)]− µ(λ+ 2α)a2

,

b2,1 =
λc0 [a1a2 − µ(λ+ α)] + λc1(λ+ 2α)a2 + λc2(λ+ α)(λ+ 2α)

a0[a1a2 − µ(λ+ α)]− µ(λ+ 2α)a2

,

b2,2 =
λc0 [a1a2 − µ(λ+ α)] + λc1(λ+ 2α)a2 + λc2(λ+ α)(λ+ 2α)

(γ + a0)[(γ + a1)(γ + a2)− µ(λ+ α)]− µ(λ+ 2α)(γ + a2)
,

b2,3 =
λc0 [a1a2 − µ(λ+ α)] + λc1(λ+ 2α)a2 + λc2(λ+ α)(λ+ 2α)

a0a1a2 − µ(λ+ α)]− µ(λ+ 2α)a2

,

b3,1 =
λh0 [a1a2 − µ(λ+ α)] + λh1(λ+ 2α)a2 + λh2(λ+ α)(λ+ 2α)

a0[a1a2 − µ(λ+ α)]− µ(λ+ 2α)a2

,

b3,2 =
λh0 [a1a2 − µ(λ+ α)] + λh1(λ+ 2α)a2 + λh2(λ+ α)(λ+ 2α)

a0[a1a2 − µ(λ+ α)]− µ(λ+ 2α)a2

,

b3,3 =
λh0 [a1a2)− µ(λ+ α)] + λh1(λ+ 2α)a2 + λh2(λ+ α)(λ+ 2α)

a0a1a2 − µ(λ+ α)]− µ(λ+ 2α)a2

.
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We can compute the jth column sum (j = 1, 2, 3) of the 3 × 3-matrix ΦRD
R
0 as

follows.
3∑
i=1

(ΦRD
R
0 )i,j = b1,j + b2,j + b3,j

=
λ(λ+ α)(λ+ 2α)

a0[a1a2 − µ(λ+ α)]− µ(λ+ 2α)a2

+
λc0 [a1a2 − µ(λ+ α)] + λc1(λ+ 2α)a2 + λc2(λ+ α)(λ+ 2α)

a0[a1a2 − µ(λ+ α)]− µ(λ+ 2α)a2

+
λh0 [a1a2 − µ(λ+ α)] + λh1(λ+ 2α)a2 + λh2(λ+ α)(λ+ 2α)

a0[a1a2 − µ(λ+ α)]− µ(λ+ 2α)a2

=
(λc0 + λh0)[a1a2 − µ(λ+ α)] + (λc1 + λh1)(λ+ 2α)a2

a0[a1a2 − µ(λ+ α)]− µ(λ+ 2α)a2

+
(λ+ λc2 + λc2)(λ+ α)(λ+ 2α)

a0[a1a2 − µ(λ+ α)]− µ(λ+ 2α)a2

=
[a0 − (λ+ 2α)][a1a2 − µ(λ+ α)] + [a1 − (µ+ λ+ α)](λ+ 2α)a2

a0[a1a2 − µ(λ+ α)]− µ(λ+ 2α)a2

+
(a2 − µ)(λ+ α)(λ+ 2α)

a0[a1a2 − µ(λ+ α)]− µ(λ+ 2α)a2

=
a0[a1a2 − µ(λ+ α)]− a1a2(λ+ 2α) + µ(λ+ α)(λ+ 2α)

a0[a1a2 − µ(λ+ α)]− µ(λ+ 2α)a2

+
a1a2(λ+ 2α)− µ(λ+ 2α)a2 − a2(λ+ α)(λ+ 2α)

a0[a1a2 − µ(λ+ α)]− µ(λ+ 2α)a2

+
a2(λ+ α)(λ+ 2α)− µ(λ+ α)(λ+ 2α)

a0[a1a2 − µ(λ+ α)]− µ(λ+ 2α)a2

=
a0[a1a2 − µ(λ+ α)]− µ(λ+ 2α)a2

a0[a1a2 − µ(λ+ α)]− µ(λ+ 2α)a2

= 1.

This shows that ΦRD
R
0 is column stochastic, its transpose (ΦRD

R
0 )t is row sto-

chastic and hence 1 ∈ σp((ΦRD
R
0 )t). Since σp(ΦRD

R
0 ) = σp((ΦRD

R
0 )t), also

1 ∈ σp(ΦRD
R
0 ) holds. Therefore, by the Characteristic Equation 1.3.6 we con-

clude that 0 ∈ σp(AR). �

Indeed, 0 is even the only spectral value of AR on the imaginary axis.

Lemma 3.3.7. Under the General Assumption 3.1.1, the spectrum σ(AR) of
AR satis�es

σ(AR) ∩ iR = {0}.
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Proof. For any a ∈ R, a 6= 0, C = (r1, r2, r3) ∈ C3, we consider the resolvent
equation (Id−ΦRD

R
ai)Q = C.This equation is equivalent to the following system

of equations: 
(1− ah1)q1 − ah2q2 − ah3q3 = r1,

−bh1q1 + (1− bh2)q2 − bh3q3 = r2,

−ch1q1 − ch2q2 + (1− ch3)h3 = r3,

(?)

where

a =
λ(λ+ α)(λ+ 2α)

(ai+ a0)[(ai+ a1)(ai+ a2)− µ(λ+ α)]− µ(λ+ 2α)(ai+ a2)
,

b =
λc0 [(ai+ a1)(ai+ a2)− µ(λ+ α)] + λc1(λ+ 2α)(ai+ a2) + λc2(λ+ α)(λ+ α)

(ai+ a0)[(ai+ a1)(ai+ a2)− µ(λ+ α)]− µ(λ+ 2α)(ai+ a2)

c =
λh0 [(ai+ a1)(ai+ a2)− µ(λ+ α)] + λh1(λ+ 2α)(ai+ a2) + λh2(λ+ α)(λ+ α)

(ai+ a0)[(ai+ a1)(ai+ a2)− µ(λ+ α)]− µ(λ+ 2α)(ai+ a2)

hj =

∫ ∞

0

µj(x)e
−aix−

R x
0 µj(ξ)dξ dx, j = 3, 4, 5.

Since for a 6= 0, we have∣∣∣∣∣∣
1− ah1 −ah2 −ah3

−ah1 1− ah2 −ah3

−ch1 ch2 1− ch3

∣∣∣∣∣∣ = (1− ah1)(1− bh2)(1− ch3)− abch1h2h3 − abch1h2h3

− ac(1− bh2)h1h3 − bc(1− ah1)h2h3 − ab(1− ch3)h1h2

= 1− bh2 − ah1 + abh1h2 − ch3 + cbh2h3 + ach1h3

− abch1h2h3 − ach1h3 − bch2h3 − abh1h2 + abch1h2h3

= 1− ah1 − bh2 − ch3 6= 0,

i.e., the determinant of the coe�cient of the equations (?) is not equal to 0. It
follows that the equation (Id−ΦRD

R
ai)Q = C has exactly one solution. Therefore,

1 /∈ σ(ΦRD
R
ai). This implies by the Characteristic Equation 1.3.6 that ai /∈ σ(AR),

i.e.
σ(AR) ∩ iR = {0}.

�

3.4. Well-posedness of the System

The main gaol in this section is to prove the well-posedness of the system. In
order to prove this, we will need some lemmas.

Lemma 3.4.1. AR : D(AR) → R(AR) ⊂ XR is a closed linear operator and
D(AR) is dense in XR.
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Proof. We will prove the assertion in two steps.
We �rst prove that AR is closed. For any given

Pn = (p
(n)
0 , p

(n)
1 , p

(n)
2 , p

(n)
3 (x), p

(n)
4 (x), p

(n)
5 (x)) ∈ D(AR),

P0 = (p
(0)
0 , p

(0)
1 , p

(0)
2 , p

(0)
3 (x), p

(0)
4 (x), p

(0)
5 (x)) ∈ XR.

We suppose that

lim
n→∞

Pn = P0,

lim
n→∞

AR(Pn)
t = (FR)t,

where FR = (f0, f1, f2, f3(x), f4(x), f5(x)) ∈ XR. That is,

lim
n→∞

p
(n)
i = p

(0)
i , (i = 0, 1, 2)

lim
n→∞

∫ ∞

0

|p(n)
j (x)− p

(0)
j (x)|dx = 0, (j = 3, 4, 5).

Then we obtain from the General Assumption 3.1.1 that

lim
n→∞

∫ ∞

0

p
(n)
j (x)µj(x)dx =

∫ ∞

0

p
(0)
j (x)µj(x), j = 3, 4, 5.

Furthermore,

lim
n→∞

AR(Pn)
t = lim

n→∞



−a0p
(n)
0 + µp

(n)
1 +

∑5
i=3

∫∞
0
µi(x)p

(n)
i (x)dx

(λ+ 2α)p
(n)
0 − a1p

(n)
1 + µp

(n)
2

(λ+ α)p
(n)
1 − a2p

(n)
2

−dp
(n)
3 (x)

dx
− µ3(x)p

(n)
3 (x)

−dp
(n)
4 (x)

dx
− µ4(x)p

(n)
4 (x)

−dp
(n)
5 (x)

dx
− µ5(x)p

(n)
5 (x)


=


f0

f1

f2

f3(x)
f4(x)
f5(x)

 .
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This is equivalent to the following system of equations:

lim
n→∞

[−a0p
(n)
0 + µp

(n)
1 +

5∑
i=3

∫ ∞

0

µi(x)p
(n)
i (x)dx] = f0,

lim
n→∞

[(λ+ 2α)p
(n)
0 − a1p

(n)
1 + µp

(n)
2 ] = f1,

lim
n→∞

[(λ+ α)p
(n)
1 − a2p

(n)
2 ] = f2,

lim
n→∞

[−dp
(n)
3 (x)

dx
− µ3(x)p

(n)
3 (x)] = f3(x),

lim
n→∞

[−dp
(n)
4 (x)

dx
− µ4(x)p

(n)
4 (x)] = f4(x),

lim
n→∞

[−dp
(n)
5 (x)

dx
− µ5(x)p

(n)
5 (x)] = f5(x).

Integrating both sides of last three equations from 0 to β > 0, we have

lim
n→∞

∫ β

0

[−
dp

(n)
j (x)

dx
− µj(x)p

(n)
j (x)] =

∫ β

0

lim
n→∞

[−
dp

(n)
j (x)

dx
− µj(x)p

(n)
j (x)]

=

∫ β

0

fj(x), j = 3, 4, 5.

This yields

lim
n→∞

[−p(n)
j (β)− p

(n)
j (0)−

∫ β

0

µj(x)p
(n)
j (x)dx]

= −p(0)
j (β)− p

(0)
j (0)−

∫ β

0

µj(x)p
(0)
j (x)dx

=

∫ β

0

fj(x), j = 3, 4, 5. (30)

We know from the boundedness of µj(x) that
∫∞

0
|µj(x)p(0)

j (x)|dx < ∞. Fur-
ther, we have

∫∞
0
|fj(x)|dx < ∞. It follows from (30) that p(0)

j (β) is absolutely
continuous and

p
′(0)
j (β) = −µj(β)p

(0)
j (β)− fj(x) ∈ L1[0,∞).

Therefore, P0 ∈ D(AR) and

lim
n→∞

p
′(n)
j (β) = lim

n→∞
[−µj(β)p

(n)
j (β)]− fj(x) = p

′(0)
j (β).
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From the above deduction we have

−a0p
(0)
0 + µp

(0)
1 +

5∑
i=3

∫ ∞

0

µi(x)p
(0)
i (x)dx = f0,

(λ+ 2α)p
(0)
0 − a1p

(0)
1 + µp

(0)
2 = f1,

(λ+ α)p
(0)
1 − a2p

(0)
2 = f2,

−dp
(0)
3 (x)

dx
− µ3(x)p

(0)
3 (x) = f3(x),

−dp
(0)
4 (x)

dx
− µ4(x)p

(0)
4 (x) = f4(x),

−dp
(0)
5 (x)

dx
− µ5(x)p

(0)
5 (x) = f5(x).

This shows that AR(P0)
t = (FR)t, hence (AR, D(AR)) is closed.

We now prove that D(AR) is dense in XR. We de�ne

ER =

{
p(x) = (p0, p1, p2, p3(x), p4(x), p5(x))

∣∣∣∣ pi ∈ C, i = 0, 1, 2;

pi(x) ∈ C∞
0 [0,∞), i = 3, 4, 5

}
.

Then by [Ada75] ER is dense in XR. If we de�ne

HR =

p(x) = (p0, p1, p2, p3(x), p4(x), p5(x))

∣∣∣∣∣∣∣∣∣
pi(x) ∈ C∞[0,∞) and
there exists a number

αi such that pi(x) = 0,

for x ∈ [0, αi], i = 3, 4, 5

 ,

then HR is dense in ER. Therefore, in order to prove that D(AR) is dense in XR,
it su�ces to prove that D(AR) is dense in HR. Take any

p(x) = (p0, p1, p2, p3(x), p4(x), p5(x)) ∈ HR,

then there exist numbers αi such that pi(x) = 0, for all x ∈ [0, αi] (i = 3, 4, 5), i.e,
pi(x) = 0 for x ∈ [0, s], here 0 < s = min{α3, α4, α5}. We introduce a function

ϕs(0) = (ϕs0, ϕ
s
1, ϕ

s
2, ϕ

s
3(0), ϕ

s
4(0), ϕ

s
5(0))

= (p0, p1, p2, λp2,

2∑
i=0

λcipi,

2∑
i=0

λhi
pi)

ϕs(x) = (ϕs0, ϕ
s
1, ϕ

s
2, ϕ

s
3(x), ϕ

s
4(x), ϕ

s
5(x)),

where

ϕsi (x) =

{
ϕsi (0)(1− x

s
)2 if x ∈ [0, s)

pi(x) if x ∈ [s,∞),
i = 3, 4, 5.
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It is easy to verify that ϕs(x) ∈ D(AR). Moreover

‖p− ϕs‖ =
5∑
i=3

∫ s

0

|ϕsi (0)|(1− x

s
)2dx =

5∑
i=3

|ϕsi (0)|
s

3
→ 0 as s→ 0.

This shows that D(AR) is dense in HR. �

Lemma 3.4.2. (AR, D(AR)) is a dispersive operator.

Proof. For p ∈ D(AR), we may choose

φ(x) = (
[p0]

+

p0

,
[p1]

+

p1

,
[p2]

+

p2

,
[p3(x)]

+

p3(x)
,
[p4(x)]

+

p4(x)
,
[p5(x)]

+

p5(x)
),

where

[pi]
+ =

{
pi if pi > 0

0 if pi ≤ 0
, i = 0, 1, 2; [pi(x)]

+ =

{
pi(x) if pi(x) > 0

0 if pi(x) ≤ 0
, i = 3, 4, 5.

If we de�ne Wi = {x ∈ [0,∞) | pi(x) > 0} and Qi = {x ∈ [0,∞) | pi(x) ≤ 0}
for i = 3, 4, 5, then we have∫ ∞

0

dpi(x)

dx

[pi(x)]
+

pi(x)
dx =

∫
Wi

dpi(x)

dx

[pi(x)]
+

pi(x)
dx+

∫
Qi

dpi(x)

dx

[pi(x)]
+

pi(x)
dx

=

∫
Wi

dpi(x)

dx

[pi(x)]
+

pi(x)
dx =

∫
Wi

dpi(x)

dx
dx

=

∫ ∞

0

d[pi(x)]
+

dx
dx = −[pi(0)]

+, i = 3, 4, 5, (31)∫ ∞

0

µi(x)pi(x)dx ≤
∫ ∞

0

µi(x)[pi(x)]
+dx, i = 3, 4, 5. (32)

By (31), (32) and the boundary conditions on p ∈ D(A) we obtain that

〈ARp, φ〉 = {−a0p0 + µp1 +
5∑
i=3

∫ ∞

0

µi(x)pi(x)dx}
[p0]

+

p0

+ {(λ+ 2α)p0 − a1p1 + µp2}
[p1]

+

p1

+ {(λ+ α)p1 − a2p2}
[p2]

+

p2

+
5∑
i=3

∫ ∞

0

{−dpi(x)
dx

− µi(x)pi(x)}
[pi(x)]

+

pi(x)
dx

= −a0[p0]
+ + µp1

[p0]
+

p0

+
[p0]

+

p0

5∑
i=3

∫ ∞

0

µi(x)pi(x)dx

+ (λ+ 2α)
[p1]

+

p1

p0 − a1[p1]
+ + µ

[p1]
+

p1

p1 + (λ+ α)
[p2]

+

p2

p1
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− a2[p2]
+ −

5∑
i=3

∫ ∞

0

dpi(x)

dx

[pi(x)]
+

pi(x)
dx−

5∑
i=3

∫ ∞

0

µi(x)[pi(x)]
+dx

= −a0[p0]
+ + µp1

[p0]
+

p0

+
[p0]

+

p0

5∑
i=3

∫ ∞

0

µi(x)pi(x)dx

+ (λ+ 2α)
[p1]

+

p1

p0 − a1[p1]
+ + µ

[p1]
+

p1

p1 + (λ+ α)
[p2]

+

p2

p1

− a2[p2]
+ +

5∑
i=3

[pi(0)]+ −
5∑
i=3

∫ ∞

0

µi(x)[pi(x)]
+dx

= −a0[p0]
+ + µp1

[p0]
+

p0

+
[p0]

+

p0

5∑
i=3

∫ ∞

0

µi(x)pi(x)dx

+ (λ+ 2α)
[p1]

+

p1

p0 − a1[p1]
+ + µ

[p1]
+

p1

p1 + (λ+ α)
[p2]

+

p2

p1

− a2[p2]
+ + {[λp2]

+ + [λc0p0 + λc1p1 + λc2p2]
+

+ [λh0p0 + λh1p1 + λh2p2]
+} −

5∑
i=3

∫ ∞

0

µi(x)[pi(x)]
+dx

≤ −a0[p0]
+ + µp1

[p0]
+

p0

+
[p0]

+

p0

5∑
i=3

∫ ∞

0

µi(x)pi(x)dx

+ (λ+ 2α)
[p1]

+

p1

p0 − a1[p1]
+ + µ

[p1]
+

p1

p1 + (λ+ α)
[p2]

+

p2

p1

− a2[p2]
+ + {λ[p2]

+ + {λc0 [p0]
+ + λc1 [p1]

+ + λc2 [p2]
+}

+ {λh0 [p0]
+ + λh1 [p1]

+ + λh2 [p2]
+} −

5∑
i=3

∫ ∞

0

µi(x)[pi(x)]
+dx

= (λc0 + λh0 − a0)[p0]
+ + (λc1 + λh1 − a0)[p1]

+ + (λ+ λc2 + λh2 − a0)[p2]
+

+ µp1
[p0]

+

p0

+
[p0]

+

p0

5∑
i=3

∫ ∞

0

µi(x)pi(x)dx+ (λ+ 2α)
[p1]

+

p1

p0

+ µ
[p1]

+

p1

p1 + (λ+ α)
[p2]

+

p2

p1 −
5∑
i=3

∫ ∞

0

µi(x)[pi(x)]
+dx

= −(λ+ 2α)[p0]
+ − (µ+ λ+ α)[p1]

+ − µ[p2]
+ + µp1

[p0]
+

p0

+
[p0]

+

p0

5∑
i=3

∫ ∞

0

µi(x)pi(x)dx+ (λ+ 2α)
[p1]

+

p1

p0 + µ
[p1]

+

p1

p2
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+ (λ+ α)
[p2]

+

p2

p1 −
5∑
i=3

∫ ∞

0

µi(x)[pi(x)]
+dx

≤ −(λ+ 2α)[p0]
+ − (µ+ λ+ α)[p1]

+ − µ[p2]
+ + µp1

[p0]
+

p0

+
[p0]

+

p0

5∑
i=3

∫ ∞

0

µi(x)[pi(x)]
+dx+ (λ+ 2α)

[p1]
+

p1

p0 + µ
[p1]

+

p1

p2

+ (λ+ α)
[p2]

+

p2

p1 −
5∑
i=3

∫ ∞

0

µi(x)[pi(x)]
+dx

≤ −(λ+ 2α)[p0]
+ − (µ+ λ+ α)[p1]

+ − µ[p2]
+ + µ[p1]

+ [p0]
+

p0

+ (
[p0]

+

p0

− 1)
5∑
i=3

∫ ∞

0

µi(x)[pi(x)]
+dx+ (λ+ 2α)

[p1]
+

p1

[p0]
+

+ µ
[p1]

+

p1

[p2]
+ + (λ+ α)

[p2]
+

p2

[p1]
+

≤ −(λ+ 2α)[p0]
+ − (µ+ λ+ α)[p1]

+ − µ[p2]
+ + µ[p1]

+

+ (
[p0]

+

p0

− 1)
5∑
i=3

∫ ∞

0

µi(x)[pi(x)]
+dx+ (λ+ 2α)[p0]

+

+ µ[p2]
+ + (λ+ α)[p1]

+

= (
[p0]

+

p0

− 1)
5∑
i=3

∫ ∞

0

µi(x)[pi(x)]
+dx ≤ 0.

This shows from De�nition 1.2.5 that (AR, D(AR)) is a dispersive operator. �

Lemma 3.4.3. If γ ∈ R, γ > 0, then γ ∈ ρ(AR).

Proof. Let γ ∈ R, γ > 0, then all the entries of ΦRD
R
γ are positive and we

have

a0[(γ + a1)(γ + a2)− µ(λ+ α)]− µ(λ+ 2α)(γ + a2)− γ(λ+ 2α)(γ + a2)

= (λ+ 2α+ λc0 + λh0)(γ + µ+ λ+ α+ λc1 + λh1)(γ + µ+ λ+ λc2 + λh2)

− (λ+ 2α+ λc0 + λh0)µ(λ+ α)− µ(λ+ 2α)(γ + µ+ λ+ λc2 + λh2)

− γ(λ+ 2α)(γ + µ+ λ+ λc2 + λh2)

= [(λ+ 2α+ λc0 + λh0)γ(γ + µ+ λ+ λc2 + λh2)

− γ(λ+ 2α)(γ + µ+ λ+ λc2 + λh2)]

+ [(λ+ 2α+ λc0 + λh0)µ(γ + µ+ λ+ λc2 + λh2)

− µ(λ+ 2α)(γ + µ+ λ+ λc2 + λh2)]
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+ [(λ+ 2α+ λc0 + λh0)(λ+ α+ λc1 + λh1)(γ + µ+ λ+ λc2 + λh2)

− (λ+ 2α+ λc0 + λh0)µ(λ+ α)] > 0

=⇒
a0[(γ + a1)(γ + a2)− µ(λ+ α)]− µ(λ+ 2α)(γ + a2) > γ(λ+ 2α)(γ + a2). (33)

We also have∫ ∞

0

µj(x)e
−γs−

R s
0 µj(ξ)dξds <

∫ ∞

0

µj(x)e
−

R s
0 µj(ξ)dξds = 1. (34)

Using (33) and (34) we can estimate the jth column sum as
3∑
i=1

(ΦRD
R
γ )i,j

=
λ(λ+ α)(λ+ 2α)

∫∞
0
µj(x)e

−γx−
R x
0 µj(ξ)dξ dx

(γ + a0)[(γ + a1)(γ + a2)− µ(λ+ α)]− µ(λ+ 2α)(γ + a2)

+
λc0 [(γ + a1)(γ + a2)− µ(λ+ α)] + λc1(λ+ 2α)(γ + a2) + λc2(λ+ α)(λ+ α)

(γ + a0)[(γ + a1)(γ + a2)− µ(λ+ α)]− µ(λ+ 2α)(γ + a2)

×
∫ ∞

0

µj(x)e
−γx−

R x
0 µj(ξ)dξ dx

+
λh0 [(γ + a1)(γ + a2)− µ(λ+ α)] + λh1(λ+ 2α)(γ + a2) + λh2(λ+ α)(λ+ α)

(γ + a0)[(γ + a1)(γ + a2)− µ(λ+ α)]− µ(λ+ 2α)(γ + a2)

×
∫ ∞

0

µj(x)e
−γx−

R x
0 µj(ξ)dξ dx

= {1− γ[(λ+ 2α)(γ + a2) + (γ + a1)(γ + a2)− µ(λ+ α)]

(γ + a0)[(γ + a1)(γ + a2)− µ(λ+ α)]− µ(λ+ 2α)(γ + a2)
}

×
∫ ∞

0

µj(x)e
−γx−

R x
0 µj(ξ)dξ dx

= {1− γ[(γ + a1)(γ + a2)− µ(λ+ α)] + γ(λ+ 2α)(γ + a2)

(γ + a0)[(γ + a1)(γ + a2)− µ(λ+ α)]− µ(λ+ 2α)(γ + a2)
}

×
∫ ∞

0

µj(x)e
−γx−

R x
0 µj(ξ)dξ dx < 1.

It follows from this that ‖ΦRD
R
γ ‖ < 1, and thus also

r(ΦRD
R
γ ) ≤ ‖ΦRD

R
γ ‖ < 1.

Therefore, 1 /∈ σ(ΦRD
R
γ ). Using the Characteristic Equation 1.3.6 we conclude

that γ ∈ ρ(AR) for γ ∈ R, γ > 0. �

From Lemma 3.4.1, Lemma 3.4.2 and Lemma 3.4.3 we immediately obtain
the following result.
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Theorem 3.4.4. The operator (AR, D(AR)) generates a positive contraction
C0−semigroup (TR(t))t≥0.

From Proposition 1.2.4 and Theorem 3.4.4 we can state our main result.

Theorem 3.4.5. The system (R), (BCR) and (ICR,0) has a unique positive
solution p(x, t) which satis�es ‖p(., t)‖ = 1, t ∈ [0,∞).

Proof. From Proposition 1.2.4 and Theorem 3.4.4 we obtain that the asso-
ciated abstract Cauchy problem (ACPR) has a unique positive time-dependent
solution p(x, t) which can be expressed as

p(x, t) = TR(t)p(0) = TR(t)(1, 0, 0, 0, · · · ). (35)

Let P (t) = p(x, t) = (p0(t), p1, p2, p3(x, t), p4(x, t), p5(x, t)), then P (t) satis�es the
system of equations:

dp0(t)

dt
= −a0p0(t) + µp1(t) +

5∑
i=3

∫ ∞

0

µi(x)pi(x, t)dx, (36)

dp1(t)

dt
= (λ+ 2α)p0(t)− a1p1(t) + µp2(t), (37)

dp2(t)

dt
= (λ+ α)p1(t)− a2p2(t), (38)

∂p3(x, t)

∂t
= −∂p3(x, t)

∂x
− µ3(x)p3(x, t), (39)

∂p4(x, t)

∂t
= −∂p4(x, t)

∂x
− µ4(x)p4(x, t), (40)

∂p5(x, t)

∂t
= −∂p5(x, t)

∂x
− µ5(x)p5(x, t), (41)

p3(0, t) = λp2(t)], t > 0, (42)

p4(0, t) =
2∑
i=0

λcipi(t), t > 0, (43)

p5(0, t) =
2∑
i=0

λhi
pi(t), t > 0, (44)

P (0) = (1, 0, 0, 0, 0, · · · ). (45)

Since ∫ ∞

0

∂pj(x, t)

∂x
dx = pj(∞, t)− pj(0, t) = −pj(0, t), j = 3, 4, 5. (46)
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Using (36)�(46) we compute

d‖P (t)‖
dt

=
2∑
i=0

dpi(t)

dt
+

5∑
j=3

∫ ∞

0

∂pj(x, t)

∂t
dx

= −a0p0(t) + µp1(t) +
5∑
j=3

∫ ∞

0

µi(x)pi(x, t)dx,

+ (λ+ 2α)p0(t)− a1p1(t) + µp2(t) + (λ+ α)p1(t)− a2p2(t),

+
5∑
j=3

∫ ∞

0

[−∂pj(x, t)
∂x

− µj(x)pj(x, t)]dx

= (−a0 + λ+ 2α)p0(t) + (µ− a1 + λ+ α) + (µ− a2)p2(t)

+
5∑
j=3

pj(0, t)

= −
5∑
j=3

pj(0, t) +
5∑
j=3

pj(0, t) = 0. (47)

By (35) and (47) we obtain

d‖P (t)‖
dt

=
d‖TR(t)P (0)‖

dt
= 0.

Therefore,
‖TR(t)P (0)‖ = ‖P (t)‖ = ‖P (0)‖ = 1.

This shows ‖p(·, t)‖ = 1, ∀t ∈ [0,∞). �

3.5. Asymptotic Stability of the Solution

In this section we investigate the asymptotic stability of the system using the
results on positive semigroup collected in Section 1.1. We express from Lemma
1.3.7 the resolvent of AR in terms of the resolvent of AR0 , the Dirichlet operator
DR
γ and the boundary operator ΦR. The representation for the resolvent of AR0

shows that it is a positive operator for γ > 0. This property is very useful in the
following lemma to prove the irreducibility of the semigroup (TR(t))t≥0 generated
by (AR, D(AR)). For the notation and terminology concerning positive operators
we refer to the books [Sch74] and [Nag86].

Lemma 3.5.1. The semigroup (TR(t))t≥0 generated by (AR, D(AR)) is irre-
ducible.

Proof. We know from [Nag86, Def. C-III 3.1] that the irreducibility of
(TR(t))t≥0 is equivalent to the existence of γ > 0 such that 0 < p ∈ X implies
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R(γ,A)p � 0. We now suppose that γ > 0 and 0 < p ∈ XR. Then also
R(γ,AR0 )p > 0 and ΦRR(γ,AR0 )p > 0. It follows from the proof of Lemma 3.4.3
that ‖ΦRD

R
γ ‖ < 1 for all γ > 0. Hence the inverse of Id∂XR

− ΦRD
R
γ can be

computed via the Neumann series

(Id∂XR
− ΦRD

R
γ )−1 =

∞∑
n=0

(ΦRD
R
γ )n.

We know from the form of ΦRD
R
γ that for every i ∈ {1, 2, 3} there exists k ∈ N

such that the real number ((ΦRD
R
γ )kΦRR(γ,AR0 )p)i > 0. Therefore,

(Id∂XR
− ΦRD

R
γ )−1ΦRR(γ,AR0 )p� 0,

and by the form of DR
γ we have

DR
γ (Id∂XR

− ΦRD
R
γ )−1ΦRR(γ,AR0 )p� 0.

This implies
R(γ,AR)p� 0,

and hence (TR(t))t≥0 is irreducible. �

We now prove our main result on the asymptotic behaviour. Combining
Lemma 3.5.1 with the results from Section 1.4 we obtain the strong convergence
of the semigroup to a one-dimensional equilibrium.

Theorem 3.5.2. The space XR can be decomposed into the direct sum

XR = X1
R ⊕X2

R,

where X1
R = fix(TR(t))t≥0 = kerAR is one-dimensional and spanned by a strictly

positive eigenvector p̃ ∈ kerAR of AR and the restricted semigroup (TR(t)|X2
R
)t≥0

is strongly stable.

Proof. Combining Theorem 3.4.4, Lemma 3.3.6, Lemma 3.3.7, Lemma 3.5.1
with Theorem 1.4.2, we obtain the proof of the theorem. �

We rewrite the above theorem as the following.

Corollary 3.5.3. There exists p′ ∈ X ′
R, p

′ � 0, such that for all p ∈ XR

lim
t→∞

TR(t)p = 〈p′, p〉p̃,

where kerAR = 〈p̃〉, p̃� 0.

Since the semigroup gives the solutions of the original system, we obtain our
�nal result.

Corollary 3.5.4. The time-dependent solution of the system (R), (BCR)
and (ICR,0) converges strongly to the steady-state solution as time tends to in�-
nite, that is, limt→∞ p(·, t) = αp̃, where α > 0 and p̃ as in Corollary 3.5.3.





CHAPTER 4

A Parallel Maintenance System with Two Components

4.1. Introduction

In this section, we consider the model of a parallel maintenance system with
two components. Parallel systems consisting of two repairable units are a usual
phenomenon in our daily life, for example, the parallel connection of two bulbs
with the same power, the parallel connection of two computers with the same
power, etc. So the study of these systems is important in view of theory and
practice.

The mathematical model of parallel maintenance system with two components
was �rst put forward by L.Yeh, see [Yeh97]. He assumed that the state of a
system forms a continuous-time Markov chain or a higher-dimensional Markov
process after introducing some supplementary variables and derived a formula for
evaluating the rate of occurrence of failures for the system. As an application of
the theory, he studied the maintenance model for a two-component system. But
he did not discuss the well-posedness of the model and its asymptotic behavior.
In 2003, Guo Weihua proved that the model has a unique positive time-dependent
solution by using classical analysis methods, see [Guo03].

According to [Yeh97], the model for the parallel maintenance system with
two components can be expressed by a system of integro-di�erential equations

(PS)



dp0(t)

dt
= −(λ1 + λ2)p0(t) +

2∑
i=1

∫ ∞

0

ri(x)pi(t, x)dx,

∂p1(t, x)

∂t
+
∂p1(t, x)

∂x
= −(λ2 + r1(x))p1(t, x),

∂p2(t, x)

∂t
+
∂p2(t, x)

∂x
= −(λ1 + r2(x))p2(t, x),

∂p3(t, x)

∂t
+
∂p3(t, x)

∂x
= −r1(x)p3(t, x) + λ2p1(t, x),

∂p4(t, x)

∂t
+
∂p4(t, x)

∂x
= −r2(x)p4(t, x) + λ1p2(t, x).

63
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For x = 0 the boundary conditions

(BCPS)


p1(t, 0) = λ1p0(t) +

∫ ∞

0

p4(t, x)r2(x)dx,

p2(t, 0) = λ2p0(t) +

∫ ∞

0

p3(t, x)r1(x)dx,

pi(t, 0) = 0, i = 3, 4

are prescribed, and we consider the usual initial condition

(ICPS)

{
p0(0) = c ∈ C,
pj(0, x) = fj(x), j = 1, 2, 3, 4,

where fj(x) ∈ L1[0,∞). The following initial condition is most interesting

(ICPS,0)

{
p0(0) = 1,

pj(0, x) = 0, j = 1, 2, 3, 4.

Here (x, t) ∈ [0,∞)× [0,∞). Let p0(t) denote the probability that two units
are both working at time t; p1(x, t)dx gives the probability that unit 2 is working,
unit 1 fails and the failed unit has elapsed repair time lying in (x, x+dx]; p2(x, t)dx
describes the probability that unit 1 is working, unit 2 fails and the failed unit
has elapsed repair time lying in (x, x + dx]; p3(x, t)dx gives the probability that
both units fail, unit 1 has elapsed repair time lying in (x, x + dx] and unit 2
is waiting for repair; p4(x, t)dx gives the probability that both units fail, unit 2
has elapsed repair time lying in (x, x + dx] and unit 1 is waiting for repair; λ1

represents the rate of occurrence of failures for unit 1, λ2 represents the rate of
occurrence of failures for unit 2; ri(x)(i = 1, 2) is the hazard function.

We require the following for the failure rate ri(x)(i = 1, 2).

General Assumption 4.1.1. The functions ri : R+ → R+ are measurable
and bounded such that lim

x→∞
ri(x) exists and

r(i)
∞ := lim

x→∞
ri(x) > 0, i = 1, 2, r∞ := min(r(1)

∞ , r(2)
∞ )

4.2. The Problem as an Abstract Cauchy Problem

The underlying problem is rewritten as an abstract Cauchy problem on a
suitable space XPS, see [EN00, Def. II.6.1]. As the state space for our problem
we choose

XPS := C× (L1[0,∞))4.

It is obvious that XPS is a Banach space endowed with the norm

‖p‖ := |p0|+
4∑

n=1

‖pn‖L1[0,∞),
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where p = (p0, p1(x), p2(x), p3(x), p4(x))
t ∈ XPS.

For simplicity, we denote by ψi the linear functionals

ψi : L1[0,∞) → C, f 7→ ψi(f) :=

∫ ∞

0

ri(x)f(x) dx, i = 1, 2.

Moreover, we de�ne the operators Dj on W 1,1[0,∞) as

D1f : = − d

dx
f − (λ2 + r1)f,

D2f : = − d

dx
f − (λ1 + r2)f,

D3f : = − d

dx
f − r1f,

D4f : = − d

dx
f − r2f, for f ∈ W 1,1[0,∞),

respectively. To de�ne the appropriate operator (APS, D(APS)) we introduce a
�maximal operator� (APSm , D(APSm )) on XPS given as

APSm :=


−(λ1 + λ2) ψ1 ψ2 0 0

0 D1 0 0 0
0 0 D2 0 0
0 λ2 0 D3 0
0 0 λ1 0 D4

 ,

D(APSm ) := C× (W 1,1[0,∞))4.

To model the boundary conditions (BCPS) we use an abstract approach as in
e.g. [CENN03]. For this purpose we consider the �boundary space�

∂XPS := C4,

and then de�ne �boundary operators� LPS and ΦPS. As the operator LPS we
take

LPS : D(APSm ) → ∂XPS,


p0

p1(x)
p2(x)
p3(x)
p4(x)

 7→ LPS


p0

p1(x)
p2(x)
p3(x)
p4(x)

 :=


p1(0)
p2(0)
p3(0)
p4(0)

 ,

and the operator ΦPS ∈ L(XPS, ∂XPS) is de�ned by the matrix

ΦPS :=


λ1 0 0 0 ψ2

λ2 0 0 ψ1 0
0 0 0 0 0
0 0 0 0 0

 .
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The operator (APS, D(APS)) on XPS is then de�ned as

APSp := APSm p, D(APS) := {p ∈ D(APSm ) | LPSp = ΦPSp}.

With these de�nitions the above equations (PS), (BCPS) and (ICPS) are
equivalent to the abstract Cauchy problem

dp(t)

dt
= APSp(t), t ∈ [0,∞),

p(0) = (c, f1, f2, f3, f4)
t ∈ XPS.

(ACPPS)

If APS is the generator of a strongly continuous semigroup (TPS(t))t≥0 and the
initial value in (ICPS) satis�es p(0) = (c, f1, f2, f3, f4)

t ∈ D(APS), then the
unique solution of (PS), (BCPS) and (ICPS) is given by

p0(t) = (TPS(t)p(0))1

pn(x, t) = (TPS(t)p(0))n+1(x), 1 ≤ n ≤ 4.

4.3. Boundary Spectrum

In this section, the boundary spectrum σb(APS) of APS is investigated using
the Characteristic Equation 1.3.6. For this purpose, we start from the operator
(APS0 , D(APS0 )) de�ned by

D(APS0 ) := {p ∈ D(APSm ) | LPSp = 0},
APS0 p := APSm p.

The following lemma gives the representation of the resolvent of the operator
APS0 needed below to discuss the irreducibility of the semigroup generated by the
operator APS.

Lemma 4.3.1. For the set SPS := {γ ∈ C | <γ > −r∞} \ {−(λ1 + λ2)} we
have

SPS j ρ(APS0 ).

Moreover, if γ ∈ SPS, then

R(γ,APS0 ) =


s1,1 s1,2 s1,3 0 0
0 s2,2 0 0 0
0 0 s3,3 0 0
0 s4,2 0 s4,4 0
0 0 s5,3 0 s5,5

 , (48)
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where

s1,1 = 1
γ+λ1+λ2

,

s1,2 = 1
γ+λ1+λ2

ψ1R(γ,D1),

s1,3 = 1
γ+λ1+λ2

ψ2R(γ,D2),

s2,2 = R(γ,D1),

s3,3 = R(γ,D2),

s4,2 = −(γ − λ2)R(γ,D3)R(γ,D1)

s4,4 = R(γ,D3),

s5,3 = −(γ − λ1)R(γ,D4)R(γ,D2)

s5,5 = R(γ,D4).

The resolvent operators of the di�erential operators Di(j = 1, 2, 3, 4) is given by

(R(γ,D1)p)(x) = e−(γ+λ2)x−
R x
0 r1(ξ)dξ

∫ x

0

e(γ+λ2)s+
R s
0 r1(ξ)dξp(s)ds,

(R(γ,D2)p)(x) = e−(γ+λ1)x−
R x
0 r2(ξ)dξ

∫ x

0

e(γ+λ1)s+
R s
0 r2(ξ)dξp(s)ds,

(R(γ,D3)p)(x) = e−γx−
R x
0 r1(ξ)dξ

∫ x

0

eγs+
R s
0 r1(ξ)dξp(s)ds,

(R(γ,D4)p)(x) = e−γx−
R x
0 r2(ξ)dξ

∫ x

0

eγs+
R s
0 r2(ξ)dξp(s)ds,

for p ∈ L1[0,∞).

Proof. A combination of [Gre84, Prop. 2.1] and [Nag89, Thm. 2.4] yields
that the resolvent set of APS0 satis�es

ρ(APS0 ) ⊇ SPS.

For γ ∈ SPS we can compute the resolvent of APS0 explicitly applying the formula
for the inverse of operator matrices, see [Nag89, Thm. 2.4]. This leads to the
representation (48) of the resolvent of APS0 .

Clearly, knowing the operator matrix in (48), we can directly compute that
it represents the resolvent of APS0 . �

The following consequence will be used to compute the spectrum of APS.

Corollary 4.3.2. The imaginary axis belongs to the resolvent set of APS0 ,
i.e.,

iR ⊆ ρ(APS0 )

The elements in ker(γ − APSm ) can be expressed as follows:
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Lemma 4.3.3. For γ ∈ C, we have

p ∈ ker(γ − APSm ) (49)
⇔

p = (p0, p1(·), p2(·), p3(·), p4(·))t ∈ D(Am), with

p0 =
d1

γ + λ1 + λ2

×
∫ ∞

0

r1(x)e
−(γ+λ2)x−

R x
0 r1(ξ)dξdx

+
d2

γ + λ1 + λ2

×
∫ ∞

0

r2(x)e
−(γ+λ1)x−

R s
0 r2(ξ)dξdx, (50)

p1(x) = d1e
−(γ+λ2)x−

R x
0 r1(ξ)dξ, (51)

p2(x) = d2e
−(γ+λ1)x−

R x
0 r2(ξ)dξ, (52)

p3(x) = [d1(1− e−λ2x) + d3]e
−γx−

R x
0 r1(ξ)dξ, (53)

p4(x) = [d2(1− e−λ1x) + d4]e
−γx−

R x
0 r2(ξ)dξ. (54)

Proof. If for p ∈ XPS, (50)-(54) are ful�lled, then we can easily compute
that p ∈ ker(γ−ARm). Conversely, the condition (49) gives a system of di�erential
equations. Solving these di�erential equations, we see that (50)-(54) are indeed
satis�ed. �

Moreover, since LPS is surjective, it follows from [Gre87, Lemma 1.2] that

LPS|ker(γ−APS
m ) : ker(γ − APSm ) → ∂XPS

is invertible for each γ ∈ ρ(APS0 ). We denote its inverse by

DPS
γ := (LPS|ker(γ−APS

m ))
−1 : ∂XPS −→ ker(γ − APSm ),

and call it �Dirichlet operator�.
We can give the explicit form of DR

γ as follows.

Lemma 4.3.4. For each γ ∈ ρ(APS0 ), the operator DPS
γ has the form

DPS
γ =


d1,1 d1,2 0 0
d2,1 0 0 0
0 d3,2 0 0
d4,1 0 d4,3 0
0 d5,2 0 d5,4

 ,
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where

d1,1 =
1

γ + λ1 + λ2

×
∫ ∞

0

r1(x)e
−(γ+λ2)x−

R x
0 r1(ξ)dξdx,

d1,2 =
1

γ + λ1 + λ2

×
∫ ∞

0

r2(x)e
−(γ+λ1)x−

R x
0 r2(ξ)dξdx,

d2,1 = e−(γ+λ2)x−
R x
0 r1(ξ)dξ,

d3,2 = e−(γ+λ2)x−
R x
0 r1(ξ)dξ,

d4,1 = e−γx−
R x
0 r1(ξ)dξ(1− e−λ2x),

d4,3 = e−γx−
R x
0 r1(ξ)dξ,

d5,2 = e−γx−
R x
0 r2(ξ)dξ(1− e−λ1x),

d5,4 = e−γx−
R x
0 r2(ξ)dξ.

The operator ΦRD
PS
γ can be computed explicitly for γ ∈ ρ(APS0 ).

Remark 4.3.5. For γ ∈ ρ(APS0 ) the operator ΦPSD
PS
γ can be represented by

the 4× 4-matrix

ΦPSD
PS
γ =


a1,1 a1,2 0 a1,4

a2,1 a2,2 a2,3 0
0 0 0 0
0 0 0 0

 ,

where

a1,1 =
λ1

γ + λ1 + λ2

×
∫ ∞

0

r1(x)e
−(γ+λ2)x−

R x
0 r1(ξ)dξdx,

a1,2 =
λ1

γ + λ1 + λ2

×
∫ ∞

0

r2(x)e
−(γ+λ1)x−

R x
0 r2(ξ)dξdx

+

∫ ∞

0

r2(x)e
−γx−

R x
0 r2(ξ)dξ(1− e−λ1x),

a2,1 =
λ2

γ + λ1 + λ2

×
∫ ∞

0

r1(x)e
−(γ+λ2)x−

R x
0 r1(ξ)dξdx

+

∫ ∞

0

r1(x)e
−γx−

R x
0 r1(ξ)dξ(1− e−λ2x),

a2,2 =
λ2

γ + λ1 + λ2

×
∫ ∞

0

r2(x)e
−(γ+λ1)x−

R x
0 r2(ξ)dξdx,

a2,3 =

∫ ∞

0

r1(x)e
−γx−

R x
0 r1(ξ)dξdx,

a1,4 =

∫ ∞

0

r2(x)e
−γx−

R x
0 r2(ξ)dξdx.

We now show that 0 is in the point spectrum of APS.
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Lemma 4.3.6. 0 is an eigenvalue of (APS, D(APS)) with geometric multiplicity
one.

Proof. Let APSP = 0, this is equivalent to the following system of equations.

− (λ1 + λ2)p0 +
2∑
i=1

∫ ∞

0

ri(x)pi(x)dx = 0, (55)

∂p1(x)

∂x
= −(λ2 + r1(x))p1(x), (56)

∂p2(x)

∂x
= −(λ1 + r2(x))p2(x), (57)

∂p3(x)

∂x
= −r1(x)p3(x) + λ2p1(x), (58)

∂p4(x)

∂x
= −r2(x)p4(x) + λ1p2(x), (59)

where

p1(0) = λ1p0 +

∫ ∞

0

p4(x)r2(x)dx, (60)

p2(0) = λ2p0 +

∫ ∞

0

p3(x)r1(x)dx, (61)

pi(0) = 0, i = 3, 4. (62)

Solving (55), (56), (57), (58) and (59) we obtain that

p0 =
a1

λ1 + λ2

∫ ∞

0

r1(x)e
−λ2x−

R x
0 r1(ξ) dξ

+
a2

λ1 + λ2

∫ ∞

0

r2(x)e
−λ1x−

R x
0 r2(ξ) dξ, (63)

p1(x) = a1e
−λ2x−

R x
0 r1(ξ) dξ, (64)

p2(x) = a2e
−λ1x−

R x
0 r2(ξ) dξ, (65)

p3(x) = a3e
−

R x
0 r1(ξ) dξ + a1(1− e−λ2x)e−

R x
0 r1(ξ) dξ, (66)

p4(x) = a3e
−

R x
0 r2(ξ) dξ + a2(1− e−λ1x)e−

R x
0 r2(ξ) dξ, (67)

Combining (66), (67) with (60), (61) and (62) we have

a1 = p1(0) = λ1p0 + a2 − a2

∫ ∞

0

r2(x)e
−λ1x−

R x
0 r2(ξ) dξ dx, (68)

a2 = p2(0) = λ2p0 + a1 − a1

∫ ∞

0

r1(x)e
−λ2x−

R x
0 r1(ξ) dξ dx, (69)

ai = pi(0) = 0, i = 3, 4. (70)
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Using the following abbreviations,

α : = 1−
∫ ∞

0

r2(x)e
−λ1x−

R x
0 r2(ξ) dξ dx,

β : = 1−
∫ ∞

0

r1(x)e
−λ2x−

R x
0 r1(ξ) dξ dx,

we obtain from (68) and (69) that

a1 =
λ2α+ λ1

1− αβ
p0, (71)

a2 =
λ1β + λ2

1− αβ
p0. (72)

Substituting separately (70), (71) and (72) into (64), (65), (66) and (67) we obtain
that

p0 = [
λ2α+ λ1

(λ1 + λ2)(1− αβ)

∫ ∞

0

r1(x)e
−λ2x−

R x
0 r1(ξ) dξ dx

+
λ1β + λ2

(λ1 + λ2)(1− αβ)

∫ ∞

0

r2(x)e
−λ1x−

R x
0 r2(ξ) dξ dx]p0, (73)

p1(x) =
λ2α+ λ1

1− αβ
e−λ2x−

R x
0 r1(ξ) dξp0, (74)

p2(x) =
λ1β + λ2

1− αβ
e−λ1x−

R x
0 r2(ξ) dξp0, (75)

p3(x) =
λ2α+ λ1

1− αβ
(1− e−λ2x)e−

R x
0 r1(ξ) dξp0, (76)

p4(x) =
λ1β + λ2

1− αβ
(1− e−λ1x)e−

R x
0 r2(ξ) dξp0. (77)

This shows that 0 is an eigenvalue of APS. By (73), (74), (75), (76) and (77) we
can easily see that the geometric multiplicity of 0 is one. �

If X∗
PS denotes the dual space of XPS, then

X∗
PS := C× (L∞[0,∞))4.

It is obvious that X∗
PS is a Banach space endowed with the norm

‖q‖ := max(|q0|, ‖q1‖L∞[0,∞), ‖q2‖L∞[0,∞), ‖q3‖L∞[0,∞), ‖q4‖L∞[0,∞)),
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where q = (q0, q1(x), q2(x), q3(x), q4(x))
t ∈ X∗

PS. Let (A∗PS, D(A∗PS)) be the ad-
joint operator of (APS, D(APS)), then (A∗PS, D(A∗PS)) can be expressed as

A∗PSq =


−(λ1 + λ2)q0 + λ1q1(0) + λ2q2(0)

−dq1(x)
dx

+ r1(x)q0 − (λ2 + r1(x))q1(x) + λ2q3(x)

−dq2(x)
dx

+ r2(x)q0 − (λ1 + r2(x))q2(x) + λ2q4(x)

−dq3(x)
dx

+ r1(x)q2(0)− r1(x)q3(x)

−dq4(x)
dx

+ r2(x)q1(0)− r2(x)q4(x)

 ,

D(A∗PS) =

(q0, q1(x), q2(x), q3(x), q4(x))

∣∣∣∣∣∣∣∣
qi(x)

dx
∈ L∞[0,∞), qi(x) is an

absolute continuous function,

and qi(x) is �nite, i = 1, 2, 3, 4

 .

Lemma 4.3.7. 0 is an eigenvalue of (A∗PS, D(A∗PS)) with geometric multiplicity
one.

Proof. Consider the equation A∗PSq = 0. This is equivalent to the following
system.

− (λ1 + λ2)q0 + λ1q1(0) + λ2q2(0) = 0, (78)

dq1(x)

dx
= (λ2 + r1(x))q1(x)− λ2q3(x)− r1(x)q0, (79)

dq2(x)

dx
= (λ1 + r2(x))q2(x)− λ1q4(x)− r2(x)q0, (80)

∂q3(x)

∂x
= r1(x)q3(x)− r1(x)q2(0), (81)

∂q4(x)

∂x
= r2(x)q4(x)− r2(x)q1(0), (82)

where
q1(∞) = q2(∞) = q3(∞) = q4(∞) = ω. (83)

Solving (79)�(82) we have

q1(x) = b1e
λ2x+

R x
0 r1(ξ) dξ + b3e

λ2x+
R x
0 r1(ξ) dξ(e−λ2x − 1)

− λ2q2(0)eλ2x+
R x
0 r1(ξ) dξ

∫ x

0

e−λ2τ+
R τ
0 r1(ξ) dξ dτ

− q2(0)eλ2x+
R x
0 r1(ξ) dξ(e−λ2x − 1)

− q0e
λ2x+

R x
0 r1(ξ) dξ

∫ x

0

r1(τ)e
−λ2τ+

R τ
0 r1(ξ) dξ dτ, (84)

q2(x) = b2e
λ1x+

R x
0 r2(ξ) dξ + b4e

λ1x+
R x
0 r2(ξ) dξ(e−λ1x − 1)

− λ1q1(0)eλ1x+
R x
0 r2(ξ) dξ

∫ x

0

e−λ1τ+
R τ
0 r2(ξ) dξ dτ
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− q1(0)eλ1x+
R x
0 r2(ξ) dξ(e−λ1x − 1)

− q0e
λ1x+

R x
0 r2(ξ) dξ

∫ x

0

r2(τ)e
−λ1τ+

R τ
0 r2(ξ) dξ dτ, (85)

q3(x) = b3e
R x
0 r1(ξ) dξ + q2(0)− q2(0)e

R x
0 r1(ξ) dξ, (86)

q4(x) = b4e
R x
0 r2(ξ) dξ + q1(0)− q1(0)e

R x
0 r2(ξ) dξ. (87)

Multiplying e−λ2x−
R x
0 r1(ξ) dξ on both sides of (84), multiplying e−λ1x−

R x
0 r2(ξ) dξ on

both sides of (85), multiplying e−
R x
0 r1(ξ) dξ on both sides of (86) and multiplying

e−
R x
0 r2(ξ) dξ on both sides of (87), then using (83) we deduce

b1 = λ2q2(0)

∫ ∞

0

eλ2x+
R x
0 r1(ξ) dξ dx+ q0

∫ ∞

0

r1(x)e
−λ2x+

R x
0 r1(ξ) dξ dx (88)

b2 = λ1q1(0)

∫ ∞

0

eλ1x+
R x
0 r2(ξ) dξ dx+ q0

∫ ∞

0

r2(x)e
−λ1x+

R x
0 r2(ξ) dξ dx (89)

b3 = q2(0), (90)

b4 = q1(0). (91)

Substituting (88)�(89) into (84)�(87) we derive

q1(x) = λ2q2(0)eλ2x+
R x
0 r1(ξ) dξ

∫ ∞

x

eλ2x+
R x
0 r1(ξ) dξ dx

+ q0e
−λ2x+

R x
0 r1(ξ) dξ

∫ ∞

x

r1(x)e
−λ2x+

R x
0 r1(ξ) dξ dx, (92)

q2(x) = λ1q1(0)eλ1x+
R x
0 r2(ξ) dξ

∫ ∞

x

eλ1x+
R x
0 r2(ξ) dξ dx

+ q0e
−λ1x+

R x
0 r2(ξ) dξ

∫ ∞

x

r2(x)e
−λ1x+

R x
0 r2(ξ) dξ dx, (93)

q3(x) = q2(0), (94)

q4(x) = q1(0). (95)

From (92), (93), (94) and (95) it follows that

q1(0) = λ2q2(0)

∫ ∞

0

eλ2x+
R x
0 r1(ξ) dξ dx+ q0

∫ ∞

0

r1(x)e
−λ2x+

R x
0 r1(ξ) dξ dx (96)

q1(0) = λ1q1(0)

∫ ∞

0

eλ1x+
R x
0 r2(ξ) dξ dx+ q0

∫ ∞

0

r2(x)e
−λ1x+

R x
0 r2(ξ) dξ dx (97)

q3(0) = q2(0), (98)

q4(0) = q1(0). (99)

Solving (96)�(99) we obtain

q1(0) = q2(0) = q3(0) = q4(0) = q0. (100)
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Combining (100) with (92), (93), (94) and (95) we have

q1(x) = q2(x) = q3(x) = q4(x) = q0. (101)

This shows that 0 is an eigenvalue of (A∗PS, D(A∗PS)). From (101) it follows that
the geometric multiplicity of 0 is one. �

Indeed, 0 is even the only spectral value of APS on the imaginary axis.

Lemma 4.3.8. Under the General Assumption 3.1.1, the spectrum σ(APS) of
APS satis�es

σ(APS) ∩ iR = {0}.

Proof. Let ai ∈ σ(APS) for some 0 6= a ∈ R and consider the 4× 4-matrix

ΦPSD
PS
ai =


b1,1 b1,2 0 b1,4
b2,1 b2,2 b2,3 0
0 0 0 0
0 0 0 0

 ,

where

b1,1 =
λ1

ai+ λ1 + λ2

×
∫ ∞

0

r1(x)e
−(ai+λ2)x−

R x
0 r1(ξ)dξ dx,

b1,2 =
λ1

ai+ λ1 + λ2

×
∫ ∞

0

r2(x)e
−(ai+λ1)x−

R x
0 r2(ξ)dξdx

+

∫ ∞

0

r2(x)e
−aix−

R x
0 r2(ξ)dξ(1− e−λ1x),

b2,1 =
λ2

ai+ λ1 + λ2

×
∫ ∞

0

r1(x)e
−(ai+λ2)x−

R x
0 r1(ξ)dξdx

+

∫ ∞

0

r1(x)e
−aix−

R x
0 r1(ξ)dξ(1− e−λ2x) dx,

b2,2 =
λ2

ai+ λ1 + λ2

×
∫ ∞

0

r2(x)e
−(ai+λ2)x−

R x
0 r2(ξ)dξdx,

b2,3 =

∫ ∞

0

r1(x)e
−aix−

R x
0 r1(ξ)dξdx,

b1,4 =

∫ ∞

0

r2(x)e
−γx−

R x
0 r2(ξ)dξ dx.

The General Assumption 4.1.1 implies that there exists r ∈ R+ such that
ri(x) > 0 for all x ∈ [r, r+2π

a
]. Using the abbreviation si(x) := ri(x)e

−
R x
0 µ(ξ) dξ, i =
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1, 2, we compute∣∣∣∣∫ ∞

0

ri(x)e
−γx−

R x
0 ri(ξ)dξdx

∣∣∣∣
=

∣∣∣∣∫ ∞

0

e−aixsi(x)dx

∣∣∣∣
≤

∣∣∣∣∣∣
∫ r+

2π
a

r

e−aixsi(x) dx

∣∣∣∣∣∣ +

∣∣∣∣∣
∫ r

0

e−aixsi(x) dx+

∫ ∞

r+
2π
a

e−aixsi(x) dx

∣∣∣∣∣
≤

∣∣∣∣∣∣
∫ r+

2π
a

r

e−aixsi(x) dx

∣∣∣∣∣∣ +

∫ r

0

si(x) dx+

∫ ∞

r+
2π
a

si(x) dx.

The �rst term on the right hand side of the above inequality can be estimated as∣∣∣∣∣∣
∫ r+

2π
a

r

e−aixsi(x) dx

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∫ r+

π
a

r

e−aixsi(x) dx+

∫ r+
2π
a

r+
π
a

e−aixsi(x) dx

∣∣∣∣∣∣
=

∣∣∣∣∣
∫ r+

π
a

r

e−aixsi(x) dx+

∫ r+
π
a

r

e−ai(x+
π
a )si

(
x+ π

a

)
dx

∣∣∣∣∣
=

∣∣∣∣∣
∫ r+

π
a

r

e−aixsi(x) dx−
∫ r+

π
a

r

e−aixsi
(
x+ π

a

)
dx

∣∣∣∣∣
=

∣∣∣∣∣
∫ r+

π
a

r

e−aix
(
si(x)− si

(
x+ π

a

))
dx

∣∣∣∣∣
≤

∫ r+
π
a

r

∣∣si(x)− si
(
x+ π

a

)∣∣ dx
<

∫ r+
π
a

r

(
si(x) + si

(
x+ π

a

))
dx

=

∫ r+
π
a

r

si(x) dx+

∫ 2π
a

π
a

si(x) dx

=

∫ r+
2π
a

r

si(x) dx,

where we used the strict positivity of ri(x) on
[
r, r + 2π

a

]
in the last inequality.

We thus obtain∣∣∣∣∫ ∞

0

ri(x)e
−γx−

R x
0 ri(ξ)dξdx

∣∣∣∣ < ∫ r+
2π
a

r

si(x) +

∫ r

0

si(x) dx+

∫ ∞

r+
2π
a

si(x) dx
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=

∫ ∞

0

si(x) dx = 1. (102)

Using (102) we can estimate each column sum of absolute entries of ΦPSDai as

4∑
i=1

|(ΦPSD
PS
ai )i1| = |b1,1|+ |b2,1|

= | λ1

ai+ λ1 + λ2

×
∫ ∞

0

r1(x)e
−(ai+λ2)x−

R x
0 r1(ξ)dξdx|

+ | λ2

ai+ λ1 + λ2

×
∫ ∞

0

r1(x)e
−(ai+λ2)x−

R x
0 r1(ξ)dξdx

+

∫ ∞

0

r1(x)e
−aix−

R x
0 r1(ξ)dξ(1− e−λ2x) dx|

≤ λ1√
a2 + (λ1 + λ2)2

×
∫ ∞

0

|r1(x)e−(ai+λ2)x−
R x
0 r1(ξ)dξ| dx

+
λ2√

a2 + (λ1 + λ2)2
×

∫ ∞

0

|r1(x)e−(ai+λ2)x−
R x
0 r1(ξ)dξ| dx

+

∫ ∞

0

|r1(x)e−aix−
R x
0 r1(ξ)dξ(1− e−λ2x)| dx

=
λ1√

a2 + (λ1 + λ2)2
×

∫ ∞

0

r1(x)e
−λ2x−

R x
0 r1(ξ)dξ dx

+
λ2√

a2 + (λ1 + λ2)2
×

∫ ∞

0

r1(x)e
−λ2x−

R x
0 r1(ξ)dξ dx

+

∫ ∞

0

r1(x)e
−

R x
0 r1(ξ)dξ(1− e−λ2x) dx

<

∫ ∞

0

r1(x)e
−λ2x−

R x
0 r1(ξ)dξdx

+

∫ ∞

0

r1(x)e
−

R x
0 r1(ξ)dξ(1− e−λ2x)

=

∫ ∞

0

r1(x)e
−

R x
0 r1(ξ)dξdx = 1, (103)

4∑
i=1

|(ΦPSD
PS
ai )i2| = |b1,2|+ |b2,2|

= | λ1

ai+ λ1 + λ2

×
∫ ∞

0

r2(x)e
−(ai+λ1)x−

R x
0 r2(ξ)dξdx

+

∫ ∞

0

r2(x)e
−aix−

R x
0 r2(ξ)dξ(1− e−λ1x) dx|
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+ | λ2

ai+ λ1 + λ2

×
∫ ∞

0

r2(x)e
−(ai+λ1)x−

R x
0 r2(ξ)dξdx|

≤ λ2√
a2 + (λ1 + λ2)2

×
∫ ∞

0

|r2(x)e−(ai+λ1)x−
R x
0 r2(ξ)dξ| dx

+
λ1√

a2 + (λ1 + λ2)2
×

∫ ∞

0

|r2(x)e−(ai+λ1)x−
R x
0 r2(ξ)dξ| dx

+

∫ ∞

0

|r2(x)e−aix−
R x
0 r2(ξ)dξ(1− e−λ1x)| dx

=
λ2√

a2 + (λ1 + λ2)2
×

∫ ∞

0

r2(x)e
−λ1x−

R x
0 r2(ξ)dξ dx

+
λ1√

a2 + (λ1 + λ2)2
×

∫ ∞

0

r2(x)e
−λ1x−

R x
0 r2(ξ)dξ dx

+

∫ ∞

0

r2(x)e
−

R x
0 r2(ξ)dξ(1− e−λ1x) dx

<

∫ ∞

0

r2(x)e
−λ1x−

R x
0 r2(ξ)dξdx

+

∫ ∞

0

r2(x)e
−

R x
0 r2(ξ)dξ(1− e−λ1x)

=

∫ ∞

0

r2(x)e
−

R x
0 r2(ξ)dξdx = 1, (104)

4∑
i=1

|(ΦPSD
PS
ai )i3| = |b2,3| =

∣∣∣∣∫ ∞

0

r1(x)e
−aix−

R x
0 r1(ξ)dξdx

∣∣∣∣
<

∫ ∞

0

r1(x)e
−

R x
0 r1(ξ)dξdx = 1, (105)

4∑
i=1

|(ΦPSD
PS
ai )i4| = |b1,4| =

∣∣∣∣∫ ∞

0

r2(x)e
−aix−

R x
0 r2(ξ)dξdx

∣∣∣∣
<

∫ ∞

0

r2(x)e
−

R x
0 r2(ξ)dξdx = 1. (106)

Using (103), (104), (105) and (106) we derive

‖ΦPSD
PS
ai ‖ < 1,

thus the spectral radius ful�lls

r(ΦPSD
PS
γ ) ≤ ‖ΦPSD

PS
γ ‖ < 1.

By the Characteristic Equation 1.3.6 we obtain that ai /∈ σ(APS) for all a ∈
R, a 6= 0, i.e., σ(APS) ∩ iR = {0}. �
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4.4. Well-posedness of the System

In this section we prove the well-posedness of the system. In order to do this,
we will need some lemmas.

Lemma 4.4.1. APS : D(APS) → R(APS) ⊂ XPS is a closed linear operator
and D(APS) is dense in XPS.

Proof. We �rst prove that (APS, D(APS) is closed operator. For given

Pn = (p
(n)
0 , p

(n)
1 (x), p

(n)
2 (x), p

(n)
3 (x), p

(n)
4 (x)) ∈ D(APS),

P0 = (p
(0)
0 , p

(0)
1 (x), p

(0)
2 (x), p

(0)
3 (x), p

(0)
4 (x)) ∈ XPS,

we suppose that

lim
n→∞

Pn = P0,

lim
n→∞

APS(Pn)
t = (FPS)

t,

where FPS = (h0, h1(x), h2(x), h3(x), h4(x)) ∈ XPS. That is,

lim
n→∞

p
(n)
0 = p

(0)
0 ,

lim
n→∞

∫ ∞

0

|p(n)
i (x)− p

(0)
i (x)|dx = 0, (i = 1, 2, 3, 4).

Then we obtain from the General Assumption 4.1.1 that

lim
n→∞

∫ ∞

0

p
(n)
j (x)rj(x) =

∫ ∞

0

p
(0)
j (x)rj(x), j = 1, 2.

Furthermore,

lim
n→∞

A(Pn)
t = lim

n→∞



−(λ1 + λ2)p
(n)
0 +

∑2
j=1

∫∞
0
rj(x)p

(n)
j (x)dx

−dp
(n)
1 (x)

dx
− (λ2 + r1(x))p

(n)
1 (x)

−dp
(n)
2 (x)

dx
− (λ1 + r2(x))p

(n)
2 (x)

−dp
(n)
3 (x)

dx
+ λ2p

(n)
1 (x)− r1(x)p

(n)
3 (x)

−dp
(n)
4 (x)

dx
+ λ1p

(n)
2 (x)− r2(x)p

(n)
4 (x)


=


h0

h1(x)
h2(x)
h3(x)
h4(x)

 .
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This is equivalent to the following system of equations:

lim
n→∞

[−(λ1 + λ2)p
(n)
0 +

2∑
j=1

∫ ∞

0

rj(x)p
(n)
j (x)dx] = h0,

lim
n→∞

[−dp
(n)
1 (x)

dx
− (λ2 + r1(x))p

(n)
1 (x)] = h1(x),

lim
n→∞

[−dp
(n)
2 (x)

dx
− (λ1 + r2(x))p

(n)
2 (x)] = h2(x),

lim
n→∞

[−dp
(n)
3 (x)

dx
+ λ2p

(n)
1 (x)− r1(x)p

(n)
3 (x)] = h3(x),

lim
n→∞

[−dp
(n)
4 (x)

dx
+ λ1p

(n)
2 (x)− r2(x)p

(n)
4 (x)] = h4(x).

Integrating both sides of the last four equations from 0 to β, we have

lim
n→∞

∫ β

0

[−dp
(n)
1 (x)

dx
− (λ2 + r1(x))p

(n)
1 (x)]

=

∫ β

0

lim
n→∞

[−dp
(n)
1 (x)

dx
− (λ2 + r1(x))p

(n)
1 (x)]

=

∫ β

0

h1(x),

lim
n→∞

∫ β

0

[−dp
(n)
2 (x)

dx
− (λ1 + r2(x))p

(n)
2 (x)]

=

∫ β

0

lim
n→∞

[−dp
(n)
2 (x)

dx
− (λ1 + r2(x))p

(n)
2 (x)]

=

∫ β

0

h2(x),

lim
n→∞

∫ β

0

[−dp
(n)
3 (x)

dx
+ λ2p

(n)
1 (x)− r1(x)p

(n)
3 (x)]

=

∫ β

0

lim
n→∞

[−dp
(n)
3 (x)

dx
+ λ2p

(n)
1 (x)− r1(x)p

(n)
3 (x)]

=

∫ β

0

h3(x),

lim
n→∞

∫ β

0

[−dp
(n)
4 (x)

dx
+ λ1p

(n)
2 (x)− r2(x)p

(n)
4 (x)]

=

∫ β

0

lim
n→∞

[−dp
(n)
4 (x)

dx
+ λ1p

(n)
2 (x)− r2(x)p

(n)
4 (x)]
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=

∫ β

0

h4(x).

This yields

lim
n→∞

[−p(n)
1 (β) + p

(n)
1 (0)−

∫ β

0

(λ2 + r1(x))p
(n)
1 (x)dx]

= −p(0)
1 (β) + p

(0)
1 (0)−

∫ β

0

(λ2 + r1(x))p
(0)
1 (x)dx

=

∫ β

0

h1(x), (107)

lim
n→∞

[−p(n)
2 (β) + p

(n)
2 (0)−

∫ β

0

(λ1 + r2(x))p
(n)
2 (x)dx]

= −p(0)
2 (β) + p

(0)
2 (0)−

∫ β

0

(λ1 + r2(x))p
(0)
2 (x)dx

=

∫ β

0

h2(x), (108)

lim
n→∞

[−p(n)
3 (β) + p

(n)
3 (0) + λ2

∫ β

0

p
(n)
1 (x)−

∫ β

0

r1(x))p
(n)
3 (x)dx]

= −p(0)
3 (β) + p

(0)
3 (0) + λ2

∫ β

0

p
(0)
1 (x)−

∫ β

0

r1(x))p
(0)
3 (x)dx

=

∫ β

0

h3(x), (109)

lim
n→∞

[−p(n)
4 (β) + p

(n)
4 (0) + λ1

∫ β

0

p
(n)
2 (x)−

∫ β

0

r2(x))p
(n)
4 (x)dx]

= −p(0)
4 (β) + p

(0)
4 (0) + λ1

∫ β

0

p
(0)
2 (x)−

∫ β

0

r2(x))p
(0)
4 (x)dx

=

∫ β

0

h4(x). (110)

We know from the boundedness of rj(x), j = 1, 2 that
∫∞

0
|rj(x)p(0)

j (x)|dx < ∞
and

∫∞
0
|rj(x)p(0)

j+1(x)|dx < ∞, j = 1, 2. Further, we have
∫∞

0
|hi(x)|dx < ∞, i =

1, 2, 3, 4. It follows from (107), (108), (109) and (110) that p(0)
i (β) is absolutely

continuous and

p
′(0)
1 (β) = −(λ2 + r1(β))p

(0)
1 (β)− h1(β) ∈ L1[0,∞),

p
′(0)
2 (β) = −(λ1 + r2(β))p

(0)
2 (β)− h2(β) ∈ L1[0,∞),

p
′(0)
3 (β) = λ2p

(0)
1 (β) + r1(β)p

(0)
3 (β)− h3(β) ∈ L1[0,∞),
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p
′(0)
4 (β) = λ1p

(0)
2 (β) + r2(β)p

(0)
4 (β)− h4(β) ∈ L1[0,∞).

Therefore, P0 ∈ D(APS) and

lim
n→∞

p
′(n)
1 (β) = lim

n→∞
[−(λ2 + r1(β))p

(0)
1 (β)]− h1(β) = p

′(0)
1 (β),

lim
n→∞

p
′(n)
2 (β) = lim

n→∞
[−(λ1 + r2(β))p

(0)
2 (β)]− h2(β) = p

′(0)
2 (β),

lim
n→∞

p
′(n)
3 (β) = lim

n→∞
[λ2p

(n)
1 (β) + r1(β)p

(n)
3 (β)]− h3(β) = p

′(0)
3 (β),

lim
n→∞

p
′(n)
4 (β) = lim

n→∞
[λ1p

(n)
2 (β) + r2(β)p

(n)
4 (β)]− h4(β) = p

′(0)
4 (β).

From the deduction above, we have

−(λ1 + λ2)p
(0)
0 +

2∑
j=1

∫ ∞

0

rj(x)p
(0)
j (x)dx = h0,

−dp
(0)
1 (x)

dx
− (λ2 + r1(x))p

(0)
1 (x) = h1(x),

−dp
(0)
2 (x)

dx
− (λ1 + r2(x))p

(0)
2 (x) = h2(x),

−dp
(0)
3 (x)

dx
+ λ2p

(0)
1 (x)− r1(x)p

(0)
3 (x) = h3(x),

−dp
(0)
4 (x)

dx
+ λ1p

(0)
2 (x)− r2(x)p

(0)
4 (x) = h4(x).

This shows that APS(P0)
t = (FPS)

t, hence (APS, D(APS)) is closed.
Now we prove that D(APS) is dense in XPS.
We de�ne

EPS =

{
p(x) = (p0, p1, p2, p3(x), p4(x), p5(x))

∣∣∣∣ p0 ∈ R, pi(x) ∈ C∞
0 [0,∞),

i = 1, 2, 3, 4

}
.

Then by [Ada75] ER is dense in XR. If we de�ne

HPS =

p(x) = (p0, p1(x), p2(x), p3(x), p4(x))

∣∣∣∣∣∣∣∣∣
pi(x) ∈ C∞[0,∞) and
there exists a number

αi such that pi(x) = 0,

for x ∈ [0, αi], i = 1, 2, 3, 4

 ,

then HPS is dense in EPS. Therefore, in order to prove that D(APS) is dense in
XPS, it su�ces to prove that D(APS) is dense in HPS. Take any

p(x) = (p0, p1(x), p2(x), p3(x), p4(x)) ∈ HPS,

then there exist numbers αi such that pi(x) = 0, for all x ∈ [0, αi] (i = 1, 2, 3, 4),
i.e, pi(x) = 0 for x ∈ [0, s], here 0 < s = min{α1, α2, α3, α4}. We introduce a
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function

τ s(0) = (τ s0 , τ
s
1 (0), τ s2 (0), τ s3 (0), τ s4 (0))

= (p0, λ1p0 +

∫ ∞

0

p4(x)r2(x)dx, λ2p0 +

∫ ∞

0

p3(x)r1(x)dx, 0, 0)

τ s(x) = (τ s0 , τ
s
1 , τ

s
2 , τ

s
3 (x), τ s4 (x), τ s5 (x)),

where

τ si (x) =

{
τ si (0)(1− x

s
)2 if x ∈ [0, s)

pi(x) if x ∈ [s,∞),
i = 1, 2, 3, 4.

It is easy to verify that τ s(x) ∈ D(AR). Moreover

‖p− τ s‖ =
4∑
i=1

∫ s

0

|τ si (0)|(1− x

s
)2dx =

4∑
i=1

|τ si (0)|
s

3
→ 0, as s→ 0.

This shows that D(APS) is dense in HPS, hence in XPS. �

Lemma 4.4.2. (APS, D(APS)) is a dispersive operator.

Proof. For p = (p0, p1(x), p2(x), p3(x), p4(x)) ∈ D(APS), we de�ne

q = (q0, q1(x), q2(x), q3(x), q4(x)) ∈ X∗
PS,

where

q0 = ‖P‖sgn+(p0), qi(x) = ‖P‖sgn+(pi(x)), i = 1, 2, 3, 4,

and

sgn+(p0) =

{
1 if pi > 0,

0 if pi ≤ 0,

sgn+(pi(x)) =

{
1 if pi(x) > 0,

0 if pi(x) ≤ 0,
i = 1, 2, 3, 4.
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If we de�ne Li = {x ∈ [0,∞)|pi(x) > 0} and Mi = {x ∈ [0,∞)|pi(x) ≤ 0} for
i = 1, 2, 3, 4, then we have∫ ∞

0

dpi(x)

dx
sgn+(pi(x)) dx =

∫
Li

dpi(x)

dx
sgn+(pi(x)) dx

+

∫
Mi

dpi(x)

dx
sgn+(pi(x)) dx

=

∫
Li

dpi(x)

dx
sgn+(pi(x)) dx

=

∫
Li

dpi(x)

dx
dx

=

∫ ∞

0

d[pi(x)]
+

dx
dx

= −[pi(0)]
+, i = 1, 2, 3, 4, (111)∫ ∞

0

rj(x)pj(x)sgn+(pi)dx ≤
∫ ∞

0

rj(x)[pj(x)]
+dx, j = 1, 2, i = 1, 2, 3, 4, (112)∫ ∞

0

rk(x)pk+2(x)sgn+(pi)dx ≤
∫ ∞

0

rk(x)[pk+2(x)]
+dx,

k = 1, 2, i = 1, 2, 3, 4, (113)
4∑
i=1

[pi(0)]+ =
2∑
i=1

[pi(0)]
+ = [λ1p0(t) +

∫ ∞

0

p4(x, t)r2(x)dx]
+

+ [λ2p0(t) +

∫ ∞

0

p3(x, t)r1(x)dx]
+

≤ (λ1 + λ2)[p0]
+ +

∫ ∞

0

r1(x)[p3(x)]
+dx

+

∫ ∞

0

r2(x)[p4(x)]
+dx. (114)

Using (111), (112), (113), (114) and the boundary conditions on p ∈ D(APS) we
obtain that

〈APSp, q〉 = [−(λ1 + λ2)p0 +
2∑
j=1

∫ ∞

0

rj(x)pj(x)dx]‖P‖sgn+(p0)

+

∫ ∞

0

[−dp1(x)

dx
− (λ2 + r1(x))p1(x)]‖P‖sgn+(p1(x))

+

∫ ∞

0

[−dp2(x)

dx
− (λ1 + r2(x))p2(x)]‖P‖sgn+(p2(x))
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+

∫ ∞

0

[−dp3(x)

dx
+ λ2p1(x)− r1(x)p3(x)]‖P‖sgn+(p3(x))

+

∫ ∞

0

[−dp4(x)

dx
+ λ1p2(x)− r2(x)p4(x)]‖P‖sgn+(p4(x))

= ‖P‖{[−(λ1 + λ2)p0sgn+(p0) +
2∑
j=1

∫ ∞

0

rj(x)pj(x)sgn+(p0)dx]

+

∫ ∞

0

[−dp1(x)

dx
× sgn+(p1(x))− (λ2 + r1(x))p1(x)sgn+(p1(x))]

+

∫ ∞

0

[−dp2(x)

dx
× sgn+(p2(x))− (λ1 + r2(x))p2(x)sgn+(p2(x))]

+

∫ ∞

0

[−dp3(x)

dx
× sgn+(p3(x)) + λ2p1(x)sgn+(p3(x))

− r1(x)p3(x)sgn+(p3(x))]

+

∫ ∞

0

[−dp4(x)

dx
× sgn+(p4(x)) + λ1p2(x)sgn+(p4(x))

− r2(x)p4(x)sgn+(p4(x))]}

≤ ‖P‖{[−(λ1 + λ2)[p0]
+ +

2∑
j=1

∫ ∞

0

rj(x)[pj(x)]
+dx]

+

∫ ∞

0

[−(λ2 + r1(x))[p1(x)]
+]dx+

∫ ∞

0

[−(λ1 + r2(x))[p2(x)]
+]dx

+ λ2

∫ ∞

0

[p1(x)]
+dx−

∫ ∞

0

r1(x)[p3(x)]
+dx+ λ1

∫ ∞

0

[p2(x)]
+dx

−
∫ ∞

0

r2(x)[p4(x)]
+dx+

4∑
i=1

[pi(0)]
+}

= ‖P‖{−(λ1 + λ2)[p0]
+ −

∫ ∞

0

r1(x)[p3(x)]
+dx

−
∫ ∞

0

r2(x)[p4(x)]
+dx+

4∑
i=1

[pi(0)]
+} ≤ 0.

By De�nition 1.2.5 we obtain that (APS, D(APS)) is a dispersive operator. �

Lemma 4.4.3. If γ ∈ R, γ > 0, then γ ∈ ρ(APS).

Proof. Let γ ∈ R, γ > 0, then all the entries of ΦPSD
PS
γ are positive and

we can estimate each column sum as

a1,1 + a2,1 =
λ1

γ + λ1 + λ2

×
∫ ∞

0

r1(x)e
−(γ+λ2)x−

R x
0 r1(ξ)dξ dx
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+
λ2

γ + λ1 + λ2

×
∫ ∞

0

r1(x)e
−(γ+λ2)x−

R x
0 r1(ξ)dξ dx

+

∫ ∞

0

r1(x)e
−γx−

R x
0 r1(ξ)dξ(1− e−λ2x)

=
λ1 + λ2

γ + λ1 + λ2

×
∫ ∞

0

r1(x)e
−(γ+λ2)x−

R x
0 r1(ξ)dξ dx

+

∫ ∞

0

r1(x)e
−γx−

R x
0 r1(ξ)dξ(1− e−λ2x)

<

∫ ∞

0

r1(x)e
−(γ+λ2)x−

R x
0 r1(ξ)dξdx

+

∫ ∞

0

r1(x)e
−γx−

R x
0 r1(ξ)dξ(1− e−λ2x)

=

∫ ∞

0

r1(x)e
−γx−

R x
0 r1(ξ)dξdx < 1,

a1,2 + a2,2 =
λ1

γ + λ1 + λ2

×
∫ ∞

0

r2(x)e
−(γ+λ1)x−

R x
0 r2(ξ)dξdx

+

∫ ∞

0

r2(x)e
−γx−

R x
0 r2(ξ)dξ(1− e−λ1x)

+
λ2

γ + λ1 + λ2

×
∫ ∞

0

r2(x)e
−(γ+λ2)x−

R x
0 r2(ξ)dξdx

=
λ1 + λ2

γ + λ1 + λ2

×
∫ ∞

0

r2(x)e
−(γ+λ1)x−

R x
0 r2(ξ)dξdx

+

∫ ∞

0

r2(x)e
−γx−

R x
0 r2(ξ)dξ(1− e−λ1x)

<

∫ ∞

0

r2(x)e
−(γ+λ1)x−

R x
0 r2(ξ)dξdx

+

∫ ∞

0

r2(x)e
−γx−

R x
0 r2(ξ)dξ(1− e−λ1x)

=

∫ ∞

0

r2(x)e
−aix−

R x
0 r2(ξ)dξdx < 1,

a2,3 =

∫ ∞

0

r1(x)e
−γx−

R x
0 r1(ξ)dξdx <

∫ ∞

0

r1(x)e
−

R x
0 r1(ξ)dξdx = 1,

a1,4 =

∫ ∞

0

r2(x)e
−γx−

R x
0 r2(ξ)dξdx <

∫ ∞

0

r2(x)e
−

R x
0 r2(ξ)dξdx = 1.

It follows from this that ‖ΦPSD
PS
γ ‖ < 1, and thus also

r(ΦPSD
PS
γ ) ≤ ‖ΦPSD

PS
γ ‖ < 1.
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Therefore, 1 /∈ σ(ΦPSD
PS
γ ). Using the Characteristic Equation 1.3.6 we conclude

that γ ∈ ρ(APS) for γ ∈ R, γ > 0. �

Combining Lemma 4.4.1, Lemma 4.4.2, Lemma 4.4.3 with Theorem 1.2.6 we
immediately obtain the following result.

Theorem 4.4.4. The operator (APS, D(APS)) generates a positive contraction
C0-semigroup (TPS(t))t≥0.

Using Proposition 1.2.4 and Theorem 4.4.4 we can state our main result.

Theorem 4.4.5. The system (PS), (BCPS) and (ICPS,0) has a unique posi-
tive solution p(t, x) which satis�es ‖p(t, .)‖ = 1, t ∈ [0,∞).

Proof. From Proposition 1.2.4 and Theorem 4.4.4 we obtain that the asso-
ciated abstract Cauchy problem (ACPPS) has a unique positive time-dependent
solution p(t, x), which can be expressed as

p(t, x) = TPS(t)p(0) = TPS(t)(1, 0, 0, 0, · · · ). (115)

Let P (t) = p(t, x) = (p0(t), p1(t, x), p2(t, x), p3(t, x), p4(t, x)), then P (t) satis�es
the system of equations:

dp0(t)

dt
= −(λ1 + λ2)p0(t) +

2∑
i=1

∫ ∞

0

ri(x)pi(x, t)dx, (116)

∂p1(t, x)

∂t
= −∂p1(t, x)

∂x
− (λ2 + r1(x))p1(t, x), (117)

∂p2(t, x)

∂t
= −∂p2(t, x)

∂x
− (λ1 + r2(x))p1(t, x), (118)

∂p3(t, x)

∂t
= −∂p3(t, x)

∂x
− r1(x)p3(t, x) + λ2p1(t, x), (119)

∂p4(t, x)

∂t
= −∂p4(t, x)

∂x
− r2(x)p4(t, x) + λ1p2(t, x), (120)

p1(t, 0) = λ1p0(t) +

∫ ∞

0

p4(t, x)r2(x)dx, (121)

p2(t, 0) = λ2p0(t) +

∫ ∞

0

p3(t, x)r1(x)dx, (122)

pi(t, 0) = 0, i = 3, 4, (123)

P (0) = (1, 0, 0, 0, 0, · · · ). (124)

Since ∫ ∞

0

∂pi(t, x)

∂x
dx = pi(t,∞)− pi(t, 0) = −pi(t, 0), i = 1, 2, 3, 4. (125)
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Using (116)�(125) we compute

d‖P (t)‖
dt

=
dp0(t)

dt
+

4∑
i=1

∫ ∞

0

∂pj(t, x)

∂t
dx

= −(λ1 + λ2)p0(t) +
2∑
i=1

∫ ∞

0

ri(x)pi(t, x)dx,

+

∫ ∞

0

[−∂p1(t, x)

∂x
− (λ2 + r1(x))p1(t, x)],

+

∫ ∞

0

[−∂p2(t, x)

∂x
− (λ1 + r2(x))p1(t, x)],

+

∫ ∞

0

[−∂p3(t, x)

∂x
− r1(x)p3(t, x) + λ2p1(t, x)],

+

∫ ∞

0

[−∂p4(t, x)

∂x
− r2(x)p4(t, x) + λ1p2(t, x)],

= −λ1p0(t)− λ2p0(t)−
∫ ∞

0

r1(x)p3(t, x)dx

−
∫ ∞

0

r2(x)p4(t, x)dx+
4∑
i=1

pi(0, t)

= −
4∑
i=1

pi(0, t) +
4∑
i=1

pi(0, t) = 0. (126)

By (115) and (126) we obtain

d‖P (t)‖
dt

=
d‖TPS(t)P (0)‖

dt
= 0.

Therefore,
‖TPS(t)P (0)‖ = ‖P (t)‖ = ‖P (0)‖ = 1.

This shows ‖p(·, t)‖ = 1, ∀t ∈ [0,∞). �

4.5. Asymptotic Stability of the Solution

While the semigroup (TPS(t))t≥0 generated by (APS, D(APS)) is not irre-
ducible, we know that its �xed space is one-dimensional with a strictly positive
eigenvector and no other imaginary eigenvalues of A except 0 (see Lemma 4.3.6
and Lemma 4.3.8 ). This means that the semigroup (T(t)) is relatively weakly
compact and we can apply [EFNS07, Thm. 2.5] to obtain "almost weak conver-
gence".
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Theorem 4.5.1. For all p ∈ XPS there exist p′ ∈ X ′
PS, p

′ � 0 and a set
M ⊂ R+ with density 1 such that

TPS(t)p
σ→ 〈p′, p〉p̃ as t ∈M, t→∞,

where kerAPS = 〈p̃〉, p̃� 0.

Since the semigroup gives the solutions of the original system, we obtain the
asymptotic behaviour of this system.

Corollary 4.5.2. The time-dependent solution of the system (PS), (BCPS)
and (ICPS,0) converges almost weakly to the steady-state solution as time tends
to in�nity.



Table of symbols

D(A) domain of A

fix(S(t))t≥0 �xed space of the semigroup (S(t))t≥0

kerT kernel of T

L(X) space of bounded linear operators on X

L1(Ω, µ) space of complex valued integrable functions on
Ω with respect to µ

L1
C(Ω, µ) space of complex valued integrable functions on

Ω with respect to µ

L1
R(Ω, µ) space of real valued integrable functions on

Ω with respect to µ
<z real part of Z

r(T ) spectral radius of T

rg(T ) range of T

ρ(A) resolvent set of A

R(γ,A) resolvent of A in γ

s(A) spectral bound of A

σ(A) spectrum of A

σb(A) boundary spectrum of A

σp(A) point spectrum of A

σr(A) residual spectrum of A

89





Bibliography

[ABHN01] W. Arendt, C. J. K. Batty, M. Hieber, and F. Neubrander, Vector-valued Laplace
Transforms and Cauchy Problems, Monographs in Mathematics, vol. 96, Birkhäuser
Verlag, 2001.

[Ada75] R.A. Adams, Sobolev Spaces, Academic Press, 1975.
[CENN03] V. Casarino, K.-J. Engel, R. Nagel, and G. Nickel, A semigroup approach to bound-

ary feedback systems, Integr. Equ. Oper. Theory 47 (2003), 289�306.
[Cox55] D.R. Cox, The analysis of non-markovian stochastic processes by the inclusion of

supplementary variables, Pro.Cambridge Philos.Soc. 51 (1955), 433�441.
[CT83] M.L. Chaudhry and J.G.C. Templeton, A �rst Course in Bulk Queues, John Wiley

& Sons, New York, 1983.
[EFNS07] T. Eisner, B. Farkas, R. Nagel, and A. Serény, Weakly and almost weakly stable

C0−semigroups, Int. J. Dyn. Syst. Di�. Eq. 1 (2007), 44�57.
[EN00] K.-J. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolution Equa-

tions, Graduate Texts in Mathematics, vol. 194, Springer-Verlag, 2000.
[EN06] , A Short Course on Operator Semigroups, Springer-Verlag, 2006.
[GLZ01] G. Gupur, Xue-zhi Li, and Guang-tian Zhu, Functional Analysis Method in Queue-

ing Theory, Research Information Ltd., Hertfordshire, 2001.
[Gol85] J.A. Goldstein, Semigroups of Linear Operators and Applications, Oxford Mathe-

matical Monographs, Oxford University Press, 1985.
[Gre84] G. Greiner, A typical Perron-Frobenius theorem with applications to an age-

dependent population equation, In�nite-dimensional systems (Retzhof, 1983), Lec-
ture Notes in Math., vol. 1076, Springer, 1984, pp. 86�100.

[Gre87] G. Greiner, Perturbing the boundary conditions of a generator, Houston J. Math.
13 (1987), 213�229.

[Guo03] Wei-hua Guo, The existence and uniqueness of the solution for a parallel main-
tenance system with two components, J.Xinyang Nor.UNi.(in Chinese) 16 (2003),
270�272.

[Gup95] S.M Gupta, Stochastic analysis of systems with primary and secondary failures,
Microelectron. Reliab. 35 (1995), 65�71.

[Gup02] G. Gupur, Resolvent set of the M/MB/1 operator, Computers Math. App. 44
(2002), 67�82.

[GZ98] G. Gupur and H.-X. Zhang, Existence and uniqueness of positive solution of
M/MB/1 model, Advances in 98 (1998), 280�285.

[HR07a] A. Haji and A. Radl, Asymptotic stability of the solution of the M/MB/1 queueing
model, Computers Math. App. 53 (2007), 1411�1420.

[HR07b] , A semigroup approach to queueing systems, Semigroup Forum 75 (2007),
610�624.

[KS05] M. Kramar and E. Sikolya, Spectral properties and asymptotic periodicity of �ows
in networks, Math. Z. 249 (2005), 139�162.

[MN91] P. Meyer-Nieberg, Banach Lattices, Springer-Verlag, 1991.

91



92 BIBLIOGRAPHY

[Nag86] R. Nagel (ed.), One-parameter Semigroups of Positive Operators, Lecture Notes in
Mathematics, vol. 1184, Springer-Verlag, 1986.

[Nag89] , Towards a matrix theory for unbounded operator matrices, Math. Z. 201
(1989), 57�68.

[Paz83] A. Pazy, Semigroups of Linear Operators and Applications to Partial Di�erential
Equations, Applied Mathematical Sciences, vol. 44, Springer-Verlag, 1983.

[Rad06] A. Radl, Semigroups applied to transport and queueing processes, Dissertation,
Tübingen, 2006.

[Sch74] H.H. Schaefer, Banach Lattices and Positive Operators, Die Grundlehren der math-
ematischen Wissenschaften, Band 215, Springer-Verlag, 1974.

[Yeh97] L. Yeh, The rate of occurrence of failures, J. Appl. Prob. 34 (1997), 234�247.



Zusammenfassung in deutscher Sprache

Wir diskutieren in dieser Arbeit ein Warteschlangen-Modell, und zwar, in
der üblichen Notation, das M/MB/1 Modell, sowie zwei Zuverläsigkeitsmodelle,
welche jeweils durch abstrakte Cauchyprobleme beschrieben werden. Die in allen
drei Fällen gemeinsame Vorgehensweise ist so, dass die Wohlgestelltheit des jew-
eiligen Cauchyproblems gezeigt wird. Danach wird über eine Spektralanalyse
des Generators die Asymptotik der Lösungen bestimmt. Wir erhalten jeweils
"steady-state solutions", gegen die die Lösungen für t→∞ konvergieren. In den
ersten beiden Fällen ist die Halbgruppe irreduzibel und die Konvergenz ist in der
Norm. Im letzten Fall ist Irreduzibilität nicht gegeben. Es gelingt aber durch An-
wendung eines neuen Resultats aus [EFNS07] der Nachweis des fast-schwachen
Konvergenz.
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