
Parallel Support Vector Machines

Dominik Brugger

WSI-2006-01

ISSN 0946-3851

Dominik Brugger
Arbeitsbereich Technische Informatik

Sand 13, 72074 Tübingen
brugger@informatik.uni-tuebingen.de

c©WSI 2006

Parallel Support Vector Machines

Dominik Brugger
Arbeitsbereich Technische Informatik
Eberhard-Karls Universität Tübingen

Sand 13, 72074 Tübingen
brugger@informatik.uni-tuebingen.de

Abstract

The Support Vector Machine (SVM) is a supervised algorithm for the
solution of classification and regression problems. SVMs have gained
widespread use in recent years because of successful applications like
character recognition and the profound theoretical underpinnings con-
cerning generalization performance. Yet, one of the remaining draw-
backs of the SVM algorithm is its high computational demands during
the training and testing phase. This article describes how to efficiently
parallelize SVM training in order to cut down execution times. The par-
allelization technique employed is based on a decomposition approach,
where the inner quadratic program (QP) is solved using Sequential Min-
imal Optimization (SMO). Thus all types of SVM formulations can be
solved in parallel, including C-SVC and ν-SVC for classification as well
as ε-SVR and ν-SVR for regression. Practical results show, that on most
problems linear or even superlinear speedups can be attained.

1 Introduction

The underlying idea of supervised algorithms is learning by examples. Thus given a set
xi ∈ X of input data and associated labels yi ∈ Y the algorithms learns a mapping
f : X 7→ Y using the training data given. If the algorithm generalizes well, then the
number of correctly classified inputs on unknown test data will be high in the classification
case. Analogously for regression the mean squared error (MSE) will be low.

Support Vector Machines (SVM) are a supervised algorithm first introduced in [21]. One of
its advantages over other supervised algorithms, is the possibility to derive bounds concern-
ing the generalization performance on unseen test data after the training phase. Another
nice property of SVMs concerns the incorporation of prior knowledge about a learning
problem, which can be achieved by a kernel function [14]. The kernel function k(xi, xj)
computes the dot product between input patterns xi and xj that have been mapped into a
higher dimensional, or even infinite dimensional feature space using a mapping Φ:

k(xi, xj) = 〈Φ(xi),Φ(xj)〉 .

Since the kernel function just evaluates the dot product between the mapped patterns the
mapping is not carried out explicitly. By substitution of dot products with a kernel function,
the SVM constructs a separating hyperplane with maximum margin in the feature space and
this separating hyperplane then corresponds to a nonlinear decision surface in input space.

Different kernel functions have been suggested for a wide range of applications, including
string kernels for document classification, spike kernels for neuronal signal processing and
graph kernels for bioinformatics [14],[16],[10]. Although this clean concept of separation

1

between prior knowledge and learning algorithms has been adopted quickly by many prac-
titioners, the use of complicated kernel functions slows down SVM training considerably.
One technique for avoiding this problem is the caching of kernel function evaluations first
proposed in [11]. But as kernel functions will get more complex in future this might not be
sufficient to speed up SVM training. One possible remedy for this problem is the parallel
evaluation and caching of kernel function values as shown in [23, 22].

Another motivation for parallel SVM training are growing dataset sizes in many application
areas, which usually range from several hundred thousand to millions of input patterns.
Recent studies have shown, that subsampling the dataset in order to cut down training time
is not an option in many cases, as it leads to a decrease in classification performance on the
test set [17].

According to Moore’s law one might argue that many large scale problems which cannot be
solved on single processor hardware today might be solvable tomorrow. But this statement
is only true in part, if one takes a closer look at hardware developments in the last two
years. Most of the acceleration is achieved at the moment by an emerging new architectural
concept: the multicore architecture. Yet exploiting the performance of multicore processors
requires new threaded or parallel software [2].

1.1 Related Work

Speeding up SVM training has been an issue that was addressed by many authors in the
past. But most of the approaches are based on different formulations of the original SVM
algorithm or they rely on approximation techniques.

The Core Vector Machine (CVM) can be applied to solve SVM classification and regression
problems efficiently on large datasets [17, 18]. It relies on an approximation technique for
computing minimum enclosing balls by a concept called coresets which has its originates
from the field of computational geometry [3]. In contrast to the original SVM formulation
the dual quadratic program (QP) to be solved is simplified, by penalizing margin errors
using the L2 loss function and additionally penalizing the hyperplane offset b. This leads
to a QP problem with one simple linear constraint and a positivity constraint for the dual
variables α which can be solved by the minimum enclosing ball algorithm.

An earlier approach which exploits the same kind of QP problem simplification is the La-
grangian Support Vector Machine (LSVM) of [12]. The LSVM is very efficient for the
linear kernel and large problems in low dimensions (< 22), since it uses the Sherman-
Morrison-Woodbury identity [8] to invert the kernel matrix.

Parallelizing the original SVM formulation with L1 loss function for margin errors is done
by the Cascade SVM [9]. It is based on the idea, that only a small number of the patterns in
the training data set will end up as support vectors. Therefore the Cascade SVM splits the
dataset into smaller problems and filters out support vectors in a cascade of SVMs which
can work in parallel. Although there is a formal proof of convergence for the method, one
remaining drawback is the size of the final problem to be solved which is dependent on the
number of support vectors. Especially for noisy training data this final problem might be
huge.

A different parallel technique for solving SVM problems is the parallelization of the de-
composition approach first described in [11]. Recently is has been shown [23], that with
appropriate working set selection and inner QP solver, this decomposition approach can
gain impressive speedups in practice. However so far this approach has only be used for
the training of C-SVC.

In the work described in this article the main focus is on solving the original SVM formu-
lation of [21] in parallel. The adopted approach is the parallel decomposition technique
introduced by [23]. This article studies several different inner solvers including SMO, a
parallel version of an interior point code (LOQO) and the projected gradient method of [5].
It turns out, that in practice only SMO in combination with the decomposition technique is
able to solve all of the SVM formulations including C-SVC, ν-SVC, ε-SVR and ν-SVR
reliably.

2

1.2 Outline

This article is organized as follows: Section 2 gives a brief introduction to the SVM algo-
rithm and subsequently derives the underlying general form of the QP problem to be solved
for the different SVM formulations. How these QP problems can be solved in practice is
described in section 3. The decomposition method for large scale SVM training as well as
details on the working set selection strategy and stopping criteria are described in section 4.
Some hints on implementation specific details are given in section 5. Finally section 6 gives
performance results on several large scale datasets.

2 Support Vector Machines

In the case of Support Vector Classification (SVC) labeled training data (xi, yi) ∈ X ×
Y, i = 1, . . . ,m is given and the goal of the SVC algorithm is to learn a function
f : X 7→ Y , which can be subsequently used for the prediction of class labels on unknown
test data. Figure 1 shows a simple binary classification problem, where the two classes are
represented by balls and crosses. The SVC algorithm constructs a hyperplane 〈w, x〉+ b =
0 with normal vector w and offset b to separate these two classes. Since there are many
possibilities for the location of this hyperplane, SVC searches for a hyperplane with the
largest margin, where the margin is defined to be the distance of the closest point to the
hyperplane. Intuitively this approach leads to a good solution with respect to the unknown
test data, since classes are somewhat well separated. Indeed the choice of a large margin can
be directly related to the generalization performance of the classifier in a formal way [14].

2x

1x
=+1iy

={1iy

w

Figure 1: Toy example of a binary classification problem where the points marked
by balls and crosses represent the two classes. The SVC algorithm maximizes the
margin between the two classes, which is the distance between the two points x1

and x2 closest to the separating hyperplane. This distance can be expressed in
terms of the hyperplane normal vector w and is equal to 1/‖w‖.

The margin is exactly 1/‖w‖, if the condition |〈w, xi〉+ b| = 1 is satisfied by rescaling w
and b appropriately, since:

〈w, x1〉+ b = +1, 〈w, x2〉+ b = −1
⇒〈w, x1 − x2〉 = 2 ⇒ 〈w/‖w‖, x1 − x2〉 = 2/‖w‖.

Thus, to construct the optimal hyperplane, the SVC algorithm has to solve the following

3

optimization problem:

min
w,b

1
2
‖w‖2 (1)

subject to yi (〈w, xi〉+ b) ≥ 1, ∀i = 1, . . . ,m . (2)

If it is impossible to separate the data by a hyperplane, as often is the case in practice, a so
called soft margin hyperplane [14] can be computed by introducing slack variables ξi ≥ 0
and relaxing (2). As a consequence the margin may be violated by some of the input
patterns xi, for which ξ > 0. To nevertheless find a good classifier the number of violators
is restricted by penalizing the margin error with an L1 loss in the objective function leading
to the following optimization problem:

min
w,b,ξ

1
2
‖w‖2 + C

m∑
i=1

ξi (3)

subject to yi (〈w, xi〉+ b) ≥ 1− ξi, ∀i = 1, . . . ,m . (4)

The parameter C trades off between the number of margin errors and the size of the margin
and thus the generalization performance of the classifier. The optimization problem above
is usually solved in its dual form which is obtained by incorporating equation (4) into the
objective function (3) using the Lagrange function:

L(w, b, ξ, α, β) =
1
2
‖w‖2 + C

m∑
i=1

ξi −
m∑

i=1

αi(yi(〈xi, w〉+ b)− 1)−
m∑

i=1

βiξi .

The variables αi ≥ 0 and βi ≥ 0 are the dual variables of the optimization problem and L
has to be maximized with respect to α, β and minimized with respect to the primal variables
w, b, ξ. The goal therefore is to find a saddle point of L. In other words the derivatives with
respect to the primal variables must be zero:

∂L(w, b, ξ, α, β)
∂w

= w −
m∑

i=1

αiyixi = 0⇔ w =
m∑

i=1

yiαixi (5)

∂L(w, b, ξ, α, β)
∂b

=
m∑

i=1

αiyi = 0 (6)

∂L(w, b, ξ, α, β)
∂ξ

= C − αi − βi = 0⇔ 0 ≤ αi ≤ C. (7)

In equation (5) it can be seen that the hyperplane normal vector w can be expressed as a
linear combination of input patterns xi. Input patterns for which αi is greater zero are called
support vectors (SVs) and these patterns explain how the algorithm got its name Support
Vector Machine. Furthermore these equations allow to eliminate the primal variables in the
optimization problem (3) which leads to the dual optimization problem:

max
α

1
2

m∑
i,j=1

yiyjαiαj 〈xi, xj〉+
m∑

i=1

αi

subject to
m∑

i=1

αiyi = 0, 0 ≤ αi ≤ C, ∀i = 1, . . . ,m.

(8)

So far the SVC algorithm can only compute a hyperplane to separate the classes and hence
the resulting decision function f(x) = sgn (〈w, x〉+ b) is linear. For patterns which cannot
be separated by a linear decision function the already mentioned kernel trick is used to have
SVC construct a hyperplane in a feature space, where the mapping to this space is done by
a function Φ (Figure 2). Since only dot products between patterns are computed in (8) these
dot products can be replaced by kernel function evaluations:

k(xi, xj) = 〈Φ(xi),Φ(xj)〉 .

4

Figure 2: Binary classification problem in input space (left) and the feature space
induced by the mapping Φ(x1x2) = (x2

1,
√

2x1x2, x
2
2) (right). In input space the

two classes can only be separated by a nonlinear decision function f , an ellipse
in this case, whereas in feature space a plane is sufficient for separation of the
classes.

When dealing with regression rather than classification problems the labels yi are real val-
ues, and the decision function f is used to predict yi on unknown test data. Support Vector
Regression (SVR) therefore computes a function f(x) = 〈w, x〉 + b, where the loss is
measured using Vapnik’s ε-insensitive loss function (Figure 3):

|y − f(x)|ε = max{0, |y − f(x)| − ε}.

Thus the goal is to find a function f such that most of the points will lie inside an ε-
tube, which is equivalent to minimizing the loss function. This can be expressed by the
constraints f(xi) − yi ≤ ε and yi − f(xi) ≤ ε. Again it will not be possible to find such
a function for all values of ε making it necessary to relax the constraints analogous to the
soft margin classification case. The resulting constrained optimization problem can hence
be stated as follows:

min
w,b,ξ,ξ∗

1
2
‖w‖2 + C

m∑
i=1

(ξ + ξ∗)

subject to f(xi)− yi ≤ ε + ξi

yi − f(xi) ≤ ε + ξ∗i
ξi, ξ

∗
i ≥ 0, ∀i = 1, . . . ,m .

(9)

Like in SVC the parameter C is used here to trade off between the capacity of the regression
function and the number of violators of the ε-tube. Not surprisingly there is an interesting
connection between the margin of SVC and the ε-tube of the SVR algorithm [14]. Finally
application of the kernel trick and the introduction of Lagrange multipliers leads to the
derivation of the dual optimization problem, which needs to be solved during SVR training:

min
α,α∗

1
2

m∑
i,j=1

(αi − α∗
i)(αj − α∗

j)k(xi, xj) + ε

m∑
i=1

(αi + α∗
i) +

m∑
i=1

yi(αi − α∗
i)

subject to
m∑

i=1

(αi − α∗
i) = 0

0 ≤ αi, α
∗
i ≤ C, ∀i = 1, . . . ,m .

(10)

5

y

x

"{

"+

)x(f

loss

)x(f{y
"{ "+

Figure 3: The use of the ε-insensitive loss function in SVR corresponds to fitting a
tube of width ε around the regression function f(x) to be estimated. Points lying
inside of this tube do not contribute to the loss as shown in the inset on the right.

2.1 General formulation for C-SVC and ε-SVR

For C-SVC and ε-SVR the dual optimization problem can be stated in the following general
form:

min
α

1
2
αT Qα + pT α

subject to yT α = δ,

0 ≤ αi ≤ C, ∀i = 1, . . . ,m .

(11)

With the kernel matrix Q = yiyjk(xi, xj) for C-SVC it can be clearly seen that the prob-
lem (8) can be restated in the general form above. Following [4] the problem (10) for
ε-SVR can be reformulated as:

min
α,α∗

1
2

[
αT (α∗)T

] [
Q −Q
−Q Q

] [
α
α∗

]
+

[
εeT + yT , εeT − yT

] [
α
α∗

]
subject to zT

[
α
α∗

]
= 0, 0 ≤ αi, α∗

i ≤ C, ∀i = 1, . . . ,m .

(12)

where z is a 2m by 1 vector with yi = 1, i = 1, . . . ,m and yi = −1, i = m + 1, . . . , 2m.
The kernel matrix for ε-SVR is Q = k(xi, xj).

2.2 General formulation for ν-SVC and ν-SVR

In ν-SVC and ν-SVR a new parameter ν is used to replace the parameter C in C-SVC and ε
in ε-SVR [14]. The parameter ν ∈ (0, 1] allows the direct control of the number of support
vectors and errors. It is an upper bound on the fraction of training errors and a lower bound
of the fraction of support vectors. For ν-SVC the primal problem to be considered is

min
w,b,ξ,ρ

1
2
‖w‖2 − νρ +

1
m

m∑
i=1

ξi

subject to yi(〈w, xi〉+ b) ≥ ρ− ξi

ξ ≥ 0, ∀i = 1, . . . ,m, ρ ≥ 0

(13)

and the corresponding dual

min
α

1
2
αT Qα

subject to eT α ≥ ν,

yT α = 0
0 ≤ αi ≤ 1/m, ∀i = 1, . . . ,m .

(14)

6

It has been shown [4] that the inequality constraint (14) can be replaced by the equality
eT α = ν. Therefore one can solve the following scaled version of the problem:

min
α

1
2
αT Qα

subject to eT α = ν,

yT α = 0
0 ≤ αi ≤ 1,∀i = 1, . . . ,m .

(15)

The solution to the original problem is obtained by rescaling α← α/ρ afterwards.

For ν-SVR the primal problem is

min
w,b,ξ,ξ∗,ε

1
2
‖w‖2 + C(νε +

1
m

m∑
i=1

(ξi + ξ∗i))

subject to (〈w, xi〉+ b)− yi ≤ ε + ξi,

(yi − 〈w, xi〉+ b) ≤ ε + ξi,

ξi, ξ
∗
i ≥ 0, ∀i = 1, . . . ,m ε ≥ 0

(16)

and the dual

min
α,α∗

1
2
(α− α∗)T Q(α− α∗) + yT (α− α∗)

subject to eT (α− α∗) = 0, eT (α + α∗) ≤ Cν,

0 ≤ α, α∗ ≤ C/m, ∀i = 1, . . . ,m .

(17)

Similar to the classification case the inequality can be replaced by an equality. With rescal-
ing the actual dual problem to be solved is:

min
α,α∗

1
2
(α− α∗)T Q(α− α∗) + yT (α− α∗)

subject to eT (α− α∗) = 0, eT (α + α∗) ≤ Cmν,

0 ≤ α, α∗ ≤ C, ∀i = 1, . . . ,m.

(18)

As a result both ν-SVC and ν-SVR can be stated in the following general form:

min
α

1
2
αT Qα + pT α

subject to yT α = δ1,

eT α = δ2,

0 ≤ αi ≤ C, ∀i = 1, . . . ,m .

(19)

Before discussing different methods for solving these problems in section 3 it is important
to realize that the general problems to be solved for C-SVC/ε-SVR and ν-SVC/ν-SVR just
differ in the number of linear constraints. The ν formulation seems to be harder to solve
since it has two linear constraints. But the structure of the linear constraints is quite simple
and using the fact that yi ∈ {+1,−1} they can be rewritten as:

yT α = δ1 ⇔
∑

yi=+1 αi = δ1 −
∑

yi=−1 αi (20)

eT α = δ2 ⇔
∑

yi=+1 αi +
∑

yi=−1 αi = δ2 . (21)

An initial feasible solution for the problem (19) can thus be easily found by setting
0 ≤ αi ≤ C such that

∑
yi=+1 αi = (δ1 + δ2)/2 and

∑
yi=−1 αi = (δ2 − δ1)/2 are

satisfied. If an optimization algorithm now only changes variables αi with either yi = +1
or yi = −1, but not both at the same time, it is clear that actively maintaining constraint (20)
suffices to ensure that constraint (21) is always satisfied. The reason for this is that con-
straint (20) ensures that

∑
yi=+1 αi = 0 during a change of variables αi with yi = +1 and

7

vice versa
∑

yi=−1 αi = 0 for a change of αi with yi = −1. Consequently with careful
initialization and change of the optimization variables αi it is possible to reduce the opti-
mization problem (19) with two linear constraints to the general form given in section 2.1.
Unfortunately this reduction thus not work well in practice with some of the QP solvers
introduced in section 3 because of numerical problems and the restriction imposed on the
variable selection method described above.

3 QP Solvers

There are different approaches to solve the general QP problems given in the last two sub-
sections. The interior point algorithm in section 3.1 and gradient projection algorithm in
section 3.2 find a numerical solution for the problem, whereas sequential minimal opti-
mization (SMO) in section 3.3 finds a solution by sequentially solving two-variable sub-
problems, that can be solved analytically themselves.

For all optimization algorithms it is important to decide, when to stop the optimization
process. To decide about the optimality of the current solution the so called Karush-Kuhn-
Tucker (KKT) conditions are checked [14].
Theorem 1 (KKT conditions). : Let f : Rm 7→ R and ci : Rm 7→ R be functions and
L(x, α) = f(x) +

∑n
i=1 αici(x), αi ≥ 0 the corresponding Lagrange function. If there

exists (x̄, ᾱ), so that:
L(x̄, α) ≤ L(x̄, ᾱ) ≤ L(x, ᾱ)

then x̄ is a solution to the constrained optimization problem:
min f(x), s.t. ci(x) ≤ 0,∀i = 1, . . . , n .

The relation given in the theorem concerning L(x̄, ᾱ) just states that the Lagrangian L is
minimal w.r.t. x̄ and maximal w.r.t. ᾱ at a saddle point. For convex and differentiable
objective function f and constraints ci the above theorem can be restated.
Theorem 2 (KKT conditions for convex differentiable problems). : Let f : Rm 7→ R and
ci : Rm 7→ R be convex differentiable functions. Then x̄ is a solution to the optimization
problem

min f(x), subject to ci(x) ≤ 0,∀i = 1, . . . , n ,
if there exists some ᾱ ≥ 0, such that the following conditions are fulfilled:

∂L(x̄,ᾱ)
∂x = ∂f(x̄)

∂x +
∑n

i=1 αi
∂ci(x̄)

∂x = 0 (saddlepoint in x̄) (22)
∂L(x̄,ᾱ)

∂α = ci(x̄) =≤ 0 (saddlepoint in ᾱ) (23)∑n
i=1 ᾱici(x̄) = 0 (KKT gap) (24)

This is the form of the KKT conditions that will be used in the following subsections to
derive stopping conditions for the optimization algorithms. But first it might be helpful to
look at a simple example in one dimension to understand the implications of the theorem.
Example:

min
x

f(x) =
1
2
x2, x ∈ R

subject to 3x + 2 ≤ 0⇔ x ≤ −2
3

(25)

A solution to the problem can be found by looking at the constraint, which gives x ≤ −2/3.
Since f(x) is a monotonically decreasing function for x < 0 the function should reach its
minimum value at point x = −2/3. To verify that this is an optimal solution the KKT
conditions (22) have to be checked:

L(x, α) = 1/2x2 + α(3x + 2)
∂L(x̄, ᾱ)

∂x
= x̄ + 3ᾱ = 0

∂L(x̄, ᾱ)
∂α

= 3x̄ + 2 ≤ 0

ᾱ(3x̄ + 2) = 0 .

(26)

8

Substituting x̄ = −2/3 results in ᾱ = 2/9 which satisfy all of the KKT conditions. Thus
x̄ in an optimal solution for the example problem (25). A contour plot of L(x, α) is given
in figure 4, where the point (−2/3, 2/9) obviously is a saddle point of L(x, α).

x

α

L(x,α)

−3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Figure 4: Contour plot of the Lagrangian function L(x, α). A saddle point of
the function is (−2/3, 2/9), thus x̄ = −2/3 is an optimal solution to the example
optimization problem given in the text.

3.1 Interior Point Algorithm

The idea of interior point algorithms is based on solving the primal and dual QP problem
simultaneously by searching for a pair of primal and dual variables which satisfy both the
constraints and the KKT conditions (22). A pair of variables which satisfies primal and dual
constraints only is called an interior point. The following exposition of the popular LOQO
interior point algorithm for solving QPs follows [15]. With A = [yT ; eT], b = [δ1; δ2], l =
0, u = C and e the vector of all ones the general problem in equation (19) can be stated as:

min
α

1
2
αT Qα + pT α

subject to Aα = b

l ≤ α ≤ u

(27)

By introducing slack variables g, t the inequalities can be reformulated as equality con-
straints. The resulting primal and dual problem are,

min
α,g,t

1
2
αT Qα + pT α

subject to Aα = b

α− g = l

α + t = u

g, t ≥ 0

max
y,s,z

− 1
2
αT Q + bT y + lT z + uT s

subject to Qα + p− (Ay)T + s = z

s, z ≥ 0

(28)

and the KKT conditions are given by:

gizi = 0, siti = 0, ∀i = 1, . . . ,m (29)

The examination of the primal and dual constraints reveals, that an interior point can be
found by solving a system of linear equations. Unfortunately the optimal solution cannot

9

be found directly since the KKT conditions are unsolvable given one of the variables, e.g.
g, s or z, t. As a consequence the KKT conditions are relaxed using a variable µ > 0
which is decreased during the iterative solution process, leading to the two equations gizi =
µ, siti = µ. Since for a given µ there is no point in solving (28) exactly one solves the
linearized system which results after expanding variables α into α + ∆α etc.:

A(α + ∆α) = b

α + ∆α− g −∆g = l

α + ∆α + t + ∆t = u

p + Qα + Q∆α− (A(y + ∆y))T + s + ∆s = z + ∆z

(gi + ∆gi)(zi + ∆zi) = µ

(si + ∆si)(ti + ∆ti) = µ

(30)

Reformulation of this system yields,

A∆α = b−Aα =: ρ (31)
∆α−∆g = l − α + g =: ν (32)
∆α + ∆t = u− α− t =: τ (33)

(A∆y)T + ∆z −∆s−Q∆α = p− (Ay)T + Qα + s− z =: σ (34)

g−1z∆g + ∆z = µg−1 − z − g−1∆g∆z =: γz (35)

t−1s∆t + ∆s = µt−1 − s− t−1∆t∆s =: γs (36)

where the notation g−1, t−1 represents component wise inversion, that is g−1 =
(1/g1, . . . , 1/gn), and g−1z, t−1s represents component wise multiplication. Solving
equation (31) for ∆g,∆t, ∆z,∆s leads to:

∆g = z−1g(γz −∆z)

∆t = s−1t(γs −∆s)

ν̂ = ν + z−1gγz

τ̂ = τ − s−1tγs

∆z = g−1z(ν̂ −∆α)

∆s = t−1s(∆α− τ̂)

(37)

Finally ∆α and ∆y are the solution of the reduced KKT-system [15],[
−(Q + g−1z + t−1s) AT

A 0

] [
∆α
∆y

]
=

[
σ − g−1zν̂ − t−1sτ̂

ρ

]
(38)

which is best solved by Cholesky decomposition [8] and explicit pivoting.

To see how to solve the reduced KKT system let Q1 = Q + g−1z + t−1s, Q2 = 0,
c1 = σ − g−1zν̂ − t−1sτ̂ and c2 = ρ which in conjunction with equation 38 leads to:

−Q1∆α + AT ∆y = c1 (39)
A∆α + Q2∆y = c2 (40)

Now solving (39) for ∆α = Q−1
1 (AT ∆y − c1) and substituting into (40) ∆y can be

expressed as:
∆y = (AQ−1

1 AT + Q2)−1(c2 + AQ−1
1 c1) . (41)

Using the Cholesky decomposition Q1 = L1L
T
1 and solution of the system L1Y1 = AT

the first term in (41) can be computed by:

AQ−1
1 AT + Q2 = Y T

1 LT
1 L−T

1 L−1
1 L1Y1 + Q2 = Y T

1 Y1 + Q2 . (42)

10

With the solution Y2 of the triangular system L1Y2 = c1 the second term in (41) can be
simplified:

c2 + AQ−1
1 c1 = c2 + (L1Y1)T L−T

1 L−1
1 c1 = c2 + Y T

1 Y2 . (43)

As a result ∆y can be determined using the Cholesky decomposition L2L
T
2 = Y T

1 Y1 +Q2

as well as the factors Y1 and Y2. In the last step when ∆y is known ∆α can be computed
by back-substitution:

L2x = c2 + Y T
1 Y2

LT
2 ∆y = x

LT
1 ∆α = Y1∆y − Y2 .

(44)

During the iterative solution of the QP problem the reduced KKT system is usually solved
by a predictor-corrector method. The predictor step involves solving (37) and (38) setting
µ = 0 and ∆z = ∆s = ∆α = 0 on the right hand side, e.g. γz = −z and γs = −s. For
the corrector step the resulting ∆-terms are substituted into the definitions of γz and γs and
the equations (37) and (38) are solved again. At the end of each iteration the ∆-terms thus
determined are used to update the values α, s, t, z,etc.. The step length ξ for these updates
is chosen such that the new values do not violate the positivity constraints. A heuristic for
decreasing µ is given by [20]:

µ =
〈g, z〉+ 〈s, t〉

2n

(
ξ − 1
ξ + 10

)2

. (45)

Thus µ is decreased rapidly if the average of the feasibility gap given by the first term
is large and if the variables are far away from the boundaries of the positivity constraints
as indicated by a large ξ in the second term. Such a decrease hence results in a stronger
enforcement of the KKT conditions.

Starting points for the iterative procedure are found by solving a modified reduced KKT
system (38) by setting auxiliary variables to 0:[

−(Q + 1) AT

A 1

] [
α
y

]
=

[
p
b

]
(46)

The positivity of these starting points can be ensured with:

y = max(x, u/100)
g = min(α− l, u)
t = min(u− α, u)

z = min(max(Q + p− (Ay)T , 0) + u/100, u)

s = min(max(−Q− p + (Ay)T , 0) + u/100, u)

(47)

The runtime of the interior point algorithm is dominated by the Cholesky factorization
which is the most expensive step during the iterative solution process. As a result LOQO
has a runtime complexity of O(m3).

3.2 Gradient Projection Algorithm

The gradient projection algorithm uses simple gradient descent for minimizing the objec-
tive function f(α) w.r.t. the optimization variable α. Feasibility of α is maintained by
projection on the constraints after each update of the variable α. The two main steps re-
peated by the algorithm are [1]

1. Compute descent direction dt = PΩ(αt − δt∇f(αt))− αk

2. Determine step size λk and update αk+1 ← αk + λkdk,

11

where PΩ is the projection operator and δt is the step size found by doing a line-search.

The progress of this algorithm for a simple example is shown in figure 5. Crucial for the
practical application of this algorithm are selection of a suitable step size and an efficient
projection operation P on the constraint set Ω.

+3k®
+2k®

)+2k®(fr+2k± { +2k®

)+1k®(fr+1k± { +1k®

+1k®

k®

Figure 5: This simple example shows the progress made by the gradient projection
algorithm during the minimization of function f(α), which is indicated by the
contour lines, on the constraint set Ω.

For C-SVC and ε-SVR training the QP problem to be solved has just a single linear con-
straint in equation (11). In [5] they propose suitable step size selection rules and an efficient
projection operation which are used in [23] to solve the C-SVC QP problem by a gradient
projection algorithm.

By exploiting the simple constraint structure of QP problem (19) it is possible to use a
gradient projection algorithm for training ν-SVC and ν-SVR. The idea is to reduce the
projection operation for the two linear constraints to projecting on problems with a sin-
gle linear constraint twice. Given the optimization variable α the projected variable β is
obtained by solving the problem

min
β

1
2
‖α− β‖2

subject to yT β = 0

eT β = νm

0 ≤ β ≤ 1

(48)

With the substitution of βi = αi −∆i,∆i ∈ R and using yi ∈ {±1} problem (48) can be
reformulated as:

min
∆

1
2
‖∆‖2 = min

∆

1
2
(

∑
yi=+1

∆2
i +

∑
yi=−1

∆2
i)

s.t.
∑

yi=+1

∆i −
∑

yi=−1

∆i = yT α = c1∑
yi=+1

∆i +
∑

yi=−1

∆i = eT α = c2

αi − 1 ≤ ∆i ≤ αi ∀i = 1, . . . ,m

(49)

Now close examination of objective function and constraints reveals that this optimization
problem can be split into two smaller optimization problems which are independent of each

12

other:

min
1
2

∑
yi=+1

∆2
i min

1
2

∑
yi=−1

∆2
i (50)

subject to
∑

yi=+1

∆2
i =

1
2
(c1 + c2) subject to

∑
yi=−1

∆2
i =

1
2
(c2 − c1) (51)

αi − 1 ≤ ∆i ≤ αi ∀yi = +1 αi − 1 ≤ ∆i ≤ αi ∀yi = −1
(52)

With this reduction the QP problem (19) can be solved by the algorithm proposed in [5] the
only difference being the number of simple projection operations required.

The gradient projection algorithm exhibits good scaling behavior since the main cost in
each iteration is a matrix-vector product which has a runtime complexity of O(m2) [23].
Unfortunately the gradient projection algorithm is not suited for solving QP problem (19)
in practice due to slow convergence and numerical problems.

3.3 Sequential Minimal Optimization

The SMO algorithm proposed by [13] solves QP problem (11) by sequential optimization
of only two variables while the values of all other variables are fixed. A solution for the
QP problem in two variables can be found analytically and the choice of variables selected
in each iteration is guided by the violation of the KKT conditions (22). The optimization
problem (11) in two variables can be stated as follows:

min
1
2
(αiαj)

[
Qii Qij

Qij Qjj

] [
αi

αj

]
+ (pB + QBNαN)

[
αi

αj

]
(53)

subject to yiαi + yjαj = δ − yT
NαN (54)

0 ≤ αi, αj ≤ C . (55)

If I = {1, . . . ,m} denotes the index set of all variables then B = {i, j} is the index set
of those variables currently optimized and N = I \ B is the index set of fixed variables.
To analytically solve this problem the first step consists of expressing the objective func-
tion (53) in dependence of only one optimization variable αi. Thus the starting point is the
objective function which can be rewritten as

f(αi, αj) =
1
2
(α2

i Qii + 2αiαjQij + α2
jQjj) + ciαi + cjαj , (56)

where the constants ci, cj are given by:

ci = ((pB + QBN)αN)i = ∇f(α)i −Qiiα
old
i −Qijα

old
j

cj = ((pB + QBN)αN)j = ∇f(α)j −Qijα
old
i −Qjjα

old
j ,

(57)

and αold is the value of the optimization variables at the previous optimization step.
Because of constraint (54) variable αj can be expressed by αj = yj(γ − yiαi), γ =
(yjα

old
i + yjα

old
j) and αj can be eliminated in (56) yielding:

f(αi) =
1
2
α2

i Qii + αi(yjγ − yiyjαi)Qij +
1
2
(yjγyiyjαi)2Qjj + ciαi + cj(yjγ − yjyiαi)

=
1
2
α2

i (Qii − 2yiyjQij + Qjj) + αi(yjγQij − yiγQjj + ci − cjyiyj)

+
1
2
γ2Qjj + cjyjγ .

Now the location of the minimum for f(αi) is determined by computing the derivative,
setting it to zero and solving for αi:

f ′(αi) = αi(Qii − 2yiyjQij + Qjj) + (yjγQij − yiγQjj + ci − cjyiyj)
!= 0 (58)

⇒ αi =
yiγQjj − yjγQij − ci + cjyiyj

Qii − 2yiyjQij + Qjj
(59)

13

A similar expression can be derived for αj via elimination of αi in the objective function.
To get update equations for αi and αj it is beneficial to distinguish between two cases,
namely yi = yj and yi 6= yj :

yi = yj :

αi =
yiγQjj − yjγQij − ci + cj

Qii − 2Qij + Qjj

=
αold

i (Qii − 2Qij + Qjj) +∇f(α)j −∇f(α)i

Qii − 2Qij + Qjj

= αold
i +

∇f(α)j −∇f(α)i

Qii − 2Qij + Qjj

αj = αold
j +

∇f(α)i −∇f(α)j

Qii − 2Qij + Qjj

yi 6= yj :

αi =
yiγQjj − yjγQij − ci − cj

Qii + 2Qij + Qjj

=
αold

i (Qii + 2Qij + Qjj)−∇f(α)i −∇f(α)j

Qii + 2Qij + Qjj

= αold
i +

−∇f(α)i −∇f(α)j

Qii + 2Qij + Qjj

αj = αold
j +

−∇f(α)i −∇f(α)j

Qii + 2Qij + Qjj

In the next step after updating the optimization variables one has to ensure that con-
straints (54) and (55) are satisfied. With αj = yj(γ−αiyi) and 0 ≤ αj ≤ C the following
constraints for αi are derived:

yiyjα
old
i + αold

j − C ≤yiyjαi ≤ yiyjα
old
i + αold

j (60)

0 ≤αi ≤ C . (61)

Again the discussion is simplified by considering cases yi = yj and yi 6= yj separately.
For yi = yj the constraints (60) can be combined into:

max(0, σ − C) ≤ αi ≤ min(C, σ), with σ = αold
i + αold

j . (62)

Since by construction of the optimal solution αj = αold
i + αold

j −αi = σ−αi for yi = yj

the decision on how to change αi, αj to satisfy the constraints can be solely based on the
value of σ and αi. The result of this reasoning are the following update rules for αi and αj :

σ > C :
αi < 0 : αi ← σ − C,αj ← C

αi > C : αi ← C,αj ← σ − C

σ < C :
αi < 0 : αi ← 0, αj ← σ

αi > C : αi ← σ, αj ← 0 .

For yi 6= yj similar update rules can be derived from on the combined constraint

max(0, ρ) ≤ αi ≤ min(C + ρ,C), with ρ = αold
i − αold

j (63)

14

leading to:

ρ > 0 :
αi < 0 : αi ← ρ, αj ← 0
αi > C : αi ← C,αj ← C − ρ

ρ < 0 :
αi < 0 : αi ← 0, αj ← ρ

αi > C : αi ← C + ρ, αj ← C .

With these update rules the only missing pieces to complete SMO are a suitable stopping
condition for the optimization loop and a selection criterion for αi, αj . The stopping con-
dition is derived for (53) from the general KKT conditions in theorem 2. The Lagrangian
in this case is:

L(α, b, λ, µ) =
1
2
αT Qα + pT α− b(δ − yT α)− λα− µ(C − α) . (64)

Application of theorem 2 results in the following KKT conditions:

∂L

∂α
= ∇f(α) + by − λ + µ = 0⇔ ∇f(α) + by = λ− µ (65)

∂L

∂b
= yT α− δ = 0 (66)

∂L

∂λ
= −α ≤ 0⇔ α ≥ 0 (67)

∂L

∂µ
= α− C ≤ 0⇔ α ≤ C (68)

m∑
i=1

µi(C − αi) +
m∑

i=1

λiαi +
m∑

i=1

yiαi − δ = 0 (69)

Combining conditions (66) and (69) leads to µi(C−αi) = 0, µi ≥ 0 and λiαi = 0, λi ≥ 0
for all i. Closer analysis of these conditions reveals the following identities:

λiαi = 0⇔ (αi = 0 ∧ λi > 0) ∨ (αi > 0 ∧ λi = 0)
µi(C − αi) = 0⇔ (αi = C ∧ µi > 0) ∨ (αi < C ∧ µi = 0)

⇒ λi − µi ≥ 0⇔ αi < C

⇒ λi − µi ≤ 0⇔ αi > 0

Since ∇f(αi) + byi ≥ 0 ⇔ λi − µi ≥ 0 and ∇f(αi) + byi ≤ 0 ⇔ λi − µi ≤ 0 by
condition (65) with the aid of the identities above this KKT condition can be reformulated
as

∇f(α)i + b ≥ 0 ∀i ∈ Iup = {i|(αi < C ∧ yi = +1) ∨ (αi > 0 ∧ yi = −1} (70)
∇f(α)i + b ≤ 0 ∀i ∈ Ilow = {i|(αi > 0 ∧ yi = +1) ∨ (αi < C ∧ yi = −1} (71)

exploiting the fact that yi ∈ {±1}. With these definitions a suitable stopping condition for
the optimization procedure is given by:

max
i∈Iup

(−yi∇f(α)i)− min
i∈Ilow

(−yi∇f(α)i) ≤ ε (72)

where ε is a small positive constant which controls to what extent the KKT conditions
have to be fulfilled before stopping the optimization procedure. The variables αi, αj to be
optimized in each step are those that maximize the progress w.r.t. the KKT gap. Therefore
these variables are often called the ’maximal violating pair’ given by:

i = arg max
i∈Iup

(−yi∇f(α)i)

j = arg min
j∈Ilow

(−yj∇f(α)j)

15

In comparison to the interior point algorithm in section 3.1 and the gradient projection al-
gorithm in section 3.2 SMO has the big advantage of not running into numerical problems
due to its analytical nature. Empirical experiments [13] with datasets of different sizes have
shown, that SMO scales roughly with O(m2) in practice. Unfortunately its sequential so-
lution procedure does not lead to straightforward parallelization strategy for this algorithm.
Despite this disadvantage the algorithm can be nonetheless successfully employed as inner
solver for a decomposition based parallelization strategy.

4 Decomposition for large scale SVM training

In principle all the methods described in section 3 can be used to train SVMs for classifi-
cation and regression tasks. Yet the interior point algorithm in section 3.1 and the gradient
projection algorithm in section 3.2 are not suited to solve large scale problems with 105 -
106 patterns in practice due to their runtime complexities of O(m3) and O(m2). Another
issue is the storage requirement of the kernel matrix. A dataset with 60000 patterns requires
more than 13GB of memory for example if each entry is assumed to be a single precision
floating point value.

To deal with these issues [11] introduced a decomposition method for breaking down the
original QP problem into several smaller problems

min
1
2
αT

B

[
QBB QBN

QNB QNN

]
αB + (pB + QBNαN)αB (73)

subject to yT
BαB = δ − yT

NαN (74)
0 ≤ αB ≤ C . (75)

where B is the index set of the currently optimized variables and N the index set of the
fixed variables. The SMO algorithm explained in section 3.3 essentially uses this decom-
position idea in the extreme case where each subproblem has size two. To avoid storing the
complete kernel matrix in main memory [11] proposes a caching scheme where only the
most recently used kernel matrix rows are stored in memory.

Solving each of the subproblems arising in the decomposition approach can be done with
all of the algorithms described in section 3. The only remaining question to be answered
concerns the selection of an appropriate working set B and a stopping condition for the
decomposition approach.

4.1 Working set selection

For the selection of the working set B the reasoning given in section 3.3 for the ’maximal
violating pair’ can be generalized for selecting more than two variables. Sorting the index
set I of all optimization variables into a list in decreasing order w.r.t. −yi∇f(α)i and
selecting pairs of variables, where the first variable is from the top of the list with i ∈ Iup

and the second variable is from the bottom of the list with i ∈ Ilow, results in a working set
B where each pair is in some sense a ’maximal violating pair’. With this selection strategy
it is possible to fill the working set with more than two variables, but the number of selected
variables might be less than the required working set size. Consequently, if necessary, the
working set is filled up with the most recent indices1 in the previous working set that are
not yet in B, where preference is usually given to free variables [23].

Another important point of the working set selection strategy is the number of new variables
n that enter the working set at each step. If n is chosen to be equal to the size of the working
set (n = |B| = q) a so called ’zigzagging’ of variables might occur, that is, some variables
might enter and leave the working set for many times which in turn can slow down the
optimization algorithm considerably. A suitable initial value for n that works in practice
is n = q/2. To get faster convergence n is decreased during the optimization process as

1Indices that are in B for the lowest number of consecutive iterations.

16

described in [23]. With these considerations in mind the strategy for selecting B can be
summarized as follows:

1. Let q be the required working set size and n the number of new variables to enter
the working set.

2. Sort the index set I into decreasing order w.r.t. −yi∇f(α)i and let (i1, . . . , in) be
the sorted index sequence.

3. Select pairs (iu, il) of indices with l < u from the sequence where iu ∈ Iup and
il ∈ Ilow until n indices are selected or no pair satisfying the above conditions
can be found.

4. Let B′ be the working set selected so far.
5. If |B′| < q fill up B′ with the most recent indices i ∈ B \ B′ with 0 < αi < C

(free variables).
6. If |B′| < n fill up B′ with the most recent indices i ∈ B \ B′ with αi = 0

(variables at lower bound).
7. If |B′| < n fill up B′ with the most recent indices i ∈ B \ B′ with αi = C

(variables at upper bound).
8. Adapt n by setting n = min(n, max(10, q′, n′)), where q′ is the largest even

integer with q′ < q/10 and n′ is the largest even integer with n′ < |{i, i ∈
B′ \B}|. Set B = B′.

4.2 Stopping condition

As stopping condition for the decomposition approach the stopping condition (72) for the
SMO algorithm in section 3.3 can be used. In this case the index sets Iup and Ilow are
subsets of the whole index set I = B ∪N .

5 Implementation

It was already pointed out in the last section that the decomposed QP problem (73) can
be solved by all of the QP solvers described in section 3. After implementing these algo-
rithms it becomes apparent that not all are suited to solve large scale SVM problems in
practice. This section gives some hints on why the interior point algorithm and the gradient
projection algorithm are not the first choice in practice and explain why a parallel SMO
implementation should be preferred.

In [23] the gradient projection algorithm exhibits a very good parallel behavior for large
scale C-SVC training. With the reformulation for ν-SVC given in section 3.2 it is possible
to apply the gradient projection algorithm to the problem of large scale ν-SVC training. For
the sequential implementation of this approach the code 2 of [23] is modified accordingly.
Unfortunately the two step projection for solving the ν-SVC problem does not work well
in practice. At least it only works for some datasets and settings of the parameter ν while
on most datasets this approach failed to converge due to numerical problems. Therefore the
gradient projection algorithm is not considered any further in this study.

The LOQO interior point algorithm described in section 3.1 is implemented using the par-
allel linear algebra library PLAPACK [19]. This library contains a very good parallel
Cholesky solver for dense matrices which is essential for solving the reduced KKT system.
Testing this approach on several large scale datasets with different sizes of the working set
reveals that there is a linear relationship 3 between the working set size and the number of
iterations required by the decomposition approach to converge (Table 1). Therefore one
could expect a linear speedup when increasing the working set size which is not observed
in practice as the runtime on a fixed number of processors is almost constant. This is caused
by the runtime complexity of the interior point algorithm which scales with O(m3), where

2Available at: http://dm.unife.it/gpdt/
3For a limited range.

17

Number of Working Set Number of CPU Time
Processors Size Iterations in min

1 256/128 103 64.85
2 256/128 103 51.23
4 256/128 103 29.53
1 512/256 51 65.48
2 512/256 51 51.93
4 512/256 51 30.05
1 1024/512 24 68.25
2 1024/512 24 53.46
4 1024/512 24 30.65

Table 1: Performance of the decomposition approach using LOQO as inner solver
for the dataset mnist-576-rbf-8vr.

in this case m is the number of variables in the working set. When increasing the number
of processors the runtime complexity of LOQO also explains the bad parallel performance.
Figure 6 shows the results of LOQO in comparison to parallel SMO (described next) on
one of the MNIST datasets (cf. section A). In addition to this LOQO has convergence
problems on a subset of the ν-SVC tasks and for certain values of the parameter ν.

Figure 6: Comparison of LOQO and parallel SMO (PSMO) with respect to run-
time (left) and speedup (right) on the mnist-576-rbf-8vr dataset. Due to theO(m3)
runtime complexity of LOQO the parallel decomposition approach using LOQO
as inner solver does not scale well. On the other hand PSMO is able to achieve a
superlinear speedup for this dataset. The size of the working set in both cases is
q = 512 and the number of new variables entering the working set is n = 256.

To avoid the problems just mentioned a parallel implementation of the SMO algorithm de-
scribed in section 3.3 can be used. This approach will be termed PSMO in the following
discussion. It is based on the observation that in practice the main computational bur-
den is not the solution of the inner QP problem, as long as the working set size is small
and contains about 256 − 2048 variables. Profiling information gathered for the parallel
implementations on different datasets indicates that the computational bottleneck are the
kernel evaluations which are needed to update the gradient ∇f(α). Note that updating
the gradient is essential for the working set selection and the evaluation of the stopping
condition (72). The profiling information reveals that between 90− 98% of the runtime is
spend on updating the gradient. This is the motivation for PSMO which uses the sequential
SMO algorithm for solving the subproblems arising in the decomposition approach while
performing problem setup, kernel evaluations, caching of kernel rows and gradient updates
in parallel. Important for achieving good speedups is a good load balancing between the
processors which in PSMO achieves by a distributed caching strategy.

18

The distributed caching strategy basically assigns the computational tasks with a round-
robin strategy. Before the gradient is updated in each iteration the following steps are
executed:

1. Each processor determines the kernel rows with indices in the current working set
B, which are cached/not cached locally.

2. Next the local cache information is synchronized across all processors.
3. Using the global cache information the index set B is split into cached Bc and

non-cached Bnc indices.
4. Bc is distributed among the processors with a round-robin strategy4 Let the result-

ing sets be Blocal
c and Blocal

nc .
5. Then each processor updates all components of ∇f(α)i, with index i ∈ Blocal

c ∪
Blocal

nc . Cached entries are updated before the non-cached ones.
6. Finally the gradient ∇f(α) is synchronized between all processors.

PSMO was implemented using a modified SMO from the LibSVM [4] software version 2.8.
One change of the LibSVM library involves the the sparse data representation, which is
replaced by a new sparse data structure recommended by the BLAS Technical Forum. 5 All
communication that is necessary between the processors for the distributed caching strategy
and data synchronization is implemented using the Message Passing Interface (MPI) [7].

6 Results

The results presented in the following subsections for C-SVC, ν-SVC , ε-SVR and ν-SVR
are all based on the PSMO implementation of section 5. For classification four datasets
mnist-576-rbf-8vr, mnist-784-poly-8vr, covtype-2vr and kddcup99-nvr are used. The two
regression datasets are kddcup98 and mv (for details cf. section A). All performance tests
are run on the Kepler 6 cluster, which has 32 Dual AMD Athlon MP 2000+ nodes with 1666
MHz , 256 L2 Cache and 1-2GB RAM running Linux (2.4.21 kernel). Communication
between nodes occurs over a Myrinet interconnect with MPI Peak performance of 115MB
per second and node. Because of technical reasons it is not possible to run programs on
more than 8 processors. Therefore in the following all performance results are given for up
to 8 processors. The size of the distributed cache is set to 256MB for all tests.

4First processor gets first index, second processor gets second index etc., wrapping around if
necessary.

5http://www.netlib.org/blas/blast-forum/
6http://kepler.sfb382-zdv.uni-tuebingen.de/kepler/index.shtml

19

6.1 C-SVC

Parallel solution of the C-SVC problem for the classification datasets mnist-576-rbf-8vr,
mnist-784-poly-8vr and covtype-2vr with PSMO yields a superlinear speedup on up to 8
processors as shown in figure 7 and figure 8. For the kddcup99-nvr an almost linear speedup
is achieved on up to 4 processors (figure 8). The parameters used for training PSMO and
LibSVM on the four datasets are given in table 2. To put these speedups in relation to
LibSVM performance on a single processor, the runtime of LibSVM on one CPU is also
measured and listed in table 3. On both MNIST datasets the single processor runtime of
PSMO is better than that of LibSVM, whereas on the other two datasets LibSVM outper-
forms PSMO in the sequential case. But it is important to note that the single processor
runtime of PSMO on these datasets could be potentially improved by choosing a different
working set size. Nonetheless PSMO on four processors is still twice as fast as LibSVM
on a single processor for the covtype-2vr dataset and a constant two hours faster for the
kddcup99-nvr dataset.

Dataset C-SVC Parameters Working Set Size
mnist-576-rbf-8vr C = 10, γ = 1.667 512/256
mnist-784-rbf-8vr C = 10, d = 7 512/256
covtype-2vr C = 10, γ = 2e− 5 1024/512
kddcup99-nvr C = 2, γ = 0.6 512/256

Table 2: PSMO and LibSVM training parameters and working set size for the
C-SVC problems

Dataset CPU Time Test Error
PSMO LibSVM v2.8 PSMO LibSVM v2.8

mnist-576-rbf-8vr 59.13 [m] 103.5 [m] 99.82% 99.82%
mnist-784-rbf-8vr 126.24 [m] 153.90 [m] 99.51% 99.51%
covtype-2vr 31.12 [h] 11.71 [h] 96.35% 96.36%
kddcup99-nvr 20.89 [h] 7.369 [h] 92.71% 92.71%

Table 3: Single processor CPU Time and test error for PSMO in comparison with
LibSVM v2.8 for the C-SVC problems.

1 2 3 4 5 6 7 8
0

10

20

30

40

50

60

Number of processors

C
P

U
 ti

m
e

in
 m

in

1 2 3 4 5 6 7 8
0

2

4

6

8

10

12

14

16

S
pe

ed
up

1 2 3 4 5 6 7 8
0

20

40

60

80

100

120

140

Number of processors

C
P

U
 ti

m
e

in
 m

in

1 2 3 4 5 6 7 8
0

5

10

15

20

25

S
pe

ed
up

Figure 7: C-SVC Speedup and CPU time for dataset mnist-576-rbf-8vr (left) and
dataset mnist-784-poly-8vr (right).

20

1 2 3 4 5 6 7 8
0

5

10

15

20

25

30

35

Number of processors

C
P

U
 ti

m
e

in
 h

1 2 3 4 5 6 7 8
1

2

3

4

5

6

7

8

9

10

S
pe

ed
up

1 2 3 4
4

6

8

10

12

14

16

18

20

22

Number of processors

C
P

U
 ti

m
e

in
 h

1 2 3 4
1

1.5

2

2.5

3

3.5

4

S
pe

ed
up

Figure 8: C-SVC Speedup and CPU time for dataset covtype-tr-2vr (left) and
dataset kddcup99-nvr (right).

6.2 ν-SVC

Table 4 summarizes the parameters used for ν-SVC training on the four classification
datasets. As shown in figure 9 and figure 10 superlinear speedups are achieved again on
up to 8 processors. The only exception being the runtime for the mnist-576-rbf-8vr dataset
where a superlinear speedup is observable for up to 4 processors. Comparison of single
processor runtime with LibSVM shows the same situation as for C-SVC where PSMO
runtime for mnist-576-rbf-8vr and mnist-784-poly-8vr is better than LibSVM.

Dataset ν-SVC Parameters Working Set Size
mnist-576-rbf-8vr ν = 0.002356, γ = 1.667 512/256
mnist-784-rbf-8vr ν = 0.006753, d = 7 512/256
covtype-2vr ν = 0.131544, γ = 2e− 5 1024/512
kddcup99-nvr ν = 0.001164, γ = 0.6 512/256

Table 4: PSMO and LibSVM training parameters and working set size for the
ν-SVC problems

Dataset CPU Time Test Error
PSMO LibSVM v2.8 PSMO LibSVM v2.8

mnist-576-rbf-8vr 40.76 [m] 98.55 [m] 99.82% 99.82%
mnist-784-rbf-8vr 87.05 [m] 153.60 [m] 99.51% 99.51%
covtype-2vr 25.06 [h] 23.72 [h] 96.34% 96.33%
kddcup99-nvr 43.89 [h] 23.35[h] 92.71% 92.71%

Table 5: Single processor CPU Time and test error for PSMO in comparison with
LibSVM v2.8 for the ν-SVC problems.

The difference in runtime for covtype-2vr is about two hours whereas LibSVM is twice
as fast on kddcup99-nvr. When PSMO is run in parallel on 4 processors the runtime for
kddcup99-nvr is cut down to 10 hours, which is twice as fast as the runtime of LibSVM.
The test error reported in table 2 indicates that the parallelization technique employed in
PSMO does not influence the classification performance.

21

1 2 3 4 5 6 7 8
5

10

15

20

25

30

35

40

45

Number of processors

C
P

U
 ti

m
e

in
 m

in

1 2 3 4 5 6 7 8
1

2

3

4

5

6

7

8

S
pe

ed
up

1 2 3 4 5 6 7 8
0

10

20

30

40

50

60

70

80

90

Number of processors

C
P

U
 ti

m
e

in
 m

in

1 2 3 4 5 6 7 8
0

2

4

6

8

10

12

14

S
pe

ed
up

Figure 9: ν-SVC Speedup and CPU time for dataset mnist-576-rbf-8vr (left) and
dataset mnist-784-poly-8vr (right).

1 2 3 4 5 6 7 8
0

5

10

15

20

25

30

Number of processors

C
P

U
 ti

m
e

in
 h

1 2 3 4 5 6 7 8
1

2

3

4

5

6

7

8

9

10

S
pe

ed
up

1 2 3 4
10

15

20

25

30

35

40

45

Number of processors

C
P

U
 ti

m
e

in
 h

1 2 3 4
1

1.5

2

2.5

3

3.5

4

4.5

S
pe

ed
up

Figure 10: ν-SVC Speedup and CPU time for dataset covtype-2vr (left) and
dataset kddcup-nvr (right).

6.3 ε-SVR

Training parameters used for ε-SVR on the datasets kddcup98 and mv are listed in table 6.
The performance comparison of PSMO with LibSVM on a single processor shows that
there is no difference in training time for the mv dataset. For the kddcup98 dataset PSMO
is approximately three times as fast as LibSVM while the quality difference of the results,
in terms of mean squared error (MSE) on the test set, is negligible (table 7).

Dataset ε-SVR Parameters Working Set Size
kddcup98 C = 0.0078, ε = 0.01, γ = 13.6436 512/256
mv C = 32, ε = 0.01, γ = 0.1084 512/256

Table 6: PSMO and LibSVM training parameters and working set size for the
ε-SVR problems

It can be seen in figure 11 that the speedup of PSMO for the ε-SVR is not linear for both
datasets. For the mv dataset this can be attributed to the low speedup potential of this
dataset that manifests itself in the small number of input patterns and low dimensionality of
the data on the one hand and the short single processor runtime of about 20 minutes on the
other hand. But this argumentation cannot be used to explain the behavior of PSMO on the
kddcup98 dataset. Here one could speculate that the distributed caching strategy does not

22

Dataset CPU Time Test MSE
PSMO LibSVM v2.8 PSMO LibSVM v2.8

kddcup98 8.671 [h] 29.51[h] 6.06e-04 6.07e-04
mv 19.86 [m] 20.0 [m] 3.15e-05 3.24e-05

Table 7: Single processor CPU Time and test error for PSMO in comparison with
LibSVM v2.8 for the ε-SVR problems.

work well, when the fraction of support vectors is low. Since for kddcup98 approximately
half of the input patterns end up as support vector this cannot explain the lower speedup
achieved by PSMO on this datasets and further investigations are necessary to elucidate the
relationship between speedup and dataset properties.

1 2 3 4 5 6 7 8
50

100

150

200

250

300

350

400

450

500

550

Number of processors

C
P

U
 ti

m
e

in
 m

in

1 2 3 4 5 6 7 8
1

2

3

4

5

6

7

8

S
pe

ed
up

1 2 3 4 5 6 7 8
6

8

10

12

14

16

18

20

Number of processors

C
P

U
 ti

m
e

in
 m

in

1 2 3 4 5 6 7 8
1

2

3

4

5

6

7

8

S
pe

ed
up

Figure 11: ε-SVR Speedup and CPU time for dataset kddcup98 (left) and dataset
mv (right).

6.4 ν-SVR

The training of ν-SVR on the datasets mv and kddcup98 yields results with quality similar
to C-SVR when the parameters given in table 8 are used. When viewed with respect to
runtime and speedup the results give the same picture as for C-SVR the only exception
being the runtime of LibSVM for the mv dataset which is about four times as high as in the
C-SVR case. The statements made about the speedup potential of the datasets in section 6.3
also hold for the parallel ν-SVR training.

Dataset ν-SVR Parameters Working Set Size
kddcup98 C = 0.0078, ν = 0.092862, γ = 13.6436 512/256
mv C = 32, ν = 0.020947, γ = 0.1084 512/256

Table 8: PSMO and LibSVM training parameters and working set size for the
ν-SVR problems

23

Dataset CPU Time Test MSE
PSMO LibSVM v2.8 PSMO LibSVM v2.8

kddcup98 8.983 [h] 29.85[h] 6.05e-04 6.06e-04
mv 24.43 [m] 82.60 [m] 3.24e-05 3.21e-05

Table 9: Single processor CPU Time and test error for PSMO in comparison with
LibSVM v2.8 for the ν-SVR problems.

1 2 3 4 5 6 7 8
50

100

150

200

250

300

350

400

450

500

550

Number of processors

C
P

U
 ti

m
e

in
 m

in

1 2 3 4 5 6 7 8
1

2

3

4

5

6

7

8

S
pe

ed
up

1 2 3 4 5 6 7 8
10

15

20

25

Number of processors

C
P

U
 ti

m
e

in
 m

in

1 2 3 4 5 6 7 8
1

2

3

4

5

6

7

8

S
pe

ed
up

Figure 12: ν-SVR Speedup and CPU time for dataset kddcup98 (right) and dataset
mv (left).

7 Conclusion

This article described various ways how to parallelize SVM training for the original non-
simplified SVM formulations including C-SVC ν-SVC, ε-SVR and ν-SVR. Three differ-
ent parallelization strategies arise from the use of the interior point algorithm, the gradient
projection algorithm or SMO in combination with the decomposition approach for SVM
training. While the gradient projection algorithm has already been successfully used for
parallel C-SVC section 3.2 described how to extend the algorithm to solve QP problems
with two linear constraints that need to be solved when training ν-SVC and ν-SVR. Al-
though this extension is theoretically possible it does not work in practice due to slow
convergence. Similar practical experience with the parallel LOQO implementation of the
interior point algorithm and the careful analysis of profiling information have led to the im-
plementation of PSMO. Despite the fact that PSMO uses a sequential inner QP solver it is
possible to achieve superlinear speedups for C-SVC and ν-SVR. In the regression setting
PSMO showed close to linear speedup on the examined kddcup98 dataset while on the mv
dataset it is still unclear why only moderate speedups are obtained. Further work is needed
to elucidate the relationship between speedup and properties of the dataset. Another impor-
tant point to investigate in the future concerns an optimal parallelization strategy in terms
of speedup or runtime for multi-class problems.

A Description of datasets

An overview of all the datasets used in this study is given in table 10. Datasets were selected
to ease comparison with similar studies like [23, 17]. The preprocessing of each dataset and
the selection of SVM parameters are described in detail in the following subsections. All
datasets are available for download at http://pisvm.sourceforge.net. Pointers
to the original sources of the datasets are provided at the same location. Kernels used for
these datasets include the RBF kernel k(xi, xj) = e−γ‖xi−xj‖2

and the polynomial kernel
k(xi, xj) = 〈xi, xj〉d.

24

Dataset Number of Patterns Number of Dimensions
Train Test

mnist-576-rbf-8vr 60000 10000 576
mnist-784-poly-8vr 60000 10000 784
covtype-2vr 435759 145253 54
kddcup99-nvr 4898430 311029 122
kddcup98 95412 96367 403
mv 36768 4000 10

Table 10: Overview of dataset size and dimension.

A.1 mnist-576-rbf-8vr and mnist-784-poly-8vr

Both datasets originate from the MNIST dataset for handwritten digit recognition and only
differ in the type of preprocessing that is done. For mnist-576-rbf-8vr which is used in con-
junction with the RBF kernel a 576-dimensional discriminative feature vector is extracted
from the original data [6]. The dataset mnist-784-poly-8vr is prepared by centering each
digit image in a 28× 28 box, smoothing with a 3× 3 mask (center element 1/2, rest 1/16)
and normalizing each pattern, such that its dot product is always within [0, 1] [6]. SVC
parameters are C = 10 for both datasets, γ = 1.667 for mnist-576-rbf-8vr and d = 7 for
mnist-784-poly-8vr and are determined using cross-validation on a subset of the training
data [6]. Finally the 10-class problem of the MNIST dataset is reduced to a 2-class problem
by separating digit 8 from the rest [23].

A.2 covtype-2vr

The task of distinguishing between 8 different classes of forest covertype is represented
by the covtype dataset. For the conversion to a binary problem class 2 is to be separated
from the other classes. Preparation of the dataset and choice of SVM parameters is done as
described in [23]. The RBF kernel is used with parameter γ = 2e − 5, the regularization
parameter of the SVC is set to C = 10 and the stopping condition is ε = 0.01.

A.3 kddcup99-nvr

The kddcup99-nvr dataset is based on an intrusion detection problem. During preprocess-
ing of the dataset it became apparent that pattern 4817100 obviously contained data for-
matting errors and was removed from the training dataset. Furthermore symbolic features
in the original dataset are converted to unary coded features and all features are scaled to
lie in the interval [0, 1] following [18]. Parameters are set as in [23] with γ = 0.6 , C = 2
and stopping condition ε = 0.01.

A.4 kddcup98

This regression dataset was originally provided by the Paralyzed Veterans of America
(PVA) a non-profit organization that provides programs and services for US veterans with
spinal cord injuries or diseases. Since most of the funding of PVA is raised by mailing
donors the goal is to maximize the donated money in dependence of behavioral and social
features of the donors. By including only numerical features the original dataset is re-
duced to contain 403 features. Missing values are imputed by replacing them by the mean
of the given values. Then the features and target values are scaled to lie in the interval
[0, 1]. To estimate the RBF kernel parameter γ the method proposed in [18] is used, that
is γ = 1/(1/m2)

∑m
i,j=1 ‖xi − xj‖2, leading to γ = 13.6436 for this dataset. Finally

SVR parameters are selected by 5-fold cross-validation with C ∈ {2−7, 2−5, . . . , 27} and
ε ∈ {0.01} resulting in C = 2−7 and ε = 0.01. All parameters are selected on a 1000
element subset of the training data.

25

A.5 mv

Estimation of SVR parameters follows the description given in section A.4 for dataset
kddcup98 and results in γ = 0.1084, C = 32 and ε = 0.01. The dataset is an artificial
regression task with dependencies among the features.

References

[1] Dimitri P. Bertsekas. Nonlinear Programming. Athena Scientific, second edition,
2003.

[2] A. Bode. Multicore-Architekturen. Informatik Spektrum, 29(5):349–352, October
2006.

[3] Mihai Bădoiu and Kenneth L. Clarkson. Smaller core-sets for balls. In SODA
’03: Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algo-
rithms, 2003.

[4] Chih-Chung Chang and Chih-Jen Lin. LIBSVM: a Library for Support Vector Ma-
chines, 2006. Software available at
http://www.csie.ntu.edu.tw/˜cjlin/libsvm.

[5] Yu-Hong Dai and Roger Fletcher. New algorithms for singly linearly constrained
quadratic programs subject to lower and upper bounds. Math. Progm. Ser. A,
(106):403–421, October 2005.

[6] Jian-Xiong Dong, Adam Krzyzak, and Ching Y. Suen. Fast SVM Training Algorithm
with Decomposition on Very Large Data Sets. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 27(4):603–618, April 2005.

[7] Message Passing Interface Forum. MPI: A message-passing interface standard. Tech-
nical Report UT-CS-94-230, 1994.

[8] Gene H. Golub and Charles F. van Loan. Matrix Computations. The John Hopkins
University Press, third edition, 1996.

[9] Hans Peter Graf, Eric Cosatto, Leon Bottou, Igor Durdanovic, and Vladimir Vapnik.
Parallel Support Vector Machines: The Cascade SVM. Advances in Neural Informa-
tion Processing Systems, 17, 2005.

[10] Thomas Gärtner, Peter Flach, and Stefan Wrobel. On Graph Kernels: Hardness Re-
sults and Efficient Alternatives. In B. Schölkopf and M.K. Warmuth, editors, Pro-
ceedings of the 16th Annual Conference on Computational Learning Theory and 7th
Kernel Workshop, pages 129–143, Stanford University, CA, USA, 2003. Springer
Verlag.

[11] T. Joachims. Making large-scale support vector machine learning practical. In
A. Smola B. Schölkopf, C. Burges, editor, Advances in Kernel Methods: Support
Vector Machines. MIT Press, Cambridge, MA, 1998.

[12] O. L. Mangasarian and David R. Musicant. Active support vector machine classifica-
tion. In NIPS, pages 577–583, 2000.

[13] J. Platt. Fast training of SVMs using sequential minimal optimization. In A. Smola
B. Schölkopf, C. Burges, editor, Advances in Kernel Methods: Support Vector Ma-
chines. MIT Press, Cambridge, MA, 1999.

[14] Bernhard Schölkopf and Alexander J. Smola. Learning with Kernels – Support Vector
Machines, Regularization, Optimization, and Beyond. MIT Press, first edition edition,
2002.

[15] A. J. Smola. Learning with Kernels. PhD thesis, Technische Universität Berlin, 1998.
[16] John Shawe Taylor and Nello Cristiaini. Kernel Methods for Pattern Analysis. Cam-

bridge University Press, 2004.
[17] Ivor W. Tsang, James T. Kwok, and Pak-Ming Cheung. Core Vector Machines: Fast

SVM Training on Very Large Data Sets. Journal of Machine Learning Research,
(6):363–392, 2005.

26

[18] Ivor W. Tsang, James T. Kwok, and Kimo T. Lai. Core Vector Regression for Very
Large Regression Problems. In Proceedings of the 22nd International Conference on
Machine Learning, pages 913–920, 2005.

[19] Robert A. van de Geijn. Using PLAPACK: Parallel Linear Algebra Package. The
MIT Press, 1997.

[20] R. J. Vanderbei and D. F. Shanno. An interior-point algorithm for nonconvex nonlin-
ear programming. Technical Report SOR-97-21, Princeton University, 1997.

[21] Vladimir N. Vapnik. The Nature of Statistical Learning Theory. Springer, second
edition, 1999.

[22] G. Zanghirati and L. Zanni. A parallel solver for large quadratic programs in training
support vector machines. Parallel Computing, (29):535–551, 2002.

[23] Luca Zanni, Thomas Serafini, and Gaetano Zanghirati. Parallel Software for Train-
ing Large Scale Support Vector Machines on Multiprocessor Systems. Journal of
Machine Learning Research, (7):1467–1492, 2006.

27

