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Introduction in German (Zusammenfassung)

In Kürze: Die direkteste und beste Art, ein Existenzproblem zu lösen,

besteht darin, eine explizite Lösung anzugeben. Ist dies nicht möglich, so

kann man sich nach einer algebraischen Lösung, also einem beschreibenden

Polynom mit gewissen Eigenschaften wie z.B. niedrigem Totalgrad, umse-

hen. Wir zeigen, dass die Existenz einer algebraischen Lösung äquivalent ist

zur Existenz einer expliziten Lösung des Problems. Wobei wir unter einem

”
Problem“ alles verstehen, was eine Menge S und eine Teilmenge Striv ⊆ S

”
besitzt“, deren Elemente man

”
Lösungen“ bzw.

”
triviale Lösungen“ nennt.

Diese Äquivalenz basiert auf Alon und Tarsis kombinatorischem Null-

stellensatz, für den wir eine verschärfte und verallgemeinerte Fassung (eine

Koeffizientenformel) und einige nützliche Korollare, einschließlich einer Ver-

allgemeinerung von Olsons Theorem, vorstellen. Die Verschärfung erlaubt

auch (gewichtet) quantitative Rückschlüsse über die Lösungen eines Prob-

lems. Sie ist ursprünglich ein Resultat über Polynome und liefert Infor-

mationen über die polynomiale Abbildung P |X , wenn nur unvollständige

Informationen über das Polynom P gegeben sind. All das hat zu tun mit

Interpolationspolynomen auf endlichen
”
Rastern“ X := X1 × · · · ×Xn ⊆ Rn

über kommutativen Ringen R .

Wir geben verschiedene Beispiele, wie man algebraische Lösungen finden

und die Koeffizientenformel (kombinatorischer Nullstellensatz) anwenden

kann. Diese Beispiele stammen hauptsächlich aus der Graphentheorie und

der kombinatorischen Zahlentheorie. Der Chevalley-Warning Satz ist eine

weitere Anwendung.

Wir wenden unsere Koeffizientenformel auf das Matrizenpolynom, eine

Verallgemeinerung des Graphenpolynoms, an und erhalten eine Permanen-

tenformel. Diese Formel ist eine vereinheitlichende Verallgemeinerung und

Verschärfung von:

1. Rysers Permanentenformel.

2. Alons Permanentenlemma.

3. Alon und Tarsis Theorem über Orientierungen und Färbungen
von Graphen.

In Kombination mit der Vigneron-Ellingham-Goddyn Eigenschaft planarer

n-regulärer Graphen enthält sie außerdem, als kleine Spezialfälle:

4. Scheims Formel für die Anzahl der Kantenfärbungen derartiger
Graphen mit n Farben.

5. Ellingham und Goddyns teilweise Bestätigung der
Listenfärbungsvermutung.
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In einer weiteren Anwendung verschärfen wir Warnings klassisches Re-

sultat über die Anzahl simultaner Nullstellen von Systemen von Polynomen

über endlichen Körpern.

Wir diskutieren die numerischen Aspekte und präsentieren zwei Algorith-

men mit polynomialer Laufzeit, die Nichtnullstellen von Polynomen finden.

Einen dieser Algorithmen erhalten wir als Gewinnstrategie zu einem neuen

Färbungsspiel für Polynome (und Graphen). Dies führt auch zu einem rein

kombinatorischen Beweis des Satzes von Alon und Tarsi (Punkt 3 oben).

Im Detail: Interpolationspolynome P =
∑

δ∈Nn PδX
δ über endlichen

”
Rastern“ X := X1 × · · · × Xn ⊆ Fn sind nicht eindeutig bestimmt (durchX

die zu interpolierende Abbildung P |X : x 7→ P (x) ). Man könnte die par-P |X
tiellen Grade beschränken, um die Eindeutigkeit zu erzwingen. Wenn wir

nur den Totalgrad durch deg(P ) ≤ d1 + · · · + dn mit dj := |Xj| − 1dj

beschränken, so sind die Polynome P noch nicht eindeutig bestimmt, aber

sie sind teilweise eindeutig. Es gibt einen (und im Allgemeinen nur einen)

Koeffizienten in P =
∑

δ∈Nn PδX
δ , der eindeutig bestimmt ist, nämlich PdPd

mit d := (d1, . . . , dn) . Wir beweisen dies in 3.3, indem wir eine Formel für

diesen Koeffizienten angeben. Unsere Koeffizientenformel enthält Alon and

Tarsis (zweiten) kombinatorischen Nullstellensatz [Al2, Theorem1.2], [Al3]:

Pd 6= 0 =⇒ P |X 6≡ 0 . (1)

Dieses unscheinbare Resultat und seine Korollare 3.4, 3.5 und 9.4 sind

erstaunlich flexibel in der Anwendung. In den meisten Anwendungen wollen

wir die Existenz eines Punktes x ∈ X mit P (x) 6= 0 nachweisen. Solch

ein Punkt x steht dann z.B. für eine Färbung, einen Graphen oder ein

geometrisches oder zahlentheoretisches Objekt mit speziellen Eigenschaften.

Im einfachsten Fall haben wir die folgende Korrespondenz:

X ←→ Klasse von Objekten

x ←→ Objekt

P (x) 6= 0 ←→ “Objekt ist interessant (eine Lösung).”

P |X 6≡ 0 ←→ “Es existiert ein interessantes Objekt (eine Lösung).”

(2)

Dies soll erklären, warum wir an der Beziehung zwischen P und P |X inter-

essiert sind. Normalerweise haben wir dabei nur unvollständige Informatio-

nen über P vorliegen und versuchen daraus Informationen über die polyno-

miale Abbildung P |X zu gewinnen. Wenn es z.B. eine triviale Lösung x0

10 Ph.D. Thesis: Uwe Schauz, Uni Tübingen, February 2007.



gibt, dann wissen wir P (x0) 6= 0 , und zusammen mit deg(P ) < d1 + . . .+dn

stellt dies (nach 3.4) bereits genügend Information über P dar, um eine

weitere (nicht triviale) Lösung x 6= x0 zu garantieren: P (x) 6= 0 . Der

andere wichtige Fall liegt vor, wenn keine triviale Lösung existiert, wir aber

wissen, dass Pd 6= 0 und deg(P ) ≤ d1 + . . . + dn . In diesem Fall folgt

P |X 6≡ 0 aus (1) oben oder mit unserem Hauptresultat 3.3 . In manchen

weiteren Fällen mag auch Satz 3.2 , der auf dem allgemeineren Konzept der

d-führenden Koeffizienten aus Definition 3.1 basiert, anwendbar sein.

Wir nehmen in Kapitel 4 einige der Anwendungsbeispiele aus [Al2] auf,

um diese Methoden und den erzielten Fortschritt vorzuführen. In Kapi-

tel 5 wenden wir unsere Resultate auf das Matrizenpolynom, eine Verallge-

meinerung des Graphenpolynoms, an und erhalten eine Permanentenformel.

Diese Formel ist eine vereinheitlichende Verallgemeinerung und Verschärfung

verschiedener bekannter Resultate über Permanenten und Graphenfärbungen

(die fünf Punkte oben).

Wir zeigen in 6.5, dass es theoretisch immer möglich ist, die Lösungen

eines gegebenen Problems P (Definition 6.1) durch Elemente x in einem

geeigneten Raster X darzustellen und Polynome P mit Zusatzeigenschaften

(z.B. Pd 6= 0 wie in (1) oben) zu finden, die das Problem beschreiben:

P (x) 6= 0 ⇐⇒ “ x repräsentiert eine Lösung von P .” (3)

Wir nennen derartige Polynome P algebraische Lösungen von P , da ihre

Existenz die Existenz einer nicht trivialen Lösung des Problem P nach sich

zieht.

Die Kapitel 4, 5 und 8 enthalten verschiedene Beispiele algebraischer

Lösungen. Algebraische Lösungen sind besonders einfach zu finden, wenn

das Problem genau eine triviale Lösung besitzt. Basierend auf Korollar 3.4

müssen wir in diesem Fall nur ein beschreibendes Polynom P mit Totalgrad

deg(P ) < d1 + . . . + dn finden. Vage gesprochen garantiert Korollar 3.4,

dass jedes nicht zu komplexe Problem – in dem Sinne, dass es nicht zu viele

Multiplikationen bei der Konstruktion von P erfordert – nicht genau eine

(die triviale) Lösung besitzt.

In Kapitel 7 geben wir eine geringfügige Verallgemeinerung des (er-

sten) kombinatorischen Nullstellensatzes, eines verschärften Spezialfalls des

Hilbertschen Nullstellensatzes, an und diskutieren Alons ursprüngliche Be-

weismethode. In Kapitel 3 benutzten wir eine andere Methode, um unser

Hauptergebnis zu verifizieren.

Die Modifikationsmethoden aus Kapitel 7 und die Permanente von Ma-

trizenpolynomen, wie sie in Kapitel 5 eingeführt wurde, nutzend, studieren

Algebraically Solvable Problems 11



wir in Kapitel 8 die Verteilung der verschiedenen möglichen Funktionswerte

P (x) polynomialer Abbildungen x 7−→ P (x) auf dem speziellen Raster

X := Fp
n. Als Korollar erhalten wir eine Verschärfung eines klassischen

Resultats von Warning über die Anzahl simultaner Nullstellen von Syste-

men von Polynomen über endlichen Körpern. Die Verschärfung sagt uns

etwas über die Verteilung der Nullstellen in dem Raum Fp
n. Mit Hilfe von

Lemma 8.6 können diese Ergebnisse auch auf Polynomabbildungen über be-

liebigen endlichen Körper Fpk angewandt werden.

Kapitel 9 enthält weitere Verallgemeinerungen und Resultate über den

ganzen Zahlen Z und über Z/mZ . Korollar 9.2 ist eine überraschende

Variante des wichtigen Korollars 3.4 , die ganz ohne Gradbeschränkungen

auskommt. Die Version 9.4 von Korollar 3.5 ist eine Verallgemeinerung von

Olsons Theorem.

In Kapitel 10 präsentieren wir einen schnellen und einfachen Algorithmus,

der Nichtnullstellen von Polynomen findet. Um ihn anzuwenden, muss man

das Polynom P zuerst in das gekürzte Polynom P/X mit partiellen Graden

degj(P ) ≤ dj , wie es in Kapitel 7 beschrieben wurde, überführen. Diese

Transformation P Ã P/X kann für viele wichtige Raster X sehr schnell

ausgeführt werden, benötigt in manchen, weniger speziellen Fällen aber ex-

ponentielle Laufzeit.

Das nachfolgende Kapitel 11 führt zu einem Algorithmus, der die Trans-

formation P Ã P/X vermeidet, aber nur über sogenannten Farbrastern

X = X1 × · · · × Xn ⊆ {T1, T2, . . . }n anwendbar ist, die aus Unbestimmten

Tj gebildet sind. Er wird als Gewinnstrategie zu einem neuen Färbungsspiel

für Polynome (und Graphen) hergeleitet. Das Spiel von Mr. Paint und Mrs.

Rubber führt auch zu einer geringfügigen Verallgemeinerung des graphen-

theoretischen Begriffs
”
Listenfärbung“ und einer entsprechenden Verallge-

meinerung des kombinatorischen Nullstellensatzes 3.3 (ii) über Farbrastern.

Es führt weiter zu einem rein kombinatorischen Beweis des Satzes von Alon

und Tarsi 5.5 (ii) , wie er von den beiden gesucht wurde.

Die meisten unserer Resultate gelten über Integritätsringen, und diese

Bedingung kann sogar noch etwas abgeschwächt werden (siehe 2.7 für die

Definition nullteilerfreier Raster). Im wichtigen Fall der Booleschen Raster

X = {0, 1}n gelten sie über beliebigen kommutativen Ringen R . Unsere

Ergebnisse basieren auf den Interpolationsformeln in Kapitel 2 , die die Kon-

stanten und Definitionen aus Kapitel 1 nutzen.

Für Neulinge in diesem Gebiet könnte es eine gute Idee sein, mit Kapitel 4

zu beginnen, um sich einen ersten Eindruck zu verschaffen.

12 Ph.D. Thesis: Uwe Schauz, Uni Tübingen, February 2007.



Introduction

In short: The main result of this paper is a coefficient formula that sharpens

and generalizes Alon and Tarsi’s Combinatorial Nullstellensatz. On its own,

it is a result about polynomials, providing some information about the poly-

nomial map P |X when only incomplete information about the polynomial

P is given.

In a very general working frame, the grid points x ∈ X := X1× · · · ×Xn

which do not vanish under an algebraic solution – a certain describing polyno-

mial P – correspond to the explicit solutions of a problem. As a consequence

of the coefficient formula, we prove that the existence of an algebraic solu-

tion is equivalent to the existence of a nontrivial solution to a problem. By

a problem, we mean everything that “owns” both, a set S , which may be

called the set of solutions ; and a subset Striv ⊆ S , the set of trivial solutions.

We give several examples on how to find algebraic solutions, and on how

to apply our coefficient formula. These examples are mainly from graph

theory and combinatorial number theory, but we also prove several versions

of Chevalley and Warning’s Theorem, including a generalization of Olson’s

Theorem, as examples and useful corollaries.

We obtain a permanent formula by applying our coefficient formula to

the matrix polynomial, which is a generalization of the graph polynomial.

This formula is an integrative generalization and sharpening of:

1. Ryser’s permanent formula.

2. Alon’s Permanent Lemma.

3. Alon and Tarsi’s Theorem about orientations and colorings of graphs.

Furthermore, in combination with the Vigneron-Ellingham-Goddyn property

of planar n-regular graphs, the formula contains as very special cases:

4. Scheim’s formula for the number of edge n-colorings of such graphs.

5. Ellingham and Goddyn’s partial answer to the list coloring conjecture.

In a further application of our coefficient formula, we prove a sharpen-

ing of Warning’s classical result about the number of simultaneous zeros of

systems of polynomial equations over finite fields.

We discuss the numerical aspects of using algebraic solutions to find ex-

plicit solutions, and present two polynomial-time algorithms that find nonze-

ros of polynomials. One of these algorithms is derived as a winning strategy

of a new coloration game for polynomials (and graphs). It also satisfies a

request by Alon and Tarsi for a purely combinatorial proof of their theorem

about orientations and colorings of graphs (point 3 above).

Algebraically Solvable Problems 13



More detailed: Interpolation polynomials P =
∑

δ∈Nn PδX
δ on finite

“grids” X := X1×· · ·×Xn ⊆ Fn are not uniquely determined by the interpo-X

lated maps P |X : x 7→ P (x) . One could restrict the partial degrees to forceP |X
the uniqueness. If we only restrict the total degree to deg(P ) ≤ d1+ · · ·+dn ,

where dj := |Xj|−1 , the interpolation polynomials P are still not uniquelydj

determined, but they are partially unique. That is to say, there is one (and

in general only one) coefficient in P =
∑

δ∈Nn PδX
δ that is uniquely deter-

mined, namely Pd with d := (d1, . . . , dn) . We prove this in Theorem3.3 byPd

giving a formula for this coefficient. Our coefficient formula contains Alon

and Tarsi’s Combinatorial Nullstellensatz [Al2, Th. 1.2], [Al3]:

Pd 6= 0 =⇒ P |X 6≡ 0 . (4)

This insignificant-looking result, along with Theorem3.3 and its corol-

laries 3.4, 3.5 and 9.4, are astonishingly flexible in application. In most

applications, we want to prove the existence of a point x ∈ X such that

P (x) 6= 0 . Such a point x then may represent a coloring, a graph or a ge-

ometric or number-theoretic object with special properties. In the simplest

case we will have the following correspondence:

X ←→ Class of Objects

x ←→ Object

P (x) 6= 0 ←→ “Object is interesting (a solution).”

P |X 6≡ 0 ←→ “There exists an interesting object (a solution).”

(5)

This explains why we are interested in the connection between P and P |X :

In general, we try to retrieve information about the polynomial map P |X
using incomplete information about P . One important possibility is if there

is (exactly) one trivial solution x0 to a problem, so that we have the in-

formation that P (x0) 6= 0 . If, in this situation, we further know that

deg(P ) < d1 + . . . + dn , then Corollary 3.4 already assures us that there is a

second (nontrivial ) solution x , i.e., an x 6= x0 in X such that P (x) 6= 0 .

The other important possibility is that we do not have any trivial solutions

at all, but we know that Pd 6= 0 and deg(P ) ≤ d1 + . . . + dn . In this case,

P |X 6≡ 0 follows from (4) above or from our main result, Theorem3.3 . In

other cases, we may instead apply Theorem 3.2 , which is based on the more

general concept from Definition 3.1 of d-leading coefficients.

In Section 4, we demonstrate how the most examples from [Al2] follow

easily from our coefficient formula and its corollaries. The new, quantitative

14 Ph.D. Thesis: Uwe Schauz, Uni Tübingen, February 2007.



version 3.3 (i) of the Combinatorial Nullstellensatz is, for example, used in

Section 5, where we apply it to the matrix polynomial – a generalization of

the graph polynomial – to obtain a permanent formula. This formula is a

generalization and sharpening of several known results about permanents and

graph colorings (see the five points above). We briefly describe how these

results are included in our permanent formula.

We show in Theorem6.5 that it is theoretically always possible, both, to

represent the solutions of a given problem P (see Definition 6.1) through

some elements x in some grid X, and to find a polynomial P , with certain

properties (e.g., Pd 6= 0 as in (4) above), that describes the problem:

P (x) 6= 0 ⇐⇒ “ x represents a solution of P .” (6)

We call such a polynomial P an algebraic solution of P , as its existence

guarantees the existence of a nontrivial solution to the problem P .

Sections 4, 5 and 8 contain several examples of algebraic solutions. Alge-

braic solutions are particularly easy to find if the problems possess exactly

one trivial solution: due to Corollary 3.4, we just have to find a describing

polynomial P with degree deg(P ) < d1 + . . . + dn in this case. Loosely

speaking, Corollary 3.4 guarantees that every problem which is not too com-

plex, in the sense that it does not require too many multiplications in the

construction of P , does not possess exactly one (the trivial) solution.

In Section 7 we give a slight generalization of the (first) Combinatorial

Nullstellensatz – a sharpened specialization of Hilbert’s Nullstellensatz – and

a discussion of Alon’s original proving techniques. Note that, in Section 3 we

used an approach different from Alon’s to verify our main result. However,

we will show that Alon and Tarsi’s so-called polynomial method can easily

be combined with interpolation formulas, such as our inversion formula 2.8,

to reach this goal.

In Section 8 , we use the modification techniques of Section 7 and the

δ-permanent introduced in Section 5 to study the distribution of the different

possible values P (x) of polynomial maps x 7−→ P (x) on the special grid

X := Fp
n. As a corollary, we obtain a sharpening of Warning’s classical result

about the number of simultaneous zeros of systems of polynomial equations

over finite fields. This sharpening tells us something about the distribution

of the zeros in the space Fp
n. Using Lemma 8.6, we may apply these results

to polynomial maps over arbitrary finite fields Fpk , as well.

Section 9 contains further generalizations and results over the integers

Z and over Z/mZ . Corollary 9.2 is a surprising relative to the important

Algebraically Solvable Problems 15



Corollary 3.4, one which works without any degree restrictions. Theorem9.4,

a version of Corollary 3.5, is a generalization of Olson’s Theorem.

In Section 10 we present a very simple and fast algorithm that finds nonze-

ros of polynomials. To apply it, one first has to transform the given polyno-

mial P into the trimmed polynomial P/X with partial degrees degj(P ) ≤
dj , as described in Section 7 . This transformation P Ã P/X can be done

very fast for the most frequently occurring grids X , but in some less special

cases may take exponential time.

Section 11 leads to an algorithm that avoids the transformation P Ã
P/X , but works only for so-called color grids X = X1 × · · · × Xn ⊆
{T1, T2, . . . }n that are constructed from indeterminacies Tj . The algorithm

is derived as a winning strategy to a new coloration game for polynomials

(and graphs). This game of Mr. Paint and Mrs. Rubber also leads to a

slight generalization of the graph-theoretic term “list coloring,” and, in the

case of color grids, to a corresponding generalization of the Combinatorial

Nullstellensatz (our 3.3 (ii)). It leads further to a purely combinatorial proof

of Alon and Tarsi’s Theorem about orientations and colorings of graphs (our

5.5 (ii )).

Most of our results hold over integral domains, though this condition has

been weakened in this paper for the shake of greater generality (see 2.7 for

the definition of integral grids). In the important case of the Boolean grid

X = {0, 1}n, our results hold over arbitrary commutative rings R . Our coef-

ficient formulas are based on the interpolation formulas in Section 2 , where

we generalize known expressions for interpolation polynomials over fields to

commutative rings R . We frequently use the constants and definitions from

Section 1 .

For newcomers in this field, it might be a good idea to start with Section 4

to get a first impression.

The various parts of this dissertation will be published in the Electronic

Journal of Combinatorics.

16 Ph.D. Thesis: Uwe Schauz, Uni Tübingen, February 2007.



1 Notation and constants

R is always a commutative ring with 1 6= 0 . R
Fpk denotes the field with pk elements ( p prime) and Zm := Z/mZ . Fpk , Zm

We write p
⌊⌊

n (or n
⌋⌋

p ) for “ p divides n ” and abbreviate S\s := S\{s} . p
¨̈

n, S\s

For n ∈ N := {0, 1, 2, . . . } we set: N

(n] = (0, n] := {1, 2, . . . , n} , (n]

[n) = [0, n) := {0, 1, . . . , n−1} , [n)

[n] = [0, n] := {0, 1, . . . , n} . (Note that 0 ∈ [n] .) [n]

For statements A the “Kronecker query” ?(A) is defined by:

?(A) :=

{
0 if A is false,

1 if A is true.
?(A)

For finite tuples (and maps) d = (dj)j∈J and sets Γ we define:

Πd :=
∏

j∈J dj , ΠΓ :=
∏

γ∈Γ γ and Πd, ΠΓ

Σd :=
∑

j∈J dj , ΣΓ :=
∑

γ∈Γ γ . Σd, ΣΓ

For maps y, z : X −→ R with finite domain we identify the map y : y

x 7−→ y(x) with the tuple (y(x))x∈X ∈ RX. Consequently, the product with

matrices Ψ = (ψδ,x) ∈ RD×X is given by Ψy :=
(∑

x∈X ψδ,x y(x)
)

δ∈D
∈ RD . Ψy

yz stands for the pointwise product, (yz)(x) := y(x)z(x) . If nothing else is yz, y−1

said, y−1 is also defined pointwise, y−1(x) := y(x)−1, if y(x) is invertible

for all x ∈ X . We define supp(y) := { x ∈ X ¦ y(x) 6= 0 } . supp(y)

The tensor product
⊗

j∈(n] yj of maps yj : Xj −→ R is a map from N

X1 × · · · × Xn to R and is defined by (
⊗

j∈(n] yj)(x) :=
∏

j∈(n] yj(xj) .

Hence, the tensor product of tuples aj := (aj
xj

)xj∈Xj
, j ∈ (n] , is the tuple⊗

j∈(n] a
j =

(∏
j∈(n] a

j
xj

)
x∈X1×···×Xn

.

The tensor product of matrices Ψj = (ψj
δj ,xj

) δj∈Dj
xj∈Xj

, j ∈ (n] , is the matrix⊗
j∈(n] Ψ

j =
(∏

j∈(n] ψ
j
δj ,xj

)
δ∈D1×···×Dn
x∈X1×···×Xn

.

Tensor product and matrix-tuple multiplication go well together:

(⊗

j∈(n]

Ψj
) ⊗

j∈(n]

aj =
( ∏

j∈(n]

ψj
δj ,xj

)
δ∈D
x∈X

( ∏

j∈(n]

aj
xj

)
x∈X

=
(∑

x∈X

∏

j∈(n]

ψj
δj ,xj

aj
xj

)
δ∈D

=
( ∏

j∈(n]

∑

xj∈Xj

ψj
δj ,xj

aj
xj

)
δ∈D

=
⊗

j∈(n]

( ∑

xj∈Xj

ψj
δj ,xj

aj
xj

)
δj∈Dj

=
⊗

j∈(n]

(Ψjaj) .

(7)
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In the whole paper we work over Cartesian products X := X1 × · · · ×Xn

of subsets Xj ⊆ R of size dj + 1 := |Xj| < ∞ . We define:

Definition 1.1 (d-grids X ).

X, [d]

d = d(X)

For all j ∈ (n] we define: In n dimensions we define:

Xj ⊆ R is always a finite set 6= ∅. X := X1×· · ·×Xn ⊆ Rn is a d-grid if

dj = dj(Xj) := |Xj| − 1 and d = d(X) := (d1, . . . , dn) .

[dj] := {0, 1, . . . , dj} . [d] := [d1]×· · ·× [dn] is a d-grid in Zn.

The following function N : X −→ R will be used throughout the whole

paper. The ψδ,x are the coefficients of the Lagrange polynomials LX,x , as

we will see in 1.3 . We define:

Definition 1.2 ( NX , ΨX , LX,x and ex ).

Let X := X1×· · ·×Xn ⊆ Rn be a d-grid, i.e., dj = |Xj|− 1 for all j ∈ (n] .

ex , LX,x

N, Ψ

For x ∈ Xj and δ ∈ [dj] we set: For x ∈ X and δ ∈ [d] we set:

ej
x : Xj →R , ej

x(x̃) := ?(x̃=x) . ex :=
⊗

j∈(n] e
j
xj

= (x̃ 7→ ?(x̃=x) ) .

LXj\x(X) :=
∏

x̂∈Xj\x
(X − x̂) . LX,x(X1, . . . , Xn) :=

∏
j LXj\xj

(Xj) .

Nj = NXj
: Xj −→ R is defined by: N = NX : X −→ R is defined by:

Nj(x) := LXj\x(x) . N :=
⊗

j∈(n] Nj =
(
x 7→ LX,x(x)

)
.

Ψj := (ψj
δ,x) δ∈[dj ]

x∈Xj

with

ψj
δ,x :=

∑
Γ⊆Xj\x

|Γ|=dj−δ

Π(−Γ)

and in particular ψj
dj ,x = 1 .

(8)

Ψ = (ψδ,x) δ∈[d]
x∈X

:=
⊗

j∈(n]

Ψj i.e.

ψδ,x :=
∏

j∈(n]

ψj
δj ,xj

and in particular ψd,x = 1 .

(9)
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We use multiindex notation for polynomials, i.e., X(δ1,...,δn) := Xδ1
1 · · ·Xδn

n X(δ1,...,δn)

and we define Pδ = (P )δ to be the coefficient of Xδ in the standard expan- Pδ = (P )δ

sion of P ∈ R[X] := R[X1, . . . , Xn] . That means P = P (X) =
∑

δ∈Nn PδX
δ R[X]

and (Xε)δ = ?(δ=ε) .

Conversely, for tuples P = (Pδ)δ∈D ∈ RD , we set P (X) :=
∑

δ∈D PδX
δ . P (X)

In this way we identify the set of tuples R[d] = R[d1]×···×[dn] with R[X≤d] , R[d]

R[X≤d]the set of polynomials P =
∑

δ≤d PδX
δ with restricted partial degrees

degj(P ) ≤ dj . It will be clear from the context whether we view P as

a tuple (Pδ) in R[d] , a map [d] −→ R or a polynomial P (X) in R[X≤d] .

P (X)|X stands for the map X −→ R , x 7−→ P (x) . P (X)|X

We have introduced the following four related or identified objects:

Maps: Tuples: Polynomials: Polynomial Maps:

δ 7→ Pδ , P = (Pδ) P (X) =
∑

PδX
δ P (X)|X : x 7→ P (x) ,

[d] → R ∈ R[d] ∈ R[X≤d] X →R (10)

With these definitions we get the following important formula:

Lemma 1.3 (Lagrange polynomials).

(Ψex)(X) :=
∑

δ∈[d]

ψδ,xX
δ =

∏

j∈(n]

∏

x̂j∈Xj\xj

(Xj − x̂j) =: LX,x .

Proof. We start with the one-dimensional case. Assume x ∈ Xj , then

(Ψjej
x)(Xj) =

( ∑

δ∈[dj ]

ψj
δ,xXδ

j

)

=
∑

δ∈[dj ]

∑
Γ⊆Xj\x

|Γ|=dj−δ

Xδ
j Π(−Γ)

=
∑

Γ̂⊆Xj\x

X
|(Xj\x)\Γ̂|
j Π(−Γ̂)

=
∏

x̂∈Xj\x

(Xj − x̂) .

(11)
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In n dimensions and for x ∈ X we conclude:

(Ψex)(X) =
((⊗

j
Ψj

)⊗
j
ej
xj

)
(X)

(7)
=

(⊗
j

(
Ψjej

xj

) )
(X)

=
∏

j

(
(Ψjej

xj
)(Xj)

)

(11)
=

∏

j∈(n]

∏

x̂j∈Xj\xj

(Xj − x̂j) .

(12)

We further provide the following specializations of the ubiquitous function

N ∈ RX, N(x) =
∏

j∈(n] Nj(xj) :

Lemma 1.4. Let El := { c ∈ R ¦ cl = 1 } denote the set of the lth roots of

unity in R . For x ∈ Xj ⊆ R hold:

(i) If Xj = Edj+1 ( |Edj+1| = dj + 1 ) and

if R is an integral domain: Nj(x) = (dj + 1) x−1 .

(ii) If Xj ] {0} is a finite subfield of R : Nj(x) = −x−1 .

(iii) If Xj = Edj
] {0} ( |Edj

| = dj ) and

if R is an integral domain: Nj(x) =

{
dj1 for x 6= 0 ,

−1 for x = 0 .

(iv) If Xj is a finite subfield of R : Nj(x) = −1 .

(v) If Xj = {0, 1, . . . , dj} ⊆ Z : Nj(x) = (−1)dj+x dj!
(

dj

x

)−1
.

(vi) For α ∈ R we have: NXj+α(x + α) = NXj
(x) .

Proof. For finite subsets D ⊆ R we define

LD(X) :=
∏

x̂∈D
(X − x̂) . (13)

It is well-known that, if El contains l elements and lies in an integral

domain,

LEl
(X) =

∏

x̂∈El

(X − x̂) = X l − 1 = (X − 1)(X l−1 + · · ·+ X0) . (14)
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Thus

LEl\1(1) =

∏
x̂∈El

(X − x̂)
X − 1

∣∣
X=1

=
X l − 1
X − 1

∣∣
X=1

= X l−1 + · · ·+ X0
∣∣
X=1

= l1 .

(15)
Using this, we get for x ∈ El

LEl\x(x) = Lx(El\1)(x) =
∏

x̂∈El\1

(x− xx̂) = xl−1LEl\1(1) = lx−1 . (16)

This gives (i) with l = |Xj| = dj + 1 .

Part (ii) follows from part (i) in the case Xj = Fpk\0 = Epk−1 , as

dj + 1 = |Xj| = (pk − 1) ≡ −1 (mod p) in this case.

To get Nj(x) = L{0}]El\x(x) with x 6= 0 in part (iii) and part (iv) we

multiply Equation (16) with x − 0 and use l = |Xj| − 1 = dj for part (iii)

and l = |Xj| − 1 = pk − 1 ≡ −1 (mod p) for part (iv). For x = 0 we obtain

in part (iii) and part (iv)

Nj(0) = LEl
(0) =

∏

x̂∈El

(−x̂) = −
∏

x̂∈El\{1,−1}
(−x̂) = −1 , (17)

since each subset {x̂, x̂−1} ⊆ El\ {1,−1} contributes (−x̂) (−x̂−1) = 1 to

the product – as x̂ 6= x̂−1, since x̂2 − 1 = 0 holds only for x̂ = ±1 – and

El\ {1,−1} is partitioned by such subsets. This completes the proofs of (iii)

and (iv).

We now turn to part (v):

Nj(x) =
( ∏

0≤x̂<x

(x−x̂)
) ∏

x<x̂≤dj

(x−x̂) = x! (dj−x)! (−1)dj−x = (−1)dj+x dj !
(

dj

x

)−1

.

(18)
Part (vi) is trivial.
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2 Interpolation polynomials

and inversion formulas

This section may be skipped at a first reading; the only things you need

from here to understand the rest of the paper are: firstly, the fact that grids

X ⊆ Rn over integral domains R are always integral grids ; and, secondly, the

inversion formula 2.8, which is, in this case, just the well-known interpolation

formula for polynomials applied to polynomial maps P |X . The rest of this

section is concerned with providing some generality that is not really used in

the applications of this paper.

We have to investigate the canonical homomorphism ϕ : P 7−→ P |X that ϕ

maps polynomials P to polynomial maps P |X : x 7→ P (x) on a fixed d-grid

X ⊆ Rn . As the monic polynomial Lj = LXj
(Xj) :=

∏
x̂∈Xj

(Xj − x̂) maps Lj

all elements of Xj to 0 , we may replace each given polynomial P by any

other polynomial of the form P +
∑

j∈(n] HjLj without changing its image

P |X . By applying such modifications, we may assume that P has partial

degrees degj(P ) ≤ |Xj| − 1 = dj (see Example 7.1 for an illustration of this

method). Hence the image of ϕ does not change if we regard ϕ as a map

on R[X≤d] (which we identify with R[d] by P 7→ (Pδ)δ∈[d] ). The resulting

map ϕ

ϕ : R[X≤d] = R[d] −→ RX , P 7−→ P |X := (x 7→ P (x)) (19)

is in the most important cases an isomorphism or at least a monomorphism,

as we will see. In general, however, the situation is much more complicated:

Example 2.1. Over R = Z6 := Z/6Z we have X3|Z6 = X|Z6 and 3X2|Z6 =

3X|Z6 , so that each polynomial map X := Z6 −→ Z6 can be represented by

a polynomial of the form aX2 + bX + c , with a ∈ {0, 1,−1} . Hence the

corresponding 3 · 62 distinct maps are the only maps out of the 66 maps

from X = Z6 to Z6 that can be represented by polynomials at all1. This

simple example shows also that the kernel ker(ϕ) may look very complicated

even in just one dimension.

In which situations does ϕ : P 7−→ P |X become an isomorphism, or equiv-

alently, when does its representing matrix Φ possess an inverse? Over com-

1In [MuSt] a system of polynomials in Zm[X1, . . . , Xn] is given that represent all poly-
nomial maps Zm

n→ Zm and the number of all such maps is determined. In [Sp] it is shown
that the Newton algorithm can be used to determine interpolation polynomials, if they
exist. The “divided differences” in this algorithm are, like the interpolation polynomials
themselves, not uniquely determined over arbitrary commutative rings, and exist if and
only if interpolation polynomials exist.
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mutative rings R , square matrices Φ ∈ Rm×m with nonvanishing determi-

nant do not have an inverse, in general. However, there is the matrix Adj(Φ)Adj(Φ)

– the adjoint or cofactor matrix – that comes close to being an inverse:

Φ Adj(Φ) = Adj(Φ)Φ = det(Φ)Im . (20)

In our concrete situation, where Φ ∈ RX×[d] is the matrix of ϕ (a tensorΦ

product of Vandermonde matrices), we work with Ψ (from Definition 1.2)Ψ

instead of the adjoint matrix Adj(Φ) . Ψ comes closer than Adj(Φ) to

being a right inverse of Φ . The following theorem shows that

ΦΨ =
(
N(x) ?(x̃=x)

)
x̃,x∈X

, (21)

and the entries N(x) of this diagonal matrix divide the entries det(Φ) of

Φ Adj(Φ) , so that ΦΨ is actually closer than Φ Adj(Φ) to the unity matrix

(provided we identify the column indices x ∈ X and row indices δ ∈ [d] in

some way with the numbers 1, 2, . . . , |X| = |[d]| , in order to make det(Φ)

and Adj(Φ) defined).

However, we used the matrix Φ ∈ RX×[d] of ϕ : P 7−→ P |X here just toΦ, ϕ

explain the role of Ψ . In what follows, we do not use it any more; rather,

we prefer notations with “ ϕ ” or “ |X .” For maps/tuples y ∈ RX, we write

(Ψy)(X) ∈ R[X≤d] , as already defined, for the polynomial whose coefficients(Ψy)(X)

form the tuple Ψy ∈ R[d], i.e., (Ψy)(X) = Ψy by identification. We have:

Theorem 2.2 (Interpolation). For maps y : X −→ R ,

(Ψy)(X)|X = Ny .

Proof. As both sides of the equation are linear in y , it suffices to prove the

equation for the maps y = ex̃ , where x̃ ranges over X . Now we see that,

at each point x ∈ X , we actually have

(Ψex̃)(X)|X(x) 1.3= LX,x̃(x) = N(x) ?(x=x̃) = (Nex̃)(x) . (22)

With this theorem, we are able to characterize the situations in which

ϕ : P 7−→ P |X is an isomorphism:
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Equivalence and Definition 2.3 (Division grids). We call a d-grid X ⊆
Rn a division grid (over R ) if it has the following equivalent properties:

(i) For all j ∈ (n] and all x, x̃ ∈ Xj with x 6= x̃, x− x̃ is invertible.

(ii) N = NX is pointwise invertible, i.e., for all x ∈ X, N(x) is invertible.

(iii) ΠN is invertible.

(iv) ϕ : R[X≤d] = R[d] −→ RX is bijective.

Proof. The equivalence of (i),(ii) and (iii) follows from the Definition 1.2 of

N , the definition ΠN =
∏

x∈X N(x) and the associativity and commutativity

of R .

Assuming (ii), it follows from Theorem 2.2 that y 7−→ (Ψ(N−1y))(X) is

a right inverse of ϕ : P 7−→ P |X :

y 7−→ (Ψ(N−1y))(X)
ϕ7−→ N(N−1y) = y . (23)

It is even a two-sided inverse, since square matrices Φ over a commutative

ring R are invertible from both sides if they are invertible at all (since

Φ Adj(Φ) = det(Φ)1 ). This gives (iv).

Now assume (iv) holds; then for all x ∈ X ,

(
ψδ,x

)
δ∈[d]

= Ψex
2.2= ϕ−1(Nex) = N(x) ϕ−1(ex) , (24)

and in particular,

1
(9)
= ψd,x = N(x)

(
ϕ−1(ex)

)
d

. (25)

Thus the N(x) are invertible and that is (ii).

If ϕ : R[X≤d] −→ RX is an isomorphism, then ϕ−1(y) is the unique ϕ−1

polynomial in R[X≤d] that interpolates a given map y ∈ RX, so that, by

Theorem2.2 , it has to be the polynomial Ψ(N−1y) ∈ R[d] = R[X≤d] . This

yields the following result:

Theorem 2.4 (Interpolation formula). Let X be a division grid (e.g., if R
is a field or if X is the Boolean grid {0, 1}n ). For y ∈ RX,

ϕ−1(y) = Ψ(N−1y) .
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This theorem can be found in [Da, Theorem2.5.2], but just for fields R and

in a different representation (with ϕ−1(y) as a determinant).

Additionally, if X is not a division grid, we may apply the canonical

localization homomorphismπ

S , RN

π : R −→ RN := S−1R , r 7−→ rπ := r
1

with S := { (ΠN)m ¦ m ∈ N } ,

(26)

and exert our theorems in this situation. As π and RN have the universal

property with respect to the invertibility of (ΠN)π in RN (as required in

2.3(iii)), π and RN are the best choices. This means specifically that if

(ΠN)π is not invertible in the codomain RN of π , then no other homo-

morphism π′ has this property, either. In general, π does not have this

property itself: By definition,

r1

s1

=
r2

s2

:⇐⇒ ∃ s ∈ S : s r1s2 = s r2s1 , (27)

and henceker(π)

ker(π) = { r ∈ R ¦ ∃m ∈ N : (ΠN)m r = 0 } , (28)

so that (ΠN)π = 0 is possible. Localization works in the following situation:

Equivalence and Definition 2.5 (Affine grids). We call a d-grid X ⊆ Rn

affine (over R ) if it has the following equivalent properties:

(i) ΠN is not nilpotent.

(ii) π 6= 0 .

(iii) (ΠN)π is invertible in RN .

(iv) π 6= 0 is injective on the Xj

and hence induces a bijection X −→ Xπ := X1
π × · · · × Xn

π .Xπ

Proof. (ii) is equivalent to 1π 6= 0 , and this means that s1 6= 0 for all s in

the multiplicative system S = { (ΠN)m ¦ m ∈ N } ; thus (i) ⇐⇒ (ii) .

(ΠN)π 1
ΠN

= 1
1

is the unity in RN , provided 1
1

= 1π 6= 0 ; therefor

(ii) =⇒ (iii) .

If (iii) holds then (ΠN)π and its factors (xj − x̃j)
π do not vanish; thus

(iii) =⇒ (iv) .

Finally, the implication (iv) =⇒ (ii) is trivial.
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If X ⊆ Rn is affine, then Xπ := X1
π × · · · × Xn

π ⊆ RN
n is a division Xπ

d-grid over RN by 2.5 (iv), 2.5 (iii) and 2.3 (iii). Now, Theorem2.4 applied

to y := P π|Xπ with P π =
∑

δ∈[d] Pδ
πXδ yields P π

P π = ΨXπ

(
(NXπ)−1(P π|Xπ)

)
, (29)

along with the associated constants NXπ ∈ RN
Xπ

and ΨXπ ∈ R [d]×Xπ

N of Xπ .

With componentwise application of π to P |X, N ∈ RX and Ψ ∈ R[d]×X

(i.e. (P |X)π, Nπ ∈ RN
X and Ψπ ∈ R [d]×X

N ), we obtain: Nπ, Ψπ

Theorem 2.6 (Inversion formula). Let X be affine (e.g., if R does not

possess nilpotent elements). For P ∈ R[X≤d] = R[d],

P π = Ψπ
(
(Nπ)−1(P |X)π

)
.

If π is injective on its whole domain R then R is a subring of RN

and we may omit π in formula 2.6 . In fact, we will see that this is precisely

when when ϕ is injective, as seen in the following characterization:

Equivalence and Definition 2.7 (Integral grids). We call a d-grid X ⊆ Rn

integral (over R ) if it has the following, equivalent properties:

(i) For all j ∈ (n] and all x, x̃∈Xj with x 6= x̃, x−x̃ is not a zero divisor.

(ii) For all x ∈ X, N(x) is not a zero divisor.

(iii) ΠN is not a zero divisor.

(iv) π is injective (R ⊆ RN ).

(v) ϕ : R[X≤d] = R[d] −→ RX is injective.

Proof. The equivalence of (i),(ii) and (iii) follows from the Definition 1.2 of

N , the definition ΠN =
∏

x∈X N(x) and the associativity and commutativ-

ity of R .

As already mentioned, ker(π) = { r ∈ R ¦ ∃m ∈ N : (ΠN)mr = 0 } , so

that (iii) =⇒ (iv) .

If (iv) holds, then ΠN is invertible in RN . By Equivalence 2.3 , it follows

that ϕ : RN [X≤d] −→ RN
X is bijective, so that (iv) =⇒ (v) .
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Now suppose that (ii) does not hold, so that there are a point x ∈ X

and a constant M ∈ R\0 with

MN(x) = 0 . (30)

Then

P := Ψ(Mex) 6= 0 , (31)

as

Pd = M(Ψ(ex))d = Mψd,x
(9)
= M 6= 0 . (32)

However,

ϕ(P ) 2.2= NMex = MN(x)ex ≡ 0 , (33)

so that (v) does not hold, either. Thus (v) =⇒ (ii) .

Any integral grid X over R is, in fact, a division grid over RN ⊇ R ,

since ΠN becomes invertible in RN . Formula 2.4 applied to y := P |X
yields the following specialization of 2.6:

Theorem 2.8 (Inversion formula). Let X be integral (e.g., if R is an in-

tegral domain). For P ∈ R[X≤d] = R[d],

P = Ψ(N−1P |X) .

From the case P = 1 , we see that N−1P |X inside this formula does not lie

in RX in general. This also shows that, in general, the maps of the form Ny ,

with y ∈ RX, in Theorem2.2 are not the only maps that can be represented

by polynomials over R , i.e., {Ny ¦ y ∈ RX }  Im(ϕ) . However, the maps

of the form Ny are exactly the linear combinations of Lagrange’s polynomial

maps Nex = LX,x|X over the grid X ; and if we view, a bit more generally,

Lagrange polynomials LX̃,x over subgrids X̃ = X̃1× · · · × X̃n ⊆ X , then the

maps of the form LX̃,x|X span Im(ϕ) , as one can easily show.

On the other hand, in general, Im(ϕ)  RX, so that not every map

y ∈ RX can be interpolated over R . If X is integral, then interpolation

polynomials exist over the bigger ring RN . The univariate polynomials(
X
k

)
:= X(X−1)···(X−k+1)

k!
, for example, describe integer-valued maps (on the

whole domain Z ), but do not lie in Z[X] . More information about such

“overall” integer-valued polynomials over quotient fields can be found, for

example, in [CCF] and [CCS], and in the literature cited there.
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The reader might find it interesting that the principle of inclusion and

exclusion follows from Theorem 2.8 as a special case:

Proposition 2.9 (Principle of inclusion and exclusion).

Let X := {0, 1}n = [d] and x ∈ X ; then xδ = ?(δ≤x) for all δ ∈ [d] . Thus,

for arbitrary P = (Pδ) ∈ R[d] = R[X≤d] ,

P (x) =
∑

δ≤x
Pδ . (34)

Formula 2.8 is the Möbius inversion to Equation (34):

Pδ
2.8
=

∑

x∈[d]

ψδ,xN
−1(x)P (x)

1.2
=

∑

x∈[d]

[ ∏
j∈(n]

?(xj≤δj) (−1)1−δj
][ ∏

j∈(n]

(−1)1−xj
]
P (x)

=
∑

x≤δ
(−1)Σ(δ−x)P (x) .

(35)
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3 Coefficient formulas – the main results

The applications in this paper do not start with a map y ∈ RX that has to

be interpolated by a polynomial P . Rather, we start with a polynomial P ,

or with some information about a polynomial P ∈ R[X] , which describes

the very map y := P |X that we would like to understand. Normally, we

will not have complete information about P , so that we do not usually

know all coefficients Pδ of P . However, there may be a coefficient Pδ in

P =
∑

δ∈Nn PδX
δ that, on its one, allows conclusions about the map P |X .

We define (see also figure 1 below):

Definition 3.1. Let P =
∑

δ∈Nn PδX
δ ∈ R[X] be a polynomial. We call a

multiindex ε ≤ d ∈ Nn d-leading in P if for each monomial Xδ in P , i.e.,

each δ with Pδ 6= 0 , holds either

– (case 1) δ = ε ; or

– (case 2) there is a j ∈ (n] such that δj 6= εj but δj ≤ dj .

Note that the multiindex d is d-leading in polynomials P with deg(P ) ≤
Σd . In this situation, case 2 reduces to “there is a j ∈ (n] such that δj < dj ,”

and, as Σδ ≤ Σd for all Xδ in P , we can conclude:

“not case 2” =⇒ δ ≥ d =⇒ δ = d =⇒ “case 1” . (36)

Thus d really is d-leading in P (see also figure 2 on page 50). Of course, if

all partial degrees are restricted by degj(P ) ≤ dj then all multiindices δ ≤ d

are d-leading. Figure 1 (below) shows a nontrivial example P ∈ R[X1, X2] .

The monomials Xδ of P ( Pδ 6= 0 ), and the 2n− 1 = 3 “forbidden areas”

of each of the two d-leading multiindices, are marked.

In what follows, we examine how the preconditions of the inversion for-

mula 2.8 may be weakened. It turns out that formula 2.8 holds without fur-

ther degree restrictions for the d-leading coefficients Pε of P . The following

theorem is a generalization and a sharpening of Alon and Tarsi’s (second)

Combinatorial Nullstellensatz [Al2, Theorem 1.2]:

Theorem 3.2 (Coefficient formula). Let X be an integral d-grid. For each

polynomial P =
∑

δ∈Nn PδX
δ ∈ R[X] with d-leading multiindex ε ≤ d ∈ Nn,

(i) Pε = (Ψ(N−1P |X))ε ( =
∑

x∈X ψε,x N(x)−1P (x) ), and

(ii) Pε 6= 0 =⇒ P |X 6≡ 0 .
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Figure 1: Monomials of a polynomial P with

(4, 2)-leading multiindices (0, 1) and (2, 1) .

deg2

4
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2

1

0

deg1
6543210

Proof. In our first proof we use the tensor product property (7) and the lin-

earity of the map P 7→ (Ψ(N−1P |X))ε to reduce the problem to the one-

dimensional case. The one-dimensional case is covered by the inversion for-

mula 2.8 . Another proof, following Alon and Tarsi’s polynomial method, is

described in Section 7 .

Since both sides of the Equation (i) are linear in P it suffices to prove

(Xδ)ε = (Ψ(N−1Xδ|X))ε in the both cases of Definition 3.1 . In each case,

(
Ψ(N−1Xδ|X)

)
ε

=
(

Ψ
((⊗

j
N−1

j

)⊗
j
(Xδj

j |Xj )
))

ε

=
((⊗

j
Ψj

) ⊗
j
(N−1

j X
δj

j |Xj )
)

ε

(7)
=

(⊗
j

(
Ψj(N−1

j X
δj

j |Xj )
) )

ε

=
∏

j∈(n]

(
Ψj(N−1

j X
δj

j |Xj )
)
εj

.

(37)

Using the one-dimensional case of the inversion formula 2.8 we also derive

(
Ψj(N−1

j X
δj

j |Xj )
)

εj
= (Xδj

j )εj = ?(δj=εj) for all j ∈ (n] with δj ≤ dj .
(38)

Thus in case 1 ( ∀ j ∈ (n] : δj = εj ≤ dj ) ,

(
Ψ(N−1Xδ|X)

)
ε

= 1 = (Xδ)ε . (39)

And in case 2 ( ∃ j ∈ (n] : εj 6= δj ≤ dj ) ,

(
Ψ(N−1Xδ|X)

)
ε

= 0 = (Xδ)ε . (40)
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Note that the one-dimensional case of Theorem3.2 (ii) is nothing more

then the well-known fact that polynomials P (X1) 6= 0 of degree at most d1

have at most d1 roots.

With the remark after Definition 3.1, and the knowledge that ψd,x
(9)
= 1

for all x ∈ X , we get our main result as an immediate consequence of

Theorem3.2:

Theorem 3.3 (Coefficient formula). Let X be an integral d-grid. For each

polynomial P =
∑

δ∈Nn PδX
δ ∈ R[X] of total degree deg(P ) ≤ Σd ,

(i) Pd = Σ(N−1P |X) ( =
∑

x∈X N(x)−1P (x) ), and

(ii) Pd 6= 0 =⇒ P |X 6≡ 0 .

This main theorem looks simpler then the more general Theorem 3.2, and

you do not have to know the concept of d-leading coefficients to understand

it. Furthermore, the applications in this paper do not really make use of the

generality in Theorem 3.2 . However, we tried to provide as much general-

ity as possible, and it is of course interesting to understand the role of the

degree restriction in Theorem3.3 . The most important part of this results,

the implication in Theorem3.3 (ii), which is known as Combinatorial Null-

stellensatz was already proven in [Al2, Theorem 1.2], for integral domains.

Note that Pd = 0 whenever deg(P ) < Σd , so that the implication seems

to become useless in this situation. However, one may modify P , or use

smaller sets Xj (and hence smaller dj ), and apply the implication then.

So, if Pδ 6= 0 for a δ ≤ d with Σδ = deg(P ) then it still follows that

P |X 6≡ 0 . De facto, such δ are d-leading.

If, on the other hand, deg(P ) = Σd , then Pd is, in general, the only

coefficient that allows conclusions on P |X as in 3.3 (ii), how the modifica-

tion methods of Section 7 show. More precisely, if we do not have further

information about the d-grid X , then the d-leading coefficients are the only

coefficients that allow such conclusions. For special grids X , however, there

may be some other coefficients Pδ with this property, e.g., P0 in the case

0 = (0, . . . , 0) ∈ X .

Note further that for special grids X , the degree restriction in 3.3 may be

weakened slightly. If, for example, X = Fq
n , then the restriction deg(P ) ≤

Σd + q − 2 suffices; see the footnote on page 50 for an explanation.

The following corollary is a consequence of the simple fact that vanishing

sums (the case Pd = 0 in Theorem 3.3 (i)) do not have exactly one nonvan-
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ishing summand. It is very useful if a problem possesses exactly one trivial

solution: if we are able to describe the problem by a polynomial of low de-

gree, we just have to check the degree, and Corollary 3.4 guarantees a second

(in this case, nontrivial) solution. There are many elegant applications of

this; for some examples see Section 4 . We will work out a general working

frame in Section 6 . We have:

Corollary 3.4. Let X be an integral d-grid. For polynomials P of degree

deg(P ) < Σd (or, more generally, for polynomials with vanishing d-leading

coefficient Pd = 0 ),

∣∣{ x ∈ X ¦ P (x) 6= 0 }
∣∣ 6= 1 .

If the grid X has a special structure – for example, if X ⊆ R>0
n

– this corol-

lary may also hold for polynomials P with vanishing d-leading coefficient

Pε = 0 for some ε 6= d . The simple idea for the proof of this, which uses

Theorem3.2 instead of Theorem3.3, leads to the modified conclusion that
∣∣{x ∈ X ¦ ψε,xP (x) 6= 0 }

∣∣ 6= 1 . (41)

Note further that the one-dimensional case of Corollary 3.4 is just a re-

formulation of the well-known fact that polynomials P (X1) of degree less

than d1 do not have d1 = |X1| − 1 roots, except if P = 0 .

The example P = 2X1 + 2 ∈ Z4[X1] , X = {0, 1,−1} shows that Corol-

lary 3.4 does not hold over arbitrary grids. However, if X = Zm
n =: Rn with

m not prime, the grid X is not integral; yet assertion 3.4 holds anyway. As-

tonishingly, in this case the degree condition can be dropped, too. We will

see this in Corollary 9.2 .

We also present another proof of Corollary 3.4 that uses only the weaker

part (ii) of Theorem 3.2 , to demonstrate that the well-known Combinatorial

Nullstellensatz, our Theorem 3.3 (ii), would suffice for the proof of the main

part of the corollary:

Proof. Suppose P has exactly one nonzero x0 ∈ X . Then

Q := P − P (x0)N−1(x0)LX,x0 ∈ R[X] (42)

vanishes on the whole grid X , but possesses the nonvanishing and d-leading

coefficient
Qd = −P (x0)N−1(x0) 6= 0 , (43)

in contradiction to Theorem 3.2 (ii).
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A further useful corollary, and a version of Chevalley and Warning’s clas-

sical result – Theorem4.3 in this paper – is the following result (see also

Corollary 8.5 for a sharpening of Warning’s Theorem, and Theorem 9.4 for a

similar result over Zpk ):

Corollary 3.5. Let X ⊆ Fpk
n be a d-grid and P1, . . . , Pm ∈ Fpk [X1, . . . , Xn] .

If (pk − 1)
∑

i∈(m] deg(Pi) < Σd , then

∣∣{ x ∈ X ¦ P1(x) = · · · = Pm(x) = 0
}∣∣ 6= 1 .

Proof. Define

P :=
∏

i∈(m]

(1− P pk−1
i ) ; (44)

then for points x = (x1, . . . , xn) ,

P (x) 6= 0 ⇐⇒ ∀ i ∈ (m] : Pi(x) = 0 , (45)

and hence

∣∣{x ∈ X ¦ P1(x) = · · · = Pm(x) = 0
}∣∣ =

∣∣{x ∈ X ¦ P (x) 6= 0
}∣∣ 3.4

6= 1 , (46)

since
deg(P ) ≤

∑

i∈(m]

(pk − 1) deg(Pi) < Σd . (47)
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4 First applications and

the application principles

In this section we present some short and elegant examples of how our the-

orems may be applied. They are all well-known, but we wanted to have

some examples to demonstrate the huge flexibility of these methods. This

flexibility will also be emphasized through the general working frame de-

scribed in Section 6, for which the applications of this section may serve as

examples. Alon used them already in [Al2] to demonstrate the usage of im-

plication 3.3 (ii) ; whereas we prove them by application of Theorem3.3 (i),

and the corollaries 3.4 and 3.5, an approach which is – in most cases – more

straightforward and more elegant. The main advantage of the coefficient

formula 3.3 (i) can be seen in the proof of Theorem4.3 , where the implica-

tion 3.3 (ii) does not suffice to give a proof of the full theorem. Section 5

will contain another application that puts the new quantitative aspect of

coefficient formula 3.3 into the spotlight.

Our first example was originally proven in [AFK]:

Theorem 4.1. Every loopless 4-regular multigraph plus one edge G =

(V,E ] {e0}) contains a nontrivial 3-regular subgraph.

See [AFK2] and [MoZi] for further similar results. The additional edge e0

in our version is necessary as the example of a triangle with doubled edges

shows.

We give a comprehensive proof in order to outline the principles:

Proof. Of course, the empty graph (∅,∅) is a (trivial) 3-regular subgraph.

So there is one “solution,” and we just have to show that there is not exactly

one “solution.” This is where Corollary 3.5 comes in. Systems of polynomials

of low degree do not have exactly one common zero. Thus, if the 3-regular

subgraphs correspond to the common zeros of such a system of polynomials

we know that there has to be a second (nontrivial) “solution.”

The subgraphs without isolated vertices can be identified with the subsets

S of the set of all edges Ē := E ] {e0} . Now, an edge e ∈ Ē may or may

not lie in a subgraph S ⊆ Ē . We represent these two possibilities by the

numbers 1 and 0 in Xe := {0, 1} (the first step in the algebraization), we

define
χ(S) :=

(
?(e∈S)

)
e∈Ē

∈ X := {0, 1}Ē ⊆ FĒ
3 . (48)

With this representation, the subgraphs S correspond to the points x = (xe)
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of the Boolean grid X := {0, 1}Ē ⊆ FĒ
3 ; and it is easy to see that the

polynomials

Pv :=
∑
e3v

Xe ∈ F3[ Xe ¦ e∈Ē ] for all v ∈ V (49)

do the job, i.e., they have sufficient low degrees and the common zeros x ∈ X

correspond to the 3-regular subgraphs. To see this, we have to check for each

vertex v ∈ V the number
∣∣{ e 3 v ¦ xe = 1 }

∣∣ ≤ 5 of edges e connected to

v that are “selected” by a common zero x ∈ X = {0, 1}Ē :

Pv(x) = 0 ⇐⇒
∑
e3v

xe = 0 ⇐⇒
∣∣{ e 3 v ¦ xe = 1 }

∣∣ ∈ {0, 3} . (50)

Furthermore, we have to check the degree condition of Corollary 3.5, and

that is where we need the additional edge e0 :

(31 − 1)
∑

v∈V

deg(Pv) = 2|V | = |E| < |Ē| = Σd(X) . (51)

By Corollary 3.5, the trivial graph ∅ ⊆ Ē ( x = 0 ) cannot be the only

3-regular subgraph.

The following simple, geometric result was proven by Alon and Füredi in

[AlFü], and answers a question by Komjáth. Our proof uses Corollary 3.4:

Theorem 4.2. Let H1, H2, . . . , Hm be affine hyperplanes in Fn ( F a field)

that cover all vertices of the unit cube X := {0, 1}n except one, then m ≥ n .

Proof. Let
∑

j∈(n] ai,jXj = bi be an equation defining Hi , and set

P :=
∏

i∈(m]

∑

j∈(n]

(ai,jXj − bi) ∈ F[X1, . . . , Xn] ; (52)

then for points x = (x1, . . . , xn) ;

P (x) 6= 0 ⇐⇒
(
∀ i ∈ (m] :

∑

j∈(n]

ai,jxj 6= bi

)
⇐⇒ x /∈

⋃

j∈(m]

Hj . (53)

If we now suppose m < n , then it follows that

deg(P ) ≤ m < n = Σd(X) , (54)

and hence,
∣∣X \⋃

j∈(m]Hj

∣∣ =
∣∣{x ∈ X ¦ P (x) 6= 0 }

∣∣ 3.4
6= 1 . (55)

This means that there is not one unique uncovered point x in X = {0, 1}n

– m < n hyperplanes are not enough to achieve that.
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Our next example is a classical result of Chevalley and Warning that

goes back to a conjecture of Dickson and Artin. There are a lot of different

sharpenings to it; see [MSCK], the Corollaries 3.5 and 8.5 and Theorem9.4 .

In the proof of the classical version, presented below, we do not use the

Boolean grid {0, 1}n, as in the last two examples. We also have to use

Theorem3.3 (i) instead of its corollaries. What remains the same from the

proof of the closely related Corollary 3.5 is that we have to translate a system

of equations into a single inequality:

Theorem 4.3. Let p be a prime and P1, P2, . . . , Pm ∈ Fpk [X1, . . . , Xn] .

If
∑

i∈(m] deg(Pi) < n , then

p
⌊⌊ ∣∣{ x ∈ Fpk

n ¦ P1(x) = · · · = Pm(x) = 0 }∣∣ ,

and hence the Pi do not have one unique common zero x .

Proof. Define

P :=
∏

i∈(m]

(1− P pk−1
i ) ; (56)

then

P (x) =

{
1 if P1(x) = · · · = Pm(x) = 0 ,

0 otherwise
for all x ∈ Fpk

n , (57)

thus, with X := Fpk
n ,

∣∣{x ∈ Fpk
n ¦ P1(x) = · · · = Pm(x) = 0

}∣∣ · 1 =
∑

x∈X

P (x)
3.3
1.4= (−1)n (P )d(X)

(59)
= 0 ,

(58)
where the last two equalities hold as

deg(P ) ≤ (pk − 1)
∑

i∈(m]

deg(Pi) < (pk − 1)n = Σd(X) . (59)

The Cauchy-Davenport Theorem is another classical result. It was first

proven by Cauchy in 1813, and has many applications in additive number

theory. The proof of this result is as simple as the last ones, but here we use

the coefficient formula 3.3 (i) in the other direction – we know the polynomial

map P |X , and use it to determine the coefficient Pd :
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Theorem 4.4. If p is a prime, and A and B are two nonempty subsets

of Zp := Z/pZ , then

|A + B| ≥ min{ p , |A|+ |B| − 1 } .

Proof. We assume |A + B| ≤ |A|+ |B| − 2 , and must prove |A + B| ≥ p .

Define
P :=

∏

c∈A+B

(X1 + X2 − c) ∈ Zp[X1, X2] , (60)

set
X1 := A , (61)

and choose a subset
∅ 6= X2 ⊆ B (62)

of size
|X2| = |A + B| − |A|+ 2 ( ≤ |B| ) . (63)

Now
P |X1×X2 ≡ 0 , (64)

and
deg(P ) = |A + B| = |X1|+ |X2| − 2 = d1(X1) + d2(X2) , (65)

so that

(|A+B|
d1

) · 1 = P(d1,|A+B|−d1) = Pd
3.3=

∑

x∈X1×X2

0 = 0 ∈ Zp . (66)

Hence
p

⌊⌊ (|A+B|
d1

)
, (67)

and it follows that
|A + B| ≥ p . (68)

There are some further number-theoretic applications, for example,

Erdős, Ginzburg and Ziv’s Theorem, which also can be found in [Al2].
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5 The matrix polynomial –

another application

In this section we apply our results to the matrix polynomial Π(AX) , a

generalization of the graph polynomial (see also [AlTa2] or [Ya]).

We always assume A = (ai,j) ∈ Rm×n, and the product of this matrix A, X

with the tuple X := (X1, . . . , Xn) ∈ R[X]n is AX := (
∑

j∈(m] aijXj)i∈(n] . AX

Now, Π(AX) is defined in accordance with the definition of Π in Section 1,

as follows:

Definition 5.1 (Matrix polynomial). The matrix polynomial to the matrix

A = (ai,j) ∈ Rm×n is given by Π(AX)

Π(AX) :=
∏

i∈(n]

∑

j∈(m]

aijXj ∈ R[X] .

It turns out that the coefficients of the matrix polynomial are some kind

of permanents:

Definition 5.2 (δ-permanent). For δ ∈ Nn we define the δ-permanent of

A = (ai,j) ∈ Rm×n through perδ(A)

perδ(A) :=
∑

σ : (m]→(n]

|σ−1|=δ

πA(σ) ,

where πA(σ)

|σ−1|πA(σ) :=
∏

i∈(n]

ai,σ(i) and |σ−1| :=
(|σ−1(j)|)

j∈(n]
.

Obviously, perδ(A) = 0 if Σδ 6= m . If m = n then per := per(1,1,...,1) is per

the usual permanent; and, in the general situation, it is easy to see that
(∏

j∈(n] δj!
)

perδ(A) = per(A〈|δ〉), (69)

where A〈|δ〉 is a matrix that contains the jth column of A exactly δj A〈|δ〉
times. But note that perδ(A) is, in general, not determined by per(A〈|δ〉) .

If, for example, (
∏

j∈(n] δj!) 1 = 0 in R , the δ-permanent perδ(A) may take

arbitrary values, while per(A〈|δ〉) = 0 .

As an immediate consequence of the definitions, we have

Lemma 5.3.

Π(AX) =
∑

δ∈Nn
perδ(A) Xδ .
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The next theorem now easily follows from our main result, Theorem3.3 .

It is an integrative generalization of Alon’s Permanent Lemma [Al2, Sec-

tion 8], and of Ryser’s permanent formula [BrRy, p.200], which follow as the

special cases:

– m = n , d = (1, 1, . . . , 1) of the following 5.4 (ii) over fields,

– m = n , d = (1, 1, . . . , 1) , X = {0, 1}n , b = (0, 0, . . . , 0) of 5.4 (i) over

fields.

We already proved a slightly weaker version for X ⊆ Nn ⊆ Rn in [Scha,

1.14 & 1.15]. This proof was based on Ryser’s formula, and is a little more

technical. [Scha, 1.10] is the special case X = [d] ⊆ Nn ⊆ Rn, but you

will have to use 1.4 (v) to see this. For some additional tricks over fields of

characteristic p > 0 , see [DeV]. We have:

Theorem 5.4 (Permanent formula). Suppose A = (aij) ∈ Rm×n and b =A

(bi) ∈ Rm are given, and let X ⊆ Rn be an integral d-grid. If m ≤ Σd ,

then

(i) perd(A) =
∑

x∈X
N(x)−1 Π(Ax− b) , and

(ii) perd(A) 6= 0 =⇒ ∃ x ∈ X : (Ax)1 6= b1 , . . . , (Ax)m 6= bm .

Proof. Part (i) follows from Theorem3.3, as deg
(
Π(AX − b)

)
= m ≤ Σd ,

and
(
Π(AX − b)

)
d

=
(
Π(AX)

)
d

5.3
= perd(A) . Part (ii) is a simple conse-

quence of part (i).

We call an element x ∈ Rm with (Ax)1 6= 0 , . . . , (Ax)m 6= 0 a

(correct) coloring of A , and a map σ : (m] −→ (n] with πA(σ) 6= 0 andσ

|σ−1| = δ is a δ-orientation of A . With this terminology, Theorem5.4 de-

scribes a connection between the orientations and the colorings of A , and it

is not too difficult to see that this is a sharpening and a generalization of Alon

and Tarsi’s Theorem about colorings and orientations of graphs in [AlTa].

That is because, in virtue of the embedding
�����
G 7−→ A(

�����
G) described in (70)

below, oriented graphs form a subset of the set of matrices, if −1 6= 1 in R .

The resulting sharpening 5.5 of the Alon-Tarsi Theorem contains Scheim’s

formula for the number of edge r-colorings of a planar r-regular graph as a

permanent and Ellingham and Goddyn’s partial solution of the list coloring

conjecture. We briefly elaborate on this; for even more detail, see [Scha],

where we described this for grids X ⊆ Nn ⊆ Rn, and where we pointed out
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that many other graph-theoretic theorems may be formulated for matrices,

too.

Let
�����
G = (V,E,�����,�����) be a oriented multigraph with vertex set V , edge �����

G, e�����

set E and defining orientations ����� : E −→ V , e 7−→ e����� and ����� : e 7−→ e�����. ��, ��
�����
G shall be loopless, so that e����� 6= e����� for all e ∈ E . We write v ∈ e instead v ∈ e

of v ∈ {e�����, e�����} and define the incidence matrix A(
�����
G) of

�����
G by A(

�����
G)

A(
�����
G) := (ae,v) ∈ RE×V, where ae,v := ?(e�����=v)− ?(e�����=v) ∈ {−1, 0, 1} . (70)

With this definition, the orientations σ : E 3 e 7−→ eσ ∈ e and the colorings

x : V −→ R of
�����
G are exactly the orientations and the colorings of A(

�����
G)

as defined above. The orientations σ of A(
�����
G) have the special property

πA(
�����
G)(σ) = ±1 . According to this, we say that an orientation σ of

�����
G is

even/odd if eσ 6= e����� ( i.e., eσ = e����� ) holds for even/odd many edges e ∈ E .

We write DEδ / DOδ for the set of even/odd orientations σ of
�����
G with DEδ

DOδ|σ−1| = δ ∈ NV . With this notation we have:

Corollary 5.5. Let
�����
G = (V, E,�����,�����) be a loopless, directed multigraph and

X ⊆ RV be an integral d-grid; where d = (dv) ∈ NV, and dv = |Xv| − 1 for

all v ∈ V . If |E| ≤ Σd , then

(i) |DEd| − |DOd| = perd(A(
�����
G)) =

∑
x∈X

N(x)−1
∏

e∈E

(
xe����� − xe�����

)
,

(ii) |DEd| 6= |DOd| =⇒ ∃ x ∈ X : ∀ e ∈ E : xe����� 6= xe����� ( x is coloring).

Furthermore, it is not so hard to see that, if EE / EO is the set of EE, EO

even/odd Eulerian subgraphs of
�����
G , and δ := |�����−1| , we have |DEδ| = |EE|

and |DOδ| = |EO| ; see also [Scha, 2.6].

Note that even though Corollary 5.5 looks a little simpler than [Scha, 1.14

& 2.4], there is some complexity hidden in the symbol N(x) . If the “lists”

Xv ( X =
∏

v∈V Xv ) are all equal, this becomes less complex. Further, if the

graph
�����
G is the line graph of a r-regular graph, so that its vertex colorings are

the edge colorings of the r-regular graph, then the whole right side becomes

very simple. The summands are then – up to a constant factor – equal to

±1 ; or to 0 , if x = (xv)v∈V is not a correct coloring. The corresponding

specialization of equation 5.5 (i) was already obtained in [ElGo] and [Sch].

If in addition
�����
G is planar this formula becomes even simpler, so that the

whole right side is – up to a constant factor – the number of edge r-colorings

of the r-regular graph. Scheim [Sch] proved this specialization in his approach

to the four color problem for 3-regular graphs using a result of Vigneron [Vig].
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However, with Ellingham and Goddyn’s generalization [ElGo, Theorem3.1]

of Vigneron’s result, this specialization also follows in the r-regular case.

As the left side of our equation does not depend on the choice of the

d-grid X , the right side does not depend on it, either. In our special case,

where the right side is the number of r-colorings of the line graph of a planar

r-regular graph, this means that if there are colorings to equal lists Xv of

size r (e.g., X = [r)V ), then there are also colorings to arbitrary lists Xv

of size |Xv| = r – which is just Ellingham and Goddyn’s confirmation of

the list coloring conjecture for planar r-regular edge r-colorable multigraphs

[ElGo].
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6 Algebraic solvable existence problems:

Describing polynomials as equivalent to

explicit solutions

In this section we describe a general working frame to Theorem3.3 (ii) and

Corollary 3.4, as it may be used in existence proofs, such as those of 3.5, 4.2 or

5.4 (ii) . We call the polynomials defined in the equations (44) and (52) or the

matrix polynomial Π(AX) in our last example, algebraic solutions, and show

that such algebraic solutions may be seen as equivalent to explicit solutions.

We show that the existence of algebraic solutions, and of nontrivial explicit

solutions are equivalent. To make this more exact, we have to introduce some

definitions. Our definition of problems should not merely reflect common

usage. In fact, the generality gained through an exaggerated extension of

the term “problem” through abstraction is desirable.

Definition 6.1 (Problem). A problem P is a pair (S,Striv) consisting of a P
(S,Striv)set S , which we call its set of solutions ; and a subset Striv ⊆ S , which we

call its set of trivial solutions.

In example 4.1, the set of solutions S consists of the 3-regular subgraphs

and Striv = {(∅,∅)} . These are exact definitions, but it does not mean that

we know if there are nontrivial solutions, i.e., if S 6= Striv . The set S is well

defined, but we do not know what it looks like; indeed, that is the actual

problem.

To apply our theory about polynomials in such general situations, we

have to bring in grids X in some way. For that, we define impressions:

Definition 6.2 (Impression). A triple (R,X, χ) is a impression of P if R (R, X, χ)

is a commutative ring with 1 6= 0 , if X = X1 × · · · × Xn ⊆ Rn is a finite

integral grid (for some n ∈ N ) and if χ : S −→ X is a map.

As the set S of solutions is usually unknown, one may ask how the map

χ : S −→ X can be defined. The answer is that we usually, define χ on a

bigger domain at first, as in Equation (48) in example 4.1 . Then the unknown

set of solutions S (more precisely, its image χ(S) ) is indirectly described:

Definition 6.3 (Describing polynomial). A polynomial P ∈ R[X1, . . . , Xn]

is a describing polynomial of P over (R,X, χ) if

χ(S) = supp(P |X) .
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The diagram (5) in the introduction shows a schematic illustration of our

concept in the case Striv = ∅ . The next question is how it might be possible

to reveal the existence of nontrivial solutions using some knowledge about a

describing polynomial P , and how to find such an appropriate P . In view

of our results from Section 3, we give the following definition:

Definition 6.4 (Algebraic solutions). A describing polynomial P is an al-

gebraic solution (over (R,X, χ) ) of a problem of the form P = (S,∅) if it

fulfills

deg(P ) ≤ Σd(X) and Pd(X) 6= 0 .

It is an algebraic solution of a problem P = (S,Striv) with Striv 6= ∅ if it

fulfills

deg(P ) < Σd(X) and
∑

x∈χ(Striv)

N(x)−1P (x) 6= 0 (e.g., if |χ(Striv)| = 1 ).

The bad news is that now, we do not have a general recipe for how to

find algebraic solutions that indicate the solvability of problems. However,

we have seen that there are several combinatorial problems that are alge-

braically solvable in an obvious way. The construction of algebraic solutions

in these examples follows more or less the same simple pattern, and that

constructive approach is the big advantage. Algebraic solutions are easy to

construct if the problem is not too complex in the sense that the construc-

tion does not require too many multiplications. In many cases algebraic so-

lutions can be formulated for whole classes of problems, e.g., for all extended

4-regular graphs in example 4.1, where the final algebraic solution was hidden

in Corollary 3.5; however, we may have no idea about how explicit solutions

(for whole classes of problems) can be found or presented.

If an algebraic solution is found, we can apply Theorem3.3 , Corollary 3.4

or the following theorem, which also shows that algebraic solutions always

exist, provided there are nontrivial solutions in the first place.

Theorem 6.5. Let P = (S,Striv) be a problem. The following properties

are equivalent:

(i) There exists a nontrivial solution of P ; i.e., S 6= Striv .

(ii) There exists an algebraic solution of P over an impression (R,X, χ) .

(iii) There exist algebraic solutions of P over each impression (R, X, χ)

that fulfills either
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– |R| > 2 and S 6= Striv ⇒ χ(S) 6= χ(Striv)

(e.g., if χ is injective or if Striv = ∅ ); or

– |R| = 2 and |χ(S)|+ 1 ≡ |χ(Striv)| ≡ ?(Striv 6=∅) (mod 2) .

Proof. First, assume (ii), and let P be an algebraic solution. We want to

show that (i) holds. For Striv = ∅ , this follows from Theorem 3.3 (ii). For

Striv 6= ∅ , we have

0 = Pd
3.3= Σ(N−1P |X) =

∑

x∈χ(Striv)

N(x)−1P (x) +
∑

x∈χ(S)\χ(Striv)

N(x)−1P (x) , (71)

where the first sum over χ(Striv) does not vanish. Hence, the second sum

over the set χ(S)\χ(Striv) does not vanish, either. Thus χ(S)\χ(Striv) 6= ∅ ,

and S 6= Striv follows.

To prove (i) =⇒ (iii) for Striv = ∅ , assume (i), and define a map y :

X −→ R such that supp(y) = χ(S) and Σy 6= 0 . (In the case |R| = 2 ,

we need |χ(S)| ≡ 1 (mod 2) to make this possible.) The interpolation

polynomial P := (Ψy)(X) to the map Ny described in Theorem2.2 now

has degree deg(P ) ≤ Σd , and fulfills

supp(P |X) 2.2= supp(y) = χ(S) (72)

and
Pd

3.3= Σ(N−1P |X) 2.2= Σy 6= 0 . (73)

To prove (i) =⇒ (iii) for Striv 6= ∅ , assume (i), and define a map y :

X −→ R such that supp(y) = χ(S) ,
∑

x∈χ(Striv) y(x) 6= 0 and Σy = 0 .

(In the case |R| = 2 , we need |χ(S)| + 1 ≡ |χ(Striv)| ≡ 1 (mod 2) to

make this possible.) Now, the polynomial P := (Ψy)(X) has partial degrees

degj(P ) ≤ dj , and total degree deg(P ) < Σd , as

Pd
3.3= Σ(N−1P |X) 2.2= Σy = 0 . (74)

It satisfies
supp(P |X) 2.2= supp(y) = χ(S) (75)

and ∑

x∈χ(Striv)

N(x)−1P (x) 2.2=
∑

x∈χ(Striv)

y 6= 0 . (76)

Finally, to show (iii) =⇒ (ii) , we only have to prove that there exists an

impression (R,X, χ) as described in (iii). This is clear, as we may define χ
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by setting

χ(s) :=

{
xtriv for s ∈ Striv ,

xgood for s ∈ S \ Striv ,
(77)

where xtriv and xgood are two distinct, arbitrary elements in some suitable

grid X .

The arguments in this proof also show that the restrictions to the im-

pression (R,X, χ) in part (iii) are really necessary. If, for example, we had

|R| = 2 , Striv = ∅ and |χ(S)| ≡ 0 (mod 2) , then Pd = 0 , and the problem

would not be algebraically solvable with respect to the impression (R, X, χ) .
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7 The Combinatorial Nullstellensatz

or how to modify polynomials

In this section, we describe a sharpening of a specialization of Hilbert’s Null-

stellensatz (see e.g. [DuFo]), the so-called (first) Combinatorial Nullstellen-

satz. This theorem, and the modification methods behind it, can be used in

another proof of the coefficient formulas in Section 3 .

We start with an example that illustrates the underlying modification

method of this section. It also shows that the coefficient Pd in Theorem3.3

is, in general, the only coefficient that is uniquely determined by P |X :

Example 7.1. Let P ∈ C[X1, X2] (i.e., R := C and n := 2 ), and define

for j = 1, 2 :

Lj :=
X5

j − 1

Xj − 1
= X4

j + X3
j + X2

j + X1
j + X0

j , (78)

Xj := {x ∈ C ¦ Lj(x) = 0} = {x1, x2, x3, x4} , where xk := e
k
5
2π
√−1 .

(79)

Then d = d(X) = (3, 3) . Now, for ε ∈ N2, the polynomial XεL1 (and

XεL2 ) vanishes on X . Therefore, the modified polynomial

P ′ := P + cXεL1 , where c ∈ R\0 , (80)

fulfills

P ′|X = P |X ; (81)

but the coefficients Pε+(0,0) , Pε+(1,0) , Pε+(2,0) , Pε+(3,0) and Pε+(4,0) have

changed:

P ′
ε+(i,0) = Pε+(i,0) + c 6= Pε+(i,0) for i = 0, 1, 2, 3, 4 . (82)

In this way we may modify P without changing the map P |X .

Now, suppose deg(P ) ≤ Σd = 3 + 3 . Figure 2 illustrates that all coeffi-

cients Pδ with δ ≤ Σd – except Pd – can be modified without losing the

condition deg P ≤ Σd , so that they are not uniquely determined by P |X .

If we try to modify Pd = P(3,3) – for example, by adding cX(0,3)L1 (or

cX(3,0)L2 ) – we realize that

deg(X(0,3)L1) = deg(X(0,7)) = 7 > 3 + 3 = Σd , (83)

and deg(P ′) > Σd would follow. The coefficient Pd cannot be modified in

this way.
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Figure 2: Monomials of degree ≤ 3 + 3 .
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This example can also be used to illustrate a second proof of Theorem 3.3

(and Theorem3.2):

By successive modifications, as above, withLj

Lj = LXj
(Xj) :=

∏

x̂∈Xj

(Xj − x̂) (84)

in the general case, it is possible to wrangle P into a trimmed polynomial

P/X with the propertiesP/X

P/X|X = P |X and degj(P/X) ≤ dj for j = 1, . . . , n . (85)

By 2.7(v), P/X is uniquely determined if X is an integral d-grid (e.g.,

P/{x} = P (x) ). If deg(P ) ≤ Σd , then it is obviously possible to leave

the coefficient Pd unchanged during the modification2. Therefore we get

Pd = (P/X)d
2.8
= (Ψ(N−1P/X|X))d = (Ψ(N−1P |X))d

(9)
= Σ(N−1P |X) ; (86)

and Theorem3.3 follows immediately.

Theorem 3.2 can also be proven the same way by using the following, ob-

vious generalization (Lemma 7.2) of the first equation in (86). Furthermore,

we want to mention at this point that the proof above (and the following

lemma) may work for some other coefficients Pδ as well if the Lj = LXj
(Xj)

2At this point the degree restriction deg(P ) ≤ Σd may be weakened slightly if the
grid X – and hence the Lj – have a special structure. If, e.g., Lj = Xk+1

j − 1 (or
Lj = Xk+1

j − Xj ) for all j ∈ (n] , then deg(P ) ≤ Σd + k [ = (n + 1)k ] (respectively
deg(P ) ≤ Σd + k − 1 ) suffices.
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have a special structure, e.g., Lj = Xdj − 1 . Of course it works for P0 if

0 = (0, . . . , 0) ∈ X , since all Lj lack a constant term in this case. Without

further information about the grid X , we “carry through” only the d-leading

coefficients:

Lemma 7.2. Let X be a d-grid. For each polynomial P =
∑

δ∈Nn PδX
δ ∈

R[X] with d-leading multiindex ε ≤ d ∈ Nn (e.g., if Σε = deg(P ) ),

(P/X)ε = Pε .

If we take a closer look at the modification methods above, we see that

the difference P − P/X can be written as

P − P/X =
∑
j∈(n]

HjLj , (87)

with some Hj ∈ R[X] of degree deg(Hj) ≤ deg(P )− deg(Lj) .

If P |X ≡ 0 , then P/X = 0 by the uniqueness of the trimmed polynomial,

and (87) yields P =
∑

j∈(n] HjLj . This was proven for integral rings in [Al2,

Theorem1.1]. More formally, we have:

Theorem 7.3 (Combinatorial Nullstellensatz). Let X = X1×· · ·×Xn ⊆ Rn

be an integral grid with associated polynomials Lj :=
∏

x̂∈Xj
(Xj − x̂) .

For any polynomial P =
∑

δ∈Nn PδX
δ ∈ R[X] , the following are equivalent:

(i) P |X ≡ 0 .

(ii) P/X = 0 .

(iii) P =
∑

j∈(n]

HjLj ∈ R[X]

for some polynomials Hj over a ring extension of R .

(iv) P =
∑

j∈(n]

HjLj

for some Hj ∈ R[X] of degree deg(Hj) ≤ deg(P )− |Xj| .

Proof. We already have seen that the implications (i) =⇒ (ii) =⇒ (iv) hold;

and the implications (iv) =⇒ (iii) =⇒ (i) are trivial.
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The implication “ (i) =⇒ (iv) ” states that polynomials P with P |X ≡ 0

may be written as
∑

j∈(n] HjLj . In other words, P lies in the ideal spanned

by the polynomials Lj . As we do not know a priori that this ideal is a

radical ideal, Hilbert’s Nullstellensatz would only provide P k =
∑

j∈(n] HjLj

for some k ≥ 1 , and without degree restrictions for the Hj (provided R
is an algebraically closed field). Alon suggested calling the stronger (with

respect to the special polynomials Lj ) result “Combinatorial Nullstellen-

satz.” He used it to prove the implication (ii) in the coefficient formula 3.3

[Al2, Theorem1.2] and recycled the phrase “Combinatorial Nullstellensatz”

for the implication 3.3 (ii).
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8 A sharpening of Warning’s Theorem –

a further application

In this section, we investigate the distribution of the different possible values

of polynomial maps x 7−→ P (x) on the grid X := Fp
n by using affine linear

subspaces v + U of X considered as a vector space over Fp (Theorem8.4). v + U

This leads to a sharpening (Corollary 8.5) of Warning’s classical result [Schm]

about the number of simultaneous zeros of systems of polynomial equations

over finite fields. We formulated this, and the other results of this section,

for prime fields Fp ; but they may also be applied to arbitrary finite fields

Fpk by using Lemma8.6 .

We will use the notation P/X of (85) in Section 7 for the trimmed poly- P/X, perδ

nomial; and the notation perδ for the δ-permanent, defined in 5.2 . We know

that for matrices A = (ai,j) ∈ Rm×n and for δ ∈ Nn,

A 7−→ perδ(A) :=
∑

σ : (m]→(n]

|σ−1|=δ

πA(σ) is multilinear in the rows of A . (88)

This is clear because the maps A 7−→ πA(σ) (defined in 5.2) are multilinear. πA, A〈k|〉
The notation A〈k|〉 , with k ∈ N , stands for a matrix that contains each

row of A exactly k times. We have some nice roles for the δ-permanent of

such matrices with multiple rows:

Lemma 8.1. Let R be an integral ring of characteristic p . For matrices

A = (ai,j) ∈ Rm×n and tuples δ = (δj) ∈ [ph)n hold:

(i) If A contains ph identical rows, then

perδ(A) = 0 . (89)

(ii) If A′ is obtained from A by adding a multiple of one row to another,

then

perδ(A
′〈ph− 1|〉) = perδ(A〈ph− 1|〉) . (90)

(iii) If rank(A) < m , then

perδ(A〈ph− 1|〉) = 0 . (91)
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Proof. To prove (i), we may suppose that the first ph rows of A coin-

cide. Let τ : (m] → (m] be the cyclic permutation of these rows: τ =τ

(1, 2, . . . , ph) . For each map σ : (m] → (n] with |σ−1| := (|σ−1(j)|)
j∈(n]

= δ ,|σ−1|

the maps of the form σ ◦ τ i : (m] → (n] also have the property |σ−1| = δ ,

andσ̄

πA(σ′) = πA(σ′′) for each two σ′, σ′′ ∈ σ̄ := {σ ◦ τ i ¦ 0 ≤ i < ph } . (92)

We use this, to partition the summation range in the definition of perδ , in

order to bundle equal summands. As we explain below, for each σ ,

p
⌊⌊
|σ̄| , i.e., |σ̄| 1 = 0 , (93)

and hence ∑

σ′∈σ̄

πA(σ′) = 0 . (94)

It follows that indeed

perδ(A) :=
∑

σ: |σ−1|=δ

πA(σ) =
∑

σ̄: |σ−1|=δ

∑

σ′∈σ̄

πA(σ′) =
∑

σ̄: |σ−1|=δ

0 = 0 . (95)

The used statement (93) holds, since the least integer i ≥ 1 with

σ ◦ τ i = σ (96)

is a multiple of p . Otherwise,

1 = gcd(i, ph) = αi + βph with some α, β ∈ Z , (97)

and hence
σ ◦ τ1 = σ ◦ ταi+βph

= σ ◦ (τ i)α ◦ Idβ (96)
= σ , (98)

which would mean that σ is constant on all ph points of (ph] , i.e.,

|σ−1(σ(1))| ≥ ph , (99)

and that contradicts
|σ−1| = δ ∈ [ph)n . (100)

Part (ii) follows through repeated applications of part (i), using the mul-

tilinearity (88) .

The last part (iii) follows from part (ii) and the well known fact that

matrices A ∈ Fp
m×n with rank(A) < m can be transformed by elementary

row operations into a matrix with a zero row.
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The following, nontrivial lemma is the basis of the results in this section:

Lemma 8.2. Let R be an integral ring with Fp ⊆ R . Assume that r ∈ (n] ,

and define ∆r := { δ ∈ [p)n ¦ Σδ = r(p−1) } . To each 0 6= λ = (λδ) ∈ R∆r , ∆r

there is a matrix A = (ai,j) ∈ Fp
r×n of rank r such that

∑
δ∈∆r

λδ perδ(A〈p− 1|〉) 6= 0 .

Proof. As λ 6= 0 , there is a d ∈ ∆r with

λd 6= 0 . (101)

Set j0 := 1 , and define ji ∈ (n] for all i ∈ (r] as the least number with

∑

j∈(ji]

dj ≥ (p− 1) i . (102)

Set

a′′i,j := ?(ji−1≤j≤ji) , A′′ := (a′′i,j) i∈(r]
j∈(n]

and a′′i,∗ := (a′′i,j)j∈(n] ∈ Fp1×n .

(103)
We want to show that

perd(A
′′〈p− 1|〉) 6= 0 . (104)

To see this, realize that there is just one unique partition

d = d1 + d2 + · · ·+ dr (105)

of the tuple d = (dj) ∈ ∆r ⊆ [p)n into tuples di = (di
j) ∈ [p)n with the

properties
ji−1 ≤ supp(di) ≤ ji , (106)

i.e.,
a′′i,j 6= 0 for all j ∈ supp(di) , (107)

and
di

1 + di
2 + · · ·+ di

n = p− 1 . (108)

Here, the last equation means that each of the unique di = (di
1, . . . , d

i
n) is

itself a partition of p − 1 , so that the multinomial coefficients
(

p−1
di

)
:=(

p−1
di
1,...,di

n

)
are well-defined. From the uniqueness of the di follows

perd(A
′′〈p− 1|〉) =

∏

i∈(r]

perdi

(
a′′i,∗〈p− 1|〉

)
=

∏

i∈(r]

(
p− 1

di

)
1 6= 0 , (109)
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since (p−1
di

)
= (p−1)!Q

j∈(n] di
j !

⌋⌋
� p for all i ∈ (r] . (110)

Now set
A′ := (a′′i,j Xj) i∈(r]

j∈(n]

∈ Fp[X]r×n (111)

and
P (X) :=

∑

δ∈∆r

λδ perδ(A
′〈p− 1|〉) ∈ Fp[X] . (112)

Then
deg(P ) ≤ r(p− 1) = Σd (113)

and

Pd Xd = λd perd(A
′〈p− 1|〉) = λd perd(A

′′〈p− 1|〉) Xd 6= 0 . (114)

Hence by Theorem3.3 (ii), there is a x ∈ Fp
n such that, for

A := (a′′i,j xj) ∈ Fpr×n , (115)

it follows that

0 6= P (x) =
∑

δ∈∆r

λδ perδ(A〈p− 1|〉) . (116)

In this the matrix A necessarily has rank r by Lemma8.1 (iii) .

Now we are able to construct our main tool:

Lemma 8.3. Let r ∈ [n] and an Fp-subspace U ≤ Fp
n of dimension

dim(U) = n− r be given.

There is a system (in general, not unique) of polynomials 1v+U ∈1v+U

Fp[X1, . . . , Xn] – corresponding to the affine subspaces v + U of Fp
n –

such that for each v ∈ Fp
n :

(i) 1v+U(x) = ?(x∈v+U) for all x ∈ Fp
n ; and

(ii) deg(1v+U) ≤ r(p− 1) ; and

(iii) (1v+U)δ = (1U)δ for all δ ∈ ∆r := { δ ∈ [p)n ¦ Σδ = r(p− 1) } .∆r

Let 0 6= λ = (λδ) ∈ Fp
∆r ; then the subspace U (and the polynomials 1v+U )

may be chosen in such a way that, in addition,

(iv)
∑

δ∈∆r

λδ(1U)δ 6= 0 .
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Proof. Let ∑

j∈(n]

ai,jXj = 0 , i = 1, . . . , r (117)

be a system of equations defining U ; then the polynomials

1v+U :=
∏

i∈(r]

(
1−

( ∑

j∈(n]

(
ai,j(Xj − vj)

))p−1 )
∈ Fp[X] (118)

fulfill the conditions (i), (ii) and (iii).
Part (iv) holds for r = 0 . For r > 0 , we have to find a matrix A =

(ai,j) ∈ Fp
r×n of rank r such that the polynomial 1U = 10+U defined by

(118) fulfills the inequality in part (iv); the searched (n − r)-dimensional
subspace U is then given through Equation (117) using this same matrix
A . For δ ∈ ∆r , we have

(1U )δ = (−1)r
(
(Π(AX))p−1

)
δ

= (−1)r
(
Π(A〈p− 1|〉X)

)
δ

5.3= (−1)r perδ(A〈p− 1|〉) , (119)

and we thus obtain (iv) if we choose A by Lemma 8.2 :
∑

δ∈∆r

λδ(1U )δ = (−1)r
∑

δ∈∆r

λδ perδ(A〈p− 1|〉)
8.2
6= 0 . (120)

The following, main result of this section now tells us something about

the distribution of the different possible values P (x) of polynomial maps

x 7−→ P (x) on the special grid X := Fp
n. Again, U ≤ Fp

n means that U is U ≤ Fpn

an Fp-linear subspace of Fp
n.

Theorem 8.4. Let R be an integral ring with Fp ⊆ R . For X := Fp
n and

P ∈ R[X] hold:

(i) If P |X 6≡ 0 , then there exists a subspace U ≤ Fp
n with

dim(U) =
⌈

deg(P/X)
(p−1)

⌉
such that, for all v ∈ Fp

n, P |v+U 6≡ 0 .

(ii) If P |X 6≡ 0 and p− 1
⌊⌊

deg(P/X) , then there exists an U ≤ Fp
n with

dim(U) = deg(P/X)
(p−1)

such that Σ(P |U) 6= 0 .

(iii) For all U ≤ Fp
n with dim(U) > deg(P/X)

(p−1)
, Σ(P |U) = 0 .

(iv) For all U ≤ Fp
n with dim(U) ≥ deg(P/X)

(p−1)

and all v ∈ Fp
n, Σ(P |v+U) = Σ(P |U) .
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Proof. To prove part (i), let Xµ be a monomial in P/X ( µ ≤ d(X) ) of

maximal degree. We set

r :=
⌊Σd(X)− Σµ

(p− 1)

⌋
= n−

⌈ Σµ

(p− 1)

⌉
∈ Z (121)

and
∆r := { δ′ ∈ [p)n ¦ Σδ′ = r(p− 1) } . (122)

Choose a δ ∈ ∆r with
δ ≤ d(X)− µ , (123)

and set
d̄ := µ + δ . (124)

Define λ = (λδ′) ∈ Fp
∆r by setting

λδ′ := Pd̄−δ′ (= 0 if d̄− δ′ � 0 ) . (125)

Note that
λ 6= 0 as λδ = Pµ 6= 0 . (126)

Now, for each v ∈ Fp
n, the monomial X d̄ occurs in

Q := (P/X) 1v+U , (127)

where U = Uλ and the 1v+U are as in Lemma8.3 (iv) . That is so, since only

the monomials of maximal degree from P/X and from 1v+U may contribute

something to the coefficient Qd̄ , so that

Qd̄ =
∑

δ′∈∆r

(P/X)d̄−δ′(1v+U )δ′
8.3=

∑

δ′∈∆r

λδ′(1U )δ′
8.3
6= 0 . (128)

It follows that
Q|X

3.2
6≡ 0 and so P |v+U 6≡ 0 . (129)

The proofs of the parts (ii),(iii) and (iv) work almost identically. Since

N ≡ (−1)n (by Lemma1.4 (iv)), we obtain the following equation, which

can be used instead of the conclusion (129):

Σ(P |v+U ) = Σ(P/X|v+U ) = Σ(Q|X) 3.3= (−1)n Qd . (130)

Part (ii) follows from the equations (128) and (130) as d = d̄ in this case.

As we do not need property 8.3 (iv) (and the resulting Inequality (128) ) in

the proof of parts (iii) and (iv), we may take Equation (127) with an arbitrary

U ≤ Fp
n to define Q . Part (iii) follows now from Σd > deg(Q) , and hence

Qd = 0 . Part (iv) follows, as Qd does not depend on v (8.3 (iii)).
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As a corollary, we obtain the following sharpening of Warning’s classical

result [Schm] (the second inequality below) about the number of simulta-

neous zeros of systems of polynomial equations over finite fields; see also

Corollary 3.5 and the Theorems 4.3 and 9.4. The sharpening tells us some-

thing about the distribution of the simultaneous zeros in the space Fp
n.

Corollary 8.5. Let P1, . . . , Pm ∈ Fp[X] , and denote the set of simultaneous

zeros by V := { x ∈ Fp
n ¦ P1(x) = · · · = Pm(x) = 0 } .

If V 6= ∅ , then there exists a linear subspace U ≤ Fp
n of dimension

dim(U) ≤ ∑
i∈(m] deg(Pi) such that, for all v ∈ Fp

n,

V ∩ (v + U) 6= ∅ ,

so that in particular,

|V| ≥ pn−Pi deg(Pi) .

For all subspaces U ≤ Fp
n of dimension dim(U) ≥ ∑

i∈(m] deg(Pi) and

all v ∈ Fp
n, ∣∣V ∩ (v + U)

∣∣ ≡
∣∣V ∩ U

∣∣ (mod p) .

Proof. Define
P :=

∏

i∈(m]

(1− P p−1
i ) ; (131)

then for each x ∈ Fp
n,

x ∈ supp(P ) ⇐⇒ P (x) 6= 0 ⇐⇒ P1(x) = · · · = Pm(x) = 0 ⇐⇒ x ∈ V .

(132)
By Theorem8.4 (i), there is a subspace U ≤ Fp

n with

dim(U) =
⌈

deg(P/X)
(p−1)

⌉
≤

∑
i
deg(Pi) , (133)

and

∅ 6= supp(P |v+U ) = supp(P ) ∩ (v+U) = V ∩ (v+U) for all v ∈ Fpn . (134)

The lower bond for |V| follows immediately. The remainder of the corol-

lary follows from Theorem 8.4 (iv), since

P (x) ∈ {0, 1} for all x ∈ Fpn . (135)
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Our sharpening could suggest that, for any subset Ṽ ⊆ Fp
n with at least

pn−m elements, there is a subspace U ≤ Fp
n of dimension m such that

Ṽ ∩ (v + U) 6= ∅ for all v ∈ Fp
n . (136)

This is not the case. If, for example, p = 5 , n = 2 and m = 1 , then

any subset Ṽ := { (0, 0), (0, 1), (1, 0), (2, 2), (a, b) } ⊆ F5
2 of 5 = pn−m points

does not have this property. To any subspace U ≤ Fp
n of dimension 1 , there

is a v′ ∈ F5
2 such that v′ + U contains two of the “first” four elements of

Ṽ , so that there must be another v ∈ F5
2 with Ṽ ∩ (v + U) = ∅ . In other

words, the first (and the last) property of the sets V of simultaneous zeros

in Corollary 8.5, is something special.

We formulated all our results in this section for prime fields Fp , but we

may also apply them to arbitrary finite fields Fpk by using the following

lemma. It is based on elementary techniques from field theory which were

used in a similar way in [Ba, Prop. 3.3] and [MoMo, Lemma1].

Lemma 8.6. Let α ∈ Fpk be a primitive element of the extension Fpk⊇ Fp ,

Fpk = Fp(α) . For each x = (xj) ∈ X := Fpk
(n], let x̄ = (x̄i,j) ∈ X̄ := Fp

[k)×(n]

be the unique point with xj = x̄0,jα
0 + · · · + x̄k−1,jα

k−1 for all j ∈ (n] , so

that x 7−→ x̄ is a bijection X −→ X̄ .

For each polynomial P ∈ Fpk [X] with X = (Xj)j∈(n] , there is a polyno-

mial P̄ ∈ Fp[X̄] with X̄ = (Xi,j)(i,j)∈[k)×(n] of degree deg(P̄ ) ≤ k deg(P )

such that, for all x ∈ X ,

P̄ (x̄) = N (P (x)) ,

where N : Fpk −→ Fp is the norm of the field extension Fpk⊇ Fp .

Proof. Let A ∈ Fp
[k)×[k) be the companion matrix of the minimal polynomial

fα of α . We may identify Fp[A] with Fpk and A with α . In this way Fpk

is a Fp-vector space with basis A0, . . . , Ak−1 and a subfield of the matrix

ring Fp
[k)×[k). The norm N of the extension Fp(A) ⊇ Fp is given by the

determinant det . (See, e.g., [DuFo] for more information about the norm

and field extensions.) Now define

P̃ (X̄) = (P̃i,j(X̄)) ∈ Fp[A][X̄] ⊆ Fp[k)×[k)[X̄] ⊆ Fp[X̄] [k)×[k) (137)

by

P̃ (X̄) := P
(

(X0,jA
0 + . . . + Xk−1,jA

k−1)j∈(n]

)
. (138)
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The entries P̃i,j(X̄) of this matrix have degree at most deg(P ) , so that

P̄ (X̄) := det(P̃ (X̄)) (139)

has degree at most k deg(P ) , and

P̄ (x̄) = det
(

P
(

(x̄0,jA
0 + . . . + x̄k−1,jA

k−1)j∈(n]

) )
= N (P (x)) . (140)

The degree restriction deg(P̄ ) ≤ k deg(P ) in this lemma can be sharp-

ened using the so-called p-weight degree wp(P ) of P . See [MoMo] for the

simple idea behind this improvement, and for the definition of wp .
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9 Results over Z , Zm

and other generalizations

There are several ways to generalize the coefficient formulas 3.3 and 3.2. This

section will address some of those.

If a grid X is just affine but we want to use Theorem3.3, we may apply

the homomorphism π : r 7→ r
1

from R to the localization RN , exactly as π

in Theorem2.6. In particular, this leads to the implications:

Pd = 1 =⇒ Pd
π 6= 0 =⇒ P |X 6≡ 0 . (141)

It may also be that there is an integral grid X̂ over a ring R̂ , and

a homomorphism R̂ −→ R that induces a map from X̂ into X . Our

results may then be applied to a preimage P̂ ∈ R̂[X] of P ∈ R[X] . This

leads to results about P on not necessarily integral or affine grids X . If,

for example, R = Zm := Z/mZ and R̂ = Z , we may read the following Zm

formula 9.1 modulo m (note that it contains only integer coefficients).

Theorem 9.1. Assume P ∈ Z[X] and X = [d] := [d1]× · · · × [dn] .

If deg(P ) ≤ Σd , then

(−1)Σd
[∏

j∈(n](dj!)
]
Pd =

∑

x∈X

[∏
j∈(n](−1)xj

(
dj

xj

)]
P (x) .

Proof. This follows from Theorem 3.3 and Lemma 1.4 (v).

With this theorem we get the following special version of Corollary 3.4,

which works perfectly well without a degree condition. (See [MuSt] and [Sp]

for more information about polynomial maps Zm
n → Zm .)

Corollary 9.2. Let P ∈ Zm[X] , and set X := Zm
n , which we identify with

[m)n ⊆ Zn. If m is not prime, and (m, n) 6= (4, 1) , then:

(i)
∣∣{ x ∈ X ¦ P (x) 6= 0 }

∣∣ 6= 1 .

(ii) P0 6= 0 =⇒ ∃ x ∈ X\0 :
[∏

j∈(n]

(
m−1
xj

)]
P (x) 6= 0 =⇒ P |X\0 6≡ 0 .

(iii) 0 =
∑

x∈X

[∏
j∈(n](−1)xj

(
m−1
xj

)]
P (x) .
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Proof. Suppose there is an x̂ ∈ X = Zm
n with P (x̂) 6= 0 . By applying the

substitutions Xj = Xj + x̂j , we may assume 0 6= P (0) = P0 ; and part (i)

follows from the implication (ii).

Part (ii) follows from (iii), as the summand [
∏

j∈(n](−1)0
(

m−1
0

)
]P (0) = P0

cannot be the only nonvanishing summand in the vanishing sum.

To prove part (iii), we may assume that P has partial degrees degj(P ) ≤
dj = dj(X) . This is so, as the monic polynomial Lj :=

∏
x∈Xj

(Xj − x)

maps Xj to 0 , so that we may replace P with any polynomial of the form

P +
∑

j∈(n] HjLj without changing its image P |X (see the Example 7.1 and

(85) for an illustration of this method). Now let P̂ ∈ Z[X] be such that

P = P̂ + mZ[X] ∈ Z[X]/mZ[X] = Zm[X] and degj(P̂ ) ≤ dj . (142)

We only have to show that m
⌊⌊

(m−1)!n, so that the left side of Equation 9.1,

applied to P̂ , vanishes modulo m , in the relevant case d1, . . . , dn = m− 1 :

If m 6= 4 and m = m1m2 , with m1 < m2 < m , then m
⌊⌊

(m− 1)! .

If m 6= 4 and m = p2, with p > 2 , then

p < 2p < m , and hence m
⌊⌊

p (2p)
⌊⌊

(m− 1)! .

If m = 4 and n ≥ 2 , then m = 22
⌊⌊

3! 2
⌊⌊

(m− 1)!n .

The examples X3 +X +2 and X3−2X2−X +2 ∈ Z4[X] show that the

very special case (m,n) = (4, 1) in 9.2 is really an exception. As one can

show, these two examples are the only exceptions to assertion (i) that fulfill

the additional normalization conditions deg(P ) ≤ 3 , P3 6= −1 and that the

nonvanishing point is the zero ( P (x) 6= 0 ⇔ x = 0 ).

We also present another version of Corollary 3.5 . For this, we will need

the following specialization of [AFK2, Lemma A.2]:

Lemma 9.3. Let p ∈ N be prime, k > 0 and c = c(pk) :=
∑

i∈[k)(p
i − 1) .

For y ∈ Z ,

(i) pc
⌊⌊ ∏

0<ŷ<pk

(y − ŷ) , and

(ii) pc+1
⌊⌊
�

∏

0<ŷ<pk

(y − ŷ) ⇐⇒ pk
⌊⌊

y .

For completeness, we present the relatively short proof:
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Proof. For each j ∈ (k] there are exactly pk−j numbers among the pk

consecutive integers y , y − 1 , . . . , y − (pk − 1) that are dividable by pj .

Thus:

If pk
⌊⌊

y , then exactly pk−j − 1 of the factors y − ŷ (0 < ŷ < pk ) are

dividable by pj .

If pk
⌊⌊
� y , then at least pk−j−1 of these factors are dividable by pj ; and

in the case j = k , strictly more than pk−j − 1 = 0 are multiples of pj = pk .

It follows:

If pk
⌊⌊

y , then pc
⌊⌊ ∏

0<ŷ<pk(y − ŷ) , but pc+1
⌊⌊
�

∏
0<ŷ<pk(y − ŷ) .

If pk
⌊⌊
� y , then pc+1

⌊⌊ ∏
0<ŷ<pk(y − ŷ) .

The following version of Corollary 3.5 (see also Theorem4.3 and Corol-

lary 8.5) reduces to Olson’s Theorem [AFK2, Theorem2.1], if we set X :=

{0, 1}n and if deg(P1) = · · · = deg(Pm) = 1 . Olson’s Theorem can be

used, for example, to prove generalizations of Theorem4.1 about regular

subgraphs, such as those in [AFK2]. Here we view, more generally, arbitrary

polynomials and arbitrary p-integral grids – i.e., grids X ⊆ Zn with the

property:

For all j ∈ (n] and all x, x̃ ∈ Xj with x 6= x̃, p
⌊⌊
� x− x̃ . (143)

We have:

Theorem 9.4. Let p ∈ N be a prime and X ⊆ Zn a p-integral d-grid. For

polynomials P1, . . . , Pm ∈ Z[X1, . . . , Xn] , and numbers k1, . . . , km > 0 small

enough so that
∑

i∈(m](p
ki − 1) deg(Pi) < Σd ,

∣∣{x ∈ X ¦ ∀ i ∈ (m] : pki
⌊⌊

Pi(x)
}∣∣ 6= 1 .

Proof. Set

c :=
∑

i∈(m]

ci where ci = c(pki) :=
∑

j∈[ki)

(pj − 1) , (144)

define
P :=

∏

i∈(m]

∏

0<ŷ<pki

(Pi − ŷ) ∈ Z[X] (145)

and let
P̄ := P + pc+1Z[X] ∈ Z[X]/pc+1Z[X] = Zpc+1 [X] . (146)
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For points x = (x1, . . . , xn) ∈ Zn, set

x̄ := (x1 + pc+1Z , . . . , xn + pc+1Z) ∈ (Zpc+1)n ; (147)

then
X̄ := { x̄ ¦ x ∈ X } ⊆ (Zpc+1)n (148)

is an integral d-grid, and x 7−→ x̄ induces a bijection from X to X̄ .

Now it follows that

P̄ (x̄) 6=0 ⇐⇒ pc+1
⌊⌊
� P (x)

9.3(i)⇐⇒ ∀ i : pci+1
⌊⌊
�

∏

0<ŷ<pki

(Pi(x)− ŷ)

9.3(ii)⇐⇒ ∀ i : pki
⌊⌊

Pi(x) ,

(149)

and since

deg(P̄ ) ≤ deg(P ) ≤
∑

i∈(m]

(pki − 1) deg(Pi) < Σd , (150)

we obtain

∣∣{x ∈ X ¦ ∀ i ∈ (m] : pki
⌊⌊

Pi(x)
}∣∣ =

∣∣{ x̄ ∈ X̄ ¦ P̄ (x̄) 6= 0
}∣∣ 3.4

6= 1 . (151)

Our result can be generalized further, in the obvious way, by using [AFK2,

Lemma A.2], instead of our Lemma 9.3. However, the result would look a bit

more technical.
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10 How to find nonvanishing points,

numerical aspects

If X is an integral d-grid, and if deg(P ) ≤ Σd and Pd 6= 0 , we know by The-

orem3.3 that there is a nonvanishing point x of P ∈ R[X] = R[X1, . . . , Xn]

in X ; but how can such a point x ∈ X be found? Of course, the naive brut-

force method would be simple; but is there a polynomial-time algorithm?

Alon pointed out the importance of such an algorithm in [Al4].

It turns out that finding nonzeros is, for the most important types of grids

X , much simpler than finding zeros. One possibility is to use the modification

methods of Section 7 to transform P into the trimmed polynomial P/X with

partial degrees degj(P/X) ≤ dj (and P/X 6= 0 , as (P/X)d
7.2
= Pd 6= 0 ) and

apply the simple and fast algorithm presented below to it. This method also

works for polynomials of arbitrary degree, provided they have a nonvanishing

point x ∈ X , so that P/X 6= 0 (Theorem7.3).

The described transformation P Ã P/X is easily performed for the most

important, Boolean grid X = {0, 1}n, though it is also very simple if the Xj

are fields or multiplicative groups of fields. The set El := { c ∈ C ¦ cl = 1 }
of lth roots of unity in the complex numbers R = C may also be of interest.

In all these cases the polynomials Lj = LXj
(Xj)

(84)
:=

∏
x̂∈Xj

(Xj − x̂) used to

perform the transformation P Ã P/X contain only two monomials, and the

transformation P Ã P/X can be done in cubic time. In the general case,

however, the trimmed polynomial P/X may contain many more monomials

then the original polynomial P , so that we generally need an exponential

amount of space – and hence exponential time – to store all coefficients of

P/X. (See, e.g., [CLRS] for an introduction to algorithms.)

If the polynomial P 6= 0 is already trimmed, the following cubic time

algorithm can be applied. (There are 2 nested loops, and the evaluation in

line 8 takes linear time.) It finds nonzeros of polynomials 0 6= P ∈ R[X≤d]

in integral d-grids X , which are guaranteed by 2.7(v):
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Algorithm 1: Nonzero-Finder

Input: A finite set J , a tuple d ∈ NJ ,

an integral d-grid X =
∏

j∈J Xj ( i.e., |Xj| = dj + 1 )

and a nonvanishing polynomial

0 6= P =
∑

δ∈NJ PδX
δ ∈ R[XJ ] := R[Xj ¦ j ∈ J ]

with partial degrees degj(P ) ≤ dj .

Output: A nonvanishing point x = (xj) ∈ X of P ( P (x) 6= 0 ).

begin1

while J 6= ∅ do2

choose a new j ∈ J ] Xj will be substituted.3

J ← J\j4

repeat5

choose a new xj ∈ Xj ] A blind guess.6

Xj ← Xj\xj7

until P |Xj=xj
6= 08

P ← P |Xj=xj
9

] This final xj is one coordinate of the output.

endw10

end11

Proof. The algorithm terminates, as we may view P at each stage of the

procedure as a polynomial in just one variable Xj ; and polynomials P 6= 0

in one variable Xj of degree at most dj always possess a nonvanishing point

xj in Xj , if Xj with |Xj| = dj + 1 is integral (2.7(v)). Thus the condition

in line 8 will eventually be fulfilled for at least one xj ∈ Xj .

With slight modifications, this algorithm can also be used to find all non-

vanishing points; or just a second one, as guaranteed by Corollary 3.4. Fur-

thermore, as most of our results are based on Theorem3.3 and Corollary 3.4,

this approach also provides numerical solutions to the existence statements

of our other results. However, these derived algorithms may have exponen-

tial running time. Solving a set of multivariate polynomial equations over a

finite field is, in general, an NP-complete problem [GaJo]. See [DGS] for an

algorithm that finds simultaneous zeros to systems of polynomial equations

over finite fields. A brief summary of algorithms for solving multivariate

polynomial equations can be found there, too.
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Of course, our method can also be used to find graph colorings, and

even those with a minimal number of colors. As our algorithm is very fast,

this may be a little astonishing at first glance, but note that computing the

graph polynomial Π(A(
�����
G)X) (Definition 5.1 and (70)) needs, in general,

exponential time.

Another open problem is that of what can be done if the grid X does

not have a simple structure, so that the transformation P Ã P/X is very

complicated and time-consuming. Is there a way to avoid the transformation

P Ã P/X , and compute nonzeros directly from P , without computing P/X

first? In the next section, we give a positive answer to this question in the

case of so-called color d-grids X .
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11 Mr. Paint and Mrs. Rubber,

a coloration game

If we are interested in graph colorings and the graph polynomial Π(A(
�����
G)X)

(Definition 5.1 and (70)), then we may take arbitrary elements as colors. If

we take symbolic variables Ti as colors, i.e., X ⊆ {T1, T2, . . . }n, and work

over the extension R[T1, T2, . . . ] , things become easier, when we evaluate

P (x) , as the multiplications are easier to carry out. In addition, as the Ti are

independent transcendentals over R , we also may focus on one homogeneous

component P̌ of P ∈ R[X] , as in view of degree considerations,

P̌ (x) 6= 0 =⇒ P (x) 6= 0 for all x ∈ X ⊆ {T1, T2, . . . }n . (152)

In what follows, we discuss this special type of nonvanishing point x ∈
{T1, T2, . . . }n which we call a coloring, and we describe a coloring game for

polynomials. This leads us to a new approach to Alon’s second Combina-

torial Nullstellensatz (our Theorem 3.3 (ii)). We deduce a new proof and a

slight generalization of this important result in the case of colorings. This

version works, in view of (152), without any degree restrictions. Its proof is

formulated as a winning strategy for the second player in our game. The win-

ning strategy leads also to a coloration algorithm. This algorithm computes

nonzeros x in color grids X (Definition 11.1 below) directly from P with-

out computing P/X first as announced in the last section. It has polynomial

running time. We define:

Definition 11.1 (Colors). We call the symbolic variables T1, T2, . . . colors,

and each point x ∈ {T1, T2, . . . }n with P (x) 6= 0 a coloration of P ∈ R[X] .

d-grids X that are made up with colors X = X1 × · · · × Xn ⊆ {T1, T2, . . . }n

are called color d-grids.

The game of Mr. Paint and Mr. Paint is now defined as follows:

Game 11.2 (Mr. Paint and Mrs. Rubber). Let J = J1 be a finite set and

R = R1 a commutative ring. Let P = P1 6= 0 be a polynomial in R[XJ ] := XJ

R[ Xj ¦ j ∈ J ] (usually J := (n] , in which case R[XJ ] = R[X] ). Lay on

each index j ∈ J a stack Sj of erasers.

The game of Mr. Paint and Mrs. Rubber works as follows:

1P : Mr. Paint starts, chooses a subset ∅ 6= J̌1 ⊆ J1 , and substitutes the

color T1 for the variables Xj satisfying j ∈ J̌1 .
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1R: Mrs. Rubber may use – and hereby use up – for each “colored” variable

Xj (i.e., each index j ∈ J̌1 ) one eraser from Sj (if Sj 6= ∅ ) to

revoke the substitution for Xj . What remains if she recovers all Xj

with j ∈ Ĵ1 for some Ĵ1 ⊆ J̌1 is a polynomial P2 ∈ R2[XJ2 ] with

R2 := R1[T1] and J2 := J1 \ (J̌1 \ Ĵ1) ⊆ J1 in which all variables Xj

with j ∈ J̌1 \ Ĵ1 = J1 \ J2 are replaced by T1 . It is the job of Mrs.

Rubber to ensure that P2 6= 0 by means of her choice of Ĵ1 ⊆ { j ∈ J̌1 ¦
¦ Sj 6= ∅ } .

2P : Mr. Paint chooses another subset ∅ 6= J̌2 ⊆ J2 of “uncolored indices”

and substitutes T2 for all Xj with j ∈ J̌2 in P2 .

2R: Mrs. Rubber again may have to use (up) some erasers to ensure that the

remaining polynomial P3 ∈ R3[XJ3 ] := (R2[T2])[XJ3 ] does not vanish,

P3 6= 0 .

...
...

End: The game ends when one player cannot move any more, and hence

loses.

Mrs. Rubber cannot move if she does not have enough erasers any more

to ensure the nonvanishing of the polynomial.

Mr. Paint loses if all variables Xj have already been replaced, but the

polynomial does not vanish. In this case, P1 has been properly colored

with indeterminacies T1, T2, . . . .

Definition 11.3. If there is a winning strategy for Mrs. Rubber, and if the

stacks of erasers Sj have sizes dj , we say that P ∈ R[XJ ] is d-correctable,

where d := (dj)j∈J .

If J̌ ⊆ J , and there is a winning strategy for Mrs. Rubber provided that

Mr. Paint chooses J̌1 := J̌ in his first move 1P (abbreviated 1P = J̌ ), we1P = J̌

say that P ∈ R[XJ ] is d-correctable when 1P = J̌ .

It is easy to see that each d-correctable polynomial P possesses a col-

oration x in every color d-grid X = X1 × · · · × Xn ⊆ {T1, T2, . . . }n, a “list

coloring” with respect to the “color lists” Xj . To obtain such a coloring

x ∈ X as a by-product of the playing, we have to fix the strategy of Mr.

Paint as follows:
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In the ith move of Mr. Paint (iP ), let him choose J̌i := { j ∈ Ji ¦ Ti ∈ Xj }
(and use Ti as color for the corresponding variables Xj with j ∈ J̌i ).

(153)

These sets J̌i may be empty, but only finitely often; and that is not really

a problem, as such rounds may be skipped. The game terminates before the

sequence of the J̌i can become constantly “zero,” since the number of erasers

at each Xj is limited by dj , and Mr. Paint has up to |Xj| = dj +1 tries for

this variable. So, indeed, as intended by Mr. Paint’s “considerateness” (153),

the resulting coloration x (when Mrs. Rubber plays a winning strategy) lies

in X .

Summarizing, we can say that correctability is stronger than “list col-

orability,” i.e., d-correctability implies the existence of a coloring x ∈ X in

any color d-grid X ⊆ {T1, T2, . . . }n. This is particularly interesting if we

view it as a statement about graphs, where a graph G is d-correctable if its

graph polynomial Π(A(
�����
G)X) has this property. (See Definition 5.1 and (70)

for the meaning of Π(A(
�����
G)X) ;

�����
G denotes G together with an arbitrarily

chosen orientation ����� of G ). However, even on the level of polynomials, we

do not know of an example that shows the strictness of this statement, i.e., a

polynomial P that is d-list colorable but not d-correctable. Conversely, we

can prove that Alon and Tarsi’s second Combinatorial Nullstellensatz 3.3 (ii)

– applied to color grids X ⊆ {T1, T2, . . . }n – also holds for correctability.

Their result about list colorings of graphs, Theorem 5.5 (ii), holds conse-

quently for correctability, too. To prove this sharpening, we will need the

following lemma :

Lemma 11.4. Let P =
∑

δ∈NJ PδX
δ ∈ R[XJ ] , d ∈ NJ , J̌ ⊆ J , j ∈ J̌ ,

ej := (?(i=j))i∈J and d + NJ̌ := { δ ≥ d ¦ δ|J\J̌ = d|J\J̌ } ⊆ NJ ; then:

(i) d + NJ̌ = d + ej + NJ̌ ] d + NJ̌\j .

(ii)
∑

δ∈d+NJ̌

Pδ =
∑

δ∈d+ej+NJ̌

Pδ +
∑

δ∈d+NJ̌\j

Pδ .

(iii)
∑

δ∈d+ej+NJ̌

Pδ 6= 0 =⇒
∑

δ∈d+NJ̌

Pδ 6= 0 ∨
∑

δ∈d+NJ̌\j

Pδ 6= 0 .

(iv)
∑

δ∈d+NJ̌

Pδ 6= 0 =⇒
{

There is a d̂ ≤ d and a Ĵ ⊆ J̌ such that

d̂|Ĵ ≡ 0 , d̂|J̌\Ĵ < d|J̌\Ĵ ,
∑

δ∈d̂+NĴ

Pδ 6= 0 .
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Proof. Part (i) is trivial; and obviously (i) =⇒ (ii) =⇒ (iii) . In order to

prove (iv), we may use (iii) to produce sequences

d =: d0 
 d1 
 · · · 
 dt ≥ 0 and J̌ =: J̌0 ⊇ J̌1 ⊇ · · · ⊇ J̌t (154)

with the property ∑

δ∈di+NJ̌i

Pδ 6= 0 for all i ∈ [t] . (155)

Note that dt|J̌t
≡ 0 if and only if the sequences (154) cannot be extended

any more through application of (iii); so that in this case part (iv) holds, if

we set d̂ := dt and Ĵ := J̌t .

With this, the second Combinatorial Nullstellensatz 3.3 (ii) can be sharp-

ened for color grids X ⊆ {T1, T2, . . . }n. Without degree restrictions, we

have:

Theorem 11.5 (Winning strategy). Let P =
∑

δ∈NJ PδX
δ ∈ R[XJ ] and

d ∈ NJ ; then

Pd 6= 0 =⇒ P is d-correctable.

More generally, for J̌ ⊆ J and d + NJ̌ := { δ ≥ d ¦ δ|J\J̌ = d|J\J̌ } ;

∑
δ∈d+NJ̌

Pδ 6= 0 =⇒ P is d-correctable when 1P = J̌ .

Proof. We present a winning strategy for Mrs. Rubber in the case Pd 6= 0 ;

apart from a slight modification at the beginning, this strategy also works in

the second case of our theorem. In our winning strategy, we allow Mrs. Rub-

ber to replace, at any stage, the present polynomial Pi by an homogeneous

component of Pi . Mr. Paint will not complain about this, since in view

of the contrapositive to the implication (152), the chance of Mrs. Rubber’s

success will not increase. In particular, we may suppose that P1 = P is

already homogeneous (with Pd 6= 0 ). We also may allow Mrs. Rubber to

throw some of here erasers away.

Now, suppose that the game has reached the ith round, so that the initial

polynomial P1 = P has become Pi ∈ Ri[XJi
] . Furthermore, suppose that

Mrs. Rubber has left di
j erasers at each j ∈ Ji , and that she has managed

to ensure
(Pi)di 6= 0 . (156)
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Suppose further that she has managed, to make Pi homogeneous (of degree

deg(Pi) = Σdi ).

Now Mr. Paint makes his ith move:

iP: Mr. Paint chooses a subset ∅ 6= J̌i ⊆ Ji , and substitutes Ti for all

variables Xj with j ∈ J̌i in Pi (in short, iP = J̌i ). If Ji = ∅
already, the game ends here: Mr. Paint is defeated, and Mrs. Rubber

wins.

Mrs. Rubber watches exactly what Mr. Paint is doing, and in the very mo-

ment when he has chosen the set J̌i ⊆ Ji but has not yet performed the

substitution, she applies the algorithm behind 11.4 (iv) to Pi . That is pos-

sible, since ∑

δ∈di+NJ̌i

(Pi)δ = (Pi)di

(156)

6= 0 , (157)

as Pi is homogeneous of degree deg(Pi) = Σdi . She obtains a subset Ĵi ⊆
J̌i , and a tuple d̂i ≤ di as in 11.4 (iv), and memorizes them.

Now, after Mr. Paint’s substitution, Mrs. Rubber makes her ith move in

the following way, which is always possible, so that the game does not stop

when it is her turn and she indeed does not lose:

iR: Mrs. Rubber uses here erasers on all variables Xj with j ∈ J̌i\ Ĵi , and

perhaps throws away some of the erasers such that d̂i
j erasers remain at

each j ∈ Ji . The other variables Xj with j ∈ Ĵi in the polynomials

Pi stay replaced by Ti . The resulting polynomial

Pi+1 ∈ Ri+1[XJi+1 ] with Ri+1 := Ri[Ti] and Ji+1 := Ji \ Ĵi (158)

does not vanish:
Pi+1 6= 0 . (159)

Moreover,
(Pi+1)di+1 6= 0 for di+1 := d̂i|Ji+1 (160)

as

(Pi+1)di+1 |Ti=1 =
(
Pi ||Xj=1

j∈Ĵi

)
di+1

d̂i|Ĵi
≡ 0

=
∑

δ∈d̂i+NĴi

(Pi)δ

11.4(iv)

6= 0 . (161)

These properties remain true if Mrs. Rubber finally replaces Pi+1 ∈
Ri+1[XJi+1

] by the homogeneous component of Pi+1 that contains

(Pi+1)di+1Xdi+1
.
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The homogeneous polynomial Pi+1 and the reduced stacks Sj of size di+1
j =

d̂i
j ( j ∈ Ji+1 ) will be passed to the next round. After finite time t ∈ N , the

set Jt will be empty, Mr. Paint cannot move, and Mrs. Rubber’s strategy

succeeds.

For clarity, we present this winning strategy in combination with the

fixed (through (153)) strategy of Mr. Paint (which leads to “list colorings”

x ∈ X ) as an algorithm in pseudo-code. This algorithm is, in contrast to

the algorithm presented in the last section, self explanatory. Its proof of

correctness is not based on our results. You can observe the “induction

hypothesis” Pd 6= 0 (respectively,
∑

δ∈d+NJ̌ Pδ 6= 0 ) through the whole

procedure; it never gets lost. The final Pd , when J = ∅ and hence d = () ,

is then still nonvanishing, i.e., P() 6= 0 . This value P() 6= 0 would be the

value PInput(x) of the original input polynomial PInput at the computed tuple

x = (xj) , if we had not replaced the original PInput several times by one of

its homogeneous components in line 4 . In this case, PInput(x) = P() 6= 0

would not be zero, and x would indeed be a coloring. However, in view

of observation (152), the replacements in line 4 do not matter, so that x is

actually a coloring of the input polynomial.
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Algorithm 2: Mr. Paint and Mrs. Rubber

Input: A finite set J , a tuple d ∈ NJ ,

a color d-grid X =
∏

j∈J Xj ⊆ {T1, T2, . . . }J ( i.e., |Xj| = dj + 1 ),

a polynomial P =
∑

δ∈NJ PδX
δ ∈ R[XJ ] := R[Xj ¦ j ∈ J ]

with Pd 6= 0 over a commutative ring R .

Output: A coloration x = (xj) ∈ X of P ( P (x) 6= 0 ).

begin1

i ← 0 ] Ti+1 = T1 is the first color.2

while J 6= ∅ do3

Replace P by the homogeneous component of P that contains Xd.4

] (152)

]
∑

δ∈d+NJ̌ Pδ = Pd 6= 0 for any J̌ ⊆ J .

i ← i + 1 ] Take next color Ti .5

J̌ ← { j ∈ J ¦ Ti ∈ Xj } ] as in (153).6

> while J̌ 6= ∅ do7

choose a new j ∈ J̌ ] Xj is proposed for coloration.8

while dj 6= 0 do9

dj ← dj − 1 ] Take a rubber. Shell we use or scrap it?10

if
∑

δ∈d+NJ̌ Pδ = 0 then11

J̌ ← J̌\j ] Erase the coloration proposal for Xj .12

]
∑

δ∈d+NJ̌ Pδ 6= 0 by 11.4 (iii).

return to >713

endif14

endw15

]
∑

δ∈d+NJ̌ Pδ 6= 0 and dj = 0 .

J̌ ← J̌\j16

]
∑

δ∈d+NJ̌ Qδ 6= 0 with Q := P |Xj=1 .

P ← P |Xj=Ti
17

J ← J\j18

d ← d|J19

R← R[Ti] ] Again P ∈ R[XJ ] .20

]
∑

δ∈d+NJ̌ Pδ 6= 0 , as this holds even for Q above.

xj ← Ti ] One coordinate of the output.21

endw22

] Again, Pd =
∑

δ∈d+N∅ Pδ 6= 0 .

endw23

] P() = Pd 6= 0
(152)
=⇒ ‘‘ x is a coloring’’ (explained on page 76).

end24



It is not hard to see that this algorithm has running time O(η4) , where

η is the input length. There are three nested loops, and the evaluation in

the most critical line, line 11, takes linear time. (See, e.g., [CLRS] for an

introduction to algorithms and the O-notation.)

When applied to the graph polynomial Π(A(
�����
G)X) (see Definition 5.1

and (70)) of an arbitrarily oriented graph
�����
G , this algorithm produces graph

colorings, as dose the algorithm of the last section. If we are interested in list

colorings of graphs, this algorithm could be faster then the algorithm in the

last section, as it avoids the computation of P/X , which could be space- and

time-consuming for complicated grids X . However, as already mentioned,

computing the graph polynomial (
�����
G Ã Π(A(

�����
G)X) ) needs exponential time,

in general.

Our algorithm (and its proof of correctness) can be specialized to the

graph-theoretic situation, and all algebraic terms, such as “polynomial,” can

be replaced by graph-theoretic expressions, e.g., certain sets of orientations.

What remains is a purely combinatorial proof of Alon and Tarsi’s Theo-

rem5.5 (ii). Alon and Tarsi asked already in [AlTa] for such a proof, and

this was also mentioned in [JeTo, p. 217].
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